Sample records for leaf developmental stage

  1. Biogenic volatile organic compound emissions from senescent maize leaves and a comparison with other leaf developmental stages

    NASA Astrophysics Data System (ADS)

    Mozaffar, A.; Schoon, N.; Bachy, A.; Digrado, A.; Heinesch, B.; Aubinet, M.; Fauconnier, M.-L.; Delaplace, P.; du Jardin, P.; Amelynck, C.

    2018-03-01

    Plants are the major source of Biogenic Volatile Organic Compounds (BVOCs) which have a large influence on atmospheric chemistry and the climate system. Therefore, understanding of BVOC emissions from all abundant plant species at all developmental stages is very important. Nevertheless, investigations on BVOC emissions from even the most widespread agricultural crop species are rare and mainly confined to the healthy green leaves. Senescent leaves of grain crop species could be an important source of BVOCs as almost all the leaves senesce on the field before being harvested. For these reasons, BVOC emission measurements have been performed on maize (Zea mays L.), one of the most cultivated crop species in the world, at all the leaf developmental stages. The measurements were performed in controlled environmental conditions using dynamic enclosures and proton transfer reaction mass spectrometry (PTR-MS). The main compounds emitted by senescent maize leaves were methanol (31% of the total cumulative BVOC emission on a mass of compound basis) and acetic acid (30%), followed by acetaldehyde (11%), hexenals (9%) and m/z 59 compounds (acetone/propanal) (7%). Important differences were observed in the temporal emission profiles of the compounds, and both yellow leaves during chlorosis and dry brown leaves after chlorosis were identified as important senescence-related BVOC sources. Total cumulative BVOC emissions from senescent maize leaves were found to be among the highest for senescent Poaceae plant species. BVOC emission rates varied strongly among the different leaf developmental stages, and senescent leaves showed a larger diversity of emitted compounds than leaves at earlier stages. Methanol was the compound with the highest emissions for all the leaf developmental stages and the contribution from the young-growing, mature, and senescent stages to the total methanol emission by a typical maize leaf was 61, 13, and 26%, respectively. This study shows that BVOC emissions from senescent maize leaves cannot be neglected and further investigations in field conditions are recommended to further constrain the BVOC emissions from this important C4 crop species.

  2. Chemical Composition and Water Permeability of Fruit and Leaf Cuticles of Olea europaea L.

    PubMed

    Huang, Hua; Burghardt, Markus; Schuster, Ann-Christin; Leide, Jana; Lara, Isabel; Riederer, Markus

    2017-10-11

    The plant cuticle, protecting against uncontrolled water loss, covers olive (Olea europaea) fruits and leaves. The present study describes the organ-specific chemical composition of the cuticular waxes and the cutin and compares three developmental stages of fruits (green, turning, and black) with the leaf surface. Numerous organ-specific differences, such as the total coverage of cutin monomeric components (1034.4 μg cm -2 and 630.5 μg cm -2 ) and the cuticular waxes (201.6 μg cm -2 and 320.4 μg cm -2 ) among all three fruit stages and leaves, respectively, were detected. Water permeability as the main cuticular function was 5-fold lower in adaxial leaf cuticles (2.1 × 10 -5 m s -1 ) in comparison to all three fruit stages (9.5 × 10 -5 m s -1 ). The three fruit developmental stages have the same cuticular water permeability. It is hypothesized that a higher weighted average chain length of the acyclic cuticular components leads to a considerably lower permeability of the leaf as compared to the fruit cuticle.

  3. Population dynamics of the rubber plantation litter beetle Luprops tristis, in relation to annual cycle of foliage phenology of its host, the para rubber tree, Hevea brasiliensis.

    PubMed

    Sabu, Thomas K; Vinod, K V

    2009-01-01

    The population dynamics of the rubber plantation litter beetle, Luprops tristis Fabricius 1801 (Coleoptera: Tenebrionidae) was assessed in relation to the phenology of leaf shedding and defoliation pattern of para rubber trees, Hevea brasiliensis Müll. Arg (Malpighiales: Euphorbiaceae), during a two year study period. The abundance of adults, larvae and pupae per 1m(2) of litter sample was recorded. Post dormancy beetles appeared in leaf litter following annual leaf shedding, whereas larvae, pupae and teneral adults were present after leaf flush. No stages were recorded from plantations following the summer rains until the annual litter fall in the next season. Parental adults peaked at the time of leaf sprouting and tender leaf fall. Larvae and teneral adults peaked at the time of premature fall of green leaves and flowers. Teneral adults of six age classes were recorded and all entered dormancy irrespective of the feeding time available to each age class. Females outnumbered males in the parent generation, while the sex ratio of new generation adults was not biased towards either sex. The phenological stages of rubber trees included leaf fall in late December and early January, leaf sprouting and new leaf production in January and flowering in February. All feeding stages of L. tristis peaked in abundance when premature leaves are most abundant in the leaf litter. Prediction of the timing of appearance of various developmental stages of L. tristis in plantations, invasion into buildings and intensity of population build up in rubber belts is possible by tracking the phenology of leaf fall in rubber plantations, time of return of post dormancy adults and the onset of summer rainfall. Perfect synchrony was recorded between the field return of parental adults with annual leaf shedding, the oviposition phase of parental adults with tender leaf fall at the time of leaf sprouting, and larval and teneral adult stages with premature fall of leaves. Premature leaf availability is suggested as contributing to the reproductive efficiency of parental adults, the survival of early developmental stages and of new generation adults during dormancy.

  4. Population Dynamics of the Rubber Plantation Litter Beetle Luprops tristis, in Relation to Annual Cycle of Foliage Phenology of Its Host, the Para Rubber Tree, Hevea brasiliensis

    PubMed Central

    Sabu, Thomas K.; Vinod, K.V.

    2009-01-01

    The population dynamics of the rubber plantation litter beetle, Luprops tristis Fabricius 1801 (Coleoptera: Tenebrionidae) was assessed in relation to the phenology of leaf shedding and defoliation pattern of para rubber trees, Hevea brasiliensis Müll. Arg (Malpighiales: Euphorbiaceae), during a two year study period. The abundance of adults, larvae and pupae per 1m2 of litter sample was recorded. Post dormancy beetles appeared in leaf litter following annual leaf shedding, whereas larvae, pupae and teneral adults were present after leaf flush. No stages were recorded from plantations following the summer rains until the annual litter fall in the next season. Parental adults peaked at the time of leaf sprouting and tender leaf fall. Larvae and teneral adults peaked at the time of premature fall of green leaves and flowers. Teneral adults of six age classes were recorded and all entered dormancy irrespective of the feeding time available to each age class. Females outnumbered males in the parent generation, while the sex ratio of new generation adults was not biased towards either sex. The phenological stages of rubber trees included leaf fall in late December and early January, leaf sprouting and new leaf production in January and flowering in February. All feeding stages of L. tristis peaked in abundance when premature leaves are most abundant in the leaf litter. Prediction of the timing of appearance of various developmental stages of L. tristis in plantations, invasion into buildings and intensity of population build up in rubber belts is possible by tracking the phenology of leaf fall in rubber plantations, time of return of post dormancy adults and the onset of summer rainfall. Perfect synchrony was recorded between the field return of parental adults with annual leaf shedding, the oviposition phase of parental adults with tender leaf fall at the time of leaf sprouting, and larval and teneral adult stages with premature fall of leaves. Premature leaf availability is suggested as contributing to the reproductive efficiency of parental adults, the survival of early developmental stages and of new generation adults during dormancy. PMID:20050775

  5. Spectral variability of deciduous leaves depending on the developmental stages and tree condition

    NASA Astrophysics Data System (ADS)

    Song, Y.; Ryu, Y.

    2013-12-01

    Foliar spectral characteristics could be the key information in modeling forest ecosystem and the remote sensing of vegetation identification. But it is not easy to determine a typical leaf spectrum of a species in a standardized state. That is because of variables critically influencing on the spectral property of leaves, such as inter- and intra-species features, phenological phase, or biotic and abiotic stress. In this study, we attempted to quantify the spectral variability of leaves depending on species, developmental stages, and the condition of trees. The contribution of these factors to the spectral variation was analyzed at the single leaf level, with a large number of samples from deciduous plants in the urban forested area. First, we collected tens of leaf-samples at every biweekly fieldwork in the growing season, for the selected 5 tree species popular in urban parks; Acer palmatum, Carpinus laxiflora, Prunus yedoensis, Quercus acutissima, and Zelkova serrata. And absorbance, reflectance and transmittance spectra of the leaves were acquired at the short-visible (400-700 nm) to infrared (700-2500 nm) spectral region with 1 nm interval. Seasonality in these leaf-spectra was used to understand the inter-species variation depending on developmental stages. Second, as a benchmark for testing intra-species variability and differences by tree condition, we additionally analyzed the spectral reflectance of 504 ripe leaves from 56 cherry trees (Cerasus × yedoensis) collected in the middle of summer. Last, using ANOVA (analysis of variance) and general linear model, we assessed the influence of our tested variables (i.e., species, developmental stage, and tree condition) on the spectral characteristics and their vegetation indices. As a result, we clarified that the changes in leaf-spectra was apparent across all the tested species during the growing season from May to June, indicating the increasing trend of absorbance in photosynthetically active radiation region (400 to 700 nm; PAR) and reflectance in the near infrared region (700 to 1300 nm; NIR). Inter-species variability still appeared substantial and those inherit spectral characteristics was difficult to be described in a single universal vegetation index. The reflectance values of leaves were significantly differed in good and poor tree condition, which could be the other important consideration in the representative scheme of leaf sampling. More discussions will be present about the effect of species, developmental stage, and tree condition to the leaf-spectra and the published vegetation indices.

  6. In vitro effects of Musa x paradisiaca extracts on four developmental stages of Haemonchus contortus.

    PubMed

    Marie-Magdeleine, C; Udino, L; Philibert, L; Bocage, B; Archimede, H

    2014-02-01

    This study was carried out to evaluate the in vitro effect of Musa x paradisiaca stem and leaf against the parasitic nematode of small ruminants Haemonchus contortus. Three extracts (aqueous, methanolic and/or dichloromethane) of Musa x paradisiaca stem and leaf were tested in vitro on four developmental stages of H. contortus using egg hatch assay (EHA), larval development assay (LDA), L3 migration inhibition assay (LMI) and adult worm motility assay (AWM). The highly significant (P<0.0001) ability to stop larval development (inhibition >67% for each extract) and the negative effect of the dichloromethane extract of leaf on adult worm motility (43% of inhibition of motility after 24h of incubation) compared to the negative controls, suggest anthelmintic properties of Musa x paradisiaca stem and leaf against H. contortus. The active principles responsible for the activity could be secondary metabolites such as terpenoid and flavonoid compounds present in the leaf and stem of the plant. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Leaf area and net photosynthesis during development of Prunus serotina seedlings

    Treesearch

    Stephen B. Horsley; Kurt W. Gottschalk

    1993-01-01

    We used the plastochron index to study the relationship between plant age, leaf age and development, and net photosynthesis of black cherry (Prtmus serotina Ehrh.) seedlings. Leaf area and net photosynthesis were measured on all leaves >=75 mm of plants ranging in age from 7 to 20 plastochrons. Effects of plant developmental stage...

  8. Physiological and transcriptional analyses of developmental stages along sugarcane leaf.

    PubMed

    Mattiello, Lucia; Riaño-Pachón, Diego Mauricio; Martins, Marina Camara Mattos; da Cruz, Larissa Prado; Bassi, Denis; Marchiori, Paulo Eduardo Ribeiro; Ribeiro, Rafael Vasconcelos; Labate, Mônica T Veneziano; Labate, Carlos Alberto; Menossi, Marcelo

    2015-12-29

    Sugarcane is one of the major crops worldwide. It is cultivated in over 100 countries on 22 million ha. The complex genetic architecture and the lack of a complete genomic sequence in sugarcane hamper the adoption of molecular approaches to study its physiology and to develop new varieties. Investments on the development of new sugarcane varieties have been made to maximize sucrose yield, a trait dependent on photosynthetic capacity. However, detailed studies on sugarcane leaves are scarce. In this work, we report the first molecular and physiological characterization of events taking place along a leaf developmental gradient in sugarcane. Photosynthetic response to CO2 indicated divergence in photosynthetic capacity based on PEPcase activity, corroborated by activity quantification (both in vivo and in vitro) and distinct levels of carbon discrimination on different segments along leaf length. Additionally, leaf segments had contrasting amount of chlorophyll, nitrogen and sugars. RNA-Seq data indicated a plethora of biochemical pathways differentially expressed along the leaf. Some transcription factors families were enriched on each segment and their putative functions corroborate with the distinct developmental stages. Several genes with higher expression in the middle segment, the one with the highest photosynthetic rates, were identified and their role in sugarcane productivity is discussed. Interestingly, sugarcane leaf segments had a different transcriptional behavior compared to previously published data from maize. This is the first report of leaf developmental analysis in sugarcane. Our data on sugarcane is another source of information for further studies aiming to understand and/or improve C4 photosynthesis. The segments used in this work were distinct in their physiological status allowing deeper molecular analysis. Although limited in some aspects, the comparison to maize indicates that all data acquired on one C4 species cannot always be easily extrapolated to other species. However, our data indicates that some transcriptional factors were segment-specific and the sugarcane leaf undergoes through the process of suberizarion, photosynthesis establishment and senescence.

  9. Systems analysis of a maize leaf developmental gradient redefines the current C4 model and provides candidates for regulation.

    PubMed

    Pick, Thea R; Bräutigam, Andrea; Schlüter, Urte; Denton, Alisandra K; Colmsee, Christian; Scholz, Uwe; Fahnenstich, Holger; Pieruschka, Roland; Rascher, Uwe; Sonnewald, Uwe; Weber, Andreas P M

    2011-12-01

    We systematically analyzed a developmental gradient of the third maize (Zea mays) leaf from the point of emergence into the light to the tip in 10 continuous leaf slices to study organ development and physiological and biochemical functions. Transcriptome analysis, oxygen sensitivity of photosynthesis, and photosynthetic rate measurements showed that the maize leaf undergoes a sink-to-source transition without an intermediate phase of C(3) photosynthesis or operation of a photorespiratory carbon pump. Metabolome and transcriptome analysis, chlorophyll and protein measurements, as well as dry weight determination, showed continuous gradients for all analyzed items. The absence of binary on-off switches and regulons pointed to a morphogradient along the leaf as the determining factor of developmental stage. Analysis of transcription factors for differential expression along the leaf gradient defined a list of putative regulators orchestrating the sink-to-source transition and establishment of C(4) photosynthesis. Finally, transcriptome and metabolome analysis, as well as enzyme activity measurements, and absolute quantification of selected metabolites revised the current model of maize C(4) photosynthesis. All data sets are included within the publication to serve as a resource for maize leaf systems biology.

  10. Systems Analysis of a Maize Leaf Developmental Gradient Redefines the Current C4 Model and Provides Candidates for Regulation[W][OA

    PubMed Central

    Pick, Thea R.; Bräutigam, Andrea; Schlüter, Urte; Denton, Alisandra K.; Colmsee, Christian; Scholz, Uwe; Fahnenstich, Holger; Pieruschka, Roland; Rascher, Uwe; Sonnewald, Uwe; Weber, Andreas P.M.

    2011-01-01

    We systematically analyzed a developmental gradient of the third maize (Zea mays) leaf from the point of emergence into the light to the tip in 10 continuous leaf slices to study organ development and physiological and biochemical functions. Transcriptome analysis, oxygen sensitivity of photosynthesis, and photosynthetic rate measurements showed that the maize leaf undergoes a sink-to-source transition without an intermediate phase of C3 photosynthesis or operation of a photorespiratory carbon pump. Metabolome and transcriptome analysis, chlorophyll and protein measurements, as well as dry weight determination, showed continuous gradients for all analyzed items. The absence of binary on–off switches and regulons pointed to a morphogradient along the leaf as the determining factor of developmental stage. Analysis of transcription factors for differential expression along the leaf gradient defined a list of putative regulators orchestrating the sink-to-source transition and establishment of C4 photosynthesis. Finally, transcriptome and metabolome analysis, as well as enzyme activity measurements, and absolute quantification of selected metabolites revised the current model of maize C4 photosynthesis. All data sets are included within the publication to serve as a resource for maize leaf systems biology. PMID:22186372

  11. Dynamic Cytology and Transcriptional Regulation of Rice Lamina Joint Development1[OPEN

    PubMed Central

    2017-01-01

    Rice (Oryza sativa) leaf angle is determined by lamina joint and is an important agricultural trait determining leaf erectness and, hence, the photosynthesis efficiency and grain yield. Genetic studies reveal a complex regulatory network of lamina joint development; however, the morphological changes, cytological transitions, and underlying transcriptional programming remain to be elucidated. A systemic morphological and cytological study reveals a dynamic developmental process and suggests a common but distinct regulation of the lamina joint. Successive and sequential cell division and expansion, cell wall thickening, and programmed cell death at the adaxial or abaxial sides form the cytological basis of the lamina joint, and the increased leaf angle results from the asymmetric cell proliferation and elongation. Analysis of the gene expression profiles at four distinct developmental stages ranging from initiation to senescence showed that genes related to cell division and growth, hormone synthesis and signaling, transcription (transcription factors), and protein phosphorylation (protein kinases) exhibit distinct spatiotemporal patterns during lamina joint development. Phytohormones play crucial roles by promoting cell differentiation and growth at early stages or regulating the maturation and senescence at later stages, which is consistent with the quantitative analysis of hormones at different stages. Further comparison with the gene expression profile of leaf inclination1, a mutant with decreased auxin and increased leaf angle, indicates the coordinated effects of hormones in regulating lamina joint. These results reveal a dynamic cytology of rice lamina joint that is fine-regulated by multiple factors, providing informative clues for illustrating the regulatory mechanisms of leaf angle and plant architecture. PMID:28500269

  12. Dynamic Cytology and Transcriptional Regulation of Rice Lamina Joint Development.

    PubMed

    Zhou, Li-Juan; Xiao, Lang-Tao; Xue, Hong-Wei

    2017-07-01

    Rice ( Oryza sativa ) leaf angle is determined by lamina joint and is an important agricultural trait determining leaf erectness and, hence, the photosynthesis efficiency and grain yield. Genetic studies reveal a complex regulatory network of lamina joint development; however, the morphological changes, cytological transitions, and underlying transcriptional programming remain to be elucidated. A systemic morphological and cytological study reveals a dynamic developmental process and suggests a common but distinct regulation of the lamina joint. Successive and sequential cell division and expansion, cell wall thickening, and programmed cell death at the adaxial or abaxial sides form the cytological basis of the lamina joint, and the increased leaf angle results from the asymmetric cell proliferation and elongation. Analysis of the gene expression profiles at four distinct developmental stages ranging from initiation to senescence showed that genes related to cell division and growth, hormone synthesis and signaling, transcription (transcription factors), and protein phosphorylation (protein kinases) exhibit distinct spatiotemporal patterns during lamina joint development. Phytohormones play crucial roles by promoting cell differentiation and growth at early stages or regulating the maturation and senescence at later stages, which is consistent with the quantitative analysis of hormones at different stages. Further comparison with the gene expression profile of leaf inclination1 , a mutant with decreased auxin and increased leaf angle, indicates the coordinated effects of hormones in regulating lamina joint. These results reveal a dynamic cytology of rice lamina joint that is fine-regulated by multiple factors, providing informative clues for illustrating the regulatory mechanisms of leaf angle and plant architecture. © 2017 American Society of Plant Biologists. All Rights Reserved.

  13. Anatomy and ultrastructure of embryonic leaves of the C4 species Setaria viridis.

    PubMed

    Junqueira, Nicia E G; Ortiz-Silva, Bianca; Leal-Costa, Marcos Vinícius; Alves-Ferreira, Márcio; Dickinson, Hugh G; Langdale, Jane A; Reinert, Fernanda

    2018-05-11

    Setaria viridis is being promoted as a model C4 photosynthetic plant because it has a small genome (~515 Mb), a short life cycle (~60 d) and it can be transformed. Unlike other C4 grasses such as maize, however, there is very little information about how C4 leaf anatomy (Kranz anatomy) develops in S. viridis. As a foundation for future developmental genetic studies, we provide an anatomical and ultrastructural framework of early shoot development in S. viridis, focusing on the initiation of Kranz anatomy in seed leaves. Setaria viridis seeds were germinated and divided into five stages covering development from the dry seed (stage S0) to 36 h after germination (stage S4). Material at each of these stages was examined using conventional light, scanning and transmission electron microscopy. Dry seeds contained three embryonic leaf primordia at different developmental stages (plastochron 1-3 primordia). The oldest (P3) leaf primordium possessed several procambial centres whereas P2 displayed only ground meristem. At the tip of P3 primordia at stage S4, C4 leaf anatomy typical of the malate dehydrogenase-dependent nicotinamide dinucleotide phosphate (NADP-ME) subtype was evident in that vascular bundles lacked a mestome layer and were surrounded by a single layer of bundle sheath cells that contained large, centrifugally located chloroplasts. Two to three mesophyll cells separated adjacent vascular bundles and one mesophyll cell layer on each of the abaxial and adaxial sides delimited vascular bundles from the epidermis. The morphological trajectory reported here provides a foundation for studies of gene regulation during early leaf development in S. viridis and a framework for comparative analyses with other C4 grasses.

  14. Biochemical and transcriptomic analyses reveal different metabolite biosynthesis profiles among three color and developmental stages in 'Anji Baicha' (Camellia sinensis).

    PubMed

    Li, Chun-Fang; Xu, Yan-Xia; Ma, Jian-Qiang; Jin, Ji-Qiang; Huang, Dan-Juan; Yao, Ming-Zhe; Ma, Chun-Lei; Chen, Liang

    2016-09-08

    The new shoots of the albino tea cultivar 'Anji Baicha' are yellow or white at low temperatures and turn green as the environmental temperatures increase during the early spring. 'Anji Baicha' metabolite profiles exhibit considerable variability over three color and developmental stages, especially regarding the carotenoid, chlorophyll, and theanine concentrations. Previous studies focused on physiological characteristics, gene expression differences, and variations in metabolite abundances in albino tea plant leaves at specific growth stages. However, the molecular mechanisms regulating metabolite biosynthesis in various color and developmental stages in albino tea leaves have not been fully characterized. We used RNA-sequencing to analyze 'Anji Baicha' leaves at the yellow-green, albescent, and re-greening stages. The leaf transcriptomes differed considerably among the three stages. Functional classifications based on Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that differentially expressed unigenes were mainly related to metabolic pathways, biosynthesis of secondary metabolites, phenylpropanoid biosynthesis, and carbon fixation in photosynthetic organisms. Chemical analyses revealed higher β-carotene and theanine levels, but lower chlorophyll a levels, in the albescent stage than in the green stage. Furthermore, unigenes involved in carotenoid, chlorophyll, and theanine biosyntheses were identified, and the expression patterns of the differentially expressed unigenes in these biosynthesis pathways were characterized. Through co-expression analyses, we identified the key genes in these pathways. These genes may be responsible for the metabolite biosynthesis differences among the different leaf color and developmental stages of 'Anji Baicha' tea plants. Our study presents the results of transcriptomic and biochemical analyses of 'Anji Baicha' tea plants at various stages. The distinct transcriptome profiles for each color and developmental stage enabled us to identify changes to biosynthesis pathways and revealed the contributions of such variations to the albino phenotype of tea plants. Furthermore, comparisons of the transcriptomes and related metabolites helped clarify the molecular regulatory mechanisms underlying the secondary metabolic pathways in different stages.

  15. Effect of lignin content and subunit composition on digestibility in clones of timothy (Phleum pratense L.).

    PubMed

    Kärkönen, Anna; Tapanila, Tarja; Laakso, Tapio; Seppänen, Mervi M; Isolahti, Mika; Hyrkäs, Maarit; Virkajärvi, Perttu; Saranpää, Pekka

    2014-07-02

    Lignin amount and subunit composition were analyzed from stems and leaf sheaths of timothy (Phleum pratense L.) clones of different in vitro digestibility. Lignin concentration in stems and leaf sheaths was higher in clones of low digestibility than those of high digestibility. No change in lignin concentration occurred in stems as digestibility decreased. Intriguingly, the lignin concentration was lower and the syringyl/guaiacyl (S/G) ratio was higher in stems compared to leaf sheaths at all developmental stages studied. The developmental-associated decrease in digestibility correlated with the increase in S units in lignin in stems and leaf sheaths and in the amounts of p-coumaric acid and ferulic acid residues in the cell wall of stems. Yields of copper oxidation products increased in stems during maturation indicating qualitative changes in the lignin structure. This correlated strongly with the developmentally linked decrease in digestibility. The information obtained is valuable for breeding and for DNA marker development.

  16. Description and phylogeny of a new microsporidium from the elm leaf beetle, Xanthogaleruca luteola Muller, 1766 (Coleoptera: Chrysomelidae)

    USDA-ARS?s Scientific Manuscript database

    This study describes a new genus and species of microsporidia which is a pathogen of the elm leaf beetle, Xanthogaleruca luteola Muller, 1776 (Coleoptera: Chrysomelidae). The beetles were collected from Istanbul in Turkey. All developmental stages are uninucleate and in direct contact with the host ...

  17. Lace plant ethylene receptors, AmERS1a and AmERS1c, regulate ethylene-induced programmed cell death during leaf morphogenesis.

    PubMed

    Rantong, Gaolathe; Evans, Rodger; Gunawardena, Arunika H L A N

    2015-10-01

    The lace plant, Aponogeton madagascariensis, is an aquatic monocot that forms perforations in its leaves as part of normal leaf development. Perforation formation occurs through developmentally regulated programmed cell death (PCD). The molecular basis of PCD regulation in the lace plant is unknown, however ethylene has been shown to play a significant role. In this study, we examined the role of ethylene receptors during perforation formation. We isolated three lace plant ethylene receptors AmERS1a, AmERS1b and AmERS1c. Using quantitative PCR, we examined their transcript levels at seven stages of leaf development. Through laser-capture microscopy, transcript levels were also determined in cells undergoing PCD and cells not undergoing PCD (NPCD cells). AmERS1a transcript levels were significantly lower in window stage leaves (in which perforation formation and PCD are occurring) as compared to all other leaf developmental stages. AmERS1a and AmERS1c (the most abundant among the three receptors) had the highest transcript levels in mature stage leaves, where PCD is not occurring. Their transcript levels decreased significantly during senescence-associated PCD. AmERS1c had significantly higher transcript levels in NPCD compared to PCD cells. Despite being significantly low in window stage leaves, AmERS1a transcripts were not differentially expressed between PCD and NPCD cells. The results suggested that ethylene receptors negatively regulate ethylene-controlled PCD in the lace plant. A combination of ethylene and receptor levels determines cell fate during perforation formation and leaf senescence. A new model for ethylene emission and receptor expression during lace plant perforation formation and senescence is proposed.

  18. Changes in life history parameters of corn leaf aphid, Rhopalosiphum maidus (Homoptera: Aphididae), under four different elevated temperature and CO2 combinations

    USDA-ARS?s Scientific Manuscript database

    Biological characteristics of corn leaf aphid, Rhopalosiphum maidis (Fitch), on barley, Hordeum vulgare L., were examined for two generations under four different elevated temperature and CO2 combinations. The developmental duration for each life stage was significantly reduced under the elevated te...

  19. Metabolic Profiling and Physiological Analysis of a Novel Rice Introgression Line with Broad Leaf Size

    PubMed Central

    Zhao, Xiuqin; Zhang, Guilian; Wang, Yun; Zhang, Fan; Wang, Wensheng; Zhang, Wenhao; Fu, Binying; Xu, Jianlong; Li, Zhikang

    2015-01-01

    A rice introgression line, NIL-SS1, and its recurrent parent, Teqing, were used to investigate the influence of the introgression segment on plant growth. The current research showed NIL-SS1 had an increased flag leaf width, total leaf area, spikelet number per panicle and grain yield, but a decreased photosynthetic rate. The metabolite differences in NIL-SS1 and Teqing at different developmental stages were assessed using gas chromatography—mass spectrometry technology. Significant metabolite differences were observed across the different stages. NIL-SS1 increased the plant leaf nitrogen content, and the greatest differences between NIL-SS1 and Teqing occurred at the booting stage. Compared to Teqing, the metabolic phenotype of NIL-SS1 at the booting stage has closer association with those at the flowering stage. The introgression segment induced more active competition for sugars and organic acids (OAs) from leaves to the growing young spikes, which resulted in more spikelet number per plant (SNP). The results indicated the introgression segment could improve rice grain yield by increasing the SNP and total leaf area per plant, which resulted from the higher plant nitrogen content across growth stages and stronger competition for sugars and OAs of young spikes at the booting stage. PMID:26713754

  20. Influence of light and shoot development stage on leaf photosynthesis and carbohydrate status during the adventitious root formation in cuttings of Corylus avellana L.

    PubMed Central

    Tombesi, Sergio; Palliotti, Alberto; Poni, Stefano; Farinelli, Daniela

    2015-01-01

    Adventitious root formation in plant cuttings is influenced by many endogenous and environmental factors. Leaf photosynthesis during rooting of leafy cuttings in hard to root species can contribute to supply carbohydrates to the intensive metabolic processes related to adventious root formation. Light intensity during rooting is artificially kept low to decrease potential cutting desiccation, but can be limiting for photosynthetic activity. Furthermore, leafy cuttings collected from different part of the shoot can have a different ability to fuel adventitious root formation in cutting stem. The aim of this work was to determine the role of leaf photosynthesis on adventitious root formation in hazelnut (Corylus avellana L) (a hard-to-root specie) leafy cuttings and to investigate the possible influence of the shoot developmental stage on cutting rooting and survival in the post-rooting phase. Cutting rooting was closely related to carbohydrate content in cutting stems during the rooting process. Cutting carbohydrate status was positively influenced by leaf photosynthesis during rooting. Non-saturating light exposure of leafy cuttings can contribute to improve photosynthetic activity of leafy cuttings. Collection of cuttings from different part of the mother shoots influenced rooting percentage and this appear related to the different capability to concentrate soluble sugars in the cutting stem during rooting. Adventitious root formation depend on the carbohydrate accumulation at the base of the cutting. Mother shoot developmental stage and leaf photosynthesis appear pivotal factors for adventitious roots formation. PMID:26635821

  1. Transcriptomic Analysis of Grapevine (cv. Summer Black) Leaf, Using the Illumina Platform

    PubMed Central

    Pervaiz, Tariq; Haifeng, Jia; Salman Haider, Muhammad; Cheng, Zhang; Cui, Mengjie; Wang, Mengqi; Cui, Liwen; Wang, Xicheng; Fang, Jinggui

    2016-01-01

    Proceeding to illumina sequencing, determining RNA integrity numbers for poly RNA were separated from each of the four developmental stages of cv. Summer Black leaves by using Illumina HiSeq™ 2000. The sums of 272,941,656 reads were generated from vitis vinifera leaf at four different developmental stages, with more than 27 billion nucleotides of the sequence data. At each growth stage, RNA samples were indexed through unique nucleic acid identifiers and sequenced. KEGG annotation results depicted that the highest number of transcripts in 2,963 (2Avs4A) followed by 1Avs4A (2,920), and 3Avs4A (2,294) out of 15,614 (71%) transcripts were recorded. In comparison, a total of 1,532 transcripts were annotated in GOs, including Cellular component, with the highest number in “Cell part” 251 out of 353 transcripts (71.1%), followed by intracellular organelle 163 out of 353 transcripts (46.2%), while in molecular function and metabolic process 375 out of 525 (71.4%) transcripts, multicellular organism process 40 out of 525 (7.6%) transcripts in biological process were most common in 1Avs2A. While in case of 1Avs3A, cell part 476 out of 662 transcripts (71.9%), and membrane-bounded organelle 263 out of 662 transcripts (39.7%) were recorded in Cellular component. In the grapevine transcriptome, during the initial stages of leaf development 1Avs2A showed single transcript was down-regulated and none of them were up-regulated. While in comparison of 1A to 3A showed one up-regulated (photosystem II reaction center protein C) and one down regulated (conserved gene of unknown function) transcripts, during the hormone regulating pathway namely SAUR-like auxin-responsive protein family having 2 up-regulated and 7 down-regulated transcripts, phytochrome-associated protein showed 1 up-regulated and 9 down-regulated transcripts, whereas genes associated with the Leucine-rich repeat protein kinase family protein showed 7 up-regulated and 1 down-regulated transcript, meanwhile Auxin Resistant 2 has single up-regulated transcript in second developmental stage, although 3 were down-regulated at lateral growth stages (3A and 4A). In the present study, 489 secondary metabolic pathways related genes were identified during leaf growth, which mainly includes alkaloid (40), anthocyanins (21), Diterpenoid (144), Monoterpenoid (90) and Flavonoids (93). Quantitative real-time PCR was applied to validate 10 differentially expressed transcripts patterns from flower, leaf and fruit metabolic pathways at different growth stages. PMID:26824474

  2. Combined Chlorophyll Fluorescence and Transcriptomic Analysis Identifies the P3/P4 Transition as a Key Stage in Rice Leaf Photosynthetic Development1[OPEN

    PubMed Central

    Yaapar, Muhammad N.; Wanchana, Samart; Thakur, Vivek; Quick, W. Paul

    2016-01-01

    Leaves are derived from heterotrophic meristem tissue that, at some point, must make the transition to autotrophy via the initiation of photosynthesis. However, the timing and spatial coordination of the molecular and cellular processes underpinning this switch are poorly characterized. Here, we report on the identification of a specific stage in rice (Oryza sativa) leaf development (P3/P4 transition) when photosynthetic competence is first established. Using a combined physiological and molecular approach, we show that elements of stomatal and vascular differentiation are coordinated with the onset of measurable light absorption for photosynthesis. Moreover, by exploring the response of the system to environmental perturbation, we show that the earliest stages of rice leaf development have significant plasticity with respect to elements of cellular differentiation of relevance for mature leaf photosynthetic performance. Finally, by performing an RNA sequencing analysis targeted at the early stages of rice leaf development, we uncover a palette of genes whose expression likely underpins the acquisition of photosynthetic capability. Our results identify the P3/P4 transition as a highly dynamic stage in rice leaf development when several processes for the initiation of photosynthetic competence are coordinated. As well as identifying gene targets for future manipulation of rice leaf structure/function, our data highlight a developmental window during which such manipulations are likely to be most effective. PMID:26813793

  3. Combined Chlorophyll Fluorescence and Transcriptomic Analysis Identifies the P3/P4 Transition as a Key Stage in Rice Leaf Photosynthetic Development.

    PubMed

    van Campen, Julia C; Yaapar, Muhammad N; Narawatthana, Supatthra; Lehmeier, Christoph; Wanchana, Samart; Thakur, Vivek; Chater, Caspar; Kelly, Steve; Rolfe, Stephen A; Quick, W Paul; Fleming, Andrew J

    2016-03-01

    Leaves are derived from heterotrophic meristem tissue that, at some point, must make the transition to autotrophy via the initiation of photosynthesis. However, the timing and spatial coordination of the molecular and cellular processes underpinning this switch are poorly characterized. Here, we report on the identification of a specific stage in rice (Oryza sativa) leaf development (P3/P4 transition) when photosynthetic competence is first established. Using a combined physiological and molecular approach, we show that elements of stomatal and vascular differentiation are coordinated with the onset of measurable light absorption for photosynthesis. Moreover, by exploring the response of the system to environmental perturbation, we show that the earliest stages of rice leaf development have significant plasticity with respect to elements of cellular differentiation of relevance for mature leaf photosynthetic performance. Finally, by performing an RNA sequencing analysis targeted at the early stages of rice leaf development, we uncover a palette of genes whose expression likely underpins the acquisition of photosynthetic capability. Our results identify the P3/P4 transition as a highly dynamic stage in rice leaf development when several processes for the initiation of photosynthetic competence are coordinated. As well as identifying gene targets for future manipulation of rice leaf structure/function, our data highlight a developmental window during which such manipulations are likely to be most effective. © 2016 American Society of Plant Biologists. All Rights Reserved.

  4. Wettability of soybean (Glycine max L.) leaves by foliar sprays with respect to developmental changes.

    PubMed

    Puente, Diana W Moran; Baur, Peter

    2011-07-01

    Leaf wettability considerably defines the degree of retention of water and agrochemical sprays on crop and non-target plant surfaces. Plant surface structure varies with development therefore the goal was to characterise the wettability of soybean leaf surfaces as a function of growth stage (GS). Adaxial surfaces of leaves developed at GS 16 (BBCH) were 10 times more wettable with water than leaves at the lower canopy (GS 13). By measuring contact angles of a liquid having an intermediate surface tension on different leaf patches, an illustrative wetting profile was elucidated, showing to what degree wetting varies (from > 120° to < 20°) depending on leaf patch and GS. While the critical surface tension of leaf surfaces at different GSs did not correlate with the observed changes, the slope of the Zisman plot accurately represented the increase in wettability of leaves at the upper canopy and lateral shoots (GSs 17 to 19, 21 and 24). The discrimination given by the slopes was even better than that by water contact angles. SEM observations revealed that the low wettability observed at early GSs is mainly due to a dense layer of epicuticular wax crystals. The Zisman plot slope does not represent the changes in leaf roughness (i.e. epicuticular wax deposition), but provides an insight into chemical and compositional surface characteristics at the droplet-leaf interface. The results with different wettability measurement methods demonstrated that wetting is a feature that characterises each developmental stage of soybean leaves. Positional wettability differences among leaves at the same plant and within the same leaf are relevant for performance, selectivity and plant compatibility of agrochemicals. Implications are discussed. Copyright © 2011 Society of Chemical Industry.

  5. Determining Phenological Patterns Associated with the Onset of Senescence in a Wheat MAGIC Mapping Population.

    PubMed

    Camargo, Anyela V; Mott, Richard; Gardner, Keith A; Mackay, Ian J; Corke, Fiona; Doonan, John H; Kim, Jan T; Bentley, Alison R

    2016-01-01

    The appropriate timing of developmental transitions is critical for adapting many crops to their local climatic conditions. Therefore, understanding the genetic basis of different aspects of phenology could be useful in highlighting mechanisms underpinning adaptation, with implications in breeding for climate change. For bread wheat ( Triticum aestivum ), the transition from vegetative to reproductive growth, the start and rate of leaf senescence and the relative timing of different stages of flowering and grain filling all contribute to plant performance. In this study we screened under Smart house conditions a large, multi-founder "NIAB elite MAGIC" wheat population, to evaluate the genetic elements that influence the timing of developmental stages in European elite varieties. This panel of recombinant inbred lines was derived from eight parents that are or recently have been grown commercially in the UK and Northern Europe. We undertook a detailed temporal phenotypic analysis under Smart house conditions of the population and its parents, to try to identify known or novel Quantitative Trait Loci associated with variation in the timing of key phenological stages in senescence. This analysis resulted in the detection of QTL interactions with novel traits such the time between "half of ear emergence above flag leaf ligule" and the onset of senescence at the flag leaf as well as traits associated with plant morphology such as stem height. In addition, strong correlations between several traits and the onset of senescence of the flag leaf were identified. This work establishes the value of systematically phenotyping genetically unstructured populations to reveal the genetic architecture underlying morphological variation in commercial wheat.

  6. Toward the definition of a carbon budget model: seasonal variation and temperature effect on respiration rate of vegetative and reproductive organs of pistachio trees (Pistacia vera).

    PubMed

    Marra, Francesco P; Barone, Ettore; La Mantia, Michele; Caruso, Tiziano

    2009-09-01

    This study, as a preliminary step toward the definition of a carbon budget model for pistachio trees (Pistacia vera L.), aimed at estimating and evaluating the dynamics of respiration of vegetative and reproductive organs of pistachio tree. Trials were performed in 2005 in a commercial orchard located in Sicily (370 m a.s.l.) on five bearing 20-year-old pistachio trees of cv. Bianca grafted onto Pistachio terebinthus L. Growth analyses and respiration measurements were done on vegetative (leaf) and reproductive (infructescence) organs during the entire growing season (April-September) at biweekly intervals. Results suggested that the respiration rates of pistachio reproductive and vegetative organs were related to their developmental stage. Both for leaf and for infructescence, the highest values were observed during the earlier stages of growth corresponding to the phases of most intense organ growth. The sensitivity of respiration activity to temperature changes, measured by Q(10), showed an increase throughout the transition from immature to mature leaves, as well as during fruit development. The data collected were also used to estimate the seasonal carbon loss by respiration activity for a single leaf and a single infructescence. The amount of carbon lost by respiration was affected by short-term temperature patterns, organ developmental stage and tissue function.

  7. Changes in chlorophyll and polyphenols content in Camellia sinensis var. sinensis at different stage of leaf maturity

    NASA Astrophysics Data System (ADS)

    Prawira-Atmaja, M. I.; Shabri; Khomaini, H. S.; Maulana, H.; Harianto, S.; Rohdiana, D.

    2018-03-01

    Chlorophyll and polyphenols are chemical compound related to parameter quality of green tea. We studied the variation of chlorophyll and polyphenol in the development stage of tea leaves (bud, 1st, 2nd, 3rd, and 4th). Five clones of tea (Camelia sinensis var. sinensis) from Indonesia and a clone from Japan were used in this study. The results showed that total chlorophyll and total polyphenol content in bud between 1.59-2.15 mg/g (db) and 12.24-14.59% respectively. The concentration of chlorophyll increased significantly with developments stage of leaf while total polyphenol tended to decrease with leaf maturity. Pearson Correlation analysis showed that chlorophyll content was negatively correlated (r = -0.83; p = 0.05) with total polyphenol during developmental stage of tea leaves. Results suggests that five clones of tea from Indonesia have similar quality with tea clone from Japan in chlorophyll and polyphenol content. The present study also provides guidelines on application plucking standard to produce high quality of green tea.

  8. A model explaining genotypic and ontogenetic variation of leaf photosynthetic rate in rice (Oryza sativa) based on leaf nitrogen content and stomatal conductance.

    PubMed

    Ohsumi, Akihiro; Hamasaki, Akihiro; Nakagawa, Hiroshi; Yoshida, Hiroe; Shiraiwa, Tatsuhiko; Horie, Takeshi

    2007-02-01

    Identification of physiological traits associated with leaf photosynthetic rate (Pn) is important for improving potential productivity of rice (Oryza sativa). The objectives of this study were to develop a model which can explain genotypic variation and ontogenetic change of Pn in rice under optimal conditions as a function of leaf nitrogen content per unit area (N) and stomatal conductance (g(s)), and to quantify the effects of interaction between N and g(s) on the variation of Pn. Pn, N and g(s) were measured at different developmental stages for the topmost fully expanded leaves in ten rice genotypes with diverse backgrounds grown in pots (2002) and in the field (2001 and 2002). A model of Pn that accounts for carboxylation and CO diffusion processes, and assumes that the ratio of internal conductance to g(s) is constant, was constructed, and its goodness of fit was examined. Considerable genotypic differences in Pn were evident for rice throughout development in both the pot and field experiments. The genotypic variation of Pn was correlated with that of g(s) at a given stage, and the change of Pn with plant development was closely related to the change of N. The variation of g(s) among genotypes was independent of that of N. The model explained well the variation in Pn of the ten genotypes grown under different conditions at different developmental stages. Conclusions The response of Pn to increased N differs with g(s), and the increase in Pn of genotypes with low g(s) is smaller than that of genotypes with high g(s). Therefore, simultaneous improvements of these two traits are essential for an effective breeding of rice genotypes with increased Pn.

  9. Maize development: Cell wall changes in leaves and sheaths

    USDA-ARS?s Scientific Manuscript database

    Developmental changes occur in maize (Zea mays L.) as it transitions from juvenile stages to the mature plant. Changes also occur as newly formed cells mature into adult cells. Maize leaf blades, including the midribs and sheaths, undergo cell wall changes as cells transition to fully mature cell ty...

  10. Salt gland distribution in limonium bicolor at the individual level

    NASA Astrophysics Data System (ADS)

    Leng, B. Y.; Yuan, F.; Dong, X. X.; Wang, B. S.

    2018-02-01

    Limonium bicolor is a typical exo-recretohalophyte with multi-cellular salt glands. A differential interference contrast (DIC) microscope were applied to investigate the pattern of salt gland distribution in L. bicolor at the individual level. For a single mature leaf, more salt glands are distributed in the leaf central and apical regions than leaf base. For the leaves in different developmental stages, firstly, the density of salt glands linearly decreased at the beginning of leaf expansion and kept a relatively constant value in the later periods, which was mainly due to the rapid expansion of epidermal cells. Secondly, the total number of glands per leaf showed a reversed trend compared to the density of salt glands. These results suggested that the salt gland density was adapted to the leaf age and area as more and more salt accumulated in the saline soils.

  11. Identifying Stable Reference Genes for qRT-PCR Normalisation in Gene Expression Studies of Narrow-Leafed Lupin (Lupinus angustifolius L.).

    PubMed

    Taylor, Candy M; Jost, Ricarda; Erskine, William; Nelson, Matthew N

    2016-01-01

    Quantitative Reverse Transcription PCR (qRT-PCR) is currently one of the most popular, high-throughput and sensitive technologies available for quantifying gene expression. Its accurate application depends heavily upon normalisation of gene-of-interest data with reference genes that are uniformly expressed under experimental conditions. The aim of this study was to provide the first validation of reference genes for Lupinus angustifolius (narrow-leafed lupin, a significant grain legume crop) using a selection of seven genes previously trialed as reference genes for the model legume, Medicago truncatula. In a preliminary evaluation, the seven candidate reference genes were assessed on the basis of primer specificity for their respective targeted region, PCR amplification efficiency, and ability to discriminate between cDNA and gDNA. Following this assessment, expression of the three most promising candidates [Ubiquitin C (UBC), Helicase (HEL), and Polypyrimidine tract-binding protein (PTB)] was evaluated using the NormFinder and RefFinder statistical algorithms in two narrow-leafed lupin lines, both with and without vernalisation treatment, and across seven organ types (cotyledons, stem, leaves, shoot apical meristem, flowers, pods and roots) encompassing three developmental stages. UBC was consistently identified as the most stable candidate and has sufficiently uniform expression that it may be used as a sole reference gene under the experimental conditions tested here. However, as organ type and developmental stage were associated with greater variability in relative expression, it is recommended using UBC and HEL as a pair to achieve optimal normalisation. These results highlight the importance of rigorously assessing candidate reference genes for each species across a diverse range of organs and developmental stages. With emerging technologies, such as RNAseq, and the completion of valuable transcriptome data sets, it is possible that other potentially more suitable reference genes will be identified for this species in future.

  12. Identifying Stable Reference Genes for qRT-PCR Normalisation in Gene Expression Studies of Narrow-Leafed Lupin (Lupinus angustifolius L.)

    PubMed Central

    Erskine, William; Nelson, Matthew N.

    2016-01-01

    Quantitative Reverse Transcription PCR (qRT-PCR) is currently one of the most popular, high-throughput and sensitive technologies available for quantifying gene expression. Its accurate application depends heavily upon normalisation of gene-of-interest data with reference genes that are uniformly expressed under experimental conditions. The aim of this study was to provide the first validation of reference genes for Lupinus angustifolius (narrow-leafed lupin, a significant grain legume crop) using a selection of seven genes previously trialed as reference genes for the model legume, Medicago truncatula. In a preliminary evaluation, the seven candidate reference genes were assessed on the basis of primer specificity for their respective targeted region, PCR amplification efficiency, and ability to discriminate between cDNA and gDNA. Following this assessment, expression of the three most promising candidates [Ubiquitin C (UBC), Helicase (HEL), and Polypyrimidine tract-binding protein (PTB)] was evaluated using the NormFinder and RefFinder statistical algorithms in two narrow-leafed lupin lines, both with and without vernalisation treatment, and across seven organ types (cotyledons, stem, leaves, shoot apical meristem, flowers, pods and roots) encompassing three developmental stages. UBC was consistently identified as the most stable candidate and has sufficiently uniform expression that it may be used as a sole reference gene under the experimental conditions tested here. However, as organ type and developmental stage were associated with greater variability in relative expression, it is recommended using UBC and HEL as a pair to achieve optimal normalisation. These results highlight the importance of rigorously assessing candidate reference genes for each species across a diverse range of organs and developmental stages. With emerging technologies, such as RNAseq, and the completion of valuable transcriptome data sets, it is possible that other potentially more suitable reference genes will be identified for this species in future. PMID:26872362

  13. Chemical and mechanical changes during leaf expansion of four woody species of dry Restinga woodland.

    PubMed

    Schlindwein, C C D; Fett-Neto, A G; Dillenburg, L R

    2006-07-01

    Young leaves are preferential targets for herbivores, and plants have developed different strategies to protect them. This study aimed to evaluate different leaf attributes of presumed relevance in protection against herbivory in four woody species (Erythroxylum argentinum, Lithrea brasiliensis, Myrciaria cuspidata, and Myrsine umbellata), growing in a dry restinga woodland in southern Brazil. Evaluation of leaf parameters was made through single-point sampling of leaves (leaf mass per area and leaf contents of nitrogen, carbon, and pigments) at three developmental stages and through time-course sampling of expanding leaves (area and strength). Leaves of M. umbellata showed the highest leaf mass per area (LMA), the largest area, and the longest expansion period. On the other extreme, Myrc. cuspidata had the smallest LMA and leaf size, and the shortest expansion period. Similarly to L. brasiliensis, it displayed red young leaves. None of the species showed delayed-greening, which might be related to the high-irradiance growth conditions. Nitrogen contents reduced with leaf maturity and reached the highest values in the young leaves of E. argentinum and Myrc. cuspidata and the lowest in M. umbellata. Each species seems to present a different set of protective attributes during leaf expansion. Myrciaria cuspidata appears to rely mostly on chemical defences to protect its soft leaves, and anthocyanins might play this role at leaf youth, while M. umbellata seems to invest more on mechanical defences, even at early stages of leaf growth, as well as on a low allocation of nitrogen to the leaves. The other species display intermediate characteristics.

  14. Direct impact of the sustained decline in the photosystem II efficiency upon plant productivity at different developmental stages.

    PubMed

    Tian, Yonglan; Ungerer, Petra; Zhang, Huayong; Ruban, Alexander V

    2017-05-01

    The impact of chronic photoinhibition of photosystem II (PSII) on the productivity of plants remains unknown. The present study investigated the influences of persistent decline in the PSII yield on morphology and productivity of Arabidopsis plants that were exposed to lincomycin at two different developmental stages (seedling and rosette stage). The results indicated that, although retarded, the lincomycin treated plants were able to accomplish the entire growth period with only 50% of the maximum quantum yield of primary photochemistry (Fv/Fm) of the control plants. The decline in quantum yield limited the electron transport rate (ETR). The impact of lincomycin on NPQ was not significant in seedlings, but was pronounced in mature plants. The treated plants produced an above ground biomass of 50% compared to control plants. Moreover, a linear relationship was found between the above ground biomass and total rosette leaf area, and the slope was decreased due to photoinhibition. The starch accumulation was highly inhibited by lincomycin treatment. Lincomycin induced a significant decrease in seed yield with plants treated from the rosette state showing higher yield than those treated from the seedling stage. Our data suggest that the sustained decline of PSII efficiency decreases plant productivity by constraining the ETR, leaf development and starch production. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Dynamic extrafloral nectar production: the timing of leaf damage affects the defensive response in Senna mexicana var. chapmanii (Fabaceae).

    PubMed

    Jones, Ian M; Koptur, Suzanne

    2015-01-01

    • Extrafloral nectar (EFN) mediates food for protection mutualisms between plants and defensive insects. Understanding sources of variation in EFN production is important because such variations may affect the number and identity of visitors and the effectiveness of plant defense. We investigated the influence of plant developmental stage, time of day, leaf age, and leaf damage on EFN production in Senna mexicana var. chapmanii. The observed patterns of variation in EFN production were compared with those predicted by optimal defense theory.• Greenhouse experiments with potted plants were conducted to determine how plant age, time of day, and leaf damage affected EFN production. A subsequent field study was conducted to determine how leaf damage, and the resulting increase in EFN production, affected ant visitation in S. chapmanii.• More nectar was produced at night and by older plants. Leaf damage resulted in increased EFN production, and the magnitude of the response was greater in plants damaged in the morning than those damaged at night. Damage to young leaves elicited a stronger defensive response than damage to older leaves, in line with optimal defense theory. Damage to the leaves of S. chapmanii also resulted in significantly higher ant visitation in the field.• Extrafloral nectar is an inducible defense in S. chapmanii. Developmental variations in its production support the growth differentiation balance hypothesis, while within-plant variations and damage responses support optimal defense theory. © 2015 Botanical Society of America, Inc.

  16. Changes in growth, photosynthetic activities, biochemical parameters and amino acid profile of Thompson Seedless grapes (Vitis vinifera L.).

    PubMed

    Somkuwar, R G; Bahetwar, Anita; Khan, I; Satisha, J; Ramteke, S D; Itroutwar, Prerna; Bhongale, Aarti; Oulkar, Dashrath

    2014-11-01

    The study on photosynthetic activity and biochemical parameters in Thompson Seedless grapes grafted on Dog Ridge rootstock and its impact on growth, yield and amino acid profile at various stages of berry development was conducted during the year 2012-2013. Leaf and berry samples from ten year old vines of Thompson Seedless were collected at different growth and berry developmental stages. The analysis showed difference in photosynthetic activity, biochemical parameters and amino acid status with the changes in berry development stage. Higher photosynthetic rate of 17.39 umol cm(-2) s(-1) was recorded during 3-4mm berry size and the lowest (10.08 umol cm(-2) s(-1)) was recorded during the veraison stage. The photosynthetic activity showed gradual decrease with the onset of harvest while the different biochemical parameters showed increase and decrease from one stage to another in both berry and leaves. Changes in photosynthetic activity and biochemical parameters thereby affected the growth, yield and amino acid content of the berry. Positive correlation of leaf area and photosynthetic rate was recorded during the period of study. Reducing sugar (352.25 mg g(-1)) and total carbohydrate (132.52 mg g(-1)) was more in berries as compared to leaf. Amino acid profile showed variations in different stages of berry development. Marked variations in photosynthetic as well as biochemical and amino acid content at various berry development stages was recorded and thereby its cumulative effect on the development of fruit quality.

  17. Tracking maize pollen development by the Leaf Collar Method.

    PubMed

    Begcy, Kevin; Dresselhaus, Thomas

    2017-12-01

    An easy and highly reproducible nondestructive method named the Leaf Collar Method is described to identify and characterize the different stages of pollen development in maize. In plants, many cellular events such as meiosis, asymmetric cell division, cell cycle regulation, cell fate determination, nucleus movement, vacuole formation, chromatin condensation and epigenetic modifications take place during pollen development. In maize, pollen development occurs in tassels that are confined within the internal stalk of the plant. Hence, identification of the different pollen developmental stages as a tool to investigate above biological processes is impossible without dissecting the entire plant. Therefore, an efficient and reproducible method is necessary to isolate homogeneous cell populations at individual stages throughout pollen development without destroying the plant. Here, we describe a method to identify the various stages of pollen development in maize. Using the Leaf Collar Method in the maize inbreed line B73, we have determined the duration of each stage from pollen mother cells before meiosis to mature tricellular pollen. Anther and tassel size as well as percentage of pollen stages were correlated with vegetative stages, which are easily recognized. The identification of stage-specific genes indicates the reproducibility of the method. In summary, we present an easy and highly reproducible nondestructive method to identify and characterize the different stages of pollen development in maize. This method now opens the way for many subsequent physiological, morphological and molecular analyses to study, for instance, transcriptomics, metabolomics, DNA methylation and chromatin patterns during normal and stressful conditions throughout pollen development in one of the economically most important grass species.

  18. Natural variation and genetic make-up of leaf blade area in spring barley.

    PubMed

    Alqudah, Ahmad M; Youssef, Helmy M; Graner, Andreas; Schnurbusch, Thorsten

    2018-04-01

    GWAS analysis for leaf blade area (LA) revealed intriguing genomic regions associated with putatively novel QTL and known plant stature-related phytohormone and sugar-related genes. Despite long-standing studies in the morpho-physiological characters of leaf blade area (LA) in cereal crops, advanced genetic studies to explore its natural variation are lacking. The importance of modifying LA in improving cereal grain yield and the genes controlling leaf traits have been well studied in rice but not in temperate cereals. To better understand the natural genetic variation of LA at four developmental stages, main culm LA was measured from 215 worldwide spring barleys including 92 photoperiod-sensitive accessions [PHOTOPERIOD RESPONSE LOCUS 1 (Ppd-H1)] and 123 accessions with reduced photoperiod sensitivity (ppd-H1) locus under controlled greenhouse conditions (long-day; 16/8 h; ~ 20/~ 16 °C day/night). The LA of Ppd-H1-carrying accessions was always smaller than in ppd-H1-carrying accessions. We found that nine SNPs from the Ppd-H1 gene were present in the collection of which marker 9 (M9; G/T in the CCT-domain) showed the most significant and consistent effect on LA at all studied developmental stages. Genome-wide association scans (GWAS) showed that the accessions carrying the ppd-H1 allele T/M9 (late heading) possessed more genetic variation in LA than the Ppd-H1 group carrying G/M9 (early heading). Several QTL with major effects on LA variation were found close to plant stature-related heading time, phytohormone- and sugar-related genes. The results provide evidence that natural variation of LA is an important source for improving grain yield, adaptation and canopy architecture of temperate cereals.

  19. Phenylpropanoid biosynthesis in leaves and glandular trichomes of basil (Ocimum basilicum L.).

    PubMed

    Deschamps, Cícero; Simon, James E

    2010-01-01

    Basil (Ocimum basilicum L.) essential oil phenylpropenes are synthesized and accumulate in peltate glandular trichomes and their content and composition depend on plant developmental stage. Studies on gene expression and enzymatic activity indicate that the phenylpropene biosynthetic genes are developmentally regulated. In this study, the methylchavicol accumulation in basil leaves and the enzyme activities and gene expression of both chavicol O-methyltransferase (CVOMT) and eugenol O-methyltransferase (EOMT) were investigated in all leaves at four plant developmental stages. Methylchavicol accumulation decreased over time as leaves matured. There was a significant correlation between methylchavicol accumulation and CVOMT (r(2) = 0.88) enzyme activity, suggesting that the levels of biosynthetic enzymes control the essential oil content. CVOMT and EOMT transcript expression levels, which decreased with leaf age, followed the same pattern in both whole leaves and isolated glandular trichomes, providing evidence that CVOMT transcript levels are developmentally regulated in basil glandular trichomes themselves and that differences in CVOMT expression observed in whole leaves are not solely the result of differences in glandular trichome density.

  20. Juvenile Rhus glabra leaves have higher temperatures and lower gas exchange rates than mature leaves when compared in the field during periods of high irradiance.

    PubMed

    Snider, John L; Choinski, John S; Wise, Robert R

    2009-05-01

    We sought to test the hypothesis that stomatal development determines the timing of gas exchange competency, which then influences leaf temperature through transpirationally driven leaf cooling. To test this idea, daily patterns of gas exchange and leaflet temperature were obtained from leaves of two distinctively different developmental stages of smooth sumac (Rhus glabra) grown in its native habitat. Juvenile and mature leaves were also sampled for ultrastructural studies of stomatal development. When plants were sampled in May-June, the hypothesis was supported: juvenile leaflets were (for part of the day) from 1.4 to 6.0 degrees C warmer than mature leaflets and as much as 2.0 degrees C above ambient air temperature with lower stomatal conductance and photosynthetic rates than mature leaflets. When measurements were taken from July to October, no significant differences were observed, although mature leaflet gas exchange rates declined to the levels of the juvenile leaves. The gas exchange data were supported by the observations that juvenile leaves had approximately half the number of functional stomata on a leaf surface area basis as did mature leaves. It was concluded that leaf temperature and stage of leaf development in sumac are strongly linked with the higher surface temperatures observed in juvenile leaflets in the early spring possibly being involved in promoting photosynthesis and leaf expansion when air temperatures are cooler.

  1. Somatic embryogenesis from leaf explants of Australian fan flower, Scaevola aemula R. Br.

    PubMed

    Wang, Y-H; Bhalla, P L

    2004-01-01

    Somatic embryogenesis from leaf explants of Scaevola aemula R. Br. was achieved. Somatic embryos were induced from explants cultured on MS medium supplemented with 0.2 mg/ 2,4-dichlorophenoxyacetic acid and 0.2-0.5 mg/l 6-benzylaminopurine (BAP). Various developmental stages of somatic embryos were found on this medium-from globular embryos to germinated embryos. The transfer of globular embryos to MS medium containing 0.5 mg/l BAP resulted in a high frequency of shoot regeneration. Leaf explants cultured on MS medium containing different combinations of BAP and alpha-naphthaleneacetic acid formed adventitious shoots and roots. Histological examination confirmed the process of somatic embryogenesis. Induction of somatic embryogenesis in Scaevola provides a system for studying embryogenesis in Australian native plants and will facilitate the improvement of these plants using genetic transformation techniques.

  2. Grapevine Plasticity in Response to an Altered Microclimate: Sauvignon Blanc Modulates Specific Metabolites in Response to Increased Berry Exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Philip R.; Eyeghe-Bickong, Hans A.; du Plessis, Kari

    In this paper, the metabolic and physiological impacts of an altered microclimate on quality-associated primary and secondary metabolites in grape (Vitis vinifera) ‘Sauvignon Blanc’ berries was determined in a high-altitude vineyard. The leaf and lateral shoot removal in the bunch zones altered the microclimate by increasing the exposure of the berries. The physical parameters (berry diameter and weight), primary metabolites (sugars and organic acids), as well as bunch temperature and leaf water potential were predominantly not affected by the treatment. The increased exposure led to higher levels of specific carotenoids and volatile terpenoids in the exposed berries, with earlier berrymore » stages reacting distinctly from the later developmental stages. Plastic/nonplastic metabolite responses could be further classified to identify metabolites that were developmentally controlled and/or responded to the treatment in a predictable fashion (assessed over two consecutive vintages). The study demonstrates that grapevine berries exhibit a degree of plasticity within their secondary metabolites and respond physiologically to the increased exposure by increasing metabolites with potential antioxidant activity. Finally, taken together, the data provide evidence that the underlying physiological responses relate to the maintenance of stress pathways by modulating antioxidant molecules in the berries.« less

  3. Grapevine Plasticity in Response to an Altered Microclimate: Sauvignon Blanc Modulates Specific Metabolites in Response to Increased Berry Exposure

    DOE PAGES

    Young, Philip R.; Eyeghe-Bickong, Hans A.; du Plessis, Kari; ...

    2015-12-01

    In this paper, the metabolic and physiological impacts of an altered microclimate on quality-associated primary and secondary metabolites in grape (Vitis vinifera) ‘Sauvignon Blanc’ berries was determined in a high-altitude vineyard. The leaf and lateral shoot removal in the bunch zones altered the microclimate by increasing the exposure of the berries. The physical parameters (berry diameter and weight), primary metabolites (sugars and organic acids), as well as bunch temperature and leaf water potential were predominantly not affected by the treatment. The increased exposure led to higher levels of specific carotenoids and volatile terpenoids in the exposed berries, with earlier berrymore » stages reacting distinctly from the later developmental stages. Plastic/nonplastic metabolite responses could be further classified to identify metabolites that were developmentally controlled and/or responded to the treatment in a predictable fashion (assessed over two consecutive vintages). The study demonstrates that grapevine berries exhibit a degree of plasticity within their secondary metabolites and respond physiologically to the increased exposure by increasing metabolites with potential antioxidant activity. Finally, taken together, the data provide evidence that the underlying physiological responses relate to the maintenance of stress pathways by modulating antioxidant molecules in the berries.« less

  4. Grapevine Plasticity in Response to an Altered Microclimate: Sauvignon Blanc Modulates Specific Metabolites in Response to Increased Berry Exposure.

    PubMed

    Young, Philip R; Eyeghe-Bickong, Hans A; du Plessis, Kari; Alexandersson, Erik; Jacobson, Dan A; Coetzee, Zelmari; Deloire, Alain; Vivier, Melané A

    2016-03-01

    In this study, the metabolic and physiological impacts of an altered microclimate on quality-associated primary and secondary metabolites in grape (Vitis vinifera) 'Sauvignon Blanc' berries was determined in a high-altitude vineyard. The leaf and lateral shoot removal in the bunch zones altered the microclimate by increasing the exposure of the berries. The physical parameters (berry diameter and weight), primary metabolites (sugars and organic acids), as well as bunch temperature and leaf water potential were predominantly not affected by the treatment. The increased exposure led to higher levels of specific carotenoids and volatile terpenoids in the exposed berries, with earlier berry stages reacting distinctly from the later developmental stages. Plastic/nonplastic metabolite responses could be further classified to identify metabolites that were developmentally controlled and/or responded to the treatment in a predictable fashion (assessed over two consecutive vintages). The study demonstrates that grapevine berries exhibit a degree of plasticity within their secondary metabolites and respond physiologically to the increased exposure by increasing metabolites with potential antioxidant activity. Taken together, the data provide evidence that the underlying physiological responses relate to the maintenance of stress pathways by modulating antioxidant molecules in the berries. © 2016 American Society of Plant Biologists. All Rights Reserved.

  5. Grapevine Plasticity in Response to an Altered Microclimate: Sauvignon Blanc Modulates Specific Metabolites in Response to Increased Berry Exposure1

    PubMed Central

    du Plessis, Kari; Jacobson, Dan A.

    2016-01-01

    In this study, the metabolic and physiological impacts of an altered microclimate on quality-associated primary and secondary metabolites in grape (Vitis vinifera) ‘Sauvignon Blanc’ berries was determined in a high-altitude vineyard. The leaf and lateral shoot removal in the bunch zones altered the microclimate by increasing the exposure of the berries. The physical parameters (berry diameter and weight), primary metabolites (sugars and organic acids), as well as bunch temperature and leaf water potential were predominantly not affected by the treatment. The increased exposure led to higher levels of specific carotenoids and volatile terpenoids in the exposed berries, with earlier berry stages reacting distinctly from the later developmental stages. Plastic/nonplastic metabolite responses could be further classified to identify metabolites that were developmentally controlled and/or responded to the treatment in a predictable fashion (assessed over two consecutive vintages). The study demonstrates that grapevine berries exhibit a degree of plasticity within their secondary metabolites and respond physiologically to the increased exposure by increasing metabolites with potential antioxidant activity. Taken together, the data provide evidence that the underlying physiological responses relate to the maintenance of stress pathways by modulating antioxidant molecules in the berries. PMID:26628747

  6. Following Vegetative to Embryonic Cellular Changes in Leaves of Arabidopsis Overexpressing LEAFY COTYLEDON21[W][OPEN

    PubMed Central

    Feeney, Mistianne; Frigerio, Lorenzo; Cui, Yuhai; Menassa, Rima

    2013-01-01

    Embryogenesis in flowering plants is controlled by a complex interplay of genetic, biochemical, and physiological regulators. LEAFY COTYLEDON2 (LEC2) is among a small number of key transcriptional regulators that are known to play important roles in controlling major events during the maturation stage of embryogenesis, notably, the synthesis and accumulation of storage reserves. LEC2 overexpression causes vegetative tissues to change their developmental fate to an embryonic state; however, little information exists about the cellular changes that take place. We show that LEC2 alters leaf morphology and anatomy and causes embryogenic structures to form subcellularly in leaves of Arabidopsis (Arabidopsis thaliana). Chloroplasts accumulate more starch, the cytoplasm fills with oil bodies, and lytic vacuoles (LVs) appear smaller in size and accumulate protein deposits. Because LEC2 is responsible for activating the synthesis of seed storage proteins (SSPs) during seed development, SSP accumulation was investigated in leaves. The major Arabidopsis SSP families were shown to accumulate within small leaf vacuoles. By exploiting the developmental and tissue-specific localization of two tonoplast intrinsic protein isoforms, the small leaf vacuoles were identified as protein storage vacuoles (PSVs). Confocal analyses of leaf vacuoles expressing fluorescently labeled tonoplast intrinsic protein isoforms reveal an altered tonoplast morphology resembling an amalgamation of a LV and PSV. Results suggest that as the LV transitions to a PSV, the tonoplast remodels before the large vacuole lumen is replaced by smaller PSVs. Finally, using vegetative and seed markers to monitor the transition, we show that LEC2 induces a reprogramming of leaf development. PMID:23780897

  7. Inducible repression of multiple expansin genes leads to growth suppression during leaf development.

    PubMed

    Goh, Hoe-Han; Sloan, Jennifer; Dorca-Fornell, Carmen; Fleming, Andrew

    2012-08-01

    Expansins are cell wall proteins implicated in the control of plant growth via loosening of the extracellular matrix. They are encoded by a large gene family, and data linked to loss of single gene function to support a role of expansins in leaf growth remain limited. Here, we provide a quantitative growth analysis of transgenics containing an inducible artificial microRNA construct designed to down-regulate the expression of a number of expansin genes that an expression analysis indicated are expressed during the development of Arabidopsis (Arabidopsis thaliana) leaf 6. The results support the hypothesis that expansins are required for leaf growth and show that decreased expansin gene expression leads to a more marked repression of growth during the later stage of leaf development. In addition, a histological analysis of leaves in which expansin gene expression was suppressed indicates that, despite smaller leaves, mean cell size was increased. These data provide functional evidence for a role of expansins in leaf growth, indicate the importance of tissue/organ developmental context for the outcome of altered expansin gene expression, and highlight the separation of the outcome of expansin gene expression at the cellular and organ levels.

  8. Structural and metabolic transitions of C4 leaf development and differentiation defined by microscopy and quantitative proteomics in maize.

    PubMed

    Majeran, Wojciech; Friso, Giulia; Ponnala, Lalit; Connolly, Brian; Huang, Mingshu; Reidel, Edwin; Zhang, Cankui; Asakura, Yukari; Bhuiyan, Nazmul H; Sun, Qi; Turgeon, Robert; van Wijk, Klaas J

    2010-11-01

    C(4) grasses, such as maize (Zea mays), have high photosynthetic efficiency through combined biochemical and structural adaptations. C(4) photosynthesis is established along the developmental axis of the leaf blade, leading from an undifferentiated leaf base just above the ligule into highly specialized mesophyll cells (MCs) and bundle sheath cells (BSCs) at the tip. To resolve the kinetics of maize leaf development and C(4) differentiation and to obtain a systems-level understanding of maize leaf formation, the accumulation profiles of proteomes of the leaf and the isolated BSCs with their vascular bundle along the developmental gradient were determined using large-scale mass spectrometry. This was complemented by extensive qualitative and quantitative microscopy analysis of structural features (e.g., Kranz anatomy, plasmodesmata, cell wall, and organelles). More than 4300 proteins were identified and functionally annotated. Developmental protein accumulation profiles and hierarchical cluster analysis then determined the kinetics of organelle biogenesis, formation of cellular structures, metabolism, and coexpression patterns. Two main expression clusters were observed, each divided in subclusters, suggesting that a limited number of developmental regulatory networks organize concerted protein accumulation along the leaf gradient. The coexpression with BSC and MC markers provided strong candidates for further analysis of C(4) specialization, in particular transporters and biogenesis factors. Based on the integrated information, we describe five developmental transitions that provide a conceptual and practical template for further analysis. An online protein expression viewer is provided through the Plant Proteome Database.

  9. Accumulation of 1-deoxynojirimycin in silkworm, Bombyx mori L.

    PubMed

    Yin, Hao; Shi, Xin-qin; Sun, Bo; Ye, Jing-jing; Duan, Zu-an; Zhou, Xiao-ling; Cui, Wei-zheng; Wu, Xiao-feng

    2010-04-01

    1-deoxynojirimycin (1-DNJ) contents in the silkworm, Bombyx mori, at different developmental stages and tissues were investigated by using reverse-phase high-performance liquid chromatography. The 1-DNJ contents of silkworm larvae change significantly with their developmental stages. The male larvae showed higher accumulation efficiency of 1-DNJ than the females and also a significant variation was observed among the silkworm strains. The present results show that tissue distribution of 1-DNJ was significantly higher in blood, digestive juice, and alimentary canal, but no 1-DNJ was observed in the silkgland. Moreover, 1-DNJ was not found in silkworms fed with artificial diet that does not contain mulberry leaf powder. This proves that silkworms obtain 1-DNJ from mulberry leaves; they could not synthesize 1-DNJ by themselves. The accumulation and excretion of 1-DNJ change periodically during the larval stage. There was no 1-DNJ in the newly-hatched larvae and 1-DNJ was mainly accumulated during the early and middle stages of every instar, while excreted at later stages of larval development. Further, it is possible to extract 1-DNJ from the larval feces and it is optimal to develop the 1-DNJ related products for diabetic auxiliary therapy.

  10. Ontogeny of the sheathing leaf base in maize (Zea mays).

    PubMed

    Johnston, Robyn; Leiboff, Samuel; Scanlon, Michael J

    2015-01-01

    Leaves develop from the shoot apical meristem (SAM) via recruitment of leaf founder cells. Unlike eudicots, most monocot leaves display parallel venation and sheathing bases wherein the margins overlap the stem. Here we utilized computed tomography (CT) imaging, localization of PIN-FORMED1 (PIN1) auxin transport proteins, and in situ hybridization of leaf developmental transcripts to analyze the ontogeny of monocot leaf morphology in maize (Zea mays). CT imaging of whole-mounted shoot apices illustrates the plastochron-specific stages during initiation of the basal sheath margins from the tubular disc of insertion (DOI). PIN1 localizations identify basipetal auxin transport in the SAM L1 layer at the site of leaf initiation, a process that continues reiteratively during later recruitment of lateral leaf domains. Refinement of these auxin transport domains results in multiple, parallel provascular strands within the initiating primordium. By contrast, auxin is transported from the L2 toward the L1 at the developing margins of the leaf sheath. Transcripts involved in organ boundary formation and dorsiventral patterning accumulate within the DOI, preceding the outgrowth of the overlapping margins of the sheathing leaf base. We suggest a model wherein sheathing bases and parallel veins are both patterned via the extended recruitment of lateral maize leaf domains from the SAM. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  11. Silk Gland Gene Expression during Larval-Pupal Transition in the Cotton Leaf Roller Sylepta derogata (Lepidoptera: Pyralidae)

    PubMed Central

    Su, Honghua; Cheng, Yuming; Wang, Zhongyang; Li, Zhong; Stanley, David; Yang, Yizhong

    2015-01-01

    The cotton leaf roller, Sylepta derogata, is a silk-producing insect pest. While young larvae feed on the underside of leaves, the older ones roll cotton leaves and feed on the leaf edges, which defoliates cotton plants. The larvae produce silk to stabilize the rolled leaf and to balloon from used to new leaves. Despite the significance of silk in the biology of pest insect species, there is virtually no information on the genes involved in their silk production. This is a substantial knowledge gap because some of these genes may be valuable targets for developing molecular pest management technologies. We addressed the gap by posing the hypothesis that silk gland gene expression changes during the transition from larvae to pupae. We tested our hypothesis using RNA-seq to investigate changes in silk gland gene expression at three developmental stages, 5th instar larvae (silk producing; 15,445,926 clean reads), prepupae (reduced silk producing; 13,758,154) and pupae (beyond silk producing; 16,787,792). We recorded 60,298 unigenes and mapped 50,158 (larvae), 48,415 (prepupae) and 46,623 (pupae) of them to the NCBI database. Most differentially expressed genes in the 5th instar larvae/prepupae libraries were relevant to nucleotide synthesis and maintenance of silk gland function. We identified down-regulated transcriptional factors and several genes involved in silk formation in the three libraries and verified the expression pattern of eight genes by qPCR. The developmental- and tissue-specific expression patterns of the fibroin light chain gene showed it was highly expressed during the larval silk-producing stage. We recorded highest expression of this gene in the larval silk gland, compared to other tissues, including midgut, hindgut, epidermis, Malpighian tubes, hemolymph and fat body. These data are a genetic resource to guide selection of key genes that may be targeted for in planta and other gene-silencing technologies for sustainable cotton agriculture. PMID:26352931

  12. Silk Gland Gene Expression during Larval-Pupal Transition in the Cotton Leaf Roller Sylepta derogata (Lepidoptera: Pyralidae).

    PubMed

    Su, Honghua; Cheng, Yuming; Wang, Zhongyang; Li, Zhong; Stanley, David; Yang, Yizhong

    2015-01-01

    The cotton leaf roller, Sylepta derogata, is a silk-producing insect pest. While young larvae feed on the underside of leaves, the older ones roll cotton leaves and feed on the leaf edges, which defoliates cotton plants. The larvae produce silk to stabilize the rolled leaf and to balloon from used to new leaves. Despite the significance of silk in the biology of pest insect species, there is virtually no information on the genes involved in their silk production. This is a substantial knowledge gap because some of these genes may be valuable targets for developing molecular pest management technologies. We addressed the gap by posing the hypothesis that silk gland gene expression changes during the transition from larvae to pupae. We tested our hypothesis using RNA-seq to investigate changes in silk gland gene expression at three developmental stages, 5th instar larvae (silk producing; 15,445,926 clean reads), prepupae (reduced silk producing; 13,758,154) and pupae (beyond silk producing; 16,787,792). We recorded 60,298 unigenes and mapped 50,158 (larvae), 48,415 (prepupae) and 46,623 (pupae) of them to the NCBI database. Most differentially expressed genes in the 5th instar larvae/prepupae libraries were relevant to nucleotide synthesis and maintenance of silk gland function. We identified down-regulated transcriptional factors and several genes involved in silk formation in the three libraries and verified the expression pattern of eight genes by qPCR. The developmental- and tissue-specific expression patterns of the fibroin light chain gene showed it was highly expressed during the larval silk-producing stage. We recorded highest expression of this gene in the larval silk gland, compared to other tissues, including midgut, hindgut, epidermis, Malpighian tubes, hemolymph and fat body. These data are a genetic resource to guide selection of key genes that may be targeted for in planta and other gene-silencing technologies for sustainable cotton agriculture.

  13. Comprehensive investigation of tobacco leaves during natural early senescence via multi-platform metabolomics analyses

    NASA Astrophysics Data System (ADS)

    Li, Lili; Zhao, Jieyu; Zhao, Yanni; Lu, Xin; Zhou, Zhihui; Zhao, Chunxia; Xu, Guowang

    2016-11-01

    Senescence is the final stage of leaf growth and development. Many different physiological activities occur during this process. A comprehensive metabolomics analysis of tobacco middle leaves at 5 different developmental stages was implemented through multi-platform methods based on liquid chromatography, capillary electrophoresis and gas chromatography coupled with mass spectrometry. In total, 412 metabolites were identified, including pigments, sterols, lipids, amino acids, polyamines, sugars and secondary metabolites. Dramatic metabolic changes were observed. Firstly, membrane degradation and chlorophyll down-regulation occurred after the 50% flower bud stage. Levels of major membrane lipids decreased, including those of the glycolipids in chloroplast thylakoids and phospholipids in membrane envelopes. Clear decreases in free sterols and acylated sterol glucosides were detected along with the accumulation of sterol esters. The accumulation of alkaloids was found. The amino acid levels were significantly decreased, particularly those of N-rich amino acids (glutamine and asparagine), thus reflecting N translocation. Subsequently, the antioxidant system was activated. Sugar alcohols and polyphenols accumulated when the lower leaves turned yellow. These results comprehensively revealed the metabolic changes that occur during tobacco leaf development and senescence under natural conditions.

  14. Paralogous SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes differentially regulate leaf initiation and reproductive phase change in petunia.

    PubMed

    Preston, Jill C; Jorgensen, Stacy A; Orozco, Rebecca; Hileman, Lena C

    2016-02-01

    Duplicated petunia clade-VI SPL genes differentially promote the timing of inflorescence and flower development, and leaf initiation rate. The timing of plant reproduction relative to favorable environmental conditions is a critical component of plant fitness, and is often associated with variation in plant architecture and habit. Recent studies have shown that overexpression of the microRNA miR156 in distantly related annual species results in plants with perennial characteristics, including late flowering, weak apical dominance, and abundant leaf production. These phenotypes are largely mediated through the negative regulation of a subset of genes belonging to the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) family of transcription factors. In order to determine how and to what extent paralogous SPL genes have partitioned their roles in plant growth and development, we functionally characterized petunia clade-VI SPL genes under different environmental conditions. Our results demonstrate that PhSBP1and PhSBP2 differentially promote discrete stages of the reproductive transition, and that PhSBP1, and possibly PhCNR, accelerates leaf initiation rate. In contrast to the closest homologs in annual Arabidopsis thaliana and Mimulus guttatus, PhSBP1 and PhSBP2 transcription is not mediated by the gibberellic acid pathway, but is positively correlated with photoperiod and developmental age. The developmental functions of clade-VI SPL genes have, thus, evolved following both gene duplication and speciation within the core eudicots, likely through differential regulation and incomplete sub-functionalization.

  15. Predatory potential of Euseius alatus (Phytoseiidae) on different life stages of Oligonychus ilicis (Tetranychidae) on coffee leaves under laboratory conditions.

    PubMed

    de Toledo, M A; Reis, P R; da Silveira, E C; de P Marafeli, P; de Souza-Pimentel, G C

    2013-04-01

    This study evaluated the predatory capacity of Euseius alatus (DeLeon) as a biological control agent of the pest mite Oligonychus ilicis (McGregor) on coffee leaves under laboratory conditions, using arenas containing 25 O. ilicis per coffee (Coffea arabica) leaf to one specimen of each stage of the predator mite. The functional response and oviposition rate of adult females of E. alatus were evaluated on coffee leaf arenas and offered from 1 to 125 immature stages of O. ilicis per arena. The number of preys killed and the number of eggs laid by the predator were evaluated every 24 h during 8 days. The preys consumed were daily replaced. Male and female adults of E. alatus were the most efficient in killing all developmental stages of O. ilicis. Larvae and nymphs of O. ilicis were the most consumed by all stages of the predatory mite. The functional response and oviposition rates of E. alatus increased as the prey density increased, with a positive and highly significant correlation. Regression analysis suggested a type II functional response, with a maximum predation of 22 O. ilicis/arena and a maximum oviposition rate of 1.7 eggs/day at a density of 70 O. ilicis/arena.

  16. Biological variation of Vanilla planifolia leaf metabolome.

    PubMed

    Palama, Tony Lionel; Fock, Isabelle; Choi, Young Hae; Verpoorte, Robert; Kodja, Hippolyte

    2010-04-01

    The metabolomic analysis of Vanilla planifolia leaves collected at different developmental stages was carried out using (1)H-nuclear magnetic resonance (NMR) spectroscopy and multivariate data analysis in order to evaluate their variation. Ontogenic changes of the metabolome were considered since leaves of different ages were collected at two different times of the day and in two different seasons. Principal component analysis (PCA) and partial least square modeling discriminate analysis (PLS-DA) of (1)H NMR data provided a clear separation according to leaf age, time of the day and season of collection. Young leaves were found to have higher levels of glucose, bis[4-(beta-D-glucopyranosyloxy)-benzyl]-2-isopropyltartrate (glucoside A) and bis[4-(beta-D-glucopyranosyloxy)-benzyl]-2-(2-butyl)-tartrate (glucoside B), whereas older leaves had more sucrose, acetic acid, homocitric acid and malic acid. Results obtained from PLS-DA analysis showed that leaves collected in March 2008 had higher levels of glucosides A and B as compared to those collected in August 2007. However, the relative standard deviation (RSD) exhibited by the individual values of glucosides A and B showed that those compounds vary more according to their developmental stage (50%) than to the time of day or the season in which they were collected (19%). Although morphological variations of the V. planifolia accessions were observed, no clear separation of the accessions was determined from the analysis of the NMR spectra. The results obtained in this study, show that this method based on the use of (1)H NMR spectroscopy in combination with multivariate analysis has a great potential for further applications in the study of vanilla leaf metabolome. Copyright 2009 Elsevier Ltd. All rights reserved.

  17. Developmental instability in Rhus copallinum L.: multiple stressors, years, and responses

    USGS Publications Warehouse

    Freeman, D. Carl; Brown, Michelle L.; Duda, Jeffrey J.; Graham, John H.; Emlen, John M.; Krzysik, Anthony J.; Balbach, Harold E.; Kovacic, Dave A.; Zak, John C.

    2004-01-01

    Developmental instability, as assessed by leaf fluctuating asymmetry and stem internode allometry, was examined at nine sites, representing three levels of disturbance, over multiple years. Site selection was based on land‐use disturbance classes related to training of mechanized infantry and other land management activities at Fort Benning, Georgia. Developmental instability varied among sites and years, and there was a strong site‐by‐year interaction for many traits. Indeed, depending on the year, the same site could be ranked as having the greatest and least amount of leaf fluctuating asymmetry. Burning a site the year prior to collecting the leaves profoundly influenced measures of leaf fluctuating asymmetry. In the absence of recent burning, leaf fluctuating asymmetry declined with increasing disturbance, but burning the year prior to collecting the leaves reversed this trend. Total plant cover, proportion of bare ground, and amount of plant litter influenced the amount of leaf asymmetry in a site‐dependent manner. Overall, burning influenced the levels of developmental instability more than either disturbance or microhabitat variables such as total plant cover, which should reflect competition in a plant’s immediate neighborhood.

  18. Inconsistency of mesophyll conductance estimate causes the inconsistency for the estimates of maximum rate of Rubisco carboxylation among the linear, rectangular, and non-rectangular hyperbola biochemical models of leaf...

    USDA-ARS?s Scientific Manuscript database

    The responses of CO2 assimilation to [CO2] (A/Ci) were investigated at two developmental stages (R5 and R6) and in several soybean cultivars grown under two levels of [CO2], the ambient level of 370 µbar versus the elevated level of 550 µbar. The A/Ci data were analyzed and compared using various cu...

  19. Arabidopsis Class I and Class II TCP Transcription Factors Regulate Jasmonic Acid Metabolism and Leaf Development Antagonistically1[C][W

    PubMed Central

    Danisman, Selahattin; van der Wal, Froukje; Dhondt, Stijn; Waites, Richard; de Folter, Stefan; Bimbo, Andrea; van Dijk, Aalt DJ; Muino, Jose M.; Cutri, Lucas; Dornelas, Marcelo C.; Angenent, Gerco C.; Immink, Richard G.H.

    2012-01-01

    TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR1 (TCP) transcription factors control developmental processes in plants. The 24 TCP transcription factors encoded in the Arabidopsis (Arabidopsis thaliana) genome are divided into two classes, class I and class II TCPs, which are proposed to act antagonistically. We performed a detailed phenotypic analysis of the class I tcp20 mutant, showing an increase in leaf pavement cell sizes in 10-d-old seedlings. Subsequently, a glucocorticoid receptor induction assay was performed, aiming to identify potential target genes of the TCP20 protein during leaf development. The LIPOXYGENASE2 (LOX2) and class I TCP9 genes were identified as TCP20 targets, and binding of TCP20 to their regulatory sequences could be confirmed by chromatin immunoprecipitation analyses. LOX2 encodes for a jasmonate biosynthesis gene, which is also targeted by class II TCP proteins that are under the control of the microRNA JAGGED AND WAVY (JAW), although in an antagonistic manner. Mutation of TCP9, the second identified TCP20 target, resulted in increased pavement cell sizes during early leaf developmental stages. Analysis of senescence in the single tcp9 and tcp20 mutants and the tcp9tcp20 double mutants showed an earlier onset of this process in comparison with wild-type control plants in the double mutant only. Both the cell size and senescence phenotypes are opposite to the known class II TCP mutant phenotype in JAW plants. Altogether, these results point to an antagonistic function of class I and class II TCP proteins in the control of leaf development via the jasmonate signaling pathway. PMID:22718775

  20. Light-Induced Indeterminacy Alters Shade-Avoiding Tomato Leaf Morphology1[OPEN

    PubMed Central

    Chitwood, Daniel H.; Kumar, Ravi; Ranjan, Aashish; Pelletier, Julie M.; Townsley, Brad T.; Ichihashi, Yasunori; Martinez, Ciera C.; Zumstein, Kristina; Harada, John J.; Maloof, Julin N.; Sinha, Neelima R.

