Science.gov

Sample records for leaf nitrogen relationship

  1. The relationship of leaf photosynthetic traits V cmax and Jmax - to leaf nitrogen, leaf phosphorus, and specific leaf area: A meta-analysis and modeling study

    SciTech Connect

    Walker, Anthony P.; Beckerman, Andrew P.; Gu, Lianhong; Kattge, Jens; Cernusak, Lucas A.; Domingues, Tomas F.; Scales, Joanna C.; Wohlfahrt, Georg; Wullschleger, Stan D.; Woodward, F. Ian

    2014-07-25

    Great uncertainty exists in the global exchange of carbon between the atmosphere and the terrestrial biosphere. An important source of this uncertainty lies in the dependency of photosynthesis on the maximum rate of carboxylation (Vcmax) and the maximum rate of electron transport (Jmax). Understanding and making accurate prediction of C fluxes thus requires accurate characterization of these rates and their relationship with plant nutrient status over large geographic scales. Plant nutrient status is indicated by the traits: leaf nitrogen (N), leaf phosphorus (P), and specific leaf area (SLA). Correlations between Vcmax and Jmax and leaf nitrogen (N) are typically derived from local to global scales, while correlations with leaf phosphorus (P) and specific leaf area (SLA) have typically been derived at a local scale. Thus, there is no global-scale relationship between Vcmax and Jmax and P or SLA limiting the ability of global-scale carbon flux models do not account for P or SLA. We gathered published data from 24 studies to reveal global relationships of Vcmax and Jmax with leaf N, P, and SLA. Vcmax was strongly related to leaf N, and increasing leaf P substantially increased the sensitivity of Vcmax to leaf N. Jmax was strongly related to Vcmax, and neither leaf N, P, or SLA had a substantial impact on the relationship. Although more data are needed to expand the applicability of the relationship, we show leaf P is a globally important determinant of photosynthetic rates. In a model of photosynthesis, we showed that at high leaf N (3 gm 2), increasing leaf P from 0.05 to 0.22 gm 2 nearly doubled assimilation rates. Lastly, we show that plants may employ a conservative strategy of Jmax to Vcmax coordination that restricts photoinhibition when carboxylation is limiting at the expense of maximizing photosynthetic rates when light is limiting.

  2. The relationship of leaf photosynthetic traits V cmax and Jmax - to leaf nitrogen, leaf phosphorus, and specific leaf area: A meta-analysis and modeling study

    DOE PAGES

    Walker, Anthony P.; Beckerman, Andrew P.; Gu, Lianhong; ...

    2014-07-25

    Great uncertainty exists in the global exchange of carbon between the atmosphere and the terrestrial biosphere. An important source of this uncertainty lies in the dependency of photosynthesis on the maximum rate of carboxylation (Vcmax) and the maximum rate of electron transport (Jmax). Understanding and making accurate prediction of C fluxes thus requires accurate characterization of these rates and their relationship with plant nutrient status over large geographic scales. Plant nutrient status is indicated by the traits: leaf nitrogen (N), leaf phosphorus (P), and specific leaf area (SLA). Correlations between Vcmax and Jmax and leaf nitrogen (N) are typically derivedmore » from local to global scales, while correlations with leaf phosphorus (P) and specific leaf area (SLA) have typically been derived at a local scale. Thus, there is no global-scale relationship between Vcmax and Jmax and P or SLA limiting the ability of global-scale carbon flux models do not account for P or SLA. We gathered published data from 24 studies to reveal global relationships of Vcmax and Jmax with leaf N, P, and SLA. Vcmax was strongly related to leaf N, and increasing leaf P substantially increased the sensitivity of Vcmax to leaf N. Jmax was strongly related to Vcmax, and neither leaf N, P, or SLA had a substantial impact on the relationship. Although more data are needed to expand the applicability of the relationship, we show leaf P is a globally important determinant of photosynthetic rates. In a model of photosynthesis, we showed that at high leaf N (3 gm 2), increasing leaf P from 0.05 to 0.22 gm 2 nearly doubled assimilation rates. Lastly, we show that plants may employ a conservative strategy of Jmax to Vcmax coordination that restricts photoinhibition when carboxylation is limiting at the expense of maximizing photosynthetic rates when light is limiting.« less

  3. The relationship of leaf photosynthetic traits - V cmax and J max - to leaf nitrogen, leaf phosphorus, and specific leaf area: a meta-analysis and modeling study.

    PubMed

    Walker, Anthony P; Beckerman, Andrew P; Gu, Lianhong; Kattge, Jens; Cernusak, Lucas A; Domingues, Tomas F; Scales, Joanna C; Wohlfahrt, Georg; Wullschleger, Stan D; Woodward, F Ian

    2014-08-01

    Great uncertainty exists in the global exchange of carbon between the atmosphere and the terrestrial biosphere. An important source of this uncertainty lies in the dependency of photosynthesis on the maximum rate of carboxylation (V cmax) and the maximum rate of electron transport (J max). Understanding and making accurate prediction of C fluxes thus requires accurate characterization of these rates and their relationship with plant nutrient status over large geographic scales. Plant nutrient status is indicated by the traits: leaf nitrogen (N), leaf phosphorus (P), and specific leaf area (SLA). Correlations between V cmax and J max and leaf nitrogen (N) are typically derived from local to global scales, while correlations with leaf phosphorus (P) and specific leaf area (SLA) have typically been derived at a local scale. Thus, there is no global-scale relationship between V cmax and J max and P or SLA limiting the ability of global-scale carbon flux models do not account for P or SLA. We gathered published data from 24 studies to reveal global relationships of V cmax and J max with leaf N, P, and SLA. V cmax was strongly related to leaf N, and increasing leaf P substantially increased the sensitivity of V cmax to leaf N. J max was strongly related to V cmax, and neither leaf N, P, or SLA had a substantial impact on the relationship. Although more data are needed to expand the applicability of the relationship, we show leaf P is a globally important determinant of photosynthetic rates. In a model of photosynthesis, we showed that at high leaf N (3 gm(-2)), increasing leaf P from 0.05 to 0.22 gm(-2) nearly doubled assimilation rates. Finally, we show that plants may employ a conservative strategy of J max to V cmax coordination that restricts photoinhibition when carboxylation is limiting at the expense of maximizing photosynthetic rates when light is limiting.

  4. The relationship of leaf photosynthetic traits – Vcmax and Jmax – to leaf nitrogen, leaf phosphorus, and specific leaf area: a meta-analysis and modeling study

    PubMed Central

    Walker, Anthony P; Beckerman, Andrew P; Gu, Lianhong; Kattge, Jens; Cernusak, Lucas A; Domingues, Tomas F; Scales, Joanna C; Wohlfahrt, Georg; Wullschleger, Stan D; Woodward, F Ian

    2014-01-01

    Great uncertainty exists in the global exchange of carbon between the atmosphere and the terrestrial biosphere. An important source of this uncertainty lies in the dependency of photosynthesis on the maximum rate of carboxylation (Vcmax) and the maximum rate of electron transport (Jmax). Understanding and making accurate prediction of C fluxes thus requires accurate characterization of these rates and their relationship with plant nutrient status over large geographic scales. Plant nutrient status is indicated by the traits: leaf nitrogen (N), leaf phosphorus (P), and specific leaf area (SLA). Correlations between Vcmax and Jmax and leaf nitrogen (N) are typically derived from local to global scales, while correlations with leaf phosphorus (P) and specific leaf area (SLA) have typically been derived at a local scale. Thus, there is no global-scale relationship between Vcmax and Jmax and P or SLA limiting the ability of global-scale carbon flux models do not account for P or SLA. We gathered published data from 24 studies to reveal global relationships of Vcmax and Jmax with leaf N, P, and SLA. Vcmax was strongly related to leaf N, and increasing leaf P substantially increased the sensitivity of Vcmax to leaf N. Jmax was strongly related to Vcmax, and neither leaf N, P, or SLA had a substantial impact on the relationship. Although more data are needed to expand the applicability of the relationship, we show leaf P is a globally important determinant of photosynthetic rates. In a model of photosynthesis, we showed that at high leaf N (3 gm−2), increasing leaf P from 0.05 to 0.22 gm−2 nearly doubled assimilation rates. Finally, we show that plants may employ a conservative strategy of Jmax to Vcmax coordination that restricts photoinhibition when carboxylation is limiting at the expense of maximizing photosynthetic rates when light is limiting. PMID:25473475

  5. Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups

    Treesearch

    Peter B. Reich; Michael B. Walters; David S. Ellsworth; [and others; [Editor’s note: James M.. Vose is the SRS co-author for this publication.

    1998-01-01

    Based on prior evidence of coordinated multiple leaf trait scaling, the authors hypothesized that variation among species in leaf dark respiration rate (Rd) should scale with variation in traits such as leaf nitrogen (N), leaf life-span, specific leaf area (SLA), and net photosynthetic capacity (Amax). However, it is not known whether such scaling, if it exists, is...

  6. Some Quantitative Relationships between Leaf Area Index and Canopy Nitrogen Content and Distribution

    PubMed Central

    YIN, XINYOU; LANTINGA, EGBERT A.; SCHAPENDONK, AD H. C. M.; ZHONG, XUHUA

    2003-01-01

    In a previous study (Yin et al. 2000. Annals of Botany 85: 579–585), a generic logarithmic equation for leaf area index (L) in relation to canopy nitrogen content (N) was developed: L=(1/ktn)1n(1+ktnN/nb). The equation has two parameters: the minimum leaf nitrogen required to support photosynthesis (nb), and the leaf nitrogen extinction coefficient (ktn). Relative to nb, there is less information in the literature regarding the variation of ktn. We therefore derived an equation to theoretically estimate the value of ktn. The predicted profile of leaf nitrogen in a canopy using this theoretically estimated value of ktn is slightly more uniform than the profile predicted by the optimum nitrogen distribution that maximizes canopy photosynthesis. Relative to the optimum profile, the predicted profile is somewhat closer to the observed one. Based on the L–N logarithmic equation and the theoretical ktn value, we further quantified early leaf area development of a canopy in relation to nitrogen using simulation analysis. In general, there are two types of relations between L and N, which hold for canopies at different developmental phases. For a fully developed canopy where the lowest leaves are senescing due to nitrogen shortage, the relationship between L and N is described well by the logarithmic model above. For a young, unclosed canopy (i.e. L < 1·0), the relation between L and N is nearly linear. This linearity is virtually the special case of the logarithmic model when applied to a young canopy where its total nitrogen content approaches zero and the amount of nitrogen in its lowest leaves is well above nb. The expected patterns of the L–N relationship are discussed for the phase of transition from young to fully developed canopies. PMID:12730071

  7. Some quantitative relationships between leaf area index and canopy nitrogen content and distribution.

    PubMed

    Yin, Xinyou; Lantinga, Egvert A; Schapendonk, Ad H C M; Zhong, Xuhua

    2003-06-01

    In a previous study (Yin et al. 2000. Annals of Botany 85: 579-585), a generic logarithmic equation for leaf area index (L) in relation to canopy nitrogen content (N) was developed: L=(1/ktn)1n(1+ktnN/nb). The equation has two parameters: the minimum leaf nitrogen required to support photosynthesis (nb), and the leaf nitrogen extinction coefficient (ktn). Relative to nb, there is less information in the literature regarding the variation of ktn. We therefore derived an equation to theoretically estimate the value of ktn. The predicted profile of leaf nitrogen in a canopy using this theoretically estimated value of ktn is slightly more uniform than the profile predicted by the optimum nitrogen distribution that maximizes canopy photosynthesis. Relative to the optimum profile, the predicted profile is somewhat closer to the observed one. Based on the L-N logarithmic equation and the theoretical ktn value, we further quantified early leaf area development of a canopy in relation to nitrogen using simulation analysis. In general, there are two types of relations between L and N, which hold for canopies at different developmental phases. For a fully developed canopy where the lowest leaves are senescing due to nitrogen shortage, the relationship between L and N is described well by the logarithmic model above. For a young, unclosed canopy (i.e. L < 1.0), the relation between L and N is nearly linear. This linearity is virtually the special case of the logarithmic model when applied to a young canopy where its total nitrogen content approaches zero and the amount of nitrogen in its lowest leaves is well above nb. The expected patterns of the L-N relationship are discussed for the phase of transition from young to fully developed canopies.

  8. Relationship between Maximum Leaf Photosynthesis, Nitrogen Content and Specific Leaf Area in Balearic Endemic and Non‐endemic Mediterranean Species

    PubMed Central

    GULÍAS, JAVIER; FLEXAS, JAUME; MUS, MAURICI; CIFRE, JOSEP; LEFI, ELKADRI; MEDRANO, HIPÓLITO

    2003-01-01

    Gas exchange parameters, leaf nitrogen content and specific leaf area (SLA) were measured in situ on 73 C3 and five C4 plant species in Mallorca, west Mediterranean, to test whether species endemic to the Balearic Islands differed from widespread, non‐endemic Mediterranean species and crops in their leaf traits and trait inter‐relationships. Endemic species differed significantly from widespread species and crops in several parameters; in particular, photosynthetic capacity, on an area basis (A), was 20 % less in endemics than in non‐endemics. Similar differences between endemics and non‐endemics were found in parameters such as SLA and leaf nitrogen content per area (Na). Nevertheless, most of the observed differences were found only within the herbaceous deciduous species. These could be due to the fact that most of the non‐endemic species within this group have adapted to ruderal areas, while none of the endemics occupies this kind of habitat. All the species—including the crops—showed a positive, highly significant correlation between photosynthetic capacity on a mass basis (Am), leaf nitrogen content on a mass basis (Nm) and SLA. However, endemic species had a lower Am for any given SLA and Nm. Hypotheses are presented to explain these differences, and their possible role in reducing the distribution of many endemic Balearic species is discussed. PMID:12805082

  9. The photosynthesis - leaf nitrogen relationship at ambient and elevated atmospheric carbon dioxide: a meta-analysis

    SciTech Connect

    Andrew G. Peterson; J. Timothy Ball; Yiqi Luo; Christopher B. Field; Peter B. Reich; Peter S. Curtis; Kevin L. Griffin; Carla S Gunderson; Richard J. Norby; David T. Tissue; Manfred Forstreuter; Ana Rey; Christoph S. Vogel; CMEAL collaboration

    1998-09-25

    Estimation of leaf photosynthetic rate (A) from leaf nitrogen content (N) is both conceptually and numerically important in models of plant, ecosystem and biosphere responses to global change. The relationship between A and N has been studied extensively at ambient CO{sub 2} but much less at elevated CO{sub 2}. This study was designed to (1) assess whether the A-N relationship was more similar for species within than between community and vegetation types, and (2) examine how growth at elevated CO{sub 2} affects the A-N relationship. Data were obtained for 39 C{sub 3} species grown at ambient CO{sub 2} and 10 C{sub 3} species grown at ambient and elevated CO{sub 2}. A regression model was applied to each species as well as to species pooled within different community and vegetation types. Cluster analysis of the regression coefficients indicated that species measured at ambient CO{sub 2} did not separate into distinct groups matching community or vegetation type. Instead, most community and vegetation types shared the same general parameter space for regression coefficients. Growth at elevated CO{sub 2} increased photosynthetic nitrogen use efficiency for pines and deciduous trees. When species were pooled by vegetation type, the A-N relationship for deciduous trees expressed on a leaf-mass bask was not altered by elevated CO{sub 2}, while the intercept increased for pines. When regression coefficients were averaged to give mean responses for different vegetation types, elevated CO{sub 2} increased the intercept and the slope for deciduous trees but increased only the intercept for pines. There were no statistical differences between the pines and deciduous trees for the effect of CO{sub 2}. Generalizations about the effect of elevated CO{sub 2} on the A-N relationship, and differences between pines and deciduous trees will be enhanced as more data become available.

  10. Canopy-scale relationships between foliar nitrogen and albedo are not observed in leaf reflectance and transmittance within temperate deciduous tree species

    Treesearch

    Megan K. Bartlett; Scott V. Ollinger; David Y. Hollinger; Haley F. Wicklein; Andrew D. Richardson

    2011-01-01

    Strong positive correlations between the maximum rate of canopy photosynthesis, canopy-averaged foliar nitrogen concentration, and canopy albedo have been shown in previous studies. While leaf-level relationships between photosynthetic capacity and foliar nitrogen are well documented, it is not clear whether leaf-level relationships between solar-weighted reflectance...

  11. Relationships between light, leaf nitrogen and nitrogen remobilization in the crowns of mature evergreen Quercus glauca trees.

    PubMed

    Miyazawa, Shin-Ichi; Suzuki, Arata Antonio; Sone, Kosei; Terashima, Ichiro

    2004-10-01

    We estimated the amount of nitrogen (N) remobilized from 1-year-old leaves at various positions in the crowns of mature Quercus glauca Thunb. ex Murray trees and related this to the production of new shoots. Leaf N concentration on an area basis (Na) and total N (Nt= Na x lamina area of all leaves on a shoot) were related to photosynthetic photon flux (PPF) on the leaves of current-year and 1-year-old shoots. When new shoots (S02 shoots; flushed in 2002) flushed, only a portion of the leaves on the previous year's shoots (S01 shoots; flushed in 2001) were shed. After the S02 shoots flushed, S01 shoots were defined as 1-year-old shoots (S01* shoots). Both Na and Nt were positively correlated with PPF for S01 shoots, but not for S01* shoots. The fraction of remobilized N (% of the maximum Na in S01 leaves) from remaining leaves was 5-35%, with the fraction size being positively correlated with the number of S02 shoots on an S01* shoot (new shoot number). However, the mean fraction of remobilized N from fallen leaves was 45% and was unrelated to new shoot number. The total amount of N remobilized from both fallen and remaining leaves was 1-20 mg per S01* shoot. Total remobilized N was positively correlated with new shoot number. There was a statistically significant positive relationship between the light-saturated net photosynthetic rate on a leaf area basis (Amax) and Na for both S01* and S02 leaves. However, when we compared leaves with similar Na, Amax of S01* leaves was only half that of S02 leaves, indicating that 1-year-old leaves had lower instantaneous N-use efficiency (Amax per unit Na) than current-year leaves. Ratios of chlorophyll a:b and Rubisco:chlorophyll were lower in S01* leaves than in S02 leaves, indicating that 1-year-old leaves were acclimatized to lower light environments. Thus, in Q. glauca, the N allocation theory (i.e., that N is distributed according to local PPF) applied only to the current-year shoots. Although the amount of foliar N in 1

  12. Relationship between photosynthesis and leaf nitrogen concentration in ambient and elevated [CO2] in white birch seedlings.

    PubMed

    Cao, Bing; Dang, Qing-Lai; Zhang, Shouren

    2007-06-01

    To study the effects of elevated CO2 concentration ([CO2]) on relationships between nitrogen (N) nutrition and foliar gas exchange parameters, white birch (Betula papyrifera Marsh.) seedlings were exposed to one of five N-supply regimes (10, 80, 150, 220, 290 mg N l(-1)) in either ambient [CO2] (360 micromol mol(-1)) or elevated [CO2] (720 micromol mol(-1)) in environment-controlled greenhouses. Foliar gas exchange and chlorophyll fluorescence were measured after 60 and 80 days of treatment. Photosynthesis showed a substantial down-regulation (up to 57%) in response to elevated [CO2] and the magnitude of the down-regulation generally decreased exponentially with increasing leaf N concentration. When measured at the growth [CO2], elevated [CO2] increased the overall rate of photosynthesis (P(n)) and instantaneous water-use efficiency (IWUE) by up to 69 and 236%, respectively, but decreased transpiration (E) and stomatal conductance (g(s)) in all N treatments. However, the degree of stimulation of photosynthesis by elevated [CO2] decreased as photosynthetic down-regulation increased from 60 days to 80 days of treatment. Elevated [CO2] significantly increased total photosynthetic electron transport in all N treatments at 60 days of treatment, but the effect was insignificant after 80 days of treatment. Both P(n) and IWUE generally increased with increasing leaf N concentration except at very high leaf N concentrations, where both P(n) and IWUE declined. The relationships of P(n) and IWUE with leaf N concentration were modeled with both a linear regression and a second-order polynomial function. Elevated [CO2] significantly and substantially increased the slope of the linear regression for IWUE, but had no significant effect on the slope for P(n). The optimal leaf N concentration for P(n) and IWUE derived from the polynomial function did not differ between the CO2 treatments when leaf N was expressed on a leaf area basis. However, the mass-based optimal leaf N

  13. Effect of nitrogen and water treatment on leaf chemistry in horsenettle (Solanum carolinense), and relationship to herbivory by flea beetles (Epitrix spp.) and tobacco hornworm (Manduca sexta).

    PubMed

    Cipollini, Martin L; Paulk, Eric; Cipollini, Donald F

    2002-12-01

    We studied the interaction between plants (horsenettle; Solanum carolinense) and herbivorous insects (flea beetles; Epitrix spp., and tobacco hornworm; Manduca sexta) by focusing on three questions: (1) Does variation in nitrogen availability affect leaf chemistry as predicted by the carbon-nutrient balance (CNB) hypothesis? (2) Does variation in plant treatment and leaf chemistry affect insect feeding? (3) Is there an interaction between the insect herbivores that is mediated by variation in leaf chemistry? For three successive years (1998-2001), we grew a set of clones of 10 maternal plants under two nitrogen treatments and two water treatments. For each plant in the summer of 2000, we assayed herbivory by hornworms in both indoor (detached leaf) and outdoor (attached leaf) assays, as well as ambient flea beetle damage. Estimates of leaf material consumed were made via analysis of digitized leaf images. We also assayed leaves for total protein, phenolic, and glycoalkaloid content, and for trypsin inhibitor, polyphenol oxidase, and peroxidase activity. Despite strong effects of nitrogen treatment on growth and reproduction, only total protein responded as predicted by CNB. Leaf phenolic levels were increased by nitrogen treatment, polyphenol oxidase activity was decreased, and other leaf parameters were unaffected. Neither hornworm nor flea beetle herbivory could be related to plant treatment or genotype or to variation in any of the six leaf chemical parameters. A negative relationship between flea beetle and hornworm herbivory was found, but was not apparently mediated by any of the measured leaf chemicals. Because leaf resistance was maintained in low nitrogen plants at the apparent expense of growth and reproduction, our results support the concept of a fitness cost of defense, as predicted by the optimal defense hypothesis.

