Carbon Dioxide Metabolism in Leaf Epidermal Tissue 1
Willmer, C. M.; Pallas, J. E.; Black, C. C.
1973-01-01
A number of plant species were surveyed to obtain pure leaf epidermal tissue in quantity. Commelina communis L. and Tulipa gesnariana L. (tulip) were chosen for further work. Chlorophyll a/b ratios of epidermal tissues were 2.41 and 2.45 for C. communis and tulip, respectively. Phosphoenolpyruvate carboxylase, ribulose-1,5-diphosphate carboxylase, malic enzyme, and NAD+ and NADP+ malate dehydrogenases were assayed with epidermal tissue and leaf tissue minus epidermal tissue. In both species, there was less ribulose 1,5-diphosphate than phosphoenolpyruvate carboxylase activity in epidermal tissue whether expressed on a protein or chlorophyll basis whereas the reverse was true for leaf tissue minus epidermal tissue. In both species, malic enzyme activities were higher in epidermal tissue than in the remaining leaf tissue when expressed on a protein or chlorophyll basis. In both species, NAD+ and NADP+ malate dehydrogenase activities were higher in the epidermal tissue when expressed on a chlorophyll basis; however, on a protein basis, the converse was true. Microautoradiography of C. communis epidermis and histochemical tests for keto acids suggested that CO2 fixation occurred predominantly in the guard cells. The significance and possible location of the enzymes are discussed in relation to guard cell metabolism. Images PMID:16658581
Relationship between Endopolyploidy and Cell Size in Epidermal Tissue of Arabidopsis.
Melaragno, JE; Mehrotra, B; Coleman, AW
1993-01-01
Relative quantities of DNA in individual nuclei of stem and leaf epidermal cells of Arabidopsis were measured microspectrofluorometrically using epidermal peels. The relative ploidy level in each nucleus was assessed by comparison to root tip mitotic nuclei. A clear pattern of regular endopolyploidy is evident in epidermal cells. Guard cell nuclei contain levels of DNA comparable to dividing root cells, the 2C level (i.e., one unreplicated copy of the nuclear DNA). Leaf trichome nuclei had elevated ploidy levels of 4C, 8C, 16C, 32C, and 64C, and their cytology suggested that the polyploidy represents a form of polyteny. The nuclei of epidermal pavement cells were 2C, 4C, and 8C in stem epidermis, and 2C, 4C, 8C, and 16C in leaf epidermis. Morphometry of epidermal pavement cells revealed a direct proportionality between nuclear DNA level and cell size. A consideration of the development process suggests that the cells of highest ploidy level are developmentally oldest; consequently, the developmental pattern of epidermal tissues can be read from the ploidy pattern of the cells. This observation is relevant to theories of stomate spacing and offers opportunities for genetic analysis of the endopolyploidy/polyteny phenomenon. PMID:12271050
Pérez-Pérez, José Manuel; Rubio-Díaz, Silvia; Dhondt, Stijn; Hernández-Romero, Diana; Sánchez-Soriano, Joaquín; Beemster, Gerrit T S; Ponce, María Rosa; Micol, José Luis
2011-12-01
Despite the large number of genes known to affect leaf shape or size, we still have a relatively poor understanding of how leaf morphology is established. For example, little is known about how cell division and cell expansion are controlled and coordinated within a growing leaf to eventually develop into a laminar organ of a definite size. To obtain a global perspective of the cellular basis of variations in leaf morphology at the organ, tissue and cell levels, we studied a collection of 111 non-allelic mutants with abnormally shaped and/or sized leaves, which broadly represent the mutational variations in Arabidopsis thaliana leaf morphology not associated with lethality. We used image-processing techniques on these mutants to quantify morphological parameters running the gamut from the palisade mesophyll and epidermal cells to the venation, whole leaf and rosette levels. We found positive correlations between epidermal cell size and leaf area, which is consistent with long-standing Avery's hypothesis that the epidermis drives leaf growth. In addition, venation parameters were positively correlated with leaf area, suggesting that leaf growth and vein patterning share some genetic controls. Positional cloning of the genes affected by the studied mutations will eventually establish functional links between genotypes, molecular functions, cellular parameters and leaf phenotypes. © 2011 Blackwell Publishing Ltd.
Adding a Piece to the Leaf Epidermal Cell Shape Puzzle.
von Wangenheim, Daniel; Wells, Darren M; Bennett, Malcolm J
2017-11-06
The jigsaw puzzle-shaped pavement cells in the leaf epidermis collectively function as a load-bearing tissue that controls organ growth. In this issue of Developmental Cell, Majda et al. (2017) shed light on how the jigsaw shape can arise from localized variations in wall stiffness between adjacent epidermal cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Diane L. Wagner; Linda DeFoliart; Patricia Doak; Jenny Schneiderheinze
2008-01-01
The aspen leaf miner, Phyllocnistis populiella, feeds on the contents of epidermal cells on both top (adaxial) and bottom (abaxial) surfaces of quaking aspen leaves, leaving the photosynthetic tissue of the mesophyll intact. This type of feeding is taxonomically restricted to a small subset of leaf mining insects but can cause widespread plant...
A Theoretical Model of Jigsaw-Puzzle Pattern Formation by Plant Leaf Epidermal Cells.
Higaki, Takumi; Kutsuna, Natsumaro; Akita, Kae; Takigawa-Imamura, Hisako; Yoshimura, Kenji; Miura, Takashi
2016-04-01
Plant leaf epidermal cells exhibit a jigsaw puzzle-like pattern that is generated by interdigitation of the cell wall during leaf development. The contribution of two ROP GTPases, ROP2 and ROP6, to the cytoskeletal dynamics that regulate epidermal cell wall interdigitation has already been examined; however, how interactions between these molecules result in pattern formation remains to be elucidated. Here, we propose a simple interface equation model that incorporates both the cell wall remodeling activity of ROP GTPases and the diffusible signaling molecules by which they are regulated. This model successfully reproduces pattern formation observed in vivo, and explains the counterintuitive experimental results of decreased cellulose production and increased thickness. Our model also reproduces the dynamics of three-way cell wall junctions. Therefore, this model provides a possible mechanism for cell wall interdigitation formation in vivo.
A Theoretical Model of Jigsaw-Puzzle Pattern Formation by Plant Leaf Epidermal Cells
Higaki, Takumi; Kutsuna, Natsumaro; Akita, Kae; Takigawa-Imamura, Hisako; Yoshimura, Kenji; Miura, Takashi
2016-01-01
Plant leaf epidermal cells exhibit a jigsaw puzzle–like pattern that is generated by interdigitation of the cell wall during leaf development. The contribution of two ROP GTPases, ROP2 and ROP6, to the cytoskeletal dynamics that regulate epidermal cell wall interdigitation has already been examined; however, how interactions between these molecules result in pattern formation remains to be elucidated. Here, we propose a simple interface equation model that incorporates both the cell wall remodeling activity of ROP GTPases and the diffusible signaling molecules by which they are regulated. This model successfully reproduces pattern formation observed in vivo, and explains the counterintuitive experimental results of decreased cellulose production and increased thickness. Our model also reproduces the dynamics of three-way cell wall junctions. Therefore, this model provides a possible mechanism for cell wall interdigitation formation in vivo. PMID:27054467
Leaf Epidermis of the Rheophyte Dyckia brevifolia Baker (Bromeliaceae)
Lobo, Ghislaine Maria; de Souza, Thaysi Ventura; Voltolini, Caroline Heinig; Reis, Ademir
2013-01-01
Some species of Dyckia Schult. f., including Dyckia brevifolia Baker, are rheophytes that live in the fast-moving water currents of streams and rivers which are subject to frequent flooding, but also period of low water. This study aimed to analyze the leaf epidermis of D. brevifolia in the context of epidermal adaptation to this aquatic plant's rheophytic habitat. The epidermis is uniseriate, and the cuticle is thickened. The inner periclinal and anticlinal walls of the epidermal cells are thickened and lignified. Stomata are tetracytic, located in the depressions in relation to the surrounding epidermal cells, and covered by peltate trichomes. While the epidermal characteristics of D. brevifolia are similar to those of Bromeliaceae species, this species has made particular adaptations of leaf epidermis in response to its rheophytic environment. PMID:23864825
DEFECTIVE KERNEL1 (DEK1) Regulates Cell Walls in the Leaf Epidermis1
Amanda, Dhika; Ingram, Gwyneth C.
2016-01-01
The plant epidermis is crucial to survival, regulating interactions with the environment and controlling plant growth. The phytocalpain DEFECTIVE KERNEL1 (DEK1) is a master regulator of epidermal differentiation and maintenance, acting upstream of epidermis-specific transcription factors, and is required for correct cell adhesion. It is currently unclear how changes in DEK1 lead to cellular defects in the epidermis and the pathways through which DEK1 acts. We have combined growth kinematic studies, cell wall analysis, and transcriptional analysis of genes downstream of DEK1 to determine the cause of phenotypic changes observed in DEK1-modulated lines of Arabidopsis (Arabidopsis thaliana). We reveal a novel role for DEK1 in the regulation of leaf epidermal cell wall structure. Lines with altered DEK1 activity have epidermis-specific changes in the thickness and polysaccharide composition of cell walls that likely underlie the loss of adhesion between epidermal cells in plants with reduced levels of DEK1 and changes in leaf shape and size in plants constitutively overexpressing the active CALPAIN domain of DEK1. Calpain-overexpressing plants also have increased levels of cellulose and pectins in epidermal cell walls, and this is correlated with the expression of several cell wall-related genes, linking transcriptional regulation downstream of DEK1 with cellular effects. These findings significantly advance our understanding of the role of the epidermal cell walls in growth regulation and establish a new role for DEK1 in pathways regulating epidermal cell wall deposition and remodeling. PMID:27756823
Liu, Yubing; Li, Xinrong; Chen, Guoxiong; Li, Mengmeng; Liu, Meiling; Liu, Dan
2015-01-01
Leaf epidermal micromorphology and mesophyll structure during the development of Populus euphratica heteromorphic leaves, including linear, lanceolate, ovate, dentate ovate, dentate rhombic, dentate broad-ovate and dentate fan-shaped leaves, were studied by using electron and light microscopy. During development of heteromorphic leaves, epidermal appendages (wax crystals and trichomes) and special cells (mucilage cells and crystal idioblasts) increased in all leaf types while chloroplast ultrastructure and stomatal characters show maximum photosynthetic activity in dentate ovate and rhombic leaves. Also, functional analysis by subordinate function values shows that the maximum adaptability to adverse stress was exhibited in the broad type of mature leaves. The 12 heteromorphic leaf types are classified into three major groups by hierarchical cluster analysis: young, developing and mature leaves. Mature leaves can effectively obtain the highest stress resistance by combining the protection of xerophytic anatomy from drought stress, regulation of water uptake in micro-environment by mucilage and crystal idioblasts, and assistant defense of transpiration reduction through leaf epidermal appendages, which improves photosynthetic activity under arid desert conditions. Our data confirms that the main leaf function is differentiated during the developing process of heteromorphic leaves. PMID:26356300
Liu, Yubing; Li, Xinrong; Chen, Guoxiong; Li, Mengmeng; Liu, Meiling; Liu, Dan
2015-01-01
Leaf epidermal micromorphology and mesophyll structure during the development of Populus euphratica heteromorphic leaves, including linear, lanceolate, ovate, dentate ovate, dentate rhombic, dentate broad-ovate and dentate fan-shaped leaves, were studied by using electron and light microscopy. During development of heteromorphic leaves, epidermal appendages (wax crystals and trichomes) and special cells (mucilage cells and crystal idioblasts) increased in all leaf types while chloroplast ultrastructure and stomatal characters show maximum photosynthetic activity in dentate ovate and rhombic leaves. Also, functional analysis by subordinate function values shows that the maximum adaptability to adverse stress was exhibited in the broad type of mature leaves. The 12 heteromorphic leaf types are classified into three major groups by hierarchical cluster analysis: young, developing and mature leaves. Mature leaves can effectively obtain the highest stress resistance by combining the protection of xerophytic anatomy from drought stress, regulation of water uptake in micro-environment by mucilage and crystal idioblasts, and assistant defense of transpiration reduction through leaf epidermal appendages, which improves photosynthetic activity under arid desert conditions. Our data confirms that the main leaf function is differentiated during the developing process of heteromorphic leaves.
Traiperm, Paweena; Chow, Janene; Nopun, Possathorn; Staples, G; Swangpol, Sasivimon C
2017-12-01
The genus Argyreia Lour. is one of the species-rich Asian genera in the family Convolvulaceae. Several species complexes were recognized in which taxon delimitation was imprecise, especially when examining herbarium materials without fully developed open flowers. The main goal of this study is to investigate and describe leaf anatomy for some morphologically similar Argyreia using epidermal peeling, leaf and petiole transverse sections, and scanning electron microscopy. Phenetic analyses including cluster analysis and principal component analysis were used to investigate the similarity of these morpho-types. Anatomical differences observed between the morpho-types include epidermal cell walls and the trichome types on the leaf epidermis. Additional differences in the leaf and petiole transverse sections include the epidermal cell shape of the adaxial leaf blade, the leaf margins, and the petiole transverse sectional outline. The phenogram from cluster analysis using the UPGMA method represented four groups with an R value of 0.87. Moreover, the important quantitative and qualitative leaf anatomical traits of the four groups were confirmed by the principal component analysis of the first two components. The results from phenetic analyses confirmed the anatomical differentiation between the morpho-types. Leaf anatomical features regarded as particularly informative for morpho-type differentiation can be used to supplement macro morphological identification.
Akita, Kae; Kobayashi, Megumi; Sato, Mayuko; Kutsuna, Natsumaro; Ueda, Takashi; Toyooka, Kiminori; Nagata, Noriko; Hasezawa, Seiichiro; Higaki, Takumi
2017-01-01
In most dicotyledonous plants, leaf epidermal pavement cells develop jigsaw puzzle-like shapes during cell expansion. The rapid growth and complicated cell shape of pavement cells is suggested to be achieved by targeted exocytosis that is coordinated with cytoskeletal rearrangement to provide plasma membrane and/or cell wall materials for lobe development during their morphogenesis. Therefore, visualization of membrane trafficking in leaf pavement cells should contribute an understanding of the mechanism of plant cell morphogenesis. To reveal membrane trafficking in pavement cells, we observed monomeric red fluorescent protein-tagged rat sialyl transferases, which are markers of trans-Golgi cisternal membranes, in the leaf epidermis of Arabidopsis thaliana. Quantitative fluorescence imaging techniques and immunoelectron microscopic observations revealed that accumulation of the red fluorescent protein occurred mostly in the curved regions of pavement cell borders and guard cell ends during leaf expansion. Transmission electron microscopy observations revealed that apoplastic vesicular membrane structures called paramural bodies were more frequent beneath the curved cell wall regions of interdigitated pavement cells and guard cell ends in young leaf epidermis. In addition, pharmacological studies showed that perturbations in membrane trafficking resulted in simple cell shapes. These results suggested possible heterogeneity of the curved regions of plasma membranes, implying a relationship with pavement cell morphogenesis.
Wu, Yan
2013-01-01
The regulation of Rho of plants (ROP) in morphogenesis of leaf epidermal cells has been well studied, but the roles concerning regulators of ROPs such as RhoGDIs are poorly understood. This study reports that AtRhoGDI1 (GDI1) acts as a versatile regulator to modulate development of seedlings and leaf pavement cells. In mutant gdi1, leaf pavement cells showed shorter lobes in comparison with those in wild type. In GDI1-14 seedlings (GDI1-overexpression line) the growth of lobes in pavement cells was severely suppressed and the development of seedlings was altered. These results indicate that GDI1 plays an essential role in morphogenesis of epidermal pavement cells through modulating the ROP signalling pathways. The interaction between GDI1 and ROP2 or ROP6 was detected in the leaf pavement cells using FRET analysis. Dominant negative, not constitutively active, DN-rop6 could weaken the effect caused by overexpression of GDI1; because the pleiotropic phenotype of GDI1-14 plants was eliminated in the hybrid line GDI1-14 DN-rop6. GDI1 could be phosphorylated by CPK3. Three conserved Ser/Thr residues in GDI1 were determined as targeted amino acids for CPK3. Overexpression of GDI1(3D), not GDI1(3A), could rescue the abnormal growth phenotypes of gdi1-1 seedlings, demonstrating the impact of GDI1 phosphorylation in the development of Arabidopsis. In summary, these results suggest that GDI1 regulation in morphogenesis of seedlings and leaf pavement cells could be undergone through modulating the ROP signalling pathways and the phosphorylation of GDI1 by CPK3 was required for the developmental modulation in Arabidopsis. PMID:23846874
Wuyts, Nathalie; Massonnet, Catherine; Dauzat, Myriam; Granier, Christine
2012-09-01
Light and soil water content affect leaf surface area expansion through modifications in epidermal cell numbers and area, while effects on leaf thickness and mesophyll cell volumes are far less documented. Here, three-dimensional imaging was applied in a study of Arabidopsis thaliana leaf growth to determine leaf thickness and the cellular organization of mesophyll tissues under moderate soil water deficit and two cumulative light conditions. In contrast to surface area, thickness was highly conserved in response to water deficit under both low and high cumulative light regimes. Unlike epidermal and palisade mesophyll tissues, no reductions in cell number were observed in the spongy mesophyll; cells had rather changed in volume and shape. Furthermore, leaf features of a selection of genotypes affected in leaf functioning were analysed. The low-starch mutant pgm had very thick leaves because of unusually large palisade mesophyll cells, together with high levels of photosynthesis and stomatal conductance. By means of an open stomata mutant and a 9-cis-epoxycarotenoid dioxygenase overexpressor, it was shown that stomatal conductance does not necessarily have a major impact on leaf dimensions and cellular organization, pointing to additional mechanisms for the control of CO(2) diffusion under high and low stomatal conductance, respectively. © 2012 Blackwell Publishing Ltd.
Falter, Christian; Ellinger, Dorothea; von Hülsen, Behrend; Heim, René; Voigt, Christian A.
2015-01-01
The outwardly directed cell wall and associated plasma membrane of epidermal cells represent the first layers of plant defense against intruding pathogens. Cell wall modifications and the formation of defense structures at sites of attempted pathogen penetration are decisive for plant defense. A precise isolation of these stress-induced structures would allow a specific analysis of regulatory mechanism and cell wall adaption. However, methods for large-scale epidermal tissue preparation from the model plant Arabidopsis thaliana, which would allow proteome and cell wall analysis of complete, laser-microdissected epidermal defense structures, have not been provided. We developed the adhesive tape – liquid cover glass technique (ACT) for simple leaf epidermis preparation from A. thaliana, which is also applicable on grass leaves. This method is compatible with subsequent staining techniques to visualize stress-related cell wall structures, which were precisely isolated from the epidermal tissue layer by laser microdissection (LM) coupled to laser pressure catapulting. We successfully demonstrated that these specific epidermal tissue samples could be used for quantitative downstream proteome and cell wall analysis. The development of the ACT for simple leaf epidermis preparation and the compatibility to LM and downstream quantitative analysis opens new possibilities in the precise examination of stress- and pathogen-related cell wall structures in epidermal cells. Because the developed tissue processing is also applicable on A. thaliana, well-established, model pathosystems that include the interaction with powdery mildews can be studied to determine principal regulatory mechanisms in plant–microbe interaction with their potential outreach into crop breeding. PMID:25870605
Falter, Christian; Ellinger, Dorothea; von Hülsen, Behrend; Heim, René; Voigt, Christian A
2015-01-01
The outwardly directed cell wall and associated plasma membrane of epidermal cells represent the first layers of plant defense against intruding pathogens. Cell wall modifications and the formation of defense structures at sites of attempted pathogen penetration are decisive for plant defense. A precise isolation of these stress-induced structures would allow a specific analysis of regulatory mechanism and cell wall adaption. However, methods for large-scale epidermal tissue preparation from the model plant Arabidopsis thaliana, which would allow proteome and cell wall analysis of complete, laser-microdissected epidermal defense structures, have not been provided. We developed the adhesive tape - liquid cover glass technique (ACT) for simple leaf epidermis preparation from A. thaliana, which is also applicable on grass leaves. This method is compatible with subsequent staining techniques to visualize stress-related cell wall structures, which were precisely isolated from the epidermal tissue layer by laser microdissection (LM) coupled to laser pressure catapulting. We successfully demonstrated that these specific epidermal tissue samples could be used for quantitative downstream proteome and cell wall analysis. The development of the ACT for simple leaf epidermis preparation and the compatibility to LM and downstream quantitative analysis opens new possibilities in the precise examination of stress- and pathogen-related cell wall structures in epidermal cells. Because the developed tissue processing is also applicable on A. thaliana, well-established, model pathosystems that include the interaction with powdery mildews can be studied to determine principal regulatory mechanisms in plant-microbe interaction with their potential outreach into crop breeding.
Fujiwara, Makoto T.; Kojo, Kei H.; Kazama, Yusuke; Sasaki, Shun; Abe, Tomoko; Itoh, Ryuuichi D.
2015-01-01
Plastids in the leaf epidermal cells of plants are regarded as immature chloroplasts that, like mesophyll chloroplasts, undergo binary fission. While mesophyll chloroplasts have generally been used to study plastid division, recent studies have suggested the presence of tissue- or plastid type-dependent regulation of plastid division. Here, we report the detailed morphology of plastids and their stromules, and the intraplastidic localization of the chloroplast division-related protein AtFtsZ1-1, in the leaf epidermis of an Arabidopsis mutant that harbors a mutation in the chloroplast division site determinant gene AtMinE1. In atminE1, the size and shape of epidermal plastids varied widely, which contrasts with the plastid phenotype observed in atminE1 mesophyll cells. In particular, atminE1 epidermal plastids occasionally displayed grape-like morphology, a novel phenotype induced by a plastid division mutation. Observation of an atminE1 transgenic line harboring an AtMinE1 promoter::AtMinE1-yellow fluorescent protein fusion gene confirmed the expression and plastidic localization of AtMinE1 in the leaf epidermis. Further examination revealed that constriction of plastids and stromules mediated by the FtsZ1 ring contributed to the plastid pleomorphism in the atminE1 epidermis. These results illustrate that a single plastid division mutation can have dramatic consequences for epidermal plastid morphology, thereby implying that plastid division and morphogenesis are differentially regulated in epidermal and mesophyll plastids. PMID:26500667
Hoefle, Caroline; Huesmann, Christina; Schultheiss, Holger; Börnke, Frederik; Hensel, Götz; Kumlehn, Jochen; Hückelhoven, Ralph
2011-01-01
Little is known about the function of host factors involved in disease susceptibility. The barley (Hordeum vulgare) ROP (RHO of plants) G-protein RACB is required for full susceptibility of the leaf epidermis to invasion by the biotrophic fungus Blumeria graminis f. sp hordei. Stable transgenic knockdown of RACB reduced the ability of barley to accommodate haustoria of B. graminis in intact epidermal leaf cells and to form hairs on the root epidermis, suggesting that RACB is a common element of root hair outgrowth and ingrowth of haustoria in leaf epidermal cells. We further identified a barley MICROTUBULE-ASSOCIATED ROP-GTPASE ACTIVATING PROTEIN (MAGAP1) interacting with RACB in yeast and in planta. Fluorescent MAGAP1 decorated cortical microtubules and was recruited by activated RACB to the cell periphery. Under fungal attack, MAGAP1-labeled microtubules built a polarized network at sites of successful defense. By contrast, microtubules loosened where the fungus succeeded in penetration. Genetic evidence suggests a function of MAGAP1 in limiting susceptibility to penetration by B. graminis. Additionally, MAGAP1 influenced the polar organization of cortical microtubules. These results add to our understanding of how intact plant cells accommodate fungal infection structures and suggest that RACB and MAGAP1 might be antagonistic players in cytoskeleton organization for fungal entry. PMID:21685259
2017-01-01
Cell size distribution is highly reproducible, whereas the size of individual cells often varies greatly within a tissue. This is obvious in a population of Arabidopsis thaliana leaf epidermal cells, which ranged from 1,000 to 10,000 μm2 in size. Endoreduplication is a specialized cell cycle in which nuclear genome size (ploidy) is doubled in the absence of cell division. Although epidermal cells require endoreduplication to enhance cellular expansion, the issue of whether this mechanism is sufficient for explaining cell size distribution remains unclear due to a lack of quantitative understanding linking the occurrence of endoreduplication with cell size diversity. Here, we addressed this question by quantitatively summarizing ploidy profile and cell size distribution using a simple theoretical framework. We first found that endoreduplication dynamics is a Poisson process through cellular maturation. This finding allowed us to construct a mathematical model to predict the time evolution of a ploidy profile with a single rate constant for endoreduplication occurrence in a given time. We reproduced experimentally measured ploidy profile in both wild-type leaf tissue and endoreduplication-related mutants with this analytical solution, further demonstrating the probabilistic property of endoreduplication. We next extended the mathematical model by incorporating the element that cell size is determined according to ploidy level to examine cell size distribution. This analysis revealed that cell size is exponentially enlarged 1.5 times every endoreduplication round. Because this theoretical simulation successfully recapitulated experimentally observed cell size distributions, we concluded that Poissonian endoreduplication dynamics and exponential size-boosting are the sources of the broad cell size distribution in epidermal tissue. More generally, this study contributes to a quantitative understanding whereby stochastic dynamics generate steady-state biological heterogeneity. PMID:28926847
Papp, Nóra; Bencsik, Tímea; Németh, Kitti; Gyergyák, Kinga; Sulc, Alexandra; Farkas, Agnes
2011-10-01
Plants living in different ecological habitats can show significant variability in their histological and phytochemical characters. The main histological features of various populations of three medicinal plants from the Boraginaceae family were studied. Stems, petioles and leaves were investigated by light microscopy in vertical and transverse sections. The outline of the epidermal cells, as well as the shape and cell number of trichomes was studied in leaf surface casts. Differences were measured among the populations of Echium vulgare in the width and height of epidermis cells in the stem, petiole and leaf, as well as in the size of palisade cells in the leaves. Among the populations of Pulmonaria officinalis significant differences were found in the length of trichomes and in the slightly or strongly wavy outline of epidermal radial cell walls. Populations of Symphytum officinale showed variance in the height of epidermal cells in leaves and stems, length of palisade cells and number of intercellular spaces in leaves, and the size of the central cavity in the stem. Boraginaceae bristles were found to be longer in plants in windy/shady habitats as opposed to sunny habitats, both in the leaves and stems ofP. officinalis and S. officinale, which might be connected to varying levels of exposure to wind. Longer epidermal cells were detected in the leaves and stems of both E. vulgare and S. officinale plants living in shady habitats, compared with shorter cells in sunny habitats. Leaf mesophyll cells were shorter in shady habitats as opposed to longer cells in sunny habitats, both in E. vulgare and S. officinale. This combination of histological characters may contribute to the plant's adaptation to various amounts of sunshine. The reported data prove the polymorphism of the studied taxa, as well as their ability to adapt to various ecological circumstances.
Martin, Craig E; Rux, Guido; Herppich, Werner B
2013-01-01
It has been well-established that many epiphytic bromeliads of the atmospheric-type morphology, i.e., with leaf surfaces completely covered by large, overlapping, multicellular trichomes, are capable of absorbing water vapor from the atmosphere when air humidity increases. It is much less clear, however, whether this absorption of water vapor can hydrate the living cells of the leaves and, as a consequence, enhance physiological processes in such cells. The goal of this research was to determine if the absorption of atmospheric water vapor by the atmospheric epiphyte Tillandsia usneoides results in an increase in turgor pressure in leaf epidermal cells that subtend the large trichomes, and, by using chlorophyll fluorescence techniques, to determine if the absorption of atmospheric water vapor by leaves of this epiphyte results in increased photosynthetic activity. Results of measurements on living cells of attached leaves of this epiphytic bromeliad, using a pressure probe and of whole-shoot fluorescence imaging analyses clearly illustrated that the turgor pressure of leaf epidermal cells did not increase, and the photosynthetic activity of leaves did not increase, following exposure of the leaves to high humidity air. These results experimentally demonstrate, for the first time, that the absorption of water vapor following increases in atmospheric humidity in atmospheric epiphytic bromeliads is mostly likely a physical phenomenon resulting from hydration of non-living leaf structures, e.g., trichomes, and has no physiological significance for the plant's living tissues. Copyright © 2012 Elsevier GmbH. All rights reserved.
Long, Benedict M; Bahar, Nur H A; Atkin, Owen K
2015-11-01
In intact leaves, mitochondrial populations are highly heterogeneous among contrasting cell types; how such contrasting populations respond to sustained changes in the environment remains, however, unclear. Here, we examined respiratory rates, mitochondrial protein composition and response to growth temperature in photosynthetic (mesophyll) and non-photosynthetic (epidermal) cells from fully expanded leaves of warm-developed (WD) and cold-developed (CD) broad bean (Vicia faba L.). Rates of respiration were significantly higher in mesophyll cell protoplasts (MCPs) than epidermal cell protoplasts (ECPs), with both protoplast types exhibiting capacity for cytochrome and alternative oxidase activity. Compared with ECPs, MCPs contained greater relative quantities of porin, suggesting higher mitochondrial surface area in mesophyll cells. Nevertheless, the relative quantities of respiratory proteins (normalized to porin) were similar in MCPs and ECPs, suggesting that ECPs have lower numbers of mitochondria yet similar protein complement to MCP mitochondria (albeit with lower abundance serine hydroxymethyltransferase). Several mitochondrial proteins (both non-photorespiratory and photorespiratory) exhibited an increased abundance in response to cold in both protoplast types. Based on estimates of individual protoplast respiration rates, combined with leaf cell abundance data, epidermal cells make a small but significant (2%) contribution to overall leaf respiration which increases twofold in the cold. Taken together, our data highlight the heterogeneous nature of mitochondrial populations in leaves, both among contrasting cell types and in how those populations respond to growth temperature. © 2015 John Wiley & Sons Ltd.
Li, Wen-Qiang; Zhang, Min-Juan; Gan, Peng-Fei; Qiao, Lei; Yang, Shuai-Qi; Miao, Hai; Wang, Gang-Feng; Zhang, Mao-Mao; Liu, Wen-Ting; Li, Hai-Feng; Shi, Chun-Hai; Chen, Kun-Ming
2017-12-01
Leaf rolling is considered as one of the most important agronomic traits in rice breeding. It has been previously reported that SEMI-ROLLED LEAF 1 (SRL1) modulates leaf rolling by regulating the formation of bulliform cells in rice (Oryza sativa); however, the regulatory mechanism underlying SRL1 has yet to be further elucidated. Here, we report the functional characterization of a novel leaf-rolling mutant, curled leaf and dwarf 1 (cld1), with multiple morphological defects. Map-based cloning revealed that CLD1 is allelic with SRL1, and loses function in cld1 through DNA methylation. CLD1/SRL1 encodes a glycophosphatidylinositol (GPI)-anchored membrane protein that modulates leaf rolling and other aspects of rice growth and development. The cld1 mutant exhibits significant decreases in cellulose and lignin contents in secondary cell walls of leaves, indicating that the loss of function of CLD1/SRL1 affects cell wall formation. Furthermore, the loss of CLD1/SRL1 function leads to defective leaf epidermis such as bulliform-like epidermal cells. The defects in leaf epidermis decrease the water-retaining capacity and lead to water deficits in cld1 leaves, which contribute to the main cause of leaf rolling. As a result of the more rapid water loss and lower water content in leaves, cld1 exhibits reduced drought tolerance. Accordingly, the loss of CLD1/SRL1 function causes abnormal expression of genes and proteins associated with cell wall formation, cuticle development and water stress. Taken together, these findings suggest that the functional roles of CLD1/SRL1 in leaf-rolling regulation are closely related to the maintenance of cell wall formation, epidermal integrity and water homeostasis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Punwong, Paramita; Juprasong, Yotin; Traiperm, Paweena
2017-09-01
This study investigated the short-term impacts of an oil spill on the leaf anatomical structures of Terminalia catappa L. from crude oil leakage in Rayong province, Thailand, in 2013. Approximately 3 weeks after the oil spill, leaves of T. catappa were collected along the coastline of Rayong from one affected site, five adjacent sites, and a control site. Slides of the leaf epidermis were prepared by the peeling method, while leaf and petiole transverse sections were prepared by paraffin embedding. Cell walls of adaxial epidermal cell on leaves in the affected site were straight instead of the jigsaw shape found in leaves from the adjacent and control sites. In addition, the stomatal index of the abaxial leaf surface was significantly lower in the affected site. Leaf and petiole transverse sections collected from the affected site showed increased cuticle thickness, epidermal cell diameter on both sides, and palisade mesophyll thickness; in contrast, vessel diameter and spongy mesophyll thickness were reduced. These significant changes in the leaf anatomy of T. catappa correspond with previous research and demonstrate the negative effects of oil spill pollution on plants. The anatomical changes of T. catappa in response to crude oil pollution are discussed as a possible indicator of pollution and may be used in monitoring crude oil pollution.
Asl, Leila Kheibarshekan; Dhondt, Stijn; Boudolf, Véronique; Beemster, Gerrit T S; Beeckman, Tom; Inzé, Dirk; Govaerts, Willy; De Veylder, Lieven
2011-08-01
To efficiently capture sunlight for photosynthesis, leaves typically develop into a flat and thin structure. This development is driven by cell division and expansion, but the individual contribution of these processes is currently unknown, mainly because of the experimental difficulties to disentangle them in a developing organ, due to their tight interconnection. To circumvent this problem, we built a mathematic model that describes the possible division patterns and expansion rates for individual epidermal cells. This model was used to fit experimental data on cell numbers and sizes obtained over time intervals of 1 d throughout the development of the first leaf pair of Arabidopsis (Arabidopsis thaliana). The parameters were obtained by a derivative-free optimization method that minimizes the differences between the predicted and experimentally observed cell size distributions. The model allowed us to calculate probabilities for a cell to divide into guard or pavement cells, the maximum size at which it can divide, and its average cell division and expansion rates at each point during the leaf developmental process. Surprisingly, average cell cycle duration remained constant throughout leaf development, whereas no evidence for a maximum cell size threshold for cell division of pavement cells was found. Furthermore, the model predicted that neighboring cells of different sizes within the epidermis expand at distinctly different relative rates, which could be verified by direct observations. We conclude that cell division seems to occur independently from the status of cell expansion, whereas the cell cycle might act as a timer rather than as a size-regulated machinery.
Asl, Leila Kheibarshekan; Dhondt, Stijn; Boudolf, Véronique; Beemster, Gerrit T.S.; Beeckman, Tom; Inzé, Dirk; Govaerts, Willy; De Veylder, Lieven
2011-01-01
To efficiently capture sunlight for photosynthesis, leaves typically develop into a flat and thin structure. This development is driven by cell division and expansion, but the individual contribution of these processes is currently unknown, mainly because of the experimental difficulties to disentangle them in a developing organ, due to their tight interconnection. To circumvent this problem, we built a mathematic model that describes the possible division patterns and expansion rates for individual epidermal cells. This model was used to fit experimental data on cell numbers and sizes obtained over time intervals of 1 d throughout the development of the first leaf pair of Arabidopsis (Arabidopsis thaliana). The parameters were obtained by a derivative-free optimization method that minimizes the differences between the predicted and experimentally observed cell size distributions. The model allowed us to calculate probabilities for a cell to divide into guard or pavement cells, the maximum size at which it can divide, and its average cell division and expansion rates at each point during the leaf developmental process. Surprisingly, average cell cycle duration remained constant throughout leaf development, whereas no evidence for a maximum cell size threshold for cell division of pavement cells was found. Furthermore, the model predicted that neighboring cells of different sizes within the epidermis expand at distinctly different relative rates, which could be verified by direct observations. We conclude that cell division seems to occur independently from the status of cell expansion, whereas the cell cycle might act as a timer rather than as a size-regulated machinery. PMID:21693673
Tsutsumi, Koichi; Konno, Masae; Miyazawa, Shin-Ichi; Miyao, Mitsue
2014-02-01
Elevated CO2 concentrations (eCO2) trigger various plant responses. Despite intensive studies of these responses, the underlying mechanisms remain obscure. In this work, we investigated when and how leaf physiology and anatomy are affected by eCO2 in rice plants. We analyzed the most recently fully expanded leaves that developed successively after transfer of the plant to eCO2. To discriminate between the effects of eCO2 and those of nitrogen deficiency, we used three different levels of N application. We found that a decline in the leaf soluble protein content (on a leaf area basis) at eCO2 was only observed under N deficiency. The length and width of the leaf blade were reduced by both eCO2 and N deficiency, whereas the blade thickness was increased by eCO2 but was not affected by N deficiency. The change in length by eCO2 became detectable in the secondly fully expanded leaf, and those in width and thickness in the thirdly fully expanded leaf, which were at the leaf developmental stages P4 and P3, respectively, at the onset of the eCO2 treatment. The decreased blade length at eCO2 was associated with a decrease in the epidermal cell number on the adaxial side and a reduction in cell length on the abaxial side. The decreased width resulted from decreased numbers of small vascular bundles and epidermal cell files. The increased thickness was ascribed mainly to enhanced development of bundle sheath extensions at the ridges of vascular bundles. These observations enable us to identify the sites of action of eCO2 on rice leaf development.
Barkla, Bronwyn J; Rhodes, Timothy; Tran, Kieu-Nga T; Wijesinghege, Chathura; Larkin, John C; Dassanayake, Maheshi
2018-06-01
Endopolyploidy occurs when DNA replication takes place without subsequent mitotic nuclear division, resulting in cell-specific ploidy levels within tissues. In plants, endopolyploidy plays an important role in sustaining growth and development, but only a few studies have demonstrated a role in abiotic stress response. In this study, we investigated the function of ploidy level and nuclear and cell size in leaf expansion throughout development and tracked cell type-specific ploidy in the halophyte Mesembryanthemum crystallinum In addition to developmental endopolyploidy, we examined the effects of salinity stress on ploidy level. We focused specifically on epidermal bladder cells (EBC), which are modified balloon-like trichomes, due to their large size and role in salt accumulation. Our results demonstrate that ploidy increases as the leaves expand in a similar manner for each leaf type, and ploidy levels up to 512C were recorded for nuclei in EBC of leaves of adult plants. Salt treatment led to a significant increase in ploidy levels in the EBC, and these cells showed spatially related differences in their ploidy and nuclear and cell size depending on the positions on the leaf and stem surface. Transcriptome analysis highlighted salinity-induced changes in genes involved in DNA replication, cell cycle, endoreduplication, and trichome development in EBC. The increase in cell size and ploidy observed in M. crystallinum under salinity stress may contribute to salt tolerance by increasing the storage capacity for sodium sequestration brought about by higher metabolic activity driving rapid cell enlargement in the leaf tissue and EBC. © 2018 American Society of Plant Biologists. All rights reserved.
Pavement cells and the topology puzzle.
Carter, Ross; Sánchez-Corrales, Yara E; Hartley, Matthew; Grieneisen, Verônica A; Marée, Athanasius F M
2017-12-01
D'Arcy Thompson emphasised the importance of surface tension as a potential driving force in establishing cell shape and topology within tissues. Leaf epidermal pavement cells grow into jigsaw-piece shapes, highly deviating from such classical forms. We investigate the topology of developing Arabidopsis leaves composed solely of pavement cells. Image analysis of around 50,000 cells reveals a clear and unique topological signature, deviating from previously studied epidermal tissues. This topological distribution is established early during leaf development, already before the typical pavement cell shapes emerge, with topological homeostasis maintained throughout growth and unaltered between division and maturation zones. Simulating graph models, we identify a heuristic cellular division rule that reproduces the observed topology. Our parsimonious model predicts how and when cells effectively place their division plane with respect to their neighbours. We verify the predicted dynamics through in vivo tracking of 800 mitotic events, and conclude that the distinct topology is not a direct consequence of the jigsaw piece-like shape of the cells, but rather owes itself to a strongly life history-driven process, with limited impact from cell-surface mechanics. © 2017. Published by The Company of Biologists Ltd.
Pavement cells and the topology puzzle
2017-01-01
D'Arcy Thompson emphasised the importance of surface tension as a potential driving force in establishing cell shape and topology within tissues. Leaf epidermal pavement cells grow into jigsaw-piece shapes, highly deviating from such classical forms. We investigate the topology of developing Arabidopsis leaves composed solely of pavement cells. Image analysis of around 50,000 cells reveals a clear and unique topological signature, deviating from previously studied epidermal tissues. This topological distribution is established early during leaf development, already before the typical pavement cell shapes emerge, with topological homeostasis maintained throughout growth and unaltered between division and maturation zones. Simulating graph models, we identify a heuristic cellular division rule that reproduces the observed topology. Our parsimonious model predicts how and when cells effectively place their division plane with respect to their neighbours. We verify the predicted dynamics through in vivo tracking of 800 mitotic events, and conclude that the distinct topology is not a direct consequence of the jigsaw piece-like shape of the cells, but rather owes itself to a strongly life history-driven process, with limited impact from cell-surface mechanics. PMID:29084800
Kinoshita, Isao; Sanbe, Akiko; Yokomura, E-iti
2008-01-01
Changes in nuclear DNA content and cell size of adaxial and abaxial epidermal pavement cells were investigated using bright light-induced leaf expansion of Phaseolus vulgaris plants. In primary leaves of bean plants grown under high (sunlight) or moderate (ML; photon flux density, 163 micromol m(-2) s(-1)) light, most adaxial epidermal pavement cells had a nucleus with the 4C amount of DNA, whereas most abaxial pavement cells had a 2C nucleus. In contrast, plants grown under low intensity white light (LL; 15 micromol m(-2) s(-1)) for 13 d, when cell proliferation of epidermal pavement cells had already finished, had a 2C nuclear DNA content in most adaxial pavement cells. When these LL-grown plants were transferred to ML, the increase in irradiance raised the frequency of 4C nuclei in adaxial but not in abaxial pavement cells within 4 d. On the other hand, the size of abaxial pavement cells increased by 53% within 4 d of transfer to ML and remained unchanged thereafter, whereas adaxial pavement cells continuously enlarged for 12 d. This suggests that the increase in adaxial cell size after 4 d is supported by the nuclear DNA doubling. The different responses between adaxial and abaxial epidermal cells were not induced by the different light intensity at both surfaces. It was shown that adaxial epidermal cells have a different property than abaxial ones.
Diane Wagner; Linda DeFoliart; Patricia Doak; Jenny Schneiderheinze
2008-01-01
We studied the effect of epidermal mining on aspen growth and physiology during an outbreak of Phyllocnistis populiella in the boreal forest of interior Alaska. Experimental reduction of leaf miner density across two sites and 3 years significantly increased annual apsen growth rates relative to naturally mined controls. Leaf mining damage was...
Responses of tropical legumes from the Brazilian Atlantic Rainforest to simulated acid rain.
Andrade, Guilherme C; Silva, Luzimar C
2017-07-01
We investigated the morphological and anatomical effects of simulated acid rain on leaves of two species native to the Brazilian Atlantic Rainforest: Paubrasilia echinata and Libidibia ferrea var. leiostachya. Saplings were subjected to acid rain in a simulation chamber during 10 days for 15 min daily, using H 2 SO 4 solution pH 3.0 and, in the control, deionized water. At the end of the experiment, fragments from young and expanding leaves were anatomically analyzed. Although L. ferrea var. leiostachya leaves are more hydrophobic, rain droplets remained in contact with them for a longer time, as in the hydrophilic P. echinata leaves, droplets coalesce and rapidly run off. Visual symptomatology consisted in interveinal and marginal necrotic dots. Microscopic damage found included epicuticular wax flaking, turgor loss and epidermal cell shape alteration, hypertrophy of parenchymatous cells, and epidermal and mesophyll cell collapse. Formation of a wound tissue was observed in P. echinata, and it isolated the necrosis to the adaxial leaf surface. Acid rain increased thickness of all leaf tissues except spongy parenchyma in young leaves of L. ferrea var. leiostachya, and such thickness was maintained throughout leaf expansion. To our knowledge, this is the first report of acidity causing increase in leaf tissue thickness. This could represent the beginning of cell hypertrophy, which was seen in visually affected leaf regions. Paubrasilia echinata was more sensitive, showing earlier symptoms, but the anatomical damage in L. ferrea var. leiostachya was more severe, probably due to the higher time of contact with acid solution in this species.
Leaf size and surface characteristics of Betula papyrifera exposed to elevated CO2 and O3.
Riikonen, Johanna; Percy, Kevin E; Kivimäenpää, Minna; Kubiske, Mark E; Nelson, Neil D; Vapaavuori, Elina; Karnosky, David F
2010-04-01
Betula papyrifera trees were exposed to elevated concentrations of CO(2) (1.4 x ambient), O(3) (1.2 x ambient) or CO(2) + O(3) at the Aspen Free-air CO(2) Enrichment Experiment. The treatment effects on leaf surface characteristics were studied after nine years of tree exposure. CO(2) and O(3) increased epidermal cell size and reduced epidermal cell density but leaf size was not altered. Stomatal density remained unaffected, but stomatal index increased under elevated CO(2). Cuticular ridges and epicuticular wax crystallites were less evident under CO(2) and CO(2) + O(3). The increase in amorphous deposits, particularly under CO(2) + O(3,) was associated with the appearance of elongated plate crystallites in stomatal chambers. Increased proportions of alkyl esters resulted from increased esterification of fatty acids and alcohols under elevated CO(2) + O(3). The combination of elevated CO(2) and O(3) resulted in different responses than expected under exposure to CO(2) or O(3) alone. 2009 Elsevier Ltd. All rights reserved.
Diagnosis of ambient air pollution injury to red maple leaves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krause, C.R.
1981-01-01
Ramets of red maple, Acer rubrum L. (cv 'Scarlet Sentinel') were grown under ambient field conditions for 5 months (May-Sept) in either clean air (i.e. minimum background of ozone (O/sub 3/) and sulfur dioxide (SO/sub 2/)) or were grown in polluted air containing phytotoxic combinations of O/sub 3/ and SO/sub 2/. At the end of the growing season leaf samples from each site were fixed in glutaraldehyde, washed in buffer (3X) post-fixed in O/sub s/O/sub 4/, dehydrated in ethanol and critically-point-dried. Samples were fractured with a razor blade, mounted either abaxially or adaxially or in cross-section, and sputter-coated with Au.more » While plants from either site failed to exhibit macroscopic air pollutant-induced symptoms, SEM examination revealed significant microscopic differences between prepared samples from different sites. Epidermal cells of leaves grown in clean air were uniformly turgid with fluffy epicuticular wax. Leaf samples from ramets that were grown in polluted air exhibited collapsed epidermal cells and lacked fluffy epicuticular wax. Cross-sections revealed increased vesicular activity in leaf mesophyll cells of plants exposed to high ambient pollution while cells of plants grown in clean air appeared normal. 10 references, 6 figures.« less
PHANTASTICA regulates leaf polarity and petiole identity in Medicago truncatula
Ge, Liangfa; Chen, Rujin
2014-01-01
Establishment of proper polarities along the adaxial-abaxial, proximodistal, and medial-lateral axes is a critical step for the expansion of leaves from leaf primordia. It has been shown that the MYB domain protein, ASYMMETRIC LEAVES1/ROUGH SHEATH2/PHANTASTICA (collectively named ARP) plays an important role in this process. Loss of function of ARP leads to severe leaf polarity defects, such as abaxialized or needle-like leaves. In addition to its role in leaf polarity establishment, we have recently shown that the Medicago truncatula ARP gene, MtPHAN, also plays a role in leaf petiole identity regulation. We show that a mutation of MtPHAN results in petioles acquiring characteristics of the motor organ, pulvinus, including small epidermal cells with extensive cell surface modifications and altered vascular tissue development. Taken together, our results reveal a previously unidentified function of ARP in leaf development. PMID:24603499
Xiang, Jing-Jing; Zhang, Guang-Heng; Qian, Qian; Xue, Hong-Wei
2012-01-01
Leaf rolling is an important agronomic trait in rice (Oryza sativa) breeding and moderate leaf rolling maintains the erectness of leaves and minimizes shadowing between leaves, leading to improved photosynthetic efficiency and grain yields. Although a few rolled-leaf mutants have been identified and some genes controlling leaf rolling have been isolated, the molecular mechanisms of leaf rolling still need to be elucidated. Here we report the isolation and characterization of SEMI-ROLLED LEAF1 (SRL1), a gene involved in the regulation of leaf rolling. Mutants srl1-1 (point mutation) and srl1-2 (transferred DNA insertion) exhibit adaxially rolled leaves due to the increased numbers of bulliform cells at the adaxial cell layers, which could be rescued by complementary expression of SRL1. SRL1 is expressed in various tissues and is expressed at low levels in bulliform cells. SRL1 protein is located at the plasma membrane and predicted to be a putative glycosylphosphatidylinositol-anchored protein. Moreover, analysis of the gene expression profile of cells that will become epidermal cells in wild type but probably bulliform cells in srl1-1 by laser-captured microdissection revealed that the expression of genes encoding vacuolar H+-ATPase (subunits A, B, C, and D) and H+-pyrophosphatase, which are increased during the formation of bulliform cells, were up-regulated in srl1-1. These results provide the transcript profile of rice leaf cells that will become bulliform cells and demonstrate that SRL1 regulates leaf rolling through inhibiting the formation of bulliform cells by negatively regulating the expression of genes encoding vacuolar H+-ATPase subunits and H+-pyrophosphatase, which will help to understand the mechanism regulating leaf rolling. PMID:22715111
Usual and unusual development of the dicot leaf: involvement of transcription factors and hormones.
Fambrini, Marco; Pugliesi, Claudio
2013-06-01
Morphological diversity exhibited by higher plants is essentially related to the tremendous variation of leaf shape. With few exceptions, leaf primordia are initiated postembryonically at the flanks of a group of undifferentiated and proliferative cells within the shoot apical meristem (SAM) in characteristic position for the species and in a regular phyllotactic sequence. Auxin is critical for this process, because genes involved in auxin biosynthesis, transport, and signaling are required for leaf initiation. Down-regulation of transcription factors (TFs) and cytokinins are also involved in the light-dependent leaf initiation pathway. Furthermore, mechanical stresses in SAM determine the direction of cell division and profoundly influence leaf initiation suggesting a link between physical forces, gene regulatory networks and biochemical gradients. After the leaf is initiated, its further growth depends on cell division and cell expansion. Temporal and spatial regulation of these processes determines the size and the shape of the leaf, as well as the internal structure. A complex array of intrinsic signals, including phytohormones and TFs control the appropriate cell proliferation and differentiation to elaborate the final shape and complexity of the leaf. Here, we highlight the main determinants involved in leaf initiation, epidermal patterning, and elaboration of lamina shape to generate small marginal serrations, more deep lobes or a dissected compound leaf. We also outline recent advances in our knowledge of regulatory networks involved with the unusual pattern of leaf development in epiphyllous plants as well as leaf morphology aberrations, such as galls after pathogenic attacks of pests.
Prats, Elena; Gay, Alan P; Roberts, Peter C; Thomas, Barry J; Sanderson, Ruth; Paveley, Neil; Lyngkjaer, Michael F; Carver, Tim L W; Mur, Luis A J
2010-01-01
Hypersensitive response (HR) against Blumeria graminis f. sp. hordei infection in barley (Hordeum vulgare) was associated with stomata "lock-up" leading to increased leaf water conductance (g(l)). Unique spatio-temporal patterns of HR formation occurred in barley with Mla1, Mla3, or MlLa R genes challenged with B. graminis f. sp. hordei. With Mla1, a rapid HR, limited to epidermal cells, arrested fungal growth before colonies initiated secondary attacks. With Mla3, mesophyll HR preceded that in epidermal cells whose initial survival supported secondary infections. With MlLa, mesophyll survived and not all attacked epidermal cells died immediately, allowing colony growth and secondary infection until arrested. Isolines with Mla1, Mla3, or MlLa genes inoculated with B. graminis f. sp. hordei ranging from 1 to 100 conidia mm(2) showed abnormally high g(l) during dark periods whose timing and extent correlated with those of each HR. Each isoline showed increased dark g(l) with the nonpathogen B. graminis f. sp. avenae which caused a single epidermal cell HR. Guard cell autofluorescence was seen only after drying of epidermal strips and closure of stomata suggesting that locked open stomata were viable. The data link stomatal lock-up to HR associated cell death and has implications for strategies for selecting disease resistant genotypes.
Qi, Ruhu; John, Peter Crook Lloyd
2007-07-01
The Arabidopsis (Arabidopsis thaliana) CYCD2;1 gene introduced in genomic form increased cell formation in the Arabidopsis root apex and leaf, while generating full-length mRNA, raised CDK/CYCLIN enzyme activity, reduced G1-phase duration, and reduced size of cells at S phase and division. Other cell cycle genes, CDKA;1, CYCLIN B;1, and the cDNA form of CYCD2;1 that produced an aberrantly spliced mRNA, produced smaller or zero increases in CDK/CYCLIN activity and did not increase the number of cells formed. Plants with a homozygous single insert of genomic CYCD2;1 grew with normal morphology and without accelerated growth of root or shoot, not providing evidence that cell formation or CYCLIN D2 controls growth of postembryonic vegetative tissues. At the root apex, cells progressed normally from meristem to elongation, but their smaller size enclosed less growth and a 40% reduction in final size of epidermal and cortical cells was seen. Smaller elongated cell size inhibited endoreduplication, indicating a cell size requirement. Leaf cells were also smaller and more numerous during proliferation and epidermal pavement and palisade cells attained 59% and 69% of controls, whereas laminas reached normal size. Autonomous control of expansion was therefore not evident in abundant cell types that formed tissues of root or leaf. Cell size was reduced by a greater number formed in a tissue prior to cell and tissue expansion. Initiation and termination of expansion did not correlate with cell dimension or number and may be determined by tissue-wide signals acting across cellular boundaries.
Jordan, Gregory J.; Brodribb, Timothy J.
2017-01-01
Producing leaves with closely spaced veins is a key innovation linked to high rates of photosynthesis in angiosperms. A close geometric link between veins and stomata in angiosperms ensures that investment in enhanced venous water transport provides the strongest net carbon return to the plant. This link is underpinned by “passive dilution” via expansion of surrounding cells. However, it is not known whether this ‘passive dilution’ mechanism is present in plant lineages other than angiosperms and is another key feature of the angiosperms’ evolutionary success. Consequently, we sought to determine whether the ‘passive dilution’ mechanism is; (i) exclusive to the angiosperms, (ii) a conserved mechanism that evolved in the common ancestor of ferns and angiosperms, or (iii) has evolved continuously over time. To do this we first we assessed the plasticity of vein and stomatal density and epidermal cell size in ferns in response to light environment. We then compared the relationships between these traits found among ferns with modelled relationships that assume vein and stomatal density respond passively to epidermal cell expansion, and with those previously observed in angiosperms. Vein density, stomatal density and epidermal cell size were linked in ferns with remarkably similar relationships to those observed in angiosperms, except that fern leaves had fewer veins per stomata. However, plasticity was limited in ferns and stomatal spacing was dependent on active stomatal differentiation as well as passive cell expansion. Thus, ferns (like angiosperms) appear to coordinate vein and stomatal density with epidermal cell expansion to some extent to maintain a constant ratio between veins and stomata in the leaf. The different general relationships between vein density and stomatal density in ferns and angiosperms suggests the groups have different optimum balances between the production of vein tissue dedicated to water supply and stomatal tissue for gas exchange. PMID:28953931
Pyke, K; Zubko, M K; Day, A
2000-10-01
Spectinomycin, an inhibitor of plastid protein synthesis, can be used to mark specific cell layers in the shoot meristem of Brassica napus. Pale yellow-green (YG) plants resulting from spectinomycin-treatment can be propagated indefinitely in vitro. Microscopic examination showed that YG-plants result from inactivation of plastids in the L2 and L3 layers and are composed of a pale green epidermis covering a white mesophyll layer. Epidermal cells of YG and normal green plants are similar and contain 10-20 small pale green plastids. YG plants are equivalent to periclinal chimeras with the important distinction that there is no genotypic difference between the white and green cell layers. Periclinal divisions of epidermal cells take place at all stages of leaf development to produce invaginations of green mesophyll located in sectors of widely varying sizes. A periclinal division rate of 1 in 3000-4000 anticlinal divisions for the adaxial epidermis, was 2-3-fold higher than that estimated for the abaxial epidermis. Analysis of white and green mesophyll showed that chloroplasts are essential for palisade cell differentiation and this requirement is cell-autonomous. Stable marking of cell lineages with spectinomycin is simple, rapid and reveals the requirement for functional plastids in cellular differentiation.
Papanatsiou, Maria; Amtmann, Anna
2017-01-01
Abstract Stomata are microscopic pores formed by specialized cells in the leaf epidermis and permit gaseous exchange between the interior of the leaf and the atmosphere. Stomata in most plants are separated by at least one epidermal pavement cell and, individually, overlay a single substomatal cavity within the leaf. This spacing is thought to enhance stomatal function. Yet, there are several genera naturally exhibiting stomata in clusters and therefore deviating from the one-cell spacing rule with multiple stomata overlaying a single substomatal cavity. We made use of two Begonia species to investigate whether clustering of stomata alters guard cell dynamics and gas exchange under different light and dark treatments. Begonia plebeja, which forms stomatal clusters, exhibited enhanced kinetics of stomatal conductance and CO2 assimilation upon light stimuli that in turn were translated into greater water use efficiency. Our findings emphasize the importance of spacing in stomatal clusters for gaseous exchange and plant performance under environmentally limited conditions. PMID:28369641
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, L.S.; Gmur, N.F.; Da Costa, F.
1977-08-01
Initial injury to adaxial leaf surfaces of Phaseolus vulgaris and Helianthus annuus occurred near trichomes and stomata after exposure to simulated sulfate acid rain. Lesion frequency was not correlated with density of either stomata or trichomes but was correlated with degree of leaf expansion. The number of lesions per unit area increased with total leaf area. Results suggest that characteristics of the leaf indumentum such as development of trichomes and guard cells and/or cuticle thickness near these structures may be involved in lesion development. Adaxial epidermal cell collapse was the first event in lesion development. Palisade cells and eventually spongymore » mesophyll cells collapsed after continued, daily exposure to simulated rain of low pH. Lesion development on Phaseolus vulgaris followed a specific course of events after exposure to simulated rain of known composition, application rate, drop size frequency, drop velocities, and frequency of exposures. These results allow development of further experiments to observe accurately other parameters, such as nutrient inputs and nutrient leaching from foliage, after exposure to simulated sulfate acid rain.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paparozzi, E.T.; Tukey, H.B. Jr.
Leaves of Betula alleghaniensis Britt. (yellow birch) and Phaseolus vulgaris L cv. Red Kidney (bean) were examined microscopically during development and after exposure to simulated rain of pH 5.5, 4.3, 3.2, and 2.8. Yellow birch leaves attained maximal leaf area, midvein length, and cuticle thickness at 21 days. Trichomes were either long, unicellular, or multicellular with caplike head and stalk. Epicuticular wax was a bumpy and amorphous layer. The 2nd trifoliolate leaf of red kidney bean attained maximal leaf area, midvein length, and cuticle thickness when the 3rd trifoliolate leaf was expanding. Trichomes present were long, with a unicellular headmore » and a multicellular base; long, unicellular, and terminally hooked; and small and multicellular. Epicuticular wax was present as small irregular flakes. After 2 days of pH 2.8 and 4 days of pH 3.2 simulated acid rain, round yellow and small tan lesions appeared on birch and bean leaves, respectively. Most injury occurred on or between small veins. Most trichome types were uninjured. Lesions formed as a result of collapsed epidermal and highly plasmolyzed palisade cells. The cuticle was still present over injured epidermal cells and epicuticular waxes were unchanged. There was not statistical difference in mean cuticle thickness due to pH of simulated rain. 25 references, 10 figures, 4 tables.« less
Yang, Yongil; Karlson, Dale
2012-08-01
The cold shock domain is among the most evolutionarily conserved nucleic acid binding domains from prokaryotes to higher eukaryotes, including plants. Although eukaryotic cold shock domain proteins have been extensively studied as transcriptional and post-transcriptional regulators during various developmental processes, their functional roles in plants remains poorly understood. In this study, AtCSP3 (At2g17870), which is one of four Arabidopsis thaliana c old s hock domain proteins (AtCSPs), was functionally characterized. Quantitative RT-PCR analysis confirmed high expression of AtCSP3 in reproductive and meristematic tissues. A homozygous atcsp3 loss-of-function mutant exhibits an overall reduced seedling size, stunted and orbicular rosette leaves, reduced petiole length, and curled leaf blades. Palisade mesophyll cells are smaller and more circular in atcsp3 leaves. Cell size analysis indicated that the reduced size of the circular mesophyll cells appears to be generated by a reduction of cell length along the leaf-length axis, resulting in an orbicular leaf shape. It was also determined that leaf cell expansion is impaired for lateral leaf development in the atcsp3 loss-of-function mutant, but leaf cell proliferation is not affected. AtCSP3 loss-of-function resulted in a dramatic reduction of LNG1 transcript, a gene that is involved in two-dimensional leaf polarity regulation. Transient subcellular localization of AtCSP3 in onion epidermal cells confirmed a nucleocytoplasmic localization pattern. Collectively, these data suggest that AtCSP3 is functionally linked to the regulation of leaf length by affecting LNG1 transcript accumulation during leaf development. A putative function of AtCSP3 as an RNA binding protein is also discussed in relation to leaf development.
Luo, Lilan; Ando, Sayuri; Sasabe, Michiko; Machida, Chiyoko; Kurihara, Daisuke; Higashiyama, Tetsuya; Machida, Yasunori
2012-09-01
Leaf primordia with high division and developmental competencies are generated around the periphery of stem cells at the shoot apex. Arabidopsis ASYMMETRIC-LEAVES2 (AS2) protein plays a key role in the regulation of many genes responsible for flat symmetric leaf formation. The AS2 gene, expressed in leaf primordia, encodes a plant-specific nuclear protein containing an AS2/LOB domain with cysteine repeats (C-motif). AS2 proteins are present in speckles in and around the nucleoli, and in the nucleoplasm of some leaf epidermal cells. We used the tobacco cultured cell line BY-2 expressing the AS2-fused yellow fluorescent protein to examine subnuclear localization of AS2 in dividing cells. AS2 mainly localized to speckles (designated AS2 bodies) in cells undergoing mitosis and distributed in a pairwise manner during the separation of sets of daughter chromosomes. Few interphase cells contained AS2 bodies. Deletion analyses showed that a short stretch of the AS2 amino-terminal sequence and the C-motif play negative and positive roles, respectively, in localizing AS2 to the bodies. These results suggest that AS2 bodies function to properly distribute AS2 to daughter cells during cell division in leaf primordia; and this process is controlled at least partially by signals encoded by the AS2 sequence itself.
Estrela Borges Baldotto, Lílian; Lopes Olivares, Fábio; Bressan-Smith, Ricardo
2011-01-01
The events involved in the structural interaction between the diazotrophic endophytic bacterium Herbaspirillum seropedicae, strain RAM10, labeled with green fluorescent protein, and pineapple plantlets ‘Vitória’ were evaluated by means of bright-field and fluorescence microscopy, combined with scanning electron microscopy for 28 days after inoculation. After 6 hours of inoculation, H. seropedicae was already adhered to the roots, colonizing mainly root hair surface and bases, followed by epidermal cell wall junctions. Bacteria adherence in the initial periods occurred mainly in the form of solitary cells and small aggregates with pleomorphic cells. Bacteria infection of root tissue occurred through the cavities caused by the disruption of epidermal cells during the emergence of lateral roots and the endophytic establishment by the colonization of intercellular spaces of the cortical parenchyma. Moreover, within 1 day after inoculation the bacteria were colonizing the shoots. In this region, the preferred sites of epiphytic colonization were epidermal cell wall junctions, peltate scutiform trichomes and non-glandular trichomes. Subsequently, the bacteria occupied the outer periclinal walls of epidermal cells and stomata. The penetration into the shoot occurred passively through stoma aperture followed by the endophytic establishment on the substomatal chambers and spread to the intercellular spaces of spongy chlorenchyma. After 21 days of inoculation, bacterial biofilm were seen at the root hair base and on epidermal cell wall surface of root and leaf, also confirming the epiphytic nature of H. seropedicae. PMID:24031612
Estrela Borges Baldotto, Lílian; Lopes Olivares, Fábio; Bressan-Smith, Ricardo
2011-01-01
The events involved in the structural interaction between the diazotrophic endophytic bacterium Herbaspirillum seropedicae, strain RAM10, labeled with green fluorescent protein, and pineapple plantlets 'Vitória' were evaluated by means of bright-field and fluorescence microscopy, combined with scanning electron microscopy for 28 days after inoculation. After 6 hours of inoculation, H. seropedicae was already adhered to the roots, colonizing mainly root hair surface and bases, followed by epidermal cell wall junctions. Bacteria adherence in the initial periods occurred mainly in the form of solitary cells and small aggregates with pleomorphic cells. Bacteria infection of root tissue occurred through the cavities caused by the disruption of epidermal cells during the emergence of lateral roots and the endophytic establishment by the colonization of intercellular spaces of the cortical parenchyma. Moreover, within 1 day after inoculation the bacteria were colonizing the shoots. In this region, the preferred sites of epiphytic colonization were epidermal cell wall junctions, peltate scutiform trichomes and non-glandular trichomes. Subsequently, the bacteria occupied the outer periclinal walls of epidermal cells and stomata. The penetration into the shoot occurred passively through stoma aperture followed by the endophytic establishment on the substomatal chambers and spread to the intercellular spaces of spongy chlorenchyma. After 21 days of inoculation, bacterial biofilm were seen at the root hair base and on epidermal cell wall surface of root and leaf, also confirming the epiphytic nature of H. seropedicae.
Dow, Graham J; Berry, Joseph A; Bergmann, Dominique C
2017-10-01
Stomata are simultaneously tasked with permitting the uptake of carbon dioxide for photosynthesis while limiting water loss from the plant. This process is mainly regulated by guard cell control of the stomatal aperture, but recent advancements have highlighted the importance of several genes that control stomatal development. Using targeted genetic manipulations of the stomatal lineage and a combination of gas exchange and microscopy techniques, we show that changes in stomatal development of the epidermal layer lead to coupled changes in the underlying mesophyll tissues. This coordinated response tends to match leaf photosynthetic potential (V cmax ) with gas-exchange capacity (g smax ), and hence the uptake of carbon dioxide for water lost. We found that different genetic regulators systematically altered tissue coordination in separate ways: the transcription factor SPEECHLESS (SPCH) primarily affected leaf size and thickness, whereas peptides in the EPIDERMAL PATTERNING FACTOR (EPF) family altered cell density in the mesophyll. It was also determined that interlayer coordination required the cell-surface receptor TOO MANY MOUTHS (TMM). These results demonstrate that stomata-specific regulators can alter mesophyll properties, which provides insight into how molecular pathways can organize leaf tissues to coordinate gas exchange and suggests new strategies for improving plant water-use efficiency. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Plastid Ontogeny during Petal Development in Arabidopsis1
Pyke, Kevin A.; Page, Anton M.
1998-01-01
Imaging of chlorophyll autofluorescence by confocal microscopy in intact whole petals of Arabidopsis thaliana has been used to analyze chloroplast development and redifferentiation during petal development. Young petals dissected from unopened buds contained green chloroplasts throughout their structure, but as the upper part of the petal lamina developed and expanded, plastids lost their chlorophyll and redifferentiated into leukoplasts, resulting in a white petal blade. Normal green chloroplasts remained in the stalk of the mature petal. In epidermal cells the chloroplasts were normal and green, in stark contrast with leaf epidermal cell plastids. In addition, the majority of these chloroplasts had dumbbell shapes, typical of dividing chloroplasts, and we suggest that the rapid expansion of petal epidermal cells may be a trigger for the initiation of chloroplast division. In petals of the Arabidopsis plastid division mutant arc6, the conversion of chloroplasts into leukoplasts was unaffected in spite of the greatly enlarged size and reduced number of arc6 chloroplasts in cells in the petal base, resulting in few enlarged leukoplasts in cells from the white lamina of arc6 petals. PMID:9489024
Fischer, R. A.
1968-01-01
This paper reports a consistent and large opening response to light + CO2-free air in living stomata of isolated epidermal strips of Vicia faba. The response was compared to that of non-isolated stomata in leaf discs floating on water; stomatal apertures, guard cell solute potentials and starch contents were similar in the 2 situations. To obtain such stomatal behavior, it was necessary to float epidermal strips on dilute KCl solutions. This suggests that solute uptake is necessary for stomatal opening. The demonstration of normal stomatal behavior in isolated epidermal strips provides a very useful system in which to investigate the mechanism of stomatal opening. It was possible to show independent responses in stomatal aperture to light and to CO2-free air. PMID:16656995
NASA Technical Reports Server (NTRS)
Van Volkenburgh, E.; Cleland, R. E.
1990-01-01
Cell expansion in dicotyledonous leaves is strongly stimulated by bright white light (WL), at least in part as a result of light-induced acidification of the cell walls. It has been proposed that photosynthetic reactions are required for light-stimulated transport processes across plasma membranes of leaf cells, including proton excretion. The involvement of photosynthesis in growth and wall acidification of primary leaves of bean has been tested by inhibiting photosynthesis in two ways: by reducing chlorophyll content of intact plants with tentoxin (TX) and by treating leaf discs with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Exposure to bright WL stimulated growth of intact leaves of TX-treated plants. Discs excised from green as well as from TX-or DCMU-treated leaves also responded by growing faster in WL, as long as exogenous sucrose was supplied to the photosynthetically inhibited tissues. The WL caused acidification of the epidermal surface of intact TX-leaves, but acidification of the incubation medium by mesophyll cells only occurred when photosynthesis was not inhibited. It is concluded that light-stimulated cell enlargement of bean leaves, and the necessary acidification of epidermal cell walls, are mediated by a pigment other than chlorophyll. Light-induced proton excretion by mesophyll cells, on the other hand, may require both a photosynthetic product (or exogenous sugars) and a non-photosynthetic light effect.
Papanatsiou, Maria; Amtmann, Anna; Blatt, Michael R
2017-04-01
Stomata are microscopic pores formed by specialized cells in the leaf epidermis and permit gaseous exchange between the interior of the leaf and the atmosphere. Stomata in most plants are separated by at least one epidermal pavement cell and, individually, overlay a single substomatal cavity within the leaf. This spacing is thought to enhance stomatal function. Yet, there are several genera naturally exhibiting stomata in clusters and therefore deviating from the one-cell spacing rule with multiple stomata overlaying a single substomatal cavity. We made use of two Begonia species to investigate whether clustering of stomata alters guard cell dynamics and gas exchange under different light and dark treatments. Begonia plebeja, which forms stomatal clusters, exhibited enhanced kinetics of stomatal conductance and CO2 assimilation upon light stimuli that in turn were translated into greater water use efficiency. Our findings emphasize the importance of spacing in stomatal clusters for gaseous exchange and plant performance under environmentally limited conditions. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Effects of ammonium sulfate aerosols on vegetation—II. Mode of entry and responses of vegetation
NASA Astrophysics Data System (ADS)
Gmur, Nicholas F.; Evans, Lance S.; Cunningham, Elizabeth A.
These experiments were designed to provide information on the rates of aerosol deposition, mode of entry, and effects of deposition of submicrometer ammonium sulfate aerosols on foliage of Phaseolus vulgaris L. A deposition velocity of 3.2 × 10 3cms-1 was constant during 3-week exposures of plants to aerosol concentrations of 26mg m -3 (i.e. about two orders of magnitude above ambient episode concentrations). Mean deposition rate on foliage was 4.1 × 10 -11 μg cm -2s -1. Visible injury symptoms included leaf chlorosis, necrosis and loss of turgor. Chlorosis was most frequent near leaf margins causing epinasty and near major veins. Internal injury occurred initially in spongy mesophyll cells. Eventually abaxial epidermal and palisade parenchyma cells were injured. These results suggest that submicrometer aerosols enter abaxial stomata and affect more internal cells before affecting leaf surface cells. Exposure to aerosols decreased both abaxial and adaxial leaf resistances markedly. Although visible injury to foliage occurred, no changes in dry mass of roots and shoots or leaf area occurred. These results suggest that for the plant developmental stage studied, while leaf resistances decreased and cellular injury occurred in foliage, these factors were not significantly related to plant growth and development.
Salt gland distribution in limonium bicolor at the individual level
NASA Astrophysics Data System (ADS)
Leng, B. Y.; Yuan, F.; Dong, X. X.; Wang, B. S.
2018-02-01
Limonium bicolor is a typical exo-recretohalophyte with multi-cellular salt glands. A differential interference contrast (DIC) microscope were applied to investigate the pattern of salt gland distribution in L. bicolor at the individual level. For a single mature leaf, more salt glands are distributed in the leaf central and apical regions than leaf base. For the leaves in different developmental stages, firstly, the density of salt glands linearly decreased at the beginning of leaf expansion and kept a relatively constant value in the later periods, which was mainly due to the rapid expansion of epidermal cells. Secondly, the total number of glands per leaf showed a reversed trend compared to the density of salt glands. These results suggested that the salt gland density was adapted to the leaf age and area as more and more salt accumulated in the saline soils.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulshreshtha, K.; Farooqui, A.; Srivastava, K.
1994-02-01
Cuticular and epidermal features of leaves of two common plant species namely, Lantana camara L. and Syzygium cuminii L. (Skeel.) growing in polluted and healthy (control) environments were studied under light and scanning electron microscopes. Polluted leaf samples were collected from the plants growing near a diesel generating set used in running a tube well. The study shows that in polluted populations of Lantana camara, the trichome frequency had increased four fold. In Syzygium cuminii, the stomatal openings were filled with dust and a tendency towards callus formation was also observed. The epidermal cells were comparatively thick walled and weremore » broken at certain places. The changes observed in the cuticular and epidermal features of polluted populations of the investigated species indicate their significance as bioindicators of atmospheric pollution. 9 refs., 2 figs., 1 tab.« less
Arabidopsis Reduces Growth Under Osmotic Stress by Decreasing SPEECHLESS Protein
Kumari, Archana; Jewaria, Pawan K.; Bergmann, Dominique C.; Kakimoto, Tatsuo
2014-01-01
Plants, which are sessile unlike most animals, have evolved a system to reduce growth under stress; however, the molecular mechanisms of this stress response are not well known. During programmed development, a fraction of the leaf epidermal precursor cells become meristemoid mother cells (MMCs), which are stem cells that produce both stomatal guard cells and epidermal pavement cells. Here we report that Arabidopsis plants, in response to osmotic stress, post-transcriptionally decrease the protein level of SPEECHLESS, the transcription factor promoting MMC identity, through the action of a mitogen-activated protein kinase (MAPK) cascade. The growth reduction under osmotic stress was lessened by inhibition of the MAPK cascade or by a mutation that disrupted the MAPK target amino acids in SPEECHLESS, indicating that Arabidopsis reduces growth under stress by integrating the osmotic stress signal into the MAPK–SPEECHLESS core developmental pathway. PMID:25381317
Agati, Giovanni; Stefano, Giovanni; Biricolti, Stefano; Tattini, Massimiliano
2009-10-01
Flavonoids have the potential to serve as antioxidants in addition to their function of UV screening in photoprotective mechanisms. However, flavonoids have long been reported to accumulate mostly in epidermal cells and surface organs in response to high sunlight. Therefore, how leaf flavonoids actually carry out their antioxidant functions is still a matter of debate. Here, the distribution of flavonoids with effective antioxidant properties, i.e. the orthodihydroxy B-ring-substituted quercetin and luteolin glycosides, was investigated in the mesophyll of Ligustrum vulgare leaves acclimated to contrasting sunlight irradiance. In the first experiment, plants were grown at 20 % (shade) or 100% (sun) natural sunlight. Plants were exposed to 100 % sunlight irradiance in the presence or absence of UV wavelengths, in a second experiment. Fluorescence microspectroscopy and multispectral fluorescence microimaging were used in both cross sections and intact leaf pieces to visualize orthodihydroxy B-ring-substituted flavonoids at inter- and intracellular levels. Identification and quantification of individual hydroxycinnamates and flavonoid glycosides were performed via HPLC-DAD. Quercetin and luteolin derivatives accumulated to a great extent in both the epidermal and mesophyll cells in response to high sunlight. Tissue fluorescence signatures and leaf flavonoid concentrations were strongly related. Monohydroxyflavone glycosides, namely luteolin 4'-O-glucoside and two apigenin 7-O-glycosides were unresponsive to changes in sunlight irradiance. Quercetin and luteolin derivatives accumulated in the vacuoles of mesophyll cells in leaves growing under 100 % natural sunlight in the absence of UV wavelengths. The above findings lead to the hypothesis that flavonoids play a key role in countering light-induced oxidative stress, and not only in avoiding the penetration of short solar wavelengths in the leaf.
Agati, Giovanni; Stefano, Giovanni; Biricolti, Stefano; Tattini, Massimiliano
2009-01-01
Background and Aims Flavonoids have the potential to serve as antioxidants in addition to their function of UV screening in photoprotective mechanisms. However, flavonoids have long been reported to accumulate mostly in epidermal cells and surface organs in response to high sunlight. Therefore, how leaf flavonoids actually carry out their antioxidant functions is still a matter of debate. Here, the distribution of flavonoids with effective antioxidant properties, i.e. the orthodihydroxy B-ring-substituted quercetin and luteolin glycosides, was investigated in the mesophyll of Ligustrum vulgare leaves acclimated to contrasting sunlight irradiance. Methods In the first experiment, plants were grown at 20 % (shade) or 100% (sun) natural sunlight. Plants were exposed to 100 % sunlight irradiance in the presence or absence of UV wavelengths, in a second experiment. Fluorescence microspectroscopy and multispectral fluorescence microimaging were used in both cross sections and intact leaf pieces to visualize orthodihydroxy B-ring-substituted flavonoids at inter- and intracellular levels. Identification and quantification of individual hydroxycinnamates and flavonoid glycosides were performed via HPLC-DAD. Key Results Quercetin and luteolin derivatives accumulated to a great extent in both the epidermal and mesophyll cells in response to high sunlight. Tissue fluorescence signatures and leaf flavonoid concentrations were strongly related. Monohydroxyflavone glycosides, namely luteolin 4′-O-glucoside and two apigenin 7-O-glycosides were unresponsive to changes in sunlight irradiance. Quercetin and luteolin derivatives accumulated in the vacuoles of mesophyll cells in leaves growing under 100 % natural sunlight in the absence of UV wavelengths. Conclusions The above findings lead to the hypothesis that flavonoids play a key role in countering light-induced oxidative stress, and not only in avoiding the penetration of short solar wavelengths in the leaf. PMID:19633310
Prats, Elena; Gay, Alan P; Mur, Luis A J; Thomas, Barry J; Carver, Timothy L W
2006-01-01
Blumeria graminis f.sp. hordei (Bgh) attack disrupted stomatal behaviour, and hence leaf water conductance (g(l)), in barley genotypes Pallas and Risø-S (susceptible), P01 (with Mla1 conditioning a hypersensitive response; HR), and P22 and Risø-R (with mlo5 conditioning papilla-based penetration resistance). Inoculation caused some stomatal closure well before the fungus attempted infection. Coinciding with epidermal cell penetration, stomatal opening in light was also impeded, although stomata of susceptible and mlo5 lines remained largely able to close in darkness. Following infection, in susceptible lines stomata closed in darkness but opening in light was persistently impeded. In Risø-R, stomata recovered nearly complete function by approximately 30 h after inoculation, i.e. after penetration resistance was accomplished. In P01, stomata became locked open and unable to close in darkness shortly after epidermal cells died due to HR. In the P22 background, mlo5 penetration resistance was often followed by consequential death of attacked cells, and here too stomata became locked open, but not until approximately 24 h after pathogen attack had ceased. The influence of epidermal cell death was localized, and only affected stomata within one or two cells distance. These stomata were unable to close not only in darkness but also after application of abscisic acid and in wilted leaves suffering drought. Thus, resistance to Bgh based on HR or associated with cell death may have previously unsuspected negative consequences for the physiological health of apparently 'disease-free' plants. The results are discussed in relation to the control of stomatal aperture in barley by epidermal cells.
Panteris, Emmanuel; Achlati, Theonymphi; Daras, Gerasimos; Rigas, Stamatis
2018-06-06
Cellulose microfibrils reinforce the cell wall for morphogenesis in plants. Herein, we provide evidence on a series of defects regarding stomatal complex development and F-actin organization in Zea mays leaf epidermis, due to inhibition of cellulose synthesis. Formative cell divisions of stomatal complex ontogenesis were delayed or inhibited, resulting in lack of subsidiary cells and frequently in unicellular stomata, with an atypical stomatal pore. Guard cells failed to acquire a dumbbell shape, becoming rounded, while subsidiary cells, whenever present, exhibited aberrant morphogenesis. F-actin organization was also affected, since the stomatal complex-specific arrays were scarcely observed. At late developmental stages, the overall F-actin network was diminished in all epidermal cells, although thick actin bundles persisted. Taken together, stomatal complex development strongly depends on cell wall mechanical properties. Moreover, F-actin organization exhibits a tight relationship with the cell wall.
2010-01-01
Background Camptotheca acuminata is a major natural source of the terpenoid indole alkaloid camptothecin (CPT). At present, little is known about the cellular distribution of the biosynthesis of CPT, which would be useful knowledge for developing new strategies and technologies for improving alkaloid production. Results The pattern of CPT accumulation was compared with the expression pattern of some genes involved in CPT biosynthesis in C. acuminata [i.e., Ca-TDC1 and Ca-TDC2 (encoding for tryptophan decarboxylase) and Ca-HGO (encoding for 10-hydroxygeraniol oxidoreductase)]. Both CPT accumulation and gene expression were investigated in plants at different degrees of development and in plantlets subjected to drought-stress. In all organs, CPT accumulation was detected in epidermal idioblasts, in some glandular trichomes, and in groups of idioblast cells localized in parenchyma tissues. Drought-stress caused an increase in CPT accumulation and in the number of glandular trichomes containing CPT, whereas no increase in epidermal or parenchymatous idioblasts was observed. In the leaf, Ca-TDC1 expression was detected in some epidermal cells and in groups of mesophyll cells but not in glandular trichomes; in the stem, it was observed in parenchyma cells of the vascular tissue; in the root, no expression was detected. Ca-TDC2 expression was observed exclusively in leaves of plantlets subjected to drought-stress, in the same sites described for Ca-TDC1. In the leaf, Ca-HGO was detected in all chlorenchyma cells; in the stem, it was observed in the same sites described for Ca-TDC1; in the root, no expression was detected. Conclusions The finding that the sites of CPT accumulation are not consistently the same as those in which the studied genes are expressed demonstrates an organ-to-organ and cell-to-cell translocation of CPT or its precursors. PMID:20403175
Valletta, Alessio; Trainotti, Livio; Santamaria, Anna Rita; Pasqua, Gabriella
2010-04-19
Camptotheca acuminata is a major natural source of the terpenoid indole alkaloid camptothecin (CPT). At present, little is known about the cellular distribution of the biosynthesis of CPT, which would be useful knowledge for developing new strategies and technologies for improving alkaloid production. The pattern of CPT accumulation was compared with the expression pattern of some genes involved in CPT biosynthesis in C. acuminata [i.e., Ca-TDC1 and Ca-TDC2 (encoding for tryptophan decarboxylase) and Ca-HGO (encoding for 10-hydroxygeraniol oxidoreductase)]. Both CPT accumulation and gene expression were investigated in plants at different degrees of development and in plantlets subjected to drought-stress. In all organs, CPT accumulation was detected in epidermal idioblasts, in some glandular trichomes, and in groups of idioblast cells localized in parenchyma tissues. Drought-stress caused an increase in CPT accumulation and in the number of glandular trichomes containing CPT, whereas no increase in epidermal or parenchymatous idioblasts was observed. In the leaf, Ca-TDC1 expression was detected in some epidermal cells and in groups of mesophyll cells but not in glandular trichomes; in the stem, it was observed in parenchyma cells of the vascular tissue; in the root, no expression was detected. Ca-TDC2 expression was observed exclusively in leaves of plantlets subjected to drought-stress, in the same sites described for Ca-TDC1. In the leaf, Ca-HGO was detected in all chlorenchyma cells; in the stem, it was observed in the same sites described for Ca-TDC1; in the root, no expression was detected. The finding that the sites of CPT accumulation are not consistently the same as those in which the studied genes are expressed demonstrates an organ-to-organ and cell-to-cell translocation of CPT or its precursors.