    2015-01-01

    Plants sense the foliar shade of competitors and alter their developmental programs through the shade-avoidance response. Internode and petiole elongation, and changes in overall leaf area and leaf mass per area, are the stereotypical architectural responses to foliar shade in the shoot. However, changes in leaf shape and complexity in response to shade remain incompletely, and qualitatively, described. Using a meta-analysis of more than 18,000 previously published leaflet outlines, we demonstrate that shade avoidance alters leaf shape in domesticated tomato (Solanum lycopersicum) and wild relatives. The effects of shade avoidance on leaf shape are subtle with respect to individual traits but are combinatorially strong. We then seek to describe the developmental origins of shade-induced changes in leaf shape by swapping plants between light treatments. Leaf size is light responsive late into development, but patterning events, such as stomatal index, are irrevocably specified earlier. Observing that shade induces increases in shoot apical meristem size, we then describe gene expression changes in early leaf primordia and the meristem using laser microdissection. We find that in leaf primordia, shade avoidance is not mediated through canonical pathways described in mature organs but rather through the expression of KNOTTED1-LIKE HOMEOBOX and other indeterminacy genes, altering known developmental pathways responsible for patterning leaf shape. We also demonstrate that shade-induced changes in leaf primordium gene expression largely do not overlap with those found in successively initiated leaf primordia, providing evidence against classic hypotheses that shaded leaf morphology results from the prolonged production of juvenile leaf types. PMID:26381315

  1. De Novo Assembly and Comparative Transcriptome Analysis Provide Insight into Lysine Biosynthesis in Toona sinensis Roem.

    PubMed

    Zhang, Xia; Song, Zhenqiao; Liu, Tian; Guo, Linlin; Li, Xingfeng

    2016-01-01

    Toona sinensis Roem is a popular leafy vegetable in Chinese cuisine and is also used as a traditional Chinese medicine. In this study, leaf samples were collected from the same plant on two development stages and then used for high-throughput Illumina RNA-sequencing (RNA-Seq). 125,884 transcripts and 54,628 unigenes were obtained through de novo assembly. A total of 25,570 could be annotated with known biological functions, which indicated that the T. sinensis leaves and shoots were undergoing multiple developmental processes especially for active metabolic processes. Analysis of differentially expressed unigenes between the two libraries showed that the lysine biosynthesis was an enriched KEGG pathway, and candidate genes involved in the lysine biosynthesis pathway in T. sinensis leaves and shoots were identified. Our results provide a primary analysis of the gene expression files of T. sinensis leaf and shoot on different development stages and afford a valuable resource for genetic and genomic research on plant lysine biosynthesis.

  2. The role of hormones in the aging of plants - a mini-review.

    PubMed

    Khan, Mamoona; Rozhon, Wilfried; Poppenberger, Brigitte

    2014-01-01

    In plants, the final stage of organ development is termed senescence. This is a deterioration process that leads to the decay of tissues and organs, and that, in the case of annual, biennial and/or monocarpic plants, leads to the death of the plant itself. The main function of leaf senescence is nutrient recycle and, since this confers an adaptive advantage, it can be considered an evolutionary selected process. Multiple developmental and environmental signals control senescence, and among them plant hormones are understood to play important roles. In particular, the function of cytokinins and ethylene in senescence has been studied for decades, but it is only since Arabidopsis thaliana was established as a model organism for molecular genetic studies that the underlying molecular and biochemical events have begun to be elucidated. In this review, we summarize the present understanding of the role of hormones in the developmental control of leaf senescence in plants and in particular highlight recent studies which address its molecular control. Important findings which connect hormone action to developmental senescence were made in the past few years. For example, it was shown that ethylene activity in natural, age-dependent leaf senescence is conferred by the regulatory function of EIN2, an ethylene-signaling component, in the control of the transcription factor oresara 1 (ORE1), which regulates a large set of senescence-associated genes in their expression. ORE1 mRNA abundance is regulated by the microRNA miR164, which in aging plants is degraded in an EIN2-dependent manner, and it is interesting that another microRNA also governs the hormonal control of senescence. miR319 regulates mRNA abundance of a class of transcription factors which control the expression of LOX2 (lipoxygenase 2), a key enzyme in the JA biosynthetic pathway, and thereby regulates JA homeostasis in senescing leaves. Reverse and forward genetics have facilitated the elucidation of molecular mechanisms involved in the control of leaf senescence by phytohormones. Studies initiated on the interactions between the different hormonal pathways that control leaf senescence should improve our knowledge in the future.

  3. Geranyl acetate esterase controls and regulates the level of geraniol in lemongrass (Cymbopogon flexuosus Nees ex Steud.) mutant cv. GRL-1 leaves.

    PubMed

    Ganjewala, Deepak; Luthra, Rajesh

    2009-01-01

    Essential oil isolated from lemongrass (Cymbopogon flexuosus) mutant cv. GRL-1 leaves is mainly composed of geraniol (G) and geranyl acetate (GA). The proportion of G and GA markedly fluctuates during leaf development. The proportions of GA and G in the essential oil recorded at day 10 after leaf emergence were approximately 59% and approximately 33% respectively. However, the level of GA went down from approximately 59 to approximately 3% whereas the level of G rose from approximately 33 to approximately 91% during the leaf growth period from day 10 to day 50. However, the decline in the level of GA was most pronounced in the early (day 10 to day 30) stage of leaf growth. The trend of changes in the proportion of GA and G has clearly indicated the role of an esterase that must be involved in the conversion of GA to G during leaf development. We isolated an esterase from leaves of different ages that converts GA into G and has been given the name geranyl acetate esterase (GAE). The GAE activity markedly varied during the leaf development cycle; it was closely correlated with the monoterpene (GA and G) composition throughout leaf development. GAE appeared as several isoenzymes but only three (GAE-I, GAE-II, and GAE-III) of them had significant GA cleaving activity. The GAE isoenzymes pattern was greatly influenced by the leaf developmental stages and so their GA cleaving activities. Like the GAE activity, GAE isoenzyme patterns were also found to be consistent with the monoterpene (GA and G) composition. GAE had an optimum pH at 8.5 and temperature at 30 degrees C. Besides GAE, a compound with phosphatase activity capable of hydrolyzing geranyl diphosphate (GPP) to produce geraniol has also been isolated.

  4. Effects of elevated atmospheric CO2 concentration on leaf dark respiration of Xanthium strumarium in light and in darkness

    PubMed Central

    Wang, Xianzhong; Lewis, James D.; Tissue, David T.; Seemann, Jeffrey R.; Griffin, Kevin L.

    2001-01-01

    Leaf dark respiration (R) is an important component of plant carbon balance, but the effects of rising atmospheric CO2 on leaf R during illumination are largely unknown. We studied the effects of elevated CO2 on leaf R in light (RL) and in darkness (RD) in Xanthium strumarium at different developmental stages. Leaf RL was estimated by using the Kok method, whereas leaf RD was measured as the rate of CO2 efflux at zero light. Leaf RL and RD were significantly higher at elevated than at ambient CO2 throughout the growing period. Elevated CO2 increased the ratio of leaf RL to net photosynthesis at saturated light (Amax) when plants were young and also after flowering, but the ratio of leaf RD to Amax was unaffected by CO2 levels. Leaf RN was significantly higher at the beginning but significantly lower at the end of the growing period in elevated CO2-grown plants. The ratio of leaf RL to RD was used to estimate the effect of light on leaf R during the day. We found that light inhibited leaf R at both CO2 concentrations but to a lesser degree for elevated (17–24%) than for ambient (29–35%) CO2-grown plants, presumably because elevated CO2-grown plants had a higher demand for energy and carbon skeletons than ambient CO2-grown plants in light. Our results suggest that using the CO2 efflux rate, determined by shading leaves during the day, as a measure for leaf R is likely to underestimate carbon loss from elevated CO2-grown plants. PMID:11226264

  5. Effects of elevated atmospheric CO2 concentration on leaf dark respiration of Xanthium strumarium in light and in darkness.

    PubMed

    Wang, X; Lewis, J D; Tissue, D T; Seemann, J R; Griffin, K L

    2001-02-27

    Leaf dark respiration (R) is an important component of plant carbon balance, but the effects of rising atmospheric CO(2) on leaf R during illumination are largely unknown. We studied the effects of elevated CO(2) on leaf R in light (R(L)) and in darkness (R(D)) in Xanthium strumarium at different developmental stages. Leaf R(L) was estimated by using the Kok method, whereas leaf R(D) was measured as the rate of CO(2) efflux at zero light. Leaf R(L) and R(D) were significantly higher at elevated than at ambient CO(2) throughout the growing period. Elevated CO(2) increased the ratio of leaf R(L) to net photosynthesis at saturated light (A(max)) when plants were young and also after flowering, but the ratio of leaf R(D) to A(max) was unaffected by CO(2) levels. Leaf R(N) was significantly higher at the beginning but significantly lower at the end of the growing period in elevated CO(2)-grown plants. The ratio of leaf R(L) to R(D) was used to estimate the effect of light on leaf R during the day. We found that light inhibited leaf R at both CO(2) concentrations but to a lesser degree for elevated (17-24%) than for ambient (29-35%) CO(2)-grown plants, presumably because elevated CO(2)-grown plants had a higher demand for energy and carbon skeletons than ambient CO(2)-grown plants in light. Our results suggest that using the CO(2) efflux rate, determined by shading leaves during the day, as a measure for leaf R is likely to underestimate carbon loss from elevated CO(2)-grown plants.

  6. Effects of ammonium sulfate aerosols on vegetation—II. Mode of entry and responses of vegetation

    NASA Astrophysics Data System (ADS)

    Gmur, Nicholas F.; Evans, Lance S.; Cunningham, Elizabeth A.

    These experiments were designed to provide information on the rates of aerosol deposition, mode of entry, and effects of deposition of submicrometer ammonium sulfate aerosols on foliage of Phaseolus vulgaris L. A deposition velocity of 3.2 × 10 3cms-1 was constant during 3-week exposures of plants to aerosol concentrations of 26mg m -3 (i.e. about two orders of magnitude above ambient episode concentrations). Mean deposition rate on foliage was 4.1 × 10 -11 μg cm -2s -1. Visible injury symptoms included leaf chlorosis, necrosis and loss of turgor. Chlorosis was most frequent near leaf margins causing epinasty and near major veins. Internal injury occurred initially in spongy mesophyll cells. Eventually abaxial epidermal and palisade parenchyma cells were injured. These results suggest that submicrometer aerosols enter abaxial stomata and affect more internal cells before affecting leaf surface cells. Exposure to aerosols decreased both abaxial and adaxial leaf resistances markedly. Although visible injury to foliage occurred, no changes in dry mass of roots and shoots or leaf area occurred. These results suggest that for the plant developmental stage studied, while leaf resistances decreased and cellular injury occurred in foliage, these factors were not significantly related to plant growth and development.

  7. Turning over a new 'leaf': multiple functional significances of leaves versus phyllodes in Hawaiian Acacia koa.

    PubMed

    Pasquet-Kok, Jessica; Creese, Christine; Sack, Lawren

    2010-12-01

    Hawaiian endemic tree Acacia koa is a model for heteroblasty with bipinnately compound leaves and phyllodes. Previous studies suggested three hypotheses for their functional differentiation: an advantage of leaves for early growth or shade tolerance, and an advantage of phyllodes for drought tolerance. We tested the ability of these hypotheses to explain differences between leaf types for potted plants in 104 physiological and morphological traits, including gas exchange, structure and composition, hydraulic conductance, and responses to varying light, intercellular CO(2) , vapour pressure deficit (VPD) and drought. Leaf types were similar in numerous traits including stomatal pore area per leaf area, leaf area-based gas exchange rates and cuticular conductance. Each hypothesis was directly supported by key differences in function. Leaves had higher mass-based gas exchange rates, while the water storage tissue in phyllodes contributed to greater capacitance per area; phyllodes also showed stronger stomatal closure at high VPD, and higher maximum hydraulic conductance per area, with stronger decline during desiccation and recovery with rehydration. While no single hypothesis completely explained the differences between leaf types, together the three hypotheses explained 91% of differences. These findings indicate that the heteroblasty confers multiple benefits, realized across different developmental stages and environmental contexts. © 2010 Blackwell Publishing Ltd.

  8. Proteomic Analysis Reveals Coordinated Regulation of Anthocyanin Biosynthesis through Signal Transduction and Sugar Metabolism in Black Rice Leaf.

    PubMed

    Chen, Linghua; Huang, Yining; Xu, Ming; Cheng, Zuxin; Zheng, Jingui

    2017-12-15

    Black rice ( Oryza sativa L.) is considered to be a healthy food due to its high content of anthocyanins in the pericarp. The synthetic pathway of anthocyanins in black rice grains has been identified, however, the proteomic profile of leaves during grain development is still unclear. Here, isobaric Tags Relative and Absolute Quantification (iTRAQ) MS/MS was carried out to identify statistically significant changes of leaf proteome in the black rice during grain development. Throughout three sequential developmental stages, a total of 3562 proteins were detected and 24 functional proteins were differentially expressed 3-10 days after flowering (DAF). The detected proteins are known to be involved in various biological processes and most of these proteins were related to gene expression regulatory (33.3%), signal transduction (16.7%) and developmental regulation and hormone-like proteins (12.5%). The coordinated changes were consistent with changes in regulatory proteins playing a leading role in leaves during black rice grain development. This indicated that signal transduction between leaves and grains may have an important role in anthocyanin biosynthesis and accumulation during grain development of black rice. In addition, four identified up-regulated proteins associated with starch metabolism suggested that the remobilization of nutrients for starch synthesis plays a potential role in anthocyanin biosynthesis of grain. The mRNA transcription for eight selected proteins was validated with quantitative real-time PCR. Our results explored the proteomics of the coordination between leaf and grain in anthocyanins biosynthesis of grain, which might be regulated by signal transduction and sugar metabolism in black rice leaf.

  9. The Use of RNA Sequencing and Correlation Network Analysis to Study Potential Regulators of Crabapple Leaf Color Transformation.

    PubMed

    Yang, Tuo; Li, Keting; Hao, Suxiao; Zhang, Jie; Song, Tingting; Tian, Ji; Yao, Yuncong

    2018-05-01

    Anthocyanins are plant pigments that contribute to the color of leaves, flowers and fruits, and that are beneficial to human health in the form of dietary antioxidants. The study of a transformable crabapple cultivar, 'India magic', which has red buds and green mature leaves, using mRNA profiling of four leaf developmental stages, allowed us to characterize molecular mechanisms regulating red color formation in early leaf development and the subsequent rapid down-regulation of anthocyanin biosynthesis. This analysis of differential gene expression during leaf development revealed that ethylene signaling-responsive genes are up-regulated during leaf pigmentation. Genes in the ethylene response factor (ERF), SPL, NAC, WRKY and MADS-box transcription factor (TF) families were identified in two weighted gene co-expression network analysis (WGCNA) modules as having a close relationship to anthocyanin accumulation. Analyses of network hub genes indicated that SPL TFs are located in central positions within anthocyanin-related modules. Furthermore, cis-motif and yeast one-hybrid assays suggested that several anthocyanin biosynthetic or regulatory genes are potential targets of SPL8 and SPL13B. Transient silencing of these two genes confirmed that they play a role in co-ordinating anthocyanin biosynthesis and crabapple leaf development. We present a high-resolution method for identifying regulatory modules associated with leaf pigmentation, which provides a platform for functional genomic studies of anthocyanin biosynthesis.

  10. Comparative ultrastructure of fruit plastids in three genetically diverse genotypes of apple (Malus × domestica Borkh.) during development.

    PubMed

    Schaeffer, Scott M; Christian, Ryan; Castro-Velasquez, Nohely; Hyden, Brennan; Lynch-Holm, Valerie; Dhingra, Amit

    2017-10-01

    Comparative ultrastructural developmental time-course analysis has identified discrete stages at which the fruit plastids undergo structural and consequently functional transitions to facilitate subsequent development-guided understanding of the complex plastid biology. Plastids are the defining organelle for a plant cell and are critical for myriad metabolic functions. The role of leaf plastid, chloroplast, is extensively documented; however, fruit plastids-chromoplasts-are poorly understood, especially in the context of the diverse metabolic processes operating in these diverse plant organs. Recently, in a comparative study of the predicted plastid-targeted proteomes across seven plant species, we reported that each plant species is predicted to harbor a unique set of plastid-targeted proteins. However, the temporal and developmental context of these processes remains unknown. In this study, an ultrastructural analysis approach was used to characterize fruit plastids in the epidermal and collenchymal cell layers at 11 developmental timepoints in three genotypes of apple (Malus × domestica Borkh.): chlorophyll-predominant 'Granny Smith', carotenoid-predominant 'Golden Delicious', and anthocyanin-predominant 'Top Red Delicious'. Plastids transitioned from a proplastid-like plastid to a chromoplast-like plastid in epidermis cells, while in the collenchyma cells, they transitioned from a chloroplast-like plastid to a chloro-chromo-amyloplast plastid. Plastids in the collenchyma cells of the three genotypes demonstrated a diverse array of structures and features. This study enabled the identification of discrete developmental stages during which specific functions are most likely being performed by the plastids as indicated by accumulation of plastoglobuli, starch granules, and other sub-organeller structures. Information regarding the metabolically active developmental stages is expected to facilitate biologically relevant omics studies to unravel the complex biochemistry of plastids in perennial non-model systems.

  11. Variability in Damage Caused by the Mite Tetranychus urticae (Trombidiformes: Tetranychidae) Koch on Three Varieties of Strawberry.

    PubMed

    González-Domínguez, S G; Santillán-Galicia, M T; González-Hernández, V; Suárez Espinosa, J; González-Hernández, H

    2015-06-01

    The strawberry, Fragaria×ananassa Duchesne (Rosales: Rosaceae), is an important crop in Mexico. We evaluated the tolerance of three newly developed Mexican strawberry varieties (CP0615, CPLE-7, and CPJacona) to Tetranychus urticae Koch (Trombidiformes: Tetranychidae), the most important pest of strawberry. We evaluated the effect of three different initial mite densities on population growth, duration of each developmental stage and survival of T. urticae on the three strawberry varieties. We also compared the photosynthetic activity (Pn), sub-stomatal CO2 concentration (Ci), stomatal conductance (gs) and the area of leaf damaged in the three varieties. The largest final density of mites occurred on the variety CP0615, followed by the varieties CPLE-7 and CPJacona. There were no significant differences in the duration of T. urticae developmental stages amongst the varieties, except for larvae where the shortest duration was on variety CPLE-7. The proportion of eggs reaching the adult stage (survival) was significantly lower on the variety CPLE-7. The number and morphology of the trichomes did not play an important role in the outcomes, as they were similar in the three varieties. There were no significant differences in Pn, Ci, and gs values amongst the three varieties in the presence and absence of T. urticae. The area of leaf damaged in variety CPLE-7 was significantly smaller than for the other varieties. Based on these results, and with regard to spider mite tolerance, we believe that the variety CPLE-7 has the greatest potential for further development, and eventually, for use on a commercial scale in Mexico. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Light-regulated leaf expansion in two Populus species: dependence on developmentally controlled ion transport.

    PubMed

    Stiles, Kari A; Van Volkenburgh, Elizabeth

    2002-07-01

    Leaf growth responses to light have been compared in two species of Populus, P. deltoides and P. trichocarpa. These species differ markedly in morphology, anatomy, and dependence on light during leaf expansion. Light stimulates the growth rate and acidification of cell walls in P. trichocarpa but not in P. deltoides, whereas leaves of P. deltoides maintain growth in the dark. Light-induced growth is promoted in P. deltoides when cells are provided 50-100 mM KCl. In both species, light initially depolarizes, then hyperpolarizes mesophyll plasma membranes. However, in the dark, the resting E(m) of mesophyll cells in P. deltoides, but not in P. trichocarpa, is relatively insensitive to decade changes in external [K+]. Results suggest that light-stimulated leaf growth depends on developmentally regulated cellular mechanisms controlling ion fluxes across the plasma membrane. These developmental differences underlie species-level differences in growth and physiological responses to the photoenvironment.

  13. Effects of salinity on the transcriptome of growing maize leaf cells point at cell-age specificity in the involvement of the antioxidative response in cell growth restriction

    PubMed Central

    2013-01-01

    Background Salinity inhibits growth and development of most plants. The response to salinity is complex and varies between plant organs and stages of development. It involves challenges of ion toxicities and deficiencies as well as osmotic and oxidative stresses. The range of functions affected by the stress is reflected in elaborate changes to the transcriptome. The mechanisms involved in the developmental-stage specificity of the inhibitory responses are not fully understood. The present study took advantage of the well characterized developmental progression that exists along the maize leaf, for identification of salinity induced, developmentally-associated changes to the transcriptome. Differential subtraction screening was conducted for cells of two developmental stages: from the center of the growth zone where the expansion rate is highest, and from older cells at a more distal location of the growing zone where the expansion rate is lower and the salinity restrictive effects are more pronounced. Real-Time PCR analysis was used for validation of the expression of selected genes. Results The salinity-induced changes demonstrated an age-related response of the growing tissue, with elevation of salinity-damages with increased age. Growth reduction, similar to the elevation of percentage dry matter (%DM), and Na and Cl concentrations were more pronounced in the older cells. The differential subtraction screening identified genes encoding to proteins involved in antioxidant defense, electron transfer and energy, structural proteins, transcription factors and photosynthesis proteins. Of special interest is the higher induced expression of genes involved in antioxidant protection in the young compared to older cells, which was accompanied by suppressed levels of reactive oxygen species (H2O2 and O2-). This was coupled with heightened expression in the older cells of genes that enhance cell-wall rigidity, which points at reduced potential for cell expansion. Conclusions The results demonstrate a cell-age specificity in the salinity response of growing cells, and point at involvement of the antioxidative response in cell growth restriction. Processes involved in reactive oxygen species (ROS) scavenging are more pronounced in the young cells, while the higher growth sensitivity of older cells is suggested to involve effects on cell-wall rigidity and lower protein protection. PMID:23324477

  14. Isolation and expression profiling of GhNAC transcription factor genes in cotton (Gossypium hirsutum L.) during leaf senescence and in response to stresses.

    PubMed

    Shah, Syed Tariq; Pang, Chaoyou; Fan, Shuli; Song, Meizhen; Arain, Saima; Yu, Shuxun

    2013-12-01

    NAC (NAM, ATAF, and CUC) is a plant-specific transcription factor family with diverse roles in plant development and stress regulation. In this report, stress-responsive NAC genes (GhNAC8-GhNAC17) isolated from cotton (Gossypium hirsutum L.) were characterised in the context of leaf senescence and stress tolerance. The characterisation of NAC genes during leaf senescence has not yet been reported for cotton. Based on the sequence characterisation, these GhNACs could be classified into three groups belonging to three known NAC sub-families. Their predicted amino acid sequences exhibited similarities to NAC genes from other plant species. Senescent leaves were the sites of maximum expression for all GhNAC genes except GhNAC10 and GhNAC13, which showed maximum expression in fibres, collected from 25 days post anthesis (DPA) plants. The ten GhNAC genes displayed differential expression patterns and levels during natural and induced leaf senescence. Quantitative RT-PCR and promoter analyses suggest that these genes are induced by ABA, ethylene, drought, salinity, cold, heat, and other hormonal treatments. These results support a role for cotton GhNAC genes in transcriptional regulation of leaf senescence, stress tolerance and other developmental stages of cotton. © 2013.

  15. Molecular Mechanisms of Phosphorus Metabolism and Transport during Leaf Senescence

    PubMed Central

    Stigter, Kyla A.; Plaxton, William C.

    2015-01-01

    Leaf senescence, being the final developmental stage of the leaf, signifies the transition from a mature, photosynthetically active organ to the attenuation of said function and eventual death of the leaf. During senescence, essential nutrients sequestered in the leaf, such as phosphorus (P), are mobilized and transported to sink tissues, particularly expanding leaves and developing seeds. Phosphorus recycling is crucial, as it helps to ensure that previously acquired P is not lost to the environment, particularly under the naturally occurring condition where most unfertilized soils contain low levels of soluble orthophosphate (Pi), the only form of P that roots can directly assimilate from the soil. Piecing together the molecular mechanisms that underpin the highly variable efficiencies of P remobilization from senescing leaves by different plant species may be critical for devising effective strategies for improving overall crop P-use efficiency. Maximizing Pi remobilization from senescing leaves using selective breeding and/or biotechnological strategies will help to generate P-efficient crops that would minimize the use of unsustainable and polluting Pi-containing fertilizers in agriculture. This review focuses on the molecular mechanisms whereby P is remobilized from senescing leaves and transported to sink tissues, which encompasses the action of hormones, transcription factors, Pi-scavenging enzymes, and Pi transporters. PMID:27135351

  16. Gene Expression Profiles in Rice Developing Ovules Provided Evidence for the Role of Sporophytic Tissue in Female Gametophyte Development.

    PubMed

    Wu, Ya; Yang, Liyu; Cao, Aqin; Wang, Jianbo

    2015-01-01

    The development of ovule in rice (Oryza sativa) is vital during its life cycle. To gain more understanding of the molecular events associated with the ovule development, we used RNA sequencing approach to perform transcriptome-profiling analysis of the leaf and ovules at four developmental stages. In total, 25,401, 23,343, 23,647 and 23,806 genes were identified from the four developmental stages of the ovule, respectively. We identified a number of differently expressed genes (DEGs) from three adjacent stage comparisons, which may play crucial roles in ovule development. The DEGs were then conducted functional annotations and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses. Genes related to cellular component biogenesis, membrane-bounded organelles and reproductive regulation were identified to be highly expressed during the ovule development. Different expression levels of auxin-related and cytokinin-related genes were also identified at various stages, providing evidence for the role of sporophytic ovule tissue in female gametophyte development from the aspect of gene expression. Generally, an overall transcriptome analysis for rice ovule development has been conducted. These results increased our knowledge of the complex molecular and cellular events that occur during the development of rice ovule and provided foundation for further studies on rice ovule development.

  17. Proteomic Analysis Reveals Coordinated Regulation of Anthocyanin Biosynthesis through Signal Transduction and Sugar Metabolism in Black Rice Leaf

    PubMed Central

    Chen, Linghua; Huang, Yining; Xu, Ming; Cheng, Zuxin; Zheng, Jingui

    2017-01-01

    Black rice (Oryza sativa L.) is considered to be a healthy food due to its high content of anthocyanins in the pericarp. The synthetic pathway of anthocyanins in black rice grains has been identified, however, the proteomic profile of leaves during grain development is still unclear. Here, isobaric Tags Relative and Absolute Quantification (iTRAQ) MS/MS was carried out to identify statistically significant changes of leaf proteome in the black rice during grain development. Throughout three sequential developmental stages, a total of 3562 proteins were detected and 24 functional proteins were differentially expressed 3–10 days after flowering (DAF). The detected proteins are known to be involved in various biological processes and most of these proteins were related to gene expression regulatory (33.3%), signal transduction (16.7%) and developmental regulation and hormone-like proteins (12.5%). The coordinated changes were consistent with changes in regulatory proteins playing a leading role in leaves during black rice grain development. This indicated that signal transduction between leaves and grains may have an important role in anthocyanin biosynthesis and accumulation during grain development of black rice. In addition, four identified up-regulated proteins associated with starch metabolism suggested that the remobilization of nutrients for starch synthesis plays a potential role in anthocyanin biosynthesis of grain. The mRNA transcription for eight selected proteins was validated with quantitative real-time PCR. Our results explored the proteomics of the coordination between leaf and grain in anthocyanins biosynthesis of grain, which might be regulated by signal transduction and sugar metabolism in black rice leaf. PMID:29244752

  18. Effects of starter nitrogen fertilizer on soybean root activity, leaf photosynthesis and grain yield

    PubMed Central

    Gai, Zhijia; Zhang, Jingtao; Li, Caifeng

    2017-01-01

    The objective of this study was to examine the impact of starter nitrogen fertilizer on soybean root activity, leaf photosynthesis, grain yield and their relationship. To achieve this objective, field experiments were conducted in 2013 and 2014, using a randomized complete block design, with three replications. Nitrogen was applied at planting at rates of 0, 25, 50, and 75 kg N ha-1. In both years, starter nitrogen fertilizer benefited root activity, leaf photosynthesis, and consequently its yield. Statistically significant correlation was found among root activity, leaf photosynthetic rate, and grain yield at the developmental stage. The application of N25, N50, and N75 increased grain yield by 1.28%, 2.47%, and 1.58% in 2013 and by 0.62%, 2.77%, and 2.06% in 2014 compared to the N0 treatment. Maximum grain yield of 3238.91 kg ha-1 in 2013 and 3086.87 kg ha-1 in 2014 were recorded for N50 treatment. Grain yield was greater for 2013 than 2014, possibly due to more favorable environmental conditions. This research indicated that applying nitrogen as starter is necessary to increase soybean yield in Sangjiang River Plain in China. PMID:28388620

  19. Lettuce facing microcystins-rich irrigation water at different developmental stages: Effects on plant performance and microcystins bioaccumulation.

    PubMed

    Levizou, Efi; Statiris, George; Papadimitriou, Theodoti; Laspidou, Chrysi S; Kormas, Konstantinos Ar

    2017-09-01

    This study investigated the microcystins (MCs)-rich irrigation water effect on lettuce of different developmental stages, i.e. during a two months period, covering the whole period from seed germination to harvest at marketable size of the plant. We followed four lettuce plant groups receiving MCs-rich water (1.81μgl -1 of dissolved MCs), originating from the Karla Reservoir, central Greece: 1) from seeds, 2) the cotyledon, 3) two true leaves and 4) four true leaves stages, all of which were compared to control plants that received tap water. Lettuce growth, photosynthetic performance, biochemical and mineral characteristics, as well as MCs accumulation in leaves, roots and soil were measured. The overall performance of lettuce at various developmental stages pointed to increased tolerance since growth showed minor alterations and non-enzymatic antioxidants remained unaffected. Plants receiving MCs-rich water from the seed stage exhibited higher photosynthetic capacity, chlorophylls and leaf nitrogen content. Nevertheless, considerable MCs accumulation in various plant tissues occurred. The earlier in their development lettuce plants started receiving MCs-rich water, the more MCs they accumulated: roots and leaves of plants exposed to MCs-rich water from seeds and cotyledons stage exhibited doubled MCs concentrations compared to respective tissues of the 4 Leaves group. Furthermore, roots accumulated significantly higher MCs amounts than leaves of the same plant group. Concerning human health risk, the Estimated Daily Intake values (EDI) of Seed and Cotyledon groups leaves exceeded Tolerable Daily Intake (TDI) by a factor of 6, while 2 Leaves and 4 Leaves groups exceeded TDI by a factor of 4.4 and 2.4 respectively. Our results indicate that irrigation of lettuce with MCs-rich water may constitute a serious public health risk, especially when contaminated water is received from the very early developmental stages (seed and cotyledon). Finally, results obtained for the tolerant lettuce indicate that MCs bioaccumulation in edible tissues is not necessarily coupled with phytotoxic effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Metabolic Profiling during Peach Fruit Development and Ripening Reveals the Metabolic Networks That Underpin Each Developmental Stage1[C][W

    PubMed Central

    Lombardo, Verónica A.; Osorio, Sonia; Borsani, Julia; Lauxmann, Martin A.; Bustamante, Claudia A.; Budde, Claudio O.; Andreo, Carlos S.; Lara, María V.; Fernie, Alisdair R.; Drincovich, María F.

    2011-01-01

    Fruit from rosaceous species collectively display a great variety of flavors and textures as well as a generally high content of nutritionally beneficial metabolites. However, relatively little analysis of metabolic networks in rosaceous fruit has been reported. Among rosaceous species, peach (Prunus persica) has stone fruits composed of a juicy mesocarp and lignified endocarp. Here, peach mesocarp metabolic networks were studied across development using metabolomics and analysis of key regulatory enzymes. Principal component analysis of peach metabolic composition revealed clear metabolic shifts from early through late development stages and subsequently during postharvest ripening. Early developmental stages were characterized by a substantial decrease in protein abundance and high levels of bioactive polyphenols and amino acids, which are substrates for the phenylpropanoid and lignin pathways during stone hardening. Sucrose levels showed a large increase during development, reflecting translocation from the leaf, while the importance of galactinol and raffinose is also inferred. Our study further suggests that posttranscriptional mechanisms are key for metabolic regulation at early stages. In contrast to early developmental stages, a decrease in amino acid levels is coupled to an induction of transcripts encoding amino acid and organic acid catabolic enzymes during ripening. These data are consistent with the mobilization of amino acids to support respiration. In addition, sucrose cycling, suggested by the parallel increase of transcripts encoding sucrose degradative and synthetic enzymes, appears to operate during postharvest ripening. When taken together, these data highlight singular metabolic programs for peach development and may allow the identification of key factors related to agronomic traits of this important crop species. PMID:22021422

  1. Developmental changes in leaf phenolics composition from three artichoke cvs. (Cynara scolymus) as determined via UHPLC-MS and chemometrics.

    PubMed

    El Senousy, Amira S; Farag, Mohamed A; Al-Mahdy, Dalia A; Wessjohann, Ludger A

    2014-12-01

    The metabolomic differences in phenolics from leaves derived from 3 artichoke cultivars (Cynara scolymus): American Green Globe, French Hyrious and Egyptian Baladi, collected at different developmental stages, were assessed using UHPLC-MS coupled to chemometrics. Ontogenic changes were considered as leaves were collected at four different time intervals and positions (top and basal) during artichoke development. Unsupervised principal component analysis (PCA) and supervised orthogonal projection to latent structures-discriminant analysis (O2PLS-DA) were used for comparing and classification of samples harvested from different cultivars at different time points and positions. A clear separation among the three investigated cultivars was revealed, with the American Green Globe samples found most enriched in caffeic acid conjugates and flavonoids vs. other cultivars. Furthermore, these metabolites also showed a marked effect on the discrimination between leaf samples from cultivars harvested at different positions, regardless of the plant age. Metabolite absolute quantifications further confirmed that discrimination was mostly influenced by phenolic compounds, namely caffeoylquinic acids and flavonoids. This study demonstrates an effect of artichoke leaf position, regardless of plant age, on its secondary metabolites composition. To the best of our knowledge, this is the first report for compositional differences among artichoke leaves, based on their positions, via a metabolomic approach and suggesting that top positioned artichoke leaves present a better source of caffeoylquinic acids, compared to basal ones. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Phytohormones and microRNAs as sensors and regulators of leaf senescence: assigning macro roles to small molecules.

    PubMed

    Sarwat, Maryam; Naqvi, Afsar Raza; Ahmad, Parvaiz; Ashraf, Muhammad; Akram, Nudrat Aisha

    2013-12-01

    Ageing or senescence is an intricate and highly synchronized developmental phase in the life of plant parts including leaf. Senescence not only means death of a plant part, but during this process, different macromolecules undergo degradation and the resulting components are transported to other parts of the plant. During the period from when a leaf is young and green to the stage when it senesces, a multitude of factors such as hormones, environmental factors and senescence associated genes (SAGs) are involved. Plant hormones including salicylic acid, abscisic acid, jasmonic acid and ethylene advance leaf senescence, whereas others like cytokinins, gibberellins, and auxins delay this process. The environmental factors which generally affect plant development and growth, can hasten senescence, the examples being nutrient dearth, water stress, pathogen attack, radiations, high temperature and light intensity, waterlogging, and air, water or soil contamination. Other important influences include carbohydrate accumulation and high carbon/nitrogen level. To date, although several genes involved in this complex process have been identified, still not much information exists in the literature on the signalling mechanism of leaf senescence. Now, the Arabidopsis mutants have paved our way and opened new vistas to elucidate the signalling mechanism of leaf senescence for which various mutants are being utilized. Recent studies demonstrating the role of microRNAs in leaf senescence have reinforced our knowledge of this intricate process. This review provides a comprehensive and critical analysis of the information gained particularly on the roles of several plant growth regulators and microRNAs in regulation of leaf senescence. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Shoot development in grapevine (Vitis vinifera) is affected by the modular branching pattern of the stem and intra- and inter-shoot trophic competition.

    PubMed

    Lebon, Eric; Pellegrino, Anne; Tardieu, Francois; Lecoeur, Jeremie

    2004-03-01

    Shoot architecture variability in grapevine (Vitis vinifera) was analysed using a generic modelling approach based on thermal time developed for annual herbaceous species. The analysis of shoot architecture was based on various levels of shoot organization, including pre-existing and newly formed parts of the stem, and on the modular structure of the stem, which consists of a repeated succession of three phytomers (P0-P1-P2). Four experiments were carried out using the cultivar 'Grenache N': two on potted vines (one of which was carried out in a glasshouse) and two on mature vines in a vineyard. These experiments resulted in a broad diversity of environmental conditions, but none of the plants experienced soil water deficit. Development of the main axis was highly dependent on air temperature, being linearly related to thermal time for all stages of leaf development from budbreak to veraison. The stable progression of developmental stages along the main stem resulted in a thermal-time based programme of leaf development. Leaf expansion rate varied with trophic competition (shoot and cluster loads) and environmental conditions (solar radiation, VPD), accounting for differences in final leaf area. Branching pattern was highly variable. Classification of the branches according to ternary modular structure increased the accuracy of the quantitative analysis of branch development. The rate and duration of leaf production were higher for branches derived from P0 phytomers than for branches derived from P1 or P2 phytomers. Rates of leaf production, expressed as a -function of thermal time, were not stable and depended on trophic competition and environmental conditions such as solar radiation or VPD. The application to grapevine of a generic model developed in annual plants made it possible to identify constants in main stem development and to determine the hierarchical structure of branches with respect to the modular structure of the stem in response to intra- and inter-shoot trophic competition.

  4. Impacts of rising tropospheric ozone on photosynthesis and metabolite levels on field grown soybean.

    PubMed

    Sun, Jindong; Feng, Zhaozhong; Ort, Donald R

    2014-09-01

    The response of leaf photosynthesis and metabolite profiles to ozone (O3) exposure ranging from 37 to 116 ppb was investigated in two soybean cultivars Dwight and IA3010 in the field under fully open-air conditions. Leaf photosynthesis, total non-structural carbohydrates (TNC) and total free amino acids (TAA) decreased linearly with increasing O3 levels in both cultivars with average decrease of 7% for an increase in O3 levels by 10 ppb. Ozone interacted with developmental stages and leaf ages, and caused higher damage at later reproductive stages and in older leaves. Ozone affected yield mainly via reduction of maximum rate of Rubisco carboxylation (Vcmax) and maximum rates of electron transport (Jmax) as well as a shorter growing season due to earlier onset of canopy senescence. For all parameters investigated the critical O3 levels (∼50 ppb) for detectable damage fell within O3 levels that occur routinely in soybean fields across the US and elsewhere in the world. Strong correlations were observed in O3-induced changes among yield, photosynthesis, TNC, TAA and many metabolites. The broad range of metabolites that showed O3 dose dependent effect is consistent with multiple interaction loci and thus multiple targets for improving the tolerance of soybean to O3. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Insecticidal activity of Jatropha curcas extracts against housefly, Musca domestica.

    PubMed

    Chauhan, Nitin; Kumar, Peeyush; Mishra, Sapna; Verma, Sharad; Malik, Anushree; Sharma, Satyawati

    2015-10-01

    The hexane and ether extracts of leaves, bark and roots of Jatropha curcas were screened for their toxicity against different developmental stages of housefly. The larvicidal, pupicidal and adulticidal activities were analysed at various concentrations (0.78-7.86 mg/cm(2)) of hexane and ether extracts. The lethal concentration values (LC50) of hexane extract of J. curcas leaves were 3.0 and 0.27 mg/cm(2) for adult and larval stages of housefly, respectively, after 48 h. Similarly, the ether extract of leaf showed the LC50 of 2.20 and 4.53 mg/cm(2) for adult and larval stages of housefly. Least toxicity was observed with hexane root extract of J. curcas with LC50 values of 14.18 and 14.26 mg/cm(2) for adult and larvae of housefly, respectively, after 48 h. The variation in LC50 against housefly pupae was found to be 8.88-13.10 mg/cm(2) at various J. curcas extract concentrations. The GC-MS analysis of J. curcas leaf extract revealed the presence of trans-phytol (60.81 %), squalene (28.58 %), phytol (2.52 %) and nonadecanone (1.06 %) as major components that could be attributed for insecticidal activity of J. curcas extracts.

  6. Sites of action of elevated CO2 on leaf development in rice: discrimination between the effects of elevated CO2 and nitrogen deficiency.

    PubMed

    Tsutsumi, Koichi; Konno, Masae; Miyazawa, Shin-Ichi; Miyao, Mitsue

    2014-02-01

    Elevated CO2 concentrations (eCO2) trigger various plant responses. Despite intensive studies of these responses, the underlying mechanisms remain obscure. In this work, we investigated when and how leaf physiology and anatomy are affected by eCO2 in rice plants. We analyzed the most recently fully expanded leaves that developed successively after transfer of the plant to eCO2. To discriminate between the effects of eCO2 and those of nitrogen deficiency, we used three different levels of N application. We found that a decline in the leaf soluble protein content (on a leaf area basis) at eCO2 was only observed under N deficiency. The length and width of the leaf blade were reduced by both eCO2 and N deficiency, whereas the blade thickness was increased by eCO2 but was not affected by N deficiency. The change in length by eCO2 became detectable in the secondly fully expanded leaf, and those in width and thickness in the thirdly fully expanded leaf, which were at the leaf developmental stages P4 and P3, respectively, at the onset of the eCO2 treatment. The decreased blade length at eCO2 was associated with a decrease in the epidermal cell number on the adaxial side and a reduction in cell length on the abaxial side. The decreased width resulted from decreased numbers of small vascular bundles and epidermal cell files. The increased thickness was ascribed mainly to enhanced development of bundle sheath extensions at the ridges of vascular bundles. These observations enable us to identify the sites of action of eCO2 on rice leaf development.

  7. Research on spatial distribution of photosynthetic characteristics of Winter Wheat

    NASA Astrophysics Data System (ADS)

    Yan, Q. Q.; Zhou, Q. Y.; Zhang, B. Z.; Han, X.; Han, N. N.; Li, S. M.

    2018-03-01

    In order to explore the spatial distribution of photosynthetic characteristics of winter wheat leaf, the photosynthetic rate on different parts of leaf (leaf base-leaf middle-leaf apex) and that on each canopy (top layer-middle layer-bottom layer) leaf during the whole growth period of winter wheat were measured. The variation of photosynthetic rate with PAR and the spatial distribution of winter wheat leaf during the whole growth periods were analysed. The results showed that the photosynthetic rate of different parts of winter wheat increased with the increase of PAR, which was showed as leaf base>leaf middle>leaf apex. In the same growth period, photosynthetic rate in different parts of the tablet was showed as leaf middle>leaf base>leaf apex. For the different canopy layer of winter wheat, the photosynthetic rate of the top layer leaf was significantly greater than that of the middle layer and lower layer leaf. The photosynthetic rate of the top layer leaf was the largest in the leaf base position. The photosynthetic rate of leaf of the same canopy layer at different growth stages were showed as tasseling stage >grain filling stage > maturation stage.

  8. A new ontology (structured hierarchy) of human developmental anatomy for the first 7 weeks (Carnegie stages 1–20)

    PubMed Central

    Bard, Jonathan

    2012-01-01

    This paper describes a new ontology of human developmental anatomy covering the first 49 days [Carnegie stages (CS)1–20], primarily structured around the parts of organ systems and their development. The ontology includes more than 2000 anatomical entities (AEs) that range from the whole embryo, through organ systems and organ parts down to simple or leaf tissues (groups of cells with the same morphological phenotype), as well as features such as cavities. Each AE has assigned to it a set of facts of the form , with the relationships including starts_at and ends_at (CSs), part_of (there can be several parents) and is_a (this gives the type of tissue, from an organ system down to one of ∼ 80 simple tissues predominantly composed of a single cell kind, which is also specified). Leaf tissues also have a develops_from link to its parent tissue. The ontology includes ∼14 000 such facts, which are mainly from the literature and an earlier ontology of human developmental anatomy (EHDAA, now withdrawn). The relationships enable these facts to be integrated into a single, complex hierarchy (or mathematical graph) that was made and can be viewed in the OBO-Edit browser (http://oboedit.org). Each AE has an EHDAA2 ID that may be useful in an informatics context, while the ontology as a whole can be used for organizing databases of human development. It is also a knowledge resource: a user can trace the lineage of any tissue back to the egg, study the changes in cell phenotype that occur as a tissue develops, and use the structure to add further (e.g. molecular) information. The ontology may be downloaded from http://www.obofoundry.org. Queries and corrections should be sent to j.bard@ed.ac.uk. PMID:22973865

  9. A new ontology (structured hierarchy) of human developmental anatomy for the first 7 weeks (Carnegie stages 1-20).

    PubMed

    Bard, Jonathan

    2012-11-01

    This paper describes a new ontology of human developmental anatomy covering the first 49 days [Carnegie stages (CS)1-20], primarily structured around the parts of organ systems and their development. The ontology includes more than 2000 anatomical entities (AEs) that range from the whole embryo, through organ systems and organ parts down to simple or leaf tissues (groups of cells with the same morphological phenotype), as well as features such as cavities. Each AE has assigned to it a set of facts of the form , with the relationships including starts_at and ends_at (CSs), part_of (there can be several parents) and is_a (this gives the type of tissue, from an organ system down to one of ~ 80 simple tissues predominantly composed of a single cell kind, which is also specified). Leaf tissues also have a develops_from link to its parent tissue. The ontology includes ~14 000 such facts, which are mainly from the literature and an earlier ontology of human developmental anatomy (EHDAA, now withdrawn). The relationships enable these facts to be integrated into a single, complex hierarchy (or mathematical graph) that was made and can be viewed in the OBO-Edit browser (oboedit.org). Each AE has an EHDAA2 ID that may be useful in an informatics context, while the ontology as a whole can be used for organizing databases of human development. It is also a knowledge resource: a user can trace the lineage of any tissue back to the egg, study the changes in cell phenotype that occur as a tissue develops, and use the structure to add further (e.g. molecular) information. The ontology may be downloaded from www.obofoundry.org. Queries and corrections should be sent to j.bard@ed.ac.uk. © 2012 The Author Journal of Anatomy © 2012 Anatomical Society.

  10. Molecular and cellular characteristics of hybrid vigour in a commercial hybrid of Chinese cabbage.

    PubMed

    Saeki, Natsumi; Kawanabe, Takahiro; Ying, Hua; Shimizu, Motoki; Kojima, Mikiko; Abe, Hiroshi; Okazaki, Keiichi; Kaji, Makoto; Taylor, Jennifer M; Sakakibara, Hitoshi; Peacock, W James; Dennis, Elizabeth S; Fujimoto, Ryo

    2016-02-17

    Heterosis or hybrid vigour is a phenomenon in which hybrid progeny exhibit superior performance compared to their parental inbred lines. Most commercial Chinese cabbage cultivars are F1 hybrids and their level of hybrid vigour is of critical importance and is a key selection criterion in the breeding system. We have characterized the heterotic phenotype of one F1 hybrid cultivar of Chinese cabbage and its parental lines from early- to late-developmental stages of the plants. Hybrid cotyledons are larger than those of the parents at 4 days after sowing and biomass in the hybrid, determined by the fresh weight of leaves, is greater than that of the larger parent line by approximately 20% at 14 days after sowing. The final yield of the hybrid harvested at 63 days after sowing is 25% greater than the yield of the better parent. The larger leaves of the hybrid are a consequence of increased cell size and number of the photosynthetic palisade mesophyll cells and other leaf cells. The accumulation of plant hormones in the F1 was within the range of the parental levels at both 2 and 10 days after sowing. Two days after sowing, the expression levels of chloroplast-targeted genes in the cotyledon cells were upregulated in the F1 hybrid relative to their mid parent values. Shutdown of chlorophyll biosynthesis in the cotyledon by norflurazon prevented the increased leaf area in the F1 hybrid. In the cotyledons of F1 hybrids, chloroplast-targeted genes were upregulated at 2 days after sowing. The increased activity levels of this group of genes suggested that their differential transcription levels could be important for establishing early heterosis but the increased transcription levels were transient. Inhibition of the photosynthetic process in the cotyledon reduced heterosis in later seedling stages. These observations suggest early developmental events in the germinating seedling of the hybrid may be important for later developmental vigour and yield advantage.

  11. Senescence Meets Dedifferentiation

    PubMed Central

    Givaty Rapp, Yemima; Ransbotyn, Vanessa; Grafi, Gideon

    2015-01-01

    Senescence represents the final stage of leaf development but is often induced prematurely following exposure to biotic and abiotic stresses. Leaf senescence is manifested by color change from green to yellow (due to chlorophyll degradation) or to red (due to de novo synthesis of anthocyanins coupled with chlorophyll degradation) and frequently culminates in programmed death of leaves. However, the breakdown of chlorophyll and macromolecules such as proteins and RNAs that occurs during leaf senescence does not necessarily represent a one-way road to death but rather a reversible process whereby senescing leaves can, under certain conditions, re-green and regain their photosynthetic capacity. This phenomenon essentially distinguishes senescence from programmed cell death, leading researchers to hypothesize that changes occurring during senescence might represent a process of trans-differentiation, that is the conversion of one cell type to another. In this review, we highlight attributes common to senescence and dedifferentiation including chromatin structure and activation of transposable elements and provide further support to the notion that senescence is not merely a deterioration process leading to death but rather a unique developmental state resembling dedifferentiation. PMID:27135333

  12. Stomatal Complex Development and F-Actin Organization in Maize Leaf Epidermis Depend on Cellulose Synthesis.

    PubMed

    Panteris, Emmanuel; Achlati, Theonymphi; Daras, Gerasimos; Rigas, Stamatis

    2018-06-06

    Cellulose microfibrils reinforce the cell wall for morphogenesis in plants. Herein, we provide evidence on a series of defects regarding stomatal complex development and F-actin organization in Zea mays leaf epidermis, due to inhibition of cellulose synthesis. Formative cell divisions of stomatal complex ontogenesis were delayed or inhibited, resulting in lack of subsidiary cells and frequently in unicellular stomata, with an atypical stomatal pore. Guard cells failed to acquire a dumbbell shape, becoming rounded, while subsidiary cells, whenever present, exhibited aberrant morphogenesis. F-actin organization was also affected, since the stomatal complex-specific arrays were scarcely observed. At late developmental stages, the overall F-actin network was diminished in all epidermal cells, although thick actin bundles persisted. Taken together, stomatal complex development strongly depends on cell wall mechanical properties. Moreover, F-actin organization exhibits a tight relationship with the cell wall.

  13. Temperature Thresholds and Thermal Requirements for the Development of the Rice Leaf Folder, Cnaphalocrocis medinalis

    PubMed Central

    Padmavathi, Chintalapati; Katti, Gururaj; Sailaja, V.; Padmakumari, A.P.; Jhansilakshmi, V.; Prabhakar, M.; Prasad, Y.G.

    2013-01-01

    The rice leaf folder, Cnaphalocrocis medinalis Guenée (Lepidoptera: Pyralidae) is a predominant foliage feeder in all the rice ecosystems. The objective of this study was to examine the development of leaf folder at 7 constant temperatures (18, 20, 25, 30, 32, 34, 35° C) and to estimate temperature thresholds and thermal constants for the forecasting models based on heat accumulation units, which could be developed for use in forecasting. The developmental periods of different stages of rice leaf folder were reduced with increases in temperature from 18 to 34° C. The lower threshold temperatures of 11.0, 10.4, 12.8, and 11.1° C, and thermal constants of 69, 270, 106, and 455 degree days, were estimated by linear regression analysis for egg, larva, pupa, and total development, respectively. Based on the thermodynamic non-linear optimSSI model, intrinsic optimum temperatures for the development of egg, larva, and pupa were estimated at 28.9, 25.1 and 23.7° C, respectively. The upper and lower threshold temperatures were estimated as 36.4° C and 11.2° C for total development, indicating that the enzyme was half active and half inactive at these temperatures. These estimated thermal thresholds and degree days could be used to predict the leaf folder activity in the field for their effective management. PMID:24205891

  14. Global transcriptome analysis of the maize (Zea mays L.) inbred line 08LF during leaf senescence initiated by pollination-prevention.

    PubMed

    Wu, Liancheng; Li, Mingna; Tian, Lei; Wang, Shunxi; Wu, Liuji; Ku, Lixia; Zhang, Jun; Song, Xiaoheng; Liu, Haiping; Chen, Yanhui

    2017-01-01

    In maize (Zea mays), leaf senescence acts as a nutrient recycling process involved in proteins, lipids, and nucleic acids degradation and transport to the developing sink. However, the molecular mechanisms of pre-maturation associated with pollination-prevention remain unclear in maize. To explore global gene expression changes during the onset and progression of senescence in maize, the inbred line 08LF, with severe early senescence caused by pollination prevention, was selected. Phenotypic observation showed that the onset of leaf senescence of 08LF plants occurred approximately 14 days after silking (DAS) by pollination prevention. Transcriptional profiling analysis of the leaf at six developmental stages during induced senescence revealed that a total of 5,432 differentially expressed genes (DEGs) were identified, including 2314 up-regulated genes and 1925 down-regulated genes. Functional annotation showed that the up-regulated genes were mainly enriched in multi-organism process and nitrogen compound transport, whereas down-regulated genes were involved in photosynthesis. Expression patterns and pathway enrichment analyses of early-senescence related genes indicated that these DEGs are involved in complex regulatory networks, especially in the jasmonic acid pathway. In addition, transcription factors from several families were detected, particularly the CO-like, NAC, ERF, GRAS, WRKY and ZF-HD families, suggesting that these transcription factors might play important roles in driving leaf senescence in maize as a result of pollination-prevention.

  15. [Leaf water potential of spring wheat and field pea under different tillage patterns and its relationships with environmental factors].

    PubMed

    Zhang, Ming; Zhang, Ren-Zhi; Cai, Li-Qun

    2008-07-01

    Based on a long-term experiment, the leaf water potential of spring wheat and field pea, its relationships with environmental factors, and the diurnal variations of leaf relative water content and water saturation deficient under different tillage patterns were studied. The results showed that during whole growth period, field pea had an obviously higher leaf water potential than spring wheat, but the two crops had similar diurnal variation trend of their leaf water potential, i.e., the highest in early morning, followed by a descent, and a gradual ascent after the descent. For spring wheat, the maximum leaf water potential appeared at its jointing and heading stages, followed by at booting and flowering stages, and the minimum appeared at filling stage. For field pea, the maximum leaf water potential achieved at squaring stage, followed by at branching and flowering stages, and the minimum was at podding stage. The leaf relative water content of spring wheat was the highest at heading stage, followed by at jointing and flowering stages, and achieved the minimum at filling stage; while the water saturation deficient was just in adverse. With the growth of field pea, its leaf relative water content decreased, but leaf water saturation deficient increased. The leaf water potential of both spring wheat and field pea had significant correlations with environmental factors, including soil water content, air temperature, solar radiation, relative air humidity, and air water potential. Path analysis showed that the meteorological factor which had the strongest effect on the diurnal variation of spring wheat' s and field pea' s leaf water potential was air water potential and air temperature, respectively. Compared with conventional tillage, the protective tillage patterns no-till, no-till plus straw mulching, and conventional tillage plus straw returning increased the leaf water potential and relative water content of test crops, and the effect of no-till plus straw mulching was most significant.

  16. [Morphological and cytohistological observations of seed germination and protocorm development of Bletilla striata].

    PubMed

    Nie, Ning; Zhu, Yan; Tian, Mei; Hua, Jing-Wen; Wang, Long; Qin, Min-Jian

    2016-04-01

    In order to investigate the mechanism of growth for Bletilla striata, which could be applied for rapid propagation, morphological and cytohistological of seed germination and protocorm development in vitro culture were observed using paraffin section techniques. In this study, we have found that the development of B. striata goes through four stages: embryo, protocorm, rhizome and pseudobulb. The end away from embryo suspensor is able to differentiate green buds after the seed of B. striata swelling, growing point. At the same time, the other end of embryo grows many white villous roots, with the green bud differentiating into cotyledon, the embryo breaking through seed coat and being protocorm. The shoot apical meristem of protocorm consists of tunica, corpus and leaf primordium, whose developmental flowing tunica-corpus theory. After more vascular bundle appeared from the leaf primordium, B. striata grows into the stage of rhizome. While in the stage of rhizome, the root primordium of tissue culture seedlings are differentia initially that derived from rhizome vascular bundle, belonging to internal origin. Subsequently, the pseudobulb forms by the inner meristem growing into mature parenchymatous tissue and the rhizome enlargement gradually. Copyright© by the Chinese Pharmaceutical Association.

  17. Latent developmental and evolutionary shapes embedded within the grapevine leaf

    USDA-ARS?s Scientific Manuscript database

    Across plants, leaves exhibit profound diversity in shape. As a single leaf expands, its shape is in constant flux. Plants may also produce leaves with different shapes at successive nodes. In addition, leaf shape varies among individuals, populations and species as a result of evolutionary processe...

  18. Do mitochondria play a role in remodelling lace plant leaves during programmed cell death?

    PubMed

    Lord, Christina E N; Wertman, Jaime N; Lane, Stephanie; Gunawardena, Arunika H L A N

    2011-06-06

    Programmed cell death (PCD) is the regulated death of cells within an organism. The lace plant (Aponogeton madagascariensis) produces perforations in its leaves through PCD. The leaves of the plant consist of a latticework of longitudinal and transverse veins enclosing areoles. PCD occurs in the cells at the center of these areoles and progresses outwards, stopping approximately five cells from the vasculature. The role of mitochondria during PCD has been recognized in animals; however, it has been less studied during PCD in plants. The following paper elucidates the role of mitochondrial dynamics during developmentally regulated PCD in vivo in A. madagascariensis. A single areole within a window stage leaf (PCD is occurring) was divided into three areas based on the progression of PCD; cells that will not undergo PCD (NPCD), cells in early stages of PCD (EPCD), and cells in late stages of PCD (LPCD). Window stage leaves were stained with the mitochondrial dye MitoTracker Red CMXRos and examined. Mitochondrial dynamics were delineated into four categories (M1-M4) based on characteristics including distribution, motility, and membrane potential (ΔΨm). A TUNEL assay showed fragmented nDNA in a gradient over these mitochondrial stages. Chloroplasts and transvacuolar strands were also examined using live cell imaging. The possible importance of mitochondrial permeability transition pore (PTP) formation during PCD was indirectly examined via in vivo cyclosporine A (CsA) treatment. This treatment resulted in lace plant leaves with a significantly lower number of perforations compared to controls, and that displayed mitochondrial dynamics similar to that of non-PCD cells. Results depicted mitochondrial dynamics in vivo as PCD progresses within the lace plant, and highlight the correlation of this organelle with other organelles during developmental PCD. To the best of our knowledge, this is the first report of mitochondria and chloroplasts moving on transvacuolar strands to form a ring structure surrounding the nucleus during developmental PCD. Also, for the first time, we have shown the feasibility for the use of CsA in a whole plant system. Overall, our findings implicate the mitochondria as playing a critical and early role in developmentally regulated PCD in the lace plant.

  19. Ethylene and Hormonal Cross Talk in Vegetative Growth and Development1

    PubMed Central

    Van de Poel, Bram; Smet, Dajo; Van Der Straeten, Dominique

    2015-01-01

    Ethylene is a gaseous plant hormone that most likely became a functional hormone during the evolution of charophyte green algae, prior to land colonization. From this ancient origin, ethylene evolved into an important growth regulator that is essential for myriad plant developmental processes. In vegetative growth, ethylene appears to have a dual role, stimulating and inhibiting growth, depending on the species, tissue, and cell type, developmental stage, hormonal status, and environmental conditions. Moreover, ethylene signaling and response are part of an intricate network in cross talk with internal and external cues. Besides being a crucial factor in the growth control of roots and shoots, ethylene can promote flowering, fruit ripening and abscission, as well as leaf and petal senescence and abscission and, hence, plays a role in virtually every phase of plant life. Last but not least, together with jasmonates, salicylate, and abscisic acid, ethylene is important in steering stress responses. PMID:26232489

  20. Genotype, development and tissue-derived variation of cell-wall properties in the lignocellulosic energy crop Miscanthus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    da Costa, Ricardo M. F.; Lee, Scott J.; Allison, Gordon G.

    Species and hybrids of the genus Miscanthus contain attributes that make them front-runners among current selections of dedicated bioenergy crops. A key trait for plant biomass conversion to biofuels and biomaterials is cell-wall quality; however, knowledge of cell-wall composition and biology in Miscanthus species is limited. This study presents data on cell-wall compositional changes as a function of development and tissue type across selected genotypes, and considers implications for the development of miscanthus as a sustainable and renewable bioenergy feedstock. Cell-wall biomass was analysed for 25 genotypes, considering different developmental stages and stem vs. leaf compositional variability, by Fourier transformmore » mid-infrared spectroscopy and lignin determination. In addition, a Clostridium phytofermentans bioassay was used to assess cell-wall digestibility and conversion to ethanol. Important cell-wall compositional differences between miscanthus stem and leaf samples were found to be predominantly associated with structural carbohydrates. Lignin content increased as plants matured and was higher in stem tissues. Although stem lignin concentration correlated inversely with ethanol production, no such correlation was observed for leaves. Leaf tissue contributed significantly to total above-ground biomass at all stages, although the extent of this contribution was genotype-dependent. In conclusion, it is hypothesized that divergent carbohydrate compositions and modifications in stem and leaf tissues are major determinants for observed differences in cell-wall quality. The findings indicate that improvement of lignocellulosic feedstocks should encompass tissue-dependent variation as it affects amenability to biological conversion. For gene-trait associations relating to cell-wall quality, the data support the separate examination of leaf and stem composition, as tissue-specific traits may be masked by considering only total above-ground biomass samples, and sample variability could be mostly due to varying tissue contributions to total biomass.« less

  1. Genotype, development and tissue-derived variation of cell-wall properties in the lignocellulosic energy crop Miscanthus

    DOE PAGES

    da Costa, Ricardo M. F.; Lee, Scott J.; Allison, Gordon G.; ...

    2014-04-15

    Species and hybrids of the genus Miscanthus contain attributes that make them front-runners among current selections of dedicated bioenergy crops. A key trait for plant biomass conversion to biofuels and biomaterials is cell-wall quality; however, knowledge of cell-wall composition and biology in Miscanthus species is limited. This study presents data on cell-wall compositional changes as a function of development and tissue type across selected genotypes, and considers implications for the development of miscanthus as a sustainable and renewable bioenergy feedstock. Cell-wall biomass was analysed for 25 genotypes, considering different developmental stages and stem vs. leaf compositional variability, by Fourier transformmore » mid-infrared spectroscopy and lignin determination. In addition, a Clostridium phytofermentans bioassay was used to assess cell-wall digestibility and conversion to ethanol. Important cell-wall compositional differences between miscanthus stem and leaf samples were found to be predominantly associated with structural carbohydrates. Lignin content increased as plants matured and was higher in stem tissues. Although stem lignin concentration correlated inversely with ethanol production, no such correlation was observed for leaves. Leaf tissue contributed significantly to total above-ground biomass at all stages, although the extent of this contribution was genotype-dependent. In conclusion, it is hypothesized that divergent carbohydrate compositions and modifications in stem and leaf tissues are major determinants for observed differences in cell-wall quality. The findings indicate that improvement of lignocellulosic feedstocks should encompass tissue-dependent variation as it affects amenability to biological conversion. For gene-trait associations relating to cell-wall quality, the data support the separate examination of leaf and stem composition, as tissue-specific traits may be masked by considering only total above-ground biomass samples, and sample variability could be mostly due to varying tissue contributions to total biomass.« less

  2. Genotype, development and tissue-derived variation of cell-wall properties in the lignocellulosic energy crop Miscanthus.

    PubMed

    da Costa, Ricardo M F; Lee, Scott J; Allison, Gordon G; Hazen, Samuel P; Winters, Ana; Bosch, Maurice

    2014-10-01

    Species and hybrids of the genus Miscanthus contain attributes that make them front-runners among current selections of dedicated bioenergy crops. A key trait for plant biomass conversion to biofuels and biomaterials is cell-wall quality; however, knowledge of cell-wall composition and biology in Miscanthus species is limited. This study presents data on cell-wall compositional changes as a function of development and tissue type across selected genotypes, and considers implications for the development of miscanthus as a sustainable and renewable bioenergy feedstock. Cell-wall biomass was analysed for 25 genotypes, considering different developmental stages and stem vs. leaf compositional variability, by Fourier transform mid-infrared spectroscopy and lignin determination. In addition, a Clostridium phytofermentans bioassay was used to assess cell-wall digestibility and conversion to ethanol. Important cell-wall compositional differences between miscanthus stem and leaf samples were found to be predominantly associated with structural carbohydrates. Lignin content increased as plants matured and was higher in stem tissues. Although stem lignin concentration correlated inversely with ethanol production, no such correlation was observed for leaves. Leaf tissue contributed significantly to total above-ground biomass at all stages, although the extent of this contribution was genotype-dependent. It is hypothesized that divergent carbohydrate compositions and modifications in stem and leaf tissues are major determinants for observed differences in cell-wall quality. The findings indicate that improvement of lignocellulosic feedstocks should encompass tissue-dependent variation as it affects amenability to biological conversion. For gene-trait associations relating to cell-wall quality, the data support the separate examination of leaf and stem composition, as tissue-specific traits may be masked by considering only total above-ground biomass samples, and sample variability could be mostly due to varying tissue contributions to total biomass. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company.

  3. Inter- and intraspecific variation in leaf economic traits in wheat and maize

    PubMed Central

    Hale, Christine E; Cerabolini, Bruno E L; Cornelissen, Johannes H C; Craine, Joseph; Gough, William A; Kattge, Jens; Tirona, Cairan K F

    2018-01-01

    Abstract Leaf Economics Spectrum (LES) trait variation underpins multiple agroecological processes and many prominent crop yield models. While there are numerous independent studies assessing trait variation in crops, to date there have been no comprehensive assessments of intraspecific trait variation (ITV) in LES traits for wheat and maize: the world’s most widespread crops. Using trait databases and peer-reviewed literature, we compiled over 700 records of specific leaf area (SLA), maximum photosynthetic rates (Amax) and leaf nitrogen (N) concentrations, for wheat and maize. We evaluated intraspecific LES trait variation, and intraspecific trait–environment relationships. While wheat and maize occupy the upper 90th percentile of LES trait values observed across a global species pool, ITV ranged widely across the LES in wheat and maize. Fertilization treatments had strong impacts on leaf N, while plant developmental stage (here standardized as the number of days since planting) had strong impacts on Amax; days since planting, N fertilization and irrigation all influenced SLA. When controlling for these factors, intraspecific responses to temperature and precipitation explained 39.4 and 43.7 % of the variation in Amax and SLA, respectively, but only 5.4 % of the variation in leaf N. Despite a long history of domestication in these species, ITV in wheat and maize among and within cultivars remains large. Intraspecific trait variation is a critical consideration to refine regional to global models of agroecosystem structure, function and food security. Considerable opportunities and benefits exist for consolidating a crop trait database for a wider range of domesticated plant species. PMID:29484152

  4. Inter- and intraspecific variation in leaf economic traits in wheat and maize.

    PubMed

    Martin, Adam R; Hale, Christine E; Cerabolini, Bruno E L; Cornelissen, Johannes H C; Craine, Joseph; Gough, William A; Kattge, Jens; Tirona, Cairan K F

    2018-02-01

    Leaf Economics Spectrum (LES) trait variation underpins multiple agroecological processes and many prominent crop yield models. While there are numerous independent studies assessing trait variation in crops, to date there have been no comprehensive assessments of intraspecific trait variation (ITV) in LES traits for wheat and maize: the world's most widespread crops. Using trait databases and peer-reviewed literature, we compiled over 700 records of specific leaf area (SLA), maximum photosynthetic rates ( A max ) and leaf nitrogen (N) concentrations, for wheat and maize. We evaluated intraspecific LES trait variation, and intraspecific trait-environment relationships. While wheat and maize occupy the upper 90th percentile of LES trait values observed across a global species pool, ITV ranged widely across the LES in wheat and maize. Fertilization treatments had strong impacts on leaf N, while plant developmental stage (here standardized as the number of days since planting) had strong impacts on A max ; days since planting, N fertilization and irrigation all influenced SLA. When controlling for these factors, intraspecific responses to temperature and precipitation explained 39.4 and 43.7 % of the variation in A max and SLA, respectively, but only 5.4 % of the variation in leaf N. Despite a long history of domestication in these species, ITV in wheat and maize among and within cultivars remains large. Intraspecific trait variation is a critical consideration to refine regional to global models of agroecosystem structure, function and food security. Considerable opportunities and benefits exist for consolidating a crop trait database for a wider range of domesticated plant species.

  5. The effect of lunisolar tidal acceleration on stem elongation growth, nutations and leaf movements in peppermint (Mentha × piperita L.).

    PubMed

    Zajączkowska, U; Barlow, P W

    2017-07-01

    Orbital movement of the Moon generates a system of gravitational fields that periodically alter the gravitational force on Earth. This lunar tidal acceleration (Etide) is known to act as an external environmental factor affecting many growth and developmental phenomena in plants. Our study focused on the lunar tidal influence on stem elongation growth, nutations and leaf movements of peppermint. Plants were continuously recorded with time-lapse photography under constant illumination as well in constant illumination following 5 days of alternating dark-light cycles. Time courses of shoot movements were correlated with contemporaneous time courses of the Etide estimates. Optical microscopy and SEM were used in anatomical studies. All plant shoot movements were synchronised with changes in the lunisolar acceleration. Using a periodogram, wavelet analysis and local correlation index, a convergence was found between the rhythms of lunisolar acceleration and the rhythms of shoot growth. Also observed were cyclical changes in the direction of rotation of stem apices when gravitational dynamics were at their greatest. After contrasting dark-light cycle experiments, nutational rhythms converged to an identical phase relationship with the Etide and almost immediately their renewed movements commenced. Amplitudes of leaf movements decreased during leaf growth up to the stage when the leaf was fully developed; the periodicity of leaf movements correlated with the Etide rhythms. For the fist time, it was documented that lunisolar acceleration is an independent rhythmic environmental signal capable of influencing the dynamics of plant stem elongation. This phenomenon is synchronised with the known effects of Etide on nutations and leaf movements. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  6. Growth platform-dependent and -independent phenotypic and metabolic responses of Arabidopsis and its halophytic relative, Eutrema salsugineum, to salt stress.

    PubMed

    Kazachkova, Yana; Batushansky, Albert; Cisneros, Aroldo; Tel-Zur, Noemi; Fait, Aaron; Barak, Simon

    2013-07-01

    Comparative studies of the stress-tolerant Arabidopsis (Arabidopsis thaliana) halophytic relative, Eutrema salsugineum, have proven a fruitful approach to understanding natural stress tolerance. Here, we performed comparative phenotyping of Arabidopsis and E. salsugineum vegetative development under control and salt-stress conditions, and then compared the metabolic responses of the two species on different growth platforms in a defined leaf developmental stage. Our results reveal both growth platform-dependent and -independent phenotypes and metabolic responses. Leaf emergence was affected in a similar way in both species grown in vitro but the effects observed in Arabidopsis occurred at higher salt concentrations in E. salsugineum. No differences in leaf emergence were observed on soil. A new effect of a salt-mediated reduction in E. salsugineum leaf area was unmasked. On soil, leaf area reduction in E. salsugineum was mainly due to a fall in cell number, whereas both cell number and cell size contributed to the decrease in Arabidopsis leaf area. Common growth platform-independent leaf metabolic signatures such as high raffinose and malate, and low fumarate contents that could reflect core stress tolerance mechanisms, as well as growth platform-dependent metabolic responses were identified. In particular, the in vitro growth platform led to repression of accumulation of many metabolites including sugars, sugar phosphates, and amino acids in E. salsugineum compared with the soil system where these same metabolites accumulated to higher levels in E. salsugineum than in Arabidopsis. The observation that E. salsugineum maintains salt tolerance despite growth platform-specific phenotypes and metabolic responses suggests a considerable degree of phenotypic and metabolic adaptive plasticity in this extremophile.

  7. Caffeine biosynthesis and degradation in tea [Camellia sinensis (L.) O. Kuntze] is under developmental and seasonal regulation.

    PubMed

    Mohanpuria, Prashant; Kumar, Vinay; Joshi, Robin; Gulati, Ashu; Ahuja, Paramvir Singh; Yadav, Sudesh Kumar

    2009-10-01

    To study caffeine biosynthesis and degradation, here we monitored caffeine synthase gene expression and caffeine and allantoin content in various tissues of four Camellia sinensis (L.) O. Kuntze cultivars during non-dormant (ND) and dormant (D) growth phases. Caffeine synthase expression as well as caffeine content was found to be higher in commercially utilized tissues like apical bud, 1st leaf, 2nd leaf, young stem, and was lower in old leaf during ND compared to D growth phase. Among fruit parts, fruit coats have higher caffeine synthase expression, caffeine content, and allantoin content. On contrary, allantoin content was found lower in the commercially utilized tissues and higher in old leaf. Results suggested that caffeine synthesis and degradation in tea appears to be under developmental and seasonal regulation.

  8. Comparative ultrastructure of fruit plastids in three genetically diverse genotypes of apple (Malus × domestica Borkh.) during development

    PubMed Central

    Schaeffer, Scott M.; Christian, Ryan; Castro-Velasquez, Nohely; Hyden, Brennan; Lynch-Holm, Valerie

    2017-01-01

    Plastids are the defining organelle for a plant cell and are critical for myriad metabolic functions. The role of leaf plastid, chloroplast, is extensively documented; however, fruit plastids—chromoplasts—are poorly understood, especially in the context of the diverse metabolic processes operating in these diverse plant organs. Recently, in a comparative study of the predicted plastid-targeted proteomes across seven plant species, we reported that each plant species is predicted to harbor a unique set of plastid-targeted proteins. However, the temporal and developmental context of these processes remains unknown. In this study, an ultrastructural analysis approach was used to characterize fruit plastids in the epidermal and collenchymal cell layers at 11 developmental timepoints in three genotypes of apple (Malus × domestica Borkh.): chlorophyll-predominant ‘Granny Smith’, carotenoid-predominant ‘Golden Delicious’, and anthocyanin-predominant ‘Top Red Delicious’. Plastids transitioned from a proplastid-like plastid to a chromoplast-like plastid in epidermis cells, while in the collenchyma cells, they transitioned from a chloroplast-like plastid to a chloro-chromo-amyloplast plastid. Plastids in the collenchyma cells of the three genotypes demonstrated a diverse array of structures and features. This study enabled the identification of discrete developmental stages during which specific functions are most likely being performed by the plastids as indicated by accumulation of plastoglobuli, starch granules, and other sub-organeller structures. Information regarding the metabolically active developmental stages is expected to facilitate biologically relevant omics studies to unravel the complex biochemistry of plastids in perennial non-model systems. PMID:28698906

  9. Global transcriptome analysis of the maize (Zea mays L.) inbred line 08LF during leaf senescence initiated by pollination-prevention

    PubMed Central

    Wang, Shunxi; Wu, Liuji; Ku, Lixia; Zhang, Jun; Song, Xiaoheng; Liu, Haiping

    2017-01-01

    In maize (Zea mays), leaf senescence acts as a nutrient recycling process involved in proteins, lipids, and nucleic acids degradation and transport to the developing sink. However, the molecular mechanisms of pre-maturation associated with pollination-prevention remain unclear in maize. To explore global gene expression changes during the onset and progression of senescence in maize, the inbred line 08LF, with severe early senescence caused by pollination prevention, was selected. Phenotypic observation showed that the onset of leaf senescence of 08LF plants occurred approximately 14 days after silking (DAS) by pollination prevention. Transcriptional profiling analysis of the leaf at six developmental stages during induced senescence revealed that a total of 5,432 differentially expressed genes (DEGs) were identified, including 2314 up-regulated genes and 1925 down-regulated genes. Functional annotation showed that the up-regulated genes were mainly enriched in multi-organism process and nitrogen compound transport, whereas down-regulated genes were involved in photosynthesis. Expression patterns and pathway enrichment analyses of early-senescence related genes indicated that these DEGs are involved in complex regulatory networks, especially in the jasmonic acid pathway. In addition, transcription factors from several families were detected, particularly the CO-like, NAC, ERF, GRAS, WRKY and ZF-HD families, suggesting that these transcription factors might play important roles in driving leaf senescence in maize as a result of pollination-prevention. PMID:28973044

  10. An m6A-YTH Module Controls Developmental Timing and Morphogenesis in Arabidopsis.

    PubMed

    Arribas-Hernández, Laura; Bressendorff, Simon; Hansen, Mathias Henning; Poulsen, Christian; Erdmann, Susanne; Brodersen, Peter

    2018-04-11

    Methylation of N6-adenosine (m6A) in mRNA is an important post-transcriptional gene regulatory mechanism in eukaryotes. m6A provides a binding site for effector proteins ("readers") that influence pre-mRNA splicing, mRNA degradation or translational efficiency. YT521-B homology (YTH) domain proteins are important m6A readers with established functions in animals. Plants contain more YTH domain proteins than other eukaryotes, but their biological importance remains unknown. Here, we show that the cytoplasmic Arabidopsis thaliana YTH domain proteins EVOLUTIONARILY CONSERVED C-TERMINAL REGION2/3 (ECT2/3) are required for the correct timing of leaf formation and for normal leaf morphology. These functions depend fully on intact m6A binding sites of ECT2 and ECT3, indicating that they function as m6A readers. Mutation of the close ECT2 homolog, ECT4, enhances the delayed leaf emergence and leaf morphology defects of ect2/ect3 mutants, and all three ECT proteins are expressed at leaf formation sites in the shoot apex of young seedlings and in the division zone of developing leaves. ECT2 and ECT3 are also highly expressed at early stages of trichome development and are required for trichome morphology, as previously reported for m6A itself. Overall, our study establishes the relevance of a cytoplasmic m6A-YTH regulatory module in the timing and execution of plant organogenesis. © 2018 American Society of Plant Biologists. All rights reserved.

  11. Control of leaf expansion: a developmental switch from metabolics to hydraulics.

    PubMed

    Pantin, Florent; Simonneau, Thierry; Rolland, Gaëlle; Dauzat, Myriam; Muller, Bertrand

    2011-06-01

    Leaf expansion is the central process by which plants colonize space, allowing energy capture and carbon acquisition. Water and carbon emerge as main limiting factors of leaf expansion, but the literature remains controversial about their respective contributions. Here, we tested the hypothesis that the importance of hydraulics and metabolics is organized according to both dark/light fluctuations and leaf ontogeny. For this purpose, we established the developmental pattern of individual leaf expansion during days and nights in the model plant Arabidopsis (Arabidopsis thaliana). Under control conditions, decreases in leaf expansion were observed at night immediately after emergence, when starch reserves were lowest. These nocturnal decreases were strongly exaggerated in a set of starch mutants, consistent with an early carbon limitation. However, low-light treatment of wild-type plants had no influence on these early decreases, implying that expansion can be uncoupled from changes in carbon availability. From 4 d after leaf emergence onward, decreases of leaf expansion were observed in the daytime. Using mutants impaired in stomatal control of transpiration as well as plants grown under soil water deficit or high air humidity, we gathered evidence that these diurnal decreases were the signature of a hydraulic limitation that gradually set up as the leaf developed. Changes in leaf turgor were consistent with this pattern. It is concluded that during the course of leaf ontogeny, the predominant control of leaf expansion switches from metabolics to hydraulics. We suggest that the leaf is better armed to buffer variations in the former than in the latter.

  12. Control of Leaf Expansion: A Developmental Switch from Metabolics to Hydraulics1[W][OA

    PubMed Central

    Pantin, Florent; Simonneau, Thierry; Rolland, Gaëlle; Dauzat, Myriam; Muller, Bertrand

    2011-01-01

    Leaf expansion is the central process by which plants colonize space, allowing energy capture and carbon acquisition. Water and carbon emerge as main limiting factors of leaf expansion, but the literature remains controversial about their respective contributions. Here, we tested the hypothesis that the importance of hydraulics and metabolics is organized according to both dark/light fluctuations and leaf ontogeny. For this purpose, we established the developmental pattern of individual leaf expansion during days and nights in the model plant Arabidopsis (Arabidopsis thaliana). Under control conditions, decreases in leaf expansion were observed at night immediately after emergence, when starch reserves were lowest. These nocturnal decreases were strongly exaggerated in a set of starch mutants, consistent with an early carbon limitation. However, low-light treatment of wild-type plants had no influence on these early decreases, implying that expansion can be uncoupled from changes in carbon availability. From 4 d after leaf emergence onward, decreases of leaf expansion were observed in the daytime. Using mutants impaired in stomatal control of transpiration as well as plants grown under soil water deficit or high air humidity, we gathered evidence that these diurnal decreases were the signature of a hydraulic limitation that gradually set up as the leaf developed. Changes in leaf turgor were consistent with this pattern. It is concluded that during the course of leaf ontogeny, the predominant control of leaf expansion switches from metabolics to hydraulics. We suggest that the leaf is better armed to buffer variations in the former than in the latter. PMID:21474437

  13. On the evolution of developmental mechanisms: Divergent polarities in leaf growth as a case study.

    PubMed

    Gupta, Mainak Das; Nath, Utpal

    2016-01-01

    Most model plants used to study leaf growth share a common developmental mechanism, namely basipetal growth polarity, wherein the distal end differentiates first with progressively more proliferative cells toward the base. Therefore, this base-to-tip growth pattern has served as a paradigm to explain leaf growth and also formed the basis for several computational models. However, our recent report in The Plant Cell on the investigation of leaf growth in 75 eudicot species covering a wide range of eudicot families showed that leaves grow with divergent polarities in the proximo-distal axis or without any obvious polarity. This divergence in growth polarity is linked to the expression divergence of a conserved microRNA-transcription factor module. This study raises several questions on the evolutionary origin of leaf growth pattern, such as 'when and why in evolution did the divergent growth polarities arise?' and 'what were the molecular changes that led to this divergence?'. Here, we discuss a few of these questions in some detail.

  14. Chemical reaction rates of ozone in water infusions of wheat, beech, oak and pine leaves of different ages

    NASA Astrophysics Data System (ADS)

    Potier, Elise; Loubet, Benjamin; Durand, Brigitte; Flura, Dominique; Bourdat-Deschamps, Marjolaine; Ciuraru, Raluca; Ogée, Jérôme

    2017-02-01

    In this study we present results from a laboratory experiment designed to evaluate the first-order chemical reaction rate (k) of ozone in water films on plant leaves occurring during dew or rain events. Ozone deposition to wet cuticles is indeed known to be a significant pathway of ozone deposition, but the underlying processes are not yet well understood. Leaf infusions obtained by infusing plant leaves with water at room temperature were introduced into a wet effluent denuder fed with a flux of ozone-rich air. Ozone, water vapour concentrations and temperature were measured in both inlet and outlet airflows in order to compute ozone reaction rates kr using an ozone reaction-diffusion model in the water film. Ascorbate solutions were used to validate the set up and led to kr = 3.6 107 M-1 s-1 consistent with the literature. Ozone reaction rates were determined for wheat, beech, oak and pine leaves infusions at several developmental stages, as well as for rain samples. Leaf infusions reaction rates were between 240 s-1 and 3.4 105 s-1 depending on species and developmental stage, while k for rain water ranged from 130 to 830 s-1. Wheat leaves solutions showed significantly (P < 0.001) higher kr (median 73800 s-1) compared to the other tree species (median 4560 s-1). Senescing or dead leaves also showed significantly (P < 0.001) larger k (median 21100 s-1) compared to non-senescent leaves (median 3200 s-1). In wheat, k also increased with increasing yellow leaf fraction. Our results are in the range of previously reported ozone deposition on wet leaves in field or chamber studies. Composition of leaves infusions and previous studies on throughfall and dew composition shows that reaction of ozone with inorganic compounds may only explain the smallest measured k. The largest k observed during senescent are most likely due to reaction with organic material. This is confirmed by LC-MS measurements which showed detection of ascorbate and VOCs as well as the reaction products of ozone with these compounds.

  15. [Characterization of the damage of Spodoptera eridania (Cramer) and Spodoptera cosmioides (Walker) (Lepidoptera: Noctuidae) to structures of cotton plants].

    PubMed

    Santos, Karen B Dos; Meneguim, Ana M; Santos, Walter J Dos; Neves, Pedro M O J; Santos, Rachel B Dos

    2010-01-01

    The cotton plant, Gossypium hirsutum, hosts various pests that damage different structures. Among these pests, Spodoptera cosmioides (Walker) and Spodoptera eridania (Cramer) (Lepidoptera: Noctuidae) are considered important. The objectives of this study were to characterize and to quantify the potential damage of S. eridania and S. cosmioides feeding on different structures of cotton plants. For this purpose, newly-hatched larvae were reared on the following plant parts: leaf and flower bud; leaf and boll; flower bud or boll; and leaf, flower bud and boll. The survival of S. cosmioides and S. eridania was greater than 80% and 70% for larvae fed on cotton plant parts offered separately or together, respectively. One larva of S. eridania damaged 1.7 flower buds, but did not damage bolls, while one larva of S. cosmioides damaged 5.2 flower buds and 3.0 cotton bolls. Spodoptera eridania and S. cosmioides can be considered species with potential to cause economic damage to cotton plants because they can occur throughout cotton developmental stages causing defoliation and losses of reproductive structures. Therefore, the results validate field observations that these two species of Spodoptera are potential pests for cotton.

  16. Remote Sensing of Vegetation Nitrogen Content for Spatially Explicit Carbon and Water Cycle Estimation

    NASA Astrophysics Data System (ADS)

    Zhang, Y. L.; Miller, J. R.; Chen, J. M.

    2009-05-01

    Foliage nitrogen concentration is a determinant of photosynthetic capacity of leaves, thereby an important input to ecological models for estimating terrestrial carbon and water budgets. Recently, spectrally continuous airborne hyperspectral remote sensing imagery has proven to be useful for retrieving an important related parameter, total chlorophyll content at both leaf and canopy scales. Thus remote sensing of vegetation biochemical parameters has promising potential for improving the prediction of global carbon and water balance patterns. In this research, we explored the feasibility of estimating leaf nitrogen content using hyperspectral remote sensing data for spatially explicit estimation of carbon and water budgets. Multi-year measurements of leaf biochemical contents of seven major boreal forest species were carried out in northeastern Ontario, Canada. The variation of leaf chlorophyll and nitrogen content in response to various growth conditions, and the relationship between them,were investigated. Despite differences in plant type (deciduous and evergreen), leaf age, stand growth conditions and developmental stages, leaf nitrogen content was strongly correlated with leaf chlorophyll content on a mass basis during the active growing season (r2=0.78). With this general correlation, leaf nitrogen content was estimated from leaf chlorophyll content at an accuracy of RMSE=2.2 mg/g, equivalent to 20.5% of the average measured leaf nitrogen content. Based on this correlation and a hyperspectral remote sensing algorithm for leaf chlorophyll content retrieval, the spatial variation of leaf nitrogen content was inferred from the airborne hyperspectral remote sensing imagery acquired by Compact Airborne Spectrographic Imager (CASI). A process-based ecological model Boreal Ecosystem Productivity Simulator (BEPS) was used for estimating terrestrial carbon and water budgets. In contrast to the scenario with leaf nitrogen content assigned as a constant value without differentiation between and within vegetation types for calculating the photosynthesis rate, we incorporated the spatial distribution of leaf nitrogen content in the model to estimate net primary productivity and evaportranspiration of boreal ecosystem. These regional estimates of carbon and water budgets with and without N mapping are compared, and the importance of this leaf biochemistry information derived from hyperspectral remote sensing in regional mapping of carbon and water fluxes is quantitatively assessed. Keywords: Remote Sensing, Leaf Nitrogen Content, Spatial Distribution, Carbon and Water Budgets, Estimation

  17. Refining the application of direct embryogenesis in sugarcane: Effect of the developmental phase of leaf disc explants and the timing of DNA transfer on transformation efficiency.