  14. Leaf-level nitrogen use efficiency: definition and importance.

    PubMed

    Hirose, Tadaki

    2012-07-01

    Nitrogen use efficiency (NUE) has been widely used to study the relationship between nitrogen uptake and dry mass production in the plant. As a subsystem of plant nitrogen use efficiency (NUE), I have defined leaf-level NUE as the surplus production (gross production minus leaf respiration) per unit amount of nitrogen allocated to the leaf, with factorization into leaf nitrogen productivity (NP) and mean residence time of leaf nitrogen (MRT). These concepts were applied to two herbaceous stands: a perennial Solidago altissima stand and an annual Amaranthus patulus stand. S. altissima had more than three times higher leaf NUE than A. patulus due to nearly three times longer MRT of leaf N. In both species, NUE and NP were higher at the leaf level than at the plant level, because most leaf N is involved directly in the photosynthetic activity and because leaf surplus production is higher than the plant net production. MRT was longer at the plant level. The more than twice as long MRT at the plant level as at the leaf level in S. altissima was due to a large contribution of nitrogen storage belowground in the winter in this species. Thus, comparisons between a perennial and an annual system and between plant- and leaf-level NUE with their components revealed the importance of N allocation, storage, recycling, and turnover of organs for leaf photosynthetic production and plant dry mass growth.

  15. SPAD-based leaf nitrogen estimation is impacted by environmental factors and crop leaf characteristics

    PubMed Central

    Xiong, Dongliang; Chen, Jia; Yu, Tingting; Gao, Wanlin; Ling, Xiaoxia; Li, Yong; Peng, Shaobing; Huang, Jianliang

    2015-01-01

    Chlorophyll meters are widely used to guide nitrogen (N) management by monitoring leaf N status in agricultural systems, but the effects of environmental factors and leaf characteristics on leaf N estimations are still unclear. In the present study, we estimated the relationships among SPAD readings, chlorophyll content and leaf N content per leaf area for seven species grown in multiple environments. There were similar relationships between SPAD readings and chlorophyll content per leaf area for the species groups, but the relationship between chlorophyll content and leaf N content per leaf area, and the relationship between SPAD readings and leaf N content per leaf area varied widely among the species groups. A significant impact of light-dependent chloroplast movement on SPAD readings was observed under low leaf N supplementation in both rice and soybean but not under high N supplementation. Furthermore, the allocation of leaf N to chlorophyll was strongly influenced by short-term changes in growth light. We demonstrate that the relationship between SPAD readings and leaf N content per leaf area is profoundly affected by environmental factors and leaf features of crop species, which should be accounted for when using a chlorophyll meter to guide N management in agricultural systems. PMID:26303807

  16. Nitrogen and phosphorus availabilities interact to modulate leaf trait scaling relationships across six plant functional types in a controlled-environment study.

    PubMed

    Crous, Kristine Y; O'Sullivan, Odhran S; Zaragoza-Castells, Joana; Bloomfield, Keith J; Negrini, A Clarissa A; Meir, Patrick; Turnbull, Matthew H; Griffin, Kevin L; Atkin, Owen K

    2017-08-01

    Nitrogen (N) and phosphorus (P) have key roles in leaf metabolism, resulting in a strong coupling of chemical composition traits to metabolic rates in field-based studies. However, in such studies, it is difficult to disentangle the effects of nutrient supply per se on trait-trait relationships. Our study assessed how high and low N (5 mM and 0.4 mM, respectively) and P (1 mM and 2 μM, respectively) supply in 37 species from six plant functional types (PTFs) affected photosynthesis (A) and respiration (R) (in darkness and light) in a controlled environment. Low P supply increased scaling exponents (slopes) of area-based log-log A-N or R-N relationships when N supply was not limiting, whereas there was no P effect under low N supply. By contrast, scaling exponents of A-P and R-P relationships were altered by P and N supply. Neither R : A nor light inhibition of leaf R was affected by nutrient supply. Light inhibition was 26% across nutrient treatments; herbaceous species exhibited a lower degree of light inhibition than woody species. Because N and P supply modulates leaf trait-trait relationships, the next generation of terrestrial biosphere models may need to consider how limitations in N and P availability affect trait-trait relationships when predicting carbon exchange. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  17. Legumes are different: Leaf nitrogen, photosynthesis, and water use efficiency.

    PubMed

    Adams, Mark Andrew; Turnbull, Tarryn L; Sprent, Janet I; Buchmann, Nina

    2016-04-12

    Using robust, pairwise comparisons and a global dataset, we show that nitrogen concentration per unit leaf mass for nitrogen-fixing plants (N2FP; mainly legumes plus some actinorhizal species) in nonagricultural ecosystems is universally greater (43-100%) than that for other plants (OP). This difference is maintained across Koppen climate zones and growth forms and strongest in the wet tropics and within deciduous angiosperms. N2FP mostly show a similar advantage over OP in nitrogen per leaf area (Narea), even in arid climates, despite diazotrophy being sensitive to drought. We also show that, for most N2FP, carbon fixation by photosynthesis (Asat) and stomatal conductance (gs) are not related to Narea-in distinct challenge to current theories that place the leaf nitrogen-Asat relationship at the center of explanations of plant fitness and competitive ability. Among N2FP, only forbs displayed an Narea-gs relationship similar to that for OP, whereas intrinsic water use efficiency (WUEi; Asat/gs) was positively related to Narea for woody N2FP. Enhanced foliar nitrogen (relative to OP) contributes strongly to other evolutionarily advantageous attributes of legumes, such as seed nitrogen and herbivore defense. These alternate explanations of clear differences in leaf N between N2FP and OP have significant implications (e.g., for global models of carbon fluxes based on relationships between leaf N and Asat). Combined, greater WUE and leaf nitrogen-in a variety of forms-enhance fitness and survival of genomes of N2FP, particularly in arid and semiarid climates.

  18. Legumes are different: Leaf nitrogen, photosynthesis, and water use efficiency

    PubMed Central

    Adams, Mark Andrew; Turnbull, Tarryn L.; Sprent, Janet I.; Buchmann, Nina

    2016-01-01

    Using robust, pairwise comparisons and a global dataset, we show that nitrogen concentration per unit leaf mass for nitrogen-fixing plants (N2FP; mainly legumes plus some actinorhizal species) in nonagricultural ecosystems is universally greater (43–100%) than that for other plants (OP). This difference is maintained across Koppen climate zones and growth forms and strongest in the wet tropics and within deciduous angiosperms. N2FP mostly show a similar advantage over OP in nitrogen per leaf area (Narea), even in arid climates, despite diazotrophy being sensitive to drought. We also show that, for most N2FP, carbon fixation by photosynthesis (Asat) and stomatal conductance (gs) are not related to Narea—in distinct challenge to current theories that place the leaf nitrogen–Asat relationship at the center of explanations of plant fitness and competitive ability. Among N2FP, only forbs displayed an Narea–gs relationship similar to that for OP, whereas intrinsic water use efficiency (WUEi; Asat/gs) was positively related to Narea for woody N2FP. Enhanced foliar nitrogen (relative to OP) contributes strongly to other evolutionarily advantageous attributes of legumes, such as seed nitrogen and herbivore defense. These alternate explanations of clear differences in leaf N between N2FP and OP have significant implications (e.g., for global models of carbon fluxes based on relationships between leaf N and Asat). Combined, greater WUE and leaf nitrogen—in a variety of forms—enhance fitness and survival of genomes of N2FP, particularly in arid and semiarid climates. PMID:27035971

  19. Relationships between the leaf and fruit mineral compositions of Actinidia deliciosa var. Hayward according to nitrogen and potassium fertilization.

    PubMed

    Santoni, François; Paolini, Julien; Barboni, Toussaint; Costa, Jean

    2014-03-15

    The variations of the elements that are examined most frequently during foliar analysis were determined for kiwi as a function of different nitrogen and potassium fertilizer loads. The values recorded demonstrated the existence of a relation between the leaves and the fruit. Two groups of elements were identified that exhibited different responses. The first group comprised elements that, in leaves and fruits, presented a different evolution as a function of at least one of the fertilizers. This group included B, Cu, Fe, Na, and Zn. The second group comprised elements that, in both leaves and fruits, exhibited a comparable evolution as a function of both fertilizer types. This group included N, Ca, Mg, Mn, P, and K.

  20. Relationship between potassium fertilization and nitrogen metabolism in the leaf subtending the cotton (Gossypium hirsutum L.) boll during the boll development stage.

    PubMed

    Hu, Wei; Zhao, Wenqing; Yang, Jiashuo; Oosterhuis, Derrick M; Loka, Dimitra A; Zhou, Zhiguo

    2016-04-01

    The nitrogen (N) metabolism of the leaf subtending the cotton boll (LSCB) was studied with two cotton (Gossypium hirsutum L.) cultivars (Simian 3, low-K tolerant; Siza 3, low-K sensitive) under three levels of potassium (K) fertilization (K0: 0 g K2O plant(-1), K1: 4.5 K2O plant(-1) and K2: 9.0 g K2O plant(-1)). The results showed that total dry matter increased by 13.1-27.4% and 11.2-18.5% under K supply for Simian 3 and Siza 3. Boll biomass and boll weight also increased significantly in K1 and K2 treatments. Leaf K content, leaf N content and nitrate (NO3(-)) content increased with increasing K rates, and leaf N content or NO3(-) content had a significant positive correlation with leaf K content. Free amino acid content increased in the K0 treatment for both cultivars, due to increased protein degradation caused by higher protease and peptidase activities, resulting in lower protein content in the K0 treatment. The critical leaf K content for free amino acid and soluble protein content were 14 mg g(-1) and 15 mg g(-1) in Simian 3, and 17 mg g(-1) and 18 mg g(-1) in Siza 3, respectively. Nitrate reductase (NR), glutamic-oxaloace transaminase (GOT) and glutamic-pyruvic transaminase (GPT) activities increased in the K1 and K2 treatments for both cultivars, while glutamine synthetase (GS) and glutamate synthase (GOGAT) activities increased under K supply treatments only for Siza 3, and were not affected in Simian 3, indicating that this was the primary difference in nitrogen-metabolizing enzymes activities for the two cultivars with different sensitivity to low-K.

  1. Optimal leaf-to-root ratio and leaf nitrogen content determined by light and nitrogen availabilities.

    PubMed

    Sugiura, Daisuke; Tateno, Masaki

    2011-01-01

    Plants exhibit higher leaf-to-root ratios (L/R) and lower leaf nitrogen content (N(area)) in low-light than in high-light environments, but an ecological significance of this trait has not been explained from a whole-plant perspective. This study aimed to theoretically and experimentally demonstrate whether these observed L/R and N(area) are explained as optimal biomass allocation that maximize whole-plant relative growth rate (RGR). We developed a model which predicts optimal L/R and N(area) in response to nitrogen and light availability. In the model, net assimilation rate (NAR) was determined by light-photosynthesis curve, light availability measured during experiments, and leaf temperature affecting the photosynthesis and leaf dark respiration rate in high and low-light environments. Two pioneer trees, Morus bombycis and Acer buergerianum, were grown in various light and nitrogen availabilities in an experimental garden and used for parameterizing and testing the model predictions. They were grouped into four treatment groups (relative photosynthetic photon flux density, RPPFD 100% or 10%×nitrogen-rich or nitrogen-poor conditions) and grown in an experimental garden for 60 to 100 days. The model predicted that optimal L/R is higher and N(area) is lower in low-light than high-light environments when compared in the same soil nitrogen availability. Observed L/R and N(area) of the two pioneer trees were close to the predicted optimums. From the model predictions and pot experiments, we conclude that the pioneer trees, M. bombycis and A. buergerianum, regulated L/R and N(area) to maximize RGR in response to nitrogen and light availability.

  2. Leaf nitrogen to phosphorus ratios of tropical trees: experimental assessment of physiological and environmental controls.

    PubMed

    Cernusak, Lucas A; Winter, Klaus; Turner, Benjamin L

    2010-02-01

    We investigated the variation in leaf nitrogen to phosphorus ratios of tropical tree and liana seedlings as a function of the relative growth rate, whole-plant water-use efficiency, soil water content and fertilizer addition. First, seedlings of 13 tree and liana species were grown individually in 38-l pots prepared with a homogeneous soil mixture. Second, seedlings of three tree species were grown in 19-l pots at high or low soil water content, and with or without added fertilizer containing nitrogen, phosphorus and potassium. For plants grown under common soil conditions, leaf nitrogen to phosphorus ratios showed a unimodal, or hump-shaped, relationship with the relative growth rate. The leaf nitrogen to phosphorus ratio increased in response to low soil water content in three species, and increased in response to fertilizer addition in two of the three species. Across all species and treatments, the leaf nitrogen to phosphorus ratio was positively correlated with the water-use efficiency. The results suggest that the within-site variation among tropical tree species in the leaf nitrogen to phosphorus ratio may be caused by associations between this ratio and the relative growth rate. Modification of the soil environment changed the leaf nitrogen to phosphorus ratio, but underlying associations between this ratio and the relative growth rate were generally maintained. The observed correlation between the leaf nitrogen to phosphorus ratio and water-use efficiency has implications for linking nutrient stoichiometry with plant transpiration.

  3. Generality of leaf trait relationships: A test across six biomes

    SciTech Connect

    Reich, P.B.; Ellsworth, D.S.; Walters, M.B.; Vose, J.M.; Gresham, C.; Volin, J.C.; Bowman, W.D. |

    1999-09-01

    Convergence in interspecific leaf trait relationships across diverse taxonomic groups and biomes would have important evolutionary and ecological implications. Such convergence has been hypothesized to result from trade-offs that limit the combination of plant traits for any species. Here the authors address this issue by testing for biome differences in the slope and intercept of interspecific relationships among leaf traits: longevity, net photosynthetic capacity (A{sub max}), leaf diffusive conductance (G{sub S}), specific leaf area (SLA), and nitrogen (N) status, for more than 100 species in six distinct biomes of the Americas. The six biomes were: alpine tundra-subalpine forest ecotone, cold temperate forest-prairie ecotone, montane cool temperate forest, desert shrubland, subtropical forest, and tropical rain forest. Despite large differences in climate and evolutionary history, in all biomes mass-based leaf N (N{sub mass}), SLA, G{sub S}, and A{sub max} were positively related to one another and decreased with increasing leaf life span. The relationships between pairs of leaf traits exhibited similar slopes among biomes, suggesting a predictable set of scaling relationships among key leaf morphological, chemical, and metabolic traits that are replicated globally among terrestrial ecosystems regardless of biome or vegetation type. However, the intercept (i.e., the overall elevation of regression lines) of relationships between pairs of leaf traits usually differed among biomes. With increasing aridity across sites, species had greater A{sub max} for a given level of G{sub S} and lower SLA for any given leaf life span. Using principal components analysis, most variation among species was explained by an axis related to mass-based leaf traits (A{sub max}, N, and SLA) while a second axis reflected climate, G{sub S}, and other area-based leaf traits.

  4. Assessing the generality of global leaf trait relationships.

    PubMed

    Wright, Ian J; Reich, Peter B; Cornelissen, Johannes H C; Falster, Daniel S; Garnier, Eric; Hikosaka, Kouki; Lamont, Byron B; Lee, William; Oleksyn, Jacek; Osada, Noriyuki; Poorter, Hendrik; Villar, Rafael; Warton, David I; Westoby, Mark

    2005-05-01

    Global-scale quantification of relationships between plant traits gives insight into the evolution of the world's vegetation, and is crucial for parameterizing vegetation-climate models. A database was compiled, comprising data for hundreds to thousands of species for the core 'leaf economics' traits leaf lifespan, leaf mass per area, photosynthetic capacity, dark respiration, and leaf nitrogen and phosphorus concentrations, as well as leaf potassium, photosynthetic N-use efficiency (PNUE), and leaf N : P ratio. While mean trait values differed between plant functional types, the range found within groups was often larger than differences among them. Future vegetation-climate models could incorporate this knowledge. The core leaf traits were intercorrelated, both globally and within plant functional types, forming a 'leaf economics spectrum'. While these relationships are very general, they are not universal, as significant heterogeneity exists between relationships fitted to individual sites. Much, but not all, heterogeneity can be explained by variation in sample size alone. PNUE can also be considered as part of this trait spectrum, whereas leaf K and N : P ratios are only loosely related.

  5. Interspecific vs intraspecific patterns in leaf nitrogen of forest trees across nitrogen availability gradients.

    PubMed

    Dybzinski, Ray; Farrior, Caroline E; Ollinger, Scott; Pacala, Stephen W

    2013-10-01

    Leaf nitrogen content (δ) coordinates with total canopy N and leaf area index (LAI) to maximize whole-crown carbon (C) gain, but the constraints and contributions of within-species plasticity to this phenomenon are poorly understood. Here, we introduce a game theoretic, physiologically based community model of height-structured competition between late-successional tree species. Species are constrained by an increasing, but saturating, relationship between photosynthesis and leaf N per unit leaf area. Higher saturating rates carry higher fixed costs. For a given whole-crown N content, a C gain-maximizing compromise exists between δ and LAI. With greater whole-crown N, both δ and LAI increase within species. However, a shift in community composition caused by reduced understory light at high soil N availability (which competitively favors species with low leaf costs and consequent low optimal δ) counteracts the within-species response, such that community-level δ changes little with soil N availability. These model predictions provide a new explanation for the changes in leaf N per mass observed in data from three dominant broadleaf species in temperate deciduous forests of New England. Attempts to understand large-scale patterns in vegetation often omit competitive interactions and intraspecific plasticity, but here both are essential to an understanding of ecosystem-level patterns.

  6. Leaf nitrogen spectral reflectance model of winter wheat (Triticum aestivum) based on PROSPECT: simulation and inversion

    NASA Astrophysics Data System (ADS)

    Yang, Guijun; Zhao, Chunjiang; Pu, Ruiliang; Feng, Haikuan; Li, Zhenhai; Li, Heli; Sun, Chenhong

    2015-01-01

    Through its association with proteins and plant pigments, leaf nitrogen (N) plays an important regulatory role in photosynthesis, leaf respiration, and net primary production. However, the traditional methods of measurement leaf N are rooted in sample-based spectroscopy in laboratory. There is a big challenge of deriving leaf N from the nondestructive field-measured leaf spectra. In this study, the original PROSPECT model was extended by replacing the absorption coefficient of chlorophyll in the original PROSPECT model with an equivalent N absorption coefficient to develop a nitrogen-based PROSPECT model (N-PROSPECT). N-PROSPECT was evaluated by comparing the model-simulated reflectance values with the measured leaf reflectance values. The validated results show that the correlation coefficient (R) was 0.98 for the wavelengths of 400 to 2500 nm. Finally, N-PROSPECT was used to simulate leaf reflectance using different combinations of input parameters, and partial least squares regression (PLSR) was used to establish the relationship between the N-PROSPECT simulated reflectance and the corresponding leaf nitrogen density (LND). The inverse of the PLSR-based N-PROSPECT model was used to retrieve LND from the measured reflectance with a relatively high accuracy (R2=0.77, RMSE=22.15 μg cm-2). This result demonstrates that the N-PROSPECT model established in this study can accurately simulate nitrogen spectral contributions and retrieve LND.

  7. Weak leaf photosynthesis and nutrient content relationships from tropical vegetation

    NASA Astrophysics Data System (ADS)

    Domingues, T. F.; Ishida, F. Y.; Feldpaush, T.; Saiz, G.; Grace, J.; Meir, P.; Lloyd, J.

    2015-12-01

    Evergreen rain forests and savannas are the two major vegetations of tropical land ecosystems, in terms of land area, biomass, biodiversity, biogeochemical cycles and rates of land use change. Mechanistically understanding ecosystem functioning on such ecosystems is still far from complete, but important for generation of future vegetation scenarios in response to global changes. Leaf photosynthetic rates is a key processes usually represented on land surface-atmosphere models, although data from tropical ecosystems is scarce, considering the high biodiversity they contain. As a shortcut, models usually recur to relationships between leaf nutrient concentration and photosynthetic rates. Such strategy is convenient, given the possibility of global datasets on leave nutrients derived from hyperspectral remote sensing data. Given the importance of Nitrogen on enzyme composition, this nutrient is usually used to infer photosynthetic capacity of leaves. Our experience, based on individual measurements on 1809 individual leaves from 428 species of trees and shrubs naturally occurring on tropical forests and savannas from South America, Africa and Australia, indicates that the relationship between leaf nitrogen and its assimilation capacity is weak. Therefore, leaf Nitrogen alone is a poor predictor of photosynthetic rates of tropical vegetation. Phosphorus concentrations from tropical soils are usually low and is often implied that this nutrient limits primary productivity of tropical vegetation. Still, phosphorus (or other nutrients) did not exerted large influence over photosynthetic capacity, although potassium influenced vegetation structure and function. Such results draw attention to the risks of applying universal nitrogen-photosynthesis relationships on biogeochemical models. Moreover, our data suggests that affiliation of plant species within phylogenetic hierarchy is an important aspect in understanding leaf trait variation. The lack of a strong single

  8. Enhanced leaf nitrogen status stabilizes omnivore population density.

    PubMed

    Liman, Anna-Sara; Dalin, Peter; Björkman, Christer

    2017-01-01

    Plant traits can mediate the strength of interactions between omnivorous predators and their prey through density effects and changes in the omnivores' trophic behavior. In this study, we explored the established assumption that enhanced nutrient status in host plants strengthens the buffering effect of plant feeding for omnivorous predators, i.e., prevents rapid negative population growth during prey density decline and thereby increases and stabilizes omnivore population density. We analyzed 13 years of field data on population densities of a heteropteran omnivore on Salix cinerea stands, arranged along a measured leaf nitrogen gradient and found a 195 % increase in omnivore population density and a 63 % decrease in population variability with an increase in leaf nitrogen status from 26 to 40 mgN × g(-1). We recreated the leaf nitrogen gradient in a greenhouse experiment and found, as expected, that increasing leaf nitrogen status enhanced omnivore performance but reduced per capita prey consumption. Feeding on high nitrogen status host plants can potentially decouple omnivore-prey population dynamics and allow omnivores to persist and function effectively at low prey densities to provide "background level" control of insect herbivores. This long-term effect is expected to outweigh the short-term effect on per capita prey consumption-resulting in a net increase in population predation rates with increasing leaf nitrogen status. Conservation biological control of insect pests that makes use of omnivore background control could, as a result, be manipulated via management of crop nitrogen status.