USDA-ARS?s Scientific Manuscript database
The barley stem rust resistance gene Reaction to Puccinia graminis 1 (Rpg1), encoding a receptor-like kinase, confers durable resistance to the stem rust pathogen Puccinia graminis f. sp. tritici. The fungal urediniospores form adhesion structures with the leaf epidermal cells within 1 h of inocula...
The cloning and characterization of a poplar stomatal density gene
Shaneka S. Lawson; Paula M. Pijut; Charles H. Michler
2014-01-01
EPIDERMAL PATTERNING FACTOR1 (EPF1) is a well characterized negative regulator of cell division in Arabidopsis thaliana (AtEPF1) where the primary region of localization is the leaf. However, little data have been reported on the role of EPF1 in other plant species. In this study, the EPF1 gene from ...
Fernández Honaine, M; Osterrieth, M L
2012-07-01
Many studies relate silica content in plants with internal or external factors; however, few works analyse the effect of these factors on the silicification of different cell types. In this study, we examined the effect of leaf section and leaf position, and environmental conditions on the percentages of silicified epidermal cells of a native Pampean panicoid grass, Bothriochloa laguroides D. C. Pilger. Two different environmental situations were selected for the collection of plants: a natural wetland and a quartzite quarry, located in the southeast Buenos Aires province, Argentina. Clarification and staining methodologies were applied so as to study the distribution of silicified cells in different sections of leaves of the plants collected. Two and three-factor anovas were applied to the data. Between 13% and 19% of total cells of the adaxial epidermis of leaf blades were silicified. Typical silica short cells were the largest contributor to total silicified cells (53-98%), while the second largest contributor was bulliform cells (0-30%). Percentages of total silicified cells were higher in superior than in inferior leaves, while values from leaf sections varied. When collection sites were compared, plants growing in Los Padres pond, where the silica content in soils is higher, had the higher percentage of silicified cells. Among all types of cell, bulliform cells showed differences in the proportion of silicified cells between leaf position and section and collection site. These results show that silica availability in soils is an important factor that conditions silica accumulation and overlaps with the transpiration effect. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.
Fujiwara, Makoto T; Yasuzawa, Mana; Kojo, Kei H; Niwa, Yasuo; Abe, Tomoko; Yoshida, Shigeo; Nakano, Takeshi; Itoh, Ryuuichi D
2018-01-01
Chloroplasts, or photosynthetic plastids, multiply by binary fission, forming a homogeneous population in plant cells. In Arabidopsis thaliana, the division apparatus (or division ring) of mesophyll chloroplasts includes an inner envelope transmembrane protein ARC6, a cytoplasmic dynamin-related protein ARC5 (DRP5B), and members of the FtsZ1 and FtsZ2 families of proteins, which co-assemble in the stromal mid-plastid division ring (FtsZ ring). FtsZ ring placement is controlled by several proteins, including a stromal factor MinE (AtMinE1). During leaf mesophyll development, ARC6 and AtMinE1 are necessary for FtsZ ring formation and thus plastid division initiation, while ARC5 is essential for a later stage of plastid division. Here, we examined plastid morphology in leaf epidermal pavement cells (PCs) and stomatal guard cells (GCs) in the arc5 and arc6 mutants using stroma-targeted fluorescent proteins. The arc5 PC plastids were generally a bit larger than those of the wild type, but most had normal shapes and were division-competent, unlike mutant mesophyll chloroplasts. The arc6 PC plastids were heterogeneous in size and shape, including the formation of giant and mini-plastids, plastids with highly developed stromules, and grape-like plastid clusters, which varied on a cell-by-cell basis. Moreover, unique plastid phenotypes for stomatal GCs were observed in both mutants. The arc5 GCs rarely lacked chlorophyll-bearing plastids (chloroplasts), while they accumulated minute chlorophyll-less plastids, whereas most GCs developed wild type-like chloroplasts. The arc6 GCs produced large chloroplasts and/or chlorophyll-less plastids, as previously observed, but unexpectedly, their chloroplasts/plastids exhibited marked morphological variations. We quantitatively analyzed plastid morphology and partitioning in paired GCs from wild-type, arc5, arc6, and atminE1 plants. Collectively, our results support the notion that ARC5 is dispensable in the process of equal division of epidermal plastids, and indicate that dysfunctions in ARC5 and ARC6 differentially affect plastid replication among mesophyll cells, PCs, and GCs within a single leaf.
Touati, Mostefa; Knipfer, Thorsten; Visnovitz, Tamás; Kameli, Abdelkrim; Fricke, Wieland
2015-07-01
The aim of the present study was to assess the mechanical and hydraulic limitation of growth in leaf epidermal cells of barley (Hordeum vulgare L.) in response to agents which affect cellular water (mercuric chloride, HgCl(2)) and potassium (cesium chloride, CsCl; tetraethylammonium, TEA) transport, pump activity of plasma membrane H(+)-ATPase and wall acidification (fusicoccin, FC). Cell turgor (P) was measured with the cell pressure probe, and cell osmotic pressure (π) was analyzed through picoliter osmometry of single-cell extracts. A wall extensibility coefficient (M) and tissue hydraulic conductance coefficient (L) were derived using the Lockhart equation. There was a significant positive linear relationship between relative elemental growth rate and P, which fit all treatments, with an overall apparent yield threshold of 0.368 MPa. Differences in growth between treatments could be explained through differences in P. A comparison of L and M showed that growth in all except the FC treatment was co-limited through hydraulic and mechanical properties, though to various extents. This was accompanied by significant (0.17-0.24 MPa) differences in water potential (ΔΨ) between xylem and epidermal cells in the leaf elongation zone. In contrast, FC-treated leaves showed ΔΨ close to zero and a 10-fold increase in L. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Optimal allocation of leaf epidermal area for gas exchange.
de Boer, Hugo J; Price, Charles A; Wagner-Cremer, Friederike; Dekker, Stefan C; Franks, Peter J; Veneklaas, Erik J
2016-06-01
A long-standing research focus in phytology has been to understand how plants allocate leaf epidermal space to stomata in order to achieve an economic balance between the plant's carbon needs and water use. Here, we present a quantitative theoretical framework to predict allometric relationships between morphological stomatal traits in relation to leaf gas exchange and the required allocation of epidermal area to stomata. Our theoretical framework was derived from first principles of diffusion and geometry based on the hypothesis that selection for higher anatomical maximum stomatal conductance (gsmax ) involves a trade-off to minimize the fraction of the epidermis that is allocated to stomata. Predicted allometric relationships between stomatal traits were tested with a comprehensive compilation of published and unpublished data on 1057 species from all major clades. In support of our theoretical framework, stomatal traits of this phylogenetically diverse sample reflect spatially optimal allometry that minimizes investment in the allocation of epidermal area when plants evolve towards higher gsmax . Our results specifically highlight that the stomatal morphology of angiosperms evolved along spatially optimal allometric relationships. We propose that the resulting wide range of viable stomatal trait combinations equips angiosperms with developmental and evolutionary flexibility in leaf gas exchange unrivalled by gymnosperms and pteridophytes. © 2016 The Authors New Phytologist © 2016 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Qi, Yadong; Bai, Shuju; Vogelmann, Thomas C.; Heisler, Gordon M.
2003-11-01
The depth of light penetration from the adaxial surfaces of the mature leaves of pecan (Carya illinoensis) was measured using a fiber optic microprobe system at four wavelengths: UV-B (310nm), UV-A (360 nm), blue light (430nm), and red light (680nm). The average thickness of the leaf adaxial epidermal layer was 15um and the total leaf thickness was 219um. The patterns of the light attenuation by the leaf tissues exhibited strong wavelength dependence. The leaf adaxial epidermal layer was chiefly responsible for absorbing the UV-A UV-B radiation. About 98% of 310 nm light was steeply attenuated within the first 5 um of the adaxial epidermis; thus, very little UV-B radiation was transmitted to the mesophyll tissues where contain photosynthetically sensitive sites. The adaxial epidermis also attenuated 96% of the UV-A radiation. In contrast, the blue and red light penetrated much deeper and was gradually attenutated by the leaves. The mesophyll tissues attenuated 17% of the blue light and 42% of the red light, which were available for photosynthesis use. Since the epidermal layer absorbed nearly all UV-B light, it acted as an effective filter screening out the harmful radiation and protecting photosynthetically sensitive tissues from the UV-B damage. Therefore, the epidermal function of the UV-B screening effectiveness can be regarded as one of the UV-B protection mechanisms in pecan.
Iyer, Prashanti R.; Buanafina, M. Fernanda; Shearer, Erica A.
2017-01-01
A feature of cell wall arabinoxylan in grasses is the presence of ferulic acid which upon oxidative coupling by the action of peroxidases forms diferuloyl bridges between formerly separated arabinoxylans. Ferulate cross-linking is suspected of playing various roles in different plant processes. Here we investigate the role of cell wall feruloyaltion in two major processes, that of leaf growth and the turnover of cell wall arabinoxylans on leaf senescence in tall fescue using plants in which the level of cell wall ferulates has been reduced by targeted expression of the Aspergillus niger ferulic acid esterase A (FAEA) to the apoplast or Golgi. Analysis of FAE expressing plants showed that all the lines had shorter and narrower leaves compared to control, which may be a consequence of the overall growth rate being lower and occurring earlier in FAE expressing leaves than in controls. Furthermore, the final length of epidermal cells was shorter than controls, indicating that their expansion was curtailed earlier than in control leaves. This may be due to the observations that the deposition of both ether and ester linked monomeric hydroxycinnamic acids and ferulate dimerization stopped earlier in FAE expressing leaves but at a lower level than controls, and hydroxycinnamic acid deposition started to slow down when peroxidase levels increased. It would appear therefore that one of the possible mechanisms for controlling overall leaf morphology such as leaf length and width in grasses, where leaf morphology is highly variable between species, may be the timing of hydroxycinnamic acid deposition in the expanding cell walls as they emerge from cell division into the elongation zone, controlled partially by the onset of peroxidase activity in this region. PMID:28934356
Mechanosensitive channels protect plastids from hypoosmotic stress during normal plant growth.
Veley, Kira M; Marshburn, Sarah; Clure, Cara E; Haswell, Elizabeth S
2012-03-06
Cellular response to osmotic stress is critical for survival and involves volume control through the regulated transport of osmolytes. Organelles may respond similarly to abrupt changes in cytoplasmic osmolarity. The plastids of the Arabidopsis thaliana leaf epidermis provide a model system for the study of organellar response to osmotic stress within the context of the cell. An Arabidopsis mutant lacking two plastid-localized homologs of the bacteria mechanosensitive channel MscS (MscS-like [MSL] 2 and 3) exhibits large round epidermal plastids that lack dynamic extensions known as stromules. This phenotype is present under normal growth conditions and does not require exposure to extracellular osmotic stress. Here we show that increasing cytoplasmic osmolarity through a genetic lesion known to produce elevated levels of soluble sugars, exogenously providing osmolytes in the growth media, or withholding water rescues the msl2-1 msl3-1 leaf epidermal plastid phenotype, producing plastids that resemble the wild-type in shape and size. Furthermore, the epidermal plastids in msl2-1 msl3-1 leaves undergo rapid and reversible volume and shape changes in response to extracellular hypertonic or hypotonic challenges. We conclude that plastids are under hypoosmotic stress during normal plant growth and dynamic response to this stress requires MSL2 and MSL3. Copyright © 2012 Elsevier Ltd. All rights reserved.
Papanatsiou, Maria; Amtmann, Anna
2016-01-01
Stomata enable gaseous exchange between the interior of the leaf and the atmosphere through the stomatal pore. Control of the pore aperture depends on osmotic solute accumulation by, and its loss from the guard cells surrounding the pore. Stomata in most plants are separated by at least one epidermal cell, and this spacing is thought to enhance stomatal function, although there are several genera that exhibit stomata in clusters. We made use of Arabidopsis (Arabidopsis thaliana) stomatal patterning mutants to explore the impact of clustering on guard cell dynamics, gas exchange, and ion transport of guard cells. These studies showed that stomatal clustering in the Arabidopsis too many mouths (tmm1) mutant suppressed stomatal movements and affected CO2 assimilation and transpiration differentially between dark and light conditions and were associated with alterations in K+ channel gating. These changes were consistent with the impaired dynamics of tmm1 stomata and were accompanied by a reduced accumulation of K+ ions in the guard cells. Our findings underline the significance of spacing for stomatal dynamics. While stomatal spacing may be important as a reservoir for K+ and other ions to facilitate stomatal movements, the effects on channel gating, and by inference on K+ accumulation, cannot be explained on the basis of a reduced number of epidermal cells facilitating ion supply to the guard cells. PMID:27406168
Kalve, Shweta; Fotschki, Joanna; Beeckman, Tom; Vissenberg, Kris; Beemster, Gerrit T S
2014-12-01
Variations in size and shape of multicellular organs depend on spatio-temporal regulation of cell division and expansion. Here, cell division and expansion rates were quantified relative to the three spatial axes in the first leaf pair of Arabidopsis thaliana. The results show striking differences in expansion rates: the expansion rate in the petiole is higher than in the leaf blade; expansion rates in the lateral direction are higher than longitudinal rates between 5 and 10 days after stratification, but become equal at later stages of leaf blade development; and anticlinal expansion co-occurs with, but is an order of magnitude slower than periclinal expansion. Anticlinal expansion rates also differed greatly between tissues: the highest rates occurred in the spongy mesophyll and the lowest in the epidermis. Cell division rates were higher and continued for longer in the epidermis compared with the palisade mesophyll, causing a larger increase of palisade than epidermal cell area over the course of leaf development. The cellular dynamics underlying the effect of shading on petiole length and leaf thickness were then investigated. Low light reduced leaf expansion rates, which was partly compensated by increased duration of the growth phase. Inversely, shading enhanced expansion rates in the petiole, so that the blade to petiole ratio was reduced by 50%. Low light reduced leaf thickness by inhibiting anticlinal cell expansion rates. This effect on cell expansion was preceded by an effect on cell division, leading to one less layer of palisade cells. The two effects could be uncoupled by shifting plants to contrasting light conditions immediately after germination. This extended kinematic analysis maps the spatial and temporal heterogeneity of cell division and expansion, providing a framework for further research to understand the molecular regulatory mechanisms involved. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Rumen Bacterial Degradation of Forage Cell Walls Investigated by Electron Microscopy
Akin, Danny E.; Amos, Henry E.
1975-01-01
The association of rumen bacteria with specific leaf tissues of the forage grass Kentucky-31 tall fescue (Festuca arundinacea Schreb.) during in vitro degradation was investigated by transmission and scanning electron microscopy. Examination of degraded leaf cross-sections revealed differential rates of tissue degradation in that the cell walls of the mesophyll and pholem were degraded prior to those of the outer bundle sheath and epidermis. Rumen bacteria appeared to degrade the mesophyll, in some cases, and phloem without prior attachment to the plant cell walls. The degradation of bundle sheath and epidermal cell walls appeared to be preceded by attachment of bacteria to the plant cell wall. Ultrastructural features apparently involved in the adhesion of large cocci to plant cells were observed by transmission and scanning electron microscopy. The physical association between plant and rumen bacterial cells during degradation apparently varies with tissue types. Bacterial attachment, by extracellular features in some microorganisms, is required prior to degradation of the more resistant tissues. Images PMID:16350017
Agarie, Sakae; Shimoda, Toshifumi; Shimizu, Yumi; Baumann, Kathleen; Sunagawa, Haruki; Kondo, Ayumu; Ueno, Osamu; Nakahara, Teruhisa; Nose, Akihiro; Cushman, John C
2007-01-01
The aerial surfaces of the common or crystalline ice plant Mesembryanthemum crystallinum L., a halophytic, facultative crassulacean acid metabolism species, are covered with specialized trichome cells called epidermal bladder cells (EBCs). EBCs are thought to serve as a peripheral salinity and/or water storage organ to improve survival under high salinity or water deficit stress conditions. However, the exact contribution of EBCs to salt tolerance in the ice plant remains poorly understood. An M. crystallinum mutant lacking EBCs was isolated from plant collections mutagenized by fast neutron irradiation. Light and electron microscopy revealed that mutant plants lacked EBCs on all surfaces of leaves and stems. Dry weight gain of aerial parts of the mutant was almost half that of wild-type plants after 3 weeks of growth at 400 mM NaCl. The EBC mutant also showed reduced leaf succulence and leaf and stem water contents compared with wild-type plants. Aerial tissues of wild-type plants had approximately 1.5-fold higher Na(+) and Cl(-) content than the mutant grown under 400 mM NaCl for 2 weeks. Na(+) and Cl(-) partitioning into EBCs of wild-type plants resulted in lower concentrations of these ions in photosynthetically active leaf tissues than in leaves of the EBC-less mutant, particularly under conditions of high salt stress. Potassium, nitrate, and phosphate ion content decreased with incorporation of NaCl into tissues in both the wild type and the mutant, but the ratios of Na(+)/K(+) and Cl(-)/NO(3)(-)content were maintained only in the leaf and stem tissues of wild-type plants. The EBC mutant showed significant impairment in plant productivity under salt stress as evaluated by seed pod and seed number and average seed weight. These results clearly show that EBCs contribute to succulence by serving as a water storage reservoir and to salt tolerance by maintaining ion sequestration and homeostasis within photosynthetically active tissues of M. crystallinum.
Internal coordination between hydraulics and stomatal control in leaves.
Brodribb, Tim J; Jordan, Gregory J
2008-11-01
The stomatal response to changing leaf-atmospheric vapour pressure gradient (D(l)) is a crucial yet enigmatic process that defines the daily course of leaf gas exchange. Changes in the hydration of epidermal cells are thought to drive this response, mediated by the transpiration rate and hydraulic conductance of the leaf. Here, we examine whether species-specific variation in the sensitivity of leaves to perturbation of D(l) is related to the efficiency of water transport in the leaf (leaf hydraulic conductivity, K(leaf)). We found good correlation between maximum liquid (K(leaf)) and gas phase conductances (g(max)) in leaves, but there was no direct correlation between normalized D(l) sensitivity and K(leaf). The impact of K(leaf) on D(l) sensitivity in our diverse sample of eight species was important only after accounting for the strong relationship between K(leaf) and g(max). Thus, the ratio of g(max)/K(leaf) was strongly correlated with stomatal sensitivity to D(l). This ratio is an index of the degree of hydraulic buffering of the stomata against changes in D(l), and species with high g(max) relative to K(leaf) were the most sensitive to D(l) perturbation. Despite the potentially high adaptive significance of this phenomenon, we found no significant phylogenetic or ecological trend in our species.
Morales, Luis O; Tegelberg, Riitta; Brosché, Mikael; Lindfors, Anders; Siipola, Sari; Aphalo, Pedro J
2011-11-01
The physiological mechanisms controlling plant responses to dynamic changes in ambient solar ultraviolet (UV) radiation are not fully understood: this information is important to further comprehend plant adaptation to their natural habitats. We used the fluorimeter Dualex to estimate in vivo the epidermal flavonoid contents by measuring epidermal UV absorbance (A(375) ) in Betula pendula Roth (silver birch) leaves of different ages under altered UV. Seedlings were grown in a greenhouse for 15 days without UV and transferred outdoors under three UV treatments (UV-0, UV-A and UV-A+B) created by three types of plastic film. After 7 and 13 days, Dualex measurements were taken at adaxial and abaxial epidermis of the first three leaves (L1, L2 and L3) of the seedlings. After 14 days, some of the seedlings were reciprocally swapped amongst the treatments to study the accumulation of epidermal flavonoids in the youngest unfolded leaves (L3) during leaf expansion under changing solar UV environments. A(375) of the leaves responded differently to the UV treatment depending on their position. UV-B increased the A(375) in the leaves independently of leaf position. L3 quickly adjusted A(375) in their epidermis according to the UV they received and these adjustments were affected by previous UV exposure. The initial absence of UV-A+B or UV-A, followed by exposure to UV-A+B, particularly enhanced leaf A(375) . Silver birch leaves modulate their protective pigments in response to changes in the UV environment during their expansion, and their previous UV exposure history affects the epidermal-absorbance achieved during later UV exposure. Copyright © Physiologia Plantarum 2011.
Riikonen, Johanna; Syrjälä, Leena; Tulva, Ingmar; Mänd, Pille; Oksanen, Elina; Poteri, Marja; Vapaavuori, Elina
2008-11-01
Two silver birch clones were exposed to ambient and elevated concentrations of CO(2) and O(3), and their combination for 3 years, using open-top chambers. We evaluated the effects of elevated CO(2) and O(3) on stomatal conductance (g(s)), density (SD) and index (SI), length of the guard cells, and epidermal cell size and number, with respect to crown position and leaf type. The relationship between the infection biology of the fungus (Pyrenopeziza betulicola) causing leaf spot disease and stomatal characteristics was also studied. Leaf type was an important determinant of O(3) response in silver birch, while crown position and clone played only a minor role. Elevated CO(2) reduced the g(s), but had otherwise no significant effect on the parameters studied. No significant interactions between elevated CO(2) and O(3) were found. The infection biology of P. betulicola was not correlated with SD or g(s), but it did occasionally correlate positively with the length of the guard cells.
Sánchez-Pardo, Beatriz; Fernández-Pascual, Mercedes; Zornoza, Pilar
2014-01-01
The microlocalisation of Cu was examined in the leaves of white lupin and soybean grown hydroponically in the presence of 1.6 (control) or 192 μM (excess) Cu, along with its effect on leaf morphology, (ultra)structure and the antioxidative response. The 192 μM dose led to a reduction in the total leaf area and leaf thickness in both species, although more strongly so in white lupin. In the latter species it was also associated with smaller spongy parenchyma cells, and smaller spaces between them, while in the soybean it more strongly reduced the size of the palisade parenchyma and epidermal cells. Energy-dispersive X-ray microanalysis showed that under Cu excess the metal was mainly localised inside the spongy parenchyma cells of the white lupin leaves, and in the lower epidermis cell walls in those of the soybean. Cu excess also promoted ultrastructural chloroplast alterations, reducing the photosynthetic capacity index and the green area of the leaves, especially in the soybean. Despite this, soybean appeared to be more tolerant to Cu excess than white lupin, because soybean displayed (1) lower accumulation of Cu in the leaves, (2) enhanced microlocalisation of Cu in the cell walls and (3) greater levels of induced total -SH content and superoxide dismutase and catalase activities that are expected for better antioxidative responses.
Liu, Pei-Feng; Wang, Yanhan; Ulrich, Robert G.; Simmons, Christopher W.; VanderGheynst, Jean S.; Gallo, Richard L.
2018-01-01
Transgene introgression is a major concern associated with transgenic plant-based vaccines. Agroinfiltration can be used to selectively transform nonreproductive organs and avoid introgression. Here, we introduce a new vaccine modality in which Staphylococcal enterotoxin B (SEB) genes are agroinfiltrated into radishes (Raphanw sativus L.), resulting in transient expression and accumulation of SEB in planta. This approach can simultaneously express multiple antigens in a single leaf. Furthermore, the potential of high-throughput vaccine production was demonstrated by simultaneously agroinfiltrating multiple radish leaves using a multichannel pipette. The expression of SEB was detectable in two leaf cell types (epidermal and guard cells) in agroinfiltrated leaves. ICR mice intranasally immunized with homogenized leaves agroinfiltrated with SEB elicited detectable antibody to SEB and displayed protection against SEB-induced interferon-gamma (IFN-γ) production. The concept of encapsulating antigens in leaves rather than purifying them for immunization may facilitate rapid vaccine production during an epidemic disease. PMID:29577048
Papanatsiou, Maria; Amtmann, Anna; Blatt, Michael R
2016-09-01
Stomata enable gaseous exchange between the interior of the leaf and the atmosphere through the stomatal pore. Control of the pore aperture depends on osmotic solute accumulation by, and its loss from the guard cells surrounding the pore. Stomata in most plants are separated by at least one epidermal cell, and this spacing is thought to enhance stomatal function, although there are several genera that exhibit stomata in clusters. We made use of Arabidopsis (Arabidopsis thaliana) stomatal patterning mutants to explore the impact of clustering on guard cell dynamics, gas exchange, and ion transport of guard cells. These studies showed that stomatal clustering in the Arabidopsis too many mouths (tmm1) mutant suppressed stomatal movements and affected CO2 assimilation and transpiration differentially between dark and light conditions and were associated with alterations in K(+) channel gating. These changes were consistent with the impaired dynamics of tmm1 stomata and were accompanied by a reduced accumulation of K(+) ions in the guard cells. Our findings underline the significance of spacing for stomatal dynamics. While stomatal spacing may be important as a reservoir for K(+) and other ions to facilitate stomatal movements, the effects on channel gating, and by inference on K(+) accumulation, cannot be explained on the basis of a reduced number of epidermal cells facilitating ion supply to the guard cells. © 2016 American Society of Plant Biologists. All rights reserved.
Leaf expansion in Phaseolus: transient auxin-induced growth increase
Keller, Christopher P.
2017-01-01
Control of leaf expansion by auxin is not well understood. Evidence from short term exogenous applications and from treatment of excised tissues suggests auxin positively influences growth. Manipulations of endogenous leaf auxin content, however, suggests that, long-term, auxin suppresses leaf expansion. This study attempts to clarify the growth effects of auxin on unifoliate (primary) leaves of the common bean (Phaseolus vulgaris) by reexamining the response to auxin treatment of both excised leaf strips and attached leaves. Leaf strips, incubated in culture conditions that promoted steady elongation for up to 48 h, treated with 10 μM NAA responded with an initial surge of elongation growth complete within 10 hours followed by insensitivity. A range of NAA concentrations from 0.1 μM to 300 μM induced increased strip elongation after 24 hours and 48 hours. Increased elongation and epinastic curvature of leaf strips was found specific to active auxins. Expanding attached unifoliates treated once with aqueous auxin α-naphthalene acetic acid (NAA) at 1.0 mM showed both an initial surge in growth lasting 4–6 hours followed by growth inhibition sustained at least as long as 24 hours post treatment. Auxin-induced inhibition of leaf expansion was associated with smaller epidermal cell area. Together the results suggest increasing leaf auxin first increases growth then slows growth through inhibition of cell expansion. Excised leaf strips, retain only the initial increased growth response to auxin and not the subsequent growth inhibition, either as a consequence of wounding or of isolation from the plant. PMID:29200506
Coble, Adam P; Cavaleri, Molly A
2017-10-01
A key trait used in canopy and ecosystem function modeling, leaf mass per area (LMA), is influenced by changes in both leaf thickness and leaf density (LMA = Thickness × Density). In tall trees, LMA is understood to increase with height through two primary mechanisms: (i) increasing palisade layer thickness (and thus leaf thickness) in response to light and/or (ii) reduced cell expansion and intercellular air space in response to hydrostatic constraints, leading to increased leaf density. Our objective was to investigate within-canopy gradients in leaf anatomical traits in order to understand environmental factors that influence leaf morphology in a sugar maple (Acer saccharum Marshall) forest canopy. We teased apart the effects of light and height on anatomical traits by sampling at exposed and closed canopies that had different light conditions at similar heights. As expected, palisade layer thickness responded strongly to cumulative light exposure. Mesophyll porosity, however, was weakly and negatively correlated with light and height (i.e., hydrostatic gradients). Reduced mesophyll porosity was not likely caused by limitations on cell expansion; in fact, epidermal cell width increased with height. Palisade layer thickness was better related to LMA, leaf density and leaf thickness than was mesophyll porosity. Vein diameter and fraction of vascular tissue also increased with height and LMA, density and thickness, revealing that greater investment in vascular and support tissue may be a third mechanism for increased LMA with height. Overall, decreasing mesophyll porosity with height was likely due to palisade cells expanding into the available air space and also greater investments in vascular and support tissue, rather than a reduction of cell expansion due to hydrostatic constraints. Our results provide evidence that light influences both palisade layer thickness and mesophyll porosity and indicate that hydrostatic gradients influence leaf vascular and support tissues in mature Acer saccharum trees. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Zhang, Yanxiang; Equiza, Maria Alejandra; Zheng, Quanshui; Tyree, Melvin T
2011-09-01
Leaf morphology in the upper canopy of trees tends to be different from that lower down. The effect of long-term water stress on leaf growth and morphology was studied in seedlings of Metasequoia glyptostroboides to understand how tree height might affect leaf morphology in larger trees. Tree height increases water stress on growing leaves through increased hydraulic resistance to water flow and increased gravitational potential, hence we assume that water stress imposed by soil dehydration will have an effect equivalent to stress induced by height. Seedlings were subjected to well-watered and two constant levels of long-term water stress treatments. Drought treatment significantly reduced final needle count, area and mass per area (leaf mass area, LMA) and increased needle density. Needles from water-stressed plants had lower maximum volumetric elastic modulus (ε(max)), osmotic potential at full turgor (Ψ¹⁰⁰(π)) (and at zero turgor (Ψ⁰(π)) (than those from well-watered plants. Palisade and spongy mesophyll cell size and upper epidermal cell size decreased significantly in drought treatments. Needle relative growth rate, needle length and cell sizes were linear functions of the daily average water potential at the time of leaf growth (r² 0.88-0.999). We conclude that water stress alone does mimic the direction and magnitude of changes in leaf morphology observed in tall trees. The results are discussed in terms of various models for leaf growth rate. Copyright © Physiologia Plantarum 2011.
Organ-Level Analysis of Idioblast Patterning in Egeria densa Planch. Leaves
Hara, Takuya; Kobayashi, Emi; Ohtsubo, Kohei; Kumada, Shogo; Kanazawa, Mikako; Abe, Tomoko; Itoh, Ryuuichi D.; Fujiwara, Makoto T.
2015-01-01
Leaf tissues of plants usually contain several types of idioblasts, defined as specialized cells whose shape and contents differ from the surrounding homogeneous cells. The spatial patterning of idioblasts, particularly of trichomes and guard cells, across the leaf epidermis has received considerable attention as it offers a useful biological model for studying the intercellular regulation of cell fate and patterning. Excretory idioblasts in the leaves of the aquatic monocotyledonous plant Egeria densa produced light blue autofluorescence when irradiated with ultraviolet light. The use of epifluorescence microscopy to detect this autofluorescence provided a simple and convenient method for detecting excretory idioblasts and allowed tracking of those cells across the leaf surfaces, enabling quantitative measurement of the clustering and spacing patterns of idioblasts at the whole leaf level. Occurrence of idioblasts was coordinated along the proximal–distal, medial–lateral, and adaxial–abaxial axes, producing a recognizable consensus spatial pattern of idioblast formation among fully expanded leaves. Idioblast clusters, which comprised up to nine cells aligned along the proximal–distal axis, showed no positional bias or regularity in idioblast-forming areas when compared with singlet idioblasts. Up to 75% of idioblasts existed as clusters on every leaf side examined. The idioblast-forming areas varied between leaves, implying phenotypic plasticity. Furthermore, in young expanding leaves, autofluorescence was occasionally detected in a single giant vesicle or else in one or more small vesicles, which eventually grew to occupy a large portion of the idioblast volume as a central vacuole. Differentiation of vacuoles by accumulating the fluorescence substance might be an integral part of idioblast differentiation. Red autofluorescence from chloroplasts was not detected in idioblasts of young expanding leaves, suggesting idioblast differentiation involves an arrest in chloroplast development at a very early stage, rather than transdifferentiation of chloroplast-containing epidermal cells. PMID:25742311
Wieckowski, Yana; Schiefelbein, John
2012-07-01
Position-dependent patterning of hair and non-hair cells in the Arabidopsis thaliana root epidermis is a powerful system to study the molecular basis of cell fate specification. Here, we report an epidermal patterning mutant affecting the ADENOSINE DIMETHYL TRANSFERASE 1A (DIM1A) rRNA dimethylase gene, predicted to participate in rRNA posttranscriptional processing and base modification. Consistent with a role in ribosome biogenesis, DIM1A is preferentially expressed in regions of rapid growth, and its product is nuclear localized with nucleolus enrichment. Furthermore, DIM1A preferentially accumulates in the developing hair cells, and the dim1A point mutant alters the cell-specific expression of the transcriptional regulators GLABRA2, CAPRICE, and WEREWOLF. Together, these findings suggest that establishment of cell-specific gene expression during root epidermis development is dependent upon proper ribosome biogenesis, possibly due to the sensitivity of the cell fate decision to relatively small differences in gene regulatory activities. Consistent with its effect on the predicted S-adenosyl-l-Met binding site, dim1A plants lack the two 18S rRNA base modifications but exhibit normal pre-rRNA processing. In addition to root epidermal defects, the dim1A mutant exhibits abnormal root meristem division, leaf development, and trichome branching. Together, these findings provide new insights into the importance of rRNA base modifications and translation regulation for plant growth and development.
Wieckowski, Yana; Schiefelbein, John
2012-01-01
Position-dependent patterning of hair and non-hair cells in the Arabidopsis thaliana root epidermis is a powerful system to study the molecular basis of cell fate specification. Here, we report an epidermal patterning mutant affecting the ADENOSINE DIMETHYL TRANSFERASE 1A (DIM1A) rRNA dimethylase gene, predicted to participate in rRNA posttranscriptional processing and base modification. Consistent with a role in ribosome biogenesis, DIM1A is preferentially expressed in regions of rapid growth, and its product is nuclear localized with nucleolus enrichment. Furthermore, DIM1A preferentially accumulates in the developing hair cells, and the dim1A point mutant alters the cell-specific expression of the transcriptional regulators GLABRA2, CAPRICE, and WEREWOLF. Together, these findings suggest that establishment of cell-specific gene expression during root epidermis development is dependent upon proper ribosome biogenesis, possibly due to the sensitivity of the cell fate decision to relatively small differences in gene regulatory activities. Consistent with its effect on the predicted S-adenosyl-l-Met binding site, dim1A plants lack the two 18S rRNA base modifications but exhibit normal pre-rRNA processing. In addition to root epidermal defects, the dim1A mutant exhibits abnormal root meristem division, leaf development, and trichome branching. Together, these findings provide new insights into the importance of rRNA base modifications and translation regulation for plant growth and development. PMID:22829145
Martins, Luiza Carla Barbosa; Della Lucia, Terezinha Maria Castro; Gonçalves, Wagner Gonzaga; Delabie, Jacques Hubert Charles; Zanuncio, José Cola; Serrão, José Eduardo
2015-07-01
Intramandibular glands have been poorly studied in polymorphic ants, where the differences between castes were unsufficiently scrutinized. Leaf-cutting ants possess one of the most complex systems of communication and labor division, which is polymorphic well as age polyethism, and makes them an ideal model for the study of intramandibular glands. This study has investigated the occurrence of intramandibular glands in female castes and subcastes of Atta laevigata. The mandibles of the queen, medium, and minor workers, and soldiers were submitted to histological, histochemical, ultrastructural, and morphometric analyses. The class-3 gland cells and the epidermal gland with a reservoir were found in all the castes. The queens and soldiers showed a higher number of class-3 gland cells, distributed within the mandible as well as a greater gland size in comparison to the workers. The histochemical tests, periodic acid-Schiff (PAS), mercury-bromophenol, and Nile blue, were similar for the class-3 gland cells and epidermal glands with a reservoir. However, the tests evidenced differences between the castes, with carbohydrates strongly positive in all of them, whereas neutral lipids were found in the queen and soldiers. The protein was weakly positive in the queen, whereas in the soldier, medium, and minor workers these reactions were strongly positive in the intramandibular glands. Our findings in A. laevigata suggest that intramandibular glands are directly involved in labor division and consequently in chemical communication between the castes. © 2015 Wiley Periodicals, Inc.
Conserved genetic determinant of motor organ identity in Medicago truncatula and related legumes
Chen, Jianghua; Moreau, Carol; Liu, Yu; Kawaguchi, Masayoshi; Hofer, Julie; Ellis, Noel; Chen, Rujin
2012-01-01
Plants exhibit various kinds of movements that have fascinated scientists and the public for centuries. Physiological studies in plants with the so-called motor organ or pulvinus suggest that cells at opposite sides of the pulvinus mediate leaf or leaflet movements by swelling and shrinking. How motor organ identity is determined is unknown. Using a genetic approach, we isolated a mutant designated elongated petiolule1 (elp1) from Medicago truncatula that fails to fold its leaflets in the dark due to loss of motor organs. Map-based cloning indicated that ELP1 encodes a putative plant-specific LOB domain transcription factor. RNA in situ analysis revealed that ELP1 is expressed in primordial cells that give rise to the motor organ. Ectopic expression of ELP1 resulted in dwarf plants with petioles and rachises reduced in length, and the epidermal cells gained characteristics of motor organ epidermal cells. By identifying ELP1 orthologs from other legume species, namely pea (Pisum sativum) and Lotus japonicus, we show that this motor organ identity is regulated by a conserved molecular mechanism. PMID:22689967
Königer, Martina; Jessen, Brita; Yang, Rui; Sittler, Dorothea; Harris, Gary C
2010-09-01
The goal of this study was to investigate the effects of light intensity, genotype, and various chemical treatments on chloroplast movement in guard cells of Arabidopsis thaliana leaves. After treatment at various light intensities (dark, low, and high light), leaf discs were fixed with glutaraldehyde, and imaged using confocal laser microscopy. Each chloroplast was assigned a horizontal (close to pore, center, or epidermal side) and vertical (outer, middle, inner) position. White light had a distinct effect on chloroplast positioning, most notably under high light (HL) when chloroplasts on the upper leaf surface of wild-type (WT) moved from epidermal and center positions toward the pore. This was not the case for phot1-5/phot2-1 or phot2-1 plants, thus phototropins are essential for chloroplast positioning in guard cells. In npq1-2 mutants, fewer chloroplasts moved to the pore position under HL than in WT plants, indicating that white light can affect chloroplast positioning also in a zeaxanthin-dependent way. Cytochalasin B inhibited the movement of chloroplasts to the pore under HL, while oryzalin did not, supporting the idea that actin plays a role in the movement. The movement along actin cables is dependent on CHUP1 since chloroplast positioning in chup1 was significantly altered. Abscisic acid (ABA) caused most chloroplasts in WT and phot1-5/phot2-1 to be localized in the center, middle part of the guard cells irrespective of light treatment. This indicates that not only light but also water stress influences chloroplast positioning.
Cerovic, Zoran G; Masdoumier, Guillaume; Ghozlen, NaÏma Ben; Latouche, Gwendal
2012-01-01
We have characterized a new commercial chlorophyll (Chl) and flavonoid (Flav) meter called Dualex 4 Scientific (Dx4). We compared this device to two other Chl meters, the SPAD-502 and the CCM-200. In addition, Dx4 was compared to the leaf-clip Dualex 3 that measures only epidermal Flav. Dx4 is factory-calibrated to provide a linear response to increasing leaf Chl content in units of µg cm–2, as opposed to both SPAD-502 and CCM-200 that have a non-linear response to leaf Chl content. Our comparative calibration by Chl extraction confirmed these responses. It seems that the linear response of Dx4 derives from the use of 710 nm as the sampling wavelength for transmittance. The major advantage of Dx4 is its simultaneous assessment of Chl and Flav on the same leaf spot. This allows the generation of the nitrogen balance index (NBI) used for crop surveys and nitrogen nutrition management. The Dx4 leaf clip, that incorporates a GPS receiver, can be useful for non-destructive estimation of leaf Chl and Flav contents for ecophysiological research and ground truthing of remote sensing of vegetation. In this work, we also propose a consensus equation for the transformation of SPAD units into leaf Chl content, for general use. PMID:22568678
Cerovic, Zoran G; Masdoumier, Guillaume; Ghozlen, Naïma Ben; Latouche, Gwendal
2012-11-01
We have characterized a new commercial chlorophyll (Chl) and flavonoid (Flav) meter called Dualex 4 Scientific (Dx4). We compared this device to two other Chl meters, the SPAD-502 and the CCM-200. In addition, Dx4 was compared to the leaf-clip Dualex 3 that measures only epidermal Flav. Dx4 is factory-calibrated to provide a linear response to increasing leaf Chl content in units of µg cm(-2), as opposed to both SPAD-502 and CCM-200 that have a non-linear response to leaf Chl content. Our comparative calibration by Chl extraction confirmed these responses. It seems that the linear response of Dx4 derives from the use of 710 nm as the sampling wavelength for transmittance. The major advantage of Dx4 is its simultaneous assessment of Chl and Flav on the same leaf spot. This allows the generation of the nitrogen balance index (NBI) used for crop surveys and nitrogen nutrition management. The Dx4 leaf clip, that incorporates a GPS receiver, can be useful for non-destructive estimation of leaf Chl and Flav contents for ecophysiological research and ground truthing of remote sensing of vegetation. In this work, we also propose a consensus equation for the transformation of SPAD units into leaf Chl content, for general use. Copyright © Physiologia Plantarum 2012.
Lorenzo, M; Pinedo, M L; Equiza, M A; Fernández, P V; Ciancia, M; Ganem, D G; Tognetti, J A
2018-02-14
Temperate grasses, such as wheat, become compact plants with small thick leaves after exposure to low temperature. These responses are associated with cold hardiness, but their underlying mechanisms remain largely unknown. Here we analyse the effects of low temperature on leaf morpho-anatomical structure, cell wall composition and activity of extracellular peroxidases, which play key roles in cell elongation and cell wall thickening, in two wheat cultivars with contrasting cold-hardening ability. A combined microscopy and biochemical approach was applied to study actively growing leaves of winter (ProINTA-Pincén) and spring (Buck-Patacón) wheat developed under constant warm (25 °C) or cool (5 °C) temperature. Cold-grown plants had shorter leaves but longer inter-stomatal epidermal cells than warm-grown plants. They had thicker walls in metaxylem vessels and mestome sheath cells, paralleled with accumulation of wall components, predominantly hemicellulose. These effects were more pronounced in the winter cultivar (Pincén). Cold also induced a sharp decrease in apoplastic peroxidase activity within the leaf elongating zone of Pincén, and a three-fold increase in the distal mature zone of the leaf. This was consistent with the enhanced cell length and thicker cell walls in this cultivar at 5 °C. The different response to low temperature of apoplastic peroxidase activity and hemicellulose between leaf zones and cultivar types suggests they might play a central role in the development of cold-induced compact morphology and cold hardening. New insights are presented on the potential temperature-driven role of peroxidases and hemicellulose in cell wall dynamics of grasses. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.
Xu, Bin; Sathitsuksanoh, Noppadon; Tang, Yuhong; Udvardi, Michael K; Zhang, Ji-Yi; Shen, Zhengxing; Balota, Maria; Harich, Kim; Zhang, Percival Y-H; Zhao, Bingyu
2012-01-01
Switchgrass (Panicum virgatum L.) is a prime candidate crop for biofuel feedstock production in the United States. As it is a self-incompatible polyploid perennial species, breeding elite and stable switchgrass cultivars with traditional breeding methods is very challenging. Translational genomics may contribute significantly to the genetic improvement of switchgrass, especially for the incorporation of elite traits that are absent in natural switchgrass populations. In this study, we constitutively expressed an Arabidopsis NAC transcriptional factor gene, LONG VEGETATIVE PHASE ONE (AtLOV1), in switchgrass. Overexpression of AtLOV1 in switchgrass caused the plants to have a smaller leaf angle by changing the morphology and organization of epidermal cells in the leaf collar region. Also, overexpression of AtLOV1 altered the lignin content and the monolignol composition of cell walls, and caused delayed flowering time. Global gene-expression analysis of the transgenic plants revealed an array of responding genes with predicted functions in plant development, cell wall biosynthesis, and flowering. To our knowledge, this is the first report of a single ectopically expressed transcription factor altering the leaf angle, cell wall composition, and flowering time of switchgrass, therefore demonstrating the potential advantage of translational genomics for the genetic improvement of this crop.
Cellular distribution of calmodulin and calmodulin-binding proteins in Vicia faba L
NASA Technical Reports Server (NTRS)
Ling, V.; Assmann, S. M.
1992-01-01
The distribution of calmodulin (CaM) and CaM-binding proteins within Vicia faba was investigated. Both CaM and CaM-binding proteins were found to be differentially distributed among organs, tissues, and protoplast types. CaM levels, on a per protein basis, were found to be the highest in leaf epidermis, containing 3-fold higher levels of CaM than in total leaf. Similarly, guard cell and epidermal cell protoplasts were also found to have higher levels of CaM than mesophyll cell protoplasts. 125I-CaM blot overlay assays were performed to qualitatively examine CaM-binding proteins in these protoplast types as well as in whole tissues and organs. CaM-binding proteins with Mr 52,000, 78,000, and 115,000 were common in all metabolically active plant parts. Unique CaM-binding protein bands were detected in guard cell protoplasts (Mr 39,000, 88,000), stems (Mr 45,000, 60,000, 64,000), and roots (Mr 62,000), suggesting the presence of specialized CaM-dependent processes in these cells and organs.
Živanović, Branka D; Shabala, Lana I; Elzenga, Theo J M; Shabala, Sergey N
2015-10-01
Blue light signalling pathway in broad bean leaf epidermal cells includes key membrane transporters: plasma- and endomembrane channels and pumps of H (+) , Ca (2+) and K (+) ions, and plasma membrane redox system. Blue light signalling pathway in epidermal tissue isolated from the abaxial side of fully developed Vicia faba leaves was dissected by measuring the effect of inhibitors of second messengers on net K(+), Ca(2+) and H(+) fluxes using non-invasive ion-selective microelectrodes (the MIFE system). Switching the blue light on-off caused transient changes of the ion fluxes. The effects of seven groups of inhibitors were tested in this study: CaM antagonists, ATPase inhibitors, Ca(2+) anatagonists or chelators, agents affecting IP3 formation, redox system inhibitors, inhibitors of endomembrane Ca(2+) transport systems and an inhibitor of plasma membrane Ca(2+)-permeable channels. Most of the inhibitors had a significant effect on steady-state (basal) net fluxes, as well as on the magnitude of the transient ion flux responses to blue light fluctuations. The data presented in this study suggest that redox signalling and, specifically, plasma membrane NADPH oxidase and coupled Ca(2+) and K(+) fluxes play an essential role in blue light signal transduction.
Silicification in Grasses: Variation between Different Cell Types
Kumar, Santosh; Soukup, Milan; Elbaum, Rivka
2017-01-01
Plants take up silicon as mono-silicic acid, which is released to soil by the weathering of silicate minerals. Silicic acid can be taken up by plant roots passively or actively, and later it is deposited in its polymerized form as amorphous hydrated silica. Major silica depositions in grasses occur in root endodermis, leaf epidermal cells, and outer epidermal cells of inflorescence bracts. Debates are rife about the mechanism of silica deposition, and two contrasting scenarios are often proposed to explain it. According to the passive mode of silicification, silica deposition is a result of silicic acid condensation due to dehydration, such as during transpirational loss of water from the aboveground organs. In general, silicification and transpiration are positively correlated, and continued silicification is sometimes observed after cell and tissue maturity. The other mode of silicification proposes the involvement of some biological factors, and is based on observations that silicification is not necessarily coupled with transpiration. Here, we review evidence for both mechanisms of silicification, and propose that the deposition mechanism is specific to the cell type. Considering all the cell types together, our conclusion is that grass silica deposition can be divided into three modes: spontaneous cell wall silicification, directed cell wall silicification, and directed paramural silicification in silica cells. PMID:28400787
Identification of Maize Silicon Influx Transporters
Mitani, Namiki; Yamaji, Naoki; Ma, Jian Feng
2009-01-01
Maize (Zea mays L.) shows a high accumulation of silicon (Si), but transporters involved in the uptake and distribution have not been identified. In the present study, we isolated two genes (ZmLsi1 and ZmLsi6), which are homologous to rice influx Si transporter OsLsi1. Heterologous expression in Xenopus laevis oocytes showed that both ZmLsi1 and ZmLsi6 are permeable to silicic acid. ZmLsi1 was mainly expressed in the roots. By contrast, ZmLsi6 was expressed more in the leaf sheaths and blades. Different from OsLsi1, the expression level of both ZmLsi1 and ZmLsi6 was unaffected by Si supply. Immunostaining showed that ZmLsi1 was localized on the plasma membrane of the distal side of root epidermal and hypodermal cells in the seminal and crown roots, and also in cortex cells in lateral roots. In the shoots, ZmLsi6 was found in the xylem parenchyma cells that are adjacent to the vessels in both leaf sheaths and leaf blades. ZmLsi6 in the leaf sheaths and blades also exhibited polar localization on the side facing towards the vessel. Taken together, it can be concluded that ZmLsi1 is an influx transporter of Si, which is responsible for the transport of Si from the external solution to the root cells and that ZmLsi6 mainly functions as a Si transporter for xylem unloading. PMID:18676379
The Competition between Liquid and Vapor Transport in Transpiring Leaves1[W][OPEN
Rockwell, Fulton Ewing; Holbrook, N. Michele; Stroock, Abraham Duncan
2014-01-01
In leaves, the transpirational flux of water exits the veins as liquid and travels toward the stomata in both the vapor and liquid phases before exiting the leaf as vapor. Yet, whether most of the evaporation occurs from the vascular bundles (perivascular), from the photosynthetic mesophyll cells, or within the vicinity of the stomatal pore (peristomatal) remains in dispute. Here, a one-dimensional model of the competition between liquid and vapor transport is developed from the perspective of nonisothermal coupled heat and water molecule transport in a composite medium of airspace and cells. An analytical solution to the model is found in terms of the energy and transpirational fluxes from the leaf surfaces and the absorbed solar energy load, leading to mathematical expressions for the proportions of evaporation accounted for by the vascular, mesophyll, and epidermal regions. The distribution of evaporation in a given leaf is predicted to be variable, changing with the local environment, and to range from dominantly perivascular to dominantly peristomatal depending on internal leaf architecture, with mesophyll evaporation a subordinate component. Using mature red oak (Quercus rubra) trees, we show that the model can be solved for a specific instance of a transpiring leaf by combining gas-exchange data, anatomical measurements, and hydraulic experiments. We also investigate the effect of radiation load on the control of transpiration, the potential for condensation on the inside of an epidermis, and the impact of vapor transport on the hydraulic efficiency of leaf tissue outside the xylem. PMID:24572172
The competition between liquid and vapor transport in transpiring leaves.
Rockwell, Fulton Ewing; Holbrook, N Michele; Stroock, Abraham Duncan
2014-04-01
In leaves, the transpirational flux of water exits the veins as liquid and travels toward the stomata in both the vapor and liquid phases before exiting the leaf as vapor. Yet, whether most of the evaporation occurs from the vascular bundles (perivascular), from the photosynthetic mesophyll cells, or within the vicinity of the stomatal pore (peristomatal) remains in dispute. Here, a one-dimensional model of the competition between liquid and vapor transport is developed from the perspective of nonisothermal coupled heat and water molecule transport in a composite medium of airspace and cells. An analytical solution to the model is found in terms of the energy and transpirational fluxes from the leaf surfaces and the absorbed solar energy load, leading to mathematical expressions for the proportions of evaporation accounted for by the vascular, mesophyll, and epidermal regions. The distribution of evaporation in a given leaf is predicted to be variable, changing with the local environment, and to range from dominantly perivascular to dominantly peristomatal depending on internal leaf architecture, with mesophyll evaporation a subordinate component. Using mature red oak (Quercus rubra) trees, we show that the model can be solved for a specific instance of a transpiring leaf by combining gas-exchange data, anatomical measurements, and hydraulic experiments. We also investigate the effect of radiation load on the control of transpiration, the potential for condensation on the inside of an epidermis, and the impact of vapor transport on the hydraulic efficiency of leaf tissue outside the xylem.
Shirakawa, Makoto; Ueda, Haruko; Nagano, Atsushi J.; Shimada, Tomoo; Kohchi, Takayuki; Hara-Nishimura, Ikuko
2014-01-01
Brassicales plants, including Arabidopsis thaliana, have an ingenious two-compartment defense system, which sequesters myrosinase from the substrate glucosinolate and produces a toxic compound when cells are damaged by herbivores. Myrosinase is stored in vacuoles of idioblast myrosin cells. The molecular mechanism that regulates myrosin cell development remains elusive. Here, we identify the basic helix-loop-helix transcription factor FAMA as an essential component for myrosin cell development along Arabidopsis leaf veins. FAMA is known as a regulator of stomatal development. We detected FAMA expression in myrosin cell precursors in leaf primordia in addition to stomatal lineage cells. FAMA deficiency caused defects in myrosin cell development and in the biosynthesis of myrosinases THIOGLUCOSIDE GLUCOHYDROLASE1 (TGG1) and TGG2. Conversely, ectopic FAMA expression conferred myrosin cell characteristics to hypocotyl and root cells, both of which normally lack myrosin cells. The FAMA interactors ICE1/SCREAM and its closest paralog SCREAM2/ICE2 were essential for myrosin cell development. DNA microarray analysis identified 32 candidate genes involved in myrosin cell development under the control of FAMA. This study provides a common regulatory pathway that determines two distinct cell types in leaves: epidermal guard cells and inner-tissue myrosin cells. PMID:25304202
CO2 and chamber effects on epidermal development in field grown peanut (Arachis hypogaea L.)
USDA-ARS?s Scientific Manuscript database
Peanut, (Arachis hypogaea L.) cvar. C76–16, was grown either in the field, or in open gas exchange chambers under elevated or ambient CO2 concentrations. Stomatal density and other selected epidermal parameters associated with leaf development and gas exchange were measured on recently fully expande...
Siao, Wei; Wang, Pengwei; Voigt, Boris; Hussey, Patrick J; Baluska, Frantisek
2016-11-01
Arabidopsis synaptotagmin 1 (SYT1) is localized on the endoplasmic reticulum-plasma membrane (ER-PM) contact sites in leaf and root cells. The ER-PM localization of Arabidopsis SYT1 resembles that of the extended synaptotagmins (E-SYTs) in animal cells. In mammals, E-SYTs have been shown to regulate calcium signaling, lipid transfer, and endocytosis. Arabidopsis SYT1 was reported to be essential for maintaining cell integrity and virus movement. This study provides detailed insight into the subcellular localization of SYT1 and VAP27-1, another ER-PM-tethering protein. SYT1 and VAP27-1 were shown to be localized on distinct ER-PM contact sites. The VAP27-1-enriched ER-PM contact sites (V-EPCSs) were always in contact with the SYT1-enriched ER-PM contact sites (S-EPCSs). The V-EPCSs still existed in the leaf epidermal cells of the SYT1 null mutant; however, they were less stable than those in the wild type. The polygonal networks of cortical ER disassembled and the mobility of VAP27-1 protein on the ER-PM contact sites increased in leaf cells of the SYT1 null mutant. These results suggest that SYT1 is responsible for stabilizing the ER network and V-EPCSs. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Leaf structural traits of tropical woody species resistant to cement dust.
Siqueira-Silva, Advanio Inácio; Pereira, Eduardo Gusmão; Modolo, Luzia Valentina; Paiva, Elder Antonio Sousa
2016-08-01
Cement industries located nearby limestone outcrops in Brazil have contributed to the coating of cement dust over native plant species. However, little is known about the extent of the response of tropical woody plants to such environmental pollutant particularly during the first stages of plant development and establishment. This work focused on the investigation of possible alterations in leaf structural and ultrastructural traits of 5-month-old Guazuma ulmifolia Lam. (Malvaceae), 6-month-old Myracrodruon urundeuva Allemão (Anacardiaceae), and 9-month-old Trichilia hirta L. (Meliaceae) challenged superficially with cement dust during new leaf development. Leaf surface of plants, the soil or both (leaf plus soil), were treated (or not) for 60 days, under controlled conditions, with cement dust at 2.5 or 5.0 mg cm(-2). After exposure, no significant structural changes were observed in plant leaves. Also, no plant death was recorded by the end of the experiment. There was also some evidence of localized leaf necrosis in G. ulmifolia and T. hirta, leaf curling in M. urundeuva and T. hirta, and bulges formation on epidermal surface of T. hirta, after cement dust contact with plant shoots. All species studied exhibited stomata obliteration while T. hirta, in particular, presented early leaf abscission, changes in cellular relief, and organization and content of midrib cells. No significant ultrastructural alterations were detected under the experimental conditions studied. Indeed, mesophyll cells presented plastids with intact membrane systems. The high plant survival rates, together with mild morphoanatomic traits alterations in leaves, indicate that G. ulmifolia is more resistant to cement dust pollutant, followed by M. urundeuva and T. hirta. Thus, the three plant species are promising for being used to revegetate areas impacted by cement industries activities.
Shi, Huazhong; Kim, YongSig; Guo, Yan; Stevenson, Becky; Zhu, Jian-Kang
2003-01-01
Cell surface proteoglycans have been implicated in many aspects of plant growth and development, but genetic evidence supporting their function has been lacking. Here, we report that the Salt Overly Sensitive5 (SOS5) gene encodes a putative cell surface adhesion protein and is required for normal cell expansion. The sos5 mutant was isolated in a screen for Arabidopsis salt-hypersensitive mutants. Under salt stress, the root tips of sos5 mutant plants swell and root growth is arrested. The root-swelling phenotype is caused by abnormal expansion of epidermal, cortical, and endodermal cells. The SOS5 gene was isolated through map-based cloning. The predicted SOS5 protein contains an N-terminal signal sequence for plasma membrane localization, two arabinogalactan protein–like domains, two fasciclin-like domains, and a C-terminal glycosylphosphatidylinositol lipid anchor signal sequence. The presence of fasciclin-like domains, which typically are found in animal cell adhesion proteins, suggests a role for SOS5 in cell-to-cell adhesion in plants. The SOS5 protein was present at the outer surface of the plasma membrane. The cell walls are thinner in the sos5 mutant, and those between neighboring epidermal and cortical cells in sos5 roots appear less organized. SOS5 is expressed ubiquitously in all plant organs and tissues, including guard cells in the leaf. PMID:12509519
Hong, Fashui; Qu, Chunxiang; Wang, Ling
2017-10-18
It had been indicated that cerium (Ce) could promote maize growth involving photosynthetic improvement under potassium (K) deficiency, salt stress, and combined stress of K + deficiency and salt stress. However, whether the improved growth is related to leaf morphological structure, oxidative stress in maize leaves is not well understood. The present study showed that K + deficiency, salt stress, and their combined stress inhibited growth of maize seedlings, affecting the formation of appendages of leaf epidermal cells, and stomatal opening, which may be due to increases in H 2 O 2 and malondialdehyde levels, and reductions in Ca 2+ content, ratios of glutathione/oxidized glutathione, ascorbic acid/dehydroascorbic acid, and the activities of superoxide dismutase, catalase, ascorbic acid peroxidase, guaiacol peroxidase, and glutathione reductase in leaves under different stresses. The adverse effects caused by combined stress were higher than those of single stress. Furthermore, our findings demonstrated that adding Ce 3+ could significantly promote seedling growth, and alleviate morphological and structural damage of leaf, decrease oxidative stress and increase antioxidative capacity in maize leaves caused by different stresses.
de Marcos, Alberto; Houbaert, Anaxi; Triviño, Magdalena; Delgado, Dolores; Martín-Trillo, Mar; Russinova, Eugenia; Fenoll, Carmen; Mena, Montaña
2017-06-01
The asymmetric cell divisions necessary for stomatal lineage initiation and progression in Arabidopsis ( Arabidopsis thaliana ) require the function of the basic helix-loop-helix (bHLH) transcription factor SPEECHLESS ( SPCH ). Mutants lacking SPCH do not produce stomata or lineages. Here, we isolated a new spch-5 allele carrying a point mutation in the bHLH domain that displayed normal growth, but had an extremely low number of sometimes clustered stomata in the leaves, whereas the hypocotyls did not have any stomata. In vivo tracking of leaf epidermal cell divisions, combined with marker lines and genetic analysis, showed that the spch-5 leaf phenotype is dosage dependent and results from the decreased ability to initiate and amplify lineages, defects in asymmetric cell fate allocation, and misorientation of asymmetric division planes. Notably, application of brassinosteroids (BRs) partly rescued the stomatal leaf phenotype of spch-5 Transcriptomic analysis combining spch-5 with BR treatments revealed that the expression of a set of SPCH target genes was restored by BRs. Our results also show that BR-dependent stomata formation and expression of some, but not all, SPCH target genes require the integrity of the bHLH domain of SPCH. © 2017 American Society of Plant Biologists. All Rights Reserved.
Triviño, Magdalena; Delgado, Dolores; Martín-Trillo, Mar
2017-01-01
The asymmetric cell divisions necessary for stomatal lineage initiation and progression in Arabidopsis (Arabidopsis thaliana) require the function of the basic helix-loop-helix (bHLH) transcription factor SPEECHLESS (SPCH). Mutants lacking SPCH do not produce stomata or lineages. Here, we isolated a new spch-5 allele carrying a point mutation in the bHLH domain that displayed normal growth, but had an extremely low number of sometimes clustered stomata in the leaves, whereas the hypocotyls did not have any stomata. In vivo tracking of leaf epidermal cell divisions, combined with marker lines and genetic analysis, showed that the spch-5 leaf phenotype is dosage dependent and results from the decreased ability to initiate and amplify lineages, defects in asymmetric cell fate allocation, and misorientation of asymmetric division planes. Notably, application of brassinosteroids (BRs) partly rescued the stomatal leaf phenotype of spch-5. Transcriptomic analysis combining spch-5 with BR treatments revealed that the expression of a set of SPCH target genes was restored by BRs. Our results also show that BR-dependent stomata formation and expression of some, but not all, SPCH target genes require the integrity of the bHLH domain of SPCH. PMID:28507175
Leaf anatomy of a late Palaeozoic cycad
Lv, Yong; Guo, Yun; Wei, Hai-Bo
2017-01-01
Today, cycads are a small group of gymnospermous plants with a limited distribution in the (sub)tropics, but they were major constituents of Mesozoic floras. Fossil leaves sporadically found in latest Carboniferous and Permian floras have putatively been ascribed to cycads. However, their true affinity remains unclear due to the lack of anatomical evidence. Virtually all modern cycads have pinnate leaves, but this type of leaf morphology is by no means unique for cycads. Pinnate leaves of Plagiozamites oblongifolius Halle 1927 with well-preserved cuticles showing the epidermal anatomy are here described from the upper Permian Xuanwei Formation of Yunnan Province, Southwest China. The cuticles show a clear differentiation into costal and intercostal zones; stomata are confined to the intercostal zones on both the upper and lower leaf surfaces. The external morphology and the epidermal anatomy of these fossil leaves are closely comparable with those of extant cycads, particularly members of the family Zamiaceae. PMID:29093177
Vanacker, Helene; Carver, Tim L.W.; Foyer, Christine H.
2000-01-01
H2O2 production and changes in glutathione, catalase, and peroxidase were followed in whole-leaf extracts from the susceptible (AlgS [Algerian/4* (F14) Man.(S)]; ml-a1 allele) and resistant (AlgR [Algerian/4* (F14) Man.(R)]; Ml-a1 allele) barley (Hordeum vulgare) isolines between 12 and 24 h after inoculation with powdery mildew (Blumeria graminis [DC]. Speer [syn. Erysiphe graminis DC] f.sp hordei Marchal). Localized papilla responses and cell death hypersensitive responses were not observed within the same cell. In hypersensitive response sites, H2O2 accumulation first occurred in the mesophyll underlying the attacked epidermal cell. Subsequently, H2O2 disappeared from the mesophyll and accumulated around attacked epidermal cells. In AlgR, transient glutathione oxidation coincided with H2O2 accumulation in the mesophyll. Subsequently, total foliar glutathione and catalase activities transiently increased in AlgR. These changes, absent from AlgS, preceded inoculation-dependent increases in peroxidase activity that were observed in both AlgR and AlgS at 18 h. An early intercellular signal precedes H2O2, and this elicits anti-oxidant responses in leaves prior to events leading to death of attacked cells. PMID:10938348
Turner, Neil C.; Spurway, R. A.; Schulze, E.-D.
1984-01-01
Leaf water potentials measured by in situ psychrometry were compared with leaf water potentials measured by the pressure chamber technique at various values of water potential in Helianthus annuus, Helianthus nuttallii, Vigna unguiculata, Nerium oleander, Pistacia vera, and Corylus avellana. In V. unguiculata, the leaf water potentials measured by the in situ psychrometer oscillated at the same periodicity as, and proportional to, the leaf conductance. In all species, potentials measured by in situ psychrometers operating in the psychrometric mode were linearly correlated with potentials measured with the pressure chamber. However, the in situ psychrometers underestimated the leaf water potential in the two Helianthus species at low water potentials and overestimated the water potential in P. vera, N. oleander, and C. avellana. The underestimation in the two Helianthus species at low water potentials resulted from differences in water potential across the leaf. The overestimation in P. vera, N. oleander, and C. avellana was considered to arise from low epidermal conductances in these species even after abrasion of the cuticle. Pressure-volume studies with Lycopersicon esculentum showed that less water was expressed from distal than proximal leaflets when the whole leaf was slowly pressurized. The implication of this for water relations characteristics obtained by pressure-volume techniques is discussed. We conclude that in situ psychrometers are suitable for following dynamic changes in leaf water potential, but should be used with caution on leaves with low epidermal conductances. PMID:16663415
Turner, N C; Spurway, R A; Schulze, E D
1984-02-01
Leaf water potentials measured by in situ psychrometry were compared with leaf water potentials measured by the pressure chamber technique at various values of water potential in Helianthus annuus, Helianthus nuttallii, Vigna unguiculata, Nerium oleander, Pistacia vera, and Corylus avellana. In V. unguiculata, the leaf water potentials measured by the in situ psychrometer oscillated at the same periodicity as, and proportional to, the leaf conductance. In all species, potentials measured by in situ psychrometers operating in the psychrometric mode were linearly correlated with potentials measured with the pressure chamber. However, the in situ psychrometers underestimated the leaf water potential in the two Helianthus species at low water potentials and overestimated the water potential in P. vera, N. oleander, and C. avellana. The underestimation in the two Helianthus species at low water potentials resulted from differences in water potential across the leaf. The overestimation in P. vera, N. oleander, and C. avellana was considered to arise from low epidermal conductances in these species even after abrasion of the cuticle. Pressure-volume studies with Lycopersicon esculentum showed that less water was expressed from distal than proximal leaflets when the whole leaf was slowly pressurized. The implication of this for water relations characteristics obtained by pressure-volume techniques is discussed. We conclude that in situ psychrometers are suitable for following dynamic changes in leaf water potential, but should be used with caution on leaves with low epidermal conductances.
Effective UV attenuation in the outer leaf layers may represent an important protective mechanism against potentially damaging solar UV-B radiation. Epidermal optical properties for Rumex patientia and Rumex obtusifolius were examined on field collected and greenhouse grown plant...
Fitzgibbon, Jessica; Beck, Martina; Zhou, Ji; Faulkner, Christine; Robatzek, Silke; Oparka, Karl
2013-01-01
Plasmodesmata (PD) form tubular connections that function as intercellular communication channels. They are essential for transporting nutrients and for coordinating development. During cytokinesis, simple PDs are inserted into the developing cell plate, while during wall extension, more complex (branched) forms of PD are laid down. We show that complex PDs are derived from existing simple PDs in a pattern that is accelerated when leaves undergo the sink–source transition. Complex PDs are inserted initially at the three-way junctions between epidermal cells but develop most rapidly in the anisocytic complexes around stomata. For a quantitative analysis of complex PD formation, we established a high-throughput imaging platform and constructed PDQUANT, a custom algorithm that detected cell boundaries and PD numbers in different wall faces. For anticlinal walls, the number of complex PDs increased with increasing cell size, while for periclinal walls, the number of PDs decreased. Complex PD insertion was accelerated by up to threefold in response to salicylic acid treatment and challenges with mannitol. In a single 30-min run, we could derive data for up to 11k PDs from 3k epidermal cells. This facile approach opens the door to a large-scale analysis of the endogenous and exogenous factors that influence PD formation. PMID:23371949
Oh, Dong-Ha; Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar; Lee, Sang-Yeol; Bohnert, Hans J; Dassanayake, Maheshi
2015-08-01
Mesembryanthemum crystallinum (ice plant) exhibits extreme tolerance to salt. Epidermal bladder cells (EBCs), developing on the surface of aerial tissues and specialized in sodium sequestration and other protective functions, are critical for the plant's stress adaptation. We present the first transcriptome analysis of EBCs isolated from intact plants, to investigate cell type-specific responses during plant salt adaptation. We developed a de novo assembled, nonredundant EBC reference transcriptome. Using RNAseq, we compared the expression patterns of the EBC-specific transcriptome between control and salt-treated plants. The EBC reference transcriptome consists of 37 341 transcript-contigs, of which 7% showed significantly different expression between salt-treated and control samples. We identified significant changes in ion transport, metabolism related to energy generation and osmolyte accumulation, stress signalling, and organelle functions, as well as a number of lineage-specific genes of unknown function, in response to salt treatment. The salinity-induced EBC transcriptome includes active transcript clusters, refuting the view of EBCs as passive storage compartments in the whole-plant stress response. EBC transcriptomes, differing from those of whole plants or leaf tissue, exemplify the importance of cell type-specific resolution in understanding stress adaptive mechanisms. No claim to original US government works. New Phytologist © 2015 New Phytologist Trust.
Guzmán-Delgado, Paula; Graça, José; Cabral, Vanessa; Gil, Luis; Fernández, Victoria
2016-06-01
Plant cuticles have been traditionally classified on the basis of their ultrastructure, with certain chemical composition assumptions. However, the nature of the plant cuticle may be misinterpreted in the prevailing model, which was established more than 150 years ago. Using the adaxial leaf cuticle of Ficus elastica, a study was conducted with the aim of analyzing cuticular ultrastructure, chemical composition and the potential relationship between structure and chemistry. Gradual chemical extractions and diverse analytical and microscopic techniques were performed on isolated leaf cuticles of two different stages of development (i.e. young and mature leaves). Evidence for the presence of cutan in F. elastica leaf cuticles has been gained after chemical treatments and tissue analysis by infrared spectroscopy and electron microscopy. Significant calcium, boron and silicon concentrations were also measured in the cuticle of this species. Such mineral elements which are often found in plant cell walls may play a structural role and their presence in isolated cuticles further supports the interpretation of the cuticle as the most external region of the epidermal cell wall. The complex and heterogeneous nature of the cuticle, and constraints associated with current analytical procedures may limit the chance for establishing a relationship between cuticle chemical composition and structure also in relation to organ ontogeny. © 2016 Scandinavian Plant Physiology Society.
Isogai, M; Saitou, Y; Takahashi, N; Itabashi, T; Terada, M; Satoh, H; Yoshikawa, N
2003-03-01
To understand why transgenic Nicotiana occidentalis plants expressing a functional movement protein (MP) of Apple chlorotic leaf spot virus (ACLSV) show specific resistance to Grapevine berry inner necrosis virus (GINV), the MPs of ACLSV (50KP) and GINV (39KP) were fused to green, yellow, or cyan fluorescent proteins (GFP, YFP, or CFP). These fusion proteins were transiently expressed in leaf cells of both transgenic (50KP) and nontransgenic (NT) plants, and the intracellular and intercellular trafficking and tubule-inducing activity of these proteins were compared. The results indicate that in epidermal cells and protoplasts from 50KP plant leaves, the trafficking and tubule-inducing activities of GINV-39KP were specifically blocked while those of ACLSV-50KP and Apple stem grooving virus MP (36KP) were not affected. Additionally, when 39KP-YFP and 50KP-CFP were coexpressed in the leaf epidermis of NT plants, the fluorescence of both proteins was confined to single cells, indicating that 50KP-CFP interferes with the cell-to-cell trafficking of 39KP-YFP and vice versa. Mutational analyses of 50KP showed that the deletion mutants that retained the activities described above still blocked cell-to-cell trafficking of 39KP, but the dysfunctional 50KP mutants could no longer impede cell-to-cell movement of 39KP. Transgenic plants expressing the functional 50KP deletion mutants showed specific resistance against GINV. In contrast, transgenic plants expressing the dysfunctional 50KP mutants did not show any resistance to the virus. From these results, we conclude that the specific resistance of 50KP plants to GINV is due to the ability of the 50KP to block intracellular and intercellular trafficking of GINV 39KP.
Hwang, Eunson; Lee, Do-Gyeong; Park, Sin Hee; Oh, Myung Sook
2014-01-01
Abstract Ultraviolet (UV) radiation causes photodamage to the skin, which, in turn, leads to depletion of the dermal extracellular matrix and chronic alterations in skin structure. Skin wrinkles are associated with collagen synthesis and matrix metalloproteinase-1 (MMP-1) activity. Coriandrum sativum L. (coriander leaf, cilantro; CS) has been used as a herbal medicine for the treatment of diabetes, hyperlipidemia, liver disease, and cancer. In this study, we examined whether CS ethanol extract (CSE) has protective effects against UVB-induced skin photoaging in normal human dermal fibroblasts (NHDF) in vitro and in the skin of hairless mice in vivo. The main component of CSE, linolenic acid, was determined by gas chromatography-mass spectroscopy. We measured the cellular levels of procollagen type I and MMP-1 using ELISA in NHDF cells after UVB irradiation. NHDF cells that were treated with CSE after UVB irradiation exhibited higher procollagen type I production and lower levels of MMP-1 than untreated cells. We found that the activity of transcription factor activator protein-1 (AP-1) was also inhibited by CSE treatment. We measured the epidermal thickness, dermal collagen fiber density, and procollagen type I and MMP-1 levels in photo-aged mouse skin in vivo using histological staining and western blot analysis. Our results showed that CSE-treated mice had thinner epidermal layers and denser dermal collagen fibers than untreated mice. On a molecular level, it was further confirmed that CSE-treated mice had lower MMP-1 levels and higher procollagen type I levels than untreated mice. Our results support the potential of C. sativum L. to prevent skin photoaging. PMID:25019675
Hwang, Eunson; Lee, Do-Gyeong; Park, Sin Hee; Oh, Myung Sook; Kim, Sun Yeou
2014-09-01
Ultraviolet (UV) radiation causes photodamage to the skin, which, in turn, leads to depletion of the dermal extracellular matrix and chronic alterations in skin structure. Skin wrinkles are associated with collagen synthesis and matrix metalloproteinase-1 (MMP-1) activity. Coriandrum sativum L. (coriander leaf, cilantro; CS) has been used as a herbal medicine for the treatment of diabetes, hyperlipidemia, liver disease, and cancer. In this study, we examined whether CS ethanol extract (CSE) has protective effects against UVB-induced skin photoaging in normal human dermal fibroblasts (NHDF) in vitro and in the skin of hairless mice in vivo. The main component of CSE, linolenic acid, was determined by gas chromatography-mass spectroscopy. We measured the cellular levels of procollagen type I and MMP-1 using ELISA in NHDF cells after UVB irradiation. NHDF cells that were treated with CSE after UVB irradiation exhibited higher procollagen type I production and lower levels of MMP-1 than untreated cells. We found that the activity of transcription factor activator protein-1 (AP-1) was also inhibited by CSE treatment. We measured the epidermal thickness, dermal collagen fiber density, and procollagen type I and MMP-1 levels in photo-aged mouse skin in vivo using histological staining and western blot analysis. Our results showed that CSE-treated mice had thinner epidermal layers and denser dermal collagen fibers than untreated mice. On a molecular level, it was further confirmed that CSE-treated mice had lower MMP-1 levels and higher procollagen type I levels than untreated mice. Our results support the potential of C. sativum L. to prevent skin photoaging.
Balsamo, Ronald A; Bauer, Aaron M; Davis, Stephen D; Rice, Benita M
2003-01-01
Leaf tensile properties were compared between the mesic deciduous tree Prunus serrulata (var. "Kwanzan") and the xeric and sclerophyllous chaparral evergreen shrub Heteromeles arbutifolia (M. Roem). All values for biomechanical parameters for H. arbutifolia were significantly greater than those of P. serrulata. The fracture planes also differed between the two species with P. serrulata fracturing along the secondary veins, while H. arbutifolia most often fractured across the leaf irrespective of the vein or mesophyll position, thus yielding qualitative differences in the stress-strain curves of the two species. Anatomically, P. serrulata exhibits features typical for a deciduous mesophytic leaf such as a thin cuticle, a single layer of palisade mesophyll, isodiametric spongy mesophyll, and extensive reticulation of the laminar veins. Heteromeles arbutifolia leaves, however, are typically two- to three-fold thicker with a 35% higher dry mass/fresh mass ratio. The vascular tissue is restricted to the interface of the palisade and spongy mesophyll near the center of the leaf. Both epidermal layers have a thick cuticle. The palisade mesophyll is tightly packed and two to three layers thick. The spongy mesophyll cells are ameboid in shape and tightly interlinked both to other spongy cells as well as to the overlying palisade layer. We conclude that the qualitative and quantitative biomechanical differences between the leaves of these two species are likely due to a complex interaction of internal architectural arrangement and the physical/chemical differences in the properties of their respective cell walls. These studies illustrate the importance that morphological and anatomical correlates play with mechanical behavior in plant material and ultimately reflect adaptations present in the leaves of chaparral shrubs that are conducive to surviving in arid environments.
Herbicide effects on cuticle ultrastructure in Eleusine indica and Portulaca oleracea.
Malpassi, Rosana N
2006-04-01
Eleusine indica and Portulaca oleracea are two common weeds in peanut crops in southern Córdoba. Two chemicals are frequently used to control them, quizalofop for grasses and lactofen for dicots. The objective is to study the effects of quizalofop and lactofen on cuticle ultrastructure in E. indica and P. oleracea, respectively. In the lab, quizalofop was applied on E. indica and lactofen on P. oleracea. Three plant categories were analyzed in each species: 3, 1-2, and no tiller in E. indica, and 8, 6, and 2 nomophylls in P. oleracea. Leaf samples from both species were collected at 7 and 16 days post-application and were treated for scanning electron microscopy. E. indica cuticle treated with lethal dose shows areas where epicuticular waxes disappear, specially in the youngest individuals. These areas are located predominantly on periclinal walls of typical epidermic cells and subsidiary cells. On the other hand, P. oleracea shows cuticle discontinuities that may be caused by lactofen entry. They are smaller and less frequent in plants having 8 or more nomophylls. The remaining waxes act as a herbicide accumulation compartment and, therefore, would partially prevent the active ingredient entry to epidermic cells.
Xu, Kedong; Huang, Xiaohui; Wu, Manman; Wang, Yan; Chang, Yunxia; Liu, Kun; Zhang, Ju; Zhang, Yi; Zhang, Fuli; Yi, Liming; Li, Tingting; Wang, Ruiyue; Tan, Guangxuan; Li, Chengwei
2014-01-01
Transient transformation is simpler, more efficient and economical in analyzing protein subcellular localization than stable transformation. Fluorescent fusion proteins were often used in transient transformation to follow the in vivo behavior of proteins. Onion epidermis, which has large, living and transparent cells in a monolayer, is suitable to visualize fluorescent fusion proteins. The often used transient transformation methods included particle bombardment, protoplast transfection and Agrobacterium-mediated transformation. Particle bombardment in onion epidermis was successfully established, however, it was expensive, biolistic equipment dependent and with low transformation efficiency. We developed a highly efficient in planta transient transformation method in onion epidermis by using a special agroinfiltration method, which could be fulfilled within 5 days from the pretreatment of onion bulb to the best time-point for analyzing gene expression. The transformation conditions were optimized to achieve 43.87% transformation efficiency in living onion epidermis. The developed method has advantages in cost, time-consuming, equipment dependency and transformation efficiency in contrast with those methods of particle bombardment in onion epidermal cells, protoplast transfection and Agrobacterium-mediated transient transformation in leaf epidermal cells of other plants. It will facilitate the analysis of protein subcellular localization on a large scale.
Immunological and biochemical evidence for nuclear localization of annexin in peas
NASA Technical Reports Server (NTRS)
Clark, G. B.; Dauwalder, M.; Roux, S. J.
1998-01-01
Immunofluorescent localization of annexins using an anti-pea annexin polyclonal antibody (anti-p35) in pea (Pisum sativum) leaf and stem epidermal peels showed staining of the nuclei and the cell periphery. Nuclear staining was also seen in cell teases prepared from pea plumules. The amount of nuclear stain was reduced both by fixation time and by dehydration and organic solvent treatment. Observation with confocal microscopy demonstrated that the anti-p35 stain was diffusely distributed throughout the nuclear structure. Immunoblots of purified nuclei, nuclear envelope matrix, nucleolar, and chromatin fractions showed a cross-reactive protein band of 35 kDa. These data are the first to show annexins localized in plant cell nuclei where they may play a role in nuclear function.
Yun, Chanyong; Jung, Youngchul; Chun, Wonjoo; Yang, Beodeul; Ryu, Junghyun; Lim, Chiyeon; Kim, Jung-Hoon; Kim, Hyungwoo; Cho, Su-In
2016-01-01
The leaves of Artemisia argyi Lev. et Vant. and A. princeps Pamp. are well known medicinal herbs used to treat patients in China, Japan, and Korea with skin problems such as eczema and itching, as well as abdominal pain and dysmenorrhoea. We investigated the anti-inflammatory effects of Artemisia leaf extract (ALE) using CD mice and Raw 264.7 cells. The effects of ALE on histopathological changes and cytokine production in ear tissues were assessed in mice with CD induced by 1-fluoro-2,4-dinitrobenzene (DNFB). Moreover, the anti-inflammatory effects on production levels of prostaglandin E2 (PGE2) and nitric oxide (NO) and expression levels of cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS) were investigated in Raw 264.7 cells. Topical application of ALE effectively prevented ear swelling induced by repeated DNFB application. ALE prevented epidermal hyperplasia and infiltration of immune cells and lowered the production of interferon- (IFN-) gamma (γ), tumour necrosis factor- (TNF-) alpha (α), and interleukin- (IL-) 6 in inflamed tissues. In addition, ALE inhibited expression of COX-2 and iNOS and production of NO and PGE2 in Raw 264.7 cells. These results indicate that Artemisia leaf can be used as a therapeutic agent for inflammatory skin diseases and that its anti-inflammatory effects are closely related to the inhibition of inflammatory mediator release from macrophages and inflammatory cytokine production in inflamed tissues.