    PubMed

    Snyman, S J; Meyer, G M; Richards, J M; Haricharan, N; Ramgareeb, S; Huckett, B I

    2006-10-01

    A rapid in vitro protocol using direct somatic embryogenesis and microprojectile bombardment was investigated to establish the developmental phases most suitable for efficient sugarcane transformation. Immature leaf roll disc explants with and without pre-emergent inflorescence tissue were compared. It was shown that for effective transformation to occur, explants should be cultured for several days to allow initiation of embryo development prior to bombardment. Leaf roll discs with pre-emergent inflorescences showed a higher degree of embryogenic competence than non-flowering explants, and transformation efficiency was higher when explants containing floral initials were bombarded. Despite the occurrence of high numbers of phenotypically negative plants, combining the use of inflorescent leaf roll discs with direct embryogenic regeneration has the potential to improve the speed and efficiency of transgenesis in sugarcane.

  18. Internal Water Balance of Barley Under Soil Moisture Stress 1

    PubMed Central

    Millar, Agustin A.; Duysen, Murray E.; Wilkinson, Guy E.

    1968-01-01

    Leaf water potential, leaf relative water content, and relative transpiration of barley were determined daily under greenhouse conditions at 3 growth stages: tillering to boot, boot to heading, and heading to maturity. The leaf moisture characteristic curve (relative water content versus leaf water potential) was the same for leaves of the same age growing in the same environment for the first 2 stages of growth, but shifted at the heading to maturity stage to higher leaf relative water content for a given leaf water potential. Growth chamber experiments showed that the leaf moisture characteristic curve was not the same for plants growing in different environments. Relative transpiration data indicated that barley stomates closed at a water potential of about −22 bars at the 3 stages studied. The water potential was measured for all the leaves on barley to determine the variation of water potential with leaf position. Leaf water potential increased basipetally with plant leaf position. In soil with a moisture content near field capacity a difference of about 16.5 bars was observed between the top and bottom leaves on the same plant, while in soil with a moisture content near the permanent wilting point the difference was only 5.6 bars between the same leaf positions. PMID:16656869

  19. Solanum tuberosum and Lycopersicon esculentum Leaf Extracts and Single Metabolites Affect Development and Reproduction of Drosophila melanogaster.

    PubMed

    Ventrella, Emanuela; Adamski, Zbigniew; Chudzińska, Ewa; Miądowicz-Kobielska, Mariola; Marciniak, Paweł; Büyükgüzel, Ender; Büyükgüzel, Kemal; Erdem, Meltem; Falabella, Patrizia; Scrano, Laura; Bufo, Sabino Aurelio

    2016-01-01

    Glycoalkaloids are secondary metabolites commonly found in Solanaceae plants. They have anti-bacterial, anti-fungal and insecticidal activities. In the present study we examine the effects of potato and tomato leaf extracts and their main components, the glycoalkaloids α-solanine, α-chaconine and α-tomatine, on development and reproduction of Drosophila melanogaster wild-type flies at different stages. Parental generation was exposed to five different concentrations of tested substances. The effects were examined also on the next, non-exposed generation. In the first (exposed) generation, addition of each extract reduced the number of organisms reaching the pupal and imaginal stages. Parent insects exposed to extracts and metabolites individually applied showed faster development. However, the effect was weaker in case of single metabolites than in case of exposure to extracts. An increase of developmental rate was also observed in the next, non-exposed generation. The imagoes of both generations exposed to extracts and pure metabolites showed some anomalies in body size and malformations, such as deformed wings and abdomens, smaller black abdominal zone. Our results further support the current idea that Solanaceae can be an impressive source of molecules, which could efficaciously be used in crop protection, as natural extract or in formulation of single pure metabolites in sustainable agriculture.

  20. Construction and Maintenance of the Optimal Photosynthetic Systems of the Leaf, Herbaceous Plant and Tree: an Eco-developmental Treatise

    PubMed Central

    TERASHIMA, ICHIRO; ARAYA, TAKAO; MIYAZAWA, SHIN-ICHI; SONE, KOSEI; YANO, SATOSHI

    2004-01-01

    • Background and Aims The paper by Monsi and Saeki in 1953 (Japanese Journal of Botany 14: 22–52) was pioneering not only in mathematical modelling of canopy photosynthesis but also in eco-developmental studies of seasonal changes in leaf canopies. • Scope Construction and maintenance mechanisms of efficient photosynthetic systems at three different scaling levels—single leaves, herbaceous plants and trees—are reviewed mainly based on the nitrogen optimization theory. First, the nitrogen optimization theory with respect to the canopy and the single leaf is briefly introduced. Secondly, significance of leaf thickness in CO2 diffusion in the leaf and in leaf photosynthesis is discussed. Thirdly, mechanisms of adjustment of photosynthetic properties of the leaf within the herbaceous plant individual throughout its life are discussed. In particular, roles of sugar sensing, redox control and of cytokinin are highlighted. Finally, the development of a tree is considered. • Conclusions Various mechanisms contribute to construction and maintenance of efficient photosynthetic systems. Molecular backgrounds of these ecologically important mechanisms should be clarified. The construction mechanisms of the tree cannot be explained solely by the nitrogen optimization theory. It is proposed that the pipe model theory in its differential form could be a potential tool in future studies in this research area. PMID:15598701

  1. Hyper-activation of the TCP4 transcription factor in Arabidopsis thaliana accelerates multiple aspects of plant maturation.

    PubMed

    Sarvepalli, Kavitha; Nath, Utpal

    2011-08-01

    Plant organs are initiated as primordial outgrowths, and require controlled cell division and differentiation to achieve their final size and shape. Superimposed on this is another developmental program that orchestrates the switch from vegetative to reproductive to senescence stages in the life cycle. These require sequential function of heterochronic regulators. Little is known regarding the coordination between organ and organismal growth in plants. The TCP gene family encodes transcription factors that control diverse developmental traits, and a subgroup of class II TCP genes regulate leaf morphogenesis. Absence of these genes results in large, crinkly leaves due to excess division, mainly at margins. It has been suggested that these class II TCPs modulate the spatio-temporal control of differentiation in a growing leaf, rather than regulating cell proliferation per se. However, the link between class II TCP action and cell growth has not been established. As loss-of-function mutants of individual TCP genes in Arabidopsis are not very informative due to gene redundancy, we generated a transgenic line that expressed a hyper-activated form of TCP4 in its endogenous expression domain. This resulted in premature onset of maturation and decreased cell proliferation, leading to much smaller leaves, with cup-shaped lamina in extreme cases. Further, the transgenic line initiated leaves faster than wild-type and underwent precocious reproductive maturation due to a shortened adult vegetative phase. Early senescence and severe fertility defects were also observed. Thus, hyper-activation of TCP4 revealed its role in determining the timing of crucial developmental events, both at the organ and organism level. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  2. Physiological responses of spring rapeseed (Brassica napus) to red/far-red ratios and irradiance during pre- and post-flowering stages.

    PubMed

    Rondanini, Deborah P; del Pilar Vilariño, Maria; Roberts, Marcos E; Polosa, Marina A; Botto, Javier F

    2014-12-01

    Early shade signals promote the shade avoidance syndrome (SAS) which causes, among others, petiole and shoot elongation and upward leaf position. In spite of its relevance, these photomorphogenic responses have not been deeply studied in rapeseed (Brassica napus). In contrast to other crops like maize and wheat, rapeseed has a complex developmental phenotypic pattern as it evolves from an initial rosette to the main stem elongation and an indeterminate growth of floral raceme. In this work, we analyzed (1) morphological and physiological responses at individual level due to low red/far-red (R/FR) ratio during plant development, and (2) changes in biomass allocation, grain yield and composition at crop level in response to high R/FR ratio and low irradiance in two modern spring rapeseed genotypes. We carried out pot and field experiments modifying R/FR ratios and irradiance at vegetative or reproductive stages. In pot experiments, low R/FR ratio increased the petiole and lamina length, upward leaf position and also accelerated leaf senescence. Furthermore, low R/FR ratio reduced main floral raceme and increased floral branching with higher remobilization of soluble carbohydrates from the stems. In field experiments, low irradiance during post-flowering reduced grain yield, harvest index and grain oil content, and high R/FR ratio reaching the crop partially alleviated such effects. We conclude that photomorphogenic signals are integrated early during the vegetative growth, and irradiance has stronger effects than R/FR signals at rapeseed crop level. © 2014 Scandinavian Plant Physiology Society.

  3. The WRKY transcription factor family and senescence in switchgrass.

    PubMed

    Rinerson, Charles I; Scully, Erin D; Palmer, Nathan A; Donze-Reiner, Teresa; Rabara, Roel C; Tripathi, Prateek; Shen, Qingxi J; Sattler, Scott E; Rohila, Jai S; Sarath, Gautam; Rushton, Paul J

    2015-11-09

    Early aerial senescence in switchgrass (Panicum virgatum) can significantly limit biomass yields. WRKY transcription factors that can regulate senescence could be used to reprogram senescence and enhance biomass yields. All potential WRKY genes present in the version 1.0 of the switchgrass genome were identified and curated using manual and bioinformatic methods. Expression profiles of WRKY genes in switchgrass flag leaf RNA-Seq datasets were analyzed using clustering and network analyses tools to identify both WRKY and WRKY-associated gene co-expression networks during leaf development and senescence onset. We identified 240 switchgrass WRKY genes including members of the RW5 and RW6 families of resistance proteins. Weighted gene co-expression network analysis of the flag leaf transcriptomes across development readily separated clusters of co-expressed genes into thirteen modules. A visualization highlighted separation of modules associated with the early and senescence-onset phases of flag leaf growth. The senescence-associated module contained 3000 genes including 23 WRKYs. Putative promoter regions of senescence-associated WRKY genes contained several cis-element-like sequences suggestive of responsiveness to both senescence and stress signaling pathways. A phylogenetic comparison of senescence-associated WRKY genes from switchgrass flag leaf with senescence-associated WRKY genes from other plants revealed notable hotspots in Group I, IIb, and IIe of the phylogenetic tree. We have identified and named 240 WRKY genes in the switchgrass genome. Twenty three of these genes show elevated mRNA levels during the onset of flag leaf senescence. Eleven of the WRKY genes were found in hotspots of related senescence-associated genes from multiple species and thus represent promising targets for future switchgrass genetic improvement. Overall, individual WRKY gene expression profiles could be readily linked to developmental stages of flag leaves.

  4. Plant developmental responses to climate change.

    PubMed

    Gray, Sharon B; Brady, Siobhan M

    2016-11-01

    Climate change is multi-faceted, and includes changing concentrations of greenhouse gases in the atmosphere, rising temperatures, changes in precipitation patterns, and increasing frequency of extreme weather events. Here, we focus on the effects of rising atmospheric CO 2 concentrations, rising temperature, and drought stress and their interaction on plant developmental processes in leaves, roots, and in reproductive structures. While in some cases these responses are conserved across species, such as decreased root elongation, perturbation of root growth angle and reduced seed yield in response to drought, or an increase in root biomass in shallow soil in response to elevated CO 2 , most responses are variable within and between species and are dependent on developmental stage. These variable responses include species-specific thresholds that arrest development of reproductive structures, reduce root growth rate and the rate of leaf initiation and expansion in response to elevated temperature. Leaf developmental responses to elevated CO 2 vary by cell type and by species. Variability also exists between C 3 and C 4 species in response to elevated CO 2 , especially in terms of growth and seed yield stimulation. At the molecular level, significantly less is understood regarding conservation and variability in molecular mechanisms underlying these traits. Abscisic acid-mediated changes in cell wall expansion likely underlie reductions in growth rate in response to drought, and changes in known regulators of flowering time likely underlie altered reproductive transitions in response to elevated temperature and CO 2 . Genes that underlie most other organ or tissue-level responses have largely only been identified in a single species in response to a single stress and their level of conservation is unknown. We conclude that there is a need for further research regarding the molecular mechanisms of plant developmental responses to climate change factors in general, and that this lack of data is particularly prevalent in the case of interactive effects of multiple climate change factors. As future growing conditions will likely expose plants to multiple climate change factors simultaneously, with a sum negative influence on global agriculture, further research in this area is critical. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Life cycle, Ecological Characteristics, and Control of Trachys yanoi (Coleoptera: Buprestidae), an Important Pest of Zelkova serrata.

    PubMed

    Ohsawa, Masashi

    2017-03-24

    This study was conducted to elucidate the life cycle and the ecological characteristics of Trachys yanoi Y. Kurosawa, an important pest of Zelkova serrata (Thunb.) Makino. Life cycle, mortality rates in developmental stages, annual population dynamics, and early leaf abscission were investigated. Adults emerged from under the bark of Zelkova trees in April and fed on Zelkova leaves. Females laid 49 eggs on average, mainly in May and early June. Eggs hatched after 17 days, and the larvae fed inside the leaves. They developed through three instars. In July, leaves with the final stage of larvae were abscised. Four days after abscission, the larvae pupated. New adults eclosed from pupae seven days after pupation, and the adults emerged from abscised leaves after an additional two days. In total, 1650 adults emerged per 1 m² of forest floor, resulting in a major population increase. The newly emerged adults fed on the remaining Zelkova leaves, compounding the damage. In October, adults overwintered under the tree bark. Mortality rates in the egg, larval, and pupal stages were 41%, 58%, and 31%, respectively. The mortality rate among overwintering individuals was 43%. Because only Zelkova leaves that were abscised in July contained the larvae, and because only a small number of beetles emerged from non-abscised, mined leaves, the removal of abscised leaves at nine-day intervals over period of early leaf abscission is a simple and effective way to control the beetle.

  6. Connecting Source with Sink: The Role of Arabidopsis AAP8 in Phloem Loading of Amino Acids1[OPEN

    PubMed Central

    Santiago, James P.; Tegeder, Mechthild

    2016-01-01

    Allocation of large amounts of nitrogen to developing organs occurs in the phloem and is essential for plant growth and seed development. In Arabidopsis (Arabidopsis thaliana) and many other plant species, amino acids represent the dominant nitrogen transport forms in the phloem, and they are mainly synthesized in photosynthetically active source leaves. Following their synthesis, a broad spectrum of the amino nitrogen is actively loaded into the phloem of leaf minor veins and transported within the phloem sap to sinks such as developing leaves, fruits, or seeds. Controlled regulation of the source-to-sink transport of amino acids has long been postulated; however, the molecular mechanism of amino acid phloem loading was still unknown. In this study, Arabidopsis AMINO ACID PERMEASE8 (AAP8) was shown to be expressed in the source leaf phloem and localized to the plasma membrane, suggesting its function in phloem loading. This was further supported by transport studies with aap8 mutants fed with radiolabeled amino acids and by leaf exudate analyses. In addition, biochemical and molecular analyses revealed alterations in leaf nitrogen pools and metabolism dependent on the developmental stage of the mutants. Decreased amino acid phloem loading and partitioning to sinks led to decreased silique and seed numbers, but seed protein levels were unchanged, demonstrating the importance of AAP8 function for sink development rather than seed quality. Overall, these results show that AAP8 plays an important role in source-to-sink partitioning of nitrogen and that its function affects source leaf physiology and seed yield. PMID:27016446

  7. Evaluation of Suitable Reference Genes for Normalization of qPCR Gene Expression Studies in Brinjal (Solanum melongena L.) During Fruit Developmental Stages.

    PubMed

    Kanakachari, Mogilicherla; Solanke, Amolkumar U; Prabhakaran, Narayanasamy; Ahmad, Israr; Dhandapani, Gurusamy; Jayabalan, Narayanasamy; Kumar, Polumetla Ananda

    2016-02-01

    Brinjal/eggplant/aubergine is one of the major solanaceous vegetable crops. Recent availability of genome information greatly facilitates the fundamental research on brinjal. Gene expression patterns during different stages of fruit development can provide clues towards the understanding of its biological functions. Quantitative real-time PCR (qPCR) has become one of the most widely used methods for rapid and accurate quantification of gene expression. However, its success depends on the use of a suitable reference gene for data normalization. For qPCR analysis, a single reference gene is not universally suitable for all experiments. Therefore, reference gene validation is a crucial step. Suitable reference genes for qPCR analysis of brinjal fruit development have not been investigated so far. In this study, we have selected 21 candidate reference genes from the Brinjal (Solanum melongena) Plant Gene Indices database (compbio.dfci.harvard.edu/tgi/plant.html) and studied their expression profiles by qPCR during six different fruit developmental stages (0, 5, 10, 20, 30, and 50 days post anthesis) along with leaf samples of the Pusa Purple Long (PPL) variety. To evaluate the stability of gene expression, geNorm and NormFinder analytical softwares were used. geNorm identified SAND (SAND family protein) and TBP (TATA binding protein) as the best pairs of reference genes in brinjal fruit development. The results showed that for brinjal fruit development, individual or a combination of reference genes should be selected for data normalization. NormFinder identified Expressed gene (expressed sequence) as the best single reference gene in brinjal fruit development. In this study, we have identified and validated for the first time reference genes to provide accurate transcript normalization and quantification at various fruit developmental stages of brinjal which can also be useful for gene expression studies in other Solanaceae plant species.

  8. Do mitochondria play a role in remodelling lace plant leaves during programmed cell death?

    PubMed Central

    2011-01-01

    Background Programmed cell death (PCD) is the regulated death of cells within an organism. The lace plant (Aponogeton madagascariensis) produces perforations in its leaves through PCD. The leaves of the plant consist of a latticework of longitudinal and transverse veins enclosing areoles. PCD occurs in the cells at the center of these areoles and progresses outwards, stopping approximately five cells from the vasculature. The role of mitochondria during PCD has been recognized in animals; however, it has been less studied during PCD in plants. Results The following paper elucidates the role of mitochondrial dynamics during developmentally regulated PCD in vivo in A. madagascariensis. A single areole within a window stage leaf (PCD is occurring) was divided into three areas based on the progression of PCD; cells that will not undergo PCD (NPCD), cells in early stages of PCD (EPCD), and cells in late stages of PCD (LPCD). Window stage leaves were stained with the mitochondrial dye MitoTracker Red CMXRos and examined. Mitochondrial dynamics were delineated into four categories (M1-M4) based on characteristics including distribution, motility, and membrane potential (ΔΨm). A TUNEL assay showed fragmented nDNA in a gradient over these mitochondrial stages. Chloroplasts and transvacuolar strands were also examined using live cell imaging. The possible importance of mitochondrial permeability transition pore (PTP) formation during PCD was indirectly examined via in vivo cyclosporine A (CsA) treatment. This treatment resulted in lace plant leaves with a significantly lower number of perforations compared to controls, and that displayed mitochondrial dynamics similar to that of non-PCD cells. Conclusions Results depicted mitochondrial dynamics in vivo as PCD progresses within the lace plant, and highlight the correlation of this organelle with other organelles during developmental PCD. To the best of our knowledge, this is the first report of mitochondria and chloroplasts moving on transvacuolar strands to form a ring structure surrounding the nucleus during developmental PCD. Also, for the first time, we have shown the feasibility for the use of CsA in a whole plant system. Overall, our findings implicate the mitochondria as playing a critical and early role in developmentally regulated PCD in the lace plant. PMID:21645374

  9. Ethylene and Hormonal Cross Talk in Vegetative Growth and Development.

    PubMed

    Van de Poel, Bram; Smet, Dajo; Van Der Straeten, Dominique

    2015-09-01

    Ethylene is a gaseous plant hormone that most likely became a functional hormone during the evolution of charophyte green algae, prior to land colonization. From this ancient origin, ethylene evolved into an important growth regulator that is essential for myriad plant developmental processes. In vegetative growth, ethylene appears to have a dual role, stimulating and inhibiting growth, depending on the species, tissue, and cell type, developmental stage, hormonal status, and environmental conditions. Moreover, ethylene signaling and response are part of an intricate network in cross talk with internal and external cues. Besides being a crucial factor in the growth control of roots and shoots, ethylene can promote flowering, fruit ripening and abscission, as well as leaf and petal senescence and abscission and, hence, plays a role in virtually every phase of plant life. Last but not least, together with jasmonates, salicylate, and abscisic acid, ethylene is important in steering stress responses. © 2015 American Society of Plant Biologists. All Rights Reserved.

  10. Expression of endogenous proteins in maize hybrids in a multi-location field trial in India.

    PubMed

    Gutha, Linga R; Purushottam, Divakar; Veeramachaneni, Aruna; Tigulla, Sarita; Kodappully, Vikas; Enjala, Chandana; Rajput, Hitendrasinh; Anderson, Jennifer; Hong, Bonnie; Schmidt, Jean; Bagga, Shveta

    2018-05-17

    Genetically modified (GM) crops undergo large scale multi-location field trials to characterize agronomics, composition, and the concentration of newly expressed protein(s) [herein referred to as transgenic protein(s)]. The concentration of transgenic proteins in different plant tissues and across the developmental stages of the plant is considered in the safety assessment of GM crops. Reference or housekeeping proteins are expected to maintain a relatively stable expression pattern in healthy plants given their role in cellular functions. Understanding the effects of genotype, growth stage and location on the concentration of endogenous housekeeping proteins may provide insight into the contribution these factors could have on transgenic protein concentrations in GM crops. The concentrations of three endogenous proteins (actin, elongation factor 1-alpha, and glyceraldehyde 3-phosphate dehydrogenase) were measured in several different maize hybrids grown across multiple field locations over 2 years. Leaf samples were collected from healthy plants at three developmental stages across the growing seasons, and protein concentrations were quantified by indirect enzyme-linked immunosorbent assay (ELISA) for each protein. In general, the concentrations of these three endogenous proteins were relatively consistent across hybrid backgrounds, when compared within one growth stage and location (2-26%CV), whereas the concentrations of proteins in the same hybrid and growth stage across different locations were more variable (12-64%CV). In general, the protein concentrations in 2013 and 2014 show similar trends in variability. Some degree of variability in protein concentrations should be expected for both transgenic and endogenous plant-expressed proteins. In the case of GM crops, the potential variation in protein concentrations due to location effects is captured in the current model of multi-location field testing.

  11. NMR-Metabolic Methodology in the Study of GM Foods

    PubMed Central

    Sobolev, Anatoly P.; Capitani, Donatella; Giannino, Donato; Nicolodi, Chiara; Testone, Giulio; Santoro, Flavio; Frugis, Giovanna; Iannelli, Maria A.; Mattoo, Autar K.; Brosio, Elvino; Gianferri, Raffaella; D’Amico, Irene; Mannina, Luisa

    2010-01-01

    The 1H-NMR methodology used in the study of genetically modified (GM) foods is discussed. Transgenic lettuce (Lactuca sativa cv "Luxor") over-expressing the ArabidopsisKNAT1 gene is presented as a case study. Twenty-two water-soluble metabolites (amino acids, organic acids, sugars) present in leaves of conventional and GM lettuce were monitored by NMR and quantified at two developmental stages. The NMR spectra did not reveal any difference in metabolite composition between the GM lettuce and the wild type counterpart. Statistical analyses of metabolite variables highlighted metabolism variation as a function of leaf development as well as the transgene. A main effect of the transgene was in altering sugar metabolism. PMID:22253988

  12. Different allocation of carbohydrates and phenolics in dehydrated leaves of triticale.

    PubMed

    Hura, Tomasz; Dziurka, Michał; Hura, Katarzyna; Ostrowska, Agnieszka; Dziurka, Kinga

    2016-09-01

    Carbohydrates are used in plant growth processes, osmotic regulation and secondary metabolism. A study of the allocation of carbohydrates to a target set of metabolites during triticale acclimation to soil drought was performed. The study included a semi-dwarf cultivar 'Woltario' and a long-stemmed cultivar 'Moderato', differing in the activity of the photosynthetic apparatus under optimum growth conditions. Differences were found in the quantitative and qualitative composition of individual carbohydrates and phenolic compounds, depending on the developmental stage and water availability. Soluble carbohydrates in the semi-dwarf 'Woltario' cv. under soil drought were utilized for synthesis of starch, soluble phenolic compounds and an accumulation of cell wall carbohydrates. In the typical 'Moderato' cv., soluble carbohydrates were primarily used for the synthesis of phenolic compounds that were then incorporated into cell wall structures. Increased content of cell wall-bound phenolics in 'Moderato' cv. improved the cell wall tightness and reduced the rate of leaf water loss. In 'Woltario' cv., the increase in cell osmotic potential due to an enhanced concentration of carbohydrates and proline was insufficient to slow down the rate of leaf water loss. The mechanism of cell wall tightening in response to leaf desiccation may be the main key in the process of triticale acclimation to soil drought. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Molecular Physiology of Root System Architecture in Model Grasses

    NASA Astrophysics Data System (ADS)

    Hixson, K.; Ahkami, A. H.; Anderton, C.; Veličković, D.; Myers, G. L.; Chrisler, W.; Lindenmaier, R.; Fang, Y.; Yabusaki, S.; Rosnow, J. J.; Farris, Y.; Khan, N. E.; Bernstein, H. C.; Jansson, C.

    2017-12-01

    Unraveling the molecular and physiological mechanisms involved in responses of Root System Architecture (RSA) to abiotic stresses and shifts in microbiome structure is critical to understand and engineer plant-microbe-soil interactions in the rhizosphere. In this study, accessions of Brachypodium distachyon Bd21 (C3 model grass) and Setaria viridis A10.1 (C4 model grass) were grown in phytotron chambers under current and elevated CO2 levels. Detailed growth stage-based phenotypic analysis revealed different above- and below-ground morphological and physiological responses in C3 and C4 grasses to enhanced CO2 levels. Based on our preliminary results and by screening values of total biomass, water use efficiency, root to shoot ratio, RSA parameters and net assimilation rates, we postulated a three-phase physiological mechanism, i.e. RootPlus, BiomassPlus and YieldPlus phases, for grass growth under elevated CO2 conditions. Moreover, this comprehensive set of morphological and process-based observations are currently in use to develop, test, and calibrate biophysical whole-plant models and in particular to simulate leaf-level photosynthesis at various developmental stages of C3 and C4 using the model BioCro. To further link the observed phenotypic traits at the organismal level to tissue and molecular levels, and to spatially resolve the origin and fate of key metabolites involved in primary carbohydrate metabolism in different root sections, we complement root phenotypic observations with spatial metabolomics data using mass spectrometry imaging (MSI) methods. Focusing on plant-microbe interactions in the rhizosphere, six bacterial strains with plant growth promoting features are currently in use in both gel-based and soil systems to screen root growth and development in Brachypodium. Using confocal microscopy, GFP-tagged bacterial systems are utilized to study the initiation of different root types of RSA, including primary root (PR), coleoptile node axile root (CNR) and leaf node axile root (LNR) during developmental stages of root formation. The root exudates also will be quantified and preliminary data will be used to engineer our microbial consortium to improve plant growth.

  14. Characterization and gene cloning of the rice (Oryza sativa L.) dwarf and narrow-leaf mutant dnl3.

    PubMed

    Shi, L; Wei, X J; Adedze, Y M N; Sheng, Z H; Tang, S Q; Hu, P S; Wang, J L

    2016-09-16

    The dwarf and narrow-leaf rice (Oryza sativa L.) mutant dnl3 was isolated from the Japonica cultivar Zhonghua 11 (wild-type). dnl3 exhibited pleiotropic developmental defects. The narrow-leaf phenotype resulted from a marked reduction in the number of vascular bundles, while the dwarf stature was caused by the formation of foreshortened internodes and a reduced number of parenchyma cells. The suggestion that cell division is impaired in the mutant was consistent with the transcriptional behavior of various genes associated with cell division. The mutant was less responsive to exogenously supplied gibberellic acid than the wild-type, and profiling the transcription of genes involved in gibberellin synthesis and response revealed that a lesion in the mutant affected gibberellin signal transduction. The dnl3 phenotype was inherited as a single-dominant gene, mapping within a 19.1-kb region of chromosome 12, which was found to harbor three open reading frames. Resequencing the open reading frames revealed that the mutant carried an allele at one of the three genes that differed from the wild-type sequence by 2-bp deletions; this gene encoded a cellulose synthase-like D4 (CSLD4) protein. Therefore, OsCSLD4 is a candidate gene for DNL3. DNL3 was expressed in all of the rice organs tested at the heading stage, particularly in the leaves, roots, and culms. These results suggest that DNL3 plays important roles in rice leaf morphogenesis and vegetative development.

  15. The Liguleless narrow mutation affects proximal distal signaling and leaf growth

    USDA-ARS?s Scientific Manuscript database

    How cells acquire competence to differentiate according to position is an essential question in developmental biology. Maize leaves provide a unique opportunity to study positional information. In the developing leaf primordium, a line is drawn across a field of seemingly identical cells. Above the ...

  16. Leaves as composites of latent developmental and evolutionary shapes

    USDA-ARS?s Scientific Manuscript database

    Across plants, leaves exhibit profound diversity in shape. As a single leaf expands, its shape is in constant flux. Additionally, plants may also produce leaves with different shapes at successive nodes. Because leaf shape can vary in many different ways, theoretically the effects of distinct proces...

  17. Effects of leaf age within growth stages of pepper and sorghum plants on leaf thickness, water, chlorophyll, and light reflectance. [in spectral vegetation discrimination

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.; Cardenas, R.; Berumen, A.

    1974-01-01

    Pepper and sorghum plants (characterized by porous and compact leaf mesophylls, respectively) were used to study the influence of leaf age on light reflectance. Measurements were limited to the upper five nodal positions within each growth stage, since upper leaves make up most of the reflectance surfaces remotely sensed. The increase in leaf thickness and water content with increasing leaf age was taken into consideration, since each of these factors affects the reflectance as well as the selection of spectral wavelength intervals for optimum discrimination of vegetation.

  18. JAGGED Controls Arabidopsis Petal Growth and Shape by Interacting with a Divergent Polarity Field

    PubMed Central

    Sauret-Güeto, Susanna; Schiessl, Katharina; Bangham, Andrew; Sablowski, Robert; Coen, Enrico

    2013-01-01

    A flowering plant generates many different organs such as leaves, petals, and stamens, each with a particular function and shape. These types of organ are thought to represent variations on a common underlying developmental program. However, it is unclear how this program is modulated under different selective constraints to generate the diversity of forms observed. Here we address this problem by analysing the development of Arabidopsis petals and comparing the results to models of leaf development. We show that petal development involves a divergent polarity field with growth rates perpendicular to local polarity increasing towards the distal end of the petal. The hypothesis is supported by the observed pattern of clones induced at various stages of development and by analysis of polarity markers, which show a divergent pattern. We also show that JAGGED (JAG) has a key role in promoting distal enhancement of growth rates and influences the extent of the divergent polarity field. Furthermore, we reveal links between the polarity field and auxin function: auxin-responsive markers such as DR5 have a broader distribution along the distal petal margin, consistent with the broad distal organiser of polarity, and PETAL LOSS (PTL), which has been implicated in the control of auxin dynamics during petal initiation, is directly repressed by JAG. By comparing these results with those from studies on leaf development, we show how simple modifications of an underlying developmental system may generate distinct forms, providing flexibility for the evolution of different organ functions. PMID:23653565

  19. Possible Roles of Strigolactones during Leaf Senescence

    PubMed Central

    Yamada, Yusuke; Umehara, Mikihisa

    2015-01-01

    Leaf senescence is a complicated developmental process that involves degenerative changes and nutrient recycling. The progress of leaf senescence is controlled by various environmental cues and plant hormones, including ethylene, jasmonic acid, salicylic acid, abscisic acid, cytokinins, and strigolactones. The production of strigolactones is induced in response to nitrogen and phosphorous deficiency. Strigolactones also accelerate leaf senescence and regulate shoot branching and root architecture. Leaf senescence is actively promoted in a nutrient-poor soil environment, and nutrients are transported from old leaves to young tissues and seeds. Strigolactones might act as important signals in response to nutrient levels in the rhizosphere. In this review, we discuss the possible roles of strigolactones during leaf senescence. PMID:27135345

  20. Comparative Transcriptome Analysis of Chinary, Assamica and Cambod tea (Camellia sinensis) Types during Development and Seasonal Variation using RNA-seq Technology

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; Chawla, Vandna; Sharma, Eshita; Mahajan, Pallavi; Shankar, Ravi; Yadav, Sudesh Kumar

    2016-11-01

    Tea quality and yield is influenced by various factors including developmental tissue, seasonal variation and cultivar type. Here, the molecular basis of these factors was investigated in three tea cultivars namely, Him Sphurti (H), TV23 (T), and UPASI-9 (U) using RNA-seq. Seasonal variation in these cultivars was studied during active (A), mid-dormant (MD), dormant (D) and mid-active (MA) stages in two developmental tissues viz. young and old leaf. Development appears to affect gene expression more than the seasonal variation and cultivar types. Further, detailed transcript and metabolite profiling has identified genes such as F3‧H, F3‧5‧H, FLS, DFR, LAR, ANR and ANS of catechin biosynthesis, while MXMT, SAMS, TCS and XDH of caffeine biosynthesis/catabolism as key regulators during development and seasonal variation among three different tea cultivars. In addition, expression analysis of genes related to phytohormones such as ABA, GA, ethylene and auxin has suggested their role in developmental tissues during seasonal variation in tea cultivars. Moreover, differential expression of genes involved in histone and DNA modification further suggests role of epigenetic mechanism in coordinating global gene expression during developmental and seasonal variation in tea. Our findings provide insights into global transcriptional reprogramming associated with development and seasonal variation in tea.

  1. Comparative Transcriptome Analysis of Chinary, Assamica and Cambod tea (Camellia sinensis) Types during Development and Seasonal Variation using RNA-seq Technology.

    PubMed

    Kumar, Ajay; Chawla, Vandna; Sharma, Eshita; Mahajan, Pallavi; Shankar, Ravi; Yadav, Sudesh Kumar

    2016-11-17

    Tea quality and yield is influenced by various factors including developmental tissue, seasonal variation and cultivar type. Here, the molecular basis of these factors was investigated in three tea cultivars namely, Him Sphurti (H), TV23 (T), and UPASI-9 (U) using RNA-seq. Seasonal variation in these cultivars was studied during active (A), mid-dormant (MD), dormant (D) and mid-active (MA) stages in two developmental tissues viz. young and old leaf. Development appears to affect gene expression more than the seasonal variation and cultivar types. Further, detailed transcript and metabolite profiling has identified genes such as F3'H, F3'5'H, FLS, DFR, LAR, ANR and ANS of catechin biosynthesis, while MXMT, SAMS, TCS and XDH of caffeine biosynthesis/catabolism as key regulators during development and seasonal variation among three different tea cultivars. In addition, expression analysis of genes related to phytohormones such as ABA, GA, ethylene and auxin has suggested their role in developmental tissues during seasonal variation in tea cultivars. Moreover, differential expression of genes involved in histone and DNA modification further suggests role of epigenetic mechanism in coordinating global gene expression during developmental and seasonal variation in tea. Our findings provide insights into global transcriptional reprogramming associated with development and seasonal variation in tea.

  2. Crystal macropattern development in Prunus serotina (Rosaceae, Prunoideae) leaves.

    PubMed

    Lersten, Nels R; Horner, Harry T

    2006-05-01

    Prunus, subgenus Padus, exhibits two completely different calcium oxalate crystal macropatterns in mature leaves. Foliar macropattern development has been described previously in P. virginiana, representing one version. Prunus serotina, in the group exhibiting the second macropattern, is described here. The goal was to describe developmental details for comparison with P. virginiana, and to extend the sparse current knowledge of crystal macropatterns. Leaves at various developmental stages were removed from local trees and from herbarium specimens. Early leaf stages and freehand leaf and stem sections were mounted directly in aqueous glycerine; larger leaves were processed whole or in representative pieces in household bleach, dehydrated in alcohol/xylol, and mounted in Permount. Crystals were detected microscopically between crossed polarizers. Bud scales have a dense druse population. Druses appear first at the stipule tip and proliferate basipetally but soon stop forming; growing stipules therefore have a declining density of druses. Druses appear at the tip of leaves <1 mm long, then proliferate basipetally in the midrib. Lamina druses appear in the distal marginal teeth of leaves 3 cm long; from here they proliferate basipetally and towards midrib along major veins. In about two-thirds-grown leaves (6-9 cm length) druses are all adaxial to veins of most orders; a shift occurs then to formation of prisms, which appear first abaxial to, then all around, veins. Mature leaves have virtually all prisms encrusting all major veins, more sparsely along smaller minor veins. Late season leaves form epitactic crystals on existing prismatics. The developing and mature macropattern of P. serotina is almost the reverse of the pattern described previously in P. virginiana, and shows that two closely related species can develop radically different modes of crystallization. The few detailed macropattern studies to date reveal striking variations that indicate a new level of organization that must be integrated with the anatomical, physiological and molecular approaches that have been dominant so far.

  3. Crystal Macropattern Development in Prunus serotina (Rosaceae, Prunoideae) Leaves

    PubMed Central

    LERSTEN, NELS R.; HORNER, HARRY T.

    2006-01-01

    • Background and Aims Prunus, subgenus Padus, exhibits two completely different calcium oxalate crystal macropatterns in mature leaves. Foliar macropattern development has been described previously in P. virginiana, representing one version. Prunus serotina, in the group exhibiting the second macropattern, is described here. The goal was to describe developmental details for comparison with P. virginiana, and to extend the sparse current knowledge of crystal macropatterns. • Methods Leaves at various developmental stages were removed from local trees and from herbarium specimens. Early leaf stages and freehand leaf and stem sections were mounted directly in aqueous glycerine; larger leaves were processed whole or in representative pieces in household bleach, dehydrated in alcohol/xylol, and mounted in Permount. Crystals were detected microscopically between crossed polarizers. • Key Results Bud scales have a dense druse population. Druses appear first at the stipule tip and proliferate basipetally but soon stop forming; growing stipules therefore have a declining density of druses. Druses appear at the tip of leaves <1 mm long, then proliferate basipetally in the midrib. Lamina druses appear in the distal marginal teeth of leaves 3 cm long; from here they proliferate basipetally and towards midrib along major veins. In about two-thirds-grown leaves (6–9 cm length) druses are all adaxial to veins of most orders; a shift occurs then to formation of prisms, which appear first abaxial to, then all around, veins. Mature leaves have virtually all prisms encrusting all major veins, more sparsely along smaller minor veins. Late season leaves form epitactic crystals on existing prismatics. • Conclusions The developing and mature macropattern of P. serotina is almost the reverse of the pattern described previously in P. virginiana, and shows that two closely related species can develop radically different modes of crystallization. The few detailed macropattern studies to date reveal striking variations that indicate a new level of organization that must be integrated with the anatomical, physiological and molecular approaches that have been dominant so far. PMID:16513655

  4. Genetic and Developmental Basis for Increased Leaf Thickness in the Arabidopsis Cvi Ecotype.

    PubMed

    Coneva, Viktoriya; Chitwood, Daniel H

    2018-01-01

    Leaf thickness is a quantitative trait that is associated with the ability of plants to occupy dry, high irradiance environments. Despite its importance, leaf thickness has been difficult to measure reproducibly, which has impeded progress in understanding its genetic basis, and the associated anatomical mechanisms that pattern it. Here, we used a custom-built dual confocal profilometer device to measure leaf thickness in the Arabidopsis Ler × Cvi recombinant inbred line population and found statistical support for four quantitative trait loci (QTL) associated with this trait. We used publically available data for a suite of traits relating to flowering time and growth responses to light quality and show that three of the four leaf thickness QTL coincide with QTL for at least one of these traits. Using time course photography, we quantified the relative growth rate and the pace of rosette leaf initiation in the Ler and Cvi ecotypes. We found that Cvi rosettes grow slower than Ler, both in terms of the rate of leaf initiation and the overall rate of biomass accumulation. Collectively, these data suggest that leaf thickness is tightly linked with physiological status and may present a tradeoff between the ability to withstand stress and rapid vegetative growth. To understand the anatomical basis of leaf thickness, we compared cross-sections of Cvi and Ler leaves and show that Cvi palisade mesophyll cells elongate anisotropically contributing to leaf thickness. Flow cytometry of whole leaves show that endopolyploidy accompanies thicker leaves in Cvi. Overall, our data suggest that mechanistically, an altered schedule of cellular events affecting endopolyploidy and increasing palisade mesophyll cell length contribute to increase of leaf thickness in Cvi. Ultimately, knowledge of the genetic basis and developmental trajectory leaf thickness will inform the mechanisms by which natural selection acts to produce variation in this adaptive trait.

  5. Genetic and Developmental Basis for Increased Leaf Thickness in the Arabidopsis Cvi Ecotype

    PubMed Central

    Coneva, Viktoriya; Chitwood, Daniel H.

    2018-01-01

    Leaf thickness is a quantitative trait that is associated with the ability of plants to occupy dry, high irradiance environments. Despite its importance, leaf thickness has been difficult to measure reproducibly, which has impeded progress in understanding its genetic basis, and the associated anatomical mechanisms that pattern it. Here, we used a custom-built dual confocal profilometer device to measure leaf thickness in the Arabidopsis Ler × Cvi recombinant inbred line population and found statistical support for four quantitative trait loci (QTL) associated with this trait. We used publically available data for a suite of traits relating to flowering time and growth responses to light quality and show that three of the four leaf thickness QTL coincide with QTL for at least one of these traits. Using time course photography, we quantified the relative growth rate and the pace of rosette leaf initiation in the Ler and Cvi ecotypes. We found that Cvi rosettes grow slower than Ler, both in terms of the rate of leaf initiation and the overall rate of biomass accumulation. Collectively, these data suggest that leaf thickness is tightly linked with physiological status and may present a tradeoff between the ability to withstand stress and rapid vegetative growth. To understand the anatomical basis of leaf thickness, we compared cross-sections of Cvi and Ler leaves and show that Cvi palisade mesophyll cells elongate anisotropically contributing to leaf thickness. Flow cytometry of whole leaves show that endopolyploidy accompanies thicker leaves in Cvi. Overall, our data suggest that mechanistically, an altered schedule of cellular events affecting endopolyploidy and increasing palisade mesophyll cell length contribute to increase of leaf thickness in Cvi. Ultimately, knowledge of the genetic basis and developmental trajectory leaf thickness will inform the mechanisms by which natural selection acts to produce variation in this adaptive trait. PMID:29593772

  6. The unique structural and biochemical development of single cell C4 photosynthesis along longitudinal leaf gradients in Bienertia sinuspersici and Suaeda aralocaspica (Chenopodiaceae)

    PubMed Central

    Koteyeva, Nuria K.; Voznesenskaya, Elena V.; Berry, James O.; Cousins, Asaph B.; Edwards, Gerald E.

    2016-01-01

    Temporal and spatial patterns of photosynthetic enzyme expression and structural maturation of chlorenchyma cells along longitudinal developmental gradients were characterized in young leaves of two single cell C4 species, Bienertia sinuspersici and Suaeda aralocaspica. Both species partition photosynthetic functions between distinct intracellular domains. In the C4-C domain, C4 acids are formed in the C4 cycle during capture of atmospheric CO2 by phosphoenolpyruvate carboxylase. In the C4-D domain, CO2 released in the C4 cycle via mitochondrial NAD-malic enzyme is refixed by Rubisco. Despite striking differences in origin and intracellular positioning of domains, these species show strong convergence in C4 developmental patterns. Both progress through a gradual developmental transition towards full C4 photosynthesis, with an associated increase in levels of photosynthetic enzymes. Analysis of longitudinal sections showed undeveloped domains at the leaf base, with Rubisco rbcL mRNA and protein contained within all chloroplasts. The two domains were first distinguishable in chlorenchyma cells at the leaf mid-regions, but still contained structurally similar chloroplasts with equivalent amounts of rbcL mRNA and protein; while mitochondria had become confined to just one domain (proto-C4-D). The C4 state was fully formed towards the leaf tips, Rubisco transcripts and protein were compartmentalized specifically to structurally distinct chloroplasts in the C4-D domains indicating selective regulation of Rubisco expression may occur by control of transcription or stability of rbcL mRNA. Determination of CO2 compensation points showed young leaves were not functionally C4, consistent with cytological observations of the developmental progression from C3 default to intermediate to C4 photosynthesis. PMID:26957565

  7. Effect of natural windbreaks on drift reduction in orchard spraying.

    PubMed

    Wenneker, M; Heijne, B; van de Zande, J C

    2005-01-01

    In the Netherlands windbreaks are commonly grown to protect orchards against wind damage and to improve micro-climate. Natural windbreaks of broad-leaved trees can also reduce the risk of surface water contamination caused by spray drift during orchard spraying. Spray drift from pesticide applications is a major concern in the Netherlands, especially drift into water courses. So far, several drift reducing measures have been accepted by water quality control organisations and the Board for the Authorization of Pesticides (CTB), e.g. presence of a windbreak (i.e. 70% drift reduction at early season and 90% drift reduction at full leaf, respectively before and after first of May). From the experiments it was concluded that the risk of drift contamination is high during the early developmental stages of the growing season. The 70% drift reduction at early season as determined in previous experiments, appears to be valid only for windbreaks with a certain degree of developed leaves. At full leaf stage 80-90% drift reduction by the windbreak was measured. The use of evergreen windbreaks or wind-break species that develop in early season can reduce the risk of drift contamination considerably. Also, the combination of drift reducing methods, such as one-sided spraying of the last tree row and a windbreak is an effective method to reduce spray drift in the Netherlands in early season.

  8. Analysing growth and development of plants jointly using developmental growth stages

    PubMed Central

    Dambreville, Anaëlle; Lauri, Pierre-Éric; Normand, Frédéric; Guédon, Yann

    2015-01-01

    Background and Aims Plant growth, the increase of organ dimensions over time, and development, the change in plant structure, are often studied as two separate processes. However, there is structural and functional evidence that these two processes are strongly related. The aim of this study was to investigate the co-ordination between growth and development using mango trees, which have well-defined developmental stages. Methods Developmental stages, determined in an expert way, and organ sizes, determined from objective measurements, were collected during the vegetative growth and flowering phases of two cultivars of mango, Mangifera indica. For a given cultivar and growth unit type (either vegetative or flowering), a multistage model based on absolute growth rate sequences deduced from the measurements was first built, and then growth stages deduced from the model were compared with developmental stages. Key Results Strong matches were obtained between growth stages and developmental stages, leading to a consistent definition of integrative developmental growth stages. The growth stages highlighted growth asynchronisms between two topologically connected organs, namely the vegetative axis and its leaves. Conclusions Integrative developmental growth stages emphasize that developmental stages are closely related to organ growth rates. The results are discussed in terms of the possible physiological processes underlying these stages, including plant hydraulics, biomechanics and carbohydrate partitioning. PMID:25452250

  9. Description and phylogeny of a new microsporidium from the elm leaf beetle, Xanthogaleruca luteola Muller, 1766 (Coleoptera: Chrysomelidae).

    PubMed

    Bekircan, Çağrı; Bülbül, Ufuk; Güler, Halil I; Becnel, James J

    2017-02-01

    This study describes a new genus and species of microsporidia which is a pathogen of the elm leaf beetle, Xanthogaleruca luteola Muller, 1776 (Coleoptera: Chrysomelidae). The beetles were collected from Istanbul in Turkey. All developmental stages are uninucleate and in direct contact with the host cell cytoplasm. Giemsa-stained mature spores are oval in shape and measured 3.40 ± 0.37 μm in length and 1.63 ± 0.20 μm in width. These uninucleate spores have an isofilar polar filament with 11 turns. The spore wall was trilaminar (75 to 115 nm) with a rugose, electron-dense exospore (34 to 45 nm) and a thickened, electron-lucent endospore (65 to 80 nm) overlaying the plasmalemma. Morphological, ultrastructural, and molecular features indicate that the described microsporidium is dissimilar to all known microsporidian taxa and confirm that it has different taxonomic characters than other microsporidia infecting X. luteola and is named here as Rugispora istanbulensis n. gen., n. sp.

  10. Critical period of weed control in winter canola (Brassica napus L.) in a semi-arid region.

    PubMed

    Aghaalikhani, M; Yaghoobi, S R

    2008-03-01

    In order to determine the critical period of weed control in winter canola (Brassica napus L. cv. Okapi) an experiment was carried out at research field of Tarbiat Modarres University, Tehran, Iran on 2004-2005 growing season. Fourteen experimental treatments which divided into two sets were arranged in Randomized complete blocks design with four replications. In the first set, the crop was kept weed-free from emergence time to two-leaf stage (V2), four-leaf stage (V4), six-leaf stage (V6), eight-leaf stage (V8), early flowering (IF), 50% of silique set (50% SS) and final harvest (H). In the second set, weeds where permitted to grow with the crop until above mentioned stages. In this study critical period of weed control was determined according to evaluate seed bank emerged weed biomass effect on canola grain yield loss using Gompertz and logistic equations. Result showed a critical time of weed control about 25 days after emergence (between four to six-leaf stages) with 5% accepted yield loss. Therefore, weed control in this time could provide the best result and avoid yield loss and damage to agroecosystem.

  11. GDP-L-fucose is required for boundary definition in plants.

    PubMed

    Gonçalves, Beatriz; Maugarny-Calès, Aude; Adroher, Bernard; Cortizo, Millán; Borrega, Nero; Blein, Thomas; Hasson, Alice; Gineau, Emilie; Mouille, Grégory; Laufs, Patrick; Arnaud, Nicolas

    2017-12-16

    The CUP-SHAPED COTYLEDON (CUC) transcription factors control plant boundary formation, thus allowing the emergence of novel growth axes. While the developmental roles of the CUC genes in different organs and across species are well characterized, upstream and downstream events that contribute to their function are still poorly understood. To identify new players in this network, we performed a suppressor screen of CUC2g-m4, a line overexpressing CUC2 that has highly serrated leaves. We identified a mutation that simplifies leaf shape and affects MURUS1 (MUR1), which is responsible for GDP-L-fucose production. Using detailed morphometric analysis, we show that GDP-L-fucose has an essential role in leaf shape acquisition by sustaining differential growth at the leaf margins. Accordingly, reduced CUC2 expression levels are observed in mur1 leaves. Furthermore, genetic analyses reveal a conserved role for GDP-L-fucose in different developmental contexts where it contributes to organ separation in the same pathway as CUC2. Taken together, our results reveal that GDP-L-fucose is necessary for proper establishment of boundary domains in various developmental contexts. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. Analysing growth and development of plants jointly using developmental growth stages.

    PubMed

    Dambreville, Anaëlle; Lauri, Pierre-Éric; Normand, Frédéric; Guédon, Yann

    2015-01-01

    Plant growth, the increase of organ dimensions over time, and development, the change in plant structure, are often studied as two separate processes. However, there is structural and functional evidence that these two processes are strongly related. The aim of this study was to investigate the co-ordination between growth and development using mango trees, which have well-defined developmental stages. Developmental stages, determined in an expert way, and organ sizes, determined from objective measurements, were collected during the vegetative growth and flowering phases of two cultivars of mango, Mangifera indica. For a given cultivar and growth unit type (either vegetative or flowering), a multistage model based on absolute growth rate sequences deduced from the measurements was first built, and then growth stages deduced from the model were compared with developmental stages. Strong matches were obtained between growth stages and developmental stages, leading to a consistent definition of integrative developmental growth stages. The growth stages highlighted growth asynchronisms between two topologically connected organs, namely the vegetative axis and its leaves. Integrative developmental growth stages emphasize that developmental stages are closely related to organ growth rates. The results are discussed in terms of the possible physiological processes underlying these stages, including plant hydraulics, biomechanics and carbohydrate partitioning. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. BIG LEAF is a regulator of organ size and adventitious root formation in poplar

    PubMed Central

    Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena; Meilan, Richard; Strauss, Steven H.; Busov, Victor B.

    2017-01-01

    Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stages of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. In addition, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. We conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting. PMID:28686626

  14. BIG LEAF is a regulator of organ size and adventitious root formation in poplar.

    PubMed

    Yordanov, Yordan S; Ma, Cathleen; Yordanova, Elena; Meilan, Richard; Strauss, Steven H; Busov, Victor B

    2017-01-01

    Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stages of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. In addition, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. We conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.

  15. Developmental Expression of Violaxanthin De-Epoxidase in Leaves of Tobacco Growing under High and Low Light1

    PubMed Central

    Bugos, Robert C.; Chang, Sue-Hwei; Yamamoto, Harry Y.

    1999-01-01

    Violaxanthin de-epoxidase (VDE) is a lumen-localized enzyme that catalyzes the de-epoxidation of violaxanthin in the thylakoid membrane upon formation of a transthylakoid pH gradient. We investigated the developmental expression of VDE in leaves of mature tobacco (Nicotiana tabacum) plants grown under high-light conditions (in the field) and low-light conditions (in a growth chamber). The difference in light conditions was evident by the increased pool size (violaxanthin + antheraxanthin + zeaxanthin, VAZ) throughout leaf development in field-grown plants. VDE activity based on chlorophyll or leaf area was low in the youngest leaves, with the levels increasing with increasing leaf age in both high- and low-light-grown plants. However, in high-light-grown plants, the younger leaves in early leaf expansion showed a more rapid increase in VDE activity and maintained higher levels of VDE transcript in more leaves, indicating that high light may induce greater levels of VDE. VDE transcript levels decreased substantially in leaves of mid-leaf expansion, while the levels of enzyme continued to increase, suggesting that the VDE enzyme does not turn over rapidly. The level of VDE changed in an inverse, nonlinear relationship with respect to the VAZ pool, suggesting that enzyme levels could be indirectly regulated by the VAZ pool. PMID:10482676

  16. Developmental expression of violaxanthin de-epoxidase in leaves of tobacco growing under high and low light.

    PubMed

    Bugos, R C; Chang, S H; Yamamoto, H Y

    1999-09-01

    Violaxanthin de-epoxidase (VDE) is a lumen-localized enzyme that catalyzes the de-epoxidation of violaxanthin in the thylakoid membrane upon formation of a transthylakoid pH gradient. We investigated the developmental expression of VDE in leaves of mature tobacco (Nicotiana tabacum) plants grown under high-light conditions (in the field) and low-light conditions (in a growth chamber). The difference in light conditions was evident by the increased pool size (violaxanthin + antheraxanthin + zeaxanthin, VAZ) throughout leaf development in field-grown plants. VDE activity based on chlorophyll or leaf area was low in the youngest leaves, with the levels increasing with increasing leaf age in both high- and low-light-grown plants. However, in high-light-grown plants, the younger leaves in early leaf expansion showed a more rapid increase in VDE activity and maintained higher levels of VDE transcript in more leaves, indicating that high light may induce greater levels of VDE. VDE transcript levels decreased substantially in leaves of mid-leaf expansion, while the levels of enzyme continued to increase, suggesting that the VDE enzyme does not turn over rapidly. The level of VDE changed in an inverse, nonlinear relationship with respect to the VAZ pool, suggesting that enzyme levels could be indirectly regulated by the VAZ pool.

  17. Conspecific Leaf Litter-Mediated Effect of Conspecific Adult Neighborhood on Early-Stage Seedling Survival in A Subtropical Forest

    PubMed Central

    Liu, Heming; Shen, Guochun; Ma, Zunping; Yang, Qingsong; Xia, Jianyang; Fang, Xiaofeng; Wang, Xihua

    2016-01-01

    Conspecific adults have strong negative effect on the survival of nearby early-stage seedlings and thus can promote species coexistence by providing space for the regeneration of heterospecifics. The leaf litter fall from the conspecific adults, and it could mediate this conspecific negative adult effect. However, field evidence for such effect of conspecific leaf litter remains absent. In this study, we used generalized linear mixed models to assess the effects of conspecific leaf litter on the early-stage seedling survival of four dominant species (Machilus leptophylla, Litsea elongate, Acer pubinerve and Distylium myricoides) in early-stage seedlings in a subtropical evergreen broad-leaved forest in eastern China. Our results consistently showed that the conspecific leaf litter of three species negatively affected the seedling survival. Meanwhile, the traditional conspecific adult neighborhood indices failed to detect this negative conspecific adult effect. Our study revealed that the accumulation of conspecific leaf litter around adults can largely reduce the survival rate of nearby seedlings. Ignoring it could result in underestimation of the importance of negative density dependence and negative species interactions in the natural forest communities. PMID:27886275

  18. Conspecific Leaf Litter-Mediated Effect of Conspecific Adult Neighborhood on Early-Stage Seedling Survival in A Subtropical Forest.

    PubMed

    Liu, Heming; Shen, Guochun; Ma, Zunping; Yang, Qingsong; Xia, Jianyang; Fang, Xiaofeng; Wang, Xihua

    2016-11-25

    Conspecific adults have strong negative effect on the survival of nearby early-stage seedlings and thus can promote species coexistence by providing space for the regeneration of heterospecifics. The leaf litter fall from the conspecific adults, and it could mediate this conspecific negative adult effect. However, field evidence for such effect of conspecific leaf litter remains absent. In this study, we used generalized linear mixed models to assess the effects of conspecific leaf litter on the early-stage seedling survival of four dominant species (Machilus leptophylla, Litsea elongate, Acer pubinerve and Distylium myricoides) in early-stage seedlings in a subtropical evergreen broad-leaved forest in eastern China. Our results consistently showed that the conspecific leaf litter of three species negatively affected the seedling survival. Meanwhile, the traditional conspecific adult neighborhood indices failed to detect this negative conspecific adult effect. Our study revealed that the accumulation of conspecific leaf litter around adults can largely reduce the survival rate of nearby seedlings. Ignoring it could result in underestimation of the importance of negative density dependence and negative species interactions in the natural forest communities.

  19. Changes in carbohydrate metabolism in coconut palms infected with the lethal yellowing phytoplasma.

    PubMed

    Maust, B E; Espadas, F; Talavera, C; Aguilar, M; Santamaría, J M; Oropeza, C

    2003-08-01

    ABSTRACT Lethal yellowing (LY), a disease caused by a phytoplasma, is the most devastating disease affecting coconut (Cocos nucifera) in Mexico. Thousands of coconut palm trees have died on the Yucatan peninsula while plantations in Central America and on the Pacific coast of Mexico are severely threatened. Polymerase chain reaction assays enable identification of incubating palm trees (stage 0+, phytoplasma detected but palm asymptomatic). With the development of LY, palm trees exhibit various visual symptoms such as premature nut fall (stage 1), inflorescence necrosis (stages 2 to 3), leaf chlorosis and senescence (stages 4 to 6), and finally palm death. However, physiological changes occur in the leaves and roots prior to onset of visual symptoms. Stomatal conductance, photosynthesis, and root respiration decreased in stages 0+ to 6. The number of active photosystem II (PSII) reaction centers decreased during stage 2, but maximum quantum use efficiency of PSII remained similar until stage 3 before declining. Sugar and starch concentrations in intermediate leaves (leaf 14) and upper leaves (leaf 4) increased from stage 0- (healthy) to stages 2 to 4, while root carbohydrate concentrations decreased rapidly from stage 0- to stage 0+ (incubating phytoplasma). Although photosynthetic rates and root carbohydrate concentrations decreased, leaf carbohydrate concentrations increased, suggesting inhibition of sugar transport in the phloem leading to stress in sink tissues and development of visual symptoms of LY.

  20. Seasonal variation in nutrient utilization shapes gut microbiome structure and function in wild giant pandas.

    PubMed

    Wu, Qi; Wang, Xiao; Ding, Yun; Hu, Yibo; Nie, Yonggang; Wei, Wei; Ma, Shuai; Yan, Li; Zhu, Lifeng; Wei, Fuwen

    2017-09-13

    Wild giant pandas use different parts of bamboo (shoots, leaves and stems) and different bamboo species at different times of the year. Their usage of bamboo can be classified temporally into a distinct leaf stage, shoot stage and transition stage. An association between this usage pattern and variation in the giant panda gut microbiome remains unknown. Here, we found associations using a gut metagenomic approach and nutritional analyses whereby diversity of the gut microbial community in the leaf and shoot stages was significantly different. Functional metagenomic analysis showed that in the leaf stage, bacteria species over-represented genes involved in raw fibre utilization and cell cycle control. Thus, raw fibre utilization by the gut microbiome was guaranteed during the nutrient-deficient leaf stage by reinforcing gut microbiome robustness. During the protein-abundant shoot stage, the functional capacity of the gut microbiome expanded to include prokaryotic secretion and signal transduction activity, suggesting active interactions between the gut microbiome and host. These results illustrate that seasonal nutrient variation in wild giant pandas substantially influences gut microbiome composition and function. Nutritional interactions between gut microbiomes and hosts appear to be complex and further work is needed. © 2017 The Author(s).

  1. Soil coring at multiple field environments can directly quantify variation in deep root traits to select wheat genotypes for breeding.

    PubMed

    Wasson, A P; Rebetzke, G J; Kirkegaard, J A; Christopher, J; Richards, R A; Watt, M

    2014-11-01

    We aim to incorporate deep root traits into future wheat varieties to increase access to stored soil water during grain development, which is twice as valuable for yield as water captured at younger stages. Most root phenotyping efforts have been indirect studies in the laboratory, at young plant stages, or using indirect shoot measures. Here, soil coring to 2 m depth was used across three field environments to directly phenotype deep root traits on grain development (depth, descent rate, density, length, and distribution). Shoot phenotypes at coring included canopy temperature depression, chlorophyll reflectance, and green leaf scoring, with developmental stage, biomass, and yield. Current varieties, and genotypes with breeding histories and plant architectures expected to promote deep roots, were used to maximize identification of variation due to genetics. Variation was observed for deep root traits (e.g. 111.4-178.5cm (60%) for depth; 0.09-0.22cm/°C day (144%) for descent rate) using soil coring in the field environments. There was significant variation for root traits between sites, and variation in the relative performance of genotypes between sites. However, genotypes were identified that performed consistently well or poorly at both sites. Furthermore, high-performing genotypes were statistically superior in root traits than low-performing genotypes or commercial varieties. There was a weak but significant negative correlation between green leaf score (-0.5), CTD (0.45), and rooting depth and a positive correlation for chlorophyll reflectance (0.32). Shoot phenotypes did not predict other root traits. This study suggests that field coring can directly identify variation in deep root traits to speed up selection of genotypes for breeding programmes. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. Herbivore-induced maize leaf volatiles affect attraction and feeding behavior of Spodoptera littoralis caterpillars

    PubMed Central

    von Mérey, Georg E.; Veyrat, Nathalie; D'Alessandro, Marco; Turlings, Ted C. J.

    2013-01-01

    Plants under herbivore attack emit volatile organic compounds (VOCs) that can serve as foraging cues for natural enemies. Adult females of Lepidoptera, when foraging for host plants to deposit eggs, are commonly repelled by herbivore-induced VOCs, probably to avoid competition and natural enemies. Their larval stages, on the other hand, have been shown to be attracted to inducible VOCs. We speculate that this contradicting behavior of lepidopteran larvae is due to a need to quickly find a new suitable host plant if they have fallen to the ground. However, once they are on a plant they might avoid the sites with fresh damage to limit competition and risk of cannibalism by conspecifics, as well as exposure to natural enemies. To test this we studied the effect of herbivore-induced VOCs on the attraction of larvae of the moth Spodoptera littoralis and on their feeding behavior. The experiments further considered the importance of previous feeding experience on the responses of the larvae. It was confirmed that herbivore-induced VOCs emitted by maize plants are attractive to the larvae, but exposure to the volatiles decreased the growth rate of caterpillars at early developmental stages. Larvae that had fed on maize previously were more attracted by VOCs of induced maize than larvae that had fed on artificial diet. At relatively high concentrations synthetic green leaf volatiles, indicative of fresh damage, also negatively affected the growth rate of caterpillars, but not at low concentrations. In all cases, feeding by the later stages of the larvae was not affected by the VOCs. The results are discussed in the context of larval foraging behavior under natural conditions, where there may be a trade-off between using available host plant signals and avoiding competitors and natural enemies. PMID:23825475

  3. Adding a Piece to the Leaf Epidermal Cell Shape Puzzle.

    PubMed

    von Wangenheim, Daniel; Wells, Darren M; Bennett, Malcolm J

    2017-11-06

    The jigsaw puzzle-shaped pavement cells in the leaf epidermis collectively function as a load-bearing tissue that controls organ growth. In this issue of Developmental Cell, Majda et al. (2017) shed light on how the jigsaw shape can arise from localized variations in wall stiffness between adjacent epidermal cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Heat waves imposed during early pod development in soybean (Glycine max) cause significant yield loss despite a rapid recovery from oxidative stress.

    PubMed

    Siebers, Matthew H; Yendrek, Craig R; Drag, David; Locke, Anna M; Rios Acosta, Lorena; Leakey, Andrew D B; Ainsworth, Elizabeth A; Bernacchi, Carl J; Ort, Donald R

    2015-08-01

    Heat waves already have a large impact on crops and are predicted to become more intense and more frequent in the future. In this study, heat waves were imposed on soybean using infrared heating technology in a fully open-air field experiment. Five separate heat waves were applied to field-grown soybean (Glycine max) in central Illinois, three in 2010 and two in 2011. Thirty years of historical weather data from Illinois were analyzed to determine the length and intensity of a regionally realistic heat wave resulting in experimental heat wave treatments during which day and night canopy temperatures were elevated 6 °C above ambient for 3 days. Heat waves were applied during early or late reproductive stages to determine whether and when heat waves had an impact on carbon metabolism and seed yield. By the third day of each heat wave, net photosynthesis (A), specific leaf weight (SLW), and leaf total nonstructural carbohydrate concentration (TNC) were decreased, while leaf oxidative stress was increased. However, A, SLW, TNC, and measures of oxidative stress were no different than the control ca. 12 h after the heat waves ended, indicating rapid physiological recovery from the high-temperature stress. That end of season seed yield was reduced (~10%) only when heat waves were applied during early pod developmental stages indicates the yield loss had more to do with direct impacts of the heat waves on reproductive process than on photosynthesis. Soybean was unable to mitigate yield loss after heat waves given during late reproductive stages. This study shows that short high-temperature stress events that reduce photosynthesis and increase oxidative stress resulted in significant losses to soybean production in the Midwest, U.S. The study also suggests that to mitigate heat wave-induced yield loss, soybean needs improved reproductive and photosynthetic tolerance to high but increasingly common temperatures. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  5. Genome-Wide Association Mapping of Leaf Rust Response in a Durum Wheat Worldwide Germplasm Collection.

    PubMed

    Aoun, Meriem; Breiland, Matthew; Kathryn Turner, M; Loladze, Alexander; Chao, Shiaoman; Xu, Steven S; Ammar, Karim; Anderson, James A; Kolmer, James A; Acevedo, Maricelis

    2016-11-01

    Leaf rust (caused by Erikss. []) is increasingly impacting durum wheat ( L. var. ) production with the recent appearance of races with virulence to widely grown cultivars in many durum producing areas worldwide. A highly virulent race on durum wheat was recently detected in Kansas. This race may spread to the northern Great Plains, where most of the US durum wheat is produced. The objective of this study was to identify sources of resistance to several races from the United States and Mexico at seedling stage in the greenhouse and at adult stage in field experiments. Genome-wide association study (GWAS) was used to identify single-nucleotide polymorphism (SNP) markers associated with leaf rust response in a worldwide durum wheat collection of 496 accessions. Thirteen accessions were resistant across all experiments. Association mapping revealed 88 significant SNPs associated with leaf rust response. Of these, 33 SNPs were located on chromosomes 2A and 2B, and 55 SNPs were distributed across all other chromosomes except for 1B and 7B. Twenty markers were associated with leaf rust response at seedling stage, while 68 markers were associated with leaf rust response at adult plant stage. The current study identified a total of 14 previously uncharacterized loci associated with leaf rust response in durum wheat. The discovery of these loci through association mapping (AM) is a significant step in identifying useful sources of resistance that can be used to broaden the relatively narrow leaf rust resistance spectrum in durum wheat germplasm. Copyright © 2016 Crop Science Society of America.

  6. Developmental instability and fitness in Periploca laevigata experiencing grazing disturbance

    USGS Publications Warehouse

    Alados, C.L.; Giner, M.L.; Dehesa, L.; Escos, J.; Barroso, F.; Emlen, J.M.; Freeman, D.C.

    2002-01-01

    We investigated the sensitivity of developmental instability measurements (leaf fluctuating asymmetry, floral radial asymmetry, and shoot translational asymmetry) to a long‐standing natural stress (grazing) in a palatable tannin‐producing shrub (Periploca laevigata Aiton). We also assessed the relationship between these measures of developmental instability and fitness components (growth and floral production). Developmental instability, measured by translational asymmetry, was the most accurate estimator of a plant’s condition and, consequently, environmental stress. Plants with less translational asymmetry grew more and produced more flowers. Plants from the medium‐grazed population were developmentally more stable, as estimated by translational and floral asymmetry, than either more heavily or more lightly grazed populations. Leaf fluctuating asymmetry was positively correlated with tannin concentration. The pattern of internode growth also responded to grazing impact. Plants under medium to heavy grazing pressure accelerated early growth and consequently escaped herbivory later in the season, i.e., at the beginning of the spring, when grazing activity was concentrated in herbaceous plants. Periploca laevigata accelerated growth and finished growing sooner than in the other grazing treatment. Thus, its annual growth was more mature and less palatable later in the season when grazers typically concentrate on shrubs. The reduction of developmental instability under medium grazing is interpreted as a direct effect of grazing and not as the release from competition.

  7. The origin and early evolution of vascular plant shoots and leaves.

    PubMed

    Harrison, C Jill; Morris, Jennifer L

    2018-02-05

    The morphology of plant fossils from the Rhynie chert has generated longstanding questions about vascular plant shoot and leaf evolution, for instance, which morphologies were ancestral within land plants, when did vascular plants first arise and did leaves have multiple evolutionary origins? Recent advances combining insights from molecular phylogeny, palaeobotany and evo-devo research address these questions and suggest the sequence of morphological innovation during vascular plant shoot and leaf evolution. The evidence pinpoints testable developmental and genetic hypotheses relating to the origin of branching and indeterminate shoot architectures prior to the evolution of leaves, and demonstrates underestimation of polyphyly in the evolution of leaves from branching forms in 'telome theory' hypotheses of leaf evolution. This review discusses fossil, developmental and genetic evidence relating to the evolution of vascular plant shoots and leaves in a phylogenetic framework.This article is part of a discussion meeting issue 'The Rhynie cherts: our earliest terrestrial ecosystem revisited'. © 2017 The Authors.

  8. Developmental validation of a Cannabis sativa STR multiplex system for forensic analysis.

    PubMed

    Howard, Christopher; Gilmore, Simon; Robertson, James; Peakall, Rod

    2008-09-01

    A developmental validation study based on recommendations of the Scientific Working Group on DNA Analysis Methods (SWGDAM) was conducted on a multiplex system of 10 Cannabis sativa short tandem repeat loci. Amplification of the loci in four multiplex reactions was tested across DNA from dried root, stem, and leaf sources, and DNA from fresh, frozen, and dried leaf tissue with a template DNA range of 10.0-0.01 ng. The loci were amplified and scored consistently for all DNA sources when DNA template was in the range of 10.0-1.0 ng. Some allelic dropout and PCR failure occurred in reactions with lower template DNA amounts. Overall, amplification was best using 10.0 ng of template DNA from dried leaf tissue indicating that this is the optimal source material. Cross species amplification was observed in Humulus lupulus for three loci but there was no allelic overlap. This is the first study following SWGDAM validation guidelines to validate short tandem repeat markers for forensic use in plants.

  9. The origin and early evolution of vascular plant shoots and leaves

    PubMed Central

    2018-01-01

    The morphology of plant fossils from the Rhynie chert has generated longstanding questions about vascular plant shoot and leaf evolution, for instance, which morphologies were ancestral within land plants, when did vascular plants first arise and did leaves have multiple evolutionary origins? Recent advances combining insights from molecular phylogeny, palaeobotany and evo–devo research address these questions and suggest the sequence of morphological innovation during vascular plant shoot and leaf evolution. The evidence pinpoints testable developmental and genetic hypotheses relating to the origin of branching and indeterminate shoot architectures prior to the evolution of leaves, and demonstrates underestimation of polyphyly in the evolution of leaves from branching forms in ‘telome theory’ hypotheses of leaf evolution. This review discusses fossil, developmental and genetic evidence relating to the evolution of vascular plant shoots and leaves in a phylogenetic framework. This article is part of a discussion meeting issue ‘The Rhynie cherts: our earliest terrestrial ecosystem revisited’. PMID:29254961

  10. Developmental Role and Auxin Responsiveness of Class III Homeodomain Leucine Zipper Gene Family Members in Rice1[C][W][OA

    PubMed Central

    Itoh, Jun-Ichi; Hibara, Ken-Ichiro; Sato, Yutaka; Nagato, Yasuo

    2008-01-01

    Members of the Class III homeodomain leucine zipper (Class III HD-Zip) gene family are central regulators of crucial aspects of plant development. To better understand the roles of five Class III HD-Zip genes in rice (Oryza sativa) development, we investigated their expression patterns, ectopic expression phenotypes, and auxin responsiveness. Four genes, OSHB1 to OSHB4, were expressed in a localized domain of the shoot apical meristem (SAM), the adaxial cells of leaf primordia, the leaf margins, and the xylem tissue of vascular bundles. In contrast, expression of OSHB5 was observed only in phloem tissue. Plants ectopically expressing microRNA166-resistant versions of the OSHB3 gene exhibited severe defects, including the ectopic production of leaf margins, shoots, and radialized leaves. The treatment of seedlings with auxin quickly induced ectopic OSHB3 expression in the entire region of the SAM, but not in other tissues. Furthermore, this ectopic expression of OSHB3 was correlated with leaf initiation defects. Our findings suggest that rice Class III HD-Zip genes have conserved functions with their homologs in Arabidopsis (Arabidopsis thaliana), but have also acquired specific developmental roles in grasses or monocots. In addition, some Class III HD-Zip genes may regulate the leaf initiation process in the SAM in an auxin-dependent manner. PMID:18567825

  11. The structural and photosynthetic characteristics of the exposed peduncle of wheat (Triticum aestivum L.): an important photosynthate source for grain-filling.

    PubMed

    Kong, Lingan; Wang, Fahong; Feng, Bo; Li, Shengdong; Si, Jisheng; Zhang, Bin

    2010-07-11

    In wheat (Triticum aestivum L), the flag leaf has been thought of as the main source of assimilates for grain growth, whereas the peduncle has commonly been thought of as a transporting organ. The photosynthetic characteristics of the exposed peduncle have therefore been neglected. In this study, we investigated the anatomical traits of the exposed peduncle during wheat grain ontogenesis, and we compared the exposed peduncle to the flag leaf with respect to chloroplast ultrastructure, photosystem II (PSII) quantum yield, and phosphoenolpyruvate carboxylase (PEPCase; EC 4.1.1.31) activity. Transmission electron microscope observations showed well-developed chloroplasts with numerous granum stacks at grain-filling stages 1, 2 and 3 in both the flag leaf and the exposed peduncle. In the exposed peduncle, the membranes constituting the thylakoids were very distinct and plentiful, but in the flag leaf, there was a sharp breakdown at stage 4 and complete disintegration of the thylakoid membranes at stage 5. PSII quantum yield assays revealed that the photosynthetic efficiency remained constant at stages 1, 2 and 3 and then declined in both organs. However, the decline occurred more dramatically in the flag leaf than in the exposed peduncle. An enzyme assay showed that at stages 1 and 2 the PEPCase activity was lower in the exposed peduncle than in the flag leaf; but at stages 3, 4 and 5 the value was higher in the exposed peduncle, with a particularly significant difference observed at stage 5. Subjecting the exposed part of the peduncle to darkness following anthesis reduced the rate of grain growth. Our results suggest that the exposed peduncle is a photosynthetically active organ that produces photosynthates and thereby makes a crucial contribution to grain growth, particularly during the late stages of grain-filling.

  12. Estimating cadmium concentration in the edible part of Capsicum annuum using hyperspectral models.

    PubMed

    Wang, Ting; Wei, Hong; Zhou, Cui; Gu, Yanwen; Li, Rui; Chen, Hongchun; Ma, Wenchao

    2017-10-09

    Hyperspectral remote sensing can be applied to the rapid and nondestructive monitoring of heavy-metal pollution in crops. To realize the rapid and real-time detection of cadmium in the edible part (fruit) of Capsicum annuum, the leaf spectral reflectance of plants exposed to different levels of cadmium stress was measured using hyperspectral remote sensing during four growth stages. The spectral indices or bands sensitive to cadmium stress were determined by correlation analysis, and hyperspectral estimation models for predicting the cadmium content in the fruit of C. annuum during the mature growth stage were established. The models were cross validated by taking the sensitive spectral indices in the bud stage and the sensitive spectral bands in the flowering stage as the input variables. The results indicated that cadmium accumulated in the leaves and fruit of C. annuum and leaf cadmium content in the three early growth stages were correlated with the cadmium content of the pepper in the mature stage. Leaf spectral reflectance was sensitive to cadmium stress, and the first derivative of the original spectral reflectance was strongly correlated with leaf cadmium content during all growth stages. Among the established models, the multiple regression model based on the sensitive spectral bands in the flowering stage was optimal for predicting fruit cadmium content of the pepper. This model provides a promising method to ensure food safety during the early growth stage of the plant.

  13. The ULTRAPETALA1 trxG factor contributes to patterning the Arabidopsis adaxial-abaxial leaf polarity axis

    USDA-ARS?s Scientific Manuscript database

    The SAND domain protein ULTRAPETALA1 (ULT1) functions as a trithorax group factor that regulates a variety of developmental processes in Arabidopsis. We have recently shown that ULT1 regulates developmental patterning in the gynoecia and leaves. ULT1 acts together with the KANADI1 (KAN1) transcripti...

  14. [Effects of tobacco garlic crop rotation and intercropping on tobacco yield and rhizosphere soil phosphorus fractions].

    PubMed

    Tang, Biao; Zhang, Xi-zhou; Yang, Xian-bin

    2015-07-01

    A field plot experiment was conducted to investigate the tobacco yield and different forms of soil phosphorus under tobacco garlic crop rotation and intercropping patterns. The results showed that compared with tobacco monoculture, the tobacco yield and proportion of middle/high class of tobacco leaves to total leaves were significantly increased in tobacco garlic crop rotation and intercropping, and the rhizosphere soil available phosphorus contents were 1.3 and 1.7 times as high as that of tobacco monoculture at mature stage of lower leaf. For the inorganic phosphorus in rhizosphere and non-rhizosphere soil in different treatments, the contents of O-P and Fe-P were the highest, followed by Ca2-P and Al-P, and Ca8-P and Ca10-P were the lowest. Compared with tobacco monoculture and tobacco garlic crop intercropping, the Ca2-P concentration in rhizosphere soil under tobacco garlic crop rotation at mature stage of upper leaf, the Ca8-P concentration at mature stage of lower leaf, and the Ca10-P concentration at mature stage of middle leaf were lowest. The Al-P concentrations under tobacco garlic crop rotation and intercropping were 1.6 and 1.9 times, and 1.2 and 1.9 times as much as that under tobacco monoculture in rhizosphere soil at mature stages of lower leaf and middle leaf, respectively. The O-P concentrations in rhizosphere soil under tobacco garlic crop rotation and intercropping were significantly lower than that under tobacco monoculture. Compared with tobacco garlic crop intercropping, the tobacco garlic crop rotation could better improve tobacco yield and the proportion of high and middle class leaf by activating O-P, Ca10-P and resistant organic phosphorus in soil.

  15. Improvement of In Vitro Date Palm Plantlet Acclimatization Rate with Kinetin and Hoagland Solution.

    PubMed

    Hassan, Mona M

    2017-01-01

    In vitro propagation of date palm Phoenix dactylifera L. is an ideal method to produce large numbers of healthy plants with specific characteristics and has the ability to transfer plantlets to ex vitro conditions at low cost and with a high survival rate. This chapter describes optimized acclimatization procedures for in vitro date palm plantlets. Primarily, the protocol presents the use of kinetin and Hoagland solution to enhance the growth of Barhee cv. plantlets in the greenhouse at two stages of acclimatization and the appropriate planting medium under shade and sunlight in the nursery. Foliar application of kinetin (20 mg/L) is recommended at the first stage. A combination between soil and foliar application of 50% Hoagland solution is favorable to plant growth and developmental parameters including plant height, leaf width, stem base diameter, chlorophyll A and B, carotenoids, and indoles. The optimum values of vegetative growth parameters during the adaptation stage in a shaded nursery are achieved using planting medium containing peat moss/perlite 2:1 (v/v), while in a sunlight nursery, clay/perlite/compost at equal ratio is the best. This protocol is suitable for large-scale production of micropropagated date palm plantlets.

  16. A Lifespan Developmental-Stage Approach to Tobacco and Other Drug Abuse Prevention

    PubMed Central

    2013-01-01

    At least by informal design, tobacco and other drug abuse prevention programs are tailored to human developmental stage. However, few papers have been written to examine how programming has been formulated as a function of developmental stage throughout the lifespan. In this paper, I briefly define lifespan development, how it pertains to etiology of tobacco and other drug use, and how prevention programming might be constructed by five developmental stages: (a) young child, (b) older child, (c) young teen, (d) older teen, and (e) adult (emerging, young-to-middle and older adult substages). A search of the literature on tobacco and other drug abuse prevention by developmental stage was conducted, and multiple examples of programs are provided for each stage. A total of 34 programs are described as examples of each stage (five-young children, 12-older children, eight-young teens, four-older teens, and five-adults). Implications for future program development research are stated. In particular, I suggest that programming continue to be developed for all stages in the lifespan, as opposed to focusing on a single stage and that developmentally appropriate features continues to be pursued to maximize program impact. PMID:25298961

  17. Understanding of Leaf Development-the Science of Complexity.

    PubMed

    Malinowski, Robert

    2013-06-25

    The leaf is the major organ involved in light perception and conversion of solar energy into organic carbon. In order to adapt to different natural habitats, plants have developed a variety of leaf forms, ranging from simple to compound, with various forms of dissection. Due to the enormous cellular complexity of leaves, understanding the mechanisms regulating development of these organs is difficult. In recent years there has been a dramatic increase in the use of technically advanced imaging techniques and computational modeling in studies of leaf development. Additionally, molecular tools for manipulation of morphogenesis were successfully used for in planta verification of developmental models. Results of these interdisciplinary studies show that global growth patterns influencing final leaf form are generated by cooperative action of genetic, biochemical, and biomechanical inputs. This review summarizes recent progress in integrative studies on leaf development and illustrates how intrinsic features of leaves (including their cellular complexity) influence the choice of experimental approach.

  18. Understanding of Leaf Development—the Science of Complexity

    PubMed Central

    Malinowski, Robert

    2013-01-01

    The leaf is the major organ involved in light perception and conversion of solar energy into organic carbon. In order to adapt to different natural habitats, plants have developed a variety of leaf forms, ranging from simple to compound, with various forms of dissection. Due to the enormous cellular complexity of leaves, understanding the mechanisms regulating development of these organs is difficult. In recent years there has been a dramatic increase in the use of technically advanced imaging techniques and computational modeling in studies of leaf development. Additionally, molecular tools for manipulation of morphogenesis were successfully used for in planta verification of developmental models. Results of these interdisciplinary studies show that global growth patterns influencing final leaf form are generated by cooperative action of genetic, biochemical, and biomechanical inputs. This review summarizes recent progress in integrative studies on leaf development and illustrates how intrinsic features of leaves (including their cellular complexity) influence the choice of experimental approach. PMID:27137383

  19. OsHKT1;4-mediated Na(+) transport in stems contributes to Na(+) exclusion from leaf blades of rice at the reproductive growth stage upon salt stress.

    PubMed

    Suzuki, Kei; Yamaji, Naoki; Costa, Alex; Okuma, Eiji; Kobayashi, Natsuko I; Kashiwagi, Tatsuhiko; Katsuhara, Maki; Wang, Cun; Tanoi, Keitaro; Murata, Yoshiyuki; Schroeder, Julian I; Ma, Jian Feng; Horie, Tomoaki

    2016-01-19

    Na(+) exclusion from leaf blades is one of the key mechanisms for glycophytes to cope with salinity stress. Certain class I transporters of the high-affinity K(+) transporter (HKT) family have been demonstrated to mediate leaf blade-Na(+) exclusion upon salinity stress via Na(+)-selective transport. Multiple HKT1 transporters are known to function in rice (Oryza sativa). However, the ion transport function of OsHKT1;4 and its contribution to the Na(+) exclusion mechanism in rice remain to be elucidated. Here, we report results of the functional characterization of the OsHKT1;4 transporter in rice. OsHKT1;4 mediated robust Na(+) transport in Saccharomyces cerevisiae and Xenopus laevis oocytes. Electrophysiological experiments demonstrated that OsHKT1;4 shows strong Na(+) selectivity among cations tested, including Li(+), Na(+), K(+), Rb(+), Cs(+), and NH4 (+), in oocytes. A chimeric protein, EGFP-OsHKT1;4, was found to be functional in oocytes and targeted to the plasma membrane of rice protoplasts. The level of OsHKT1;4 transcripts was prominent in leaf sheaths throughout the growth stages. Unexpectedly however, we demonstrate here accumulation of OsHKT1;4 transcripts in the stem including internode II and peduncle in the reproductive growth stage. Moreover, phenotypic analysis of OsHKT1;4 RNAi plants in the vegetative growth stage revealed no profound influence on the growth and ion accumulation in comparison with WT plants upon salinity stress. However, imposition of salinity stress on the RNAi plants in the reproductive growth stage caused significant Na(+) overaccumulation in aerial organs, in particular, leaf blades and sheaths. In addition, (22)Na(+) tracer experiments using peduncles of RNAi and WT plants suggested xylem Na(+) unloading by OsHKT1;4. Taken together, our results indicate a newly recognized function of OsHKT1;4 in Na(+) exclusion in stems together with leaf sheaths, thus excluding Na(+) from leaf blades of a japonica rice cultivar in the reproductive growth stage, but the contribution is low when the plants are in the vegetative growth stage.

  20. Error analysis of leaf area estimates made from allometric regression models

    NASA Technical Reports Server (NTRS)

    Feiveson, A. H.; Chhikara, R. S.

    1986-01-01

    Biological net productivity, measured in terms of the change in biomass with time, affects global productivity and the quality of life through biochemical and hydrological cycles and by its effect on the overall energy balance. Estimating leaf area for large ecosystems is one of the more important means of monitoring this productivity. For a particular forest plot, the leaf area is often estimated by a two-stage process. In the first stage, known as dimension analysis, a small number of trees are felled so that their areas can be measured as accurately as possible. These leaf areas are then related to non-destructive, easily-measured features such as bole diameter and tree height, by using a regression model. In the second stage, the non-destructive features are measured for all or for a sample of trees in the plots and then used as input into the regression model to estimate the total leaf area. Because both stages of the estimation process are subject to error, it is difficult to evaluate the accuracy of the final plot leaf area estimates. This paper illustrates how a complete error analysis can be made, using an example from a study made on aspen trees in northern Minnesota. The study was a joint effort by NASA and the University of California at Santa Barbara known as COVER (Characterization of Vegetation with Remote Sensing).

  1. Assessment of Growth Using Mandibular Canine Calcification Stages and Its Correlation with Modified MP3 Stages.

    PubMed

    Nayak, Reshma; Nayak, Us Krishna; Hegde, Gautam

    2010-01-01

    Orthodontic diagnosis and treatment planning for growing children must involve growth prediction, especially in the treatment of skeletal problems. Studies have shown that a strong association exists between skeletal maturity and dental calcification stages. The present study was therefore taken up to provide a simple and practical method for assessing skeletal maturity using a dental periapical film and standard dental X-ray machine, to compare the developmental stages of the mandibular canine with that of developmental stages of modified MP3 and to find out if any correlation exists, to determine if the developmental stages of the mandibular canine alone can be used as a reliable indicator for assessment of skeletal maturity. A total of 160 periapical radiographs (80 males and 80 females), of the mandibular right canine and the MP3 region was taken and assessed according to the Dermirjian's stages of dental calcification and the modified MP3 stages. The correlation between the developmental stages of MP3 and the mandibular right canine in male and female groups, is of high statistical significance (p = 0.001). The correlation coefficient between MP3 stages and developmental stages of mandibular canine and chronological age in male and females was found to be not significant. The correlation between the mandibular canine calcification stages and MP3 stages was found to be significant. The developmental stages of the mandibular canine could be used very reliably as a sole indicator for assessment of skeletal maturity.