  9. Rigidity and Plasticity of Leaf Carbon and Nitrogen Systematics in California Oaks

    NASA Astrophysics Data System (ADS)

    Krebs, T.; Baldocchi, D.; Xu, L.

    2003-12-01

    Mapping photosynthesis from space requires an understanding of photosynthetic efficiency. Current data sets prescribe global maps of photosynthetic parameters and relate them to greenness. It is the seasonality of greenness, and not of photosynthetic efficiency itself, which is presumed to drive photosynthesis. In fact, both greenness and photosynthetic efficiency convolve to produce seasonality in photosynthesis. If the scientific community is to globally retrieve photosynthetic rates from space, it must take this seasonality into account. We examine the rigidity and plasticity of photosynthetic capacity, its correlation to leaf nitrogen, and other leaf properties across geographic gradients of precipitation, soil moisture, air temperature, relative humidity and other measurables. In particular, these measurements focus on different species of oaks: blue oak (Quercus douglasii), coast live oak (Quercus agrifolia), black oak (Quercus velutina), and valley oak (Quercus lobata). Leaf chamber measurements with infrared gas analyzers and measurements of leaf specific mass, carbon isotope composition, and nitrogen content were performed in three Mediterranean ecosystems in California: Russell Reservation (coastal hills; oak woodland), Quail Ridge Reservation (near Lake Berryessa; Northern Coast Ranges; oak woodland), and Ione (Central Valley; oak savanna). Oaks of the same species adapted to more temperate microclimates such as shaded, north-facing slopes showed less pronounced seasonality in leaf nitrogen content and photosynthetic capacity. The comparison of evergreen and deciduous oak species yields relationships among leaf life span, specific leaf mass, and photosynthetic capacity that are consistent with the results of Reich. Our results confirm that oaks exhibit plasticity in their adaptation to more and less extreme environments. These results also explain why the deciduous oaks are less successful than the evergreen oaks near the coast and more successful in the

  10. Leaf phosphorus influences the photosynthesis-nitrogen relation: a cross-biome analysis of 314 species.

    PubMed

    Reich, Peter B; Oleksyn, Jacek; Wright, Ian J

    2009-05-01

    The ecophysiological linkage of leaf phosphorus (P) to photosynthetic capacity (A (max)) and to the A (max)-nitrogen relation remains poorly understood. To address this issue we compiled published and unpublished field data for mass-based A (max), nitrogen (N) and P (n = 517 observations) from 314 species at 42 sites in 14 countries. Data were from four biomes: arctic, cold temperate, subtropical (including Mediterranean), and tropical. We asked whether plants with low P levels have low A (max), a shallower slope of the A (max)-N relationship, and whether these patterns have a geographic signature. On average, leaf P was substantially lower in the two warmer than in the two colder biomes, with the reverse true for N:P ratios. The evidence indicates that the response of A (max) to leaf N is constrained by low leaf P. Using a full factorial model for all data, A (max) was related to leaf N, but not to leaf P on its own, with a significant leaf N x leaf P interaction indicating that the response of A (max) to N increased with increasing leaf P. This was also found in analyses using one value per species per site, or by comparing only angiosperms or only woody plants. Additionally, the slope of the A (max)-N relationship was higher in the colder arctic and temperate than warmer tropical and subtropical biomes. Sorting data into low, medium, and high leaf P groupings also showed that the A (max)-N slope increases with leaf P. These analyses support claims that in P-limited ecosystems the A (max)-N relationship may be constrained by low P, and are consistent with laboratory studies that show P-deficient plants have limited ribulose-1,5-bisphosphate regeneration, a likely mechanism for the P influence upon the A (max)-N relation.

  11. Effects of Nitrogen Application Rate and Leaf Age on the Distribution Pattern of Leaf SPAD Readings in the Rice Canopy

    PubMed Central

    Yang, Jingping; Wang, Hua; Zou, Junliang; He, Junjun

    2014-01-01

    A Soil-Plant Analysis Development (SPAD) chlorophyll meter can be used as a simple tool for evaluating N concentration of the leaf and investigating the combined effects of nitrogen rate and leaf age on N distribution. We conducted experiments in a paddy field over two consecutive years (2008–2009) using rice plants treated with six different N application levels. N distribution pattern was determined by SPAD readings based on the temporal dynamics of N concentrations in individual leaves. At 62 days after transplantation (DAT) in 2008 and DAT 60 in 2009, leaf SPAD readings increased from the upper to lower in the rice canopy that received N levels of 150 to 375 kg ha−1The differences in SPAD readings between the upper and lower leaf were larger under higher N application rates. However, as plants grew, this atypical distribution of SPAD readings in canopy leaf quickly reversed to the general order. In addition, temporal dynamics of the leaf SPAD readings (N concentrations) were fitted to a piecewise function. In our model, changes in leaf SPAD readings were divided into three stages: growth, functioning, and senescence periods. The leaf growth period lasted approximately 6 days, and cumulative growing days were not affected by N application rates. The leaf functioning period was represented with a relatively stable SPAD reading related to N application rate, and cumulative growing days were extended with increasing N application rates. A quadratic equation was utilized to describe the relationship between SPAD readings and leaf age during the leaf senescence period. The rate of decrease in SPAD readings increased with the age of leaves, but the rate was slowed by N application. As leaves in the lower canopy were physiologically older than leaves in the upper canopy, the rate of decrease in SPAD readings was faster in the lower leaves. PMID:24520386

  12. Monitoring the ratio of leaf carbon to nitrogen in winter wheat with hyperspectral measurements

    NASA Astrophysics Data System (ADS)

    Xu, Xin-gang; Yang, Xiao-dong; Gu, Xiao-he; Yang, Hao; Feng, Hai-kuan; Yang, Gui-jun; Song, Xiao-yu

    2015-10-01

    In crop leaves the ratio of carbon to nitrogen (C/N), defined as ratio of LCC (leaf carbon concentration) to LNC (leaf nitrogen concentration), is a good indicator that can synthetically evaluate the balance of carbon and nitrogen, nutrient status in crop plants. Hence it is very important how to monitor changes of leaf C/N effectively and in real time for nutrient diagnosis and growing management of crops in fields. In consideration of the close relationships between chlorophyll, nitrogen (N) and C/N, some typical indices aimed at N estimation were tested to estimate leaf C/N in winter wheat as well as several indices aimed chlorophyll evaluation. The multi-temporal hyperspectral data from the flag-leaf, anthesis, filling, and milk-ripe stages were obtained to calculate these selected spectral indices for evaluating C/N in winter wheat. The results showed that some tested indices such as MCARI/OSAVI2, MTCI and Rep-Le had the better performance of estimating C/N. In addition, GRA (gray relational analysis) and Branch-and-Bound method were also used along with spectral indices sensitive to C/N for improving the accuracy of monitoring C/N in winter wheat, and obtained the better results with R2 of 0.74, RMSE of 0.991. It indicates that monitoring of leaf C/N in winter wheat with hyperspectral reflectance measurements appears very potential.

  13. A paradox of leaf-trait convergence: why is leaf nitrogen concentration higher in species with higher photosynthetic capacity?

    PubMed

    Hikosaka, Kouki; Osone, Yoko

    2009-05-01

    It is well known that leaf photosynthesis per unit dry mass (A(mass)) is positively correlated with nitrogen concentration (N(mass)) across naturally growing plants. In this article we show that this relationship is paradoxical because, if other traits are identical among species, plants with a higher A(mass) should have a lower N(mass), because of dilution by the assimilated carbon. To find a factor to overcome the dilution effect, we analyze the N(mass)-A(mass) relationship using simple mathematical models and literature data. We propose two equations derived from plant-growth models. Model prediction is compared with the data set of leaf trait spectrum obtained on a global scale. The model predicts that plants with a higher A(mass) should have a higher specific nitrogen absorption rate in roots (SAR), less biomass allocation to leaves, and/or greater nitrogen allocation to leaves. From the literature survey, SAR is suggested as the most likely factor. If SAR is the sole factor maintaining the positive relationship between N(mass) and A(mass), the variation in SAR is predicted to be much greater than that in A(mass); given that A(mass) varies 130-fold, SAR may vary more than 2000-fold. We predict that there is coordination between leaf and root activities among species on a global scale.

  14. Plant chlorophyll fluorescence: active and passive measurements at canopy and leaf scales with different nitrogen treatments

    PubMed Central

    Cendrero-Mateo, M. Pilar; Moran, M. Susan; Papuga, Shirley A.; Thorp, K.R.; Alonso, L.; Moreno, J.; Ponce-Campos, G.; Rascher, U.; Wang, G.

    2016-01-01

    Most studies assessing chlorophyll fluorescence (ChlF) have examined leaf responses to environmental stress conditions using active techniques. Alternatively, passive techniques are able to measure ChlF at both leaf and canopy scales. However, the measurement principles of both techniques are different, and only a few datasets concerning the relationships between them are reported in the literature. In this study, we investigated the potential for interchanging ChlF measurements using active techniques with passive measurements at different temporal and spatial scales. The ultimate objective was to determine the limits within which active and passive techniques are comparable. The results presented in this study showed that active and passive measurements were highly correlated over the growing season across nitrogen treatments at both canopy and leaf-average scale. At the single-leaf scale, the seasonal relation between techniques was weaker, but still significant. The variability within single-leaf measurements was largely related to leaf heterogeneity associated with variations in CO2 assimilation and stomatal conductance, and less so to variations in leaf chlorophyll content, leaf size or measurement inputs (e.g. light reflected and emitted by the leaf and illumination conditions and leaf spectrum). This uncertainty was exacerbated when single-leaf analysis was limited to a particular day rather than the entire season. We concluded that daily measurements of active and passive ChlF at the single-leaf scale are not comparable. However, canopy and leaf-average active measurements can be used to better understand the daily and seasonal behaviour of passive ChlF measurements. In turn, this can be used to better estimate plant photosynthetic capacity and therefore to provide improved information for crop management. PMID:26482242

  15. Plant chlorophyll fluorescence: active and passive measurements at canopy and leaf scales with different nitrogen treatments.

    PubMed

    Cendrero-Mateo, M Pilar; Moran, M Susan; Papuga, Shirley A; Thorp, K R; Alonso, L; Moreno, J; Ponce-Campos, G; Rascher, U; Wang, G

    2016-01-01

    Most studies assessing chlorophyll fluorescence (ChlF) have examined leaf responses to environmental stress conditions using active techniques. Alternatively, passive techniques are able to measure ChlF at both leaf and canopy scales. However, the measurement principles of both techniques are different, and only a few datasets concerning the relationships between them are reported in the literature. In this study, we investigated the potential for interchanging ChlF measurements using active techniques with passive measurements at different temporal and spatial scales. The ultimate objective was to determine the limits within which active and passive techniques are comparable. The results presented in this study showed that active and passive measurements were highly correlated over the growing season across nitrogen treatments at both canopy and leaf-average scale. At the single-leaf scale, the seasonal relation between techniques was weaker, but still significant. The variability within single-leaf measurements was largely related to leaf heterogeneity associated with variations in CO2 assimilation and stomatal conductance, and less so to variations in leaf chlorophyll content, leaf size or measurement inputs (e.g. light reflected and emitted by the leaf and illumination conditions and leaf spectrum). This uncertainty was exacerbated when single-leaf analysis was limited to a particular day rather than the entire season. We concluded that daily measurements of active and passive ChlF at the single-leaf scale are not comparable. However, canopy and leaf-average active measurements can be used to better understand the daily and seasonal behaviour of passive ChlF measurements. In turn, this can be used to better estimate plant photosynthetic capacity and therefore to provide improved information for crop management. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. Developmental changes in carbon and nitrogen metabolism affect tea quality in different leaf position.

    PubMed

    Li, Zhi-Xin; Yang, Wei-Jun; Ahammed, Golam Jalal; Shen, Chen; Yan, Peng; Li, Xin; Han, Wen-Yan

    2016-09-01

    Leaf position represents a specific developmental stage that influences both photosynthesis and respiration. However, the precise relationships between photosynthesis and respiration in different leaf position that affect tea quality are largely unknown. Here, we show that the effective quantum yield of photosystem II [ΦPSⅡ] as well as total chlorophyll concentration (TChl) of tea leaves increased gradually with leaf maturity. Moreover, respiration rate (RR) together with total nitrogen concentration (TN) decreased persistently, but total carbon remained unchanged during leaf maturation. Analyses of major N-based organic compounds revealed that decrease in TN was attributed to a significant decrease in the concentration of caffeine and amino acids (AA) in mature leaves. Furthermore, soluble sugar (SS) decreased, but starch concentration increased with leaf maturity, indicating that source-sink relationship was altered during tea leaf development. Detailed correlation analysis showed that ΦPSⅡ was negatively correlated with RR, SS, starch, tea polyphenol (TP), total catechins and TN, but positively correlated with TChl; while RR was positively correlated with TN, SS, TP and caffeine, but negatively correlated with TChl and starch concentrations. Our results suggest that biosynthesis of chlorophyll, catechins and polyphenols is closely associated with photosynthesis and respiration in different leaf position that greatly influences the relationship between primary and secondary metabolism in tea plants. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Representing leaf and root physiological traits in CLM improves global carbon and nitrogen cycling predictions

    SciTech Connect

    Ghimire, Bardan; Riley, William J.; Koven, Charles D.; Mu, Mingquan; Randerson, James T.

    2016-05-01

    In many ecosystems, nitrogen is the most limiting nutrient for plant growth and productivity. However, current Earth System Models (ESMs) do not mechanistically represent functional nitrogen allocation for photosynthesis or the linkage between nitrogen uptake and root traits. The current version of CLM (4.5) links nitrogen availability and plant productivity via (1) an instantaneous downregulation of potential photosynthesis rates based on soil mineral nitrogen availability, and (2) apportionment of soil nitrogen between plants and competing nitrogen consumers assumed to be proportional to their relative N demands. However, plants do not photosynthesize at potential rates and then downregulate; instead photosynthesis rates are governed by nitrogen that has been allocated to the physiological processes underpinning photosynthesis. Furthermore, the role of plant roots in nutrient acquisition has also been largely ignored in ESMs. We therefore present a new plant nitrogen model for CLM4.5 with (1) improved representations of linkages between leaf nitrogen and plant productivity based on observed relationships in a global plant trait database and (2) plant nitrogen uptake based on root-scale Michaelis-Menten uptake kinetics. Our model improvements led to a global bias reduction in GPP, LAI, and biomass of 70%, 11%, and 49%, respectively. Furthermore, water use efficiency predictions were improved conceptually, qualitatively, and in magnitude. The new model's GPP responses to nitrogen deposition, CO 2 fertilization, and climate also differed from the baseline model. The mechanistic representation of leaf-level nitrogen allocation and a theoretically consistent treatment of competition with belowground consumers led to overall improvements in global carbon cycling predictions.

  18. Representing leaf and root physiological traits in CLM improves global carbon and nitrogen cycling predictions

    NASA Astrophysics Data System (ADS)

    Ghimire, Bardan; Riley, William J.; Koven, Charles D.; Mu, Mingquan; Randerson, James T.

    2016-06-01

    In many ecosystems, nitrogen is the most limiting nutrient for plant growth and productivity. However, current Earth System Models (ESMs) do not mechanistically represent functional nitrogen allocation for photosynthesis or the linkage between nitrogen uptake and root traits. The current version of CLM (4.5) links nitrogen availability and plant productivity via (1) an instantaneous downregulation of potential photosynthesis rates based on soil mineral nitrogen availability, and (2) apportionment of soil nitrogen between plants and competing nitrogen consumers assumed to be proportional to their relative N demands. However, plants do not photosynthesize at potential rates and then downregulate; instead photosynthesis rates are governed by nitrogen that has been allocated to the physiological processes underpinning photosynthesis. Furthermore, the role of plant roots in nutrient acquisition has also been largely ignored in ESMs. We therefore present a new plant nitrogen model for CLM4.5 with (1) improved representations of linkages between leaf nitrogen and plant productivity based on observed relationships in a global plant trait database and (2) plant nitrogen uptake based on root-scale Michaelis-Menten uptake kinetics. Our model improvements led to a global bias reduction in GPP, LAI, and biomass of 70%, 11%, and 49%, respectively. Furthermore, water use efficiency predictions were improved conceptually, qualitatively, and in magnitude. The new model's GPP responses to nitrogen deposition, CO2 fertilization, and climate also differed from the baseline model. The mechanistic representation of leaf-level nitrogen allocation and a theoretically consistent treatment of competition with belowground consumers led to overall improvements in global carbon cycling predictions.

  19. Representing leaf and root physiological traits in CLM improves global carbon and nitrogen cycling predictions

    DOE PAGES

    Ghimire, Bardan; Riley, William J.; Koven, Charles D.; ...

    2016-05-01

    In many ecosystems, nitrogen is the most limiting nutrient for plant growth and productivity. However, current Earth System Models (ESMs) do not mechanistically represent functional nitrogen allocation for photosynthesis or the linkage between nitrogen uptake and root traits. The current version of CLM (4.5) links nitrogen availability and plant productivity via (1) an instantaneous downregulation of potential photosynthesis rates based on soil mineral nitrogen availability, and (2) apportionment of soil nitrogen between plants and competing nitrogen consumers assumed to be proportional to their relative N demands. However, plants do not photosynthesize at potential rates and then downregulate; instead photosynthesis ratesmore » are governed by nitrogen that has been allocated to the physiological processes underpinning photosynthesis. Furthermore, the role of plant roots in nutrient acquisition has also been largely ignored in ESMs. We therefore present a new plant nitrogen model for CLM4.5 with (1) improved representations of linkages between leaf nitrogen and plant productivity based on observed relationships in a global plant trait database and (2) plant nitrogen uptake based on root-scale Michaelis-Menten uptake kinetics. Our model improvements led to a global bias reduction in GPP, LAI, and biomass of 70%, 11%, and 49%, respectively. Furthermore, water use efficiency predictions were improved conceptually, qualitatively, and in magnitude. The new model's GPP responses to nitrogen deposition, CO 2 fertilization, and climate also differed from the baseline model. The mechanistic representation of leaf-level nitrogen allocation and a theoretically consistent treatment of competition with belowground consumers led to overall improvements in global carbon cycling predictions.« less

  20. [Diagnoses of rice nitrogen status based on characteristics of scanning leaf].

    PubMed

    Zhu, Jin-Xia; Deng, Jin-Song; Shi, Yuan-Yuan; Chen, Zhu-Lu; Han, Ning; Wang, Ke

    2009-08-01

    In the present research, the scanner was adopted as the digital image sensor, and a new method to diagnose the status of rice based on image processing technology was established. The main results are as follows: (1) According to the analysis of relations between leaf percentage nitrogen contents and color parameter, the sensitive color parameters were abstracted as B, b, b/(r+g), b/r and b/g. The leaf position (vertical spatial variation) effects on leaf chlorophyll contents were investigated, and the third fully expanded leaf was selected as the diagnosis leaf. (2) Field ground data such as ASD were collected simultaneously. Then study on the relationships between scanned leaf color characteristics and hyperspectral was carried out. The results indicated that the diagnosis of nitrogen status based on the scanned color characteristic is able to partly reflect the hyperspectral properties. (3) The leaf color and shape features were intergrated and the model of diagnosing the status of rice was established with calculated at YIQ color system. The distinct accuracy of nitrogen status was as follows: N0: 74.9%; N1 : 52%; N2 : 84.7%; N3 : 75%. The preliminary study showed that the methodology has been proved successful in this study and provides the potential to monitor nitrogen status in a cost-effective and accurate way based on the scanned digital image. Although, some confusion exists, with rapidly increasing resolution of digital platform and development of digital image technology, it will be more convenient for larger farms that can afford to use mechanized systems for site-specific nutrient management. Moreover, deeper theory research and practice experiment should be needed in the future.