Yun, Chanyong; Jung, Youngchul; Chun, Wonjoo; Yang, Beodeul; Ryu, Junghyun; Cho, Su-In
2016-01-01
The leaves of Artemisia argyi Lev. et Vant. and A. princeps Pamp. are well known medicinal herbs used to treat patients in China, Japan, and Korea with skin problems such as eczema and itching, as well as abdominal pain and dysmenorrhoea. We investigated the anti-inflammatory effects of Artemisia leaf extract (ALE) using CD mice and Raw 264.7 cells. The effects of ALE on histopathological changes and cytokine production in ear tissues were assessed in mice with CD induced by 1-fluoro-2,4-dinitrobenzene (DNFB). Moreover, the anti-inflammatory effects on production levels of prostaglandin E2 (PGE2) and nitric oxide (NO) and expression levels of cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS) were investigated in Raw 264.7 cells. Topical application of ALE effectively prevented ear swelling induced by repeated DNFB application. ALE prevented epidermal hyperplasia and infiltration of immune cells and lowered the production of interferon- (IFN-) gamma (γ), tumour necrosis factor- (TNF-) alpha (α), and interleukin- (IL-) 6 in inflamed tissues. In addition, ALE inhibited expression of COX-2 and iNOS and production of NO and PGE2 in Raw 264.7 cells. These results indicate that Artemisia leaf can be used as a therapeutic agent for inflammatory skin diseases and that its anti-inflammatory effects are closely related to the inhibition of inflammatory mediator release from macrophages and inflammatory cytokine production in inflamed tissues. PMID:27647952
Developmental patterning of sub-epidermal cells in the outer integument of Arabidopsis seeds
Fiume, Elisa; Coen, Olivier; Xu, Wenjia; Lepiniec, Loïc
2017-01-01
The seed, the reproductive unit of angiosperms, is generally protected by the seed coat. The seed coat is made of one or two integuments, each comprising two epidermal cells layers and, in some cases, extra sub-epidermal cell layers. The thickness of the seed-coat affects several aspects of seed biology such as dormancy, germination and mortality. In Arabidopsis, the inner integument displays one or two sub-epidermal cell layers that originate from periclinal cell divisions of the innermost epidermal cell layer. By contrast, the outer integument was considered to be two-cell layered. Here, we show that sub-epidermal chalazal cells grow in between the epidermal outer integument cell layers to create an incomplete three-cell layered outer integument. We found that the MADS box transcription factor TRANSPARENT TESTA 16 represses growth of the chalaza and formation of sub-epidermal outer integument cells. Finally, we demonstrate that sub-epidermal cells of the outer and inner integument respond differently to the repressive mechanism mediated by FERTILIZATION INDEPENDENT SEED Polycomb group proteins and to fertilization signals. Our data suggest that integument cell origin rather than sub-epidermal cell position underlies different responses to fertilization. PMID:29141031
Lu, P.; Outlaw Jr, W. H.; Smith, B. G.; Freed, G. A.
1997-01-01
At various times after pulse-labeling broad bean (Vicia faba L.) leaflets with 14CO2, whole-leaf pieces and rinsed epidermal peels were harvested and subsequently processed for histochemical analysis. Cells dissected from whole leaf retained apoplastic contents, whereas those from rinsed peels contained only symplastic contents. Sucrose (Suc)-specific radioactivity peaked (111 GBq mol-1) in palisade cells at 20 min. In contrast, the 14C content and Sucspecific radioactivity were very low in guard cells for 20 min, implying little CO2 incorporation; both then peaked at 40 min. The guard-cell apoplast had a high maximum Suc-specific radioactivity (204 GBq mol-1) and a high Suc influx rate (0.05 pmol stoma-1 min-1). These and other comparisons implied the presence of (a) multiple Suc pools in mesophyll cells, (b) a localized mesophyll-apoplast region that exchanges with phloem and stomata, and (c) mesophyll-derived Suc in guard-cell walls sufficient to diminish stomatal opening by approximately 3 [mu]m. Factors expected to enhance Suc accumulation in guard-cell walls are (a) high transpiration rate, which closes stomata, and (b) high apoplastic Suc concentration, which is elevated when mesophyll Suc efflux exceeds translocation. Therefore, multiple physiological factors are integrated in the attenuation of stomatal aperture size by this previously unrecognized mechanism. PMID:12223693
Zouhaier, Barhoumi; Abdallah, Atia; Najla, Trabelsi; Wahbi, Djebali; Wided, Chaïbi; Aouatef, Ben Ammar; Chedly, Abdelly; Abderazzak, Smaoui
2015-11-01
Leaf salt glands of Limoniastrum guyonianum were examined by scanning and transmission electron microscopes and energy dispersive X-ray analysis (EDAX) system, after growing for three months on sandy soil with or without 300 mM NaCl. Results showed that salt glands were irregularly scattered on both leaf sides and sunk under the epidermal level. Salt excretion occurred in both conditions and is mainly composed of calcium and magnesium in control plants, and essentially sodium and chloride in plants subjected to salt treatment. A salt gland is comprised of collecting, accumulating, and central compartments, and is made up of total thirty-two cells. The collecting cells were characterized by large central vacuoles. Accumulating cells contain numerous, large, and unshaped vacuoles and rudimentary chloroplasts. The central compartment was comprised of four basal cells and each one is surmounted by an apical cell. The basal cells are granulated, containing large nucleus, numerous mitochondria, endoplasmic reticulum, ribosomes, polyribosomes, and small vacuoles or vesicles. Equally, the apical cells are rich in organelles. Application of 300 mM NaCl to the culture medium increased vacuoles number and size, and organelles density especially the mitochondria which suggests energy requirement for ions transport. The reduction in size and number of vacuoles toward the interior of salt glands of treated plants and the fusion of the smallest ones with the plasma membrane substantiate the implication of such vacuoles in salt excretion process. The current study which is the first report on L. guyonianum salt gland has provided an in-depth understanding on structure-function relationship in the multicellular salt glands. Copyright © 2015 Elsevier Ltd. All rights reserved.
The development and geometry of shape change in Arabidopsis thaliana cotyledon pavement cells
2011-01-01
Background The leaf epidermis is an important architectural control element that influences the growth properties of underlying tissues and the overall form of the organ. In dicots, interdigitated pavement cells are the building blocks of the tissue, and their morphogenesis includes the assembly of specialized cell walls that surround the apical, basal, and lateral (anticlinal) cell surfaces. The microtubule and actin cytoskeletons are highly polarized along the cortex of the anticlinal wall; however, the relationships between these arrays and cell morphogenesis are unclear. Results We developed new quantitative tools to compare population-level growth statistics with time-lapse imaging of cotyledon pavement cells in an intact tissue. The analysis revealed alternating waves of lobe initiation and a phase of lateral isotropic expansion that persisted for days. During lateral isotropic diffuse growth, microtubule organization varied greatly between cell surfaces. Parallel microtubule bundles were distributed unevenly along the anticlinal surface, with subsets marking stable cortical domains at cell indentations and others clearly populating the cortex within convex cell protrusions. Conclusions Pavement cell morphogenesis is discontinuous, and includes punctuated phases of lobe initiation and lateral isotropic expansion. In the epidermis, lateral isotropic growth is independent of pavement cell size and shape. Cortical microtubules along the upper cell surface and stable cortical patches of anticlinal microtubules may coordinate the growth behaviors of orthogonal cell walls. This work illustrates the importance of directly linking protein localization data to the growth behavior of leaf epidermal cells. PMID:21284861
The development and geometry of shape change in Arabidopsis thaliana cotyledon pavement cells.
Zhang, Chunhua; Halsey, Leah E; Szymanski, Daniel B
2011-02-01
The leaf epidermis is an important architectural control element that influences the growth properties of underlying tissues and the overall form of the organ. In dicots, interdigitated pavement cells are the building blocks of the tissue, and their morphogenesis includes the assembly of specialized cell walls that surround the apical, basal, and lateral (anticlinal) cell surfaces. The microtubule and actin cytoskeletons are highly polarized along the cortex of the anticlinal wall; however, the relationships between these arrays and cell morphogenesis are unclear. We developed new quantitative tools to compare population-level growth statistics with time-lapse imaging of cotyledon pavement cells in an intact tissue. The analysis revealed alternating waves of lobe initiation and a phase of lateral isotropic expansion that persisted for days. During lateral isotropic diffuse growth, microtubule organization varied greatly between cell surfaces. Parallel microtubule bundles were distributed unevenly along the anticlinal surface, with subsets marking stable cortical domains at cell indentations and others clearly populating the cortex within convex cell protrusions. Pavement cell morphogenesis is discontinuous, and includes punctuated phases of lobe initiation and lateral isotropic expansion. In the epidermis, lateral isotropic growth is independent of pavement cell size and shape. Cortical microtubules along the upper cell surface and stable cortical patches of anticlinal microtubules may coordinate the growth behaviors of orthogonal cell walls. This work illustrates the importance of directly linking protein localization data to the growth behavior of leaf epidermal cells.
NASA Astrophysics Data System (ADS)
Van De Water, P. K.
2016-12-01
The size, frequency, and morphology of leaf surface stomata is used to reconstruct past levels of atmospheric carbon dioxide over geologic time. This technique relies on measuring cell and cell-clusters to correlate with changes of known carbon dioxide levels in the atmosphere. Unfortunately, not all plants are suitable because the occurrence and placement of stomatal cell-complexes differ significantly between plant families. Monocot and dicot angiosperms exhibit different types of stomata and stomatal complexes that lack order and thus are unsuitable. But, in gymnosperms, the number and distribution of stomata and pavement cells is formalized and can be used to reconstruct past atmospheric carbon dioxide levels. However, characteristic of each plant species must still be considered. For example, conifers are useful but are divided into two-needle to five-needle pines, or have irregular surface morphology (Pseudotsuga sp. and Tsuga sp. needles). This study uses Pinus monophylla an undivided needle morphology, that being a cylinder has no interior surface cells. Pinus monophylla (single needle pinyon) needles were collected along Geiger Grade (Nevada State Highway 341, Reno) in 2005 and 2013 from 1500m to 2195m. Herbarium samples were also collected from 13 historic collections made between 1911 and 1994. The study determined changes with elevation and/or over time using in these populations. Using Pinus monophylla, insured needles represented a single surface with stomata, stomatal complex cells, and co-occurring pavement cell types. Results show decreased stomatal densities (stomata/area), stomatal index (stomata/stomata + epidermal cells) and stable stomata per row (stomata/row) . Epidermal cell density (Epidermal Cells /Area), and Pavement cell density (Pavement cell/area) track stomatal density similarly. Data comparison, using elevation in the 2005 and 2013 collections showed no-significant trends. Individual stomatal complexes show no differences in the size and shape over time or with elevation. Stomata morphology and the stomatal pores appear conservative. However some complex cells show a morphology suggesting they are not fully formed and functional. These characteristics appear often in the modern material suggesting some stomata never fully develop.
Xu, Kedong; Huang, Xiaohui; Wu, Manman; Wang, Yan; Chang, Yunxia; Liu, Kun; Zhang, Ju; Zhang, Yi; Zhang, Fuli; Yi, Liming; Li, Tingting; Wang, Ruiyue; Tan, Guangxuan; Li, Chengwei
2014-01-01
Transient transformation is simpler, more efficient and economical in analyzing protein subcellular localization than stable transformation. Fluorescent fusion proteins were often used in transient transformation to follow the in vivo behavior of proteins. Onion epidermis, which has large, living and transparent cells in a monolayer, is suitable to visualize fluorescent fusion proteins. The often used transient transformation methods included particle bombardment, protoplast transfection and Agrobacterium-mediated transformation. Particle bombardment in onion epidermis was successfully established, however, it was expensive, biolistic equipment dependent and with low transformation efficiency. We developed a highly efficient in planta transient transformation method in onion epidermis by using a special agroinfiltration method, which could be fulfilled within 5 days from the pretreatment of onion bulb to the best time-point for analyzing gene expression. The transformation conditions were optimized to achieve 43.87% transformation efficiency in living onion epidermis. The developed method has advantages in cost, time-consuming, equipment dependency and transformation efficiency in contrast with those methods of particle bombardment in onion epidermal cells, protoplast transfection and Agrobacterium-mediated transient transformation in leaf epidermal cells of other plants. It will facilitate the analysis of protein subcellular localization on a large scale. PMID:24416168
Transport barriers made of cutin, suberin and associated waxes.
Schreiber, Lukas
2010-10-01
Cutinized leaf epidermal cells and suberized root cell walls form important lipophilic interfaces between the plant and its environment, significantly contributing to the regulation of water uptake and the transport of solutes in and out of the plant. A wealth of new molecular information on the genes and enzymes contributing to cutin, suberin and wax biosynthesis have become available within the past few years, which is examined in the context of the functional properties of these barriers in terms of transport and permeability. Recent progress made in measuring transport properties of cutinized and suberized barriers in plants is reviewed, and promising approaches obtained with Arabidopsis and potato that might link the molecular information with transport properties are suggested. Copyright © 2010 Elsevier Ltd. All rights reserved.
Epidermal stem cells: location, potential and contribution to cancer.
Ambler, C A; Määttä, A
2009-01-01
Epidermal stem cells have been classically characterized as slow-cycling, long-lived cells that reside in discrete niches in the skin. Gene expression studies of niche-resident cells have revealed a number of stem cell markers and regulators, including the Wnt/beta-catenin, Notch, p63, c-Myc and Hedgehog pathways. A new study challenges the traditional developmental paradigm of slow-cycling stem cells and rapid-cycling transit amplifying cells in some epidermal regions, and there is mounting evidence to suggest that multi-lineage epidermal progenitors can be isolated from highly proliferative, non-niche regions. Whether there is a unique microenvironment surrounding these progenitors remains to be determined. Interestingly, cancer stem cells derived from epidermal tumours exist independent of the classic skin stem cell niche, yet also have stem cell properties, including multi-lineage differentiation. This review summarizes recent studies identifying the location and regulators of mouse and human epidermal stem cells and highlights the strategies used to identify cancer stem cells, including expression of normal epidermal stem cell markers, expression of cancer stem cell markers identified in other epidermal tumours and characterization of side-population tumour cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, J.L.; Zhang, L.H.; Marcus, M.A.
2006-09-01
Astragalus bisulcatus and Stanleya pinnata hyperaccumulate selenium (Se) up to 1% of plant dry weight. In the field, Se was mostly present in the young leaves and reproductive tissues of both hyperaccumulators. Microfocused scanning x-ray fluorescence mapping revealed that Se was hyperaccumulated in trichomes in young leaves of A. bisulcatus. None of 10 other elements tested were accumulated in trichomes. Micro x-ray absorption spectroscopy and liquid chromatography-mass spectrometry showed that Se in trichomes was present in the organic forms methylselenocysteine (MeSeCys; 53%) and {gamma}-glutamyl-MeSeCys (47%). In the young leaf itself, there was 30% inorganic Se (selenate and selenite) in additionmore » to 70% MeSeCys. In young S. pinnata leaves, Se was highly concentrated near the leaf edge and surface in globular structures that were shown by energy-dispersive x-ray microanalysis to be mainly in epidermal cells. Liquid chromatography-mass spectrometry revealed both MeSeCys (88%) and selenocystathionine (12%) inside leaf edges. In contrast, both the Se accumulator Brassica juncea and the nonaccumulator Arabidopsis thaliana accumulated Se in their leaf vascular tissues and mesophyll cells. Se in hyperaccumulators appears to be mobile in both the xylem and phloem because Se-treated S. pinnata was found to be highly toxic to phloem-feeding aphids, and MeSeCys was present in the vascular tissues of a S. pinnata young leaf petiole as well as in guttation fluid. The compartmentation of organic selenocompounds in specific storage areas in the plant periphery appears to be a unique property of Se hyperaccumulators. The high concentration of Se in the plant periphery may contribute to Se tolerance and may also serve as an elemental plant defense mechanism.« less
[Progress in epidermal stem cells].
Wang, Li-Juan; Wang, You-Liang; Yang, Xiao
2010-03-01
Mammalian skin epidermis contains different epidermal stem cell pools which contribute to the homeostasis and repair of skin epithelium. Epidermal stem cells possess two essential features common to all stem cells: self-renewal and differentiation. Disturbing the balance between self-renewal and differentiation of epidermal stem cell often causes tumors or other skin diseases. Epidermal stem cell niches provide a special microenvironment that maintains a balance of stem cell quiescence and activity. This review primarily concentrates on the following points of the epidermal stem cells: the existing evidences, the self-renewal and differentiation, the division pattern, the signal pathways regulating self-renewal and differentiation, and the microenvironment (niche) and macroenvironment maintaining the homeostasis of stem cells.
Morinda citrifolia edible leaf extract enhanced immune response against lung cancer.
Lim, Swee-Ling; Goh, Yong-Meng; Noordin, M Mustapha; Rahman, Heshu S; Othman, Hemn H; Abu Bakar, Nurul Ain; Mohamed, Suhaila
2016-02-01
Lung cancer causes 1.4 million deaths annually. In the search for functional foods as complementary therapies against lung cancer, the immuno-stimulatory properties of the vegetable Morinda citrifolia leaves were investigated and compared with the anti-cancer drug erlotinib. Lung tumour-induced BALB/c mice were fed with 150 mg kg(-1) or 300 mg kg(-1) body weight of the leaf extract, or erlotinib (50 mg kg(-1) body-weight) for 21 days. The 300 mg kg(-1) body weight extract significantly (and dose-dependently) suppressed lung tumour growth; the extract worked more effectively than the 50 mg kg(-1) body weight erlotinib treatment. The extract significantly increased blood lymphocyte counts, and spleen tissue B cells, T cells and natural killer cells, and reduced the epidermal growth factor receptor (EGFR) which is a lung adenocarcinoma biomarker. The extract also suppressed the cyclooxygenase 2 (COX2) inflammatory markers, and enhanced the tumour suppressor gene (phosphatase and tensin homolog, PTEN). It inhibited tumour growth cellular gene (transformed mouse 3T3 cell double minute 2 (MDM2), V-raf-leukemia viral oncogene 1 (RAF1), and mechanistic target of rapamycin (MTOR)) mRNA expression in the tumours. The extract is rich in scopoletin and epicatechin, which are the main phenolic compounds. The 300 mg kg(-1)Morinda citrifolia leaf 50% ethanolic extract showed promising potential as a complementary therapeutic dietary supplement which was more effective than the 50 mg kg(-1) erlotinib in suppressing lung adenocarcinoma. Part of the mechanisms involved enhancing immune responses, suppressing proliferation and interfering with various tumour growth signalling pathways.
Iogna, Patricia A; Bucci, Sandra J; Scholz, Fabián G; Goldstein, Guillermo
2013-11-01
Phenotypic plasticity in morphophysiological leaf traits in response to wind was studied in two dominant shrub species of the Patagonian steppe, used as model systems for understanding effects of high wind speed on leaf water relations and hydraulic properties of small woody plants. Morpho-anatomical traits, hydraulic conductance and conductivity and water relations in leaves of wind-exposed and protected crown sides were examined during the summer with nearly continuous high winds. Although exposed sides of the crowns were subjected to higher wind speeds and air saturation deficits than the protected sides, leaves throughout the crown had similar minimum leaf water potential (ΨL). The two species were able to maintain homeostasis in minimum ΨL using different physiological mechanisms. Berberis microphylla avoided a decrease in the minimum ΨL in the exposed side of the crown by reducing water loss by stomatal control, loss of cell turgor and low epidermal conductance. Colliguaja integerrima increased leaf water transport efficiency to maintain transpiration rates without increasing the driving force for water loss in the wind-exposed crown side. Leaf physiological changes within the crown help to prevent the decrease of minimum ΨL and thus contribute to the maintenance of homeostasis, assuring the hydraulic integrity of the plant under unfavorable conditions. The responses of leaf traits that contribute to mechanical resistance (leaf mass per area and thickness) differed from those of large physiological traits by exhibiting low phenotypic plasticity. The results of this study help us to understand the unique properties of shrubs which have different hydraulic architecture compared to trees.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, P.; Outlaw, W.H. Jr.; Smith, B.G.
At various times after pulse labeling Vicia faba L. leaflets with {sup 14}CO{sub 2}, whole-leaf pieces and rinsed epidermal peels were harvested and subsequently processed for histochemical analysis. Cells dissected from whole leaf retained apoplastic contents whereas those from rinsed peels contained only cytoplastic contents. Sucrose specific radioactivity peaked in palisade cells, 111 GBq{center_dot}mol{sup {minus}1}, at 20 min. In contrast, the {sup 14}C content and sucrose specific radioactivity were very low in guard cells for 20 min, implying little CO{sub 2} incorporation; both then peaked at 40 min. The guard-cell apoplast had a high maximum sucrose specific radioactivity and amore » high sucrose influx rate. These and other comparisons implied the presence of (a) multiple sucrose pools in mesophyll cells, (b) a localized mesophyll-apoplast region that exchanges with phloem and stomata, and (c) mesophyll-derived sucrose in guard-cell walls sufficient to diminish stomatal opening by {approximately} 4 {micro}m. Factors expected to enhance sucrose accumulation in guard-cell walls are (a) high transpiration rate, which closes stomata, and (b) high apoplastic sucrose concentration, which is elevated when mesophyll-sucrose efflux exceeds translocation. Therefore, multiple physiological factors are integrated in the attenuation of stomatal-aperture size by this previously unrecognized mechanism.« less
Ambler, Carrie A; Watt, Fiona M
2010-11-01
Notch signalling regulates epidermal differentiation and tumour formation via non-cell autonomous mechanisms that are incompletely understood. This study shows that epidermal Notch activation via a 4-hydroxy-tamoxifen-inducible transgene caused epidermal thickening, focal detachment from the underlying dermis and hair clumping. In addition, there was dermal accumulation of T lymphocytes and stromal cells, some of which localised to the blisters at the epidermal-dermal boundary. The T cell infiltrate was responsible for hair clumping but not for other Notch phenotypes. Notch-induced stromal cells were heterogeneous, expressing markers of neural crest, melanocytes, smooth muscle and peripheral nerve. Although Slug1 expression was expanded in the epidermis, the stromal cells did not arise through epithelial-mesenchymal transition. Epidermal Notch activation resulted in upregulation of jagged 1 in both epidermis and dermis. When Notch was activated in the absence of epidermal jagged 1, jagged 1 was not upregulated in the dermis, and epidermal thickening, blister formation, accumulation of T cells and stromal cells were inhibited. Gene expression profiling revealed that epidermal Notch activation resulted in upregulation of several growth factors and cytokines, including TNFα, the expression of which was dependent on epidermal jagged 1. We conclude that jagged 1 is a key mediator of non-cell autonomous Notch signalling in skin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Ping; Outlaw, W.H. Jr.; Smith, B.G.
At various times after pulse-labeling broad bean (Vicia faba L.) leaflets with {sup 14}CO{sub 2}, whole-leaf pieces and rinsed epidermal peels were harvested and subsequently processed for histochemical analysis. Cells dissected from whole leaf retained apoplastic contents, whereas those from rinsed peels contained only symplastic contents. Sucrose (Suc)-specific radioactivity peaked (111 GBq mol{sup -1}) in palisade cells at 20 min. In contrast, the {sup 14}C content and Suc-specific radioactivity were very low in guard cells for 20 min, implying little CO, incorporation; both then peaked at 40 min. The guard-cell apoplast had a high maximum Suc-specific radioactivity (204 GBq mol{supmore » -1}) and a high Suc influx rate (0.05 pmol stoma{sup -1} min{sup -1}). These and other comparisons implied the presence of (a) multiple Suc pools in mesophyll cells, M a localized mesophyll-apoplast region that exchanges with phloem and stomata, and mesophyll-derived Suc in guard-cell walls sufficient to diminish stomatal opening by approximately 3 pm. Factors expected to enhance Suc accumulation in guard-cell walls are (a) high transpiration rate, which closes stomata, and N high apoplastic Suc concentration, which is elevated when mesophyll Suc efflux exceeds translocation. Therefore, multiple physiological factors are integrated in the attenuation of stomatal aperture size by this previously unrecognized mechanism. 50 refs., 9 figs.« less
Asselbergh, Bob; Curvers, Katrien; França, Soraya C.; Audenaert, Kris; Vuylsteke, Marnik; Van Breusegem, Frank; Höfte, Monica
2007-01-01
Plant defense mechanisms against necrotrophic pathogens, such as Botrytis cinerea, are considered to be complex and to differ from those that are effective against biotrophs. In the abscisic acid-deficient sitiens tomato (Solanum lycopersicum) mutant, which is highly resistant to B. cinerea, accumulation of hydrogen peroxide (H2O2) was earlier and stronger than in the susceptible wild type at the site of infection. In sitiens, H2O2 accumulation was observed from 4 h postinoculation (hpi), specifically in the leaf epidermal cell walls, where it caused modification by protein cross-linking and incorporation of phenolic compounds. In wild-type tomato plants, H2O2 started to accumulate 24 hpi in the mesophyll layer and was associated with spreading cell death. Transcript-profiling analysis using TOM1 microarrays revealed that defense-related transcript accumulation prior to infection was higher in sitiens than in wild type. Moreover, further elevation of sitiens defense gene expression was stronger than in wild type 8 hpi both in number of genes and in their expression levels and confirmed a role for cell wall modification in the resistant reaction. Although, in general, plant defense-related reactive oxygen species formation facilitates necrotrophic colonization, these data indicate that timely hyperinduction of H2O2-dependent defenses in the epidermal cell wall can effectively block early development of B. cinerea. PMID:17573540
Ambler, Carrie A.; Watt, Fiona M.
2010-01-01
Notch signalling regulates epidermal differentiation and tumour formation via non-cell autonomous mechanisms that are incompletely understood. This study shows that epidermal Notch activation via a 4-hydroxy-tamoxifen-inducible transgene caused epidermal thickening, focal detachment from the underlying dermis and hair clumping. In addition, there was dermal accumulation of T lymphocytes and stromal cells, some of which localised to the blisters at the epidermal-dermal boundary. The T cell infiltrate was responsible for hair clumping but not for other Notch phenotypes. Notch-induced stromal cells were heterogeneous, expressing markers of neural crest, melanocytes, smooth muscle and peripheral nerve. Although Slug1 expression was expanded in the epidermis, the stromal cells did not arise through epithelial-mesenchymal transition. Epidermal Notch activation resulted in upregulation of jagged 1 in both epidermis and dermis. When Notch was activated in the absence of epidermal jagged 1, jagged 1 was not upregulated in the dermis, and epidermal thickening, blister formation, accumulation of T cells and stromal cells were inhibited. Gene expression profiling revealed that epidermal Notch activation resulted in upregulation of several growth factors and cytokines, including TNFα, the expression of which was dependent on epidermal jagged 1. We conclude that jagged 1 is a key mediator of non-cell autonomous Notch signalling in skin. PMID:20940224
Effect of simulated microgravitation on phytohormones and cell structure of tropical orchids
NASA Astrophysics Data System (ADS)
Cherevchenko, T.; Zaimenko, N.; Majko, T.; Sytnjanskaja, N.
When studing the effect of two month clinostating on the phytohormonal system of orchids with different types of shoot system branching and different shoot morphology, it was determined that, as a result of simulated microgravitation, endogenous growth regulators changed less in the species with sympodial branching than in species with monopodial branching and without pseudobulbs. Stimulators prevail in the balance of growth regulators in species of the first type and inhibitors in species of the second type. Besides this, comparative analysis of structural organization of juvenile leaf surface tissue of tested orchids was carried out. Variability of size, number and structure of stomatal organization were found according to species belonging to each branching type after clinostating. Electronic microscope studies show some structural peculiarities of epidermal and mesophilous cells.
Kappus, R P; Berger, S; Thomas, C A; Ottmann, O G; Ganser, A; Stille, W; Shah, P M
1992-07-01
Clinical observations show that the HIV infection is often associated with affections of the skin. In order to examine the involvement of the epidermal immune system in the HIV infection, we determined accessory cell function of epidermal cells from HIV-1-infected patients. For this we measured the proliferative response of enriched CD(4+)-T-lymphocytes from HIV-infected patients and noninfected controls to stimulation with anti-CD3 and IL-2 in the presence of epidermal cells; the enhancement of the response is dependent on the presence of functionally intact accessory cells. The capacity of epidermal cells to increase the anti-CD3-stimulated T-cell proliferative response was significantly enhanced in HIV patients (CDC III/IVA) as compared with noninfected donors. It is discussed, whether the increased activity of epidermal cells from HIV-infected patients may be responsible for several of the dermal lesions in the course of an HIV infection as due to an enhanced production and release of epidermal cell-derived cytokines.
NASA Astrophysics Data System (ADS)
Mao, Bing-Yu; Sun, Xiao-Yang; Zhang, Hong-Wei; Zhang, Shi-Cui; Wu, Xian-Han
1997-09-01
Epidermal cells of amphioxus at different developmental stages were investigated by electron microscopy and colloidal carbon tracing experiments. Amphioxus epidermal cells showed different ultrastructural characteristics at larval and adult stages. The epidermal cells at all larval stages studied (24 96 h) had numerous vesicles containing electron dense materials in their apical cytoplasm. In tracing experiments, carbon particles were found in apical vesicles and interoellular spaces. Under scanning electron microscope, many crater-like protrusions were observed on the surface of the cells. These results indicated that amphioxus larval epidermal cells may be capable of endocytosis. The epidermal cells of 3-month and adult amphioxus were obviously secretory ones characterized by well-developed peripheral filaments, a prominent Golgi apparatus and abundant apical secretory vesicles. This study also showed that adult amphioxus body surface mucus contained lectin that could agglutinate human red blood cells. The authors propose that the epidermal cells of amphioxus larva and adult may contribute to the immune defense of the amimal by different means.
Zhao, Zhili; Zhang, Cuiping; Fu, Xiaobing; Yang, Rongya; Peng, Chen; Gu, Tingmin; Sui, Zhifu; Wang, Congmin; Liu, Chang
2012-01-01
Epidermal stem cells are of major importance for skin regeneration and tissue engineering, but differentiated epidermal cells lost their proliferative capacity and are no longer able to regenerate a skin equivalent. Here, we investigated the role of β-catenin in regulating regenerative functions of differentiated epidermal cells. Lithium chloride and a highly specific glycogen synthase kinase (GSK)-3β inhibitor were applied to induce the expression of β-catenin in differentiated epidermal cells. After a 6-day induction, the large flat-shaped cells with a small nuclear-cytoplasmic ratio had changed into small round-shaped cells with a large nuclear-cytoplasmic ratio. Phenotypic assays showed a remarkably higher expression of CK19, β(1)-integrin, Oct4 and Nanog in induced cells than in the control group (p < 0.01). In addition, the results of growth and functional investigations demonstrated that the induced epidermal cells exhibited a high colony-forming ability, a long-term proliferative potential and the ability to regenerate a skin equivalent, which were regarded as the most important features of epidermal stem cells. These results suggest that the activation of β-catenin favors the reversion or dedifferentiation of differentiated epidermal cells to an immature or a less differentiated state. This study may also offer a new approach to yield enough epidermal stem cells for skin regeneration and tissue engineering. Copyright © 2012 S. Karger AG, Basel.
Li, Qiankun; Chen, Yan; Ma, Kui; Zhao, Along; Zhang, Cuiping; Fu, Xiaobing
2016-01-01
ABSTRACT Epidermal cells are an important regenerative source for skin wound healing. Aged epidermal cells have a low ability to renew themselves and repair skin injury. Ultraviolet (UV) radiation, particularly UVB, can cause photo-aging of the skin by suppressing the viability of human epidermal cells. A chorion-derived stem cell conditioned medium (CDSC-CNM) is thought to have regenerative properties. This study aimed to determine the regenerative effects of CDSC-CNM on UVB-induced photo-aged epidermal cells. Epidermal cells were passaged four times and irradiated with quantitative UVB, and non-irradiated cells served as a control group. Cells were then treated with different concentrations of CDSC-CNM. Compared to the non-irradiated group, the proliferation rates and migration rates of UVB-induced photo-aged epidermal cells significantly decreased (p < 0.05) with increasing intracellular radical oxygen species (ROS) generation and DNA damage. After treatment with CDSC-CNM, photo-aged epidermal cells significantly improved their viability, and their ROS generation and DNA damage decreased. The secretory factors in CDSC-CNM, including epidermal growth factor (EGF), transforming growth factor-β (TGF-β), interleukin (IL)-6, and IL-8 and the related signaling pathway protein levels, increased compared to the control medium (CM). The potential regenerative and reparative effects of CDSC-CNM indicate that it may be a candidate material for the treatment of prematurely aged skin. The functions of the secretory factors and the mechanisms of CDSC-CNM therapy deserve further attention. PMID:27097375
Guo, Rui; Chai, Linlin; Chen, Liang; Chen, Wenguang; Ge, Liangpeng; Li, Xiaoge; Li, Hongli; Li, Shirong; Cao, Chuan
2015-06-01
Epidermal stem cells could contribute to skin repair through the migration of cells from the neighboring uninjured epidermis, infundibulum, hair follicle, or sebaceous gland. However, little is known about the factors responsible for the complex biological processes in wound healing. Herein, we will show that the attracting chemokine, SDF-1/CXCR4, is a major regulator involved in the migration of epidermal stem cells during wound repair. We found that the SDF-1 levels were markedly increased at the wound margins following injury and CXCR4 expressed in epidermal stem cells and proliferating epithelial cells. Blocking the SDF-1/CXCR4 axis resulted in a significant reduction in epidermal stem cell migration toward SDF-1 in vitro and delayed wound healing in vivo, while an SDF-1 treatment enhanced epidermal stem cell migration and proliferation and accelerated wound healing. These results provide direct evidence that SDF-1 promotes epidermal stem cell migration, accelerates skin regeneration, and makes the development of new regenerative therapeutic strategies for wound healing possible.
Effects of adenosine 5'-monophosphate on epidermal turnover.
Furukawa, Fukumi; Kanehara, Shoko; Harano, Fumiki; Shinohara, Shigeo; Kamimura, Junko; Kawabata, Shigekatsu; Igarashi, Sachiyo; Kawamura, Mitsuaki; Yamamoto, Yuki; Miyachi, Yoshiki
2008-10-01
The structure and function of the epidermis is maintained by cell renewal based on epidermal turnover. Epidermal turnover is delayed by aging, and it is thought that the delay of the epidermal turnover is a cause of aging alternation of skin. The epidermal turnover is related to the energy metabolism of epidermal basal cells. Adenosine 5'-triphosphate (ATP) is needed for cell renewal: cell division, and adenosine 5'-monophosphate (AMP) increases the amount of intracellular ATP. These findings suggest that AMP accelerates the epidermal turnover delayed by aging. This study investigated whether AMP and adenosine 5'-monophosphate disodium salt (AMP2Na) accelerates the epidermal turnover. An effect of AMP2Na on cell proliferation was examined by our counting of keratinocytes. An effect of AMP2Na on cell cycle was examined by our counting of basal cells in DNA synthetic period of hairless rats. The effects of AMP2Na (or AMP) on the epidermal turnover were examined by our measuring stratum corneum transit time by use of guinea pigs, and by our measuring stratum corneum surface area by use of hairless rats and in a clinical pharmacological study. The AMP2Na showed two different profiles on the proliferation of primary cultured keratinocytes. At a low concentration it induced cell growth, whereas at a high concentration it inhibited cell growth. The number of basal cells in the DNA synthetic period of AMP2Na was significantly higher than that of the vehicle in hairless rats. The stratum corneum transit time of AMP2Na was significantly shorter than that of the vehicle in guinea pigs. The corneocyte surface area of emulsion containing AMP2Na was significantly smaller than that of the vehicle in volunteers. We conclude that AMP promotes the cell proliferation and the cell cycle progression of epidermal basal cells and accelerates epidermal turnover safely. In addition, AMP is useful for skin rejuvenation in dermatology and aesthetic dermatology.
Keech, Olivier; Pesquet, Edouard; Ahad, Abdul; Askne, Anna; Nordvall, Dag; Vodnala, Sharvani Munender; Tuominen, Hannele; Hurry, Vaughan; Dizengremel, Pierre; Gardeström, Per
2007-12-01
Senescence is an active process allowing the reallocation of valuable nutrients from the senescing organ towards storage and/or growing tissues. Using Arabidopsis thaliana leaves from both whole darkened plants (DPs) and individually darkened leaves (IDLs), we investigated the fate of mitochondria and chloroplasts during dark-induced leaf senescence. Combining in vivo visualization of fates of the two organelles by three-dimensional reconstructions of abaxial parts of leaves with functional measurements of photosynthesis and respiration, we showed that the two experimental systems displayed major differences during 6 d of dark treatment. In whole DPs, organelles were largely retained in both epidermal and mesophyll cells. However, while the photosynthetic capacity was maintained, the capacity of mitochondrial respiration decreased. In contrast, IDLs showed a rapid decline in photosynthetic capacity while maintaining a high capacity for mitochondrial respiration throughout the treatment. In addition, we noticed an unequal degradation of organelles in the different cell types of the senescing leaf. From these data, we suggest that metabolism in leaves of the whole DPs enters a 'stand-by mode' to preserve the photosynthetic machinery for as long as possible. However, in IDLs, mitochondria actively provide energy and carbon skeletons for the degradation of cell constituents, facilitating the retrieval of nutrients. Finally, the heterogeneity of the degradation processes involved during senescence is discussed with regard to the fate of mitochondria and chloroplasts in the different cell types.
Louis, Bengyella; Waikhom, Sayanika Devi; Roy, Pranab; Bhardwaj, Pardeep Kumar; Singh, Mohendro Wakambam; Chandradev, Sharma K; Talukdar, Narayan Chandra
2014-06-10
Aspergillus terreus is one of the most harmful filamentous fungal pathogen of humans, animals and plants. Recently, researchers have discovered that A. terreus can cause foliar blight disease in potato (Solanum tuberosum L.). We used light and scanning electron microscopy, and performed proteomics analysis in an attempt to dissect the invasion process of A. terreus in this important crop. Microscopic study revealed that invasion of leaf tissue is marked by rapid germination of A. terreus phialidic conidia (PC) by 4 h after inoculation. By 8 h after inoculation, primary germ tubes from PC differentiated into irregular protuberance, often displayed stomata atropism, and failed to penetrate via the epidermal cells. Colonization of leaf tissues was associated with high rate of production of accessory conidia (AC). These analyses showed the occurrence of a unique opposing pattern of AC, tissue-specific and produced on melanized colonizing hyphae during the infection of leaf tissue. A significant proteome change hallmarked by differential expression of class I patatin, lipoxygenase, catalase-peroxidase complex, and cysteine proteinase inhibitor were observed during tuber colonization. These proteins are often involved in signal transduction pathways and crosstalk in pathogenic responses. A. terreus abundantly produced AC and multipolar germinating PC to invade potato leaf tissue. Additionally, A. terreus differentially induced enzymes in potato tuber during colonization which facilitates rapid disease development.
2014-01-01
Background Aspergillus terreus is one of the most harmful filamentous fungal pathogen of humans, animals and plants. Recently, researchers have discovered that A. terreus can cause foliar blight disease in potato (Solanum tuberosum L.). We used light and scanning electron microscopy, and performed proteomics analysis in an attempt to dissect the invasion process of A. terreus in this important crop. Results Microscopic study revealed that invasion of leaf tissue is marked by rapid germination of A. terreus phialidic conidia (PC) by 4 h after inoculation. By 8 h after inoculation, primary germ tubes from PC differentiated into irregular protuberance, often displayed stomata atropism, and failed to penetrate via the epidermal cells. Colonization of leaf tissues was associated with high rate of production of accessory conidia (AC). These analyses showed the occurrence of a unique opposing pattern of AC, tissue-specific and produced on melanized colonizing hyphae during the infection of leaf tissue. A significant proteome change hallmarked by differential expression of class I patatin, lipoxygenase, catalase-peroxidase complex, and cysteine proteinase inhibitor were observed during tuber colonization. These proteins are often involved in signal transduction pathways and crosstalk in pathogenic responses. Conclusion A. terreus abundantly produced AC and multipolar germinating PC to invade potato leaf tissue. Additionally, A. terreus differentially induced enzymes in potato tuber during colonization which facilitates rapid disease development. PMID:24917207
Yin, Tao; Wu, Hanying; Zhang, Shanglong; Lu, Hongyu; Zhang, Lingxiao; Xu, Yong; Chen, Daming; Liu, Jingmei
2009-01-01
A 1.8 kb 5'-flanking region of the large subunit of ADP-glucose pyrophosphorylase, isolated from watermelon (Citrullus vulgaris S.), has fruit-specific promoter activity in transgenic tomato plants. Two negative regulatory regions, from -986 to -959 and from -472 to -424, were identified in this promoter region by fine deletion analyses. Removal of both regions led to constitutive expression in epidermal cells. Gain-of-function experiments showed that these two regions were sufficient to inhibit RFP (red fluorescent protein) expression in transformed epidermal cells when fused to the cauliflower mosaic virus (CaMV) 35S minimal promoter. Gel mobility shift experiments demonstrated the presence of leaf nuclear factors that interact with these two elements. A TCCAAAA motif was identified in these two regions, as well as one in the reverse orientation, which was confirmed to be a novel specific cis-element. A quantitative beta-glucuronidase (GUS) activity assay of stable transgenic tomato plants showed that the activities of chimeric promoters harbouring only one of the two cis-elements, or both, were approximately 10-fold higher in fruits than in leaves. These data confirm that the TCCAAAA motif functions as a fruit-specific element by inhibiting gene expression in leaves.
Yin, Tao; Wu, Hanying; Zhang, Shanglong; Liu, Jingmei; Lu, Hongyu; Zhang, Lingxiao; Xu, Yong; Chen, Daming
2009-01-01
A 1.8 kb 5′-flanking region of the large subunit of ADP-glucose pyrophosphorylase, isolated from watermelon (Citrullus vulgaris S.), has fruit-specific promoter activity in transgenic tomato plants. Two negative regulatory regions, from –986 to –959 and from –472 to –424, were identified in this promoter region by fine deletion analyses. Removal of both regions led to constitutive expression in epidermal cells. Gain-of-function experiments showed that these two regions were sufficient to inhibit RFP (red fluorescent protein) expression in transformed epidermal cells when fused to the cauliflower mosaic virus (CaMV) 35S minimal promoter. Gel mobility shift experiments demonstrated the presence of leaf nuclear factors that interact with these two elements. A TCCAAAA motif was identified in these two regions, as well as one in the reverse orientation, which was confirmed to be a novel specific cis-element. A quantitative β-glucuronidase (GUS) activity assay of stable transgenic tomato plants showed that the activities of chimeric promoters harbouring only one of the two cis-elements, or both, were ∼10-fold higher in fruits than in leaves. These data confirm that the TCCAAAA motif functions as a fruit-specific element by inhibiting gene expression in leaves. PMID:19073962
Claudino, Josiane C; Sacramento, Luis V S do; Koch, Ingrid; Santos, Helen A; Cavalheiro, Alberto J; Tininis, Aristeu G; Santos, André G dos
2013-01-01
Casearia sylvestris Swartz (Salicaceae) has been used in traditional medicine and its leaf extracts have been exhibited important pharmacological activities. The species presents morphological, chemical and genetic variation. Two varieties are considered due external morphological differences: C. sylvestris var. sylvestris and var. lingua. There are difficulties in definition of these varieties. The objective of this work is to evaluate chemical and morpho-anatomical differences between C. sylvestris varieties that can be applied in their distinction for pharmaceutical or botanical purposes. Transverse and paradermic sections of leaves were prepared for morpho-anatomical, histochemical and quantitative microscopy (stomatal and palisade index) analyses. Diterpene profiles of the specimens were obtained by HPLC-DAD and TLC. Morpho-anatomical analyses demonstrated significant differences between the varieties only in paradermic sections: var. sylvestris--polygonal epidermic cell walls and hypostomatic; var. lingua--rounded epidermic cell walls and amphistomatic. No differences were observed for stomatal index; palisade index was found 2.8 for var. lingua and 3.9 for var. sylvestris. Chromatographic analyses confirmed previous results demonstrating that diterpene profile in varieties differs, with predominance of these metabolites in var. sylvestris. In conclusion, this work indicates that chromatographic analysis besides morpho-anatomical analysis can be applied in distinction of C. sylvestris varieties.
Yarani, Reza; Mansouri, Kamran; Mohammadi-Motlagh, Hamid Reza; Bakhtiari, Mitra; Mostafaie, Ali
2013-06-01
Conventional isolation of epidermis from the dermis and disruption of epidermal sheets to liberate the cells, are performed using proteolytic enzymes such as thermolysin or collagenase. Selective population expansion of melanocytes is achieved by suppressing proliferation of keratinocytes and fibroblasts in epidermal cell suspensions, using phorbol esters and cholera toxin. Here, we introduce a new procedure for isolation of epidermal cells, using proteolytic activity of kiwi fruit actinidin, and also an improved growth medium for melanocytes in the presence of leukaemia inhibitory factor (LIF) and forskolin. Dermo-epidermal separation and epidermal sheet cell dispersion were performed using actinidin compared to conventional proteases including collagenase, thermolysin or trypsin. Thereafter, melanocyte culture was performed in two common media and one modified medium to discover optimization for these cells. We found that dermo-epidermal separation and epidermal sheet cell dispersion using kiwi fruit actinidin were considerably better than previously used methods, both from the aspect of less fibroblast and keratinocyte contamination, and of more viable native cells. Also, melanocytes proliferated better in phorbol ester- and cholera toxin-free proliferation medium supplemented with LIF and forskolin. Less contamination and higher numbers of viable cells were actinidin preferential for separation of epidermis and isolation of epidermal cells. Supplementation of LIF and forskolin to new medium increased proliferation potential of melanocytes in comparison to exogenous mitogens. © 2013 Blackwell Publishing Ltd.
Evolution and genetics of root hair stripes in the root epidermis.
Dolan, L; Costa, S
2001-03-01
Root hair pattern develops in a number of different ways in angiosperm. Cells in the epidermis of some species undergo asymmetric cell divisions to form a smaller daughter cell from which a hair grows, and a larger cell that forms a non-hair epidermal cell. In other species any cell in the epidermis can form a root hair. Hair cells are arranged in files along the Arabidopsis root, located in the gaps between underlying cortical cell files. Epidermal cells overlying a single cortical cell file develop as non-hair epidermal cells. Genetic analysis has identified a transcription factor cascade required for the formation of this pattern. WEREWOLF (WER) and GLABRA2 (GL2) are required for the formation of non-hair epidermal cells while CAPRICE (CPC) is required for hair cell development. Recent analyses of the pattern of epidermal cells among the angiosperms indicate that this striped pattern of cell organization evolved from non-striped ancestors independently in a number of diverse evolutionary lineages. The genetic basis for the evolution of epidermal pattern in angiosperms may now be examined.
2012-01-01
Background The positioning and dynamics of vesicles and organelles, and thus the growth of plant cells, is mediated by the acto-myosin system. In Arabidopsis there are 13 class XI myosins which mediate vesicle and organelle transport in different cell types. So far the involvement of five class XI myosins in cell expansion during the shoot and root development has been shown, three of which, XI-1, XI-2, and XI-K, are essential for organelle transport. Results Simultaneous depletion of Arabidopsis class XI myosins XI-K, XI-1, and XI-2 in double and triple mutant plants affected the growth of several types of epidermal cells. The size and shape of trichomes, leaf pavement cells and the elongation of the stigmatic papillae of double and triple mutant plants were affected to different extent. Reduced cell size led to significant size reduction of shoot organs in the case of triple mutant, affecting bolt formation, flowering time and fertility. Phenotype analysis revealed that the reduced fertility of triple mutant plants was caused by delayed or insufficient development of pistils. Conclusions We conclude that the class XI myosins XI-K, XI-1 and XI-2 have partially redundant roles in the growth of shoot epidermis. Myosin XI-K plays more important role whereas myosins XI-1 and XI-2 have minor roles in the determination of size and shape of epidermal cells, because the absence of these two myosins is compensated by XI-K. Co-operation between myosins XI-K and XI-2 appears to play an important role in these processes. PMID:22672737
Chen, Juan; Shen, Zhi-Jun; Lu, Wei-Zhi; Liu, Xiang; Wu, Fei-Hua; Gao, Gui-Feng; Liu, Yi-Ling; Wu, Chun-Sheng; Yan, Chong-Ling; Fan, Hang-Qing; Zhang, Yi-Hui; Zheng, Hai-Lei; Tsai, Chung-Jui
2017-01-31
Avicennia marina (Forsk.) Vierh is a widespread mangrove species along the southeast coasts of China. Recently, the outbreak of herbivorous insect, Phyllocnistis citrella Stainton, a leaf miner, have impacted on the growth of A. marina. Little is reported about the responses of A. marina to leaf miner infection at the biochemical, physiological and molecular levels. Here, we reported the responses of A. marina to leaf miner infection from the aspects of leaf structure, photosynthesis, and antioxidant system and miner responsive genes expression. A. marina leaves attacked by the leaf miner exhibited significant decreases in chlorophyll, carbon and nitrogen contents, as well as a decreased photosynthetic rate. Scanning and transmission electron microscopic observations revealed that the leaf miner only invaded the upper epidermis and destroyed the epidermal cell, which lead to the exposure of salt glands. In addition, the chloroplasts of mined leaves (ML) were swollen and the thylakoids degraded. The maximal net photosynthetic rate, stomatal conductance (Gs), carboxylation efficiency (CE), dark respiration (Rd), light respiration (Rp) and quantum yields (AQE) significantly decreased in the ML, whereas the light saturation point (Lsp), light compensation point (Lcp), water loss and CO2 compensation point (Г) increased in the ML. Moreover, chlorophyll fluorescence features also had been changed by leaf miner attacks. Interestingly, higher generation rate of O2ˉ· and lower antioxidant enzyme expression in the mined portion (MP) were found; on the contrary, higher H2O2 level and higher antioxidant enzyme expression in the non-mined portion (NMP) were revealed, implying that the NMP may be able to sense that the leaf miner attacks had happened in the MP of the A. marina leaf via H2O2 signaling. Besides, the protein expression of glutathione S-transferase (GST) and the glutathione (GSH) content were increased in the ML. In addition, insect resistance-related gene expression such as chitinase 3, RAR1, topless and PIF3 had significantly increased in the ML. Taken together, our data suggest that leaf miners could significantly affect leaf structure, photosynthesis, the antioxidant system and miner responsive gene expression in A. marina leaves.
Hassan, Hala; Scheres, Ben; Blilou, Ikram
2010-05-01
In Arabidopsis, specification of the hair and non-hair epidermal cell types is position dependent, in that hair cells arise over clefts in the underlying cortical cell layer. Epidermal patterning is determined by a network of transcriptional regulators that respond to an as yet unknown cue from underlying tissues. Previously, we showed that JACKDAW (JKD), a zinc finger protein, localizes in the quiescent centre and the ground tissue, and regulates tissue boundaries and asymmetric cell division by delimiting SHORT-ROOT movement. Here, we provide evidence that JKD controls position-dependent signals that regulate epidermal-cell-type patterning. JKD is required for appropriately patterned expression of the epidermal cell fate regulators GLABRA2, CAPRICE and WEREWOLF. Genetic interaction studies indicate that JKD operates upstream of the epidermal patterning network in a SCRAMBLED (SCM)-dependent fashion after embryogenesis, but acts independent of SCM in embryogenesis. Tissue-specific induction experiments indicate non-cell-autonomous action of JKD from the underlying cortex cell layer to specify epidermal cell fate. Our findings are consistent with a model where JKD induces a signal in every cortex cell that is more abundant in the hair cell position owing to the larger surface contact of cells located over a cleft.
Lu, Chungui; Koroleva, Olga A; Farrar, John F; Gallagher, Joe; Pollock, Chris J; Tomos, A Deri
2002-11-01
We describe a highly efficient two-step single-cell reverse transcriptase-polymerase chain reaction technique for analyzing gene expression at the single-cell level. Good reproducibility and a linear dose response indicated that the technique has high specificity and sensitivity for detection and quantification of rare RNA. Actin could be used as an internal standard. The expression of message for Rubisco small subunit (RbcS), chlorophyll a/b-binding protein (Cab), sucrose (Suc):fructan-6-fructosyl transferase (6-SFT), and Actin were measured in individual photosynthetic cells of the barley (Hordeum vulgare) leaf. Only Actin was found in the non-photosynthetic epidermal cells. Cab, RbcS, and 6-SFT genes were expressed at a low level in mesophyll and parenchymatous bundle sheath (BS) cells when sampled from plants held in dark for 40 h. Expression increased considerably after illumination. The amount of 6-SFT, Cab, and RbcS transcript increased more in mesophyll cells than in the parenchymatous BS cells. The difference may be caused by different chloroplast structure and posttranscriptional control in mesophyll and BS cells. When similar single-cell samples were assayed for Suc, glucose, and fructan, there was high correlation between 6-SFT gene expression and Suc and glucose concentrations. This is consistent with Suc concentration being the trigger for transcription. Together with earlier demonstrations that the mesophyll cells have a higher sugar threshold for fructan polymerization, our data may indicate separate control of transcription and enzyme activity. Values for the sugar concentrations of the individual cell types are reported.
Zhao, Along; Yang, Leilei; Ma, Kui; Sun, Mengli; Li, Lei; Huang, Jin; Li, Yang; Zhang, Cuiping; Li, Haihong; Fu, Xiaobing
2016-01-01
It has been reported that Wnt/β-catenin is critical for dedifferentiation of differentiated epidermal cells. Cyclin D1 (CCND1) is a β-catenin target gene. In this study, we provide evidence that overexpression of CCND1 induces reprogramming of epidermal cells into stem cell-like cells. After introducing CCND1 gene into differentiated epidermal cells, we found that the large flat-shaped cells with a small nuclear-cytoplasmic ratio changed into small round-shaped cells with a large nuclear-cytoplasmic ratio. The expressions of CK10, β1-integrin, Oct4 and Nanog in CCND1 induced cells were remarkably higher than those in the control group (P < 0.01). In addition, the induced cells exhibited a high colony-forming ability and a long-term proliferative potential. When the induced cells were implanted into a wound of laboratory animal model, the wound healing was accelerated. These results suggested that overexpression of CCND1 induced the reprogramming of differentiated epidermal cells into stem cell-like cells. This study may also offer a new approach to yield epidermal stem cells for wound repair and regeneration.
Stomatal control and hydraulic conductance, with special reference to tall trees.
Franks, Peter J
2004-08-01
A better understanding of the mechanistic basis of stomatal control is necessary to understand why modes of stomatal response differ among individual trees, and to improve the theoretical foundation for predictive models and manipulative experiments. Current understanding of the mechanistic basis of stomatal control is reviewed here and discussed in relation to the plant hydraulic system. Analysis focused on: (1) the relative role of hydraulic conductance in the vicinity of the stomatal apparatus versus whole-plant hydraulic conductance; (2) the influence of guard cell inflation characteristics and the mechanical interaction between guard cells and epidermal cells; and (3) the system requirements for moderate versus dramatic reductions in stomatal conductance with increasing evaporation potential. Special consideration was given to the potential effect of changes in hydraulic properties as trees grow taller. Stomatal control of leaf gas exchange is coupled to the entire plant hydraulic system and the basis of this coupling is the interdependence of guard cell water potential and transpiration rate. This hydraulic feedback loop is always present, but its dynamic properties may be altered by growth or cavitation-induced changes in hydraulic conductance, and may vary with genetically related differences in hydraulic conductances. Mechanistic models should include this feedback loop. Plants vary in their ability to control transpiration rate sufficiently to maintain constant leaf water potential. Limited control may be achieved through the hydraulic feedback loop alone, but for tighter control, an additional element linking transpiration rate to guard cell osmotic pressure may be needed.
Lee, J S; Kim, J M; Hong, E K; Kim, S-O; Yoo, Y-J; Cha, J-H
2009-02-01
A growing amount of attention has been placed on periodontal regeneration and wound healing for periodontal therapy. This study was conducted in an effort to determine the effects of heparin-binding epidermal growth factor-like growth factor on cell repopulation and signal transduction in periodontal ligament cells after scratch wounding in vitro. Human periodontal ligament cells were acquired from explant tissue of human healthy periodontal ligament. After the wounding of periodontal ligament cells, the change in expression of heparin-binding epidermal growth factor-like growth factor and epidermal growth factor receptors 1-4 mRNA was assessed. The effects of heparin-binding epidermal growth factor-like growth factor on periodontal ligament cell proliferation and repopulation were assessed in vitro via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and by photographing the injuries, respectively. Extracellular signal-regulated kinase (Erk)1/2, p38 and Akt phosphorylation was characterized via western blotting. Scratch wounding resulted in a significant up-regulation of heparin-binding epidermal growth factor-like growth factor mRNA expression, whereas wounding had no effect on the expression levels of epidermal growth factor receptors 1-4. Interestingly, no expression of epidermal growth factor receptors 2 and 4 was detectable prior to or after wounding. Heparin-binding epidermal growth factor-like growth factor treatment promoted the proliferation and repopulation of periodontal ligament cells. The scratch wounding also stimulated the phosphorylation of Erk1/2 and p38, but not of Akt, in periodontal ligament cells, and heparin-binding epidermal growth factor-like growth factor treatment applied after wounding amplified and extended the activations of Erk1/2 and p38, but not of Akt. Furthermore, Erk1/2 inhibition blocked the process of cell repopulation induced by heparin-binding epidermal growth factor-like growth factor, whereas the inhibition of p38 delayed the process. These results indicate that heparin-binding epidermal growth factor-like growth factor may constitute a critical factor in the wound healing of human periodontal ligament cells by a mechanism that requires the activation of Erk1/2 via specific interaction with epidermal growth factor receptor 1.
Developmental patterning of the sub-epidermal integument cell layer in Arabidopsis seeds
Coen, Olivier; Fiume, Elisa; Xu, Wenjia; De Vos, Delphine; Lu, Jing; Pechoux, Christine; Lepiniec, Loïc
2017-01-01
Angiosperm seed development is a paradigm of tissue cross-talk. Proper seed formation requires spatial and temporal coordination of the fertilization products – embryo and endosperm – and the surrounding seed coat maternal tissue. In early Arabidopsis seed development, all seed integuments were thought to respond homogenously to endosperm growth. Here, we show that the sub-epidermal integument cell layer has a unique developmental program. We characterized the cell patterning of the sub-epidermal integument cell layer, which initiates a previously uncharacterized extra cell layer, and identified TRANSPARENT TESTA 16 and SEEDSTICK MADS box transcription factors as master regulators of its polar development and cell architecture. Our data indicate that the differentiation of the sub-epidermal integument cell layer is insensitive to endosperm growth alone and to the repressive mechanism established by FERTILIZATION INDEPENDENT ENDOSPERM and MULTICOPY SUPPRESSOR OF IRA1 Polycomb group proteins. This work demonstrates the different responses of epidermal and sub-epidermal integument cell layers to fertilization. PMID:28348169
Limited acclimation in leaf anatomy to experimental drought in tropical rainforest trees
Binks, Oliver; Meir, Patrick; Rowland, Lucy; da Costa, Antonio Carlos Lola; Vasconcelos, Steel Silva; de Oliveira, Alex Antonio Ribeiro; Ferreira, Leandro; Mencuccini, Maurizio
2016-01-01
Dry periods are predicted to become more frequent and severe in the future in some parts of the tropics, including Amazonia, potentially causing reduced productivity, higher tree mortality and increased emissions of stored carbon. Using a long-term (12 year) through-fall exclusion (TFE) experiment in the tropics, we test the hypothesis that trees produce leaves adapted to cope with higher levels of water stress, by examining the following leaf characteristics: area, thickness, leaf mass per area, vein density, stomatal density, the thickness of palisade mesophyll, spongy mesophyll and both of the epidermal layers, internal cavity volume and the average cell sizes of the palisade and spongy mesophyll. We also test whether differences in leaf anatomy are consistent with observed differential drought-induced mortality responses among taxa, and look for relationships between leaf anatomy, and leaf water relations and gas exchange parameters. Our data show that trees do not produce leaves that are more xeromorphic in response to 12 years of soil moisture deficit. However, the drought treatment did result in increases in the thickness of the adaxial epidermis (TFE: 20.5 ± 1.5 µm, control: 16.7 ± 1.0 µm) and the internal cavity volume (TFE: 2.43 ± 0.50 mm3 cm−2, control: 1.77 ± 0.30 mm3 cm−2). No consistent differences were detected between drought-resistant and drought-sensitive taxa, although interactions occurred between drought-sensitivity status and drought treatment for the palisade mesophyll thickness (P = 0.034) and the cavity volume of the leaves (P = 0.025). The limited response to water deficit probably reflects a tight co-ordination between leaf morphology, water relations and photosynthetic properties. This suggests that there is little plasticity in these aspects of plant anatomy in these taxa, and that phenotypic plasticity in leaf traits may not facilitate the acclimation of Amazonian trees to the predicted future reductions in dry season water availability. PMID:27614360
Mechanisms of stomatal development: an evolutionary view
2012-01-01
Plant development has a significant postembryonic phase that is guided heavily by interactions between the plant and the outside environment. This interplay is particularly evident in the development, pattern and function of stomata, epidermal pores on the aerial surfaces of land plants. Stomata have been found in fossils dating from more than 400 million years ago. Strikingly, the morphology of the individual stomatal complex is largely unchanged, but the sizes, numbers and arrangements of stomata and their surrounding cells have diversified tremendously. In many plants, stomata arise from specialized and transient stem-cell like compartments on the leaf. Studies in the flowering plant Arabidopsis thaliana have established a basic molecular framework for the acquisition of cell fate and generation of cell polarity in these compartments, as well as describing some of the key signals and receptors required to produce stomata in organized patterns and in environmentally optimized numbers. Here we present parallel analyses of stomatal developmental pathways at morphological and molecular levels and describe the innovations made by particular clades of plants. PMID:22691547
Extracellular Matrix as a Regulator of Epidermal Stem Cell Fate.
Chermnykh, Elina; Kalabusheva, Ekaterina; Vorotelyak, Ekaterina
2018-03-27
Epidermal stem cells reside within the specific anatomic location, called niche, which is a microenvironment that interacts with stem cells to regulate their fate. Regulation of many important processes, including maintenance of stem cell quiescence, self-renewal, and homeostasis, as well as the regulation of division and differentiation, are common functions of the stem cell niche. As it was shown in multiple studies, extracellular matrix (ECM) contributes a lot to stem cell niches in various tissues, including that of skin. In epidermis, ECM is represented, primarily, by a highly specialized ECM structure, basement membrane (BM), which separates the epidermal and dermal compartments. Epidermal stem cells contact with BM, but when they lose the contact and migrate to the overlying layers, they undergo terminal differentiation. When considering all of these factors, ECM is of fundamental importance in regulating epidermal stem cells maintenance, proper mobilization, and differentiation. Here, we summarize the remarkable progress that has recently been made in the research of ECM role in regulating epidermal stem cell fate, paying special attention to the hair follicle stem cell niche. We show that the destruction of ECM components impairs epidermal stem cell morphogenesis and homeostasis. A deep understanding of ECM molecular structure as well as the development of in vitro system for stem cell maintaining by ECM proteins may bring us to developing new approaches for regenerative medicine.
Gloss, colour and grip: multifunctional epidermal cell shapes in bee- and bird-pollinated flowers.
Papiorek, Sarah; Junker, Robert R; Lunau, Klaus
2014-01-01
Flowers bear the function of filters supporting the attraction of pollinators as well as the deterrence of floral antagonists. The effect of epidermal cell shape on the visual display and tactile properties of flowers has been evaluated only recently. In this study we quantitatively measured epidermal cell shape, gloss and spectral reflectance of flowers pollinated by either bees or birds testing three hypotheses: The first two hypotheses imply that bee-pollinated flowers might benefit from rough surfaces on visually-active parts produced by conical epidermal cells, as they may enhance the colour signal of flowers as well as the grip on flowers for bees. In contrast, bird-pollinated flowers might benefit from flat surfaces produced by flat epidermal cells, by avoiding frequent visitation from non-pollinating bees due to a reduced colour signal, as birds do not rely on specific colour parameters while foraging. Moreover, flat petal surfaces in bird-pollinated flowers may hamper grip for bees that do not touch anthers and stigmas while consuming nectar and thus, are considered as nectar thieves. Beside this, the third hypothesis implies that those flower parts which are vulnerable to nectar robbing of bee- as well as bird-pollinated flowers benefit from flat epidermal cells, hampering grip for nectar robbing bees. Our comparative data show in fact that conical epidermal cells are restricted to visually-active parts of bee-pollinated flowers, whereas robbing-sensitive parts of bee-pollinated as well as the entire floral surface of bird-pollinated flowers possess on average flat epidermal cells. However, direct correlations between epidermal cell shape and colour parameters have not been found. Our results together with published experimental studies show that epidermal cell shape as a largely neglected flower trait might act as an important feature in pollinator attraction and avoidance of antagonists, and thus may contribute to the partitioning of flower-visitors.
The organization of human epidermis: functional epidermal units and phi proportionality.
Hoath, Steven B; Leahy, D G
2003-12-01
The concept that mammalian epidermis is structurally organized into functional epidermal units has been proposed on the basis of stratum corneum (SC) architecture, proliferation kinetics, melanocyte:keratinocyte ratios (1:36), and, more recently, Langerhans cell: epidermal cell ratios (1:53). This article examines the concept of functional epidermal units in human skin in which the maintenance of phi (1.618034) proportionality provides a central organizing principle. The following empirical measurements were used: 75,346 nucleated epidermal cells per mm2, 1394 Langerhans cells per mm2, 1999 melanocytes per mm2, 16 (SC) layers, 900-microm2 corneocyte surface area, 17,778 corneocytes per mm2, 14-d (SC) turnover time, and 93,124 per mm2 total epidermal cells. Given these empirical data: (1) the number of corneocytes is a mean proportional between the sum of the Langerhans cell + melanocyte populations and the number of epidermal cells, 3393/17,778-17,778/93,124; (2) the ratio of nucleated epidermal cells over corneocytes is phi proportional, 75,346/17,778 approximately phi3; (3) assuming similar 14-d turnover times for the (SC) and Malpighian epidermis, the number of corneocytes results from subtraction of a cellular fraction equal to approximately 2/phi2 x the number of living cells, 75,436 - (2/phi2 x 75,346) approximately 17,778; and (4) if total epidermal turnover time equals (SC) turnover time x the ratio of living/dead cells, then compartmental turnover times are unequal (14 d for (SC) to 45.3 d for nucleated epidermis approximately 1/2phi) and cellular replacement rates are 52.9 corneocytes/69.3 keratinocytes per mm2 per h approximately 2/phi2. These empirically derived equivalences provide logicomathematical support for the presence of functional epidermal units in human skin. Validation of a phi proportional unit architecture in human epidermis will be important for tissue engineering of skin and the design of instruments for skin measurement.
Nilson, Sarah E; Assmann, Sarah M
2010-04-01
Land plants must balance CO2 assimilation with transpiration in order to minimize drought stress and maximize their reproductive success. The ratio of assimilation to transpiration is called transpiration efficiency (TE). TE is under genetic control, although only one specific gene, ERECTA, has been shown to regulate TE. We have found that the alpha-subunit of the heterotrimeric G protein in Arabidopsis (Arabidopsis thaliana), GPA1, is a regulator of TE. gpa1 mutants, despite having guard cells that are hyposensitive to abscisic acid-induced inhibition of stomatal opening, have increased TE under ample water and drought stress conditions and when treated with exogenous abscisic acid. Leaf-level gas-exchange analysis shows that gpa1 mutants have wild-type assimilation versus internal CO2 concentration responses but exhibit reduced stomatal conductance compared with ecotype Columbia at ambient and below-ambient internal CO2 concentrations. The increased TE and reduced whole leaf stomatal conductance of gpa1 can be primarily attributed to stomatal density, which is reduced in gpa1 mutants. GPA1 regulates stomatal density via the control of epidermal cell size and stomata formation. GPA1 promoter::beta-glucuronidase lines indicate that the GPA1 promoter is active in the stomatal cell lineage, further supporting a function for GPA1 in stomatal development in true leaves.
Vadde, Batthula Vijaya Lakshmi; Challa, Krishna Reddy; Nath, Utpal
2018-01-01
Trichomes are the first cell type to be differentiated during the morphogenesis of leaf epidermis and serve as an ideal model to study cellular differentiation. Many genes involved in the patterning and differentiation of trichome cells have been studied over the past decades, and the majority of these genes encode transcription factors that specifically regulate epidermal cell development. However, the upstream regulators of these genes that link early leaf morphogenesis with cell type differentiation are less studied. The TCP proteins are the plant-specific transcription factors involved in regulating diverse aspects of plant development including lateral organ morphogenesis by modulating cell proliferation and differentiation. Here, we show that the miR319-regulated class II TCP proteins, notably TCP4, suppress trichome branching in Arabidopsis leaves and inflorescence stem by direct transcriptional activation of GLABROUS INFLORESCENCE STEMS (GIS), a known negative regulator of trichome branching. The trichome branch number is increased in plants with reduced TCP activity and decreased in the gain-of-function lines of TCP4. Biochemical analyses show that TCP4 binds to the upstream regulatory region of GIS and activates its expression. Detailed genetic analyses show that GIS and TCP4 work in same pathway and GIS function is required for TCP4-mediated regulation of trichome differentiation. Taken together, these results identify a role for the class II TCP genes in trichome differentiation, thus providing a connection between organ morphogenesis and cellular differentiation. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
2013-01-01
Background Scanning electron microscopy (SEM) has been used for high-resolution imaging of plant cell surfaces for many decades. Most SEM imaging employs the secondary electron detector under high vacuum to provide pseudo-3D images of plant organs and especially of surface structures such as trichomes and stomatal guard cells; these samples generally have to be metal-coated to avoid charging artefacts. Variable pressure-SEM allows examination of uncoated tissues, and provides a flexible range of options for imaging, either with a secondary electron detector or backscattered electron detector. In one application, we used the backscattered electron detector under low vacuum conditions to collect images of uncoated barley leaf tissue followed by simple quantification of cell areas. Results Here, we outline methods for backscattered electron imaging of a variety of plant tissues with particular focus on collecting images for quantification of cell size and shape. We demonstrate the advantages of this technique over other methods to obtain high contrast cell outlines, and define a set of parameters for imaging Arabidopsis thaliana leaf epidermal cells together with a simple image analysis protocol. We also show how to vary parameters such as accelerating voltage and chamber pressure to optimise imaging in a range of other plant tissues. Conclusions Backscattered electron imaging of uncoated plant tissue allows acquisition of images showing details of plant morphology together with images of high contrast cell outlines suitable for semi-automated image analysis. The method is easily adaptable to many types of tissue and suitable for any laboratory with standard SEM preparation equipment and a variable-pressure-SEM or tabletop SEM. PMID:24135233
Farid, Akhlaq; Pabst, Martin; Schoberer, Jennifer; Altmann, Friedrich; Glössl, Josef; Strasser, Richard
2011-01-01
Assembly of the dolichol-linked oligosaccharide precursor (Glc3Man9GlcNAc2) is highly conserved among eukaryotes. In contrast to yeast and mammals, little is known about the biosynthesis of dolichol-linked oligosaccharides and the transfer to asparagine residues of nascent polypeptides in plants. To understand the biological function of these processes in plants we characterized the Arabidopsis thaliana homolog of yeast ALG10, the α1,2-glucosyltransferase that transfers the terminal glucose residue to the lipid-linked precursor. Expression of an Arabidopsis ALG10–GFP fusion protein in Nicotiana benthamiana leaf epidermal cells revealed a reticular distribution pattern resembling endoplasmic reticulum (ER) localization. Analysis of lipid-linked oligosaccharides showed that Arabidopsis ALG10 can complement the yeast Δalg10 mutant strain. A homozygous Arabidopsis T-DNA insertion mutant (alg10-1) accumulated mainly lipid-linked Glc2Man9GlcNAc2 and displayed a severe protein underglycosylation defect. Phenotypic analysis of alg10-1 showed that mutant plants have altered leaf size when grown in soil. Moreover, the inactivation of ALG10 in Arabidopsis resulted in the activation of the unfolded protein response, increased salt sensitivity and suppression of the phenotype of α-glucosidase I-deficient plants. In summary, these data show that Arabidopsis ALG10 is an ER-resident α1,2-glucosyltransferase that is required for lipid-linked oligosaccharide biosynthesis and subsequently for normal leaf development and abiotic stress response. PMID:21707802
Code of Federal Regulations, 2012 CFR
2012-04-01
... increased rate of shedding of dead epidermal cells of the scalp. (c) Psoriasis. A condition of the scalp or body characterized by irritation, itching, redness, and extreme excess shedding of dead epidermal cells..., redness, and excess shedding of dead epidermal cells. (e) Selenium sulfide, micronized. Selenium sulfide...
Code of Federal Regulations, 2013 CFR
2013-04-01
... increased rate of shedding of dead epidermal cells of the scalp. (c) Psoriasis. A condition of the scalp or body characterized by irritation, itching, redness, and extreme excess shedding of dead epidermal cells..., redness, and excess shedding of dead epidermal cells. (e) Selenium sulfide, micronized. Selenium sulfide...
Code of Federal Regulations, 2014 CFR
2014-04-01
... increased rate of shedding of dead epidermal cells of the scalp. (c) Psoriasis. A condition of the scalp or body characterized by irritation, itching, redness, and extreme excess shedding of dead epidermal cells..., redness, and excess shedding of dead epidermal cells. (e) Selenium sulfide, micronized. Selenium sulfide...
Code of Federal Regulations, 2010 CFR
2010-04-01
... increased rate of shedding of dead epidermal cells of the scalp. (c) Psoriasis. A condition of the scalp or body characterized by irritation, itching, redness, and extreme excess shedding of dead epidermal cells..., redness, and excess shedding of dead epidermal cells. (e) Selenium sulfide, micronized. Selenium sulfide...
Code of Federal Regulations, 2011 CFR
2011-04-01
... increased rate of shedding of dead epidermal cells of the scalp. (c) Psoriasis. A condition of the scalp or body characterized by irritation, itching, redness, and extreme excess shedding of dead epidermal cells..., redness, and excess shedding of dead epidermal cells. (e) Selenium sulfide, micronized. Selenium sulfide...
Functional divergence of MYB-related genes, WEREWOLF and AtMYB23 in Arabidopsis.
Tominaga-Wada, Rumi; Nukumizu, Yuka; Sato, Shusei; Kato, Tomohiko; Tabata, Satoshi; Wada, Takuji
2012-01-01
Epidermal cell differentiation in Arabidopsis is studied as a model system to understand the mechanisms that determine the developmental end state of plant cells. MYB-related transcription factors are involved in cell fate determination. To examine the molecular basis of this process, we analyzed the functional relationship of two R2R3-type MYB genes, AtMYB23 (MYB23) and WEREWOLF (WER). MYB23 is involved in leaf trichome formation. WER represses root-hair formation. Swapping domains between MYB23 and WER, we found that a low homology region of MYB23 might be involved in ectopic trichome initiation on hypocotyls. MYB23 and all MYB23-WER (MW) chimeric transgenes rescued the increased root-hair phenotype of the wer-1 mutant. Although WER did not rescue the gl1-1 no-trichome phenotype, MYB23 and all MW chimeric transgenes rescued gl1-1. These results suggest that MYB23 acquired a specific function for trichome differentiation during evolution.
Chatterjee, Subhasish; Matas, Antonio J; Isaacson, Tal; Kehlet, Cindie; Rose, Jocelyn K C; Stark, Ruth E
2016-01-11
Plant cuticles on outer fruit and leaf surfaces are natural macromolecular composites of waxes and polyesters that ensure mechanical integrity and mitigate environmental challenges. They also provide renewable raw materials for cosmetics, packaging, and coatings. To delineate the structural framework and flexibility underlying the versatile functions of cutin biopolymers associated with polysaccharide-rich cell-wall matrices, solid-state NMR spectra and spin relaxation times were measured in a tomato fruit model system, including different developmental stages and surface phenotypes. The hydrophilic-hydrophobic balance of the cutin ensures compatibility with the underlying polysaccharide cell walls; the hydroxy fatty acid structures of outer epidermal cutin also support deposition of hydrophobic waxes and aromatic moieties while promoting the formation of cell-wall cross-links that rigidify and strengthen the cuticle composite during fruit development. Fruit cutin-deficient tomato mutants with compromised microbial resistance exhibit less efficient local and collective biopolymer motions, stiffening their cuticular surfaces and increasing their susceptibility to fracture.
Li, Junqin; Li, Xinhua; Hou, Ruixia; Liu, Ruifeng; Zhao, Xincheng; Dong, Feng; Wang, Chunfang; Yin, Guohua; Zhang, Kaiming
2015-09-01
Psoriasis is mediated primarily by T cells, which reduce epidermal turnover time and affect keratinocyte proliferation. We aimed to identify differentially expressed genes (DEG) in T cells from normal, five pairs of monozygotic twins concordant or discordant for psoriasis, to determine whether these DEG may account for the influence to epidermal turnover time and keratinocyte proliferation. The impact of T cells on keratinocyte proliferation and epidermal turnover time were investigated separately by immunohistochemistry and cultured with (3) H-TdR. mRNA expression patterns were investigated by RNA sequencing and verified by real-time reverse transcription polymerase chain reaction. After co-culture with psoriatic T cells, the expression of Ki-67, c-Myc and p53 increased, while expression of Bcl-2 and epidermal turnover time decreased. There were 14 DEG which were found to participate in the regulation of cell proliferation or differentiation. Psoriatic T cells exhibited the ability to decrease epidermal turnover time and affect keratinocyte proliferation because of the differential expression of PPIL1, HSPH1, SENP3, NUP54, FABP5, PLEKHG3, SLC9A9 and CHCHD4. © 2015 Japanese Dermatological Association.
Pedroso, M C; Magalhaes, J R; Durzan, D
2000-06-01
Leaves and callus of Kalanchoë daigremontiana and Taxus brevifolia were used to investigate nitric oxide-induced apoptosis in plant cells. The effect of nitric oxide (NO) was studied by using a NO donor, sodium nitroprusside (SNP), a nitric oxide-synthase (NOS) inhibitor, N:(G)-monomethyl-L-arginine (NMMA), and centrifugation (an apoptosis-inducing treatment in these species). NO production was visualized in cells and tissues with a specific probe, diaminofluorescein diacetate (DAF-2 DA). DNA fragmentation was detected in situ by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) method. In both species, NO was detected diffused in the cytosol of epidermal cells and in chloroplasts of guard cells and leaf parenchyma cells. Centrifugation increased NO production, DNA fragmentation and subsequent cell death by apoptosis. SNP mimicked centrifugation results. NMMA significantly decreased NO production and apoptosis in both species. The inhibitory effect of NMMA on NO production suggests that a putative NOS is present in Kalanchoë and Taxus cells. The present results demonstrated the involvement of NO on DNA damage leading to cell death, and point to a potential role of NO as a signal molecule in these plants.
A STUDY OF THE COMPONENTS OF THE CORNIFIED EPITHELIUM OF HUMAN SKIN
Matoltsy, A. Gedeon; Balsamo, Constance A.
1955-01-01
Pulverized cornified epithelium of human skin was divided into a "soluble fraction" and a "residue." About half of the "soluble fraction" proved to be soluble epidermal keratin (keratin A); the remainder, dialyzable substances of low molecular weight. The "residue" contained epidermal keratin and resistant cell membranes of cornified cells. Epidermal keratin was found to form an oriented and dense submicroscopic structure in the cornified cells. It showed high resistance toward strong acid and moderately strong alkali solutions as well as concentrated urea. In strong alkali, reducing substances, alkaline urea, and mixtures of reducing substance with alkali, epidermal keratin dissociated and yielded a non-dialyzable derivative of high molecular weight (keratin B) which resembled true proteins. The cell membranes of cornified cells showed higher resistance toward strong alkali and reducing substance than did epidermal keratin. PMID:13242598
Leaf micromorphology of some Phyllanthus L. species (Phyllanthaceae)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solihani, N. S., E-mail: noorsolihani@gmail.com; Noraini, T., E-mail: norainitalip@gmail.com; Azahana, A., E-mail: bell-azahana@yahoo.com
2015-09-25
Comparative leaf micromorphological study was conducted of five chosen Phyllanthus L. (Phyllanthaceae) species, namely P. acidus L., P. elegans Wall. ex Müll. Arg., P. emblica L., P. urinaria L. and P. pulcher Wall. ex Müll. Arg. The objective of this study is to identify the leaf micromorphological characteristics that can be used in species identification. The procedures involve examination under scanning electron microscope. Findings of this study have demonstrated variations in the leaf micromorphological characteristics such as in the types of waxes present on adaxial and abaxial epidermis surfaces, in the stomata and types of trichome. Common character present inmore » all species studied are the presence of a thin film layer and buttress-like waxes on epidermal leaf surfaces. Diagnostics characters found in this study are the presence of papilla in P. elegens, amphistomatic stomata in P. urinaria and flaky waxes in P. pulcher. The result of this study has shown that leaf micromorphological characters have some taxonomic significance and can be used in identification of species in the genus Phyllanthus.« less
Siipola, Sari M; Kotilainen, Titta; Sipari, Nina; Morales, Luis O; Lindfors, Anders V; Robson, T Matthew; Aphalo, Pedro J
2015-05-01
Plants synthesize phenolic compounds in response to certain environmental signals or stresses. One large group of phenolics, flavonoids, is considered particularly responsive to ultraviolet (UV) radiation. However, here we demonstrate that solar blue light stimulates flavonoid biosynthesis in the absence of UV-A and UV-B radiation. We grew pea plants (Pisum sativum cv. Meteor) outdoors, in Finland during the summer, under five types of filters differing in their spectral transmittance. These filters were used to (1) attenuate UV-B; (2) attenuate UV-B and UV-A < 370 nm; (3) attenuate UV-B and UV-A; (4) attenuate UV-B, UV-A and blue light; and (5) as a control not attenuating these wavebands. Attenuation of blue light significantly reduced the flavonoid content in leaf adaxial epidermis and reduced the whole-leaf concentrations of quercetin derivatives relative to kaempferol derivatives. In contrast, UV-B responses were not significant. These results show that pea plants regulate epidermal UV-A absorbance and accumulation of individual flavonoids by perceiving complex radiation signals that extend into the visible region of the solar spectrum. Furthermore, solar blue light instead of solar UV-B radiation can be the main regulator of phenolic compound accumulation in plants that germinate and develop outdoors. © 2014 John Wiley & Sons Ltd.
While it is generally accepted that dense stands of plants exacerbate epidermics caused by foliar pathogens, there is little experimental evidence to support this view. We grew model plant communities consisting of wheat and wild oats at different densities and proportions and ex...
Heterotrimeric G Protein Signaling Is Required for Epidermal Cell Death in Rice[W][OA
Steffens, Bianka; Sauter, Margret
2009-01-01
In rice (Oryza sativa) adventitious root primordia are formed at the nodes as part of normal development. Upon submergence of rice plants, adventitious roots emerge from the nodes preceded by death of epidermal cells above the root primordia. Cell death is induced by ethylene and mediated by hydrogen peroxide (H2O2). Pharmacological experiments indicated that epidermal cell death was dependent on signaling through G proteins. Treatment with GTP-γ-S induced epidermal cell death, whereas GDP-β-S partially inhibited ethylene-induced cell death. The dwarf1 (d1) mutant of rice has repressed expression of the Gα subunit RGA1 of heterotrimeric G protein. In d1 plants, cell death in response to ethylene and H2O2 was nearly completely abolished, indicating that signaling through Gα is essential. Ethylene and H2O2 were previously shown to alter gene expression in epidermal cells that undergo cell death. Transcriptional regulation was not generally affected in the d1 mutant, indicating that altered gene expression is not sufficient to trigger cell death in the absence of Gα. Analysis of genes encoding proteins related to G protein signaling revealed that four small GTPase genes, two GTPase-activating protein genes, and one GDP dissociation inhibitor gene but not RGA1 were differentially expressed in epidermal cells above adventitious roots, indicating that Gα activity is regulated posttranscriptionally. PMID:19656904
Epidermal Th22 and Tc17 cells form a localized disease memory in clinically healed psoriasis.
Cheuk, Stanley; Wikén, Maria; Blomqvist, Lennart; Nylén, Susanne; Talme, Toomas; Ståhle, Mona; Eidsmo, Liv
2014-04-01
Psoriasis is a common and chronic inflammatory skin disease in which T cells play a key role. Effective treatment heals the skin without scarring, but typically psoriasis recurs in previously affected areas. A pathogenic memory within the skin has been proposed, but the nature of such site-specific disease memory is unknown. Tissue-resident memory T (TRM) cells have been ascribed a role in immunity after resolved viral skin infections. Because of their localization in the epidermal compartment of the skin, TRM may contribute to tissue pathology during psoriasis. In this study, we investigated whether resolved psoriasis lesions contain TRM cells with the ability to maintain and potentially drive recurrent disease. Three common and effective therapies, narrowband-UVB treatment and long-term biologic treatment systemically inhibiting TNF-α or IL-12/23 signaling were studied. Epidermal T cells were highly activated in psoriasis and a high proportion of CD8 T cells expressed TRM markers. In resolved psoriasis, a population of cutaneous lymphocyte-associated Ag, CCR6, CD103, and IL-23R expressing epidermal CD8 T cells was highly enriched. Epidermal CD8 T cells expressing the TRM marker CD103 responded to ex vivo stimulation with IL-17A production and epidermal CD4 T cells responded with IL-22 production after as long as 6 y of TNF-α inhibition. Our data suggest that epidermal TRM cells are retained in resolved psoriasis and that these cells are capable of producing cytokines with a critical role in psoriasis pathogenesis. We provide a potential mechanism for a site-specific T cell-driven disease memory in psoriasis.