  2. DEVELOPMENTAL DIVERSITY OF AMPHIBIANS

    PubMed Central

    Elinson, Richard P.; del Pino, Eugenia M.

    2011-01-01

    The current model amphibian, Xenopus laevis, develops rapidly in water to a tadpole which metamorphoses into a frog. Many amphibians deviate from the X. laevis developmental pattern. Among other adaptations, their embryos develop in foam nests on land or in pouches on their mother’s back or on a leaf guarded by a parent. The diversity of developmental patterns includes multinucleated oogenesis, lack of RNA localization, huge non-pigmented eggs, and asynchronous, irregular early cleavages. Variations in patterns of gastrulation highlight the modularity of this critical developmental period. Many species have eliminated the larva or tadpole and directly develop to the adult. The wealth of developmental diversity among amphibians coupled with the wealth of mechanistic information from X. laevis permit comparisons that provide deeper insights into developmental processes. PMID:22662314

  3. The Growth of Complexity and Accuracy in L2 French: Past Observations and Recent Applications of Developmental Stages

    ERIC Educational Resources Information Center

    Agren, Malin; Granfeldt, Jonas; Schlyter, Suzanne

    2012-01-01

    This chapter addresses the question of the growth of accuracy and complexity in L2 French from the perspective of developmental sequences of morphosyntax, developmental stages and linguistic profiling. The six developmental stages for L2 French proposed by Bartning and Schlyter (2004) are presented and exemplified and new results are added to the…

  4. The Transcriptional Responses and Metabolic Consequences of Acclimation to Elevated Light Exposure in Grapevine Berries

    PubMed Central

    du Plessis, Kari; Young, Philip R.; Eyéghé-Bickong, Hans A.; Vivier, Melané A.

    2017-01-01

    An increasing number of field studies that focus on grapevine berry development and ripening implement systems biology approaches; the results are highlighting not only the intricacies of the developmental programming/reprogramming that occurs, but also the complexity of how profoundly the microclimate influences the metabolism of the berry throughout the different stages of development. In a previous study we confirmed that a leaf removal treatment to Sauvignon Blanc grapes, grown in a highly characterized vineyard, primarily affected the level of light exposure to the berries throughout their development. A full transcriptomic analysis of berries from this model vineyard details the underlying molecular responses of the berries in reaction to the exposure and show how the berries acclimated to the imposing light stress. Gene expression involved in the protection of the photosynthetic machinery through rapid protein-turnover and the expression of photoprotective flavonoid compounds were most significantly affected in green berries. Overall, the transcriptome analysis showed that the berries implemented multiple stress-mitigation strategies in parallel and metabolite analysis was used to support the main findings. Combining the transcriptome data and amino acid profiling provided evidence that amino acid catabolism probably contributed to the mitigation of a likely energetic deficit created by the upregulation of (energetically) costly stress defense mechanisms. Furthermore, the rapid turnover of essential proteins involved in the maintenance of primary metabolism and growth in the photosynthetically active grapes appeared to provide precursors for the production of protective secondary metabolites such as apocarotenoids and flavonols in the ripening stages of the berries. Taken together, these results confirmed that the green grape berries responded to light stress much like other vegetative organs and were able to acclimate to the increased exposure, managing their metabolism and energy requirements to sustain the developmental cycle toward ripening. The typical metabolic consequences of leaf removal on grape berries can therefore now be linked to increased light exposure through mechanisms of photoprotection in green berries that leads toward acclimation responses that remain intact until ripening. PMID:28775728

  5. The Transcriptional Responses and Metabolic Consequences of Acclimation to Elevated Light Exposure in Grapevine Berries.

    PubMed

    du Plessis, Kari; Young, Philip R; Eyéghé-Bickong, Hans A; Vivier, Melané A

    2017-01-01

    An increasing number of field studies that focus on grapevine berry development and ripening implement systems biology approaches; the results are highlighting not only the intricacies of the developmental programming/reprogramming that occurs, but also the complexity of how profoundly the microclimate influences the metabolism of the berry throughout the different stages of development. In a previous study we confirmed that a leaf removal treatment to Sauvignon Blanc grapes, grown in a highly characterized vineyard, primarily affected the level of light exposure to the berries throughout their development. A full transcriptomic analysis of berries from this model vineyard details the underlying molecular responses of the berries in reaction to the exposure and show how the berries acclimated to the imposing light stress. Gene expression involved in the protection of the photosynthetic machinery through rapid protein-turnover and the expression of photoprotective flavonoid compounds were most significantly affected in green berries. Overall, the transcriptome analysis showed that the berries implemented multiple stress-mitigation strategies in parallel and metabolite analysis was used to support the main findings. Combining the transcriptome data and amino acid profiling provided evidence that amino acid catabolism probably contributed to the mitigation of a likely energetic deficit created by the upregulation of (energetically) costly stress defense mechanisms. Furthermore, the rapid turnover of essential proteins involved in the maintenance of primary metabolism and growth in the photosynthetically active grapes appeared to provide precursors for the production of protective secondary metabolites such as apocarotenoids and flavonols in the ripening stages of the berries. Taken together, these results confirmed that the green grape berries responded to light stress much like other vegetative organs and were able to acclimate to the increased exposure, managing their metabolism and energy requirements to sustain the developmental cycle toward ripening. The typical metabolic consequences of leaf removal on grape berries can therefore now be linked to increased light exposure through mechanisms of photoprotection in green berries that leads toward acclimation responses that remain intact until ripening.

  6. Plant-specific volatile organic compound emission rates from young and mature leaves of Mediterranean vegetation

    NASA Astrophysics Data System (ADS)

    Bracho-Nunez, Araceli; Welter, Saskia; Staudt, Michael; Kesselmeier, Jürgen

    2011-08-01

    The seasonality of vegetation, i.e., developmental stages and phenological processes, affects the emission of volatile organic compounds (VOCs). Despite the potential significance, the contributions of seasonality to VOC emission quality and quantity are not well understood and are therefore often ignored in emission simulations. We investigated the VOC emission patterns of young and mature leaves of several Mediterranean plant species in relation to their physiological and developmental changes during the growing period and estimated Es. Foliar emissions of isoprenoids and oxygenated VOCs like methanol and acetone were measured online by means of a proton transfer reaction mass spectrometer (PTR-MS) and offline with gas chromatography coupled with a mass spectrometer and flame ionization detector. The results suggest that VOC emission is a developmentally regulated process and that quantitative and qualitative variability is plant species specific. Leaf ontogeny clearly influenced both the VOC Es and the relative importance of different VOCs. Methanol was the major compound contributing to the sum of target VOC emissions in young leaves (11.8 ± 10.4 μg g-1 h-1), while its contribution was minor in mature leaves (4.1 ± 4.1 μg g-1 h-1). Several plant species showed a decrease or complete subsidence of monoterpene, sesquiterpene, and acetone emissions upon maturity, perhaps indicating a potential response to the higher defense demands of young emerging leaves.

  7. Genome-wide expression analysis of soybean NF-Y genes reveals potential function in development and drought response.

    PubMed

    Quach, Truyen N; Nguyen, Hanh T M; Valliyodan, Babu; Joshi, Trupti; Xu, Dong; Nguyen, Henry T

    2015-06-01

    Nuclear factor-Y (NF-Y), a heterotrimeric transcription factor, is composed of NF-YA, NF-YB and NF-YC proteins. In plants, there are usually more than 10 genes for each family and their members have been identified to be key regulators in many developmental and physiological processes controlling gametogenesis, embryogenesis, nodule development, seed development, abscisic acid (ABA) signaling, flowering time, primary root elongation, blue light responses, endoplasmic reticulum (ER) stress response and drought tolerance. Taking the advantages of the recent soybean genome draft and information on functional characterizations of nuclear factor Y (NF-Y) transcription factor family in plants, we identified 21 GmNF-YA, 32 GmNF-YB, and 15 GmNF-YC genes in the soybean (Glycine max) genome. Phylogenetic analyses show that soybean's proteins share strong homology to Arabidopsis and many of them are closely related to functionally characterized NF-Y in plants. Expression analysis in various tissues of flower, leaf, root, seeds of different developmental stages, root hairs under rhizobium inoculation, and drought-treated roots and leaves revealed that certain groups of soybean NF-Y are likely involved in specific developmental and stress responses. This study provides extensive evaluation of the soybean NF-Y family and is particularly useful for further functional characterization of GmNF-Y proteins in seed development, nodulation and drought adaptation of soybean.

  8. Canopy and seasonal profiles of nitrate reductase in soybeans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harper, J.E.; Hageman, R.H.

    1972-01-01

    Nitrate reductase activity of soybeans (Glycine max L. Merr.) was evaluated in soil plots and outdoor hydroponic gravel culture systems throughout the growing season. Nitrate reductase profiles within the plant canopy were also established. Mean activity per gram fresh weight per hour of the entire plant canopy was highest in the seedling stage while total activity (activity per gram fresh weight per hour times the total leaf weight) reached a maximum when plants were in the full bloom to midpod fill stage. Nitrate reductase activity per gram fresh weight per hour was highest in the uppermost leaf just prior tomore » full expansion and declined with leaf positions lower in the canopy. Total nitrate reductase activity per leaf was also highest in the uppermost fully expanded leaf during early growth stages. Maximum total activity shifted to leaf positions lower in the plant canopy with later growth stages. Nitrate reductase activity of soybeans grown in hydroponic systems was significantly higher than activity of adjacent soil grown plants at later growth stages, which suggested that under normal field conditions the potential for nitrate utilization may not be realized. Nitrate reductase activity per gram fresh weight per hour and nitrate content were positively correlated over the growing season with plants grown in either soil or solution culture. Computations based upon the nitrate reductase assay of plants grown in hydroponics indicated that from 1.7 to 1.8 grams N could have been supplied to the plant via the nitrate reductase process. 11 references, 9 figures, 3 tables.« less

  9. Developmental instability: measures of resistance and resilience using pumpkin (Cucurbita pepo L.)

    USGS Publications Warehouse

    Freeman, D. Carl; Brown, Michelle L.; Dobson, Melissa; Jordan, Yolanda; Kizy, Anne; Micallef, Chris; Hancock, Leandria C.; Graham, John H.; Emlen, John M.

    2003-01-01

    Fluctuating asymmetry measures random deviations from bilateral symmetry, and thus estimates developmental instability, the loss of ability by an organism to regulate its development. There have been few rigorous tests of this proposition. Regulation of bilateral symmetry must involve either feedback between the sides or independent regulation toward a symmetric set point. Either kind of regulation should decrease asymmetry over time, but only right–left feedback produces compensatory growth across sides, seen as antipersistent growth following perturbation. Here, we describe the developmental trajectories of perturbed and unperturbed leaves of pumpkin, Cucurbita pepoL., grown at three densities. Covering one side of a leaf with aluminium foil for 24 h perturbed leaf growth. Reduced growth on the perturbed side caused leaves to become more asymmetrical than unperturbed controls. After the treatment the size-corrected asymmetry decreased over time. In addition, rescaled range analysis showed that asymmetry was antipersistent rather than random, i.e. fluctuation in one direction was likely to be followed by fluctuations in the opposite direction. Development involves right–left feedback. This feedback reduced size-corrected asymmetry over time most strongly in the lowest density treatment suggesting that developmental instability results from a lack of resilience rather than resistance. 

  10. Infection Density Dynamics and Phylogeny of Wolbachia Associated with Coconut Hispine Beetle, Brontispa longissima (Gestro) (Coleoptera: Chrysomelidae), by Multilocus Sequence Type (MLST) Genotyping.

    PubMed

    Ali, Habib; Muhammad, Abrar; Hou, Youming

    2018-05-28

    The intracellular bacterium Wolbachia pipientis is widespread in arthropods. Recently, possibilities of novel Wolbachia -mediated hosts, their distribution, and natural rate have been anticipated, and the coconut leaf beetle Brontispa longissima (Gestro) (Coleoptera: Chrysomelidae), which has garnered attention as a serious pest of palms, was subjected to this interrogation. By adopting Wolbachia surface protein ( wsp ) and multilocus sequence type (MLST) genotypic systems, we determined the Wolbachia infection density within host developmental stages, body parts, and tissues, and the results revealed that all the tested samples of B. longissima were infected with the same Wolbachia strain (wLog), suggesting complete vertical transmission. The MLST profile elucidated two new alleles ( ftsZ -234 and coxA-266) that define a new sequence type (ST-483), which indicates the particular genotypic association of B. longissima and Wolbachia . The quantitative real-time PCR analysis revealed a higher infection density in the eggs and adult stage, followed by the abdomen and reproductive tissues, respectively. However, no significant differences were observed in the infection density between sexes. Moreover, the wsp and concatenated MLST alignment analysis of this study with other known Wolbachia-mediated arthropods revealed similar clustering with distinct monophyletic supergroup B. This is the first comprehensive report on the prevalence, infection dynamics, and phylogeny of the Wolbachia endosymbiont in B. longissima , which demonstrated that Wolbachia is ubiquitous across all developmental stages and distributed in the entire body of B. longissima . Understanding the Wolbachia infection dynamics would provide useful insight to build a framework for future investigations, understand its impacts on host physiology, and exploit it as a potential biocontrol agent.

  11. Nitrogen transporter and assimilation genes exhibit developmental stage-selective expression in maize (Zea mays L.) associated with distinct cis-acting promoter motifs.

    PubMed

    Liseron-Monfils, Christophe; Bi, Yong-Mei; Downs, Gregory S; Wu, Wenqing; Signorelli, Tara; Lu, Guangwen; Chen, Xi; Bondo, Eddie; Zhu, Tong; Lukens, Lewis N; Colasanti, Joseph; Rothstein, Steven J; Raizada, Manish N

    2013-10-01

    Nitrogen is considered the most limiting nutrient for maize (Zea mays L.), but there is limited understanding of the regulation of nitrogen-related genes during maize development. An Affymetrix 82K maize array was used to analyze the expression of ≤ 46 unique nitrogen uptake and assimilation probes in 50 maize tissues from seedling emergence to 31 d after pollination. Four nitrogen-related expression clusters were identified in roots and shoots corresponding to, or overlapping, juvenile, adult, and reproductive phases of development. Quantitative real time PCR data was consistent with the existence of these distinct expression clusters. Promoters corresponding to each cluster were screened for over-represented cis-acting elements. The 8-bp distal motif of the Arabidopsis 43-bp nitrogen response element (NRE) was over-represented in nitrogen-related maize gene promoters. This conserved motif, referred to here as NRE43-d8, was previously shown to be critical for nitrate-activated transcription of nitrate reductase (NIA1) and nitrite reductase (NIR1) by the NIN-LIKE PROTEIN 6 (NLP6) in Arabidopsis. Here, NRE43-d8 was over-represented in the promoters of maize nitrate and ammonium transporter genes, specifically those that showed peak expression during early-stage vegetative development. This result predicts an expansion of the NRE-NLP6 regulon and suggests that it may have a developmental component in maize. We also report leaf expression of putative orthologs of nitrite transporters (NiTR1), a transporter not previously reported in maize. We conclude by discussing how each of the four transcriptional modules may be responsible for the different nitrogen uptake and assimilation requirements of leaves and roots at different stages of maize development.

  12. The gall wasp Leptocybe invasa (Hymenoptera: Eulophidae) stimulates different chemical and phytohormone responses in two Eucalyptus varieties that vary in susceptibility to galling.

    PubMed

    Li, X Q; Liu, Y Z; Guo, W F; Solanki, M K; Yang, Z D; Xiang, Y; Ma, Z C; Wen, Y G

    2017-09-01

    Gall-inducing insects produce various types of galls on plants, but little is known about the gall-induction mechanism of these galling insects. The gall wasp Leptocybe invasa Fisher & LaSalle (Hymenoptera: Eulophidae) forms galls of different sizes on several Eucalyptus species. To clarify the physiological responses of Eucalyptus to L. invasa infestation, we measured the dynamics of nitrogen (N), carbon (C), total phenolics, total tannins and four types of phytohormones (zeatin [Z] + zeatin riboside [ZR], gibberellins [GA], indole-3-acetic acid [IAA] and abscisic acid [ABA]) in galled and ungalled leaf tissues of two Eucalyptus horticultural varieties (DH201-2 [Eucalyptus grandis × Eucalyptus camaldulensis] and EA [Eucalyptus exserta]) with different susceptibility to galling throughout the larval developmental stages. Nitrogen, total phenolics, tannins and four kinds of phytohormones strongly accumulated in tissues galled by L. invasa (especially during early larval feeding stages). While N, Z + ZR and GA levels were higher, tannins and ABA levels were lower in the galled tissues on the highly susceptible variety. Nitrogen, total phenolics, GA, Z + ZR and IAA levels in the galled tissues gradually decreased during gall development, but ABA and tannins conversely increased in the galled tissues of the less susceptible variety. Our results suggest that the effects of gall-inducing insects on plants depend not only on the susceptibility of the plant infested but also on the developmental stage of galled tissues. Gall formation process is thus synergistically influenced by both gall-inducing insect and plant genotypes. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Developmental Patterns of the Invasive Bramble (Rubus alceifolius Poiret, Rosaceae) in Réunion Island: an Architectural and Morphometric Analysis

    PubMed Central

    BARET, STÉPHANE; NICOLINI, ERIC; LE BOURGEOIS, THOMAS; STRASBERG, DOMINIQUE

    2003-01-01

    The aim of this study was to identify the developmental stages of Rubus alceifolius and to determine one or more characteristic morphological markers for each stage. The developmental reconstitution method used involved a detailed description of many individuals throughout the different stages of growth, from germination to the development of an adult shoot capable of fruiting. Results revealed that R. alceifolius passes through five developmental stages that can be distinguished by changes in several morphological markers such as internode length and diameter, pith diameter and plant shape. This analysis indicated that R. alceifolius has a heteroblastic developmental pattern, midway between that of a bush and a liana. Moreover, results showed that this species taps environmental resources early in its development, i.e. foliarization is high (the foliar component overrides the caulinary component) and an autotrophic stage is rapidly reached, whereas it ‘explores’ the environment during the adult stage, i.e. axialization is substantial (the caulinary component overrides the foliar component) and autotrophy occurs at a later stage. The morphological markers identified could benefit land‐use managers attempting to control this species before it reaches its optimum developmental stage. PMID:12495918

  14. Developmental anatomy and immunocytochemistry reveal the neo-ontogenesis of the leaf tissues of Psidium myrtoides (Myrtaceae) towards the globoid galls of Nothotrioza myrtoidis (Triozidae).

    PubMed

    Carneiro, Renê G S; Oliveira, Denis C; Isaias, Rosy M S

    2014-12-01

    The temporal balance between hyperplasia and hypertrophy, and the new functions of different cell lineages led to cell transformations in a centrifugal gradient that determines the gall globoid shape. Plant galls develop by the redifferentiation of new cell types originated from those of the host plants, with new functional and structural designs related to the composition of cell walls and cell contents. Variations in cell wall composition have just started to be explored with the perspective of gall development, and are herein related to the histochemical gradients previously detected on Psidium myrtoides galls. Young and mature leaves of P. myrtoides and galls of Nothotrioza myrtoidis at different developmental stages were analysed using anatomical, cytometrical and immunocytochemical approaches. The gall parenchyma presents transformations in the size and shape of the cells in distinct tissue layers, and variations of pectin and protein domains in cell walls. The temporal balance between tissue hyperplasia and cell hypertrophy, and the new functions of different cell lineages led to cell transformations in a centrifugal gradient, which determines the globoid shape of the gall. The distribution of cell wall epitopes affected cell wall flexibility and rigidity, towards gall maturation. By senescence, it provided functional stability for the outer cortical parenchyma. The detection of the demethylesterified homogalacturonans (HGAs) denoted the activity of the pectin methylesterases (PMEs) during the senescent phase, and was a novel time-based detection linked to the increased rigidity of the cell walls, and to the gall opening. Current investigation firstly reports the influence of immunocytochemistry of plant cell walls over the development of leaf tissues, determining their neo-ontogenesis towards a new phenotype, i.e., the globoid gall morphotype.

  15. The hot pepper (Capsicum annuum) microRNA transcriptome reveals novel and conserved targets: a foundation for understanding MicroRNA functional roles in hot pepper.

    PubMed

    Hwang, Dong-Gyu; Park, June Hyun; Lim, Jae Yun; Kim, Donghyun; Choi, Yourim; Kim, Soyoung; Reeves, Gregory; Yeom, Seon-In; Lee, Jeong-Soo; Park, Minkyu; Kim, Seungill; Choi, Ik-Young; Choi, Doil; Shin, Chanseok

    2013-01-01

    MicroRNAs (miRNAs) are a class of non-coding RNAs approximately 21 nt in length which play important roles in regulating gene expression in plants. Although many miRNA studies have focused on a few model plants, miRNAs and their target genes remain largely unknown in hot pepper (Capsicum annuum), one of the most important crops cultivated worldwide. Here, we employed high-throughput sequencing technology to identify miRNAs in pepper extensively from 10 different libraries, including leaf, stem, root, flower, and six developmental stage fruits. Based on a bioinformatics pipeline, we successfully identified 29 and 35 families of conserved and novel miRNAs, respectively. Northern blot analysis was used to validate further the expression of representative miRNAs and to analyze their tissue-specific or developmental stage-specific expression patterns. Moreover, we computationally predicted miRNA targets, many of which were experimentally confirmed using 5' rapid amplification of cDNA ends analysis. One of the validated novel targets of miR-396 was a domain rearranged methyltransferase, the major de novo methylation enzyme, involved in RNA-directed DNA methylation in plants. This work provides the first reliable draft of the pepper miRNA transcriptome. It offers an expanded picture of pepper miRNAs in relation to other plants, providing a basis for understanding the functional roles of miRNAs in pepper.

  16. Developmental stage related patterns of codon usage and genomic GC content: searching for evolutionary fingerprints with models of stem cell differentiation

    PubMed Central

    2007-01-01

    Background The usage of synonymous codons shows considerable variation among mammalian genes. How and why this usage is non-random are fundamental biological questions and remain controversial. It is also important to explore whether mammalian genes that are selectively expressed at different developmental stages bear different molecular features. Results In two models of mouse stem cell differentiation, we established correlations between codon usage and the patterns of gene expression. We found that the optimal codons exhibited variation (AT- or GC-ending codons) in different cell types within the developmental hierarchy. We also found that genes that were enriched (developmental-pivotal genes) or specifically expressed (developmental-specific genes) at different developmental stages had different patterns of codon usage and local genomic GC (GCg) content. Moreover, at the same developmental stage, developmental-specific genes generally used more GC-ending codons and had higher GCg content compared with developmental-pivotal genes. Further analyses suggest that the model of translational selection might be consistent with the developmental stage-related patterns of codon usage, especially for the AT-ending optimal codons. In addition, our data show that after human-mouse divergence, the influence of selective constraints is still detectable. Conclusion Our findings suggest that developmental stage-related patterns of gene expression are correlated with codon usage (GC3) and GCg content in stem cell hierarchies. Moreover, this paper provides evidence for the influence of natural selection at synonymous sites in the mouse genome and novel clues for linking the molecular features of genes to their patterns of expression during mammalian ontogenesis. PMID:17349061

  17. Arabidopsis REGULATOR OF AXILLARY MERISTEMS1 controls a leaf axil stem cell niche and modulates vegetative development.

    PubMed

    Keller, Thomas; Abbott, Jessica; Moritz, Thomas; Doerner, Peter

    2006-03-01

    Shoot branching is a major determinant of variation in plant stature. Branches, which form secondary growth axes, originate from stem cells activated in leaf axils. The initial steps by which axillary meristems (AMs) are specified and their stem cells organized are still poorly understood. We identified gain- and loss-of-function alleles at the Arabidopsis thaliana REGULATOR OF AXILLARY MERISTEMS1 (RAX1) locus. RAX1 is encoded by the Myb-like transcription factor MYB37 and is an Arabidopsis homolog of the tomato (Solanum lycopersicum) Blind gene. RAX1 is transiently expressed in a small central domain within the boundary zone separating shoot apical meristem and leaf primordia early in leaf primordium development. RAX1 genetically interacts with CUP-SHAPED COTYLEDON (CUC) genes and is required for the expression of CUC2 in the RAX1 expression domain, suggesting that RAX1 acts through CUC2. We propose that RAX1 functions to positionally specify a stem cell niche for AM formation. RAX1 also affects the timing of developmental phase transitions by negatively regulating gibberellic acid levels in the shoot apex. RAX1 thus defines a novel activity that links the specification of AM formation with the modulation of the rate of progression through developmental phases.

  18. Assessing the Development of Cross-Cultural Competence in Soldiers

    DTIC Science & Technology

    2010-11-01

    five stages of CQ development based on models from developmental psychology including Piaget’s Model of Cognitive Development ( Piaget , 1985) and...and competence development , the Stage Model of Cognitive Skill Acquisition (Ross et al., 2005), and the Bennett Developmental Model of... developmental stages of proficiency and expertise (see the Stage Model of Cognitive Development ). At this level, cross-cultural competence is highly refined and

  19. Ontogenetic stage, plant vigor and sex mediate herbivory loads in a dioecious understory herb

    NASA Astrophysics Data System (ADS)

    Selaković, Sara; Vujić, Vukica; Stanisavljević, Nemanja; Jovanović, Živko; Radović, Svetlana; Cvetković, Dragana

    2017-11-01

    Plant-herbivore interactions can be mediated by plant apparency, defensive and nutritional quality traits that change through plant ontogeny, resulting in age-specific herbivory. In dioecious species, opposing allocation patterns in defense may lead to sex-biased herbivory. Here, we examine how onto stage and plant sex determine levels of herbivore damage in understory herb Mercurialis perennis under field conditions. We analyzed variation in plant size (height, total leaf area), physical (specific leaf area) and chemical (total phenolic and condensed tannins contents) defense, and nutritional quality (total water, soluble protein and nonstructural carbohydrate contents) during the shift from reproductive to post-reproductive stage. Furthermore, we explored correlations between the analyzed traits and levels of foliar damage. Post-reproductive plants had lower levels of chemical defense, and larger leaf area removed, in spite of having lower nutritive quality. Opposing patterns of intersexual differences were detected in protein and phenolic contents during reproductive stage, while in post-reproductive stage total leaf area was sexually dimorphic. Female-biased herbivory was apparent only after reproduction. Plant size parameters combined with condensed tannins content determined levels of foliar damage during post-reproductive stage, while the only trait covarying with herbivory in reproductive stage was total nonstructural carbohydrate content. Our results support claims of optimal defense theory - sensitive stage of reproduction was better defended. We conclude that different combinations of plant traits mediated interactions with herbivores in mature stages. Differences in reproductive allocation between the sexes may not immediately translate into different levels of damage, stressing the need for considering different ontogenetic stages when exploring sex bias in herbivory.

  20. Assessment of Growth Using Mandibular Canine Calcification Stages and Its Correlation with Modified MP3 Stages

    PubMed Central

    Nayak, US Krishna; Hegde, Gautam

    2010-01-01

    Background and objectives Orthodontic diagnosis and treatment planning for growing children must involve growth prediction, especially in the treatment of skeletal problems. Studies have shown that a strong association exists between skeletal maturity and dental calcification stages. The present study was therefore taken up to provide a simple and practical method for assessing skeletal maturity using a dental periapical film and standard dental X-ray machine, to compare the developmental stages of the mandibular canine with that of developmental stages of modified MP3 and to find out if any correlation exists, to determine if the developmental stages of the mandibular canine alone can be used as a reliable indicator for assessment of skeletal maturity. Methods A total of 160 periapical radiographs (80 males and 80 females), of the mandibular right canine and the MP3 region was taken and assessed according to the Dermirjian’s stages of dental calcification and the modified MP3 stages. Results The correlation between the developmental stages of MP3 and the mandibular right canine in male and female groups, is of high statistical significance (p = 0.001). The correlation coefficient between MP3 stages and developmental stages of mandibular canine and chronological age in male and females was found to be not significant. Conclusions The correlation between the mandibular canine calcification stages and MP3 stages was found to be significant. The developmental stages of the mandibular canine could be used very reliably as a sole indicator for assessment of skeletal maturity. PMID:27625553

  1. Assessment of contamination potential of lettuce by Salmonella enterica serovar Newport added to the plant growing medium.

    PubMed

    Bernstein, Nirit; Sela, Shlomo; Neder-Lavon, Sarit

    2007-07-01

    The capacity of Salmonella enterica serovar Newport to contaminate Romaine lettuce (Lactuca sativa L. cv. Nogal) via the root system was evaluated in 17-, 20-, and 33-day-old plants. Apparent internalization of Salmonella via the root to the above-ground parts was identified in 33- but not 17- or 20-day-old plants and was stimulated by root decapitation. Leaves of lettuce plants with intact and damaged roots harbored Salmonella at 500 +/- 120 and 5,130 +/- 440 CFU/g of leaf, respectively, at 2 days postinoculation but not 5 days later. These findings are first to suggest that Salmonella Newport can translocate from contaminated roots to the aerial parts of lettuce seedlings and propose that the process is dependent on the developmental stage of the plant.

  2. Why Are There Developmental Stages in Language Learning? A Developmental Robotics Model of Language Development

    ERIC Educational Resources Information Center

    Morse, Anthony F.; Cangelosi, Angelo

    2017-01-01

    Most theories of learning would predict a gradual acquisition and refinement of skills as learning progresses, and while some highlight exponential growth, this fails to explain why natural cognitive development typically progresses in stages. Models that do span multiple developmental stages typically have parameters to "switch" between…

  3. Sequence of Changes in Maize Responding to Soil Water Deficit and Related Critical Thresholds

    PubMed Central

    Ma, Xueyan; He, Qijin; Zhou, Guangsheng

    2018-01-01

    The sequence of changes in crop responding to soil water deficit and related critical thresholds are essential for better drought damage classification and drought monitoring indicators. This study was aimed to investigate the critical thresholds of maize growth and physiological characteristics responding to changing soil water and to reveal the sequence of changes in maize responding to soil water deficit both in seedling and jointing stages based on 2-year’s maize field experiment responding to six initial soil water statuses conducted in 2013 and 2014. Normal distribution tolerance limits were newly adopted to identify critical thresholds of maize growth and physiological characteristics to a wide range of soil water status. The results showed that in both stages maize growth characteristics related to plant water status [stem moisture content (SMC) and leaf moisture content (LMC)], leaf gas exchange [net photosynthetic rate (Pn), transpiration rate (Tr), and stomatal conductance (Gs)], and leaf area were sensitive to soil water deficit, while biomass-related characteristics were less sensitive. Under the concurrent weather conditions and agronomic managements, the critical soil water thresholds in terms of relative soil moisture of 0–30 cm depth (RSM) of maize SMC, LMC, net Pn, Tr, Gs, and leaf area were 72, 65, 62, 60, 58, and 46%, respectively, in seedling stage, and 64, 64, 51, 53, 48, and 46%, respectively, in jointing stage. It indicated that there is a sequence of changes in maize responding to soil water deficit, i.e., their response sequences as soil water deficit intensified: SMC ≥ LMC > leaf gas exchange > leaf area in both stages. This sequence of changes in maize responding to soil water deficit and related critical thresholds may be better indicators of damage classification and drought monitoring. PMID:29765381

  4. Prevalence of entomophthoralean fungi (Entomophthoromycota) of aphids in relation to developmental stages.

    PubMed

    Manfrino, Romina G; Gutierrez, Alejandra C; Rueda Páramo, Manuel E; Salto, César E; López Lastra, Claudia C

    2016-08-01

    Transmission of fungal pathogens of aphids may be affected by the host developmental stage. Brassica and Lactuca sativa L. crops were sampled in Santa Fe, Argentina, to determine the prevalence of fungal-diseased aphids and investigate the differences between developmental stages of aphids. The fungal pathogens identified were Zoophthora radicans (Bref.) A. Batko, Pandora neoaphidis (Remaud. & Hennebert) Humber and Entomophthora planchoniana Cornu. Their prevalence on each crop was calculated. The numbers of infected aphids were significantly different between the different developmental stages on all crops except B. oleracea var. botrytis L. The entomophthoralean fungi identified are important mortality factors of aphids on horticultural crops in Santa Fe. The numbers of infected nymphs and adults were significantly different, nymphs being the most affected developmental stage. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  5. Evaluation of cycloate followed by two-leaf stage phenmedipham application in fresh market spinach

    USDA-ARS?s Scientific Manuscript database

    Fresh market spinach has one primary herbicide, cycloate, which does not control all weeds. Previous studies demonstrated that cycloate PRE followed by (fb) phenmedipham at the four-leaf spinach stage is a safe and effective treatment. However, this treatment is not useful for the main growing seaso...

  6. Truncation of LEAFY COTYLEDON1 Protein Is Required for Asexual Reproduction in Kalanchoë daigremontiana1[OPEN

    PubMed Central

    Garcês, Helena M.P.; Koenig, Daniel; Townsley, Brad T.; Kim, Minsung; Sinha, Neelima R.

    2014-01-01

    Kalanchoë daigremontiana reproduces asexually by generating numerous plantlets on its leaf margins. The formation of plantlets requires the somatic initiation of organogenic and embryogenic developmental programs in the leaves. However, unlike normal embryogenesis in seeds, leaf somatic embryogenesis bypasses seed dormancy to form viable plantlets. In Arabidopsis (Arabidopsis thaliana), seed dormancy and embryogenesis are initiated by the transcription factor LEAFY COTYLEDON1 (LEC1). The K. daigremontiana ortholog of LEC1 is expressed during leaf somatic embryo development. However, KdLEC1 encodes for a LEC1-type protein that has a unique B domain, with 11 unique amino acids and a premature stop codon. Moreover, the truncated KdLEC1 protein is not functional in Arabidopsis. Here, we show that K. daigremontiana transgenic plants expressing a functional, chimeric KdLEC1 gene under the control of Arabidopsis LEC1 promoter caused several developmental defects to leaf somatic embryos, including seed dormancy characteristics. The dormant plantlets also behaved as typical dormant seeds. Transgenic plantlets accumulated oil bodies and responded to the abscisic acid biosynthesis inhibitor fluridone, which broke somatic-embryo dormancy and promoted their normal development. Our results indicate that having a mutated form of LEC1 gene in K. daigremontiana is essential to bypass dormancy in the leaf embryos and generate viable plantlets, suggesting that the loss of a functional LEC1 promotes viviparous leaf somatic embryos and thus enhances vegetative propagation in K. daigremontiana. Mutations resulting in truncated LEC1 proteins may have been of a selective advantage in creating somatic propagules, because such mutations occurred independently in several Kalanchoë species, which form plantlets constitutively. PMID:24664206

  7. Truncation of LEAFY COTYLEDON1 protein is required for asexual reproduction in Kalanchoë daigremontiana.

    PubMed

    Garcês, Helena M P; Koenig, Daniel; Townsley, Brad T; Kim, Minsung; Sinha, Neelima R

    2014-05-01

    Kalanchoë daigremontiana reproduces asexually by generating numerous plantlets on its leaf margins. The formation of plantlets requires the somatic initiation of organogenic and embryogenic developmental programs in the leaves. However, unlike normal embryogenesis in seeds, leaf somatic embryogenesis bypasses seed dormancy to form viable plantlets. In Arabidopsis (Arabidopsis thaliana), seed dormancy and embryogenesis are initiated by the transcription factor LEAFY COTYLEDON1 (LEC1). The K. daigremontiana ortholog of LEC1 is expressed during leaf somatic embryo development. However, KdLEC1 encodes for a LEC1-type protein that has a unique B domain, with 11 unique amino acids and a premature stop codon. Moreover, the truncated KdLEC1 protein is not functional in Arabidopsis. Here, we show that K. daigremontiana transgenic plants expressing a functional, chimeric KdLEC1 gene under the control of Arabidopsis LEC1 promoter caused several developmental defects to leaf somatic embryos, including seed dormancy characteristics. The dormant plantlets also behaved as typical dormant seeds. Transgenic plantlets accumulated oil bodies and responded to the abscisic acid biosynthesis inhibitor fluridone, which broke somatic-embryo dormancy and promoted their normal development. Our results indicate that having a mutated form of LEC1 gene in K. daigremontiana is essential to bypass dormancy in the leaf embryos and generate viable plantlets, suggesting that the loss of a functional LEC1 promotes viviparous leaf somatic embryos and thus enhances vegetative propagation in K. daigremontiana. Mutations resulting in truncated LEC1 proteins may have been of a selective advantage in creating somatic propagules, because such mutations occurred independently in several Kalanchoë species, which form plantlets constitutively.

  8. VirtualLeaf: an open-source framework for cell-based modeling of plant tissue growth and development.

    PubMed

    Merks, Roeland M H; Guravage, Michael; Inzé, Dirk; Beemster, Gerrit T S

    2011-02-01

    Plant organs, including leaves and roots, develop by means of a multilevel cross talk between gene regulation, patterned cell division and cell expansion, and tissue mechanics. The multilevel regulatory mechanisms complicate classic molecular genetics or functional genomics approaches to biological development, because these methodologies implicitly assume a direct relation between genes and traits at the level of the whole plant or organ. Instead, understanding gene function requires insight into the roles of gene products in regulatory networks, the conditions of gene expression, etc. This interplay is impossible to understand intuitively. Mathematical and computer modeling allows researchers to design new hypotheses and produce experimentally testable insights. However, the required mathematics and programming experience makes modeling poorly accessible to experimental biologists. Problem-solving environments provide biologically intuitive in silico objects ("cells", "regulation networks") required for setting up a simulation and present those to the user in terms of familiar, biological terminology. Here, we introduce the cell-based computer modeling framework VirtualLeaf for plant tissue morphogenesis. The current version defines a set of biologically intuitive C++ objects, including cells, cell walls, and diffusing and reacting chemicals, that provide useful abstractions for building biological simulations of developmental processes. We present a step-by-step introduction to building models with VirtualLeaf, providing basic example models of leaf venation and meristem development. VirtualLeaf-based models provide a means for plant researchers to analyze the function of developmental genes in the context of the biophysics of growth and patterning. VirtualLeaf is an ongoing open-source software project (http://virtualleaf.googlecode.com) that runs on Windows, Mac, and Linux.

  9. THE YOUNG ADULT--A CONCEPTUAL FRAMEWORK. SUMMARY.

    ERIC Educational Resources Information Center

    CHICKERING, ARTHUR W.

    THE DEVELOPMENTAL STAGE SPANNING THE YEARS FROM 18 TO 25 MUST BE STUDIED SEPARATELY FROM OTHER DEVELOPMENTAL STAGES. THE DEVELOPMENTAL TASKS OF THIS PERIOD ARE RELATED TO, BUT SUBSTANTIALLY DIFFERENT FROM, THOSE OF BOTH ADOLESCENCE AND ADULTHOOD. THE SEVEN MAJOR DEVELOPMENTAL VECTORS FOR THE YOUNG ADULT INCLUDE DEVELOPMENT OF COMPETENCE,…

  10. [Effects of applying nitrogen fertilizer at different stages in ploughed furrow on dry matter production and yield of rice].

    PubMed

    Shi, Kun; Hao, Shufeng; Xie, Hongtu; Zhang, Xudong

    2002-12-01

    The effects of applying nitrogen fertilizer in ploughed furrow at different stages on dry matter production and yield of rice were studied in a field experiment in 1999. The results showed that applying N fertilizer at booting stage (BS) had better effects on dry weight (2.9 g.hill-1) of leaf, stem and whole plant than at panicle primordia formation stage (PPFS), tillering stage (TS) and regular N fertilization (RF). Meanwhile, the dry weight of leaf and sheath as well as the leaf area index (LAI, 8.9) could be maintained at a high level for a relative long time in BS treatment, compared with PPFS, TS and RF treatments. Similar phenomenon was observed in the growth velocity (0.73 g.d-1.hill-1) of stem and whole plant, and the dry weight (10434 kg.hm-2) of seed. The grain yield of rice followed the sequence of BS > or = PPFS > TS > or = RF. Thus, the optimum stage of applying N fertilizer in ploughed furrow was the booting stage.

  11. Field-Grown Grapevine Berries Use Carotenoids and the Associated Xanthophyll Cycles to Acclimate to UV Exposure Differentially in High and Low Light (Shade) Conditions

    PubMed Central

    Joubert, Chandré; Young, Philip R.; Eyéghé-Bickong, Hans A.; Vivier, Melané A.

    2016-01-01

    Light quantity and quality modulate grapevine development and influence berry metabolic processes. Here we studied light as an information signal for developing and ripening grape berries. A Vitis vinifera Sauvignon Blanc field experiment was used to identify the impacts of UVB on core metabolic processes in the berries under both high light (HL) and low light (LL) microclimates. The primary objective was therefore to identify UVB-specific responses on berry processes and metabolites and distinguish them from those responses elicited by variations in light incidence. Canopy manipulation at the bunch zone via early leaf removal, combined with UVB-excluding acrylic sheets installed over the bunch zones resulted in four bunch microclimates: (1) HL (control); (2) LL (control); (3) HL with UVB attenuation and (4) LL with UVB attenuation. Metabolite profiles of three berry developmental stages showed predictable changes to known UV-responsive compound classes in a typical UV acclimation (versus UV damage) response. Interestingly, the berries employed carotenoids and the associated xanthophyll cycles to acclimate to UV exposure and the berry responses differed between HL and LL conditions, particularly in the developmental stages where berries are still photosynthetically active. The developmental stage of the berries was an important factor to consider in interpreting the data. The green berries responded to the different exposure and/or UVB attenuation signals with metabolites that indicate that the berries actively managed its metabolism in relation to the exposure levels, displaying metabolic plasticity in the photosynthesis-related metabolites. Core processes such as photosynthesis, photo-inhibition and acclimation were maintained by differentially modulating metabolites under the four treatments. Ripe berries also responded metabolically to the light quality and quantity, but mostly formed compounds (volatiles and polyphenols) that have direct antioxidant and/or “sunscreening” abilities. The data presented for the green berries and those for the ripe berries conform to what is known for UVB and/or light stress in young, active leaves and older, senescing tissues respectively and provide scope for further evaluation of the sink/source status of fruits in relation to photosignalling and/or stress management. PMID:27375645

  12. Detection of QTLs for seedling characteristics in barley (Hordeum vulgare L.) grown under hydroponic culture condition.

    PubMed

    Wang, Qifei; Sun, Genlou; Ren, Xifeng; Wang, Jibin; Du, Binbin; Li, Chengdao; Sun, Dongfa

    2017-11-07

    Seedling characteristics play significant roles in the growth and development of barley (Hordeum vulgare L.), including stable stand establishment, water and nutrients uptake, biotic resistance and abiotic stresses, and can influence yield and quality. However, the genetic mechanisms underlying seedling characteristics in barley are largely unknown and little research has been done. In the present work, 21 seedling-related characteristics are assessed in a barley double haploid (DH) population, grown under hydroponic conditions. Of them, leaf age (LAG), shoot height (SH), maximum root length (MRL), main root number (MRN) and seedling fresh weight (SFW) were investigated at the 13th, 20th, 27th, and 34th day after germination. The objectives were to identify quantitative trait loci (QTLs) underlying these seedling characteristics using a high-density linkage map and to reveal the QTL expression pattern by comparing the QTLs among four different seedling growth stages. A total of 70 QTLs were distributed over all chromosomes except 4H, and, individually, accounted for 5.01%-77.78% of phenotypic variation. Out of the 70 detected QTLs, 23 showed a major effect on 14 seedling-related characteristics. Ten co-localized chromosomal regions on 2H (five regions), 3H (two regions) and 7H (three regions) involved 39 QTLs (55.71%), each simultaneously influenced more than one trait. Meanwhile, 9 co-localized genomic regions involving 22 QTLs for five seedling characteristics (LAG, SH, MRL, MRN and SFW) at the 13th, 20th, 27th and 34th day-old seedling were common for two or more growth stages of seedling. QTL in the vicinity of Vrs1 locus on chromosome 2H with the favorable alleles from Huadamai 6 was found to have the largest main effects on multiple seedling-related traits. Six QTL cluster regions associated with 16 seedling-related characteristics were observed on chromosome 2H, 3H and 7H. The majority of the 29 regions identified for five seedling characteristics were selectively expressed at different developmental stages. The genetic effects of 9 consecutive expression regions displayed different developmental influences at different developmental stages. These findings enhanced our understanding of a genetic basis underlying seedling characteristics in barley. Some QTLs detected here could be used for marker-assisted selection (MAS) in barley breeding.

  13. Photo- and Antioxidative Protection During Summer Leaf Senescence in Pistacia lentiscus L. Grown under Mediterranean Field Conditions

    PubMed Central

    MUNNÉ-BOSCH, S.; PEÑUELAS, J.

    2003-01-01

    Summer leaf senescence in Pistacia lentiscus L. plants serves to remobilize nutrients from the oldest leaves to the youngest ones, and therefore contributes to plant survival during the adverse climatic conditions typical of Mediterranean summers, i.e. water deficit superimposed on high solar radiation and high temperatures. To evaluate the extent of photo- and antioxidative protection during leaf senescence of this species, changes in carotenoids, including xanthophyll cycle pigments, and in the levels of ascorbate and α-tocopherol were measured prior to and during summer leaf senescence in 3-year-old plants grown under Mediterranean field conditions. Although a chlorophyll loss of approx. 20 % was observed during the first stages of leaf senescence, no damage to the photosynthetic apparatus occurred as indicated by constant maximum efficiencies of photosystem II photochemistry. During this period the de-epoxidation state of the xanthophyll cycle, and lutein, neoxanthin and ascorbate levels were kept constant. At the same time β-carotene and α-tocopherol levels increased by approx. 9 and 70 %, respectively, presumably conferring photo- and antioxidative protection to the photosynthetic apparatus. By contrast, during the later stages of leaf senescence, characterized by severe chlorophyll loss, carotenoids were moderately degraded (neoxanthin by approx. 20 %, and both lutein and β-carotene by approx. 35 %), ascorbate decreased by approx. 80 % and α-tocopherol was not detected in senescing leaves. This study demonstrates that mechanisms of photo- and antioxidative protection may play a major role in maintaining chloroplast function during the first stages of leaf senescence, while antioxidant defences are lost during the latest stages of senescence. PMID:12871848

  14. Andrographis paniculata extracts and major constituent diterpenoids inhibit growth of intrahepatic cholangiocarcinoma cells by inducing cell cycle arrest and apoptosis.

    PubMed

    Suriyo, Tawit; Pholphana, Nanthanit; Rangkadilok, Nuchanart; Thiantanawat, Apinya; Watcharasit, Piyajit; Satayavivad, Jutamaad

    2014-05-01

    Andrographis paniculata is an important herbal medicine widely used in several Asian countries for the treatment of various diseases due to its broad range of pharmacological activities. The present study reports that A. paniculata extracts potently inhibit the growth of liver (HepG2 and SK-Hep1) and bile duct (HuCCA-1 and RMCCA-1) cancer cells. A. paniculata extracts with different contents of major diterpenoids, including andrographolide, 14-deoxy-11,12-didehydroandrographolide, neoandrographolide, and 14-deoxyandrographolide, exhibited a different potency of growth inhibition. The ethanolic extract of A. paniculata at the first true leaf stage, which contained a high amount of 14-deoxyandrographolide but a low amount of andrographolide, showed a cytotoxic effect to cancer cells about 4 times higher than the water extract of A. paniculata at the mature leaf stage, which contained a high amount of andrographolide but a low amount of 14-deoxyandrographolide. Andrographolide, not 14-deoxy-11,12-didehydroandrographolide, neoandrographolide, or 14-deoxyandrographolide, possessed potent cytotoxic activity against the growth of liver and bile duct cancer cells. The cytotoxic effect of the water extract of A. paniculata at the mature leaf stage could be explained by the present amount of andrographolide, while the cytotoxic effect of the ethanolic extract of A. paniculata at the first true leaf stage could not. HuCCA-1 cells showed more sensitivity to A. paniculata extracts and andrographolide than RMCCA-1 cells. Furthermore, the ethanolic extract of A. paniculata at the first true leaf stage increased cell cycle arrest at the G0/G1 and G2/M phases, and induced apoptosis in both HuCCA-1 and RMCCA-1 cells. The expressions of cyclin-D1, Bcl-2, and the inactive proenzyme form of caspase-3 were reduced by the ethanolic extract of A. paniculata in the first true leaf stage treatment, while a proapoptotic protein Bax was increased. The cleavage of poly (ADP-ribose) polymerase was also found in the ethanolic extract of A. paniculata in the first true leaf stage treatment. This study suggests that A. paniculata could be a promising herbal plant for the alternative treatment of intrahepatic cholangiocarcinoma. Georg Thieme Verlag KG Stuttgart · New York.

  15. Differential expressed protein in developing stages of Nepenthes gracilis Korth. pitcher.

    PubMed

    Pinthong, Krit; Chaveerach, Arunrat; Tanee, Tawatchai; Sudmoon, Runglawan; Mokkamul, Piya

    2009-03-15

    Nepenthes gracilis Korth. is a member of carnivorous plants in family Nepenthaceae. The plants have beautiful and economically important pitchers. It is interesting to study the protein(s) correlated with the pitcher. Crude proteins were extracted from leaf, leaf with developing pitcher and developed pitcher of the same plant and analyzed by Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE). Two protein bands with molecular weights of 42.7 and 38 kDa were obtained from young leaf and leaf with developing pitcher, respectively. The 42.7 kDa protein was identified as phosphoglycerate kinase (PGK) by Liquid Chromatography Mass Spectrometry (LC-MS/MS), but the 38 kDa band is an unknown protein. Both proteins were differentially expressed in each developing stage of the pitcher, thus may be powerful candidates play role in development pathway of leaf and pitcher.

  16. Transcriptional Analysis of Flowering Time in Switchgrass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tornqvist, Carl-Erik; Vaillancourt, Brieanne; Kim, Jeongwoon

    Over the past two decades, switchgrass (Panicum virgatum) has emerged as a priority biofuel feedstock. The bulk of switchgrass biomass is in the vegetative portion of the plant; therefore, increasing the length of vegetative growth will lead to an increase in overall biomass yield. The goal of this study was to gain insight into the control of flowering time in switchgrass that would assist in development of cultivars with longer vegetative phases through delayed flowering. RNA sequencing was used to assess genome-wide expression profiles across a developmental series between switchgrass genotypes belonging to the two main ecotypes: upland, typically earlymore » flowering, and lowland, typically late flowering. Leaf blades and tissues enriched for the shoot apical meristem (SAM) were collected in a developmental series from emergence through anthesis for RNA extraction. RNA from samples that flanked the SAM transition stage was sequenced for expression analyses. The analyses revealed differential expression patterns between early- and late-flowering genotypes for known flowering time orthologs. Namely, genes shown to play roles in photoperiod response and the circadian clock in other species were identified as potential candidates for regulating flowering time in the switchgrass genotypes analyzed. Based on their expression patterns, many of the differentially expressed genes could also be classified as putative promoters or repressors of flowering. The candidate genes presented here may be used to guide switchgrass improvement through marker-assisted breeding and/or transgenic or gene editing approaches.Over the past two decades, switchgrass (Panicum virgatum) has emerged as a priority biofuel feedstock. The bulk of switchgrass biomass is in the vegetative portion of the plant; therefore, increasing the length of vegetative growth will lead to an increase in overall biomass yield. The goal of this study was to gain insight into the control of flowering time in switchgrass that would assist in development of cultivars with longer vegetative phases through delayed flowering. RNA sequencing was used to assess genome-wide expression profiles across a developmental series between switchgrass genotypes belonging to the two main ecotypes: upland, typically early flowering, and lowland, typically late flowering. Leaf blades and tissues enriched for the shoot apical meristem (SAM) were collected in a developmental series from emergence through anthesis for RNA extraction. RNA from samples that flanked the SAM transition stage was sequenced for expression analyses. The analyses revealed differential expression patterns between early- and late-flowering genotypes for known flowering time orthologs. Namely, genes shown to play roles in photoperiod response and the circadian clock in other species were identified as potential candidates for regulating flowering time in the switchgrass genotypes analyzed. Based on their expression patterns, many of the differentially expressed genes could also be classified as putative promoters or repressors of flowering. The candidate genes presented here may then be used to guide switchgrass improvement through marker-assisted breeding and/or transgenic or gene editing approaches.« less

  17. Transcriptional Analysis of Flowering Time in Switchgrass

    DOE PAGES

    Tornqvist, Carl-Erik; Vaillancourt, Brieanne; Kim, Jeongwoon; ...

    2017-04-27

    Over the past two decades, switchgrass (Panicum virgatum) has emerged as a priority biofuel feedstock. The bulk of switchgrass biomass is in the vegetative portion of the plant; therefore, increasing the length of vegetative growth will lead to an increase in overall biomass yield. The goal of this study was to gain insight into the control of flowering time in switchgrass that would assist in development of cultivars with longer vegetative phases through delayed flowering. RNA sequencing was used to assess genome-wide expression profiles across a developmental series between switchgrass genotypes belonging to the two main ecotypes: upland, typically earlymore » flowering, and lowland, typically late flowering. Leaf blades and tissues enriched for the shoot apical meristem (SAM) were collected in a developmental series from emergence through anthesis for RNA extraction. RNA from samples that flanked the SAM transition stage was sequenced for expression analyses. The analyses revealed differential expression patterns between early- and late-flowering genotypes for known flowering time orthologs. Namely, genes shown to play roles in photoperiod response and the circadian clock in other species were identified as potential candidates for regulating flowering time in the switchgrass genotypes analyzed. Based on their expression patterns, many of the differentially expressed genes could also be classified as putative promoters or repressors of flowering. The candidate genes presented here may be used to guide switchgrass improvement through marker-assisted breeding and/or transgenic or gene editing approaches.Over the past two decades, switchgrass (Panicum virgatum) has emerged as a priority biofuel feedstock. The bulk of switchgrass biomass is in the vegetative portion of the plant; therefore, increasing the length of vegetative growth will lead to an increase in overall biomass yield. The goal of this study was to gain insight into the control of flowering time in switchgrass that would assist in development of cultivars with longer vegetative phases through delayed flowering. RNA sequencing was used to assess genome-wide expression profiles across a developmental series between switchgrass genotypes belonging to the two main ecotypes: upland, typically early flowering, and lowland, typically late flowering. Leaf blades and tissues enriched for the shoot apical meristem (SAM) were collected in a developmental series from emergence through anthesis for RNA extraction. RNA from samples that flanked the SAM transition stage was sequenced for expression analyses. The analyses revealed differential expression patterns between early- and late-flowering genotypes for known flowering time orthologs. Namely, genes shown to play roles in photoperiod response and the circadian clock in other species were identified as potential candidates for regulating flowering time in the switchgrass genotypes analyzed. Based on their expression patterns, many of the differentially expressed genes could also be classified as putative promoters or repressors of flowering. The candidate genes presented here may then be used to guide switchgrass improvement through marker-assisted breeding and/or transgenic or gene editing approaches.« less

  18. Relationships between Community Level Functional Traits of Trees and Seedlings during Secondary Succession in a Tropical Lowland Rainforest.

    PubMed

    Lu, XingHui; Zang, RunGuo; Huang, JiHong

    2015-01-01

    Most of the previous studies on functional traits focus exclusively on either seedlings or trees. Little knowledge exists on the relationships between community level functional traits of trees and seedlings during succession. Here, we examine variations of the community-level functional traits for trees and seedlings and their correlations along a secondary successional and environmental gradient in a tropical lowland rainforest after shifting cultivation. The results showed that the dynamic patterns in community level functional traits of seedlings were generally consistent with those of the trees during secondary succession. Compared with seedlings, community level traits for trees were less affected by abiotic factors during secondary succession. Correlations between community level functional traits of trees and seedlings were significant for: leaf dry matter content and leaf nitrogen concentration in the 18-year-old fallow; leaf chlorophyll content in the 30-year-old fallow; specific leaf area, leaf dry matter content and leaf nitrogen concentration in the 60-year-old fallow; and leaf nitrogen concentration in old growth. However, these traits except specific leaf area for the tree and seedling communities were all significantly correlated if all the successional stages were combined. Our results suggest that the correlations between community level functional traits of trees and those of seedlings depend on the actual traits and the successional stages examined. However, if all the four successional stages are combined, then four out of five of the community level functional traits for trees could be well predicted by those of the seedlings in the tropical lowland rain forest.

  19. Relationships between Community Level Functional Traits of Trees and Seedlings during Secondary Succession in a Tropical Lowland Rainforest

    PubMed Central

    Lu, XingHui; Zang, RunGuo; Huang, JiHong

    2015-01-01

    Most of the previous studies on functional traits focus exclusively on either seedlings or trees. Little knowledge exists on the relationships between community level functional traits of trees and seedlings during succession. Here, we examine variations of the community-level functional traits for trees and seedlings and their correlations along a secondary successional and environmental gradient in a tropical lowland rainforest after shifting cultivation. The results showed that the dynamic patterns in community level functional traits of seedlings were generally consistent with those of the trees during secondary succession. Compared with seedlings, community level traits for trees were less affected by abiotic factors during secondary succession. Correlations between community level functional traits of trees and seedlings were significant for: leaf dry matter content and leaf nitrogen concentration in the 18-year-old fallow; leaf chlorophyll content in the 30-year-old fallow; specific leaf area, leaf dry matter content and leaf nitrogen concentration in the 60-year-old fallow; and leaf nitrogen concentration in old growth. However, these traits except specific leaf area for the tree and seedling communities were all significantly correlated if all the successional stages were combined. Our results suggest that the correlations between community level functional traits of trees and those of seedlings depend on the actual traits and the successional stages examined. However, if all the four successional stages are combined, then four out of five of the community level functional traits for trees could be well predicted by those of the seedlings in the tropical lowland rain forest. PMID:26172543

  20. Ontogenetic and temporal variations in herbivory and defense of Handroanthus spongiosus (Bignoniaceae) in a Brazilian tropical dry forest.

    PubMed

    Oliveira, Karla N; Espírito-Santo, Mário M; Silva, Jhonathan O; Melo, Geraldo A

    2012-06-01

    We compared the richness and abundance of free-feeding herbivore insects (sap-sucking and leaf-chewing), leaf herbivory damage, leaf toughness and total phenolic content between two ontogenetic stages (juvenile and reproductive) of Handroanthus spongiosus (Rizzini) S. O. Grose (Bignoniaceae) throughout the rainy season in a Brazilian seasonally dry tropical forest. Twenty marked individuals of H. spongiosus were sampled per ontogenetic stage in each period of the rainy season (beginning, middle, and end). Herbivore richness and abundance did not differ between ontogenetic stages, but higher percentage of leaf damage, higher concentration of phenolic compounds, and lower leaf toughness were observed for juvenile individuals. The greatest morphospecies abundance was found at the beginning of the rainy season, but folivory increment was higher at the end, despite the fact that leaf toughness and total phenolic content increased in the same period. No significant relationships between leaf damage and both total phenolic content and leaf toughness were observed. These results suggest that insect richness and abundance do not track changes in foliage quality throughout plant ontogeny, but their decrease along rainy season confirms what was predicted for tropical dry forests. The general trends described in the current study corroborate those described in the literature about herbivores and plant ontogeny. However, the lack of relationship between herbivore damage and the two plant attributes considered here indicates that the analyses of multiple defensive traits (the defense syndrome) must be more enlightening to determine the mechanisms driving temporal and spatial patterns of herbivore attack.

  1. Developmental rate and behavior of early life stages of bighead carp and silver carp

    USGS Publications Warehouse

    Chapman, Duane C.; George, Amy E.

    2011-01-01

    The early life stages of Asian carp are well described by Yi and others (1988), but since these descriptions are represented by line drawings based only on live individuals and lacked temperature controls, further information on developmental time and stages is of use to expand understanding of early life stages of these species. Bighead carp and silver carp were cultured under two different temperature treatments to the one-chamber gas bladder stage, and a photographic guide is provided for bighead carp and silver carp embryonic and larval development, including notes about egg morphology and larval swimming behavior. Preliminary information on developmental time and hourly thermal units for each stage is also provided. Both carp species developed faster under warmer conditions. Developmental stages and behaviors are generally consistent with earlier works with the exception that strong vertical swimming immediately after hatching was documented in this report.

  2. High-Throughput Phenotyping of Maize Leaf Physiological and Biochemical Traits Using Hyperspectral Reflectance1[OPEN

    PubMed Central

    Yendrek, Craig R.; Tomaz, Tiago; Montes, Christopher M.; Cao, Youyuan; Morse, Alison M.; Brown, Patrick J.; McIntyre, Lauren M.; Leakey, Andrew D.B.

    2017-01-01

    High-throughput, noninvasive field phenotyping has revealed genetic variation in crop morphological, developmental, and agronomic traits, but rapid measurements of the underlying physiological and biochemical traits are needed to fully understand genetic variation in plant-environment interactions. This study tested the application of leaf hyperspectral reflectance (λ = 500–2,400 nm) as a high-throughput phenotyping approach for rapid and accurate assessment of leaf photosynthetic and biochemical traits in maize (Zea mays). Leaf traits were measured with standard wet-laboratory and gas-exchange approaches alongside measurements of leaf reflectance. Partial least-squares regression was used to develop a measure of leaf chlorophyll content, nitrogen content, sucrose content, specific leaf area, maximum rate of phosphoenolpyruvate carboxylation, [CO2]-saturated rate of photosynthesis, and leaf oxygen radical absorbance capacity from leaf reflectance spectra. Partial least-squares regression models accurately predicted five out of seven traits and were more accurate than previously used simple spectral indices for leaf chlorophyll, nitrogen content, and specific leaf area. Correlations among leaf traits and statistical inferences about differences among genotypes and treatments were similar for measured and modeled data. The hyperspectral reflectance approach to phenotyping was dramatically faster than traditional measurements, enabling over 1,000 rows to be phenotyped during midday hours over just 2 to 4 d, and offers a nondestructive method to accurately assess physiological and biochemical trait responses to environmental stress. PMID:28049858

  3. The evolution, morphology, and development of fern leaves

    PubMed Central

    Vasco, Alejandra; Moran, Robbin C.; Ambrose, Barbara A.

    2013-01-01

    Leaves are lateral determinate structures formed in a predictable sequence (phyllotaxy) on the flanks of an indeterminate shoot apical meristem. The origin and evolution of leaves in vascular plants has been widely debated. Being the main conspicuous organ of nearly all vascular plants and often easy to recognize as such, it seems surprising that leaves have had multiple origins. For decades, morphologists, anatomists, paleobotanists, and systematists have contributed data to this debate. More recently, molecular genetic studies have provided insight into leaf evolution and development mainly within angiosperms and, to a lesser extent, lycophytes. There has been recent interest in extending leaf evolutionary developmental studies to other species and lineages, particularly in lycophytes and ferns. Therefore, a review of fern leaf morphology, evolution and development is timely. Here we discuss the theories of leaf evolution in ferns, morphology, and diversity of fern leaves, and experimental results of fern leaf development. We summarize what is known about the molecular genetics of fern leaf development and what future studies might tell us about the evolution of fern leaf development. PMID:24027574

  4. BIG LEAF is a regulator of organ size and adventitious root formation in poplar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena

    Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stagesmore » of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. Additionally, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. Here, we conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.« less

  5. BIG LEAF is a regulator of organ size and adventitious root formation in poplar

    DOE PAGES

    Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena; ...

    2017-07-07

    Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stagesmore » of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. Additionally, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. Here, we conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.« less

  6. Roots from distinct plant developmental stages are capable of rapidly selecting their own microbiome without the influence of environmental and soil edaphic factors

    USDA-ARS?s Scientific Manuscript database

    Soil microbes live in close association with plants and are crucial for plant health and fitness. Recent literature revealed that specific microbes were cultured at distinct developmental stages of Arabidopsis. It is not clear how fast the roots, depending on their developmental stage, can alter the...

  7. Transcriptome profiles of embryos before and after cleavage in Eriocheir sinensis: identification of developmental genes at the earliest stages

    NASA Astrophysics Data System (ADS)

    Hui, Min; Cui, Zhaoxia; Liu, Yuan; Song, Chengwen

    2017-07-01

    In crab, embryogenesis is a complicated developmental program marked by a series of critical events. RNA-Sequencing technology offers developmental biologists a way to identify many more developmental genes than ever before. Here, we present a comprehensive analysis of the transcriptomes of Eriocheir sinensis oosperms (Os) and embryos at the 2-4 cell stage (Cs), which are separated by a cleavage event. A total of 18 923 unigenes were identified, and 403 genes matched with gene ontology (GO) terms related to developmental processes. In total, 432 differentially expressed genes (DEGs) were detected between the two stages. Nine DEGs were specifically expressed at only one stage. These DEGs may be relevant to stage-specific molecular events during development. A number of DEGs related to `hedgehog signaling pathway', `Wnt signaling pathway' `germplasm', `nervous system', `sensory perception' and `segment polarity' were identified as being up-regulated at the Cs stage. The results suggest that these embryonic developmental events begin before the early cleavage event in crabs, and that many of the genes expressed in the two transcriptomes might be maternal genes. Our study provides ample information for further research on the molecular mechanisms underlying crab development.

  8. Effects of PSAG12-IPT Gene Expression on Development and Senescence in Transgenic Lettuce1

    PubMed Central

    McCabe, Matthew S.; Garratt, Lee C.; Schepers, Frank; Jordi, Wilco J.R.M.; Stoopen, Geert M.; Davelaar, Evert; van Rhijn, J. Hans A.; Power, J. Brian; Davey, Michael R.

    2001-01-01

    An ipt gene under control of the senescence-specific SAG12 promoter from Arabidopsis (PSAG12-IPT) significantly delayed developmental and postharvest leaf senescence in mature heads of transgenic lettuce (Lactuca sativa L. cv Evola) homozygous for the transgene. Apart from retardation of leaf senescence, mature, 60-d-old plants exhibited normal morphology with no significant differences in head diameter or fresh weight of leaves and roots. Induction of senescence by nitrogen starvation rapidly reduced total nitrogen, nitrate, and growth of transgenic and azygous (control) plants, but chlorophyll was retained in the lower (outer) leaves of transgenic plants. Harvested PSAG12-IPT heads also retained chlorophyll in their lower leaves. During later development (bolting and preflowering) of transgenic plants, the decrease in chlorophyll, total protein, and Rubisco content in leaves was abolished, resulting in a uniform distribution of these components throughout the plants. Homozygous PSAG12-IPT lettuce plants showed a slight delay in bolting (4–6 d), a severe delay in flowering (4–8 weeks), and premature senescence of their upper leaves. These changes correlated with significantly elevated concentrations of cytokinin and hexoses in the upper leaves of transgenic plants during later stages of development, implicating a relationship between cytokinin and hexose concentrations in senescence. PMID:11598225

  9. Evidence for a conserved microbiota across the different developmental stages of Plodia interpunctella.

    PubMed

    Mereghetti, Valeria; Chouaia, Bessem; Limonta, Lidia; Locatelli, Daria Patrizia; Montagna, Matteo

    2017-11-01

    Diversity and composition of lepidopteran microbiotas are poorly investigated, especially across the different developmental stages. To improve this knowledge, we characterize the microbiota among different developmental stages of the Indian meal moth, Plodia interpunctella, which is considered one of the major pest of commodities worldwide. Using culture-independent approach based on Illumina 16S rRNA gene sequencing we characterized the microbiota of four developmental stages: eggs, first-, and last-instar larvae, and adult. A total of 1022 bacterial OTUs were obtained, showing a quite diversified microbiota associated to all the analyzed stages. The microbiotas associated with P. interpunctella resulted almost constant throughout the developmental stages, with approximately 77% of bacterial OTUs belonging to the phylum of Proteobacteria. The dominant bacterial genus is represented by Burkholderia (∼64%), followed by Propionibacterium, Delftia, Pseudomonas, and Stenotrophomonas. A core bacterial community, composed of 139 OTUs, was detected in all the developmental stages, among which 112 OTUs were assigned to the genus Burkholderia. A phylogenetic reconstruction, based on the 16S rRNA, revealed that our Burkholderia OTUs clustered with Burkholderia cepacia complex, in the same group of those isolated from the hemipterans Gossyparia spuria and Acanthococcus aceris. The functional profiling, predicted on the base of the bacterial 16S rRNA, indicates differences in the metabolic pathways related to metabolism of amino acids between preimaginal and adult stages. We can hypothesize that bacteria may support the insect host during preimaginal stages. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  10. Effects of carbohydrate accumulation on photosynthesis differ between sink and source leaves of Phaseolus vulgaris L.

    PubMed

    Araya, Takao; Noguchi, Ko; Terashima, Ichiro

    2006-05-01

    Accumulation of non-structural carbohydrate in leaves represses photosynthesis. However, the extent of repression should be different between sink leaves (sugar consumers) and source leaves (sugar exporters). We investigated the effects of carbohydrate accumulation on photosynthesis in the primary leaves of bean (Phaseolus vulgaris L.) during leaf expansion. To increase the carbohydrate content of the leaves, we supplied 20 mM sucrose solution to the roots for 5 d (sugar treatment). Plants supplied only with water and nutrients were used as controls. The carbohydrate contents, which are the sum of glucose, sucrose and starch, of the sugar-treated leaves were 1.5-3 times of those of the control leaves at all developmental stages. In the young sink leaves, the photosynthetic rate at saturating light and at an ambient CO2 concentration (A360) did not differ between the sugar-treated and control leaves. The A360 of sugar-treated source leaves gradually decreased relative to the control source leaves with leaf expansion. The initial slope of the A-Ci (CO2 concentration in the intercellular space) curve, and the Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) content per leaf area showed trends similar to that of A360. Differences in Amax between the treatments were slightly smaller than those in A360. These results indicate that the effect of carbohydrate accumulation on photosynthesis is significant in the source leaves, but not in the young sink leaves, and that the decrease in Rubisco content was the main cause of the carbohydrate repression of photosynthesis.

  11. Silencing of the CaCP Gene Delays Salt- and Osmotic-Induced Leaf Senescence in Capsicum annuum L.

    PubMed Central

    Xiao, Huai-Juan; Yin, Yan-Xu; Chai, Wei-Guo; Gong, Zhen-Hui

    2014-01-01

    Cysteine proteinases have been known to participate in developmental processes and in response to stress in plants. Our present research reported that a novel CP gene, CaCP, was involved in leaf senescence in pepper (Capsicum annuum L.). The full-length CaCP cDNA is comprised of 1316 bp, contains 1044 nucleotides in open reading frame (ORF), and encodes a 347 amino acid protein. The deduced protein belongs to the papain-like cysteine proteases (CPs) superfamily, containing a highly conserved ERFNIN motif, a GCNGG motif and a conserved catalytic triad. This protein localized to the vacuole of plant cells. Real-time quantitative PCR analysis revealed that the expression level of CaCP gene was dramatically higher in leaves and flowers than that in roots, stems and fruits. Moreover, CaCP transcripts were induced upon during leaf senescence. CaCP expression was upregulated by plant hormones, especially salicylic acid. CaCP was also significantly induced by abiotic and biotic stress treatments, including high salinity, mannitol and Phytophthora capsici. Loss of function of CaCP using the virus-induced gene-silencing technique in pepper plants led to enhanced tolerance to salt- and osmotic-induced stress. Taken together, these results suggest that CaCP is a senescence-associated gene, which is involved in developmental senescence and regulates salt- and osmotic-induced leaf senescence in pepper. PMID:24823878

  12. RNA-Seq analysis of nodule development at five different developmental stages of soybean (Glycine max) inoculated with Bradyrhizobium japonicum strain 113-2

    PubMed Central

    Yuan, Song L.; Li, Rong; Chen, Hai F.; Zhang, Chan J.; Chen, Li M.; Hao, Qing N.; Chen, Shui L.; Shan, Zhi H.; Yang, Zhong L.; Zhang, Xiao J.; Qiu, De Z.; Zhou, Xin A.

    2017-01-01

    Nodule development directly affects nitrogen fixation efficiency during soybean growth. Although abundant genome-based information related to nodule development has been released and some studies have reported the molecular mechanisms that regulate nodule development, information on the way nodule genes operate in nodule development at different developmental stages of soybean is limited. In this report, notably different nodulation phenotypes in soybean roots inoculated with Bradyrhizobium japonicum strain 113-2 at five developmental stages (branching stage, flowering stage, fruiting stage, pod stage and harvest stage) were shown, and the expression of nodule genes at these five stages was assessed quantitatively using RNA-Seq. Ten comparisons were made between these developmental periods, and their differentially expressed genes were analysed. Some important genes were identified, primarily encoding symbiotic nitrogen fixation-related proteins, cysteine proteases, cystatins and cysteine-rich proteins, as well as proteins involving plant-pathogen interactions. There were no significant shifts in the distribution of most GO functional annotation terms and KEGG pathway enrichment terms between these five development stages. A cystatin Glyma18g12240 was firstly identified from our RNA-seq, and was likely to promote nodulation and delay nodule senescence. This study provides molecular material for further investigations into the mechanisms of nitrogen fixation at different soybean developmental stages. PMID:28169364

  13. Impact of Ethylene diurea (EDU) on growth, yield and proteome of two winter wheat varieties under high ambient ozone phytotoxicity.

    PubMed

    Gupta, Sunil K; Sharma, Marisha; Majumder, Baisakhi; Maurya, Vivek K; Lohani, Meenakshi; Deeba, Farah; Pandey, Vivek

    2018-04-01

    The present study evaluated the impact of high ambient O 3 on morphological, physiological and biochemical traits and leaf proteome in two high-yielding varieties of wheat using ethylene diurea (EDU) as foliar spray (200 and 300 ppm). Average ambient ozone concentration was 60 ppb which was more than sufficient to cause phytotoxic effects. EDU treatment resulted in less lipid peroxidation along with increased chlorophyll content, biomass and yield. EDU alleviated the negative effects of ozone by enhancing activities of antioxidants and antioxidative enzymes. Two dimensional electrophoresis (2DGE) analysis revealed massive changes in protein abundance in Kundan at vegetative stage (50% proteins were increased, 20% were decreased) and at flowering stage (25% increased, 18% decreased). In PBW 343 at both the developmental stages about 15% proteins were increased whereas 20% were decreased in abundance. Higher abundance of proteins related to carbon metabolism, defense and photorespiration conferred tolerance to EDU treated Kundan. In PBW343, EDU provided incomplete protection as evidenced by low abundance of many primary metabolism related proteins. Proteomic changes in response to EDU treatment in two varieties are discussed in relation to growth and yield. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Sexual dysfunction within an adult developmental perspective.

    PubMed

    Fagan, P J; Meyer, J K; Schmidt, C W

    1986-01-01

    The focus of this paper is on the adult who has adequately mastered the oedipal stage of psychosexual development and who presents with a sexual dysfunction. Drawing on the developmental sequence of Erik Erikson, the authors suggest that failure to address adequately an adult psychosocial crisis may result in sexual dysfunction. There may be both adult developmental deficits and regression to adolescent and adult stages previously negotiated. Both may be symptomatically represented by sexual dysfunction. The authors urge that the sexual and marital problems be evaluated within an adult developmental framework and that the therapy address the psychosocial issues which are appropriate to the developmental stage of the patient.

  15. Teaching and Technologies for Human Development.

    ERIC Educational Resources Information Center

    Chickering, Arthur W.; Payne, Carla; Poitras, Gail

    2001-01-01

    Discusses the potential of emerging communication and information technologies in terms of human development. Topics include distinctions between training and education, instrumental and developmental purposes, and differentiation and integration; developmental stages theory; a leadership seminar based on developmental stages; and uses of…

  16. Integrating and Analyzing Psychosocial and Stage Theories To Challenge the Development of the Injured Collegiate Athlete.

    ERIC Educational Resources Information Center

    Harris, Laura L.

    2003-01-01

    Integrated a psychosocial developmental theory (the Kubler-Ross Stage Theory) and a psychological stage theory (the Ross Stage Theory) and a psychological stage theory (the Chickering and Reisser psychosocial and developmental theory) for challenging injured collegiate student-athletes' personal development. A search of online databases from…

  17. Dominant Species in Subtropical Forests Could Decrease Photosynthetic N Allocation to Carboxylation and Bioenergetics and Enhance Leaf Construction Costs during Forest Succession

    PubMed Central

    Xiao, Yihua; Liu, Shirong; Tong, Fuchun; Chen, Bufeng; Kuang, Yuanwen

    2018-01-01

    It is important to understand how eco-physiological characteristics shift in forests when elucidating the mechanisms underlying species replacement and the process of succession and stabilization. In this study, the dominant species at three typical successional stages (early-, mid-, and late-succession) in the subtropical forests of China were selected. At each stage, we compared the leaf construction costs (CC), payback time (PBT), leaf area based N content (NA), maximum CO2 assimilation rate (Pmax), specific leaf area (SLA), photosynthetic nitrogen use efficiency (PNUE), and leaf N allocated to carboxylation (NC), and to bioenergetics (NB). The relationships between these leaf functional traits were also determined. The results showed that the early-succession forest is characterized with significantly lower leaf CC, PBT, NA, but higher Pmax, SLA, PNUE, NC, and NB, in relation to the late-succession forest. From the early- to the late-succession forests, the relationship between Pmax and leaf CC strengthened, whereas the relationships between NB, NC, PNUE, and leaf CC weakened. Thus, the dominant species are able to decrease the allocation of the photosynthetic N fraction to carboxylation and bioenergetics during forest succession. The shift in these leaf functional traits and their linkages might represent a fundamental physiological mechanism that occurs during forest succession and stabilization. PMID:29472939

  18. Dominant Species in Subtropical Forests Could Decrease Photosynthetic N Allocation to Carboxylation and Bioenergetics and Enhance Leaf Construction Costs during Forest Succession.

    PubMed

    Xiao, Yihua; Liu, Shirong; Tong, Fuchun; Chen, Bufeng; Kuang, Yuanwen

    2018-01-01

    It is important to understand how eco-physiological characteristics shift in forests when elucidating the mechanisms underlying species replacement and the process of succession and stabilization. In this study, the dominant species at three typical successional stages (early-, mid-, and late-succession) in the subtropical forests of China were selected. At each stage, we compared the leaf construction costs (CC), payback time (PBT), leaf area based N content ( N A ), maximum CO 2 assimilation rate ( P max ), specific leaf area (SLA), photosynthetic nitrogen use efficiency (PNUE), and leaf N allocated to carboxylation ( N C ), and to bioenergetics ( N B ). The relationships between these leaf functional traits were also determined. The results showed that the early-succession forest is characterized with significantly lower leaf CC, PBT, N A , but higher P max , SLA, PNUE, N C , and N B , in relation to the late-succession forest. From the early- to the late-succession forests, the relationship between P max and leaf CC strengthened, whereas the relationships between N B , N C , PNUE, and leaf CC weakened. Thus, the dominant species are able to decrease the allocation of the photosynthetic N fraction to carboxylation and bioenergetics during forest succession. The shift in these leaf functional traits and their linkages might represent a fundamental physiological mechanism that occurs during forest succession and stabilization.

  19. Monitoring of cadmium in "on" and "off" date palms.

    PubMed

    Pillay, A E; Williams, J R; El Mardi, M O; Hassan, S M; Al-Hamdi, A

    2002-09-01

    The study demonstrated that the mature dates we investigated were considered safe for human consumption. However, our findings revealed that much of the early fruit and leaves, which appeared at the advent of the fruiting season, possessed elevated levels of cadmium (Cd) that could accumulate in the food chain and thus impact adversely on the environment. In addition, animal feed for livestock contains date leaves, which should be restricted to the mature ones. The monitoring of cadmium in date palms is of considerable interest to environmental science and the thrust of this work, therefore, involved measurement, by ICP, of Cd in dates and corresponding leaf specimens, and evaluation of its distribution during the developmental stages of the fruiting season. Thirty-six date samples and 36 leaf specimens of the Fard cultivar were collected from "on" and "off" date palms during the Kimri, Bisir and Rutab stages of the fruiting season and subjected to suitable digestion procedures. Sample masses of typically 1 g (dry weight) were prepared in 25 ml dilute acid solution and investigated for trace levels of Cd by ICP-AES. Special attention was paid to contamination and the validation of our methodology. The Cd "threshold" in our study was 50 ng/g, in keeping with the levels of tolerance appearing in the literature. For the dates we found elevated levels of Cd [> 50 ng/g] in most of the samples, for both categories of "on" and "off" trees, during the Kimri stage. In the case of the leaves, the "on" samples revealed significant values up to 125 ng/g in Bisir, in some cases, but the trend for the "off" trees remained the same with the highest levels [> 100 ng/g] recorded during Kimri. Safe levels were attained during Rutab for all specimens. The possibility of a connection between Cd toxicity and the alternate-bearing phenomenon is discussed and this could be the subject of future interest.

  20. Differential Expression of Hox and Notch Genes in Larval and Adult Stages of Echinococcus granulosus.

    PubMed

    Dezaki, Ebrahim Saedi; Yaghoobi, Mohammad Mehdi; Taheri, Elham; Almani, Pooya Ghaseminejad; Tohidi, Farideh; Gottstein, Bruno; Harandi, Majid Fasihi

    2016-10-01

    This investigation aimed to evaluate the differential expression of HoxB7 and notch genes in different developmental stages of Echinococcus granulosus sensu stricto. The expression of HoxB7 gene was observed at all developmental stages. Nevertheless, significant fold differences in the expression level was documented in the juvenile worm with 3 or more proglottids, the germinal layer from infected sheep, and the adult worm from an experimentally infected dog. The notch gene was expressed at all developmental stages of E. granulosus ; however, the fold difference was significantly increased at the microcysts in monophasic culture medium and the germinal layer of infected sheep in comparison with other stages. The findings demonstrated that the 2 aforementioned genes evaluated in the present study were differentially expressed at different developmental stages of the parasite and may contribute to some important biological processes of E. granulosus .

  1. Regulation of tomato fruit ascorbate content is more highly dependent on fruit irradiance than leaf irradiance.

    PubMed

    Gautier, Hélène; Massot, Capucine; Stevens, Rebecca; Sérino, Sylvie; Génard, Michel

    2009-02-01

    The mechanisms involving light control of vitamin C content in fruits are not yet fully understood. The present study aimed to evaluate the impact of fruit and leaf shading on ascorbate (AsA) accumulation in tomato fruit and to determine how fruit sugar content (as an AsA precursor) affected AsA content. Cherry tomato plants were grown in a glasshouse. The control treatment (normally irradiated fruits and irradiated leaves) was compared with the whole-plant shading treatment and with leaf or fruit shading treatments in fruits harvested at breaker stage. In a second experiment, the correlation between sugars and AsA was studied during ripening. Fruit shading was the most effective treatment in reducing fruit AsA content. Under normal conditions, AsA and sugar content were correlated and increased with the ripening stage. Reducing fruit irradiance strongly decreased the reduced AsA content (-74 %), without affecting sugars, so that sugar and reduced AsA were no longer correlated. Leaf shading delayed fruit ripening: it increased the accumulation of oxidized AsA in green fruits (+98 %), whereas it decreased the reduced AsA content in orange fruits (-19 %), suggesting that fruit AsA metabolism also depends on leaf irradiance. Under fruit shading only, the absence of a correlation between sugars and reduced AsA content indicated that fruit AsA content was not limited by leaf photosynthesis or sugar substrate, but strongly depended on fruit irradiance. Leaf shading most probably affected fruit AsA content by delaying fruit ripening, and suggested a complex regulation of AsA metabolism which depends on both fruit and leaf irradiance and fruit ripening stage.

  2. Regulation of tomato fruit ascorbate content is more highly dependent on fruit irradiance than leaf irradiance

    PubMed Central

    Gautier, Hélène; Massot, Capucine; Stevens, Rebecca; Sérino, Sylvie; Génard, Michel

    2009-01-01

    Background and Aims The mechanisms involving light control of vitamin C content in fruits are not yet fully understood. The present study aimed to evaluate the impact of fruit and leaf shading on ascorbate (AsA) accumulation in tomato fruit and to determine how fruit sugar content (as an AsA precursor) affected AsA content. Methods Cherry tomato plants were grown in a glasshouse. The control treatment (normally irradiated fruits and irradiated leaves) was compared with the whole-plant shading treatment and with leaf or fruit shading treatments in fruits harvested at breaker stage. In a second experiment, the correlation between sugars and AsA was studied during ripening. Key Results Fruit shading was the most effective treatment in reducing fruit AsA content. Under normal conditions, AsA and sugar content were correlated and increased with the ripening stage. Reducing fruit irradiance strongly decreased the reduced AsA content (−74 %), without affecting sugars, so that sugar and reduced AsA were no longer correlated. Leaf shading delayed fruit ripening: it increased the accumulation of oxidized AsA in green fruits (+98 %), whereas it decreased the reduced AsA content in orange fruits (−19 %), suggesting that fruit AsA metabolism also depends on leaf irradiance. Conclusions Under fruit shading only, the absence of a correlation between sugars and reduced AsA content indicated that fruit AsA content was not limited by leaf photosynthesis or sugar substrate, but strongly depended on fruit irradiance. Leaf shading most probably affected fruit AsA content by delaying fruit ripening, and suggested a complex regulation of AsA metabolism which depends on both fruit and leaf irradiance and fruit ripening stage. PMID:19033285

  3. Developmental, nutritional and hormonal anomalies of weightlessness-grown wheat

    NASA Astrophysics Data System (ADS)

    Carman, J. G.; Hole, P.; Salisbury, F. B.; Bingham, G. E.

    2015-07-01

    The behavior of water in weightlessness, as occurs in orbiting spacecraft, presents multiple challenges for plant growth. Soils remain saturated, impeding aeration, and leaf surfaces remain wet, impeding gas exchange. Herein we report developmental and biochemical anomalies of "Super Dwarf" wheat (Triticum aestivum L.) grown aboard Space Station Mir during the 1996-97 "Greenhouse 2" experiment. Leaves of Mir-grown wheat were hyperhydric, senesced precociously and accumulated aromatic and branched-chain amino acids typical of tissues experiencing oxidative stress. The highest levels of stress-specific amino acids occurred in precociously-senescing leaves. Our results suggest that the leaf ventilation system of the Svet Greenhouse failed to remove sufficient boundary layer water, thus leading to poor gas exchange and onset of oxidative stress. As oxidative stress in plants has been observed in recent space-flight experiments, we recommend that percentage water content in apoplast free-spaces of leaves be used to evaluate leaf ventilation effectiveness. Mir-grown plants also tillered excessively. Crowns and culms of these plants contained low levels of abscisic acid but high levels of cytokinins. High ethylene levels may have suppressed abscisic acid synthesis, thus permitting cytokinins to accumulate and tillering to occur.

  4. Assessing Quantitative Resistance against Leptosphaeria maculans (Phoma Stem Canker) in Brassica napus (Oilseed Rape) in Young Plants

    PubMed Central

    Huang, Yong-Ju; Qi, Aiming; King, Graham J.; Fitt, Bruce D. L.

    2014-01-01

    Quantitative resistance against Leptosphaeria maculans in Brassica napus is difficult to assess in young plants due to the long period of symptomless growth of the pathogen from the appearance of leaf lesions to the appearance of canker symptoms on the stem. By using doubled haploid (DH) lines A30 (susceptible) and C119 (with quantitative resistance), quantitative resistance against L. maculans was assessed in young plants in controlled environments at two stages: stage 1, growth of the pathogen along leaf veins/petioles towards the stem by leaf lamina inoculation; stage 2, growth in stem tissues to produce stem canker symptoms by leaf petiole inoculation. Two types of inoculum (ascospores; conidia) and three assessment methods (extent of visible necrosis; symptomless pathogen growth visualised using the GFP reporter gene; amount of pathogen DNA quantified by PCR) were used. In stage 1 assessments, significant differences were observed between lines A30 and C119 in area of leaf lesions, distance grown along veins/petioles assessed by visible necrosis or by viewing GFP and amount of L. maculans DNA in leaf petioles. In stage 2 assessments, significant differences were observed between lines A30 and C119 in severity of stem canker and amount of L. maculans DNA in stem tissues. GFP-labelled L. maculans spread more quickly from the stem cortex to the stem pith in A30 than in C119. Stem canker symptoms were produced more rapidly by using ascospore inoculum than by using conidial inoculum. These results suggest that quantitative resistance against L. maculans in B. napus can be assessed in young plants in controlled conditions. Development of methods to phenotype quantitative resistance against plant pathogens in young plants in controlled environments will help identification of stable quantitative resistance for control of crop diseases. PMID:24454767

  5. Variation in chemical composition and allelopathic potential of mixoploid Trigonella foenum-graecum L. with developmental stages.