  1. Shoot biomass growth is related to the vertical leaf nitrogen gradient in Salix canopies.

    PubMed

    Weih, Martin; Rönnberg-Wästjung, Ann-Christin

    2007-11-01

    Plant canopy optimization models predict that leaf nitrogen (N) distribution in the canopy will parallel the vertical light gradient, and numerous studies with many species have confirmed this prediction. Further, it is predicted that for a given canopy leaf area, a low vertical light extinction coefficient will promote rapid growth. Therefore, the ideal canopy of fast-growing plants should combine high leaf area index with a low light extinction coefficient; the latter being reflected in a flat vertical leaf N gradient throughout the canopy. Based on data from an experimental Salix stand (six varieties) grown on agricultural land in central Sweden, we tested the hypothesis that shoot growth is correlated with vertical leaf N gradient in canopies of hybrid willows bred for biomass production, which could have implications for Salix breeding. Tree improvement research requires screening of growth-related traits in large numbers of plants, but assessment of canopy leaf N gradients by chemical analysis is expensive, time-consuming and destructive. An alternative to analytical methods is to estimate leaf N gradients nondestructively with an optical chlorophyll meter (SPAD method). Here we provide a specific calibration for interpreting SPAD data measured in hybrid willows grown in biomass plantations on fertile agricultural land. Based on SPAD measurements, a significant and inverse relationship (r(2) = 0.88) was found between shoot biomass growth and vertical leaf N gradient across canopies of six Salix varieties.

  2. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China.

    PubMed

    Han, Wenxuan; Fang, Jingyun; Guo, Dali; Zhang, Yan

    2005-11-01

    Leaf nitrogen and phosphorus stoichiometry of Chinese terrestrial plants was studied based on a national data set including 753 species across the country. Geometric means were calculated for functional groups based on life form, phylogeny and photosynthetic pathway, as well as for all 753 species. The relationships between leaf N and P stoichiometric traits and latitude (and temperature) were analysed. The geometric means of leaf N, P, and N : P ratio for the 753 species were 18.6 and 1.21 mg g(-1) and 14.4, respectively. With increasing latitude (decreasing mean annual temperature, MAT), leaf N and P increased, but the N : P ratio did not show significant changes. Although patterns of leaf N, P and N : P ratios across the functional groups were generally consistent with those reported previously, the overall N : P ratio of China's flora was considerably higher than the global averages, probably caused by a greater shortage of soil P in China than elsewhere. The relationships between leaf N, P and N : P ratio and latitude (and MAT) also suggested the existence of broad biogeographical patterns of these leaf traits in Chinese flora.

  3. Leaf Mass Area, Leaf Carbon and Nitrogen Content, Barrow, Alaska, 2012-2016

    SciTech Connect

    Ely, Kim; Lieberman-Cribbin, Wil; Rogers, Alistair; Serbin, Shawn; Lasota, Stefanie

    2016-12-20

    Carbon, Nitrogen and Leaf Mass Area of leaves sampled from the Barrow Environmental Observatory, Barrow, Alaska. Species measured; Arctophila fulva, Arctagrostis latifolia, Carex aquatilis, Dupontia fisheri, Eriophorum angustifolium, Petasites frigidus, Salix pulchra, Vaccinium vitis-idaea, Salix rotundifolia, Luzula arctica, Saxifraga punctata and Potentilla hyparctica.

  4. Leaf hydraulic conductance is coordinated with leaf morpho-anatomical traits and nitrogen status in the genus Oryza.

    PubMed

    Xiong, Dongliang; Yu, Tingting; Zhang, Tong; Li, Yong; Peng, Shaobing; Huang, Jianliang

    2015-02-01

    Leaf hydraulic conductance (K leaf) is a major determinant of photosynthetic rate in plants. Previous work has assessed the relationships between leaf morpho-anatomical traits and K leaf with woody species, but there has been very little focus on cereal crops. The genus Oryza, which includes rice (Oryza sativa) and wild species (such as O. rufipogon cv. Griff), is ideal material for identifying leaf features associated with K leaf and gas exchange. Leaf morpho-anatomical traits, K leaf, leaf N content per leaf area, and CO2 diffusion efficiency were investigated in 11 Oryza cultivars. K leaf was positively correlated with leaf thickness and related traits, and therefore positively correlated with leaf mass per area and leaf N content per leaf area, and negatively with inter-veinal distance. K leaf was also positively correlated with leaf area and its related traits, and therefore negatively correlated with the proportion of minor vein length per area. In addition, coordination between K leaf and CO2 diffusion conductance in leaves was observed. We conclude that leaf morpho-anatomical traits and N content per leaf area strongly influence K leaf. Our results suggest that more detailed anatomical and structural studies are needed to elucidate the impacts of leaf feature traits on K leaf and gas exchange in grasses.

  5. Interspecific difference in the photosynthesis-nitrogen relationship: patterns, physiological causes, and ecological importance.

    PubMed

    Hikosaka, Kouki

    2004-12-01

    The photosynthesis-nitrogen relationship is significantly different among species. Photosynthetic capacity per unit leaf nitrogen, termed as photosynthetic nitrogen-use efficiency (PNUE), has been considered an important leaf trait to characterise species in relation to their leaf economics, physiology, and strategy. In this review, I discuss (1) relations between PNUE and species ecology, (2) physiological causes and (3) ecological implications of the interspecific difference in PNUE. Species with a high PNUE tend to have high growth rates and occur in disturbed or high productivity habitats, while those with a low PNUE occur in stressful or low productivity habitats. PNUE is an important leaf trait that correlates with other leaf traits, such as leaf mass per area (LMA) and leaf life span, irrespective of life form, phylogeny, and biomes. Various factors are involved in the interspecific difference. In particular, nitrogen allocation within leaves and the mesophyll conductance for CO(2) diffusion are important. To produce tough leaves, plants need to allocate more biomass and nitrogen to make thick cell walls, leading to a reduction in the mesophyll conductance and in nitrogen allocation to the photosynthetic apparatus. Allocation of biomass and nitrogen to cell walls may cause the negative relationship between PNUE and LMA. Since plants cannot maximise both PNUE and leaf toughness, there is a trade-off between photosynthesis and persistence, which enables the existence of species with various leaf characteristics on the earth.

  6. Leaf nitrogen and phosphorus of temperate desert plants in response to climate and soil nutrient availability.

    PubMed

    He, Mingzhu; Dijkstra, Feike A; Zhang, Ke; Li, Xinrong; Tan, Huijuan; Gao, Yanhong; Li, Gang

    2014-11-06

    In desert ecosystems, plant growth and nutrient uptake are restricted by availability of soil nitrogen (N) and phosphorus (P). The effects of both climate and soil nutrient conditions on N and P concentrations among desert plant life forms (annual, perennial and shrub) remain unclear. We assessed leaf N and P levels of 54 desert plants and measured the corresponding soil N and P in shallow (0-10 cm), middle (10-40 cm) and deep soil layers (40-100 cm), at 52 sites in a temperate desert of northwest China. Leaf P and N:P ratios varied markedly among life forms. Leaf P was higher in annuals and perennials than in shrubs. Leaf N and P showed a negative relationship with mean annual temperature (MAT) and no relationship with mean annual precipitation (MAP), but a positive relationship with soil P. Leaf P of shrubs was positively related to soil P in the deep soil. Our study indicated that leaf N and P across the three life forms were influenced by soil P. Deep-rooted plants may enhance the availability of P in the surface soil facilitating growth of shallow-rooted life forms in this N and P limited system, but further research is warranted on this aspect.

  7. Leaf nitrogen and phosphorus of temperate desert plants in response to climate and soil nutrient availability

    PubMed Central

    He, Mingzhu; Dijkstra, Feike A.; Zhang, Ke; Li, Xinrong; Tan, Huijuan; Gao, Yanhong; Li, Gang

    2014-01-01

    In desert ecosystems, plant growth and nutrient uptake are restricted by availability of soil nitrogen (N) and phosphorus (P). The effects of both climate and soil nutrient conditions on N and P concentrations among desert plant life forms (annual, perennial and shrub) remain unclear. We assessed leaf N and P levels of 54 desert plants and measured the corresponding soil N and P in shallow (0–10 cm), middle (10–40 cm) and deep soil layers (40–100 cm), at 52 sites in a temperate desert of northwest China. Leaf P and N:P ratios varied markedly among life forms. Leaf P was higher in annuals and perennials than in shrubs. Leaf N and P showed a negative relationship with mean annual temperature (MAT) and no relationship with mean annual precipitation (MAP), but a positive relationship with soil P. Leaf P of shrubs was positively related to soil P in the deep soil. Our study indicated that leaf N and P across the three life forms were influenced by soil P. Deep-rooted plants may enhance the availability of P in the surface soil facilitating growth of shallow-rooted life forms in this N and P limited system, but further research is warranted on this aspect. PMID:25373739

  8. Spatial and temporal variations in leaf area index, specific leaf area and leaf nitrogen of two co-occurring savanna tree species.

    PubMed

    Simioni, Guillaume; Gignoux, Jacques; Le Roux, Xavier; Appé, Raphaëlle; Benest, Daniele

    2004-02-01

    Foliage growth, mass- and area-based leaf nitrogen concentrations (Nm and N a) and specific leaf area (SLA) were surveyed during a complete vegetation cycle for two co-occurring savanna tree species: Crossopteryx febrifuga (Afzel. ex G. Don) Benth. and Cussonia arborea A. Rich. The study was conducted in the natural reserve of Lamto, Ivory Coast, on isolated and clumped trees. Leaf flush occurred before the beginning of the rainy season. Maximum leaf area index (LAI), computed on a projected canopy basis for individual trees, was similar (mean of about 4) for both species. Seasonal courses of the ratio of actual to maximum LAI were similar for individuals of the same species, but differed between species. For C. febrifuga, clumped trees reached their maximum LAI before isolated trees. The LAI of C. arborea trees did not differ between clumped and isolated individuals, but maximum LAI was reached about 2 months later than for C. febrifuga. Leaf fall was associated with decreasing soil water content for C. arborea. For C. febrifuga, leaf fall started before the end of the rainy period and was independent of changes in soil water content. These features lead to a partial niche separation in time for light resource acquisition between the two species. Although Nm, N a and SLA decreased with time, SLA and N a decreased later in the vegetation cycle for C. arborea than for C. febrifuga. For both species, N a decreased and SLA increased with decreasing leaf irradiance within the canopy, although effects of light on leaf characteristics did not differ between isolated and clumped trees. Given relationships between N a and photosynthetic capacities previously reported for these species, our results show that C. arborea exhibits higher photosynthetic capacity than C. febrifuga during most of the vegetation cycle and at all irradiances.

  9. Functional relationships of leafing intensity to plant height, growth form and leaf habit

    NASA Astrophysics Data System (ADS)

    Yan, En-Rong; Milla, Rubén; Aarssen, Lonnie W.; Wang, Xi-Hua

    2012-05-01

    Leafing intensity, i.e. the number of leaves per unit of stem volume or mass, is a common developmental correlate of leaf size. However, the ecological significance and the functional implications of variation in leafing intensity, other than its relation to leaf size, are unknown. Here, we explore its relationships with plant height, growth form, leaf size, and leaf habit to test a series of corollaries derived from the leafing intensity premium hypothesis. Volume-based leafing intensities and plant heights were recorded for 109 woody species from the subtropical evergreen broadleaf forests of eastern China. In addition, we compiled leafing intensity data from published literature, and combined it with our data to form a 398 species dataset, to test for differences of leafing intensity between plant growth forms (i.e. herbaceous and woody) and leaf habits (i.e. deciduous and evergreens). Leafing intensity was negatively correlated with plant height and individual leaf mass. Volume-based leafing intensities were significantly higher in herbaceous species than in woody species, and also higher in deciduous than in evergreen woody species. In conclusion, leafing intensity relates strongly to plant height, growth form, leaf size, and leaf habit in directions generally in accordance to the leafing intensity premium hypothesis. These results can be interpreted in terms of the evolution of adaptive strategies involving response to herbivory, competitive ability for light and reproductive economy.

  10. Effects of starter nitrogen fertilizer on soybean root activity, leaf photosynthesis and grain yield

    PubMed Central

    Gai, Zhijia; Zhang, Jingtao; Li, Caifeng

    2017-01-01

    The objective of this study was to examine the impact of starter nitrogen fertilizer on soybean root activity, leaf photosynthesis, grain yield and their relationship. To achieve this objective, field experiments were conducted in 2013 and 2014, using a randomized complete block design, with three replications. Nitrogen was applied at planting at rates of 0, 25, 50, and 75 kg N ha-1. In both years, starter nitrogen fertilizer benefited root activity, leaf photosynthesis, and consequently its yield. Statistically significant correlation was found among root activity, leaf photosynthetic rate, and grain yield at the developmental stage. The application of N25, N50, and N75 increased grain yield by 1.28%, 2.47%, and 1.58% in 2013 and by 0.62%, 2.77%, and 2.06% in 2014 compared to the N0 treatment. Maximum grain yield of 3238.91 kg ha-1 in 2013 and 3086.87 kg ha-1 in 2014 were recorded for N50 treatment. Grain yield was greater for 2013 than 2014, possibly due to more favorable environmental conditions. This research indicated that applying nitrogen as starter is necessary to increase soybean yield in Sangjiang River Plain in China. PMID:28388620

  11. Relating Leaf Nitrogen, Leaf Photosynthesis and Canopy CO2 Exchange in a Temperate Winter Barley Field

    NASA Astrophysics Data System (ADS)

    Jensen, R.; Boegh, E.; Herbst, M.; Friborg, T.

    2012-12-01

    Net exchange of CO2 between the atmosphere and the soil-vegetation interface (NEE) is controlled by a wide range of biochemical and biophysical processes where leaf photosynthesis is often the most important. In mechanistically and physically based photosynthesis models (e.g. Farquhar et al. 1980) leaf nutrient status is a limiting factor for the photosynthetic capacity since it is implicitly incorporated through the parameters of maximum rate of carboxylation of CO2 (Vcmax) and the maximum rate of electron transport (Jmax). These are closely related to leaf nitrogen concentration (Na) and leaf chlorophyll content (Cab) and often show a characteristic seasonal dynamic. When simulating CO2 exchange, model outputs are sensitive to leaf photosynthetic capacity, which is labour consuming to verify through field measurements. A less time consuming method is to measure leaf "greenness" (SPAD), which is closely related to chlorophyll content and thus photosynthetic capacity. In the present study field measurements of leaf photosynthesis (LI-6400, LICOR Inc.), leaf reflectance (SPAD-502, Minolta), and LAI (LAI-2000, LICOR Inc.) were conducted on agricultural fields in Western Denmark during one growing season. The leaf photosynthesis measurements provided the basis for estimating photosynthetic capacity. SPAD measurements and LAI was measured with a higher spatial and temporal resolution. SPAD readings were calibrated against Cab and Na analyzed on leaf material in the laboratory and later correlated to photosynthetic capacity. These data were used to parameterize a coupled photosynthesis and stomatal model that was run for the growing season 2012 to estimate NEE. As a part of the hydrological observatory HOBE (hobe.dk), fluxes of greenhouse gasses are continuously measured by eddy covariance systems at three field sites in the Skjern River Catchment, Western Denmark, providing the basis for estimating the exchange of energy, water vapour, and CO2 on canopy scale. One of

  12. Changes in Autumnal Leaf Reflectance Measurements of Deciduous Trees in Relation to Nitrogen Resorption Efficiencies

    NASA Astrophysics Data System (ADS)

    Wheeler, K. I.; Levia, D. F., Jr.; Vargas, R.

    2016-12-01

    During autumn, leaves play a significant and influential role in a forested ecosystem's hydrologic and biogeochemical cycles. Starting at pre-senescence, trees resorb essential nutrients, such as nitrogen and phosphorus, in order to maintain nutrient levels throughout the winter and into spring growth. Initial spring growth is almost exclusively dependent on nutrients resorbed before abscission. Climate change is expected to impact nutrient resorption and thus the need exists to be able to monitor changes in nutrient resorption. Spectrophotometry has been successfully used to identify pigment concentrations in senescing leaves, but current nitrogen metrics have not been reproducible. These metrics focus on reflectance values at key wavelengths and relationships between wavelengths in order to attempt to deduce the nitrogen concentration. We are interested, though, if the patterns of change in the leaf reflectance signatures throughout the fall can be used to compare resorption efficiencies. During 2015 and 2016, chlorophyll concentrations and light reflectance signatures were routinely measured for leaves of Fagus grandifolia (American beech), Liriodendron tulipifera (yellow poplar), and Betula lenta (sweet birch) trees throughout senescence. Leaves from each tree were collected both in August and post-abscission and analyzed for nitrogen concentrations using a CNHS Elementar Cube. Patterns in the light reflectance data were analyzed using Kohonen's self-organizing maps. Preliminary data suggests that the temporal leaf reflectances for each tree maps closer to those of trees with similar resorption efficiencies, thus potentially providing a method to non-destructively monitor nitrogen resorption efficiencies.

  13. Spectral measurements at different spatial scales in potato: relating leaf, plant and canopy nitrogen status

    NASA Astrophysics Data System (ADS)

    Jongschaap, Raymond E. E.; Booij, Remmie

    2004-09-01

    Chlorophyll contents in vegetation depend on soil nitrogen availability and on crop nitrogen uptake, which are important management factors in arable farming. Crop nitrogen uptake is important, as nitrogen is needed for chlorophyll formation, which is important for photosynthesis, i.e. the conversion of absorbed radiance into plant biomass. The objective of this study was to estimate leaf and canopy nitrogen contents by near and remote sensing observations and to link observations at leaf, plant and canopy level. A theoretical base is presented for scaling-up leaf optical properties to whole plants and crops, by linking different optical recording techniques at leaf, plant and canopy levels through the integration of vertical nitrogen distribution. Field data come from potato experiments in The Netherlands in 1997 and 1998, comprising two potato varieties: Eersteling and Bintje, receiving similar nitrogen treatments (0, 100, 200 and 300 kg N ha -1) in varying application schemes to create differences in canopy nitrogen status during the growing season. Ten standard destructive field samplings were performed to follow leaf area index and crop dry weight evolution. Samples were analysed for inorganic nitrogen and total nitrogen contents. At sampling dates, spectral measurements were taken both at leaf level and at canopy level. At leaf level, an exponential relation between SPAD-502 readings and leaf organic nitrogen contents with a high correlation factor of 0.91 was found. At canopy level, an exponential relation between canopy organic nitrogen contents and red edge position ( λrep, nm) derived from reflectance measurements was found with a good correlation of 0.82. Spectral measurements (SPAD-502) at leaf level of a few square mm were related to canopy reflectance measurements (CropScan™) of approximately 0.44 m 2. Statistical regression techniques were used to optimise theoretical vertical nitrogen profiles that allowed scaling-up leaf chlorophyll measurements

  14. Tight coupling of leaf area index to canopy nitrogen and phosphorus across heterogeneous tallgrass prairie communities.

    PubMed

    Klodd, Anne E; Nippert, Jesse B; Ratajczak, Zak; Waring, Hazel; Phoenix, Gareth K

    2016-11-01

    Nitrogen (N) and phosphorus (P) are limiting nutrients for many plant communities worldwide. Foliar N and P along with leaf area are among the most important controls on photosynthesis and hence productivity. However, foliar N and P are typically assessed as species level traits, whereas productivity is often measured at the community scale. Here, we compared the community-level traits of leaf area index (LAI) to total foliar nitrogen (TFN) and total foliar phosphorus (TFP) across nearly three orders of magnitude LAI in grazed and ungrazed tallgrass prairie in north-eastern Kansas, USA. LAI was strongly correlated with both TFN and TFP across communities, and also within plant functional types (grass, forb, woody, and sedge) and grazing treatments (bison or cattle, and ungrazed). Across almost the entire range of LAI values and contrasting communities, TFN:TFP ratios indicated co-limitation by N and P in almost all communities; this may further indicate a community scale trend of an optimal N and P allocation per unit leaf area for growth. Previously, results from the arctic showed similar tight relationships between LAI:TFN, suggesting N is supplied to canopies to maximize photosynthesis per unit leaf area. This tight coupling between LAI, N, and P in tallgrass prairie suggests a process of optimal allocation of N and P, wherein LAI remains similarly constrained by N and P despite differences in species composition, grazing, and canopy density.

  15. Estimation of rice leaf nitrogen contents based on hyperspectral LIDAR

    NASA Astrophysics Data System (ADS)

    Du, Lin; Gong, Wei; Shi, Shuo; Yang, Jian; Sun, Jia; Zhu, Bo; Song, Shalei

    2016-02-01

    Precision agriculture has become a global research hotspot in recent years. Thus, a technique for rapidly monitoring a farmland in a large scale and for accurately monitoring the growing status of crops needs to be established. In this paper, a novel technique, i.e., hyperspectral LIDAR (HL) which worked based on wide spectrum emission and a 32-channel detector was introduced, and its potential in vegetation detection was then evaluated. These spectra collected by HL were used to classify and derive the nitrogen contents of rice under four different nitrogen content levels with support vector machine (SVM) regression. Meanwhile the wavelength selection and channel correction method for achieving high spectral resolution were discussed briefly. The analysis results show that: (1) the reflectance intensity of the selected characteristic wavelengths of HL system has high correlation with different nitrogen contents levels of rice. (2) By increasing the number of wavelengths in calculation, the classification accuracy is greatly improved (from 54% with 4 wavelengths to 83% with 32 wavelengths) and so the regression coefficient r2 is (from 0.51 with 4 wavelengths to 0.75 with 32 wavelengths). (3) Support vector machine (SVM) is a useful regression method for rice leaf nitrogen contents retrieval. These analysis results can help farmers to make fertilization strategies more accurately. The receiving channels and characteristic wavelengths of HL system can be flexibly selected according to different requirements and thus this system will be applied in other fields, such as geologic exploration and environmental monitoring.

  16. Optimal photosynthetic use of light by tropical tree crowns achieved by adjustment of individual leaf angles and nitrogen content.