The role of the SCRAMBLED receptor-like kinase in patterning the Arabidopsis root epidermis.
Kwak, Su-Hwan; Schiefelbein, John
2007-02-01
Cell-type patterning in the Arabidopsis root epidermis is achieved by a network of transcription factors and influenced by a position-dependent mechanism. The SCRAMBLED receptor-like kinase is required for the normal pattern to arise, but its precise role is not understood. Here we describe genetic and molecular studies to define the spatial and temporal role of SCM in epidermal patterning and its relationship to the transcriptional network. Our results suggest that SCM helps unspecified epidermal cells interpret their position in relation to the underlying cortical cells and establish distinct cell identities. Furthermore, SCM loss-of-function and overexpression analyses suggest that SCM influences cell fate through its negative transcriptional regulation of the WEREWOLF MYB gene in epidermal cells at the H position. We also find that SCM function is specifically required for patterning the post-embryonic root epidermis and not for the analogous epidermal cell-type patterning during embryogenesis or hypocotyl development. In addition, we show that two closely related SCM-like genes in Arabidopsis (SRF1 and SRF3) are not required alone or together with SCM for proper epidermal patterning. These findings help define the developmental and mechanistic role of SCM and suggest a new model for its action in root epidermal cell patterning.
Patterson, Rachel A.; Juarez, Michelle T.; Hermann, Anita; Sasik, Roman; Hardiman, Gary; McGinnis, William
2013-01-01
After injury to the animal epidermis, a variety of genes are transcriptionally activated in nearby cells to regenerate the missing cells and facilitate barrier repair. The range and types of diffusible wound signals that are produced by damaged epidermis and function to activate repair genes during epidermal regeneration remains a subject of very active study in many animals. In Drosophila embryos, we have discovered that serine protease function is locally activated around wound sites, and is also required for localized activation of epidermal repair genes. The serine protease trypsin is sufficient to induce a striking global epidermal wound response without inflicting cell death or compromising the integrity of the epithelial barrier. We developed a trypsin wounding treatment as an amplification tool to more fully understand the changes in the Drosophila transcriptome that occur after epidermal injury. By comparing our array results with similar results on mammalian skin wounding we can see which evolutionarily conserved pathways are activated after epidermal wounding in very diverse animals. Our innovative serine protease-mediated wounding protocol allowed us to identify 8 additional genes that are activated in epidermal cells in the immediate vicinity of puncture wounds, and the functions of many of these genes suggest novel genetic pathways that may control epidermal wound repair. Additionally, our data augments the evidence that clean puncture wounding can mount a powerful innate immune transcriptional response, with different innate immune genes being activated in an interesting variety of ways. These include puncture-induced activation only in epidermal cells in the immediate vicinity of wounds, or in all epidermal cells, or specifically in the fat body, or in multiple tissues. PMID:23637905
Plumb, William; Townsend, Alexandra J; Rasool, Brwa; Alomrani, Sarah; Razak, Nurhayati; Karpinska, Barbara; Ruban, Alexander V; Foyer, Christine H
2018-05-03
The requirements of growth and photosynthesis for ascorbate were assessed under low (LL; 250 μmol m-2 s-1) or high (HL; 1600 μmol m-2 s-1) irradiance in wild type Arabidopsis thaliana and two ascorbate synthesis mutants (vtc2-1 and vtc2-4) that have 30% wild type ascorbate levels. The low ascorbate mutants had the same numbers of leaves but lower rosette area and biomass than the wild type under LL. Wild type plants experiencing HL had higher leaf ascorbate, anthocyanin and xanthophyll pigments than under LL. In contrast, leaf ascorbate levels were not increased under HL in the mutant lines. While the degree of oxidation measured using an in vivo redox reporter in the nuclei and cytosol of the leaf epidermal and stomatal cells was similar under both irradiances in all lines, anthocyanin levels were significantly lower than in the low ascorbate mutants than the wild type under HL. Differences in the photosynthetic responses of vtc2-1 and vtc2-4 mutants were observed. Unlike vtc2-1, the vtc2-4 mutants had wild type zeaxanthin contents. While both low ascorbate mutants had lower NPQ levels than the wild type under HL, qPd values were greater only in vtc2-1 leaves. Ascorbate is therefore essential for growth but not photoprotection.
Limited acclimation in leaf anatomy to experimental drought in tropical rainforest trees.
Binks, Oliver; Meir, Patrick; Rowland, Lucy; da Costa, Antonio Carlos Lola; Vasconcelos, Steel Silva; de Oliveira, Alex Antonio Ribeiro; Ferreira, Leandro; Mencuccini, Maurizio
2016-12-01
Dry periods are predicted to become more frequent and severe in the future in some parts of the tropics, including Amazonia, potentially causing reduced productivity, higher tree mortality and increased emissions of stored carbon. Using a long-term (12 year) through-fall exclusion (TFE) experiment in the tropics, we test the hypothesis that trees produce leaves adapted to cope with higher levels of water stress, by examining the following leaf characteristics: area, thickness, leaf mass per area, vein density, stomatal density, the thickness of palisade mesophyll, spongy mesophyll and both of the epidermal layers, internal cavity volume and the average cell sizes of the palisade and spongy mesophyll. We also test whether differences in leaf anatomy are consistent with observed differential drought-induced mortality responses among taxa, and look for relationships between leaf anatomy, and leaf water relations and gas exchange parameters. Our data show that trees do not produce leaves that are more xeromorphic in response to 12 years of soil moisture deficit. However, the drought treatment did result in increases in the thickness of the adaxial epidermis (TFE: 20.5 ± 1.5 µm, control: 16.7 ± 1.0 µm) and the internal cavity volume (TFE: 2.43 ± 0.50 mm 3 cm -2 , control: 1.77 ± 0.30 mm 3 cm -2 ). No consistent differences were detected between drought-resistant and drought-sensitive taxa, although interactions occurred between drought-sensitivity status and drought treatment for the palisade mesophyll thickness (P = 0.034) and the cavity volume of the leaves (P = 0.025). The limited response to water deficit probably reflects a tight co-ordination between leaf morphology, water relations and photosynthetic properties. This suggests that there is little plasticity in these aspects of plant anatomy in these taxa, and that phenotypic plasticity in leaf traits may not facilitate the acclimation of Amazonian trees to the predicted future reductions in dry season water availability. © The Author 2016. Published by Oxford University Press.
Polymeric membranes modulate human keratinocyte differentiation in specific epidermal layers.
Salerno, Simona; Morelli, Sabrina; Giordano, Francesca; Gordano, Amalia; Bartolo, Loredana De
2016-10-01
In vitro models of human bioengineered skin substitutes are an alternative to animal experimentation for testing the effects and toxicity of drugs, cosmetics and pollutants. For the first time specific and distinct human epidermal strata were engineered by using membranes and keratinocytes. To this purpose, biodegradable membranes of chitosan (CHT), polycaprolactone (PCL) and a polymeric blend of CHT-PCL were prepared by phase-inversion technique and characterized in order to evaluate their morphological, physico-chemical and mechanical properties. The capability of membranes to modulate keratinocyte differentiation inducing specific interactions in epidermal membrane systems was investigated. The overall results demonstrated that the membrane properties strongly influence the cell morpho-functional behaviour of human keratinocytes, modulating their terminal differentiation, with the creation of specific epidermal strata or a fully proliferative epidermal multilayer system. In particular, human keratinocytes adhered on CHT and CHT-PCL membranes, forming the structure of the epidermal top layers, such as the corneum and granulosum strata, characterized by withdrawal or reduction from the cell cycle and cell proliferation. On the PCL membrane, keratinocytes developed an epidermal basal lamina, with high proliferating cells that stratified and migrated over time to form a complete differentiating epidermal multilayer system. Copyright © 2016 Elsevier B.V. All rights reserved.
Schauer, S; Kutschera, U
2011-04-01
Land plants (embryophytes) evolved in the presence of prokaryotic microbes. As a result, numerous mutually beneficial associations (symbioses) developed that can be analyzed using a variety of methods. Here we describe the isolation and characterization of a new pink-pigmented facultatively methylotrophic symbiotic bacterium of the genus Methylobacterium (laboratory strain F3.2) that was isolated from the gametophytic phylloids of the common cord moss Funaria hygrometrica Hedw. Plantlets were collected in the field and analyzed in the laboratory. Colonies of methylobacteria were obtained by the agar-impression-method. Based on its unique phenotype (the bacterial cells are characterized by fimbriae-like appendages), a comparative 16S rRNA gene (DNA) sequence analysis, and an average DNA-DNA hybridization value of 8,4 %, compared with its most closely related sister taxon, this isolate is described as a new species, Methylobacterium funariae sp. nov. (type strain F3.2). This new epiphytic bacterium inhabits the leaf surface of "primitive" land plants such as mosses and interacts with its host organism via the secretion of phytohormones (cytokinines, auxins). These external signals are perceived by the plant cells that divide and grow more rapidly than in the absence of their prokaryotic phytosymbionts. We suggest that M. funariae sp. nov. uses methanol emitted from the stomatal pores as principal carbon source for cell metabolism. However, our novel data indicate that, in this unique symbiotic plant-microbe interaction, the uptake of amino acids leached from the surface of the epidermal cells of the green host organism may be of importance as microbial carbon- and nitrogen-source.
Zhang, Wei-kang; Wang, Bing; Niu, Xiang
2015-07-01
Urban landscape plants, as one of the important factors of the urban ecosystem, play an important role in stagnating airborne particulates and purifying urban atmospheric environment. In this article, six kinds of common garden plants were studied, and aerosol generator (QRJZFSQ-I) was used to measure the ability of their leaves to stagnate atmospheric particulates (TSP and PM2.5) in different polluted regions. Meanwhile, environmental scanning electron microscope was used to observe changes in the leaf structure of the tested tree species. The results showed: (1)Among the tested tree species, the ability of coniferous species to stagnate atmospheric particulates was higher than that of broad-leaved species per unit leaf area. Pinus tabuliformis stagnated the highest volume of (3. 89± 0. 026) µg . m-2, followed by Pinus bungeana of (2. 82 ± 0. 392) µg . cm-2, and Populus tomentosa stagnated the minimum of (2. 00 ± 0. 118) µg . cm-2; (2) Through observing the leaf microstructure morphology, coniferous species were found to have tightly packed stomas, stoma density and surface roughness higher than those of broad-leaved species, and they could also secrete oil; (3) In different polluted regions, the leaves of the same tree species showed significant difference in stagnating TSP. Per unit leaf area, the tree species leaves situated around the 5th Ring Road had higher ability to absorb TSP than the tree species leaves at Botanical Garden, while their abilities to absorb PM2.5 showed no significant difference; (4) In different polluted regions, significantly adaptive changes were found in leaf structure. Comparing to the region with light pollution, the outer epidermal cells of the plant leaves in region with heavy pollution shrank, and the roughness of the leaf skin textures as well as the stomatal frequency and villous length increased. In spite of the significant changes in plant leaves exposed to the heavy pollution, these plants could still maintain normal and healthy growth.
Chai, Guaiqiang; Li, Chunlian; Xu, Feng; Li, Yang; Shi, Xue; Wang, Yong; Wang, Zhonghua
2018-03-05
The cuticle covers the surface of the polysaccharide cell wall of leaf epidermal cells and forms an essential diffusion barrier between the plant and the environment. The cuticle is composed of cutin and wax. Cuticular wax plays an important role in the survival of plants by serving as the interface between plants and their biotic and abiotic environments, especially restricting nonstomatal water loss. Leaf cuticular waxes of hexaploid wheat at the seedling stage mainly consist of primary alcohols, aldehydes, fatty acids, alkane and esters. Primary alcohols account for more than 80% of the total wax load. Therefore, we cloned several genes encoding fatty acyl-coenzyme A reductases from wheat and analyzed their function in yeast and plants. We propose the potential use of these genes in wheat genetic breeding. We reported the cloning and characterization of three TaFARs, namely TaFAR6, TaFAR7 and TaFAR8, encoding fatty acyl-coenzyme A reductases (FAR) in wheat leaf cuticle. Expression analysis revealed that TaFAR6, TaFAR7 and TaFAR8 were expressed at the higher levels in the seedling leaf blades, and were expressed moderately or weakly in stamen, glumes, peduncle, flag leaf blade, sheath, spike, and pistil. The heterologous expression of three TaFARs in yeast (Saccharomyces cerevisiae) led to the production of C24:0 and C26:0 primary alcohols. Transgenic expression of the three TaFARs in tomato (Solanum lycopersicum) and rice (Oryza sativa) led to increased accumulation of C24:0-C30:0 primary alcohols. Transient expression of GFP protein-tagged TaFARs revealed that the three TaFAR proteins were localized to the endoplasmic reticulum (ER), the site of wax biosynthesis. The three TaFAR genes were transcriptionally induced by drought, cold, heat, powdery mildew (Blumeria graminis) infection, abscisic acid (ABA) and methyl jasmonate (MeJa) treatments. These results indicated that wheat TaFAR6, TaFAR7 and TaFAR8 are involved in biosynthesis of very-long-chain primary alcohols in hexaploid wheat and in response to multiple environmental stresses.
Planar cell polarity pathway in vertebrate epidermal development, homeostasis and repair
Dworkin, Sebastian; Jane, Stephen M
2011-01-01
The planar cell polarity (PCP) pathway plays a critical role in diverse developmental processes that require coordinated cellular movement, including neural tube closure and renal tubulogenesis. Recent studies have demonstrated that this pathway also has emerging relevance to the epidermis, as PCP signaling underpins many aspects of skin biology and pathology, including epidermal development, hair orientation, stem cell division and cancer. Coordinated cellular movement required for epidermal repair in mammals is also regulated by PCP signaling, and in this context, a new PCP gene encoding the developmental transcription factor Grainyhead-like 3 (Grhl3) is critical. This review focuses on the role that PCP signaling plays in the skin across a variety of epidermal functions and highlights perturbations that induce epidermal pathologies. PMID:22041517
Genetic analysis of Ras genes in epidermal development and tumorigenesis
Drosten, Matthias; Lechuga, Carmen G; Barbacid, Mariano
2013-01-01
Proliferation and differentiation of epidermal keratinocytes are tightly controlled to ensure proper development and homeostasis of the epidermis. The Ras family of small GTPases has emerged as a central node in the coordination of cell proliferation in the epidermis. Recent genetic evidence from mouse models has revealed that the intensity of Ras signaling modulates the proliferative capacity of epidermal keratinocytes. Interfering with Ras signaling either by combined elimination of the 3 Ras genes from the basal layer of the epidermis or by overexpression of dominant-negative Ras isoforms caused epidermal thinning due to hypoproliferation of keratinocytes. In contrast, overexpression of oncogenic Ras mutants in different epidermal cell layers led to hyperproliferative phenotypes including the development of papillomas and squamous cell carcinomas. Here, we discuss the value of loss- and gain-of-function studies in mouse models to assess the role of Ras signaling in the control of epidermal proliferation. PMID:24150175
Epidermal Cell Death in Rice Is Regulated by Ethylene, Gibberellin, and Abscisic Acid
Steffens, Bianka; Sauter, Margret
2005-01-01
Programmed cell death (PCD) of epidermal cells that cover adventitious root primordia in deepwater rice (Oryza sativa) is induced by submergence. Early suicide of epidermal cells may prevent injury to the growing root that emerges under flooding conditions. Induction of PCD is dependent on ethylene signaling and is further promoted by gibberellin (GA). Ethylene and GA act in a synergistic manner, indicating converging signaling pathways. Treatment of plants with GA alone did not promote PCD. Treatment with the GA biosynthesis inhibitor paclobutrazol resulted in increased PCD in response to ethylene and GA presumably due to an increased sensitivity of epidermal cells to GA. Abscisic acid (ABA) was shown to efficiently delay ethylene-induced as well as GA-promoted cell death. The results point to ethylene signaling as a target of ABA inhibition of PCD. Accumulation of ethylene and GA and a decreased ABA level in the rice internode thus favor induction of epidermal cell death and ensure that PCD is initiated as an early response that precedes adventitious root growth. PMID:16169967
Liu, Zhi-Li; Li, Hong; Liu, Jia; Wu, Mo-Li; Chen, Xiao-Yan; Liu, Li-Hong; Wang, Qian
2017-01-01
Squamous cell carcinoma (SCC) is the most common epidermal malignancy, and Wnt/β-catenin signaling is frequently activated in SCC. Resveratrol prevents rodent epidermal carcinogenesis, while its effect on human epidermal cancer remains unknown. To address this issue, the impact of resveratrol on the growth and Wnt signaling of skin SCC Colo16 cells were investigated at the cellular and molecular biology levels by flow cytometry, immunocytochemistry, reverse transcription-polymerase chain reaction, western blotting and β-catenin-specific small interfering RNA (siRNA) transfection. Resveratrol (100 µM) suppressed cell growth and induced apoptosis in Colo16 cells. Wnt2 and its downstream genes were downregulated, which was accompanied by increased expression of the Wnt signaling inhibitor Axin2. Transfection with a β-catenin-specific siRNA did not affect cell growth but enhanced the resveratrol susceptibility of Colo16 transfectants. The present results suggest the inhibitory effects of resveratrol on epidermal SCCs and inactivation of Wnt signaling as one of the resveratrol-caused molecular events in Colo16 cells. β-catenin oriented siRNA is insufficient to induce cell crisis, implicating the presence of more critical cancer-associated element(s) as the target in Colo16 cells. PMID:28781663
Modeling the Morphogenesis of Epidermal Tissues on the Surface of a 3D Last
NASA Astrophysics Data System (ADS)
McCleery, W. Tyler; Crews, Sarah M.; Mashburn, David N.; Veldhuis, Jim; Brodland, G. Wayne; Hutson, M. Shane
2014-03-01
Embryogenesis in the fruit fly Drosophila melanogaster is coordinated by the interaction of cells in adjacent tissues. For some events of embryogenesis, e.g., dorsal closure, two-dimensional models have been sufficient to elucidate the relevant cell and tissue mechanics. Here, we describe a new three-dimensional cell-level finite element model for investigating germ band retraction - a morphogenetic event where one epidermal tissue, the germ band, initially wraps around the posterior end of the ellipsoidal embryo. This tissue then retracts with a mechanical assist from contraction of cells in a second epidermal tissue, the amnioserosa. To speed simulation run times and focus on the relevant tissues, we only model epidermal tissue interactions. Epidermal cells are defined as polygons constrained to lie on the surface of the ellipsoidal last, but have adjustable parameters such as edge tensions and cell pressures. Tissue movements are simulated by balancing these dynamic cell-level forces with viscous resistance and allowing cells to exchange neighbors. Our choice of modeling parameters is informed by in vivo measurements of cell-level forces using laser microsurgery. We use this model to investigate the multicellular stress fields in normal and aberrant development.
Functions of Vγ4 T Cells and Dendritic Epidermal T Cells on Skin Wound Healing
Li, Yashu; Wu, Jun; Luo, Gaoxing; He, Weifeng
2018-01-01
Wound healing is a complex and dynamic process that progresses through the distinct phases of hemostasis, inflammation, proliferation, and remodeling. Both inflammation and re-epithelialization, in which skin γδ T cells are heavily involved, are required for efficient skin wound healing. Dendritic epidermal T cells (DETCs), which reside in murine epidermis, are activated to secrete epidermal cell growth factors, such as IGF-1 and KGF-1/2, to promote re-epithelialization after skin injury. Epidermal IL-15 is not only required for DETC homeostasis in the intact epidermis but it also facilitates the activation and IGF-1 production of DETC after skin injury. Further, the epidermal expression of IL-15 and IGF-1 constitutes a feedback regulatory loop to promote wound repair. Dermis-resident Vγ4 T cells infiltrate into the epidermis at the wound edges through the CCR6-CCL20 pathway after skin injury and provide a major source of IL-17A, which enhances the production of IL-1β and IL-23 in the epidermis to form a positive feedback loop for the initiation and amplification of local inflammation at the early stages of wound healing. IL-1β and IL-23 suppress the production of IGF-1 by DETCs and, therefore, impede wound healing. A functional loop may exist among Vγ4 T cells, epidermal cells, and DETCs to regulate wound repair.
SABRE is required for stabilization of root hair patterning in Arabidopsis thaliana.
Pietra, Stefano; Lang, Patricia; Grebe, Markus
2015-03-01
Patterned differentiation of distinct cell types is essential for the development of multicellular organisms. The root epidermis of Arabidopsis thaliana is composed of alternating files of root hair and non-hair cells and represents a model system for studying the control of cell-fate acquisition. Epidermal cell fate is regulated by a network of genes that translate positional information from the underlying cortical cell layer into a specific pattern of differentiated cells. While much is known about the genes of this network, new players continue to be discovered. Here we show that the SABRE (SAB) gene, known to mediate microtubule organization, anisotropic cell growth and planar polarity, has an effect on root epidermal hair cell patterning. Loss of SAB function results in ectopic root hair formation and destabilizes the expression of cell fate and differentiation markers in the root epidermis, including expression of the WEREWOLF (WER) and GLABRA2 (GL2) genes. Double mutant analysis reveal that wer and caprice (cpc) mutants, defective in core components of the epidermal patterning pathway, genetically interact with sab. This suggests that SAB may act on epidermal patterning upstream of WER and CPC. Hence, we provide evidence for a role of SAB in root epidermal patterning by affecting cell-fate stabilization. Our work opens the door for future studies addressing SAB-dependent functions of the cytoskeleton during root epidermal patterning. © 2014 The Authors. Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.
Roles of CONSTITUTIVE PHOTOMORPHOGENIC 10 in Arabidopsis stomata development
Delgado, Dolores; Ballesteros, Isabel; Mena, Montaña; Fenoll, Carmen
2012-01-01
Stomata are epidermal bi-celled structures that differentiate within special cell lineages initiated by a subset of protodermal cells. Recently, we showed that the Arabidopsis photomorphogenic repressor COP10 controls specific cell-lineage and cell-signaling developmental mechanisms in stomatal lineages. Loss-of-function cop10-1 mutant cotyledons and leaves produced (in the light and in the dark) abundant stomatal clusters, but nonlineage epidermal cells were not affected. Here we examine COP10 role in hypocotyls, cylindrical organs displaying a distinct epidermal organization with alternate files of protruding and non-protruding cells, with the latter producing a limited number of stomata. COP10 prevents stomatal clusters and restricts stomata production in hypocotyls; these roles are specific to lineage cells as in cotyledons, since COP10 loss of function does not elicit stomatal fate in nonlineage cells; COP10 also sustains the directional cell expansion of all hypocotyl epidermal cell types, and seems necessary for the differentiation between protruding and non-protruding cell files. PMID:22836493
Zhang, Mingdi; Cai, Shizhong; Zuo, Bin; Gong, Wei; Tang, Zhaohui; Zhou, Di; Weng, Mingzhe; Qin, Yiyu; Wang, Shouhua; Liu, Jun; Ma, Fei; Quan, Zhiwei
2017-05-01
Gallbladder cancer has poor prognosis and limited therapeutic options. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms involved in the antitumor effect of arctigenin on gallbladder cancer have not been fully elucidated. The expression levels of epidermal growth factor receptor were examined in 100 matched pairs of gallbladder cancer tissues. A positive correlation between high epidermal growth factor receptor expression levels and poor prognosis was observed in gallbladder cancer tissues. Pharmacological inhibition or inhibition via RNA interference of epidermal growth factor receptor induced cellular senescence in gallbladder cancer cells. The antitumor effect of arctigenin on gallbladder cancer cells was primarily achieved by inducing cellular senescence. In gallbladder cancer cells treated with arctigenin, the expression level of epidermal growth factor receptor significantly decreased. The analysis of the activity of the kinases downstream of epidermal growth factor receptor revealed that the RAF-MEK-ERK signaling pathway was significantly inhibited. Furthermore, the cellular senescence induced by arctigenin could be reverted by pcDNA-epidermal growth factor receptor. Arctigenin also potently inhibited the growth of tumor xenografts, which was accompanied by the downregulation of epidermal growth factor receptor and induction of senescence. This study demonstrates arctigenin could induce cellular senescence in gallbladder cancer through the modulation of epidermal growth factor receptor pathway. These data identify epidermal growth factor receptor as a key regulator in arctigenin-induced gallbladder cancer senescence.
Zhang, Jiarui; Wang, Fei; Liang, Fang; Zhang, Yanjun; Ma, Lisong; Wang, Haiyan; Liu, Daqun
2018-05-04
Plants have evolved multifaceted defence mechanisms to resist pathogen infection. Production of the pathogenesis-related (PR) proteins in response to pathogen attack has been implicated in plant disease resistance specialized in systemic-acquired resistance (SAR). Our earlier studies have reported that a full length TaLr35PR5 gene, encoding a protein exhibiting amino acid and structural similarity to a sweet protein thaumatin, was isolated from wheat near-isogenic line TcLr35. The present study aims to understand the function of TaLr35PR5 gene in Lr35-mediated adult resistance to Puccinia triticina. We determined that the TaLr35PR5 protein contained a functional secretion peptide by utilizing the yeast signal sequence trap system. Using a heterologous expression assay on onion epidermal cells we found that TaLr35PR5 protein was secreted into the apoplast of onion cell. Expression of TaLr35PR5 was significantly reduced in BSMV-induced gene silenced wheat plants, and pathology test on these silenced plants revealed that Lr35-mediated resistance phenotype was obviously altered, indicating that Lr35-mediated resistance was compromised. All these findings strongly suggest that TaLr35PR5 is involved in Lr35-mediated adult wheat defense in response to leaf rust attack.
Chieco, C; Rotondi, A; Morrone, L; Rapparini, F; Baraldi, R
2013-02-01
The use of formalin constitutes serious health hazards for laboratory workers. We investigated the suitability and performance of the ethanol-based fixative, FineFIX, as a substitute for formalin for anatomical and cellular structure investigations of leaves by light microscopy and for leaf surface and ultrastructural analysis by scanning electron microscopy (SEM). We compared the anatomical features of leaf materials prepared using conventional formalin fixation with the FineFIX. Leaves were collected from ornamental tree species commonly used in urban areas. FineFIX was also compared with glutaraldehyde fixation and air drying normally used for scanning electron microscopy to develop a new method for evaluating leaf morphology and microstructure in three ornamental tree species. The cytological features of the samples processed for histological analysis were well preserved by both fixatives as demonstrated by the absence of nuclear swelling or shrinkage, cell wall detachment or tissue flaking, and good presentation of cytoplasmic vacuolization. In addition, good preservation of surface details and the absence of shrinkage artefacts confirmed the efficacy of FineFIX fixation for SEM analysis. Cuticular wax was preserved only in air dried samples. Samples treated with chemical substances during the fixation and dehydration phases showed various alterations of the wax structures. In some air dried samples a loss of turgidity of the cells was observed that caused general wrinkling of the epidermal surfaces. Commercial FineFIX is an adequate substitute for formalin in histology and it can be applied successfully also for SEM investigation, while reducing the health risks of glutaraldehyde or other toxic fixatives. To investigate the potential for plants to absorb and capture particulates in air, which requires preservation of the natural morphology of trichomes and epicuticular waxes, a combination of FineFIX fixation and air drying is recommended.
A Novel Gene, OZONE-RESPONSIVE APOPLASTIC PROTEIN1, Enhances Cell Death in Ozone Stress in Rice1
Ueda, Yoshiaki; Siddique, Shahid; Frei, Michael
2015-01-01
A novel protein, OZONE-RESPONSIVE APOPLASTIC PROTEIN1 (OsORAP1), was characterized, which was previously suggested as a candidate gene underlying OzT9, a quantitative trait locus for ozone stress tolerance in rice (Oryza sativa). The sequence of OsORAP1 was similar to that of ASCORBATE OXIDASE (AO) proteins. It was localized in the apoplast, as shown by transient expression of an OsORAP1/green fluorescent protein fusion construct in Nicotiana benthamiana leaf epidermal and mesophyll cells, but did not possess AO activity, as shown by heterologous expression of OsORAP1 in Arabidopsis (Arabidopsis thaliana) mutants with reduced background AO activity. A knockout rice line of OsORAP1 showed enhanced tolerance to ozone stress (120 nL L−1 average daytime concentration, 20 d), as demonstrated by less formation of leaf visible symptoms (i.e. cell death), less lipid peroxidation, and lower NADPH oxidase activity, indicating reduced active production of reactive oxygen species. In contrast, the effect of ozone on chlorophyll content was not significantly different among the lines. These observations suggested that OsORAP1 specifically induced cell death in ozone stress. Significantly enhanced expression of jasmonic acid-responsive genes in the knockout line implied the involvement of the jasmonic acid pathway in symptom mitigation. Sequence analysis revealed extensive polymorphisms in the promoter region of OsORAP1 between the ozone-susceptible cv Nipponbare and the ozone-tolerant cv Kasalath, the OzT9 donor variety, which could be responsible for the differential regulation of OsORAP1 reported earlier. These pieces of evidence suggested that OsORAP1 enhanced cell death in ozone stress, and its expression levels could explain the effect of a previously reported quantitative trait locus. PMID:26220952
RNA-Seq reveals leaf cuticular wax-related genes in Welsh onion.
Liu, Qianchun; Wen, Changlong; Zhao, Hong; Zhang, Liying; Wang, Jian; Wang, Yongqin
2014-01-01
The waxy cuticle plays a very important role in plant resistance to various biotic and abiotic stresses and is an important characteristic of Welsh onions. Two different types of biangan Welsh onions (BG) were selected for this study: BG, a wild-type covered by wax, which forms a continuous lipid membrane on its epidermal cells, and GLBG, a glossy mutant of BG whose epidermal cells are not covered by wax. To elucidate the waxy cuticle-related gene expression changes, we used RNA-Seq to compare these two Welsh onion varieties with distinct differences in cuticular wax. The de novo assembly yielded 42,881 putative unigenes, 25.41% of which are longer than 1,000 bp. Among the high-quality unique sequences, 22,289 (52.0%) had at least one significant match to an existing gene model. A total of 798 genes, representing 1.86% of the total putative unigenes, were differentially expressed between these two Welsh onion varieties. The expression patterns of four important unigenes that are related to waxy cuticle biosynthesis were confirmed by RT-qPCR and COG class annotation, which demonstrated that these genes play an important role in defense mechanisms and lipid transport and metabolism. To our knowledge, this study is the first exploration of the Welsh onion waxy cuticle. These results may help to reveal the molecular mechanisms underlying the waxy cuticle and will be useful for waxy gene cloning, genetics and breeding as well as phylogenetic and evolutionary studies of the Welsh onion.
RNA-Seq Reveals Leaf Cuticular Wax-Related Genes in Welsh Onion
Zhao, Hong; Zhang, Liying; Wang, Jian; Wang, Yongqin
2014-01-01
The waxy cuticle plays a very important role in plant resistance to various biotic and abiotic stresses and is an important characteristic of Welsh onions. Two different types of biangan Welsh onions (BG) were selected for this study: BG, a wild-type covered by wax, which forms a continuous lipid membrane on its epidermal cells, and GLBG, a glossy mutant of BG whose epidermal cells are not covered by wax. To elucidate the waxy cuticle-related gene expression changes, we used RNA-Seq to compare these two Welsh onion varieties with distinct differences in cuticular wax. The de novo assembly yielded 42,881 putative unigenes, 25.41% of which are longer than 1,000 bp. Among the high-quality unique sequences, 22,289 (52.0%) had at least one significant match to an existing gene model. A total of 798 genes, representing 1.86% of the total putative unigenes, were differentially expressed between these two Welsh onion varieties. The expression patterns of four important unigenes that are related to waxy cuticle biosynthesis were confirmed by RT-qPCR and COG class annotation, which demonstrated that these genes play an important role in defense mechanisms and lipid transport and metabolism. To our knowledge, this study is the first exploration of the Welsh onion waxy cuticle. These results may help to reveal the molecular mechanisms underlying the waxy cuticle and will be useful for waxy gene cloning, genetics and breeding as well as phylogenetic and evolutionary studies of the Welsh onion. PMID:25415343
Taneda, Haruhiko; Watanabe-Taneda, Ayako; Chhetry, Rita; Ikeda, Hiroshi
2015-01-01
Background and Aims The epidermal surface of a flower petal is composed of convex cells covered with a structured cuticle, and the roughness of the surface is related to the wettability of the petal. If the surface remains wet for an excessive amount of time the attractiveness of the petal to floral visitors may be impaired, and adhesion of pathogens may be promoted. However, it remains unclear how the epidermal cells and structured cuticle contribute to surface wettability of a petal. Methods By considering the additive effects of the epidermal cells and structured cuticle on petal wettability, a thermodynamic model was developed to predict the wetting mode and contact angle of a water droplet at a minimum free energy. Quantitative relationships between petal wettability and the geometries of the epidermal cells and the structured cuticle were then estimated. Measurements of contact angles and anatomical traits of petals were made on seven herbaceous species commonly found in alpine habitats in eastern Nepal, and the measured wettability values were compared with those predicted by the model using the measured geometries of the epidermal cells and structured cuticles. Key Results The model indicated that surface wettability depends on the height and interval between cuticular steps, and on a height-to-width ratio for epidermal cells if a thick hydrophobic cuticle layer covers the surface. For a petal epidermis consisting of lenticular cells, a repellent surface results when the cuticular step height is greater than 0·85 µm and the height-to-width ratio of the epidermal cells is greater than 0·3. For an epidermis consisting of papillate cells, a height-to-width ratio of greater than 1·1 produces a repellent surface. In contrast, if the surface is covered with a thin cuticle layer, the petal is highly wettable (hydrophilic) irrespective of the roughness of the surface. These predictions were supported by the measurements of petal wettability made on flowers of alpine species. Conclusions The results indicate that surface roughness caused by epidermal cells and a structured cuticle produces a wide range of petal wettability, and that this can be successfully modelled using a thermodynamic approach. PMID:25851137
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karnosky, David F; Podila, G Krishna; Burton, Andrew J
2009-02-17
This project used gene expression patterns from two forest Free-Air CO2 Enrichment (FACE) experiments (Aspen FACE in northern Wisconsin and POPFACE in Italy) to examine ways to increase the aboveground carbon sequestration potential of poplars (Populus). The aim was to use patterns of global gene expression to identify candidate genes for increased carbon sequestration. Gene expression studies were linked to physiological measurements in order to elucidate bottlenecks in carbon acquisition in trees grown in elevated CO2 conditions. Delayed senescence allowing additional carbon uptake late in the growing season, was also examined, and expression of target genes was tested in elitemore » P. deltoides x P. trichocarpa hybrids. In Populus euramericana, gene expression was sensitive to elevated CO2, but the response depended on the developmental age of the leaves. Most differentially expressed genes were upregulated in elevated CO2 in young leaves, while most were downregulated in elevated CO2 in semi-mature leaves. In P. deltoides x P. trichocarpa hybrids, leaf development and leaf quality traits, including leaf area, leaf shape, epidermal cell area, stomatal number, specific leaf area, and canopy senescence were sensitive to elevated CO2. Significant increases under elevated CO2 occurred for both above- and belowground growth in the F-2 generation. Three areas of the genome played a role in determining aboveground growth response to elevated CO2, with three additional areas of the genome important in determining belowground growth responses to elevated CO2. In Populus tremuloides, CO2-responsive genes in leaves were found to differ between two aspen clones that showed different growth responses, despite similarity in many physiological parameters (photosynthesis, stomatal conductance, and leaf area index). The CO2-responsive clone shunted C into pathways associated with active defense/response to stress, carbohydrate/starch biosynthesis and subsequent growth. The CO2-unresponsive clone partitioned C into pathways associated with passive defense and cell wall thickening. These results indicate that there is significant variation in gene expression patterns between different tree genotypes. Consequently, future efforts to improve productivity or other advantageous traits for carbon sequestration should include an examination of genetic variability in CO2 responsiveness.« less
Sulmon, Cécile; Gouesbet, Gwenola; Couée, Ivan; Cabello-Hurtado, Francisco; Cavalier, Annie; Penno, Christophe; Zaka, Raïhana; Bechtold, Nicole; Thomas, Daniel; El Amrani, Abdelhak
2006-11-01
In higher plants, plastid development must be tightly coordinated with cell and organ development. In this paper, a novel T-DNA-mutagenized Arabidopsis line showing chlorotic leaves and minute stature was identified in a genetic screen for altered chloroplast development. The mutation corresponded to a single locus on chromosome IV and was associated with insertion of the T-DNA. This locus was named FARFADET and resulted in pleiotropic effects on chloroplast biogenesis, cell size and differentiation, organ size and number. Thus, in contrast with previously described chlorotic mutants, frd mutants were affected not only in chloroplast development and chlorophyll accumulation, but also in cell and organ development. Alteration of differentiation affected different cell types such as leaf epidermal cells, trichomes, mesophyll cells, and columella cells. A major effect on mesophyll cell differentiation was the lack of palisadic parenchyma and absence of grana stacks. Moreover, meristem size and lateral meristem initiation were affected. Genetic and molecular characterisation showed that the T-DNA insertion generated 41 bp deletion in a potential miRNA precursor. The predicted miRNA target genes were involved in plant development and stress. It is therefore hypothesized that the frd mutation had affected coordination of cell developmental span and the control of the division-differentiation balance.
Immortalized N/TERT keratinocytes as an alternative cell source in 3D human epidermal models.
Smits, Jos P H; Niehues, Hanna; Rikken, Gijs; van Vlijmen-Willems, Ivonne M J J; van de Zande, Guillaume W H J F; Zeeuwen, Patrick L J M; Schalkwijk, Joost; van den Bogaard, Ellen H
2017-09-19
The strong societal urge to reduce the use of experimental animals, and the biological differences between rodent and human skin, have led to the development of alternative models for healthy and diseased human skin. However, the limited availability of primary keratinocytes to generate such models hampers large-scale implementation of skin models in biomedical, toxicological, and pharmaceutical research. Immortalized cell lines may overcome these issues, however, few immortalized human keratinocyte cell lines are available and most do not form a fully stratified epithelium. In this study we compared two immortalized keratinocyte cell lines (N/TERT1, N/TERT2G) to human primary keratinocytes based on epidermal differentiation, response to inflammatory mediators, and the development of normal and inflammatory human epidermal equivalents (HEEs). Stratum corneum permeability, epidermal morphology, and expression of epidermal differentiation and host defence genes and proteins in N/TERT-HEE cultures was similar to that of primary human keratinocytes. We successfully generated N/TERT-HEEs with psoriasis or atopic dermatitis features and validated these models for drug-screening purposes. We conclude that the N/TERT keratinocyte cell lines are useful substitutes for primary human keratinocytes thereby providing a biologically relevant, unlimited cell source for in vitro studies on epidermal biology, inflammatory skin disease pathogenesis and therapeutics.
Hsieh, Elaine A; Chai, Christine M; de Lumen, Benito O; Neese, Richard A; Hellerstein, Marc K
2004-09-01
A heavy water ((2)H(2)O) labeling method recently developed to measure cell proliferation in vivo is applied here to the measurement of murine epidermal cell turnover and to investigate conditions in which keratinocyte proliferation is either inhibited or stimulated. The technique is based on incorporation of (2)H(2)O into the deoxyribose moiety of deoxyribonucleotides in dividing cells. Label incorporation and die-away studies in cells isolated from C57BL/6J mouse epidermis revealed the replacement rate to be 34%-44% per wk (half-life of 1.6-2 wk). The kinetics provided evidence of a non-proliferative subpopulation of cells (10%-15% of the total) within the epidermis. Topical administration of 7,12-dimethylbenz(a)anthracene and 12-O-tetradecanoylphorbol-13-acetate for 3 wk increased epidermal cell proliferation by 55% in SENCAR mice. Topical addition of lunasin, an anti-mitotic agent from soy, decreased epidermal cell proliferation modestly though significantly (16% given alone, 9% given with carcinogens). Caloric restriction (by 33% of energy intake) for 4 wk decreased the epidermal cell proliferation rate by 45% in C57BL/6J mice. In summary, epidermal cell proliferation can be measured in vivo using (2)H(2)O labeling in normal, hyper- and hypo-proliferative conditions. Potential applications of this inherently safe method in humans might include studies of psoriasis, wound healing, chemopreventive agents, and caloric intake.
Guzmán-Uribe, Daniela; Alvarado-Estrada, Keila Neri; Pierdant-Pérez, Mauricio; Torres-Álvarez, Bertha; Sánchez-Aguilar, Jesus Martin; Rosales-Ibáñez, Raúl
2017-01-01
The aim of this study was to obtain autologous dermal-epidermal skin substitutes from oral mucosa from diabetic subjects as a first step towards a possible clinical application for cases of diabetic foot. Oral mucosa was obtained from diabetic and healthy subjects (n=20 per group). Epidermal cells were isolated and cultured using autologous fibrin to develop dermal-epidermal in vitro substitutes by the air-liquid technique with autologous human serum as a supplement media. Substitutes were immunocharacterized with collagen IV and cytokeratin 5-14 as specific markers. A Student´s t- test was performed to assess the differences between both groups. It was possible to isolate epidermal cells from the oral mucosa of diabetic and healthy subjects and develop autologous dermal-epidermal skin substitutes using autologous serum as a supplement. Differences in the expression of specific markers were observed and the cytokeratin 5-14 expression was lower in the diabetic substitutes, and the collagen IV expression was higher in the diabetic substitutes when compared with the healthy group, showing a significant difference. Cells from oral mucosa could be an alternative and less invasive source for skin substitutes and wound healing. A difference in collagen production of diabetic cells suggests diabetic substitutes could improve diabetic wound healing. More research is needed to determine the crosstalk between components of these skin substitutes and damaged tissues.
Field, Katie J; George, Rachel; Fearn, Brian; Quick, W Paul; Davey, Matthew P
2013-01-01
"Living stones" (Lithops spp.) display some of the most extreme morphological and physiological adaptations in the plant kingdom to tolerate the xeric environments in which they grow. The physiological mechanisms that optimise the photosynthetic processes of Lithops spp. while minimising transpirational water loss in both above- and below-ground tissues remain unclear. Our experiments have shown unique simultaneous high-light and shade-tolerant adaptations within individual leaves of Lithops aucampiae. Leaf windows on the upper surfaces of the plant allow sunlight to penetrate to photosynthetic tissues within while sunlight-blocking flavonoid accumulation limits incoming solar radiation and aids screening of harmful UV radiation. Increased concentration of chlorophyll a and greater chlorophyll a:b in above-ground regions of leaves enable maximum photosynthetic use of incoming light, while inverted conical epidermal cells, increased chlorophyll b, and reduced chlorophyll a:b ensure maximum absorption and use of low light levels within the below-ground region of the leaf. High NPQ capacity affords physiological flexibility under variable natural light conditions. Our findings demonstrate unprecedented physiological flexibility in a xerophyte and further our understanding of plant responses and adaptations to extreme environments.
Embryonic control of epidermal cell patterning in the root and hypocotyl of Arabidopsis.
Lin, Y; Schiefelbein, J
2001-10-01
A position-dependent pattern of epidermal cell types is produced during the development of the Arabidopsis seedling root and hypocotyl. To understand the origin and regulation of this patterning mechanism, we have examined the embryonic expression of the GLABRA2 (GL2) gene, which encodes a cell-type-specific transcription factor. Using in situ RNA hybridization and a sensitive GL2::GFP reporter, we discovered that a position-dependent pattern of GL2 expression is established within protodermal cells at the heart stage and is maintained throughout the remainder of embryogenesis. In addition, we show that an exceptional GL2 expression character and epidermal cell pattern arises during development of the root-hypocotyl junction, which represents an anatomical transition zone. Furthermore, we find that two of the genes regulating seedling epidermal patterning, TRANSPARENT TESTA GLABRA (TTG) and WEREWOLF (WER), also control the embryonic GL2 pattern, whereas the CAPRICE (CPC) and GL2 genes are not required to establish this pattern. These results indicate that position-dependent patterning of epidermal cell types begins at an early stage of embryogenesis, before formation of the apical meristems and shortly after the cellular anatomy of the protoderm and outer ground tissue layer is established. Thus, epidermal cell specification in the Arabidopsis seedling relies on the embryonic establishment of a patterning mechanism that is perpetuated postembryonically.
Steroids are required for epidermal cell fate establishment in Arabidopsis roots.
Kuppusamy, Kavitha T; Chen, Andrew Y; Nemhauser, Jennifer L
2009-05-12
The simple structure of Arabidopsis roots provides an excellent model system to study epidermal cell fate specification. Epidermal cells in contact with 2 underlying cortical cells differentiate into hair cells (H cells; trichoblasts), whereas cells that contact only a single cortical cell differentiate into mature hairless cells (N cells; atrichoblasts). This position-dependent patterning, in combination with the constrained orientation of cell divisions, results in hair and nonhair cell files running longitudinally along the root epidermis. Here, we present strong evidence that steroid hormones called brassinosteroids (BRs) are required to maintain position-dependent fate specification in roots. We show that BRs are required for normal expression levels and patterns of WEREWOLF (WER) and GLABRA2 (GL2), master regulators of epidermal patterning. Loss of BR signaling results in loss of hair cells in H positions, likely as a consequence of reduced expression of CAPRICE (CPC), a direct downstream target of WER. Our observations demonstrate that in addition to their well-known role in cell expansion, BRs play an essential role in directing cell fate.
Steroids are required for epidermal cell fate establishment in Arabidopsis roots
Kuppusamy, Kavitha T.; Chen, Andrew Y.; Nemhauser, Jennifer L.
2009-01-01
The simple structure of Arabidopsis roots provides an excellent model system to study epidermal cell fate specification. Epidermal cells in contact with 2 underlying cortical cells differentiate into hair cells (H cells; trichoblasts), whereas cells that contact only a single cortical cell differentiate into mature hairless cells (N cells; atrichoblasts). This position-dependent patterning, in combination with the constrained orientation of cell divisions, results in hair and nonhair cell files running longitudinally along the root epidermis. Here, we present strong evidence that steroid hormones called brassinosteroids (BRs) are required to maintain position-dependent fate specification in roots. We show that BRs are required for normal expression levels and patterns of WEREWOLF (WER) and GLABRA2 (GL2), master regulators of epidermal patterning. Loss of BR signaling results in loss of hair cells in H positions, likely as a consequence of reduced expression of CAPRICE (CPC), a direct downstream target of WER. Our observations demonstrate that in addition to their well-known role in cell expansion, BRs play an essential role in directing cell fate. PMID:19416891
GUZMÁN-URIBE, Daniela; ALVARADO-ESTRADA, Keila Neri; PIERDANT-PÉREZ, Mauricio; TORRES-ÁLVAREZ, Bertha; SÁNCHEZ-AGUILAR, Jesus Martin; ROSALES-IBÁÑEZ, Raúl
2017-01-01
Abstract Oral mucosa has been highlighted as a suitable source of epidermal cells due to its intrinsic characteristics such as its higher proliferation rate and its obtainability. Diabetic ulcers have a worldwide prevalence that is variable (1%-11%), meanwhile treatment of this has been proven ineffective. Tissue-engineered skin plays an important role in wound care focusing on strategies such autologous dermal-epidermal substitutes. Objective The aim of this study was to obtain autologous dermal-epidermal skin substitutes from oral mucosa from diabetic subjects as a first step towards a possible clinical application for cases of diabetic foot. Material and Methods Oral mucosa was obtained from diabetic and healthy subjects (n=20 per group). Epidermal cells were isolated and cultured using autologous fibrin to develop dermal-epidermal in vitro substitutes by the air-liquid technique with autologous human serum as a supplement media. Substitutes were immunocharacterized with collagen IV and cytokeratin 5-14 as specific markers. A Student´s t- test was performed to assess the differences between both groups. Results It was possible to isolate epidermal cells from the oral mucosa of diabetic and healthy subjects and develop autologous dermal-epidermal skin substitutes using autologous serum as a supplement. Differences in the expression of specific markers were observed and the cytokeratin 5-14 expression was lower in the diabetic substitutes, and the collagen IV expression was higher in the diabetic substitutes when compared with the healthy group, showing a significant difference. Conclusion Cells from oral mucosa could be an alternative and less invasive source for skin substitutes and wound healing. A difference in collagen production of diabetic cells suggests diabetic substitutes could improve diabetic wound healing. More research is needed to determine the crosstalk between components of these skin substitutes and damaged tissues. PMID:28403359
Epidermal Notch signalling: differentiation, cancer and adhesion.
Watt, Fiona M; Estrach, Soline; Ambler, Carrie A
2008-04-01
The Notch pathway plays an important role in regulating epidermal differentiation. Notch ligands, receptors and effectors are expressed in a complex and dynamic pattern in embryonic and adult skin. Genetic ablation or activation of the pathway reveals that Notch signalling promotes differentiation of the hair follicle, sebaceous gland and interfollicular epidermal lineages and that Notch acts as an epidermal tumour suppressor. Notch signalling interacts with a range of other pathways to fulfil these functions and acts via RBP-Jkappa dependent and independent mechanisms. The effects on differentiation can be cell autonomous and non-autonomous, and Notch contributes to stem cell clustering via modulation of cell adhesion.
Böttcher-Haberzeth, Sophie; Biedermann, Thomas; Pontiggia, Luca; Braziulis, Erik; Schiestl, Clemens; Hendriks, Bart; Eichhoff, Ossia M; Widmer, Daniel S; Meuli-Simmen, Claudia; Meuli, Martin; Reichmann, Ernst
2013-02-01
Recently, Biedermann et al. (2010) have demonstrated that human eccrine sweat gland cells can develop a multilayered epidermis. The question still remains whether these cells can fulfill exclusive and very specific functional properties of epidermal keratinocytes, such as the incorporation of melanin, a feature absent in sweat gland cells. We added human melanocytes to eccrine sweat gland cells to let them develop into an epidermal analog in vivo. The interaction between melanocytes and sweat gland-derived keratinocytes was investigated. The following results were gained: (1) macroscopically, a pigmentation of the substitutes was seen 2-3 weeks after transplantation; (2) we confirmed the development of a multilayered, stratified epidermis with melanocytes distributed evenly throughout the basal layer; (3) melanocytic dendrites projected to suprabasal layers; and (4) melanin was observed to be integrated into former eccrine sweat gland cells. These skin substitutes were similar or equal to skin substitutes cultured from human epidermal keratinocytes. The only differences observed were a delay in pigmentation and less melanin uptake. These data suggest that eccrine sweat gland cells can form a functional epidermal melanin unit, thereby providing striking evidence that they can assume one of the most characteristic keratinocyte properties.
Shi, Yu-Ling; Gu, Jun; Park, Jun-Yang; Xu, Ying-Ping; Yu, Fu-Shin; Zhou, Li; Mi, Qing-Sheng
2012-01-01
Background Histone deacetylases (HDACs) influence chromatin organization, representing a key epigenetic regulatory mechanism in cells. Trichostatin A (TSA), a potent HDAC inhibitor, has anti-tumor and anti-inflammatory effects. Allergic contact dermatitis (ACD) is a T-cell-mediated inflammatory reaction in skin and is regulated by epidermal Langerhans cells (LCs). Objective The aim of this study was to investigate if TSA treatment prevents 2,4-dinitrofluorobenzene (DNFB)-induced ACD in mice and regulates epidermal LCs and other immune cells during ACD development. Methods ACD was induced by sensitizing and challenging with DNFB topically. Mice were treated intraperitoneally with TSA or vehicle DMSO as a control every other day before and during induction of ACD. The ear swelling response was measured and skin biopsies from sensitized skin areas were obtained for histology. Epidermal cells, thymus, spleens and skin draining lymph nodes were collected for immune staining. Results TSA treatment ameliorated skin lesion severity of DNFB-induced ACD. The percentages of epidermal LCs and splenic DCs as well as LC maturation were significantly reduced in TSA-treated mice. However, TSA treatment did not significantly affect the homeostasis of conventional CD4+ and CD8+ T cells, Foxp3+CD4+ regulatory T cells, iNKT cells, and γδ T cells in thymus, spleen and draining lymph nodes (dLNs). Furthermore, there were no significant differences in IL-4 and IFN-γ-producing T cells and iNKT cells between TSA- and DMSO-treated mice. Conclusion Our findings suggest that TSA may ameliorate ACD through the regulation of epidermal LCs and HDACs could serve as potential therapeutic targets for ACD and other LCs-related skin diseases. PMID:22999682
NASA Technical Reports Server (NTRS)
Dauwalder, M.; Roux, S. J.; Hardison, L.
1986-01-01
Immunofluorescence techniques have been used to study the distribution of calmodulin in several tissues in young etiolated pea (Pisum sativum L.) seedlings. A fairly uniform staining was seen in the nucleoplasm and background cytoplasm of most cell types. Cell walls and nucleoli were not stained. In addition, patterned staining reactions were seen in many cells. In cells of the plumule, punctate staining of the cytoplasm was common, and in part this stain appeared to be associated with the plastids. A very distinctive staining of amyloplasts was seen in the columella of the root cap. Staining associated with cytoskeletal elements could be shown in division stages. By metaphase, staining of the spindle region was quite evident. In epidermal cells of the stem and along the underside of the leaf there was an intense staining of the vacuolar contents. Guard cells lacked this vacuolar stain. Vacuolar staining was sometimes seen in cells of the stele, but the most distinctive pattern in the stele was associated with young conducting cells of the xylem. These staining patterns are consistent with the idea that the interactions of plastids and the cytoskeletal may be one of the Ca(2+)-mediated steps in the response of plants to environmental stimuli. Nuclear functions may also be controlled, at least in part, by Ca2+.
Production and emission of volatile compounds by petal cells.
Baudino, Sylvie; Caissard, Jean-Claude; Bergougnoux, Véronique; Jullien, Frédéric; Magnard, Jean-Louis; Scalliet, Gabriel; Cock, J Mark; Hugueney, Philippe
2007-11-01
We localized the tissues and cells that contribute to scent biosynthesis in scented and non-scented Rosa x hybrida cultivars as part of a detailed cytological analysis of the rose petal. Adaxial petal epidermal cells have a typical conical, papillate shape whereas abaxial petal epidermal cells are flat. Using two different techniques, solid/liquid phase extraction and headspace collection of volatiles, we showed that, in roses, both epidermal layers are capable of producing and emitting scent volatiles, despite the different morphologies of the cells of these two tissues. Moreover, OOMT, an enzyme involved in scent molecule biosynthesis, was localized in both epidermal layers. These results are discussed in view of results found in others species such as Antirrhinum majus, where it has been shown that the adaxial epidermis is the preferential site of scent production and emission.
Production and Emission of Volatile Compounds by Petal Cells
Caissard, Jean-Claude; Bergougnoux, Véronique; Jullien, Frédéric; Magnard, Jean-Louis; Scalliet, Gabriel; Cock, J Mark; Hugueney, Philippe
2007-01-01
We localized the tissues and cells that contribute to scent biosynthesis in scented and non-scented Rosa × hybrida cultivars as part of a detailed cytological analysis of the rose petal. Adaxial petal epidermal cells have a typical conical, papillate shape whereas abaxial petal epidermal cells are flat. Using two different techniques, solid/liquid phase extraction and headspace collection of volatiles, we showed that, in roses, both epidermal layers are capable of producing and emitting scent volatiles, despite the different morphologies of the cells of these two tissues. Moreover, OOMT, an enzyme involved in scent molecule biosynthesis, was localized in both epidermal layers. These results are discussed in view of results found in others species such as Antirrhinum majus, where it has been shown that the adaxial epidermis is the preferential site of scent production and emission. PMID:19704548
Troy, Tammy-Claire; Li, Yuhua; O'Malley, Lauren; Turksen, Kursad
2007-02-01
The importance of the epidermal permeability barrier (EPB) in protecting the mammalian species against harmful UV irradiation, microorganism invasion and water loss is well recognized, as is the role of calcium (Ca(2+)) in keratinocyte differentiation, cell-cell contact and the EPB. In a previous study, we reported that the overexpression of the Ca(2+)-sensing receptor (CaSR) in the undifferentiated basal cells of the epidermis induced a modified epidermal differentiation program including an accelerated EPB formation in transgenic mice, suggesting a role for CaSR signaling in the differentiation of embryonic epidermal cells during development. We now describe the expression profile of claudins (Cldns) and keratin markers in the accelerated EPB formation of K14-CaSR transgenic mice during development as compared to the wild type from E12.5 to newborn stages. Our data show that the transgenic epidermis undergoes an advanced epidermal differentiation program as compared to the wild type as evidenced morphologically as well as by the expression of K14, K1, loricrin, Cldn6, Cldn18 and Cldn11. In addition, we report for the first time the sequential expression of Cldns in epidermal development and describe that the localization of some Cldns change within the epidermis as it matures. Furthermore, we demonstrate that Cldn6 is expressed very early in epidermal morphogenesis, followed by Cldn18, Cldn11 and Cldn1.
NASA Astrophysics Data System (ADS)
Peschiutta, María Laura; Scholz, Fabián Gustavo; Goldstein, Guillermo; Bucci, Sandra Janet
2018-01-01
Herbivory can trigger physiological processes resulting in leaf and whole plant functional changes. The effects of chronic infestation by an insect on leaf traits related to carbon and nitrogen economy in three Prunus avium cultivars were assessed. Leaves from non-infested trees (control) and damaged leaves from infested trees were selected. The insect larvae produce skeletonization of the leaves leaving relatively intact the vein network of the eaten leaves and the abaxial epidermal tissue. At the leaf level, nitrogen content per mass (Nmass) and per area (Narea), net photosynthesis per mass (Amass) and per area (Aarea), photosynthetic nitrogen-use efficiency (PNUE), leaf mass per area (LMA) and total leaf phenols content were measured in the three cultivars. All cultivars responded to herbivory in a similar fashion. The Nmass, Amass, and PNUE decreased, while LMA and total content of phenols increased in partially damaged leaves. Increases in herbivore pressure resulted in lower leaf size and total leaf area per plant across cultivars. Despite this, stem cumulative growth tended to increase in infected plants suggesting a change in the patterns of biomass allocation and in resources sequestration elicited by herbivory. A larger N investment in defenses instead of photosynthetic structures may explain the lower PNUE and Amass observed in damaged leaves. Some physiological changes due to herbivory partially compensate for the cost of leaf removal buffering the carbon economy at the whole plant level.
Li, Yashu; Wang, Yangping; Zhou, Lina; Liu, Meixi; Liang, Guangping; Yan, Rongshuai; Jiang, Yufeng; Hao, Jianlei; Zhang, Xiaorong; Hu, Xiaohong; Huang, Yong; Wang, Rupeng; Yin, Zhinan; Wu, Jun; Luo, Gaoxing; He, Weifeng
2018-01-01
Dendritic epidermal T cells (DETCs) and dermal Vγ4 T cells engage in wound re-epithelialization and skin inflammation. However, it remains unknown whether a functional link between Vγ4 T cell pro-inflammation and DETC pro-healing exists to affect the outcome of skin wound closure. Here, we revealed that Vγ4 T cell-derived IL-17A inhibited IGF-1 production by DETCs to delay skin wound healing. Epidermal IL-1β and IL-23 were required for Vγ4 T cells to suppress IGF-1 production by DETCs after skin injury. Moreover, we clarified that IL-1β rather than IL-23 played a more important role in inhibiting IGF-1 production by DETCs in an NF-κB-dependent manner. Together, these findings suggested a mechanistic link between Vγ4 T cell-derived IL-17A, epidermal IL-1β/IL-23, DETC-derived IGF-1, and wound-healing responses in the skin. PMID:29483920
Fotopoulos, N; Wernike, D; Chen, Y; Makil, N; Marte, A; Piekny, A
2013-11-01
The formation of tissues is essential for metazoan development. During Caenorhabditis elegans embryogenesis, ventral epidermal cells migrate to encase the ventral surface of the embryo in a layer of epidermis by a process known as ventral enclosure. This process is regulated by guidance cues secreted by the underlying neuroblasts. However, since the cues and their receptors are differentially expressed in multiple cell types, the role of the neuroblasts in ventral enclosure is not fully understood. Furthermore, although F-actin is required for epidermal cell migration, it is not known if nonmuscle myosin is also required. Anillin (ANI-1) is an actin and myosin-binding protein that coordinates actin-myosin contractility in the early embryo. Here, we show that ANI-1 localizes to the cleavage furrows of dividing neuroblasts during mid-embryogenesis and is required for their division. Embryos depleted of ani-1 display a range of ventral enclosure phenotypes, where ventral epidermal cells migrate with similar speeds to control embryos, but contralateral neighbors often fail to meet and are misaligned. The ventral enclosure phenotypes in ani-1 RNAi embryos suggest that the position or shape of neuroblasts is important for directing ventral epidermal cell migration, although does not rule out an autonomous requirement for ani-1 in the epidermal cells. Furthermore, we show that rho-1 and other regulators of nonmuscle myosin activity are required for ventral epidermal cell migration. Interestingly, altering nonmuscle myosin contractility alleviates or strengthens ani-1's ventral enclosure phenotypes. Our findings suggest that ventral enclosure is a complex process that likely relies on inputs from multiple tissues. © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Park, Jong-Won; Beyene, Getu; Buenrostro-Nava, Marco T.; Molina, Joe; Wang, Xiaofeng; Ciomperlik, Jessica J.; Manabayeva, Shuga A.; Alvarado, Veria Y.; Rathore, Keerti S.; Scholthof, Herman B.; Mirkov, T. Erik
2013-01-01
Post-transcriptional gene silencing is commonly observed in polyploid species and often poses a major limitation to plant improvement via biotechnology. Five plant viral suppressors of RNA silencing were evaluated for their ability to counteract gene silencing and enhance the expression of the Enhanced Yellow Fluorescent Protein (EYFP) or the β-glucuronidase (GUS) reporter gene in sugarcane, a major sugar and biomass producing polyploid. Functionality of these suppressors was first verified in Nicotiana benthamiana and onion epidermal cells, and later tested by transient expression in sugarcane young leaf segments and protoplasts. In young leaf segments co-expressing a suppressor, EYFP reached its maximum expression at 48–96 h post-DNA introduction and maintained its peak expression for a longer time compared with that in the absence of a suppressor. Among the five suppressors, Tomato bushy stunt virus-encoded P19 and Barley stripe mosaic virus-encoded γb were the most efficient. Co-expression with P19 and γb enhanced EYFP expression 4.6-fold and 3.6-fold in young leaf segments, and GUS activity 2.3-fold and 2.4-fold in protoplasts compared with those in the absence of a suppressor, respectively. In transgenic sugarcane, co-expression of GUS and P19 suppressor showed the highest accumulation of GUS levels with an average of 2.7-fold more than when GUS was expressed alone, with no detrimental phenotypic effects. The two established transient expression assays, based on young leaf segments and protoplasts, and confirmed by stable transgene expression, offer a rapid versatile system to verify the efficiency of RNA silencing suppressors that proved to be valuable in enhancing and stabilizing transgene expression in sugarcane. PMID:23799071
Dutta, Abhik; Pincha, Neha; Rana, Isha; Ghosh, Subhasri; Witherden, Deborah; Kandyba, Eve; MacLeod, Amanda; Kobielak, Krzysztof; Havran, Wendy L
2017-01-01
The cutaneous wound-healing program is a product of a complex interplay among diverse cell types within the skin. One fundamental process that is mediated by these reciprocal interactions is the mobilization of local stem cell pools to promote tissue regeneration and repair. Using the ablation of epidermal caspase-8 as a model of wound healing in Mus musculus, we analyzed the signaling components responsible for epithelial stem cell proliferation. We found that IL-1α and IL-7 secreted from keratinocytes work in tandem to expand the activated population of resident epidermal γδT-cells. A downstream effect of activated γδT-cells is the preferential proliferation of hair follicle stem cells. By contrast, IL-1α-dependent stimulation of dermal fibroblasts optimally stimulates epidermal stem cell proliferation. These findings provide new mechanistic insights into the regulation and function of epidermal cell–immune cell interactions and into how components that are classically associated with inflammation can differentially influence distinct stem cell niches within a tissue. PMID:29199946
Cellular pattern formation by SCRAMBLED, a leucine-rich repeat receptor-like kinase in Arabidopsis.
Kwak, Su-Hwan; Schiefelbein, John
2008-02-01
The appropriate specification of distinct cell types is important for generating the proper tissues and bodies of multicellular organisms. In the root epidermis of Arabidopsis, cell fate determination is accomplished by a transcriptional regulatory circuit that is influenced by positional signaling. A leucine-rich repeat receptor-like kinase, SCRAMBLED (SCM), has been shown to be responsible for the position-dependent aspect of this epidermal pattern. In a recent report, we find that SCM affects the transcriptional regulatory network by down-regulating the WEREWOLF (WER) MYB gene expression in a set of epidermal cells located in a specific position. We also find that SCM and the SCM-related SRF1 and SRF3 are not required for embryonic epidermal patterning and that SRF1 and SRF3 do not act redundantly with SCM. This suggests that distinct positional signaling mechanisms exist for embryonic and post-embryonic epidermal patterning. In this addendum, we discuss the implications of our recent findings and extend our working model for epidermal cell pattering.
Cellular pattern formation by SCRAMBLED, a leucine-rich repeat receptor-like kinase in Arabidopsis
Kwak, Su-Hwan
2008-01-01
The appropriate specification of distinct cell types is important for generating the proper tissues and bodies of multicellular organisms. In the root epidermis of Arabidopsis, cell fate determination is accomplished by a transcriptional regulatory circuit that is influenced by positional signaling. A leucine-rich repeat receptor-like kinase, SCRAMBLED (SCM), has been shown to be responsible for the position-dependent aspect of this epidermal pattern. In a recent report, we find that SCM affects the transcriptional regulatory network by down-regulating the WEREWOLF (WER) MYB gene expression in a set of epidermal cells located in a specific position. We also find that SCM and the SCM-related SRF1 and SRF3 are not required for embryonic epidermal patterning and that SRF1 and SRF3 do not act redundantly with SCM. This suggests that distinct positional signaling mechanisms exist for embryonic and post-embryonic epidermal patterning. In this addendum, we discuss the implications of our recent findings and extend our working model for epidermal cell pattering. PMID:19704725
Liu, Xingwang; Bartholomew, Ezra; Cai, Yanling; Ren, Huazhong
2016-01-01
Trichomes are specialized epidermal cells located in aerial parts of plants that function in plant defense against biotic and abiotic stresses. The simple unicellular trichomes of Arabidopsis serve as an excellent model to study the molecular mechanism of cell differentiation and pattern formation in plants. Loss-of-function mutations in Arabidopsis thaliana have suggested that the core genes GL1 (which encodes a MYB transcription factor) and TTG1 (which encodes a WD40 repeat-containing protein) are important for the initiation and spacing of leaf trichomes, while for normal trichome initiation, the genes GL3, and EGL3 (which encode a bHLH protein) are needed. However, the positive regulatory genes involved in multicellular trichrome development in cucumber remain unclear. This review focuses on the phenotype of mutants (csgl3, tril, tbh, mict, and csgl1) with disturbed trichomes in cucumber and then infers which gene(s) play key roles in trichome initiation and development in those mutants. Evidence indicates that MICT, TBH, and CsGL1 are allelic with alternative splicing. CsGL3 and TRIL are allelic and override the effect of TBH, MICT, and CsGL1 on the regulation of multicellular trichome development; and affect trichome initiation. CsGL3, TRIL, MICT, TBH, and CsGL1 encode HD-Zip proteins with different subfamilies. Genetic and molecular analyses have revealed that CsGL3, TRIL, MICT, TBH, and CsGL1 are responsible for the differentiation of epidermal cells and the development of trichomes. Based on current knowledge, a positive regulator pathway model for trichome development in cucumber was proposed and compared to a model in Arabidopsis. These data suggest that trichome development in cucumber may differ from that in Arabidopsis. PMID:27559338
Lotan, Orfa; Alkan, Noam; Tsimbalist, Tatiana; Rechav, Katya; Fernandez-Moreno, Josefina-Patricia; Widemann, Emilie; Grausem, Bernard; Pinot, Franck; Costa, Fabrizio; Aharoni, Asaph
2015-01-01
The epidermis of aerial plant organs is the primary source of building blocks forming the outer surface cuticular layer. To examine the relationship between epidermal cell development and cuticle assembly in the context of fruit surface, we investigated the tomato (Solanum lycopersicum) MIXTA-like gene. MIXTA/MIXTA-like proteins, initially described in snapdragon (Antirrhinum majus) petals, are known regulators of epidermal cell differentiation. Fruit of transgenically silenced SlMIXTA-like tomato plants displayed defects in patterning of conical epidermal cells. They also showed altered postharvest water loss and resistance to pathogens. Transcriptome and cuticular lipids profiling coupled with comprehensive microscopy revealed significant modifications to cuticle assembly and suggested SlMIXTA-like to regulate cutin biosynthesis. Candidate genes likely acting downstream of SlMIXTA-like included cytochrome P450s (CYPs) of the CYP77A and CYP86A subfamilies, LONG-CHAIN ACYL-COA SYNTHETASE2, GLYCEROL-3-PHOSPHATE SN-2-ACYLTRANSFERASE4, and the ATP-BINDING CASSETTE11 cuticular lipids transporter. As part of a larger regulatory network of epidermal cell patterning and L1-layer identity, we found that SlMIXTA-like acts downstream of SlSHINE3 and possibly cooperates with homeodomain Leu zipper IV transcription factors. Hence, SlMIXTA-like is a positive regulator of both cuticle and conical epidermal cell formation in tomato fruit, acting as a mediator of the tight association between fruit cutin polymer formation, cuticle assembly, and epidermal cell patterning. PMID:26443676
Schauer, S
2011-01-01
Land plants (embryophytes) evolved in the presence of prokaryotic microbes. As a result, numerous mutually beneficial associations (symbioses) developed that can be analyzed using a variety of methods. Here we describe the isolation and characterization of a new pink-pigmented facultatively methylotrophic symbiotic bacterium of the genus Methylobacterium (laboratory strain F3.2) that was isolated from the gametophytic phylloids of the common cord moss Funaria hygrometrica Hedw. Plantlets were collected in the field and analyzed in the laboratory. Colonies of methylobacteria were obtained by the agar-impression-method. Based on its unique phenotype (the bacterial cells are characterized by fimbriae-like appendages), a comparative 16S rRNA gene (DNA) sequence analysis and an average DNA-DNA hybridization value of 8.4%, compared with its most closely related sister taxon, this isolate is described as a new species, Methylobacterium funariae sp. nov. (type strain F3.2). This new epiphytic bacterium inhabits the leaf surface of “primitive” land plants such as mosses and interacts with its host organism via the secretion of phytohormones (cytokinines, auxins). These external signals are perceived by the plant cells that divide and grow more rapidly than in the absence of their prokaryotic phytosymbionts. We suggest that M. funariae sp. nov. uses methanol emitted from the stomatal pores as principal carbon source for cell metabolism. However, our novel data indicate that, in this unique symbiotic plant-microbe interaction, the uptake of amino acids leached from the surface of the epidermal cells of the green host organism may be of importance as microbial carbon- and nitrogen-source. PMID:21673511
Rac1/RhoA antagonism defines cell-to-cell heterogeneity during epidermal morphogenesis in nematodes
Ouellette, Marie-Hélène
2016-01-01
The antagonism between the GTPases Rac1 and RhoA controls cell-to-cell heterogeneity in isogenic populations of cells in vitro and epithelial morphogenesis in vivo. Its involvement in the regulation of cell-to-cell heterogeneity during epidermal morphogenesis has, however, never been addressed. We used a quantitative cell imaging approach to characterize epidermal morphogenesis at a single-cell level during early elongation of Caenorhabditis elegans embryos. This study reveals that a Rac1-like pathway, involving the Rac/Cdc42 guanine-exchange factor β-PIX/PIX-1 and effector PAK1/PAK-1, and a RhoA-like pathway, involving ROCK/LET-502, control the remodeling of apical junctions and the formation of basolateral protrusions in distinct subsets of hypodermal cells. In these contexts, protrusions adopt lamellipodia or an amoeboid morphology. We propose that lamella formation may reduce tension building at cell–cell junctions during morphogenesis. Cell-autonomous antagonism between these pathways enables cells to switch between Rac1- and RhoA-like morphogenetic programs. This study identifies the first case of cell-to-cell heterogeneity controlled by Rac1/RhoA antagonism during epidermal morphogenesis. PMID:27821782
Organization of transport from endoplasmic reticulum to Golgi in higher plants.
Andreeva, A V; Zheng, H; Saint-Jore, C M; Kutuzov, M A; Evans, D E; Hawes, C R
2000-01-01
In plant cells, the organization of the Golgi apparatus and its interrelationships with the endoplasmic reticulum differ from those in mammalian and yeast cells. Endoplasmic reticulum and Golgi apparatus can now be visualized in plant cells in vivo with green fluorescent protein (GFP) specifically directed to these compartments. This makes it possible to study the dynamics of the membrane transport between these two organelles in the living cells. The GFP approach, in conjunction with a considerable volume of data about proteins participating in the transport between endoplasmic reticulum and Golgi in yeast and mammalian cells and the identification of their putative plant homologues, should allow the establishment of an experimental model in which to test the involvement of the candidate proteins in plants. As a first step towards the development of such a system, we are using Sar1, a small G-protein necessary for vesicle budding from the endoplasmic reticulum. This work has demonstrated that the introduction of Sar1 mutants blocks the transport from endoplasmic reticulum to Golgi in vivo in tobacco leaf epidermal cells and has therefore confirmed the feasibility of this approach to test the function of other proteins that are presumably involved in this step of endomembrane trafficking in plant cells.
Juarez, Michelle T.; Patterson, Rachel A.; Sandoval-Guillen, Efren; McGinnis, William
2011-01-01
The epidermis is the largest organ of the body for most animals, and the first line of defense against invading pathogens. A breach in the epidermal cell layer triggers a variety of localized responses that in favorable circumstances result in the repair of the wound. Many cellular and genetic responses must be limited to epidermal cells that are close to wounds, but how this is regulated is still poorly understood. The order and hierarchy of epidermal wound signaling factors are also still obscure. The Drosophila embryonic epidermis provides an excellent system to study genes that regulate wound healing processes. We have developed a variety of fluorescent reporters that provide a visible readout of wound-dependent transcriptional activation near epidermal wound sites. A large screen for mutants that alter the activity of these wound reporters has identified seven new genes required to activate or delimit wound-induced transcriptional responses to a narrow zone of cells surrounding wound sites. Among the genes required to delimit the spread of wound responses are Drosophila Flotillin-2 and Src42A, both of which are transcriptionally activated around wound sites. Flotillin-2 and constitutively active Src42A are also sufficient, when overexpressed at high levels, to inhibit wound-induced transcription in epidermal cells. One gene required to activate epidermal wound reporters encodes Dual oxidase, an enzyme that produces hydrogen peroxide. We also find that four biochemical treatments (a serine protease, a Src kinase inhibitor, methyl-ß-cyclodextrin, and hydrogen peroxide) are sufficient to globally activate epidermal wound response genes in Drosophila embryos. We explore the epistatic relationships among the factors that induce or delimit the spread of epidermal wound signals. Our results define new genetic functions that interact to instruct only a limited number of cells around puncture wounds to mount a transcriptional response, mediating local repair and regeneration. PMID:22242003
Cheng, Li-Chun; Tu, Kimberly C; Seidel, Chris W; Robb, Sofia M C; Guo, Fengli; Sánchez Alvarado, Alejandro
2018-01-15
The epidermis is essential for animal survival, providing both a protective barrier and cellular sensor to external environments. The generally conserved embryonic origin of the epidermis, but the broad morphological and functional diversity of this organ across animals is puzzling. We define the transcriptional regulators underlying epidermal lineage differentiation in the planarian Schmidtea mediterranea, an invertebrate organism that, unlike fruitflies and nematodes, continuously replaces its epidermal cells. We find that Smed-p53, Sox and Pax transcription factors are essential regulators of epidermal homeostasis, and act cooperatively to regulate genes associated with early epidermal precursor cell differentiation, including a tandemly arrayed novel gene family (prog) of secreted proteins. Additionally, we report on the discovery of distinct and previously undescribed secreted organelles whose production is dependent on the transcriptional activity of soxP-3, and which we term Hyman vesicles. Copyright © 2017 Elsevier Inc. All rights reserved.
Hair Follicle Bulge Stem Cells Appear Dispensable for the Acute Phase of Wound Re‐epithelialization
Garcin, Clare L.; Ansell, David M.; Headon, Denis J.; Paus, Ralf
2016-01-01
Abstract The cutaneous healing response has evolved to occur rapidly, in order to minimize infection and to re‐establish epithelial homeostasis. Rapid healing is achieved through complex coordination of multiple cell types, which importantly includes specific cell populations within the hair follicle (HF). Under physiological conditions, the epithelial compartments of HF and interfollicular epidermis remain discrete, with K15+ve bulge stem cells contributing progeny for HF reconstruction during the hair cycle and as a basis for hair shaft production during anagen. Only upon wounding do HF cells migrate from the follicle to contribute to the neo‐epidermis. However, the identity of the first‐responding cells, and in particular whether this process involves a direct contribution of K15+ve bulge cells to the early stage of epidermal wound repair remains unclear. Here we demonstrate that epidermal injury in murine skin does not induce bulge activation during early epidermal wound repair. Specifically, bulge cells of uninjured HFs neither proliferate nor appear to migrate out of the bulge niche upon epidermal wounding. In support of these observations, Diphtheria toxin‐mediated partial ablation of K15+ve bulge cells fails to delay wound healing. Our data suggest that bulge cells only respond to epidermal wounding during later stages of repair. We discuss that this response may have evolved as a protective safeguarding mechanism against bulge stem cell exhaust and tumorigenesis. Stem Cells 2016;34:1377–1385 PMID:26756547
Giangreco, Adam; Hoste, Esther; Takai, Yoshimi; Rosewell, Ian; Watt, Fiona M
2012-02-01
Autoimmune alopecia is characterized by an extensive epidermal T cell infiltrate that mediates hair follicle destruction. We have investigated the role of cell adhesion molecule 1 (Cadm1; Necl2) in this disease. Cadm1 is expressed by epidermal cells and mediates heterotypic adhesion to lymphocytes expressing class 1-restricted T cell-associated molecule (CRTAM). Using a murine autoimmune alopecia model, we observed an increase in early-activated cytotoxic (CD8-restricted, CRTAM-expressing) T cells, which preferentially associated with hair follicle keratinocytes expressing Cadm1. Coculture with Cadm1-transduced MHC-matched APCs stimulated alopecic lymph node cells to release IL-2 and IFN-γ. Overexpression of Cadm1 in cultured human keratinocytes did not promote cytokine secretion, but led to increased adhesion of alopecic cytotoxic T cells and enhanced T cell cytotoxicity in an MHC-independent manner. Epidermal overexpression of Cadm1 in transgenic mice led to increased autoimmune alopecia susceptibility relative to nontransgenic littermate controls. Our findings reveal that Cadm1 expression in the hair follicle plays a role in autoimmune alopecia.
Troy, Tammy-Claire; Turksen, Kursad
2007-06-01
Skin is one of the largest organs of the body, and is formed during development through a highly orchestrated process involving mesenchymal-epithelial interactions, cell commitment, and terminal differentiation. It protects against microorganism invasion and UV irradiation, inhibits water loss, regulates body temperature, and is an important part of the immune system. Using transgenic mouse technology, we have demonstrated that Claudin (Cldn)-containing tight junctions (TJs) are intricately involved in cell signaling during epidermal differentiation and that an epidermal suprabasal overexpression of Cldn6 results in a perturbed epidermal terminal differentiation program with distinct phenotypic abnormalities. To delineate the role of the Cldn cytoplasmic tail domain in epidermal differentiation, we engineered transgenic mice targeting the overexpression of a Cldn6 cytoplasmic tail-truncation mutant in the epidermis. Transgenic mice were characterized by a lethal barrier dysfunction in addition to the existence of hyperproliferative squamous invaginations/cysts replacing hair follicles. Immunohistochemical analysis revealed an epidermal cytoplasmic accumulation of Cldn6, Cldn11, Cldn12, and Cldn18, downregulation of Cldn1 and aberrant expression of various classical markers of epidermal differentiation; namely the basal keratins as well as K1, involucrin, loricrin, and filaggrin. Collectively these studies suggest an important role for Cldns in epidermal/hair follicle differentiation programs likely involving cross talk to signaling pathways (e.g., Notch) directing cell fate selection and differentiation.
Morita, Toshiyuki; Tsuchiya, Akiko; Sugimoto, Masazumi
2011-09-01
Re-epithelialization in skin wound healing is a process in which epidermal sheets grow and close the wound. Although the actin-myosin system is thought to have a pivotal role in re-epithelialization, its role is not clear. In fish skin, re-epithelialization occurs around 500 μm/h and is 50 times faster than in mammalian skin. We had previously reported that leading-edge cells of the epidermal outgrowth have both polarized large lamellipodia and "purse string"-like actin filament cables in the scale-skin culture system of medaka fish, Oryzias latipes (Cell Tissue Res, 2007). The actin purse-string (APS) is a supracellular contractile machinery in which adherens junctions (AJs) link intracellular myosin II-including actin cables between neighboring cells. In this study, we developed a modified "face-to-face" scale-skin culture system as an ex vivo model to study epidermal wound healing, and examined the role of the actin-myosin system in the rapid re-epithelialization using a myosin II ATPase inhibitor, blebbistatin. A low level of blebbistatin suppressed the formation of APS and induced the dissociation of keratocytes from the leading edge without attenuating the growth of the epidermal sheet or the migration rate of solitary keratocytes. AJs in the superficial layer showed no obvious changes elicited by blebbistatin. However, two epidermal sheets without APSs did not make a closure with each other, which was confirmed by inhibiting the connecting AJs between the superficial layers. These results suggest that myosin II activity is required for functional leading-edge cells and for epidermal closure.
Evolutionary Association of Stomatal Traits with Leaf Vein Density in Paphiopedilum, Orchidaceae
Sun, Mei; Zhang, Juan-Juan; Cao, Kun-Fang; Hu, Hong
2012-01-01
Background Both leaf attributes and stomatal traits are linked to water economy in land plants. However, it is unclear whether these two components are associated evolutionarily. Methodology/Principal Findings In characterizing the possible effect of phylogeny on leaf attributes and stomatal traits, we hypothesized that a correlated evolution exists between the two. Using a phylogenetic comparative method, we analyzed 14 leaf attributes and stomatal traits for 17 species in Paphiopedilum. Stomatal length (SL), stomatal area (SA), upper cuticular thickness (UCT), and total cuticular thickness (TCT) showed strong phylogenetic conservatism whereas stomatal density (SD) and stomatal index (SI) were significantly convergent. Leaf vein density was correlated with SL and SD whether or not phylogeny was considered. The lower epidermal thickness (LET) was correlated positively with SL, SA, and stomatal width but negatively with SD when phylogeny was not considered. When this phylogenetic influence was factored in, only the significant correlation between SL and LET remained. Conclusion/Significance Our results support the hypothesis for correlated evolution between stomatal traits and vein density in Paphiopedilum. However, they do not provide evidence for an evolutionary association between stomata and leaf thickness. These findings lend insight into the evolution of traits related to water economy for orchids under natural selection. PMID:22768224
Epidermal Notch1 recruits RORγ(+) group 3 innate lymphoid cells to orchestrate normal skin repair.