    PubMed

    Omezzine, Faten; Bouaziz, Mohamed; Simmonds, Monique S J; Haouala, Rabiaa

    2014-04-01

    This study was conducted to evaluate the influence of developmental stages (vegetative, flowering and fruiting) of mixoploid fenugreek aerial parts on their chemical composition and allelopathic potential, assessed on lettuce germination and seedling growth. Aqueous and organic extracts significantly delayed germination, reduced its rate and affected seedling growth. Ethyl acetate and methanol extracts of aerial parts harvested at vegetative stage were the most toxic for lettuce germination and seedling growth, respectively. LC-MS/MS analysis of T. foenum-graecum aerial parts methanolic extract showed nine different flavonol glycosides (quercetin and kaempferol glucosides). Chemical composition of aerial parts differed with the developmental stage; indeed, at the vegetative and fruiting stages, analysis revealed the presence of 9 compounds as compared to only 6 compounds at the flowering stage. Thus, it is necessary to follow the qualitative changes of allelochemicals production at different developmental stages to identify the most productive one. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Determination of male strobilus developmental stages by cytological and gene expression analyses in Japanese cedar (Cryptomeria japonica).

    PubMed

    Tsubomura, Miyoko; Kurita, Manabu; Watanabe, Atsushi

    2016-05-01

    The molecular mechanisms that control male strobilus development in conifers are largely unknown because the developmental stages and related genes have not yet been characterized. The determination of male strobilus developmental stages will contribute to genetic research and reproductive biology in conifers. Our objectives in this study were to determine the developmental stages of male strobili by cytological and transcriptome analysis, and to determine the stages at which aberrant morphology is observed in a male-sterile mutant of Cryptomeria japonica D. Don to better understand the molecular mechanisms that control male strobilus and pollen development. Male strobilus development was observed for 8 months, from initiation to pollen dispersal. A set of 19,209 expressed sequence tags (ESTs) collected from a male reproductive library and a pollen library was used for microarray analysis. We divided male strobilus development into 10 stages by cytological and transcriptome analysis. Eight clusters (7324 ESTs) exhibited major changes in transcriptome profiles during male strobili and pollen development in C. japonica Two clusters showed a gradual increase and decline in transcript abundance, respectively, while the other six clusters exhibited stage-specific changes. The stages at which the male sterility trait of Sosyun was expressed were identified using information on male strobilus and pollen developmental stages and gene expression profiles. Aberrant morphology was observed cytologically at Stage 6 (microspore stage), and differences in expression patterns compared with wild type were observed at Stage 4 (tetrad stage). © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Leaf shape: genetic controls and environmental factors.

    PubMed

    Tsukaya, Hirokazu

    2005-01-01

    In recent years, many genes have been identified that are involved in the developmental processes of leaf morphogenesis. Here, I review the mechanisms of leaf shape control in a model plant, Arabidopsis thaliana, focusing on genes that fulfill special roles in leaf development. The lateral, two-dimensional expansion of leaf blades is highly dependent on the determination of the dorsoventrality of the primordia, a defining characteristic of leaves. Having a determinate fate is also a characteristic feature of leaves and is controlled by many factors. Lateral expansion is not only controlled by general regulators of cell cycling, but also by the multi-level regulation of meristematic activities, e.g., specific control of cell proliferation in the leaf-length direction, in leaf margins and in parenchymatous cells. In collaboration with the polarized control of leaf cell elongation, these redundant and specialized regulating systems for cell cycling in leaf lamina may realize the elegantly smooth, flat structure of leaves. The unified, flat shape of leaves is also dependent on the fine integration of cell proliferation and cell enlargement. Interestingly, while a decrease in the number of cells in leaf primordia can trigger a cell volume increase, an increase in the number of cells does not trigger a cell volume decrease. This phenomenon is termed compensation and suggests the existence of some systems for integration between cell cycling and cell enlargement in leaf primordia via cell-cell communication. The environmental adjustment of leaf expansion to light conditions and gravity is also summarized.

  8. Developmental Screening Using the Ages and Stages Questionnaire: Standardized versus Real-World Conditions

    ERIC Educational Resources Information Center

    San Antonio, Marianne C.; Fenick, Ada M.; Shabanova, Veronika; Leventhal, John M.; Weitzman, Carol C.

    2014-01-01

    Developmental screens are often used in nonstandardized conditions, such as pediatric waiting rooms, despite validation under standardized conditions. We examined the reproducibility of the Ages and Stages Questionnaire (ASQ), a developmental screening instrument commonly used in pediatric practices, under standardized versus nonstandardized…

  9. Preferential Feeding and Occupation of Sunlit Leaves Favors Defense Response and Development in the Flea Beetle, Altica brevicollis coryletorum – A Pest of Corylus avellana

    PubMed Central

    Łukowski, Adrian; Giertych, Marian J.; Zadworny, Marcin; Mucha, Joanna; Karolewski, Piotr

    2015-01-01

    The monophagous beetle, Altica brevicollis coryletorum, is a major leaf pest of Corylus avellana (common hazel). In contrast to majority of the other studied species of shrubs, sunlit leaves are grazed to a much greater extent than shaded leaves. Since the observation of a link between leaf irradiance level and A. brevicollis feeding is unique, we hypothesized that feeding preference of this beetle species is related to the speed needed to escape threats i.e. faster jumping. We also hypothesized that sunlit leaves are more nutritious and easier to consume than the leaves of shaded shrubs. Results indicated that beetle mass was greater in beetles occupying sunlit leaves, which is consistent with our second hypothesis. The study also confirmed under laboratory conditions, that larvae, pupae and beetles that were fed full-light (100% of full light) leaves were significantly heavier than those fed with shaded leaves (15% of full light). In the high irradiance conditions (higher temperature) duration of larval development is also reduced. Further results indicated that neither the concentration of soluble phenols, leaf toughness, or the number of trichomes could explain the insect’s preference for sunlit leaves. Notably, measurements of jump length of beetles of this species, both in the field and under laboratory conditions, indicated that the defense pattern related to jumping was associated with light conditions. The jump length of beetles in the sun was significantly higher than in the shade. Additionally, in laboratory tests, beetle defense (jumping) was more strongly affected by temperature (15, 25, or 35°C for 24h) than by leaf type. The effect of sunlit, higher nutrient leaves (greater level of non-structural carbohydrates) on defense (jumping) appears to be indirect, having a positive effect on insect mass in all developmental stages. PMID:25927706

  10. Lower responsiveness of canopy evapotranspiration rate than of leaf stomatal conductance to open-air CO2 elevation in rice.

    PubMed

    Shimono, Hiroyuki; Nakamura, Hirofumi; Hasegawa, Toshihiro; Okada, Masumi

    2013-08-01

    An elevated atmospheric CO2 concentration ([CO2 ]) can reduce stomatal conductance of leaves for most plant species, including rice (Oryza sativa L.). However, few studies have quantified seasonal changes in the effects of elevated [CO2 ] on canopy evapotranspiration, which integrates the response of stomatal conductance of individual leaves with other responses, such as leaf area expansion, changes in leaf surface temperature, and changes in developmental stages, in field conditions. We conducted a field experiment to measure seasonal changes in stomatal conductance of the uppermost leaves and in the evapotranspiration, transpiration, and evaporation rates using a lysimeter method. The study was conducted for flooded rice under open-air CO2 elevation. Stomatal conductance decreased by 27% under elevated [CO2 ], averaged throughout the growing season, and evapotranspiration decreased by an average of 5% during the same period. The decrease in daily evapotranspiration caused by elevated [CO2 ] was more significantly correlated with air temperature and leaf area index (LAI) rather than with other parameters of solar radiation, days after transplanting, vapor-pressure deficit and FAO reference evapotranspiration. This indicates that higher air temperatures, within the range from 16 to 27 °C, and a larger LAI, within the range from 0 to 4 m(2)  m(-2) , can increase the magnitude of the decrease in evapotranspiration rate caused by elevated [CO2 ]. The crop coefficient (i.e. the evapotranspiration rate divided by the FAO reference evapotranspiration rate) was 1.24 at ambient [CO2 ] and 1.17 at elevated [CO2 ]. This study provides the first direct measurement of the effects of elevated [CO2 ] on rice canopy evapotranspiration under open-air conditions using the lysimeter method, and the results will improve future predictions of water use in rice fields. © 2013 John Wiley & Sons Ltd.

  11. The Developmental Cycle: Teachings on the Eight Stages of Growth of a Human Being.

    ERIC Educational Resources Information Center

    Coyhis, Don

    1997-01-01

    Ties Native American Medicine Wheel teachings on the cycle of life to Eric Erickson's work on the eight developmental stages: trust, autonomy, initiative, accomplishment, identity, intimacy, generativity, and integrity. To have healthy communities, people need to move successfully through these stages. Knowing about these stages can help a person…

  12. The developmental transcriptome atlas of the spoon worm Urechis unicinctus (Echiurida: Annelida).

    PubMed

    Park, Chungoo; Han, Yong-Hee; Lee, Sung-Gwon; Ry, Kyoung-Bin; Oh, Jooseong; Kern, Elizabeth M A; Park, Joong-Ki; Cho, Sung-Jin

    2018-03-01

    Echiurida is one of the most intriguing major subgroups of annelida because, unlike most other annelids, echiurids lack metameric body segmentation as adults. For this reason, transcriptome analyses from various developmental stages of echiurid species can be of substantial value for understanding precise expression levels and the complex regulatory networks during early and larval development. A total of 914 million raw RNA-Seq reads were produced from 14 developmental stages of Urechis unicinctus and were de novo assembled into contigs spanning 63,928,225 bp with an N50 length of 2700 bp. The resulting comprehensive transcriptome database of the early developmental stages of U. unicinctus consists of 20,305 representative functional protein-coding transcripts. Approximately 66% of unigenes were assigned to superphylum-level taxa, including Lophotrochozoa (40%). The completeness of the transcriptome assembly was assessed using benchmarking universal single-copy orthologs; 75.7% of the single-copy orthologs were presented in our transcriptome database. We observed 3 distinct patterns of global transcriptome profiles from 14 developmental stages and identified 12,705 genes that showed dynamic regulation patterns during the differentiation and maturation of U. unicinctus cells. We present the first large-scale developmental transcriptome dataset of U. unicinctus and provide a general overview of the dynamics of global gene expression changes during its early developmental stages. The analysis of time-course gene expression data is a first step toward understanding the complex developmental gene regulatory networks in U. unicinctus and will furnish a valuable resource for analyzing the functions of gene repertoires in various developmental phases.

  13. Vegetation Structure of Ebony Leaf Monkey (Trachypithecus auratus) Habitat in Kecubung Ulolanang Nature Preservation Central Java-Indonesia

    NASA Astrophysics Data System (ADS)

    Ervina, Rahmawati; Wasiq, Hidayat Jafron

    2018-02-01

    Kecubung Ulolanang Nature Preservation is ebony leaf monkey's habitats in Central Java Indonesia. Continuously degradation of their population is caused by illegal hunting and habitat degradation that made this species being vulnerable. Habitat conservation is one of important aspects to prevent them from extinction. The purpose of this research was to analyze the vegetation's structure and composition, which was potentially, becomes habitat and food source for the monkeys. Data collected using purposive sampling with line transect method of four different level of vegetation. Data analysis used Important Value Index and Diversity Index. There were 43 species of vegetation at seedling stage, 18 species at sapling stage, 8 species at poles stage and 27 species at trees stage. Species that had the highest important value index at seedling was Stenochlaena palustri , at the sapling was Gnetum gnemon, at pole was Swietenia mahagoni and at tree was Tectona grandis . Species of trees those were potentially to become habitat (food source) for ebony leaf monkey were T. grandis, Dipterocarpus gracilis, Quercus sundaica and Ficus superba. The highest diversity index was at seedling gwoth stage.

  14. Violent Victimization and Perpetration during Adolescence: Developmental Stage Dependent Ecological Models

    ERIC Educational Resources Information Center

    Matjasko, Jennifer L.; Needham, Belinda L.; Grunden, Leslie N.; Farb, Amy Feldman

    2010-01-01

    Using a variant of the ecological-transactional model and developmental theories of delinquency on a nationally representative sample of adolescents, the current study explored the ecological predictors of violent victimization, perpetration, and both for three different developmental stages during adolescence. We examined the relative influence…

  15. Local auxin production underlies a spatially restricted neighbor-detection response in Arabidopsis

    PubMed Central

    Michaud, Olivier

    2017-01-01

    Competition for light triggers numerous developmental adaptations known as the “shade-avoidance syndrome” (SAS). Important molecular events underlying specific SAS responses have been identified. However, in natural environments light is often heterogeneous, and it is currently unknown how shading affecting part of a plant leads to local responses. To study this question, we analyzed upwards leaf movement (hyponasty), a rapid adaptation to neighbor proximity, in Arabidopsis. We show that manipulation of the light environment at the leaf tip triggers a hyponastic response that is restricted to the treated leaf. This response is mediated by auxin synthesized in the blade and transported to the petiole. Our results suggest that a strong auxin response in the vasculature of the treated leaf and auxin signaling in the epidermis mediate leaf elevation. Moreover, the analysis of an auxin-signaling mutant reveals signaling bifurcation in the control of petiole elongation versus hyponasty. Our work identifies a mechanism for a local shade response that may pertain to other plant adaptations to heterogeneous environments. PMID:28652343

  16. OeFAD8, OeLIP and OeOSM expression and activity in cold-acclimation of Olea europaea, a perennial dicot without winter-dormancy.

    PubMed

    D'Angeli, Simone; Matteucci, Maya; Fattorini, Laura; Gismondi, Angelo; Ludovici, Matteo; Canini, Antonella; Altamura, Maria Maddalena

    2016-05-01

    Cold-acclimation genes in woody dicots without winter-dormancy, e.g., olive-tree, need investigation. Positive relationships between OeFAD8, OeOSM , and OeLIP19 and olive-tree cold-acclimation exist, and couple with increased lipid unsaturation and cutinisation. Olive-tree is a woody species with no winter-dormancy and low frost-tolerance. However, cold-tolerant genotypes were empirically selected, highlighting that cold-acclimation might be acquired. Proteins needed for olive-tree cold-acclimation are unknown, even if roles for osmotin (OeOSM) as leaf cryoprotectant, and seed lipid-transfer protein for endosperm cutinisation under cold, were demonstrated. In other species, FAD8, coding a desaturase producing α-linolenic acid, is activated by temperature-lowering, concomitantly with bZIP-LIP19 genes. The research was focussed on finding OeLIP19 gene(s) in olive-tree genome, and analyze it/their expression, and that of OeFAD8 and OeOSM, in drupes and leaves under different cold-conditions/developmental stages/genotypes, in comparison with changes in unsaturated lipids and cell wall cutinisation. Cold-induced cytosolic calcium transients always occurred in leaves/drupes of some genotypes, e.g., Moraiolo, but ceased in others, e.g., Canino, at specific drupe stages/cold-treatments, suggesting cold-acclimation acquisition only in the latter genotypes. Canino and Moraiolo were selected for further analyses. Cold-acclimation in Canino was confirmed by an electrolyte leakage from leaf/drupe membranes highly reduced in comparison with Moraiolo. Strong increases in fruit-epicarp/leaf-epidermis cutinisation characterized cold-acclimated Canino, and positively coupled with OeOSM expression, and immunolocalization of the coded protein. OeFAD8 expression increased with cold-acclimation, as the production of α-linolenic acid, and related compounds. An OeLIP19 gene was isolated. Its levels changed with a trend similar to OeFAD8. All together, results sustain a positive relationship between OeFAD8, OeOSM and OeLIP19 expression in olive-tree cold-acclimation. The parallel changes in unsaturated lipids and cutinisation concur to suggest orchestrated roles of the coded proteins in the process.

  17. Morphogenesis at the inflorescence shoot apex of Anagallis arvensis: surface geometry and growth in comparison with the vegetative shoot.

    PubMed

    Kwiatkowska, Dorota; Routier-Kierzkowska, Anne-Lise

    2009-01-01

    Quantitative analysis of geometry and surface growth based on the sequential replica method is used to compare morphogenesis at the shoot apex of Anagallis arvensis in the reproductive and vegetative phases of development. Formation of three types of lateral organs takes place at the Anagallis shoot apical meristem (SAM): vegetative leaf primordia are formed during the vegetative phase and leaf-like bracts and flower primordia during the reproductive phase. Although the shapes of all the three types of primordia are very similar during their early developmental stages, areal growth rates and anisotropy of apex surface growth accompanying formation of leaf or bract primordia are profoundly different from those during formation of flower primordia. This provides an example of different modes of de novo formation of a given shape. Moreover, growth accompanying the formation of the boundary between the SAM and flower primordium is entirely different from growth at the adaxial leaf or bract primordium boundary. In the latter, areal growth rates at the future boundary are the lowest of all the apex surface, while in the former they are relatively very high. The direction of maximal growth rate is latitudinal (along the future boundary) in the case of leaf or bract primordium but meridional (across the boundary) in the case of flower. The replica method does not enable direct analysis of growth in the direction perpendicular to the apex surface (anticlinal direction). Nevertheless, the reconstructed surfaces of consecutive replicas taken from an individual apex allow general directions of SAM surface bulging accompanying primordium formation to be recognized. Precise alignment of consecutive reconstructions shows that the direction of initial bulging during the leaf or bract formation is nearly parallel to the shoot axis (upward bulging), while in the case of flower it is perpendicular to the axis (lateral bulging). In future, such 3D reconstructions can be used to assess displacement velocity fields so that growth in the anticlinal direction can be assessed. In terms of self-perpetuation, the inflorescence SAM of Anagallis differs from the SAM in the vegetative phase in that the centrally located region of slow growth is less distinct in the inflorescence SAM. Moreover, the position of this slowly growing zone with respect to cells is not stable in the course of the meristem ontogeny.

  18. Repression of cell proliferation by miR319-regulated TCP4.

    PubMed

    Schommer, Carla; Debernardi, Juan M; Bresso, Edgardo G; Rodriguez, Ramiro E; Palatnik, Javier F

    2014-10-01

    Leaf development has been extensively studied on a genetic level. However, little is known about the interplay between the developmental regulators and the cell cycle machinery--a link that ultimately affects leaf form and size. miR319 is a conserved microRNA that regulates TCP transcription factors involved in multiple developmental pathways, including leaf development and senescence, organ curvature, and hormone biosynthesis and signaling. Here, we analyze the participation of TCP4 in the control of cell proliferation. A small increase in TCP4 activity has an immediate impact on leaf cell number, by significantly reducing cell proliferation. Plants with high TCP4 levels have a strong reduction in the expression of genes known to be active in G2-M phase of the cell cycle. Part of these effects is mediated by induction of miR396, which represses Growth-Regulating Factor (GRF) transcription factors. Detailed analysis revealed TCP4 to be a direct regulator of MIR396b. However, we found that TCP4 can control cell proliferation through additional pathways, and we identified a direct connection between TCP4 and ICK1/KRP1, a gene involved in the progression of the cell cycle. Our results show that TCP4 can activate different pathways that repress cell proliferation. © The Author 2014. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.

  19. Transcriptomic Analysis of Calonectria pseudoreteaudii during Various Stages of Eucalyptus Infection

    PubMed Central

    Ye, Xiaozhen; Liu, Hongyi; Jin, Yajie; Guo, Mengmeng; Huang, Aizhen; Chen, Quanzhu; Guo, Wenshuo; Zhang, Feiping; Feng, Lizhen

    2017-01-01

    Eucalyptus leaf blight caused by Calonectria spp. is a serious disease in Eucalyptus seedling and plantations. However, the molecular mechanisms of the infection process and pathogenesis of Calonectria to Eucalyptus is not well-studied. In this study, we analyzed the transcriptomes of C. pseudoreteaudii at three stages of Eucalyptus leaf infection, and in mycelium grown in potato dextrose broth using Illumina RNA-Seq technology. We identified 161 differentially expressed genes between C. pseudoreteaudii from leaf and mycelium grown in potato dextrose broth. GO and KEGG enrichment analyses of these genes suggested that they were mainly involved in oxidoreductase activity, hydrolase activity, and transmembrane transporter activity. Most of the differentially expressed genes at the early infection stage were upregulated. These upregulated genes were mainly involved in cell wall hydrolysis and toxin synthesis, suggesting a role for toxin and cell wall hydrolases in the establishment of Calonectria leaf blight. Genes related to detoxification of phytoalexins were continually upregulated during infection. The candidate effectors and putative pathogenicity determinants identified in this study will help in the functional analysis of C. pseudoreteaudii virulence and pathogenicity. PMID:28072879

  20. Transcriptomic Analysis of Calonectria pseudoreteaudii during Various Stages of Eucalyptus Infection.

    PubMed

    Ye, Xiaozhen; Liu, Hongyi; Jin, Yajie; Guo, Mengmeng; Huang, Aizhen; Chen, Quanzhu; Guo, Wenshuo; Zhang, Feiping; Feng, Lizhen

    2017-01-01

    Eucalyptus leaf blight caused by Calonectria spp. is a serious disease in Eucalyptus seedling and plantations. However, the molecular mechanisms of the infection process and pathogenesis of Calonectria to Eucalyptus is not well-studied. In this study, we analyzed the transcriptomes of C. pseudoreteaudii at three stages of Eucalyptus leaf infection, and in mycelium grown in potato dextrose broth using Illumina RNA-Seq technology. We identified 161 differentially expressed genes between C. pseudoreteaudii from leaf and mycelium grown in potato dextrose broth. GO and KEGG enrichment analyses of these genes suggested that they were mainly involved in oxidoreductase activity, hydrolase activity, and transmembrane transporter activity. Most of the differentially expressed genes at the early infection stage were upregulated. These upregulated genes were mainly involved in cell wall hydrolysis and toxin synthesis, suggesting a role for toxin and cell wall hydrolases in the establishment of Calonectria leaf blight. Genes related to detoxification of phytoalexins were continually upregulated during infection. The candidate effectors and putative pathogenicity determinants identified in this study will help in the functional analysis of C. pseudoreteaudii virulence and pathogenicity.

  1. Description of Rhagoletis cerasi (Diptera: Tephritidae) Pupal Developmental Stages: Indications of Prolonged Diapause

    PubMed Central

    Papanastasiou, Stella A.; Papadopoulos, Nikos T.

    2014-01-01

    Abstract The European cherry fruit fly, Rhagoletis cerasi (L.) (Diptera: Tephritidae), is the key pest of sweet and sour cherries in many European countries and west Asia. It is a univoltine species of the west Palaearctic zone that undergoes obligatory pupal diapause. In this study, the development of R. cerasi pupae that were brought to an optimum temperature for postdiapause development following a long chilling period is described. The six most representative developmental stages within the puparium are illustrated, and the developmental progression among the stages after the end of the chilling period is quantified. Within 20 d postchilling, there was a gradual progress from stage I to pharate adult. However, ∼30% of the pupae remained at the transitional stage II, after 20 d at 25°C (optimum temperature for development). This suggests that a proportion of pupae remain at an intermediate developmental stage for an extended period of time that goes beyond 20 d postchilling. The pupal stage II might be related to diapause termination and responsiveness to environmental cues. It may also define the time before developmental progress to pharate adult. This finding agrees with previous studies proposing that a number of R. cerasi pupae undergo prolonged diapause, though the morphological characteristics of these pupae have never been described before. PMID:25399427

  2. Why Are There Developmental Stages in Language Learning? A Developmental Robotics Model of Language Development.

    PubMed

    Morse, Anthony F; Cangelosi, Angelo

    2017-02-01

    Most theories of learning would predict a gradual acquisition and refinement of skills as learning progresses, and while some highlight exponential growth, this fails to explain why natural cognitive development typically progresses in stages. Models that do span multiple developmental stages typically have parameters to "switch" between stages. We argue that by taking an embodied view, the interaction between learning mechanisms, the resulting behavior of the agent, and the opportunities for learning that the environment provides can account for the stage-wise development of cognitive abilities. We summarize work relevant to this hypothesis and suggest two simple mechanisms that account for some developmental transitions: neural readiness focuses on changes in the neural substrate resulting from ongoing learning, and perceptual readiness focuses on the perceptual requirements for learning new tasks. Previous work has demonstrated these mechanisms in replications of a wide variety of infant language experiments, spanning multiple developmental stages. Here we piece this work together as a single model of ongoing learning with no parameter changes at all. The model, an instance of the Epigenetic Robotics Architecture (Morse et al 2010) embodied on the iCub humanoid robot, exhibits ongoing multi-stage development while learning pre-linguistic and then basic language skills. Copyright © 2016 Cognitive Science Society, Inc.

  3. Assessing plant nitrogen concentration in winter oilseed rape using hyperspectral measurements

    NASA Astrophysics Data System (ADS)

    Li, Lu; Liu, Shishi; Wang, Shanqing; Lu, Jianwei; Li, Lantao; Ma, Yi; Ming, Jin

    2016-07-01

    This study aims to find the optimal vegetation indices (VIs) to remotely estimate plant nitrogen concentration (PNC) in winter oilseed rape across different growth stages. Since remote sensing cannot "sense" N in live leaves, remote estimation of PNC should be based on understanding the relationships between PNC and chlorophyll (Chl), carotenoid concentration (Car), Car/Chl, dry mass (DM), and leaf area index (LAI). The experiments with eight nitrogen fertilization treatments were conducted in 2014 to 2015 and 2015 to 2016, and measurements were acquired at six-leaf, eight-leaf, and ten-leaf stages. We found that at each stage, Chl, Car, DM, and LAI were all strongly related to PNC. However, across different growth stages, semipartial correlation and linear regression analysis showed that Chl and Car had consistently significant relationships with PNC, whereas LAI and DM were either weakly or barely correlated with PNC. Therefore, the most suitable VIs should be sensitive to the change in Chl and Car while insensitive to the change in DM. We found that anthocyanin reflectance index and the simple ratio of the red band to blue band fit the requirements. The validation with the 2015 to 2016 dataset showed that the selected VIs could provide accurate estimates of PNC in winter oilseed rape.

  4. Efficient embryonic culture method for the Japanese striped snake, Elaphe quadrivirgata, and its early developmental stages.

    PubMed

    Matsubara, Yoshiyuki; Sakai, Atsushi; Kuroiwa, Atsushi; Suzuki, Takayuki

    2014-10-01

    The morphogenesis of snake embryos is an elusive yet fascinating research target for developmental biologists. However, few data exist on development of early snake embryo due to limited availability of pregnant snakes, and the need to harvest early stage embryos directly from pregnant snakes before oviposition without knowing the date of fertilization. We established an ex vivo culture method for early snake embryos using the Japanese striped snake, Elaphe quadrivirgata. This method, which we named "sausage-style (SS) culture", allows us to harvest snake embryos at specific stages for each experiment. Using this SS culture system, we calculated somite formation rate at early stages before oviposition. The average somite formation rate between 6/7 and 12/13 somite stages was 145.9 min, between 60/70 and 80/91 somite stages 42.4 min, and between 113-115 and 126/127 somite stages 71 min. Thus, somite formation rate that we observed during early snake embryogenesis was changed over time. We also describe a developmental staging series for E. quadrivirgata. This is the first report of a developmental series of early snake embryogenesis prior to oviposition by full-color images with high-resolution. We propose that the SS culture system is an easy method for treating early snake embryos ex vivo. © 2014 The Authors Development, Growth & Differentiation © 2014 Japanese Society of Developmental Biologists.

  5. Determining the K coefficient to leaf area index estimations in a tropical dry forest

    NASA Astrophysics Data System (ADS)

    Magalhães, Sarah Freitas; Calvo-Rodriguez, Sofia; do Espírito Santo, Mário Marcos; Sánchez Azofeifa, Gerardo Arturo

    2018-03-01

    Vegetation indices are useful tools to remotely estimate several important parameters related to ecosystem functioning. However, improving and validating estimations for a wide range of vegetation types are necessary. In this study, we provide a methodology for the estimation of the leaf area index (LAI) in a tropical dry forest (TDF) using the light diffusion through the canopy as a function of the successional stage. For this purpose, we estimated the K coefficient, a parameter that relates the normalized difference vegetation index (NDVI) to LAI, based on photosynthetically active radiation (PAR) and solar radiation. The study was conducted in the Mata Seca State Park, in southeastern Brazil, from 2012 to 2013. We defined four successional stages (very early, early, intermediate, and late) and established one optical phenology tower at one plot of 20 × 20 m per stage. Towers measured the incoming and reflected solar radiation and PAR for NDVI calculation. For each plot, we established 24 points for LAI sampling through hemispherical photographs. Because leaf cover is highly seasonal in TDFs, we determined ΔK (leaf growth phase) and K max (leaf maturity phase). We detected a strong correlation between NDVI and LAI, which is necessary for a reliable determination of the K coefficient. Both NDVI and LAI varied significantly between successional stages, indicating sensitivity to structural changes in forest regeneration. Furthermore, the K values differed between successional stages and correlated significantly with other environmental variables such as air temperature and humidity, fraction of absorbed PAR, and soil moisture. Thus, we established a model based on spectral properties of the vegetation coupled with biophysical characteristics in a TDF that makes possible to estimate LAI from NDVI values. The application of the K coefficient can improve remote estimations of forest primary productivity and gases and energy exchanges between vegetation and atmosphere. This model can be applied to distinguish different successional stages of TDFs, supporting environmental monitoring and conservation policies towards this biome.

  6. Transcriptome analysis during ripening of table grape berry cv. Thompson Seedless

    PubMed Central

    Balic, Iván; Vizoso, Paula; Nilo-Poyanco, Ricardo; Sanhueza, Dayan; Olmedo, Patricio; Sepúlveda, Pablo; Arriagada, Cesar; Defilippi, Bruno G.; Meneses, Claudio

    2018-01-01

    Ripening is one of the key processes associated with the development of major organoleptic characteristics of the fruit. This process has been extensively characterized in climacteric fruit, in contrast with non-climacteric fruit such as grape, where the process is less understood. With the aim of studying changes in gene expression during ripening of non-climacteric fruit, an Illumina based RNA-Seq transcriptome analysis was performed on four developmental stages, between veraison and harvest, on table grapes berries cv Thompson Seedless. Functional analysis showed a transcriptional increase in genes related with degradation processes of chlorophyll, lipids, macromolecules recycling and nucleosomes organization; accompanied by a decrease in genes related with chloroplasts integrity and amino acid synthesis pathways. It was possible to identify several processes described during leaf senescence, particularly close to harvest. Before this point, the results suggest a high transcriptional activity associated with the regulation of gene expression, cytoskeletal organization and cell wall metabolism, which can be related to growth of berries and firmness loss characteristic to this stage of development. This high metabolic activity could be associated with an increase in the transcription of genes related with glycolysis and respiration, unexpected for a non-climacteric fruit ripening. PMID:29320527

  7. Transcriptome analysis during ripening of table grape berry cv. Thompson Seedless.

    PubMed

    Balic, Iván; Vizoso, Paula; Nilo-Poyanco, Ricardo; Sanhueza, Dayan; Olmedo, Patricio; Sepúlveda, Pablo; Arriagada, Cesar; Defilippi, Bruno G; Meneses, Claudio; Campos-Vargas, Reinaldo

    2018-01-01

    Ripening is one of the key processes associated with the development of major organoleptic characteristics of the fruit. This process has been extensively characterized in climacteric fruit, in contrast with non-climacteric fruit such as grape, where the process is less understood. With the aim of studying changes in gene expression during ripening of non-climacteric fruit, an Illumina based RNA-Seq transcriptome analysis was performed on four developmental stages, between veraison and harvest, on table grapes berries cv Thompson Seedless. Functional analysis showed a transcriptional increase in genes related with degradation processes of chlorophyll, lipids, macromolecules recycling and nucleosomes organization; accompanied by a decrease in genes related with chloroplasts integrity and amino acid synthesis pathways. It was possible to identify several processes described during leaf senescence, particularly close to harvest. Before this point, the results suggest a high transcriptional activity associated with the regulation of gene expression, cytoskeletal organization and cell wall metabolism, which can be related to growth of berries and firmness loss characteristic to this stage of development. This high metabolic activity could be associated with an increase in the transcription of genes related with glycolysis and respiration, unexpected for a non-climacteric fruit ripening.

  8. A new system for assessment of growth using mandibular canine calcification stages and its correlation with modified MP3 stages.

    PubMed

    Hegde, Gautham; Hegde, Nanditha; Kumar, Anil; Keshavaraj

    2014-07-01

    Orthodontic diagnosis and treatment planning for growing children must involve growth prediction, especially in the treatment of skeletal problems. Studies have shown that a strong association exists between skeletal maturity and dental calcification stages. The present study was therefore taken up to provide a simple and practical method for assessing skeletal maturity using a dental periapical film and standard dental X-ray machine, to compare the developmental stages of the mandibular canine with that of developmental stages of modified MP3 and to find out if any correlation exists, to determine if the developmental stages of the mandibular canine alone can be used as a reliable indicator for assessment of skeletal maturity. A total of 160 periapical radiographs, of the mandibular right canine and the MP3 region was taken and assessed according to the Dermirjian's stages of dental calcification and the modified MP3 stages. The correlation coefficient between MP3 stages and developmental stages of mandibular canine was found to be significant in both male and female groups. When the canine calcification stages were compared with the MP3 stages it was found that with the exception of the D stage of canine calcification the remaining stages showed a very high correlation with the modified MP3 stages. The correlation between the mandibular canine calcification stages, and the MP3 stages was found to be significant. The canine calcification could be used as a sole indicator for assessment of skeletal maturity.

  9. Photosynthetic capacity peaks at intermediate size in temperate deciduous trees.

    PubMed

    Thomas, Sean C

    2010-05-01

    Studies of age-related changes in leaf functional biology have generally been based on dichotomous comparisons of young and mature individuals (e.g., saplings and mature canopy trees), with little data available to describe changes through the entire ontogeny of trees, particularly of broadleaf angiosperms. Leaf-level gas-exchange and morphological parameters were quantified in situ in the upper canopy of trees acclimated to high light conditions, spanning a wide range of ontogenetic stages from saplings (approximately 1 cm in stem diameter) to trees >60 cm d.b.h. and nearing their maximum lifespan, in three temperate deciduous tree species in central Ontario, Canada. Traits associated with growth performance, including leaf photosynthetic capacity (expressed on either an area, mass or leaf N basis), stomatal conductance, leaf size and leaf N content, generally showed a unimodal ('hump-shaped') pattern, with peak values at an intermediate ontogenetic stage. In contrast, leaf mass per area (LMA) and related morphological parameters (leaf thickness, leaf tissue density, leaf C content) increased monotonically with tree size, as did water-use efficiency; these monotonic relationships were well described by simple allometric functions of the form Y = aX(b). For traits showing unimodal patterns, tree size corresponding to the trait maximum differed markedly among traits: all three species showed a similar pattern in which the peak for leaf size occurred in trees approximately 2-6 cm d.b.h., followed by leaf chemical traits and photosynthetic capacity on a mass or leaf N basis and finally by photosynthetic capacity on a leaf area basis, which peaked approximately at the size of reproductive onset. It is argued that ontogenetic increases in photosynthetic capacity and related traits early in tree ontogeny are general among relatively shade-tolerant tree species that have a low capacity for leaf-level acclimation, as are declines in this set of traits late in tree ontogeny.

  10. Selection of Lecanicillium Strain with High Virulence against Developmental Stages of Bemisia tabaci

    PubMed Central

    Park, Heeyong

    2010-01-01

    Selection of fungal strains with high virulence against the developmental stages of Bemisia tabaci was performed using internal transcribed spacer regions. The growth rate of hyphae was measured and bioassay of each developmental stage of B. tabaci was conducted for seven days. All of the fungal strains tested were identified as Lecanicillium spp., with strain 4078 showing the fastest mycelium growth rate (colony diameter, 16.3 ± 0.9 mm) among the strains. Compared to strain 4075, which showed the slowest growth rate, the growth rate of strain 4078 was increased almost 2-fold after seven days. Strains 4078 and Btab01 were most virulent against the egg and larva stages, respectively. The virulence of fungal strains against the adult stage was high, except for strains 41185 and 3387. Based on the growth rate of mycelium and level of virulence, strains 4078 and Btab01 were selected as the best fungal strains for application to B. tabaci, regardless of developmental stage. PMID:23956657

  11. [Study on the histological anatomy on medicinal parts of Semiaquilegia adoxoides in different developmental stages].

    PubMed

    Yang, Jun; Peng, Hua-Sheng; Wang, De-Qun; Sun, Jing

    2012-08-01

    To study the structural characteristics of medicinal parts at different developmental stages of Semiaquilegia adoxoides. Observed on sections of medicinal parts of Semiaquilegia adoxoides at various developmental stages during growth periods. There was a great difference between the upper and bottom of the medicinal parts of Semiaquilegia adoxoides: rhizome at the top of root had the structure of rhizome with pith; The upper one third of enlarged root was root-stem transition zone, also with pith; And the other two thirds of enlarged root had the structure of root without pith. The microscopic structures of the medicinal parts of Semiaquilegia adoxoides at various developmental stages presented great disparities, the structures regularly increased as the size of plant increased. It was the first time to find that there were structure of growth rings in xylem of the root and rhizome of Semiaquilegia adoxoides. The method of identification of characteristics and histology of medicinal parts of Semiaquilegia adoxoides at different developmental stages is established, and the results provide a basis for identification of Semiaquilegia adoxoides medicinal materials.

  12. Telomere length of the colonial coral Galaxea fascicularis at different developmental stages

    NASA Astrophysics Data System (ADS)

    Tsuta, H.; Hidaka, M.

    2013-06-01

    The ability to estimate coral age using soft tissue would be useful for population biology or aging studies on corals. In this study, we investigated whether telomere length can be used to estimate coral age. We applied single telomere length analysis to a colonial coral, Galaxea fascicularis, and estimated telomere lengths of specific coral chromosomes at different developmental stages. If the telomere shortened at each cell division, the telomere length of the coral would be longest in sperm and shortest in adult colonies. However, the mean telomere length of sperm, planula larvae, and polyps was approximately 4 kb, with no significant differences among the developmental stages. The telomerase restriction fragment (TRF) analysis also showed no significant difference in the mean TRF length among the developmental stages. Our results suggested that telomere length is maintained during developmental stages and that estimating the age of colonial coral based on telomere length may not be possible. However, our findings can be used to examine avoidance of aging and rejuvenation during regeneration and asexual reproduction in colonial corals.

  13. ESTIMATION OF LEAF AREA INDEX IN OPEN-CANOPY PONDEROSA PINE FORESTS AT DIFFERENT SUCCESSIONAL STAGES AND MANAGEMENT REGIMES IN OREGON. (R828309)

    EPA Science Inventory

    Abstract

    Leaf area and its spatial distribution are key parameters in describing canopy characteristics. They determine radiation regimes and influence mass and energy exchange with the atmosphere. The evaluation of leaf area in conifer stands is particularly challengi...

  14. [Effects of temperature on leaf lettuce vernalization.

    PubMed

    Zhang, Li Li; Hao, Jing Hong; Han, Ying Yan; Liu, Chao Jie; Su, He Nan; Li, Pan Pan; Sun, Yan Chuan; Fan, Shuang Xi

    2016-11-18

    To investigate the effects of different temperatures on the vernalization of leaf lettuce, and declare their type, two easy bolting leaf lettuce varieties of GB-30 and GB-31 were selected as material, which were treated by 4 ℃, 20 ℃ and 25 ℃ for 20 d respectively and afterwards treated by high temperature stress. The process of flower bud differentiation was observed by using paraffin section technology, and combined the condition of bolting and flowering to estimate whether or not it underwent vernalization, and defined its vernalization type. The results showed that, two varieties of GB-30 and GB-31 appeared bolting to different degrees at the 8 th day under high temperature stress after temperature treatments in the early stage. Different temperatures in the early stage all made flower bud differentiated of two varieties. 4 ℃ treatment did not advance the flower bud differentiation, while the high temperature in later time accelerated this progress. Furthermore, the days required for the two varieties to complete development stages differed under different temperature treatments. The effective accumulated temperature whether from pregermination to flowering or from high temperature stress to flowering of two varieties were also different. The leaf lettuce without low temperature treatment in early stage could enter into the flower bud differentiation, bolting, budding and flowering stages, and it could be considered as non-low temperature vernalization plant. The high temperature treatment in later stage could obviously promote its bolting and flowering. In addition, the effective accumulated temperature had to reach about 2500 ℃·d from germination to blossom.

  15. Sub-lethal and lethal toxicities of elevated CO2 on embryonic, juvenile, and adult stages of marine medaka Oryzias melastigma.

    PubMed

    Lee, Changkeun; Kwon, Bong-Oh; Hong, Seongjin; Noh, Junsung; Lee, Junghyun; Ryu, Jongseong; Kang, Seong-Gil; Khim, Jong Seong

    2018-06-06

    The potential leakage from marine CO 2 storage sites is of increasing concern, but few studies have evaluated the probable adverse effects on marine organisms. Fish, one of the top predators in marine environments, should be an essential representative species used for water column toxicity testing in response to waterborne CO 2 exposure. In the present study, we conducted fish life cycle toxicity tests to fully elucidate CO 2 toxicity mechanism effects. We tested sub-lethal and lethal toxicities of elevated CO 2 concentrations on marine medaka (Oryzias melastigma) at different developmental stages. At each developmental stage, the test species was exposed to varying concentrations of gaseous CO 2 (control air, 5%, 10%, 20%, and 30%), with 96 h of exposure at 0-4 d (early stage), 4-8 d (middle stage), and 8-12 d (late stage). Sub-lethal and lethal effects, including early developmental delays, cardiac edema, tail abnormalities, abnormal pigmentation, and mortality were monitored daily during the 14 d exposure period. At the embryonic stage, significant sub-lethal and lethal effects were observed at pH < 6.30. Hypercapnia can cause long-term and/or delayed developmental embryonic problems, even after transfer back to clean seawater. At fish juvenile and adult stages, significant mortality was observed at pH < 5.70, indicating elevated CO 2 exposure might cause various adverse effects, even during short-term exposure periods. It should be noted the early embryonic stage was found more sensitive to CO 2 exposure than other developmental stages of the fish life cycle. Overall, the present study provided baseline information for potential adverse effects of high CO 2 concentration exposure on fish developmental processes at different life cycle stages in marine ecosystems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Growth and reproduction of the alpine grasshopper Miramella alpina feeding on CO2-enriched dwarf shrubs at treeline.

    PubMed

    Asshoff, Roman; Hättenschwiler, Stephan

    2005-01-01

    The consequences for plant-insect interactions of atmospheric changes in alpine ecosystems are not well understood. Here, we tested the effects of elevated CO(2) on leaf quality in two dwarf shrub species (Vaccinium myrtillus and V. uliginosum) and the response of the alpine grasshopper (Miramella alpina) feeding on these plants in a field experiment at the alpine treeline (2,180 m a.s.l.) in Davos, Switzerland. Relative growth rates (RGR) of M. alpina nymphs were lower when they were feeding on V. myrtillus compared to V. uliginosum, and were affected by elevated CO(2) depending on plant species and nymph developmental stage. Changes in RGR correlated with CO(2)-induced changes in leaf water, nitrogen, and starch concentrations. Elevated CO(2) resulted in reduced female adult weight irrespective of plant species, and prolonged development time on V. uliginosum only, but there were no significant differences in nymphal mortality. Newly molted adults of M. alpina produced lighter eggs and less secretion (serving as egg protection) under elevated CO(2). When grasshoppers had a choice among four different plant species grown either under ambient or elevated CO(2), V. myrtillus and V. uliginosum consumption increased under elevated CO(2) in females while it decreased in males compared to ambient CO(2)-grown leaves. Our findings suggest that rising atmospheric CO(2) distinctly affects leaf chemistry in two important dwarf shrub species at the alpine treeline, leading to changes in feeding behavior, growth, and reproduction of the most important insect herbivore in this system. Changes in plant-grasshopper interactions might have significant long-term impacts on herbivore pressure, community dynamics and ecosystem stability in the alpine treeline ecotone.

  17. Floral ontogeny and gene protein localization rules out euanthial interpretation of reproductive units in Lepironia (Cyperaceae, Mapanioideae, Chrysitricheae)

    PubMed Central

    Prychid, C. J.; Bruhl, J. J.

    2013-01-01

    Background and Aims In the sedge subfamily Mapanioideae there are considerable discrepancies between the standard trimerous monocot floral architecture expected and the complex floral and inflorescence morphologies seen. Decades of debate about whether the basic reproductive units are single flowers or pseudanthia have not resolved the question. This paper evaluates current knowledge about Mapaniid reproductive structures and presents an ontogenetic study of the Mapaniid genus Lepironia with the first floral protein expression maps for the family, localizing the products of the APETALA1/FRUITFULL-like (AP1/FUL) MADS-box genes with the aim of shedding light on this conundrum. Methods A range of reproductive developmental stages, from spikelet primordia through to infructescence material, were processed for anatomical and immunohistochemical analyses. Key Results The basic reproductive unit is subtended by a bract and possesses two prophyll-like structures, the first organs to be initiated on the primordium, which grow rapidly, enclosing two whorls of initiating leaf-like structures with intervening stamens and a central gynoecium, formed from an annular primordium. The subtending bract and prophyll-like structures possess very different morphologies from that of the internal leaf-like structures and do not show AP1/FUL-like protein localization, which is otherwise strongly localized in the internal leaf-like structures, stamens and gynoecia. Conclusions Results support the synanthial hypothesis as the evolutionary origin of the reproductive unit. Thus, the basic reproductive unit in Lepironia is an extremely condensed pseudanthium, of staminate flowers surrounding a central terminal pistillate female flower. Early in development the reproductive unit becomes enclosed by a split-prophyll, with the whole structure subtended by a bract. PMID:23723258

  18. Transcriptome and Gene Expression Analysis of the Rice Leaf Folder, Cnaphalocrosis medinalis

    PubMed Central

    Li, Shang-Wei; Yang, Hong; Liu, Yue-Feng; Liao, Qi-Rong; Du, Juan; Jin, Dao-Chao

    2012-01-01

    Background The rice leaf folder (RLF), Cnaphalocrocis medinalis (Guenee) (Lepidoptera: Pyralidae), is one of the most destructive pests affecting rice in Asia. Although several studies have been performed on the ecological and physiological aspects of this species, the molecular mechanisms underlying its developmental regulation, behavior, and insecticide resistance remain largely unknown. Presently, there is a lack of genomic information for RLF; therefore, studies aimed at profiling the RLF transcriptome expression would provide a better understanding of its biological function at the molecular level. Principal Findings De novo assembly of the RLF transcriptome was performed via the short read sequencing technology (Illumina). In a single run, we produced more than 23 million sequencing reads that were assembled into 44,941 unigenes (mean size = 474 bp) by Trinity. Through a similarity search, 25,281 (56.82%) unigenes matched known proteins in the NCBI Nr protein database. The transcriptome sequences were annotated with gene ontology (GO), cluster of orthologous groups of proteins (COG), and KEGG orthology (KO). Additionally, we profiled gene expression during RLF development using a tag-based digital gene expression (DGE) system. Five DGE libraries were constructed, and variations in gene expression were compared between collected samples: eggs vs. 3rd instar larvae, 3rd instar larvae vs. pupae, pupae vs. adults. The results demonstrated that thousands of genes were significantly differentially expressed during various developmental stages. A number of the differentially expressed genes were confirmed by quantitative real-time PCR (qRT-PCR). Conclusions The RLF transcriptome and DGE data provide a comprehensive and global gene expression profile that would further promote our understanding of the molecular mechanisms underlying various biological characteristics, including development, elevated fecundity, flight, sex differentiation, olfactory behavior, and insecticide resistance in RLF. Therefore, these findings could help elucidate the intrinsic factors involved in the RLF-mediated destruction of rice and offer sustainable insect pest management. PMID:23185238

  19. Responses of rubber leaf phenology to climatic variations in Southwest China

    NASA Astrophysics Data System (ADS)

    Zhai, De-Li; Yu, Haiying; Chen, Si-Chong; Ranjitkar, Sailesh; Xu, Jianchu

    2017-11-01

    The phenology of rubber trees (Hevea brasiliensis) could be influenced by meteorological factors and exhibits significant changes under different geoclimates. In the sub-optimal environment in Xishuangbanna, rubber trees undergo lengthy periods of defoliation and refoliation. The timing of refoliation from budburst to leaf aging could be affected by powdery mildew disease (Oidium heveae), which negatively impacts seed and latex production. Rubber trees are most susceptible to powdery mildew disease at the copper and leaf changing stages. Understanding and predicting leaf phenology of rubber trees are helpful to develop effective means of controlling the disease. This research investigated the effect of several meteorological factors on different leaf phenological stages in a sub-optimal environment for rubber cultivation in Jinghong, Yunnan in Southwest China. Partial least square regression was used to quantify the relationship between meteorological factors and recorded rubber phenologies from 2003 to 2011. Minimum temperature in December was found to be the critical factor for the leaf phenology development of rubber trees. Comparing the delayed effects of minimum temperature, the maximum temperature, diurnal temperature range, and sunshine hours were found to advancing leaf phenologies. A comparatively lower minimum temperature in December would facilitate the advancing of leaf phenologies of rubber trees. Higher levels of precipitation in February delayed the light green and the entire process of leaf aging. Delayed leaf phenology was found to be related to severe rubber powdery mildew disease. These results were used to build predictive models that could be applied to early warning systems of rubber powdery mildew disease.

  20. [Contribution of soil fauna to the mass loss of Betula albosinensis leaf litter at early decomposition stage of subalpine forest litter in western Sichuan].

    PubMed

    Xia, Lei; Wu, Fu-Zhong; Yang, Wan-Qin; Tan, Bo

    2012-02-01

    In order to quantify the contribution of soil fauna to the decomposition of birch (Betula albosinensis) leaf litter in subalpine forests in western Sichuan of Southwest China during freeze-thaw season, a field experiment with different mesh sizes (0.02, 0.125, 1 and 3 mm) of litterbags was conducted in a representative birch-fir (Abies faxoniana) forest to investigate the mass loss rate of the birch leaf litter from 26 October, 2010 to 18 April, 2011, and the contributions of micro-, meso- and macro-fauna to the decomposition of the leaf litter. Over the freeze-thaw season, 11.8%, 13.2%, 15.4% and 19.5% of the mass loss were detected in the litterbags with 0.02, 0. 125, 1 and 3 mm mesh sizes, respectively. The total contribution of soil fauna to the litter decomposition accounted for 39.5% of the mass loss, and the taxa and individual relative density of the soil fauna in the litterbags had the similar variation trend with that of the mass loss rate. The contribution rate of soil fauna to the leaf litter mass loss showed the order of micro- < meso- < macro-fauna, with the highest contribution of micro-fauna (7.9%), meso-fauna (11.9%), and macro-fauna (22.7%) at the onset of freezing stage, deeply frozen stage, and thawing stage, respectively. The results demonstrated that soil fauna played an important role in the litter decomposition in subalpine forests of western Sichuan during freeze-thaw season.

  1. It Is Only a Stage They Are Going Through: The Development of Student Teachers.

    ERIC Educational Resources Information Center

    Piland, Diane E.; Anglin, Jacqueline M.

    1993-01-01

    Describes student teachers' developmental stages. After reviewing pertinent literature, the paper examines a recent study that qualitatively and quantitatively outlined stages of development applicable to contemporary student teaching contexts. The study found that each of five student teachers passed through four developmental stages…

  2. Adolescent and Parent: Interaction between Developmental Stages.

    ERIC Educational Resources Information Center

    Smith, Barbara

    1976-01-01

    The focus of this newsletter is on the interaction between two major developmental stages: adolescence and middle age. Research and theories about each stage are presented separately, followed by a discussion of how the two occur within the family structure. This discussion may be useful to teachers, counselors, employers, or researchers working…

  3. The Arabidopsis RING-Type E3 Ligase TEAR1 Controls Leaf Development by Targeting the TIE1 Transcriptional Repressor for Degradation[OPEN

    PubMed Central

    Zhang, Jinzhe; Wei, Baoye; Yuan, Rongrong; Yu, Hao

    2017-01-01

    The developmental plasticity of leaf size and shape is important for leaf function and plant survival. However, the mechanisms by which plants form diverse leaves in response to environmental conditions are not well understood. Here, we identified TIE1-ASSOCIATED RING-TYPE E3 LIGASE1 (TEAR1) and found that it regulates leaf development by promoting the degradation of TCP INTERACTOR-CONTAINING EAR MOTIF PROTEIN1 (TIE1), an important repressor of CINCINNATA (CIN)-like TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors, which are key for leaf development. TEAR1 contains a typical C3H2C3-type RING domain and has E3 ligase activity. We show that TEAR1 interacts with the TCP repressor TIE1, which is ubiquitinated in vivo and degraded by the 26S proteasome system. We demonstrate that TEAR1 is colocalized with TIE1 in nuclei and negatively regulates TIE1 protein levels. Overexpression of TEAR1 rescued leaf defects caused by TIE1 overexpression, whereas disruption of TEAR1 resulted in leaf phenotypes resembling those caused by TIE1 overexpression or TCP dysfunction. Deficiency in TEAR partially rescued the leaf defects of TCP4 overexpression line and enhanced the wavy leaf phenotypes of jaw-5D. We propose that TEAR1 positively regulates CIN-like TCP activity to promote leaf development by mediating the degradation of the TCP repressor TIE1. PMID:28100709

  4. [The structure of vegetative organs, and saponins histochemical localization and content comparization in Polygala sibirica L].

    PubMed

    Teng, Hong Mei; Fang, Min Feng; Hu, Zheng Hai

    2009-02-01

    Anatomical, histochemical and phytochemistry methods were used to investigate the structure of vegetative organs, and saponins localization and dynamic changes in Polygala sibirica L. The root consisted of developed periderm and secondary vascular. The secondary phloem was thick, and mainly composed of parenchyma. There were well-developed vessels and fibers in the secondary xylem. The stem was composed of epidermis, cortex and vascular bundle. The ring of sclerenchymatous cells lied between cortex and phloem might be the apoplastic protective screen which could protect the stem from drought. The leaf was bifacial one. The root and stem possessed characteristics adapting to arid environment. Histochemical localization results showed that saponins distributed in secondary phloem and phelloderm of root, in epidermis, cortex and phloem of stem, mainly in mesophyll of leaf. It displayed that saponins accumulated mainly in parenchyma cells of vegetative organs, among of which, the secondary phloem was the main storage site. The HPLC results also showed that the saponins accumulated in all the vegetative organs of Polygala sibirica L., with higher content in roots and lower content in the aerial part that included stems and leaves. The study indicated the aerial part of Polygala sibirica L. also had medicinal value. The saponins content had dynamic variance at the developmental stage, the crude drug should be gathered at period from April to May.

  5. Comparison of somatic embryogenesis in Medicago sativa and Medicago truncatula.

    PubMed

    Hoori, F; Ehsanpour, A A; Mostajeran, A

    2007-02-01

    In this study, the regeneration through embryogenesis of two species of Medicago were studied. Seeds of Medicago sativa cv. Rehnani and M. truncatula line A17 were grown on MS medium. After 4-6 weeks, segments of leaf and stem from two species were transferred to MS medium containing 2 mg L(-1) NAA, 2,4-D and Kinetin. The results indicated that callus formation from leaf explants of M. sativa was higher than M. trancatula. In the next stage, media with different combinations of auxin, cytokinin or ethinyl estradiol were provided for regeneration. Then in two stages, explants of leaf and stem of two species were transferred on these media. Results after 3-6 weeks showed that in medium containing NAA and TDZ, stem pieces ofM. sativa produced shoots while leaf pieces on NAA and ethinyl estradiol formed roots. Leaf explants of M. truncatula in the medium containing NAA and BAP, produced somatic embryos. Also in media with auxin and ethinyl estradiol, somatic embryos were formed on calli of two species. Ethinyl estradiol and auxin together can induce somatic embryogenesis and root production on calli and stem or leaf explants.

  6. A new system for assessment of growth using mandibular canine calcification stages and its correlation with modified MP3 stages

    PubMed Central

    Hegde, Gautham; Hegde, Nanditha; Kumar, Anil; Keshavaraj

    2014-01-01

    Objective: Orthodontic diagnosis and treatment planning for growing children must involve growth prediction, especially in the treatment of skeletal problems. Studies have shown that a strong association exists between skeletal maturity and dental calcification stages. The present study was therefore taken up to provide a simple and practical method for assessing skeletal maturity using a dental periapical film and standard dental X-ray machine, to compare the developmental stages of the mandibular canine with that of developmental stages of modified MP3 and to find out if any correlation exists, to determine if the developmental stages of the mandibular canine alone can be used as a reliable indicator for assessment of skeletal maturity. Materials and Methods: A total of 160 periapical radiographs, of the mandibular right canine and the MP3 region was taken and assessed according to the Dermirjian's stages of dental calcification and the modified MP3 stages. Results and Discussion: The correlation coefficient between MP3 stages and developmental stages of mandibular canine was found to be significant in both male and female groups. When the canine calcification stages were compared with the MP3 stages it was found that with the exception of the D stage of canine calcification the remaining stages showed a very high correlation with the modified MP3 stages. Conclusion: The correlation between the mandibular canine calcification stages, and the MP3 stages was found to be significant. The canine calcification could be used as a sole indicator for assessment of skeletal maturity. PMID:25210386

  7. Description of Rhagoletis cerasi (Diptera: Tephritidae) pupal developmental stages: indications of prolonged diapause.

    PubMed

    Papanastasiou, Stella A; Papadopoulos, Nikos T

    2014-01-01

    The European cherry fruit fly, Rhagoletis cerasi (L.) (Diptera: Tephritidae), is the key pest of sweet and sour cherries in many European countries and west Asia. It is a univoltine species of the west Palaearctic zone that undergoes obligatory pupal diapause. In this study, the development of R. cerasi pupae that were brought to an optimum temperature for postdiapause development following a long chilling period is described. The six most representative developmental stages within the puparium are illustrated, and the developmental progression among the stages after the end of the chilling period is quantified. Within 20 d postchilling, there was a gradual progress from stage I to pharate adult. However, ∼30% of the pupae remained at the transitional stage II, after 20 d at 25°C (optimum temperature for development). This suggests that a proportion of pupae remain at an intermediate developmental stage for an extended period of time that goes beyond 20 d postchilling. The pupal stage II might be related to diapause termination and responsiveness to environmental cues. It may also define the time before developmental progress to pharate adult. This finding agrees with previous studies proposing that a number of R. cerasi pupae undergo prolonged diapause, though the morphological characteristics of these pupae have never been described before. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  8. Relationship between Endopolyploidy and Cell Size in Epidermal Tissue of Arabidopsis.

    PubMed Central

    Melaragno, JE; Mehrotra, B; Coleman, AW

    1993-01-01

    Relative quantities of DNA in individual nuclei of stem and leaf epidermal cells of Arabidopsis were measured microspectrofluorometrically using epidermal peels. The relative ploidy level in each nucleus was assessed by comparison to root tip mitotic nuclei. A clear pattern of regular endopolyploidy is evident in epidermal cells. Guard cell nuclei contain levels of DNA comparable to dividing root cells, the 2C level (i.e., one unreplicated copy of the nuclear DNA). Leaf trichome nuclei had elevated ploidy levels of 4C, 8C, 16C, 32C, and 64C, and their cytology suggested that the polyploidy represents a form of polyteny. The nuclei of epidermal pavement cells were 2C, 4C, and 8C in stem epidermis, and 2C, 4C, 8C, and 16C in leaf epidermis. Morphometry of epidermal pavement cells revealed a direct proportionality between nuclear DNA level and cell size. A consideration of the development process suggests that the cells of highest ploidy level are developmentally oldest; consequently, the developmental pattern of epidermal tissues can be read from the ploidy pattern of the cells. This observation is relevant to theories of stomate spacing and offers opportunities for genetic analysis of the endopolyploidy/polyteny phenomenon. PMID:12271050

  9. Developmental, nutritional and hormonal anomalies of weightlessness-grown wheat.

    PubMed

    Carman, J G; Hole, P; Salisbury, F B; Bingham, G E

    2015-07-01

    The behavior of water in weightlessness, as occurs in orbiting spacecraft, presents multiple challenges for plant growth. Soils remain saturated, impeding aeration, and leaf surfaces remain wet, impeding gas exchange. Herein we report developmental and biochemical anomalies of "Super Dwarf" wheat (Triticum aestivum L.) grown aboard Space Station Mir during the 1996-97 "Greenhouse 2" experiment. Leaves of Mir-grown wheat were hyperhydric, senesced precociously and accumulated aromatic and branched-chain amino acids typical of tissues experiencing oxidative stress. The highest levels of stress-specific amino acids occurred in precociously-senescing leaves. Our results suggest that the leaf ventilation system of the Svet Greenhouse failed to remove sufficient boundary layer water, thus leading to poor gas exchange and onset of oxidative stress. As oxidative stress in plants has been observed in recent space-flight experiments, we recommend that percentage water content in apoplast free-spaces of leaves be used to evaluate leaf ventilation effectiveness. Mir-grown plants also tillered excessively. Crowns and culms of these plants contained low levels of abscisic acid but high levels of cytokinins. High ethylene levels may have suppressed abscisic acid synthesis, thus permitting cytokinins to accumulate and tillering to occur. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  10. Effect of temperature and nutrients on the growth and development of seedlings of an invasive plant.

    PubMed

    Skálová, Hana; Moravcová, Lenka; Dixon, Anthony F G; Kindlmann, P; Pyšek, Petr

    2015-04-28

    Plant species distributions are determined by the response of populations to regional climates; however, little is known about how alien plants that arrive in central Europe from climatically warmer regions cope with the temperature conditions at the early stage of population development. Ambrosia artemisiifolia (common ragweed) is an invasive annual plant causing considerable health and economic problems in Europe. Although climate-based models predict that the whole of the Czech Republic is climatically suitable for this species, it is confined to the warmest regions. To determine the factors possibly responsible for its restricted occurrence, we investigated the effects of temperature and nutrient availability on its seedlings. The plants were cultivated at one of seven temperature regimes ranging from 10 to 34 °C, combined with three nutrient levels. The data on the rate of leaf development were used to calculate the lower developmental threshold (LDT, the temperature, in °C, below which development ceases), the sum of effective temperatures (SET, the amount of heat needed to complete a developmental stage measured in degree days above LDT) and width of the thermal window. The rate of development decreased with decrease in temperature and nutrient supply. Besides this, the decrease in the availability of nutrients resulted in decreased LDT, increased SET and wider thermal window. The dependence of LDT and SET on the availability of nutrients contradicts the concept that thermal constants do not vary. Our results highlight temperature as the main determinant of common ragweed's distribution and identify nutrient availability as a factor that results in the realized niche being smaller than the fundamental niche; both of these need to be taken into account when predicting the future spread of A. artemisiifolia. Published by Oxford University Press on behalf of the Annals of Botany Company.

  11. Gene architecture and expression analyses provide insights into the role of glutathione peroxidases (GPXs) in bread wheat (Triticum aestivum L.).

    PubMed

    Tyagi, Shivi; Himani; Sembi, Jaspreet K; Upadhyay, Santosh Kumar

    2018-04-01

    Glutathione peroxidases (GPXs) are redox sensor proteins that maintain a steady-state of H 2 O 2 in plant cells. They exhibit distinct sub-cellular localization and have diverse functionality in response to different stimuli. In this study, a total of 14 TaGPX genes and three splice variants were identified in the genome of Triticum aestivum and evaluated for various physicochemical properties. The TaGPX genes were scattered on the various chromosomes of the A, B, and D sub-genomes and clustered into five homeologous groups based on high sequence homology. The majority of genes were derived from the B sub-genome and localized on chromosome 2. The intron-exon organization, motif and domain architecture, and phylogenetic analyses revealed the conserved nature of TaGPXs. The occurrence of both development-related and stress-responsive cis-acting elements in the promoter region, the differential expression of these genes during various developmental stages, and the modulation of expression in the presence of biotic and abiotic stresses suggested their diverse role in T. aestivum. The majority of TaGPX genes showed higher expression in various leaf developmental stages. However, TaGPX1-A1 was upregulated in the presence of each abiotic stress treatment. A co-expression analysis revealed the interaction of TaGPXs with numerous development and stress-related genes, which indicated their vital role in numerous biological processes. Our study revealed the opportunities for further characterization of individual TaGPX proteins, which might be useful in designing future crop improvement strategies. Copyright © 2018 Elsevier GmbH. All rights reserved.

  12. A systematic study on hemocyte identification and plasma prophenoloxidase from Culex pipiens quinquefasciatus at different developmental stages.

    PubMed

    Wang, Zhixiang; Lu, Anrui; Li, Xuquan; Shao, Qimiao; Beerntsen, Brenda T; Liu, Chaoliang; Ma, Yajun; Huang, Yamin; Zhu, Huaimin; Ling, Erjun

    2011-01-01

    Culexpipiens quinquefasciatus (C. quinquefasciatus) is an important vector that can transmit human diseases such as West Nile virus, lymphatic filariasis, Japanese encephalitis and St. Louis encephalitis. However, very limited research concerning the humoral and cellular immune defenses of C. quinquefasciatus has been done. Here we present the research on hemocyte identification and plasma including hemocyte prophenoloxidase from C. quinquefasciatus at all developmental stages in order to obtain a complete picture of C. quinquefasciatus innate immunity. We identified hemocytes into four types: prohemocytes, oenocytoids, plasmatocytes and granulocytes. Prophenoloxidase (PPO) is an essential enzyme to induce melanization after encapsulation. PPO-positive hemocytes and plasma PPO were observed at all developmental stages. As for specific hemocyte types, prophenoloxidase was found in the plasmatocytes at larval stage alone and in the smallest prohemocytes during almost all developmental stages. Moreover, the granulocytes were PPO-positive from blood-fed female mosquitoes and oenocytoids were observed PPO-positive in pupae and in adult females after blood-feeding. As for plasma, there were different patterns of PPO in C. quinquefasciatus at different developmental stages. These results are forming a basis for further studies on the function of C. quinquefasciatus hemocytes and prophenoloxidase as well as their involvement in fighting against mosquito-borne pathogens. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. BLIND ordering of large-scale transcriptomic developmental timecourses.

    PubMed

    Anavy, Leon; Levin, Michal; Khair, Sally; Nakanishi, Nagayasu; Fernandez-Valverde, Selene L; Degnan, Bernard M; Yanai, Itai

    2014-03-01

    RNA-Seq enables the efficient transcriptome sequencing of many samples from small amounts of material, but the analysis of these data remains challenging. In particular, in developmental studies, RNA-Seq is challenged by the morphological staging of samples, such as embryos, since these often lack clear markers at any particular stage. In such cases, the automatic identification of the stage of a sample would enable previously infeasible experimental designs. Here we present the 'basic linear index determination of transcriptomes' (BLIND) method for ordering samples comprising different developmental stages. The method is an implementation of a traveling salesman algorithm to order the transcriptomes according to their inter-relationships as defined by principal components analysis. To establish the direction of the ordered samples, we show that an appropriate indicator is the entropy of transcriptomic gene expression levels, which increases over developmental time. Using BLIND, we correctly recover the annotated order of previously published embryonic transcriptomic timecourses for frog, mosquito, fly and zebrafish. We further demonstrate the efficacy of BLIND by collecting 59 embryos of the sponge Amphimedon queenslandica and ordering their transcriptomes according to developmental stage. BLIND is thus useful in establishing the temporal order of samples within large datasets and is of particular relevance to the study of organisms with asynchronous development and when morphological staging is difficult.

  14. Radiographic evaluation of third molar development in 6- to 24-year-olds

    PubMed Central

    Jung, Yun-Hoa

    2014-01-01

    Purpose This study investigated the developmental stages of third molars in relation to chronological age and compared third molar development according to location and gender. Materials and Methods A retrospective analysis of panoramic radiographs of 2490 patients aged between 6 and 24 years was conducted, and the developmental stages of the third molars were evaluated using the modified Demirjian's classification. The mean age, standard deviation, minimal and maximal age, and percentile distributions were recorded for each stage of development. A Mann-Whitney U test was performed to test the developmental differences in the third molars between the maxillary and mandibular arches and between genders. A linear regression analysis was used for assessing the correlation between the third molar development and chronological age. Results The developmental stages of the third molars were more advanced in the maxillary arch than the mandibular arch. Males reached the developmental stages earlier than females. The average age of the initial mineralization of the third molars was 8.57 years, and the average age at apex closure was 21.96 years. The mean age of crown completion was 14.52 and 15.04 years for the maxillary and the mandibular third molars, respectively. Conclusion The developmental stages of the third molars clearly showed a strong correlation with age. The third molars developed earlier in the upper arch than the lower arch; further, they developed earlier in males than in females. PMID:25279338

  15. Reading the leaves: A comparison of leaf rank and automated areole measurement for quantifying aspects of leaf venation1

    PubMed Central

    Green, Walton A.; Little, Stefan A.; Price, Charles A.; Wing, Scott L.; Smith, Selena Y.; Kotrc, Benjamin; Doria, Gabriela

    2014-01-01

    The reticulate venation that is characteristic of a dicot leaf has excited interest from systematists for more than a century, and from physiological and developmental botanists for decades. The tools of digital image acquisition and computer image analysis, however, are only now approaching the sophistication needed to quantify aspects of the venation network found in real leaves quickly, easily, accurately, and reliably enough to produce biologically meaningful data. In this paper, we examine 120 leaves distributed across vascular plants (representing 118 genera and 80 families) using two approaches: a semiquantitative scoring system called “leaf ranking,” devised by the late Leo Hickey, and an automated image-analysis protocol. In the process of comparing these approaches, we review some methodological issues that arise in trying to quantify a vein network, and discuss the strengths and weaknesses of automatic data collection and human pattern recognition. We conclude that subjective leaf rank provides a relatively consistent, semiquantitative measure of areole size among other variables; that modal areole size is generally consistent across large sections of a leaf lamina; and that both approaches—semiquantitative, subjective scoring; and fully quantitative, automated measurement—have appropriate places in the study of leaf venation. PMID:25202646

  16. Alteration in Auxin Homeostasis and Signaling by Overexpression Of PINOID Kinase Causes Leaf Growth Defects in Arabidopsis thaliana

    PubMed Central

    Saini, Kumud; Markakis, Marios N.; Zdanio, Malgorzata; Balcerowicz, Daria M.; Beeckman, Tom; De Veylder, Lieven; Prinsen, Els; Beemster, Gerrit T. S.; Vissenberg, Kris

    2017-01-01

    In plants many developmental processes are regulated by auxin and its directional transport. PINOID (PID) kinase helps to regulate this transport by influencing polar recruitment of PIN efflux proteins on the cellular membranes. We investigated how altered auxin levels affect leaf growth in Arabidopsis thaliana. Arabidopsis mutants and transgenic plants with altered PID expression levels were used to study the effect on auxin distribution and leaf development. Single knockouts showed small pleiotropic growth defects. Contrastingly, several leaf phenotypes related to changes in auxin concentrations and transcriptional activity were observed in PID overexpression (PIDOE) lines. Unlike in the knockout lines, the leaves of PIDOE lines showed an elevation in total indole-3-acetic acid (IAA). Accordingly, enhanced DR5-visualized auxin responses were detected, especially along the leaf margins. Kinematic analysis revealed that ectopic expression of PID negatively affects cell proliferation and expansion rates, yielding reduced cell numbers and small-sized cells in the PIDOE leaves. We used PIDOE lines as a tool to study auxin dose effects on leaf development and demonstrate that auxin, above a certain threshold, has a negative affect on leaf growth. RNA sequencing further showed how subtle PIDOE-related changes in auxin levels lead to transcriptional reprogramming of cellular processes. PMID:28659952

  17. Early growth stages salinity stress tolerance in CM72 x Gairdner doubled haploid barley population

    PubMed Central

    Angessa, Tefera Tolera; Zhang, Xiao-Qi; Zhou, Gaofeng; Broughton, Sue; Zhang, Wenying

    2017-01-01

    A doubled haploid (DH) population of barley (Hordeum vulgare L.) generated from salinity tolerant genotype CM72 and salinity sensitive variety Gairdner was studied for salinity stress tolerance at germination, seedling emergence and first leaf full expansion growth stages. Germination study was conducted with deionized water, 150 mM and 300 mM NaCl treatments. Seedling stage salinity tolerance was conducted with three treatments: control, 150 mM NaCl added at seedling emergence and first leaf full expansion growth stages. Results from this study revealed transgressive phenotypic segregations for germination percentage and biomass at seedling stage. Twelve QTL were identified on chromosomes 2H–6H each explaining 10–25% of the phenotypic variations. A QTL located at 176.5 cM on chromosome 3H was linked with fresh weight per plant and dry weight per plant in salinity stress induced at first leaf full expansion growth stage, and dry weight per plant in salinity stress induced at seedling emergence. A stable QTL for germination at both 150 and 300 mM salinity stress was mapped on chromosome 2H but distantly located from a QTL linked with seedling stage salinity stress tolerance. QTL, associated markers and genotypes identified in this study play important roles in developing salinity stress tolerant barley varieties. PMID:28640858

  18. Impact of UV-A radiation on the performance of aphids and whiteflies and on the leaf chemistry of their host plants.

    PubMed

    Dáder, Beatriz; Gwynn-Jones, Dylan; Moreno, Aránzazu; Winters, Ana; Fereres, Alberto

    2014-09-05

    Ultraviolet (UV) radiation directly regulates a multitude of herbivore life processes, in addition to indirectly affecting insect success via changes in plant chemistry and morphogenesis. Here we looked at plant and insect (aphid and whitefly) exposure to supplemental UV-A radiation in the glasshouse environment and investigated effects on insect population growth. Glasshouse grown peppers and eggplants were grown from seed inside cages covered by novel plastic filters, one transparent and the other opaque to UV-A radiation. At a 10-true leaf stage for peppers (53 days) and 4-true leaf stage for eggplants (34 days), plants were harvested for chemical analysis and infested by aphids and whiteflies, respectively. Clip-cages were used to introduce and monitor the insect fitness and populations of the pests studied. Insect pre-reproductive period, fecundity, fertility and intrinsic rate of natural increase were assessed. Crop growth was monitored weekly for 7 and 12 weeks throughout the crop cycle of peppers and eggplants, respectively. At the end of the insect fitness experiment, plants were harvested (68 days and 18-true leaf stage for peppers, and 104 days and 12-true leaf stage for eggplants) and leaves analysed for secondary metabolites, soluble carbohydrates, amino acids, total proteins and photosynthetic pigments. Our results demonstrate for the first time, that UV-A modulates plant chemistry with implications for insect pests. Both plant species responded directly to UV-A by producing shorter stems but this effect was only significant in pepper whilst UV-A did not affect the leaf area of either species. Importantly, in pepper, the UV-A treated plants contained higher contents of secondary metabolites, leaf soluble carbohydrates, free amino acids and total content of protein. Such changes in tissue chemistry may have indirectly promoted aphid performance. For eggplants, chlorophylls a and b, and carotenoid levels decreased with supplemental UV-A over the entire crop cycle but UV-A exposure did not affect leaf secondary metabolites. However, exposure to supplemental UV-A had a detrimental effect on whitefly development, fecundity and fertility presumably not mediated by plant cues as compounds implied in pest nutrition - proteins and sugars - were unaltered. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Environment vs. Plant Ontogeny: Arthropod Herbivory Patterns on European Beech Leaves along the Vertical Gradient of Temperate Forests in Central Germany

    PubMed Central

    Mantilla-Contreras, Jasmin

    2018-01-01

    Environmental and leaf trait effects on herbivory are supposed to vary among different feeding guilds. Herbivores also show variability in their preferences for plant ontogenetic stages. Along the vertical forest gradient, environmental conditions change, and trees represent juvenile and adult individuals in the understorey and canopy, respectively. This study was conducted in ten forests sites in Central Germany for the enrichment of canopy research in temperate forests. Arthropod herbivory of different feeding traces was surveyed on leaves of Fagus sylvatica Linnaeus (European beech; Fagaceae) in three strata. Effects of microclimate, leaf traits, and plant ontogenetic stage were analyzed as determining parameters for herbivory. The highest herbivory was caused by exophagous feeding traces. Herbivore attack levels varied along the vertical forest gradient for most feeding traces with distinct patterns. If differences of herbivory levels were present, they only occurred between juvenile and adult F. sylvatica individuals, but not between the lower and upper canopy. In contrast, differences of microclimate and important leaf traits were present between the lower and upper canopy. In conclusion, the plant ontogenetic stage had a stronger effect on herbivory than microclimate or leaf traits along the vertical forest gradient. PMID:29373542

  20. Rubber Trees Demonstrate a Clear Retranslocation Under Seasonal Drought and Cold Stresses

    PubMed Central

    Li, Yuwu; Lan, Guoyu; Xia, Yujie

    2016-01-01

    Having been introduced to the northern edge of Asian tropics, the rubber tree (Hevea brasiliensis) has become deciduous in this climate with seasonal drought and cold stresses. To determine its internal nutrient strategy during leaf senescence and deciduous periods, we investigated mature leaf and senescent leaf nutrients, water-soluble soil nutrients and characteristics of soil microbiota in nine different ages of monoculture rubber plantations. Rubber trees demonstrate complicated retranslocation of N, P, and K during foliar turnover. Approximately 50.26% of leaf nutrients and 21.47% of soil nutrients were redistributed to the rubber tree body during the leaf senescence and withering stages. However, no significant changes in the structure- or function-related properties of soil microbes were detected. These nutrient retranslocation strategy may be important stress responses. In the nutrient retranslocation process, soil plays a dual role as nutrient supplier and nutrient “bank.” Soil received the nutrients from abscised leaves, and also supplied nutrients to trees in the non-growth stage. Nutrient absorption and accumulation began before the leaves started to wither and fall. PMID:28066467

  1. Phenylalanine Is Required to Promote Specific Developmental Responses and Prevents Cellular Damage in Response to Ultraviolet Light in Soybean (Glycine max) during the Seed-to-Seedling Transition

    PubMed Central

    Sullivan, Joe H.; Muhammad, DurreShahwar; Warpeha, Katherine M.

    2014-01-01

    UV-radiation elicits a suite of developmental (photomorphogenic) and protective responses in plants, but responses early post-germination have received little attention, particularly in intensively bred plants of economic importance. We examined germination, hypocotyl elongation, leaf pubescence and subcellular responses of germinating and/or etiolated soybean (Glycine max (L.) Merr.) seedlings in response to treatment with discrete wavelengths of UV-A or UV-B radiation. We demonstrate differential responses of germinating/young soybean seedlings to a range of UV wavelengths that indicate unique signal transduction mechanisms regulate UV-initiated responses. We have investigated how phenylalanine, a key substrate in the phenylpropanoid pathway, may be involved in these responses. Pubescence may be a key location for phenylalanine-derived protective compounds, as UV-B irradiation increased pubescence and accumulation of UV-absorbing compounds within primary leaf pubescence, visualized by microscopy and absorbance spectra. Mass spectrometry analysis of pubescence indicated that sinapic esters accumulate in the UV-irradiated hairs compared to unirradiated primary leaf tissue. Deleterious effects of some UV-B wavelengths on germination and seedling responses were reduced or entirely prevented by inclusion of phenylalanine in the growth media. Key effects of phenylalanine were not duplicated by tyrosine or tryptophan or sucrose, nor is the specificity of response due to the absorbance of phenylalanine itself. These results suggest that in the seed-to-seedling transition, phenylalanine may be a limiting factor in the development of initial mechanisms of UV protection in the developing leaf. PMID:25549094

  2. Making Epidermal Bladder Cells Bigger: Developmental- and Salinity-Induced Endopolyploidy in a Model Halophyte.

    PubMed

    Barkla, Bronwyn J; Rhodes, Timothy; Tran, Kieu-Nga T; Wijesinghege, Chathura; Larkin, John C; Dassanayake, Maheshi

    2018-06-01

    Endopolyploidy occurs when DNA replication takes place without subsequent mitotic nuclear division, resulting in cell-specific ploidy levels within tissues. In plants, endopolyploidy plays an important role in sustaining growth and development, but only a few studies have demonstrated a role in abiotic stress response. In this study, we investigated the function of ploidy level and nuclear and cell size in leaf expansion throughout development and tracked cell type-specific ploidy in the halophyte Mesembryanthemum crystallinum In addition to developmental endopolyploidy, we examined the effects of salinity stress on ploidy level. We focused specifically on epidermal bladder cells (EBC), which are modified balloon-like trichomes, due to their large size and role in salt accumulation. Our results demonstrate that ploidy increases as the leaves expand in a similar manner for each leaf type, and ploidy levels up to 512C were recorded for nuclei in EBC of leaves of adult plants. Salt treatment led to a significant increase in ploidy levels in the EBC, and these cells showed spatially related differences in their ploidy and nuclear and cell size depending on the positions on the leaf and stem surface. Transcriptome analysis highlighted salinity-induced changes in genes involved in DNA replication, cell cycle, endoreduplication, and trichome development in EBC. The increase in cell size and ploidy observed in M. crystallinum under salinity stress may contribute to salt tolerance by increasing the storage capacity for sodium sequestration brought about by higher metabolic activity driving rapid cell enlargement in the leaf tissue and EBC. © 2018 American Society of Plant Biologists. All rights reserved.

  3. Spatial distribution of SPAD value and determination of the suitable leaf for N diagnosis in cucumber

    NASA Astrophysics Data System (ADS)

    Hu, Jing; Li, Chenxiao; Wen, Yifang; Gao, Xinhao; Shi, Feifei; Han, Luhua

    2018-01-01

    To determine the best leaf position for nitrogen diagnosis in cucumber with SPAD meter, greenhouse experiments were carried out to study spatial distribution of SPAD value of different position of the 3rd fully expanded cucumber leaf in the effect of different nitrogen levels, and the correlations between SPAD values and nitrogen concentration of chlorophyll. The results show that there is remarkable different SPAD value in different positions of the 3rd fully expanded leaf in the flowering and fruiting stage. Comparing the coefficients of SPAD value variation, we find that the coefficient of variation of leaf edge was significantly higher than the edge of the main vein, and the coefficient of variation of triangular area of leaf tip is significantly higher than any other leaf area. There is a significant correlation between SPAD values and leaf nitrogen content. Preliminary study shows that triangular area of leaf tip from the 20% leaf tip to leaf edge is the best position for nitrogen diagnosis.

  4. Developmental stages of cultivated strawberry flowers in relation to chilling sensitivity

    PubMed Central

    Ariza, Maria Teresa; Soria, Carmen; Martínez-Ferri, Elsa

    2015-01-01

    Environmental factors affecting flower development may limit the yields of fruiting crops worldwide. In temperate regions, chilling temperatures during flower development can compromise fruit production, but their negative effects vary depending on the differing susceptibilities of each developmental stage. The cultivated strawberry (Fragaria× ananassa Duch.) is widely grown worldwide but financial returns are influenced by sudden shifts to chilling temperatures occurring during the cropping cycle. Despite this important limitation, knowledge of F.× ananassa flower development is lacking, in contrast to the diploid wild-type strawberry (F. vesca). In this study we describe steps in floral development of cultivated strawberry and define their vulnerability to chilling temperatures. To achieve this, flower buds from strawberry plants of cv. ‘Camarosa’ were labelled and monitored from bud initiation until anthesis. Description of morphological and functional changes during flower development was based on histological sections and scanning electron microscopy. To determine the impact of low temperatures at different developmental stages, plants carrying buds of different sizes were chilled at 2 °C for 24 h. Several parameters related to male and female gametophyte development were later evaluated in flowers as they approached anthesis. Fragaria× ananassa flower development was divided into 16 stages according to landmark events. These stages were similar to those documented for F. vesca but three new additional intermediate stages were described. Timing of developmental processes was achieved by correlating developmental staging with specific bud sizes and days before anthesis. Time to reach anthesis from early bud stages was 17–18 days. During this period, we detected four critical periods vulnerable to low temperatures. These were mostly related to male gametophyte development but also to injury to female organs at late developmental stages. These results provide the essential groundwork on floral biology of cultivated strawberry that is a prerequisite for successful comparative studies of cold tolerance among genotypes during flower formation. PMID:25661200

  5. Does investment in leaf defenses drive changes in leaf economic strategy? A focus on whole-plant ontogeny.

    PubMed

    Mason, Chase M; Donovan, Lisa A

    2015-04-01

    Leaf defenses have long been studied in the context of plant growth rate, resource availability, and optimal investment theory. Likewise, one of the central modern paradigms of plant ecophysiology, the leaf economics spectrum (LES), has been extensively studied in the context of these factors across ecological scales ranging from global species data sets to temporal shifts within individuals. Despite strong physiological links between LES strategy and leaf defenses in structure, function, and resource investment, the relationship between these trait classes has not been well explored. This study investigates the relationship between leaf defenses and LES strategy across whole-plant ontogeny in three diverse Helianthus species known to exhibit dramatic ontogenetic shifts in LES strategy, focusing primarily on physical and quantitative chemical defenses. Plants were grown under controlled environmental conditions and sampled for LES and defense traits at four ontogenetic stages. Defenses were found to shift strongly with ontogeny, and to correlate strongly with LES strategy. More advanced ontogenetic stages with more conservative LES strategy leaves had higher tannin activity and toughness in all species, and higher leaf dry matter content in two of three species. Modeling results in two species support the conclusion that changes in defenses drive changes in LES strategy through ontogeny, and in one species that changes in defenses and LES strategy are likely independently driven by ontogeny. Results of this study support the hypothesis that leaf-level allocation to defenses might be an important determinant of leaf economic traits, where high investment in defenses drives a conservative LES strategy.

  6. Controlling plant architecture by manipulation of gibberellic acid signalling in petunia

    USDA-ARS?s Scientific Manuscript database

    Gibberellic acid (GA), a plant hormone, regulates many crucial growth and developmental processes, including seed germination, leaf expansion, induction of flowering and stem elongation. A common problem in the production of ornamental potted plants is undesirably tall growth, so inhibitors of gibbe...