    PubMed

    Posada, Juan M; Lechowicz, Martin J; Kitajima, Kaoru

    2009-03-01

    Theory for optimal allocation of foliar nitrogen (ONA) predicts that both nitrogen concentration and photosynthetic capacity will scale linearly with gradients of insolation within plant canopies. ONA is expected to allow plants to efficiently use both light and nitrogen. However, empirical data generally do not exhibit perfect ONA, and light-use optimization per se is little explored. The aim was to examine to what degree partitioning of nitrogen or light is optimized in the crowns of three tropical canopy tree species. Instantaneous photosynthetic photon flux density (PPFD) incident on the adaxial surface of individual leaves was measured along vertical PPFD gradients in tree canopies at a frequency of 0.5 Hz over 9-17 d, and summed to obtain the average daily integral of PPFD for each leaf to characterize its insolation regime. Also measured were leaf N per area (N(area)), leaf mass per area (LMA), the cosine of leaf inclination and the parameters of the photosynthetic light response curve [photosynthetic capacity (A(max)), dark respiration (R(d)), apparent quantum yield (phi) and curvature (theta)]. The instantaneous PPFD measurements and light response curves were used to estimate leaf daily photosynthesis (A(daily)) for each leaf. Leaf N(area) and A(max) changed as a hyperbolic asymptotic function of the PPFD regime, not the linear relationship predicted by ONA. Despite this suboptimal nitrogen partitioning among leaves, A(daily) did increase linearly with PPFD regime through co-ordinated adjustments in both leaf angle and physiology along canopy gradients in insolation, exhibiting a strong convergence among the three species. The results suggest that canopy tree leaves in this tropical forest optimize photosynthetic use of PPFD rather than N per se. Tropical tree canopies then can be considered simple 'big-leaves' in which all constituent 'small leaves' use PPFD with the same photosynthetic efficiency.

  17. An empirical model that uses light attenuation and plant nitrogen status to predict within-canopy nitrogen distribution and upscale photosynthesis from leaf to whole canopy

    PubMed Central

    Louarn, Gaëtan; Frak, Ela; Zaka, Serge; Prieto, Jorge; Lebon, Eric

    2015-01-01

    Modelling the spatial and temporal distribution of leaf nitrogen (N) is central to specify photosynthetic parameters and simulate canopy photosynthesis. Leaf photosynthetic parameters depend on both local light availability and whole-plant N status. The interaction between these two levels of integration has generally been modelled by assuming optimal canopy functioning, which is not supported by experiments. During this study, we examined how a set of empirical relationships with measurable parameters could be used instead to predict photosynthesis at the leaf and whole-canopy levels. The distribution of leaf N per unit area (Na) within the canopy was related to leaf light irradiance and to the nitrogen nutrition index (NNI), a whole-plant variable accounting for plant N status. Na was then used to determine the photosynthetic parameters of a leaf gas exchange model. The model was assessed on alfalfa canopies under contrasting N nutrition and with N2-fixing and non-fixing plants. Three experiments were carried out to parameterize the relationships between Na, leaf irradiance, NNI and photosynthetic parameters. An additional independent data set was used for model evaluation. The N distribution model showed that it was able to predict leaf N on the set of leaves tested. The Na at the top of the canopy appeared to be related linearly to the NNI, whereas the coefficient accounting for N allocation remained constant. Photosynthetic parameters were related linearly to Na irrespective of N nutrition and the N acquisition mode. Daily patterns of gas exchange were simulated accurately at the leaf scale. When integrated at the whole-canopy scale, the model predicted that raising N availability above an NNI of 1 did not result in increased net photosynthesis. Overall, the model proposed offered a solution for a dynamic coupling of leaf photosynthesis and canopy N distribution without requiring any optimal functioning hypothesis. PMID:26433705

  18. An empirical model that uses light attenuation and plant nitrogen status to predict within-canopy nitrogen distribution and upscale photosynthesis from leaf to whole canopy.

    PubMed

    Louarn, Gaëtan; Frak, Ela; Zaka, Serge; Prieto, Jorge; Lebon, Eric

    2015-10-03

    Modelling the spatial and temporal distribution of leaf nitrogen (N) is central to specify photosynthetic parameters and simulate canopy photosynthesis. Leaf photosynthetic parameters depend on both local light availability and whole-plant N status. The interaction between these two levels of integration has generally been modelled by assuming optimal canopy functioning, which is not supported by experiments. During this study, we examined how a set of empirical relationships with measurable parameters could be used instead to predict photosynthesis at the leaf and whole-canopy levels. The distribution of leaf N per unit area (Na) within the canopy was related to leaf light irradiance and to the nitrogen nutrition index (NNI), a whole-plant variable accounting for plant N status. Na was then used to determine the photosynthetic parameters of a leaf gas exchange model. The model was assessed on alfalfa canopies under contrasting N nutrition and with N2-fixing and non-fixing plants. Three experiments were carried out to parameterize the relationships between Na, leaf irradiance, NNI and photosynthetic parameters. An additional independent data set was used for model evaluation. The N distribution model showed that it was able to predict leaf N on the set of leaves tested. The Na at the top of the canopy appeared to be related linearly to the NNI, whereas the coefficient accounting for N allocation remained constant. Photosynthetic parameters were related linearly to Na irrespective of N nutrition and the N acquisition mode. Daily patterns of gas exchange were simulated accurately at the leaf scale. When integrated at the whole-canopy scale, the model predicted that raising N availability above an NNI of 1 did not result in increased net photosynthesis. Overall, the model proposed offered a solution for a dynamic coupling of leaf photosynthesis and canopy N distribution without requiring any optimal functioning hypothesis.

  19. BOREAS TE-9 PAR and Leaf Nitrogen Data for NSA Species

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Dang, Qinglai; Margolis, Hank; Coyea, Marie

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-9 (Terrestrial Ecology) team collected several data sets related to chemical and photosynthetic properties of leaves in boreal forest tree species. This data set describes the relationship between photosynthetically active radiation (PAR) levels and foliage nitrogen in samples from six sites in the BOREAS Northern Study Area (NSA) collected during the three 1994 intensive field campaigns (IFCs). This information is useful for modeling the vertical distribution of carbon fixation for these different forest types in the boreal forest. The data were collected to quantify the relationship between PAR and leaf nitrogen of black spruce, jack pine, and aspen. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  20. Spectral reflectance relationships to leaf water stress

    NASA Technical Reports Server (NTRS)

    Ripple, William J.

    1986-01-01

    Spectral reflectance data were collected from detached snapbean leaves in the laboratory with a multiband radiometer. Four experiments were designed to study the spectral response resulting from changes in leaf cover, relative water content of leaves, and leaf water potential. Spectral regions included in the analysis were red (630-690 nm), NIR (760-900 nm), and mid-IR (2.08-2.35 microns). The red and mid-IR bands showed sensitivity to changes in both leaf cover and relative water content of leaves. The NIR was only highly sensitive to changes in leaf cover. Results provided evidence that mid-IR reflectance was governed primarily by leaf moisture content, although soil reflectance was an important factor when leaf cover was less than 100 percent. High correlations between leaf water potentials and reflectance were attributed to covariances with relative water content of leaves and leaf cover.

  1. Spectral reflectance relationships to leaf water stress

    NASA Technical Reports Server (NTRS)

    Ripple, William J.

    1986-01-01

    Spectral reflectance data were collected from detached snapbean leaves in the laboratory with a multiband radiometer. Four experiments were designed to study the spectral response resulting from changes in leaf cover, relative water content of leaves, and leaf water potential. Spectral regions included in the analysis were red (630-690 nm), NIR (760-900 nm), and mid-IR (2.08-2.35 microns). The red and mid-IR bands showed sensitivity to changes in both leaf cover and relative water content of leaves. The NIR was only highly sensitive to changes in leaf cover. Results provided evidence that mid-IR reflectance was governed primarily by leaf moisture content, although soil reflectance was an important factor when leaf cover was less than 100 percent. High correlations between leaf water potentials and reflectance were attributed to covariances with relative water content of leaves and leaf cover.

  2. Leaf reflectance-nitrogen-chlorophyll relations among three south Texas woody rangeland plant species

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.; Everitt, J. H.; Escobar, D. E. (Principal Investigator)

    1982-01-01

    Annual variations in the nitrogen-chlorophyll leaf reflectance of hackberry, honey mesquite and live oak in south Texas, were compared. In spring, leaf reflectance at the 0.55 m wavelength and nitrogen (N) concentration was high but leaf chlorophyll (chl) concentrations were low. In summer, leaf reflectance and N-concentration were low but lead chl concentrations were high. Linear correlations for both spring and summer of leaf reflectance with N and chl concentration or deviations from linear regression were not statistically significant.

  3. Detecting leaf nitrogen content in wheat with canopy hyperspectrum under different soil backgrounds

    NASA Astrophysics Data System (ADS)

    Yao, X.; Ren, H.; Cao, Z.; Tian, Y.; Cao, W.; Zhu, Y.; Cheng, T.

    2014-10-01

    Hyperspectral sensing techniques can be effective for rapid, non-destructive detecting of the nitrogen (N) status in crop plants; however, their accuracy is often affected by the soil background. Under different fractions of soil background, the canopy spectra and leaf nitrogen content (LNC) in winter wheat (Triticum aestivum L.) were obtained from field experiments with different N rates and planting densities over 3 growing seasons. Five types of vegetation index (VIs: normalized difference vegetation index (NDVI), ratio vegetation index (RVI), soil adjusted vegetation index (SAVI), optimize soil adjusted vegetation index (OSAVI), and perpendicular vegetation index (PVI)) were constructed based on three types of spectral information: (1) the original and the first derivative (FD) spectrum, (2) the spectrum adjusted with the vegetation coverage (FVcover), and (3) the pure spectrum extracted by a linear mixed model. Comprehensive relationships of above five types of VI with LNC were quantified for LNC detecting under different soil backgrounds. The results indicated that all five types of VI were significantly affected by the soil background, with R2 values of around 0.55 for LNC detecting, with the OSAVI (R514, R469)L=0.04 producing the best performance of all five indices. However, based on the FVcover, the coverage adjusted spectral index (CASI = NDVI(R513, R481)/(1 + FVcover)) produced the higher R2 value of 0.62 and the lower RRMSE of 13%, and was less sensitive to the leaf area index (LAI), leaf dry weight (LDW), FVcover, and leaf nitrogen accumulation (LNA). The results demonstrate that the newly developed CASI could improve the performance of LNC estimation under different soil backgrounds.

  4. Estimation of leaf nitrogen and silicon using hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Mokhele, Tholang A.; Ahmed, Fethi B.

    2010-11-01

    The potential to estimate the nutrient status in important agricultural crops such as maize and sugarcane is of significant interest. In South African sugarcane agriculture, just like in global ecosystem, the estimation of Nitrogen (N) and Silicon (Si) is very important. These nutrients are one of the factors influencing the prevalence of the stalk borer Eldana saccharina Walker (Lepidoptera: Pyralidae). Therefore, the researchers aim at estimating leaf N and Si concentration as well as their ratio in sugarcane using hyperspectral remote sensing (spectroradiometry) for monitoring E. saccharina. A hand-held Analytical Spectral Devices (ASD) Field Spec® 3 spectroradiometer was used to take leaf spectral measurements of sugarcane plants from a potted-plant trial taking place under shade house conditions. In this trial, nitrogen and silicon nutrient applications as well as varieties used were known. In addition, watering regimes and artificial infestation of E. saccharina were carefully controlled. The study results indicate that the Red-edge Index (R740/R720) is linearly related to N concentration (R2 = 0.81, Root Mean Square Error (RMSE) = 0.103) for N37 with the highest correlation coefficient. For Si, the index (R750-R560)/(R750+R560) was linearly related to Si concentration (R2 = 0.53, RMSE = 0.118) for N25. Finally, the N:Si ratio was linearly correlated to the index (R1075-R730)/(R1075+R730) (R2 = 0.67, RMSE = 1.508) for N37, hence this index can be used for early detection of E. saccharina damage or for identifying sugarcane that is prone to attack by E. saccharina. It was concluded that hyperspectral remote sensing has potential for use in estimating the N:Si ratio and E. saccharina potential infestations can be monitored rapidly and nondestructively in sugarcane under controlled conditions. It is recommended that an advanced study be conducted in field conditions using airborne and/or spaceborne hyperspectral sensors.

  5. Mycorrhizal Stimulation of Leaf Gas Exchange in Relation to Root Colonization, Shoot Size, Leaf Phosphorus and Nitrogen: A Quantitative Analysis of the Literature Using Meta-Regression.

    PubMed

    Augé, Robert M; Toler, Heather D; Saxton, Arnold M

    2016-01-01

    Arbuscular mycorrhizal (AM) symbiosis often stimulates gas exchange rates of the host plant. This may relate to mycorrhizal effects on host nutrition and growth rate, or the influence may occur independently of these. Using meta-regression, we tested the strength of the relationship between AM-induced increases in gas exchange, and AM size and leaf mineral effects across the literature. With only a few exceptions, AM stimulation of carbon exchange rate (CER), stomatal conductance (g s), and transpiration rate (E) has been significantly associated with mycorrhizal stimulation of shoot dry weight, leaf phosphorus, leaf nitrogen:phosphorus ratio, and percent root colonization. The sizeable mycorrhizal stimulation of CER, by 49% over all studies, has been about twice as large as the mycorrhizal stimulation of g s and E (28 and 26%, respectively). CER has been over twice as sensitive as g s and four times as sensitive as E to mycorrhizal colonization rates. The AM-induced stimulation of CER increased by 19% with each AM-induced doubling of shoot size; the AM effect was about half as large for g s and E. The ratio of leaf N to leaf P has been more closely associated with mycorrhizal influence on leaf gas exchange than leaf P alone. The mycorrhizal influence on CER has declined markedly over the 35 years of published investigations.

  6. Mycorrhizal Stimulation of Leaf Gas Exchange in Relation to Root Colonization, Shoot Size, Leaf Phosphorus and Nitrogen: A Quantitative Analysis of the Literature Using Meta-Regression

    PubMed Central

    Augé, Robert M.; Toler, Heather D.; Saxton, Arnold M.

    2016-01-01

    Arbuscular mycorrhizal (AM) symbiosis often stimulates gas exchange rates of the host plant. This may relate to mycorrhizal effects on host nutrition and growth rate, or the influence may occur independently of these. Using meta-regression, we tested the strength of the relationship between AM-induced increases in gas exchange, and AM size and leaf mineral effects across the literature. With only a few exceptions, AM stimulation of carbon exchange rate (CER), stomatal conductance (gs), and transpiration rate (E) has been significantly associated with mycorrhizal stimulation of shoot dry weight, leaf phosphorus, leaf nitrogen:phosphorus ratio, and percent root colonization. The sizeable mycorrhizal stimulation of CER, by 49% over all studies, has been about twice as large as the mycorrhizal stimulation of gs and E (28 and 26%, respectively). CER has been over twice as sensitive as gs and four times as sensitive as E to mycorrhizal colonization rates. The AM-induced stimulation of CER increased by 19% with each AM-induced doubling of shoot size; the AM effect was about half as large for gs and E. The ratio of leaf N to leaf P has been more closely associated with mycorrhizal influence on leaf gas exchange than leaf P alone. The mycorrhizal influence on CER has declined markedly over the 35 years of published investigations. PMID:27524989

  7. Nitrogen release pattern in decomposing leaf litter of banj oak and chir pine seedlings leaf under glass house condition.

    PubMed

    Usman, Samina

    2013-01-01

    Decomposition rate for leaf litter of banj oak (Quercus leucotrichophora) and chir pine (Pinus roxburghii), seedlings was studied over a period of one year, under glass house condition. The leaf litter of Quercus leucotrichophora decomposed faster as compared to Pinus roxburghii. Initially during 0-62 days of placement, the decomposition rate was slower for leaf litter of both species but after 123 days of placement it was 53% for Quercus leucotrichophora leaf litter and 33% for Pinus roxburghii leaf litter. The Quercus leucotrichophora leaf litter was completely decomposed after 11 months; however, 65% weight loss was recorded in Pinus roxburghii leaf litter after 12 months study. In Quercus leucotrichophora leaf litter the, initial (at the start of decomposition) nitrogen concentration was much higher (1.15%) than that of Pinus roxburghii leaf litter (1.41%), release of N was slower in chir pine leaf litter compared to banj oak leaf litter. Material with higher C/N ratio had longer duration of immobilization and in turn slower release phase. The concentration of N increased approximately linearly as a function of mass loss towards the end of annual cycle. Concentration of N was about 1.2 to 1.9 fold higher than the initial litter for seedlings of both the species.

  8. Relationships Between Photosynthetic Activity and Silica Accumulation with Ages of Leaf in Sasa veitchii (Poaceae, Bambusoideae)

    PubMed Central

    Motomura, Hiroyuki; Hikosaka, Kouki; Suzuki, Mitsuo

    2008-01-01

    Background and Aims Bamboos have long-lived, evergreen leaves that continue to accumulate silica throughout their life. Silica accumulation has been suggested to suppress their photosynthetic activity. However, nitrogen content per unit leaf area (Narea), an important determinant of maximum photosynthetic capacity per unit leaf area (Pmax), decreases as leaves age and senescence. In many species, Pmax decreases in parallel with the leaf nitrogen content. It is hypothesized that if silica accumulation affects photosynthesis, then Pmax would decrease faster than Narea, leading to a decrease in photosynthetic rate per unit leaf nitrogen (photosynthetic nitrogen use efficiency, PNUE) with increasing silica content in leaves. Methods The hypothesis was tested in leaves of Sasa veitchii, which have a life span of 2 years and accumulate silica up to 41 % of dry mass. Seasonal changes in Pmax, stomatal conductance, Narea and silica content were measured for leaves of different ages. Key Results Although Pmax and PNUE were negatively related with silica content across leaves of different ages, the relationship between PNUE and silica differed depending on leaf age. In second-year leaves, PNUE was almost constant although there was a large increase in silica content, suggesting that leaf nitrogen was a primary factor determining the variation in Pmax and that silica accumulation did not affect photosynthesis. PNUE was strongly and negatively correlated with silica content in third-year leaves, suggesting that silica accumulation affected photosynthesis of older leaves. Conclusions Silica accumulation in long-lived leaves of bamboo did not affect photosynthesis when the silica concentration of a leaf was less than 25 % of dry mass. Silica may be actively transported to epidermal cells rather than chlorenchyma cells, avoiding inhibition of CO2 diffusion from the intercellular space to chloroplasts. However, in older leaves with a larger silica content, silica was also

  9. Responses of leaf nitrogen concentration and leaf area of Populus sibirica seedlings to nitrogen fertilization in a semi-arid area, Mongolia

    NASA Astrophysics Data System (ADS)

    Chang, H.; Han, S. H.; Son, Y.

    2016-12-01

    We investigate the effects of three rates of nitrogen fertilization on Populus sibirica seedlings in a semi-arid area, Elsentasarkhai, Mongolia. In May 2015, 2-year-old P. sibirica seedlings were planted in the control and three fertilized plots. Urea was applied to each seedling with 5 g (N1), 15 g (N2) and 30 g (N3) in May 2015 and 2016. Leaf nitrogen concentration, total chlorophyll content, leaf area and specific leaf area (SLA) were measured in July 2016 and the differences were analyzed using one-way ANOVA (P<0.05). Leaf nitrogen concentration was significantly higher in the N2 (2.47±0.01%) and N3 (2.99±0.04%) plots than in the control (1.17±0.04%). Nitrogen fertilization also significantly increased total chlorophyll content (Control: 1.01±0.01 mg g-1, N1: 2.16±0.03 mg g-1, N2: 3.22±0.01 mg g-1, N3: 3.12±0.02 mg g-1) and seedlings in the N1 plot showed the lowest total chlorophyll content among the fertilized plots. There was no significant difference in SLA, however, leaf area in the N2 plot (3109.9 cm2) was significantly higher than that in the control (494.0 cm2). The N3 treatment significantly increased leaf nitrogen concentration and total chlorophyll content, however, it did not change leaf area. The N2 treatment seems to be suitable for leaf growth of P. sibirica seedlings in the study site. To determine the optimal rate of nitrogen fertilization, the growth and biomass of seedlings after treatments also need to be examined. * This study was supported by Korea Forest Service (S211216L030120).

  10. Interactive effects of atmospheric carbon dioxide and leaf nitrogen concentration on canopy light use efficiency: a modeling analysis.

    PubMed

    Medlyn, B. E.

    1996-01-01

    Potential increases in plant productivity in response to increasing atmospheric CO(2) concentration are likely to be constrained by nutrient limitations. However, the interactive effects of nitrogen nutrition and CO(2) concentration on growth are difficult to define because both factors affect several aspects of growth, including photosynthesis, respiration, and leaf area. By expressing growth as a product of light intercepted and light use efficiency (epsilon), it is possible to decouple the effects of nutrient availability and CO(2) concentration on photosynthetic rates from their effects on other aspects of plant growth. I used measured responses of leaf photosynthesis to leaf nitrogen (N) content and CO(2) concentration to parameterize a model of canopy radiation absorption and photosynthesis, and then used the model to estimate the response of epsilon to elevated CO(2) concentration for Pinus radiata D. Don, Nothofagus fusca (Hook. f.) Ørst. and Eucalyptus grandis W. Hill ex Maiden. Down-regulation of photosynthesis at elevated CO(2) was represented as a reduction in either leaf N content or leaf Rubisco activity. The response of epsilon to elevated CO(2), which differed among the three species, was analyzed in terms of the underlying relationships between leaf photosynthesis and leaf N content. The response was independent of leaf N content when photosynthesis was down-regulated to the same extent at low and high leaf N content. Interactive effects of N availability and CO(2) on growth are thus likely to be the result of either differences in down-regulation of photosynthesis at low and high N availability or interactive effects of CO(2) and N availability on other aspects of plant growth.