Li, Zhi; Hodgkinson, Tom; Gothard, Elizabeth J; Boroumand, Soulmaz; Lamb, Rebecca; Cummins, Ian; Narang, Priyanka; Sawtell, Amy; Coles, Jenny; Leonov, German; Reboldi, Andrea; Buckley, Christopher D; Cupedo, Tom; Siebel, Christian; Bayat, Ardeshir; Coles, Mark C; Ambler, Carrie A
2016-04-21
Notch has a well-defined role in controlling cell fate decisions in the embryo and the adult epidermis and immune systems, yet emerging evidence suggests Notch also directs non-cell-autonomous signalling in adult tissues. Here, we show that Notch1 works as a damage response signal. Epidermal Notch induces recruitment of immune cell subsets including RORγ(+) ILC3s into wounded dermis; RORγ(+) ILC3s are potent sources of IL17F in wounds and control immunological and epidermal cell responses. Mice deficient for RORγ(+) ILC3s heal wounds poorly resulting from delayed epidermal proliferation and macrophage recruitment in a CCL3-dependent process. Notch1 upregulates TNFα and the ILC3 recruitment chemokines CCL20 and CXCL13. TNFα, as a Notch1 effector, directs ILC3 localization and rates of wound healing. Altogether these findings suggest that Notch is a key stress/injury signal in skin epithelium driving innate immune cell recruitment and normal skin tissue repair.
Nunan, Robert; Campbell, Jessica; Mori, Ryoichi; Pitulescu, Mara E.; Jiang, Wen G.; Harding, Keith G.; Adams, Ralf H.; Nobes, Catherine D.; Martin, Paul
2015-01-01
Summary For a skin wound to successfully heal, the cut epidermal-edge cells have to migrate forward at the interface between scab and healthy granulation tissue. Much is known about how lead-edge cells migrate, but very little is known about the mechanisms that enable active participation by cells further back. Here we show that ephrin-B1 and its receptor EphB2 are both upregulated in vivo, just for the duration of repair, in the first 70 or so rows of epidermal cells, and this signal leads to downregulation of the molecular components of adherens and tight (but not desmosomal) junctions, leading to loosening between neighbors and enabling shuffle room among epidermal cells. Additionally, this signaling leads to the shutdown of actomyosin stress fibers in these same epidermal cells, which may act to release tension within the wound monolayer. If this signaling axis is perturbed, then disrupted healing is a consequence in mouse and man. PMID:26549443
Tattini, Massimiliano; Landi, Marco; Brunetti, Cecilia; Giordano, Cristiana; Remorini, Damiano; Gould, Kevin S; Guidi, Lucia
2014-11-01
The putative photoprotective role of foliar anthocyanins continues to attract heated debate. Strikingly different experimental set-ups coupled with a poor knowledge of anthocyanin identity have likely contributed to such disparate opinions. Here, the photosynthetic responses to 30 or 100% solar irradiance were compared in two cultivars of basil, the green-leafed Tigullio (TG) and the purple-leafed Red Rubin (RR). Coumaroyl anthocyanins in RR leaf epidermis significantly mitigated the effects of high light stress. In full sunlight, RR leaves displayed several shade-plant traits; they transferred less energy than did TG to photosystem II (PSII), and non-photochemical quenching was lower. The higher xanthophyll cycle activity in TG was insufficient to prevent inactivation of PSII in full sunlight. However, TG was the more efficient in the shade; RR was far less able to accommodate a large change in irradiance. Investment of carbon to phenylpropanoid biosynthesis was more in RR than in TG in the shade, and was either greatly enhanced in TG or varied little in RR because of high sunlight. The metabolic cost of photoprotection was lower whereas light-induced increase in biomass production was higher in RR than in TG, thus making purple basil the more light tolerant. Purple basil appears indeed to display the conservative resource-use strategy usually observed in highly stress tolerant species. We conclude that the presence of epidermal coumaroyl anthocyanins confers protective benefits under high light, but it is associated with a reduced plasticity to accommodate changing light fluxes as compared with green leaves. © 2014 Scandinavian Plant Physiology Society.
Leaf Photosynthetic Rate of Tropical Ferns Is Evolutionarily Linked to Water Transport Capacity
Cao, Kun-Fang; Hu, Hong; Zhang, Jiao-Lin
2014-01-01
Ferns usually have relatively lower photosynthetic potential than angiosperms. However, it is unclear whether low photosynthetic potential of ferns is linked to leaf water supply. We hypothesized that there is an evolutionary association of leaf water transport capacity with photosynthesis and stomatal density in ferns. In the present study, a series of functional traits relating to leaf anatomy, hydraulics and physiology were assessed in 19 terrestrial and 11 epiphytic ferns in a common garden, and analyzed by a comparative phylogenetics method. Compared with epiphytic ferns, terrestrial ferns had higher vein density (Dvein), stomatal density (SD), stomatal conductance (gs), and photosynthetic capacity (Amax), but lower values for lower epidermal thickness (LET) and leaf thickness (LT). Across species, all traits varied significantly, but only stomatal length (SL) showed strong phylogenetic conservatism. Amax was positively correlated with Dvein and gs with and without phylogenetic corrections. SD correlated positively with Amax, Dvein and gs, with the correlation between SD and Dvein being significant after phylogenetic correction. Leaf water content showed significant correlations with LET, LT, and mesophyll thickness. Our results provide evidence that Amax of the studied ferns is linked to leaf water transport capacity, and there was an evolutionary association between water supply and demand in ferns. These findings add new insights into the evolutionary correlations among traits involving carbon and water economy in ferns. PMID:24416265
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okano, Junko, E-mail: jokano@belle.shiga-med.ac.jp; Kojima, Hideto; Katagi, Miwako
Bone marrow-derived cells (BMDCs) can migrate into the various organs in the mice irradiated by ionizing radiation (IR). However, it may not be the case in the skin. While IR is used for bone marrow (BM) transplantation, studying with the epidermal sheets demonstrated that the BMDC recruitment is extraordinarily rare in epidermis in the mouse. Herein, using the chimera mice with BM from green fluorescent protein (GFP) transgenic mice, we simply examined if BMDCs migrate into any layers in the total skin, as opposed to the epidermal sheets, in response to IR. Interestingly, we identified the presence of GFP-positive (GFP{supmore » +}) cells in the epidermis-dermis junction in the total skin sections although the epidermal cell sheets failed to have any GFP cells. To examine a possibility that the cells in the junction could be mechanically dissociated during separating epidermal sheets, we then salvaged such dissociated cells and examined its characteristics. Surprisingly, some GFP{sup +} cells were found in the salvaged cells, indicating that these cells could be derived from BM. In addition, such BMDCs were also associated with inflammation in the junction. In conclusion, BMDCs can migrate to and reside in the epidermis-dermis junction after IR. - Highlights: • Bone marrow-derived cells (BMDCs) migrate in the epidermis due to ionizing radiation (IR). • BMDCs dissociate from the epidermis-dermis junction in preparing epidermal sheets. • The doses of IR determine the location and the number of migrating BMDCs in the skin.« less
Hair Follicle Bulge Stem Cells Appear Dispensable for the Acute Phase of Wound Re-epithelialization.
Garcin, Clare L; Ansell, David M; Headon, Denis J; Paus, Ralf; Hardman, Matthew J
2016-05-01
The cutaneous healing response has evolved to occur rapidly, in order to minimize infection and to re-establish epithelial homeostasis. Rapid healing is achieved through complex coordination of multiple cell types, which importantly includes specific cell populations within the hair follicle (HF). Under physiological conditions, the epithelial compartments of HF and interfollicular epidermis remain discrete, with K15(+ve) bulge stem cells contributing progeny for HF reconstruction during the hair cycle and as a basis for hair shaft production during anagen. Only upon wounding do HF cells migrate from the follicle to contribute to the neo-epidermis. However, the identity of the first-responding cells, and in particular whether this process involves a direct contribution of K15(+ve) bulge cells to the early stage of epidermal wound repair remains unclear. Here we demonstrate that epidermal injury in murine skin does not induce bulge activation during early epidermal wound repair. Specifically, bulge cells of uninjured HFs neither proliferate nor appear to migrate out of the bulge niche upon epidermal wounding. In support of these observations, Diphtheria toxin-mediated partial ablation of K15(+ve) bulge cells fails to delay wound healing. Our data suggest that bulge cells only respond to epidermal wounding during later stages of repair. We discuss that this response may have evolved as a protective safeguarding mechanism against bulge stem cell exhaust and tumorigenesis. Stem Cells 2016;34:1377-1385. © 2016 The Authors. Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Liu, Junjun; Chen, Xiaosong; Ward, Toby; Mao, Yan; Bockhorn, Jessica; Liu, Xiaofei; Wang, Gen; Pegram, Mark; Shen, Kunwei
2016-02-01
Acquired resistance to lapatinib, a human epidermal growth factor receptor 2 kinase inhibitor, remains a clinical problem for women with human epidermal growth factor receptor 2-positive advanced breast cancer, as metastasis is commonly observed in these patients. Niclosamide, an anti-helminthic agent, has recently been shown to exhibit cytotoxicity to tumor cells with stem-like characteristics. This study was designed to identify the mechanisms underlying lapatinib resistance and to determine whether niclosamide inhibits lapatinib resistance by reversing epithelial-mesenchymal transition. Here, two human epidermal growth factor receptor 2-positive breast cancer cell lines, SKBR3 and BT474, were exposed to increasing concentrations of lapatinib to establish lapatinib-resistant cultures. Lapatinib-resistant SKBR3 and BT474 cells exhibited up-regulation of the phenotypic epithelial-mesenchymal transition markers Snail, vimentin and α-smooth muscle actin, accompanied by activation of nuclear factor-кB and Src and a concomitant increase in stem cell marker expression (CD44(high)/CD24(low)), compared to naive lapatinib-sensitive SKBR3 and BT474 cells, respectively. Interestingly, niclosamide reversed epithelial-mesenchymal transition, induced apoptosis and inhibited cell growth by perturbing aberrant signaling pathway activation in lapatinib-resistant human epidermal growth factor receptor 2-positive cells. The ability of niclosamide to alleviate stem-like phenotype development and invasion was confirmed. Collectively, our results demonstrate that lapatinib resistance correlates with epithelial-mesenchymal transition and that niclosamide inhibits lapatinib-resistant cell viability and epithelial-mesenchymal transition. These findings suggest a role of niclosamide or derivatives optimized for more favorable bioavailability not only in reversing lapatinib resistance but also in reducing metastatic potential during the treatment of human epidermal growth factor receptor 2-positive breast cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.
Peeling off the genetics of atopic dermatitis-like congenital disorders.
Samuelov, Liat; Sprecher, Eli
2014-10-01
The epidermis forms during the course of a complex differentiation process known as cornification, which culminates with the formation of the epidermal barrier. The epidermal barrier serves as a vital line of defense against the environment and mainly consists of 3 elements: intracellular keratin filaments, intercellular lipids, and the cornified cell envelope. Adequate epidermal barrier function is also critically dependent on normal shedding of terminally differentiated keratinocytes, a process termed desquamation, which requires the dissolution of cell-cell junctions in the upper granular layers. Although much has been learned about epidermal differentiation through the deciphering of the molecular basis of various cornification disorders, less is currently known about the mechanisms regulating epidermal desquamation and disorders resulting from disruption of this process. Netherton syndrome, peeling skin syndrome type B, and skin dermatitis--multiple severe allergies--metabolic wasting syndrome are 3 autosomal recessive conditions resulting from aberrant regulation of epidermal desquamation. The deciphering of their pathogenesis has not only broadened our understanding of this process but has also shed new light on clinical and mechanistic links between allergic reactions and abnormal desquamation, substantiating the notion that allergic manifestations might, under some circumstances, be the sole consequence of a primary epidermal defect. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sullivan, Joseph H.; Gitz, Dennis C.; Peek, Michael S.; McElrone, Andrew J.
2002-01-01
Quantitative changes in foliar chemistry in response to UVB radiation are frequently reported but less is known about the qualitative changes in putative UV-screening compounds. It has also not been conclusively shown whether qualitative differences in screening compounds or differences in localization patterns influences the sensitivity of plants to damage from UVB radiation. In this study we evaluated the chemical composition and deposition patterns of UV-absorbing compounds in three tree species and assayed these species for possible effects on gas exchange and photosynthetic carbon assimilation. Branches of mature trees of sweetgum (Liquidambar styraciflua), tulip poplar (Liriodendron tulipifera) and red maple (Acer rubrum) were exposed to supplemental levels of UVB radiation over three growing seasons. Controls for UVA were also measured by exposing branches to supplemental UVA only, and additional branches not irradiated were also used for controls. These species demonstrated contrasting chemical composition and deposition patterns with poplar being the most responsive in terms of epidermal accumulation of phenolics including flavonols and chlorogenic acid and hydroxycinnamates. Sweetgum and red maple showed increases primarily in hydroxycinnamates, particularly in the mesophyll in red maple. Leaf area was marginally influenced by UV exposure level. Assimilation was generally not reduced by UVB radiation in these species and was enhanced in red maple by both UVB and UVA and by UVA in sweetgum. These finding are consistent with a hypothesis that epidermal attenuation of UVB would only be reduced in poplar, which accumulated the additional epidermal screening compounds. It is possible that photosynthetic efficiency was enhanced in red maple by the increased absorption of blue light within the mesophyll. Stomatal conductance was generally reduced, and this led to an increase in water use efficiency in red maple and poplar.
Epidermal growth in the bottlenose dolphin, Tursiops truncatus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hicks, B.D.; St. Aubin, D.J.; Geraci, J.R.
1985-07-01
Epidermal growth in two mature female bottlenose dolphins, Tursiops truncatus, was investigated by following the movement of a cohort of tritiated thymidine-labeled epidermal cells for 59 days. The majority of the cells migrated in a cluster which was estimated to reach the skin surface in 73 days. The authors calculate that the outermost cell layer is sloughed 12 times per day. Turnover time and sloughing rate are estimated to be 1.7 times longer and 8.5 times faster than the respective values for epidermal cell kinetics in humans. This apparent inconsistency of slow transit time and rapid sloughing rate is reconciledmore » by the convoluted structure of the stratum germinativum in the dolphin which results in a ratio of germinatival to superficial cells of 876:1. The stratum germinativum of dolphin epidermis appears to lack morphologically distinct, spatially segregated subpopulations of anchoring and stem cells. Dolphin epidermis has a large capacity for cell population, relatively long turnover time, and rapid sloughing rate. The adaptive advantages of these characteristics are discussed.« less
Adhikary, Gautam; Grun, Dan; Kerr, Candace; Balasubramanian, Sivaprakasam; Rorke, Ellen A.; Vemuri, Mohan; Boucher, Shayne; Bickenbach, Jackie R.; Hornyak, Thomas; Xu, Wen; Fisher, Matthew L.; Eckert, Richard L.
2013-01-01
Epidermal squamous cell carcinoma is among the most common cancers in humans. These tumors are comprised of phenotypically diverse populations of cells that display varying potential for proliferation and differentiation. An important goal is identifying cells from this population that drive tumor formation. To enrich for tumor-forming cells, cancer cells were grown as spheroids in non-attached conditions. We show that spheroid-selected cells form faster growing and larger tumors in immune-compromised mice as compared to non-selected cells. Moreover, spheroid-selected cells gave rise to tumors following injection of as few as one hundred cells, suggesting these cells have enhanced tumor-forming potential. Cells isolated from spheroid-selected tumors retain an enhanced ability to grow as spheroids when grown in non-attached culture conditions. Thus, these tumor-forming cells retain their phenotype following in vivo passage as tumors. Detailed analysis reveals that spheroid-selected cultures are highly enriched for expression of epidermal stem cell and embryonic stem cell markers, including aldehyde dehydrogenase 1, keratin 15, CD200, keratin 19, Oct4, Bmi-1, Ezh2 and trimethylated histone H3. These studies indicate that a subpopulation of cells that possess stem cell-like properties and express stem cell markers can be derived from human epidermal cancer cells and that these cells display enhanced ability to drive tumor formation. PMID:24376802
Leaf micro-morphology of Lepisanthes Blume (Sapindaceae) in Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Ghazalli, Mohd Norfaizal; Talib, Noraini; Mohammad, Abdul Latiff
2018-04-01
A detail comparative study on leaf micro-morphology was conducted on the genus Lepisanthes from Peninsular Malaysia, five chosen species namely as L. amoena (Hassk.) Leenh., L. fruticosa (Roxb.) Leenh., L. rubiginosa (Roxb.) Leenh., L. senegalensis (Juss. ex Poir.) Leenh. and L. tetraphylla (Vahl.) Radlk. The objective of this study is to identify the leaf micro-morphological characteristics that can give significance impact for species identification and classification. Lepisanthes is an important tropical rare fruit genus in Malaysia and it is important to characterize and documenting additional taxonomic evidences that can be useful in Sapindaceae taxonomy information which is still lacked. The methods involved dehydration process, critical point drying, gold coated and observation under scanning electron microscope. Leaf micro-morphology showed significance taxonomic value in the genus Lepisanthes and can be used as additional data for species identification. Diagnostic character was found in L. fruticosa via the presence of four different types of trichomes on the abaxial and adaxial epidermal surfaces. As a conclusion, variation in cuticular striation, stomata structure, type of waxes and trichome morphology can be used in Lepisanthes species identification.
Chandebois, R
1985-01-01
Large deep wounds on the ventral side of a flatworm (Planaria) will not heal. Instead, the damage to the parenchyma in the wound's roof will result in a differentiated swelling in the dorsal epidermis, above the wound which will eventually disappear with the disintegration of the underlying damaged tissue and a ventrodorsal hole appears in place of the wound. The dorsal epidermal outgrowth is formed by a number of excrescences, the development of which involves four successive stages. Their analysis suggests that epidermal cells are continuously produced by their own stem cells which remain unnoticed because their nuclei are hardly stainable. The daughter cells differentiate without information from either the underlying tissues or the basal epithelial membrane. During the first stage of this differentiation the cells become ciliated and motile, with some embryonic features. They then produce rhabdites and take up a columnar shape as they may become attached to the basal membrane. After wound setting the production of epidermal cells increases and the overcrowding of the basal membrane results in (1) detachment of stem cells and motile ciliated cells from the basal tissues, i.e. outgrowths; (2) stretching of columnar cells at the base of the outgrowths. When in the process of tissue disintegration the basal membrane of the epithelium also disappears, the cells remain in a single-layered epithelial configuration and retain their original polarity. These results are at variance with the generally accepted hypothesis that, in planarians, epidermal cells originate from the parenchyma and the epidermis is not an autonomous tissue.
Pastushenko, I; Prieto-Torres, L; Gilaberte, Y; Blanpain, C
2015-11-01
Stem cells are characterized by their ability to self-renew and differentiate into the different cell lineages of their tissue of origin. The discovery of stem cells in adult tissues, together with the description of specific markers for their isolation, has opened up new lines of investigation, expanding the horizons of biomedical research and raising new hope in the treatment of many diseases. In this article, we review in detail the main characteristics of the stem cells that produce the specialized cells of the skin (epidermal, mesenchymal, and melanocyte stem cells) and their potential implications and applications in diseases affecting the skin. Part I deals with the principal characteristics and potential applications of epidermal stem cells in dermatology. Copyright © 2015 Elsevier España, S.L.U. and AEDV. All rights reserved.
Coordination and plasticity in leaf anatomical traits of invasive and native vine species.
Osunkoya, Olusegun O; Boyne, Richard; Scharaschkin, Tanya
2014-09-01
• Plant invasiveness can be promoted by higher values of adaptive traits (e.g., photosynthetic capacity, biomass accumulation), greater plasticity and coordination of these traits, and by higher and positive relative influence of these functionalities on fitness, such as increasing reproductive output. However, the data set for this premise rarely includes linkages between epidermal-stomatal traits, leaf internal anatomy, and physiological performance.• Three ecological pairs of invasive vs. noninvasive (native) woody vine species of South-East Queensland, Australia were investigated for trait differences in leaf morphology and anatomy under varying light intensity. The linkages of these traits with physiological performance (e.g., water-use efficiency, photosynthesis, and leaf construction cost) and plant adaptive traits of specific leaf area, biomass, and relative growth rates were also explored.• Except for stomatal size, mean leaf anatomical traits differed significantly between the two groups. Plasticity of traits and, to a very limited extent, their phenotypic integration were higher in the invasive relative to the native species. ANOVA, ordination, and analysis of similarity suggest that for leaf morphology and anatomy, the three functional strategies contribute to the differences between the two groups in the order phenotypic plasticity > trait means > phenotypic integration.• The linkages demonstrated in the study between stomatal complex/gross anatomy and physiology are scarce in the ecological literature of plant invasiveness, but the findings suggest that leaf anatomical traits need to be considered routinely as part of weed species assessment and in the worldwide leaf economic spectrum. © 2014 Botanical Society of America, Inc.
Egr-5 is a post-mitotic regulator of planarian epidermal differentiation
Tu, Kimberly C; Cheng, Li-Chun; TK Vu, Hanh; Lange, Jeffrey J; McKinney, Sean A; Seidel, Chris W; Sánchez Alvarado, Alejandro
2015-01-01
Neoblasts are an abundant, heterogeneous population of adult stem cells (ASCs) that facilitate the maintenance of planarian tissues and organs, providing a powerful system to study ASC self-renewal and differentiation dynamics. It is unknown how the collective output of neoblasts transit through differentiation pathways to produce specific cell types. The planarian epidermis is a simple tissue that undergoes rapid turnover. We found that as epidermal progeny differentiate, they progress through multiple spatiotemporal transition states with distinct gene expression profiles. We also identified a conserved early growth response family transcription factor, egr-5, that is essential for epidermal differentiation. Disruption of epidermal integrity by egr-5 RNAi triggers a global stress response that induces the proliferation of neoblasts and the concomitant expansion of not only epidermal, but also multiple progenitor cell populations. Our results further establish the planarian epidermis as a novel paradigm to uncover the molecular mechanisms regulating ASC specification in vivo. DOI: http://dx.doi.org/10.7554/eLife.10501.001 PMID:26457503
Schilmiller, Anthony L; Miner, Dennis P; Larson, Matthew; McDowell, Eric; Gang, David R; Wilkerson, Curtis; Last, Robert L
2010-07-01
Shotgun proteomics analysis allows hundreds of proteins to be identified and quantified from a single sample at relatively low cost. Extensive DNA sequence information is a prerequisite for shotgun proteomics, and it is ideal to have sequence for the organism being studied rather than from related species or accessions. While this requirement has limited the set of organisms that are candidates for this approach, next generation sequencing technologies make it feasible to obtain deep DNA sequence coverage from any organism. As part of our studies of specialized (secondary) metabolism in tomato (Solanum lycopersicum) trichomes, 454 sequencing of cDNA was combined with shotgun proteomics analyses to obtain in-depth profiles of genes and proteins expressed in leaf and stem glandular trichomes of 3-week-old plants. The expressed sequence tag and proteomics data sets combined with metabolite analysis led to the discovery and characterization of a sesquiterpene synthase that produces beta-caryophyllene and alpha-humulene from E,E-farnesyl diphosphate in trichomes of leaf but not of stem. This analysis demonstrates the utility of combining high-throughput cDNA sequencing with proteomics experiments in a target tissue. These data can be used for dissection of other biochemical processes in these specialized epidermal cells.
Schilmiller, Anthony L.; Miner, Dennis P.; Larson, Matthew; McDowell, Eric; Gang, David R.; Wilkerson, Curtis; Last, Robert L.
2010-01-01
Shotgun proteomics analysis allows hundreds of proteins to be identified and quantified from a single sample at relatively low cost. Extensive DNA sequence information is a prerequisite for shotgun proteomics, and it is ideal to have sequence for the organism being studied rather than from related species or accessions. While this requirement has limited the set of organisms that are candidates for this approach, next generation sequencing technologies make it feasible to obtain deep DNA sequence coverage from any organism. As part of our studies of specialized (secondary) metabolism in tomato (Solanum lycopersicum) trichomes, 454 sequencing of cDNA was combined with shotgun proteomics analyses to obtain in-depth profiles of genes and proteins expressed in leaf and stem glandular trichomes of 3-week-old plants. The expressed sequence tag and proteomics data sets combined with metabolite analysis led to the discovery and characterization of a sesquiterpene synthase that produces β-caryophyllene and α-humulene from E,E-farnesyl diphosphate in trichomes of leaf but not of stem. This analysis demonstrates the utility of combining high-throughput cDNA sequencing with proteomics experiments in a target tissue. These data can be used for dissection of other biochemical processes in these specialized epidermal cells. PMID:20431087
Leaf shape: genetic controls and environmental factors.
Tsukaya, Hirokazu
2005-01-01
In recent years, many genes have been identified that are involved in the developmental processes of leaf morphogenesis. Here, I review the mechanisms of leaf shape control in a model plant, Arabidopsis thaliana, focusing on genes that fulfill special roles in leaf development. The lateral, two-dimensional expansion of leaf blades is highly dependent on the determination of the dorsoventrality of the primordia, a defining characteristic of leaves. Having a determinate fate is also a characteristic feature of leaves and is controlled by many factors. Lateral expansion is not only controlled by general regulators of cell cycling, but also by the multi-level regulation of meristematic activities, e.g., specific control of cell proliferation in the leaf-length direction, in leaf margins and in parenchymatous cells. In collaboration with the polarized control of leaf cell elongation, these redundant and specialized regulating systems for cell cycling in leaf lamina may realize the elegantly smooth, flat structure of leaves. The unified, flat shape of leaves is also dependent on the fine integration of cell proliferation and cell enlargement. Interestingly, while a decrease in the number of cells in leaf primordia can trigger a cell volume increase, an increase in the number of cells does not trigger a cell volume decrease. This phenomenon is termed compensation and suggests the existence of some systems for integration between cell cycling and cell enlargement in leaf primordia via cell-cell communication. The environmental adjustment of leaf expansion to light conditions and gravity is also summarized.
Pavement cells: a model system for non-transcriptional auxin signalling and crosstalks
Chen, Jisheng; Wang, Fei; Zheng, Shiqin; Xu, Tongda; Yang, Zhenbiao
2015-01-01
Auxin (indole acetic acid) is a multifunctional phytohormone controlling various developmental patterns, morphogenetic processes, and growth behaviours in plants. The transcription-based pathway activated by the nuclear TRANSPORT INHIBITOR RESISTANT 1/auxin-related F-box auxin receptors is well established, but the long-sought molecular mechanisms of non-transcriptional auxin signalling remained enigmatic until very recently. Along with the establishment of the Arabidopsis leaf epidermal pavement cell (PC) as an exciting and amenable model system in the past decade, we began to gain insight into non-transcriptional auxin signalling. The puzzle-piece shape of PCs forms from intercalated or interdigitated cell growth, requiring local intra- and inter-cellular coordination of lobe and indent formation. Precise coordination of this interdigitated pattern requires auxin and an extracellular auxin sensing system that activates plasma membrane-associated Rho GTPases from plants and subsequent downstream events regulating cytoskeletal reorganization and PIN polarization. Apart from auxin, mechanical stress and cytokinin have been shown to affect PC interdigitation, possibly by interacting with auxin signals. This review focuses upon signalling mechanisms for cell polarity formation in PCs, with an emphasis on non-transcriptional auxin signalling in polarized cell expansion and pattern formation and how different auxin pathways interplay with each other and with other signals. PMID:26047974
Maize leaf trichomes represent an entry point of infection for Fusarium species.
Nguyen, Thi Thanh Xuan; Dehne, Heinz-Wilhelm; Steiner, Ulrike
2016-08-01
Fifteen day old maize seedlings were inoculated with Fusarium graminearum, Fusarium proliferatum, and Fusarium verticillioides. More than 90 % F. proliferatum and F. verticillioides conidia and 50 % of F. graminearum formed one germ tube whereas the other 50 % of F. graminearum conidia formed two to three germ tubes. The germ tubes of F. graminearum conidia were longer than those of F. proliferatum and F. verticillioides. The three species of Fusarium infected bi-cellular trichomes by adhering and growing along the trichomes or by attaching to the cap cell of the trichomes 48 h after inoculation. Hyphae penetrated into the trichomes at the base, the side or at the top of the cap cells. The hyphae colonized the cap cells and then spread to base cells. Prickle trichomes were infected 72 h after inoculation. The hyphae either wrapped around prickle trichomes or formed a mass of hyphae around the top of prickle trichomes or formed appressorium. Macro trichomes were infected by F. graminearum 7 d after inoculation. Following penetration, the fungus spread to adjacent epidermal cells and to the subcuticle. This investigation provides the first assessment of F. graminearum, F. proliferatum, and F. verticillioides infection via trichomes of maize leaves. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Eichmann, Ruth; Dechert, Cornelia; Kogel, Karl-Heinz; Hückelhoven, Ralph
2006-11-01
SUMMARY BAX Inhibitor-1 (BI-1) is a conserved cell death suppressor protein. In barley, BI-1 (HvBI-1) expression is induced upon powdery mildew infection and when over-expressed in epidermal cells of barley, HvBI-1 induces susceptibility to the biotrophic fungal pathogen Blumeria graminis. We co-expressed mammalian pro-apoptotic BAX together with HvBI-1, and the mammalian BAX antagonist BCL-X(L) in barley epidermal cells. BAX expression led to cessation of cytoplasmic streaming and collapse of the cytoplasm while co-expression of HvBI-1 and BCL-X(L) partially or completely, respectively, rescued cells from BAX lethality. When B. graminis was attacking epidermal cells, a green fluorescent protein fusion of HvBI-1 accumulated at the site of attempted penetration and was also present around haustoria. Over-expression of HvBI-1 in epidermal cells weakened a cell-wall-associated local hydrogen peroxide burst in a resistant mlo-mutant genotype and supported haustoria accommodation in race-specifically resistant MLA12-barley. HvBI-1 is a cell death regulator protein of barley with the potential to suppress host defence reactions.
Morphometric analysis of epidermal differentiation in primary roots of Zea mays
NASA Technical Reports Server (NTRS)
Moore, R.; Smith, H. S.
1990-01-01
Epidermal differentiation in primary roots of Zea mays was divided into six cell types based on cellular shape and cytoplasmic appearance. These six cell types are: 1) apical protoderm, located at the tip of the root pole and characterized by periclinally flattened cells; 2) cuboidal protoderm, located approximately 230 microns from the root pole and characterized by cuboidal cells; 3) tabular epidermis, located approximately 450 microns from the root pole and characterized by anticlinally flattened cells; 4) cuboidal epidermis, located approximately 900 microns from the root pole and characterized by cuboidal cells having numerous small vacuoles; 5) vacuolate cuboidal epidermis, located approximately 1,500 microns from the root pole and characterized by cuboidal cells containing several large vacuoles; and 6) columnar epidermis, located approximately 2,200 microns from the root pole (i.e., at the beginning of the zone of elongation) and characterized by elongated cells. We also used stereology to quantify the cellular changes associated with epidermal differentiation. The quiescent center and the apical protoderm have significantly different ultrastructures. The relative volume of dictyosomes increases dramatically during the early stages of epidermal differentiation. This increase correlates inversely with the amount of coverage provided by the root cap and mucilage.
Uda, Junki; Kubo, Hirokazu; Nakajima, Yuka; Goto, Arisa; Akaki, Junji; Yoshida, Ikuyo; Matsuoka, Nobuya; Hayakawa, Takao
2016-01-01
Aloe has been used as a folk medicine because it has several important therapeutic properties. These include wound and burn healing, and Aloe is now used in a variety of commercially available topical medications for wound healing and skin care. However, its effects on epidermal keratinocytes remain largely unclear. Our data indicated that both Aloe vera gel (AVG) and Cape aloe extract (CAE) significantly improved wound healing in human primary epidermal keratinocytes (HPEKs) and a human skin equivalent model. In addition, flow cytometry analysis revealed that cell surface expressions of β1-, α6-, β4-integrin, and E-cadherin increased in HPEKs treated with AVG and CAE. These increases may contribute to cell migration and wound healing. Treatment with Aloe also resulted in significant changes in cell-cycle progression and in increases in cell number. Aloe increased gene expression of differentiation markers in HPEKs, suggesting roles for AVG and CAE in the improvement of keratinocyte function. Furthermore, human skin epidermal equivalents developed from HPEKs with medium containing Aloe were thicker than control equivalents, indicating the effectiveness of Aloe on enhancing epidermal development. Based on these results, both AVG and CAE have benefits in wound healing and in treatment of rough skin. PMID:27736988
NASA Astrophysics Data System (ADS)
Maidhof, Robert; Liebel, Frank; Hwang, Cheng; Ruvolo, Eduardo; Lyga, John
2017-02-01
The epidermis is the outermost layer of skin and is composed of cells primarily containing keratin. It consists of about ten layers of living cells (keratinocytes) and ten layers of dead cells (corneocytes). These cells are continually shed from the outside and replaced from the inside in a process called desquamation which is controlled by two biological events - proliferation and differentiation. One method to non-invasively study biological changes in the skin is using fluorescence excitation spectroscopy. Several characteristic excitation-emission peaks occur in skin that have been related to the epidermal and dermal composition. The magnitude of the peak that occurs at 295nm excitation (F295) has been linked to changes in skin proliferation, cell turnover, epidermal thickening, and skin aging. We hypothesize that changes in this fluorescent signal could be used to assess the potential activity of cosmetic anti-aging compounds to deliver a benefit to skin. Previous work with retinol and glycolic acid, two commonly used actives that effect epidermal proliferation and exfoliation, has demonstrated an increase in F295 (attributed to tryptophan excitation fluorescence). In this study we present the results of a placebo controlled study that aims to correlate changes in F295 with biological performance (epidermal thickening and Ki67 expression).
Zhao, Lijuan; Peng, Bo; Hernandez-Viezcas, Jose A; Rico, Cyren; Sun, Youping; Peralta-Videa, Jose R; Tang, Xiaolei; Niu, Genhua; Jin, Lixin; Varela-Ramirez, Armando; Zhang, Jian-ying; Gardea-Torresdey, Jorge L
2012-11-27
The rapid development of nanotechnology will inevitably release nanoparticles (NPs) into the environment with unidentified consequences. In addition, the potential toxicity of CeO(2) NPs to plants and the possible transfer into the food chain are still unknown. Corn plants (Zea mays) were germinated and grown in soil treated with CeO(2) NPs at 400 or 800 mg/kg. Stress-related parameters, such as H(2)O(2), catalase (CAT), and ascorbate peroxidase (APX) activity, heat shock protein 70 (HSP70), lipid peroxidation, cell death, and leaf gas exchange were analyzed at 10, 15, and 20 days post-germination. Confocal laser scanning microscopy was used to image H(2)O(2) distribution in corn leaves. Results showed that the CeO(2) NP treatments increased accumulation of H(2)O(2), up to day 15, in phloem, xylem, bundle sheath cells and epidermal cells of shoots. The CAT and APX activities were also increased in the corn shoot, concomitant with the H(2)O(2) levels. Both 400 and 800 mg/kg CeO(2) NPs triggered the up-regulation of the HSP70 in roots, indicating a systemic stress response. None of the CeO(2) NPs increased the level of thiobarbituric acid reacting substances, indicating that no lipid peroxidation occurred. CeO(2) NPs, at both concentrations, did not induce ion leakage in either roots or shoots, suggesting that membrane integrity was not compromised. Leaf net photosynthetic rate, transpiration, and stomatal conductance were not affected by CeO(2) NPs. Our results suggest that the CAT, APX, and HSP70 might help the plants defend against CeO(2) NP-induced oxidative injury and survive NP exposure.
Zhao, Lijuan; Peng, Bo; Hernandez-Viezcas, Jose A.; Rico, Cyren; Sun, Youping; Peralta-Videa, Jose R.; Tang, Xiaolei; Niu, Genhua; Jin, Lixin; Varela-Ramirez, Armando; Zhang, Jian-ying; Gardea-Torresdey, Jorge L.
2014-01-01
The rapid development of nanotechnology will inevitably release nanoparticles (NPs) into the environment with unidentified consequences. In addition, the potential toxicity of CeO2 NPs to plants, and the possible transfer into the food chain, are still unknown. Corn plants (Zea mays) were germinated and grown in soil treated with CeO2 NPs at 400 or 800 mg/kg. Stress related parameters, such as: H2O2, catalase (CAT) and ascorbate peroxidase (APX) activity, heat shock protein 70 (HSP 70), lipid peroxidation, cell death and leaf gas exchange were analyzed at 10, 15, and 20 days post germination. Confocal laser scanning microscopy was used to image H2O2 distribution in corn leaves. Results showed that the CeO2 NP treatments increased accumulation of H2O2, up to day 15, in phloem, xylem, bundle sheath cells, and epidermal cells of shoots. The CAT and APX activities were also increased in the corn shoot, concomitant with the H2O2 levels. Both 400 and 800 mg/kg CeO2 NPs triggered the up regulation of the HSP 70 in roots, indicating a systemic stress response. None of the CeO2 NPs increased the level of thiobarbituric acid reacting substances, indicating that no lipid peroxidation occurred. CeO2 NPs, at both concentrations, did not induce ion leakage in either roots or shoots, suggesting membrane integrity was not compromised. Leaf net photosynthetic rate, transpiration, and stomatal conductance were not affected by CeO2 NPs. Our results suggest that the CAT, APX and HSP 70 might help the plants defend against CeO2 NPs induced oxidative injury and survive NP exposure. PMID:23050848
Christopher, David A; Borsics, Tamas; Yuen, Christen Y L; Ullmer, Wendy; Andème-Ondzighi, Christine; Andres, Marilou A; Kang, Byung-Ho; Staehelin, L Andrew
2007-09-19
The cyclic nucleotide-gated ion channels (CNGCs) maintain cation homeostasis essential for a wide range of physiological processes in plant cells. However, the precise subcellular locations and trafficking of these membrane proteins are poorly understood. This is further complicated by a general deficiency of information about targeting pathways of membrane proteins in plants. To investigate CNGC trafficking and localization, we have measured Atcngc5 and Atcngc10 expression in roots and leaves, analyzed AtCNGC10-GFP fusions transiently expressed in protoplasts, and conducted immunofluorescence labeling of protoplasts and immunoelectron microscopic analysis of high pressure frozen leaves and roots. AtCNGC10 mRNA and protein levels were 2.5-fold higher in roots than leaves, while AtCNGC5 mRNA and protein levels were nearly equal in these tissues. The AtCNGC10-EGFP fusion was targeted to the plasma membrane in leaf protoplasts, and lightly labeled several intracellular structures. Immunofluorescence microscopy with affinity purified CNGC-specific antisera indicated that AtCNGC5 and AtCNGC10 are present in the plasma membrane of protoplasts. Immunoelectron microscopy demonstrated that AtCNGC10 was associated with the plasma membrane of mesophyll, palisade parenchyma and epidermal cells of leaves, and the meristem, columella and cap cells of roots. AtCNCG10 was also observed in the endoplasmic reticulum and Golgi cisternae and vesicles of 50-150 nm in size. Patch clamp assays of an AtCNGC10-GFP fusion expressed in HEK293 cells measured significant cation currents. AtCNGC5 and AtCNGC10 are plasma membrane proteins. We postulate that AtCNGC10 traffics from the endoplasmic reticulum via the Golgi apparatus and associated vesicles to the plasma membrane. The presence of the cation channel, AtCNGC10, in root cap meristem cells, cell plate, and gravity-sensing columella cells, combined with the previously reported antisense phenotypes of decreased gravitropic and cell enlargement responses, suggest roles of AtCNGC10 in modulating cation balance required for root gravitropism, cell division and growth.
Biochemistry of epidermal stem cells.
Eckert, Richard L; Adhikary, Gautam; Balasubramanian, Sivaprakasam; Rorke, Ellen A; Vemuri, Mohan C; Boucher, Shayne E; Bickenbach, Jackie R; Kerr, Candace
2013-02-01
The epidermis is an important protective barrier that is essential for maintenance of life. Maintaining this barrier requires continuous cell proliferation and differentiation. Moreover, these processes must be balanced to produce a normal epidermis. The stem cells of the epidermis reside in specific locations in the basal epidermis, hair follicle and sebaceous glands and these cells are responsible for replenishment of this tissue. A great deal of effort has gone into identifying protein epitopes that mark stem cells, in identifying stem cell niche locations, and in understanding how stem cell populations are related. We discuss these studies as they apply to understanding normal epidermal homeostasis and skin cancer. An assortment of stem cell markers have been identified that permit assignment of stem cells to specific regions of the epidermis, and progress has been made in understanding the role of these cells in normal epidermal homeostasis and in conditions of tissue stress. A key finding is the multiple stem cell populations exist in epidermis that give rise to different structures, and that multiple stem cell types may contribute to repair in damaged epidermis. Understanding epidermal stem cell biology is likely to lead to important therapies for treating skin diseases and cancer, and will also contribute to our understanding of stem cells in other systems. This article is part of a Special Issue entitled Biochemistry of Stem Cells. Copyright © 2012 Elsevier B.V. All rights reserved.
Loomis, Kari D.; Zhu, Songyun; Yoon, Kyungsil; Johnson, Peter F.; Smart, Robert C.
2013-01-01
CCAAT/enhancer binding protein y (C/EBPα) is a basic leucine zipper transcription factor that inhibits cell cycle progression and regulates differentiation in various cell types. C/EBPα is inactivated by mutation in acute myeloid leukemia (AML) and is considered a human tumor suppressor in AML. Although C/EBPα mutations have not been observed in malignancies other than AML, greatly diminished expression of C/EBPα occurs in numerous human epithelial cancers including lung, liver, endometrial, skin, and breast, suggesting a possible tumor suppressor function. However, direct evidence for C/EBPα as an epithelial tumor suppressor is lacking due to the absence of C/EBPα mutations in epithelial tumors and the lethal effect of C/EBPα deletion in mouse model systems. To examine the function of C/EBPα in epithelial tumor development, an epidermal-specific C/EBPα knockout mouse was generated. The epidermal-specific C/EBPα knockout mice survived and displayed no detectable abnormalities in epidermal keratinocyte proliferation, differentiation, or apoptosis, showing that C/EBPα is dispensable for normal epidermal homeostasis. In spite of this, the epidermal-specific C/EBPα knockout mice were highly susceptible to skin tumor development involving oncogenic Ras. These mice displayed decreased tumor latency and striking increases in tumor incidence, multiplicity, growth rate, and the rate of malignant progression. Mice hemizygous for C/EBPα displayed an intermediate-enhanced tumor phenotype. Our results suggest that decreased expression of C/EBPα contributes to deregulation of tumor cell proliferation. C/EBPα had been proposed to block cell cycle progression through inhibition of E2F activity. We observed that C/EBPα blocked Ras-induced and epidermal growth factor-induced E2F activity in keratinocytes and also blocked Ras-induced cell transformation and cell cycle progression. Our study shows that C/EBPα is dispensable for epidermal homeostasis and provides genetic evidence that C/EBPα is a suppressor of epithelial tumorigenesis. PMID:17638888
A novel DLX3-PKC integrated signaling network drives keratinocyte differentiation.
Palazzo, Elisabetta; Kellett, Meghan D; Cataisson, Christophe; Bible, Paul W; Bhattacharya, Shreya; Sun, Hong-Wei; Gormley, Anna C; Yuspa, Stuart H; Morasso, Maria I
2017-04-01
Epidermal homeostasis relies on a well-defined transcriptional control of keratinocyte proliferation and differentiation, which is critical to prevent skin diseases such as atopic dermatitis, psoriasis or cancer. We have recently shown that the homeobox transcription factor DLX3 and the tumor suppressor p53 co-regulate cell cycle-related signaling and that this mechanism is functionally involved in cutaneous squamous cell carcinoma development. Here we show that DLX3 expression and its downstream signaling depend on protein kinase C α (PKCα) activity in skin. We found that following 12-O-tetradecanoyl-phorbol-13-acetate (TPA) topical treatment, DLX3 expression is significantly upregulated in the epidermis and keratinocytes from mice overexpressing PKCα by transgenic targeting (K5-PKCα), resulting in cell cycle block and terminal differentiation. Epidermis lacking DLX3 (DLX3cKO), which is linked to the development of a DLX3-dependent epidermal hyperplasia with hyperkeratosis and dermal leukocyte recruitment, displays enhanced PKCα activation, suggesting a feedback regulation of DLX3 and PKCα. Of particular significance, transcriptional activation of epidermal barrier, antimicrobial peptide and cytokine genes is significantly increased in DLX3cKO skin and further increased by TPA-dependent PKC activation. Furthermore, when inhibiting PKC activity, we show that epidermal thickness, keratinocyte proliferation and inflammatory cell infiltration are reduced and the PKC-DLX3-dependent gene expression signature is normalized. Independently of PKC, DLX3 expression specifically modulates regulatory networks such as Wnt signaling, phosphatase activity and cell adhesion. Chromatin immunoprecipitation sequencing analysis of primary suprabasal keratinocytes showed binding of DLX3 to the proximal promoter regions of genes associated with cell cycle regulation, and of structural proteins and transcription factors involved in epidermal differentiation. These results indicate that Dlx3 potentially regulates a set of crucial genes necessary during the epidermal differentiation process. Altogether, we demonstrate the existence of a robust DLX3-PKCα signaling pathway in keratinocytes that is crucial to epidermal differentiation control and cutaneous homeostasis.
A novel DLX3–PKC integrated signaling network drives keratinocyte differentiation
Palazzo, Elisabetta; Kellett, Meghan D; Cataisson, Christophe; Bible, Paul W; Bhattacharya, Shreya; Sun, Hong-wei; Gormley, Anna C; Yuspa, Stuart H; Morasso, Maria I
2017-01-01
Epidermal homeostasis relies on a well-defined transcriptional control of keratinocyte proliferation and differentiation, which is critical to prevent skin diseases such as atopic dermatitis, psoriasis or cancer. We have recently shown that the homeobox transcription factor DLX3 and the tumor suppressor p53 co-regulate cell cycle-related signaling and that this mechanism is functionally involved in cutaneous squamous cell carcinoma development. Here we show that DLX3 expression and its downstream signaling depend on protein kinase C α (PKCα) activity in skin. We found that following 12-O-tetradecanoyl-phorbol-13-acetate (TPA) topical treatment, DLX3 expression is significantly upregulated in the epidermis and keratinocytes from mice overexpressing PKCα by transgenic targeting (K5-PKCα), resulting in cell cycle block and terminal differentiation. Epidermis lacking DLX3 (DLX3cKO), which is linked to the development of a DLX3-dependent epidermal hyperplasia with hyperkeratosis and dermal leukocyte recruitment, displays enhanced PKCα activation, suggesting a feedback regulation of DLX3 and PKCα. Of particular significance, transcriptional activation of epidermal barrier, antimicrobial peptide and cytokine genes is significantly increased in DLX3cKO skin and further increased by TPA-dependent PKC activation. Furthermore, when inhibiting PKC activity, we show that epidermal thickness, keratinocyte proliferation and inflammatory cell infiltration are reduced and the PKC-DLX3-dependent gene expression signature is normalized. Independently of PKC, DLX3 expression specifically modulates regulatory networks such as Wnt signaling, phosphatase activity and cell adhesion. Chromatin immunoprecipitation sequencing analysis of primary suprabasal keratinocytes showed binding of DLX3 to the proximal promoter regions of genes associated with cell cycle regulation, and of structural proteins and transcription factors involved in epidermal differentiation. These results indicate that Dlx3 potentially regulates a set of crucial genes necessary during the epidermal differentiation process. Altogether, we demonstrate the existence of a robust DLX3–PKCα signaling pathway in keratinocytes that is crucial to epidermal differentiation control and cutaneous homeostasis. PMID:28186503
Lee, M M; Schiefelbein, J
1999-11-24
The formation of the root epidermis of Arabidopsis provides a simple and elegant model for the analysis of cell patterning. A novel gene, WEREWOLF (WER), is described here that is required for position-dependent patterning of the epidermal cell types. The WER gene encodes a MYB-type protein and is preferentially expressed within cells destined to adopt the non-hair fate. Furthermore, WER is shown to regulate the position-dependent expression of the GLABRA2 homeobox gene, to interact with a bHLH protein, and to act in opposition to the CAPRICE MYB. These results suggest a simple model to explain the specification of the two root epidermal cell types, and they provide insight into the molecular mechanisms used to control cell patterning.
El-Hadidy, M R; El-Hadidy, A R; Bhaa, A; Asker, S A; Mazroa, S A
2014-04-01
Moist Exposed Burn Ointment (MEBO(®)) is widely used topical agent applied on skin burn. This study investigated the effect of MEBO topical application on activation and proliferation of epidermal stem cells through the immunohistochemical localization of cytokeratin 19 (CK19) as a known marker expressed in epidermal stem cells. Biopsies from normal skin and burn wounds were taken from 21 patients with partial thickness burn 1, 4, 7, 14, 21, and 28 days after treatment with MEBO. Tissue sections were prepared for histological study and for CK19 immunohistochemical localization. In control skin, only few cells showed a positive CK19 immune-reaction. Burned skin showed necrosis of full thickness epidermis that extended to dermis. Gradual regeneration of skin accompanied with an enhancement in CK19 immune-reactivity was noted 4, 7, 14 and 21 days after treatment with MEBO. On day 28, a complete regeneration of skin was observed with a return of CK19 immune-reactivity to the basal pattern again. In conclusion, the enhancement of epidermal stem cell marker CK19 after treatment of partial thickness burn injuries with MEBO suggested the role of MEBO in promoting epidermal stem cell activation and proliferation during burn wound healing. Copyright © 2014 Elsevier Ltd. All rights reserved.
Marzec, M; Muszynska, A; Melzer, M; Sas-Nowosielska, H; Kurczynska, E U; Wick, S
2014-01-01
It is well known that the process of plant cell differentiation depends on the symplasmic isolation of cells. Before starting the differentiation programme, the individual cell or group of cells should restrict symplasmic communication with neighbouring cells. We tested the symplasmic communication between epidermal cells in the different root zones of parental barley plants Hordeum vulgare L., cv. ‘Karat’ with normal root hair development, and two root hairless mutants (rhl1.a and rhl1.b). The results clearly show that symplasmic communication was limited during root hair differentiation in the parental variety, whereas in both root hairless mutants epidermal cells were still symplasmically connected in the corresponding root zone. This paper is the first report on the role of symplasmic isolation in barley root cell differentiation, and additionally shows that a disturbance in the restriction of symplasmic communication is present in root hairless mutants. PMID:23927737
Apoptosis as a Mechanism for Keratinocyte Death in Canine Toxic Epidermal Necrolysis.
Banovic, F; Dunston, S; Linder, K E; Rakich, P; Olivry, T
2017-03-01
In humans and dogs, toxic epidermal necrolysis (TEN) is a life-threatening dermatosis characterized by sudden epidermal death resulting in extensive skin detachment. There is little information on the pathogenesis of keratinocyte cell death in canine TEN. We studied the occurrence of apoptosis in skin lesions of dogs with TEN to determine if apoptosis contributes to the pathogenesis of this disease. Immunostaining with antibodies to activated caspase-3 and the terminal deoxynucleotidyl-transferase (TdT)-mediated deoxyuridine triphosphate (dUTP) nick-end labeling technique revealed positive apoptotic keratinocytes in basal and suprabasal epidermal compartments in 17 biopsy specimens collected from 3 dogs with TEN and 16 from 3 dogs with erythema multiforme (EM). There was no significant difference in the number of positively stained epidermal cells between TEN and EM. These results suggest that apoptosis of epidermal keratinocytes and lymphocytic satellitosis represent one of the early steps in the pathogenesis of canine TEN, as in the human disease counterpart.
Role of Pin1 in UVA-induced cell proliferation and malignant transformation in epidermal cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Chang Yeob; Hien, Tran Thi; Lim, Sung Chul
2011-06-24
Highlights: {yields} Pin1 expression is enhanced by low energy UVA irradiation in both skin tissues of hairless mice and JB6 C141 epidermal cells. {yields} UVA irradiation increases activator protein-1 activity and cyclin D1 in a Pin1-dependent manner. {yields} UVA potentiates EGF-inducible, anchorage-independent growth of epidermal cells, and this is suppressed by Pin1 inhibition or by anti-oxidant. -- Abstract: Ultraviolet A (UVA) radiation ({lambda} = 320-400 nm) is considered a major cause of human skin cancer. Pin1, a peptidyl prolyl isomerase, is overexpressed in most types of cancer tissues and plays an important role in cell proliferation and transformation. Here, wemore » demonstrated that Pin1 expression was enhanced by low energy UVA (300-900 mJ/cm{sup 2}) irradiation in both skin tissues of hairless mice and JB6 C141 epidermal cells. Exposure of epidermal cells to UVA radiation increased cell proliferation and cyclin D1 expression, and these changes were blocked by Pin1 inhibition. UVA irradiation also increased activator protein-1 (AP-1) minimal reporter activity and nuclear levels of c-Jun, but not c-Fos, in a Pin1-dependent manner. The increases in Pin1 expression and in AP-1 reporter activity in response to UVA were abolished by N-acetylcysteine (NAC) treatment. Finally, we found that pre-exposure of JB6 C141 cells to UVA potentiated EGF-inducible, anchorage-independent growth, and this effect was significantly suppressed by Pin1inhibition or by NAC.« less
Biochemistry of epidermal stem cells☆
Eckert, Richard L.; Adhikary, Gautam; Balasubramanian, Sivaprakasam; Rorke, Ellen A.; Vemuri, Mohan C.; Boucher, Shayne E.; Bickenbach, Jackie R.; Kerr, Candace
2014-01-01
Background The epidermis is an important protective barrier that is essential for maintenance of life. Maintaining this barrier requires continuous cell proliferation and differentiation. Moreover, these processes must be balanced to produce a normal epidermis. The stem cells of the epidermis reside in specific locations in the basal epidermis, hair follicle and sebaceous glands and these cells are responsible for replenishment of this tissue. Scope of review A great deal of effort has gone into identifying protein epitopes that mark stem cells, in identifying stem cell niche locations, and in understanding how stem cell populations are related. We discuss these studies as they apply to understanding normal epidermal homeostasis and skin cancer. Major conclusions An assortment of stem cell markers have been identified that permit assignment of stem cells to specific regions of the epidermis, and progress has been made in understanding the role of these cells in normal epidermal homeostasis and in conditions of tissue stress. A key finding is the multiple stem cell populations exist in epidermis that give rise to different structures, and that multiple stem cell types may contribute to repair in damaged epidermis. General significance Understanding epidermal stem cell biology is likely to lead to important therapies for treating skin diseases and cancer, and will also contribute to our understanding of stem cells in other systems. This article is part of a Special Issue entitled Biochemistry of Stem Cells. PMID:22820019
DOE Office of Scientific and Technical Information (OSTI.GOV)
Day, T.A.; Howells, B.W.; Ruhland, C.T.
1995-06-01
In growth-chamber and greenhouse studies, garden pea is typically quite sensitive to enhanced UV-B radiation (280-320 nm). We assessed whether growth of pea was reduced under more ecologically relevant UV-B enhancements by employing modulated field lampbanks simulating 0, 16 or 24% ozone depletion. We also examined if these UV-B treatments altered leaf anatomy and concentrations of chlorophyll and UV-B-absorbing compounds, and whether this was dependent on leaf age. We used Pisum sativum mutant Argenteum which has an easily detachable epidermis that allowed us to compare concentrations in epidermal and mesophyll tissues. There were no significant UV-B effects on whole-plant growth.more » Of the 15 leaf-level parameters we examined, UV-B had a strong effect on only two parameters: the ratio of UV-B-absorbing compounds to chlorophyll (which increased with UV-B dose), and stomatal density of the adaxial surface (which decreased with UV-B dose). Chlorophyll concentrations tended to decrease, while the proportion of UV-B-absorbing compounds in the adaxial epidermis tended to increase with UV-B dose (p = 0.11 for both). In contrast to UV-B effects, we found strong leaf-age effects on nearly all parameters except the ratio of UV-B-absorbing compounds to chlorophyll, which remained relatively constant with leaf age.« less
A functional cutin matrix is required for plant protection against water loss
Ma, Jian Feng; Li, Chao; Yamaji, Naoki; Nevo, Eviatar
2011-01-01
The plant cuticle, a cutin matrix embedded with and covered by wax, seals the aerial organ's surface to protect the plant against uncontrolled water loss. The cutin matrix is essential for the cuticle to function as a barrier to water loss. Recently, we identified from wild barley a drought supersensitive mutant, eibi1, which is caused by a defective cutin matrix as the result of the loss of function of HvABCG31, an ABCG full transporter. Here, we report that eibi1 epidermal cells contain lipid-like droplets, which are supposed to consist of cutin monomers that have not been transported out of the cells. The eibi1 cuticle is fragile due to a defective cutin matrix. The rice ortholog of the EIBI1 gene has a similar pattern of expression, young shoot but not flag leaf blade, as the barley gene. The model of the function of Eibi1 is discussed. The HvABCG31 full transporter functions in the export of cutin components and contributed to land plant colonization, hence also to terrestrial life evolution. PMID:22019635
A functional cutin matrix is required for plant protection against water loss.
Chen, Guoxiong; Komatsuda, Takao; Ma, Jian Feng; Li, Chao; Yamaji, Naoki; Nevo, Eviatar
2011-09-01
The plant cuticle, a cutin matrix embedded with and covered by wax, seals the aerial organ's surface to protect the plant against uncontrolled water loss. The cutin matrix is essential for the cuticle to function as a barrier to water loss. Recently, we identified from wild barley a drought supersensitive mutant, eibi1, which is caused by a defective cutin matrix as the result of the loss of function of HvABCG31, an ABCG full transporter. Here, we report that eibi1 epidermal cells contain lipid-like droplets, which are supposed to consist of cutin monomers that have not been transported out of the cells. The eibi1 cuticle is fragile due to a defective cutin matrix. The rice ortholog of the EIBI1 gene has a similar pattern of expression, young shoot but not flag leaf blade, as the barley gene. The model of the function of Eibi1 is discussed. The HvABCG31 full transporter functions in the export of cutin components and contributed to land plant colonization, hence also to terrestrial life evolution.
Salerno, Simona; Messina, Antonietta; Giordano, Francesca; Bader, Augustinus; Drioli, Enrico; De Bartolo, Loredana
2017-02-01
Dermal-epidermal membrane systems were developed by co-culturing human keratinocytes with Skin derived Stem Cells (SSCs), which are Mesenchymal Stem Cells (MSCs) isolated from dermis, on biodegradable membranes of chitosan (CHT), polycaprolactone (PCL) and a polymeric blend of CHT and PCL. The membranes display physico-chemical, morphological, mechanical and biodegradation properties that could satisfy and fulfil specific requirements in skin tissue engineering. CHT membrane exhibits an optimal biodegradation rate for acute wounds; CHT-PCL for the chronic ones. On the other hand, PCL membrane in spite of its very slow biodegradation rate exhibits mechanical properties similar to in vivo dermis, a lower hydrophilic character, and a surface roughness, all properties that make it able to sustain cell adhesion and proliferation for in vitro skin models. Both CHT-PCL and PCL membranes guided epidermal and dermal differentiation of SSCs as pointed out by the expression of cytokeratins and the deposition of the ECM protein fibronectin, respectively. In the dermal-epidermal membrane systems, a more suitable microenvironment for the SSCs differentiation was promoted by the interactions and the mutual interplay with keratinocytes. Being skin tissue-biased stem cells committed to their specific final dermal and/or epidermal cell differentiation, SSCs are more suitable for skin tissue engineering than other adult MSCs with different origin. For this reason, they represent a useful autologous cell source for engineering skin substitutes for both in vivo and in vitro applications. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, Seunghyun; Kim, Hyemin; Shin, Seungjun; Doh, Junsang; Kim, Chulhong
2017-03-01
Optical microscopy (OM) and photoacoustic microscopy (PAM) have previously been used to image the optical absorption of intercellular features of biological cells. However, the optical diffraction limit ( 200 nm) makes it difficult for these modalities to image nanoscale inner cell structures and the distribution of internal cell components. Although super-resolution fluorescence microscopy, such as stimulated emission depletion microscopy (STED) and stochastic optical reconstruction microscopy (STORM), has successfully performed nanoscale biological imaging, these modalities require the use of exogenous fluorescence agents, which are unfavorable for biological samples. Our newly developed atomic force photoactivated microscopy (AFPM) can provide optical absorption images with nanoscale lateral resolution without any exogenous contrast agents. AFPM combines conventional atomic force microscopy (AFM) and an optical excitation system, and simultaneously provides multiple contrasts, such as the topography and magnitude of optical absorption. AFPM can detect the intrinsic optical absorption of samples with 8 nm lateral resolution, easily overcoming the diffraction limit. Using the label-free AFPM system, we have successfully imaged the optical absorption properties of a single melanoma cell (B16F10) and a rosette leaf epidermal cell of Arabidopsis (ecotype Columbia (Col-0)) with nanoscale lateral resolution. The remarkable images show the melanosome distribution of a melanoma cell and the biological structures of a plant cell. AFPM provides superior imaging of optical absorption with a nanoscale lateral resolution, and it promises to become widely used in biological and chemical research.
Ojeda, Isidro; Francisco-Ortega, Javier; Cronk, Quentin C B
2009-11-01
The legume flower is highly variable in symmetry and differentiation of petal types. Most papilionoid flowers are zygomorphic with three types of petals: one dorsal, two lateral and two ventral petals. Mimosoids have radial flowers with reduced petals while caesalpinioids display a range from strongly zygomorphic to nearly radial symmetry. The aims are to characterize the petal micromorphology relative to flower morphology and evolution within the family and assess its use as a marker of petal identity (whether dorsal, lateral or ventral) as determined by the expression of developmental genes. Petals were analysed using the scanning electron microscope and light microscope. A total of 175 species were studied representing 26 tribes and 89 genera in all three subfamilies of the Leguminosae. The papilionoids have the highest degree of variation of epidermal types along the dorsiventral axis within the flower. In Loteae and genistoids, in particular, it is common for each petal type to have a different major epidermal micromorphology. Papillose conical cells are mainly found on dorsal and lateral petals. Tabular rugose cells are mainly found on lateral petals and tabular flat cells are found only in ventral petals. Caesalpinioids lack strong micromorphological variation along this axis and usually have only a single major epidermal type within a flower, although the type maybe either tabular rugose cells, papillose conical cells or papillose knobby rugose cells, depending on the species. Strong micromorphological variation between different petals in the flower is exclusive to the subfamily Papilionoideae. Both major and minor epidermal types can be used as micromorphological markers of petal identity, at least in papilionoids, and they are important characters of flower evolution in the whole family. The molecular developmental pathway between specific epidermal micromorphology and the expression of petal identity genes has yet to be established.
Matsumoto, Reiko; Sugimoto, Masazumi
2007-02-01
We have established a new culture system to study re-epithelialization during fish epidermal wound healing. In this culture system, fetal bovine serum (FBS) stimulates the epidermal outgrowth of multi-cellular layers from scale skin mounted on a coverslip, even when cell proliferation is blocked. The rate of outgrowth is about 0.4 mm/h, and at 3 h after incubation, the area occupied by the epidermal sheet is nine times larger than the area of the original scale skin. Cells at the bottom of the outgrowth show a migratory phenotype with lamellipodia, and "purse string"-like actin bundles have been found over the leading-edge cells with polarized lamellipodia. In the superficial cells, re-development of adherens junctions and microridges has been detected, together with the appearance and translocation of phosphorylated p38 MAPK into nuclear areas. Thus, this culture system provides an excellent model to study the mechanisms of epidermal outgrowth accompanied by migration and re-differentiation. We have also examined the role of extracellular matrix proteins in the outgrowth. Type I collagen or fibronectin stimulates moderate outgrowth in the absence of FBS, but development of microridges and the distribution of phosphorylated p38 MAPK are attenuated in the superficial cells. In addition, the leading-edge cells do not have apparent "purse string"-like actin bundles. The outgrowth stimulated by FBS is inhibited by laminin. These results suggest that dermal substrates such as type I collagen and fibronectin are able to initiate epidermal outgrowth but require other factors to enhance such outgrowth, together with coordinated alterations in cellular phenotype.
Real-time visualization of macromolecule uptake by epidermal Langerhans cells in living animals.
Frugé, Rachel E; Krout, Colleen; Lu, Ran; Matsushima, Hironori; Takashima, Akira
2012-03-01
As a skin-resident member of the dendritic cell family, Langerhans cells (LCs) are generally regarded to function as professional antigen-presenting cells. Here we report a simple method to visualize the endocytotic activity of LCs in living animals. BALB/c mice received subcutaneous injection of FITC-conjugated dextran (DX) probes into the ear skin and were then examined under confocal microscopy. Large numbers of FITC(+) epidermal cells became detectable 12-24 hours after injection as background fluorescence signals began to disappear. Most (>90%) of the FITC(+) epidermal cells expressed Langerin, and >95% of Langerin(+) epidermal cells exhibited significant FITC signals. To assess intracellular localization, Alexa Fluor 546-conjugated DX probes were locally injected into IAβ-enhanced green fluorescent protein (EGFP) knock-in mice and Langerin-EGFP-diphtheria toxin receptor mice--three dimensional rotation images showed close association of most of the internalized DX probes with major histocompatibility complex (MHC) class II molecules, but not with Langerin molecules. These observations support the current view that LCs constantly sample surrounding materials, including harmful and innocuous antigens, at the environmental interface. Our data also validate the potential utility of the newly developed imaging approach to monitor LC function in wild-type animals.
Tumor formation initiated by nondividing epidermal cells via an inflammatory infiltrate.
Arwert, Esther N; Lal, Rohit; Quist, Sven; Rosewell, Ian; van Rooijen, Nico; Watt, Fiona M
2010-11-16
In mammalian epidermis, integrin expression is normally confined to the basal proliferative layer that contains stem cells. However, in epidermal hyperproliferative disorders and tumors, integrins are also expressed by suprabasal cells, with concomitant up-regulation of Erk mitogen-activated protein kinase (MAPK) signaling. In transgenic mice, expression of activated MAPK kinase 1 (MEK1) in the suprabasal, nondividing, differentiated cell layers (InvEE transgenics) results in epidermal hyperproliferation and skin inflammation. We now demonstrate that wounding induces benign tumors (papillomas and keratoacanthomas) in InvEE mice. By generating chimeras between InvEE mice and mice that lack the MEK1 transgene, we demonstrate that differentiating, nondividing cells that express MEK1 stimulate adjacent transgene-negative cells to divide and become incorporated into the tumor mass. Dexamethasone treatment inhibits tumor formation, suggesting that inflammation is involved. InvEE skin and tumors express high levels of IL1α; treatment with an IL1 receptor antagonist delays tumor onset and reduces incidence. Depletion of γδ T cells and macrophages also reduces tumor incidence. Because a hallmark of cancer is uncontrolled proliferation, it is widely assumed that tumors arise only from dividing cells. In contrast, our studies show that differentiated epidermal cells can initiate tumor formation without reacquiring the ability to divide and that they do so by triggering an inflammatory infiltrate.
Barthod, Sandrine; Cerovic, Zoran; Epron, Daniel
2007-01-01
The present study assesses light-induced variations in phenolic compounds in leaves of saplings of two co-occurring temperate species (Acer platanoides L., and Fraxinus excelsior L.) along a light gradient using a new non-invasive optical method (Dualex). The Dualex-derived UV absorbance of leaf epidermis (the sum of the adaxial and abaxial faces, AUV) increased significantly with increasing light in both species. AUV values were correlated with absorbance of the leaf extract at 305 nm and 375 nm (A305 and A375) in both species with similar slopes for both species. However, a large difference in intercept was observed between the two species when A305 was regressed against AUV. Similarly, AUV values were well correlated with the amount of phenolics in the leaf extracts assessed by the Folin-Ciocalteu method, but slopes were significantly different for the two species. Thus, the UV-A epidermal transmittance, despite being a reliable indicator of the UV-screening capacity of the leaf epidermis, cannot be used for any quantitative estimate of UV-B screening capacity or of energetic requirement for leaf construction without a species-specific calibration.
Epidermal lipid in several cetacean species: ultrastructural observations.
Pfeiffer, C J; Jones, F M
1993-09-01
The ultrastructure of the skin of four cetacean species, bottlenose dolphin (Tursiops truncatus) long-finned pilot whale (Globicephala melaena), humpback whale (Megaptera novaeangliae), and fin whale (Balaenoptera physalus) was investigated with particular reference to epidermal lipid. It has already been established that massive lipid reservoirs exist in whales, that the biochemical structures of cetacean lipids are unique, and that unusual intracellular lipid droplets appear in the epidermis. We report here some novel findings on scanning electron microscopic morphology of epidermal lipid, and on its ultrastructural morphology in general and specialized integumentary sites, including species not previously investigated. The intracellular epidermal lipid droplets were more extensive than lamellar body-derived intercellular lipid which is within the interstices of stratum externum cells. The intracellular droplets were spherical, highly variable in size ranging from 0.24 micron to 3.0 microns in diameter, appeared singly or were aggregated in cytoplasmic cavitations, and often were closely associated with epidermal cell nuclei. Evidence for exocytosis of the intracellular droplets was not observed. Significant numbers of intracellular lipid droplets are not observed in the epidermis of terrestrial mammals, so their presence is one of several aquatic specializations of the cetacean integument. Its full significance remains obscure, but it is more probably associated with epidermal cell metabolism than with secretion of lipid.
Bansal, Dhiru; Kulkarni, Jahnavi; Nadahalli, Kavana; Lakshmanan, Vairavan; Krishna, Srikar; Sasidharan, Vidyanand; Geo, Jini; Dilipkumar, Shilpa; Pasricha, Renu; Gulyani, Akash; Raghavan, Srikala; Palakodeti, Dasaradhi
2017-09-01
Identifying key cellular events that facilitate stem cell function and tissue organization is crucial for understanding the process of regeneration. Planarians are powerful model system to study regeneration and stem cell (neoblast) function. Here, using planaria, we show that the initial events of regeneration, such as epithelialization and epidermal organization are critically regulated by a novel cytoplasmic poly A-binding protein, SMED-PABPC2. Knockdown of smed-pabpc2 leads to defects in epidermal lineage specification, disorganization of epidermis and ECM, and deregulated wound healing, resulting in the selective failure of neoblast proliferation near the wound region. Polysome profiling suggests that epidermal lineage transcripts, including zfp-1 , are translationally regulated by SMED-PABPC2 . Together, our results uncover a novel role for SMED-PABPC2 in the maintenance of epidermal and ECM integrity, critical for wound healing and subsequent processes for regeneration. © 2017. Published by The Company of Biologists Ltd.
Matrisian, L M; Planck, S R; Magun, B E
1984-03-10
We previously reported that 125I-labeled epidermal growth factor is processed intracellularly to acidic macromolecules in Rat-1 fibroblasts. The present study defines the precursor-product relationship and localization of the processing steps to subcellular organelles by the use of a single isoelectric species of 125I-epidermal growth factor and Percoll gradient fractionation. The native pI 4.55 125I-epidermal growth factor was rapidly processed to a pI 4.2 species on or near the cell surface and in organelles corresponding to clathrin-coated vesicles, Golgi, and endoplasmic reticulum. This species was then processed to a pI 4.35 species in similar organelles. The pI 4.2 and 4.35 species were converted to a pI 4.0 species in dense, lysosome-like organelles. This species was ultimately degraded and exocytosed from the cell as low molecular weight products.
Bansal, Dhiru; Kulkarni, Jahnavi; Nadahalli, Kavana; Lakshmanan, Vairavan; Krishna, Srikar; Sasidharan, Vidyanand; Dilipkumar, Shilpa; Gulyani, Akash; Raghavan, Srikala
2017-01-01
Identifying key cellular events that facilitate stem cell function and tissue organization is crucial for understanding the process of regeneration. Planarians are powerful model system to study regeneration and stem cell (neoblast) function. Here, using planaria, we show that the initial events of regeneration, such as epithelialization and epidermal organization are critically regulated by a novel cytoplasmic poly A-binding protein, SMED-PABPC2. Knockdown of smed-pabpc2 leads to defects in epidermal lineage specification, disorganization of epidermis and ECM, and deregulated wound healing, resulting in the selective failure of neoblast proliferation near the wound region. Polysome profiling suggests that epidermal lineage transcripts, including zfp-1, are translationally regulated by SMED-PABPC2. Together, our results uncover a novel role for SMED-PABPC2 in the maintenance of epidermal and ECM integrity, critical for wound healing and subsequent processes for regeneration. PMID:28807897
Zhang, Jingjing; Ni, Chen; Yang, Zhenguo; Piontek, Anna; Chen, Huapu; Wang, Sijie; Fan, Yiming; Qin, Zhihai; Piontek, Joerg
2015-08-01
Claudins (Cldn) are the major components of tight junctions (TJs) sealing the paracellular cleft in tissue barriers of various organs. Zebrafish Cldnb, the homolog of mammalian Cldn4, is expressed at epithelial cell-cell contacts and is important for regulating epidermal permeability. The bacterial toxin Clostridium perfringens enterotoxin (CPE) has been shown to bind to a subset of mammalian Cldns. In this study, we used the Cldn-binding C-terminal domain of CPE (194-319 amino acids, cCPE 194-319 ) to investigate its functional role in modulating zebrafish larval epidermal barriers. In vitro analyses show that cCPE 194-319 removed Cldn4 from epithelial cells and disrupted the monolayer tightness, which could be rescued by the removal of cCPE 194-319. Incubation of zebrafish larvae with cCPE 194-319 removed Cldnb specifically from the epidermal cell membrane. Dye diffusion analysis with 4-kDa fluorescent dextran indicated that the permeability of the epidermal barrier increased due to cCPE 194-319 incubation. Electron microscopic investigation revealed reversible loss of TJ integrity by Cldnb removal. Collectively, these results suggest that cCPE 194-319 could be used as a Cldnb modulator to transiently open the epidermal barrier in zebrafish. In addition, zebrafish might be used as an in vivo system to investigate the capability of cCPE to enhance drug delivery across tissue barriers. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Bermudez, Yira; Benavente, Claudia A.; Meyer, Ralph G.; Coyle, W. Russell; Jacobson, Myron K.; Jacobson, Elaine L.
2011-01-01
Background Chronic UV skin exposure leads to epidermal differentiation defects in humans that can be largely restored by pharmacological doses of nicotinic acid. Nicotinic acid has been identified as a ligand for the human G-protein-coupled receptors GPR109A and GPR109B that signal through Gi-mediated inhibition of adenylyl cyclase. We have examined the expression, cellular distribution, and functionality of GPR109A/B in human skin and skin derived epidermal cells. Results Nicotinic acid increases epidermal differentiation in photodamaged human skin as judged by the terminal differentiation markers caspase 14 and filaggrin. Both GPR109A and GPR109B genes are transcribed in human skin and in epidermal keratinocytes, but expression in dermal fibroblasts is below limits of detection. Receptor transcripts are greatly over-expressed in squamous cell cancers. Receptor protein in normal skin is prominent from the basal through granular layers of the epidermis, with cellular localization more dispersive in the basal layer but predominantly localized at the plasma membrane in more differentiated epidermal layers. In normal human primary and immortalized keratinocytes, nicotinic acid receptors show plasma membrane localization and functional Gi-mediated signaling. In contrast, in a squamous cell carcinoma derived cell line, receptor protein shows a more diffuse cellular localization and the receptors are nearly non-functional. Conclusions The results of these studies justify future genetic and pharmacological intervention studies to define possible specific role(s) of nicotinic acid receptors in human skin homeostasis. PMID:21655214
Tang, Chih-Yuan; Huang, Rong-Nan; Kuo-Huang, Ling-Long; Kuo, Tai-Chih; Yang, Ya-Yun; Lin, Ching-Yeh; Jane, Wann-Neng; Chen, Shiang-Jiuun
2012-02-01
A pre-cryogenic holder (cryo-holder) facilitating cryo-specimen observation under a conventional scanning electron microscope (SEM) is described. This cryo-holder includes a specimen-holding unit (the stub) and a cryogenic energy-storing unit (a composite of three cylinders assembled with a screw). After cooling, the cryo-holder can continue supplying cryogenic energy to extend the observation time for the specimen in a conventional SEM. Moreover, the cryogenic energy-storing unit could retain appropriate liquid nitrogen that can evaporate to prevent frost deposition on the surface of the specimen. This device is proved feasible for various tissues and cells, and can be applied to the fields of both biology and material science. We have employed this novel cryo-holder for observation of yeast cells, trichome, and epidermal cells in the leaf of Arabidopsis thaliana, compound eyes of insects, red blood cells, filiform papillae on the surface of rat tongue, agar medium, water molecules, penicillium, etc. All results suggested that the newly designed cryo-holder is applicable for cryo-specimen observation under a conventional SEM without cooling system. Most importantly, the design of this cryo-holder is simple and easy to operate and could adapt a conventional SEM to a plain type cryo-SEM affordable for most laboratories. Copyright © 2011 Wiley Periodicals, Inc.
Arun-Chinnappa, Kiruba S.; McCurdy, David W.
2016-01-01
Transfer cells (TCs) are anatomically-specialized cells formed at apoplasmic-symplasmic bottlenecks in nutrient transport pathways in plants. TCs form invaginated wall ingrowths which provide a scaffold to amplify plasma membrane surface area and thus increase the density of nutrient transporters required to achieve enhanced nutrient flow across these bottlenecks. Despite their importance to nutrient transport in plants, little is known of the transcriptional regulation of wall ingrowth formation. Here, we used RNA-Seq to identify transcription factors putatively involved in regulating epidermal TC development in cotyledons of Vicia faba. Comparing cotyledons cultured for 0, 3, 9, and 24 h to induce trans-differentiation of epidermal TCs identified 43 transcription factors that showed either epidermal-specific or epidermal–enhanced expression, and 10 that showed epidermal-specific down regulation. Members of the WRKY and ethylene-responsive families were prominent in the cohort of transcription factors showing epidermal-specific or epidermal–enhanced expression, consistent with the initiation of TC development often representing a response to stress. Members of the MYB family were also prominent in these categories, including orthologs of MYB genes involved in localized secondary wall deposition in Arabidopsis thaliana. Among the group of transcription factors showing down regulation were various homeobox genes and members of the MADs-box and zinc-finger families of poorly defined functions. Collectively, this study identified several transcription factors showing expression characteristics and orthologous functions that indicate likely participation in transcriptional regulation of epidermal TC development in V. faba cotyledons. PMID:27252730
Walker, S L; Morris, J; Chu, A C; Young, A R
1994-01-01
The UVB sunscreen 2-ethylhexyl-4'-methoxycinnamate was evaluated in hairless albino mouse skin for its ability to inhibit UVR-induced (i) oedema, (ii) epidermal Langerhans cell (Ia+) depletion and (iii) suppression of the alloactivating capacity of epidermal cells (mixed epidermal cell-lymphocyte reaction, MECLR). The sunscreen, prepared at 9% in ethanol or a cosmetic lotion, was applied prior to UVB/UVA irradiation. In some experiments there was a second application halfway through the irradiation. Single applications in both vehicles gave varying degrees of protection from oedema and Langerhans cell depletion but afforded no protection from suppression of MECLR. When the sunscreens were applied twice there was improved protection from oedema and Langerhans cell depletion and complete protection was afforded from suppression of MECLR. There was a clear linear relationship between Langerhans cell numbers and oedema with and without sunscreen application. The relationship between Langerhans cell numbers and MECLR was more complex. These data confirm published discrepancies between protection from oedema (a model for human erythema) and endpoints with immunological significance, but show that 2-ethylhexyl-4'-methoxycinnamate can afford complete immunoprotection, although protection is dependent on the application rate and vehicle.
Zhang, Lizhi; Garneau, Matthew G; Majumdar, Rajtilak; Grant, Jan; Tegeder, Mechthild
2015-01-01
The development of sink organs such as fruits and seeds strongly depends on the amount of nitrogen that is moved within the phloem from photosynthetic-active source leaves to the reproductive sinks. In many plant species nitrogen is transported as amino acids. In pea (Pisum sativum L.), source to sink partitioning of amino acids requires at least two active transport events mediated by plasma membrane-localized proteins, and these are: (i) amino acid phloem loading; and (ii) import of amino acids into the seed cotyledons via epidermal transfer cells. As each of these transport steps might potentially be limiting to efficient nitrogen delivery to the pea embryo, we manipulated both simultaneously. Additional copies of the pea amino acid permease PsAAP1 were introduced into the pea genome and expression of the transporter was targeted to the sieve element-companion cell complexes of the leaf phloem and to the epidermis of the seed cotyledons. The transgenic pea plants showed increased phloem loading and embryo loading of amino acids resulting in improved long distance transport of nitrogen, sink development and seed protein accumulation. Analyses of root and leaf tissues further revealed that genetic manipulation positively affected root nitrogen uptake, as well as primary source and sink metabolism. Overall, the results suggest that amino acid phloem loading exerts regulatory control over pea biomass production and seed yield, and that import of amino acids into the cotyledons limits seed protein levels. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
List, Karin; Szabo, Roman; Molinolo, Alfredo; Nielsen, Boye Schnack; Bugge, Thomas H.
2006-01-01
The membrane serine protease matriptase is required for epidermal barrier function, hair formation, and thymocyte development in mice, and dysregulated matriptase expression causes epidermal squamous cell carcinoma. To elucidate the specific functions of matriptase in normal and aberrant epidermal differentiation, we used enzymatic gene trapping combined with immunohistochemical, ultrastructural, and barrier function assays to delineate the spatio-temporal expression and function of matriptase in mouse keratinized tissue development, homeostasis, and malignant transformation. In the interfollicular epidermis, matriptase expression was restricted to postmitotic transitional layer keratinocytes undergoing terminal differentiation. Matriptase was also expressed in keratinizing oral epithelium, where it was required for oral barrier function, and in thymic epithelium. In all three tissues, matriptase colocalized with profilaggrin. In staged embryos, the onset of epidermal matriptase expression coincided with that of profilaggrin expression and acquisition of the epidermal barrier. In marked contrast to stratifying keritinized epithelium, matripase expression commenced already in undifferentiated and rapidly proliferating profilaggrin-negative matrix cells and displayed hair growth cycle-dependent expression. Exposure of the epidermis to carcinogens led to the gradual appearance of matriptase in a keratin-5-positive proliferative cell compartment during malignant progression. Combined with previous studies, these data suggest that matriptase has diverging functions in the genesis of stratified keratinized epithelium, hair follicles, and squamous cell carcinoma. PMID:16651618
List, Karin; Szabo, Roman; Molinolo, Alfredo; Nielsen, Boye Schnack; Bugge, Thomas H
2006-05-01
The membrane serine protease matriptase is required for epidermal barrier function, hair formation, and thymocyte development in mice, and dysregulated matriptase expression causes epidermal squamous cell carcinoma. To elucidate the specific functions of matriptase in normal and aberrant epidermal differentiation, we used enzymatic gene trapping combined with immunohistochemical, ultrastructural, and barrier function assays to delineate the spatio-temporal expression and function of matriptase in mouse keratinized tissue development, homeostasis, and malignant transformation. In the interfollicular epidermis, matriptase expression was restricted to postmitotic transitional layer keratinocytes undergoing terminal differentiation. Matriptase was also expressed in keratinizing oral epithelium, where it was required for oral barrier function, and in thymic epithelium. In all three tissues, matriptase colocalized with profilaggrin. In staged embryos, the onset of epidermal matriptase expression coincided with that of profilaggrin expression and acquisition of the epidermal barrier. In marked contrast to stratifying keritinized epithelium, matripase expression commenced already in undifferentiated and rapidly proliferating profilaggrin-negative matrix cells and displayed hair growth cycle-dependent expression. Exposure of the epidermis to carcinogens led to the gradual appearance of matriptase in a keratin-5-positive proliferative cell compartment during malignant progression. Combined with previous studies, these data suggest that matriptase has diverging functions in the genesis of stratified keratinized epithelium, hair follicles, and squamous cell carcinoma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerberick, G.F.; Ryan, C.A.; Von Bargen, E.C.