  7. Transcriptome Analysis of a Premature Leaf Senescence Mutant of Common Wheat (Triticum aestivum L.)

    PubMed Central

    Xia, Chuan; Zhang, Lichao; Dong, Chunhao; Liu, Xu; Kong, Xiuying

    2018-01-01

    Leaf senescence is an important agronomic trait that affects both crop yield and quality. In this study, we characterized a premature leaf senescence mutant of wheat (Triticum aestivum L.) obtained by ethylmethane sulfonate (EMS) mutagenesis, named m68. Genetic analysis showed that the leaf senescence phenotype of m68 is controlled by a single recessive nuclear gene. We compared the transcriptome of wheat leaves between the wild type (WT) and the m68 mutant at four time points. Differentially expressed gene (DEG) analysis revealed many genes that were closely related to senescence genes. Gene Ontology (GO) enrichment analysis suggested that transcription factors and protein transport genes might function in the beginning of leaf senescence, while genes that were associated with chlorophyll and carbon metabolism might function in the later stage. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the genes that are involved in plant hormone signal transduction were significantly enriched. Through expression pattern clustering of DEGs, we identified 1012 genes that were induced during senescence, and we found that the WRKY family and zinc finger transcription factors might be more important than other transcription factors in the early stage of leaf senescence. These results will not only support further gene cloning and functional analysis of m68, but also facilitate the study of leaf senescence in wheat. PMID:29534430

  8. Proteomic Analysis Reveals the Leaf Color Regulation Mechanism in Chimera Hosta “Gold Standard” Leaves

    PubMed Central

    Yu, Juanjuan; Zhang, Jinzheng; Zhao, Qi; Liu, Yuelu; Chen, Sixue; Guo, Hongliang; Shi, Lei; Dai, Shaojun

    2016-01-01

    Leaf color change of variegated leaves from chimera species is regulated by fine-tuned molecular mechanisms. Hosta “Gold Standard” is a typical chimera Hosta species with golden-green variegated leaves, which is an ideal material to investigate the molecular mechanisms of leaf variegation. In this study, the margin and center regions of young and mature leaves from Hosta “Gold Standard”, as well as the leaves from plants after excess nitrogen fertilization were studied using physiological and comparative proteomic approaches. We identified 31 differentially expressed proteins in various regions and development stages of variegated leaves. Some of them may be related to the leaf color regulation in Hosta “Gold Standard”. For example, cytosolic glutamine synthetase (GS1), heat shock protein 70 (Hsp70), and chloroplastic elongation factor G (cpEF-G) were involved in pigment-related nitrogen synthesis as well as protein synthesis and processing. By integrating the proteomics data with physiological results, we revealed the metabolic patterns of nitrogen metabolism, photosynthesis, energy supply, as well as chloroplast protein synthesis, import and processing in various leaf regions at different development stages. Additionally, chloroplast-localized proteoforms involved in nitrogen metabolism, photosynthesis and protein processing implied that post-translational modifications were crucial for leaf color regulation. These results provide new clues toward understanding the mechanisms of leaf color regulation in variegated leaves. PMID:27005614

  9. Resource quality affects weapon and testis size and the ability of these traits to respond to selection in the leaf-footed cactus bug, Narnia femorata.

    PubMed

    Sasson, Daniel A; Munoz, Patricio R; Gezan, Salvador A; Miller, Christine W

    2016-04-01

    The size of weapons and testes can be central to male reproductive success. Yet, the expression of these traits is often extremely variable. Studies are needed that take a more complete organism perspective, investigating the sources of variation in both traits simultaneously and using developmental conditions that mimic those in nature. In this study, we investigated the components of variation in weapon and testis sizes using the leaf-footed cactus bug, Narnia femorata (Hemiptera: Coreidae) on three natural developmental diets. We show that the developmental diet has profound effects on both weapon and testis expression and scaling. Intriguingly, males in the medium-quality diet express large weapons but have relatively tiny testes, suggesting complex allocation decisions. We also find that heritability, evolvability, and additive genetic variation are highest in the high-quality diet for testis and body mass. This result suggests that these traits may have an enhanced ability to respond to selection during a small window of time each year when this diet is available. Taken together, these results illustrate that normal, seasonal fluctuations in the nutritional environment may play a large role in the expression of sexually selected traits and the ability of these traits to respond to selection.

  10. Quantitative assessment of pheromone-induced Dauer formation in Caenorhabditis elegans.

    PubMed

    Neal, Scott J; Kim, Kyuhyung; Sengupta, Piali

    2013-01-01

    Environmental conditions experienced during early larval stages dictate the developmental trajectory of the nematode C. elegans. Favorable conditions such as low population density, abundant food, and lower temperatures allow reproductive growth, while stressful conditions promote entry of second-stage (L2) larvae into the alternate dauer developmental stage. Population density is signaled by the concentration and composition of a complex mixture of small molecules that is produced by all stages of animals, and is collectively referred to as dauer pheromone; pheromone concentration is a major trigger for dauer formation. Here, we describe a quantitative dauer formation assay that provides a measure of the potency of single or mixtures of pheromone components in regulating this critical developmental decision.

  11. What it feels like to be a mother: Variations by children’s developmental stages

    PubMed Central

    Luthar, Suniya S.; Ciciolla, Lucia

    2015-01-01

    The central question we addressed was whether mothers’ adjustment might vary systematically by the developmental stages of their children. In an internet-based study of over 2,200 mostly well-educated mothers with children ranging from infants to adults, we examined multiple aspects of mothers’ personal well-being, parenting, and perceptions of their children. Uniformly, adjustment indices showed curvilinear patterns across children’s developmental stages, with mothers of middle-schoolers faring the most poorly, and mothers of adult children and infants faring the best. Findings based on children in mutually exclusive age groups -- e.g., mothers with only (one or more) infants, preschoolers, etc. -- had larger effect sizes than those based on the age of the mothers’ oldest child. In contrast to the recurrent findings based on children’s developmental stages, mothers’ adjustment dimensions showed few variations by their children’s gender. Collectively, results of this study suggest that there is value in preventive interventions involving mothers not just in their children’s infancy and preschool years, but also as their children traverse the developmentally challenging years surrounding puberty. PMID:26501727

  12. Extraction and Refinement Strategy for detection of autism in 18-month-olds: a guarantee of higher sensitivity and specificity in the process of mass screening.

    PubMed

    Honda, Hideo; Shimizu, Yasuo; Nitto, Yukari; Imai, Miho; Ozawa, Takeshi; Iwasa, Mitsuaki; Shiga, Keiko; Hira, Tomoko

    2009-08-01

    For early detection of autism, it is difficult to maintain an efficient level of sensitivity and specificity based on observational data from a single screening. The Extraction and Refinement (E&R) Strategy utilizes a public children's health surveillance program to produce maximum efficacy in early detection of autism. In the extraction stage, all cases at risk of childhood problems, including developmental abnormality, are identified; in the refinement stage, cases without problems are excluded, leaving only cases with conclusive diagnoses. The city of Yokohama, Japan, conducts a routine child health surveillance program for children at 18 months in which specialized public health nurses administer YACHT-18 (Young Autism and other developmental disorders CHeckup Tool), a screening instrument to identify children at risk for developmental disorders. Children who screen positive undergo further observation, and those without disorders are subsequently excluded. To study the efficacy of early detection procedures for developmental disorders, including autism, 2,814 children born in 1988, examined at 18 months of age, and not already receiving treatment for diseases or disorders were selected. In the extraction stage, 402 (14.3%) children were identified for follow-up. In the refinement stage, 19 (.7%) of these were referred to the Yokohama Rehabilitation Center and diagnosed with developmental disorders. The extraction stage produced four false negatives, bringing total diagnoses of developmental disorders to 23 (.8%) - including 5 with autistic disorder and 9 with pervasive developmental disorder - not otherwise specified (PDDNOS). Sensitivity was 60% for autistic disorder and 82.6% for developmental disorders. Specificity for developmental disorders rose to 100% with the E&R Strategy. Picture cards used in YACHT-18 provided a finer screen that excluded some false positive cases. An extraction and refinement methodology utilizing child health surveillance programs achieve high efficacy for early detection of autism.

  13. Host species and developmental stage, but not host social structure, affects bacterial community structure in socially polymorphic bees.

    PubMed

    McFrederick, Quinn S; Wcislo, William T; Hout, Michael C; Mueller, Ulrich G

    2014-05-01

    Social transmission and host developmental stage are thought to profoundly affect the structure of bacterial communities associated with honey bees and bumble bees, but these ideas have not been explored in other bee species. The halictid bees Megalopta centralis and M. genalis exhibit intrapopulation social polymorphism, which we exploit to test whether bacterial communities differ by host social structure, developmental stage, or host species. We collected social and solitary Megalopta nests and sampled bees and nest contents from all stages of host development. To survey these bacterial communities, we used 16S rRNA gene 454 pyrosequencing. We found no effect of social structure, but found differences by host species and developmental stage. Wolbachia prevalence differed between the two host species. Bacterial communities associated with different developmental stages appeared to be driven by environmentally acquired bacteria. A Lactobacillus kunkeei clade bacterium that is consistently associated with other bee species was dominant in pollen provisions and larval samples, but less abundant in mature larvae and pupae. Foraging adults appeared to often reacquire L. kunkeei clade bacteria, likely while foraging at flowers. Environmental transmission appears to be more important than social transmission for Megalopta bees at the cusp between social and solitary behavior. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  14. Solid-State (13)C NMR Delineates the Architectural Design of Biopolymers in Native and Genetically Altered Tomato Fruit Cuticles.

    PubMed

    Chatterjee, Subhasish; Matas, Antonio J; Isaacson, Tal; Kehlet, Cindie; Rose, Jocelyn K C; Stark, Ruth E

    2016-01-11

    Plant cuticles on outer fruit and leaf surfaces are natural macromolecular composites of waxes and polyesters that ensure mechanical integrity and mitigate environmental challenges. They also provide renewable raw materials for cosmetics, packaging, and coatings. To delineate the structural framework and flexibility underlying the versatile functions of cutin biopolymers associated with polysaccharide-rich cell-wall matrices, solid-state NMR spectra and spin relaxation times were measured in a tomato fruit model system, including different developmental stages and surface phenotypes. The hydrophilic-hydrophobic balance of the cutin ensures compatibility with the underlying polysaccharide cell walls; the hydroxy fatty acid structures of outer epidermal cutin also support deposition of hydrophobic waxes and aromatic moieties while promoting the formation of cell-wall cross-links that rigidify and strengthen the cuticle composite during fruit development. Fruit cutin-deficient tomato mutants with compromised microbial resistance exhibit less efficient local and collective biopolymer motions, stiffening their cuticular surfaces and increasing their susceptibility to fracture.

  15. Effects of mutations in the Arabidopsis Cold Shock Domain Protein 3 (AtCSP3) gene on leaf cell expansion.

    PubMed

    Yang, Yongil; Karlson, Dale

    2012-08-01

    The cold shock domain is among the most evolutionarily conserved nucleic acid binding domains from prokaryotes to higher eukaryotes, including plants. Although eukaryotic cold shock domain proteins have been extensively studied as transcriptional and post-transcriptional regulators during various developmental processes, their functional roles in plants remains poorly understood. In this study, AtCSP3 (At2g17870), which is one of four Arabidopsis thaliana c old s hock domain proteins (AtCSPs), was functionally characterized. Quantitative RT-PCR analysis confirmed high expression of AtCSP3 in reproductive and meristematic tissues. A homozygous atcsp3 loss-of-function mutant exhibits an overall reduced seedling size, stunted and orbicular rosette leaves, reduced petiole length, and curled leaf blades. Palisade mesophyll cells are smaller and more circular in atcsp3 leaves. Cell size analysis indicated that the reduced size of the circular mesophyll cells appears to be generated by a reduction of cell length along the leaf-length axis, resulting in an orbicular leaf shape. It was also determined that leaf cell expansion is impaired for lateral leaf development in the atcsp3 loss-of-function mutant, but leaf cell proliferation is not affected. AtCSP3 loss-of-function resulted in a dramatic reduction of LNG1 transcript, a gene that is involved in two-dimensional leaf polarity regulation. Transient subcellular localization of AtCSP3 in onion epidermal cells confirmed a nucleocytoplasmic localization pattern. Collectively, these data suggest that AtCSP3 is functionally linked to the regulation of leaf length by affecting LNG1 transcript accumulation during leaf development. A putative function of AtCSP3 as an RNA binding protein is also discussed in relation to leaf development.

  16. Modifications to a LATE MERISTEM IDENTITY1 gene are responsible for the major leaf shapes of Upland cotton (Gossypium hirsutum L.).

    PubMed

    Andres, Ryan J; Coneva, Viktoriya; Frank, Margaret H; Tuttle, John R; Samayoa, Luis Fernando; Han, Sang-Won; Kaur, Baljinder; Zhu, Linglong; Fang, Hui; Bowman, Daryl T; Rojas-Pierce, Marcela; Haigler, Candace H; Jones, Don C; Holland, James B; Chitwood, Daniel H; Kuraparthy, Vasu

    2017-01-03

    Leaf shape varies spectacularly among plants. Leaves are the primary source of photoassimilate in crop plants, and understanding the genetic basis of variation in leaf morphology is critical to improving agricultural productivity. Leaf shape played a unique role in cotton improvement, as breeders have selected for entire and lobed leaf morphs resulting from a single locus, okra (l-D 1 ), which is responsible for the major leaf shapes in cotton. The l-D 1 locus is not only of agricultural importance in cotton, but through pioneering chimeric and morphometric studies, it has contributed to fundamental knowledge about leaf development. Here we show that an HD-Zip transcription factor homologous to the LATE MERISTEM IDENTITY1 (LMI1) gene of Arabidopsis is the causal gene underlying the l-D 1 locus. The classical okra leaf shape allele has a 133-bp tandem duplication in the promoter, correlated with elevated expression, whereas an 8-bp deletion in the third exon of the presumed wild-type normal allele causes a frame-shifted and truncated coding sequence. Our results indicate that subokra is the ancestral leaf shape of tetraploid cotton that gave rise to the okra allele and that normal is a derived mutant allele that came to predominate and define the leaf shape of cultivated cotton. Virus-induced gene silencing (VIGS) of the LMI1-like gene in an okra variety was sufficient to induce normal leaf formation. The developmental changes in leaves conferred by this gene are associated with a photosynthetic transcriptomic signature, substantiating its use by breeders to produce a superior cotton ideotype.

  17. Modifications to a LATE MERISTEM IDENTITY1 gene are responsible for the major leaf shapes of Upland cotton (Gossypium hirsutum L.)

    PubMed Central

    Andres, Ryan J.; Coneva, Viktoriya; Frank, Margaret H.; Tuttle, John R.; Samayoa, Luis Fernando; Han, Sang-Won; Kaur, Baljinder; Zhu, Linglong; Fang, Hui; Bowman, Daryl T.; Rojas-Pierce, Marcela; Haigler, Candace H.; Jones, Don C.; Holland, James B.; Chitwood, Daniel H.; Kuraparthy, Vasu

    2017-01-01

    Leaf shape varies spectacularly among plants. Leaves are the primary source of photoassimilate in crop plants, and understanding the genetic basis of variation in leaf morphology is critical to improving agricultural productivity. Leaf shape played a unique role in cotton improvement, as breeders have selected for entire and lobed leaf morphs resulting from a single locus, okra (l-D1), which is responsible for the major leaf shapes in cotton. The l-D1 locus is not only of agricultural importance in cotton, but through pioneering chimeric and morphometric studies, it has contributed to fundamental knowledge about leaf development. Here we show that an HD-Zip transcription factor homologous to the LATE MERISTEM IDENTITY1 (LMI1) gene of Arabidopsis is the causal gene underlying the l-D1 locus. The classical okra leaf shape allele has a 133-bp tandem duplication in the promoter, correlated with elevated expression, whereas an 8-bp deletion in the third exon of the presumed wild-type normal allele causes a frame-shifted and truncated coding sequence. Our results indicate that subokra is the ancestral leaf shape of tetraploid cotton that gave rise to the okra allele and that normal is a derived mutant allele that came to predominate and define the leaf shape of cultivated cotton. Virus-induced gene silencing (VIGS) of the LMI1-like gene in an okra variety was sufficient to induce normal leaf formation. The developmental changes in leaves conferred by this gene are associated with a photosynthetic transcriptomic signature, substantiating its use by breeders to produce a superior cotton ideotype. PMID:27999177

  18. The vertebrate phylotypic stage and an early bilaterian-related stage in mouse embryogenesis defined by genomic information.

    PubMed

    Irie, Naoki; Sehara-Fujisawa, Atsuko

    2007-01-12

    Embryos of taxonomically different vertebrates are thought to pass through a stage in which they resemble one another morphologically. This "vertebrate phylotypic stage" may represent the basic vertebrate body plan that was established in the common ancestor of vertebrates. However, much controversy remains about when the phylotypic stage appears, and whether it even exists. To overcome the limitations of studies based on morphological comparison, we explored a comprehensive quantitative method for defining the constrained stage using expressed sequence tag (EST) data, gene ontologies (GO), and available genomes of various animals. If strong developmental constraints occur during the phylotypic stage of vertebrate embryos, then genes conserved among vertebrates would be highly expressed at this stage. We established a novel method for evaluating the ancestral nature of mouse embryonic stages that does not depend on comparative morphology. The numerical "ancestor index" revealed that the mouse indeed has a highly conserved embryonic period at embryonic day 8.0-8.5, the time of appearance of the pharyngeal arch and somites. During this period, the mouse prominently expresses GO-determined developmental genes shared among vertebrates. Similar analyses revealed the existence of a bilaterian-related period, during which GO-determined developmental genes shared among bilaterians are markedly expressed at the cleavage-to-gastrulation period. The genes associated with the phylotypic stage identified by our method are essential in embryogenesis. Our results demonstrate that the mid-embryonic stage of the mouse is indeed highly constrained, supporting the existence of the phylotypic stage. Furthermore, this candidate stage is preceded by a putative bilaterian ancestor-related period. These results not only support the developmental hourglass model, but also highlight the hierarchical aspect of embryogenesis proposed by von Baer. Identification of conserved stages and tissues by this method in various animals would be a powerful tool to examine the phylotypic stage hypothesis, and to understand which kinds of developmental events and gene sets are evolutionarily constrained and how they limit the possible variations of animal basic body plans.

  19. Carbohydrate production, balance and translocation in leaves, shoots and fruits of Montmorency sour cherry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kappes, E.M.

    1986-01-01

    Carbohydrate production, export and use were studied for different organs of sour cherry (Prunus cerasus L. Montmorency). Gross carbohydrate (/sup 14/CO/sub 2/) export started between 27.2 and 77.6% of full leaf expansion. The 10th leaf developing started export later than the 7th leaf, suggesting that higher carbohydrate availability during leaf expansion delays export initiation. In support of this, gross export started earlier (44.4-52.4% full expansion) after source leaf removal, than in the control (77.6%). Translocation was primarily vertical (following orthostichies). Most leaves of fruiting shoots exported bidirectionally to the apex and fruits, only leaves closest to fruits exported exclusively tomore » fruits during rapid cell division (Stage I) and rapid cell expansion (Stage III). Net export, determined from carbohydrate balance models started at 17 and 51% expansion for the 7th and terminal leaf, and at 26.5% of shoot elongation. Cumulative carbohydrate production of the 7th and terminal leaves during the first 9 and 11 days after emergence, exceeded carbohydrate accumulated at final size, 464.2 and 148.9 mg. A fruit carbohydrate balance was developed to determine contributions by fruit photosynthesis and fruit respiration, and to identify periods of greatest carbohydrate import. Fruit photosynthesis during development was characterized under different environmental conditions. Gross photosynthesis and chlorophyll content per fruit increased to a maximum during stage II and decreased thereafter. Gross photosynthesis approached a maximum at 40/sub 0/C. Since dark respiration increased exponentially over the same temperature range, net photosynthesis reached a maximum at 18/sup 0/C. Photorespiration was not detected.« less

  20. Factors Influencing Expression of Antixenosis in Soybean to Anticarsia gemmatalis and Spodoptera frugiperda (Lepidoptera: Noctuidae).

    PubMed

    Boiça Júnior, Arlindo Leal; De Souza, Bruno Henrique Sardinha; Costa, Eduardo Neves; Ribeiro, Zulene Antonio; Stout, Michael Joseph

    2015-02-01

    This study aimed to evaluate some factors that influence the expression of antixenosis in soybean genotypes against Anticarsia gemmatalis Hübner and Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae). Free-choice and no-choice feeding assays were performed with the resistant soybean genotype IAC 100 and the susceptible genotype BRSGO 8360 using A. gemmatalis and S. frugiperda larvae. The following factors that may affect expression of resistance were evaluated: one larva versus two larvae per leaf disc; use of larvae without prior feeding suspension versus larvae starved for 3 h prior to the assay; leaf discs versus entire leaflets; upper part versus lower part of the plant; and, vegetative versus reproductive growth stages. The level of resistance exhibited by the genotype IAC 100 was high enough to not be obscured by the effects of all factors assayed in the present study upon the feeding preference of A. gemmatalis and S. frugiperda larvae. However, our results demonstrate the importance of knowing the optimal conditions for conducting an assay for evaluating resistance of genotypes for specialist and generalist insect species. Utilization of two larvae of A. gemmatalis per leaf disc, not starved before the assays, with leaf discs from the upper part of plants at the reproductive growth stage provided better discrimination of differences in antixenosis expression in soybean genotypes. For S. frugiperda, use of one larva per leaf disc, not starved before the assays, with leaf discs from the lower part of plants at the reproductive growth stage gave more satisfactory results for feeding preference tests. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. [Effects of irrigation and planting patterns on photosynthetic characteristics of flag leaf and yield at late growth stages of winter wheat].

    PubMed

    Dong, Hao; Bi, Jun; Xia, Guang-Li; Zhou, Xun-Bo; Chen, Yu-Hai

    2014-08-01

    High-yield winter wheat cultivar Jimai 22 was used to study effects of irrigation and planting patterns on water consumption characteristics and photosynthetic characteristics of winter wheat in field from 2009 to 2011. Three different planting patterns (uniform row, wide-narrow row and furrow) and four irrigation schedules (W0, no irrigation; W1, irrigation at jointing stage; W2, irrigations at jointing and anthesis stages; W3, irrigation at jointing, anthesis and milking stages. Each irrigation rate was 60 mm) were designed in the experiment. Results showed that, with the increasing of irrigation amount, flag leaf area, net photosynthesis rate, maximum photochemical efficiency and actual light transformation efficiency at late growth stages of winter wheat increased. Compared with W0 treatment, the other irrigation treatments had higher grain yields, but lower water use efficiencies. Under the same irrigation condition, the flag leaf net photosynthesis, maximum photochemical efficiency and actual light transformation efficiency were much higher in furrow pattern. Grain yields of winter wheat under furrow pattern and W2 treatment were significantly higher than that of the other treatments. Taking grain yield and WUE into consideration, furrow pattern combined with irrigation at jointing and anthesis stages might be the optimal water-saving and planting mode for the winter wheat production in North China Plain.

  2. Developmental and Subcellular Organization of Single-Cell C₄ Photosynthesis in Bienertia sinuspersici Determined by Large-Scale Proteomics and cDNA Assembly from 454 DNA Sequencing.

    PubMed

    Offermann, Sascha; Friso, Giulia; Doroshenk, Kelly A; Sun, Qi; Sharpe, Richard M; Okita, Thomas W; Wimmer, Diana; Edwards, Gerald E; van Wijk, Klaas J

    2015-05-01

    Kranz C4 species strictly depend on separation of primary and secondary carbon fixation reactions in different cell types. In contrast, the single-cell C4 (SCC4) species Bienertia sinuspersici utilizes intracellular compartmentation including two physiologically and biochemically different chloroplast types; however, information on identity, localization, and induction of proteins required for this SCC4 system is currently very limited. In this study, we determined the distribution of photosynthesis-related proteins and the induction of the C4 system during development by label-free proteomics of subcellular fractions and leaves of different developmental stages. This was enabled by inferring a protein sequence database from 454 sequencing of Bienertia cDNAs. Large-scale proteome rearrangements were observed as C4 photosynthesis developed during leaf maturation. The proteomes of the two chloroplasts are different with differential accumulation of linear and cyclic electron transport components, primary and secondary carbon fixation reactions, and a triose-phosphate shuttle that is shared between the two chloroplast types. This differential protein distribution pattern suggests the presence of a mRNA or protein-sorting mechanism for nuclear-encoded, chloroplast-targeted proteins in SCC4 species. The combined information was used to provide a comprehensive model for NAD-ME type carbon fixation in SCC4 species.

  3. Regional climate modulates the canopy mosaic of favourable and risky microclimates for insects.

    PubMed

    Pincebourde, Sylvain; Sinoquet, Herve; Combes, Didier; Casas, Jerome

    2007-05-01

    1. One major gap in our ability to predict the impacts of climate change is a quantitative analysis of temperatures experienced by organisms under natural conditions. We developed a framework to describe and quantify the impacts of local climate on the mosaic of microclimates and physiological states of insects within tree canopies. This approach was applied to a leaf mining moth feeding on apple leaf tissues. 2. Canopy geometry was explicitly considered by mapping the 3D position and orientation of more than 26 000 leaves in an apple tree. Four published models for canopy radiation interception, energy budget of leaves and mines, body temperature and developmental rate of the leaf miner were integrated. Model predictions were compared with actual microclimate temperatures. The biophysical model accurately predicted temperature within mines at different positions within the tree crown. 3. Field temperature measurements indicated that leaf and mine temperature patterns differ according to the regional climatic conditions (cloudy or sunny) and depending on their location within the canopy. Mines in the sun can be warmer than those in the shade by several degrees and the heterogeneity of mine temperature was incremented by 120%, compared with that of leaf temperature. 4. The integrated model was used to explore the impact of both warm and exceptionally hot climatic conditions recorded during a heat wave on the microclimate heterogeneity at canopy scale. During warm conditions, larvae in sunlight-exposed mines experienced nearly optimal growth conditions compared with those within shaded mines. The developmental rate was increased by almost 50% in the sunny microhabitat compared with the shaded location. Larvae, however, experienced optimal temperatures for their development inside shaded mines during extreme climatic conditions, whereas larvae in exposed mines were overheating, leading to major risks of mortality. 5. Tree canopies act as both magnifiers and reducers of the climatic regime experienced in open air outside canopies. Favourable and risky spots within the canopy do change as a function of the climatic conditions at the regional scale. The shifting nature of the mosaic of suitable and risky habitats may explain the observed uniform distribution of leaf miners within tree canopies.

  4. Genetic Components of Heterosis for Seedling Traits in an Elite Rice Hybrid Analyzed Using an Immortalized F2 Population.

    PubMed

    Zhu, Dan; Zhou, Gang; Xu, Caiguo; Zhang, Qifa

    2016-02-20

    Utilization of heterosis has greatly contributed to rice productivity in China and many Asian countries. Superior hybrids usually show heterosis at two stages: canopy development at vegetative stage and panicle development at reproductive stage resulting in heterosis in yield. Although the genetic basis of heterosis in rice has been extensively investigated, all the previous studies focused on yield traits at maturity stage. In this study, we analyzed the genetic basis of heterosis at seedling stage making use of an "immortalized F2" population composed of 105 hybrids produced by intercrossing recombinant inbred lines (RILs) from a cross between Zhenshan 97 and Minghui 63, the parents of Shanyou 63, which is an elite hybrid widely grown in China. Eight seedling traits, seedling height, tiller number, leaf number, root number, maximum root length, root dry weight, shoot dry weight and total dry weight, were investigated using hydroponic culture. We analyzed single-locus and digenic genetic effects at the whole genome level using an ultrahigh-density SNP bin map obtained by population re-sequencing. The analysis revealed large numbers of heterotic effects for seedling traits including dominance, overdominance and digenic dominance (epistasis) in both positive and negative directions. Overdominance effects were prevalent for all the traits, and digenic dominance effects also accounted for a large portion of the genetic effects. The results suggested that cumulative small advantages of the single-locus effects and two-locus interactions, most of which could not be detected statistically, could explain the genetic basis of seedling heterosis of the F1 hybrid. Copyright © 2016 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  5. [Crucial stages of embryogenesis of R. arvalis: Part 1. Linear measurements of embryonic structures].

    PubMed

    Severtsova, E A; Severtsov, A S

    2011-01-01

    Investigations of individual variability have allowed us to reveal the crucial (= nodal) stages in embryogenesis of the moor frog (Rana arvalis Nills.). These crucial stages are: the late gastrula stage (stages 18-20), the hatching stages (stages 32-33) and, apparently, early metamorphosis (stage 39). Moreover, we have found that each embryonic structure passes through its specific crucial stages. For example, stage 34 is crucial for the trait "tail width" but is internodal for all other embryonic traits. At this stage, larva passes from an attached to a free-swimming life style. We also found considerable differences between the different frog populations in the the level of developmental variability. These differences were associated with internodal developmental stages.

  6. Not a Stage! A Critical Re-Conception of Young Adolescent Education. Adolescent Cultures, School and Society. Volume 60

    ERIC Educational Resources Information Center

    Vagle, Mark D., Ed.

    2012-01-01

    "Not a Stage!" is written for teachers, students, and scholars interested in the academic, social, and emotional needs of young adolescents. It is unique because it actively resists basing the practice, research, and theory of young adolescent education on developmentalism and the developmental stage of young adolescence. The purpose of…

  7. Map-based cloning and characterization of the novel yellow-green leaf gene ys83 in rice (Oryza sativa).

    PubMed

    Ma, Xiaozhi; Sun, Xiaoqiu; Li, Chunmei; Huan, Rui; Sun, Changhui; Wang, Yang; Xiao, Fuliang; Wang, Qian; Chen, Purui; Ma, Furong; Zhang, Kuan; Wang, Pingrong; Deng, Xiaojian

    2017-02-01

    Leaf-color mutants have been extensively studied in rice, and many corresponding genes have been identified up to now. However, leaf-color mutation mechanisms are diverse and still need further research through identification of novel genes. In the present paper, we isolated a leaf-color mutant, ys83, in rice (Oryza sativa). The mutant displayed a yellow-green leaf phenotype at seedling stage, and then slowly turned into light-green leaf from late tillering stage. In its yellow leaves, photosynthetic pigment contents significantly decreased and the chloroplast development was retarded. The mutant phenotype was controlled by a recessive mutation in a nuclear gene on the short arm of rice chromosome 2. Map-based cloning and sequencing analysis suggested that the candidate gene was YS83 (LOC_Os02g05890) encoding a protein containing 165 amino acid residues. Gene YS83 was expressed in a wide range of tissues, and its encoded protein was targeted to the chloroplast. In the mutant, a T-to-A substitution occurred in coding sequence of gene YS83, which caused a premature translation of its encoded product. By introduction of the wild-type gene, the ys83 mutant recovered to normal green-leaf phenotype. Taken together, we successfully identified a novel yellow-green leaf gene YS83. In addition, number of productive panicles per plant and number of spikelets per panicle only reduced by 6.7% and 7.6%, respectively, meanwhile its seed setting rate and 1000-grain weight (seed size) were not significantly affected in the mutant, so leaf-color mutant gene ys83 could be used as a trait marker gene in commercial hybrid rice production. Copyright © 2016. Published by Elsevier Masson SAS.

  8. A guanine insert in OsBBS1 leads to early leaf senescence and salt stress sensitivity in rice (Oryza sativa L.).

    PubMed

    Zeng, Dong-Dong; Yang, Cheng-Cong; Qin, Ran; Alamin, Md; Yue, Er-Kui; Jin, Xiao-Li; Shi, Chun-Hai

    2018-06-01

    A rice receptor-like kinase gene OSBBS1/OsRLCK109 was identified; this gene played vital roles in leaf senescence and the salt stress response. Early leaf senescence can cause negative effects on rice yield, but the underlying molecular regulation is not fully understood. bilateral blade senescence 1 (bbs1), an early leaf senescence mutant with a premature senescence phenotype that occurs mainly performing at the leaf margins, was isolated from a rice mutant population generated by ethylmethane sulfonate (EMS) treatment. The mutant showed premature leaf senescence beginning at the tillering stage and exhibited severe symptoms at the late grain-filling stage. bbs1 showed accelerated dark-induced leaf senescence. The OsBBS1 gene was cloned by a map-based cloning strategy, and a guanine (G) insertion was found in the first exon of LOC_Os03g24930. This gene encodes a receptor-like cytoplasmic kinase and was named OsRLCK109 in a previous study. Transgenic LOC_Os03g24930 knockout plants generated by a CRISPR/Cas9 strategy exhibited similar early leaf senescence phenotypes as did the bbs1 mutant, which confirmed that LOC_Os03g24930 was the OsBBS1 gene. OsBBS1/OsRLCK109 was expressed in all detected tissues and was predominantly expressed in the main vein region of mature leaves. The expression of OsBBS1 could be greatly induced by salt stress, and the bbs1 mutant exhibited hypersensitivity to salt stress. In conclusion, this is the first identification of OsRLCKs participating in leaf senescence and playing critical roles in the salt stress response in rice (Oryza sativa L.).

  9. Canopy Nutrient Cycling In Afromontane Tropical Forests At Different Successional Stages

    NASA Astrophysics Data System (ADS)

    Nyirambangutse, B.; Zibera, E.; Dusenge, M. E.; Nsabimana, D.; Pleijel, H.; Uddling, J.; Wallin, G.

    2017-12-01

    Canopy nutrient composition and cycling control biogeochemical processes and tree growth in forests. However, the understanding of nutrient limitations and cycling in tropical montane forests (TMF) is currently limited, in particular for Afromontane forests. In this study we investigated leaf nutrient composition and resorption, canopy nutrient cycling and soil carbon and nutrient content in 15 permanent plots at different successional stages in a TMF (elevation 1950 to 2550 m a.s.l.) in Rwanda, Central Africa. Leaf concentrations of 12 elements were analyzed in attached green leaves as well as in shed leaves of 10 early (ES) and 10 late (LS) successional tree species. Leaf nutrient concentrations mostly did not differ between ES and LS species (exception: K was 20% higher in ES), but the ratios of P, K and Mg to N were significantly higher in ES species. Mean resorption efficiencies of N (37%), P (48%) and K (46%) were much higher than for other nutrients. Nutrient resorption efficiency exhibited very large interspecific variation, did not differ between ES and LS species, and was not related to the leaf concentration of the respective element. Total leaf litterfall was on average 4.9 t ha-1 yr-1 (66% of total litterfall) and was independent of the successional stage of the forest. The total content of C, N, P and K in leaf litterfall did not differ between ES and LS stands. Ground litter turnover rates of C and N were 0.98 and 0.78 y-1, respectively. High leaf N concentrations, intermediate N:P ratios and low resorption efficiencies compared to values reported for other TMFs indicate high fertility and likely co-limitation by N and P, however progressively increasing towards P limitation during the course of succession. Our results further demonstrate that resorption efficiency and canopy litterfall inputs to soil mostly do not differ between ES and LS species in Afromontane tropical forests.

  10. Gene expression in developing watermelon fruit

    PubMed Central

    Wechter, W Patrick; Levi, Amnon; Harris, Karen R; Davis, Angela R; Fei, Zhangjun; Katzir, Nurit; Giovannoni, James J; Salman-Minkov, Ayelet; Hernandez, Alvaro; Thimmapuram, Jyothi; Tadmor, Yaakov; Portnoy, Vitaly; Trebitsh, Tova

    2008-01-01

    Background Cultivated watermelon form large fruits that are highly variable in size, shape, color, and content, yet have extremely narrow genetic diversity. Whereas a plethora of genes involved in cell wall metabolism, ethylene biosynthesis, fruit softening, and secondary metabolism during fruit development and ripening have been identified in other plant species, little is known of the genes involved in these processes in watermelon. A microarray and quantitative Real-Time PCR-based study was conducted in watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus] in order to elucidate the flow of events associated with fruit development and ripening in this species. RNA from three different maturation stages of watermelon fruits, as well as leaf, were collected from field grown plants during three consecutive years, and analyzed for gene expression using high-density photolithography microarrays and quantitative PCR. Results High-density photolithography arrays, composed of probes of 832 EST-unigenes from a subtracted, fruit development, cDNA library of watermelon were utilized to examine gene expression at three distinct time-points in watermelon fruit development. Analysis was performed with field-grown fruits over three consecutive growing seasons. Microarray analysis identified three hundred and thirty-five unique ESTs that are differentially regulated by at least two-fold in watermelon fruits during the early, ripening, or mature stage when compared to leaf. Of the 335 ESTs identified, 211 share significant homology with known gene products and 96 had no significant matches with any database accession. Of the modulated watermelon ESTs related to annotated genes, a significant number were found to be associated with or involved in the vascular system, carotenoid biosynthesis, transcriptional regulation, pathogen and stress response, and ethylene biosynthesis. Ethylene bioassays, performed with a closely related watermelon genotype with a similar phenotype, i.e. seeded, bright red flesh, dark green rind, etc., determined that ethylene levels were highest during the green fruit stage followed by a decrease during the white and pink fruit stages. Additionally, quantitative Real-Time PCR was used to validate modulation of 127 ESTs that were differentially expressed in developing and ripening fruits based on array analysis. Conclusion This study identified numerous ESTs with putative involvement in the watermelon fruit developmental and ripening process, in particular the involvement of the vascular system and ethylene. The production of ethylene during fruit development in watermelon gives further support to the role of ethylene in fruit development in non-climacteric fruits. PMID:18534026

  11. Swimming speed alteration in the early developmental stages of Paracentrotus lividus sea urchin as ecotoxicological endpoint.

    PubMed

    Morgana, Silvia; Gambardella, Chiara; Falugi, Carla; Pronzato, Roberto; Garaventa, Francesca; Faimali, Marco

    2016-04-01

    Behavioral endpoints have been used for decades to assess chemical impacts at concentrations unlikely to cause mortality. With recently developed techniques, it is possible to investigate the swimming behavior of several organisms under laboratory conditions. The aims of this study were: i) assessing for the first time the feasibility of swimming speed analysis of the early developmental stage sea urchin Paracentrotus lividus by an automatic recording system ii) investigating any Swimming Speed Alteration (SSA) on P. lividus early stages exposed to a chemical reference; iii) identifying the most suitable stage for SSA test. Results show that the swimming speed of all the developmental stages was easily recorded. The swimming speed was inhibited as a function of toxicant concentration. Pluteus were the most appropriate stage for evaluating SSA in P. lividus as ecotoxicological endpoint. Finally, swimming of sea urchin early stages represents a sensitive endpoint to be considered in ecotoxicological investigations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Avoiding high relative air humidity during critical stages of leaf ontogeny is decisive for stomatal functioning.

    PubMed

    Fanourakis, Dimitrios; Carvalho, Susana M P; Almeida, Domingos P F; Heuvelink, Ep

    2011-07-01

    Plants of several species, if grown at high relative air humidity (RH ≥85%), develop stomata that fail to close fully in case of low leaf water potential. We studied the effect of a reciprocal change in RH, at different stages of leaf expansion of Rosa hybrida grown at moderate (60%) or high (95%) RH, on the stomatal closing ability. This was assessed by measuring the leaf transpiration rate in response to desiccation once the leaves had fully expanded. For leaves that started expanding at high RH but completed their expansion after transfer to moderate RH, the earlier this switch took place the better the stomatal functioning. Leaves initially expanding at moderate RH and transferred to high RH exhibited poor stomatal functioning, even when this transfer occurred very late during leaf expansion. Applying a daily abscisic acid (ABA) solution to the leaves of plants grown at continuous high RH was effective in inducing stomatal closure at low water potential, if done before full leaf expansion (FLE). After FLE, stomatal functioning was no longer affected either by the RH or ABA level. The results indicate that the degree of stomatal adaptation depends on both the timing and duration of exposure to high RH. It is concluded that stomatal functionality is strongly dependent on the humidity at which the leaf completed its expansion. The data also show that the effect of ambient RH and the alleviating role of ABA are restricted to the period of leaf expansion. Copyright © Physiologia Plantarum 2011.

  13. Variable sensitivity of US maize yield to high temperatures across developmental stages

    NASA Astrophysics Data System (ADS)

    Butler, E. E.; Huybers, P. J.

    2013-12-01

    The sensitivity of maize to high temperatures has been widely demonstrated. Furthermore, field work has indicated that reproductive development stages are particularly sensitive to stress, but this relationship has not been quantified across a wide geographic region. Here, the relationship between maize yield and temperature variations is examined as a function of developmental stage. US state-level data from the National Agriculture Statistics Service provide dates for six growing stages: planting, silking, doughing, dented, mature, and harvested. Temperatures that correspond to each developmental stage are then inferred from a network of weather station observations interpolated to the county level, and a multiple linear regression technique is employed to estimate the sensitivity of county yield outcomes to variations in growing-degree days and an analogous measure of high temperatures referred to as killing-degree days. Uncertainties in the transition times between county-level growth stages are accounted for. Results indicate that the silking and dented stages are generally the most sensitive to killing degree days, with silking the most sensitive stage in the US South and dented the most sensitive in the US North. These variable patterns of sensitivity aid in interpreting which weather events are of greatest significance to maize yields and provide some insight into how shifts in planting time or changes in developmental timing would influence the risks associated with exposure to high temperatures.

  14. Changes in photosynthetic pigments and chlorophyll-a fluorescence attributes of sweet-forage and grain sorghum cultivars under salt stress.

    PubMed

    Sayyad-Amin, Parvaneh; Jahansooz, Mohammad-Reza; Borzouei, Azam; Ajili, Fatemeh

    2016-10-01

    Water shortage leads to a low quality of water, especially saline water in most parts of agricultural regions. This experiment was designed to determine the effects of saline irrigation on sorghum as a moderately salt-tolerant crop. To study salinity effects on photosynthetic pigment attributes including the chlorophyll content and chlorophyll fluorescence, an experiment was performed in a climate-controlled greenhouse at two vegetative and reproductive stages. The experimental design was factorial based on a completely randomized design with five NaCl concentrations (control, 50, 100, 150, and 200 mM), two grain and sweet-forage sorghum cultivars (Kimia and Pegah, respectively) and four replications. According to the experimental data, there were no significant differences between two grain and sweet-forage cultivars. Except for 100 and 150 mM NaCl, salinity significantly decreased the chlorophyll index and pigment contents of the leaf, while it increased the chlorophyll-a fluorescence characteristics. Although salinity reduced photosynthetic pigments and the crop yield, either grain or sweet-forage cultivars could significantly control the effect of salinity between 100 and 150 mM NaCl at both developmental stages, showing the possibility of using saline water in sorghum cultivation up to 150 mM NaCl.

  15. Deep sequencing of small RNA libraries reveals dynamic expression patterns of microRNAs in multiple developmental stages of Bactrocera dorsalis.

    PubMed

    Huang, Y; Dou, W; Liu, B; Wei, D; Liao, C Y; Smagghe, G; Wang, J-J

    2014-10-01

    In eukaryotes, microRNAs (miRNAs) are small, conserved, noncoding RNAs that have emerged as critical regulators of gene expression. The oriental fruit fly Bactrocera dorsalis is one of the most economically important fruit fly pests in East Asia and the Pacific. Although transcriptome analyses have greatly enriched our knowledge of its structural genes, little is known about post-transcriptional regulation by miRNAs in this dipteran species. In this study, small RNA libraries corresponding to four B. dorsalis developmental stages (eggs, larvae, pupae and adults) were constructed and sequenced. Approximately 30.7 million reads of 18-30 nucleotides were obtained, with 123 known miRNAs and 60 novel miRNAs identified amongst these libraries. More than half of the miRNAs were stage-specific during the four developmental stages. A set of miRNAs was found to be up- or down-regulated during development by comparison of their reads at different developmental stages. Moreover, a small part of miRNAs owned both miR-#-3p and miR-#-5p types, with enormously variable miR-#-3p/miR-#-5p ratios in the same library and amongst different developmental stages for each miRNA. Taking these findings together, the current study has uncovered a number of miRNAs and provided insights into their possible involvement in developmental regulation by expression profiling of miRNAs. Further analyses of the expression and function of these miRNAs could increase our understanding of regulatory networks in this insect and lead to novel approaches for its control. © 2014 The Royal Entomological Society.

  16. A dysmorphology score system for assessing embryo abnormalities in rat whole embryo culture.

    PubMed

    Zhang, Cindy X; Danberry, Tracy; Jacobs, Mary Ann; Augustine-Rauch, Karen

    2010-12-01

    The rodent whole embryo culture (WEC) system is a well-established model for characterizing developmental toxicity of test compounds and conducting mechanistic studies. Laboratories have taken various approaches in describing type and severity of developmental findings of organogenesis-stage rodent embryos, but the Brown and Fabro morphological score system is commonly used as a quantitative approach. The associated score criteria is based upon developmental stage and growth parameters, where a series of embryonic structures are assessed and assigned respective scores relative to their gestational stage, with a Total Morphological Score (TMS) assigned to the embryo. This score system is beneficial because it assesses a series of stage-specific anatomical landmarks, facilitating harmonized evaluation across laboratories. Although the TMS provides a quantitative approach to assess growth and determine developmental delay, it is limited to its ability to identify and/or delineate subtle or structure-specific abnormalities. Because of this, the TMS may not be sufficiently sensitive for identifying compounds that induce structure or organ-selective effects. This study describes a distinct morphological score system called the "Dysmorphology Score System (DMS system)" that has been developed for assessing gestation day 11 (approximately 20-26 somite stage) rat embryos using numerical scores to differentiate normal from abnormal morphology and define the respective severity of dysmorphology of specific embryonic structures and organ systems. This method can also be used in scoring mouse embryos of the equivalent developmental stage. The DMS system enhances capabilities to rank-order compounds based upon teratogenic potency, conduct structure- relationships of chemicals, and develop statistical prediction models to support abbreviated developmental toxicity screens. © 2010 Wiley-Liss, Inc.

  17. Allelopathic activity and chemical constituents of walnut (Juglans regia) leaf litter in walnut-winter vegetable agroforestry system.

    PubMed

    Wang, Qian; Xu, Zheng; Hu, Tingxing; Rehman, Hafeez Ur; Chen, Hong; Li, Zhongbin; Ding, Bo; Hu, Hongling

    2014-01-01

    Walnut agroforestry systems have many ecological and economic benefits when intercropped with cool-season species. However, decomposing leaf litter is one of the main sources of allelochemicals in such systems. In this study, lettuce (Lactuca sativa var. angustata) was grown in the soil incorporated with walnut leaf litter to assess its allelopathic activity. Lettuce growth and physiological processes were inhibited by walnut leaf litter, especially during early growth stage (1-2 euphylla period) or with large amount of litter addition. The plants treated by small amount of leaf litter recovered their growth afterwards, while the inhibition for 180 g leaf litter persisted until harvest. Twenty-eight compounds were identified in the leaf litter, and several of them were reported to be phytotoxic, which may be responsible for the stress induced by walnut leaf litter. Thus, for highest economic value of vegetables such as lettuce, excessive incorporation of leaf litter should be discouraged.

  18. Characterization of somatic embryogenesis initiated from the Arabidopsis shoot apex.

    PubMed

    Kadokura, Satoshi; Sugimoto, Kaoru; Tarr, Paul; Suzuki, Takamasa; Matsunaga, Sachihiro

    2018-04-28

    Somatic embryogenesis is one of the best examples of the remarkable developmental plasticity of plants, in which committed somatic cells can dedifferentiate and acquire the ability to form an embryo and regenerate an entire plant. In Arabidopsis thaliana, the shoot apices of young seedlings have been reported as an alternative tissue source for somatic embryos (SEs) besides the widely studied zygotic embryos taken from siliques. Although SE induction from shoots demonstrates the plasticity of plants more clearly than the embryo-to-embryo induction system, the underlying developmental and molecular mechanisms involved are unknown. Here we characterized SE formation from shoot apex explants by establishing a system for time-lapse observation of explants during SE induction. We also established a method to distinguish SE-forming and non-SE-forming explants prior to anatomical SE formation, enabling us to identify distinct transcriptome profiles of these two explants at SE initiation. We show that embryonic fate commitment takes place at day 3 of SE induction and the SE arises directly, not through callus formation, from the base of leaf primordia just beside the shoot apical meristem (SAM), where auxin accumulates and shoot-root polarity is formed. The expression domain of a couple of key developmental genes for the SAM transiently expands at this stage. Our data demonstrate that SE-forming and non-SE-forming explants share mostly the same transcripts except for a limited number of embryonic genes and root genes that might trigger the SE-initiation program. Thus, SE-forming explants possess a mixed identity (SAM, root and embryo) at the time of SE specification. Copyright © 2018. Published by Elsevier Inc.

  19. UV-B Inhibits Leaf Growth through Changes in Growth Regulating Factors and Gibberellin Levels1[OPEN

    PubMed Central

    Fina, Julieta; AbdElgawad, Hamada; Prinsen, Els

    2017-01-01

    Ultraviolet-B (UV-B) radiation affects leaf growth in a wide range of species. In this work, we demonstrate that UV-B levels present in solar radiation inhibit maize (Zea mays) leaf growth without causing any other visible stress symptoms, including the accumulation of DNA damage. We conducted kinematic analyses of cell division and expansion to understand the impact of UV-B radiation on these cellular processes. Our results demonstrate that the decrease in leaf growth in UV-B-irradiated leaves is a consequence of a reduction in cell production and a shortened growth zone (GZ). To determine the molecular pathways involved in UV-B inhibition of leaf growth, we performed RNA sequencing on isolated GZ tissues of control and UV-B-exposed plants. Our results show a link between the observed leaf growth inhibition and the expression of specific cell cycle and developmental genes, including growth-regulating factors (GRFs) and transcripts for proteins participating in different hormone pathways. Interestingly, the decrease in the GZ size correlates with a decrease in the concentration of GA19, the immediate precursor of the active gibberellin, GA1, by UV-B in this zone, which is regulated, at least in part, by the expression of GRF1 and possibly other transcription factors of the GRF family. PMID:28400494

  20. Maturation experiments reveal bias in the fossil record of feathers

    NASA Astrophysics Data System (ADS)

    McNamara, Maria; Field, Daniel

    2016-04-01

    The evolutionary history of birds and feathers is a major focus in palaeobiology and evolutionary biology. Diverse exceptionally preserved birds and feathered dinosaurs from Jurassic and Cretaceous biotas in China have provided pivotal evidence of early feathers and feather-like integumentary features, but the true nature of many of these fossil soft tissues is still debated. Interpretations of feathers at intermediate developmental stages (i.e. Stages II, III and IV) and of simple quill-like (Stage I) feathers are particularly controversial. This reflects key uncertainties relating to the preservation potential of feathers at different evolutionary-developmental stages, and to the relative preservation potential of diagnostic features of Stage I feathers and hair. To resolve these issues, we used high pressure-high temperature autoclave experiments to simulate the effects of burial on modern feathers from the Black Coucal (Centropus grilii) and Common Starling (Sturnus vulgaris), and on human hair. Our results reveal profound differences in the recalcitrance of feathers of different types during maturation: Stage I and Stage V feathers retain diagnostic morphological and ultrastructural details following maturation, whereas other feather types do not. Further, the morphology and arrangement of certain ultrastructural features diagnostic of Stages III and IV, e.g. barbules, are preferentially lost during maturation. These results indicate a pervasive bias in the fossil record of feathers, whereby preservation of feathers at Stages I and V is favored. Critical stages in the evolution of feathers, i.e. Stages II, III and IV, are less likely to be preserved and more likely to be misinterpreted as feathers at earlier developmental stages. Our discovery has major implications for our understanding of the fidelity of the fossil record of feathers and provides a framework for testing the significance of putative examples of fossil feathers at different developmental stages.

  1. X-ray spectromicroscopic investigation of natural organochlorine distribution in weathering plant material

    NASA Astrophysics Data System (ADS)

    Leri, Alessandra C.; Marcus, Matthew A.; Myneni, Satish C. B.

    2007-12-01

    Natural organochlorine (Cl org) is ubiquitous in soil humus, but the distribution and cycling of different Cl species during the humification of plant material is poorly understood. Our X-ray spectromicroscopic studies indicate that the distributions of Cl org and inorganic Cl -(Cl inorg) in oak leaf material vary dramatically with decay stage, with the most striking changes occurring at the onset of weathering. In healthy or senescent leaves harvested from trees, Cl inorg occurs in sparsely distributed, highly localized "hotspots" associated with trichomes as well as in diffuse concentration throughout the leaf tissue. The Cl inorg associated with trichomes exists either in H-bonded form or in a solid salt matrix, while the Cl inorg in diffuse areas of lower Cl concentration appears exclusively in H-bonded form. Most solid phase Cl inorg leaches from the leaf tissue during early weathering stages, whereas the H-bonded Cl inorg appears to leach away slowly as degradation progresses, persisting through advanced weathering stages. In unweathered leaves, aromatic and aliphatic Cl org were found in rare but concentrated hotspots. In weathered leaves, by contrast, aromatic Cl org hotspots are prevalent, often coinciding with areas of elevated Fe or Mn concentration. Aromatic Cl org is highly soluble in leaves at early weathering stages and insoluble at more advanced stages. These results, combined with optical microscopy, suggest that fungi play a role in the production of aromatic Cl org in weathering leaf material. Aliphatic Cl org occurs in concentrated hotspots in weathered leaves as well as in diffuse areas of low Cl concentration. The distribution and speciation of Cl in weathering oak leaves depicted by this spectromicroscopic study provides new insight into the formation and cycling of Cl org during the decay of natural organic matter.

  2. Growing trees in child brains: graph theoretical analysis of electroencephalography-derived minimum spanning tree in 5- and 7-year-old children reflects brain maturation.

    PubMed

    Boersma, Maria; Smit, Dirk J A; Boomsma, Dorret I; De Geus, Eco J C; Delemarre-van de Waal, Henriette A; Stam, Cornelis J

    2013-01-01

    The child brain is a small-world network, which is hypothesized to change toward more ordered configurations with development. In graph theoretical studies, comparing network topologies under different conditions remains a critical point. Constructing a minimum spanning tree (MST) might present a solution, since it does not require setting a threshold and uses a fixed number of nodes and edges. In this study, the MST method is introduced to examine developmental changes in functional brain network topology in young children. Resting-state electroencephalography was recorded from 227 children twice at 5 and 7 years of age. Synchronization likelihood (SL) weighted matrices were calculated in three different frequency bands from which MSTs were constructed, which represent constructs of the most important routes for information flow in a network. From these trees, several parameters were calculated to characterize developmental change in network organization. The MST diameter and eccentricity significantly increased, while the leaf number and hierarchy significantly decreased in the alpha band with development. Boys showed significant higher leaf number, betweenness, degree and hierarchy and significant lower SL, diameter, and eccentricity than girls in the theta band. The developmental changes indicate a shift toward more decentralized line-like trees, which supports the previously hypothesized increase toward regularity of brain networks with development. Additionally, girls showed more line-like decentralized configurations, which is consistent with the view that girls are ahead of boys in brain development. MST provides an elegant method sensitive to capture subtle developmental changes in network organization without the bias of network comparison.

  3. Regression models for estimating leaf area of seedlings and adult individuals of Neotropical rainforest tree species.

    PubMed

    Brito-Rocha, E; Schilling, A C; Dos Anjos, L; Piotto, D; Dalmolin, A C; Mielke, M S

    2016-01-01

    Individual leaf area (LA) is a key variable in studies of tree ecophysiology because it directly influences light interception, photosynthesis and evapotranspiration of adult trees and seedlings. We analyzed the leaf dimensions (length - L and width - W) of seedlings and adults of seven Neotropical rainforest tree species (Brosimum rubescens, Manilkara maxima, Pouteria caimito, Pouteria torta, Psidium cattleyanum, Symphonia globulifera and Tabebuia stenocalyx) with the objective to test the feasibility of single regression models to estimate LA of both adults and seedlings. In southern Bahia, Brazil, a first set of data was collected between March and October 2012. From the seven species analyzed, only two (P. cattleyanum and T. stenocalyx) had very similar relationships between LW and LA in both ontogenetic stages. For these two species, a second set of data was collected in August 2014, in order to validate the single models encompassing adult and seedlings. Our results show the possibility of development of models for predicting individual leaf area encompassing different ontogenetic stages for tropical tree species. The development of these models was more dependent on the species than the differences in leaf size between seedlings and adults.

  4. DEVELOPMENTAL PALEOBIOLOGY OF THE VERTEBRATE SKELETON.

    PubMed

    Rücklin, Martin; Donoghue, Philip C J; Cunningham, John A; Marone, Federica; Stampanoni, Marco

    2014-07-01

    Studies of the development of organisms can reveal crucial information on homology of structures. Developmental data are not peculiar to living organisms, and they are routinely preserved in the mineralized tissues that comprise the vertebrate skeleton, allowing us to obtain direct insight into the developmental evolution of this most formative of vertebrate innovations. The pattern of developmental processes is recorded in fossils as successive stages inferred from the gross morphology of multiple specimens and, more reliably and routinely, through the ontogenetic stages of development seen in the skeletal histology of individuals. Traditional techniques are destructive and restricted to a 2-D plane with the third dimension inferred. Effective non-invasive methods of visualizing paleohistology to reconstruct developmental stages of the skeleton are necessary. In a brief survey of paleohistological techniques we discuss the pros and cons of these methods. The use of tomographic methods to reconstruct development of organs is exemplified by the study of the placoderm dentition. Testing evidence for the presence of teeth in placoderms, the first jawed vertebrates, we compare the methods that have been used. These include inferring the development from morphology, and using serial sectioning, microCT or synchrotron X-ray tomographic microscopy (SRXTM) to reconstruct growth stages and directions of growth. The ensuing developmental interpretations are biased by the methods and degree of inference. The most direct and reliable method is using SRXTM data to trace sclerochronology. The resulting developmental data can be used to resolve homology and test hypotheses on the origin of evolutionary novelties.

  5. SLA Developmental Stages and Teachers' Assessment of Written French: Exploring Direkt Profil as a Diagnostic Assessment Tool

    ERIC Educational Resources Information Center

    Granfeldt, Jonas; Ågren, Malin

    2014-01-01

    One core area of research in Second Language Acquisition is the identification and definition of developmental stages in different L2s. For L2 French, Bartning and Schlyter (2004) presented a model of six morphosyntactic stages of development in the shape of grammatical profiles. The model formed the basis for the computer program Direkt Profil…

  6. The Historical Emergence of Adolescence: Perspectives from Developmental Psychology and Adolescent Literature.

    ERIC Educational Resources Information Center

    Matter, Roxana Marie

    1984-01-01

    Reviews the literature from two distinct disciplines, developmental psychology and literature, reflecting the emergence of adolescence as a recognized stage in human development. Describes both cognitive and stage theories of adolescence and medieval concerns as well as twentieth century interest. (JAC)

  7. The Association of Parent Mindfulness with Parenting and Youth Psychopathology Across Three Developmental Stages.

    PubMed

    Parent, Justin; McKee, Laura G; N Rough, Jennifer; Forehand, Rex

    2016-01-01

    The primary purpose of the current study was to test a model examining the process by which parent dispositional mindfulness relates to youth psychopathology through mindful parenting and parenting practices. The universality of the model across youth at three developmental stages was examined: young childhood (3-7 years; n = 210), middle childhood (8-12 years; n = 200), and adolescence (13-17 years; n = 205). Overall, participants were 615 parents (55% female) and one of their 3-to-17 year old children (45% female). Parents reported on their dispositional mindfulness, mindful parenting, positive and negative parenting practices and their child's or adolescent's internalizing and externalizing problems. Consistent findings across all three developmental stages indicated that higher levels of parent dispositional mindfulness were indirectly related to lower levels of youth internalizing and externalizing problems through higher levels of mindful parenting and lower levels of negative parenting practices. Replication of these findings across families with children at different developmental stages lends support to the generalizability of the model.

  8. Competency for graviresponse in the leaf-sheath pulvinus of Avena sativa: onset to loss

    NASA Technical Reports Server (NTRS)

    Brock, T. G.; Kaufman, P. B.

    1988-01-01

    The development of the leaf-sheath pulvinus of oat (Avena sativa L. cv. Victory) was studied in terms of its competency to respond to gravistimulation. Stages of onset of competency, maximum competency and loss of competency were identified, using the length of the supertending internode as a developmental marker. During the early phases in the onset of competency, the latency period between stimulus and graviresponse decreased and the steady state response rate increased significantly. When fully competent, the latency period remained constant as the plant continued to develop, suggesting that the latency period is relatively insensitive to quantitative changes (e.g., in carbohydrate or nutrient availability) at the cell level within the plant. In contrast, the response rate was found to increase with plant development, indicating that graviresponse rate is more strongly influenced by quantitative cellular changes. The total possible graviresponse of a single oat pulvinus was confirmed to be significantly less than the original presentation angle. This was shown to not result from a loss of competency, since the graviresponse could be reinitiated by increasing the presentation angle. As a result of the low overall graviresponse of individual pulvini, two or more pulvini are required to bring the plant apex to the vertical. This was determined to occur though the sequential, rather than simultaneous, action of successive pulvini, since a given pulvinus lost competency to gravirespond shortly after the next pulvinus became fully competent.

  9. Rice MADS6 Interacts with the Floral Homeotic Genes SUPERWOMAN1, MADS3, MADS58, MADS13, and DROOPING LEAF in Specifying Floral Organ Identities and Meristem Fate[C][W][OA

    PubMed Central

    Li, Haifeng; Liang, Wanqi; Hu, Yun; Zhu, Lu; Yin, Changsong; Xu, Jie; Dreni, Ludovico; Kater, Martin M.; Zhang, Dabing

    2011-01-01

    AGAMOUS-LIKE6 (AGL6) genes play essential roles in flower development, but whether and how they work with floral organ identity genes remain less understood. Here, we describe interactions of the rice (Oryza sativa) AGL6 gene MADS6 with other rice floral homeotic genes in flower development. Genetic analyses revealed that MADS6 specifies the identity of the three inner whorls and floral meristem determinacy redundantly with SUPERWOMAN1/MADS16 (B-gene) or MADS3 (C-gene). MADS6 was shown to define carpel/ovule development and floral determinacy by interacting with MADS13 (D-gene) and control the palea and floral meristem identities together with the YABBY gene DROOPING LEAF. Expression analyses revealed that the transcript levels of six B-, C-, and E-class genes were reduced in mads6-1 at the early flower developmental stage, suggesting that MADS6 is a key regulator of early flower development. Moreover, MADS6 can directly bind to a putative regulatory motif on MADS58 (C-gene), and mads6-1 mads58 displayed phenotypes similar to that of mads6-1. These results suggest that MADS6 is a key player in specifying flower development via interacting with other floral homeotic genes in rice, thus providing new insights into the mechanism by which flower development is controlled. PMID:21784949

  10. Effects of regulated deficit irrigation during the pre-harvest period on gas exchange, leaf development and crop yield of mature almond trees.

    PubMed

    Romero, Pascual; Navarro, Josefa Maria; García, Francisco; Botía Ordaz, Pablo

    2004-03-01

    We investigated the effects of regulated deficit irrigation (RDI) during the pre-harvest period (kernel-filling stage) on water relations, leaf development and crop yield in mature almond (Prunus dulcis (Mill.) D.A. Webb cv. Cartagenera) trees during a 2-year field experiment. Trees were either irrigated at full-crop evapotranspiration (ETc=100%) (well-irrigated control treatment) or subjected to an RDI treatment that consisted of full irrigation for the full season, except from early June to early August (kernel-filling stage), when 20% ETc was applied. The severity of water stress was characterized by measurements of soil water content, predawn leaf water potential (Psipd) and relative water content (RWC). Stomatal conductance (gs), net CO2 assimilation rate (A), transpiration rate (E), leaf abscission, leaf expansion rate and crop yield were also measured. In both years, Psipd and RWC of well-irrigated trees were maintained above -1.0 MPa and 92%, respectively, whereas the corresponding values for trees in the RDI treatment were -2.37 MPa and 82%. Long-term water stress led to a progressive decline in gs, A and E, with significant reductions after 21 days in the RDI treatment. At the time of maximum stress (48 days after commencement of RDI), A, gs and E were 64, 67 and 56% lower than control values, respectively. High correlations between A, E and gs were observed. Plant water status recovered within 15 days after the resumption of irrigation and was associated with recovery of soil water content. A relatively rapid and complete recovery of A and gs was also observed, although the recovery was slower than for Psipd and RWC. Severe water stress during the kernel-filling stage resulted in premature defoliation (caused by increased leaf abscission) and a reduction in leaf growth rate, which decreased tree leaf area. Although kernel yield was correlated with leaf water potential, RDI caused a nonsignificant 7% reduction in kernel yield and had no effect on kernel size. The RDI treatment also improved water-use efficiency because about 30% less irrigation water was applied in the RDI treatment than in the control treatment. We conclude that high-cropping almonds can be successfully grown in semiarid regions in an RDI regime provided that Psipd is maintained above a threshold value of -2 MPa.

  11. Optical Inspection and Morphological Analysis of Diospyros kaki Plant Leaves for the Detection of Circular Leaf Spot Disease.

    PubMed

    Wijesinghe, Ruchire Eranga; Lee, Seung-Yeol; Kim, Pilun; Jung, Hee-Young; Jeon, Mansik; Kim, Jeehyun

    2016-08-12

    The feasibility of using the bio-photonic imaging technique to assess symptoms of circular leaf spot (CLS) disease in Diospyros kaki (persimmon) leaf samples was investigated. Leaf samples were selected from persimmon plantations and were categorized into three groups: healthy leaf samples, infected leaf samples, and healthy-looking leaf samples from infected trees. Visually non-identifiable reduction of the palisade parenchyma cell layer thickness is the main initial symptom, which occurs at the initial stage of the disease. Therefore, we established a non-destructive bio-photonic inspection method using a 1310 nm swept source optical coherence tomography (SS-OCT) system. These results confirm that this method is able to identify morphological differences between healthy leaves from infected trees and leaves from healthy and infected trees. In addition, this method has the potential to generate significant cost savings and good control of CLS disease in persimmon fields.

  12. Optical Inspection and Morphological Analysis of Diospyros kaki Plant Leaves for the Detection of Circular Leaf Spot Disease

    PubMed Central

    Wijesinghe, Ruchire Eranga; Lee, Seung-Yeol; Kim, Pilun; Jung, Hee-Young; Jeon, Mansik; Kim, Jeehyun

    2016-01-01

    The feasibility of using the bio-photonic imaging technique to assess symptoms of circular leaf spot (CLS) disease in Diospyros kaki (persimmon) leaf samples was investigated. Leaf samples were selected from persimmon plantations and were categorized into three groups: healthy leaf samples, infected leaf samples, and healthy-looking leaf samples from infected trees. Visually non-identifiable reduction of the palisade parenchyma cell layer thickness is the main initial symptom, which occurs at the initial stage of the disease. Therefore, we established a non-destructive bio-photonic inspection method using a 1310 nm swept source optical coherence tomography (SS-OCT) system. These results confirm that this method is able to identify morphological differences between healthy leaves from infected trees and leaves from healthy and infected trees. In addition, this method has the potential to generate significant cost savings and good control of CLS disease in persimmon fields. PMID:27529250

  13. Ascaroside expression in Caenorhabditis elegans is strongly dependent on diet and developmental stage

    USDA-ARS?s Scientific Manuscript database

    A group of small signaling molecules called ascarosides, associated with dauer formation, male attraction and social behavior in the nematode Caenorhabditis elegans, are shown to be regulated by developmental stage and environmental factors. The concentration of dauer-inducing ascaroside, ascr#2, i...

  14. Charles Darwin and the Origins of Plant Evolutionary Developmental Biology

    PubMed Central

    Friedman, William E.; Diggle, Pamela K.

    2011-01-01

    Much has been written of the early history of comparative embryology and its influence on the emergence of an evolutionary developmental perspective. However, this literature, which dates back nearly a century, has been focused on metazoans, without acknowledgment of the contributions of comparative plant morphologists to the creation of a developmental view of biodiversity. We trace the origin of comparative plant developmental morphology from its inception in the eighteenth century works of Wolff and Goethe, through the mid nineteenth century discoveries of the general principles of leaf and floral organ morphogenesis. Much like the stimulus that von Baer provided as a nonevolutionary comparative embryologist to the creation of an evolutionary developmental view of animals, the comparative developmental studies of plant morphologists were the basis for the first articulation of the concept that plant (namely floral) evolution results from successive modifications of ontogeny. Perhaps most surprisingly, we show that the first person to carefully read and internalize the remarkable advances in the understanding of plant morphogenesis in the 1840s and 1850s is none other than Charles Darwin, whose notebooks, correspondence, and (then) unpublished manuscripts clearly demonstrate that he had discovered the developmental basis for the evolutionary transformation of plant form. PMID:21515816

  15. Charles Darwin and the origins of plant evolutionary developmental biology.

    PubMed

    Friedman, William E; Diggle, Pamela K

    2011-04-01

    Much has been written of the early history of comparative embryology and its influence on the emergence of an evolutionary developmental perspective. However, this literature, which dates back nearly a century, has been focused on metazoans, without acknowledgment of the contributions of comparative plant morphologists to the creation of a developmental view of biodiversity. We trace the origin of comparative plant developmental morphology from its inception in the eighteenth century works of Wolff and Goethe, through the mid nineteenth century discoveries of the general principles of leaf and floral organ morphogenesis. Much like the stimulus that von Baer provided as a nonevolutionary comparative embryologist to the creation of an evolutionary developmental view of animals, the comparative developmental studies of plant morphologists were the basis for the first articulation of the concept that plant (namely floral) evolution results from successive modifications of ontogeny. Perhaps most surprisingly, we show that the first person to carefully read and internalize the remarkable advances in the understanding of plant morphogenesis in the 1840s and 1850s is none other than Charles Darwin, whose notebooks, correspondence, and (then) unpublished manuscripts clearly demonstrate that he had discovered the developmental basis for the evolutionary transformation of plant form.

  16. The Lunar CELSS Test Module

    NASA Technical Reports Server (NTRS)

    Hoehn, Alexander; Gomez, Shawn; Luttges, Marvin W.

    1992-01-01

    The evolutionarily-developed Lunar Controlled Ecological Life Support System (CELSS) Test Module presented can address questions concerning long-term human presence-related issues both at LEO and in the lunar environment. By achieving well-defined research goals at each of numerous developmental stages (each economically modest), easily justifiable operations can be undertaken. Attention is given to the possibility of maximizing non-NASA involvement in these CELSS developmental efforts via the careful definability and modest risk of each developmental stage.

  17. Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis

    PubMed Central

    Irie, Naoki; Kuratani, Shigeru

    2011-01-01

    One of the central issues in evolutionary developmental biology is how we can formulate the relationships between evolutionary and developmental processes. Two major models have been proposed: the 'funnel-like' model, in which the earliest embryo shows the most conserved morphological pattern, followed by diversifying later stages, and the 'hourglass' model, in which constraints are imposed to conserve organogenesis stages, which is called the phylotypic period. Here we perform a quantitative comparative transcriptome analysis of several model vertebrate embryos and show that the pharyngula stage is most conserved, whereas earlier and later stages are rather divergent. These results allow us to predict approximate developmental timetables between different species, and indicate that pharyngula embryos have the most conserved gene expression profiles, which may be the source of the basic body plan of vertebrates. PMID:21427719

  18. Carbon allocation, osmotic adjustment, antioxidant capacity and growth in cotton under long-term soil drought during flowering and boll-forming period.

    PubMed

    Wang, Rui; Gao, Min; Ji, Shu; Wang, Shanshan; Meng, Yali; Zhou, Zhiguo

    2016-10-01

    Responses of plant to drought largely depend on the intensity, duration and developmental stage at which water stress occurs. The purpose of this study was to analyze the dynamic of cotton physiology response to different levels sustained soil water deficit during reproductive growth stage at leaf basis. Three levels of steady-state water regimes [soil relative water content (SRWC) maintained at (75 ± 5)%, (60 ± 5)% and (45 ± 5)%] were imposed when the white flowers had opened on the first fruiting position of the 6-7th fruiting branches (FB6-7), which was the first day post anthesis (i.e. 1 DPA) and lasted to 50 DPA. Results showed decreasing SRWC slowed cotton growth on the base of biomass and leaf area. However, carbon metabolites levels were globally increased under drought despite of notably inhibited photosynthesis throughout the treatment period. Clear diurnal pattern of sucrose and starch concentrations was obtained and sucrose levels were evaluated while starch concentration was reduced with decreasing soil water content during a 24-h cycle. Osmotic adjustment (OA) was observed at most of the sampling dates throughout the drought period. K(+) was the main contributor to osmotic adjustment (OA) at 10 and 24 DPA then turned out to be amino acid at 38 and 50 DPA. The stressed cotton gradually failed to scavenge reactive oxygen species (ROS) with increasing days post anthesis, primarily due to the permanent decrease in SOD activity. Elevated carbohydrates levels suggest cotton growth was more inhibited by other factors than carbon assimilation. OA and antioxidant could be important protective mechanisms against soil water deficit in this species, and transition of these mechanisms was observed with drought intensity and duration increased. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. The Developmental Stages of a Community–University Partnership

    PubMed Central

    Allen, Michele L.; Svetaz, María Veronica; Hurtado, G. Ali; Linares, Roxana; Garcia-Huidobro, Diego; Hurtado, Monica

    2013-01-01

    Background: Strong and sustained community–university partnerships are necessary for community-based participatory translational research. Little attention has been paid to understanding the trajectory of research partnerships from a developmental perspective. Objective: To propose a framework describing partnership development and maturation based on Erikson’s eight stages of psychosocial development and describe how our collaboration is moving through those stages. Methods: Collaborators engaged in three rounds of iterative reflection regarding characteristics and contributors to the maturation of the Padres Informados/Jovenes Preparados (Informed Parents/Prepared Youth [PI/JP]) partnership. Lessons Learned: Each stage is characterized by broad developmental partnership tasks. Conflict or tension within the partnership is often a part of achieving the associated tasks. The strengths developed at each stage prepare the partnership for challenges associated with subsequent stages. Conclusions: This framework could provide a means for partnerships to reflect on their strengths and challenges at a given time point, and to help understand why some partnerships fail whereas others achieve maturity. PMID:24056509

  20. The developmental stages of a community-university partnership: the experience of Padres Informados/Jovenes Preparados.

    PubMed

    Allen, Michele L; Svetaz, A Veronica; Hurtado, G Ali; Linares, Roxana; Garcia-Huidobro, Diego; Hurtado, Monica

    2013-01-01

    Strong and sustained community-university partnerships are necessary for community-based participatory translational research. Little attention has been paid to understanding the trajectory of research partnerships from a developmental perspective. To propose a framework describing partnership development and maturation based on Erikson's eight stages of psychosocial development and describe how our collaboration is moving through those stages. Collaborators engaged in three rounds of iterative reflection regarding characteristics and contributors to the maturation of the Padres Informados/Jovenes Preparados (Informed Parents/Prepared Youth [PI/JP]) partnership. Each stage is characterized by broad developmental partnership tasks. Conflict or tension within the partnership is often a part of achieving the associated tasks. The strengths developed at each stage prepare the partnership for challenges associated with subsequent stages. This framework could provide a means for partnerships to reflect on their strengths and challenges at a given time point, and to help understand why some partnerships fail whereas others achieve maturity.

  1. Manipulation of Frankliniella occidentalis (Thysanoptera: Thripidae) by Tomato Spotted Wilt Virus (Tospovirus) Via the Host Plant Nutrients to Enhance Its Transmission and Spread

    PubMed Central

    Shalileh, Sheida; Moualeu, Dany Pascal; Poehling, Hans-Michael

    2016-01-01

    Earlier studies have shown that Tomato spotted wilt virus (TSWV) influences the biology, performance, and behavioral patterns of its vector Frankliniella occidentalis Pergande. In this study, using Capsicum annuum L. as the host plant, we aimed to determine the manipulation of F. occidentalis by TSWV through switching of the diet (+ or −TSWV) during vector’s development. Behavioral patterns, fitness, as well as vector performance were evaluated. The specific parameters investigated included longevity/survival, fecundity, development time, feeding, and preferential behavior. F. occidentalis were reared on either TSWV-infected (exposed) or healthy leaves (non-exposed) throughout their larval stages. The emerging adults were then individually transferred to either healthy or TSWV-infected leaf disks. This resulted into four treatments, consisting of exposed or non-exposed thrips reared on either infected or healthy leaf disks as adults. All F. occidentalis exposed to TSWV in their larval stages had shorter development time regardless of the adults’ diet. Whereas, the ones that were later reared on healthy leaf disks as adults recorded the highest longevity and reproduction rate. Furthermore, adults of F. occidentalis that were exposed to TSWV in their larval stages showed preference toward healthy leaf disks (−TSWV), whereas the non-exposed significantly preferred the infected leaf disks (+TSWV). These are further indications that TSWV modifies the nutritional content of its host plants, which influences vector’s biology and preferential behavior, in favor of its multiplication and dispersal. The findings offer additional explanation to the often aggressive spread of the virus in crop stands. PMID:27566527

  2. Perspectives of Young Children: How Do They Really Think?

    ERIC Educational Resources Information Center

    Costley, Kevin C.

    2010-01-01

    In his monumental research, although Piaget primarily relayed information about children's developmental stages of cognitive growth, Marian Marion goes on to discuss not only the developmental stages, yet focuses on how children think. In her textbook, "Guidance of Young Children", Marion conveys how teachers need to understand children and help…

  3. Fine Sediment Effects on Brook Trout Eggs in Laboratory Streams

    Treesearch

    David G. Argent; Patricia A. Flebbe

    1999-01-01

    This study was designed to determine effects of different fine sediments (0.43-0.85 mm in diameter) on survival of brook trout (Salvelinus fontinalis) eggs during early developmental stages under laboratory conditions. Intragravel permeability and dissolved oxygen declined with increasing fine sediment amounts. Survival at each developmental stage...

  4. Attachment in Middle Childhood: An Evolutionary-Developmental Perspective

    ERIC Educational Resources Information Center

    Del Giudice, Marco

    2015-01-01

    Middle childhood is a key transitional stage in the development of attachment processes and representations. Here I discuss the middle childhood transition from an evolutionary-developmental perspective and show how this approach offers fresh insight into the function and organization of attachment in this life stage. I begin by presenting an…

  5. Massive shift in gene expression during transitions between developmental stages of the Gall Midge, Mayetiola destructor

    USDA-ARS?s Scientific Manuscript database

    The gall midge Mayetiola destructor is a destructive pest of wheat worldwide and a model organism for studying plant – insect interactions. The insect has six different developmental stages including eggs, three instars of larvae, pupae, and adults. Molecular mechanisms controlling the transition ...

  6. Oral Care for Developmentally Disabled Children: The Primary Dentition Stage.

    ERIC Educational Resources Information Center

    Kenny, David J.; Judd, Peter L.

    1988-01-01

    Developmental disabilities and chronic illness can impact the oral health of children in the preeruptive and primary dentition stages. The article covers prevention and management of dental caries; gingival changes; trauma to the primary dentition; sucking, swallowing, and mastication; extraorally fed patients; and factitial injuries. Home-care…

  7. 47 CFR 2.803 - Marketing of radio frequency devices prior to equipment authorization.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... device that is in the conceptual, developmental, design or pre-production stage is permitted prior to... operation takes place at the manufacturer's facilities during developmental, design, or pre-production... development, design or pre-production stages. A product operated under this provision shall be labelled, in a...

  8. 47 CFR 2.803 - Marketing of radio frequency devices prior to equipment authorization.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... device that is in the conceptual, developmental, design or pre-production stage is permitted prior to... operation takes place at the manufacturer's facilities during developmental, design, or pre-production... development, design or pre-production stages. A product operated under this provision shall be labelled, in a...

  9. 47 CFR 2.803 - Marketing of radio frequency devices prior to equipment authorization.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... device that is in the conceptual, developmental, design or pre-production stage is permitted prior to... operation takes place at the manufacturer's facilities during developmental, design, or pre-production... development, design or pre-production stages. A product operated under this provision shall be labelled, in a...

  10. Metabolic Profiles and Free Radical Scavenging Activity of Cordyceps bassiana Fruiting Bodies According to Developmental Stage

    PubMed Central

    Hyun, Sun-Hee; Lee, Seok-Young; Sung, Gi-Ho; Kim, Seong Hwan; Choi, Hyung-Kyoon

    2013-01-01

    The metabolic profiles of Cordyceps bassiana according to fruiting body developmental stage were investigated using gas chromatography-mass spectrometry. We were able to detect 62 metabolites, including 48 metabolites from 70% methanol extracts and 14 metabolites from 100% n-hexane extracts. These metabolites were classified as alcohols, amino acids, organic acids, phosphoric acids, purine nucleosides and bases, sugars, saturated fatty acids, unsaturated fatty acids, or fatty amides. Significant changes in metabolite levels were found according to developmental stage. Relative levels of amino acids, purine nucleosides, and sugars were higher in development stage 3 than in the other stages. Among the amino acids, valine, isoleucine, lysine, histidine, glutamine, and aspartic acid, which are associated with ABC transporters and aminoacyl-tRNA biosynthesis, also showed higher levels in stage 3 samples. The free radical scavenging activities, which were significantly higher in stage 3 than in the other stages, showed a positive correlation with purine nucleoside metabolites such as adenosine, guanosine, and inosine. These results not only show metabolic profiles, but also suggest the metabolic pathways associated with fruiting body development stages in cultivated C. bassiana. PMID:24058459

  11. Stage-based mortality of grassland grasshoppers (Acrididae) from wandering spider (Lycosidae) predation

    NASA Astrophysics Data System (ADS)

    Oedekoven, Mark A.; Joern, Anthony

    1998-12-01

    Mortality rates in insects, including grasshoppers (Acrididae), are often stage- or size-specific. We estimated stage-specific mortality rates for three common grasshopper species from a Nebraska (USA) sandhills grassland ( Ageneotettix deorum, Melanoplus sanguinipes and Phoetaliotes nebrascensis), and partitioned the impact due to wandering spider predation from remaining sources. Survivorship was estimated for multiple developmental stages (3rd instar through adult) under experimental conditions that either prevented or permitted predation from free-living, wandering spiders (primarily Schizocosa species). Total stage-specific mortality, including spider predation, examined over the period of single stages was greatest for the youngest stages (91% for 3rd instar, 73% for 4th instar, 63.5% for 5th instar and 30.4% for adults). For the developmental stages considered and averaged for all species, the contribution to total mortality from spider predation over the 10-d period (approximately the length of a developmental stage) ranged from 17% for 3rd instar nymphs to 23% for 4th and 5th instars, and an undetectable level for adults. While spiders may depress grasshopper numbers, contributions from spider predation to grasshopper population dynamics are uncertain.

  12. Hydraulic conductance as well as nitrogen accumulation plays a role in the higher rate of leaf photosynthesis of the most productive variety of rice in Japan.

    PubMed

    Taylaran, Renante D; Adachi, Shunsuke; Ookawa, Taiichiro; Usuda, Hideaki; Hirasawa, Tadashi

    2011-07-01

    An indica variety Takanari is known as one of the most productive rice varieties in Japan and consistently produces 20-30% heavier dry matter during ripening than Japanese commercial varieties in the field. The higher rate of photosynthesis of individual leaves during ripening has been recognized in Takanari. By using pot-grown plants under conditions of minimal mutual shading, it was confirmed that the higher rate of leaf photosynthesis is responsible for the higher dry matter production after heading in Takanari as compared with a japonica variety, Koshihikari. The rate of leaf photosynthesis and shoot dry weight became larger in Takanari after the panicle formation and heading stages, respectively, than in Koshihikari. Roots grew rapidly in the panicle formation stage until heading in Takanari compared with Koshihikari. The higher rate of leaf photosynthesis in Takanari resulted not only from the higher content of leaf nitrogen, which was caused by its elevated capacity for nitrogen accumulation, but also from higher stomatal conductance. When measured under light-saturated conditions, stomatal conductance was already decreased due to the reduction in leaf water potential in Koshihikari even under conditions of a relatively small difference in leaf-air vapour pressure difference. In contrast, the higher stomatal conductance was supported by the maintenance of higher leaf water potential through the higher hydraulic conductance in Takanari with the larger area of root surface. However, no increase in root hydraulic conductivity was expected in Takanari. The larger root surface area of Takanari might be a target trait in future rice breeding for increasing dry matter production.

  13. Effects of ionizing radiation on embryos of the tardigrade Milnesium cf. tardigradum at different stages of development.

    PubMed

    Beltrán-Pardo, Eliana; Jönsson, K Ingemar; Wojcik, Andrzej; Haghdoost, Siamak; Harms-Ringdahl, Mats; Bermúdez-Cruz, Rosa M; Bernal Villegas, Jaime E

    2013-01-01

    Tardigrades represent one of the most desiccation and radiation tolerant animals on Earth, and several studies have documented their tolerance in the adult stage. Studies on tolerance during embryological stages are rare, but differential effects of desiccation and freezing on different developmental stages have been reported, as well as dose-dependent effect of gamma irradiation on tardigrade embryos. Here, we report a study evaluating the tolerance of eggs from the eutardigrade Milnesium cf. tardigradum to three doses of gamma radiation (50, 200 and 500 Gy) at the early, middle, and late stage of development. We found that embryos of the middle and late developmental stages were tolerant to all doses, while eggs in the early developmental stage were tolerant only to a dose of 50 Gy, and showed a declining survival with higher dose. We also observed a delay in development of irradiated eggs, suggesting that periods of DNA repair might have taken place after irradiation induced damage. The delay was independent of dose for eggs irradiated in the middle and late stage, possibly indicating a fixed developmental schedule for repair after induced damage. These results show that the tolerance to radiation in tardigrade eggs changes in the course of their development. The mechanisms behind this pattern are unknown, but may relate to changes in mitotic activities over the embryogenesis and/or to activation of response mechanisms to damaged DNA in the course of development.

  14. Effects of Ionizing Radiation on Embryos of the Tardigrade Milnesium cf. tardigradum at Different Stages of Development

    PubMed Central

    Beltrán-Pardo, Eliana; Jönsson, K. Ingemar; Wojcik, Andrzej; Haghdoost, Siamak; Harms-Ringdahl, Mats; Bermúdez-Cruz, Rosa M.; Bernal Villegas, Jaime E.

    2013-01-01

    Tardigrades represent one of the most desiccation and radiation tolerant animals on Earth, and several studies have documented their tolerance in the adult stage. Studies on tolerance during embryological stages are rare, but differential effects of desiccation and freezing on different developmental stages have been reported, as well as dose-dependent effect of gamma irradiation on tardigrade embryos. Here, we report a study evaluating the tolerance of eggs from the eutardigrade Milnesium cf. tardigradum to three doses of gamma radiation (50, 200 and 500 Gy) at the early, middle, and late stage of development. We found that embryos of the middle and late developmental stages were tolerant to all doses, while eggs in the early developmental stage were tolerant only to a dose of 50 Gy, and showed a declining survival with higher dose. We also observed a delay in development of irradiated eggs, suggesting that periods of DNA repair might have taken place after irradiation induced damage. The delay was independent of dose for eggs irradiated in the middle and late stage, possibly indicating a fixed developmental schedule for repair after induced damage. These results show that the tolerance to radiation in tardigrade eggs changes in the course of their development. The mechanisms behind this pattern are unknown, but may relate to changes in mitotic activities over the embryogenesis and/or to activation of response mechanisms to damaged DNA in the course of development. PMID:24039737

  15. Quantitative developmental transcriptomes of the Mediterranean sea urchin Paracentrotus lividus.

    PubMed

    Gildor, Tsvia; Malik, Assaf; Sher, Noa; Avraham, Linor; Ben-Tabou de-Leon, Smadar

    2016-02-01

    Embryonic development progresses through the timely activation of thousands of differentially activated genes. Quantitative developmental transcriptomes provide the means to relate global patterns of differentially expressed genes to the emerging body plans they generate. The sea urchin is one of the classic model systems for embryogenesis and the models of its developmental gene regulatory networks are of the most comprehensive of their kind. Thus, the sea urchin embryo is an excellent system for studies of its global developmental transcriptional profiles. Here we produced quantitative developmental transcriptomes of the sea urchin Paracentrotus lividus (P. lividus) at seven developmental stages from the fertilized egg to prism stage. We generated de-novo reference transcriptome and identified 29,817 genes that are expressed at this time period. We annotated and quantified gene expression at the different developmental stages and confirmed the reliability of the expression profiles by QPCR measurement of a subset of genes. The progression of embryo development is reflected in the observed global expression patterns and in our principle component analysis. Our study illuminates the rich patterns of gene expression that participate in sea urchin embryogenesis and provide an essential resource for further studies of the dynamic expression of P. lividus genes. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Effects of increased temperature on metabolic activity and oxidative stress in the first life stages of marble trout (Salmo marmoratus).