  11. Carbon/Nitrogen Imbalance Associated with Drought-Induced Leaf Senescence in Sorghum bicolor

    PubMed Central

    Chen, Daoqian; Wang, Shiwen; Xiong, Binglin; Cao, Beibei; Deng, Xiping

    2015-01-01

    Drought stress triggers mature leaf senescence, which supports plant survival and remobilization of nutrients; yet leaf senescence also critically decreases post-drought crop yield. Drought generally results in carbon/nitrogen imbalance, which is reflected in the increased carbon:nitrogen (C:N) ratio in mature leaves, and which has been shown to be involved in inducing leaf senescence under normal growth conditions. Yet the involvement of the carbon/nitrogen balance in regulation of drought-induced leaf senescence is unclear. To investigate the role of carbon/nitrogen balance in drought-induced senescence, sorghum seedlings were subjected to a gradual soil drought treatment. Leaf senescence symptoms and the C:N ratio, which was indicated by the ratio of non-structural carbohydrate to total N content, were monitored during drought progression. In this study, leaf senescence developed about 12 days after the start of drought treatment, as indicated by various senescence symptoms including decreasing photosynthesis, photosystem II photochemistry efficiency (Fv/Fm) and chlorophyll content, and by the differential expression of senescence marker genes. The C:N ratio was significantly enhanced 10 to 12 days into drought treatment. Leaf senescence occurred in the older (lower) leaves, which had higher C:N ratios, but not in the younger (upper) leaves, which had lower C:N ratios. In addition, a detached leaf assay was conducted to investigate the effect of carbon/nitrogen availability on drought-induced senescence. Exogenous application of excess sugar combined with limited nitrogen promoted drought-induced leaf senescence. Thus our results suggest that the carbon/nitrogen balance may be involved in the regulation of drought-induced leaf senescence. PMID:26317421

  12. Carbon/Nitrogen Imbalance Associated with Drought-Induced Leaf Senescence in Sorghum bicolor.

    PubMed

    Chen, Daoqian; Wang, Shiwen; Xiong, Binglin; Cao, Beibei; Deng, Xiping

    2015-01-01

    Drought stress triggers mature leaf senescence, which supports plant survival and remobilization of nutrients; yet leaf senescence also critically decreases post-drought crop yield. Drought generally results in carbon/nitrogen imbalance, which is reflected in the increased carbon:nitrogen (C:N) ratio in mature leaves, and which has been shown to be involved in inducing leaf senescence under normal growth conditions. Yet the involvement of the carbon/nitrogen balance in regulation of drought-induced leaf senescence is unclear. To investigate the role of carbon/nitrogen balance in drought-induced senescence, sorghum seedlings were subjected to a gradual soil drought treatment. Leaf senescence symptoms and the C:N ratio, which was indicated by the ratio of non-structural carbohydrate to total N content, were monitored during drought progression. In this study, leaf senescence developed about 12 days after the start of drought treatment, as indicated by various senescence symptoms including decreasing photosynthesis, photosystem II photochemistry efficiency (Fv/Fm) and chlorophyll content, and by the differential expression of senescence marker genes. The C:N ratio was significantly enhanced 10 to 12 days into drought treatment. Leaf senescence occurred in the older (lower) leaves, which had higher C:N ratios, but not in the younger (upper) leaves, which had lower C:N ratios. In addition, a detached leaf assay was conducted to investigate the effect of carbon/nitrogen availability on drought-induced senescence. Exogenous application of excess sugar combined with limited nitrogen promoted drought-induced leaf senescence. Thus our results suggest that the carbon/nitrogen balance may be involved in the regulation of drought-induced leaf senescence.

  13. Optimal allocation of leaf-level nitrogen: Implications for covariation of Vcmax and Jmax and photosynthetic downregulation

    NASA Astrophysics Data System (ADS)

    Quebbeman, J. A.; Ramirez, J. A.

    2016-09-01

    The maximum rate of carboxylation, Vcmax, and the maximum rate of electron transport, Jmax, describe leaf-level capacities of the photosynthetic system and are critical in determining the net fluxes of carbon dioxide and water vapor in the terrestrial biosphere. Although both Vcmax and Jmax exhibit high spatial and temporal variability, most descriptions of photosynthesis in terrestrial biosphere models assume constant values for Vcmax and Jmax at a reference temperature ignoring intraseasonal, interannual, and water stress-induced variations. Although general patterns of variation of Vcmax and Jmax have been correlated across groups of species, climates, and nitrogen concentrations, scant theoretical support has been provided to explain these variations. We present a new approach to determine Vcmax and Jmax based on the assumption that a limited amount of leaf nitrogen is allocated optimally among the various components of the photosynthetic system in such a way that expected carbon assimilation is maximized. The optimal allocation is constrained by available nitrogen and responds dynamically to the near-term environmental conditions of light and water supply and to their variability. The resulting optimal allocations of a finite supply of nitrogen replicate observed relationships in nature, including the ratio of Jmax/Vcmax, the relationship of leaf nitrogen to Vcmax, and the changes in nitrogen allocation under varying water availability and light environments. This optimal allocation approach provides a mechanism to describe the response of leaf-level photosynthetic capacity to varying environmental and resource supply conditions that can be incorporated into terrestrial biosphere models providing improved estimates of carbon and water fluxes in the soil-plant-atmosphere continuum.

  14. Nitrogen stress affects the turnover and size of nitrogen pools supplying leaf growth in a grass.

    PubMed

    Lehmeier, Christoph Andreas; Wild, Melanie; Schnyder, Hans

    2013-08-01

    The effect of nitrogen (N) stress on the pool system supplying currently assimilated and (re)mobilized N for leaf growth of a grass was explored by dynamic ¹⁵N labeling, assessment of total and labeled N import into leaf growth zones, and compartmental analysis of the label import data. Perennial ryegrass (Lolium perenne) plants, grown with low or high levels of N fertilization, were labeled with ¹⁵NO₃⁻/¹⁴NO₃⁻ from 2 h to more than 20 d. In both treatments, the tracer time course in N imported into the growth zones fitted a two-pool model (r² > 0.99). This consisted of a "substrate pool," which received N from current uptake and supplied the growth zone, and a recycling/mobilizing "store," which exchanged with the substrate pool. N deficiency halved the leaf elongation rate, decreased N import into the growth zone, lengthened the delay between tracer uptake and its arrival in the growth zone (2.2 h versus 0.9 h), slowed the turnover of the substrate pool (half-life of 3.2 h versus 0.6 h), and increased its size (12.4 μg versus 5.9 μg). The store contained the equivalent of approximately 10 times (low N) and approximately five times (high N) the total daily N import into the growth zone. Its turnover agreed with that of protein turnover. Remarkably, the relative contribution of mobilization to leaf growth was large and similar (approximately 45%) in both treatments. We conclude that turnover and size of the substrate pool are related to the sink strength of the growth zone, whereas the contribution of the store is influenced by partitioning between sinks.

  15. Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter ants.

    PubMed

    Pinto-Tomás, Adrián A; Anderson, Mark A; Suen, Garret; Stevenson, David M; Chu, Fiona S T; Cleland, W Wallace; Weimer, Paul J; Currie, Cameron R

    2009-11-20

    Bacteria-mediated acquisition of atmospheric N2 serves as a critical source of nitrogen in terrestrial ecosystems. Here we reveal that symbiotic nitrogen fixation facilitates the cultivation of specialized fungal crops by leaf-cutter ants. By using acetylene reduction and stable isotope experiments, we demonstrated that N2 fixation occurred in the fungus gardens of eight leaf-cutter ant species and, further, that this fixed nitrogen was incorporated into ant biomass. Symbiotic N2-fixing bacteria were consistently isolated from the fungus gardens of 80 leaf-cutter ant colonies collected in Argentina, Costa Rica, and Panama. The discovery of N2 fixation within the leaf-cutter ant-microbe symbiosis reveals a previously unrecognized nitrogen source in neotropical ecosystems.

  16. Temporal variation in leaf nitrogen partitioning of a broad-leaved evergreen tree, Quercus myrsinaefolia.

    PubMed

    Yasumura, Yuko; Ishida, Atsushi

    2011-01-01

    We examined temporal changes in the amount of nitrogenous compounds in leaves from the outer and inner parts of the crown of Quercus myrsinaefolia growing in a seasonal climate. Throughout the leaf life span, metabolic protein and Rubisco content closely correlated with total nitrogen content, while structural protein content was relatively stable after full leaf expansion. Chlorophyll content was affected by shading as well as total nitrogen content in outer leaves that were overtopped by new shoots in the second year. Outer leaves showed a large seasonal variation in photosynthetic nitrogen-use efficiency (PNUE; the light-saturated photosynthetic rate per unit leaf nitrogen content) during the first year of their life, with PNUE decreasing from the peak in summer towards winter. Outer and inner leaves both showed age-related decline in PNUE in the second year. There were no such drastic changes in leaf nitrogen partitioning that could explain seasonal and yearly variations in PNUE. Nitrogen resorption occurred in overwintering leaves in spring. Metabolic protein explained the majority of nitrogen being resorbed, whereas structural protein, which was low in degradability, contributed little to nitrogen resorption.

  17. Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture.

    PubMed

    Scoffoni, Christine; Rawls, Michael; McKown, Athena; Cochard, Hervé; Sack, Lawren

    2011-06-01

    Across plant species, leaves vary enormously in their size and their venation architecture, of which one major function is to replace water lost to transpiration. The leaf hydraulic conductance (K(leaf)) represents the capacity of the transport system to deliver water, allowing stomata to remain open for photosynthesis. Previous studies showed that K(leaf) relates to vein density (vein length per area). Additionally, venation architecture determines the sensitivity of K(leaf) to damage; severing the midrib caused K(leaf) and gas exchange to decline, with lesser impacts in leaves with higher major vein density that provided more numerous water flow pathways around the damaged vein. Because xylem embolism during dehydration also reduces K(leaf), we hypothesized that higher major vein density would also reduce hydraulic vulnerability. Smaller leaves, which generally have higher major vein density, would thus have lower hydraulic vulnerability. Tests using simulations with a spatially explicit model confirmed that smaller leaves with higher major vein density were more tolerant of major vein embolism. Additionally, for 10 species ranging strongly in drought tolerance, hydraulic vulnerability, determined as the leaf water potential at 50% and 80% loss of K(leaf), was lower with greater major vein density and smaller leaf size (|r| = 0.85-0.90; P < 0.01). These relationships were independent of other aspects of physiological and morphological drought tolerance. These findings point to a new functional role of venation architecture and small leaf size in drought tolerance, potentially contributing to well-known biogeographic trends in leaf size.

  18. Correlation between relative growth rate and specific leaf area requires associations of specific leaf area with nitrogen absorption rate of roots.

    PubMed

    Osone, Yoko; Ishida, Atsushi; Tateno, Masaki

    2008-07-01

    Close correlations between specific leaf area (SLA) and relative growth rate (RGR) have been reported in many studies. However, theoretically, SLA by itself has small net positive effect on RGR because any increase in SLA inevitably causes a decrease in area-based leaf nitrogen concentration (LNCa), another RGR component. It was hypothesized that, for a correlation between SLA and RGR, SLA needs to be associated with specific nitrogen absorption rate of roots (SAR), which counteracts the negative effect of SLA on LNCa. Five trees and six herbs were grown under optimal conditions and relationships between SAR and RGR components were analyzed using a model based on balanced growth hypothesis. SLA varied 1.9-fold between species. Simulations predicted that, if SAR is not associated with SLA, this variation in SLA would cause a47% decrease in LNCa along the SLA gradient, leading to a marginal net positive effect on RGR. In reality, SAR was positively related to SLA, showing a 3.9-fold variation, which largely compensated for the negative effect of SLA on LNCa. Consequently, LNCa values were almost constant across species and a positive SLA-RGR relationship was achieved. These results highlight the importance of leaf-root interactions in understanding interspecific differences in RGR.

  19. Integrating species composition and leaf nitrogen content to indicate effects of nitrogen deposition.

    PubMed

    Du, Enzai

    2017-02-01

    Nitrogen (N) deposition has been increasing globally and has arisen concerns of its impacts on terrestrial ecosystems. Ecological indicators play an important role in ecosystem monitoring, assessment and management in the context of an anthropogenic transformation of the global N cycle. By integrating species composition and leaf N stoichiometry, a new community N indicator was defined and validated in the understory plots of an N enrichment (as NH4NO3) experiment in an old-growth boreal forest in Northeast China. Three-year N additions showed no significant effect on the understory species richness, but an obvious shift in species composition occurred. The response of leaf N content to N additions was generally positive but varied by species. Overall, the community N indicator increased significantly with higher N addition level and soil available N content, being in the shape of a non-linear saturation response curve. The results suggest that the community N indicator could be an effective tool to indicate changes in ecosystem N availability. Critical values of the community N indicator for specific vegetation type could potentially provide useful information for nature conservation managers and policy makers.

  20. Evidence of a general 2/3-power law of scaling leaf nitrogen to phosphorus among major plant groups and biomes

    PubMed Central

    Reich, Peter B.; Oleksyn, Jacek; Wright, Ian J.; Niklas, Karl J.; Hedin, Lars; Elser, James J.

    2010-01-01

    Scaling relations among plant traits are both cause and consequence of processes at organ-to-ecosystem scales. The relationship between leaf nitrogen and phosphorus is of particular interest, as both elements are essential for plant metabolism; their limited availabilities often constrain plant growth, and general relations between the two have been documented. Herein, we use a comprehensive dataset of more than 9300 observations of approximately 2500 species from 70 countries to examine the scaling of leaf nitrogen to phosphorus within and across taxonomical groups and biomes. Power law exponents derived from log–log scaling relations were near 2/3 for all observations pooled, for angiosperms and gymnosperms globally, and for angiosperms grouped by biomes, major functional groups, orders or families. The uniform 2/3 scaling of leaf nitrogen to leaf phosphorus exists along a parallel continuum of rising nitrogen, phosphorus, specific leaf area, photosynthesis and growth, as predicted by stoichiometric theory which posits that plants with high growth rates require both high allocation of phosphorus-rich RNA and a high metabolic rate to support the energy demands of macromolecular synthesis. The generality of this finding supports the view that this stoichiometric scaling relationship and the mechanisms that underpin it are foundational components of the living world. Additionally, although abundant variance exists within broad constraints, these results also support the idea that surprisingly simple rules regulate leaf form and function in terrestrial ecosystems. PMID:19906667

  1. Evidence of a general 2/3-power law of scaling leaf nitrogen to phosphorus among major plant groups and biomes.

    PubMed

    Reich, Peter B; Oleksyn, Jacek; Wright, Ian J; Niklas, Karl J; Hedin, Lars; Elser, James J

    2010-03-22

    Scaling relations among plant traits are both cause and consequence of processes at organ-to-ecosystem scales. The relationship between leaf nitrogen and phosphorus is of particular interest, as both elements are essential for plant metabolism; their limited availabilities often constrain plant growth, and general relations between the two have been documented. Herein, we use a comprehensive dataset of more than 9300 observations of approximately 2500 species from 70 countries to examine the scaling of leaf nitrogen to phosphorus within and across taxonomical groups and biomes. Power law exponents derived from log-log scaling relations were near 2/3 for all observations pooled, for angiosperms and gymnosperms globally, and for angiosperms grouped by biomes, major functional groups, orders or families. The uniform 2/3 scaling of leaf nitrogen to leaf phosphorus exists along a parallel continuum of rising nitrogen, phosphorus, specific leaf area, photosynthesis and growth, as predicted by stoichiometric theory which posits that plants with high growth rates require both high allocation of phosphorus-rich RNA and a high metabolic rate to support the energy demands of macromolecular synthesis. The generality of this finding supports the view that this stoichiometric scaling relationship and the mechanisms that underpin it are foundational components of the living world. Additionally, although abundant variance exists within broad constraints, these results also support the idea that surprisingly simple rules regulate leaf form and function in terrestrial ecosystems.

  2. Analysis of common canopy vegetation indices for indicating leaf nitrogen accumulations in wheat and rice

    NASA Astrophysics Data System (ADS)

    Zhu, Yan; Yao, Xia; Tian, YongChao; Liu, XiaoJun; Cao, WeiXing

    2008-02-01

    The common spectra wavebands and vegetation indices (VI) were identified for indicating leaf nitrogen accumulation (LNA), and the quantitative relationships of LNA to canopy reflectance spectra were determined in both wheat ( Triticum aestivum L.) and rice ( Oryza sativa L.). The 810 and 870 nm are two common spectral wavebands indicating LNA in both wheat and rice. Among all ratio vegetation indices (RVI), difference vegetation indices (DVI) and normalized difference vegetation indices (NDVI) of 16 wavebands from the MSR16 radiometer, RVI (870, 660) and RVI (810, 660) were most highly correlated to LNA in both wheat and rice. In addition, the relations between VIs and LNA gave better results than relations between single wavebands and LNA in both wheat and rice. Thus LNA in both wheat and rice could be indicated with common VIs, but separate regression equations are better for LNA monitoring.

  3. Remote sensing of LAI, chlorophyll and leaf nitrogen pools of crop- and grasslands in five European landscapes

    NASA Astrophysics Data System (ADS)

    Boegh, E.; Houborg, R.; Bienkowski, J.; Braban, C. F.; Dalgaard, T.; van Dijk, N.; Dragosits, U.; Holmes, E.; Magliulo, V.; Schelde, K.; Di Tommasi, P.; Vitale, L.; Theobald, M. R.; Cellier, P.; Sutton, M. A.

    2013-10-01

    Leaf nitrogen and leaf surface area influence the exchange of gases between terrestrial ecosystems and the atmosphere, and play a significant role in the global cycles of carbon, nitrogen and water. The purpose of this study is to use field-based and satellite remote-sensing-based methods to assess leaf nitrogen pools in five diverse European agricultural landscapes located in Denmark, Scotland (United Kingdom), Poland, the Netherlands and Italy. REGFLEC (REGularized canopy reFLECtance) is an advanced image-based inverse canopy radiative transfer modelling system which has shown proficiency for regional mapping of leaf area index (LAI) and leaf chlorophyll (CHLl) using remote sensing data. In this study, high spatial resolution (10-20 m) remote sensing images acquired from the multispectral sensors aboard the SPOT (Satellite For Observation of Earth) satellites were used to assess the capability of REGFLEC for mapping spatial variations in LAI, CHLland the relation to leaf nitrogen (Nl) data in five diverse European agricultural landscapes. REGFLEC is based on physical laws and includes an automatic model parameterization scheme which makes the tool independent of field data for model calibration. In this study, REGFLEC performance was evaluated using LAI measurements and non-destructive measurements (using a SPAD meter) of leaf-scale CHLl and Nl concentrations in 93 fields representing crop- and grasslands of the five landscapes. Furthermore, empirical relationships between field measurements (LAI, CHLl and Nl and five spectral vegetation indices (the Normalized Difference Vegetation Index, the Simple Ratio, the Enhanced Vegetation Index-2, the Green Normalized Difference Vegetation Index, and the green chlorophyll index) were used to assess field data coherence and to serve as a comparison basis for assessing REGFLEC model performance. The field measurements showed strong vertical CHLl gradient profiles in 26% of fields which affected REGFLEC performance as well

  4. Evaluation of radiative transfer models for estimation of foliar nitrogen content at leaf and canopy level

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Skidmore, A. K.; Wang, T.; Darvishzadeh, R.; Hearne, J.

    2016-12-01

    Foliar nitrogen is often a limiting factor for plant growth, and is a primary regulator of physiological processes such as photosynthesis, leaf respiration, and transpiration. Foliar nitrogen has been recently proposed as one of the key ecosystem biodiversity variables. Estimation of foliar nitrogen using hyperspectral data will further improve our understanding of the photosynthetic process and net primary productivity and will be beneficial to the assessment of biodiversity, ecosystem services and carbon sequestration. Empirical approaches have dominated the retrieval of nitrogen using hyperspectral data; physically based approaches using radiative transfer models remain elusive. This study aimed to evaluate radiative transfer models for estimating foliar nitrogen at the leaf and canopy level. A leaf-level optical properties model PROSPECT-5 was first recalibrated, and then linked with a canopy reflectance model for canopy level analysis. Our results confirmed the feasibility of retrieving foliar nitrogen from fresh leaf spectra by inversion of the recalibrated PROSPECT-5. Moderate accuracies were obtained for the previously published LOPEX agricultural data set (R2 = 0.47, NRMSE = 0.17) and a Bavarian forest data set (R2 = 0.49, NRMSE = 0.20). At the canopy level, foliar nitrogen content was estimated with a lower accuracy (R2 = 0.38, NRMSE = 0.20) when using canopy spectra extracted from airborne hyperspectral imagery.

  5. Towards a unified model for leaf trait and trait-environment relationships

    NASA Astrophysics Data System (ADS)

    Wang, H.; Harrison, S. P.; Prentice, I. C.; Peng, C.; Yang, Y.