Lymphocytes from BALB/c mice photosensitized in vivo to tetrachlorosalicylanilide (TCSA) were investigated to determine whether they could be stimulated to proliferate when cultured with Langerhans cell-enriched cultured epidermal cells (LC-EC) photohapten-modified in vitro with TCSA + UVA radiation. Cultured LC-EC were photohapten-modified in vitro by irradiation in TCSA-containing medium using a 1000-watt solar simulator equipped with filters to deliver primarily UVA radiation (320-400 nm). Lymphocytes from TCSA-photosensitized mice were incubated with LC-EC that had been treated in vitro with 0.1 mM TCSA and 2 J/cm2 UVA radiation (TCSA + UVA). Responder lymphocytes demonstrated a significant increase in their blastogenesis responsemore » compared to lymphocytes that were incubated with LC-EC irradiated with UVA prior to treatment with TCSA (UVA/TCSA) or with LC-EC that had received no treatment. Lymphocytes from naive mice or mice photosensitized with musk ambrette (MA) demonstrated a significantly lower response to LC-EC modified with TCSA + UVA, indicating the specificity of the response. Maximum blastogenesis response was achieved when LC-EC were treated with 0.1 mM TCSA and a UVA radiation dose of at least 0.5 J/cm2. Epidermal cells depleted of LC by treatment with anti-Ia antibody plus complement or by an adherence procedure were unable to stimulate this blastogenesis response. Epidermal cells treated in vitro with TCSA + UVA demonstrated enhanced fluorescence compared to control cells. The fluorescence observed was not restricted to any specific epidermal cell type; however, fluorescence microscopy studies revealed that dendritic Ia-positive cells, presumably LC, were also TCSA fluorescent.« less
Yoshiyuki, T; Shimizu, Y; Onda, M; Tokunaga, A; Kiyama, T; Nishi, K; Mizutani, T; Matsukura, N; Tanaka, N; Akimoto, M
1990-02-15
Thirty-two surgical specimens and three cell lines of human gastric cancers were used for subcutaneous transplantation into nude mice, resulting in the establishment of eight (25%) xenografts from the surgical specimens and two (67%) from the cell lines. The localization of epidermal growth factor (EGF) in the surgical specimens and cell lines of the gastric cancers and their xenografts in nude mice was then investigated immunohistochemically. Epidermal growth factor was stained in the cytoplasm of the cancer cells, being detected in 16 (50%) of the 32 surgical specimens and in all of the cell lines. Seven (44%) of the sixteen EGF-positive surgical specimens and one (6%) of the 16 EGF-negative ones were tumorigenic in nude mice. All of the xenografts in nude mice were positive for EGF. The tumorigenicity of human gastric cancer xenografts in nude mice may, therefore, be correlated with the presence of EGF in cancer cells.
Thrombomodulin exerts cytoprotective effect on low-dose UVB-irradiated HaCaT cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwata, Masahiro; Laboratory of Vascular Medicine, Department of Cardiovascular and Respiratory Disorders Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520; Kawahara, Ko-ichi
Thrombomodulin (TM) is an endothelial cell surface anticoagulant glycoprotein that performs antimetastatic, angiogenic, adhesive, and anti-inflammatory functions in various tissues. It is also expressed in epidermal keratinocytes. We found that a physiological dose (10 mJ/cm{sup 2}) of mid-wavelength ultraviolet irradiation (UVB) significantly induced TM expression via the p38mitogen-activated protein kinase (MAPK)/cyclic AMP response element (CRE) signaling pathway in the epidermal keratinocyte cell line HaCaT; this shows that TM regulates the survival of HaCaT cells. SB203580, a p38MAPK inhibitor, significantly decreased TM expression and the viability of cells exposed to UVB. Furthermore, overexpression of TM markedly increased cell viability, and itmore » was abrogated by TM small interfering RNA (siRNA), suggesting that TM may play an important role in exerting cytoprotective effect on epidermal keratinocytes against low-dose UVB.« less
Cruz-Ramírez, Alfredo; López-Bucio, José; Ramírez-Pimentel, Gabriel; Zurita-Silva, Andrés; Sánchez-Calderon, Lenin; Ramírez-Chávez, Enrique; González-Ortega, Emmanuel; Herrera-Estrella, Luis
2004-01-01
Phosphocholine (PCho) is an essential metabolite for plant development because it is the precursor for the biosynthesis of phosphatidylcholine, which is the major lipid component in plant cell membranes. The main step in PCho biosynthesis in Arabidopsis thaliana is the triple, sequential N-methylation of phosphoethanolamine, catalyzed by S-adenosyl-l-methionine:phosphoethanolamine N-methyltransferase (PEAMT). In screenings performed to isolate Arabidopsis mutants with altered root system architecture, a T-DNA mutagenized line showing remarkable alterations in root development was isolated. At the seedling stage, the mutant phenotype is characterized by a short primary root, a high number of lateral roots, and short epidermal cells with aberrant morphology. Genetic and biochemical characterization of this mutant showed that the T-DNA was inserted at the At3g18000 locus (XIPOTL1), which encodes PEAMT (XIPOTL1). Further analyses revealed that inhibition of PCho biosynthesis in xpl1 mutants not only alters several root developmental traits but also induces cell death in root epidermal cells. Epidermal cell death could be reversed by phosphatidic acid treatment. Taken together, our results suggest that molecules produced downstream of the PCho biosynthesis pathway play key roles in root development and act as signals for cell integrity. PMID:15295103
Mast Cells Regulate Epidermal Barrier Function and the Development of Allergic Skin Inflammation.
Sehra, Sarita; Serezani, Ana P M; Ocaña, Jesus A; Travers, Jeffrey B; Kaplan, Mark H
2016-07-01
Atopic dermatitis is a chronic inflammatory skin disease characterized by infiltration of eosinophils, T helper cells, and mast cells. The role of mast cells in atopic dermatitis is not completely understood. To define the effects of mast cells on skin biology, we observed that mast cells regulate the homeostatic expression of epidermal differentiation complex and other skin genes. Decreased epidermal differentiation complex gene expression in mice that genetically lack mast cells (Kit(W-sh/W-sh) mice) is associated with increased uptake of protein antigens painted on the skin by dendritic cells (DCs) compared with similarly treated wild-type mice, suggesting a protective role for mast cells in exposure to nominal environmental allergens. To test this further, we crossed Kit(W-sh/W-sh) mice with signal transducer and activator of transcription 6 (i.e., Stat6) VT transgenic mice that develop spontaneous atopic dermatitis-like disease that is dependent on T helper cell 2 cytokines and is associated with high serum concentrations of IgE. We observed that Stat6VT × Kit(W-sh/W-sh) mice developed more frequent and more severe allergic skin inflammation than Stat6VT transgenic mice that had mast cells. Together, these studies suggest that mast cells regulate epidermal barrier function and have a potential protective role in the development of atopic dermatitis-like disease. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Badarinath, Krithika; Dutta, Abhik; Hegde, Akshay; Pincha, Neha; Gund, Rupali; Jamora, Colin
2018-06-13
The interplay of immune cells and stem cells in maintaining skin homeostasis and repair is an exciting new frontier in cutaneous biology. With the growing appreciation of the importance of this new crosstalk comes the requirement of methods to interrogate the molecular underpinnings of these leukocyte-stem cell interactions. Here we describe how a combination of FACS, cellular coculture assays, and conditioned media treatments can be utilized to advance our understanding of this emerging area of intercellular communication between immune cells and stem cells.
Cookson, Sarah J.; Williams, Lorraine E.; Miller, Anthony J.
2005-01-01
Several different cellular processes determine the size of the metabolically available nitrate pool in the cytoplasm. These processes include not only ion fluxes across the plasma membrane and tonoplast but also assimilation by the activity of nitrate reductase (NR). In roots, the maintenance of cytosolic nitrate activity during periods of nitrate starvation and resupply (M. van der Leij, S.J. Smith, A.J. Miller [1998] Planta 205: 64–72; R.-G. Zhen, H.-W. Koyro, R.A. Leigh, A.D. Tomos, A.J. Miller [1991] Planta 185: 356–361) suggests that this pool is regulated. Under nitrate-replete conditions vacuolar nitrate is a membrane-bound store that can release nitrate to the cytoplasm; after depletion of cytosolic nitrate, tonoplast transporters would serve to restore this pool. To study the role of assimilation, specifically the activity of NR in regulating the size of the cytosolic nitrate pool, we have compared wild-type and mutant plants. In leaf mesophyll cells, light-to-dark transitions increase cytosolic nitrate activity (1.5–2.8 mm), and these changes were reversed by dark-to-light transitions. Such changes were not observed in nia1nia2 NR-deficient plants indicating that this change in cytosolic nitrate activity was dependent on the presence of functional NR. Furthermore, in the dark, the steady-state cytosolic nitrate activities were not statistically different between the two types of plant, indicating that NR has little role in determining resting levels of nitrate. Epidermal cells of both wild type and NR mutants had cytosolic nitrate activities that were not significantly different from mesophyll cells in the dark and were unaltered by dark-to-light transitions. We propose that the NR-dependent changes in cytosolic nitrate provide a cellular mechanism for the diurnal changes in vacuolar nitrate storage, and the results are discussed in terms of the possible signaling role of cytosolic nitrate. PMID:15908593
Alexaline, Maia M.; Trouillas, Marina; Nivet, Muriel; Bourreau, Emilie; Leclerc, Thomas; Duhamel, Patrick; Martin, Michele T.; Doucet, Christelle; Fortunel, Nicolas O.
2015-01-01
Cultured epithelial autografts (CEAs) produced from a small, healthy skin biopsy represent a lifesaving surgical technique in cases of full-thickness skin burn covering >50% of total body surface area. CEAs also present numerous drawbacks, among them the use of animal proteins and cells, the high fragility of keratinocyte sheets, and the immaturity of the dermal-epidermal junction, leading to heavy cosmetic and functional sequelae. To overcome these weaknesses, we developed a human plasma-based epidermal substitute (hPBES) for epidermal coverage in cases of massive burn, as an alternative to traditional CEA, and set up critical quality controls for preclinical and clinical studies. In this study, phenotypical analyses in conjunction with functional assays (clonal analysis, long-term culture, or in vivo graft) showed that our new substitute fulfills the biological requirements for epidermal regeneration. hPBES keratinocytes showed high potential for cell proliferation and subsequent differentiation similar to healthy skin compared with a well-known reference material, as ascertained by a combination of quality controls. This work highlights the importance of integrating relevant multiparameter quality controls into the bioengineering of new skin substitutes before they reach clinical development. Significance This work involves the development of a new bioengineered epidermal substitute with pertinent functional quality controls. The novelty of this work is based on this quality approach. PMID:25848122
Alexaline, Maia M; Trouillas, Marina; Nivet, Muriel; Bourreau, Emilie; Leclerc, Thomas; Duhamel, Patrick; Martin, Michele T; Doucet, Christelle; Fortunel, Nicolas O; Lataillade, Jean-Jacques
2015-06-01
Cultured epithelial autografts (CEAs) produced from a small, healthy skin biopsy represent a lifesaving surgical technique in cases of full-thickness skin burn covering >50% of total body surface area. CEAs also present numerous drawbacks, among them the use of animal proteins and cells, the high fragility of keratinocyte sheets, and the immaturity of the dermal-epidermal junction, leading to heavy cosmetic and functional sequelae. To overcome these weaknesses, we developed a human plasma-based epidermal substitute (hPBES) for epidermal coverage in cases of massive burn, as an alternative to traditional CEA, and set up critical quality controls for preclinical and clinical studies. In this study, phenotypical analyses in conjunction with functional assays (clonal analysis, long-term culture, or in vivo graft) showed that our new substitute fulfills the biological requirements for epidermal regeneration. hPBES keratinocytes showed high potential for cell proliferation and subsequent differentiation similar to healthy skin compared with a well-known reference material, as ascertained by a combination of quality controls. This work highlights the importance of integrating relevant multiparameter quality controls into the bioengineering of new skin substitutes before they reach clinical development. This work involves the development of a new bioengineered epidermal substitute with pertinent functional quality controls. The novelty of this work is based on this quality approach. ©AlphaMed Press.
Ivanova, Iordanka A; D'Souza, Sudhir J A; Dagnino, Lina
2005-01-01
The epidermis is the outermost layer in the skin, and it is the first line of defence against the environment. The epidermis also provides a barrier against loss of fluids and electrolytes, which is crucial for life. Essential in the maintenance of this tissue is its ability to continually self-renew and regenerate after injury. These two characteristics are critically dependent on the ability of the principal epidermal cell type, the keratinocyte, to proliferate and to respond to differentiation cues. Indeed, the epidermis is a multilayered tissue composed of keratinocyte stem cells and their differentiated progeny. Central for the control of cell proliferation is the E2F transcription factor regulatory network. This signaling network also includes cyclins, cdk, cdk inhibitors and the retinoblastoma (pRb) family of proteins. The biological importance of the E2F/pRb pathway is emphasized by the fact that a majority of human tumours exhibit alterations that disrupt the ability of pRb proteins to inhibit E2F, leading to permanent activation of the latter. Further, E2F is essential for normal epidermal regeneration after injury. Other member of the E2F signaling pathway are also involved in epidermal development and pathophysiology. Thus, whereas the pRb family of proteins is essential for epidermal morphogenesis, abnormal regulation of cyclins and E2F proteins results in tumorgenesis in this tissue. In this review, we discuss the role of each member of this important growth regulatory network in epidermal formation, homeostasis and carcinogenesis.
2005-01-01
The epidermis is the outermost layer in the skin, and it is the first line of defence against the environment. The epidermis also provides a barrier against loss of fluids and electrolytes, which is crucial for life. Essential in the maintenance of this tissue is its ability to continually self-renew and regenerate after injury. These two characteristics are critically dependent on the ability of the principal epidermal cell type, the keratinocyte, to proliferate and to respond to differentiation cues. Indeed, the epidermis is a multilayered tissue composed of keratinocyte stem cells and their differentiated progeny. Central for the control of cell proliferation is the E2F transcription factor regulatory network. This signaling network also includes cyclins, cdk, cdk inhibitors and the retinoblastoma (pRb) family of proteins. The biological importance of the E2F/pRb pathway is emphasized by the fact that a majority of human tumours exhibit alterations that disrupt the ability of pRb proteins to inhibit E2F, leading to permanent activation of the latter. Further, E2F is essential for normal epidermal regeneration after injury. Other member of the E2F signaling pathway are also involved in epidermal development and pathophysiology. Thus, whereas the pRb family of proteins is essential for epidermal morphogenesis, abnormal regulation of cyclins and E2F proteins results in tumorgenesis in this tissue. In this review, we discuss the role of each member of this important growth regulatory network in epidermal formation, homeostasis and carcinogenesis. PMID:15951853
Mast cells are dispensable in a genetic mouse model of chronic dermatitis.
Sulcova, Jitka; Meyer, Michael; Guiducci, Eva; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Werner, Sabine
2015-06-01
Chronic inflammatory skin diseases, such as atopic dermatitis, affect a large percentage of the population, but the role of different immune cells in the pathogenesis of these disorders is largely unknown. Recently, we found that mice lacking fibroblast growth factor receptor 1 (Fgfr1) and Fgfr2 (K5-R1/R2 mice) in the epidermis have a severe impairment in the epidermal barrier, which leads to the development of a chronic inflammatory skin disease that shares many features with human atopic dermatitis. Using Fgfr1-/Fgfr2-deficient mice, we analyzed the consequences of the loss of mast cells. Mast cells accumulated and degranulated in the skin of young Fgfr1-/Fgfr2-deficient mice, most likely as a consequence of increased expression of the mast cell chemokine Ccl2. The increase in mast cells occurred before the development of histological abnormalities, indicating a functional role of these cells in the inflammatory skin phenotype. To test this hypothesis, we mated the Fgfr1-/Fgfr2-deficient mice with mast cell-deficient CreMaster mice. Surprisingly, loss of mast cells did not or only mildly affect keratinocyte proliferation, epidermal thickness, epidermal barrier function, accumulation and activation of different immune cells, or expression of different proinflammatory cytokines in the skin. These results reveal that mast cells are dispensable for the development of chronic inflammation in response to a defect in the epidermal barrier. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Wang, Cuicui; Fu, Daqi
2018-03-21
Eggplant ( Solanum melongena L.) fruits accumulate flavonoids in their cuticle and epidermal cells during ripening. Although many mutants available in model plant species, such as Arabidopsis thaliana and Medicago truncatula, are enabling the intricacies of flavonoid-related physiology to be deduced, the mechanisms whereby flavonoids influence eggplant fruit physiology are unknown. Virus-induced gene silencing (VIGS) is a reliable tool for the study of flavonoid function in fruit, and in this study, we successfully applied this technique to downregulate S. melongena chalcone synthase gene ( SmCHS) expression during eggplant fruit ripening. In addition to the expected change in fruit color attributable to a lack of anthocyanins, several other modifications, including differences in epidermal cell size and shape, were observed in the different sectors. We also found that silencing of CHS gene expression was associated with a negative gravitropic response in eggplant fruits. These observations indicate that epidermal cell expansion during ripening is dependent upon CHS expression and that there may be a relationship between CHS expression and gravitropism during eggplant fruit ripening.
Murata, Teruasa; Honda, Tetsuya; Egawa, Gyohei; Yamamoto, Yasuo; Ichijo, Ryo; Toyoshima, Fumiko; Dainichi, Teruki; Kabashima, Kenji
2018-04-26
Epidermal keratinocytes achieve sequential differentiation from basal to granular layers, and undergo a specific programmed cell death, cornification, to form an indispensable barrier of the body. Although elevation of the cytoplasmic calcium ion concentration ([Ca 2+ ] i ) is one of the factors predicted to regulate cornification, the dynamics of [Ca 2+ ] i in epidermal keratinocytes is largely unknown. Here using intravital imaging, we captured the dynamics of [Ca 2+ ] i in mouse skin. [Ca 2+ ] i was elevated in basal cells on the second time scale in three spatiotemporally distinct patterns. The transient elevation of [Ca 2+ ] i also occurred at the most apical granular layer at a single cell level, and lasted for approximately 40 min. The transient elevation of [Ca 2+ ] i at the granular layer was followed by cornification, which was completed within 10 min. This study demonstrates the tightly regulated elevation of [Ca 2+ ] i preceding the cornification of epidermal keratinocytes, providing possible clues to the mechanisms of cornification.
A new Gsdma3 mutation affecting anagen phase of first hair cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, Shigekazu; Department of Genetics, School of Life Science, Graduate University for Advanced Studies, 1111 Yata, Mishima, Shizuoka 411-8540; Tamura, Masaru
2007-08-10
Recombination-induced mutation 3 (Rim3) is a spontaneous mouse mutation that exhibits dominant phenotype of hyperkeratosis and hair loss. Fine linkage analysis of Rim3 and sequencing revealed a novel single point mutation, G1124A leading to Ala348Thr, in Gsdma3 in chromosome 11. Transgenesis with BAC DNA harboring the Rim3-type Gsdma3 recaptured the Rim3 phenotype, providing direct evidence that Gsdma3 is the causative gene of Rim3. We examined the spatial expression of Gsdma3 and characterized the Rim3 phenotype in detail. Gsdma3 is expressed in differentiated epidermal cells in the skin, but not in the proliferating epidermal cells. Histological analysis of Rim3 mutant showedmore » hyperplasia of the epidermal cells in the upper hair follicles and abnormal anagen phase at the first hair cycle. Furthermore, immunohistochemical analysis revealed hyperproliferation and misdifferentiation of the upper follicular epidermis in Rim3 mutant. These results suggest that Gsdma3 is involved in the proliferation and differentiation of epidermal stem cells.« less
Su, Zhenxia; Zhao, Lihua; Zhao, Yuanyuan; Li, Shaofang; Won, SoYoun; Cai, Hanyang; Wang, Lulu; Li, Zhenfang; Chen, Piaojuan; Qin, Yuan; Chen, Xuemei
2017-06-05
In most sexually reproducing plants, a single somatic, sub-epidermal cell in an ovule is selected to differentiate into a megaspore mother cell, which is committed to giving rise to the female germline. However, it remains unclear how intercellular signaling among somatic cells results in only one cell in the sub-epidermal layer differentiating into the megaspore mother cell. Here we uncovered a role of the THO complex in restricting the megaspore mother cell fate to a single cell. Mutations in TEX1, HPR1, and THO6, components of the THO/TREX complex, led to the formation of multiple megaspore mother cells, which were able to initiate gametogenesis. We demonstrated that TEX1 repressed the megaspore mother cell fate by promoting the biogenesis of TAS3-derived trans-acting small interfering RNA (ta-siRNA), which represses ARF3 expression. The TEX1 protein was present in epidermal cells, but not in the germline, and, through TAS3-derived ta-siRNA, restricted ARF3 expression to the medio domain of ovule primordia. Expansion of ARF3 expression into lateral epidermal cells in a TAS3 ta-siRNA-insensitive mutant led to the formation of supernumerary megaspore mother cells, suggesting that TEX1- and TAS3-mediated restriction of ARF3 expression limits excessive megaspore mother cell formation non-cell-autonomously. Our findings reveal the role of a small-RNA pathway in the regulation of female germline specification in Arabidopsis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Vaškebová, L; Šamaj, J; Ovecka, M
2017-12-27
The actin cytoskeleton forms a dynamic network in plant cells. A single-point mutation in the DER1 (deformed root hairs1) locus located in the sequence of ACTIN2, a gene for major actin in vegetative tissues of Arabidopsis thaliana, leads to impaired root hair development (Ringli C, Baumberger N, Diet A, Frey B, Keller B. 2002. ACTIN2 is essential for bulge site selection and tip growth during root hair development of Arabidopsis. Plant Physiology129: 1464-1472). Only root hair phenotypes have been described so far in der1 mutants, but here we demonstrate obvious aberrations in the organization of the actin cytoskeleton and overall plant development. Organization of the actin cytoskeleton in epidermal cells of cotyledons, hypocotyls and roots was studied qualitatively and quantitatively by live-cell imaging of transgenic lines carrying the GFP-FABD2 fusion protein and in fixed cells after phalloidin labelling. Patterns of root growth were characterized by FM4-64 vital staining, light-sheet microscopy imaging and microtubule immunolabelling. Plant phenotyping included analyses of germination, root growth and plant biomass. Speed of germination, plant fresh weight and total leaf area were significantly reduced in the der1-3 mutant in comparison with the C24 wild-type. Actin filaments in root, hypocotyl and cotyledon epidermal cells of the der1-3 mutant were shorter, thinner and arranged in more random orientations, while actin bundles were shorter and had altered orientations. The wavy pattern of root growth in der1-3 mutant was connected with higher frequencies of shifted cell division planes (CDPs) in root cells, which was consistent with the shifted positioning of microtubule-based preprophase bands and phragmoplasts. The organization of cortical microtubules in the root cells of the der1-3 mutant, however, was not altered. Root growth rate of the der1-3 mutant is not reduced, but changes in the actin cytoskeleton organization can induce a wavy root growth pattern through deregulation of CDP orientation. The results suggest that the der1-3 mutation in the ACT2 gene does not influence solely root hair formation process, but also has more general effects on the actin cytoskeleton, plant growth and development. © The Author(s) 2017. Published by Oxford University Press on behalf of the Annals of Botany Company.
Pavement cells: a model system for non-transcriptional auxin signalling and crosstalks.
Chen, Jisheng; Wang, Fei; Zheng, Shiqin; Xu, Tongda; Yang, Zhenbiao
2015-08-01
Auxin (indole acetic acid) is a multifunctional phytohormone controlling various developmental patterns, morphogenetic processes, and growth behaviours in plants. The transcription-based pathway activated by the nuclear TRANSPORT INHIBITOR RESISTANT 1/auxin-related F-box auxin receptors is well established, but the long-sought molecular mechanisms of non-transcriptional auxin signalling remained enigmatic until very recently. Along with the establishment of the Arabidopsis leaf epidermal pavement cell (PC) as an exciting and amenable model system in the past decade, we began to gain insight into non-transcriptional auxin signalling. The puzzle-piece shape of PCs forms from intercalated or interdigitated cell growth, requiring local intra- and inter-cellular coordination of lobe and indent formation. Precise coordination of this interdigitated pattern requires auxin and an extracellular auxin sensing system that activates plasma membrane-associated Rho GTPases from plants and subsequent downstream events regulating cytoskeletal reorganization and PIN polarization. Apart from auxin, mechanical stress and cytokinin have been shown to affect PC interdigitation, possibly by interacting with auxin signals. This review focuses upon signalling mechanisms for cell polarity formation in PCs, with an emphasis on non-transcriptional auxin signalling in polarized cell expansion and pattern formation and how different auxin pathways interplay with each other and with other signals. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Kobayashi, Hideshi; Suzuki, Hirohumi; Ohta, Naoshi
2006-08-01
Coelomic fluid (CF) and lysenin from the earthworm Eisenia foetida induced heavy epidermal exfoliation in the larvae of Bufo japonicus formosus at developmental stages from hatching (stage 22) to operculum completion (stage 34). In experiments with Xenopus laevis, we observed that exfoliated cells were not stained by trypan blue. Thus, it appeared that these cells were still alive. It is likely, therefore, that both CF and lysenin might disrupt the adhesion between epidermal cells of larvae prior to stage 34. Since it is known that lysenin exerts its toxic effects through its specific binding to sphingomyelin (SM), SM might be involved in such adhesion. This hypothesis was supported by the observations that CF and lysenin which had been incubated with SM-liposomes lost their exfoliative activity. In larvae after stage 34, the mechanism of adhesion between epidermal cells seemed to change and the adhesion was no longer disrupted by CF and lysenin. In larvae at around stage 34, a collagen layer started to form beneath the basement membrane of the epidermis. Furthermore, larvae at around this stage started to eat solid food. The developing collagen layer and food intake might be related indirectly to the chemical change in epidermal adhesion. The induction of exfoliation by CF and lysenin was also observed in other amphibian species. In Bufo larvae, defecation was induced both by CF and by lysenin but this effect was independent of exfoliation.
Wiedmann, Marcus; Feisthammel, Jürgen; Blüthner, Thilo; Tannapfel, Andrea; Kamenz, Thomas; Kluge, Annett; Mössner, Joachim; Caca, Karel
2006-08-01
Aberrant activation of the epidermal growth factor receptor is frequently observed in neoplasia, notably in tumors of epithelial origin. Attempts to treat such tumors with epidermal growth factor receptor antagonists resulted in remarkable success in recent studies. Little is known, however, about the efficacy of this therapy in biliary tract cancer. Protein expression of epidermal growth factor receptor, ErbB-2, and vascular endothelial growth factor receptor-2 was assessed in seven human biliary tract cancer cell lines by immunoblotting. In addition, histological sections from 19 patients with extrahepatic cholangiocarcinoma were analyzed for epidermal growth factor receptor, ErbB-2 and vascular endothelial growth factor receptor-2 expression by immunohistochemistry. Moreover, we sequenced the cDNA products representing the entire epidermal growth factor receptor coding region of the seven cell lines, and searched for genomic epidermal growth factor receptor amplifications and polysomy by fluorescence in-situ hybridization. Cell growth inhibition by gefitinib erlotinib and NVP-AEE788 was studied in vitro by automated cell counting. In addition, the anti-tumoral effect of erlotinib and NVP-AEE788 was studied in a chimeric mouse model. The anti-tumoral drug mechanism in this model was assessed by MIB-1 antibody staining, terminal deoxynucleotidyl transfer-mediated dUTP nick end-labelling assay, von Willebrand factor staining, and immunoblotting for p-p42/44 (p-Erk1/2, p-MAPK) and p-AKT. Immunoblotting revealed expression of epidermal growth factor receptor, ErbB-2, and vascular endothelial growth factor receptor-2 in all biliary tract cancer cell lines. EGFR was detectable in six of 19 (32%) extrahepatic human cholangiocarcinoma tissue samples, ErbB-2 in 16 of 19 (84%), and vascular endothelial growth factor receptor-2 in nine of 19 (47%). Neither epidermal growth factor receptor mutations nor amplifications or polysomy were found in the seven biliary tract cancer cell lines. Gefitinib, erlotinib and NVP-AEE788 caused a significant growth inhibition in vitro; however, there was a significant difference in efficacy (NVP-AEE788>erlotinib>gefitinib). After 14 days of in-vivo treatment, using the chimeric mouse model, tumors had a significantly reduced volume and mass after NVP-AEE788, but not after erlotinib treatment, as compared with placebo. Reduction of proliferation (signalling via the mitogen-activated protein kinase pathway), induction of apoptosis and inhibition of angiogenesis were the main mechanisms of drug action. No significant reduction of anti-apoptotic AKT phosphorylation, however, occurred, which may be a possible counter mechanism of the tumor. Epidermal growth factor receptor, ErbB-2, and vascular endothelial growth factor receptor-2 expression was detectable in biliary tract cancer, and receptor inhibition exerts marked effects on tumor growth in vitro and in vivo, which was strongest for the dual EGFR/ErbB-2 inhibitor NVP-AEE788. Therefore, further clinical evaluation of this new drug for the treatment of biliary tract cancer is recommended.
Ojeda, Isidro; Francisco-Ortega, Javier; Cronk, Quentin C. B.
2009-01-01
Background and Aims The legume flower is highly variable in symmetry and differentiation of petal types. Most papilionoid flowers are zygomorphic with three types of petals: one dorsal, two lateral and two ventral petals. Mimosoids have radial flowers with reduced petals while caesalpinioids display a range from strongly zygomorphic to nearly radial symmetry. The aims are to characterize the petal micromorphology relative to flower morphology and evolution within the family and assess its use as a marker of petal identity (whether dorsal, lateral or ventral) as determined by the expression of developmental genes. Methods Petals were analysed using the scanning electron microscope and light microscope. A total of 175 species were studied representing 26 tribes and 89 genera in all three subfamilies of the Leguminosae. Key Results The papilionoids have the highest degree of variation of epidermal types along the dorsiventral axis within the flower. In Loteae and genistoids, in particular, it is common for each petal type to have a different major epidermal micromorphology. Papillose conical cells are mainly found on dorsal and lateral petals. Tabular rugose cells are mainly found on lateral petals and tabular flat cells are found only in ventral petals. Caesalpinioids lack strong micromorphological variation along this axis and usually have only a single major epidermal type within a flower, although the type maybe either tabular rugose cells, papillose conical cells or papillose knobby rugose cells, depending on the species. Conclusions Strong micromorphological variation between different petals in the flower is exclusive to the subfamily Papilionoideae. Both major and minor epidermal types can be used as micromorphological markers of petal identity, at least in papilionoids, and they are important characters of flower evolution in the whole family. The molecular developmental pathway between specific epidermal micromorphology and the expression of petal identity genes has yet to be established. PMID:19789174
Rastogi, Anshu; Pospísil, Pavel
2010-08-01
All living organisms emit spontaneous ultra-weak photon emission as a result of cellular metabolic processes. Exposure of living organisms to exogenous factors results in oxidative processes and enhancement in ultra-weak photon emission. Here, hydrogen peroxide (H(2)O(2)), as a strongly oxidizing molecule, was used to induce oxidative processes and enhance ultra-weak photon emission in human hand skin. The presented work intends to compare both spontaneous and peroxide-induced ultra-weak photon emission from the epidermal cells on the dorsal and the palm side of the hand. A highly sensitive photomultiplier tube and a charge-coupled device camera were used to detect ultra-weak photon emission from human hand skin. Spontaneous ultra-weak photon emission from the epidermal cells on the dorsal side of the hand was 4 counts/s. Topical application of 500 mM H(2)O(2) to the dorsal side of the hand caused enhancement in ultra-weak photon emission to 40 counts/s. Interestingly, both spontaneous and peroxide-induced ultra-weak photon emission from the epidermal cells on the palm side of the hand were observed to increase twice their values, i.e. 8 and 80 counts/s, respectively. Similarly, the two-dimensional image of ultra-weak photon emission observed after topical application of H(2)O(2) to human skin reveals that photon emission from the palm side exceeds the photon emission from the dorsal side of the hand. The results presented indicate that the ultra-weak photon emission originating from the epidermal cells on the dorsal and the palm side of the hand is related to the histological structure of the human hand skin. Ultra-weak photon emission is shown as a non-destructive technique for monitoring of oxidative processes in the epidermal cells of the human hand skin and as a diagnostic tool for skin diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinitt, C.A.M.; Wood, J.; Lee, S.S.
2010-08-01
Cell motility is important in maintaining tissue homeostasis, facilitating epithelial wound repair and in tumour formation and progression. The aim of this study was to determine whether BAG-1 isoforms regulate epidermal cell migration in in vitro models of wound healing. In the human epidermal cell line HaCaT, endogenous BAG-1 is primarily nuclear and increases with confluence. Both transient and stable p36-Bag-1 overexpression resulted in increased cellular cohesion. Stable transfection of either of the three human BAG-1 isoforms p36-Bag-1 (BAG-1S), p46-Bag-1 (BAG-1M) and p50-Bag-1 (BAG-1L) inhibited growth and wound closure in serum-containing medium. However, in response to hepatocyte growth factor (HGF)more » in serum-free medium, BAG-1S/M reduced communal motility and colony scattering, but BAG-1L did not. In the presence of HGF, p36-Bag-1 transfectants retained proliferative response to HGF with no change in ERK1/2 activation. However, the cells retained E-cadherin localisation at cell-cell junctions and exhibited pronounced cortical actin. Point mutations in the BAG domain showed that BAG-1 inhibition of motility is independent of its function as a chaperone regulator. These findings are the first to suggest that BAG-1 plays a role in regulating cell-cell adhesion and suggest an important function in epidermal cohesion.« less
Preparation of a Three-Dimensional Full Thickness Skin Equivalent.
Reuter, Christian; Walles, Heike; Groeber, Florian
2017-01-01
In vitro test systems are a promising alternative to animal models. Due to the use of human cells in a three-dimensional arrangement that allows cell-cell or cell-matrix interactions these models may be more predictive for the human situation compared to animal models or two-dimensional cell culture systems. Especially for dermatological research, skin models such as epidermal or full-thickness skin equivalents (FTSE) are used for different applications. Although epidermal models provide highly standardized conditions for risk assessment, FTSE facilitate a cellular crosstalk between the dermal and epidermal layer and thus can be used as more complex models for the investigation of processes such as wound healing, skin development, or infectious diseases. In this chapter, we describe the generation and culture of an FTSE, based on a collagen type I matrix and provide troubleshooting tips for commonly encountered technical problems.
Estimating the Size of Onion Epidermal Cells from Diffraction Patterns
NASA Astrophysics Data System (ADS)
Groff, Jeffrey R.
2012-10-01
Bioscience and premedical profession students are a major demographic served by introductory physics courses at many colleges and universities. Exposing these students to biological applications of physical principles will help them to appreciate physics as a useful tool for their future professions. Here I describe an experiment suitable for introductory physics where principles of wave optics are applied to probe the size of onion epidermal cells. The epidermis tissue is composed of cells of relatively uniform size and shape (Fig. 1) so the tissue acts like a one-dimensional transmission diffraction grating. The diffraction patterns generated when a laser beam passes through the tissue (Fig. 2) are analyzed and an estimate of the average width of individual onion epidermal cells is calculated. The results are compared to direct measurements taken using a light microscope. The use of microscopes and plant-cell tissue slides creates opportunities for cross-discipline collaboration between physics and biology instructors.
NASA Astrophysics Data System (ADS)
Jin, Hong; Heller, Daniel A.; Kalbacova, Marie; Kim, Jong-Ho; Zhang, Jingqing; Boghossian, Ardemis A.; Maheshri, Narendra; Strano, Michael S.
2010-04-01
An emerging concept in cell signalling is the natural role of reactive oxygen species such as hydrogen peroxide (H2O2) as beneficial messengers in redox signalling pathways. The nature of H2O2 signalling is confounded, however, by difficulties in tracking it in living systems, both spatially and temporally, at low concentrations. Here, we develop an array of fluorescent single-walled carbon nanotubes that can selectively record, in real time, the discrete, stochastic quenching events that occur as H2O2 molecules are emitted from individual human epidermal carcinoma cells stimulated by epidermal growth factor. We show mathematically that such arrays can distinguish between molecules originating locally on the cell membrane from other contributions. We find that epidermal growth factor induces 2 nmol H2O2 locally over a period of 50 min. This platform promises a new approach to understanding the signalling of reactive oxygen species at the cellular level.
Valencia, Concepción; Bonilla-Delgado, José; Oktaba, Katarzyna; Ocádiz-Delgado, Rodolfo; Gariglio, Patricio; Covarrubias, Luis
2008-12-01
Mammals have limited regeneration capacity. We report here that, in transgenic mice (Tg(bK6-E6/E7)), the expression of the E6/E7 oncogenes of human papilloma virus type 16 (HPV16) under the control of the bovine keratin 6 promoter markedly improves the mouse's capacity to repair portions of the ear after being wounded. Increased repair capacity correlates with an increased number of epidermal proliferating cells. In concordance with the expected effects of the E6 and E7 oncogenes, levels of p53 decreased and those of p16 in epidermal cells increased. In addition, we observed that wound re-epithelization proceeded faster in transgenic than in wild-type animals. After the initial re-epithelization, epidermal cell migration from the intact surrounding tissue appears to be a major contributor to the growing epidermis, especially in the repairing tissue of transgenic mice. We also found that there is a significantly higher number of putative epidermal stem cells in Tg(bK6-E6/E7) than in wild-type mice. Remarkably, hair follicles and cartilage regenerated within the repaired ear tissue, without evidence of tumor formation. We propose that the ability to regenerate ear portions is limited by the capacity of the epidermis to repair itself and grow.
Protein profiling of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum.
Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar
2012-09-01
Plant epidermal trichomes are as varied in morphology as they are in function. In the halophyte Mesembryanthemum crystallinum, specialized trichomes called epidermal bladder cells (EBC) line the surface of leaves and stems, and increase dramatically in size and volume upon plant salt-treatment. These cells have been proposed to have roles in plant defense and UV protection, but primarily in sodium sequestration and as water reservoirs. To gain further understanding into the roles of EBC, a cell-type-specific proteomics approach was taken in which precision single-cell sampling of cell sap from individual EBC was combined with shotgun peptide sequencing (LC-MS/MS). Identified proteins showed diverse biological functions and cellular locations, with a high representation of proteins involved in H(+)-transport, carbohydrate metabolism, and photosynthesis. The proteome of EBC provides insight into the roles of these cells in ion and water homeostasis and raises the possibility that they are photosynthetically active and functioning in Crassulacean acid metabolism. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jayalakshmy, P. S.; Subitha, K.; Priya, P. V.; Johnson, Gerald
2012-01-01
Epidermal cyst is a very common benign cystic lesion of the skin. It is usual to find ulceration of the lining epithelium, rupture of the cyst wall with chronic inflammation and foreign body giant cell reaction. But, it is very rare to see an epidermal cyst with marked accumulation of melanin pigment. Only a few cases of pigmented epidermal cyst with dense collection of melanin pigment have been published in the literature. Here, we are reporting a case of ruptured epidermal cyst with keratin granuloma formation and showing dense collection of melanin pigment. PMID:23130289
Guha, Gunjan; Li, Shan; Kyrylkova, Kateryna; Kioussi, Chrissa; Leid, Mark; Ganguli-Indra, Gitali; Indra, Arup K.
2012-01-01
Background Ctip2 is crucial for epidermal homeostasis and protective barrier formation in developing mouse embryos. Selective ablation of Ctip2 in epidermis leads to increased transepidermal water loss (TEWL), impaired epidermal proliferation, terminal differentiation, as well as altered lipid composition during development. However, little is known about the role of Ctip2 in skin homeostasis in adult mice. Methodology/Principal Findings To study the role of Ctip2 in adult skin homeostasis, we utilized Ctip2ep−/− mouse model in which Ctip2 is selectively deleted in epidermal keratinocytes. Measurement of TEWL, followed by histological, immunohistochemical, and RT-qPCR analyses revealed an important role of Ctip2 in barrier maintenance and in regulating adult skin homeostasis. We demonstrated that keratinocytic ablation of Ctip2 leads to atopic dermatitis (AD)-like skin inflammation, characterized by alopecia, pruritus and scaling, as well as extensive infiltration of immune cells including T lymphocytes, mast cells, and eosinophils. We observed increased expression of T-helper 2 (Th2)-type cytokines and chemokines in the mutant skin, as well as systemic immune responses that share similarity with human AD patients. Furthermore, we discovered that thymic stromal lymphopoietin (TSLP) expression was significantly upregulated in the mutant epidermis as early as postnatal day 1 and ChIP assay revealed that TSLP is likely a direct transcriptional target of Ctip2 in epidermal keratinocytes. Conclusions/Significance Our data demonstrated a cell-autonomous role of Ctip2 in barrier maintenance and epidermal homeostasis in adult mice skin. We discovered a crucial non-cell autonomous role of keratinocytic Ctip2 in suppressing skin inflammatory responses by regulating the expression of Th2-type cytokines. It is likely that the epidermal hyperproliferation in the Ctip2-lacking epidermis may be secondary to the compensatory response of the adult epidermis that is defective in barrier functions. Our results establish an initiating role of epidermal TSLP in AD pathogenesis via a novel repressive regulatory mechanism enforced by Ctip2. PMID:23284675
NASA Technical Reports Server (NTRS)
Mitra, Ruchira; Krishnamurthy, Konduru; Blancaflor, Elison; Payton, Mark; Nelson, Richard S.; Verchot-Lubicz, Jeanmarie
2003-01-01
Potato virus X (PVX) TGBp1, TGBp2, TGBp3, and coat protein are required for virus cell-to-cell movement. Plasmids expressing GFP fused to TGBp2 were bombarded to leaf epidermal cells and GFP:TGBp2 moved cell to cell in Nicotiana benthamiana leaves but not in Nicotiana tabacum leaves. GFP:TGBp2 movement was observed in TGBp1-transgenic N. tabacum, indicating that TGBp2 requires TGBp1 to promote its movement in N. tabacum. In this study, GFP:TGBp2 was detected in a polygonal pattern that resembles the endoplasmic reticulum (ER) network. Amino acid sequence analysis revealed TGBp2 has two putative transmembrane domains. Two mutations separately introduced into the coding sequences encompassing the putative transmembrane domains within the GFP:TGBp2 plasmids and PVX genome, disrupted membrane binding of GFP:TGBp2, inhibited GFP:TGBp2 movement in N. benthamiana and TGBp1-expressing N. tabacum, and inhibited PVX movement. A third mutation, lying outside the transmembrane domains, had no effect on GFP:TGBp2 ER association or movement in N. benthamiana but inhibited GFP:TGBp2 movement in TGBp1-expressing N. tabacum and PVX movement in either Nicotiana species. Thus, ER association of TGBp2 may be required but not be sufficient for virus movement. TGBp2 likely provides an activity for PVX movement beyond ER association.
Matrix Metalloproteinase (MMP)-Mediated Phosphorylation of The Epidermal Growth Factor Receptor (EGFR) in Human Airway Epithelial Cells (HAEC) Exposed to Zinc (Zn)
Weidong Wu, James M. Samet, Robert Silbajoris, Lisa A. Dailey, Lee M. Graves, and Philip A. Bromberg
Center fo...
Tsutsui, Shigeyuki; Yoshino, Yuko; Matsui, Saho; Nakamura, Osamu; Muramoto, Koji; Watanabe, Tasuku
2008-03-01
By using EDTA and a trypsin solution, we established a method for isolating the epidermal cells of the conger eel, Conger myriaster. We then identified TNF decoy receptor (DcR) cDNA in the species from a suppression subtractive hybridization library prepared from the epidermal cells stimulated with LPS. The full-length cDNA of conger TNF DcR (conDcR) consisted of 1479 base pairs, and the protein comprised 286 amino acid residues. Phylogenetic analysis indicated that conDcR was clustered into a DcR3 branch. ConDcR is likely to act as an important immune-regulating factor in inhibiting the apoptosis-inducing effect of TNF in the skin of conger eel.
Aridification as a driver of biodiversity: a case study for the cycad genus Dioon (Zamiaceae).
Said Gutiérrez-Ortega, José; Yamamoto, Takashi; Vovides, Andrew P; Angel Pérez-Farrera, Miguel; Martínez, José F; Molina-Freaner, Francisco; Watano, Yasuyuki; Kajita, Tadashi
2018-01-25
Aridification is considered a selective pressure that might have influenced plant diversification. It is suggested that plants adapted to aridity diversified during the Miocene, an epoch of global aridification (≈15 million years ago). However, evidence supporting diversification being a direct response to aridity is scarce, and multidisciplinary evidence, besides just phylogenetic estimations, is necessary to support the idea that aridification has driven diversification. The cycad genus Dioon (Zamiaceae), a tropical group including species occurring from humid forests to arid zones, was investigated as a promising study system to understand the associations among habitat shifts, diversification times, the evolution of leaf epidermal adaptations, and aridification of Mexico. A phylogenetic tree was constructed from seven chloroplast DNA sequences and the ITS2 spacer to reveal the relationships among 14 Dioon species from habitats ranging from humid forests to deserts. Divergence times were estimated and the habitat shifts throughout Dioon phylogeny were detected. The epidermal anatomy among Dioon species was compared and correlation tests were performed to associate the epidermal variations with habitat parameters. Events of habitat shifts towards arid zones happened exclusively in one of the two main clades of Dioon. Such habitat shifts happened during the species diversification of Dioon, mainly during the Miocene. Comparative anatomy showed epidermal differences between species from arid and mesic habitats. The variation of epidermal structures was found to be correlated with habitat parameters. Also, most of the analysed epidermal traits showed significant phylogenetic signals. The diversification of Dioon has been driven by the aridification of Mexico. The Miocene timing corresponds to the expansion of arid zones that embedded the ancestral Dioon populations. As response, species in arid zones evolved epidermal traits to counteract aridity stress. This case study provides a robust body of evidence supporting the idea that aridification is an important driver of biodiversity. © The Authors 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
1990-04-16
18. SUB3ECT TERMS (oont’d) epidermal injury organ culture •ranuaear vacuoles C-leucine incorpora’tion by full-thickness human akin explants hi stamine ...mast- cell degranulation prostaglandin E2 lysobomal enzymes: acid phosphatase, B-glucuronidase, 0-galactcsidase, lysozyme and lactic dehydrogenase...that histamline (from local mast cells ), and PA and POgk (probably from mast cells and epidermal cells ) are s3e of the early mediators of the inflmma
Nonami, H; Schulze, E D
1989-01-01
Water potential, osmotic potential and turgor measurements obtained by using a cell pressure probe together with a nanoliter osmometer were compared with measurements obtained with an isopiestic psychrometer. Both types of measurements were conducted in the mature region of Tradescantia virginiana L. leaves under non-transpiring conditions in the dark, and gave similar values of all potentials. This finding indicates that the pressure probe and the osmometer provide accurate measurements of turgor, osmotic potentials and water potentials. Because the pressure probe does not require long equilibration times and can measure turgor of single cells in intact plants, the pressure probe together with the osmometer was used to determine in-situ cell water potentials, osmotic potentials and turgor of epidermal and mesophyll cells of transpiring leaves as functions of stomatal aperture and xylem water potential. When the xylem water potential was-0.1 MPa, the stomatal aperture was at its maximum, but turgor of both epidermal and mesophyll cells was relatively low. As the xylem water potential decreased, the stomatal aperture became gradually smaller, whereas turgor of both epidermal and mesophyll cells first increased and afterward decreased. Water potentials of the mesophyll cells were always lower than those of the epidermal cells. These findings indicate that evaporation of water is mainly occurring from mesophyll cells and that peristomatal transpiration could be less important than it has been proposed previously, although peristomatal transpiration may be directly related to regulation of turgor in the guard cells.
Van Moerkercke, Alex; Galván-Ampudia, Carlos S; Verdonk, Julian C; Haring, Michel A; Schuurink, Robert C
2012-05-01
In which cells of the flower volatile biosynthesis takes place is unclear. In rose and snapdragon, some enzymes of the volatile phenylpropanoid/benzenoid pathway have been shown to be present in the epidermal cells of petals. It is therefore generally believed that the production of these compounds occurs in these cells. However, whether the entire pathway is active in these cells and whether it is exclusively active in these cells remains to be proven. Cell-specific transcription factors activating these genes will determine in which cells they are expressed. In petunia, the transcription factor EMISSION OF BENZENOIDS II (EOBII) activates the ODORANT1 (ODO1) promoter and the promoter of the biosynthetic gene isoeugenol synthase (IGS). The regulator ODO1 in turn activates the promoter of the shikimate gene 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Here the identification of a new target gene of ODO1, encoding an ABC transporter localized on the plasma membrane, PhABCG1, which is co-expressed with ODO1, is described. PhABCG1 expression is up-regulated in petals overexpressing ODO1 through activation of the PhABCG1 promoter. Interestingly, the ODO1, PhABCG1, and IGS promoters were active in petunia protoplasts originating from both epidermal and mesophyll cell layers of the petal, suggesting that the volatile phenylpropanoid/benzenoid pathway in petunia is active in these different cell types. Since volatile release occurs from epidermal cells, trafficking of (volatile) compounds between cell layers must be involved, but the exact function of PhABCG1 remains to be resolved.
Xiao, J H; Feng, X; Di, W; Peng, Z H; Li, L A; Chambon, P; Voorhees, J J
1999-01-01
The role of retinoic acid receptors (RARs) in intercellular regulation of cell growth was assessed by targeting a dominant-negative RARalpha mutant (dnRARalpha) to differentiated suprabasal cells of mouse epidermis. dnRARalpha lacks transcriptional activation but not DNA-binding and receptor dimerization functions. Analysis of transgenic mice revealed that dnRARalpha dose-dependently impaired induction of basal cell proliferation and epidermal hyperplasia by all-trans RA (tRA). dnRARalpha formed heterodimers with endogenous retinoid X receptor-alpha (RXRalpha) over RA response elements in competition with remaining endogenous RARgamma-RXRalpha heterodimers, and dose-dependently impaired retinoid-dependent gene transcription. To identify genes regulated by retinoid receptors and involved in cell growth control, we analyzed the retinoid effects on expression of the epidermal growth factor (EGF) receptor, EGF, transforming growth factor-alpha, heparin-binding EGF-like growth factor (HB-EGF) and amphiregulin genes. In normal epidermis, tRA rapidly and selectively induced expression of HB-EGF but not the others. This induction occurred exclusively in suprabasal cells. In transgenic epidermis, dnRARalpha dose-dependently inhibited tRA induction of suprabasal HB-EGF and subsequent basal cell hyperproliferation. Together, our observations suggest that retinoid receptor heterodimers located in differentiated suprabasal cells mediate retinoid induction of HB-EGF, which in turn stimulates basal cell growth via intercellular signaling. These events may underlie retinoid action in epidermal regeneration during wound healing. PMID:10075925
Miyauchi, Eisaku; Inoue, Akira; Kobayashi, Kunihiko; Maemondo, Makoto; Sugawara, Shunichi; Oizumi, Satoshi; Isobe, Hiroshi; Gemma, Akihiko; Saijo, Yasuo; Yoshizawa, Hirohisa; Hagiwara, Koichi; Nukiwa, Toshihiro
2015-07-01
Epidermal growth factor receptor tyrosine kinase inhibitors are effective as first-line therapy for advanced non-small cell lung cancer patients harboring epidermal growth factor receptor mutations. However, it is unknown whether second-line platinum-based chemotherapy after epidermal growth factor receptor tyrosine kinase inhibitor therapy could lead to better outcomes. We evaluated the efficacy of second-line platinum-based chemotherapy after gefitinib for advanced non-small cell lung cancers harboring epidermal growth factor receptor mutations (the NEJ002 study). Seventy-one non-small cell lung cancers, treated with gefitinib as first-line therapy and then receiving platinum-based chemotherapy as second-line therapy were evaluated in NEJ002. Patients were evaluated for antitumor response to second-line chemotherapy by computed tomography according to the criteria of the Response Evaluation Criteria in Solid Tumors group (version 1.0). Of the 71 patients receiving platinum-based chemotherapy after first-line gefitinib, a partial response was documented in 25.4% (18/71), stable disease in 43.7% (31/71) and progression of disease in 21.1% (15/71). The objective response and disease control rates were 25.4% (18/71) and 69% (49/71), respectively. There was no significant difference between first- and second-line chemotherapy in objective response and disease control rates for advanced non-small cell lung cancer harboring activating epidermal growth factor receptor mutations. In the analysis of epidermal growth factor receptor mutation types, the objective responses of deletions in exon 19 and a point mutation in exon 21 (L858R) were 27.3% (9/33) and 28.1% (9/32), respectively, but these differences between objective response rates were not significant. The efficacy of second-line platinum-based chemotherapy followed at progression by gefitinib was similar to first-line platinum-based chemotherapy, and epidermal growth factor receptor mutation types did not influence the efficacy of second-line platinum-based chemotherapy. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Nakrieko, Kerry-Ann; Rudkouskaya, Alena; Irvine, Timothy S; D'Souza, Sudhir J A; Dagnino, Lina
2011-07-15
Integrin-linked kinase (ILK) is key for normal epidermal morphogenesis, but little is known about its role in hair follicle stem cells and epidermal regeneration. Hair follicle stem cells are important contributors to newly formed epidermis following injury. We inactivated the Ilk gene in the keratin 15--expressing stem cell population of the mouse hair follicle bulge. Loss of ILK expression in these cells resulted in impaired cutaneous wound healing, with substantially decreased wound closure rates. ILK-deficient stem cells produced very few descendants that moved toward the epidermal surface and into the advancing epithelium that covers the wound. Furthermore, those few mutant cells that homed in the regenerated epidermis exhibited a reduced residence time. Paradoxically, ILK-deficient bulge stem cells responded to anagen growth signals and contributed to newly regenerated hair follicles during this phase of hair follicle growth. Thus ILK plays an important modulatory role in the normal contribution of hair follicle stem cell progeny to the regenerating epidermis following injury.
Nakrieko, Kerry-Ann; Rudkouskaya, Alena; Irvine, Timothy S.; D'souza, Sudhir J. A.; Dagnino, Lina
2011-01-01
Integrin-linked kinase (ILK) is key for normal epidermal morphogenesis, but little is known about its role in hair follicle stem cells and epidermal regeneration. Hair follicle stem cells are important contributors to newly formed epidermis following injury. We inactivated the Ilk gene in the keratin 15–expressing stem cell population of the mouse hair follicle bulge. Loss of ILK expression in these cells resulted in impaired cutaneous wound healing, with substantially decreased wound closure rates. ILK-deficient stem cells produced very few descendants that moved toward the epidermal surface and into the advancing epithelium that covers the wound. Furthermore, those few mutant cells that homed in the regenerated epidermis exhibited a reduced residence time. Paradoxically, ILK-deficient bulge stem cells responded to anagen growth signals and contributed to newly regenerated hair follicles during this phase of hair follicle growth. Thus ILK plays an important modulatory role in the normal contribution of hair follicle stem cell progeny to the regenerating epidermis following injury. PMID:21593206
Besson, Vanessa; Smeriglio, Piera; Wegener, Amélie; Relaix, Frédéric; Nait Oumesmar, Brahim; Sassoon, David A.; Marazzi, Giovanna
2011-01-01
A variety of markers are invaluable for identifying and purifying stem/progenitor cells. Here we report the generation of a murine reporter line driven by Pw1 that reveals cycling and quiescent progenitor/stem cells in all adult tissues thus far examined, including the intestine, blood, testis, central nervous system, bone, skeletal muscle, and skin. Neurospheres generated from the adult PW1-reporter mouse show near 100% reporter-gene expression following a single passage. Furthermore, epidermal stem cells can be purified solely on the basis of reporter-gene expression. These cells are clonogenic, repopulate the epidermal stem-cell niches, and give rise to new hair follicles. Finally, we demonstrate that only PW1 reporter-expressing epidermal cells give rise to follicles that are capable of self-renewal following injury. Our data demonstrate that PW1 serves as an invaluable marker for competent self-renewing stem cells in a wide array of adult tissues, and the PW1-reporter mouse serves as a tool for rapid stem cell isolation and characterization. PMID:21709251
Pontiggia, Luca; Biedermann, Thomas; Böttcher-Haberzeth, Sophie; Oliveira, Carol; Braziulis, Erik; Klar, Agnieszka S; Meuli-Simmen, Claudia; Meuli, Martin; Reichmann, Ernst
2014-06-01
In our previous work, we showed that human sweat gland-derived epithelial cells represent an alternative source of keratinocytes to grow a near normal autologous epidermis. The role of subtypes of sweat gland cells in epidermal regeneration and maintenance remained unclear. In this study, we compare the regenerative potential of both secretory and absorptive sweat gland cell subpopulations. We demonstrate the superiority of secretory over absorptive cells in forming a new epidermis on two levels: first, the proliferative and colony-forming efficiencies in vitro are significantly higher for secretory cells (SCs), and second, SCs show a higher frequency of successful epidermis formation as well as an increase in the thickness of the formed epidermis in the in vitro and in vivo functional analyses using a 3D dermo-epidermal skin model. However, the ability of forming functional skin substitutes is not limited to SCs, which supports the hypothesis that multiple subtypes of sweat gland epithelial cells hold regenerative properties, while the existence and exact localization of a keratinocyte stem cell population in the human eccrine sweat gland remain elusive.
Yuan, Xiao-Ying; Liu, Wei; Hao, Jian-Chun; Gu, Wei-Jie; Zhao, Yan-Shuang
2012-01-01
The purpose of this study was to investigate whether grape seed proanthocyanidin extract (GSPE) can provide photoprotection against ultraviolet (UV) irradiation. Study has shown that GSPE is a natural oxidant, and is used in many fields such as ischemia-reperfusion injury, chronic pancreatitis, and even cancer. However, the effect of GSPE on UV irradiation is as yet unknown. Cutaneous areas on the backs of normal volunteers were untreated or treated with GSPE solutions or vehicles 30 min before exposure to two minimal erythema doses (MED) of solar simulated radiation. Cutaneous areas at different sites were examined histologically for the number of sunburn cells, or immunohistochemically for Langerhans cells and mutant p53 epidermal cells. On histological and immunohistochemical examination, skin treated with GSPE before UV radiation showed fewer sunburn cells and mutant p53-positive epidermal cells and more Langerhans cells compared with skin treated with 2-MED UV radiation only (p<0.001, p<0.001, and p<0.01, respectively). GSPE may be a possible preventive agent for photoprotection.
Yang, Guangdie; Yao, Yinan; Zhou, Jianya; Zhao, Qiong
2012-06-01
Epidermal growth factor receptor (EGFR) is one of the most promising targets for non-small cell lung cancer (NSCLC). Our study demonstrated the antitumor effects of icotinib hydrochloride, a highly selective epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI), in two EGFR-mutated lung cancer cell lines compared to A549, a cell line without EGFR mutations. We incubated PC-9 and HCC827 human lung cancer cell lines both with (E746-A750) mutations with various concentrations of icotinib and gefitinib for 48 h. Cell proliferation and migration were determined using a real-time cell invasion and migration assay and cytotoxicity assay. Apoptosis was assessed by measuring Annexin V staining using flow cytometry. The antitumor effects of icotinib compared to gefitinib were similar and were most effective in reducing the proliferation of EGFR-mutated cells compared to non-mutated controls. Our results suggest the possibility of icotinib as a new therapeutic agent of EGFR-mutated cancer cells, which has the potential to be used in the first-line treatment of EGFR-mutated NSCLC.
Ebert, Berit; Melle, Christian; Lieckfeldt, Elke; Zöller, Daniela; von Eggeling, Ferdinand; Fisahn, Joachim
2008-08-25
Here, we describe a novel approach for investigating differential protein expression within three epidermal cell types. In particular, 3000 single pavement, basal, and trichome cells from leaves of Arabidopsis thaliana were harvested by glass micro-capillaries. Subsequently, these single cell samples were joined to form pools of 100 individual cells and analyzed using the ProteinChip technology; SELDI: surface-enhanced laser desorption and ionization. As a result, numerous protein signals that were differentially expressed in the three epidermal cell types could be detected. One of these proteins was characterized by tryptical digestion and subsequent identification via tandem quadrupole-time of flight (Q-TOF) mass spectrometry. Down regulation of this sequenced small subunit precursor of ribulose-1,5 bisphosphate carboxylase(C) oxygenase(O) (RuBisCo) in trichome and basal cells indicates the sink status of these cell types that are located on the surface of A. thaliana source leaves. Based on the obtained protein profiles, we suggest a close functional relationship between basal and trichome cells at the protein level.
Batista, Maria Edenilce Peixoto; Silva, Delmira da Costa; Sales, Marcos A. F.; Sá, Artur A.; Saraiva, Antônio A. F.; Loiola, Maria Iracema Bezerra
2017-01-01
Pseudofrenelopsis and Brachyphyllum are two conifers that were part of the Lower Cretaceous (Aptian) taphoflora of the Crato Formation, Araripe Basin, northeastern Brazil. The former genus includes, so far, P. capillata and indeterminate species, whilst the latter is mainly represented by B. obesum, the most common plant megafossil recovered from that stratigraphic unit. Here, the stem and leaf anatomy of Pseudofrenelopsis sp. and B. obesum specimens is revisited, including the first report of some epidermal and vascular traits for both taxa from the Crato Formation. Along with its paleoecological significance, the new data suggest the presence of more than one Pseudofrenelopsis species in the Aptian taphoflora of the Araripe Basin and further support the taxonomic placement of B. obesum within Araucariaceae. PMID:28257466
Structure and function of homodomain-leucine zipper (HD-Zip) proteins.
Elhiti, Mohamed; Stasolla, Claudio
2009-02-01
Homeodomain-leucine zipper (HD-Zip) proteins are transcription factors unique to plants and are encoded by more than 25 genes in Arabidopsis thaliana. Based on sequence analyses these proteins have been classified into four distinct groups: HD-Zip I-IV. HD-Zip proteins are characterized by the presence of two functional domains; a homeodomain (HD) responsible for DNA binding and a leucine zipper domain (Zip) located immediately C-terminal to the homeodomain and involved in protein-protein interaction. Despite sequence similarities HD-ZIP proteins participate in a variety of processes during plant growth and development. HD-Zip I proteins are generally involved in responses related to abiotic stress, abscisic acid (ABA), blue light, de-etiolation and embryogenesis. HD-Zip II proteins participate in light response, shade avoidance and auxin signalling. Members of the third group (HD-Zip III) control embryogenesis, leaf polarity, lateral organ initiation and meristem function. HD-Zip IV proteins play significant roles during anthocyanin accumulation, differentiation of epidermal cells, trichome formation and root development.
Choi, H-R; Nam, K-M; Kim, D-S; Huh, C-H; Na, J-I; Park, K-C
2013-06-01
In the reconstruction of skin equivalents (SEs), keratinocyte differentiation is important because epidermal differentiation is closely related with barrier function. The aim of this study was to investigate the effects of Cervi cornus Colla (CCC) on the stem cell activity and epidermal differentiation in the reconstruction of skin equivalent. Four different models were constructed according to different composition of dermal substitute. Results showed similar morphologic findings when hyaluronic acid (HA) and/or CCC was added. But, immunohistochemical staining showed that p63 was significantly increased by addition of HA and/or CCC. Increased staining of integrin α6 and β1 was variably observed when HA and/or CCC was added to make dermal substitute. These finding showed that addition of HA and/or CCC may affect the stem cell activity in the reconstruction of skin. Furthermore, filaggrin expression was much increased when CCC was added. It showed that epidermal differentiation was significantly improved by addition of CCC. In conclusion, simultaneous presence of HA and CCC contributed to the stem cell activity and epidermal differentiation in the reconstruction of SE. Legislation in the EU prohibits marketing cosmetics and personal care products that contain constituents that have been examined through animal experiments. To avoid these limitations, SEs can be used for testing the safety or the efficacy of cosmetic ingredients. Therefore, our results showed that combined use of HA and CCC can be helpful for the reconstruction of SE with good stem cell activity and epidermal differentiation. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Hsieh, Wan-Ling; Lin, Yin-Ku; Tsai, Chi-Neu; Wang, Ta-Min; Chen, Tzu-Ya; Pang, Jong-Hwei S
2012-08-01
Topical indigo naturalis ointment is clinically proved to be an effective therapy for plaque-type psoriasis. Indirubin, as the active component of indigo naturalis, inhibits cell proliferation of epidermal keratinocytes. However, the detailed underlying mechanism is not fully understood. To further investigate the anti-proliferating effects of indigo naturalis and indirubin on epidermal keratinocytes. The decreased expression of CDC25B in indigo naturalis- or indirubin-treated epidermal keratinocytes, as revealed by cDNA microarray analysis, was studied. The CDC25B expression was examined under different serum concentrations and compared between primary and immortalized keratinocytes. The activation of EGFR and the effect of EGF on the cell proliferation and CDC25B expression were also investigated in epidermal keratinocytes. RT/real-time PCR and western blot method were used to analyze the CDC25B expression at the mRNA and protein levels, respectively. Indigo naturalis and indirubin were confirmed to down-regulate CDC25B expression significantly at both the mRNA and protein levels. The growth-dependent expression of CDC25B was demonstrated by the increased expression in serum-stimulated and immortalized keratinocytes. The activation of EGF receptor, known to be highly expressed in psoriatic lesions, was inhibited by indigo naturalis or indirubin. The cell proliferation and CDC25B expression of epidermal keratinocytes were induced by EGF alone and confirmed to be inhibited by indigo naturalis or indirubin. Except being a common therapeutic target in various cancers, CDC25B also plays an important role in the hyper-proliferation of epidermal keratinocytes which can be suppressed by anti-psoriatic drug indigo naturalis and its component, indirubin. Copyright © 2012 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
Chamcheu, Jean Christopher; Afaq, Farrukh; Syed, Deeba N; Siddiqui, Imtiaz A; Adhami, Vaqar M; Khan, Naghma; Singh, Sohinderjit; Boylan, Brendan T; Wood, Gary S; Mukhtar, Hasan
2013-05-01
Delphinidin (Del), [3,5,7,3'-,4'-,5'-hexahydroxyflavylium], an anthocyanidin and a potent antioxidant abundantly found in pigmented fruits and vegetables exhibits proapoptotic effects in many cancer cells. Here, we determined the effect of Del on growth, apoptosis and differentiation of normal human epidermal keratinocytes (NHEKs) in vitro in submerged cultures and examined its effects in a three-dimensional (3D) epidermal equivalent (EE) model that permits complete differentiation reminiscent of in vivo skin. Treatment of NHEKs with Del (10-40 μm; 24-48 h) significantly enhanced keratinocyte differentiation. In Del-treated cells, there was marked increase in human involucrin (hINV) promoter activity with simultaneous increase in the mRNA and protein expressions of involucrin and other epidermal differentiation markers including procaspase-14 and transglutaminase-1 (TGM1), but without any effect on TGM2. Del treatment of NHEKs was associated with minimal decrease in cell viability, which was not associated with apoptosis as evident by lack of modulation of caspases, apoptosis-related proteins including Bcl-2 family of proteins and poly(ADP-ribose) polymerase cleavage. To establish the in vivo relevance of our observations in submerged cultures, we then validated these effects in a 3D EE model, where Del was found to significantly enhance cornification and increase the protein expression of cornification markers including caspase-14 and keratin 1. For the first time, we show that Del induces epidermal differentiation using an experimental system that closely mimics in vivo human skin. These observations suggest that Del could be a useful agent for dermatoses associated with epidermal barrier defects including aberrant keratinization, hyperproliferation or inflammation observed in skin diseases like psoriasis and ichthyoses. © 2013 John Wiley & Sons A/S.
The DP-1 transcription factor is required for keratinocyte growth and epidermal stratification.
Chang, Wing Y; Bryce, Dawn M; D'Souza, Sudhir J A; Dagnino, Lina
2004-12-03
The epidermis is a stratified epithelium constantly replenished through the ability of keratinocytes in its basal layer to proliferate and self-renew. The epidermis arises from a single-cell layer ectoderm during embryogenesis. Large proliferative capacity is central to ectodermal cell and basal keratinocyte function. DP-1, a heterodimeric partner of E2F transcription factors, is highly expressed in the ectoderm and all epidermal layers during embryogenesis. To investigate the role of DP-1 in epidermal morphogenesis, we inhibited DP-1 activity through exogenous expression of a dominant-negative mutant (dnDP-1). Expression of the dnDP-1 mutant interferes with binding of E2F/DP-1 heterodimers to DNA and inhibits DNA replication, as well as cyclin A mRNA and protein expression. Chromatin immunoprecipitation analysis demonstrated that the cyclin A promoter is predominantly bound in proliferating keratinocytes by complexes containing E2F-3 and E2F-4. Thus, the mechanisms of decreased expression of cyclin A in the presence of dnDP-1 seem to involve inactivation of DP-1 complexes containing E2F-3 and E2F-4. To assess the consequences on epidermal morphogenesis of inhibiting DP-1 activity, we expressed dnDP-1 in rat epithelial keratinocytes in organotypic culture and observed that DP-1 inhibition negatively affected stratification of these cells. Likewise, expression of dnDP-1 in embryonic ectoderm explants produced extensive disorganization of subsequently formed epidermal basal and suprabasal layers, interfering with normal epidermal formation. We conclude that DP-1 activity is required for normal epidermal morphogenesis and ectoderm-to-epidermis transition.
Li, Yong; Stoll, Stefan W; Sekhon, Sahil; Talsma, Caroline; Camhi, Maya I; Jones, Jennifer L; Lambert, Sylviane; Marley, Hue; Rittié, Laure; Grachtchouk, Marina; Fritz, Yi; Ward, Nicole L; Elder, James T
2016-03-01
To explore the role of amphiregulin in inflammatory epidermal hyperplasia, we overexpressed human AREG (hAREG) in FVB/N mice using a bovine K5 promoter. A construct containing AREG coding sequences flanked by 5' and 3' untranslated region sequences (AREG-UTR) led to a >10-fold increase in hAREG expression compared to an otherwise-identical construct containing only the coding region (AREG-CDR). AREG-UTR mice developed tousled, greasy fur as well as elongated nails and thickened, erythematous tail skin. No such phenotype was evident in AREG-CDR mice. Histologically, AREG-UTR mice presented with marked epidermal hyperplasia of tail skin (2.1-fold increase in epidermal thickness with a 9.5-fold increase in Ki-67(+) cells) accompanied by significantly increased CD4+ T-cell infiltration. Dorsal skin of AREG-UTR mice manifested lesser but still significant increases in epidermal thickness and keratinocyte hyperplasia. AREG-UTR mice also developed marked and significant sebaceous gland enlargement, with corresponding increases in Ki-67(+) cells. To determine the response of AREG-UTR animals to a pro-inflammatory skin challenge, topical imiquimod (IMQ) or vehicle cream was applied to dorsal and tail skin. IMQ increased dorsal skin thickness similarly in both AREG-UTR and wild type mice (1.7- and 2.2-fold vs vehicle, P < 0.001 each), but had no such effect on tail skin. These results confirm that keratinocyte expression of hAREG elicits inflammatory epidermal hyperplasia, and are consistent with prior reports of tail epidermal hyperplasia and increased sebaceous gland size in mice expressing human epigen. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Shibata, Eri; Ando, Kazunori; Murase, Emiko; Kawakami, Atsushi
2018-04-13
The regenerative epidermis (RE) is a specialized tissue that plays an essential role in tissue regeneration. However, the fate of the RE during and after regeneration is unknown. In this study, we performed Cre- loxP -mediated cell fate tracking and revealed the fates of a major population of the RE cells that express fibronectin 1b ( fn1b ) during zebrafish fin regeneration. Our study showed that these RE cells are mainly recruited from the inter-ray epidermis, and that they follow heterogeneous cell fates. Early recruited cells contribute to initial wound healing and soon disappear by apoptosis, while the later recruited cells contribute to the regenerated epidermis. Intriguingly, many of these cells are also expelled from the regenerated tissue by a dynamic caudal movement of the epidermis over time, and in turn the loss of epidermal cells is replenished by a global self-replication of basal and suprabasal cells in fin. De-differentiation of non-basal epidermal cells into the basal epidermal cells did not occur during regeneration. Overall, our study reveals the heterogeneous fates of RE cells and a dynamic rearrangement of the epidermis during and after regeneration. © 2018. Published by The Company of Biologists Ltd.
Epidermal growth factor in alkali-burned corneal epithelial wound healing.
Singh, G; Foster, C S
1987-06-15
We conducted a double-masked study to evaluate the effect of epidermal growth factor on epithelial wound healing and recurrent erosions in alkali-burned rabbit corneas. Epithelial wounds 10 mm in diameter healed completely under the influence of topical epidermal growth factor, whereas the control corneas did not resurface in the center. On reversal of treatment, the previously nonhealing epithelial defects healed when treated with topical epidermal growth factor eyedrops. Conversely, the epidermal growth factor-treated and resurfaced corneas developed epithelial defects when treatment was discontinued. Histopathologic examination disclosed hyperplastic epithelium growing over the damaged stroma laden with polymorphonuclear leukocytes when treated with epidermal growth factor eyedrops, but it did not adhere to the underlying tissue. Hydropic changes were seen intracellularly as well as between the epithelial cells and the stroma.
The mysterious human epidermal cell cycle, or an oncogene-induced differentiation checkpoint
Gandarillas, Alberto
2012-01-01
Fifteen years ago, we reported that proto-oncogene MYC promoted differentiation of human epidermal stem cells, a finding that was surprising to the MYC and the skin research communities. MYC was one of the first human oncogenes identified, and it had been strongly associated with proliferation. However, it was later shown that MYC could induce apoptosis under low survival conditions. Currently, the notion that MYC promotes epidermal differentiation is widely accepted, but the cell cycle mechanisms that elicit this function remain unresolved. We have recently reported that keratinocytes respond to cell cycle deregulation and DNA damage by triggering terminal differentiation. This mechanism might constitute a homeostatic protection face to cell cycle insults. Here, I discuss recent and not-so-recent evidence suggesting the existence of a largely unexplored oncogene-induced differentiation response (OID) analogous to oncogene-induced apoptosis (OIA) or senescence (OIS). In addition, I propose a model for the role of the cell cycle in skin homeostasis maintenance and for the dual role of MYC in differentiation. PMID:23114621
Tadeu, Ana Mafalda Baptista; Lin, Samantha; Hou, Lin; Chung, Lisa; Zhong, Mei; Zhao, Hongyu; Horsley, Valerie
2015-01-01
In recent years, several studies have shed light into the processes that regulate epidermal specification and homeostasis. We previously showed that a broad-spectrum γ–secretase inhibitor DAPT promoted early keratinocyte specification in human embryonic stem cells triggered to undergo ectoderm specification. Here, we show that DAPT accelerates human embryonic stem cell differentiation and induces expression of the ectoderm protein AP2. Furthermore, we utilize RNA sequencing to identify several candidate regulators of ectoderm specification including those involved in epithelial and epidermal development in human embryonic stem cells. Genes associated with transcriptional regulation and growth factor activity are significantly enriched upon DAPT treatment during specification of human embryonic stem cells to the ectoderm lineage. The human ectoderm cell signature identified in this study contains several genes expressed in ectodermal and epithelial tissues. Importantly, these genes are also associated with skin disorders and ectodermal defects, providing a platform for understanding the biology of human epidermal keratinocyte development under diseased and homeostatic conditions. PMID:25849374
Laplante, Caroline
2011-01-01
During Drosophila melanogaster dorsal closure, lateral sheets of embryonic epidermis assemble an actomyosin cable at their leading edge and migrate dorsally over the amnioserosa, converging at the dorsal midline. We show that disappearance of the homophilic cell adhesion molecule Echinoid (Ed) from the amnioserosa just before dorsal closure eliminates homophilic interactions with the adjacent dorsal-most epidermal (DME) cells, which comprise the leading edge. The resulting planar polarized distribution of Ed in the DME cells is essential for the localized accumulation of actin regulators and for actomyosin cable formation at the leading edge and for the polarized localization of the scaffolding protein Bazooka/PAR-3. DME cells with uniform Ed fail to assemble a cable and protrude dorsally, suggesting that the cable restricts dorsal migration. The planar polarized distribution of Ed in the DME cells thus provides a spatial cue that polarizes the DME cell actin cytoskeleton, defining the epidermal leading edge and establishing its contractile properties. PMID:21263031
Guo, Mei; Rupe, Mary A.; Dieter, Jo Ann; Zou, Jijun; Spielbauer, Daniel; Duncan, Keith E.; Howard, Richard J.; Hou, Zhenglin; Simmons, Carl R.
2010-01-01
Genes involved in cell number regulation may affect plant growth and organ size and, ultimately, crop yield. The tomato (genus Solanum) fruit weight gene fw2.2, for instance, governs a quantitative trait locus that accounts for 30% of fruit size variation, with increased fruit size chiefly due to increased carpel ovary cell number. To expand investigation of how related genes may impact other crop plant or organ sizes, we identified the maize (Zea mays) gene family of putative fw2.2 orthologs, naming them Cell Number Regulator (CNR) genes. This family represents an ancient eukaryotic family of Cys-rich proteins containing the PLAC8 or DUF614 conserved motif. We focused on native expression and transgene analysis of the two maize members closest to Le-fw2.2, namely, CNR1 and CNR2. We show that CNR1 reduced overall plant size when ectopically overexpressed and that plant and organ size increased when its expression was cosuppressed or silenced. Leaf epidermal cell counts showed that the increased or decreased transgenic plant and organ size was due to changes in cell number, not cell size. CNR2 expression was found to be negatively correlated with tissue growth activity and hybrid seedling vigor. The effects of CNR1 on plant size and cell number are reminiscent of heterosis, which also increases plant size primarily through increased cell number. Regardless of whether CNRs and other cell number–influencing genes directly contribute to, or merely mimic, heterosis, they may aid generation of more vigorous and productive crop plants. PMID:20400678
Periostin contributes to epidermal hyperplasia in psoriasis common to atopic dermatitis
Arima, Kazuhiko; Ohta, Shoichiro; Takagi, Atsushi; Shiraishi, Hiroshi; Masuoka, Miho; Ontsuka, Kanako; Suto, Hajime; Suzuki, Shoichi; Yamamoto, Ken-ichi; Ogawa, Masahiro; Simmons, Olga; Yamaguchi, Yukie; Toda, Shuji; Aihara, Michiko; Conway, Simon J.; Ikeda, Shigaku; Izuhara, Kenji
2016-01-01
Background Epidermal hyperplasia is a histological hallmark observed in both atopic dermatitis (AD) and psoriasis, although the clinical features and the underlying immunological disorders of these diseases are different. We previously showed that periostin, a matricellular protein, plays a critical role in epidermal hyperplasia in AD, using a mouse model and a 3-dimensional organotypic coculture system. In this study, we explore the hypothesis that periostin is involved in epidermal hyperplasia in psoriasis. Methods To examine expression of periostin in psoriasis patients, we performed immunohistochemical analysis on skin biopsies from six such patients. To investigate periostin’s role in the pathogenesis of psoriasis, we evaluated periostin-deficient mice in a psoriasis mouse model induced by topical treatment with imiquimod (IMQ). Results Periostin was substantially expressed in the dermis of all investigated psoriasis patients. Epidermal hyperplasia induced by IMQ treatment was impaired in periostin-deficient mice, along with decreased skin swelling. However, upon treatment with IMQ, periostin deficiency did not alter infiltration of inflammatory cells such as neutrophils; production of IL-17, –22, or –23; or induction/expansion of IL-17– and IL-22–producing group 3 innate lymphoid cells. Conclusions Periostin plays an important role during epidermal hyperplasia in IMQ-induced skin inflammation, independently of the IL-23–IL-17/IL-22 axis. Periostin appears to be a mediator for epidermal hyperplasia that is common to AD and psoriasis. PMID:25572557
Cobzaru, Cristina; Triantafyllopoulou, Antigoni; Löffek, Stefanie; Horiuchi, Keisuke; Threadgill, David W.; Kurz, Thomas; van Rooijen, Nico; Bruckner-Tuderman, Leena
2012-01-01
ADAM17 (a disintegrin and metalloproteinase 17) is ubiquitously expressed and cleaves membrane proteins, such as epidermal growth factor receptor (EGFR) ligands, l-selectin, and TNF, from the cell surface, thus regulating responses to tissue injury and inflammation. However, little is currently known about its role in skin homeostasis. We show that mice lacking ADAM17 in keratinocytes (A17ΔKC) have a normal epidermal barrier and skin architecture at birth but develop pronounced defects in epidermal barrier integrity soon after birth and develop chronic dermatitis as adults. The dysregulated expression of epidermal differentiation proteins becomes evident 2 d after birth, followed by reduced transglutaminase (TGM) activity, transepidermal water loss, up-regulation of the proinflammatory cytokine IL-36α, and inflammatory immune cell infiltration. Activation of the EGFR was strongly reduced in A17ΔKC skin, and topical treatment of A17ΔKC mice with recombinant TGF-α significantly improved TGM activity and decreased skin inflammation. Finally, we show that mice lacking the EGFR in keratinocytes (EgfrΔKC) closely resembled A17ΔKC mice. Collectively, these results identify a previously unappreciated critical role of the ADAM17–EGFR signaling axis in maintaining the homeostasis of the postnatal epidermal barrier and suggest that this pathway could represent a good target for treatment of epidermal barrier defects. PMID:22565824
Palisade cell shape affects the light-induced chloroplast movements and leaf photosynthesis.
Gotoh, Eiji; Suetsugu, Noriyuki; Higa, Takeshi; Matsushita, Tomonao; Tsukaya, Hirokazu; Wada, Masamitsu
2018-01-24
Leaf photosynthesis is regulated by multiple factors that help the plant to adapt to fluctuating light conditions. Leaves of sun-light-grown plants are thicker and contain more columnar palisade cells than those of shade-grown plants. Light-induced chloroplast movements are also essential for efficient leaf photosynthesis and facilitate efficient light utilization in leaf cells. Previous studies have demonstrated that leaves of most of the sun-grown plants exhibited no or very weak chloroplast movements and could accomplish efficient photosynthesis under strong light. To examine the relationship between palisade cell shape, chloroplast movement and distribution, and leaf photosynthesis, we used an Arabidopsis thaliana mutant, angustifolia (an), which has thick leaves that contain columnar palisade cells similar to those in the sun-grown plants. In the highly columnar cells of an mutant leaves, chloroplast movements were restricted. Nevertheless, under white light condition (at 120 µmol m -2 s -1 ), the an mutant plants showed higher chlorophyll content per unit leaf area and, thus, higher light absorption by the leaves than the wild type, which resulted in enhanced photosynthesis per unit leaf area. Our findings indicate that coordinated regulation of leaf cell shape and chloroplast movement according to the light conditions is pivotal for efficient leaf photosynthesis.
Tsuji, Takumi; Okuno, Satoshi; Kuroda, Ayano; Hamazaki, Junya; Chikami, Takuma; Sakurai, Sakura; Yoshida, Yuya; Banno, Rie; Fujita, Tetsuro; Kohno, Takeyuki
2016-04-01
The increasing incidence and prevalence of atopic dermatitis (AD) demands new therapeutic approaches for treating the disease. We investigated the therapeutic efficacy of immunomodulator FTY720 ointment (fingolimod) for mite-induced intractable AD using an NC/Nga mouse model. Female NC/Nga mice that developed severe AD were divided into four groups: (1) FTY720 (0.001% FTY720 ointment), (2) tacrolimus (tacrolimus hydrate ointment) (3) betamethasone (betamethasone ointment), and (4) ointment base (hydrophilic petrolatum), all of which received treatment six times per week. Therapeutic efficacy after two weeks was evaluated in terms of AD severity, histochemical observations (epidermal hypertrophy, mast cell accumulation, and CD3(+) T cell infiltration), transepidermal water loss (TEWL), and epidermal barrier function (filaggrin expression). Betamethasone treatment showed little effect, confirming that the AD was intractable. In the FTY720 group, AD improved significantly compared with the ointment base group, as did epidermal hypertrophy, mast cell accumulation, and CD3(+) T cell infiltration. In contrast, AD in the tacrolimus and betamethasone groups did not improve significantly, nor did epidermal hypertrophy or mast cell accumulation. Furthermore, in the FTY720 group, TEWL decreased significantly compared with the ointment base group, and filaggrin expression significantly increased compared with the betamethasone and ointment base groups. FTY720 ointment is a promising candidate for treatment of intractable AD. These findings also provide the first evidence that FTY720 ointment ameliorates epidermal barrier function. Copyright © 2015 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.