    PubMed

    Simčič, Tatjana; Jesenšek, Dušan; Brancelj, Anton

    2015-08-01

    Climate change may result in future alterations in thermal regime which could markedly affect the early developmental stages of cold water fish due to their expected high sensitivity to increasing temperature. In the present study, the effect of temperature increase of 2, 4 and 6°C on the oxygen consumption rate (R), the activity of respiratory electron transport system (ETS) and oxidative stress have been studied in four developmental stages of the marble trout (Salmo marmoratus)-eyed eggs, yolk-sac larvae and juveniles of 1 and 3 months. Oxygen consumption rate and ETS activity increased with level of development and with temperature in all four stages. ETS/R ratios decreased during development and correlated with temperature in eyed eggs, larvae and juveniles of 1 month, but not in juveniles of 3 months. Low ETS/R ratios at higher temperatures indicate stress response in eyed eggs, the most temperature sensitive developmental stage. Catalase (CAT) and glutathione reductase (GR) activities increased during development, but responded differently to elevated temperature in the different developmental stages. Stress in eyed eggs, caused by higher temperatures, resulted in increased oxygen consumption rate and increased activities of CAT and GR. Larvae were sensitive to increased temperature only at the highest experimental temperature of 16°C. Increased temperature did not stress the metabolism of the juveniles, since they were able to compensate their metabolic activity. The earlier developmental stages of marble trout are thus more sensitive to temperature increase than juveniles and therefore more endangered by higher water temperatures. This is the first report connecting oxygen consumption, ETS activity and ETS/R ratio with the activities of antioxidant enzymes in relation to increased temperature in salmonids.

  17. Catalog of known immature stages of Camptosomate leaf beetles (Coleoptera: Chrysomelidae: Cryptocephalinae and Lamprosomatinae)

    USDA-ARS?s Scientific Manuscript database

    Lack of syntheses of knowledge on immature stages of insects impedes accurate understanding of their diversity, biology and evolution. In Chrysomelidae, this information gap undermines basic explanations of this lineage’s radiation. Literature describing and discussing known immature stages of cas...

  18. On-Plant Larval Movement and Feeding Behavior of Fall Armyworm (Lepidoptera: Noctuidae) on Reproductive Corn Stages.

    PubMed

    Pannuti, L E R; Baldin, E L L; Hunt, T E; Paula-Moraes, S V

    2016-02-01

    Spodoptera frugiperda J.E. Smith (fall armyworm) is considered one of the most destructive pests of corn throughout the Americas. Although this pest has been extensively studied, little is known about its larval movement and feeding behavior on reproductive compared to vegetative corn stages. Thus, we conducted studies with two corn stages (R1 and R3) and four corn plant zones (tassel, above ear, ear zone, and below ear) in the field at Concord, NE (USA), and in the field and greenhouse at Botucatu, SP (Brazil), to investigate on-plant larval movement. The effects of different corn tissues (opened tassel, closed tassel, silk, kernel, and leaf), two feeding sequence scenarios (closed tassel-leaf-silk-kernel and leaf-silk-kernel), and artificial diet (positive control) on larval survival and development were also evaluated in the laboratory. Ear zone has a strong effect on feeding choice and survival of fall armyworm larvae regardless of reproductive corn stage. Feeding site choice is made by first-instar. Corn leaves of reproductive plants were not suitable for early instar development, but silk and kernel tissues had a positive effect on survival and development of fall armyworm larvae on reproductive stage corn. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Developmental and genetic analysis of a short leaf mutant, a key resource for plant architecture modification in sorghum

    USDA-ARS?s Scientific Manuscript database

    Modification in plant architecture have been demonstrated as one of the major contributing factors that ushered in the Green Revolution resulting in achieving dramatic increases in grain yield for wheat and rice. For sorghum (Sorghum bicolor L. Moench.), possible alteration in plant architecture is ...

  20. A rapid, controlled-environment seedling root screen for wheat correlates well with rooting depths at vegetative, but not reproductive, stages at two field sites

    PubMed Central

    Watt, M.; Moosavi, S.; Cunningham, S. C.; Kirkegaard, J. A.; Rebetzke, G. J.; Richards, R. A.

    2013-01-01

    Background and Aims Root length and depth determine capture of water and nutrients by plants, and are targets for crop improvement. Here we assess a controlled-environment wheat seedling screen to determine speed, repeatability and relatedness to performance of young and adult plants in the field. Methods Recombinant inbred lines (RILs) and diverse genotypes were grown in rolled, moist germination paper in growth cabinets, and primary root number and length were measured when leaf 1 or 2 were fully expanded. For comparison, plants were grown in the field and root systems were harvested at the two-leaf stage with either a shovel or a soil core. From about the four-leaf stage, roots were extracted with a steel coring tube only, placed directly over the plant and pushed to the required depth with a hydraulic ram attached to a tractor. Key Results In growth cabinets, repeatability was greatest (r = 0·8, P < 0·01) when the paper was maintained moist and seed weight, pathogens and germination times were controlled. Scanned total root length (slow) was strongly correlated (r = 0·7, P < 0·01) with length of the two longest seminal axile roots measured with a ruler (fast), such that 100–200 genotypes were measured per day. Correlation to field-grown roots at two sites at two leaves was positive and significant within the RILs and cultivars (r = 0·6, P = 0·01), and at one of the two sites at the five-leaf stage within the RILs (r = 0·8, P = 0·05). Measurements made in the field with a shovel or extracted soil cores were fast (5 min per core) and had significant positive correlations to scanner measurements after root washing and cleaning (>2 h per core). Field measurements at two- and five-leaf stages did not correlate with root depth at flowering. Conclusions The seedling screen was fast, repeatable and reliable for selecting lines with greater total root length in the young vegetative phase in the field. Lack of significant correlation with reproductive stage root system depth at the field sites used in this study reflected factors not captured in the screen such as time, soil properties, climate variation and plant phenology. PMID:23821620

  1. Transcriptomic Analysis of Leaf in Tree Peony Reveals Differentially Expressed Pigments Genes.

    PubMed

    Luo, Jianrang; Shi, Qianqian; Niu, Lixin; Zhang, Yanlong

    2017-02-20

    Tree peony (Paeonia suffruticosa Andrews) is an important traditional flower in China. Besides its beautiful flower, the leaf of tree peony has also good ornamental value owing to its leaf color change in spring. So far, the molecular mechanism of leaf color change in tree peony is unclear. In this study, the pigment level and transcriptome of three different color stages of tree peony leaf were analyzed. The purplish red leaf was rich in anthocyanin, while yellowish green leaf was rich in chlorophyll and carotenoid. Transcriptome analysis revealed that 4302 differentially expressed genes (DEGs) were upregulated, and 4225 were downregulated in the purplish red leaf vs. yellowish green leaf. Among these DEGs, eight genes were predicted to participate in anthocyanin biosynthesis, eight genes were predicted involved in porphyrin and chlorophyll metabolism, and 10 genes were predicted to participate in carotenoid metabolism. In addition, 27 MYBs, 20 bHLHs, 36 WD40 genes were also identified from DEGs. Anthocyanidin synthase (ANS) is the key gene that controls the anthocyanin level in tree peony leaf. Protochlorophyllide oxido-reductase (POR) is the key gene which regulated the chlorophyll content in tree peony leaf.

  2. [Effects of postponed basal nitrogen application with reduced nitrogen rate on grain yield and nitrogen use efficiency of south winter wheat].

    PubMed

    Zhang, Lei; Shao, Yu Hang; Gu, Shi Lu; Hu, Hang; Zhang, Wei Wei; Tian, Zhong Wei; Jiang, Dong; Dai, Ting Bo

    2016-12-01

    Excessive nitrogen (N) fertilizer application has led to a reduction of nitrogen use efficiency and environmental problems. It was of great significance for high-yield and high-efficiency cultivation to reduce N fertilizer application with modified application strategies. A two-year field experiment was conducted to study effects of different N application rates at basal and seedling application stages on grain yield and nitrogen use efficiency. Taking the conventional nitrogen application practice (240 kg N·hm -2 with application at basal, jointing, and booting stages at ratios of 5:3:2, respectively) as control, a field trial was conducted at different N application rates (240, 180 and 150 kg N·hm -2 , N 240 , N 180 and N 150 , respectively) and different application times [basal (L 0 ), fourth (L 4 ) and sixth leaf stage (L 6 )] to investigate the effects on grain yield and nitrogen use efficiency. The results indicated that grain yield decreased along with reducing the N application rate, but it had no significant difference between N 240 and N 180 while decreased significantly under N 150 . Nitrogen agronomy and recovery efficiency were all highest under N 180 . Among different N application stages, grain yield and nitrogen use efficiency were highest under L 4 . N 180 L 4 had no signifi-cant difference with control in grain yield, but its nitrogen use efficiency was significantly higher. The leaf area index, flag leaf photosynthesis rate, leaf nitrogen content, activity of nitrogen reductase and glutamine synthase in flag leaf, dry matter and N accumulation after jointing of N 180 L 4 had no significant difference with control. In an overall view, postponing basal N fertilizer application at reduced nitrogen rate could maintain high yield and improve nitrogen use efficiency through improving photosynthetic production capacity and promoting nitrogen uptake and assimilation.

  3. Stage-Dependent Expression of Deltamethrin Toxicity and Resistance in Triatoma infestans (Hemiptera: Reduviidae) From Argentina.

    PubMed

    Germano, Mónica D; Picollo, María I

    2018-02-20

    Triatoma infestans Klug (Hemiptera: Reduviidae) is the main vector of Chagas disease in Latin America. This insect has been controlled with pyrethroids since the 1980s, although the emergence of resistance to deltamethrin has decreased control success in some areas of the Gran Chaco ecoregion. The response of T. infestans to deltamethrin was evaluated per developmental stage. In addition, we evaluated the possible stage-dependent expression of deltamethrin resistance. The bioassays were conducted by topical application of the insecticide in acetone. The drop size, age at the time of exposure, and mortality measuring time were standardized per stage. The lethal dose of deltamethrin moderately increased with the developmental stage. The resistance to deltamethrin was expressed in every instar, and was the highest in the fourth- and fifth-instar nymphs. While increasing, weight plays a relevant role in lethal dose stage dependency, a number of contributing factors such as degradative metabolism are probably involved in the variability of insecticide effect and resistance described for different T. infestans developmental stages. Possible explanations for these differences and their implications on resistance management and chemical control are discussed.

  4. Phenoloxidase activity among developmental stages and pupal cell types of the ground beetle Carabus (Chaetocarabus) lefebvrei (Coleoptera, Carabidae).

    PubMed

    Giglio, Anita; Giulianini, Piero Giulio

    2013-04-01

    In ecological immunology is of great importance the study of the immune defense plasticity as response to a variable environment. In holometabolous insects the fitness of each developmental stage depends on the capacity to mount a response (i.e. physiological, behavioral) under environmental pressure. The immune response is a highly dynamic trait closely related to the ecology of organism and the variation in the expression of an immune system component may affect another fitness relevant trait of organism (i.e. growth, reproduction). The present research quantified immune function (total and differential number of hemocytes, phagocytosis in vivo and activity of phenoloxidase) in the pupal stage of Carabus (Chaetocarabus) lefebvrei. Moreover, the cellular and humoral immune function was compared across the larval, pupal and adult stages to evaluate the changes in immunocompetence across the developmental stages. Four types of circulating hemocytes were characterized via transmission electron microscopy in the pupal stage: prohemocytes, plasmatocytes, granulocytes and oenocytoids. The artificial non-self-challenge treatments performed in vivo have shown that plasmatocytes and granulocytes are responsible for phagocytosis. The level of active phenoloxidase increases with the degree of pigmentation of the cuticle in each stage. In C. lefebvrei, there are different strategies in term of immune response to enhance the fitness of each life stage. The results have shown that the variation in speed and specificity of immune function across the developmental stages is correlated with differences in infection risk, life expectancy and biological function of the life cycle. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. A G protein alpha null mutation confers prolificacy potential in maize

    DOE PAGES

    Urano, Daisuke; Jackson, David; Jones, Alan M.

    2015-05-06

    Plasticity in plant development is controlled by environmental signals through largely unknown signalling networks. Signalling coupled by the heterotrimeric G protein complex underlies various developmental pathways in plants. The morphology of two plastic developmental pathways, root system architecture and female inflorescence formation, was quantitatively assessed in a mutant compact plant 2 (ct2) lacking the alpha subunit of the heterotrimeric G protein complex in maize. The ct2 mutant partially compensated for a reduced shoot height by increased total leaf number, and had far more ears, even in the presence of pollination signals. Lastly, the maize heterotrimeric G protein complex is importantmore » in some plastic developmental traits in maize. In particular, the maize Gα subunit is required to dampen the overproduction of female inflorescences.« less

  6. Survival strategies in semi-arid climate for isohydric and anisohydric species

    NASA Astrophysics Data System (ADS)

    Guerin, M. F.; Gentine, P.; Uriarte, M.

    2013-12-01

    The understanding of survival strategies in dry land remains a challenging problem aiming at the interrelationship between local hydrology, plant physiology and climate. Carbon starvation and hydraulic failure are thought to be the two main factors leading to drought-induced mortality beside biotic perturbation. In order to better comprehend mortality the understanding of abiotic mechanisms triggering mortality is being studied in a tractable model for soil-plant-atmosphere continuum emphasizing the role of soil hydraulic properties, photosynthesis, embolism, leaf-gas exchange and climate. In particular the role of the frequency vs. the intensity of droughts is highlighted within such model. The analysis of the model included a differentiation between isohydric and anisohydric tree regulation and is supported by an extensive dataset of Pinion and Juniper growing in a semi-arid ecosystem. An objective of reduced number of parameters was approached with allometric equations to characterize tree's main traits and their hydraulic controls. Leaf area, sapwood area and tree's height are used to derive capacitance, conductance and photosynthetic abilities of the plant. A parameter sensitivity is performed highlighting the role of root:shoot ratio, rooting depth, photosynthetic capacity, quantum efficiency, and most importantly water use efficiency. Analytic development emphasizes two regimes of transpiration/photosynthesis denoted as stage-I (no embolism) and stage-II (embolism dominated) in analogy with stage I-stage II treminology for evaporation (Phillip,1957). Anisohydric species tend to remain in stage-I during which they still can assimilate carbon at full potential thus avoiding carbon starvation. Isohydric species tend to remain longer in stage-II. The effects of drought intensity/frequency on those 2 stages are described. Figure: sensitivity of Piñons stage 1 (top left), stage 2 (top right), and total cavitation duration (sum of stage 1 and stage 2 - bottom left) and time to carbon starvation (defined as 0-crossover of NSC content - bottom right) to Leaf Area Index (LAI) and root:shoot area.

  7. Insulin/Insulin-like growth factor signaling controls non-Dauer developmental speed in the nematode Caenorhabditis elegans.

    PubMed

    Ruaud, Anne-Françoise; Katic, Iskra; Bessereau, Jean-Louis

    2011-01-01

    Identified as a major pathway controlling entry in the facultative dauer diapause stage, the DAF-2/Insulin receptor (InsR) signaling acts in multiple developmental and physiological regulation events in Caenorhabditis elegans. Here we identified a role of the insulin-like pathway in controlling developmental speed during the C. elegans second larval stage. This role relies on the canonical DAF-16/FOXO-dependent branch of the insulin-like signaling and is largely independent of dauer formation. Our studies provide further evidence for broad conservation of insulin/insulin-like growth factor (IGF) functions in developmental speed control.

  8. Why did the savant syndrome not spread in the population? A psychiatric example of a developmental constraint.

    PubMed

    Ploeger, Annemie; van der Maas, Han L J; Raijmakers, Maartje E J; Galis, Frietson

    2009-03-31

    A developmental constraint is a mechanism that limits the possibility of a phenotype to evolve. There is growing evidence for the existence of developmental constraints in the biological literature. We hypothesize that a developmental constraint prevents the savant syndrome, despite its positive aspects, from spreading in the population. Here, the developmental constraint is the result of the high interactivity among body parts in an early stage in embryological development, namely early organogenesis or the phylotypic stage. The interactivity during this stage involves all components of the embryo, and as a result mutations that affect one part of the embryo also affect other parts. We hypothesize that a mutation, which gives rise to the development of the positive aspects of the savant syndrome (e.g., an impressive memory capacity), will virtually always have a deleterious effect on the development of other phenotypic traits (e.g., resulting in autism and/or impaired motor coordination). Thus, our hypothesis states that the savant syndrome cannot spread in the population because of this developmental constraint. The finding that children with savant syndrome often have autism and physical anomalies, which are known to be established during early organogenesis, supports our hypothesis.

  9. There is no highly conserved embryonic stage in the vertebrates: implications for current theories of evolution and development.

    PubMed

    Richardson, M K; Hanken, J; Gooneratne, M L; Pieau, C; Raynaud, A; Selwood, L; Wright, G M

    1997-08-01

    Embryos of different species of vertebrate share a common organisation and often look similar. Adult differences among species become more apparent through divergence at later stages. Some authors have suggested that members of most or all vertebrate clades pass through a virtually identical, conserved stage. This idea was promoted by Haeckel, and has recently been revived in the context of claims regarding the universality of developmental mechanisms. Thus embryonic resemblance at the tailbud stage has been linked with a conserved pattern of developmental gene expression - the zootype. Haeckel's drawings of the external morphology of various vertebrates remain the most comprehensive comparative data purporting to show a conserved stage. However, their accuracy has been questioned and only a narrow range of species was illustrated. In view of the current widespread interest in evolutionary developmental biology, and especially in the conservation of developmental mechanisms, re-examination of the extent of variation in vertebrate embryos is long overdue. We present here the first review of the external morphology of tailbud embryos, illustrated with original specimens from a wide range of vertebrate groups. We find that embryos at the tailbud stage - thought to correspond to a conserved stage - show variations in form due to allometry, heterochrony, and differences in body plan and somite number. These variations foreshadow important differences in adult body form. Contrary to recent claims that all vertebrate embryos pass through a stage when they are the same size, we find a greater than 10-fold variation in greatest length at the tailbud stage. Our survey seriously undermines the credibility of Haeckel's drawings, which depict not a conserved stage for vertebrates, but a stylised amniote embryo. In fact, the taxonomic level of greatest resemblance among vertebrate embryos is below the subphylum. The wide variation in morphology among vertebrate embryos is difficult to reconcile with the idea of a phyogenetically-conserved tailbud stage, and suggests that at least some developmental mechanisms are not highly constrained by the zootype. Our study also highlights the dangers of drawing general conclusions about vertebrate development from studies of gene expression in a small number of laboratory species.

  10. Roles of miR319 and TCP Transcription Factors in Leaf Development1[OPEN

    PubMed Central

    2017-01-01

    Sophisticated regulation of gene expression, including microRNAs (miRNAs) and their target genes, is required for leaf differentiation, growth, and senescence. The impact of miR319 and its target TEOSINTE BRANCHED1, CYCLOIDEA, and PROLIFERATING CELL NUCLEAR ANTIGEN BINDING FACTOR (TCP) genes on leaf development has been extensively investigated, but the redundancies of these gene families often interfere with the evaluation of their function and regulation in the developmental context. Here, we present the genetic evidence of the involvement of the MIR319 and TCP gene families in Arabidopsis (Arabidopsis thaliana) leaf development. Single mutations in MIR319A and MIR319B genes moderately inhibited the formation of leaf serrations, whereas double mutations increased the extent of this inhibition and resulted in the formation of smooth leaves. Mutations in MIR319 and gain-of-function mutations in the TCP4 gene conferred resistance against miR319 and impaired the cotyledon boundary and leaf serration formation. These mutations functionally associated with CUP-SHAPED COTYLEDON genes, which regulate the cotyledon boundary and leaf serration formation. In contrast, loss-of-function mutations in miR319-targeted and nontargeted TCP genes cooperatively induced the formation of serrated leaves in addition to changes in the levels of their downstream gene transcript. Taken together, these findings demonstrate that the MIR319 and TCP gene families underlie robust and multilayer control of leaf development. This study also provides a framework toward future researches on redundant miRNAs and transcription factors in Arabidopsis and crop plants. PMID:28842549

  11. Roles of miR319 and TCP Transcription Factors in Leaf Development.

    PubMed

    Koyama, Tomotsugu; Sato, Fumihiko; Ohme-Takagi, Masaru

    2017-10-01

    Sophisticated regulation of gene expression, including microRNAs (miRNAs) and their target genes, is required for leaf differentiation, growth, and senescence. The impact of miR319 and its target TEOSINTE BRANCHED1 , CYCLOIDEA , and PROLIFERATING CELL NUCLEAR ANTIGEN BINDING FACTOR ( TCP ) genes on leaf development has been extensively investigated, but the redundancies of these gene families often interfere with the evaluation of their function and regulation in the developmental context. Here, we present the genetic evidence of the involvement of the MIR319 and TCP gene families in Arabidopsis ( Arabidopsis thaliana ) leaf development. Single mutations in MIR319A and MIR319B genes moderately inhibited the formation of leaf serrations, whereas double mutations increased the extent of this inhibition and resulted in the formation of smooth leaves. Mutations in MIR319 and gain-of-function mutations in the TCP4 gene conferred resistance against miR319 and impaired the cotyledon boundary and leaf serration formation. These mutations functionally associated with CUP-SHAPED COTYLEDON genes, which regulate the cotyledon boundary and leaf serration formation. In contrast, loss-of-function mutations in miR319-targeted and nontargeted TCP genes cooperatively induced the formation of serrated leaves in addition to changes in the levels of their downstream gene transcript. Taken together, these findings demonstrate that the MIR319 and TCP gene families underlie robust and multilayer control of leaf development. This study also provides a framework toward future researches on redundant miRNAs and transcription factors in Arabidopsis and crop plants. © 2017 American Society of Plant Biologists. All Rights Reserved.

  12. Variation in essential oil composition within individual leaves of sweet basil (Ocimum basilicum L.) is more affected by leaf position than by leaf age.

    PubMed

    Fischer, Ravit; Nitzan, Nadav; Chaimovitsh, David; Rubin, Baruch; Dudai, Nativ

    2011-05-11

    The aroma in sweet basil is a factor affecting the commercial value of the crop. In previous studies leaf age was considered to be a factor that influences the composition of essential oil (EO). In this study it was hypothesized that a single observation of the EO content in leaves from different positions on the main stem (young vs old) could predict the developmental changes in the plant during its life cycle. Plants harvested at week 16 demonstrated an exponential increase (R(2) = 0.92) in EO concentration in leaves on the main stem and lateral shoots, indicating higher EO concentrations in younger than in older leaves. Eugenol and methyleugenol predominated (28-77%) in the extract. Eugenol levels were higher in younger leaves (∼53%), and methyl-eugenol levels predominated in older leaves (∼68%). Linalool was lower in mature leaves than in younger leaves. This suggested that eugenol converted into methyleugenol and linalool decreased as leaf mature. However, in weekly monitored plants, the levels of these compounds in the EO had limited variation in the maturing leaf regardless of its position on the stem. This proposed that the EO composition in an individual leaf is mostly affected by the leaf position on the stem and not by its maturation process. Because leaf position is related to plant development, it is probable that the plant's physiological age at the time of leaf formation from the primordial tissue is the factor affecting the EO composition. It was concluded that interpretation of scientific observations should be carried out with caution and that hypotheses should be tested utilizing multifaceted approaches.

  13. Developmental priming of stomatal sensitivity to abscisic acid by leaf microclimate.

    PubMed

    Pantin, Florent; Renaud, Jeanne; Barbier, François; Vavasseur, Alain; Le Thiec, Didier; Rose, Christophe; Bariac, Thierry; Casson, Stuart; McLachlan, Deirdre H; Hetherington, Alistair M; Muller, Bertrand; Simonneau, Thierry

    2013-09-23

    Plant water loss and CO2 uptake are controlled by valve-like structures on the leaf surface known as stomata. Stomatal aperture is regulated by hormonal and environmental signals. We show here that stomatal sensitivity to the drought hormone abscisic acid (ABA) is acquired during leaf development by exposure to an increasingly dryer atmosphere in the rosette plant Arabidopsis. Young leaves, which develop in the center of the rosette, do not close in response to ABA. As the leaves increase in size, they are naturally exposed to increasingly dry air as a consequence of the spatial arrangement of the leaves, and this triggers the acquisition of ABA sensitivity. Interestingly, stomatal ABA sensitivity in young leaves is rapidly restored upon water stress. These findings shed new light on how plant architecture and stomatal physiology have coevolved to optimize carbon gain against water loss in stressing environments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Gene expression during blow fly development: improving the precision of age estimates in forensic entomology.

    PubMed

    Tarone, Aaron M; Foran, David R

    2011-01-01

    Forensic entomologists use size and developmental stage to estimate blow fly age, and from those, a postmortem interval. Since such estimates are generally accurate but often lack precision, particularly in the older developmental stages, alternative aging methods would be advantageous. Presented here is a means of incorporating developmentally regulated gene expression levels into traditional stage and size data, with a goal of more precisely estimating developmental age of immature Lucilia sericata. Generalized additive models of development showed improved statistical support compared to models that did not include gene expression data, resulting in an increase in estimate precision, especially for postfeeding third instars and pupae. The models were then used to make blind estimates of development for 86 immature L. sericata raised on rat carcasses. Overall, inclusion of gene expression data resulted in increased precision in aging blow flies. © 2010 American Academy of Forensic Sciences.

  15. Suppression of cucurbit scab on cucumber leaves by photodynamic dyes

    USDA-ARS?s Scientific Manuscript database

    The goal of this study was to test the ability of the photodynamic dyes bengal rose, toluidine blue, and methylene blue, to protect systemically cucumber plants from cucurbit scab. At the stage of one true leaf, water or aqueous solutions of the dyes were applied to the leaf as droplets. When the se...

  16. Transcriptome analysis on the exoskeleton formation in early developmetal stages and reconstruction scenario in growth-moulting in Litopenaeus vannamei.

    PubMed

    Gao, Yi; Wei, Jiankai; Yuan, Jianbo; Zhang, Xiaojun; Li, Fuhua; Xiang, Jianhai

    2017-04-24

    Exoskeleton construction is an important issue in shrimp. To better understand the molecular mechanism of exoskeleton formation, development and reconstruction, the transcriptome of the entire developmental process in Litopenaeus vannamei, including nine early developmental stages and eight adult-moulting stages, was sequenced and analysed using Illumina RNA-seq technology. A total of 117,539 unigenes were obtained, with 41.2% unigenes predicting the full-length coding sequence. Gene Ontology, Clusters of Orthologous Group (COG), the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and functional annotation of all unigenes gave a better understanding of the exoskeleton developmental process in L. vannamei. As a result, more than six hundred unigenes related to exoskeleton development were identified both in the early developmental stages and adult-moulting. A cascade of sequential expression events of exoskeleton-related genes were summarized, including exoskeleton formation, regulation, synthesis, degradation, mineral absorption/reabsorption, calcification and hardening. This new insight on major transcriptional events provide a deep understanding for exoskeleton formation and reconstruction in L. vannamei. In conclusion, this is the first study that characterized the integrated transcriptomic profiles cover the entire exoskeleton development from zygote to adult-moulting in a crustacean, and these findings will serve as significant references for exoskeleton developmental biology and aquaculture research.

  17. Photosynthesis in developing leaf of juveniles and adults of three Mediterranean species with different growth forms.

    PubMed

    Chondrogiannis, Christos; Grammatikopoulos, George

    2016-12-01

    Leaf development is influenced by almost all the prevailing environmental conditions as well as from the conditions at the time of bud formation. Furthermore, the growth form of a plant determines the leaf longevity and subsequently the investment in biomass and the internal structure of the mesophyll. Therefore, photosynthetic traits of a growing leaf, though, partly predetermined, should also acclimate to temporal changes during developmental period. In addition, the age of the plant can affect photosynthesis of the growing leaf, yet, in the majority of studies, the age is associated to the size of the plant. To test if the reproductive status of the plant affects the time kinetics of the photosynthetic capacity of a growing leaf and the relative contribution of the plants' growth form to the whole procedure, field measurements were conducted in juveniles (prereproductive individuals) and adults (fully reproductive individuals) of an evergreen sclerophyllous shrub (Nerium oleander), a semi-deciduous dimorphic shrub (Phlomis fruticosa), and a winter deciduous tree with pre-leafing flowering (Cercis siliquastrum). PSII structural and functional integrity was progressively developed in all species, but already completed, only some days after leaf expansion in P. fruticosa. Developing leaf as well as fully developed leaf in adults of C. siliquastrum showed enhanced relative size of the pool of final PSI electron acceptors. Photosynthetic traits between juveniles and adults of P. fruticosa were similar, though the matured leaf of adults exhibited lower transpiration rates and improved water-use efficiency than that of juveniles. Adults of the evergreen shrub attained higher CO 2 assimilation rate than juveniles in matured leaf which can be attributed to higher electron flow devoted to carboxylation, and lower photorespiration rate. The reproductive phase of the plant seemed to be involved in modifications of the PSII and PSI functions of the deciduous tree, in carboxylation and photorespiration traits of the evergreen shrub, and in water conductance efficiency of the semi-deciduous shrub. However, it is interesting, that regardless of the growth form of the plant and the prospective leaf longevity of the developing leaf, adults need to support flowering outmatch juveniles, in terms of photosynthesis.

  18. GA-Responsive Dwarfing Gene Rht12 Affects the Developmental and Agronomic Traits in Common Bread Wheat

    PubMed Central

    Chen, Liang; Phillips, Andrew L.; Condon, Anthony G.; Parry, Martin A. J.; Hu, Yin-Gang

    2013-01-01

    Opportunities exist for replacing reduced height (Rht) genes Rht-B1b and Rht-D1b with alternative dwarfing genes, such as the gibberellin-responsive gene Rht12, for bread wheat improvement. However, a comprehensive understanding of the effects and mode of action of Rht12 is lacking. In the present study, the effects of Rht12 were characterized by analyzing its effects on seeding vigour, seedling roots, leaf and stem morphology, spike development and carbohydrate assimilation and distribution. This was carried out in the four genotypes of F2:3 lines derived from a cross between Ningchun45 and Karcagi (12) in two experiments of autumn sowing and spring sowing. Rht12 significantly decreased stem length (43%∼48% for peduncle) and leaf length (25%∼30% for flag leaf) while the thickness of the internode walls and width of the leaves were increased. Though the final plant stature was shortened (40%) by Rht12, the seedling vigour, especially coleoptile length and root traits at the seedling stage, were not affected adversely. Rht12 elongated the duration of the spike development phase, improved the proportion of spike dry weight at anthesis and significantly increased floret fertility (14%) in the autumn sowing experiment. However, Rht12 delayed anthesis date by around 5 days and even the dominant Vrn-B1 allele could not compensate this negative effect. Additionally, grain size was reduced with the ability to support spike development after anthesis decreased in Rht12 lines. Finally, grain yield was similar between the dwarf and tall lines in the autumn sowing experiment. Thus, Rht12 could substantially reduce plant height without altering seeding vigour and significantly increase spikelet fertility in the favourable autumn sowing environment. The successful utilization of Rht12 in breeding programs will require careful selection since it might delay ear emergence. Nonetheless, the potential exists for wheat improvement by using Rht12. PMID:23658622

  19. Non-invasive assessment of leaf water status using a dual-mode microwave resonator.

    PubMed

    Dadshani, Said; Kurakin, Andriy; Amanov, Shukhrat; Hein, Benedikt; Rongen, Heinz; Cranstone, Steve; Blievernicht, Ulrich; Menzel, Elmar; Léon, Jens; Klein, Norbert; Ballvora, Agim

    2015-01-01

    The water status in plant leaves is a good indicator for the water status in the whole plant revealing stress if the water supply is reduced. The analysis of dynamic aspects of water availability in plant tissues provides useful information for the understanding of the mechanistic basis of drought stress tolerance, which may lead to improved plant breeding and management practices. The determination of the water content in plant tissues during plant development has been a challenge and is currently feasible based on destructive analysis only. We present here the application of a non-invasive quantitative method to determine the volumetric water content of leaves and the ionic conductivity of the leaf juice from non-invasive microwave measurements at two different frequencies by one sensor device. A semi-open microwave cavity loaded with a ceramic dielectric resonator and a metallic lumped-element capacitor- and inductor structure was employed for non-invasive microwave measurements at 150 MHz and 2.4 Gigahertz on potato, maize, canola and wheat leaves. Three leaves detached from each plant were chosen, representing three developmental stages being representative for tissue of various age. Clear correlations between the leaf- induced resonance frequency shifts and changes of the inverse resonator quality factor at 2.4 GHz to the gravimetrically determined drying status of the leaves were found. Moreover, the ionic conductivity of Maize leaves, as determined from the ratio of the inverse quality factor and frequency shift at 150 MHz by use of cavity perturbation theory, was found to be in good agreement with direct measurements on plant juice. In conjunction with a compact battery- powered circuit board- microwave electronic module and a user-friendly software interface, this method enables rapid in-vivo water amount assessment of plants by a handheld device for potential use in the field.

  20. Applying Piaget's Theory of Cognitive Development to Mathematics Instruction

    ERIC Educational Resources Information Center

    Ojose, Bobby

    2008-01-01

    This paper is based on a presentation given at National Council of Teachers of Mathematics (NCTM) in 2005 in Anaheim, California. It explicates the developmental stages of the child as posited by Piaget. The author then ties each of the stages to developmentally appropriate mathematics instruction. The implications in terms of not imposing…

  1. Conceptualising Teacher Practice and Pupil Group Learning through Developmental Stages and Integration Factors

    ERIC Educational Resources Information Center

    Saito, Eisuke; Atencio, Matthew

    2014-01-01

    This article proposes four key developmental stages and various underpinning factors pertaining to the practices of setting up and supporting group learning in the classroom setting. The discussion is mostly explained conceptually, with some compelling examples from the field. The authors subsequently advise that three elements of…

  2. Developmental Theories and Instructional Strategies: A Summary Paper. SIDRU Research Report No. 5.

    ERIC Educational Resources Information Center

    Bailey, Beeke

    This paper provides curriculum makers with an overview of developmental theory and relates the theory to instructional strategies. The section on socioemotional development addresses Erikson's eight ages of man, Kohlberg's stages of moral development, motivation and Maslow's hierarchy of needs, Taylor's stage model of creative development, and…

  3. Moral Dilemmas and the Environment.

    ERIC Educational Resources Information Center

    Piburn, Michael D.

    Stages of moral reasoning through which children develop, as researched by developmental psychologists Jean Piaget and Lawrence Kohlberg, are outlined in the introduction of this paper. The six stages are defined and exemplified by the moral issue of the value of human life. The developmental model, as it is argued, is suitable for instruction in…

  4. Assessment of Mouse Germinal Vesicle Stage Oocyte Quality by Evaluating the Cumulus Layer, Zona Pellucida, and Perivitelline Space

    PubMed Central

    Liu, Ying-Lei; Chen, Ying; Zhou, Cheng-Jie; Wu, Sha-Na; Shen, Jiang-Peng; Liang, Cheng-Guang

    2014-01-01

    To improve the outcome of assisted reproductive technology (ART) for patients with ovulation problems, it is necessary to retrieve and select germinal vesicle (GV) stage oocytes with high developmental potential. Oocytes with high developmental potential are characterized by their ability to undergo proper maturation, fertilization, and embryo development. In this study, we analyzed morphological traits of GV stage mouse oocytes, including cumulus cell layer thickness, zona pellucida thickness, and perivitelline space width. Then, we assessed the corresponding developmental potential of each of these oocytes and found that it varies across the range measured for each morphological trait. Furthermore, by manipulating these morphological traits in vitro, we were able to determine the influence of morphological variation on oocyte developmental potential. Manually altering the thickness of the cumulus layer showed strong effects on the fertilization and embryo development potentials of oocytes, whereas manipulation of zona pellucida thickness effected the oocyte maturation potential. Our results provide a systematic detailed method for selecting GV stage oocytes based on a morphological assessment approach that would benefit for several downstream ART applications. PMID:25144310

  5. The Association of Parent Mindfulness with Parenting and Youth Psychopathology across Three Developmental Stages

    PubMed Central

    Parent, Justin; McKee, Laura G.; Mahon, Jennifer; Foreh, Rex

    2015-01-01

    The primary purpose of the current study was to test a model examining the process by which parent dispositional mindfulness relates to youth psychopathology through mindful parenting and parenting practices. The universality of the model across youth at three developmental stages was examined: young childhood (3 – 7 yrs.; n = 210), middle childhood (8 – 12 yrs.; n = 200), and adolescence (13 – 17 yrs.; n = 205). Overall, participants were 615 parents (55 % female) and one of their 3-to-17 year old children (45 % female). Parents reported on their dispositional mindfulness, mindful parenting, positive and negative parenting practices and their child's or adolescent's internalizing and externalizing problems. Consistent findings across all three developmental stages indicated that higher levels of parent dispositional mindfulness were indirectly related to lower levels of youth internalizing and externalizing problems through higher levels of mindful parenting and lower levels of negative parenting practices. Replication of these findings across families with children at different developmental stages lends support to the generalizability of the model. PMID:25633828

  6. Differences in adjustment by child developmental stage among caregivers of children with disorders of sex development

    PubMed Central

    2011-01-01

    Background The current study sought to compare levels of overprotection and parenting stress reported by caregivers of children with disorders of sex development at four different developmental stages. Methods Caregivers (N = 59) of children with disorders of sex development were recruited from specialty clinics and were asked to complete the Parent Protection Scale and Parenting Stress Index/Short Form as measures of overprotective behaviors and parenting stress, respectively. Results Analyses of covariance (ANCOVAs) were conducted to examine differences between caregiver report of overprotection and parenting stress. Results revealed that caregivers of infants and toddlers exhibited more overprotective behaviors than caregivers of children in the other age groups. Further, caregivers of adolescents experienced significantly more parenting stress than caregivers of school-age children, and this effect was driven by personal distress and problematic parent-child interactions, rather than having a difficult child. Conclusions These results suggest that caregivers of children with disorders of sex development may have different psychosocial needs based upon their child's developmental stage and based upon the disorder-related challenges that are most salient at that developmental stage. PMID:22074416

  7. New features of triacylglycerol biosynthetic pathways of peanut seeds in early developmental stages.

    PubMed

    Yu, Mingli; Liu, Fengzhen; Zhu, Weiwei; Sun, Meihong; Liu, Jiang; Li, Xinzheng

    2015-11-01

    The peanut (Arachis hypogaea L.) is one of the three most important oil crops in the world due to its high average oil content (50 %). To reveal the biosynthetic pathways of seed oil in the early developmental stages of peanut pods with the goal of improving the oil quality, we presented a method combining deep sequencing analysis of the peanut pod transcriptome and quantitative real-time PCR (RT-PCR) verification of seed oil-related genes. From the sequencing data, approximately 1500 lipid metabolism-associated Unigenes were identified. The RT-PCR results quantified the different expression patterns of these triacylglycerol (TAG) synthesis-related genes in the early developmental stages of peanut pods. Based on these results and analysis, we proposed a novel construct of the metabolic pathways involved in the biosynthesis of TAG, including the Kennedy pathway, acyl-CoA-independent pathway and proposed monoacylglycerol pathway. It showed that the biosynthetic pathways of TAG in the early developmental stages of peanut pods were much more complicated than a simple, unidirectional, linear pathway.

  8. Arabidopsis ASYMMETRIC LEAVES2 protein required for leaf morphogenesis consistently forms speckles during mitosis of tobacco BY-2 cells via signals in its specific sequence.

    PubMed

    Luo, Lilan; Ando, Sayuri; Sasabe, Michiko; Machida, Chiyoko; Kurihara, Daisuke; Higashiyama, Tetsuya; Machida, Yasunori

    2012-09-01

    Leaf primordia with high division and developmental competencies are generated around the periphery of stem cells at the shoot apex. Arabidopsis ASYMMETRIC-LEAVES2 (AS2) protein plays a key role in the regulation of many genes responsible for flat symmetric leaf formation. The AS2 gene, expressed in leaf primordia, encodes a plant-specific nuclear protein containing an AS2/LOB domain with cysteine repeats (C-motif). AS2 proteins are present in speckles in and around the nucleoli, and in the nucleoplasm of some leaf epidermal cells. We used the tobacco cultured cell line BY-2 expressing the AS2-fused yellow fluorescent protein to examine subnuclear localization of AS2 in dividing cells. AS2 mainly localized to speckles (designated AS2 bodies) in cells undergoing mitosis and distributed in a pairwise manner during the separation of sets of daughter chromosomes. Few interphase cells contained AS2 bodies. Deletion analyses showed that a short stretch of the AS2 amino-terminal sequence and the C-motif play negative and positive roles, respectively, in localizing AS2 to the bodies. These results suggest that AS2 bodies function to properly distribute AS2 to daughter cells during cell division in leaf primordia; and this process is controlled at least partially by signals encoded by the AS2 sequence itself.

  9. Genome-wide association study of rice (Oryza sativa L.) leaf traits with a high-throughput leaf scorer.

    PubMed

    Yang, Wanneng; Guo, Zilong; Huang, Chenglong; Wang, Ke; Jiang, Ni; Feng, Hui; Chen, Guoxing; Liu, Qian; Xiong, Lizhong

    2015-09-01

    Leaves are the plant's solar panel and food factory, and leaf traits are always key issues to investigate in plant research. Traditional methods for leaf trait measurement are time-consuming. In this work, an engineering prototype has been established for high-throughput leaf scoring (HLS) of a large number of Oryza sativa accessions. The mean absolute per cent of errors in traditional measurements versus HLS were below 5% for leaf number, area, shape, and colour. Moreover, HLS can measure up to 30 leaves per minute. To demonstrate the usefulness of HLS in dissecting the genetic bases of leaf traits, a genome-wide association study (GWAS) was performed for 29 leaf traits related to leaf size, shape, and colour at three growth stages using HLS on a panel of 533 rice accessions. Nine associated loci contained known leaf-related genes, such as Nal1 for controlling the leaf width. In addition, a total of 73, 123, and 177 new loci were detected for traits associated with leaf size, colour, and shape, respectively. In summary, after evaluating the performance with a large number of rice accessions, the combination of GWAS and high-throughput leaf phenotyping (HLS) has proven a valuable strategy to identify the genetic loci controlling rice leaf traits. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. Leaf trait dissimilarities between Dutch elm hybrids with a contrasting tolerance to Dutch elm disease.

    PubMed

    Durkovic, Jaroslav; Canová, Ingrid; Lagana, Rastislav; Kucerová, Veronika; Moravcík, Michal; Priwitzer, Tibor; Urban, Josef; Dvorák, Milon; Krajnáková, Jana

    2013-02-01

    Previous studies have shown that Ophiostoma novo-ulmi, the causative agent of Dutch elm disease (DED), is able to colonize remote areas in infected plants of Ulmus such as the leaf midrib and secondary veins. The objective of this study was to compare the performances in leaf traits between two Dutch elm hybrids 'Groeneveld' and 'Dodoens' which possess a contrasting tolerance to DED. Trait linkages were also tested with leaf mass per area (LMA) and with the reduced Young's modulus of elasticity (MOE) as a result of structural, developmental or functional linkages. Measurements and comparisons were made of leaf growth traits, primary xylem density components, gas exchange variables and chlorophyll a fluorescence yields between mature plants of 'Groeneveld' and 'Dodoens' grown under field conditions. A recently developed atomic force microscopy technique, PeakForce quantitative nanomechanical mapping, was used to reveal nanomechanical properties of the cell walls of tracheary elements such as MOE, adhesion and dissipation. 'Dodoens' had significantly higher values for LMA, leaf tissue thickness variables, tracheary element lumen area (A), relative hydraulic conductivity (RC), gas exchange variables and chlorophyll a fluorescence yields. 'Groeneveld' had stiffer cell walls of tracheary elements, and higher values for water-use efficiency and leaf water potential. Leaves with a large carbon and nutrient investment in LMA tended to have a greater leaf thickness and a higher net photosynthetic rate, but LMA was independent of RC. Significant linkages were also found between the MOE and some vascular traits such as RC, A and the number of tracheary elements per unit area. Strong dissimilarities in leaf trait performances were observed between the examined Dutch elm hybrids. Both hybrids were clearly separated from each other in the multivariate leaf trait space. Leaf growth, vascular and gas exchange traits in the infected plants of 'Dodoens' were unaffected by the DED fungus. 'Dodoens' proved to be a valuable elm germplasm for further breeding strategies.

  11. MOLECULAR AND MORPHOLOGICAL CHANGES IN ZEBRAFISH FOLLOWING TRANSIENT ETHANOL EXPOSURE DURING DEFINED DEVELOPMENTAL STAGES

    PubMed Central

    Zhang, Chengjin; Frazier, Jared M.; Chen, Hao; Liu, Yao; Lee, Ju-Ahng; Cole, Gregory J.

    2014-01-01

    Alcohol is a teratogen that has diverse effects on brain and craniofacial development, leading to a constellation of developmental disorders referred to as fetal alcohol spectrum disorder (FASD). The molecular basis of ethanol insult remains poorly understood, as does the relationship between molecular and behavioral changes as a consequence of prenatal ethanol exposure. Zebrafish embryos were exposed to a range of ethanol concentrations (0.5–5.0%) during defined developmental stages, and examined for morphological phenotypes characteristic of FASD. Embryos were also analyzed by in situ hybridization for changes in expression of defined cell markers for neural cell types that are sonic hedgehog-dependent. We show that transient binge-like ethanol exposures during defined developmental stages, such as early gastrulation and early neurulation, result in a range of phenotypes and changes in expression of Shh-dependent genes. The severity of fetal alcohol syndrome (FAS) morphological phenotypes, such as microphthalmia, depends on the embryonic stage and concentration of alcohol exposure, as does diminution of retinal Pax6a or forebrain and hindbrain GAD1 gene expression. We also show that changes in eye and brain morphology correlate with changes in Pax6a and GAD1 gene expression. Our results therefore show that transient binge-like ethanol exposures in zebrafish embryos produce the stereotypical morphological phenotypes of FAS, with the severity of phenotypes depending on the developmental stage and alcohol concentration of exposure. PMID:24929233

  12. Root Exudation of Phytochemicals in Arabidopsis Follows Specific Patterns That Are Developmentally Programmed and Correlate with Soil Microbial Functions

    PubMed Central

    Sugiyama, Akifumi; Manter, Daniel K.; Vivanco, Jorge M.

    2013-01-01

    Plant roots constantly secrete compounds into the soil to interact with neighboring organisms presumably to gain certain functional advantages at different stages of development. Accordingly, it has been hypothesized that the phytochemical composition present in the root exudates changes over the course of the lifespan of a plant. Here, root exudates of in vitro grown Arabidopsis plants were collected at different developmental stages and analyzed using GC-MS. Principle component analysis revealed that the composition of root exudates varied at each developmental stage. Cumulative secretion levels of sugars and sugar alcohols were higher in early time points and decreased through development. In contrast, the cumulative secretion levels of amino acids and phenolics increased over time. The expression in roots of genes involved in biosynthesis and transportation of compounds represented in the root exudates were consistent with patterns of root exudation. Correlation analyses were performed of the in vitro root exudation patterns with the functional capacity of the rhizosphere microbiome to metabolize these compounds at different developmental stages of Arabidopsis grown in natural soils. Pyrosequencing of rhizosphere mRNA revealed strong correlations (p<0.05) between microbial functional genes involved in the metabolism of carbohydrates, amino acids and secondary metabolites with the corresponding compounds released by the roots at particular stages of plant development. In summary, our results suggest that the root exudation process of phytochemicals follows a developmental pattern that is genetically programmed. PMID:23383346

  13. Glue protein production can be triggered by steroid hormone signaling independent of the developmental program in Drosophila melanogaster

    PubMed Central

    Kaieda, Yuya; Masuda, Ryota; Nishida, Ritsuo; Shimell, MaryJane; O’Connor, Michael B.; Ono, Hajime

    2018-01-01

    Steroid hormones regulate life stage transitions, allowing animals to appropriately follow a developmental timeline. During insect development, the steroid hormone ecdysone is synthesized and released in a regulated manner by the prothoracic gland (PG) and then hydroxylated to the active molting hormone, 20-hydroxyecdysone (20E), in peripheral tissues. We manipulated ecdysteroid titers, through temporally controlled over-expression of the ecdysteroid-inactivating enzyme, CYP18A1, in the PG using the GeneSwitch-GAL4 system in the fruit fly Drosophila melanogaster. We monitored expression of a 20E-inducible glue protein gene, Salivary gland secretion 3 (Sgs3), using a Sgs3:GFP fusion transgene. In wild type larvae, Sgs3-GFP expression is activated at the midpoint of the third larval instar stage in response to the rising endogenous level of 20E. By first knocking down endogenous 20E levels during larval development and then feeding 20E to these larvae at various stages, we found that Sgs3-GFP expression could be triggered at an inappropriate developmental stage after a certain time lag. This stage-precocious activation of Sgs3 required expression of the Broad-complex, similar to normal Sgs3 developmental regulation, and a small level of nutritional input. We suggest that these studies provide evidence for a tissue-autonomic regulatory system for a metamorphic event independent from the primary 20E driven developmental progression. PMID:28782527

  14. Glue protein production can be triggered by steroid hormone signaling independent of the developmental program in Drosophila melanogaster.

    PubMed

    Kaieda, Yuya; Masuda, Ryota; Nishida, Ritsuo; Shimell, MaryJane; O'Connor, Michael B; Ono, Hajime

    2017-10-01

    Steroid hormones regulate life stage transitions, allowing animals to appropriately follow a developmental timeline. During insect development, the steroid hormone ecdysone is synthesized and released in a regulated manner by the prothoracic gland (PG) and then hydroxylated to the active molting hormone, 20-hydroxyecdysone (20E), in peripheral tissues. We manipulated ecdysteroid titers, through temporally controlled over-expression of the ecdysteroid-inactivating enzyme, CYP18A1, in the PG using the GeneSwitch-GAL4 system in the fruit fly Drosophila melanogaster. We monitored expression of a 20E-inducible glue protein gene, Salivary gland secretion 3 (Sgs3), using a Sgs3:GFP fusion transgene. In wild type larvae, Sgs3-GFP expression is activated at the midpoint of the third larval instar stage in response to the rising endogenous level of 20E. By first knocking down endogenous 20E levels during larval development and then feeding 20E to these larvae at various stages, we found that Sgs3-GFP expression could be triggered at an inappropriate developmental stage after a certain time lag. This stage-precocious activation of Sgs3 required expression of the Broad-complex, similar to normal Sgs3 developmental regulation, and a small level of nutritional input. We suggest that these studies provide evidence for a tissue-autonomic regulatory system for a metamorphic event independent from the primary 20E driven developmental progression. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Expression patterns of ABA and GA metabolism genes and hormone levels during rice seed development and imbibition: a comparison of dormant and non-dormant rice cultivars.

    PubMed

    Liu, Yang; Fang, Jun; Xu, Fan; Chu, Jinfang; Yan, Cunyu; Schläppi, Michael R; Wang, Youping; Chu, Chengcai

    2014-06-20

    Seed dormancy is an important agronomic trait in cereals. Using deep dormant (N22), medium dormant (ZH11), and non-dormant (G46B) rice cultivars, we correlated seed dormancy phenotypes with abscisic acid (ABA) and gibberellin (GA) metabolism gene expression profiles and phytohormone levels during seed development and imbibition. A time course analysis of ABA and GA content during seed development showed that N22 had a high ABA level at early and middle seed developmental stages, while at late developmental stage it declined to the level of ZH11; however, its ABA/GA ratio maintained at a high level throughout seed development. By contrast, G46B had the lowest ABA content during seed development though at early developmental stage its ABA level was close to that of ZH11, and its ABA/GA ratio peaked at late developmental stage that was at the same level of ZH11. Compared with N22 and G46B, ZH11 had an even and medium ABA level during seed development and its ABA/GA ratio peaked at the middle developmental stage. Moreover, the seed development time-point having high ABA/GA ratio also had relatively high transcript levels for key genes in ABA and GA metabolism pathways across three cultivars. These indicated that the embryo-imposed dormancy has been induced before the late developmental stage and is determined by ABA/GA ratio. A similar analysis during seed imbibition showed that ABA was synthesized in different degrees for the three cultivars. In addition, water uptake assay for intact mature seeds suggested that water could permeate through husk barrier into seed embryo for all three cultivars; however, all three cultivars showed distinct colors by vanillin-staining indicative of the existence of flavans in their husks, which are dormancy inhibition compounds responsible for the husk-imposed dormancy. Copyright © 2014. Published by Elsevier Ltd.

  16. Developmental Transcriptomic Features of the Carcinogenic Liver Fluke, Clonorchis sinensis

    PubMed Central

    Cho, Pyo Yun; Kim, Tae Im; Cho, Shin-Hyeong; Choi, Sang-Haeng; Park, Hong-Seog; Kim, Tong-Soo; Hong, Sung-Jong

    2011-01-01

    Clonorchis sinensis is the causative agent of the life-threatening disease endemic to China, Korea, and Vietnam. It is estimated that about 15 million people are infected with this fluke. C. sinensis provokes inflammation, epithelial hyperplasia, and periductal fibrosis in bile ducts, and may cause cholangiocarcinoma in chronically infected individuals. Accumulation of a large amount of biological information about the adult stage of this liver fluke in recent years has advanced our understanding of the pathological interplay between this parasite and its hosts. However, no developmental gene expression profiles of C. sinensis have been published. In this study, we generated gene expression profiles of three developmental stages of C. sinensis by analyzing expressed sequence tags (ESTs). Complementary DNA libraries were constructed from the adult, metacercaria, and egg developmental stages of C. sinensis. A total of 52,745 ESTs were generated and assembled into 12,830 C. sinensis assembled EST sequences, and then these assemblies were further categorized into groups according to biological functions and developmental stages. Most of the genes that were differentially expressed in the different stages were consistent with the biological and physical features of the particular developmental stage; high energy metabolism, motility and reproduction genes were differentially expressed in adults, minimal metabolism and final host adaptation genes were differentially expressed in metacercariae, and embryonic genes were differentially expressed in eggs. The higher expression of glucose transporters, proteases, and antioxidant enzymes in the adults accounts for active uptake of nutrients and defense against host immune attacks. The types of ion channels present in C. sinensis are consistent with its parasitic nature and phylogenetic placement in the tree of life. We anticipate that the transcriptomic information on essential regulators of development, bile chemotaxis, and physico-metabolic pathways in C. sinensis that presented in this study will guide further studies to identify novel drug targets and diagnostic antigens. PMID:21738807

  17. Involvement of NADPH oxidase isoforms in the production of O2− manipulated by ABA in the senescing leaves of early-senescence-leaf (esl) mutant rice (Oryza sativa)

    PubMed Central

    Wang, Fubiao; Zhao, Qian; Liu, Jianchao; Cheng, Fangmin

    2018-01-01

    In this study, the differences in reactive oxygen species (ROS) generation and abscisic acid (ABA) accumulation in senescing leaves were investigated by early-senescence-leaf (esl) mutant and its wild type, to clarify the relationship among ABA levels, ROS generation, and NADPH oxidase (Nox) in senescing leaves of rice (Oryza sativa). The temporal expression levels of OsNox isoforms in senescing leaves and their expression patterns in response to ABA treatment were determined through quantitative real-time reverse transcription PCR (qRT-PCR). Results showed that the flag leaf of the esl mutant generated more O2- concentrations and accumulated higher ABA levels than the wild-type cultivar did in the grain-filling stage. Exogenous ABA treatment induced O2- generation; however, it was depressed by diphenyleneiodonium chloride (DPI) pretreatment in the detached leaf segments. This finding suggested the involvement of NADPH oxidase in ABA-induced O2- generation. The esl mutant exhibited significantly higher expression of OsNox2, OsNox5, OsNox6, and OsNox7 in the initial of grain-filling stage, followed by sharply decrease. The transcriptional levels of OsNox1, OsNox3, and OsFR07 in the flag leaf of the esl mutant were significantly lower than those in the wild-type cultivar. The expression levels of OsNox2, OsNox5, OsNox6, and OsNox7 were significantly enhanced by exogenous ABA treatments. The enhanced expression levels of OsNox2 and OsNox6 were dependent on the duration of ABA treatment. The inducible expression levels of OsNox5 and OsNox7 were dependent on ABA concentrations. By contrast, exogenous ABA treatment severely repressed the transcripts of OsNox1, OsNox3, and OsFR07 in the detached leaf segments. Therefore, OsNox2, OsNox5, OsNox6, and OsNox7 were probably involved in the ABA-induced O2- generation in the initial stage of leaf senescence. Subsequently, other oxidases activated in deteriorating cells were associated with ROS generation and accumulation in the senescing leaves of the esl mutant. Conversely, OsNox1, OsNox3, and OsFR07 were not associated with ABA-induced O2- generation during leaf senescence. PMID:29309410

  18. Involvement of NADPH oxidase isoforms in the production of O2- manipulated by ABA in the senescing leaves of early-senescence-leaf (esl) mutant rice (Oryza sativa).

    PubMed

    Li, Zhaowei; Wang, Fubiao; Zhao, Qian; Liu, Jianchao; Cheng, Fangmin

    2018-01-01

    In this study, the differences in reactive oxygen species (ROS) generation and abscisic acid (ABA) accumulation in senescing leaves were investigated by early-senescence-leaf (esl) mutant and its wild type, to clarify the relationship among ABA levels, ROS generation, and NADPH oxidase (Nox) in senescing leaves of rice (Oryza sativa). The temporal expression levels of OsNox isoforms in senescing leaves and their expression patterns in response to ABA treatment were determined through quantitative real-time reverse transcription PCR (qRT-PCR). Results showed that the flag leaf of the esl mutant generated more O2- concentrations and accumulated higher ABA levels than the wild-type cultivar did in the grain-filling stage. Exogenous ABA treatment induced O2- generation; however, it was depressed by diphenyleneiodonium chloride (DPI) pretreatment in the detached leaf segments. This finding suggested the involvement of NADPH oxidase in ABA-induced O2- generation. The esl mutant exhibited significantly higher expression of OsNox2, OsNox5, OsNox6, and OsNox7 in the initial of grain-filling stage, followed by sharply decrease. The transcriptional levels of OsNox1, OsNox3, and OsFR07 in the flag leaf of the esl mutant were significantly lower than those in the wild-type cultivar. The expression levels of OsNox2, OsNox5, OsNox6, and OsNox7 were significantly enhanced by exogenous ABA treatments. The enhanced expression levels of OsNox2 and OsNox6 were dependent on the duration of ABA treatment. The inducible expression levels of OsNox5 and OsNox7 were dependent on ABA concentrations. By contrast, exogenous ABA treatment severely repressed the transcripts of OsNox1, OsNox3, and OsFR07 in the detached leaf segments. Therefore, OsNox2, OsNox5, OsNox6, and OsNox7 were probably involved in the ABA-induced O2- generation in the initial stage of leaf senescence. Subsequently, other oxidases activated in deteriorating cells were associated with ROS generation and accumulation in the senescing leaves of the esl mutant. Conversely, OsNox1, OsNox3, and OsFR07 were not associated with ABA-induced O2- generation during leaf senescence.

  19. Response of Leaf Water Potential, Stomatal Resistance, and Leaf Rolling to Water Stress

    PubMed Central

    O'Toole, John C.; Cruz, Rolando T.

    1980-01-01

    Numerous studies have associated increased stomatal resistance with response to water deficit in cereals. However, consideration of change in leaf form seems to have been neglected. The response of adaxial and abaxial stomatal resistance and leaf rolling in rice to decreasing leaf water potential was investigated. Two rice cultivars were subjected to control and water stress treatments in a deep (1-meter) aerobic soil. Concurrent measurements of leaf water potential, stomatal resistance, and degree of leaf rolling were made through a 29-day period after cessation of irrigation. Kinandang Patong, an upland adapted cultivar, maintained higher dawn and midday leaf water potential than IR28, a hybrid selected in irrigated conditions. This was not explained by differences in leaf diffusive resistance or leaf rolling, and is assumed to result from a difference in root system extent. Stomatal resistance increased more on the abaxial than the adaxial leaf surface in both cultivars. This was associated with a change in leaf form or rolling inward of the upper leaf surface. Both responses, increased stomatal resistance and leaf rolling, were initiated in a similar leaf water potential range (−8 to −12 bars). Leaves of IR28 became fully rolled at leaf water potential of about −22 bars; however, total leaf diffusive resistance was only about 4 to 5 seconds per centimeter (conductance 0.25 to 0.2 centimeter per second) at that stage. Leaf diffusive resistance and degree of leaf rolling were linearly related to leaf water potential. Thus, leaf rolling in rice may be used as an estimate of the other two less obvious effects of water deficit. PMID:16661206

  20. Manipulation of Frankliniella occidentalis (Thysanoptera: Thripidae) by Tomato Spotted Wilt Virus (Tospovirus) Via the Host Plant Nutrients to Enhance Its Transmission and Spread.

    PubMed

    Shalileh, Sheida; Ogada, Pamella Akoth; Moualeu, Dany Pascal; Poehling, Hans-Michael

    2016-10-01

    Earlier studies have shown that Tomato spotted wilt virus (TSWV) influences the biology, performance, and behavioral patterns of its vector Frankliniella occidentalis Pergande. In this study, using Capsicum annuum L. as the host plant, we aimed to determine the manipulation of F. occidentalis by TSWV through switching of the diet (+ or -TSWV) during vector's development. Behavioral patterns, fitness, as well as vector performance were evaluated. The specific parameters investigated included longevity/survival, fecundity, development time, feeding, and preferential behavior. F. occidentalis were reared on either TSWV-infected (exposed) or healthy leaves (non-exposed) throughout their larval stages. The emerging adults were then individually transferred to either healthy or TSWV-infected leaf disks. This resulted into four treatments, consisting of exposed or non-exposed thrips reared on either infected or healthy leaf disks as adults. All F. occidentalis exposed to TSWV in their larval stages had shorter development time regardless of the adults' diet. Whereas, the ones that were later reared on healthy leaf disks as adults recorded the highest longevity and reproduction rate. Furthermore, adults of F. occidentalis that were exposed to TSWV in their larval stages showed preference toward healthy leaf disks (-TSWV), whereas the non-exposed significantly preferred the infected leaf disks (+TSWV). These are further indications that TSWV modifies the nutritional content of its host plants, which influences vector's biology and preferential behavior, in favor of its multiplication and dispersal. The findings offer additional explanation to the often aggressive spread of the virus in crop stands. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America.

  1. Genome-wide identification and analysis of the MADS-box gene family in apple.

    PubMed

    Tian, Yi; Dong, Qinglong; Ji, Zhirui; Chi, Fumei; Cong, Peihua; Zhou, Zongshan

    2015-01-25

    The MADS-box gene family is one of the most widely studied families in plants and has diverse developmental roles in flower pattern formation, gametophyte cell division and fruit differentiation. Although the genome-wide analysis of this family has been performed in some species, little is known regarding MADS-box genes in apple (Malus domestica). In this study, 146 MADS-box genes were identified in the apple genome and were phylogenetically clustered into six subgroups (MIKC(c), MIKC*, Mα, Mβ, Mγ and Mδ) with the MADS-box genes from Arabidopsis and rice. The predicted apple MADS-box genes were distributed across all 17 chromosomes at different densities. Additionally, the MADS-box domain, exon length, gene structure and motif compositions of the apple MADS-box genes were analysed. Moreover, the expression of all of the apple MADS-box genes was analysed in the root, stem, leaf, flower tissues and five stages of fruit development. All of the apple MADS-box genes, with the exception of some genes in each group, were expressed in at least one of the tissues tested, which indicates that the MADS-box genes are involved in various aspects of the physiological and developmental processes of the apple. To the best of our knowledge, this report describes the first genome-wide analysis of the apple MADS-box gene family, and the results should provide valuable information for understanding the classification, cloning and putative functions of this family. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Control of Retrograde Signaling by Rapid Turnover of GENOMES UNCOUPLED11[OPEN

    PubMed Central

    Chalvin, Camille; Wu, Xu Na

    2018-01-01

    The exchange of signals between cellular compartments coordinates development and differentiation, modulates metabolic pathways, and triggers responses to environmental conditions. The proposed central regulator of plastid-to-nucleus retrograde signaling, GENOMES UNCOUPLED1 (GUN1), is present at very low levels, which has hampered the discovery of its precise molecular function. Here, we show that the Arabidopsis (Arabidopsis thaliana) GUN1 protein accumulates to detectable levels only at very early stages of leaf development, where it functions in the regulation of chloroplast biogenesis. GUN1 mRNA is present at high levels in all tissues, but GUN1 protein undergoes rapid degradation (with an estimated half-life of ∼4 h) in all tissues where chloroplast biogenesis has been completed. The rapid turnover of GUN1 is controlled mainly by the chaperone ClpC1, suggesting degradation of GUN1 by the Clp protease. Degradation of GUN1 slows under stress conditions that alter retrograde signaling, thus ensuring that the plant has sufficient GUN1 protein. We also find that the pentatricopeptide repeat motifs of GUN1 are important determinants of GUN1 stability. Moreover, overexpression of GUN1 causes an early flowering phenotype, suggesting a function of GUN1 in developmental phase transitions beyond chloroplast biogenesis. Taken together, our results provide new insight into the regulation of GUN1 by proteolytic degradation, uncover its function in early chloroplast biogenesis, and suggest a role in developmental phase transitions. PMID:29367233

  3. Comparative anatomy and histology of developmental and parasitic stages in the life cycle of the lined sea anemone Edwardsiella lineata.

    PubMed

    Reitzel, Adam M; Daly, Marymegan; Sullivan, James C; Finnerty, John R

    2009-02-01

    The evolution of parasitism is often accompanied by profound changes to the developmental program. However, relatively few studies have directly examined the developmental evolution of parasitic species from free-living ancestors. The lined sea anemone Edwardsiella lineata is a relatively recently evolved parasite for which closely related free-living outgroups are known, including the starlet sea anemone Nematostella vectensis. The larva of E. lineata parasitizes the ctenophore Mnemiopsis leidyi, and, once embedded in its host, the anemone assumes a novel vermiform body plan. That we might begin to understand how the developmental program of this species has been transformed during the evolution of parasitism, we characterized the gross anatomy, histology, and cnidom of the parasitic stage, post-parasitic larval stage, and adult stage of the E. lineata life cycle. The distinct parasitic stage of the life cycle differs from the post-parasitic larva with respect to overall shape, external ciliation, cnida frequency, and tissue architecture. The parasitic stage and planula both contain holotrichs, a type of cnida not previously reported in Edwardsiidae. The internal morphology of the post-parasitic planula is extremely similar to the adult morphology, with a complete set of mesenterial tissue and musculature despite this stage having little external differentiation. Finally, we observed 2 previously undocumented aspects of asexual reproduction in E. lineata: (1) the parasitic stage undergoes transverse fission via physal pinching, the first report of asexual reproduction in a pre-adult stage in the Edwardsiidae; and (2) the juvenile polyp undergoes transverse fission via polarity reversal, the first time this form of fission has been reported in E. lineata.

  4. From Early Embryonic to Adult Stage: Comparative Study of Action Potentials of Native and Pluripotent Stem Cell-Derived Cardiomyocytes.

    PubMed

    Peinkofer, Gabriel; Burkert, Karsten; Urban, Katja; Krausgrill, Benjamin; Hescheler, Jürgen; Saric, Tomo; Halbach, Marcel

    2016-10-01

    Cardiomyocytes (CMs) derived from induced pluripotent stem cells (iPS-CMs) are promising candidates for cell therapy, drug screening, and developmental studies. It is known that iPS-CMs possess immature electrophysiological properties, but an exact characterization of their developmental stage and subtype differentiation is hampered by a lack of knowledge of electrophysiological properties of native CMs from different developmental stages and origins within the heart. Thus, we sought to systematically investigate action potential (AP) properties of native murine CMs and to establish a database that allows classification of stem cell-derived CMs. Hearts from 129S2PasCrl mice were harvested at days 9-10, 12-14, and 16-18 postcoitum, as well as 1 day, 3-4 days, 1-2 weeks, 3-4 weeks, and 6 weeks postpartum. AP recordings in left and right atria and at apical, medial, and basal left and right ventricles were performed with sharp glass microelectrodes. Measurements revealed significant changes in AP morphology during pre- and postnatal murine development and significant differences between atria and ventricles, enabling a classification of developmental stage and subtype differentiation of stem cell-derived CMs based on their AP properties. For iPS-CMs derived from cell line TiB7.4, a typical ventricular phenotype was demonstrated at later developmental stages, while there were electrophysiological differences from atrial as well as ventricular native CMs at earlier stages. This finding supports that iPS-CMs can develop AP properties similar to native CMs, but points to differences in the maturation process between iPS-CMs and native CMs, which may be explained by dissimilar conditions during in vitro differentiation and in vivo development.

  5. The Unique Dorsal Brood Pouch of Thermosbaenacea (Crustacea, Malacostraca) and Description of an Advanced Developmental Stage of Tulumella unidens from the Yucatan Peninsula (Mexico), with a Discussion of Mouth Part Homologies to Other Malacostraca

    PubMed Central

    Olesen, Jørgen; Boesgaard, Tom; Iliffe, Thomas M.

    2015-01-01

    The Thermosbaenacea, a small taxon of crustaceans inhabiting subterranean waters, are unique among malacostracans as they brood their offspring dorsally under the carapace. This habit is of evolutionary interest but the last detailed report on thermosbaenacean development is more than 40 years old. Here we provide new observations on an ovigerous female of Tulumella unidens with advanced developmental stages in its brood chamber collected from an anchialine cave at the Yucatan Peninsula, which is only the third report on developmental stages of Thermosbaenacea and the first for the genus Tulumella. Significant in a wider crustacean context, we report and discuss hitherto unexplored lobate structures inside the brood chamber of the female originating at the first (maxilliped) and second thoracic segments, which are most likely modified epipods, perhaps serving as gills. At the posterior margin of carapace of the female are rows of large spines preventing the developing stages from falling out. The external morphology of the advanced developmental stages is described in much detail, providing information on e.g., carapace formation and early limb morphology. Among the hitherto unknown structures in the advanced developmental stages provided by this study are the presence of an embryonic dorsal organ and rudimentary ‘naupliar processes’ of the second antennae. Since most hypotheses on crustacean (and malacostracan and peracaridan) relationship rest on external limb morphology, we use early limb bud morphology of Tulumella to better establish thermosbaenacean limb homologies to those of other crustaceans, which is a necessary basis for future morphology based phylogenetic considerations. PMID:25901753

  6. The Unique Dorsal Brood Pouch of Thermosbaenacea (Crustacea, Malacostraca) and Description of an Advanced Developmental Stage of Tulumella unidens from the Yucatan Peninsula (Mexico), with a Discussion of Mouth Part Homologies to Other Malacostraca.

    PubMed

    Olesen, Jørgen; Boesgaard, Tom; Iliffe, Thomas M

    2015-01-01

    The Thermosbaenacea, a small taxon of crustaceans inhabiting subterranean waters, are unique among malacostracans as they brood their offspring dorsally under the carapace. This habit is of evolutionary interest but the last detailed report on thermosbaenacean development is more than 40 years old. Here we provide new observations on an ovigerous female of Tulumella unidens with advanced developmental stages in its brood chamber collected from an anchialine cave at the Yucatan Peninsula, which is only the third report on developmental stages of Thermosbaenacea and the first for the genus Tulumella. Significant in a wider crustacean context, we report and discuss hitherto unexplored lobate structures inside the brood chamber of the female originating at the first (maxilliped) and second thoracic segments, which are most likely modified epipods, perhaps serving as gills. At the posterior margin of carapace of the female are rows of large spines preventing the developing stages from falling out. The external morphology of the advanced developmental stages is described in much detail, providing information on e.g., carapace formation and early limb morphology. Among the hitherto unknown structures in the advanced developmental stages provided by this study are the presence of an embryonic dorsal organ and rudimentary 'naupliar processes' of the second antennae. Since most hypotheses on crustacean (and malacostracan and peracaridan) relationship rest on external limb morphology, we use early limb bud morphology of Tulumella to better establish thermosbaenacean limb homologies to those of other crustaceans, which is a necessary basis for future morphology based phylogenetic considerations.

  7. A stage is a stage is a stage: a direct comparison of two scoring systems.

    PubMed

    Dawson, Theo L

    2003-09-01

    L. Kohlberg (1969) argued that his moral stages captured a developmental sequence specific to the moral domain. To explore that contention, the author compared stage assignments obtained with the Standard Issue Scoring System (A. Colby & L. Kohlberg, 1987a, 1987b) and those obtained with a generalized content-independent stage-scoring system called the Hierarchical Complexity Scoring System (T. L. Dawson, 2002a), on 637 moral judgment interviews (participants' ages ranged from 5 to 86 years). The correlation between stage scores produced with the 2 systems was .88. Although standard issue scoring and hierarchical complexity scoring often awarded different scores up to Kohlberg's Moral Stage 2/3, from his Moral Stage 3 onward, scores awarded with the two systems predominantly agreed. The author explores the implications for developmental research.

  8. Divergent methylation pattern in adult stage between two forms of Tetranychus urticae (Acari: Tetranychidae).

    PubMed

    Yang, Si-Xia; Guo, Chao; Zhao, Xiu-Ting; Sun, Jing-Tao; Hong, Xiao-Yue

    2017-02-19

    The two-spotted spider mite, Tetranychus urticae Koch has two forms: green form and red form. Understanding the molecular basis of how these two forms established without divergent genetic background is an intriguing area. As a well-known epigenetic process, DNA methylation has particularly important roles in gene regulation and developmental variation across diverse organisms that do not alter genetic background. Here, to investigate whether DNA methylation could be associated with different phenotypic consequences in the two forms of T. urticae, we surveyed the genome-wide cytosine methylation status and expression level of DNA methyltransferase 3 (Tudnmt3) throughout their entire life cycle. Methylation-sensitive amplification polymorphism (MSAP) analyses of 585 loci revealed variable methylation patterns in the different developmental stages. In particular, principal coordinates analysis (PCoA) indicates a significant epigenetic differentiation between female adults of the two forms. The gene expression of Tudnmt3 was detected in all examined developmental stages, which was significantly different in the adult stage of the two forms. Together, our results reveal the epigenetic distance between the two forms of T. urticae, suggesting that DNA methylation might be implicated in different developmental demands, and contribute to different phenotypes in the adult stage of these two forms. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  9. Developmental Stages in Receptive Grammar Acquisition: A Processability Theory Account

    ERIC Educational Resources Information Center

    Buyl, Aafke; Housen, Alex

    2015-01-01

    This study takes a new look at the topic of developmental stages in the second language (L2) acquisition of morphosyntax by analysing receptive learner data, a language mode that has hitherto received very little attention within this strand of research (for a recent and rare study, see Spinner, 2013). Looking at both the receptive and productive…

  10. What It Feels Like to Be a Mother: Variations by Children's Developmental Stages

    ERIC Educational Resources Information Center

    Luthar, Suniya S.; Ciciolla, Lucia

    2016-01-01

    The central question we addressed was whether mothers' adjustment might vary systematically by the developmental stages of their children. In an Internet-based study of over 2,200 mostly well-educated mothers with children ranging from infants to adults, we examined multiple aspects of mothers' personal well-being, parenting, and perceptions of…

  11. Was Pre-Modern Man a Child? The Quintessence of the Psychometric and Developmental Approaches

    ERIC Educational Resources Information Center

    Oesterdiekhoff, Georg W.

    2012-01-01

    The essay integrates the psychometric intelligence approach with the cognitive-developmental approach or the stage theory erected by Piaget and his disciples. The latter led to Piagetian Cross-Cultural Psychology and the accumulation of an immense body of data. It shows that different IQ levels are indicative of the peculiar stages of cognitive…

  12. Large scale field inoculation and scoring of maize southern leaf blight and other maize foliar fungal diseases

    USDA-ARS?s Scientific Manuscript database

    Field-grown maize is inoculated with Cochliobolus heterostrophus, causal agent of Southern Leaf Blight disease, by dropping sorghum grains infested with the fungus into the whorl of each maize plant at an early stage of growth. The initial lesions produce secondary inoculum that is dispersed by wind...

  13. Leaf-litter inputs from an invasive nitrogen-fixing tree influence organic-matter dynamics and nitrogen inputs in a Hawaiian river

    Treesearch

    Richard A. MacKenzie; Tracy N. Wiegner; Frances Kinslow; Nicole Cormier; Ayron M. Strauch

    2013-01-01

    Abstract. We examined how invasion of tropical riparian forests by an exotic N-fixing tree (Falcataria moluccana) affects organic-matter dynamics in a Hawaiian river by comparing early stages of leaf-litter breakdown between the exotic F. moluccana and native Metrosideros polymorpha trees. We examined early...

  14. [Effects of postponing nitrogen application on photosynthetic characteristics and grain yield of winter wheat subjected to water stress after heading stage].

    PubMed

    Yang, Ming-da; Ma, Shou-chen; Yang, Shen-jiao; Zhang, Su-yu; Guan, Xiao-kang; Li, Xue-mei; Wang, Tong-chao; Li, Chun-xi

    2015-11-01

    A pot culture experiment was conducted to study the effects of postponing nitrogen (N) application on photosynthetic characteristics and grain yield of winter wheat subjected to water stress after heading stage. Equal in the total N rate in winter wheat growth season, N application was split before sowing, and/or at jointing and /or at anthesis at the ratio of 10:0:0 (N1), 6:4:0 (N2) and 4:3:3 (N3), combined with unfavorable water condition (either waterlogged or drought) with the sufficient water condition as control. The results showed that, under each of the water condition, both N2 and N3 treatments significantly improved the leaf photosynthetic rate and the SPAD value of flag leaf compared with N1 treatment during grain filling stage, and also the crop ear number, grain number per spike and above-ground biomass were increased. Although postponing nitrogen application increased water consumption, both grain yield and water use efficiency were increased. Compared with sufficient water supply, drought stress and waterlogging stress significantly reduced the photosynthetic rate of flag leaves at anthesis and grain filling stages, ear number, 1000-grain mass and yield under all of the N application patterns. The decline of photosynthetic rate under either drought stress or waterlogging stress was much less in N2 and N3 than in N1 treatments, just the same as the grain yield. The results indicated that postponing nitrogen application could regulate winter wheat yield as well as its components to alleviate the damages, caused by unfavorable water stress by increasing flag leaf SPAD and maintaining flag leaf photosynthetic rate after anthesis, and promoting above-ground dry matter accumulation.

  15. Functional Trait Trade-Offs for the Tropical Montane Rain Forest Species Responding to Light from Simulating Experiments

    PubMed Central

    Mao, Peili; Zang, Runguo; Shao, Hongbo; Yu, Junbao

    2014-01-01

    Differences among tropical tree species in survival and growth to light play a key role in plant competition and community composition. Two canopy species with contrasting functional traits dominating early and late successional stages, respectively, in a tropical montane rain forest of Hainan Island, China, were selected in a pot experiment under 4 levels of light intensity (full, 50%, 30%, and 10%) in order to explore the adaptive strategies of tropical trees to light conditions. Under each light intensity level, the pioneer species, Endospermum chinense (Euphorbiaceae), had higher relative growth rate (RGR), stem mass ratio (SMR), specific leaf area (SLA), and morphological plasticity while the shade tolerant climax species, Parakmeria lotungensis (Magnoliaceae), had higher root mass ratio (RMR) and leaf mass ratio (LMR). RGR of both species was positively related to SMR and SLA under each light level but was negatively correlated with RMR under lower light (30% and 10% full light). The climax species increased its survival by a conservative resource use strategy through increasing leaf defense and root biomass investment at the expense of growth rate in low light. In contrast, the pioneer increased its growth by an exploitative resource use strategy through increasing leaf photosynthetic capacity and stem biomass investment at the expense of survival under low light. There was a trade-off between growth and survival for species under different light conditions. Our study suggests that tree species in the tropical rainforest adopt different strategies in stands of different successional stages. Species in the earlier successional stages have functional traits more advantageous to grow faster in the high light conditions, whereas species in the late successional stages have traits more favorable to survive in the low light conditions. PMID:25019095

  16. Influence of atmospheric oxygen on leaf structure and starch deposition in Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Ramonell, K. M.; Kuang, A.; Porterfield, D. M.; Crispi, M. L.; Xiao, Y.; McClure, G.; Musgrave, M. E.

    2001-01-01

    Plant culture in oxygen concentrations below ambient is known to stimulate vegetative growth, but apart from reports on increased leaf number and weight, little is known about development at subambient oxygen concentrations. Arabidopsis thaliana (L.) Heynh. (cv. Columbia) plants were grown full term in pre-mixed atmospheres with oxygen partial pressures of 2.5, 5.1, 10.1, 16.2, and 21.3 kPa O2, 0.035 kPa CO2 and the balance nitrogen under continuous light. Fully expanded leaves were harvested and processed for light and transmission electron microscopy or for starch quantification. Growth in subambient oxygen concentrations caused changes in leaf anatomy (increased thickness, stomatal density and starch content) that have also been described for plants grown under carbon dioxide enrichment. However, at the lowest oxygen treatment (2.5 kPa), developmental changes occurred that could not be explained by changes in carbon budget caused by suppressed photorespiration, resulting in very thick leaves and a dwarf morphology. This study establishes the leaf parameters that change during growth under low O2, and identifies the lower concentration at which O2 limitation on transport and biosynthetic pathways detrimentally affects leaf development. Grant numbers: NAG5-3756, NAG2-1020, NAG2-1375.

  17. Evolution of wood anatomical characters in Nepenthes and close relatives of Caryophyllales.

    PubMed

    Schwallier, Rachel; Gravendeel, Barbara; de Boer, Hugo; Nylinder, Stephan; van Heuven, Bertie Joan; Sieder, Anton; Sumail, Sukaibin; van Vugt, Rogier; Lens, Frederic

    2017-05-01

    Nepenthes attracts wide attention with its spectacularly shaped carnivorous pitchers, cultural value and horticultural curiosity. Despite the plant's iconic fascination, surprisingly little anatomical detail is known about the genus beyond its modified leaf tip traps. Here, the wood anatomical diversity of Nepenthes is explored. This diversity is further assessed with a phylogenetic framework to investigate whether the wood characters within the genus are relevant from an evolutionary or ecological perspective, or rather depend on differences in developmental stages, growth habits, substrates or precipitation. Observations were performed using light microscopy and scanning electron microscopy. Ancestral states of selected wood and pith characters were reconstructed using an existing molecular phylogeny for Nepenthes and a broader Caryophyllales framework. Pairwise comparisons were assessed for possible relationships between wood anatomy and developmental stages, growth habits, substrates and ecology. Wood anatomy of Nepenthes is diffuse porous, with mainly solitary vessels showing simple, bordered perforation plates and alternate intervessel pits, fibres with distinctly bordered pits (occasionally septate), apotracheal axial parenchyma and co-occurring uni- and multiseriate rays often including silica bodies. Precipitation and growth habit (stem length) are linked with vessel density and multiseriate ray height, while soil type correlates with vessel diameter, vessel element length and maximum ray width. For Caryophyllales as a whole, silica grains, successive cambia and bordered perforation plates are the result of convergent evolution. Peculiar helical sculpturing patterns within various cell types occur uniquely within the insectivorous clade of non-core Caryophyllales. The wood anatomical variation in Nepenthes displays variation for some characters dependent on soil type, precipitation and stem length, but is largely conservative. The helical-banded fibre-sclereids that mainly occur idioblastically in pith and cortex are synapomorphic for Nepenthes , while other typical Nepenthes characters evolved convergently in different Caryophyllales lineages. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  18. Evolution of wood anatomical characters in Nepenthes and close relatives of Caryophyllales

    PubMed Central

    Gravendeel, Barbara; de Boer, Hugo; Nylinder, Stephan; van Heuven, Bertie Joan; Sieder, Anton; Sumail, Sukaibin; van Vugt, Rogier; Lens, Frederic

    2017-01-01

    Abstract Background and Aims Nepenthes attracts wide attention with its spectacularly shaped carnivorous pitchers, cultural value and horticultural curiosity. Despite the plant’s iconic fascination, surprisingly little anatomical detail is known about the genus beyond its modified leaf tip traps. Here, the wood anatomical diversity of Nepenthes is explored. This diversity is further assessed with a phylogenetic framework to investigate whether the wood characters within the genus are relevant from an evolutionary or ecological perspective, or rather depend on differences in developmental stages, growth habits, substrates or precipitation. Methods Observations were performed using light microscopy and scanning electron microscopy. Ancestral states of selected wood and pith characters were reconstructed using an existing molecular phylogeny for Nepenthes and a broader Caryophyllales framework. Pairwise comparisons were assessed for possible relationships between wood anatomy and developmental stages, growth habits, substrates and ecology. Key Results Wood anatomy of Nepenthes is diffuse porous, with mainly solitary vessels showing simple, bordered perforation plates and alternate intervessel pits, fibres with distinctly bordered pits (occasionally septate), apotracheal axial parenchyma and co-occurring uni- and multiseriate rays often including silica bodies. Precipitation and growth habit (stem length) are linked with vessel density and multiseriate ray height, while soil type correlates with vessel diameter, vessel element length and maximum ray width. For Caryophyllales as a whole, silica grains, successive cambia and bordered perforation plates are the result of convergent evolution. Peculiar helical sculpturing patterns within various cell types occur uniquely within the insectivorous clade of non-core Caryophyllales. Conclusions The wood anatomical variation in Nepenthes displays variation for some characters dependent on soil type, precipitation and stem length, but is largely conservative. The helical-banded fibre-sclereids that mainly occur idioblastically in pith and cortex are synapomorphic for Nepenthes, while other typical Nepenthes characters evolved convergently in different Caryophyllales lineages. PMID:28387789

  19. Temporal Analysis of the Magnaporthe Oryzae Proteome During Conidial Germination and Cyclic AMP (cAMP)-mediated Appressorium Formation*

    PubMed Central

    Franck, William L.; Gokce, Emine; Oh, Yeonyee; Muddiman, David C.; Dean, Ralph A.

    2013-01-01

    Rice blast disease caused by Magnaporthe oryzae is one of the most serious threats to global rice production. During the earliest stages of rice infection, M. oryzae conidia germinate on the leaf surface and form a specialized infection structure termed the appressorium. The development of the appressorium represents the first critical stage of infectious development. A total of 3200 unique proteins were identified by nanoLC-MS/MS in a temporal study of conidial germination and cAMP-induced appressorium formation in M. oryzae. Using spectral counting based label free quantification, observed changes in relative protein abundance during the developmental process revealed changes in the cell wall biosynthetic machinery, transport functions, and production of extracellular proteins in developing appressoria. One hundred and sixty-six up-regulated and 208 down-regulated proteins were identified in response to cAMP treatment. Proteomic analysis of a cAMP-dependent protein kinase A mutant that is compromised in the ability to form appressoria identified proteins whose developmental regulation is dependent on cAMP signaling. Selected reaction monitoring was used for absolute quantification of four regulated proteins to validate the global proteomics data and confirmed the germination or appressorium specific regulation of these proteins. Finally, a comparison of the proteome and transcriptome was performed and revealed little correlation between transcript and protein regulation. A subset of regulated proteins were identified whose transcripts show similar regulation patterns and include many of the most strongly regulated proteins indicating a central role in appressorium formation. A temporal quantitative RT-PCR analysis confirmed a strong correlation between transcript and protein abundance for some but not all genes. Collectively, the data presented here provide the first comprehensive view of the M. oryzae proteome during early infection-related development and highlight biological processes important for pathogenicity. PMID:23665591

  20. Metabolic Reconstruction of Setaria italica: A Systems Biology Approach for Integrating Tissue-Specific Omics and Pathway Analysis of Bioenergy Grasses.

    PubMed

    de Oliveira Dal'Molin, Cristiana G; Orellana, Camila; Gebbie, Leigh; Steen, Jennifer; Hodson, Mark P; Chrysanthopoulos, Panagiotis; Plan, Manuel R; McQualter, Richard; Palfreyman, Robin W; Nielsen, Lars K

    2016-01-01

    The urgent need for major gains in industrial crops productivity and in biofuel production from bioenergy grasses have reinforced attention on understanding C4 photosynthesis. Systems biology studies of C4 model plants may reveal important features of C4 metabolism. Here we chose foxtail millet (Setaria italica), as a C4 model plant and developed protocols to perform systems biology studies. As part of the systems approach, we have developed and used a genome-scale metabolic reconstruction in combination with the use of multi-omics technologies to gain more insights into the metabolism of S. italica. mRNA, protein, and metabolite abundances, were measured in mature and immature stem/leaf phytomers, and the multi-omics data were integrated into the metabolic reconstruction framework to capture key metabolic features in different developmental stages of the plant. RNA-Seq reads were mapped to the S. italica resulting for 83% coverage of the protein coding genes of S. italica. Besides revealing similarities and differences in central metabolism of mature and immature tissues, transcriptome analysis indicates significant gene expression of two malic enzyme isoforms (NADP- ME and NAD-ME). Although much greater expression levels of NADP-ME genes are observed and confirmed by the correspondent protein abundances in the samples, the expression of multiple genes combined to the significant abundance of metabolites that participates in C4 metabolism of NAD-ME and NADP-ME subtypes suggest that S. italica may use mixed decarboxylation modes of C4 photosynthetic pathways under different plant developmental stages. The overall analysis also indicates different levels of regulation in mature and immature tissues in carbon fixation, glycolysis, TCA cycle, amino acids, fatty acids, lignin, and cellulose syntheses. Altogether, the multi-omics analysis reveals different biological entities and their interrelation and regulation over plant development. With this study, we demonstrated that this systems approach is powerful enough to complement the functional metabolic annotation of bioenergy grasses.