    2016-12-01

    A widely accepted core set of leaf traits describes key aspects of plant function including the coupling among carbon, nitrogen and water cycles at the leaf, plant and ecosystem scales. Our current research focuses on two questions: (1) what dimensions of correlated variation among traits apply across all vascular plants irrespective of environment; (2) how, and to what extent, can variations in community mean values of leaf traits be predicted along environmental gradients? Based on a large quantitative trait data set covering the major environmental gradients across China, we are tackling these questions via two complementary approaches: multivariate analysis of trait-trait, trait-site, and trait-environment relationships, and the development of conceptual models and testable hypotheses for the dependencies of each trait on other traits and/or specific environmental predictors. Preliminary multivariate analyses suggest the existence of at least two independent axes of variation in leaf traits, and show robust relationships between trait syndromes and growing-season climate variables. A minimal conceptual model then considers nitrogen per unit leaf area (Narea) as a function of leaf mass per unit area (LMA) and carboxylation capacity (Vcmax); LMA as a function of irradiance, temperature and water and/or nutrient stress; Vcmax as a function of irradiance, temperature and the long-term ci:ca ratio (indexed by δ13C); and the ci:ca ratio as a function of vapour pressure deficit, temperature and atmospheric pressure. Each of these dependencies has support from observations, pointing the way towards a comprehensive set of equations to predict community-mean values of core traits in next-generation terrestrial ecosystem models.

  6. Carbon and nitrogen balance of leaf-eating sesarmid crabs ( Neoepisesarma versicolor) offered different food sources

    NASA Astrophysics Data System (ADS)

    Thongtham, Nalinee; Kristensen, Erik

    2005-10-01

    Carbon and nitrogen budgets for the leaf-eating crab, Neoepisesarma versicolor, were established for individuals living on pure leaf diets. Crabs were fed fresh (green), senescent (yellow) and partly degraded (brown) leaves of the mangrove tree Rhizophora apiculata. Ingestion, egestion and metabolic loss of carbon and nitrogen were determined from laboratory experiments. In addition, bacterial abundance in various compartments of the crabs' digestive tract was enumerated after dissection of live individuals. Ingestion and egestion rates (in terms of dry weight) were highest, while the assimilation efficiency was poorest for crabs fed on brown leaves. The low assimilation efficiency was more than counteracted by the high ingestion rate providing more carbon for growth than for crabs fed green and yellow leaves. In any case, the results show that all types of leaves can provide adequate carbon while nitrogen was insufficient to support both maintenance (yellow leaves) and growth (green, yellow and brown leaves). Leaf-eating crabs must therefore obtain supplementary nitrogen by other means in order to meet their nitrogen requirement. Three hypotheses were evaluated: (1) crabs supplement their diet with bacteria and benthic microalgae by ingesting own faeces and/or selective grazing at the sediment surface; (2) assimilation of symbiotic nitrogen-fixing bacteria in the crabs' own intestinal system; and (3) nitrogen storage following occasional feeding on animal tissues (e.g. meiofauna and carcasses). It appears that hypothesis 1 is of limited importance for N. versicolor since faeces and sediment can only supply a minor fraction of the missing nitrogen due to physical constraints on the amount of material the crabs can consume. Hypothesis 2 can be ruled out because tests showed no nitrogen fixation activity in the intestinal system of N. versicolor. It is therefore likely that leaf-eating crabs provide most of their nitrogen requirement from intracellular deposits

  7. A meta-analysis of leaf nitrogen distribution within plant canopies.

    PubMed

    Hikosaka, Kouki; Anten, Niels P R; Borjigidai, Almaz; Kamiyama, Chiho; Sakai, Hidemitsu; Hasegawa, Toshihiro; Oikawa, Shimpei; Iio, Atsuhiro; Watanabe, Makoto; Koike, Takayoshi; Nishina, Kazuya; Ito, Akihiko

    2016-08-01

    Leaf nitrogen distribution in the plant canopy is an important determinant for canopy photosynthesis. Although the gradient of leaf nitrogen is formed along light gradients in the canopy, its quantitative variations among species and environmental responses remain unknown. Here, we conducted a global meta-analysis of leaf nitrogen distribution in plant canopies. We collected data on the nitrogen distribution and environmental variables from 393 plant canopies (100, 241 and 52 canopies for wheat, other herbaceous and woody species, respectively). The trends were clearly different between wheat and other species; the photosynthetic nitrogen distribution coefficient (Kb) was mainly determined by leaf area index (LAI) in wheat, whereas it was correlated with the light extinction coefficient (KL) and LAI in other species. Some other variables were also found to influence Kb We present the best equations for Kb as a function of environmental variables and canopy characteristics. As a more simple function, Kb = 0·5KL can be used for canopies of species other than wheat. Sensitivity analyses using a terrestrial carbon flux model showed that gross primary production tended to be more sensitive to the Kb value especially when nitrogen content of the uppermost leaf was fixed. Our results reveal that nitrogen distribution is mainly driven by the vertical light gradient but other factors such as LAI also have significant effects. Our equations contribute to an improvement in the projection of plant productivity and cycling of carbon and nitrogen in terrestrial ecosystems. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Field Evidence for Optimal Acclimation of Leaf Nitrogen to Environmental Gradients

    NASA Astrophysics Data System (ADS)

    Dong, N.; Prentice, I. C. C.; Evans, B. J.; Retalic, S. C.; Lowe, A. J.; Wright, I. J.

    2015-12-01

    Nitrogen per unit leaf area (Narea) is a key variable in plant functional ecology and biogeochemistry. We hypothesized that Narea should be sum of a structural component proportional to leaf mass per area (LMA) and a metabolic component, predicted by optimality considerations to be proportional to irradiance while decreasing with air-to-leaf carbon dioxide drawdown (ci:ca) and temperature. The significant partial environmental and LMA effects on Narea that are both qualitatively and quantitatively supported this hypothesis by using LMA, leaf δ13C and Narea measurements on transcontinental transect in Australia. Trait gradient analysis revealed ci:ca to be perfectly plastic, while species turnover contributed about half the variation in LMA and Narea, consistent with a strong contribution of species turnover to the variation of these traits with environment. These findings motivate a hybrid leaf-economics approach to the prediction of Narea in ecosystem models.

  9. Nitrogen redistribution and its relationship with the expression of GmATG8c during seed filling in soybean.

    PubMed

    Islam, Md Matiul; Ishibashi, Yushi; Nakagawa, Andressa C S; Tomita, Yuki; Iwaya-Inoue, Mari; Arima, Susumu; Zheng, Shao-Hui

    2016-03-15

    It is well known that some nitrogen in the vegetative organs is redistributed to the seeds during seed filling in soybean (Glycine max [L.] Merrill). This redistribution is considered to affect the seed yield of soybean. However, it is still not clear when the nitrogen moves from the vegetative part to the seeds, and the relationship between nitrogen redistribution and leaf senescence has not been clarified. The soybean variety Fukuyutaka was grown in the experimental field of Saga University, Japan from 22 July to 31 October, 2014. After the first flower stage (R1), the plant samples were collected weekly and were separated into leaf, petiole, stem, podshell and seed. The nitrogen concentrations in each plant part were determined. Fresh leaf samples were provided for the determination of soluble protein and autophagy gene GmATG8c expression. The nitrogen that accumulated in the vegetative parts reached its highest level at 60days after sowing (DAS), then began to decrease at 73DAS (R6). This decrease is considered to be the consequence of nitrogen redistribution from the vegetative parts to the seeds. The movement of nitrogen from the vegetative parts to the seeds was estimated to occur at around 73DAS (R6). At this stage, leaf SPAD values, leaf nitrogen, and soluble protein concentrations began to decrease simultaneously, suggesting the onset of leaf senescence. Furthermore, the expression of the autophagy gene GmATG8c in the leaves increased dramatically from 73 to 85DAS, which is the duration of nitrogen redistribution. The results suggest that the nitrogen redistribution from the vegetative parts to the seeds could be one of the initiating factors of leaf senescence, and the autophagy gene GmATG8c was associated with this process.

  10. Within-Leaf Nitrogen Allocation in Adaptation to Low Nitrogen Supply in Maize during Grain-Filling Stage

    PubMed Central

    Mu, Xiaohuan; Chen, Qinwu; Chen, Fanjun; Yuan, Lixing; Mi, Guohua

    2016-01-01

    Nitrogen (N) plays a vital role in photosynthesis and crop productivity. Maize plants may be able to increase physiological N utilization efficiency (NUtE) under low-N stress by increasing photosynthetic rate (Pn) per unit leaf N, that is, photosynthetic N-use efficiency (PNUE). In this study, we analyzed the relationship between PNUE and N allocation in maize ear-leaves during the grain-filling stage under low N (no N application) and high N (180 kg N ha-1) in a 2-year field experiment. Under low N, grain yield decreased while NUtE increased. Low-N treatment reduced the specific N content of ear leaves by 38% without significant influencing Pn, thereby increasing PNUE by 54%. Under low-N stress, maize plants tended to invest relatively more N into bioenergetics to sustain electron transport. In contrast, N allocated to chlorophyll and light-harvesting proteins was reduced to control excess electron production. Soluble proteins were reduced to shrink the N storage reservoir. We conclude that optimization of N allocation within leaves is a key adaptive mechanism to maximize Pn and crop productivity when N is limited during the grain-filling stage in maize under low-N conditions. PMID:27252716

  11. The fate of nitrogen mineralized from leaf litter — Initial evidence from 15N-labeled litter

    Treesearch

    Kathryn B. Piatek

    2011-01-01

    Decomposition of leaf litter includes microbial immobilization of nitrogen (N), followed by N mineralization. The fate of N mineralized from leaf litter is unknown. I hypothesized that N mineralized from leaf litter will be re-immobilized into other forms of organic matter, including downed wood. This mechanism may retain N in some forests. To test this hypothesis, oak...

  12. A global assessment of forest surface albedo and its relationships with climate and atmospheric nitrogen deposition.

    PubMed

    Leonardi, Stefano; Magnani, Federico; Nolè, Angelo; Van Noije, Twan; Borghetti, Marco

    2015-01-01

    We present a global assessment of the relationships between the short-wave surface albedo of forests, derived from the MODIS satellite instrument product at 0.5° spatial resolution, with simulated atmospheric nitrogen deposition rates (Ndep ), and climatic variables (mean annual temperature Tm and total annual precipitation P), compiled at the same spatial resolution. The analysis was performed on the following five forest plant functional types (PFTs): evergreen needle-leaf forests (ENF); evergreen broad-leaf forests (EBF); deciduous needle-leaf forests (DNF); deciduous broad-leaf forests (DBF); and mixed-forests (MF). Generalized additive models (GAMs) were applied in the exploratory analysis to assess the functional nature of short-wave surface albedo relations to environmental variables. The analysis showed evident correlations of albedo with environmental predictors when data were pooled across PFTs: Tm and Ndep displayed a positive relationship with forest albedo, while a negative relationship was detected with P. These correlations are primarily due to surface albedo differences between conifer and broad-leaf species, and different species geographical distributions. However, the analysis performed within individual PFTs, strengthened by attempts to select 'pure' pixels in terms of species composition, showed significant correlations with annual precipitation and nitrogen deposition, pointing toward the potential effect of environmental variables on forest surface albedo at the ecosystem level. Overall, our global assessment emphasizes the importance of elucidating the ecological mechanisms that link environmental conditions and forest canopy properties for an improved parameterization of surface albedo in climate models.

  13. [Proteomics of rice leaf and grain at late growth stage under different nitrogen fertilization levels].

    PubMed

    Ning, Shu-ju; Zhao, Min; Xiang, Xiao-liang; Wei, Dao-zhi

    2010-10-01

    Taking super-rice Liangyoupeijiu as test material, and by the method of two-dimensional gel electrophoresis (2-DE), this paper studied the changes in the leaf and grain proteomics of the variety at its late growth stage under different levels of nitrogen fertilization (1/2 times of normal nitrogen level, 20 mg x L(-1); normal nitrogen level, 40 mg x L(-1); 2 times of normal nitrogen level, 80 mg x L(-1)), with the biological functions of 16 leaf proteins, 9 inferior grain proteins, and 4 superior grain proteins identified and analyzed. Nitrogen fertilization could affect and regulate the plant photosynthesis via affecting the activation of photosynthesis-related enzymes and of CO2, the light system unit, and the constitution of electron transfer chain at the late growth stage of the variety. It could also promote the expression of the enzymes related to the energy synthesis and growth in inferior grains. High nitrogen fertilization level was not beneficial to the synthesis of starch in superior grain, but sufficient nitrogen supply was still important for the substance accumulation and metabolism. Therefore, rational nitrogen fertilization could increase the photosynthesis rate of flag leaves, enhance the source function, delay the functional early ageing, and promote the grain-filling at late growth stage.

  14. Leaf nitrogen distribution in relation to crown architecture in the tall canopy species, Fagus crenata.

    PubMed

    Osada, Noriyuki; Yasumura, Yuko; Ishida, Atsushi

    2014-08-01

    The theory of optimal leaf N distribution predicts that the C gain of plants is maximized when the N content per unit area (N(area)) scales with light availability, but most previous studies have demonstrated that the N distribution is not proportional to light availability. In tall trees, the leaves are often clustered on twigs (leaf cluster) and not evenly distributed within the crowns. Thus, we hypothesized that the suboptimal N distribution is partly caused by the limited capacity to translocate N between leaf clusters, and consequently, the relationship between light and N(area) differs for leaves in different clusters. We investigated the light availability and N content of all individual leaves within several leaf clusters on tall trees of a deciduous canopy species Fagus crenata in Japan. We observed that the within-cluster leaf N distribution patterns differed from the between-cluster patterns and the slopes of the relationships between light and N(area) were lower within clusters than between clusters. According to the detailed analysis of the N distribution within leaf clusters, N(area) was greater for current-year shoots with greater light availability or a larger total leaf area. The latter pattern was probably caused by the greater sink strength of the current-year shoots with a larger leaf area. These N distribution patterns suggest that leaf clusters are fairly independent with respect to their N use, and the productivity of real F. crenata crowns may be less than optimal.

  15. Examining leaf and canopy optical properties for the assessment of chlorophyll content to determine nitrogen management strategies

    NASA Astrophysics Data System (ADS)

    Schlemmer, Michael R.

    Controlled application of agricultural nitrogen (N) has recently become a focus of remote sensing technology research. Escalating energy and fertilizer prices along with the potential of adverse environmental impacts have forced growers to consider technologies that deliver nutrients in a more effective way. Assessing leaf and canopy chlorophyll (chl) contents can provide an indirect measure that expresses the condition of the crop's environment. Nitrogen content at the scale of the leaf and the entire canopy will have a strong association to chl content at that same scale. Therefore, N stresses can be inferred through changes in chl content. Remote sensing is rapidly becoming recognized as a tool that has the potential to quickly assess chl content over a large area at both the leaf and canopy scale non-destructively. These studies examined the relationship of corn (Zea mays L.) leaf and canopy spectral response to chl and N content. The effects of N stress on leaf and canopy spectra, chl content, and N content were examined. Nitrogen stress will visibly present itself through the degradation of chl content. Chlorophyll content and N content continue to exhibit a strong relationship throughout the vegetative stages of growth for both measurement scales. As a result, instruments that measure chl content can also be used to estimate N content. A variety of spectral indices have been introduced for the purpose of quantifying plant status. A few of these indices were selected for these studies and evaluated for their ability to assess N stress. The indices selected were those that utilize the chl spectral reflective segments of the spectrum (green, and red edge). These regions show more promise than do the chl absorbance segments of the spectrum (blue, and red). Our results suggest that instrumentation that measures spectral reflectance holds promise for the assessment of chl and N stress at both the canopy and leaf level. The ability to non-destructively measure chl

  16. Estimating Leaf Nitrogen of Eastern Cottonwood Trees with a Chlorophyll Meter

    Treesearch

    Benoit Moreau; Emile S. Gardiner; John A. Stanturf; Ronald K. Fisher

    2004-01-01

    The utility of the SPAD-502 chlorophyll meter for nondestructive and rapid field determination of leaf nitrogen (N) has been demonstrated in agricultural crops, but this technology has not yet been extended to woody crop applications. Upper canopy leaves from a 5-year-old plantation of two eastern cottonwood (Populus deltoides Bartr. ex Marsh.)...

  17. Induction of leaf senescence by low nitrogen nutrition in sunflower (Helianthus annuus) plants.

    PubMed

    Agüera, Eloísa; Cabello, Purificación; de la Haba, Purificación

    2010-03-01

    Different parameters which vary during the leaf development in sunflower plants grown with nitrate (2 or 20 mM) for a 42-day period have been determined. The plants grown with 20 mM nitrate (N+) showed greater leaf area and specific leaf mass than the plants grown with 2 mM nitrate (N-). The total chlorophyll content decreased with leaf senescence, like the photosynthetic rate. This decline of photosynthetic activity was greater in plants grown with low nitrogen level (N-), showing more pronounced senescence symptoms than with high nitrogen (N+). In both treatments, soluble sugars increased with aging, while starch content decreased. A significant increase of hexose to sucrose ratio was observed at the beginning of senescence, and this raise was higher in N- plants than in N+ plants. These results show that sugar senescence regulation is dependent on nitrogen, supporting the hypothesis that leaf senescence is regulated by the C/N balance. In N+ and N- plants, ammonium and free amino acid concentrations were high in young leaves and decreased progressively in the senescent leaves. In both treatments, asparagine, and in a lower extent glutamine, increased after senescence start. The drop in the (Glu+Asp)/(Gln+Asn) ratio associated with the leaf development level suggests a greater nitrogen mobilization. Besides, the decline in this ratio occurred earlier and more rapidly in N- plants than in N+ plants, suggesting that the N- remobilization rate correlates with leaf senescence severity. In both N+ and N- plants, an important oxidative stress was generated in vivo during sunflower leaf senescence, as revealed by lipid peroxidation and hydrogen peroxide accumulation. In senescent leaves, the increase in hydrogen peroxide levels occurred in parallel with a decline in the activity of antioxidant enzymes. In N+ plants, the activities of catalase and ascorbate peroxidase (APX) increased to reach their highest values at 28 days, and later decreased during senescence, whereas

  18. A global trait-based approach to estimate leaf nitrogen functional allocation from observations.

    PubMed

    Ghimire, Bardan; Riley, William J; Koven, Charles D; Kattge, Jens; Rogers, Alistair; Reich, Peter B; Wright, Ian J

    2017-03-28

    Nitrogen is one of the most important nutrients for plant growth and a major constituent of proteins that regulate photosynthetic and respiratory processes. However, a comprehensive global analysis of nitrogen allocation in leaves for major processes with respect to different plant functional types is currently lacking. This study integrated observations from global databases with photosynthesis and respiration models to determine plant-functional-type-specific allocation patterns of leaf nitrogen for photosynthesis (Rubisco, electron transport, light absorption) and respiration (growth and maintenance), and by difference from observed total leaf nitrogen, an unexplained "residual" nitrogen pool. Based on our analysis, crops partition the largest fraction of nitrogen to photosynthesis (57%) and respiration (5%) followed by herbaceous plants (44% and 4%). Tropical broadleaf evergreen trees partition the least to photosynthesis (25%) and respiration (2%) followed by needle-leaved evergreen trees (28% and 3%). In trees (especially needle-leaved evergreen and tropical broadleaf evergreen trees) a large fraction (70% and 73% respectively) of nitrogen was not explained by photosynthetic or respiratory functions. Compared to crops and herbaceous plants, this large residual pool is hypothesized to emerge from larger investments in cell wall proteins, lipids, amino acids, nucleic acid, CO2 fixation proteins (other than Rubisco), secondary compounds, and other proteins. Our estimates are different from previous studies due to differences in methodology and assumptions used in deriving nitrogen allocation estimates. Unlike previous studies, we integrate and infer nitrogen allocation estimates across multiple plant functional types, and report substantial differences in nitrogen allocation across different plant functional types. The resulting pattern of nitrogen allocation provides insights on mechanisms that operate at a cellular scale within leaves, and can be integrated

  19. A global trait-based approach to estimate leaf nitrogen functional allocation from observations

    DOE PAGES

    Ghimire, Bardan; Riley, William J.; Koven, Charles D.; ...

    2017-03-28

    Nitrogen is one of the most important nutrients for plant growth and a major constituent of proteins that regulate photosynthetic and respiratory processes. However, a comprehensive global analysis of nitrogen allocation in leaves for major processes with respect to different plant functional types is currently lacking. This study integrated observations from global databases with photosynthesis and respiration models to determine plant-functional-type-specific allocation patterns of leaf nitrogen for photosynthesis (Rubisco, electron transport, light absorption) and respiration (growth and maintenance), and by difference from observed total leaf nitrogen, an unexplained “residual” nitrogen pool. Based on our analysis, crops partition the largest fractionmore » of nitrogen to photosynthesis (57%) and respiration (5%) followed by herbaceous plants (44% and 4%). Tropical broadleaf evergreen trees partition the least to photosynthesis (25%) and respiration (2%) followed by needle-leaved evergreen trees (28% and 3%). In trees (especially needle-leaved evergreen and tropical broadleaf evergreen trees) a large fraction (70% and 73% respectively) of nitrogen was not explained by photosynthetic or respiratory functions. Compared to crops and herbaceous plants, this large residual pool is hypothesized to emerge from larger investments in cell wall proteins, lipids, amino acids, nucleic acid, CO2 fixation proteins (other than Rubisco), secondary compounds, and other proteins. Our estimates are different from previous studies due to differences in methodology and assumptions used in deriving nitrogen allocation estimates. Unlike previous studies, we integrate and infer nitrogen allocation estimates across multiple plant functional types, and report substantial differences in nitrogen allocation across different plant functional types. Furthermore, the resulting pattern of nitrogen allocation provides insights on mechanisms that operate at a cellular scale within leaves

  20. Nitrogen stress-induced alterations in the leaf proteome of two wheat varieties grown at different nitrogen levels.

    PubMed

    Chandna, Ruby; Ahmad, Altaf

    2015-01-01

    Inorganic nitrogen (N) is a key limiting factor of the agricultural productivity. Nitrogen utilization efficiency has significant impact on crop growth and yield as well as on the reduction in production cost. The excessive nitrogen application is accompanied with severe negative impact on environment. Thus to reduce the environmental contamination, improving NUE is need of an hour. In our study we have deployed comparative proteome analysis using 2-DE to investigate the effect of the nitrogen nutrition on differential expression pattern of leaf proteins in low-N sensitive and low-N tolerant wheat (Triticum aestivum L.) varieties. Results showed a comprehensive picture of the post-transcriptional response to different nitrogen regimes administered which would be expected to serve as a basic platform for further characterization of gene function and regulation. We detected proteins related to photosynthesis, glycolysis, nitrogen metabolism, sulphur metabolism and defence. Our results provide new insights towards the altered protein pattern in response to N stress. Through this study we suggest that genes functioning in many physiological events coordinate the response to availability of nitrogen and also for the improvement of NUE of crops.