JÄNICKE, MARTINA; RENISCH, BJÖRN; HAMMERSCHMIDT, MATTHIAS
2012-01-01
Grainyhead/CP2 transcription factor family members are widely conserved among the animal kingdom and have been implicated in different developmental processes. Thus far, nothing has been known about their roles in zebrafish. Here we identify seven zebrafish grainyhead-like (grhl) / cp2 genes, with focus on grhl1, which is expressed in the periderm and in epidermal ionocyte progenitors, but downregulated when ionocytes differentiate. In addition, expression was detected in other “non-keratinocyte” cell types of the epidermis, such as pvalb8-expressing cells, which according to our lineage tracing experiments are derived from the same pool of progenitor cells like keratinocytes and ionocytes. Antisense morpholino oligonucleotide-based loss-of-function analysis revealed that grhl1 is dispensable for the development and function of all investigated epidermal cell types, but required as a negative regulator of its own transcription during ionocyte differentiation. Knockdown of the transcription factor Foxi3a, which is expressed in a subset of the grhl1 population, caused a loss of ionocytes and a corresponding increase in the number of pvalb8-expressing cells, while leaving the number of grhl1-positive cells unaltered. We propose that grhl1 is a novel common marker of all or most “non-keratinocyte” epidermal progenitors, and that the sub-functionalisation of these cells is regulated by differential positive and negative effects of Foxi3 factors. PMID:19757382
Upeniece, Ilze; Groma, Valerie; Skuja, Sandra; Cauce, Vinita
The study of cytoskeleton arrangement and its contribution to survival of cell-to-cell contacts appears to be essential for understanding of numerous cellular and tissue processes. Applying CK15, S100 labeling and TUNEL reaction to cutaneous lichen planus subtypes, we found CK15 expression in the outer and inner root sheath of hair follicles, the basal epidermal layer, and eccrine glands. Its follicular expression was decreased in nearby inflammatory infiltrates. The CK15 immunopositivity was mostly described as weak (92.3%) for lichen planus but equally subdivided into weak, moderate and strong in lichen planopilaris (2 = 32.514; df = 4; p < 0.001). The greatly varying apoptotic index was the highest in the lichen planopilaris involving the scalp: 81.2 ±10.7; 87.8 ±10.7 and 88.0 ±10.5 for the basal, spinous and upper epidermal layers, respectively. S100 positive epidermal and follicular cells did not differ in the lesions demonstrated in the study groups; still immunoreactivity was more pronounced in the scalp region of lichen planopilaris. Damage of cell-to-cell contacts was confirmed by electron microscopy. Apart from immunocyte-mediated keratinocyte death, cytoskeleton-based injury and loss of cell-to-cell and matrix contacts may be of great importance, leading to eradication of degrading cells and thus contributing to the pathogenesis of lichen planus.
Pseudothionin-St1, a potato peptide active against potato pathogens.
Moreno, M; Segura, A; García-Olmedo, F
1994-07-01
A 5-kDa polypeptide, pseudothionin Solanum tuberosum 1 (Pth-St1), which was active against Clavibacter michiganensis subspecies sepedonicus, a bacterial pathogen of potatoes, has been purified from the buffer-insoluble fraction of potato tubers by salt extraction and HPCL. Pth-St1 was also active against other potato pathogens tested (Pseudomonas solanacearum and Fusarium solani). The N-terminal amino acid sequence of this peptide was identical (except for a N/H substitution at position 2) to that deduced from a previously reported cDNA sequence (EMBL accession number X-13180), which had been misclassified as a Browman-Birk protease inhibitor. Pth-St1 did not inhibit either trypsin or insect alpha-amylase activities, and, in contrast with true thionins, did not affect cell-free protein synthesis or beta-glucuronidase activity. Northern-blot and tissue-print analyses showed that steady-state mRNA levels were highest in flowers (especially in petals), followed by tubers (especially in the epidermal cell layers and in leaf primordia), stems and leaves. Infection of leaves with a bacterial pathogen suspended in 10 mM MgCl2 switched off the gene, whereas mock inoculation with 10 mM MgCl2 alone induced higher mRNA levels.
Time course of pH change in plant epidermis using microscopic pH imaging system
NASA Astrophysics Data System (ADS)
Dan, Risako; Shimizu, Megumi; Kazama, Haruko; Sakaue, Hirotaka
2010-11-01
We established a microscopic pH imaging system to track the time course of pH change in plant epidermis in vivo. In the previous research, we have found out that anthocyanin containing cells have higher pH. However, it was not clear whether the anthocyanin increased the pH or anthocyanin was synthesized result from the higher pH. Therefore, we further investigated the relationship between anthocyanin and pH change. To track the time course of pH change in plant epidermis, we established a system using luminescent imaging technique. We used HPTS (8-Hydroxypyrene-1,3,6-Trisulfonate) as pH indicator and applied excitation ratio imaging method. Luminescent image was converted to a pH distribution by obtained in vitro calibration using known pH solution. Cellular level observation was enabled by merging microscopic color picture of the same region to the pH change image. The established system was applied to epidermal cells of red-tip leaf lettuce, Lactuca Sativa L. and the time course was tracked in the growth process. We would discuss about the relationship between anthocyanin and pH change in plant epidermis.
Suzuki, Shinsuke; Ishikawa, Kazuo
2014-03-01
It has been reported that the epidermal growth factor receptor (EGFR) expression is associated with the extracellular matrix metalloproteinase inducer (EMMPRIN) in some solid tumors; however, the relationship of EMMPRIN with EGFR in head and neck cancers is not fully understood. To determine the relationship between EMMPRIN and EGFR in head and neck squamous cell carcinoma (HNSCC), HNSCC cells were stimulated with epidermal growth factor (EGF), a ligand of EGFR. EMMPRIN expression in HNSCC cells was upregulated by EGF. In addition, EGF stimulation induced HNSCC cell invasion and MMP-9 expression. This increase in invasion and MMP-9 expression was abrogated by downmodulation of EMMPRIN. Furthermore, to determine the effects of combined EMMPRIN and EGFR targeting in HNSCC, HNSCC cells were treated with an EMMPRIN function-blocking antibody and the EGFR inhibitor AG1478. This combined treatment resulted in greater inhibition of HNSCC cell proliferation and migration compared with the individual agents alone. These results suggest that EMMPRIN mediates EGFR-induced tumorigenicity and that combined targeting of EMMPRIN and EGFR may be an efficacious treatment approach.
Subcellular targeting and interactions among the Potato virus X TGB proteins.
Samuels, Timmy D; Ju, Ho-Jong; Ye, Chang-Ming; Motes, Christy M; Blancaflor, Elison B; Verchot-Lubicz, Jeanmarie
2007-10-25
Potato virus X (PVX) encodes three proteins named TGBp1, TGBp2, and TGBp3 which are required for virus cell-to-cell movement. To determine whether PVX TGB proteins interact during virus cell-cell movement, GFP was fused to each TGB coding sequence within the viral genome. Confocal microscopy was used to study subcellular accumulation of each protein in virus-infected plants and protoplasts. GFP:TGBp2 and TGBp3:GFP were both seen in the ER, ER-associated granular vesicles, and perinuclear X-bodies suggesting that these proteins interact in the same subdomains of the endomembrane network. When plasmids expressing CFP:TGBp2 and TGBp3:GFP were co-delivered to tobacco leaf epidermal cells, the fluorescent signals overlapped in ER-associated granular vesicles indicating that these proteins colocalize in this subcellular compartment. GFP:TGBp1 was seen in the nucleus, cytoplasm, rod-like inclusion bodies, and in punctate sites embedded in the cell wall. The puncta were reminiscent of previous reports showing viral proteins in plasmodesmata. Experiments using CFP:TGBp1 and YFP:TGBp2 or TGBp3:GFP showed CFP:TGBp1 remained in the cytoplasm surrounding the endomembrane network. There was no evidence that the granular vesicles contained TGBp1. Yeast two hybrid experiments showed TGBp1 self associates but failed to detect interactions between TGBp1 and TGBp2 or TGBp3. These experiments indicate that the PVX TGB proteins have complex subcellular accumulation patterns and likely cooperate across subcellular compartments to promote virus infection.
Structure and enzyme expression in photosynthetic organs of the atypical C4 grass Arundinella hirta.
Wakayama, Masataka; Ohnishi, Jun-ichi; Ueno, Osamu
2006-05-01
In its leaf blade, Arundinella hirta has unusual Kranz cells that lie distant from the veins (distinctive cells; DCs), in addition to the usual Kranz units composed of concentric layers of mesophyll cells (MCs) and bundle sheath cells (BSCs; usual Kranz cells) surrounding the veins. We examined whether chlorophyllous organs other than leaf blades--namely, the leaf sheath, stem, scale leaf, and constituents of the spike--also have this unique anatomy and the C4 pattern of expression of photosynthetic enzymes. All the organs developed DCs to varying degrees, as well as BSCs. The stem, rachilla, and pedicel had C4-type anatomy with frequent occurrence of DCs, as in the leaf blade. The leaf sheath, glume, and scale leaf had a modified C4 anatomy with MCs more than two cells distant from the Kranz cells; DCs were relatively rare. An immunocytochemical study of C3 and C4 enzymes revealed that all the organs exhibited essentially the same C4 pattern of expression as in the leaf blade. In the scale leaf, however, intense expression of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) occurred in the MCs as well as in the BSCs and DCs. In the leaf sheath, the distant MCs also expressed Rubisco. In Arundinella hirta, it seems that the ratio of MC to Kranz cell volumes, and the distance from the Kranz cells, but not from the veins, affects the cellular expression of photosynthetic enzymes. We suggest that the main role of DCs is to keep a constant quantitative balance between the MCs and Kranz cells, which is a prerequisite for effective C4 pathway operation.
Reduced growth factor requirement of keloid-derived fibroblasts may account for tumor growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, S.B.; Trupin, K.M.; Rodriguez-Eaton, S.
Keloids are benign dermal tumors that form during an abnormal wound-healing process is genetically susceptible individuals. Although growth of normal and keloid cells did not differ in medium containing 10% (vol/vol) fetal bovine serum, keloid culture grew to significantly higher densities than normal cells in medium containing 5% (vol/vol) fetal bovine serum, keloid cultures grew to significantly higher densities than normal cells in medium containing 5% (vol/vol) plasma or 1% fetal bovine serum. Conditioned medium from keloid cultures did not stimulate growth of normal cells in plasma nor did it contain detectable platelet-derived growth factor or epidermal growth factor. Keloidmore » fibroblasts responded differently than normal adult fibroblasts to transforming growth factor ..beta... Whereas transforming growth factor ..beta.. reduced growth stimulation by epidermal growth factor in cells from normal adult skin or scars, it enhanced the activity of epidermal growth factor in cells from normal adult skin or scars, it enhanced the activity of epidermal growth factor in cells from keloids. Normal and keloid fibroblasts also responded differently to hydrocortisone: growth was stimulated in normal adult cells and unaffected or inhibited in keloid cells. Fetal fibroblasts resembled keloid cells in their ability to grow in plasma and in their response to hydrocortisone. The ability of keloid fibroblasts to grow to higher cell densities in low-serum medium than cells from normal adult skin or from normal early or mature scars suggests that a reduced dependence on serum growth factors may account for their prolonged growth in vivo. Similarities between keloid and fetal cells suggest that keloids may result from the untimely expression of growth-control mechanism that is developmentally regulated.« less
Modeling Endoplasmic Reticulum Network Maintenance in a Plant Cell.
Lin, Congping; White, Rhiannon R; Sparkes, Imogen; Ashwin, Peter
2017-07-11
The endoplasmic reticulum (ER) in plant cells forms a highly dynamic network of complex geometry. ER network morphology and dynamics are influenced by a number of biophysical processes, including filament/tubule tension, viscous forces, Brownian diffusion, and interactions with many other organelles and cytoskeletal elements. Previous studies have indicated that ER networks can be thought of as constrained minimal-length networks acted on by a variety of forces that perturb and/or remodel the network. Here, we study two specific biophysical processes involved in remodeling. One is the dynamic relaxation process involving a combination of tubule tension and viscous forces. The other is the rapid creation of cross-connection tubules by direct or indirect interactions with cytoskeletal elements. These processes are able to remodel the ER network: the first reduces network length and complexity whereas the second increases both. Using live cell imaging of ER network dynamics in tobacco leaf epidermal cells, we examine these processes on ER network dynamics. Away from regions of cytoplasmic streaming, we suggest that the dynamic network structure is a balance between the two processes, and we build an integrative model of the two processes for network remodeling. This model produces quantitatively similar ER networks to those observed in experiments. We use the model to explore the effect of parameter variation on statistical properties of the ER network. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Positive and negative peptide signals control stomatal density.
Shimada, Tomoo; Sugano, Shigeo S; Hara-Nishimura, Ikuko
2011-06-01
The stoma is a micro valve found on aerial plant organs that promotes gas exchange between the atmosphere and the plant body. Each stoma is formed by a strict cell lineage during the early stages of leaf development. Molecular genetics research using the model plant Arabidopsis has revealed the genes involved in stomatal differentiation. Cysteine-rich secretory peptides of the EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family play crucial roles as extracellular signaling factors. Stomatal development is orchestrated by the positive factor STOMAGEN/EPFL9 and the negative factors EPF1, EPF2, and CHALLAH/EPFL6 in combination with multiple receptors. EPF1 and EPF2 are produced in the stomatal lineage cells of the epidermis, whereas STOMAGEN and CHALLAH are derived from the inner tissues. These findings highlight the complex cell-to-cell and intertissue communications that regulate stomatal development. To optimize gas exchange, particularly the balance between the uptake of carbon dioxide (CO(2)) and loss of water, plants control stomatal activity in response to environmental conditions. The CO(2) level and light intensity influence stomatal density. Plants sense environmental cues in mature leaves and adjust the stomatal density of newly forming leaves, indicating the involvement of long-distance systemic signaling. This review summarizes recent research progress in the peptide signaling of stomatal development and discusses the evolutionary model of the signaling machinery.
Isolation and functional assessment of cutaneous stem cells.
Doucet, Yanne S; Owens, David M
2015-01-01
The epidermis and associated appendages of the skin represent a multi-lineage tissue that is maintained by perpetual rounds of renewal. During homeostasis, turnover of epidermal lineages is achieved by input from regionalized keratinocytes stem or progenitor populations with little overlap from neighboring niches. Over the last decade, molecular markers selectively expressed by a number of these stem or progenitor pools have been identified, allowing for the isolation and functional assessment of stem cells and genetic lineage tracing analysis within intact skin. These advancements have led to many fundamental observations about epidermal stem cell function such as the identification of their progeny, their role in maintenance of skin homeostasis, or their contribution to wound healing. In this chapter, we provide a methodology to identify and isolate epidermal stem cells and to assess their functional role in their respective niche. Furthermore, recent evidence has shown that the microenvironment also plays a crucial role in stem cell function. Indeed, epidermal cells are under the influence of surrounding fibroblasts, adipocytes, and sensory neurons that provide extrinsic signals and mechanical cues to the niche and contribute to skin morphogenesis and homeostasis. A better understanding of these microenvironmental cues will help engineer in vitro experimental models with more relevance to in vivo skin biology. New approaches to address and study these environmental cues in vitro will also be addressed.
Nickoloff, B. J.; Griffiths, C. E.
1990-01-01
The Ki-67 antibody, which reacts with nuclei of actively proliferating cells, was used in an immunohistochemical study to determine if there was any difference between T cells located in the epidermis rather than the dermis, in mycosis fungoides. In 12 of 14 cases of patch/plaque stage mycosis fungoides, the epidermal T cells were Ki-67 positive, while the dermal T cells were Ki-67 negative in all cases. Both epidermal and dermal T cells belonged primarily to the memory-versus-naive subset. The intraepidermal Ki-67-positive T cells were slightly larger than the dermal Ki-67-negative cells and could be easily distinguished from occasional basal keratinocytes that were also Ki-67 positive. We conclude that dermal T cells, despite expressing HLA-DR and a memory phenotype, are essentially in a resting (Go or noncycling state) in mycosis fungoides. Furthermore, it appears that the movement of T cells into the epidermal compartment is associated with activation and entry into the cell cycle. Such intraepidermal activation may lead to lymphokine release, and play an important pathophysiologic role in mycosis fungoides. Images Figure 1 Figure 5 PMID:1968314
Anti-proliferative effect of 20-hydroxyecdysone in a lepidopteran cell line.
Auzoux-Bordenave, Stéphanie; Hatt, Philippe-Jacques; Porcheron, Patrick
2002-02-01
Ecdysteroids are steroid hormones involved in the epidermal growth of arthropods, controlling cell proliferation and further differentiation of target cells. The epidermal cell line IAL-PID2, established from imaginal discs of the Indian meal moth Plodia interpunctella kept its sensitivity to ecdysteroids in vitro, cells being able to respond to them by cytological and biochemical changes. When added to the culture medium, 20-hydroxyecdysone (20E) stopped cell proliferation and induced formation of epithelial-like aggregates. In order to better understand the cellular sequence of ecdysteroids signalling in epidermal cells we used the IAL-PID2 cell line for in vitro investigations of cytological events induced by the moulting hormone. After a 40 h serum deprivation, formazan assay (XTT) was routinely used to evaluate anti-proliferative effects of 20E during cell cycle. We established a more precise timing of the period of cell sensitivity to the hormone during the cell cycle, by the use of the mitotic index and the BrdU incorporation test. These in vitro assays were performed in parallel with the description of some hormone dependant cytological events, using immunofluorescent labelling with anti-beta tubulin/FITC antibodies and DNA staining.
Carneiro, Renê Gonçalves da Silva; Isaias, Rosy Mary dos Santos
2015-01-01
Plant cells respond to abiotic and biotic stimuli, which generate adaptive phenotypes in plant organs. In the case of plant galls, cell phenotypes are adaptive for the gall inducer and assume characteristics mainly linked to its protection and nutrition. Herein, the cytological development and histochemical profile of Nothotrioza cattleiani galls, a sucking insect, on the leaves of Psidium cattleianum are compared with those of other galls, especially N. myrtoidis galls, searching for conserved and divergent alterations in cell fates and cycles. Leaf cell fates are completely changed within galls, except for epidermal cells, but the comparison between Nothotrioza spp. galls shows conserved fates. Nevertheless, cytological development of N. cattleiani galls is different from the standby-redifferentiation of N. myrtoidis galls. Starch and lignins, and reducing sugars form centrifugal and centripetal gradients of accumulation, respectively. Proteins, total phenolics, terpenoids, proanthocyanidins and reactive oxygen species are detected in bidirectional gradients, i.e. weak or undetectable reaction in the median cortical cells that is gradually more intense in the cell layers towards the inner and outer surfaces of the gall. True nutritive cells associated with vascular tissues, together with the bidirectional gradients of metabolite accumulation, are herein reported for the first time in insect galls. The globoid galls of N. cattleiani, though macro-morphologically similar to the galls of N. myrtoidis, are distinct and unique among insect galls, as far as the cellular, subcellular and histochemical traits are concerned. Thus, the traits of the galls on P. cattleianum studied herein represent the extended phenotypes of their inducers. PMID:26209687
Epidermal Viral Immunity Induced by CD8α+ Dendritic Cells But Not by Langerhans Cells
NASA Astrophysics Data System (ADS)
Allan, Rhys S.; Smith, Chris M.; Belz, Gabrielle T.; van Lint, Allison L.; Wakim, Linda M.; Heath, William R.; Carbone, Francis R.
2003-09-01
The classical paradigm for dendritic cell function derives from the study of Langerhans cells, which predominate within skin epidermis. After an encounter with foreign agents, Langerhans cells are thought to migrate to draining lymph nodes, where they initiate T cell priming. Contrary to this, we show here that infection of murine epidermis by herpes simplex virus did not result in the priming of virus-specific cytotoxic T lymphocytes by Langerhans cells. Rather, the priming response required a distinct CD8α+ dendritic cell subset. Thus, the traditional view of Langerhans cells in epidermal immunity needs to be revisited to accommodate a requirement for other dendritic cells in this response.
Van Moerkercke, Alex; Galván-Ampudia, Carlos S.; Verdonk, Julian C.; Haring, Michel A.; Schuurink, Robert C.
2012-01-01
In which cells of the flower volatile biosynthesis takes place is unclear. In rose and snapdragon, some enzymes of the volatile phenylpropanoid/benzenoid pathway have been shown to be present in the epidermal cells of petals. It is therefore generally believed that the production of these compounds occurs in these cells. However, whether the entire pathway is active in these cells and whether it is exclusively active in these cells remains to be proven. Cell-specific transcription factors activating these genes will determine in which cells they are expressed. In petunia, the transcription factor EMISSION OF BENZENOIDS II (EOBII) activates the ODORANT1 (ODO1) promoter and the promoter of the biosynthetic gene isoeugenol synthase (IGS). The regulator ODO1 in turn activates the promoter of the shikimate gene 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Here the identification of a new target gene of ODO1, encoding an ABC transporter localized on the plasma membrane, PhABCG1, which is co-expressed with ODO1, is described. PhABCG1 expression is up-regulated in petals overexpressing ODO1 through activation of the PhABCG1 promoter. Interestingly, the ODO1, PhABCG1, and IGS promoters were active in petunia protoplasts originating from both epidermal and mesophyll cell layers of the petal, suggesting that the volatile phenylpropanoid/benzenoid pathway in petunia is active in these different cell types. Since volatile release occurs from epidermal cells, trafficking of (volatile) compounds between cell layers must be involved, but the exact function of PhABCG1 remains to be resolved. PMID:22345641
Control of growth of juvenile leaves of Eucalyptus globulus: effects of leaf age.
Metcalfe, J C; Davies, W J; Pereira, J S
1991-12-01
Biophysical variables influencing the expansion of plant cells (yield threshold, cell wall extensibility and turgor) were measured in individual Eucalyptus globulus leaves from the time of emergence until cessation of growth. Leaf water relations variables and growth rates were determined as relative humidity was changed on an hourly basis. Yield threshold and cell wall extensibility were estimated from plots of leaf growth rate versus turgor. Cell wall extensibility was also measured by the Instron technique, and yield threshold was determined experimentally both by stress relaxation in a psychrometer chamber and by incubation in a range of polyethylene glycol solutions. Once emerging leaves reached approximately 5 cm(2) in size, increases in leaf area were rapid throughout the expansive phase and varied little between light and dark periods. Both leaf growth rate and turgor were sensitive to changes in humidity, and in the longer term, both yield threshold and cell wall extensibility changed as the leaf aged. Rapidly expanding leaves had a very low yield threshold and high cell wall extensibility, whereas mature leaves had low cell wall extensibility. Yield threshold increased with leaf age.
JUNG, IL LAE; LEE, JU HYE; KANG, SE CHAN
2015-01-01
It has previously been reported that cold water-extracts of Moringa oleifera leaf have anticancer activity against various human cancer cell lines, including non-small cell lung cancer. In the present study, the anticancer activity of M. oleifera leaf extracts was investigated in human hepatocellular carcinoma HepG2 cells. By the analysis of apoptotic signals, including the induction of caspase or poly(ADP-ribose) polymerase cleavage, and the Annexin V and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assays, it was demonstrated that M. oleifera leaf extracts induce the apoptosis of HepG2 cells. In the hollow fiber assay, oral administration of the leaf extracts significantly reduced (44–52%) the proliferation of the HepG2 cells and A549 non-small cell lung cancer cells. These results support the potential of soluble extracts of M. oleifera leaf as orally administered therapeutics for the treatment of human liver and lung cancers. PMID:26622717
“String of pearls pattern”: report of three cases of non clear-cell acanthoma*
Espinosa, Ana Elena Domínguez; Akay, Bengu Nisa; González-Ramírez, Roger Adrian
2017-01-01
The coiled and dotted vessels in a serpiginous arrangement or “string of pearls” is considered a classical vascular pattern associated with clear cell acanthoma. We present three cases of epidermal tumors different from clear cell acanthoma that have the same “string of pearls” vascular pattern. Even though most authors keep considering the “string of pearls” vascular pattern an almost pathognomonic sign of clear-cell acanthoma, the cases presented here suggest that some other epidermal tumors can also show this pattern. PMID:29267474
Lau, Su-Ee; Schwarzacher, Trude; Othman, Rofina Yasmin; Harikrishna, Jennifer Ann
2015-08-11
The R2R3-MYB genes regulate pigmentation and morphogenesis of flowers, including flower and cell shape, and therefore have importance in the development of new varieties of orchids. However, new variety development is limited by the long breeding time required in orchids. In this study, we identified a cDNA, DhMYB1, that is expressed during flower development in a hybrid orchid, Dendrobium hybrida (Dendrobium bobby messina X Dendrobium chao phraya) then used the direct application of dsRNA to observe the effect of gene silencing on flower phenotype and floral epidermal cell shape. Flower bud development in the Dendrobium hybrid was characterised into seven stages and the time of meiosis was determined as between stages 3 to 5 when the bud is approximately half of the mature size. Scanning electron microscopy characterisation of adaxial epidermal cells of the flower perianth, showed that the petals and sepals each are divided into two distinct domains based on cell shape and size, while the labellum comprises seven domains. Thirty-two partial cDNA fragments representing R2R3-MYB gene sequences were isolated from D. hybrida. Phylogenetic analysis revealed that nine of the translated sequences were clustered with MYB sequences that are known to be involved in cell shape development and from these, DhMYB1 was selected for full length cDNA cloning and functional study. Direct application of a 430 bp dsRNA from the 3' region of DhMYB1 to emerging orchid flower buds reduced expression of DhMYB1 RNA compared with untreated control. Scanning electron microscopy of adaxial epidermal cells within domain one of the labellum of flowers treated with DhMYB1 dsRNA showed flattened epidermal cells whilst those of control flowers were conical. DhMYB1 is expressed throughout flower bud development and is involved in the development of the conical cell shape of the epidermal cells of the Dendrobium hybrida flower labellum. The direct application of dsRNA changed the phenotype of floral cells, thus, this technique may have application in floriculture biotechnology.
Chivers, Douglas P; Wisenden, Brian D; Hindman, Carrie J; Michalak, Tracy A; Kusch, Robin C; Kaminskyj, Susan G W; Jack, Kristin L; Ferrari, Maud C O; Pollock, Robyn J; Halbgewachs, Colin F; Pollock, Michael S; Alemadi, Shireen; James, Clayton T; Savaloja, Rachel K; Goater, Cameron P; Corwin, Amber; Mirza, Reehan S; Kiesecker, Joseph M; Brown, Grant E; Adrian, James C; Krone, Patrick H; Blaustein, Andrew R; Mathis, Alicia
2007-10-22
Many fishes possess specialized epidermal cells that are ruptured by the teeth of predators, thus reliably indicating the presence of an actively foraging predator. Understanding the evolution of these cells has intrigued evolutionary ecologists because the release of these alarm chemicals is not voluntary. Here, we show that predation pressure does not influence alarm cell production in fishes. Alarm cell production is stimulated by exposure to skin-penetrating pathogens (water moulds: Saprolegnia ferax and Saprolegnia parasitica), skin-penetrating parasites (larval trematodes: Teleorchis sp. and Uvulifer sp.) and correlated with exposure to UV radiation. Suppression of the immune system with environmentally relevant levels of Cd inhibits alarm cell production of fishes challenged with Saprolegnia. These data are the first evidence that alarm substance cells have an immune function against ubiquitous environmental challenges to epidermal integrity. Our results indicate that these specialized cells arose and are maintained by natural selection owing to selfish benefits unrelated to predator-prey interactions. Cell contents released when these cells are damaged in predator attacks have secondarily acquired an ecological role as alarm cues because selection favours receivers to detect and respond adaptively to public information about predation.
2013-01-01
Background The goal of this study was to determine a predominant cell type expressing fractalkine receptor (CX3CR1) in mature ovarian teratomas and to establish functional significance of its expression in cell differentiation. Methods Specimens of ovarian teratoma and human fetal tissues were analyzed by immunohistochemistry for CX3CR1expression. Ovarian teratocarcinoma cell line PA-1 was used as a model for cell differentiation. Results We found that the majority of the specimens contained CX3CR1-positive cells of epidermal lineage. Skin keratinocytes in fetal tissues were also CX3CR1- positive. PA-1 cells with downregulated CX3CR1 failed to express a skin keratinocyte marker cytokeratin 14 when cultured on Matrigel in the presence of a morphogen, bone morphogenic protein 4 (BMP-4), as compared to those expressing scrambled shRNA. Conclusions Here we demonstrate that CX3CR1 is expressed in both normally (fetal skin) and abnormally (ovarian teratoma) differentiated keratinocytes and is required for cell differentiation into epidermal lineage. PMID:23958497
Rouanet, Sophie; Warrick, Emilie; Gache, Yannick; Scarzello, Sabine; Avril, Marie-Françoise; Bernerd, Françoise; Magnaldo, Thierry
2013-01-01
Somatic stem cells ensure tissue renewal along life and healing of injuries. Their safe isolation, genetic manipulation ex vivo and reinfusion in patients suffering from life threatening immune deficiencies (for example, severe combined immunodeficiency (SCID)) have demonstrated the efficacy of ex vivo gene therapy. Similarly, adult epidermal stem cells have the capacity to renew epidermis, the fully differentiated, protective envelope of our body. Stable skin replacement of severely burned patients have proven life saving. Xeroderma pigmentosum (XP) is a devastating disease due to severe defects in the repair of mutagenic DNA lesions introduced upon exposure to solar radiations. Most patients die from the consequences of budding hundreds of skin cancers in the absence of photoprotection. We have developed a safe procedure of genetic correction of epidermal stem cells isolated from XP patients. Preclinical and safety assessments indicate successful correction of XP epidermal stem cells in the long term and their capacity to regenerate a normal skin with full capacities of DNA repair. PMID:24113582
Integrin Beta 1 Suppresses Multilayering of a Simple Epithelium
Chen, Jichao; Krasnow, Mark A.
2012-01-01
Epithelia are classified as either simple, a single cell layer thick, or stratified (multilayered). Stratified epithelia arise from simple epithelia during development, and transcription factor p63 functions as a key positive regulator of epidermal stratification. Here we show that deletion of integrin beta 1 (Itgb1) in the developing mouse airway epithelium abrogates airway branching and converts this monolayer epithelium into a multilayer epithelium with more than 10 extra layers. Mutant lung epithelial cells change mitotic spindle orientation to seed outer layers, and cells in different layers become molecularly and functionally distinct, hallmarks of normal stratification. However, mutant lung epithelial cells do not activate p63 and do not switch to the stratified keratin profile of epidermal cells. These data, together with previous data implicating Itgb1 in regulation of epidermal stratification, suggest that the simple-versus-stratified developmental decision may involve not only stratification inducers like p63 but suppressors like Itgb1 that prevent simple epithelia from inappropriately activating key steps in the stratification program. PMID:23285215
Cytotoxic activity screening of Bangladeshi medicinal plant extracts.
Akter, Raushanara; Uddin, Shaikh J; Grice, I Darren; Tiralongo, Evelin
2014-01-01
The cytotoxic activity of 23 crude methanol extracts from 19 Bangladeshi medicinal plants was investigated against healthy mouse fibroblasts (NIH3T3), healthy monkey kidney (VERO) and four human cancer cell lines (gastric, AGS; colon, HT-29; and breast, MCF-7 and MDA-MB-231) using MTT assay. High cytotoxicity across all cell lines tested was exhibited by Aegiceras corniculatum (fruit) and Hymenodictyon excelsum (bark) extracts (IC50 values ranging from 0.0005 to 0.9980 and 0.08 to 0.44 mg/mL, respectively). Fourteen extracts from 11 plant species, namely Clitoria ternatea (flower and leaf), Dillenia indica (leaf), Diospyros peregrina (leaf), Dipterocarpus turbinatus (bark and leaf), Ecbolium viride (leaf), Glinus oppositifolius (whole plant), Gnaphalium luteoalbum (leaf), Jasminum sambac (leaf), Lannea coromandelica (bark and leaf), Mussaenda glabrata (leaf) and Saraca asoca (leaf), were also significantly cytotoxic (IC50 < 1.0 mg/mL) against at least one of the cancer cell lines tested. More selectively, Avicennia alba (leaf), C. ternatea (flower and leaf), Caesalpinia pulcherrima (leaf), E. viride (leaf) and G. oppositifolius (whole plant) showed cytotoxicity only against both of the breast cancer cell lines (MCF-7 and MDA-MB-231). In contrast, C. ternatea (flower and leaf) exhibited high cytotoxic activity against MDA-MB-231 (IC50 values of 0.11 and 0.49 mg/mL, respectively), whereas E. viride and G. oppositifolius whole plant extracts exhibited high activity against MCF-7 cells (IC50 values of 0.06 and 0.15 mg/mL, respectively). The cytotoxic activity test results for 9 of the plant species correlate with their traditional use as anticancer agents, thus making them interesting sources for further drug development.
Silva, Elisabete; Barreiros, Luísa; Segundo, Marcela A; Costa Lima, Sofia A; Reis, Salette
2017-04-15
Knowledge of delivery system transport through epidermal cell monolayer is vital to improve skin permeation and bioavailability. Recently, nanostructured lipid carriers (NLCs) have gained great attention for transdermal delivery due to their biocompatibility, high drug payload, occlusive properties and skin hydration effect. However, the nanocarriers transport related mechanisms in epidermal epithelial cells are not yet understood. In this research, the internalization and transport pathways of the NLCs across the epidermal epithelial cell monolayer (HaCaT cells) were investigated. The 250nm sized witepsol/miglyol NLCs, prepared by hot homogenization had reduced cytotoxicity and no effect on the integrity of cell membrane in human HaCaT keratinocytes. The internalization was time-, concentration- and energy-dependent, and the uptake of NLCs was a vesicle-mediated process by macropinocytosis and clathrin-mediated pathways. 3% of NLCs were found at the apical membrane side of the HaCaT monolayer through exocytosis mechanism. Additionally, the endoplasmic reticulum, Golgi apparatus and microtubules played crucial roles in the transport of NLCs out of HaCaT cells. NLCs were transported intact across the human keratinocytes monolayer, without disturbing the tight junction's structure. From the transcytosis data only approximately 12% of the internalized NLCs were passed from the apical to the basolateral side. The transcytosis of NLCs throughout the HaCaT cell monolayer towards the basolateral membrane side requires the involvement of the endoplasmic reticulum, Golgi apparatus and microtubules. Our findings may contribute to a systematic understanding of NLCs transport across epidermal epithelial cell monolayers and their optimization for clinical transdermal application. Transdermal drug delivery is a challenging and growing area of clinical application. Lipid nanoparticles such as nanostructured lipid carriers (NLCs) have gained wide interest for transdermal drug delivery. However these nanocarriers' interactions with epidermal epithelial barrier are yet unknown. Unveiling the mechanisms involved in NLCs transport across the epidermal epithelial monolayers will contribute with valuable information to achieve enhanced skin permeability, superior bioavailability and consequently improved therapeutic effect. With our present work we could certainly provide researchers and clinicians guidance for the design of optimized transdermal delivery systems, based on the nanomaterials and biological interactions. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Expression and analysis of exogenous proteins in epidermal cells.
Dagnino, Lina; Ho, Ernest; Chang, Wing Y
2010-01-01
In this chapter we review protocols for transient transfection of primary keratinocytes. The ability to transfect primary epidermal cells regardless of their differentiation status allows the biochemical and molecular characterization of multiple proteins. We review methods to analyze exogenous protein abundance in transfected keratinocytes by immunoblot and immunoprecipitation. We also present protocols to determine the subcellular distribution of these proteins by indirect immunofluorescence microscopy approaches.
USDA-ARS?s Scientific Manuscript database
A two-year study was conducted in a “Golden Delicious” (Malus Xdomestica Borkh.) orchard having a high historical incidence of physiological fruit russeting, to examine the effect of gibberellin A4+7 (GA4+7) on apple epidermal cell size. Beginning at petal fall, four sequential applications of GA4+7...
Nagata, Chisako; Miwa, Chika; Tanaka, Natsuki; Kato, Mariko; Suito, Momoe; Tsuchihira, Ayako; Sato, Yori; Segami, Shoji; Maeshima, Masayoshi
2016-05-01
The Ca(2+)-binding protein-1 (PCaP1) of Arabidopsis thaliana is a new type protein that binds to phosphatidylinositol phosphates and Ca(2+)-calmodulin complex as well as free Ca(2+). Although biochemical properties, such as binding to ligands and N-myristoylation, have been revealed, the intracellular localization, tissue and cell specificity, integrity of membrane association and physiological roles of PCaP1 are unknown. We investigated the tissue and intracellular distribution of PCaP1 by using transgenic lines expressing PCaP1 linked with a green fluorescence protein (GFP) at the carboxyl terminus of PCaP1. GFP fluorescence was obviously detected in most tissues including root, stem, leaf and flower. In these tissues, PCaP1-GFP signal was observed predominantly in the plasma membrane even under physiological stress conditions but not in other organelles. The fluorescence was detected in the cytosol when the 25-residue N-terminal sequence was deleted from PCaP1 indicating essential contribution of N-myristoylation to the plasma membrane anchoring. Fluorescence intensity of PCaP1-GFP in roots was slightly decreased in seedlings grown in medium supplemented with high concentrations of iron for 1 week and increased in those grown with copper. In stomatal guard cells, PCaP1-GFP was strictly, specifically localized to the plasma membrane at the epidermal-cell side but not at the pore side. A T-DNA insertion mutant line of PCaP1 did not show marked phenotype in a life cycle except for well growth under high CO2 conditions. However, stomata of the mutant line did not close entirely even in high osmolarity, which usually induces stomata closure. These results suggest that PCaP1 is involved in the stomatal movement, especially closure process, in leaves and response to excessive copper in root and leaf as a mineral nutrient as a physiological role.
Tochio, Takumi; Tanaka, Hiroshi; Nakata, Satoru
2013-03-01
Glucose transporter member 1 (GLUT-1) is one of the major facilitated glucose transporters and contributes to the promotion of keratinocyte proliferation in psoriasis and carcinogenic lesions. In this study, we postulate that GLUT-1 is involved in ultraviolet B (UVB)-induced epidermal hyperplasia. The purpose of this study is to investigate the possible role of GLUT-1 in UVB-induced hyperplasia. The effects of UVB on GLUT-1 expression levels were investigated in in vitro and in vivo studies. In addition, the involvement of epidermal growth factor (EGF) and hypoxia inducible factor-1 alpha (HIF-1α), transcriptional factors for GLUT-1, in GLUT-1-related events were investigated. GLUT-1 mRNA and its protein levels were markedly increased by UVB irradiation in HaCaT cells. In in vivo studies, a strong immunofluorescence signal of GLUT-1 was clearly observed around the basal layer of the epidermis, which proliferated excessively by UVB irradiation. In HaCaT cells, EGF mRNA and its protein levels were markedly increased by UVB irradiation, and then the GLUT-1 mRNA level was significantly increased by treatment with EGF. Additionally, the upregulation of GLUT-1 by both UVB irradiation and treatment with EGF was significantly suppressed by transfection with HIF-1α siRNA. We conclude that GLUT-1 is involved in UVB-induced epidermal hyperplasia by enhancing proliferation of epidermal basal cells, and the GLUT-1-related event might be regulated by an increase in HIF-1α stimulated by EGF. © 2013 The International Society of Dermatology.
Combination therapy of potential gene to enhance oral cancer therapeutic effect
NASA Astrophysics Data System (ADS)
Yeh, Chia-Hsien; Hsu, Yih-Chih
2015-03-01
The epidermal growth factor receptor (EGFR) over-regulation related to uncontrolled cell division and promotes progression in tumor. Over-expression of human epidermal growth factor receptor (EGFR) has been detected in oral cancer cells. EGFR-targeting agents are potential therapeutic modalities for treating oral cancer based on our in vitro study. Liposome nanotechnology is used to encapsulate siRNA and were modified with target ligand to receptors on the surface of tumor cells. We used EGFR siRNA to treat oral cancer in vitro.
A case of epidermal cyst with pilomatrical differentiation.
Ikoma, Norihiro; Iwashita, Kenichi; Umezawa, Yoshinori; Matsuyama, Takashi; Ohta, Yukinori; Ozawa, Akira; Umemura, Shinobu; Ueyama, Yoshito; Yamazaki, Hitoshi
2004-09-01
A 20-year-old Japanese woman with an epidermal cyst on the back is described. Physical examination revealed a deep blue and round shaped cystic lesion measuring 10 min in diameter. A comedo-like keratotic plug also could be seen at the center. Histologically, the inner surface of the cyst was clearly separated of two types of the cells. The one was layers of epidermal keratinocytes and the other looked like a basal layer of epidermis, which immunohistochemically stained by S-100, HMB-45, cytokeratin (CK19) and Fontana-Masson staining. We diagnosed this case as epidermal cyst with pilomatrical differentiation.
Effects of Telomerase and Telomere Length on Epidermal Stem Cell Behavior
NASA Astrophysics Data System (ADS)
Flores, Ignacio; Cayuela, María L.; Blasco, María A.
2005-08-01
A key process in organ homeostasis is the mobilization of stem cells out of their niches. We show through analysis of mouse models that telomere length, as well as the catalytic component of telomerase, Tert, are critical determinants in the mobilization of epidermal stem cells. Telomere shortening inhibited mobilization of stem cells out of their niche, impaired hair growth, and resulted in suppression of stem cell proliferative capacity in vitro. In contrast, Tert overexpression in the absence of changes in telomere length promoted stem cell mobilization, hair growth, and stem cell proliferation in vitro. The effects of telomeres and telomerase on stem cell biology anticipate their role in cancer and aging.
Dagnino, Lina; Crawford, Melissa
2018-03-27
In this article, we provide a method to isolate primary epidermal melanocytes from reporter mice, which also allow targeted gene inactivation. The mice from which these cells are isolated are bred into a Rosa26 mT/mG reporter background, which results in GFP expression in the targeted melanocytic cell population. These cells are isolated and cultured to >95% purity. The cells can be used for gene expression studies, clonogenic experiments, and biological assays, such as capacity for migration. Melanocytes are slow moving cells, and we also provide a method to measure motility using individual cell tracking and data analysis.
Human epidermal langerhans cells express the immunoregulatory enzyme indoleamine 2,3-dioxygenase.
von Bubnoff, Dagmar; Bausinger, Huguette; Matz, Heike; Koch, Susanne; Häcker, Georg; Takikawa, Osamu; Bieber, Thomas; Hanau, Daniel; de la Salle, Henri
2004-08-01
Langerhans cells (LC) are a special subset of dendritic cells integrating cutaneous immunity. The study of LC function is of major interest not only for efforts of vaccine design and immunotherapy but also for gaining an insight into the pathogenesis of immune-mediated cutaneous diseases and neoplasias. Recently, defined antigen-presenting cells were described that express indoleamine 2,3-dioxygenase (IDO) and inhibit T cell proliferation in vitro and in vivo. Here, we show that stimulation with interferon-gamma (IFN-gamma) induces the expression of functionally active IDO in highly purified human epidermal LC. The induction of IDO after stimulation of LC with IFN-gamma seems to follow a defined kinetic with rapid upregulation followed by a downregulation after about 24 h of culture. Accordingly, proliferation of T cells induced by anti-CD3 antibodies was modulated by supernatants of IFN-gamma-activated human epidermal LC. Importantly, downregulation of T cell proliferation by supernatants of 24 h IFN-gamma-activated LC was prevented by inhibition of IDO. These results indicate that LC not only have the capacity to stimulate but also to inhibit T cells, and suggest that LC possess an immunoregulatory function in promoting T cell tolerance by production of IDO.
Choi, Eun-Sun; Cho, Sung-Dae; Shin, Ji-Ae; Kwon, Ki Han; Cho, Nam-Pyo; Shim, Jung-Hyun
2012-10-01
For thousands of years in Asia, Althaea rosea Cavanil (ARC) and Plantago major L. (PML) have been used as powerful non-toxic therapeutic agents that inhibit inflammation. However, the anticancer mechanisms and molecular targets of ARC and PML are poorly understood, particularly in epidermal growth factor (EGF)-induced neoplastic cell transformation. The aim of this study was to evaluate the chemopreventive effects and mechanisms of the methanol extracts from ARC (MARC) and PML (MPML) in EGF-induced neoplastic cell transformation of JB6 P+ mouse epidermal cells using an MTS assay, anchorage-independent cell transformation assay and western blotting. Our results showed that MARC and MPML significantly suppressed neoplastic cell transformation by inhibiting the kinase activity of the EGF receptor (EGFR). The activation of EGFR by EGF was suppressed by MARC and MPML treatment in EGFR(+/+) cells, but not in EGFR(-/-) cells. In addition, MARC and MPML inhibited EGF-induced cell proliferation in EGFR-expressing murine embryonic fibroblasts (EGFR(+/+)). These results strongly indicate that EGFR targeting by MARC and MPML may be a good strategy for chemopreventive or chemotherapeutic applications.
Wang, Xiaoxiao; Wang, Xusheng; Liu, Jianjun; Cai, Ting; Guo, Ling; Wang, Shujuan; Wang, Jinmei; Cao, Yanpei; Ge, Jianfeng; Jiang, Yuyang; Tredget, Edward E; Cao, Mengjun; Wu, Yaojiong
2016-12-01
: Stem cell-based organ regeneration is purported to enable the replacement of impaired organs in the foreseeable future. Here, we demonstrated that a combination of cultured epidermal stem cells (Epi-SCs) derived from the epidermis and skin-derived precursors (SKPs) was capable of reconstituting functional hair follicles and sebaceous glands (SG). When Epi-SCs and SKPs were mixed in a hydrogel and implanted into an excisional wound in nude mice, the Epi-SCs formed de novo epidermis along with hair follicles, and SKPs contributed to dermal papilla in the neogenic hair follicles. Notably, a combination of culture-expanded Epi-SCs and SKPs derived from the adult human scalp were sufficient to generate hair follicles and hair. Bone morphogenetic protein 4, but not Wnts, sustained the expression of alkaline phosphatase in SKPs in vitro and the hair follicle-inductive property in vivo when SKPs were engrafted with neonatal epidermal cells into excisional wounds. In addition, Epi-SCs were capable of differentiating into sebocytes and formed de novo SGs, which excreted lipids as do normal SGs. Thus our results indicate that cultured Epi-SCs and SKPs are sufficient to generate de novo hair follicles and SGs, implying great potential to develop novel bioengineered skin substitutes with appendage genesis capacity. In postpartum humans, skin appendages lost in injury are not regenerated, despite the considerable achievement made in skin bioengineering. In this study, transplantation of a combination of culture-expanded epidermal stem cells and skin-derived progenitors from mice and adult humans led to de novo regeneration of functional hair follicles and sebaceous glands. The data provide transferable knowledge for the development of novel bioengineered skin substitutes with epidermal appendage regeneration capacity. ©AlphaMed Press.
Nadakuduti, Satya Swathi; Pollard, Mike; Kosma, Dylan K.; Allen, Charles; Ohlrogge, John B.; Barry, Cornelius S.
2012-01-01
Plant epidermal cells have evolved specialist functions associated with adaptation to stress. These include the synthesis and deposition of specialized metabolites such as waxes and cutin together with flavonoids and anthocyanins, which have important roles in providing a barrier to water loss and protection against UV radiation, respectively. Characterization of the sticky peel (pe) mutant of tomato (Solanum lycopersicum) revealed several phenotypes indicative of a defect in epidermal cell function, including reduced anthocyanin accumulation, a lower density of glandular trichomes, and an associated reduction in trichome-derived terpenes. In addition, pe mutant fruit are glossy and peels have increased elasticity due to a severe reduction in cutin biosynthesis and altered wax deposition. Leaves of the pe mutant are also cutin deficient and the epicuticular waxes contain a lower proportion of long-chain alkanes. Direct measurements of transpiration, together with chlorophyll-leaching assays, indicate increased cuticular permeability of pe leaves. Genetic mapping revealed that the pe locus represents a new allele of CUTIN DEFICIENT2 (CD2), a member of the class IV homeodomain-leucine zipper gene family, previously only associated with cutin deficiency in tomato fruit. CD2 is preferentially expressed in epidermal cells of tomato stems and is a homolog of Arabidopsis (Arabidopsis thaliana) ANTHOCYANINLESS2 (ANL2). Analysis of cuticle composition in leaves of anl2 revealed that cutin accumulates to approximately 60% of the levels observed in wild-type Arabidopsis. Together, these data provide new insight into the role of CD2 and ANL2 in regulating diverse metabolic pathways and in particular, those associated with epidermal cells. PMID:22623518
Nadakuduti, Satya Swathi; Pollard, Mike; Kosma, Dylan K; Allen, Charles; Ohlrogge, John B; Barry, Cornelius S
2012-07-01
Plant epidermal cells have evolved specialist functions associated with adaptation to stress. These include the synthesis and deposition of specialized metabolites such as waxes and cutin together with flavonoids and anthocyanins, which have important roles in providing a barrier to water loss and protection against UV radiation, respectively. Characterization of the sticky peel (pe) mutant of tomato (Solanum lycopersicum) revealed several phenotypes indicative of a defect in epidermal cell function, including reduced anthocyanin accumulation, a lower density of glandular trichomes, and an associated reduction in trichome-derived terpenes. In addition, pe mutant fruit are glossy and peels have increased elasticity due to a severe reduction in cutin biosynthesis and altered wax deposition. Leaves of the pe mutant are also cutin deficient and the epicuticular waxes contain a lower proportion of long-chain alkanes. Direct measurements of transpiration, together with chlorophyll-leaching assays, indicate increased cuticular permeability of pe leaves. Genetic mapping revealed that the pe locus represents a new allele of CUTIN DEFICIENT2 (CD2), a member of the class IV homeodomain-leucine zipper gene family, previously only associated with cutin deficiency in tomato fruit. CD2 is preferentially expressed in epidermal cells of tomato stems and is a homolog of Arabidopsis (Arabidopsis thaliana) ANTHOCYANINLESS2 (ANL2). Analysis of cuticle composition in leaves of anl2 revealed that cutin accumulates to approximately 60% of the levels observed in wild-type Arabidopsis. Together, these data provide new insight into the role of CD2 and ANL2 in regulating diverse metabolic pathways and in particular, those associated with epidermal cells.
Wang, Xiaoxiao; Wang, Xusheng; Liu, Jianjun; Cai, Ting; Guo, Ling; Wang, Shujuan; Wang, Jinmei; Cao, Yanpei; Ge, Jianfeng; Jiang, Yuyang; Tredget, Edward E.; Cao, Mengjun
2016-01-01
Stem cell-based organ regeneration is purported to enable the replacement of impaired organs in the foreseeable future. Here, we demonstrated that a combination of cultured epidermal stem cells (Epi-SCs) derived from the epidermis and skin-derived precursors (SKPs) was capable of reconstituting functional hair follicles and sebaceous glands (SG). When Epi-SCs and SKPs were mixed in a hydrogel and implanted into an excisional wound in nude mice, the Epi-SCs formed de novo epidermis along with hair follicles, and SKPs contributed to dermal papilla in the neogenic hair follicles. Notably, a combination of culture-expanded Epi-SCs and SKPs derived from the adult human scalp were sufficient to generate hair follicles and hair. Bone morphogenetic protein 4, but not Wnts, sustained the expression of alkaline phosphatase in SKPs in vitro and the hair follicle-inductive property in vivo when SKPs were engrafted with neonatal epidermal cells into excisional wounds. In addition, Epi-SCs were capable of differentiating into sebocytes and formed de novo SGs, which excreted lipids as do normal SGs. Thus our results indicate that cultured Epi-SCs and SKPs are sufficient to generate de novo hair follicles and SGs, implying great potential to develop novel bioengineered skin substitutes with appendage genesis capacity. Significance In postpartum humans, skin appendages lost in injury are not regenerated, despite the considerable achievement made in skin bioengineering. In this study, transplantation of a combination of culture-expanded epidermal stem cells and skin-derived progenitors from mice and adult humans led to de novo regeneration of functional hair follicles and sebaceous glands. The data provide transferable knowledge for the development of novel bioengineered skin substitutes with epidermal appendage regeneration capacity. PMID:27458264
Plant tissue and the color infrared record
NASA Technical Reports Server (NTRS)
Pease, R. W.
1969-01-01
Green plant tissue should not be considered as having a uniguely high near-infrared reflectance but rather a low visual reflectance. Leaf tissue without chloroplasts appears to reflect well both visual and near infrared wavelengths. The sensitometry of color infrared film is such that a spectral imbalance strongly favoring infrared reflection is necessary to yield a red record. It is the absorption of visual light by chlorophyll that creates the imbalance that makes the typical red record for plants possible. Reflectance measurements of leaves that have been chemically blanched or which have gone into natural chloride decline strongly suggests that it is the rise in the visual reflectance that is most important in removing the imbalance and degrading the red CIR record. The role of water in leaves appears to be that of rendering epidermal membranes translucent so that the underlying chlorophyll controls the reflection rather than the leaf surface.
Wu, Yushan; Gong, Wanzhuo; Wang, Yangmei; Yong, Taiwen; Yang, Feng; Liu, Weigui; Wu, Xiaoling; Du, Junbo; Shu, Kai; Liu, Jiang; Liu, Chunyan; Yang, Wenyu
2018-03-29
Leaf anatomy and the stomatal development of developing leaves of plants have been shown to be regulated by the same light environment as that of mature leaves, but no report has yet been written on whether such a long-distance signal from mature leaves regulates the total leaf area of newly emerged leaves. To explore this question, we created an investigation in which we collected data on the leaf area, leaf mass per area (LMA), leaf anatomy, cell size, cell number, gas exchange and soluble sugar content of leaves from three soybean varieties grown under full sunlight (NS), shaded mature leaves (MS) or whole plants grown in shade (WS). Our results show that MS or WS cause a marked decline both in leaf area and LMA in newly developing leaves. Leaf anatomy also showed characteristics of shade leaves with decreased leaf thickness, palisade tissue thickness, sponge tissue thickness, cell size and cell numbers. In addition, in the MS and WS treatments, newly developed leaves exhibited lower net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (E), but higher carbon dioxide (CO 2 ) concentration in the intercellular space (Ci) than plants grown in full sunlight. Moreover, soluble sugar content was significantly decreased in newly developed leaves in MS and WS treatments. These results clearly indicate that (1) leaf area, leaf anatomical structure, and photosynthetic function of newly developing leaves are regulated by a systemic irradiance signal from mature leaves; (2) decreased cell size and cell number are the major cause of smaller and thinner leaves in shade; and (3) sugars could possibly act as candidate signal substances to regulate leaf area systemically.
Anatomy, Ultrastructure and Chemical Composition of Food Bodies of Hovenia dulcis (Rhamnaceae)
Buono, Rafael Andrade; de Oliveira, Alaíde Braga; Paiva, Elder Antonio Sousa
2008-01-01
Background and Aims Food bodies (FBs) are structures that promote mutualism between plants and ants, which help protect them against herbivores. The present study aims to describe the anatomical organization, ultrastructure and chemical composition of the FBs in Hovenia dulcis, which represent the first structures of this type described in Rhamnaceae. Methods Leaves in various stages of development were collected and fixed for examination under light, transmission and scanning electron microscopy. Samples of FBs were subjected to chemical analysis using thin-layer chromatography and nuclear magnetic resonance of 1H and 13C. Key Results The FBs vary from globose to conical and are restricted to the abaxial leaf surface, having a mixed origin, including epidermis and parenchyma. The FB epidermis is uniseriate, slightly pilose and has a thin cuticle. The epidermal cells are vacuolated and pigments or food reserves are absent. The parenchyma cells of immature FBs have dense cytoplasm showing mitochondria, endoplasmic reticulum and plastids. Mature FB cells store oils, which are free in the cytosol and occupy a large portion of the cell lumen. In these cells the plastids accumulate starch. Conclusions The lipids present in FBs are glycerin esters characteristic of plant energy reserves. Ants were observed collecting these FBs, which allows us to infer that these structures mediate plant–ant interactions and can help protect the young plants against herbivores, as these structures are prevalent at this developmental stage. PMID:18413656
Schwerdtner, O; Damaskos, T; Kage, A; Weitzel-Kage, D; Klein, M
2005-06-01
Trigeminal trophic syndrome is an extremely rare complication following surgical ablation of the trigeminal nerve or after alcohol injection or thermocoagulation of the Gasserian ganglion. These lesions show a poor healing tendency and sometimes persist for years. The therapeutic results of local wound care with ointments and wound dressings are often unsatisfactory, and those of plastic surgery are variable. In the case presented, the skin area affected by neurotrophic ulceration is successfully treated with autologous cultivated epidermal cells. This form of tissue engineering is already a clinically established procedure for treating burns and chronic wounds. The results show for the first time that transplantation of in vitro cultivated epidermal cells can induce tissue regeneration and may be an effective tool in the treatment of neurotrophic ulcerations in the facial region.
Winter, Klaus; Edwards, Gerald E.; Holtum, Joseph A. M.
1981-01-01
The inducible Crassulacean acid metabolism plant, Mesembryanthemum crystallinum, accumulates malic acid, i.e. equivalent amounts of malate anions and protons in the mesophyll cells at night. Levels of malate and titratable acidity are low in the epidermal tissue and do not change significantly during the day/night cycle. This result is in contrast to a recent report (Bloom 1979 Plant Physiol 64: 919-923) that the synthesis of malic acid during dark CO2 fixation is associated with an equivalent exchange of inorganic cations from epidermal tissue with protons in the mesophyll cells. PMID:16661916
Kerr, Candace; Adhikary, Gautam; Grun, Daniel; George, Nicholas; Eckert, Richard L
2018-01-01
Epidermal squamous cell carcinoma is an extremely common type of cancer. Early tumors can be successfully treated by surgery, but recurrent disease is aggressive and resistant to therapy. Cisplatin is often used as a treatment, but the outcome is rarely satisfactory. For this reason new strategies are required. Sulforaphane is a diet-derived cancer prevention agent that is effective in suppressing tumor growth in animal models of skin cancer. We monitored the efficacy of sulforaphane and cisplatin as a combined therapy for squamous cell carcinoma. Both agents suppress cell proliferation, growth of cancer stem cell spheroids, matrigel invasion and migration of SCC-13 and HaCaT cells, and combination treatment is more efficient. In addition, SCC-13 cell derived cancer stem cells are more responsive to these agents than non-stem cancer cells. Both agents suppress tumor formation, but enhanced suppression is observed with combined treatment. Moreover, both agents reduce the number of tumor-resident cancer stem cells. SFN treatment of cultured cells or tumors increases apoptosis and p21 Cip1 level, and both agents increase tumor apoptosis. We suggest that combined therapy with sulforaphane and cisplatin is efficient in suppressing tumor formation and may be a treatment option for advanced epidermal squamous cell carcinoma. © 2017 Wiley Periodicals, Inc.
Response of mouse epidermal cells to single doses of heavy-particles
NASA Technical Reports Server (NTRS)
Leith, J. T.; Schilling, W. A.; Welch, G. P.
1972-01-01
The survival of mouse epidermal cells to heavy-particles has been studied In Vivo by the Withers clone technique. Experiments with accelerated helium, lithium and carbon ions were performed. The survival curve for the helium ion irradiations used a modified Bragg curve method with a maximum tissue penetration of 465 microns, and indicated that the dose needed to reduce the original cell number to 1 surviving cell/square centimeters was 1525 rads with a D sub o of 95 rads. The LET at the basal cell layer was 28.6 keV per micron. Preliminary experiments with lithium and carbon used treatment doses of 1250 rads with LET's at the surface of the skin of 56 and 193 keV per micron respectively. Penetration depths in skin were 350 and 530 microns for the carbon and lithium ions whose Bragg curves were unmodified. Results indicate a maximum RBE for skin of about 2 using the skin cloning technique. An attempt has been made to relate the epidermal cell survival curve to mortality of the whole animal for helium ions.
Sakai, Kaori; Taconnat, Ludivine; Borrega, Nero; Yansouni, Jennifer; Brunaud, Véronique; Paysant-Le Roux, Christine; Delannoy, Etienne; Martin Magniette, Marie-Laure; Lepiniec, Loïc; Faure, Jean Denis; Balzergue, Sandrine; Dubreucq, Bertrand
2018-01-01
Genome-wide characterization of tissue- or cell-specific gene expression is a recurrent bottleneck in biology. We have developed a sensitive approach based on ultra-low RNA sequencing coupled to laser assisted microdissection for analyzing different tissues of the small Arabidopsis embryo. We first characterized the number of genes detected according to the quantity of tissue yield and total RNA extracted. Our results revealed that as low as 0.02 mm 2 of tissue and 50 pg of total RNA can be used without compromising the number of genes detected. The optimised protocol was used to compare the epidermal versus mesophyll cell transcriptomes of cotyledons at the torpedo-shaped stage of embryo development. The approach was validated by the recovery of well-known epidermal genes such AtML1 or AtPDF2 and genes involved in flavonoid and cuticular waxes pathways. Moreover, the interest and sensitivity of this approach were highlighted by the characterization of several transcription factors preferentially expressed in epidermal cells. This technical advance unlocks some current limitations of transcriptomic analyses and allows to investigate further and efficiently new biological questions for which only a very small amounts of cells need to be isolated. For instance, it paves the way to increasing the spatial accuracy of regulatory networks in developing small embryo of Arabidopsis or other plant tissues.
Salabert, Nina; Todorova, Biliana; Martinon, Frédéric; Boisgard, Raphaël; Zurawski, Gerard; Zurawski, Sandra; Dereuddre-Bosquet, Nathalie; Cosma, Antonio; Kortulewski, Thierry; Banchereau, Jacques; Levy, Yves; Le Grand, Roger; Chapon, Catherine
2016-03-01
The development of new immunization strategies requires a better understanding of early molecular and cellular events occurring at the site of injection. The skin is particularly rich in immune cells and represents an attractive site for vaccine administration. Here, we specifically targeted vaccine antigens to epidermal Langerhans cells (LCs) using a fusion protein composed of HIV antigens and a monoclonal antibody targeting Langerin. We developed a fluorescence imaging approach to visualize, in vivo, the vaccine-targeted cells. Studies were performed in nonhuman primates (NHPs) because of their relevance as a model to assess human vaccines. We directly demonstrated that in NHPs, intradermally injected anti-Langerin-HIVGag specifically targets epidermal LCs and induces rapid changes in the LC network, including LC activation and migration out of the epidermis. Vaccine targeting of LCs significantly improved anti-HIV immune response without requirement of an adjuvant. Although the co-injection of the TLR-7/8 synthetic ligand, R-848 (resiquimod), with the vaccine, did not enhance significantly the antibody response, it stimulated recruitment of HLA-DR+ inflammatory cells to the site of immunization. This study allowed us to characterize the dynamics of early local events following the injection of a vaccine-targeted epidermal LCs and R-848. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Turnover of pigment granules: cyclic catabolism and anabolism of ommochromes within epidermal cells.
Insausti, T C; Casas, J
2009-12-01
Ommochromes are end products of the tryptophan metabolism in arthropods. While the anabolism of ommochromes has been well studied, the catabolism is totally unknown. In order to study it, we used the crab-spider Misumena vatia, which is able to change color reversibly in a few days, from yellow to white and back. Ommochromes is the only pigment class responsible for the body coloration in this animal. The aim of this study was to analyze the fine structure of the epidermal cells in bleaching spiders, in an attempt to correlate morphological changes with the fate of the pigment granules. Central to the process of bleaching is the lysis of the ommochrome granules. In the same cell, intact granules and granules in different degradation stages are found. The degradation begins with granule autolysis. Some components are extruded in the extracellular space and others are recycled via autophagy. Abundant glycogen appears associated to granulolysis. In a later stage of bleaching, ommochrome progranules, typical of white spiders, appear in the distal zone of the same epidermal cell. Catabolism and anabolism of pigment granules thus take place simultaneously in spider epidermal cells. A cyclic pathway of pigment granules formation and degradation, throughout a complete cycle of color change is proposed, together with an explanation for this turnover, involving photoprotection against UV by ommochromes metabolites. The presence of this turnover for melanins is discussed.
Sakakibara, Keiko; Nishiyama, Tomoaki; Sumikawa, Naomi; Kofuji, Rumiko; Murata, Takashi; Hasebe, Mitsuyasu
2003-10-01
Differentiation of epidermal cells is important for plants because they are in direct contact with the environment. Rhizoids are multicellular filaments that develop from the epidermis in a wide range of plants, including pteridophytes, bryophytes, and green algae; they have similar functions to root hairs in vascular plants in that they support the plant body and are involved in water and nutrient absorption. In this study, we examined mechanisms underlying rhizoid development in the moss, Physcomitrella patens, which is the only land plant in which high-frequency gene targeting is possible. We found that rhizoid development can be split into two processes: determination and differentiation. Two types of rhizoids with distinct developmental patterns (basal and mid-stem rhizoids) were recognized. The development of basal rhizoids from epidermal cells was induced by exogenous auxin, while that of mid-stem rhizoids required an unknown factor in addition to exogenous auxin. Once an epidermal cell had acquired a rhizoid initial cell fate, expression of the homeodomain-leucine zipper I gene Pphb7 was induced. Analysis of Pphb7 disruptant lines showed that Pphb7 affects the induction of pigmentation and the increase in the number and size of chloroplasts, but not the position or number of rhizoids. This is the first report on the involvement of a homeodomain-leucine zipper I gene in epidermal cell differentiation.
[Analysis and comprehensive evaluation on cold resistance of six varieties of Michelia].
Li, Rui Xue; Jin, Xiao Ling; Hu, Xi Jun; Chai, Yi Xia; Cai, Meng Ying; Luo, Feng; Zhang, Fang Jing
2017-05-18
Taking six varieties of Michelia as test materials, their responses under cold situation in the field were investigated and the semilethal low temperatures were calculated by fitting Logistic equation. The nine structure indexes of leaf tissue were observed by paraffin section, and a comprehensive evaluation on cold resistance of different varieties was given according to subordinate function value analysis. The results showed that the relative electrical conductivity of six varieties of Michelia was significantly positively correlated with the semilethal low temperature (LT 50 ) of 3 h 0-25 ℃ treatment. From high to low, the order of LT 50 , which ranged between -20.48 ℃and -8.67 ℃, was M. maudiae > M. maudiae var. rubicunda > M. wilsonii > M. 'liubanhanxiao' ♀× M. shiluensis ♂ > M. platypetala > M. 'liubanhanxiao'. The epidermal anticlinal walls of six varieties of Michelia leaves had 1-2 layers and showed slightly sinuated shape. The leaf had 1-3 layers of palisade tissue cells and the differences among the indexes of nine anatomical structures were extremely significant. The thickness of palisade tissue, ratio between palisade tissue and spongy tissue, and thickness of the vein were the key factors affecting cold resistance. The order of cold resistance of six varieties of Michelia, from the strong to the weak, was M. 'liubanhanxiao' > M. platypetala > M. 'liubanhanxiao' ♀× M. shiluensis ♂>M. wilsonii > M. maudiae var. rubicunda > M. maudiae, which was basically consistent with the result of field investigation.
Berkovich, Liron; Earon, Gideon; Ron, Ilan; Rimmon, Adam; Vexler, Akiva; Lev-Ari, Shahar
2013-08-19
Fewer than 6% patients with adenocarcinoma of the pancreas live up to five years after diagnosis. Chemotherapy is currently the standard treatment, however, these tumors often develop drug resistance over time. Agents for increasing the cytotoxic effects of chemotherapy or reducing the cancer cells' chemo-resistance to the drugs are required to improve treatment outcome. Nuclear factor kappa B (NF-kB), a pro-inflammatory transcription factor, reportedly plays a significant role in the resistance of pancreatic cancer cells to apoptosis-based chemotherapy. This study investigated the effect of aqueous Moringa Oleifera leaf extract on cultured human pancreatic cancer cells - Panc-1, p34, and COLO 357, and whether it can potentiates the effect of cisplatin chemotherapy on these cells. The effect of Moringa Oleifera leaf extract alone and in combination with cisplatin on the survival of cultured human pancreatic cancer cells was evaluated by XTT-based colorimetric assay. The distribution of Panc-1 cells in the cell cycle following treatment with Moringa leaf extract was evaluated by flow cytometry, and evaluations of protein levels were via immunoblotting. Data of cell survival following combined treatments were analyzed with Calcusyn software. Moringa Oleifera leaf extract inhibited the growth of all pancreatic cell lines tested. This effect was significant in all cells following exposure to ≥0.75 mg/ml of the extract. Exposure of Panc-1 cells to Moringa leaf extract induced an elevation in the sub-G1 cell population of the cell-cycle, and reduced the expression of p65, p-IkBα and IkBα proteins in crude cell extracts. Lastly, Moringa Oleifera leaf extract synergistically enhanced the cytotoxic effect of cisplatin on Panc-1 cells. Moringa Oleifera leaf extract inhibits the growth of pancreatic cancer cells, the cells NF-κB signaling pathway, and increases the efficacy of chemotherapy in human pancreatic cancer cells.
Epidermal growth factor receptor in non-small cell lung cancer
2015-01-01
Following the identification of a group of patients in the initial tyrosine kinase inhibitor (TKI) trials for lung cancer, there has been detailed focus on which patients may benefit from inhibitor therapy. This article reviews the background, genetics and prevalence of epidermal growth factor mutations in non-small cell lung cancer (NSCLC). Additionally, the prevalence in unselected patients is compared against various other reviews. PMID:25870793
Kanai, Nobuo; Yamato, Masayuki; Ohki, Takeshi; Yamamoto, Masakazu; Okano, Teruo
2012-10-01
Endoscopic submucosal dissection (ESD) is an accepted treatment for early esophageal carcinoma. However, resection of a large mucosal area, as with circumferential ESD, induces severe stricture formation. To evaluate the efficacy of cultured autologous epidermal cell sheets to prevent severe esophageal constriction after circumferential ESD. Animal study. University institute. Eight pigs underwent circumferential esophageal ESD while under general anesthesia. In 4 pigs, fabricated autologous epidermal cell sheets were endoscopically transplanted to the central ESD sites immediately after the ESD. The other 4 pigs underwent circumferential ESD only. Necropsy and histological assessment were performed at 1 and 2 weeks post-ESD. Weight gain, degree of mucosal constriction, and histological assessments. All pigs in the control group showed severe esophageal constriction after 2 weeks. The control and transplanted groups had weight gains of -10.3% and 0.3% (P = .03), respectively, and the mean degrees of constriction were 88% and 56% (P < .01), respectively. Early re-epithelialization and mild fibrosis in the muscularis were observed in the transplanted group. Animal study, small sample size. Fabricated autologous skin epidermal cell sheets would be useful in preventing severe esophageal constriction after circumferential ESD. Copyright © 2012 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.
The involvement of J-protein AtDjC17 in root development in Arabidopsis
Petti, Carloalberto; Nair, Meera; DeBolt, Seth
2014-01-01
In a screen for root hair morphogenesis mutants in Arabidopsis thaliana L. we identified a T-DNA insertion within a type III J-protein AtDjC17 caused altered root hair development and reduced hair length. Root hairs were observed to develop from trichoblast and atrichoblast cell files in both Atdjc17 and 35S::AtDJC17. Localization of gene expression in the root using transgenic plants expressing proAtDjC17::GUS revealed constitutive expression in stele cells. No AtDJC17 expression was observed in epidermal, endodermal, or cortical layers. To explore the contrast between gene expression in the stele and epidermal phenotype, hand cut transverse sections of Atdjc17 roots were examined showing that the endodermal and cortical cell layers displayed increased anticlinal cell divisions. Aberrant cortical cell division in Atdjc17 is proposed as causal in ectopic root hair formation via the positional cue requirement that exists between cortical and epidermal cell in hair cell fate determination. Results indicate a requirement for AtDJC17 in position-dependent cell fate determination and illustrate an intriguing requirement for molecular co-chaperone activity during root development. PMID:25339971
Human corpus luteum: presence of epidermal growth factor receptors and binding characteristics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayyagari, R.R.; Khan-Dawood, F.S.
Epidermal growth factor receptors are present in many reproductive tissues but have not been demonstrated in the human corpus luteum. To determine the presence of epidermal growth factor receptors and its binding characteristics, we carried out studies on the plasma cell membrane fraction of seven human corpora lutea (days 16 to 25) of the menstrual cycle. Specific epidermal growth factor receptors were present in human corpus luteum. Insulin, nerve growth factor, and human chorionic gonadotropin did not competitively displace epidermal growth factor binding. The optimal conditions for corpus luteum-epidermal growth factor receptor binding were found to be incubation for 2more » hours at 4 degrees C with 500 micrograms plasma membrane protein and 140 femtomol /sup 125/I-epidermal growth factor per incubate. The number (mean +/- SEM) of epidermal growth factor binding sites was 12.34 +/- 2.99 X 10(-19) mol/micrograms protein; the dissociation constant was 2.26 +/- 0.56 X 10(-9) mol/L; the association constant was 0.59 +/- 0.12 X 10(9) L/mol. In two regressing corpora lutea obtained on days 2 and 3 of the menstrual cycle, there was no detectable specific epidermal growth factor receptor binding activity. Similarly no epidermal growth factor receptor binding activity could be detected in ovarian stromal tissue. Our findings demonstrate that specific receptors for epidermal growth factor are present in the human corpus luteum. The physiologic significance of epidermal growth factor receptors in human corpus luteum is unknown, but epidermal growth factor may be involved in intragonadal regulation of luteal function.« less
2013-01-01
Background Fewer than 6% patients with adenocarcinoma of the pancreas live up to five years after diagnosis. Chemotherapy is currently the standard treatment, however, these tumors often develop drug resistance over time. Agents for increasing the cytotoxic effects of chemotherapy or reducing the cancer cells’ chemo-resistance to the drugs are required to improve treatment outcome. Nuclear factor kappa B (NF-kB), a pro-inflammatory transcription factor, reportedly plays a significant role in the resistance of pancreatic cancer cells to apoptosis-based chemotherapy. This study investigated the effect of aqueous Moringa Oleifera leaf extract on cultured human pancreatic cancer cells - Panc-1, p34, and COLO 357, and whether it can potentiates the effect of cisplatin chemotherapy on these cells. Methods The effect of Moringa Oleifera leaf extract alone and in combination with cisplatin on the survival of cultured human pancreatic cancer cells was evaluated by XTT-based colorimetric assay. The distribution of Panc-1 cells in the cell cycle following treatment with Moringa leaf extract was evaluated by flow cytometry, and evaluations of protein levels were via immunoblotting. Data of cell survival following combined treatments were analyzed with Calcusyn software. Results Moringa Oleifera leaf extract inhibited the growth of all pancreatic cell lines tested. This effect was significant in all cells following exposure to ≥0.75 mg/ml of the extract. Exposure of Panc-1 cells to Moringa leaf extract induced an elevation in the sub-G1 cell population of the cell-cycle, and reduced the expression of p65, p-IkBα and IkBα proteins in crude cell extracts. Lastly, Moringa Oleifera leaf extract synergistically enhanced the cytotoxic effect of cisplatin on Panc-1 cells. Conclusion Moringa Oleifera leaf extract inhibits the growth of pancreatic cancer cells, the cells NF-κB signaling pathway, and increases the efficacy of chemotherapy in human pancreatic cancer cells. PMID:23957955
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arumugam, Aadithya; Weng, Zhiping; Chaudhary, Sandeep C.
Highlights: • Targeting ODC to hair follicle augments skin carcinogenesis and invasive SCCs. • Hair follicle ODC expands stem cell compartment carrying CD34{sup +}/K15{sup +}/p63{sup +} keratinocytes. • Negatively regulated Notch1 is associated with expansion of stem cell compartment. - Abstract: Over-expression of ornithine decarboxylase (ODC) is known to be involved in the epidermal carcinogenesis. However, the mechanism by which it enhances skin carcinogenesis remains undefined. Recently, role of stem cells localized in various epidermal compartments has been shown in the pathogenesis of skin cancer. To direct ODC expression in distinct epidermal compartments, we have developed keratin 6 (K6)-ODC/SKH-1 andmore » keratin 14 (K14)-ODC/SKH-1 mice and employed them to investigate the role of ODC directed to these epidermal compartments on UVB-induced carcinogenesis. K6-driven ODC over-expression directed to outer root sheath (ORS) of hair follicle was more effective in augmenting tumorigenesis as compared to mice where K14-driven ODC expression was directed to inter-follicular epidermal keratinocytes. Chronically UVB-irradiated K6-ODC/SKH-1 developed 15 ± 2.5 tumors/mouse whereas K14-ODC/SKH-1 developed only 6.8 ± 1.5 tumors/mouse. K6-ODC/SKH-1 showed augmented UVB-induced proliferation and much higher pro-inflammatory responses than K14-ODC/SKH-1 mice. Tumors induced in K6-ODC/SKH-1 were rapidly growing, invasive and ulcerative squamous cell carcinoma (SCC) showing decreased expression of epidermal polarity marker E-cadherin and enhanced mesenchymal marker, fibronectin. Interestingly, the number of CD34/CK15/p63 positive stem-like cells was significantly higher in chronically UVB-irradiated K6-ODC/SKH-1 as compared to K14-ODC/SKH-1 mice. Reduced Notch1 expression was correlated with the expansion of stem cell compartment in these animals. However, other signaling pathways such as DNA damage response or mTOR signaling pathways were not significantly different in tumors induced in these two murine models suggesting the specificity of Notch pathway in this regard. These data provide a novel role of ODC in augmenting tumorigenesis via negatively regulated Notch-mediated expansion of stem cell compartment.« less
Damasceno, Eduardo Medeiros; Monteiro, Juliana Castro; Duboc, Luiz Fernando; Dolder, Heidi; Mancini, Karina
2012-01-01
The epidermis of Ostariophysi fish is composed of 4 main cell types: epidermal cells (or filament containing cells), mucous cells, granular cells and club cells. The morphological analysis of the epidermis of the catfish Pimelodella lateristriga revealed the presence of only two types of cells: epidermal and club cells. The latter were evident in the middle layer of the epidermis, being the largest cells within the epithelium. Few organelles were located in the perinuclear region, while the rest of the cytoplasm was filled with a non-vesicular fibrillar substance. Club cells contained two irregular nuclei with evident nucleoli and high compacted peripheral chromatin. Histochemical analysis detected prevalence of protein within the cytoplasm other than carbohydrates, which were absent. These characteristics are similar to those described to most Ostariophysi studied so far. On the other hand, the epidermal cells differ from what is found in the literature. The present study described three distinct types, as follows: superficial, abundant and dense cells. Differences among them were restricted to their cytoplasm and nucleus morphology. Mucous cells were found in all Ostariophysi studied so far, although they were absent in P. lateristriga, along with granular cells, also typical of other catfish epidermis. The preset study corroborates the observations on club cells' morphology in Siluriformes specimens, and shows important differences in epidermis composition and cell structure of P. lateristriga regarding the literature data. PMID:23226253
Bourke, Claire D.; Prendergast, Catriona T.; Sanin, David E.; Oulton, Tate E.; Hall, Rebecca J.; Mountford, Adrian P.
2015-01-01
Keratinocytes constitute the majority of cells in the skin’s epidermis, the first line of defence against percutaneous pathogens. Schistosome larvae (cercariae) actively penetrate the epidermis to establish infection, however the response of keratinocytes to invading cercariae has not been investigated. Here we address the hypothesis that cercariae activate epidermal keratinocytes to promote the development of a pro-inflammatory immune response in the skin. C57BL/6 mice were exposed to Schistosoma mansoni cercariae via each pinna and non-haematopoietic cells isolated from epidermal tissue were characterised for the presence of different keratinocyte sub-sets at 6, 24 and 96 h p.i. We identified an expansion of epidermal keratinocyte precursors (CD45−, CD326−, CD34+) within 24 h of infection relative to naïve animals. Following infection, cells within the precursor population displayed a more differentiated phenotype (α6integrin−) than in uninfected skin. Parallel immunohistochemical analysis of pinnae cryosections showed that this expansion corresponded to an increase in the intensity of CD34 staining, specifically in the basal bulge region of hair follicles of infected mice, and a higher frequency of keratinocyte Ki67+ nuclei in both the hair follicle and interfollicular epidermis. Expression of pro-inflammatory cytokine and stress-associated keratin 6b genes was also transiently upregulated in the epidermal tissue of infected mice. In vitro exposure of keratinocyte precursors isolated from neonatal mouse skin to excretory/secretory antigens released by penetrating cercariae elicited IL-1α and IL-1β production, supporting a role for keratinocyte precursors in initiating cutaneous inflammatory immune responses. Together, these observations indicate that S.mansoni cercariae and their excretory/secretory products act directly upon epidermal keratinocytes, which respond by initiating barrier repair and pro-inflammatory mechanisms similar to those observed in epidermal wound healing. PMID:25575749
The Evolutionary Basis of Naturally Diverse Rice Leaves Anatomy
Chatterjee, Jolly; Dionora, Jacqueline; Elmido-Mabilangan, Abigail; Wanchana, Samart; Thakur, Vivek; Bandyopadhyay, Anindya; Brar, Darshan S.; Quick, William Paul
2016-01-01
Rice contains genetically and ecologically diverse wild and cultivated species that show a wide variation in plant and leaf architecture. A systematic characterization of leaf anatomy is essential in understanding the dynamics behind such diversity. Therefore, leaf anatomies of 24 Oryza species spanning 11 genetically diverse rice genomes were studied in both lateral and longitudinal directions and possible evolutionary trends were examined. A significant inter-species variation in mesophyll cells, bundle sheath cells, and vein structure was observed, suggesting precise genetic control over these major rice leaf anatomical traits. Cellular dimensions, measured along three growth axes, were further combined proportionately to construct three-dimensional (3D) leaf anatomy models to compare the relative size and orientation of the major cell types present in a fully expanded leaf. A reconstruction of the ancestral leaf state revealed that the following are the major characteristics of recently evolved rice species: fewer veins, larger and laterally elongated mesophyll cells, with an increase in total mesophyll area and in bundle sheath cell number. A huge diversity in leaf anatomy within wild and domesticated rice species has been portrayed in this study, on an evolutionary context, predicting a two-pronged evolutionary pathway leading to the ‘sativa leaf type’ that we see today in domesticated species. PMID:27792743
The Evolutionary Basis of Naturally Diverse Rice Leaves Anatomy.
Chatterjee, Jolly; Dionora, Jacqueline; Elmido-Mabilangan, Abigail; Wanchana, Samart; Thakur, Vivek; Bandyopadhyay, Anindya; Brar, Darshan S; Quick, William Paul
2016-01-01
Rice contains genetically and ecologically diverse wild and cultivated species that show a wide variation in plant and leaf architecture. A systematic characterization of leaf anatomy is essential in understanding the dynamics behind such diversity. Therefore, leaf anatomies of 24 Oryza species spanning 11 genetically diverse rice genomes were studied in both lateral and longitudinal directions and possible evolutionary trends were examined. A significant inter-species variation in mesophyll cells, bundle sheath cells, and vein structure was observed, suggesting precise genetic control over these major rice leaf anatomical traits. Cellular dimensions, measured along three growth axes, were further combined proportionately to construct three-dimensional (3D) leaf anatomy models to compare the relative size and orientation of the major cell types present in a fully expanded leaf. A reconstruction of the ancestral leaf state revealed that the following are the major characteristics of recently evolved rice species: fewer veins, larger and laterally elongated mesophyll cells, with an increase in total mesophyll area and in bundle sheath cell number. A huge diversity in leaf anatomy within wild and domesticated rice species has been portrayed in this study, on an evolutionary context, predicting a two-pronged evolutionary pathway leading to the 'sativa leaf type' that we see today in domesticated species.
microRNA-184 Induces a Commitment Switch to Epidermal Differentiation.