  1. Metabolic Reconstruction of Setaria italica: A Systems Biology Approach for Integrating Tissue-Specific Omics and Pathway Analysis of Bioenergy Grasses

    PubMed Central

    de Oliveira Dal'Molin, Cristiana G.; Orellana, Camila; Gebbie, Leigh; Steen, Jennifer; Hodson, Mark P.; Chrysanthopoulos, Panagiotis; Plan, Manuel R.; McQualter, Richard; Palfreyman, Robin W.; Nielsen, Lars K.

    2016-01-01

    The urgent need for major gains in industrial crops productivity and in biofuel production from bioenergy grasses have reinforced attention on understanding C4 photosynthesis. Systems biology studies of C4 model plants may reveal important features of C4 metabolism. Here we chose foxtail millet (Setaria italica), as a C4 model plant and developed protocols to perform systems biology studies. As part of the systems approach, we have developed and used a genome-scale metabolic reconstruction in combination with the use of multi-omics technologies to gain more insights into the metabolism of S. italica. mRNA, protein, and metabolite abundances, were measured in mature and immature stem/leaf phytomers, and the multi-omics data were integrated into the metabolic reconstruction framework to capture key metabolic features in different developmental stages of the plant. RNA-Seq reads were mapped to the S. italica resulting for 83% coverage of the protein coding genes of S. italica. Besides revealing similarities and differences in central metabolism of mature and immature tissues, transcriptome analysis indicates significant gene expression of two malic enzyme isoforms (NADP- ME and NAD-ME). Although much greater expression levels of NADP-ME genes are observed and confirmed by the correspondent protein abundances in the samples, the expression of multiple genes combined to the significant abundance of metabolites that participates in C4 metabolism of NAD-ME and NADP-ME subtypes suggest that S. italica may use mixed decarboxylation modes of C4 photosynthetic pathways under different plant developmental stages. The overall analysis also indicates different levels of regulation in mature and immature tissues in carbon fixation, glycolysis, TCA cycle, amino acids, fatty acids, lignin, and cellulose syntheses. Altogether, the multi-omics analysis reveals different biological entities and their interrelation and regulation over plant development. With this study, we demonstrated that this systems approach is powerful enough to complement the functional metabolic annotation of bioenergy grasses. PMID:27559337

  2. The Lighthouse Project.

    ERIC Educational Resources Information Center

    LeRose, Barbara; And Others

    1979-01-01

    The project is based on a general systems approach. Developmental stage theory is employed as a starting point, and the developmental "minitasks" which act as stair risers from one developmental level to another are carried through with the use of Bloom's cognitive taxonomy. (Author/DLS)

  3. Hydraulic conductance as well as nitrogen accumulation plays a role in the higher rate of leaf photosynthesis of the most productive variety of rice in Japan

    PubMed Central

    Taylaran, Renante D.; Adachi, Shunsuke; Ookawa, Taiichiro; Usuda, Hideaki; Hirasawa, Tadashi

    2011-01-01

    An indica variety Takanari is known as one of the most productive rice varieties in Japan and consistently produces 20–30% heavier dry matter during ripening than Japanese commercial varieties in the field. The higher rate of photosynthesis of individual leaves during ripening has been recognized in Takanari. By using pot-grown plants under conditions of minimal mutual shading, it was confirmed that the higher rate of leaf photosynthesis is responsible for the higher dry matter production after heading in Takanari as compared with a japonica variety, Koshihikari. The rate of leaf photosynthesis and shoot dry weight became larger in Takanari after the panicle formation and heading stages, respectively, than in Koshihikari. Roots grew rapidly in the panicle formation stage until heading in Takanari compared with Koshihikari. The higher rate of leaf photosynthesis in Takanari resulted not only from the higher content of leaf nitrogen, which was caused by its elevated capacity for nitrogen accumulation, but also from higher stomatal conductance. When measured under light-saturated conditions, stomatal conductance was already decreased due to the reduction in leaf water potential in Koshihikari even under conditions of a relatively small difference in leaf–air vapour pressure difference. In contrast, the higher stomatal conductance was supported by the maintenance of higher leaf water potential through the higher hydraulic conductance in Takanari with the larger area of root surface. However, no increase in root hydraulic conductivity was expected in Takanari. The larger root surface area of Takanari might be a target trait in future rice breeding for increasing dry matter production. PMID:21527630

  4. Developmental perspectives on nutrition and obesity from gestation to adolescence.

    PubMed

    Esposito, Layla; Fisher, Jennifer O; Mennella, Julie A; Hoelscher, Deanna M; Huang, Terry T

    2009-07-01

    Obesity results from a complex combination of factors that act at many stages throughout a person's life. Therefore, examining childhood nutrition and obesity from a developmental perspective is warranted. A developmental perspective recognizes the cumulative effects of factors that contribute to eating behavior and obesity, including biological and socioenvironmental factors that are relevant at different stages of development. A developmental perspective considers family, school, and community context. During gestation, risk factors for obesity include maternal diet, overweight, and smoking. In early childhood, feeding practices, taste acquisition, and eating in the absence of hunger must be considered. As children become more independent during middle childhood and adolescence, school nutrition, food marketing, and social networks become focal points for obesity prevention or intervention. Combining a multilevel approach with a developmental perspective can inform more effective and sustainable strategies for obesity prevention.

  5. Developmental Localization and Methylesterification of Pectin Epitopes during Somatic Embryogenesis of Banana (Musa spp. AAA)

    PubMed Central

    Xu, Chunxiang; Zhao, Lu; Pan, Xiao; Šamaj, Jozef

    2011-01-01

    Background The plant cell walls play an important role in somatic embryogenesis and plant development. Pectins are major chemical components of primary cell walls while homogalacturonan (HG) is the most abundant pectin polysaccharide. Developmental regulation of HG methyl-esterification degree is important for cell adhesion, division and expansion, and in general for proper organ and plant development. Methodology/Principal Findings Developmental localization of pectic homogalacturonan (HG) epitopes and the (1→4)-β-D-galactan epitope of rhamnogalacturonan I (RG-I) and degree of pectin methyl-esterification (DM) were studied during somatic embryogenesis of banana (Musa spp. AAA). Histological analysis documented all major developmental stages including embryogenic cells (ECs), pre-globular, globular, pear-shaped and cotyledonary somatic embryos. Histochemical staining of extracellularly secreted pectins with ruthenium red showed the most intense staining at the surface of pre-globular, globular and pear-shaped somatic embryos. Biochemical analysis revealed developmental regulation of galacturonic acid content and DM in diverse embryogenic stages. Immunodots and immunolabeling on tissue sections revealed developmental regulation of highly methyl-esterified HG epitopes recognized by JIM7 and LM20 antibodies during somatic embryogenesis. Cell walls of pre-globular/globular and late-stage embryos contained both low methyl-esterified HG epitopes as well as partially and highly methyl-esterified ones. Extracellular matrix which covered surface of early developing embryos contained pectin epitopes recognized by 2F4, LM18, JIM5, JIM7 and LM5 antibodies. De-esterification of cell wall pectins by NaOH caused a decrease or an elimination of immunolabeling in the case of highly methyl-esterified HG epitopes. However, immunolabeling of some low methyl-esterified epitopes appeared stronger after this base treatment. Conclusions/Significance These data suggest that both low- and highly-methyl-esterified HG epitopes are developmentally regulated in diverse embryogenic stages during somatic embryogenesis. This study provides new information about pectin composition, HG methyl-esterification and developmental localization of pectin epitopes during somatic embryogenesis of banana. PMID:21826225

  6. The Silkworm (Bombyx mori) microRNAs and Their Expressions in Multiple Developmental Stages

    PubMed Central

    Luo, Qibin; Cai, Yimei; Lin, Wen-chang; Chen, Huan; Yang, Yue; Hu, Songnian; Yu, Jun

    2008-01-01

    Background MicroRNAs (miRNAs) play crucial roles in various physiological processes through post-transcriptional regulation of gene expressions and are involved in development, metabolism, and many other important molecular mechanisms and cellular processes. The Bombyx mori genome sequence provides opportunities for a thorough survey for miRNAs as well as comparative analyses with other sequenced insect species. Methodology/Principal Findings We identified 114 non-redundant conserved miRNAs and 148 novel putative miRNAs from the B. mori genome with an elaborate computational protocol. We also sequenced 6,720 clones from 14 developmental stage-specific small RNA libraries in which we identified 35 unique miRNAs containing 21 conserved miRNAs (including 17 predicted miRNAs) and 14 novel miRNAs (including 11 predicted novel miRNAs). Among the 114 conserved miRNAs, we found six pairs of clusters evolutionarily conserved cross insect lineages. Our observations on length heterogeneity at 5′ and/or 3′ ends of nine miRNAs between cloned and predicted sequences, and three mature forms deriving from the same arm of putative pre-miRNAs suggest a mechanism by which miRNAs gain new functions. Analyzing development-related miRNAs expression at 14 developmental stages based on clone-sampling and stem-loop RT PCR, we discovered an unusual abundance of 33 sequences representing 12 different miRNAs and sharply fluctuated expression of miRNAs at larva-molting stage. The potential functions of several stage-biased miRNAs were also analyzed in combination with predicted target genes and silkworm's phenotypic traits; our results indicated that miRNAs may play key regulatory roles in specific developmental stages in the silkworm, such as ecdysis. Conclusions/Significance Taking a combined approach, we identified 118 conserved miRNAs and 151 novel miRNA candidates from the B. mori genome sequence. Our expression analyses by sampling miRNAs and real-time PCR over multiple developmental stages allowed us to pinpoint molting stages as hotspots of miRNA expression both in sorts and quantities. Based on the analysis of target genes, we hypothesized that miRNAs regulate development through a particular emphasis on complex stages rather than general regulatory mechanisms. PMID:18714353

  7. A proposed model of psychodynamic psychotherapy linked to Erik Erikson's eight stages of psychosocial development.

    PubMed

    Knight, Zelda Gillian

    2017-09-01

    Just as Freud used stages of psychosexual development to ground his model of psychoanalysis, it is possible to do the same with Erik Erikson's stages of development with regards to a model of psychodynamic psychotherapy. This paper proposes an eight-stage model of psychodynamic psychotherapy linked to Erik Erikson's eight stages of psychosocial development. Various suggestions are offered. One such suggestion is that as each of Erikson's developmental stages is triggered by a crisis, in therapy it is triggered by the client's search. The resolution of the search often leads to the development of another search, which implies that the therapy process comprises a series of searches. This idea of a series of searches and resolutions leads to the understanding that identity is developmental and therapy is a space in which a new sense of identity may emerge. The notion of hope is linked to Erikson's stage of Basic Trust and the proposed model of therapy views hope and trust as essential for the therapy process. Two clinical vignettes are offered to illustrate these ideas. Psychotherapy can be approached as an eight-stage process and linked to Erikson's eight stages model of development. Psychotherapy may be viewed as a series of searches and thus as a developmental stage resolution process, which leads to the understanding that identity is ongoing throughout the life span. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Accumulation of cynaropicrin in globe artichoke and localization of enzymes involved in its biosynthesis.

    PubMed

    Eljounaidi, K; Comino, C; Moglia, A; Cankar, K; Genre, A; Hehn, A; Bourgaud, F; Beekwilder, J; Lanteri, S

    2015-10-01

    Globe artichoke (Cynara cardunculus var. scolymus) belongs to the Asteraceae family, in which one of the most biologically significant class of secondary metabolites are sesquiterpene lactones (STLs). In globe artichoke the principal STL is the cynaropicrin, which contributes to approximately 80% of its characteristic bitter taste. Cynaropicrin content was assessed in globe artichoke tissues and was observed to accumulate in leaves of different developmental stages. In the receptacle, a progressive decrease was observed during inflorescence development, while the STL could not be detected in the inflorescence bracts. Almost undetectable amounts were found in the roots and inflorescence stems at the commercial stage. Cynaropicrin content was found to correlate with expression of genes encoding CcGAS, CcGAO and CcCOS, which are involved in the STL biosynthesis. A more detailed study of leaf material revealed that cynaropicrin predominantly accumulates in the trichomes, and not in the apoplastic cavity fluids. Analysis of the promoter regions of CcGAO and CcCOS revealed the presence of L1-box motifs, which confers trichome-specific expression in Arabidopsis, suggesting that cynaropicrin is not only stored but also synthesized in trichomes. A transient expression of GFP fusion proteins was performed in Nicotiana benthamiana plants: the CcGAS fluorescence signal was located in the cytoplasm while the CcGAO and CcCOS localized to the endoplasmatic reticulum. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. RNA-sequencing of the sturgeon Acipenser baeri provides insights into expression dynamics of morphogenic differentiation and developmental regulatory genes in early versus late developmental stages.

    PubMed

    Song, Wei; Jiang, Keji; Zhang, Fengying; Lin, Yu; Ma, Lingbo

    2016-08-08

    Acipenser baeri, one of the critically endangered animals on the verge of extinction, is a key species for evolutionary, developmental, physiology and conservation studies and a standout amongst the most important food products worldwide. Though the transcriptome of the early development of A. baeri has been published recently, the transcriptome changes occurring in the transition from embryonic to late stages are still unknown. The aim of this work was to analyze the transcriptomes of embryonic and post-embryonic stages of A. baeri and identify differentially expressed genes (DEGs) and their expression patterns using mRNA collected from specimens at big yolk plug, wide neural plate and 64 day old sturgeon developmental stages for RNA-Seq. The paired-end sequencing of the transcriptome of samples of A. baeri collected at two early (big yolk plug (T1, 32 h after fertilization) and wide neural plate formation (T2, 45 h after fertilization)) and one late (T22, 64 day old sturgeon) developmental stages using Illumina Hiseq2000 platform generated 64039846, 64635214 and 75293762 clean paired-end reads for T1, T2 and T22, respectively. After quality control, the sequencing reads were de novo assembled to generate a set of 149,265 unigenes with N50 value of 1277 bp. Functional annotation indicated that a substantial number of these unigenes had significant similarity with proteins in public databases. Differential expression profiling allowed the identification of 2789, 12,819 and 10,824 DEGs from the respective T1 vs. T2, T1 vs. T22 and T2 vs. T22 comparisons. High correlation of DEGs' features was recorded among early stages while significant divergences were observed when comparing the late stage with early stages. GO and KEGG enrichment analyses revealed the biological processes, cellular component, molecular functions and metabolic pathways associated with identified DEGs. The qRT-PCR performed for candidate genes in specimens confirmed the validity of the RNA-seq data. This study presents, for the first time, an extensive overview of RNA-Seq based characterization of the early and post-embryonic developmental transcriptomes of A. baeri and provided 149,265 gene sequences that will be potentially valuable for future molecular and genetic studies in A. baeri.

  10. Roles of lignin biosynthesis and regulatory genes in plant development

    PubMed Central

    Yoon, Jinmi; Choi, Heebak

    2015-01-01

    Abstract Lignin is an important factor affecting agricultural traits, biofuel production, and the pulping industry. Most lignin biosynthesis genes and their regulatory genes are expressed mainly in the vascular bundles of stems and leaves, preferentially in tissues undergoing lignification. Other genes are poorly expressed during normal stages of development, but are strongly induced by abiotic or biotic stresses. Some are expressed in non‐lignifying tissues such as the shoot apical meristem. Alterations in lignin levels affect plant development. Suppression of lignin biosynthesis genes causes abnormal phenotypes such as collapsed xylem, bending stems, and growth retardation. The loss of expression by genes that function early in the lignin biosynthesis pathway results in more severe developmental phenotypes when compared with plants that have mutations in later genes. Defective lignin deposition is also associated with phenotypes of seed shattering or brittle culm. MYB and NAC transcriptional factors function as switches, and some homeobox proteins negatively control lignin biosynthesis genes. Ectopic deposition caused by overexpression of lignin biosynthesis genes or master switch genes induces curly leaf formation and dwarfism. PMID:26297385

  11. Developmental and environmental effects on assimilate partitioning in Canada thistle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tworkoski, T.J.

    1989-04-01

    Canada thistle (Cirsium arvense) plants at three stages of development (rosette, bolt, and flower bud) were grown under spring-simulated or fall-simulated environments. Sucrose export from a single leaf exposed to {sup 14}CO{sub 2} was significantly greater in rosette-plants than bolt- or flower bud-plants during the first two hours after pulse. Twenty-four hours after pulse, total {sup 14}C translocation (dpm) was the same in both environments but the {sup 14}C concentration (dpm/gm) was greater in roots of fall-grown plants. Shoot meristem respiration of fall-grown plants was approximately 50% less than spring-grown plants and was a factor responsible for this trend. Concentrationsmore » of inulin and water-insoluble starch were greater in roots of fall-grown than spring-grown plants and pulsed {sup 14}C accumulated in these fractions. The results suggest that a shift in respiration and metabolism of fall-grown rosette- and bolt-plants leads to increased assimilate movement to the root which may have practical implications for control of this weed.« less

  12. Photo-oxidative stress in emerging and senescing leaves: a mirror image?

    PubMed

    Juvany, Marta; Müller, Maren; Munné-Bosch, Sergi

    2013-08-01

    The life cycle of a leaf can be characterized as consisting of different stages: from primordial leaf initiation in the shoot apical meristem (SAM) to leaf senescence. Leaf development, from early leaf growth to senescence, is tightly controlled by plant development and the environment. Here, we primarily focus on summarizing current evidence indicating that photo-oxidative stress occurs at the two extremes of a leaf's lifespan. Some recent studies clearly indicate that--as happens in senescing leaves--emerging new leaves suffer from photo-oxidative stress, which suggests that oxidative stress plays a key role at both ends of the leaf life cycle. We discuss the causes and consequences of suffering from photo-oxidative stress during leaf development, paying attention to the particularities of this process at the two extremes of leaf development. Of particular importance is the current evidence showing mechanisms that maintain an adequate cellular reactive oxygen species/antioxidant (redox) balance that allows growth and prevents oxidative damage in young emerging leaves, while later on photo-oxidative stress induces cell death in senescing leaves. Also of interest is the fact that reductions in the efficiency of photosystem II photochemistry may not necessarily indicate photo-oxidative stress in emerging leaves. In this review, we summarize current knowledge of photoinhibition, photoprotection, and photo-oxidative stress at the two ends of the leaf life cycle: early leaf growth and leaf senescence.

  13. Early Salt Stress Effects on the Changes in Chemical Composition in Leaves of Ice Plant and Arabidopsis. A Fourier Transform Infrared Spectroscopy Study1

    PubMed Central

    Yang, Jyisy; Yen, Hungchen E.

    2002-01-01

    A technique based on Fourier transform infrared (FT-IR) spectrometry was developed to detect the corresponding changes in chemical composition associated with the rapid changes in sodium and water content in 200 mm NaCl-stressed halophyte ice plants (Mesembryanthemum crystallinum). The changes in glycophyte Arabidopsis stressed with 50 mm NaCl were also examined for comparison. The obtained IR spectra were further processed by deconvolution and curve fitting to examine the chemical nature of the responding sources in the leaves. Using three stages of ice plant leaves, absorption bands corresponding to carbohydrates, cell wall pectin, and proteins were identified, with distinct IR spectra representing each developmental stage. Within 48 h of mild salt stress, the absorption band intensities in the fingerprint region increased continuously in both plants, suggesting that the carbon assimilation was not affected at the early stage of stress. The intensities of ester and amide I absorption bands decreased slightly in Arabidopsis but increased in ice plant, suggesting that the cell expansion and protein synthesis ceased in Arabidopsis but continued in ice plant. In both plants, the shift in amide I absorption band was observed hourly after salt stress, indicating a rapid conformational change of cellular proteins. Analyses of the ratio between major and minor amide I absorption band revealed that ice plant was able to maintain a higher-ordered form of proteins under stress. Furthermore, the changes in protein conformation showed a positive correlation to the leaf sodium contents in ice plant, but not in Arabidopsis. PMID:12376666

  14. Characterization of Sugar Contents and Sucrose Metabolizing Enzymes in Developing Leaves of Hevea brasiliensis

    PubMed Central

    Zhu, Jinheng; Qi, Jiyan; Fang, Yongjun; Xiao, Xiaohu; Li, Jiuhui; Lan, Jixian; Tang, Chaorong

    2018-01-01

    Sucrose-metabolizing enzymes in plant leaves have hitherto been investigated mainly in temperate plants, and rarely conducted in tandem with gene expression and sugar analysis. Here, we investigated the sugar content, gene expression, and the activity of sucrose-metabolizing enzymes in the leaves of Hevea brasiliensis, a tropical tree widely cultivated for natural rubber. Sucrose, fructose and glucose were the major sugars detected in Hevea leaves at four developmental stages (I to IV), with starch and quebrachitol as minor saccharides. Fructose and glucose contents increased until stage III, but decreased strongly at stage IV (mature leaves). On the other hand, sucrose increased continuously throughout leaf development. Activities of all sucrose-cleaving enzymes decreased markedly at maturation, consistent with transcript decline for most of their encoding genes. Activity of sucrose phosphate synthase (SPS) was low in spite of its high transcript levels at maturation. Hence, the high sucrose content in mature leaves was not due to increased sucrose-synthesizing activity, but more to the decline in sucrose cleavage. Gene expression and activities of sucrose-metabolizing enzymes in Hevea leaves showed striking differences compared with other plants. Unlike in most other species where vacuolar invertase predominates in sucrose cleavage in developing leaves, cytoplasmic invertase and sucrose synthase (cleavage direction) also featured prominently in Hevea. Whereas SPS is normally responsible for sucrose synthesis in plant leaves, sucrose synthase (synthesis direction) was comparable or higher than that of SPS in Hevea leaves. Mature Hevea leaves had an unusually high sucrose:starch ratio of about 11, the highest reported to date in plants. PMID:29449852

  15. Expression profiles of genes involved in jasmonic acid biosynthesis and signaling during growth and development of carrot.

    PubMed

    Wang, Guanglong; Huang, Wei; Li, Mengyao; Xu, Zhisheng; Wang, Feng; Xiong, Aisheng

    2016-09-01

    Jasmonates (JAs) are recognized as essential regulators in response to environmental stimuli and plant development. Carrot is an Apiaceae vegetable with great value and undergoes significant size changes over the course of plant growth. However, JA accumulation and its potential roles in carrot growth remain unclear. Here, methyl JA (MeJA) levels and expression profiles of JA-related genes were analyzed in carrot roots and leaves at five developmental stages. MeJA levels in the roots and leaves were the highest at the first stage and decreased as carrot growth proceeded. Transcript levels of several JA-related genes (Dc13-LOX1, Dc13-LOX2, DcAOS, DcAOC, DcOPR2, DcOPR3, DcOPCL1, DcJAR1, DcJMT, DcCOI1, DcJAZ1, DcJAZ2, DcMYC2, DcCHIB/PR3, DcLEC, and DcVSP2) were not well correlated with MeJA accumulation during carrot root and leaf development. In addition, some JA-related genes (DcJAR1, DcJMT, DcCOI1, DcMYC2, and DcVSP2) showed differential expression between roots and leaves. These results suggest that JAs may regulate carrot plant growth in stage-dependent and organ-specific manners. Our work provides novel insights into JA accumulation and its potential roles during carrot growth and development. © The Author 2016. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Morphological and histomorphological structures of testes and ovaries in early developmental stages of the silkworm, Bombyx mori.

    PubMed

    Sakai, Hiroki; Kirino, Yohei; Katsuma, Susumu; Aoki, Fugaku; Suzuki, Masataka G

    2016-01-01

    The gonad develops as a testis in male or an ovary in female. In the silkworm, B. mori , little is known about testis and ovary in the embryonic stages and early larval stages. In this study, we performed morphological and histomorphological observations of ovaries and testes from the late embryonic stage to the 1st instar larval stage. Results obtained with lack of accurate information on sex of examined individuals may be misleading, thus we performed phenotypic observations of gonads by utilizing sex-limited strain that enables us to easily discriminate female embryos from male ones based on those egg colors. In testis, four testicular follicles were clearly observed in the testis at the first instar larval stage, and boundary layers were formed between the testicular follicles. At the late embryonic stage, the testis consisted of four testicular follicles, while the boundary layers were still obscure. In ovary, four ovarioles were easily recognizable in the ovary at the first instar larval stage, and boundary layers were formed between the ovarioles. However, in the late embryonic stage, it was quite difficult to identify four ovarioles. Morphological characteristics were almost similar between testis and ovary in early developmental stages. Our present study demonstrates that the most reliable difference between testis and ovary in early developmental stages is the attaching point of the duct. Formation and development of the duct may be sensitive to the sex-determining signal and display sexual dimorphism in early embryonic stages.

  17. Microarray analysis of gene expression patterns in the leaf during potato tuberization in the potato somatic hybrid Solanum tuberosum and Solanum etuberosum.

    PubMed

    Tiwari, Jagesh Kumar; Devi, Sapna; Sundaresha, S; Chandel, Poonam; Ali, Nilofer; Singh, Brajesh; Bhardwaj, Vinay; Singh, Bir Pal

    2015-06-01

    Genes involved in photoassimilate partitioning and changes in hormonal balance are important for potato tuberization. In the present study, we investigated gene expression patterns in the tuber-bearing potato somatic hybrid (E1-3) and control non-tuberous wild species Solanum etuberosum (Etb) by microarray. Plants were grown under controlled conditions and leaves were collected at eight tuber developmental stages for microarray analysis. A t-test analysis identified a total of 468 genes (94 up-regulated and 374 down-regulated) that were statistically significant (p ≤ 0.05) and differentially expressed in E1-3 and Etb. Gene Ontology (GO) characterization of the 468 genes revealed that 145 were annotated and 323 were of unknown function. Further, these 145 genes were grouped based on GO biological processes followed by molecular function and (or) PGSC description into 15 gene sets, namely (1) transport, (2) metabolic process, (3) biological process, (4) photosynthesis, (5) oxidation-reduction, (6) transcription, (7) translation, (8) binding, (9) protein phosphorylation, (10) protein folding, (11) ubiquitin-dependent protein catabolic process, (12) RNA processing, (13) negative regulation of protein, (14) methylation, and (15) mitosis. RT-PCR analysis of 10 selected highly significant genes (p ≤ 0.01) confirmed the microarray results. Overall, we show that candidate genes induced in leaves of E1-3 were implicated in tuberization processes such as transport, carbohydrate metabolism, phytohormones, and transcription/translation/binding functions. Hence, our results provide an insight into the candidate genes induced in leaf tissues during tuberization in E1-3.

  18. Vector development and vitellogenin determine the transovarial transmission of begomoviruses.

    PubMed

    Wei, Jing; He, Ya-Zhou; Guo, Qi; Guo, Tao; Liu, Yin-Quan; Zhou, Xue-Ping; Liu, Shu-Sheng; Wang, Xiao-Wei

    2017-06-27

    The majority of plant viruses are transmitted by insect vectors between hosts, and transovarial transmission of viruses from vector parents to offspring has great significance to their epidemiology. Begomoviruses are transmitted by the whitefly Bemisia tabaci in a circulative manner and are maintained through a plant-insect-plant cycle. Other routes of begomovirus transmission are not clearly known. Here, we report that transovarial transmission from female whiteflies to offspring often happens for one begomovirus, Tomato yellow leaf curl virus (TYLCV), and may have contributed significantly to its global spread. We found that TYLCV entry of the reproductive organ of its vector mainly depended on the developmental stage of the whitefly ovary, and the transovarial transmission of TYLCV to offspring increased with whitefly adult age. The specific interaction between virus coat protein (CP) and whitefly vitellogenin (Vg) was vital for virus entry into whitefly ovary. When knocking down the expression of Vg, the entry of TYLCV into ovary was inhibited and the transovarial transmission efficiency decreased. In contrast, another begomovirus, Papaya leaf curl China virus (PaLCuCNV), CP did not interact with whitefly Vg, and PaLCuCNV could not be transovarially transmitted by whiteflies. We further showed that TYLCV could be maintained for at least two generations in the absence of virus-infected plants, and the adult progenies were able to infect healthy plants in both the laboratory and field. This study reports the transovarial transmission mechanism of begomoviruses, and it may help to explain the evolution and global spread of some begomoviruses.

  19. Behavioural phenotypes over the lifetime of a holometabolous insect

    PubMed Central

    2015-01-01

    Introduction: Behavioural traits can differ considerably between individuals, and such differences were found to be consistent over the lifetime of an organism in several species. Whether behavioural traits of holometabolous insects, which undergo a metamorphosis, are consistent across ontogeny is virtually unexplored. We investigated several behavioural parameters at five different time points in the lifetime of the holometabolous mustard leaf beetle Phaedon cochleariae (Coleoptera: Chrysomelidae), two times in the larval (second and third larval stage) and three times in the adult stage. We investigated 1) the stability of the behavioural phenotype (population level), 2) whether individuals rank consistently across behavioural traits and over their lifetime (individual level), and 3) in how far behavioural traits are correlated with the developmental time of the individuals. Results: We identified two behavioural dimensions in every life stage of P. cochleariae, activity and boldness (population level). Larvae and young adults ranked consistently across the investigated behavioural traits, whereas consistency over time was only found in adults but not between larvae and adults (individual level). Compared to adult beetles, larvae were less active. Moreover, younger larvae were bolder than all subsequent life stages. Over the adult lifetime of the beetles, males were less active than females. Furthermore, the activity of second instar larvae was significantly negatively correlated with the development time. Conclusions: Our study highlights that, although there is no individual consistency over the larval and the adult life stage, the behavioural clustering shows similar patterns at all tested life stages of a holometabolous insect. Nevertheless, age- and sex-specific differences in behavioural traits occur which may be explained by different challenges an individual faces at each life stage. These differences are presumably related to the tremendous changes in life-history traits from larvae to adults and/or to a niche shift after metamorphosis as well as to different needs of both sexes, respectively. A faster development of more active compared to less active second instar larvae is in line with the pace-of-life syndrome. Overall, this study demonstrates a pronounced individuality in behavioural phenotypes and presumably adaptive changes related to life stage and sex. PMID:26816525

  20. Jaccard distance based weighted sparse representation for coarse-to-fine plant species recognition.

    PubMed

    Zhang, Shanwen; Wu, Xiaowei; You, Zhuhong

    2017-01-01

    Leaf based plant species recognition plays an important role in ecological protection, however its application to large and modern leaf databases has been a long-standing obstacle due to the computational cost and feasibility. Recognizing such limitations, we propose a Jaccard distance based sparse representation (JDSR) method which adopts a two-stage, coarse to fine strategy for plant species recognition. In the first stage, we use the Jaccard distance between the test sample and each training sample to coarsely determine the candidate classes of the test sample. The second stage includes a Jaccard distance based weighted sparse representation based classification(WSRC), which aims to approximately represent the test sample in the training space, and classify it by the approximation residuals. Since the training model of our JDSR method involves much fewer but more informative representatives, this method is expected to overcome the limitation of high computational and memory costs in traditional sparse representation based classification. Comparative experimental results on a public leaf image database demonstrate that the proposed method outperforms other existing feature extraction and SRC based plant recognition methods in terms of both accuracy and computational speed.

  1. Early Identification of Herbicide Stress in Soybean (Glycine max (L.) Merr.) Using Chlorophyll Fluorescence Imaging Technology

    PubMed Central

    Li, Hui; Wang, Pei; Weber, Jonas Felix; Gerhards, Roland

    2017-01-01

    Herbicides may damage soybean in conventional production systems. Chlorophyll fluorescence imaging technology has been applied to identify herbicide stress in weed species a few days after application. In this study, greenhouse experiments followed by field experiments at five sites were conducted to investigate if the chlorophyll fluorescence imaging is capable of identifying herbicide stress in soybean shortly after application. Measurements were carried out from emergence until the three-to-four-leaf stage of the soybean plants. Results showed that maximal photosystem II (PS II) quantum yield and shoot dry biomass was significantly reduced in soybean by herbicides compared to the untreated control plants. The stress of PS II inhibiting herbicides occurred on the cotyledons of soybean and plants recovered after one week. The stress induced by DOXP synthase-, microtubule assembly-, or cell division-inhibitors was measured from the two-leaf stage until four-leaf stage of soybean. We could demonstrate that the chlorophyll fluorescence imaging technology is capable for detecting herbicide stress in soybean. The system can be applied under both greenhouse and field conditions. This helps farmers to select weed control strategies with less phytotoxicity in soybean and avoid yield losses due to herbicide stress. PMID:29271905

  2. Early Identification of Herbicide Stress in Soybean (Glycine max (L.) Merr.) Using Chlorophyll Fluorescence Imaging Technology.

    PubMed

    Li, Hui; Wang, Pei; Weber, Jonas Felix; Gerhards, Roland

    2017-12-22

    Herbicides may damage soybean in conventional production systems. Chlorophyll fluorescence imaging technology has been applied to identify herbicide stress in weed species a few days after application. In this study, greenhouse experiments followed by field experiments at five sites were conducted to investigate if the chlorophyll fluorescence imaging is capable of identifying herbicide stress in soybean shortly after application. Measurements were carried out from emergence until the three-to-four-leaf stage of the soybean plants. Results showed that maximal photosystem II (PS II) quantum yield and shoot dry biomass was significantly reduced in soybean by herbicides compared to the untreated control plants. The stress of PS II inhibiting herbicides occurred on the cotyledons of soybean and plants recovered after one week. The stress induced by DOXP synthase-, microtubule assembly-, or cell division-inhibitors was measured from the two-leaf stage until four-leaf stage of soybean. We could demonstrate that the chlorophyll fluorescence imaging technology is capable for detecting herbicide stress in soybean. The system can be applied under both greenhouse and field conditions. This helps farmers to select weed control strategies with less phytotoxicity in soybean and avoid yield losses due to herbicide stress.

  3. An expanded model: flood-inundation maps for the Leaf River at Hattiesburg, Mississippi, 2013

    USGS Publications Warehouse

    Storm, John B.

    2014-01-01

    Digital flood-inundation maps for a 6.8-mile reach of the Leaf River at Hattiesburg, Mississippi (Miss.), were created by the U.S. Geological Survey (USGS) in cooperation with the City of Hattiesburg, City of Petal, Forrest County, Mississippi Emergency Management Agency, Mississippi Department of Homeland Security, and the Emergency Management District. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Leaf River at Hattiesburg, Miss. (station no. 02473000). Current conditions for estimating near-real-time areas of inundation by use of USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/. In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often colocated with USGS streamgages. NWS-forecasted peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated by using the most current stage-discharge relations at the Leaf River at Hattiesburg, Miss. streamgage (02473000) and documented high-water marks from recent and historical floods. The hydraulic model was then used to determine 13 water-surface profiles for flood stages at 1.0-foot intervals referenced to the streamgage datum and ranging from bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system (GIS) digital elevation model (DEM, derived from light detection and ranging (lidar) data having a 0.6-foot vertical and 9.84-foot horizontal resolution) in order to delineate the area flooded at each water level. Development of the estimated flood inundation maps as described in this report update previously published inundation estimates by including reaches of the Bouie and Leaf Rivers above their confluence. The availability of these maps along with Internet information regarding current stage from USGS streamgages and forecasted stream stages from the NWS provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for post flood recovery efforts.

  4. Tissue Specificity and Dynamics of Sex-Biased Gene Expression in a Common Frog Population with Differentiated, Yet Homomorphic, Sex Chromosomes.

    PubMed

    Ma, Wen-Juan; Veltsos, Paris; Toups, Melissa A; Rodrigues, Nicolas; Sermier, Roberto; Jeffries, Daniel L; Perrin, Nicolas

    2018-06-12

    Sex-biased genes are central to the study of sexual selection, sexual antagonism, and sex chromosome evolution. We describe a comprehensive de novo assembled transcriptome in the common frog Rana temporaria based on five developmental stages and three adult tissues from both sexes, obtained from a population with karyotypically homomorphic but genetically differentiated sex chromosomes. This allows the study of sex-biased gene expression throughout development, and its effect on the rate of gene evolution while accounting for pleiotropic expression, which is known to negatively correlate with the evolutionary rate. Overall, sex-biased genes had little overlap among developmental stages and adult tissues. Late developmental stages and gonad tissues had the highest numbers of stage- or tissue-specific genes. We find that pleiotropic gene expression is a better predictor than sex bias for the evolutionary rate of genes, though it often interacts with sex bias. Although genetically differentiated, the sex chromosomes were not enriched in sex-biased genes, possibly due to a very recent arrest of XY recombination. These results extend our understanding of the developmental dynamics, tissue specificity, and genomic localization of sex-biased genes.

  5. Metabolome analysis of Drosophila melanogaster during embryogenesis.

    PubMed

    An, Phan Nguyen Thuy; Yamaguchi, Masamitsu; Bamba, Takeshi; Fukusaki, Eiichiro

    2014-01-01

    The Drosophila melanogaster embryo has been widely utilized as a model for genetics and developmental biology due to its small size, short generation time, and large brood size. Information on embryonic metabolism during developmental progression is important for further understanding the mechanisms of Drosophila embryogenesis. Therefore, the aim of this study is to assess the changes in embryos' metabolome that occur at different stages of the Drosophila embryonic development. Time course samples of Drosophila embryos were subjected to GC/MS-based metabolome analysis for profiling of low molecular weight hydrophilic metabolites, including sugars, amino acids, and organic acids. The results showed that the metabolic profiles of Drosophila embryo varied during the course of development and there was a strong correlation between the metabolome and different embryonic stages. Using the metabolome information, we were able to establish a prediction model for developmental stages of embryos starting from their high-resolution quantitative metabolite composition. Among the important metabolites revealed from our model, we suggest that different amino acids appear to play distinct roles in different developmental stages and an appropriate balance in trehalose-glucose ratio is crucial to supply the carbohydrate source for the development of Drosophila embryo.

  6. Metabolome Analysis of Drosophila melanogaster during Embryogenesis

    PubMed Central

    An, Phan Nguyen Thuy; Yamaguchi, Masamitsu; Bamba, Takeshi; Fukusaki, Eiichiro

    2014-01-01

    The Drosophila melanogaster embryo has been widely utilized as a model for genetics and developmental biology due to its small size, short generation time, and large brood size. Information on embryonic metabolism during developmental progression is important for further understanding the mechanisms of Drosophila embryogenesis. Therefore, the aim of this study is to assess the changes in embryos’ metabolome that occur at different stages of the Drosophila embryonic development. Time course samples of Drosophila embryos were subjected to GC/MS-based metabolome analysis for profiling of low molecular weight hydrophilic metabolites, including sugars, amino acids, and organic acids. The results showed that the metabolic profiles of Drosophila embryo varied during the course of development and there was a strong correlation between the metabolome and different embryonic stages. Using the metabolome information, we were able to establish a prediction model for developmental stages of embryos starting from their high-resolution quantitative metabolite composition. Among the important metabolites revealed from our model, we suggest that different amino acids appear to play distinct roles in different developmental stages and an appropriate balance in trehalose-glucose ratio is crucial to supply the carbohydrate source for the development of Drosophila embryo. PMID:25121768

  7. Influence of Meiotic Stages on Developmental Competence of Goat’ Oocyte After Vitrification

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Ihsan, M. N.

    2018-02-01

    This objective of this research was to investigate effect of goat oocyte meiotic stages on developmental competence after cryopreservation. Ovaries were collected from slaugterhouse and oocytes was aspirated from2-6 mm of follicles. Oocyte with compacted cumulus cells and evenly granulated ooplasm were selected for this experiment. The lenght of in vitro maturation before vitrification was 8 or 22 h in IVM media TCM 199 + FCS 10 % + PMSG 10 IU + hCG 10 IU at 38.5 °C in a humidified atmosphere of 5 % CO2 in air and were vitrified. After vitrification process, GVBD and MII oocyte were matured for 18 or 4 h to fullfill 26 h maturation requirement and then oocytes were subjected to IVF and culture. Cleavage and blastocyst formation rate were to asses their developmental competence. Cleavage rates were obtained for both GVBD ( 56.78 %) and MII (69.64 % ) oocytes (P<0.05). Proportion of cleaved embryos from vitrified MII oocytes develop into blastocysts higher (P<0.05) than those from vitrified GVBD oocytes (10.25% vs 3.54%) repectively. Goat oocytes in different maturation stages response to vitrification differently and MII stages have better developmental competence than GVBD.

  8. Embryonic development of lake whitefish Coregonus clupeaformis: a staging series, analysis of growth and effects of fixation.

    PubMed

    Sreetharan, S; Thome, C; Mitz, C; Eme, J; Mueller, C A; Hulley, E N; Manzon, R G; Somers, C M; Boreham, D R; Wilson, J Y

    2015-09-01

    A reference staging series of 18 morphological stages of laboratory reared lake whitefish Coregonus clupeaformis is provided. The developmental processes of blastulation, gastrulation, neurulation as well as development of the eye, circulatory system, chromatophores and mouth are included and accompanied by detailed descriptions and live imaging. Quantitative measurements of embryo size and mass were taken at each developmental stage. Eggs were 3·19 ± 0·16 mm (mean ± s.d.) in diameter at fertilization and embryos reached a total length (LT ) of 14·25 ± 0·41 mm at hatch. Separated yolk and embryo dry mass were 0·25 ± 0·08 mg and 1·39 ± 0·17 mg, respectively, at hatch. The effects of two common preservatives (formalin and ethanol) were examined throughout development and post hatch. Embryo LT significantly decreased following fixation at all points in development. A correction factor to estimate live LT from corresponding fixed LT was determined as live LT = (fixed LT )(1·025) . Eye diameter and yolk area measurements significantly increased in fixed compared with live embryos up to 85-90% development for both measurements. The described developmental stages can be generalized to teleost species, and is particularly relevant for the study of coregonid development due to additionally shared developmental characteristics. The results of this study and staging series are therefore applicable across various research streams encompassing numerous species that require accurate staging of embryos and descriptions of morphological development. © 2015 The Fisheries Society of the British Isles.

  9. A history of normal plates, tables and stages in vertebrate embryology.

    PubMed

    Hopwood, Nick

    2007-01-01

    Developmental biology is today unimaginable without the normal stages that define standard divisions of development. This history of normal stages, and the related normal plates and normal tables, shows how these standards have shaped and been shaped by disciplinary change in vertebrate embryology. The article highlights the Normal Plates of the Development of the Vertebrates edited by the German anatomist Franz Keibel (16 volumes, 1897-1938). These were a major response to problems in the relations between ontogeny and phylogeny that amounted in practical terms to a crisis in staging embryos, not just between, but (for some) also within species. Keibel's design adapted a plate by Wilhelm His and tables by Albert Oppel in order to go beyond the already controversial comparative plates of the Darwinist propagandist Ernst Haeckel. The project responded to local pressures, including intense concern with individual variation, but recruited internationally and mapped an embryological empire. Though theoretically inconclusive, the plates became standard laboratory tools and forged a network within which the Institut International d'Embryologie (today the International Society of Developmental Biologists) was founded in 1911. After World War I, experimentalists, led by Ross Harrison and Viktor Hamburger, and human embryologists, especially George Streeter at the Carnegie Department of Embryology, transformed Keibel's complex, bulky tomes to suit their own contrasting demands. In developmental biology after World War II, normal stages-reduced to a few journal pages-helped domesticate model organisms. Staging systems had emerged from discussions that questioned the very possibility of assigning an embryo to a stage. The historical issues resonate today as developmental biologists work to improve and extend stage series, to make results from different laboratories easier to compare and to take individual variation into account.

  10. 4D atlas of the mouse embryo for precise morphological staging.

    PubMed

    Wong, Michael D; van Eede, Matthijs C; Spring, Shoshana; Jevtic, Stefan; Boughner, Julia C; Lerch, Jason P; Henkelman, R Mark

    2015-10-15

    After more than a century of research, the mouse remains the gold-standard model system, for it recapitulates human development and disease and is quickly and highly tractable to genetic manipulations. Fundamental to the power and success of using a mouse model is the ability to stage embryonic mouse development accurately. Past staging systems were limited by the technologies of the day, such that only surface features, visible with a light microscope, could be recognized and used to define stages. With the advent of high-throughput 3D imaging tools that capture embryo morphology in microscopic detail, we now present the first 4D atlas staging system for mouse embryonic development using optical projection tomography and image registration methods. By tracking 3D trajectories of every anatomical point in the mouse embryo from E11.5 to E14.0, we established the first 4D atlas compiled from ex vivo 3D mouse embryo reference images. The resulting 4D atlas comprises 51 interpolated 3D images in this gestational range, resulting in a temporal resolution of 72 min. From this 4D atlas, any mouse embryo image can be subsequently compared and staged at the global, voxel and/or structural level. Assigning an embryonic stage to each point in anatomy allows for unprecedented quantitative analysis of developmental asynchrony among different anatomical structures in the same mouse embryo. This comprehensive developmental data set offers developmental biologists a new, powerful staging system that can identify and compare differences in developmental timing in wild-type embryos and shows promise for localizing deviations in mutant development. © 2015. Published by The Company of Biologists Ltd.

  11. Weed and Onion Response to multiple Applications of Goal Tender beginning at the 1-Leaf Stage of Onion

    USDA-ARS?s Scientific Manuscript database

    Broadleaf weed control in onion is difficult in part due to a lack of postemergence herbicide options at an early growth stage of onions. Onion tolerance to sequential applications of oxyfluorfen (Goal-Tender) alone and with bromoxynil (Buctril) beginning at the 1-lf stage of onions was evaluated n...

  12. Influence of Kernel Age on Fumonisin B1 Production in Maize by Fusarium moniliforme

    PubMed Central

    Warfield, Colleen Y.; Gilchrist, David G.

    1999-01-01

    Production of fumonisins by Fusarium moniliforme on naturally infected maize ears is an important food safety concern due to the toxic nature of this class of mycotoxins. Assessing the potential risk of fumonisin production in developing maize ears prior to harvest requires an understanding of the regulation of toxin biosynthesis during kernel maturation. We investigated the developmental-stage-dependent relationship between maize kernels and fumonisin B1 production by using kernels collected at the blister (R2), milk (R3), dough (R4), and dent (R5) stages following inoculation in culture at their respective field moisture contents with F. moniliforme. Highly significant differences (P ≤ 0.001) in fumonisin B1 production were found among kernels at the different developmental stages. The highest levels of fumonisin B1 were produced on the dent stage kernels, and the lowest levels were produced on the blister stage kernels. The differences in fumonisin B1 production among kernels at the different developmental stages remained significant (P ≤ 0.001) when the moisture contents of the kernels were adjusted to the same level prior to inoculation. We concluded that toxin production is affected by substrate composition as well as by moisture content. Our study also demonstrated that fumonisin B1 biosynthesis on maize kernels is influenced by factors which vary with the developmental age of the tissue. The risk of fumonisin contamination may begin early in maize ear development and increases as the kernels reach physiological maturity. PMID:10388675

  13. Developmental toxicity of PAH mixtures in fish early life stages. Part II: adverse effects in Japanese medaka.

    PubMed

    Le Bihanic, Florane; Clérandeau, Christelle; Le Menach, Karyn; Morin, Bénédicte; Budzinski, Hélène; Cousin, Xavier; Cachot, Jérôme

    2014-12-01

    In aquatic environments, polycyclic aromatic hydrocarbons (PAHs) mostly occur as complex mixtures, for which risk assessment remains problematic. To better understand the effects of PAH mixture toxicity on fish early life stages, this study compared the developmental toxicity of three PAH complex mixtures. These mixtures were extracted from a PAH-contaminated sediment (Seine estuary, France) and two oils (Arabian Light and Erika). For each fraction, artificial sediment was spiked at three different environmental concentrations roughly equivalent to 0.5, 4, and 10 μg total PAH g(-1) dw. Japanese medaka embryos were incubated on these PAH-spiked sediments throughout their development, right up until hatching. Several endpoints were recorded at different developmental stages, including acute endpoints, morphological abnormalities, larvae locomotion, and genotoxicity (comet and micronucleus assays). The three PAH fractions delayed hatching, induced developmental abnormalities, disrupted larvae swimming activity, and damaged DNA at environmental concentrations. Differences in toxicity levels, likely related to differences in PAH proportions, were highlighted between fractions. The Arabian Light and Erika petrogenic fractions, containing a high proportion of alkylated PAHs and low molecular weight PAHs, were more toxic to Japanese medaka early life stages than the pyrolytic fraction. This was not supported by the toxic equivalency approach, which appeared unsuitable for assessing the toxicity of the three PAH fractions to fish early life stages. This study highlights the potential risks posed by environmental mixtures of alkylated and low molecular weight PAHs to early stages of fish development.

  14. Using RNA-sequencing and in silico subtraction to identify resistance gene analog markers for Lr16 in wheat

    USDA-ARS?s Scientific Manuscript database

    Leaf rust, caused by Puccinia triticina Eriks., is one of the most widespread diseases of wheat worldwide and breeding for resistance is one of the most effective methods of control. Lr16 is a wheat leaf rust resistance gene that provides resistance at both the seedling and adult stages. Simple s...

  15. De novo transcriptome sequencing and customized abscission zone-specific microarray as a new molecular tool for analysis of tomato organ abscission

    USDA-ARS?s Scientific Manuscript database

    Abscission, which is the process of organ separation, is a highly regulated process occurring as a final stage of organ development. In the tomato (Solanum lycopersicum) system, flower and leaf abscission was induced by flower removal or leaf deblading, leading to auxin depletion which results in in...

  16. Developmentally Appropriate Peace Education Curricula

    ERIC Educational Resources Information Center

    Lewsader, Joellen; Myers-Walls, Judith A.

    2017-01-01

    Peace education has been offered to children for decades, but those curricula have been only minimally guided by children's developmental stages and needs. In this article, the authors apply their research on children's developmental understanding of peace along with peace education principles and Vygotsky's sociocultural theory to present…

  17. Changes in 13C/12C of oil palm leaves to understand carbon use during their passage from heterotrophy to autotrophy.

    PubMed

    Lamade, Emmanuelle; Setiyo, Indra Eko; Girard, Sébastien; Ghashghaie, Jaleh

    2009-08-30

    The carbon isotope composition of leaf bulk organic matter was determined on the tropical tree Elaeis guineensis Jacq. (oil palm) in North Sumatra (Indonesia) to get a better understanding of the changes in carbon metabolism during the passage from heterotrophy to autotrophy of the leaves. Leaf soluble sugar (sucrose, glucose and fructose) contents, stomatal conductance and dark respiration, as well as leaf chlorophyll and nitrogen contents, were also investigated. Different growing stages were sampled from leaf rank -6 to rank 57. The mean values for the delta(13)C of bulk organic matter were -29.01 +/- 0.9 per thousand for the leaflets during the autotrophic stage, -27.87 +/- 1.08 per thousand for the petioles and -28.17 +/- 1.09 per thousand for the rachises, which are in the range of expected values for a C(3) plant. The differences in delta(13)C among leaf ranks clearly revealed the changes in the origin of the carbon source used for leaf growth. Leaves were (13)C-enriched at ranks below zero (around -27 per thousand). During this period, the 'spear' leaves were completely heterotrophic and reserves from storage organs were mobilised for the growth of these young emerging leaves. (13)C-depletion was then observed when the leaf was expanding at rank 1, and there was a continuous decrease during the progressive passage from heterotrophy until reaching full autotrophy. Thereafter, the delta(13)C remained more or less constant at around -29.5 per thousand. Changes in sugar content and in delta(13)C related to leaf ranks showed an interesting similarity of the passage from heterotrophy to autotrophy of oil palm leaves to the budburst of some temperate trees or seed germination reported in the literature. John Wiley & Sons, Ltd.

  18. Flood-inundation maps for the Leaf River at Hattiesburg, Mississippi

    USGS Publications Warehouse

    Storm, John B.

    2012-01-01

    Digital flood-inundation maps for a 1.7-mile reach of the Leaf River were developed by the U.S. Geological Survey (USGS) in cooperation with the City of Hattiesburg, City of Petal, Forrest County, Mississippi Emergency Management Agency, Mississippi Department of Homeland Security, and the Emergency Management District. The Leaf River study reach extends from just upstream of the U.S. Highway 11 crossing to just downstream of East Hardy/South Main Street and separates the cities of Hattiesburg and Petal, Mississippi. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water-surface elevations (stages) at the USGS streamgage at Leaf River at Hattiesburg, Mississippi (02473000). Current conditions at the USGS streamgage may be obtained through the National Water Information System Web site at http://waterdata.usgs.gov/ms/nwis/uv/?site_no=02473000&PARAmeter_cd=00065,00060. In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood-warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often collocated at USGS streamgages. The forecasted peak-stage information, available on the AHPS Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated using the most current stage-discharge relations at the Leaf River at Hattiesburg, Mississippi, streamgage and documented high-water marks from recent and historical floods. The hydraulic model was then used to determine 13 water-surface profiles for flood stages at 1.0-foot intervals referenced to the streamgage datum and ranging from bankfull to approximately the highest recorded water-surface elevation at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model [derived from Light Detection and Ranging (LiDAR) data having a 0.6-foot vertical accuracy and 9.84-foot horizontal resolution] in order to delineate the area flooded at each 1-foot increment of stream stage. The availability of these maps, when combined with real-time stage information from USGS streamgages and forecasted stream stage from the NWS, provides emergency management personnel and residents with critical information during flood-response activities, such as evacuations and road closures, as well as for post-flood recovery efforts.

  19. Diurnal changes in CN metabolism and response of rice seedlings to UV-B radiation.

    PubMed

    Yun, Hyejin; Lim, Sunhyung; Kim, Yangmin X; Lee, Yejin; Lee, Seulbi; Lee, Deogbae; Park, Keewoong; Sung, Jwakyung

    2018-03-13

    Plants regulate a number of primary metabolites, including carbohydrates, organic acids, and amino acids, in response to UV-B radiation. Therefore, it is essential to understand the time-dependent response of rice plants to UV-B stress. This study focused on the response of plants to UV-B at different leaf developmental phases (emerging, growing, and maturing) in an attempt to fully comprehend the metabolic shift. We analyzed the expression levels of genes related to starch/sucrose metabolism in the leaf blades of rice seedlings (Oryza sativa L. "Saechuchenog") exposed to UV-B irradiation for short (1 day) and long terms (5 days) using quantitative real-time polymerase chain reaction. We also examined the diurnal variations in the contents of primary metabolites using an established GCTOF-MS (gas chromatography time of flight-mass spectrometry) method. The results showed that the levels of primary metabolites were largely dependent upon the diurnal rhythm and leaf developmental phase. The young leaves (sink) produced and accumulated starch rather than sucrose. The short-term (4 h, 1 day) UV-B exposure inhibited sucrose synthesis, which could be the first target of UV-B radiation. Following short- and long-term (5 days) exposure to UV-B radiation, the dynamic response of primary metabolites was evaluated. It was found that the content of carbohydrates decreased throughout the period of exposure to UV-B stress, especially in terms of sucrose concentration. However, the content of the majority of amino acids increased after an early decrease. Our data revealed that the metabolic response, as well as the gene expression, differed with the period (intensity) of exposure to UV-B radiation and with the phase of leaf development. These findings provide new insights for a better understanding of the metabolic response of a variety of plant species exposed to a wide range of UV-B radiation. Copyright © 2018. Published by Elsevier GmbH.

  20. Spatially Different Tissue-Scale Diffusivity Shapes ANGUSTIFOLIA3 Gradient in Growing Leaves.

    PubMed

    Kawade, Kensuke; Tanimoto, Hirokazu; Horiguchi, Gorou; Tsukaya, Hirokazu

    2017-09-05

    The spatial gradient of signaling molecules is pivotal for establishing developmental patterns of multicellular organisms. It has long been proposed that these gradients could arise from the pure diffusion process of signaling molecules between cells, but whether this simplest mechanism establishes the formation of the tissue-scale gradient remains unclear. Plasmodesmata are unique channel structures in plants that connect neighboring cells for molecular transport. In this study, we measured cellular- and tissue-scale kinetics of molecular transport through plasmodesmata in Arabidopsis thaliana developing leaf primordia by fluorescence recovery assays. These trans-scale measurements revealed biophysical properties of diffusive molecular transport through plasmodesmata and revealed that the tissue-scale diffusivity, but not the cellular-scale diffusivity, is spatially different along the leaf proximal-to-distal axis. We found that the gradient in cell size along the developmental axis underlies this spatially different tissue-scale diffusivity. We then asked how this diffusion-based framework functions in establishing a signaling gradient of endogenous molecules. ANGUSTIFOLIA3 (AN3) is a transcriptional co-activator, and as we have shown here, it forms a long-range signaling gradient along the leaf proximal-to-distal axis to determine a cell-proliferation domain. By genetically engineering AN3 mobility, we assessed each contribution of cell-to-cell movement and tissue growth to the distribution of the AN3 gradient. We constructed a diffusion-based theoretical model using these quantitative data to analyze the AN3 gradient formation and demonstrated that it could be achieved solely by the diffusive molecular transport in a growing tissue. Our results indicate that the spatially different tissue-scale diffusivity is a core mechanism for AN3 gradient formation. This provides evidence that the pure diffusion process establishes the formation of the long-range signaling gradient in leaf development. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Does early paternal involvement predict offspring developmental diagnoses?

    PubMed

    Jackson, Dylan B; Newsome, Jamie; Beaver, Kevin M

    2016-12-01

    A long line of research has illustrated that fathers play an important role in the development of their children. Few studies, however, have examined the impact of paternal involvement at the earliest stages of life on developmental diagnoses in childhood. The present study extends this line of research by exploring the possibility that paternal involvement prenatally, postnatally, and at the time of birth may influence offspring risk for various diagnoses in childhood. A quasi-experimental, propensity score matching design was used to create treatment and control groups to assess the relationship between paternal involvement at each stage of development and developmental diagnoses. Approximately 6000 children, and a subsample of fathers, who participated in the Early Childhood Longitudinal Study, Birth Cohort (ECLS-B). Activity, attention and learning, speech or language, and other diagnoses in early childhood, and overall number of diagnoses at 4years of age. We find no consistent evidence that low paternal involvement prenatally or postnatally increases the risk of various developmental diagnoses by age 4. However, children whose fathers were absent at the time of their birth were at significantly greater risk of incurring various developmental diagnoses, as well as a significantly greater number of developmental diagnoses. The findings expand our understanding of exactly how early paternal influence begins and the specific dimensions of early father behaviors that are related to the risk of various developmental diagnoses. Ultimately, these results have important implications concerning father involvement during the earliest stages of the life course. Copyright © 2016. Published by Elsevier Ireland Ltd.

  2. iTRAQ-Based Quantitative Proteomic Analysis Reveals Cold Responsive Proteins Involved in Leaf Senescence in Upland Cotton (Gossypium hirsutum L.).

    PubMed

    Zheng, Xuewei; Fan, Shuli; Wei, Hengling; Tao, Chengcheng; Ma, Qiang; Ma, Qifeng; Zhang, Siping; Li, Hongbin; Pang, Chaoyou; Yu, Shuxun

    2017-09-16

    Premature leaf senescence occurs in the ultimate phase of the plant, and it occurs through a complex series of actions regulated by stress, hormones and genes. In this study, a proteomic analysis was performed to analyze the factors that could induce premature leaf senescence in two cotton cultivars. We successfully identified 443 differential abundant proteins (DAPs) from 7388 high-confidence proteins at four stages between non-premature senescence (NS) and premature senescence (PS), among which 158 proteins were over-accumulated, 238 proteins were down-accumulated at four stages, and 47 proteins displayed overlapped accumulation. All the DAPs were mapped onto 21 different categories on the basis of a Clusters of Orthologous Groups (COG) analysis, and 9 clusters were based on accumulation. Gene Ontology (GO) enrichment results show that processes related to stress responses, including responses to cold temperatures and responses to hormones, are significantly differentially accumulated. More importantly, the enriched proteins were mapped in The Arabidopsis Information Resource (TAIR), showing that 58 proteins play an active role in abiotic stress, hormone signaling and leaf senescence. Among these proteins, 26 cold-responsive proteins (CRPs) are significantly differentially accumulated. The meteorological data showed that the median temperatures declined at approximately 15 days before the onset of aging, suggesting that a decrease in temperature is tightly linked to an onset of cotton leaf senescence. Because accumulations of H₂O₂ and increased jasmonic acid (JA) were detected during PS, we speculate that two pathways associated with JA and H₂O₂ are closely related to premature leaf senescence in cotton.

  3. Expression patterns of STM-like KNOX and Histone H4 genes in shoot development of the dissected-leaved basal eudicot plants Chelidonium majus and Eschscholzia californica (Papaveraceae).

    PubMed

    Groot, Edwin P; Sinha, Neelima; Gleissberg, Stefan

    2005-06-01

    Knotted-like homeobox (KNOX) genes encode important regulators of shoot development in flowering plants. In Arabidopsis, class I KNOX genes are part of a regulatory system that contributes to indeterminacy of shoot development, delimitation of leaf primordia and internode development. In other species, class I KNOX genes have also been recruited in the control of marginal blastozone fractionation during dissected leaf development. Here we report the isolation of class I KNOX genes from two species of the basal eudicot family Papaveraceae, Chelidonium majus and Eschscholzia californica. Sequence comparisons and expression patterns indicate that these genes are orthologs of SHOOTMERISTEMLESS (STM), a class I KNOX gene from Arabidopsis. Both genes are expressed in the center of vegetative and floral shoot apical meristems (SAM), but downregulated at leaf or floral organ initiating sites. While Eschscholzia californica STM (EcSTM) is again upregulated during acropetal pinna formation, in situ hybridization could not detect Chelidonium majus STM (CmSTM) transcripts at any stage of basipetal leaf development, indicating divergent evolution of STM gene function in leaves within Papaveraceae. Immunolocalization of KNOX proteins indicate that other gene family members may control leaf dissection in both species. The contrasting direction of pinna initiation in the two species was also investigated using Histone H4 expression. Leaves at early stages of development did not reveal notable differences in cell division activity of the elongating leaf axis, suggesting that differential meristematic growth may not play a role in determining the observed dissection patterns.

  4. Leaf Evolution: Gases, Genes and Geochemistry

    PubMed Central

    BEERLING, DAVID J.

    2005-01-01

    • Aims This Botanical Briefing reviews how the integration of palaeontology, geochemistry and developmental biology is providing a new mechanistic framework for interpreting the 40- to 50-million-year gap between the origination of vascular land plants and the advent of large (megaphyll) leaves, a long-standing puzzle in evolutionary biology. • Scope Molecular genetics indicates that the developmental mechanisms required for leaf production in vascular plants were recruited long before the advent of large megaphylls. According to theory, this morphogenetic potential was only realized as the concentration of atmospheric CO2 declined during the late Palaeozoic. Surprisingly, plants effectively policed their own evolution since the decrease in CO2 was brought about as terrestrial floras evolved accelerating the rate of silicate rock weathering and enhancing sedimentary organic carbon burial, both of which are long-term sinks for CO2. • Conclusions The recognition that plant evolution responds to and influences CO2 over millions of years reveals the existence of an intricate web of vegetation feedbacks regulating the long-term carbon cycle. Several of these feedbacks destabilized CO2 and climate during the late Palaeozoic but appear to have quickened the pace of terrestrial plant and animal evolution at that time. PMID:15965270

  5. Leaf evolution: gases, genes and geochemistry.

    PubMed

    Beerling, David J

    2005-09-01

    This Botanical Briefing reviews how the integration of palaeontology, geochemistry and developmental biology is providing a new mechanistic framework for interpreting the 40- to 50-million-year gap between the origination of vascular land plants and the advent of large (megaphyll) leaves, a long-standing puzzle in evolutionary biology. Molecular genetics indicates that the developmental mechanisms required for leaf production in vascular plants were recruited long before the advent of large megaphylls. According to theory, this morphogenetic potential was only realized as the concentration of atmospheric CO2 declined during the late Palaeozoic. Surprisingly, plants effectively policed their own evolution since the decrease in CO2 was brought about as terrestrial floras evolved accelerating the rate of silicate rock weathering and enhancing sedimentary organic carbon burial, both of which are long-term sinks for CO2. The recognition that plant evolution responds to and influences CO(2) over millions of years reveals the existence of an intricate web of vegetation feedbacks regulating the long-term carbon cycle. Several of these feedbacks destabilized CO2 and climate during the late Palaeozoic but appear to have quickened the pace of terrestrial plant and animal evolution at that time.

  6. Variation in Phenolics, Flavanoids, Antioxidant and Tyrosinase Inhibitory Activity of Peach Blossoms at Different Developmental Stages.

    PubMed

    Liu, Jie-Chao; Jiao, Zhong-Gao; Yang, Wen-Bo; Zhang, Chun-Ling; Liu, Hui; Lv, Zhen-Zhen

    2015-11-18

    Peach blossoms were harvested and classified into six developmental stages: (I) bud emerging stage; (II) middle bud stage; (III) large bud stage; (IV) initial-flowering stage; (V) full-flowering stage; and (VI) end-flowering stage. The contents of total phenolics, flavanoids, individual phenolic compounds as well as antioxidant and tyrosinase inhibitory activity of peach blossoms at different developmental stages were investigated. The total phenolic contents varied from 149.80 to 74.80 mg chlorogenic acid equivalents/g dry weight (DW), and the total flavanoid contents ranged from 93.03 to 44.06 mg rutin equivalents/g DW. Both the contents of total phenolics and flavanoids decreased during blossom development. Chlorogenic acid was the predominant component, accounting for 62.08%-71.09% of the total amount of identified phenolic compounds in peach blossom. The antioxidant capacities determined by different assays and tyrosinase inhibitory activity also showed descending patterns during blossom development. Significant correlations were observed between antioxidant capacities with contents of total phenolics and total flavanoids as well as chlorogenic acid, cinnamic acid and kaempferol-3-O-galactoside, while the tyrosinase inhibitory activity had lower correlations with total phenolics and total flavanoids as well as chlorogenic acid, quercetin-3-O-rhamnoside, kaempferol-3-O-galactoside and cinnamic acid. The antioxidant activities of peach blossom seemed to be more dependent on the phenolic compounds than tyrosinase inhibitory activity.

  7. Identification and characterization of pleiotropic and co-located resistance loci to leaf rust and stripe rust in bread wheat cultivar Sujata.

    PubMed

    Lan, Caixia; Zhang, Yelun; Herrera-Foessel, Sybil A; Basnet, Bhoja R; Huerta-Espino, Julio; Lagudah, Evans S; Singh, Ravi P

    2015-03-01

    Two new co-located resistance loci, QLr.cim - 1AS/QYr.cim - 1AS and QLr.cim - 7BL/YrSuj , in combination with Lr46 / Yr29 and Lr67/Yr46 , and a new leaf rust resistance quantitative trait loci, conferred high resistance to rusts in adult plant stage. The tall Indian bread wheat cultivar Sujata displays high and low infection types to leaf rust and stripe rust, respectively, at the seedling stage in greenhouse tests. It was also highly resistant to both rusts at adult plant stage in field trials in Mexico. The genetic basis of this resistance was investigated in a population of 148 F5 recombinant inbred lines (RILs) derived from the cross Avocet × Sujata. The parents and RIL population were characterized in field trials for resistance to leaf rust during 2011 at El Batán, and 2012 and 2013 at Ciudad Obregón, Mexico, and for stripe rust during 2011 and 2012 at Toluca, Mexico; they were also characterized three times for stripe rust at seedling stage in the greenhouse. The RILs were genotyped with diversity arrays technology and simple sequence repeat markers. The final genetic map was constructed with 673 polymorphic markers. Inclusive composite interval mapping analysis detected two new significant co-located resistance loci, QLr.cim-1AS/QYr.cim-1AS and QLr.cim-7BL/YrSuj, on chromosomes 1AS and 7BL, respectively. The chromosomal position of QLr.cim-7BL overlapped with the seedling stripe rust resistance gene, temporarily designated as YrSuj. Two previously reported pleiotropic adult plant resistance genes, Lr46/Yr29 and Lr67/Yr46, and a new leaf rust resistance quantitative trait loci derived from Avocet were also mapped in the population. The two new co-located resistance loci are expected to contribute to breeding durable rust resistance in wheat. Closely linked molecular markers can be used to transfer all four resistance loci simultaneously to modern wheat varieties.

  8. Volatile emissions from Aesculus hippocastanum induced by mining of larval stages of Cameraria ohridella influence oviposition by conspecific females.

    PubMed

    Johne, A Bettina; Weissbecker, Bernhard; Schütz, Stefan

    2006-10-01

    Larval stages of the horse chestnut leafminer Cameraria ohridella can completely destroy the surface of horse chestnut leaves, Aesculus hippocastanum. This study investigated the effect of the degree of leaf browning caused by the insect's larvae on olfactory detection, aggregation, and oviposition of C. ohridella adults. The influence of A. hippocastanum flower scent on oviposition of the first generation was also evaluated. Utilizing gas chromatography coupled with parallel detection by mass spectrometry and electroantennography (GC-MS/EAD), more than 30 compounds eliciting responses from antennae of C. ohridella were detected. Oviposition and mining by C. ohridella caused significant changes in the profile of leaf volatiles of A. hippocastanum. After oviposition and subsequent mining by early larval stages (L1-L3), substances such as benzaldehyde, 1,8-cineole, benzyl alcohol, 2-phenylethanol, methyl salicylate, (E)-beta-caryophyllene, and (E,E)-alpha-farnesene were emitted in addition to the compounds emitted by uninfested leaves. Insects were able to detect these compounds. The emitted amount of these substances increased with progressive larval development. During late larval stages (L4, L5) and severe loss of green leaf area, (E,E)-2,4-hexadienal, (E/Z)-linalool oxide (furanoid), nonanal, and decanal were also released by leaves. These alterations of the profile of volatiles caused modifications in aggregation of C. ohridella on leaves. In choice tests, leaves in early infestation stages showed no significant effect on aggregation, whereas insects avoided leaves in late infestation stages. Further choice tests with leaves treated with single compounds led to the identification of substances mediating an increase or decrease in oviposition.

  9. Green Leaf Volatile Emissions during High Temperature and Drought Stress in a Central Amazon Rainforest

    PubMed Central

    Jardine, Kolby J.; Chambers, Jeffrey Q.; Holm, Jennifer; Jardine, Angela B.; Fontes, Clarissa G.; Zorzanelli, Raquel F.; Meyers, Kimberly T.; de Souza, Vinicius Fernadez; Garcia, Sabrina; Gimenez, Bruno O.; de O. Piva, Luani R.; Higuchi, Niro; Artaxo, Paulo; Martin, Scot; Manzi, Antônio O.

    2015-01-01

    Prolonged drought stress combined with high leaf temperatures can induce programmed leaf senescence involving lipid peroxidation, and the loss of net carbon assimilation during early stages of tree mortality. Periodic droughts are known to induce widespread tree mortality in the Amazon rainforest, but little is known about the role of lipid peroxidation during drought-induced leaf senescence. In this study, we present observations of green leaf volatile (GLV) emissions during membrane peroxidation processes associated with the combined effects of high leaf temperatures and drought-induced leaf senescence from individual detached leaves and a rainforest ecosystem in the central Amazon. Temperature-dependent leaf emissions of volatile terpenoids were observed during the morning, and together with transpiration and net photosynthesis, showed a post-midday depression. This post-midday depression was associated with a stimulation of C5 and C6 GLV emissions, which continued to increase throughout the late afternoon in a temperature-independent fashion. During the 2010 drought in the Amazon Basin, which resulted in widespread tree mortality, green leaf volatile emissions (C6 GLVs) were observed to build up within the forest canopy atmosphere, likely associated with high leaf temperatures and enhanced drought-induced leaf senescence processes. The results suggest that observations of GLVs in the tropical boundary layer could be used as a chemical sensor of reduced ecosystem productivity associated with drought stress. PMID:27135346

  10. Green Leaf Volatile Emissions during High Temperature and Drought Stress in a Central Amazon Rainforest.

    PubMed

    Jardine, Kolby J; Chambers, Jeffrey Q; Holm, Jennifer; Jardine, Angela B; Fontes, Clarissa G; Zorzanelli, Raquel F; Meyers, Kimberly T; de Souza, Vinicius Fernadez; Garcia, Sabrina; Gimenez, Bruno O; Piva, Luani R de O; Higuchi, Niro; Artaxo, Paulo; Martin, Scot; Manzi, Antônio O

    2015-09-15

    Prolonged drought stress combined with high leaf temperatures can induce programmed leaf senescence involving lipid peroxidation, and the loss of net carbon assimilation during early stages of tree mortality. Periodic droughts are known to induce widespread tree mortality in the Amazon rainforest, but little is known about the role of lipid peroxidation during drought-induced leaf senescence. In this study, we present observations of green leaf volatile (GLV) emissions during membrane peroxidation processes associated with the combined effects of high leaf temperatures and drought-induced leaf senescence from individual detached leaves and a rainforest ecosystem in the central Amazon. Temperature-dependent leaf emissions of volatile terpenoids were observed during the morning, and together with transpiration and net photosynthesis, showed a post-midday depression. This post-midday depression was associated with a stimulation of C₅ and C₆ GLV emissions, which continued to increase throughout the late afternoon in a temperature-independent fashion. During the 2010 drought in the Amazon Basin, which resulted in widespread tree mortality, green leaf volatile emissions (C₆ GLVs) were observed to build up within the forest canopy atmosphere, likely associated with high leaf temperatures and enhanced drought-induced leaf senescence processes. The results suggest that observations of GLVs in the tropical boundary layer could be used as a chemical sensor of reduced ecosystem productivity associated with drought stress.

  11. Impaired Chloroplast Biogenesis in Immutans, an Arabidopsis Variegation Mutant, Modifies Developmental Programming, Cell Wall Composition and Resistance to Pseudomonas syringae.

    PubMed

    Pogorelko, Gennady V; Kambakam, Sekhar; Nolan, Trevor; Foudree, Andrew; Zabotina, Olga A; Rodermel, Steven R

    2016-01-01

    The immutans (im) variegation mutation of Arabidopsis has green- and white- sectored leaves due to action of a nuclear recessive gene. IM codes for PTOX, a plastoquinol oxidase in plastid membranes. Previous studies have revealed that the green and white sectors develop into sources (green tissues) and sinks (white tissues) early in leaf development. In this report we focus on white sectors, and show that their transformation into effective sinks involves a sharp reduction in plastid number and size. Despite these reductions, cells in the white sectors have near-normal amounts of plastid RNA and protein, and surprisingly, a marked amplification of chloroplast DNA. The maintenance of protein synthesis capacity in the white sectors might poise plastids for their development into other plastid types. The green and white im sectors have different cell wall compositions: whereas cell walls in the green sectors resemble those in wild type, cell walls in the white sectors have reduced lignin and cellulose microfibrils, as well as alterations in galactomannans and the decoration of xyloglucan. These changes promote susceptibility to the pathogen Pseudomonas syringae. Enhanced susceptibility can also be explained by repressed expression of some, but not all, defense genes. We suggest that differences in morphology, physiology and biochemistry between the green and white sectors is caused by a reprogramming of leaf development that is coordinated, in part, by mechanisms of retrograde (plastid-to-nucleus) signaling, perhaps mediated by ROS. We conclude that variegation mutants offer a novel system to study leaf developmental programming, cell wall metabolism and host-pathogen interactions.

  12. Semi-Quantitative Evaluation of Secondary Carbonates via Portable X-ray Fluorescence Spectrometry

    NASA Astrophysics Data System (ADS)

    Chakraborty, Somsubhra; Weindorf, David; Weindorf, Camille; Duda, Bogdan; Pennington, Sarah; Ortiz, Rebekah

    2017-04-01

    Secondary calcium carbonate commonly occurs in subsoils of semi-arid soils worldwide. In US Soil Taxonomy, such horizons are frequently described as Bk, Bkk, Bkm, Bkkm, or Ck horizons at variable stages of development. Specifically, the Soil Survey Staff uses a qualitative scale of one through six to indicate differential developmental stages. However, considerable disagreement exists even among experienced soil scientists. Evaluating 75 soil samples from across four US states, a portable X-ray fluorescence (PXRF) spectrometer was used to quantify the total soil Ca content and compare it to average developmental stage scores as determined by a panel of Soil Survey Staff personnel. Samples were evaluated both as intact aggregates as well as ground (<2 mm), homogenized powders. PXRF readings of total soil Ca concentration steadily increased under both conditions as developmental stage progressed. However, minimal difference was observed between stage five and six carbonate accumulation. Stage three showed the widest variability in total soil Ca. Given than PXRF cannot distinguish between primary and secondary CaCO3 in soils, interpretation by the analyst remains essential. Nonetheless, PXRF provides an important tool for assessing carbonate laden subsoils providing elemental differentiation beyond that perceived by the human eye.

  13. Morphological characteristics of developmental stages of Acanthamoeba and Naegleria species before and after staining by various techniques.

    PubMed

    Ithoi, Init; Ahmad, Arine-Fadzlun; Mak, J W; Nissapatorn, Veeranoot; Lau, Yee-Ling; Mahmud, Rohela

    2011-11-01

    Seven stains were studied to determine the best color and contrast for staining the developmental stages of free living pathogenic Acanthamoeba and Naegleria species. The acid-fast bacilli stain (AFB) produced a blue color without contrast; trichrome-eosin and modified Field's showed various color contrasts; Giemsa, iron-hematoxylin, modified AFB and Gram produced only one color which distinguished the nucleus, nucleolus, cytoplasm, food- and water-vacuoles. The motile organs (acanthopodia, pseudopodia, lobopodia and flagella) were also clearly differentiated but produced a similar color as the cytoplasm. These motile organelles were first induced by incubating at 37 degrees C for at least 15 minutes and then fixing with methanol in order to preserve the protruding morphology prior to staining. The trichrome-eosin and iron-hematoxylin stains showed good color contrast for detecting all three stages, the trophozoite, cyst and flagellate; Giemsa and Gram stained the trophozoite and flagellate stages; the modified Field's and modified AFB stains stained only the trophozoite stage. Depending on the purpose, all these stains (except the AFB stain) can be used to identify the developmental stages of Acanthamoeba and Naegleria for clinical, epidemiological or public health use.

  14. The ZmCLA4 gene in the qLA4-1 QTL controls leaf angle in maize (Zea mays L.).

    PubMed

    Zhang, J; Ku, L X; Han, Z P; Guo, S L; Liu, H J; Zhang, Z Z; Cao, L R; Cui, X J; Chen, Y H

    2014-09-01

    Maize architecture is a major contributing factor to their high level of productivity. Maize varieties with an erect-leaf-angle (LA) phenotype, which increases light harvesting for photosynthesis and grain-filling, have elevated grain yields. Although a large body of information is available on the map positions of quantitative trait loci (QTL) for LA, little is known about the molecular mechanism of these QTL. In this study, the ZmCLA4 gene, which is responsible for the qLA4-1 QTL associated with LA, was identified and isolated by fine mapping and positional cloning. The ZmCLA4 gene is an orthologue of LAZY1 in rice and Arabidopsis. Sequence analysis revealed two SNPs and two indel sites in ZmCLA4 between the D132 and D132-NIL inbred maize lines. Association analysis showed that C/T/mutation667 and CA/indel965 were strongly associated with LA. Subcellular localization verified the functions of a predicted transmembrane domain and a nuclear localization signal in ZmCLA4. Transgenic maize plants with a down-regulated ZmCLA4 RNAi construct and transgenic rice plants over-expressing ZmCLA4 confirmed that the ZmCLA4 gene located in the qLA4 QTL regulated LA. The allelic variants of ZmCLA4 in the D132 and D132-NIL lines exhibited significant differences in leaf angle. ZmCLA4 transcript accumulation was higher in D132-NIL than in D132 during all the developmental stages and was negatively correlated with LA. The gravitropic response was increased and cell shape and number at the leaf and stem junctions were altered in D132-NIL relative to D132. These findings suggest that ZmCLA4 plays a negative role in the control of maize LA through the alteration of mRNA accumulation, leading to altered shoot gravitropism and cell development. The cloning of the gene responsible for the qLA4-1 QTL provides information on the molecular mechanisms of LA in maize and an opportunity for the improvement of plant architecture with regard to LA through maize breeding. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Gain and Loss of Photosynthetic Membranes during Plastid Differentiation in the Shoot Apex of Arabidopsis[W

    PubMed Central

    Charuvi, Dana; Kiss, Vladimir; Nevo, Reinat; Shimoni, Eyal; Adam, Zach; Reich, Ziv

    2012-01-01

    Chloroplasts of higher plants develop from proplastids, which are undifferentiated plastids that lack photosynthetic (thylakoid) membranes. In flowering plants, the proplastid-chloroplast transition takes place at the shoot apex, which consists of the shoot apical meristem (SAM) and the flanking leaf primordia. It has been believed that the SAM contains only proplastids and that these become chloroplasts only in the primordial leaves. Here, we show that plastids of the SAM are neither homogeneous nor necessarily null. Rather, their developmental state varies with the specific region and/or layer of the SAM in which they are found. Plastids throughout the L1 and L3 layers of the SAM possess fairly developed thylakoid networks. However, many of these plastids eventually lose their thylakoids during leaf maturation. By contrast, plastids at the central, stem cell–harboring region of the L2 layer of the SAM lack thylakoid membranes; these appear only at the periphery, near the leaf primordia. Thus, plastids in the SAM undergo distinct differentiation processes that, depending on their lineage and position, lead to either development or loss of thylakoid membranes. These processes continue along the course of leaf maturation. PMID:22438022

  16. Parental Involvement and the Developmental Stages of Writing: Knowledge and Skills to Assist Children and Parent Perceptions on Their Experience

    ERIC Educational Resources Information Center

    Fernandez-Kaltenbach, Elena

    2009-01-01

    A kindergarten parent workshop series on the developmental stages of writing was created and assessed. The intended outcome was to empower parents with writing knowledge and writing skills so that they could apply this knowledge and skills at home with their child. The researcher developed the workshops from parent involvement research,…

  17. Validity of the Fine Motor Area of the 12-Month Ages and Stages Questionnaire in Infants Following Major Surgery

    ERIC Educational Resources Information Center

    Smith, Cally; Wallen, Margaret; Walker, Karen; Bundy, Anita; Rolinson, Rachel; Badawi, Nadia

    2012-01-01

    The Ages and Stages Questionnaires (ASQ) are parent-report screening tools to identify infants at risk of developmental difficulties. The purpose of this study was to examine validity and internal reliability of the fine motor developmental area of the ASQ, 2nd edition (ASQ2-FM) for screening 12-month-old infants following major surgery. The…

  18. The TIE1 Transcriptional Repressor Links TCP Transcription Factors with TOPLESS/TOPLESS-RELATED Corepressors and Modulates Leaf Development in Arabidopsis[W

    PubMed Central

    Tao, Qing; Guo, Dongshu; Wei, Baoye; Zhang, Fan; Pang, Changxu; Jiang, Hao; Zhang, Jinzhe; Wei, Tong; Gu, Hongya; Qu, Li-Jia; Qin, Genji

    2013-01-01

    Leaf size and shape are mainly determined by coordinated cell division and differentiation in lamina. The CINCINNATA (CIN)-like TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors are key regulators of leaf development. However, the mechanisms that control TCP activities during leaf development are largely unknown. We identified the TCP Interactor containing EAR motif protein1 (TIE1), a novel transcriptional repressor, as a major modulator of TCP activities during leaf development. Overexpression of TIE1 leads to hyponastic and serrated leaves, whereas disruption of TIE1 causes epinastic leaves. TIE1 is expressed in young leaves and encodes a transcriptional repressor containing a C-terminal EAR motif, which mediates interactions with the TOPLESS (TPL)/TOPLESS-RELATED (TPR) corepressors. In addition, TIE1 physically interacts with CIN-like TCPs. We propose that TIE1 regulates leaf size and morphology by inhibiting the activities of TCPs through recruiting the TPL/TPR corepressors to form a tertiary complex at early stages of leaf development. PMID:23444332

  19. Frost sensitivity of various deciduous plant species during leaf development in spring

    NASA Astrophysics Data System (ADS)

    Estrella, Nicole; Heinzmann, Verena; Menzel, Annette

    2017-04-01

    Frost damage in deciduous woody plants is a major climate component affecting fitness and distribution of species. It is a trade-off between early bud burst enlarging the potential growing season and frost risk for deciduous plants in many regions. In a warming world observed earlier budburst may lead to an increased risk of spring frost damage caused by higher variability in temperatures (IPCC 2007). Lenz et al. (2013) showed that leaves are in general more sensitive to frost in later leaf development stages. But still there is little knowledge on stages of leaf development and their susceptibility to frost damage in many deciduous species. Additionally there might be variation with plant traits or different strategies within specific groups of species. Frost risk minimization can also be achieved by variability in bud burst within a specimen. Therefore, in this study we observed more than 174 individual plant specimen of 96 deciduous woody plant species growing in a comparable microclimate outside on the campus of the Technical University of Munich in Freising, southern Germany. Their phenology was intensively studied from 12th of March to 4th of May, including variation within a specimen. Several times twigs for the frost experiment were cut in different stages of leaf development and exposed to freezing temperatures of -4 and -6°C in two lab freezers. Since the leaf development in spring 2015 started comparably late, too many species emerged simultaneously leading to some capacity problems in the freezers. Nevertheless, our results still reveal novel aspects concerning leaf development and frost sensitivity. The phenological development proceeded in general from outside to inside of the crown (59%), in 33% of the cases all over the plant simultaneously. Sporadic, inside to outside or vertical development characteristics occurred in rare cases (8%). Mixed model analysis indicated impacts on phenology by plant family, natural origin, pollination mode, and development characteristic (in decreasing order of significance). The frost experiment clearly showed that damage at -6°C was larger than at -4°C and that twigs frosted at later dates, thus in higher phenological development stages, were more prone to frost damage than twigs frosted at earlier dates / in lower development stages. Additionally, there was a phylogenetic effect since frost damage significantly varied with plant family whereas plant origin had no relevance. References Lenz A, Hoch G, Vitasse Y, Körner C (2013) European deciduous trees exhibit similar safety margins against damage by spring freeze events along elevational gradients. New Phytologist 200: 1166-1175. Stocker T, Qin D, Platner G (2013) Climate change 2013: The physical science basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers (IPCC, 2013).

  20. Inhibitory effect of Piper betle Linn. leaf extract on protein glycation--quantification and characterization of the antiglycation components.

    PubMed

    Bhattacherjee, Abhishek; Chakraborti, Abhay Sankar

    2013-12-01

    Piper betle Linn. is a Pan-Asiatic plant having several beneficial properties. Protein glycation and advanced glycation end products (AGEs) formation are associated with different pathophysiological conditions, including diabetes mellitus. Our study aims to find the effect of methanolic extract of P. betle leaves on in vitro protein glycation in bovine serum albumin (BSA)-glucose model. The extract inhibits glucose-induced glycation, thiol group modification and carbonyl formation in BSA in dose-dependent manner. It inhibits different stages of protein glycation, as demonstrated by using glycation models: hemoglobin-delta-gluconolactone (for early stage, Amadori product formation), BSA-methylglyoxal (for middle stage, formation of oxidative cleavage products) and BSA-glucose (for last stage, formation of AGEs) systems. Several phenolic compounds are isolated from the extract. Considering their relative amounts present in the extract, rutin appears to be the most active antiglycating agent. The extract of P. betle leaf may thus have beneficial effect in preventing protein glycation and associated complications in pathological conditions.

Top