Nagosa, Sara; Leesch, Friederike; Putin, Daria; Bhattacharya, Swarnabh; Altshuler, Anna; Serror, Laura; Amitai-Lange, Aya; Nasser, Waseem; Aberdam, Edith; Rouleau, Matthieu; Tattikota, Sudhir G; Poy, Matthew N; Aberdam, Daniel; Shalom-Feuerstein, Ruby
2017-12-12
miR-184 is a highly evolutionary conserved microRNA (miRNA) from fly to human. The importance of miR-184 was underscored by the discovery that point mutations in miR-184 gene led to corneal/lens blinding disease. However, miR-184-related function in vivo remained unclear. Here, we report that the miR-184 knockout mouse model displayed increased p63 expression in line with epidermal hyperplasia, while forced expression of miR-184 by stem/progenitor cells enhanced the Notch pathway and induced epidermal hypoplasia. In line, miR-184 reduced clonogenicity and accelerated differentiation of human epidermal cells. We showed that by directly repressing cytokeratin 15 (K15) and FIH1, miR-184 induces Notch activation and epidermal differentiation. The disease-causing miR-184 C57U mutant failed to repress K15 and FIH1 and to induce Notch activation, suggesting a loss-of-function mechanism. Altogether, we propose that, by targeting K15 and FIH1, miR-184 regulates the transition from proliferation to early differentiation, while mis-expression or mutation in miR-184 results in impaired homeostasis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Ho, Ernest; Dagnino, Lina
2012-01-01
Epidermal growth factor (EGF) is a potent chemotactic and mitogenic factor for epidermal keratinocytes, and these properties are central for normal epidermal regeneration after injury. The involvement of mitogen-activated protein kinases as mediators of the proliferative effects of EGF is well established. However, the molecular mechanisms that mediate motogenic responses to this growth factor are not clearly understood. An obligatory step for forward cell migration is the development of front–rear polarity and formation of lamellipodia at the leading edge. We show that stimulation of epidermal keratinocytes with EGF, but not with other growth factors, induces development of front–rear polarity and directional migration through a pathway that requires integrin-linked kinase (ILK), Engulfment and Cell Motility-2 (ELMO2), integrin β1, and Rac1. Furthermore, EGF induction of front–rear polarity and chemotaxis require the tyrosine kinase activity of the EGF receptor and are mediated by complexes containing active RhoG, ELMO2, and ILK. Our findings reveal a novel link between EGF receptor stimulation, ILK-containing complexes, and activation of small Rho GTPases necessary for acquisition of front–rear polarity and forward movement. PMID:22160594
Ho, Ernest; Dagnino, Lina
2012-02-01
Epidermal growth factor (EGF) is a potent chemotactic and mitogenic factor for epidermal keratinocytes, and these properties are central for normal epidermal regeneration after injury. The involvement of mitogen-activated protein kinases as mediators of the proliferative effects of EGF is well established. However, the molecular mechanisms that mediate motogenic responses to this growth factor are not clearly understood. An obligatory step for forward cell migration is the development of front-rear polarity and formation of lamellipodia at the leading edge. We show that stimulation of epidermal keratinocytes with EGF, but not with other growth factors, induces development of front-rear polarity and directional migration through a pathway that requires integrin-linked kinase (ILK), Engulfment and Cell Motility-2 (ELMO2), integrin β1, and Rac1. Furthermore, EGF induction of front-rear polarity and chemotaxis require the tyrosine kinase activity of the EGF receptor and are mediated by complexes containing active RhoG, ELMO2, and ILK. Our findings reveal a novel link between EGF receptor stimulation, ILK-containing complexes, and activation of small Rho GTPases necessary for acquisition of front-rear polarity and forward movement.
Malignant Change in an Epidermal Cyst Over Gluteal Region
Kshirsagar, Ashok Y; Sulhyan, Sanjitsingh R; Deshpande, Shradha; Jagtap, SV
2011-01-01
A 72-year-old male presented with a large ulceroproliferative lesion over left gluteal region. After histopathological confirmation of squamous cell carcinoma, the lesion was excised with wide margins. Further histopathological study of the excised specimen revealed the growth arising from an epidermal cyst. Malignant change is a rare, but wellknown complication occurring in an epidermal cyst. The mainstay of treatment consists of wide excision of cancerous lesion with primary reconstruction of the defect. PMID:21572684
Tapia, G; Morales-Quintana, L; Parra, C; Berbel, A; Alcorta, M
2013-07-01
The cuticle is the first defense against pathogens and the second way water is lost in plants. Hydrophobic layers covering aerial plant organs from primary stages of development form cuticle, including major classes of aliphatic wax components and cutin. Extensive research has been conducted to understand cuticle formation mechanisms in plants. However, many questions remain unresolved in the transport of lipid components to form cuticle. Database studies of the Lotus japonicus genome have revealed the presence of 24 sequences classified as putative non-specific lipid transfer proteins (nsLTPs), which were classified in seven groups; four groups were selected because of their expression in aerial organs. LjLTP8 forms a cluster with DIR1 in Arabidopsis thaliana while LjLTP6, LjLTP9, and LjLTP10 were grouped as type I LTPs. In silico studies showed a high level of structural conservation, and substrate affinity studies revealed palmitoyl-CoA as the most likely ligand for these LTPs, although the Lyso-Myristoyl Phosphatidyl Choline, Lyso-myristoyl phosphatidyl glycerol, and Lyso-stearyl phosphatidyl choline ligands also showed a high affinity with the proteins. The LjLTP6 and LjLTP10 genes were expressed in both the stems and the leaves under normal conditions and were highly induced during drought stress. LjLTP10 was the most induced gene in shoots during drought. The gene was only expressed in the epidermal cells of stems, primordial leaves, and young leaflets. LjLTP10 was positively regulated by MeJA but repressed by abscisic acid (ABA), ethylene, and H2O2, while LjLTP6 was weakly induced by MeJA, repressed by H2O2, and not affected by ABA and ethylene. We suggest that LjLTP10 is involved in plant development of stem and leaf cuticle, but also in acclimation to tolerate drought stress in L. japonicus.
Mammalian skin cell biology: at the interface between laboratory and clinic.
Watt, Fiona M
2014-11-21
Mammalian skin research represents the convergence of three complementary disciplines: cell biology, mouse genetics, and dermatology. The skin provides a paradigm for current research in cell adhesion, inflammation, and tissue stem cells. Here, I discuss recent insights into the cell biology of skin. Single-cell analysis has revealed that human epidermal stem cells are heterogeneous and differentiate in response to multiple extrinsic signals. Live-cell imaging, optogenetics, and cell ablation experiments show skin cells to be remarkably dynamic. High-throughput, genome-wide approaches have yielded unprecedented insights into the circuitry that controls epidermal stem cell fate. Last, integrative biological analysis of human skin disorders has revealed unexpected functions for elements of the skin that were previously considered purely structural. Copyright © 2014, American Association for the Advancement of Science.
Giuliani, Rita; Koteyeva, Nuria; Voznesenskaya, Elena; Evans, Marc A; Cousins, Asaph B; Edwards, Gerald E
2013-07-01
The genus Oryza, which includes rice (Oryza sativa and Oryza glaberrima) and wild relatives, is a useful genus to study leaf properties in order to identify structural features that control CO(2) access to chloroplasts, photosynthesis, water use efficiency, and drought tolerance. Traits, 26 structural and 17 functional, associated with photosynthesis and transpiration were quantified on 24 accessions (representatives of 17 species and eight genomes). Hypotheses of associations within, and between, structure, photosynthesis, and transpiration were tested. Two main clusters of positively interrelated leaf traits were identified: in the first cluster were structural features, leaf thickness (Thick(leaf)), mesophyll (M) cell surface area exposed to intercellular air space per unit of leaf surface area (S(mes)), and M cell size; a second group included functional traits, net photosynthetic rate, transpiration rate, M conductance to CO(2) diffusion (g(m)), stomatal conductance to gas diffusion (g(s)), and the g(m)/g(s) ratio.While net photosynthetic rate was positively correlated with gm, neither was significantly linked with any individual structural traits. The results suggest that changes in gm depend on covariations of multiple leaf (S(mes)) and M cell (including cell wall thickness) structural traits. There was an inverse relationship between Thick(leaf) and transpiration rate and a significant positive association between Thick(leaf) and leaf transpiration efficiency. Interestingly, high g(m) together with high g(m)/g(s) and a low S(mes)/g(m) ratio (M resistance to CO(2) diffusion per unit of cell surface area exposed to intercellular air space) appear to be ideal for supporting leaf photosynthesis while preserving water; in addition, thick M cell walls may be beneficial for plant drought tolerance.
Nishikawa, A; Yoshizato, K
1986-02-01
Epidermal cells were dissociated from tails of the bullfrog tadpole, Rana catesbeiana, and cultured to investigate their response to steroid and thyroid hormones. Charcoal-treated serum (CTS) was used in the growth medium when cells were to be grown in the absence of steroid and thyroid hormones. The cells could be maintained for 2 weeks with a small increase in cell number in medium that contained CTS (CTS medium). Addition of cortisol to CTS medium increased both cellular attachment to the culture dishes and the proliferation of the attached cells with an optimum concentration of 5 X 10(-7) M. The cells remained viable and attached for at least a week. Cortisol stimulated the rate of protein synthesis 1.8-fold but did not alter the rate of DNA synthesis. The cells did not proliferate in the medium containing triiodothyronine (T3) and detached themselves from the dish within 5 days, which occurred in a dose-dependent manner with a maximum effect at 10(-8) M. It drastically decreased the rate of DNA synthesis but did not influence the rate of protein synthesis. These responses of cells to cortisol and T3 may reflect growth and death of tail epidermal cells in vivo at metamorphosis.
Positional signaling mediated by a receptor-like kinase in Arabidopsis.
Kwak, Su-Hwan; Shen, Ronglai; Schiefelbein, John
2005-02-18
The position-dependent specification of root epidermal cells in Arabidopsis provides an elegant paradigm for cell patterning during development. Here, we describe a new gene, SCRAMBLED (SCM), required for cells to appropriately interpret their location within the developing root epidermis. SCM encodes a receptor-like kinase protein with a predicted extracellular domain of six leucine-rich repeats and an intracellular serine-threonine kinase domain. SCM regulates the expression of the GLABRA2, CAPRICE, WEREWOLF, and ENHANCER OF GLABRA3 transcription factor genes that define the cell fates. Further, the SCM gene is expressed throughout the developing root. Therefore, SCM likely enables developing epidermal cells to detect positional cues and establish an appropriate cell-type pattern.
Disc size regulation in the brood cell building behavior of leaf-cutter bee, Megachile tsurugensis.
Kim, Jong-yoon
2007-12-01
The leaf-cutter bee, Megachile tsurugensis, builds a brood cell in a preexisting tunnel with leaf discs that she cuts in decreasing sizes and assembles them like a Russian matryoshka doll. By experimentally manipulating the brood cell, it was investigated how she regulates the size of leaf discs that fit in the brood cell's internal volume. When the internal volume was artificially increased by removing a bulk of leaf discs, she decreased the leaf disc size, although increasing it would have made the leaf disc more fitting in the increased internal volume. As a reverse manipulation, when the internal volume was decreased by inserting a group of inner layers of preassembled leaf discs to a brood cell, she decreased the leaf disc size, so that the leaf disc could fit in the decreased internal volume. These results suggest that she uses at least two different mechanisms to regulate the disc size: the use of some internal memory about the degree of building work accomplished in the first and of sensory feedback of dimensional information at the construction site in the second manipulation, respectively. It was concluded that a stigmergic mechanism, an immediate sensory feedback from the brood cell changed by the building work, alone cannot explain the details of the bee's behavior particularly with respect to her initial response to the first manipulation. For a more complete explanation of the behavior exhibited by the solitary bee, two additional behavioral elements, reinforcement of building activity and processing of dimensional information, were discussed along with stigmergy.
Expression of an Exogenous Growth Hormone Gene by Transplantable Human Epidermal Cells
NASA Astrophysics Data System (ADS)
Morgan, Jeffrey R.; Barrandon, Yann; Green, Howard; Mulligan, Richard C.
1987-09-01
Retrovirus-mediated gene transfer was used to introduce a recombinant human growth hormone gene into cultured human keratinocytes. The transduced keratinocytes secreted biologically active growth hormone into the culture medium. When grafted as an epithelial sheet onto athymic mice, these cultured keratinocytes reconstituted an epidermis that was similar in appearance to that resulting from normal cells, but from which human growth hormone could be extracted. Transduced epidermal cells may prove to be a general vehicle for the delivery of gene products by means of grafting.
UV radiation induces CXCL5 expression in human skin.
Reichert, Olga; Kolbe, Ludger; Terstegen, Lara; Staeb, Franz; Wenck, Horst; Schmelz, Martin; Genth, Harald; Kaever, Volkhard; Roggenkamp, Dennis; Neufang, Gitta
2015-04-01
CXCL5 has recently been identified as a mediator of UVB-induced pain in rodents. To compare and to extend previous knowledge of cutaneous CXCL5 regulation, we performed a comprehensive study on the effects of UV radiation on CXCL5 regulation in human skin. Our results show a dose-dependent increase in CXCL5 protein in human skin after UV radiation. CXCL5 can be released by different cell types in the skin. We presumed that, in addition to immune cells, non-immune skin cells also contribute to UV-induced increase in CXCL5 protein. Analysis of monocultured dermal fibroblasts and keratinocytes revealed that only fibroblasts but not keratinocytes displayed up regulated CXCL5 levels after UV stimulation. Whereas UV treatment of human skin equivalents, induced epidermal CXCL5 mRNA and protein expression. Up regulation of epidermal CXCL5 was independent of keratinocyte differentiation and keratinocyte-keratinocyte interactions in epidermal layers. Our findings provide first evidence on the release of CXCL5 in UV-radiated human skin and the essential role of fibroblast-keratinocyte interaction in the regulation of epidermal CXCL5. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Inoue, Yu; Hasegawa, Seiji; Miyachi, Katsuma; Yamada, Takaaki; Nakata, Satoru; Ipponjima, Sari; Hibi, Terumasa; Nemoto, Tomomi; Tanaka, Masahiko; Suzuki, Ryo; Hirashima, Naohide
2018-05-01
The epidermis, the outermost layer of the skin, retains moisture and functions as a physical barrier against the external environment. Epidermal cells are continuously replaced by turnover, and thus to understand in detail the dynamic cellular events in the epidermis, techniques to observe live tissues in 3D are required. Here, we established a live 3D imaging technique for epidermis models. We first obtained immortalized human epidermal cell lines which have a normal differentiation capacity and fluorescence-labelled cytoplasm or nuclei. The reconstituted 3D epidermis was prepared with these lines. Using this culture system, we were able to observe the structure of the reconstituted epidermis live in 3D, which was similar to an in vivo epidermis, and evaluate the effect of a skin irritant. This technique may be useful for dermatological science and drug development. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Nguyen, Thao T; Parat, Marie-Odile; Shaw, Paul N; Hewavitharana, Amitha K; Hodson, Mark P
2016-01-01
Carica papaya leaf decoction, an Australian Aboriginal remedy, has been used widely for its healing capabilities against cancer, with numerous anecdotal reports. In this study we investigated its in vitro cytotoxicity on human squamous cell carcinoma cells followed by metabolomic profiling of Carica papaya leaf decoction and leaf juice/brewed leaf juice to determine the effects imparted by the long heating process typical of the Aboriginal remedy preparation. MTT assay results showed that in comparison with the decoction, the leaf juice not only exhibited a stronger cytotoxic effect on SCC25 cancer cells, but also produced a significant cancer-selective effect as shown by tests on non-cancerous human keratinocyte HaCaT cells. Furthermore, evidence from testing brewed leaf juice on these two cell lines suggested that the brewing process markedly reduced the selective effect of Carica papaya leaf on SCC25 cancer cells. To tentatively identify the compounds that contribute to the distinct selective anticancer activity of leaf juice, an untargeted metabolomic approach employing Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry followed by multivariate data analysis was applied. Some 90 and 104 peaks in positive and negative mode respectively were selected as discriminatory features from the chemical profile of leaf juice and >1500 putative compound IDs were obtained via database searching. Direct comparison of chromatographic and tandem mass spectral data to available reference compounds confirmed one feature as a match with its proposed authentic standard, namely pheophorbide A. However, despite pheophorbide A exhibiting cytotoxic activity on SCC25 cancer cells, it did not prove to be the compound contributing principally to the selective activity of leaf juice. With promising results suggesting stronger and more selective anticancer effects when compared to the Aboriginal remedy, Carica papaya leaf juice warrants further study to explore its activity on other cancer cell lines, as well as investigation to confirm the identity of compounds contributing to its selective effect, particularly those compounds altered by the long heating process applied during the traditional Aboriginal remedy preparation.
Nguyen, Thao T.; Parat, Marie-Odile; Shaw, Paul N.; Hewavitharana, Amitha K.; Hodson, Mark P.
2016-01-01
Carica papaya leaf decoction, an Australian Aboriginal remedy, has been used widely for its healing capabilities against cancer, with numerous anecdotal reports. In this study we investigated its in vitro cytotoxicity on human squamous cell carcinoma cells followed by metabolomic profiling of Carica papaya leaf decoction and leaf juice/brewed leaf juice to determine the effects imparted by the long heating process typical of the Aboriginal remedy preparation. MTT assay results showed that in comparison with the decoction, the leaf juice not only exhibited a stronger cytotoxic effect on SCC25 cancer cells, but also produced a significant cancer-selective effect as shown by tests on non-cancerous human keratinocyte HaCaT cells. Furthermore, evidence from testing brewed leaf juice on these two cell lines suggested that the brewing process markedly reduced the selective effect of Carica papaya leaf on SCC25 cancer cells. To tentatively identify the compounds that contribute to the distinct selective anticancer activity of leaf juice, an untargeted metabolomic approach employing Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry followed by multivariate data analysis was applied. Some 90 and 104 peaks in positive and negative mode respectively were selected as discriminatory features from the chemical profile of leaf juice and >1500 putative compound IDs were obtained via database searching. Direct comparison of chromatographic and tandem mass spectral data to available reference compounds confirmed one feature as a match with its proposed authentic standard, namely pheophorbide A. However, despite pheophorbide A exhibiting cytotoxic activity on SCC25 cancer cells, it did not prove to be the compound contributing principally to the selective activity of leaf juice. With promising results suggesting stronger and more selective anticancer effects when compared to the Aboriginal remedy, Carica papaya leaf juice warrants further study to explore its activity on other cancer cell lines, as well as investigation to confirm the identity of compounds contributing to its selective effect, particularly those compounds altered by the long heating process applied during the traditional Aboriginal remedy preparation. PMID:26829042
Okumura, Akihisa; Lee, Tsubasa; Ikeno, Mitsuru; Shimojima, Keiko; Kajino, Kazunori; Inoue, Yuka; Yoshikawa, Naomi; Suganuma, Hiroki; Suzuki, Mitsuyoshi; Hisata, Ken; Shoji, Hiromichi; Takanashi, Jun-ichi; Barkovich, A James; Shimizu, Toshiaki; Yamamoto, Toshiyuki; Hayashi, Masaharu
2012-11-01
Here we report a boy with epidermal nevus syndrome associated with brainstem and cerebellar malformations and neonatal medulloblastoma. The patient had epidermal nevi and complicated brain malformations including macrocephaly with polymicrogyria, dysmorphic and enlarged midbrain tectum, enlarged cerebellar hemispheres with small and maloriented folia. The patient died after surgical resection of medulloblastoma which was newly recognized on MRI at 51 days of age. Postmortem pathological examinations showed very unique and bizarre malformation of the midbrain and hindbrain. The cerebellar cortex exhibited a coarse, irregular and bumpy surface, blurred border between the Purkinje cell layer and internal granule cell layer, and many foci of heterotopia in the cerebellar white matter. The brainstem showed multiple anomalies, including enlargement of superior colliculi, hypoplasia of pyramidal tracts and dysplasia of inferior olivary nuclei. The unusual constellation of brain malformations of our patient will widen the spectrum of epidermal nevus syndrome. Copyright © 2012 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Watanabe, Hiromi; Ichihara, Eiki; Kano, Hirohisa; Ninomiya, Kiichiro; Tanimoto, Mitsune; Kiura, Katsuyuki
2017-08-15
We herein report a case of congestive heart failure which developed during osimertinib treatment. A 78-year-old woman presented with mild exertional dyspnea three weeks after starting osimertinib for the treatment of epidermal growth factor receptor (EGFR) T790M-positive non-small cell lung cancer. She was diagnosed with congestive heart failure caused by the osimertinib. In contrast to trastuzumab, a human epidermal growth factor receptor 2 (HER2) monoclonal antibody that often causes cardiac dysfunction, the causal relationship between osimertinib and cardiotoxicity has so far received little attention and thus remains unclear. However, it inhibits HER2 in addition to mutant EGFR, thereby potentially causing cardiotoxicity.
Watanabe, Hiromi; Ichihara, Eiki; Kano, Hirohisa; Ninomiya, Kiichiro; Tanimoto, Mitsune; Kiura, Katsuyuki
2017-01-01
We herein report a case of congestive heart failure which developed during osimertinib treatment. A 78-year-old woman presented with mild exertional dyspnea three weeks after starting osimertinib for the treatment of epidermal growth factor receptor (EGFR) T790M-positive non-small cell lung cancer. She was diagnosed with congestive heart failure caused by the osimertinib. In contrast to trastuzumab, a human epidermal growth factor receptor 2 (HER2) monoclonal antibody that often causes cardiac dysfunction, the causal relationship between osimertinib and cardiotoxicity has so far received little attention and thus remains unclear. However, it inhibits HER2 in addition to mutant EGFR, thereby potentially causing cardiotoxicity. PMID:28781309
Ghanavati, Zeinab; Orazizadeh, Mahmoud; Bayati, Vahid; Abbaspour, Mohammad Reza; Khorsandi, Layasadat; Mansouri, Esrafil; Neisi, Niloofar
2016-01-01
The organotypic co-culture is a well-known technique to examine cellular interactions and their roles in stem cell proliferation and differentiation. This study aims to evaluate the effects of dermal fibroblasts (DFs) on epidermal differentiation of adipose-derived stem cells (ASCs) using a three-dimensional (3D) organotypic co- culture technique. In this experimental research study, rat DFs and ASCs were isolated and cultured separately on electrospun polycaprolactone (PCL) matrices. The PCL matrices seeded by ASCs were superimposed on to the matrices seeded by DFs in order to create a 3D organotypic co-culture. In the control groups, PCL matrices seeded by ASCs were placed on matrices devoid of DFs. After 10 days, we assessed the expressions of keratinocyte-related genes by real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and expression of pan-cytokeratin protein by immunofluorescence in the differentiated keratinocyte-like cells from co- culture and control groups. Keratinocyte-like cell morphologies were also observed by scanning electron microscopy (SEM). The early, intermediate, and terminal differentiation keratinocyte markers-Cytokeratin14, Filaggrin, and Involucrin significantly expressed in the co-culture groups com- pared to the control ones (P<0.05). We observed pan-cytokeratin in keratinocyte-like cells of both groups by immunofluorescence. SEM observation of the co-culture groups showed that the differentiated keratinocyte-like cells developed a polygonal cobblestone shape, considered characteristic of keratinocytes. The 3D organotypic co-culture bilayered construct that consisted of DFs and ASCs was an effective technique for epidermal differentiation of ASCs. This co-culture might be useful for epidermal differentiation of stem cells for future applications in skin regeneration.
Ghanavati, Zeinab; Orazizadeh, Mahmoud; Bayati, Vahid; Abbaspour, Mohammad Reza; Khorsandi, Layasadat; Mansouri, Esrafil; Neisi, Niloofar
2016-01-01
Objective The organotypic co-culture is a well-known technique to examine cellular interactions and their roles in stem cell proliferation and differentiation. This study aims to evaluate the effects of dermal fibroblasts (DFs) on epidermal differentiation of adipose-derived stem cells (ASCs) using a three-dimensional (3D) organotypic co- culture technique. Materials and Methods In this experimental research study, rat DFs and ASCs were isolated and cultured separately on electrospun polycaprolactone (PCL) matrices. The PCL matrices seeded by ASCs were superimposed on to the matrices seeded by DFs in order to create a 3D organotypic co-culture. In the control groups, PCL matrices seeded by ASCs were placed on matrices devoid of DFs. After 10 days, we assessed the expressions of keratinocyte-related genes by real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and expression of pan-cytokeratin protein by immunofluorescence in the differentiated keratinocyte-like cells from co- culture and control groups. Keratinocyte-like cell morphologies were also observed by scanning electron microscopy (SEM). Results The early, intermediate, and terminal differentiation keratinocyte markers-Cytokeratin14, Filaggrin, and Involucrin significantly expressed in the co-culture groups com- pared to the control ones (P<0.05). We observed pan-cytokeratin in keratinocyte-like cells of both groups by immunofluorescence. SEM observation of the co-culture groups showed that the differentiated keratinocyte-like cells developed a polygonal cobblestone shape, considered characteristic of keratinocytes. Conclusion The 3D organotypic co-culture bilayered construct that consisted of DFs and ASCs was an effective technique for epidermal differentiation of ASCs. This co-culture might be useful for epidermal differentiation of stem cells for future applications in skin regeneration. PMID:27602310
Walko, Gernot; Woodhouse, Samuel; Pisco, Angela Oliveira; Rognoni, Emanuel; Liakath-Ali, Kifayathullah; Lichtenberger, Beate M.; Mishra, Ajay; Telerman, Stephanie B.; Viswanathan, Priyalakshmi; Logtenberg, Meike; Renz, Lisa M.; Donati, Giacomo; Quist, Sven R.; Watt, Fiona M.
2017-01-01
Individual human epidermal cells differ in their self-renewal ability. To uncover the molecular basis for this heterogeneity, we performed genome-wide pooled RNA interference screens and identified genes conferring a clonal growth advantage on normal and neoplastic (cutaneous squamous cell carcinoma, cSCC) human epidermal cells. The Hippo effector YAP was amongst the top positive growth regulators in both screens. By integrating the Hippo network interactome with our data sets, we identify WW-binding protein 2 (WBP2) as an important co-factor of YAP that enhances YAP/TEAD-mediated gene transcription. YAP and WPB2 are upregulated in actively proliferating cells of mouse and human epidermis and cSCC, and downregulated during terminal differentiation. WBP2 deletion in mouse skin results in reduced proliferation in neonatal and wounded adult epidermis. In reconstituted epidermis YAP/WBP2 activity is controlled by intercellular adhesion rather than canonical Hippo signalling. We propose that defective intercellular adhesion contributes to uncontrolled cSCC growth by preventing inhibition of YAP/WBP2. PMID:28332498
Chloroplast behaviour and interactions with other organelles in Arabidopsis thaliana pavement cells.
Barton, Kiah A; Wozny, Michael R; Mathur, Neeta; Jaipargas, Erica-Ashley; Mathur, Jaideep
2018-01-29
Chloroplasts are a characteristic feature of green plants. Mesophyll cells possess the majority of chloroplasts and it is widely believed that, with the exception of guard cells, the epidermal layer in most higher plants does not contain chloroplasts. However, recent observations on Arabidopsis thaliana have shown a population of chloroplasts in pavement cells that are smaller than mesophyll chloroplasts and have a high stroma to grana ratio. Here, using stable transgenic lines expressing fluorescent proteins targeted to the plastid stroma, plasma membrane, endoplasmic reticulum, tonoplast, nucleus, mitochondria, peroxisomes, F-actin and microtubules, we characterize the spatiotemporal relationships between the pavement cell chloroplasts (PCCs) and their subcellular environment. Observations on the PCCs suggest a source-sink relationship between the epidermal and the mesophyll layers, and experiments with the Arabidopsis mutants glabra2 ( gl2 ) and immutans ( im ), which show altered epidermal plastid development, underscored their developmental plasticity. Our findings lay down the foundation for further investigations aimed at understanding the precise role and contributions of PCCs in plant interactions with the environment. © 2018. Published by The Company of Biologists Ltd.
Reflectance model of a plant leaf
NASA Technical Reports Server (NTRS)
Kumar, R.; Silva, L.
1973-01-01
A light ray, incident at 5 deg to the normal, is geometrically plotted through the drawing of the cross section of a soybean leaf using Fresnel's Equations and Snell's Law. The optical mediums of the leaf considered for ray tracing are: air, cell sap, chloroplast, and cell wall. The above ray is also drawn through the same leaf cross section considering cell wall and air as the only optical mediums. The values of the reflection and transmission found from ray tracing agree closely with the experimental results obtained using a Beckman DK-2A Spectroreflectometer. Similarly a light ray, incident at about 60 deg to the normal, is drawn through the palisade cells of a soybean leaf to illustrate the pathway of light, incident at an oblique angle, through the palisade cells.
NASA Astrophysics Data System (ADS)
Veljović-Jovanović, S.; Vidović, M.; Morina, F.; Prokić, Lj.; Todorović, D. M.
2016-09-01
Green-white variegated leaves of Pelargonium zonale were studied using the photoacoustic method. Our aim was to characterize photosynthetically active green tissue and nonphotosynthetically active white tissue by the photoacoustic amplitude signals. We observed lower stomatal conductance and higher leaf temperature in white tissue than in green tissue. Besides these thermal differences, significantly higher absorbance in green tissue was based on chlorophyll and carotenoids which were absent in white tissue. However, optical properties of epidermal layers of both tissues were equal. The photoacoustic amplitude of white tissue was over four times higher compared to green tissue, which was correlated with lower stomatal conductance. In addition, at frequencies >700 Hz, the significant differences between the photoacoustic signals of green and white tissue were obtained. We identified the photoacoustic signal deriving from photosynthetic oxygen evolution in green tissue, using high intensity of red light modulated at 10 Hz. Moreover, the photoacoustic amplitude of green tissue increased progressively with time which corresponded to the period of induction of photosynthetic oxygen evolution. For the first time, very high frequencies (1 kHz to 5 kHz) were applied on leaf material.
Schultheiss, Holger; Dechert, Cornelia; Kogel, Karl-Heinz; Hückelhoven, Ralph
2002-01-01
Small GTP-binding proteins such as those from the RAC family are cytosolic signal transduction proteins that often are involved in processing of extracellular stimuli. Plant RAC proteins are implicated in regulation of plant cell architecture, secondary wall formation, meristem signaling, and defense against pathogens. We isolated a RacB homolog from barley (Hordeum vulgare) to study its role in resistance to the barley powdery mildew fungus (Blumeria graminis f.sp. hordei). RacB was constitutively expressed in the barley epidermis and its expression level was not strongly influenced by inoculation with B. graminis. However, after biolistic bombardment of barley leaf segments with RacB-double-stranded RNA, sequence-specific RNA interference with RacB function inhibited fungal haustorium establishment in a cell-autonomous and genotype-specific manner. Mutants compromised in function of the Mlo wild-type gene and the Ror1 gene (genotype mlo5 ror1) that are moderately susceptible to B. graminis showed no alteration in powdery mildew resistance upon RacB-specific RNA interference. Thus, the phenotype, induced by RacB-specific RNA interference, was apparently dependent on the same processes as mlo5-mediated broad resistance, which is suppressed by ror1. We conclude that an RAC small GTP-binding protein is required for successful fungal haustorium establishment and that this function may be linked to MLO-associated functions. PMID:11950993
Boccalandro, Hernán E.; Giordano, Carla V.; Ploschuk, Edmundo L.; Piccoli, Patricia N.; Bottini, Rubén; Casal, Jorge J.
2012-01-01
Leaf epidermal peels of Arabidopsis (Arabidopsis thaliana) mutants lacking either phototropins 1 and 2 (phot1 and phot2) or cryptochromes 1 and 2 (cry1 and cry2) exposed to a background of red light show severely impaired stomatal opening responses to blue light. Since phot and cry are UV-A/blue light photoreceptors, they may be involved in the perception of the blue light-specific signal that induces the aperture of the stomatal pores. In leaf epidermal peels, the blue light-specific effect saturates at low irradiances; therefore, it is considered to operate mainly under the low irradiance of dawn, dusk, or deep canopies. Conversely, we show that both phot1 phot2 and cry1 cry2 have reduced stomatal conductance, transpiration, and photosynthesis, particularly under the high irradiance of full sunlight at midday. These mutants show compromised responses of stomatal conductance to irradiance. However, the effects of phot and cry on photosynthesis were largely nonstomatic. While the stomatal conductance phenotype of phot1 phot2 was blue light specific, cry1 cry2 showed reduced stomatal conductance not only in response to blue light, but also in response to red light. The levels of abscisic acid were elevated in cry1 cry2. We conclude that considering their effects at high irradiances cry and phot are critical for the control of transpiration and photosynthesis rates in the field. The effects of cry on stomatal conductance are largely indirect and involve the control of abscisic acid levels. PMID:22147516
Boccalandro, Hernán E; Giordano, Carla V; Ploschuk, Edmundo L; Piccoli, Patricia N; Bottini, Rubén; Casal, Jorge J
2012-03-01
Leaf epidermal peels of Arabidopsis (Arabidopsis thaliana) mutants lacking either phototropins 1 and 2 (phot1 and phot2) or cryptochromes 1 and 2 (cry1 and cry2) exposed to a background of red light show severely impaired stomatal opening responses to blue light. Since phot and cry are UV-A/blue light photoreceptors, they may be involved in the perception of the blue light-specific signal that induces the aperture of the stomatal pores. In leaf epidermal peels, the blue light-specific effect saturates at low irradiances; therefore, it is considered to operate mainly under the low irradiance of dawn, dusk, or deep canopies. Conversely, we show that both phot1 phot2 and cry1 cry2 have reduced stomatal conductance, transpiration, and photosynthesis, particularly under the high irradiance of full sunlight at midday. These mutants show compromised responses of stomatal conductance to irradiance. However, the effects of phot and cry on photosynthesis were largely nonstomatic. While the stomatal conductance phenotype of phot1 phot2 was blue light specific, cry1 cry2 showed reduced stomatal conductance not only in response to blue light, but also in response to red light. The levels of abscisic acid were elevated in cry1 cry2. We conclude that considering their effects at high irradiances cry and phot are critical for the control of transpiration and photosynthesis rates in the field. The effects of cry on stomatal conductance are largely indirect and involve the control of abscisic acid levels.
ΔNp63 is an ectodermal gatekeeper of epidermal morphogenesis
Shalom-Feuerstein, R; Lena, A M; Zhou, H; De La Forest Divonne, S; Van Bokhoven, H; Candi, E; Melino, G; Aberdam, D
2011-01-01
p63, a member of p53 family, has a significant role in the development and maintenance of stratified epithelia. However, a persistent dispute remained over the last decade concerning the interpretation of the severe failure of p63-null embryos to develop stratified epithelia. In this study, by investigating both p63-deficient strains, we demonstrated that p63-deficient epithelia failed to develop beyond ectodermal stage as they remained a monolayer of non-proliferating cells expressing K8/K18. Importantly, in the absence of p63, corneal-epithelial commitment (which occurs at embryonic day 12.5 of mouse embryogenesis) was hampered 3 weeks before corneal stem cell renewal (that begins at P14). Taken together, these data illustrate the significant role of p63 in epithelial embryogenesis, before and independently of other functions of p63 in adult stem cells regulation. Transcriptome analysis of laser captured-embryonic tissues confirmed the latter hypothesis, demonstrating that a battery of epidermal genes that were activated in wild-type epidermis remained silent in p63-null tissues. Furthermore, we defined a subset of novel bona fide p63-induced genes orchestrating first epidermal stratification and a subset of p63-repressed mesodermal-specific genes. These data highlight the earliest recognized action of ΔNp63 in the induction epidermal morphogenesis at E11.5. In the absence of p63, a mesodermal program is activated while epidermal morphogenesis does not initiate. PMID:21127502
Wrischnik, L A; Kenyon, C J
1997-08-01
In C. elegans, six lateral epidermal stem cells, the seam cells V1-V6, are located in a row along the anterior-posterior (A/P) body axis. Anterior seam cells (V1-V4) undergo a fairly simple sequence of stem cell divisions and generate only epidermal cells. Posterior seam cells (V5 and V6) undergo a more complicated sequence of cell divisions that include additional rounds of stem cell proliferation and the production of neural as well as epidermal cells. In the wild type, activity of the gene lin-22 allows V1-V4 to generate their normal epidermal lineages rather than V5-like lineages. lin-22 activity is also required to prevent additional neurons from being produced by one branch of the V5 lineage. We find that the lin-22 gene exhibits homology to the Drosophila gene hairy, and that lin-22 activity represses neural development within the V5 lineage by blocking expression of the posterior-specific Hox gene mab-5 in specific cells. In addition, in order to prevent anterior V cells from generating V5-like lineages, wild-type lin-22 gene activity must inhibit (directly or indirectly) at least five downstream regulatory gene activities. In anterior body regions, lin-22(+) inhibits expression of the Hox gene mab-5. It also inhibits the activity of the achaete-scute homolog lin-32 and an unidentified gene that we postulate regulates stem cell division. Each of these three genes is required for the expression of a different piece of the ectopic V5-like lineages generated in lin-22 mutants. In addition, lin-22 activity prevents two other Hox genes, lin-39 and egl-5, from acquiring new activities within their normal domains of function along the A/P body axis. Some, but not all, of the patterning activities of lin-22 in C. elegans resemble those of hairy in Drosophila.
Cuticular lipid composition, surface structure, and gene expression in Arabidopsis stem epidermis.
Suh, Mi Chung; Samuels, A Lacey; Jetter, Reinhard; Kunst, Ljerka; Pollard, Mike; Ohlrogge, John; Beisson, Fred
2005-12-01
All vascular plants are protected from the environment by a cuticle, a lipophilic layer synthesized by epidermal cells and composed of a cutin polymer matrix and waxes. The mechanism by which epidermal cells accumulate and assemble cuticle components in rapidly expanding organs is largely unknown. We have begun to address this question by analyzing the lipid compositional variance, the surface micromorphology, and the transcriptome of epidermal cells in elongating Arabidopsis (Arabidopsis thaliana) stems. The rate of cell elongation is maximal near the apical meristem and decreases steeply toward the middle of the stem, where it is 10 times slower. During and after this elongation, the cuticular wax load and composition remain remarkably constant (32 microg/cm2), indicating that the biosynthetic flux into waxes is closely matched to surface area expansion. By contrast, the load of polyester monomers per unit surface area decreases more than 2-fold from the upper (8 microg/cm2) to the lower (3 microg/cm2) portion of the stem, although the compositional variance is minor. To aid identification of proteins involved in the biosynthesis of waxes and cutin, we have isolated epidermal peels from Arabidopsis stems and determined transcript profiles in both rapidly expanding and nonexpanding cells. This transcriptome analysis was validated by the correct classification of known epidermis-specific genes. The 15% transcripts preferentially expressed in the epidermis were enriched in genes encoding proteins predicted to be membrane associated and involved in lipid metabolism. An analysis of the lipid-related subset is presented.
An evaluation of the choice of feeder cell growth arrest for the production of cultured epidermis.
Chugh, Rishi Man; Chaturvedi, Madhusudan; Yerneni, Lakshmana Kumar
2015-12-01
Growth arrested 3T3 cells have been used as feeder cells in human epidermal keratinocyte cultures to produce cultured epidermal autografts for the treatment of burns. The feeder cells were ideally growth-arrested by gamma-irradiation. Alternatively, growth arrest by mitomycin C treatment is a cost effective option. We compared the functional efficacy of these two approaches in keratinocyte cultures by colony forming efficiency, the net growth area of colonies, BrdU labeling and histological features of cultured epidermal sheets. The growth area estimation involved a semi-automated digital technique using the Adobe Photoshop and comprised of isolation and enumeration of red pixels in Rhodamine B-stained keratinocyte colonies. A further refinement of the technique led to the identification of critical steps to increasing the degree of accuracy and enabling its application as an extension of colony formation assay. The results on feeder cell functionality revealed that the gamma irradiated feeders influenced significantly higher colony forming efficiency and larger growth area than the mitomycin C treated feeders. The BrdU labeling study indicated significant stimulation of the overall keratinocyte proliferation by the gamma irradiated feeders. The cultured epidermal sheets produced by gamma feeders were relatively thicker than those produced by mitomycin C feeders. We discussed the clinical utility of mitomycin C feeders from the viewpoint of cost-effective burn care in developing countries. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.
Apple cuticle: the perfect interface
NASA Astrophysics Data System (ADS)
Curry, Eric; Arey, Bruce
2010-06-01
The domestic apple might well be called an 'extreme' fruit. In the arid Northwest United States, the fruit often tolerates surface temperatures ranging from -2 °C in the early spring to 50 °C in the heat of summer, and again to -2 °C during controlled postharvest storage for up to 12 months. During its 18-month existence, the apple maintains a cuticle that is dynamic and environmentally responsive to protect against 1) cellular water loss during desiccation stress and 2) excessive uptake of standing surface moisture. Physiological disorders of the peel such as russeting, cracking, splitting, flecking and lenticel marking, develop as epidermal cells respond to rapid changes in ambient conditions at specific developmental stages during the growing season. Resultant market losses underlie research investigating the nature of apple cuticle growth and development. Ultrastructural analysis of the pro-cuticle using scanning electron microscopy indicates an overlapping network of lipid-based distally-elongating microtubules--produced by and connected to epidermal cells--which co-polymerize to form an organic solvent-insoluble semi-permeable cutin matrix. Microtubule elongation, aggregation, and polymerization function together as long as the fruit continues to enlarge. The nature of lipid transport from the epidermal cells through the cell wall to become part of the cuticular matrix was explored using an FEI Helios NanoLabTM DualBeamTM focused ion beam/scanning electron microscope on chemically- and cryo-fixed peel tissue from mature or freshly harvested apples. Based on microtubule dimensions, regular projections found at the cell/cuticle interface suggest an array of microtubule-like structures associated with the epidermal cell.
de Souza, Marcelo Claro; Scalon, Marina Corrêa; Poschenrieder, Charlotte; Tolrà, Roser; Venâncio, Tiago; Teixeira, Simone Pádua; Da Costa, Fernando Batista
2018-06-04
Mechanisms to detoxify aluminium (Al) is a hot topic for cultivated plants. However, little information is known about the mechanisms used by native plants to deal with Al-toxicity. In Cerrado, some generalist mistletoe species, such as Passovia ovata (Pohl ex DC.) Kuijt and Struthanthus polyanthus Mart. can parasitize Al-accumulating and Al-excluding plant species without any clear symptoms of toxicity and mineral deficiency, while Psittacanthus robustus (Mart.) Marloth, a more specialist mistletoe, seems to be an Al-dependent species, parasitizing only Al-accumulating hosts. Here we (i) characterized the forms and compartmentalization of Al in leaves of P. robustus; (ii) compared Ca and Al leaf concentration, and leaf concentration of organic acids and polyphenols between facultative Al-accumulating (P. ovata and S. polyanthus) and Al-dependent (P. robustus) mistletoe species infecting Miconia albicans (Sw.) Steud. (Al-accumulating species). P. robustus chelated Al 3+ with oxalate and stored it in the phloematic and epidermic leaf tissues. Leaf Ca and Al concentration did not differ among species. Leaf oxalate concentration was higher in the Al-dependent species. Concentrations of citrate and phenolic compounds were higher in the leaves of the facultative Al-accumulating species. These results show that facultative Al-accumulating and Al-dependent species use different mechanisms to detoxify Al. Moreover, this is the first report on a mistletoes species (P. robustus) with a potential calcifuge behaviour in Cerrado. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pectin Methylesterification Impacts the Relationship between Photosynthesis and Plant Growth1[OPEN
Kim, Sang-Jin; Renna, Luciana; Brandizzi, Federica
2016-01-01
Photosynthesis occurs in mesophyll cells of specialized organs such as leaves. The rigid cell wall encapsulating photosynthetic cells controls the expansion and distribution of cells within photosynthetic tissues. The relationship between photosynthesis and plant growth is affected by leaf area. However, the underlying genetic mechanisms affecting carbon partitioning to different aspects of leaf growth are not known. To fill this gap, we analyzed Arabidopsis plants with altered levels of pectin methylesterification, which is known to modulate cell wall plasticity and plant growth. Pectin methylesterification levels were varied through manipulation of cotton Golgi-related (CGR) 2 or 3 genes encoding two functionally redundant pectin methyltransferases. Increased levels of methylesterification in a line over-expressing CGR2 (CGR2OX) resulted in highly expanded leaves with enhanced intercellular air spaces; reduced methylesterification in a mutant lacking both CGR-genes 2 and 3 (cgr2/3) resulted in thin but dense leaf mesophyll that limited CO2 diffusion to chloroplasts. Leaf, root, and plant dry weight were enhanced in CGR2OX but decreased in cgr2/3. Differences in growth between wild type and the CGR-mutants can be explained by carbon partitioning but not by variations in area-based photosynthesis. Therefore, photosynthesis drives growth through alterations in carbon partitioning to new leaf area growth and leaf mass per unit leaf area; however, CGR-mediated pectin methylesterification acts as a primary factor in this relationship through modulation of the expansion and positioning of the cells in leaves, which in turn drive carbon partitioning by generating dynamic carbon demands in leaf area growth and leaf mass per unit leaf area. PMID:27208234
Pectin Methylesterification Impacts the Relationship between Photosynthesis and Plant Growth.
M Weraduwage, Sarathi; Kim, Sang-Jin; Renna, Luciana; C Anozie, Fransisca; D Sharkey, Thomas; Brandizzi, Federica
2016-06-01
Photosynthesis occurs in mesophyll cells of specialized organs such as leaves. The rigid cell wall encapsulating photosynthetic cells controls the expansion and distribution of cells within photosynthetic tissues. The relationship between photosynthesis and plant growth is affected by leaf area. However, the underlying genetic mechanisms affecting carbon partitioning to different aspects of leaf growth are not known. To fill this gap, we analyzed Arabidopsis plants with altered levels of pectin methylesterification, which is known to modulate cell wall plasticity and plant growth. Pectin methylesterification levels were varied through manipulation of cotton Golgi-related (CGR) 2 or 3 genes encoding two functionally redundant pectin methyltransferases. Increased levels of methylesterification in a line over-expressing CGR2 (CGR2OX) resulted in highly expanded leaves with enhanced intercellular air spaces; reduced methylesterification in a mutant lacking both CGR-genes 2 and 3 (cgr2/3) resulted in thin but dense leaf mesophyll that limited CO2 diffusion to chloroplasts. Leaf, root, and plant dry weight were enhanced in CGR2OX but decreased in cgr2/3. Differences in growth between wild type and the CGR-mutants can be explained by carbon partitioning but not by variations in area-based photosynthesis. Therefore, photosynthesis drives growth through alterations in carbon partitioning to new leaf area growth and leaf mass per unit leaf area; however, CGR-mediated pectin methylesterification acts as a primary factor in this relationship through modulation of the expansion and positioning of the cells in leaves, which in turn drive carbon partitioning by generating dynamic carbon demands in leaf area growth and leaf mass per unit leaf area. © 2016 American Society of Plant Biologists. All Rights Reserved.
Root hair development in grasses and cereals (Poaceae).
Dolan, Liam
2017-08-01
Root hairs are tubular, cellular outgrowths of epidermal cells that extend from the root surface into the soil. Root hairs tether root systems to their growth substrate, take up inorganic nutrients and water, and interact with the soil microflora. At maturity, the root epidermis comprises two cell types; cells with root hairs and hairless epidermal cells. These two cell types alternate with each other along longitudinal files in grasses and cereals (Poaceae). While the mechanism by which this alternating pattern develops is unknown, the later stages of root hair differentiation are controlled by a conserved mechanism that promotes root hair development among angiosperms. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Staphylococcus aureus keratinocyte invasion is mediated by integrin-linked kinase and Rac1.
Sayedyahossein, Samar; Xu, Stacey X; Rudkouskaya, Alena; McGavin, Martin J; McCormick, John K; Dagnino, Lina
2015-02-01
Staphylococcus aureus is a major component of the skin microbiota and causes a large number of serious infections. S. aureus first interacts with epidermal keratinocytes to breach the epidermal barrier through mechanisms not fully understood. By use of primary keratinocytes from mice with epidermis-restricted Ilk gene inactivation and control integrin-linked kinase (ILK)-expressing littermates, we investigated the role of ILK in epidermal S. aureus invasion. Heat-killed, but not live, bacteria were internalized to Rab5- and Rab7-positive phagosomes, and incubation with keratinocyte growth factor increased their uptake 2.5-fold. ILK-deficient mouse keratinocytes internalized bacteria 2- to 4-fold less efficiently than normal cells. The reduced invasion by live S. aureus of ILK-deficient cells was restored in the presence of exogenous, constitutively active Rac1. Thus, Rac1 functions downstream from ILK during invasion. Further, invasion by S. aureus of Rac1-deficient cells was 2.5-fold lower than in normal cells. Paradoxically, staphylococcal cutaneous penetration of mouse skin explants with ILK-deficient epidermis was 35-fold higher than that of normal skin, indicating defects in epidermal barrier function in the absence of ILK. Thus, we identified an ILK-Rac1 pathway essential for bacterial invasion of keratinocytes, and established ILK as a key contributor to prevent invasive staphylococcal cutaneous infection. © FASEB.
Jiang, Dan; Fang, Jingjing; Lou, Lamei; Zhao, Jinfeng; Yuan, Shoujiang; Yin, Liang; Sun, Wei; Peng, Lixiang; Guo, Baotai; Li, Xueyong
2015-01-01
Leaf morphology is closely associated with cell division. In rice, mutations in Narrow leaf 1 (NAL1) show narrow leaf phenotypes. Previous studies have shown that NAL1 plays a role in regulating vein patterning and increasing grain yield in indica cultivars, but its role in leaf growth and development remains unknown. In this report, we characterized two allelic mutants of NARROW LEAF1 (NAL1), nal1-2 and nal1-3, both of which showed a 50% reduction in leaf width and length, as well as a dwarf culm. Longitudinal and transverse histological analyses of leaves and internodes revealed that cell division was suppressed in the anticlinal orientation but enhanced in the periclinal orientation in the mutants, while cell size remained unaltered. In addition to defects in cell proliferation, the mutants showed abnormal midrib in leaves. Map-based cloning revealed that nal1-2 is a null allelic mutant of NAL1 since both the whole promoter and a 404-bp fragment in the first exon of NAL1 were deleted, and that a 6-bp fragment was deleted in the mutant nal1-3. We demonstrated that NAL1 functions in the regulation of cell division as early as during leaf primordia initiation. The altered transcript level of G1- and S-phase-specific genes suggested that NAL1 affects cell cycle regulation. Heterogenous expression of NAL1 in fission yeast (Schizosaccharomyces pombe) further supported that NAL1 affects cell division. These results suggest that NAL1 controls leaf width and plant height through its effects on cell division. PMID:25658704
Leach, Richard E; Kilburn, Brian A; Petkova, Anelia; Romero, Roberto; Armant, D Randall
2008-04-01
The antiapoptotic action of heparin-binding epidermal growth factor (HBEGF)-like growth factor and its regulation by O(2) constitutes a key factor for trophoblast survival. The hypothesis that cytotrophoblast survival is compromised by exposure to hypoxia-reoxygenation (H/R) injury, which may contribute to preeclampsia and some missed abortions, prompted us to investigate HBEGF regulation and its role as a survival factor during H/R in cytotrophoblast cells. A transformed human first-trimester cytotrophoblast cell line HTR-8/SVneo was exposed to H/R (2% O(2) followed by 20% O(2)) and assessed for HBEGF expression and cell death. Cellular HBEGF declined significantly within 30 minutes of reoxygenation after culture at 2% O(2). H/R significantly reduced proliferation and increased cell death when compared with trophoblast cells cultured continuously at 2% or 20% O(2). Restoration of cell survival also was achieved by adding recombinant HBEGF during reoxygenation. HBEGF inhibited apoptosis through its binding to either human epidermal receptor (HER)-1 or HER4, its cognate receptors. These results provide evidence that cytotrophoblast exposure to H/R induces apoptosis and decreased cell proliferation. HBEGF accumulation is diminished under these conditions, whereas restoration of HBEGF signaling improves trophoblast survival.
Longo, Caterina; Lallas, Aimilios; Kyrgidis, Athanassios; Rabinovitz, Harold; Moscarella, Elvira; Ciardo, Silvana; Zalaudek, Iris; Oliviero, Margaret; Losi, Amanda; Gonzalez, Salvador; Guitera, Pascale; Piana, Simonetta; Argenziano, Giuseppe; Pellacani, Giovanni
2014-10-01
The current guidelines for the management of basal cell carcinoma (BCC) suggest a different therapeutic approach according to histopathologic subtype. Although dermatoscopic and confocal criteria of BCC have been investigated, no specific studies were performed to evaluate the distinct reflectance confocal microscopy (RCM) aspects of BCC subtypes. To define the specific dermatoscopic and confocal criteria for delineating different BCC subtypes. Dermatoscopic and confocal images of histopathologically confirmed BCCs were retrospectively evaluated for the presence of predefined criteria. Frequencies of dermatoscopic and confocal parameters are provided. Univariate and adjusted odds ratios were calculated. Discriminant analyses were performed to define the independent confocal criteria for distinct BCC subtypes. Eighty-eight BCCs were included. Dermatoscopically, superficial BCCs (n=44) were primarily typified by the presence of fine telangiectasia, multiple erosions, leaf-like structures, and revealed cords connected to the epidermis and epidermal streaming upon RCM. Nodular BCCs (n=22) featured the classic dermatoscopic features and well outlined large basaloid islands upon RCM. Infiltrative BCCs (n=22) featured structureless, shiny red areas, fine telangiectasia, and arborizing vessels on dermatoscopy and dark silhouettes upon RCM. The retrospective design. Dermatoscopy and confocal microscopy can reliably classify different BCC subtypes. Copyright © 2014 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.
Melgar, Juan Carlos; Guidi, Lucia; Remorini, Damiano; Agati, Giovanni; Degl'innocenti, Elena; Castelli, Silvana; Camilla Baratto, Maria; Faraloni, Cecilia; Tattini, Massimiliano
2009-09-01
The interactive effects of root-zone salinity and sunlight on leaf biochemistry, with special emphasis on antioxidant defences, were analysed in Olea europaea L. cv. Allora, during the summer period. Plants were grown outside under 15% (shade plants) or 100% sunlight (sun plants) and supplied with 0 or 125 mM NaCl. The following measurements were performed: (1) the contribution of ions and soluble carbohydrates to osmotic potentials; (2) the photosystem II (PSII) photochemistry and the photosynthetic pigment concentration; (3) the concentration and the tissue-specific distribution of leaf flavonoids; (4) the activity of antioxidant enzymes; and (5) the leaf oxidative damage. The concentrations of Na(+) and Cl(-) were significantly greater in sun than in shade leaves, as also observed for the concentration of the 'antioxidant' sugar-alcohol mannitol. The de-epoxidation state of violaxanthin-cycle pigments increased in response to salinity stress in sun leaves. This finding agrees with a greater maximal PSII photochemistry (F(v)/F(m)) at midday, detected in salt-treated than in control plants, growing in full sunshine. By contrast, salt-treated plants in the shade suffered from midday depression in F(v)/F(m) to a greater degree than that observed in control plants. The high concentration of violaxanthin-cycle pigments in sun leaves suggests that zeaxanthin may protect the chloroplast from photo-oxidative damage, rather than dissipating excess excitation energy via non-photochemical quenching mechanisms. Dihydroxy B-ring-substituted flavonoid glycosides accumulate greatly in the mesophyll, not only in the epidermal cells, in response to high sunlight. The activity of antioxidant enzymes varied little because of sunlight irradiance, but declined sharply in response to high salinity in shade leaves. Interestingly, control and particularly salt-treated plants in the shade underwent greater oxidative damage than their sunny counterparts. These findings, which conform to the evolution of O. europaea in sunny environments, suggest that under partial shading, the antioxidant defence system may be ineffective to counter salt-induced oxidative damage.
Montero, Estefanía; Francisco, Ana Marta; Montes, Enrique; Herrera, Ana
2018-06-08
Crassulacean acid metabolism (CAM) can be induced by salinity, thus conferring the plant higher water-use efficiency. Talinum triangulare does not frequently encounter salt in its natural habitat but is cultivated in soils that may become salinized. Here we examined whether plants of T. triangulare can grow in saline soils and show salt-induced CAM. Leaf gas exchange, carbon isotopic ratio (δ13C), nocturnal acid accumulation (ΔH+), water relations, photosynthetic pigment and mineral contents, leaf anatomy and growth were determined in greenhouse in plants irrigated with 0, 150, 300 and 400 mm NaCl. Salinity reduced gas exchange and induced CAM, ΔH+ reaching 50.2 μmol H+ g-1 fresh mass under 300 mm NaCl. No nocturnal CO2 uptake, but compensation, was observed. Values of δ13C were lowest under 0 and 400 mm NaCl, and highest under 150 and 300 mm. The difference in osmotic potential (ψs) between control and treated plants averaged 0.45 MPa for the three [NaCl] values, the decrease in ψs being accounted for by up to 63 % by Na+ and K+. Pigment contents were unaffected by treatment, suggesting lack of damage to the photosynthetic machinery. Changes in stomatal index with unchanged stomatal density in newly expanded leaves suggested inhibited differentiation of epidermal cells into stomata. Whole-leaf and parenchymata thickness increased under 150 and 300 mm NaCl. Only plants irrigated with 400 mm NaCl showed reductions in biomass (stems, 41 %; reproductive structures, 78 %). The K/Na molar ratio decreased with [NaCl] from 2.0 to 0.4. The operation of CAM in the recycling mode was evidenced by increased ΔH+ with no nocturnal CO2 uptake. Talinum triangulare can be classified as a halo-tolerant species based on its low K/Na molar ratio under salinity and the relatively small reduction in growth only at the highest [NaCl].
Lequeux, C; Lhoste, A; Rovere, M R; Montastier, C; Damour, O
2011-01-01
The aim was to test the influence of dedifferentiated Crithmum maritimum cells (dCMC), totipotent vegetal stem cells, on epidermal regeneration in perfect homeostasis using a skin equivalent (SE) model. SE are prepared by seeding fibroblasts on a collagen-glycosaminoglycan-chitosan dermal substrate (DS) epidermalized by keratinocytes 3 weeks later. The originality of this present study lies in the systemic administration of dCMC from the moment when fibroblasts are seeded in the DS right through to the reconstruction of the SE. The thickness of the epidermis as well as the number of proliferating cells expressing Ki-67 and layers expressing terminal differentiation marker (filaggrin) were compared in the dCMC-treated SE versus an untreated control group. dCMC accelerated the complete regeneration and differentiation of the epidermis compared to the negative control (35 days instead of 42 days). Histology showed a multilayered, thick and differentiated epithelium after 35 days of culture. The basal and suprabasal layers had increased 4.88 ± 0.41 times versus the negative control (Mann-Whitney U test: p < 0.001). This result was attributed to the greater proliferation of basal cells because the cell numbers expressing the Ki-67 proliferation marker had increased significantly compared to the negative control (Mann-Whitney U test: p < 0.001). Moreover, dCMC allowed the differentiated epithelium to recover because only treated SE expressed the terminal differentiation marker filaggrin. Our data show that dCMC enhance epidermal cell grafts by stimulating their regeneration and differentiation in perfect homeostasis. They allow the epidermis to recover its structure for protective functions faster than the negative control. Copyright © 2010 S. Karger AG, Basel.
Kelly, J; Murphy, J E
2018-02-01
Exposure of skin to simulated sunlight irradiation (SSI) has being extensively researched and shown to be the main cause for changes in the skin including changes in cellular function and generation of reactive oxygen species (ROS). This oxidative stress can subsequently exert downstream effects and the subcellular compartments most affected by this oxidative stress are mitochondria. The importance of functional mitochondrial morphology is apparent as morphological defects are related to many human diseases including diabetes mellitus, liver disease, neurodegenerative diseases, aging and cancer. The main objective of this study was to evaluate solar radiation-induced changes in mitochondrial gene expression in human skin cells using a Q-Sun solar simulator to deliver a close match to the intensity of summer sunlight. Spontaneously immortalised human skin epidermal keratinocytes (HaCaT) and Human Dermal Fibroblasts (HDFn) were divided into two groups. Group A were irradiated once and Group B twice 7days apart; following irradiation, mitochondrial gene expression was evaluated 1, 4 and 7days post primary exposure for group A and 1, 4, 7 and 14days post-secondary exposure for group B. Both the epidermal and dermal cells displayed significant reduced expression of the genes analysed for mitochondrial morphology and function; however, epidermal cells displayed this reduction post SSI earlier then dermal cells at multiple time points. The data presented here reinforces the fact that epidermal cells, while displaying a heightened sensitivity to sunlight, are less prone to changes in gene expression, while dermal cells, which appear to be more resilient are possibly more prone to genomic instability and mitochondrial damage. Copyright © 2017 Elsevier B.V. All rights reserved.
New insights into desmosome regulation and pemphigus blistering as a desmosome-remodeling disease.
Kitajima, Yasuo
2013-01-01
Desmosomes in keratinocytes are the most important intercellular adhering junctions that provide structural strength for the epidermis. These junctions are connected directly with desmosomal cadherin proteins. Desmosomal cadherins are divided into four desmogleins (Dsgs), Dsg1-4, and three desmocollins (Dscs), Dsc1-3, all of which are involved in desmosomal adhesion by homo- and/or heterophilic binding between Dsgs and Dscs in a Ca(2+)-dependent manner. Cadherins are present on the cell surface and anchor keratin intermediate filaments (KIFs) to their inner cytoplasmic surface to generate an intracellular KIF-skeletal scaffold through several associate proteins, including plakoglobin, plakophillin, and desmoplakins. As such, the desmosomal contacts between adjacent cells generate an intercellular KIF scaffold throughout the whole epidermal sheet. However, despite these critical roles in maintaining epidermal adhesion and integrity, desmosomes are not static structures. Rather, they are dynamic units that undergo regular remodeling, i.e., assembly and disassembly, to allow for cell migration within the epidermis in response to outside-in signaling during epidermal differentiation. Recently, two cell-cell adhesion states controlled by desmosomes have been recognized, including "stable hyperadhesion (Ca(2+)-independent)" and "dynamic weak-adhesion (Ca(2+)-dependent)" conditions. These conditions are mutually reversible through cell signaling events involving protein kinase C (PKC) and epidermal growth factor receptor. Pemphigus vulgaris (PV) is an autoimmune bullous disease caused by anti-Dsg3 antibodies. Binding of these antibodies to Dsg3 causes endocytosis of Dsg3 from the cell surface and results in the specific depletion of Dsg3 from desmosomes, an event linked to acantholysis in the epidermis. This binding of anti-Dsg3 antibody to Dsg3 in epidermal keratinocytes activates PKC, to generate the "weak-adhesion (Ca(2+)-dependent)" state of desmosomes. The weak-adhesion desmosomes appear to be the susceptible desmosomal state and a prerequisite for Dsg3 depletion from desmosomes, pivotal and specific events leading to PV blistering. These observations allow us to propose a concept for pemphigus blistering disorders as a "desmosome-remodeling impairment disease" involving a mechanism of Dsg3 nonassembly and depletion from desmosomes through PV immunoglobulin G-activated intracellular signaling events. Copyright © 2012. Published by Elsevier B.V.
Toxicity Assessment of Six Titanium Dioxide Nanoparticles in Human Epidermal Keratinocytes
Toxicity Assessment of Six Titanium Dioxide Nanoparticles in Human Epidermal Keratinocytes Nanoparticle uptake in cells may be an important determinant of their potential cytotoxic and inflammatory effects. Six commercial TiO2 NP (A=Alfa Aesar,10nm, A*=Alfa Aesar 32nm, B=P25 27...
Quantitative analysis of microtubule orientation in interdigitated leaf pavement cells.
Akita, Kae; Higaki, Takumi; Kutsuna, Natsumaro; Hasezawa, Seiichiro
2015-01-01
Leaf pavement cells are shaped like a jigsaw puzzle in most dicotyledon species. Molecular genetic studies have identified several genes required for pavement cells morphogenesis and proposed that microtubules play crucial roles in the interdigitation of pavement cells. In this study, we performed quantitative analysis of cortical microtubule orientation in leaf pavement cells in Arabidopsis thaliana. We captured confocal images of cortical microtubules in cotyledon leaf epidermis expressing GFP-tubulinβ and quantitatively evaluated the microtubule orientations relative to the pavement cell growth axis using original image processing techniques. Our results showed that microtubules kept parallel orientations to the growth axis during pavement cell growth. In addition, we showed that immersion treatment of seed cotyledons in solutions containing tubulin polymerization and depolymerization inhibitors decreased pavement cell complexity. Treatment with oryzalin and colchicine inhibited the symmetric division of guard mother cells.
Frank, Margaret H.; Balaguer, Maria A. de Luis; Li, Mao
2017-01-01
Thicker leaves allow plants to grow in water-limited conditions. However, our understanding of the genetic underpinnings of this highly functional leaf shape trait is poor. We used a custom-built confocal profilometer to directly measure leaf thickness in a set of introgression lines (ILs) derived from the desert tomato Solanum pennellii and identified quantitative trait loci. We report evidence of a complex genetic architecture of this trait and roles for both genetic and environmental factors. Several ILs with thick leaves have dramatically elongated palisade mesophyll cells and, in some cases, increased leaf ploidy. We characterized the thick IL2-5 and IL4-3 in detail and found increased mesophyll cell size and leaf ploidy levels, suggesting that endoreduplication underpins leaf thickness in tomato. Next, we queried the transcriptomes and inferred dynamic Bayesian networks of gene expression across early leaf ontogeny in these lines to compare the molecular networks that pattern leaf thickness. We show that thick ILs share S. pennellii-like expression profiles for putative regulators of cell shape and meristem determinacy as well as a general signature of cell cycle-related gene expression. However, our network data suggest that leaf thickness in these two lines is patterned at least partially by distinct mechanisms. Consistent with this hypothesis, double homozygote lines combining introgression segments from these two ILs show additive phenotypes, including thick leaves, higher ploidy levels, and larger palisade mesophyll cells. Collectively, these data establish a framework of genetic, anatomical, and molecular mechanisms that pattern leaf thickness in desert-adapted tomato. PMID:28794258
Disc size regulation in the brood cell building behavior of leaf-cutter bee, Megachile tsurugensis
NASA Astrophysics Data System (ADS)
Kim, Jong-Yoon
2007-12-01
The leaf-cutter bee, Megachile tsurugensis, builds a brood cell in a preexisting tunnel with leaf discs that she cuts in decreasing sizes and assembles them like a Russian matryoshka doll. By experimentally manipulating the brood cell, it was investigated how she regulates the size of leaf discs that fit in the brood cell’s internal volume. When the internal volume was artificially increased by removing a bulk of leaf discs, she decreased the leaf disc size, although increasing it would have made the leaf disc more fitting in the increased internal volume. As a reverse manipulation, when the internal volume was decreased by inserting a group of inner layers of preassembled leaf discs to a brood cell, she decreased the leaf disc size, so that the leaf disc could fit in the decreased internal volume. These results suggest that she uses at least two different mechanisms to regulate the disc size: the use of some internal memory about the degree of building work accomplished in the first and of sensory feedback of dimensional information at the construction site in the second manipulation, respectively. It was concluded that a stigmergic mechanism, an immediate sensory feedback from the brood cell changed by the building work, alone cannot explain the details of the bee’s behavior particularly with respect to her initial response to the first manipulation. For a more complete explanation of the behavior exhibited by the solitary bee, two additional behavioral elements, reinforcement of building activity and processing of dimensional information, were discussed along with stigmergy.
Pellegrini, G; Ranno, R; Stracuzzi, G; Bondanza, S; Guerra, L; Zambruno, G; Micali, G; De Luca, M
1999-09-27
Cell therapy is an emerging therapeutic strategy aimed at replacing or repairing severely damaged tissues with cultured cells. Epidermal regeneration obtained with autologous cultured keratinocytes (cultured autografts) can be life-saving for patients suffering from massive full-thickness burns. However, the widespread use of cultured autografts has been hampered by poor clinical results that have been consistently reported by different burn units, even when cells were applied on properly prepared wound beds. This might arise from the depletion of epidermal stem cells (holoclones) in culture. Depletion of holoclones can occur because of (i) incorrect culture conditions, (ii) environmental damage of the exposed basal layer of cultured grafts, or (iii) use of new substrates or culture technologies not pretested for holoclone preservation. The aim of this study was to show that, if new keratinocyte culture technologies and/or "delivery systems" are proposed, a careful evaluation of epidermal stem cell preservation is essential for the clinical performance of this life-saving technology. Fibrin was chosen as a potential substrate for keratinocyte cultivation. Stem cells were monitored by clonal analysis using the culture system originally described by Rheinwald and Green as a reference. Massive full-thickness burns were treated with the composite allodermis/cultured autograft technique. We show that: (i) the relative percentage of holoclones, meroclones, and paraclones is maintained when keratinocytes are cultivated on fibrin, proving that fibrin does not induce clonal conversion and consequent loss of epidermal stem cells; (ii) the clonogenic ability, growth rate, and long-term proliferative potential are not affected by the new culture system; (iii) when fibrin-cultured autografts bearing stem cells are applied on massive full-thickness burns, the "take" of keratinocytes is high, reproducible, and permanent; and (iv) fibrin allows a significant reduction of the cost of cultured autografts and eliminates problems related to their handling and transportation. Our data demonstrate that: (i) cultured autografts bearing stem cells can indeed rapidly and permanently cover a large body surface; and (ii) fibrin is a suitable substrate for keratinocyte cultivation and transplantation. These data lend strength to the concept that the success of cell therapy at a clinical level requires cultivation and transplantation of stem cells. We therefore suggest that the proposal of a culture system aimed at the replacement of any severely damaged self-renewing tissue should be preceded by a careful evaluation of its stem cell population.
Tan, David W. M.; Jensen, Kim B.; Trotter, Matthew W. B.; Connelly, John T.; Broad, Simon; Watt, Fiona M.
2013-01-01
Human epidermal stem cells express high levels of β1 integrins, delta-like 1 (DLL1) and the EGFR antagonist LRIG1. However, there is cell-to-cell variation in the relative abundance of DLL1 and LRIG1 mRNA transcripts. Single-cell global gene expression profiling showed that undifferentiated cells fell into two clusters delineated by expression of DLL1 and its binding partner syntenin. The DLL1+ cluster had elevated expression of genes associated with endocytosis, integrin-mediated adhesion and receptor tyrosine kinase signalling. Differentially expressed genes were not independently regulated, as overexpression of DLL1 alone or together with LRIG1 led to the upregulation of other genes in the DLL1+ cluster. Overexpression of DLL1 and LRIG1 resulted in enhanced extracellular matrix adhesion and increased caveolin-dependent EGFR endocytosis. Further characterisation of CD46, one of the genes upregulated in the DLL1+ cluster, revealed it to be a novel cell surface marker of human epidermal stem cells. Cells with high endogenous levels of CD46 expressed high levels of β1 integrin and DLL1 and were highly adhesive and clonogenic. Knockdown of CD46 decreased proliferative potential and β1 integrin-mediated adhesion. Thus, the previously unknown heterogeneity revealed by our studies results in differences in the interaction of undifferentiated basal keratinocytes with their environment. PMID:23482486
Zanet, Jennifer; Freije, Ana; Ruiz, María; Coulon, Vincent; Sanz, J Ramón; Chiesa, Jean; Gandarillas, Alberto
2010-12-20
How human self-renewal tissues co-ordinate proliferation with differentiation is unclear. Human epidermis undergoes continuous cell growth and differentiation and is permanently exposed to mutagenic hazard. Keratinocytes are thought to arrest cell growth and cell cycle prior to terminal differentiation. However, a growing body of evidence does not satisfy this model. For instance, it does not explain how skin maintains tissue structure in hyperproliferative benign lesions. We have developed and applied novel cell cycle techniques to human skin in situ and determined the dynamics of key cell cycle regulators of DNA replication or mitosis, such as cyclins E, A and B, or members of the anaphase promoting complex pathway: cdc14A, Ndc80/Hec1 and Aurora kinase B. The results show that actively cycling keratinocytes initiate terminal differentiation, arrest in mitosis, continue DNA replication in a special G2/M state, and become polyploid by mitotic slippage. They unambiguously demonstrate that cell cycle progression coexists with terminal differentiation, thus explaining how differentiating cells increase in size. Epidermal differentiating cells arrest in mitosis and a genotoxic-induced mitosis block rapidly pushes epidermal basal cells into differentiation and polyploidy. These observations unravel a novel mitosis-differentiation link that provides new insight into skin homeostasis and cancer. It might constitute a self-defence mechanism against oncogenic alterations such as Myc deregulation.
Zanet, Jennifer; Freije, Ana; Ruiz, María; Coulon, Vincent; Sanz, J. Ramón; Chiesa, Jean; Gandarillas, Alberto
2010-01-01
How human self-renewal tissues co-ordinate proliferation with differentiation is unclear. Human epidermis undergoes continuous cell growth and differentiation and is permanently exposed to mutagenic hazard. Keratinocytes are thought to arrest cell growth and cell cycle prior to terminal differentiation. However, a growing body of evidence does not satisfy this model. For instance, it does not explain how skin maintains tissue structure in hyperproliferative benign lesions. We have developed and applied novel cell cycle techniques to human skin in situ and determined the dynamics of key cell cycle regulators of DNA replication or mitosis, such as cyclins E, A and B, or members of the anaphase promoting complex pathway: cdc14A, Ndc80/Hec1 and Aurora kinase B. The results show that actively cycling keratinocytes initiate terminal differentiation, arrest in mitosis, continue DNA replication in a special G2/M state, and become polyploid by mitotic slippage. They unambiguously demonstrate that cell cycle progression coexists with terminal differentiation, thus explaining how differentiating cells increase in size. Epidermal differentiating cells arrest in mitosis and a genotoxic-induced mitosis block rapidly pushes epidermal basal cells into differentiation and polyploidy. These observations unravel a novel mitosis-differentiation link that provides new insight into skin homeostasis and cancer. It might constitute a self-defence mechanism against oncogenic alterations such as Myc deregulation. PMID:21187932
Considerations in the improvement of human epidermal keratinocyte culture in vitro.
Kaviani, Maryam; Geramizadeh, Bita; Rahsaz, Marjan; Marzban, Saeed
2015-04-01
Large-scale expansion of epidermal keratinocytes is essential in the application of these cells for severe burn treatment in patients. Therefore, this study was designed to evaluate various conditions in the expansion of human epidermal keratinocytes. The epidermis was separated from the dermis of skin samples using dispase. The epidermis was trypsinized for keratinocyte isolation. Keratinocytes were cultured in various conditions, with or without a human dermal fibroblast feeder layer, mitomycin C treatment, and different culture media. Our results suggest that keratinocytes cultured on a human dermal fibroblast feeder layer were grown for several passages. Extensive deformation and rapid deterioration were observed in the cultured cells without a feeder layer and in serum-free medium. Human dermal fibroblasts treated with mitomycin C can provide optimal conditions for proliferation of keratinocytes.
Cell motion predicts human epidermal stemness
Toki, Fujio; Tate, Sota; Imai, Matome; Matsushita, Natsuki; Shiraishi, Ken; Sayama, Koji; Toki, Hiroshi; Higashiyama, Shigeki
2015-01-01
Image-based identification of cultured stem cells and noninvasive evaluation of their proliferative capacity advance cell therapy and stem cell research. Here we demonstrate that human keratinocyte stem cells can be identified in situ by analyzing cell motion during their cultivation. Modeling experiments suggested that the clonal type of cultured human clonogenic keratinocytes can be efficiently determined by analysis of early cell movement. Image analysis experiments demonstrated that keratinocyte stem cells indeed display a unique rotational movement that can be identified as early as the two-cell stage colony. We also demonstrate that α6 integrin is required for both rotational and collective cell motion. Our experiments provide, for the first time, strong evidence that cell motion and epidermal stemness are linked. We conclude that early identification of human keratinocyte stem cells by image analysis of cell movement is a valid parameter for quality control of cultured keratinocytes for transplantation. PMID:25897083
Gdula, Michal R.; Poterlowicz, Krzysztof; Mardaryev, Andrei N.; Sharov, Andrey A.; Peng, Y.; Fessing, Michael Y.; Botchkarev, Vladimir A.
2014-01-01
The nucleus of epidermal keratinocytes is a complex and highly compartmentalized organelle, whose structure is markedly changed during terminal differentiation and transition of the genome from a transcriptionally active state seen in the basal and spinous epidermal cells to a fully inactive state in the keratinized cells of the cornified layer. Here, using multi-color confocal microscopy, followed by computational image analysis and mathematical modelling, we demonstrate that in normal mouse foot-pad epidermis transition of keratinocytes from basal epidermal layer to the granular layer is accompanied by marked differences in nuclear architecture and micro-environment including: i) decrease of the nuclear volume, ii) decrease in expression of the markers of transcriptionally-active chromatin; iii) internalization and decrease in the number of nucleoli; iv) increase in the number of pericentromeric heterochromatic clusters; v) increase in the frequency of associations between pericentromeric clusters, chromosomal territory 3, and nucleoli. These data suggest a role for nucleoli and pericentromeric heterochromatin clusters as organizers of nuclear micro-environment required for proper execution of gene expression programs in differentiating keratinocytes and provide important background information for further analyses of alterations in the topological genome organization seen in pathological skin conditions including disorders of epidermal differentiation and epidermal tumors. PMID:23407401
Fiorani, Fabio; Beemster, Gerrit T.S.; Bultynck, Lieve; Lambers, Hans
2000-01-01
We studied inherent variation in final leaf size among four Poa spp. that live at different elevations. The average final length of leaf 7 of the main stem of the smallest species (Poa alpina) was only one-half that of the largest species (Poa trivialis); it was correlated with leaf elongation rate, but not with the duration of leaf elongation. A faster rate of leaf elongation rate was associated with (a) larger size of the zone of cell expansion, and (b) faster rates of cell production (per cell file) in the meristem, which in turn were due to greater numbers of dividing cells, whereas average cell division rates were very similar for all species (except Poa annua). Also we found that the proliferative fraction equaled 1 throughout the meristem in all species. It was remarkable that rates of cell expansion tended to be somewhat higher in the species with slower growing leaves. We discuss the results by comparing the spatial and material viewpoints, which lead to different interpretations of the role of cell division. Although the presented data do not strictly prove it, they strongly suggest a regulatory role for cell division in determining differences in growth rate among the present four Poa spp. PMID:11027732
Zhang, J-J; Wu, S-Y; Jiang, L; Wang, J-L; Zhang, X; Guo, X-P; Wu, C-Y; Wan, J-M
2015-03-01
Bulliform cells are large, thin-walled and highly vacuolated cells, and play an important role in controlling leaf rolling in response to drought and high temperature. However, the molecular mechanisms regulating bulliform cell development have not been well documented. Here, we report isolation and characterisation of a rice leaf-rolling mutant, named shallot-like 2 (sll2). The sll2 plants exhibit adaxially rolled leaves, starting from the sixth leaf stage, accompanied by increased photosynthesis and reduced plant height and tiller number. Histological analyses showed shrinkage of bulliform cells, resulting in inward-curved leaves. The mutant is recessive and revertible at a rate of 9%. The leaf rolling is caused by a T-DNA insertion. Cloning of the insertion using TAIL-PCR revealed that the T-DNA was inserted in the promoter region of LOC_Os07 g38664. Unexpectedly, the enhanced expression of LOC_Os07 g38664 by the 35S enhancer in the T-DNA is not responsible for the leaf rolling phenotype. Further, the enhancer also exerted a long-distance effect, including up-regulation of several bulliform cell-related genes. sll2 suppressed the outward leaf rolling of oul1 in the sll2oul1 double mutant. We conclude that leaf rolling in sll2 could be a result of the combined effect of multi-genes, implying a complex network in regulation of bulliform cell development. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
Modified methods for growing 3-D skin equivalents: an update.
Lamb, Rebecca; Ambler, Carrie A
2014-01-01
Artificial epidermis can be reconstituted in vitro by seeding primary epidermal cells (keratinocytes) onto a supportive substrate and then growing the developing skin equivalent at the air-liquid interface. In vitro skin models are widely used to study skin biology and for industrial drug and cosmetic testing. Here, we describe updated methods for growing 3-dimensional skin equivalents using de-vitalized, de-epidermalized dermis (DED) substrates including methods for DED substrate preparation, cell seeding, growth conditions, and fixation procedures.
[On the nervous system of a parasitic cnidarian Polypodium hydriforme].
Raĭkova, E V
2013-01-01
Nerve cells in a parasitic cnidarian Polypodium hydriforme at the parasitic and free-living stages of the life cycle have been localized immunocytochemically using antibodies to FMRF-amide, and their ultrastructure has been described. Ganglion cells form a net under epidermis consisting of bi- and tripolar neurons which cross the mesoglea and usually contact muscle cells and cnidocytes. Fusiform sensory and neurosecretory cells, especially characteristic to sensory tentacles, are interspersed among epidermal cells. All three types of nerve cells have dense cored vesicles about 80-120 nm in diameter. The sensory cells demonstrate a sensory flagellum-like immobile structure. Neurosecretory and sensory cells form septate junctions with epidermal cells. Ganglion cells show gap junctions between them. A centriole encircled by a fragment of nuclear envelope which is a marker of ectodermal lineage cells in Polypodium has been described in the cytoplasm of a sensory cell, thus proving the ectodermal nature of the nervous system.
Kim, Jeongyub; Lee, Jong-Seon; Jung, Jieun; Lim, Inhye; Lee, Ji-Yun; Park, Myung-Jin
2015-02-01
There is a growing body of evidence that small subpopulations of cells with stem cell-like characteristics within most solid tumors are responsible for the malignancy of aggressive cancer cells and that targeting these cells might be a good therapeutic strategy to reduce the risk of tumor relapse after therapy. Here, we examined the effects of emodin (1,3,8-trihydroxy-6-methylanthraquinone), an active component of the root and rhizome of Rheum palmatum that has several biological activities, including antitumor effects, on primary cultured glioma stem cells (GSCs). Emodin inhibited the self-renewal activity of GSCs in vitro as evidenced by neurosphere formation, limiting dilution, and soft agar clonogenic assays. Emodin inhibited the maintenance of stemness by suppressing the expression of Notch intracellular domain, nonphosphorylated β-catenin, and phosphorylated STAT3 proteins. In addition, treatment with emodin partially induced apoptosis, reduced cell invasiveness, and sensitized GSCs to ionizing radiation. Intriguingly, emodin induced proteosomal degradation of epidermal growth factor receptor (EGFR)/EGFR variant III (EGFRvIII) by interfering with the association of EGFR/EGFRvIII with heat shock protein 90, resulting in the suppression of stemness pathways. Based on these data, we propose that emodin could be considered as a potent therapeutic adjuvant that targets GSCs.
Boonanantanasarn, Kanitsak; Janebodin, Kajohnkiart; Suppakpatana, Prapan; Arayapisit, Tawepong; Rodsutthi, Jit-aree; Chunhabundit, Panjit; Boonanuntanasarn, Surintorn; Sripairojthikoon, Wanida
2012-01-01
This present study investigated the potential of Morinda citrifolia leaf aqueous extract to induce osteogenic differentiation and matrix mineralization of human periodontal ligament (hPDL) cells. Human periodontal ligament cells were cultured in complete medium, ascorbic acid with β-glycerophosphate, or Morinda citrifolia leaf aqueous extract. Morinda citrifolia leaf aqueous extract significantly increased alkaline phosphatase activity compared to culturing in complete medium or ascorbic acid with β-glycerophosphate. Matrixcontaining mineralized nodules were formed only when the cells were cultured in the presence of Morinda citrifolia leaf aqueous extract. These nodules showed positive alizarin red S staining and were rich in calcium and phosphorus according to energy dispersive X-ray analysis. In conclusion, Morinda citrifolia leaf extract promoted osteogenic differentiation and matrix mineralization in human periodontal ligament cells, a clear indication of the therapeutic potential of Morinda citrifolia leaves in bone and periodontal tissue regeneration.