  1. Impact of anatomical traits of maize (Zea mays L.) leaf as affected by nitrogen supply and leaf age on bundle sheath conductance.

    PubMed

    Retta, Moges; Yin, Xinyou; van der Putten, Peter E L; Cantre, Denis; Berghuijs, Herman N C; Ho, Quang Tri; Verboven, Pieter; Struik, Paul C; Nicolaï, Bart M

    2016-11-01

    The mechanism of photosynthesis in C4 crops depends on the archetypal Kranz-anatomy. To examine how the leaf anatomy, as altered by nitrogen supply and leaf age, affects the bundle sheath conductance (gbs), maize (Zea mays L.) plants were grown under three contrasting nitrogen levels. Combined gas exchange and chlorophyll fluorescence measurements were done on fully grown leaves at two leaf ages. The measured data were analysed using a biochemical model of C4 photosynthesis to estimate gbs. The leaf microstructure and ultrastructure were quantified using images obtained from micro-computed tomography and microscopy. There was a strong positive correlation between gbs and leaf nitrogen content (LNC) while old leaves had lower gbs than young leaves. Leaf thickness, bundle sheath cell wall thickness and surface area of bundle sheath cells per unit leaf area (Sb) correlated well with gbs although they were not significantly affected by LNC. As a result, the increase of gbs with LNC was little explained by the alteration of leaf anatomy. In contrast, the combined effect of LNC and leaf age on Sb was responsible for differences in gbs between young leaves and old leaves. Future investigations should consider changes at the level of plasmodesmata and membranes along the CO2 leakage pathway to unravel LNC and age effects further. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Stoichiometry of Root and Leaf Nitrogen and Phosphorus in a Dry Alpine Steppe on the Northern Tibetan Plateau

    PubMed Central

    Hong, Jiangtao; Wang, Xiaodan; Wu, Jianbo

    2014-01-01

    Leaf nitrogen (N) and phosphorus (P) have been used widely in the ecological stoichiometry to understand nutrient limitation in plant. However,few studies have focused on the relationship between root nutrients and environmental factors. The main objective of this study was to clarify the pattern of root and leaf N and P concentrations and the relationships between plant nitrogen (N) and phosphorus (P) concentrations with climatic factors under low temperature conditions in the northern Tibetan Plateau of China. We conducted a systematic census of N and P concentrations, and the N∶P ratio in leaf and root for 139 plant samples, from 14 species and 7 families in a dry Stipa purpurea alpine steppe on the northern Tibetan Plateau of China. The results showed that the mean root N and P concentrations and the N∶P ratios across all species were 13.05 mg g−1, 0.60 mg g−1 and 23.40, respectively. The mean leaf N and P concentrations and the N∶P ratio were 23.20 mg g−1, 1.38 mg g−1, and 17.87, respectively. Compared to global plant nutrients concentrations, plants distributing in high altitude area have higher N concentrations and N∶P, but lower P concentrations, which could be used to explain normally-observed low growth rate of plant in the cold region. Plant N concentrations were unrelated to the mean annual temperature (MAT). The root and leaf P concentrations were negatively correlated with the MAT, but the N∶P ratios were positively correlated with the MAT. It is highly possible this region is not N limited, it is P limited, thus the temperature-biogeochemical hypothesis (TBH) can not be used to explain the relationship between plant N concentrations and MAT in alpine steppe. The results were valuable to understand the bio-geographic patterns of root and leaf nutrients traits and modeling ecosystem nutrient cycling in cold and dry environments. PMID:25299642

  3. Oxygen-Nitrogen Relationships in Autotrophic Nitrification

    PubMed Central

    Wezernak, C. T.; Gannon, J. J.

    1967-01-01

    Oxygen utilization by the autotrophic nitrifiers Nitrosomonas and Nitrobacter was studied. Experimental evidence is presented which reflects the effect of carbon dioxide fixation on overall oxygen utilization in autotrophic nitrification. Measurement of dissolved oxygen and inorganic nitrogen changes indicates that oxygen-nitrogen ratios in inorganic nitrogen oxidation are equal to 3.22 parts (expressed in milligrams per liter) of oxygen per part of ammonia nitrogen oxidized to nitrite nitrogen and 1.11 parts of oxygen per part of nitrite nitrogen oxidized to nitrate nitrogen. These values rather than the stoichiometric ratios should be used in nitrogenous oxygen demand calculations. PMID:6077417

  4. Leaf chlorophyll, net gas exchange and chloroplast ultrastructure in citrus leaves of different nitrogen status.

    PubMed

    Bondada, Bhaskar R; Syvertsen, James P

    2003-06-01

    One-year-old 'Cleopatra mandarin' (Citrus reticulata Blanco) seedlings were raised in a greenhouse and fertilized with nitrogen (N) at four application frequencies. Nitrogen-deficient leaves (86 mmol N m-2) had less chlorophyll per unit area, but a greater chlorophyll a:b ratio than N-fertilized leaves (> 187 mmol N m-2). Leaf dry mass per area (DM area-1) and total chlorophyll concentration increased linearly with increasing leaf N, whereas chlorophyll a:b ratio declined. Net assimilation of CO2 (A(CO2)) and leaf water-use efficiency (WUE) reached maximum values in leaves with approximately 187 mmol N m-2. Nitrogen-deficient leaves exhibited small chloroplasts with no starch granules; grana and stroma lamellae that coincided with the accretion of numerous large plastoglobuli in the stroma disintegrated. High-N leaves had large chloroplasts with well-developed grana, stroma lamellae and starch granules that enlarged with increasing N concentration. The lack of an increase in A(CO2) capacity at leaf N concentrations above 187 mmol N m-2 appeared to be correlated with the presence of numerous large starch granules.

  5. Leaf habit influences nitrogen remobilization in Vaccinium species.

    PubMed

    Grelet, G A; Alexander, I J; Proe, M F; Frossard, J S; Millard, P

    2001-05-01

    The effect of N supply on plant growth and leaf demography of a deciduous and an evergreen Ericaceae was studied in relation to their internal cycling of N. Mature ramets of Vaccinium myrtillus (deciduous) and Vaccinium vitis-idaea (evergreen) were established in sand culture for 1 year with an adequate supply of a balanced nutrient solution. During one growing season, the plants were given two levels of N supply enriched with 15N and eight sequential destructive harvests were taken. Recovery of unlabelled N in the new shoot was used to determine the remobilization of N from storage. Initially, growth was unaffected by N supply. After May, High N enhanced growth for both species but the nature of their growth response differed. For both species, new shoot biomass and leaf number increased but root biomass production was affected for V. myrtillus only. Whole plant biomass production was similar for both species under High N, but was greater for V. vitis-idaea under Low N. The amount of N remobilized to support new shoot growth was similar for the two species and was independent of N current supply. N was remobilized predominantly from previous year leaves for V. vitis-idaea and from previous year stems and roots for V. myrtillus. The contribution of remobilization to new shoot N was similar for the two species, but depended on N supply. Remobilization was faster in V. myrtillus, but lasted longer in V. vitis-idaea. The results are discussed in relation to species growth in N-poor environments, focusing on the extent to which species-differences in the dynamic of N remobilization and growth may explain their adaptation to constant and/or changeable N supply.

  6. Interspecific variations in mangrove leaf litter decomposition are related to labile nitrogenous compounds

    NASA Astrophysics Data System (ADS)

    Nordhaus, Inga; Salewski, Tabea; Jennerjahn, Tim C.

    2017-06-01

    Mangrove leaves form a large pool of carbon, nitrogen and energy that is a major driver of element cycles and detrital food webs inside mangrove forests as well as in adjacent coastal waters. However, there are large gaps in knowledge on the transformation pathways and ultimate fate of leaf nitrogen. Therefore, the main objective of this study was to determine the amount and composition of nitrogenous organic matter and possible species-specific differences during the decomposition of mangrove leaf litter. For that purpose a three month decomposition experiment with litterbags was conducted using leaves of Aegiceras corniculatum, Avicennia alba, Ceriops decandra, Rhizophora apiculata, and Sonneratia caseolaris in the mangrove forest of the Segara Anakan Lagoon, Java, Indonesia. Detrital leaves were analyzed for bulk carbon and total nitrogen (N), stable carbon and nitrogen isotope composition (δ13C, δ15N), total hydrolyzable amino acids (THAA) and total hydrolyzable hexosamines (THHA). Decomposition rates (k d-1) were highest and tM50 values (when 50% of the original mass had been degraded) lowest in S. caseolaris (k = 0.0382 d-1; tM50 = 18 days), followed by A. alba, C. decandra, A. corniculatum, and R. apiculata (k = 0.0098 d-1; tM50 = 71 days). The biochemical composition of detrital leaves differed significantly among species and over time. S. caseolaris and A. alba had higher concentrations of N, THAA and THHA and a lower C/N ratio than the other three species. For most of the species concentrations of N, THAA and THHA increased during decomposition. The hexosamine galactosamine, indicative of bacterial cell walls, was first found in leaves after 5-7 days of decomposition and increased afterwards. Our findings suggest an increasing, but species-specific varying, portion of labile nitrogenous OM and total N in decomposing leaves over time that is partly related to the activity of leaf-colonizing bacteria. Despite a higher relative nitrogen content in the

  7. Three Band Indexes for Leaf Nitrogen Content estimation in Holm oak in a temporal scale

    NASA Astrophysics Data System (ADS)

    Pacheco-Labrador, J.; González, M. R.; Martín, M. P.; Riaño, D.; Salas, J.

    2011-12-01

    Holm oak Leaf Nitrogen Content (LNC) has been estimated in a Mediterranean savanna ecosystem "dehesa" in the Iberian Peninsula using an ASD FieldSpec° FR3 spectroradiometer connected to a Plant Probe with Leaf Clip (www.asdi.com). One of each ten bands between 400nm and 2500nm were selected, and two different Three Bands Indexes (TBI) with all the possible band combinations were built. Linear and logarithmic empirical relations with LNC were analyzed and the most correlated models were independently and inter-annually validated using the bootstrap technique. Data from two complete phenological years were used, the first one for calibration and the second for validation. The consideration of the temporal variation of both, optical responses and LNC resulted critical for the achievement of robust models, which showed high correlations (R2 max =0.81) and low errors (RMSE min = 8.74%). Nitrogen absorption bands were found in the selected indexes where non-correlated bands and usually the red edge region were also involved. Three Band Indexes may be sensible to physical responses of nitrogen bounds in the leaf molecules, though it is still necessary proving the influence of such absorptions in these relations.

  8. Converging patterns of vertical variability in leaf morphology and nitrogen across seven Eucalyptus plantations in Brazil and Hawaii, USA

    Treesearch

    Adam P. Coble; Alisha Autio; Molly A. Cavaleri; Dan Binkley; Michael G. Ryan

    2014-01-01

    Across sites in Brazil and Hawaii, LMA and Nmass were strongly correlated with height and shade index, respectively, which may help simplify canopy function modeling of Eucalyptus plantations. Abstract Within tree canopies, leaf mass per area (LMA) and leaf nitrogen per unit area (Narea) commonly increase with height. Previous research has suggested that these patterns...

  9. Controls on mass loss and nitrogen dynamics of oak leaf litter along an urban-rural land-use gradient

    Treesearch

    Richard V. Pouyat; Margaret M. Carreiro

    2003-01-01

    Using reciprocal leaf litter transplants, we investigated the effects of contrasting environments (urban vs. rural) and intraspecific variations in oak leaf litter quality on mass loss rates and nitrogen (N) dynamics along an urban-rural gradient in the New York City metropolitan area. Differences in earthworm abundances and temperature had previously been documented...

  10. Difference in leaf water use efficiency/photosynthetic nitrogen use efficiency of Bt-cotton and its conventional peer

    PubMed Central

    Guo, Ruqing; Sun, Shucun; Liu, Biao

    2016-01-01

    This study is to test the effects of Bt gene introduction on the foliar water/nitrogen use efficiency in cotton. We measured leaf stomatal conductance, photosynthetic rate, and transpiration rate under light saturation condition at different stages of a conventional cultivar (zhongmian no. 16) and its counterpart Bt cultivar (zhongmian no. 30) that were cultured on three levels of fertilization, based on which leaf instantaneous water use efficiency was derived. Leaf nitrogen concentration was measured to calculate leaf photosynthetic nitrogen use efficiency, and leaf δ13C was used to characterize long term water use efficiency. Bt cultivar was found to have lower stomatal conductance, net photosynthetic rates and transpiration rates, but higher instantaneous and long time water use efficiency. In addition, foliar nitrogen concentration was found to be higher but net photosynthetic rate was lower in the mature leaves of Bt cultivar, which led to lower photosynthetic nitrogen use efficiency. This might result from the significant decrease of photosynthetic rate due to the decrease of stomatal conductance. In conclusion, our findings show that the introduction of Bt gene should significantly increase foliar water use efficiency but decrease leaf nitrogen use efficiency in cotton under no selective pressure. PMID:27628897

  11. Difference in leaf water use efficiency/photosynthetic nitrogen use efficiency of Bt-cotton and its conventional peer.

    PubMed

    Guo, Ruqing; Sun, Shucun; Liu, Biao

    2016-09-15

    This study is to test the effects of Bt gene introduction on the foliar water/nitrogen use efficiency in cotton. We measured leaf stomatal conductance, photosynthetic rate, and transpiration rate under light saturation condition at different stages of a conventional cultivar (zhongmian no. 16) and its counterpart Bt cultivar (zhongmian no. 30) that were cultured on three levels of fertilization, based on which leaf instantaneous water use efficiency was derived. Leaf nitrogen concentration was measured to calculate leaf photosynthetic nitrogen use efficiency, and leaf δ(13)C was used to characterize long term water use efficiency. Bt cultivar was found to have lower stomatal conductance, net photosynthetic rates and transpiration rates, but higher instantaneous and long time water use efficiency. In addition, foliar nitrogen concentration was found to be higher but net photosynthetic rate was lower in the mature leaves of Bt cultivar, which led to lower photosynthetic nitrogen use efficiency. This might result from the significant decrease of photosynthetic rate due to the decrease of stomatal conductance. In conclusion, our findings show that the introduction of Bt gene should significantly increase foliar water use efficiency but decrease leaf nitrogen use efficiency in cotton under no selective pressure.

  12. Interspecific prediction of photosynthetic light response curves using specific leaf mass and leaf nitrogen content: effects of differences in soil fertility and growth irradiance

    PubMed Central

    Lachapelle, Pierre-Philippe; Shipley, Bill

    2012-01-01

    Background and Aims Previous work has shown that the entire photosynthetic light response curve, based on both Mitscherlich and Michaelis–Menten functions, could be predicted in an interspecific context through allometric relations linking the parameters of these functions to two static leaf traits: leaf nitrogen (N) content and leaf mass per area (LMA). This paper describes to what extent these allometric relations are robust to changes in soil fertility and the growth irradiance of the plants. Methods Plants of 25 herbaceous species were grown under controlled conditions in factorial combinations of low/high soil fertility and low/high growth irradiance. Net photosynthetic rates per unit dry mass were measured at light intensities ranging from 0 to 700 µmol m−2 s−1 photosynthetically active radiation (PAR). Key Results The differing growth environments induced large changes in N, LMA and in each of the parameter estimates of the Mitscherlich and Michaelis–Menten functions. However, the differing growth environments induced only small (although significant) changes in the allometric relationships linking N and LMA to the parameters of the two functions. As a result, 88 % (Mitcherlich) and 89 % (Michaelis–Menten) of the observed net photosynthetic rates over the full range of light intensities (0–700 µmol m−2 s−1 PAR) and across all four growth environments could be predicted using only N and LMA using the same allometric relations. Conclusions These results suggest the possibility of predicting net photosynthetic rates in nature across species over the full range of light intensities using readily available data. PMID:22442344

  13. The autophagic degradation of chloroplasts via rubisco-containing bodies is specifically linked to leaf carbon status but not nitrogen status in Arabidopsis.

    PubMed

    Izumi, Masanori; Wada, Shinya; Makino, Amane; Ishida, Hiroyuki

    2010-11-01

    Autophagy is an intracellular process facilitating the vacuolar degradation of cytoplasmic components and is important for nutrient recycling during starvation. We previously demonstrated that chloroplasts can be partially mobilized to the vacuole by autophagy via spherical bodies named Rubisco-containing bodies (RCBs). Although chloroplasts contain approximately 80% of total leaf nitrogen and represent a major carbon and nitrogen source for new growth, the relationship between leaf nutrient status and RCB production remains unclear. We examined the effects of nutrient factors on the appearance of RCBs in leaves of transgenic Arabidopsis (Arabidopsis thaliana) expressing stroma-targeted fluorescent proteins. In excised leaves, the appearance of RCBs was suppressed by the presence of metabolic sugars, which were added externally or were produced during photosynthesis in the light. The light-mediated suppression was relieved by the inhibition of photosynthesis. During a diurnal cycle, RCB production was suppressed in leaves excised at the end of the day with high starch content. Starchless mutants phosphoglucomutase and ADP-Glc pyrophosphorylase1 produced a large number of RCBs, while starch-excess mutants starch-excess1 and maltose-excess1 produced fewer RCBs. In nitrogen-limited plants, as leaf carbohydrates were accumulated, RCB production was suppressed. We propose that there exists a close relationship between the degradation of chloroplast proteins via RCBs and leaf carbon but not nitrogen status in autophagy. We also found that the appearance of non-RCB-type autophagic bodies was not suppressed in the light and somewhat responded to nitrogen in excised leaves, unlike RCBs. These results imply that the degradation of chloroplast proteins via RCBs is specifically controlled in autophagy.

  14. Nitrogen recycling and remobilization are differentially controlled by leaf senescence and development stage in Arabidopsis under low nitrogen nutrition.

    PubMed

    Diaz, Céline; Lemaître, Thomas; Christ, Aurélie; Azzopardi, Marianne; Kato, Yusuke; Sato, Fumihiko; Morot-Gaudry, Jean-François; Le Dily, Frédérik; Masclaux-Daubresse, Céline

    2008-07-01

    Five recombinant inbred lines (RILs) of Arabidopsis (Arabidopsis thaliana), previously selected from the Bay-0 x Shahdara RIL population on the basis of differential leaf senescence phenotypes (from early senescing to late senescing) when cultivated under nitrogen (N)-limiting conditions, were analyzed to monitor metabolic markers related to N assimilation and N remobilization pathways. In each RIL, a decrease of total N, free amino acid, and soluble protein contents with leaf aging was observed. In parallel, the expression of markers for N remobilization such as cytosolic glutamine synthetase, glutamate dehydrogenase, and CND41-like protease was increased. This increase occurred earlier and more rapidly in early-senescing lines than in late-senescing lines. We measured the partitioning of (15)N between sink and source leaves during the vegetative stage of development using (15)N tracing and showed that N remobilization from the source leaves to the sink leaves was more efficient in the early-senescing lines. The N remobilization rate was correlated with leaf senescence severity at the vegetative stage. Experiments of (15)N tracing at the reproductive stage showed, however, that the rate of N remobilization from the rosettes to the flowering organs and to the seeds was similar in early- and late-senescing lines. At the reproductive stage, N remobilization efficiency did not depend on senescence phenotypes but was related to the ratio between the biomasses of the sink and the source organs.

  15. Nitrogen Recycling and Remobilization Are Differentially Controlled by Leaf Senescence and Development Stage in Arabidopsis under Low Nitrogen Nutrition1

    PubMed Central

    Diaz, Céline; Lemaître, Thomas; Christ, Aurélie; Azzopardi, Marianne; Kato, Yusuke; Sato, Fumihiko; Morot-Gaudry, Jean-François; Le Dily, Frédérik; Masclaux-Daubresse, Céline

    2008-01-01

    Five recombinant inbred lines (RILs) of Arabidopsis (Arabidopsis thaliana), previously selected from the Bay-0 × Shahdara RIL population on the basis of differential leaf senescence phenotypes (from early senescing to late senescing) when cultivated under nitrogen (N)-limiting conditions, were analyzed to monitor metabolic markers related to N assimilation and N remobilization pathways. In each RIL, a decrease of total N, free amino acid, and soluble protein contents with leaf aging was observed. In parallel, the expression of markers for N remobilization such as cytosolic glutamine synthetase, glutamate dehydrogenase, and CND41-like protease was increased. This increase occurred earlier and more rapidly in early-senescing lines than in late-senescing lines. We measured the partitioning of 15N between sink and source leaves during the vegetative stage of development using 15N tracing and showed that N remobilization from the source leaves to the sink leaves was more efficient in the early-senescing lines. The N remobilization rate was correlated with leaf senescence severity at the vegetative stage. Experiments of 15N tracing at the reproductive stage showed, however, that the rate of N remobilization from the rosettes to the flowering organs and to the seeds was similar in early- and late-senescing lines. At the reproductive stage, N remobilization efficiency did not depend on senescence phenotypes but was related to the ratio between the biomasses of the sink and the source organs. PMID:18467460

  16. Functional relationships between leaf hydraulics and leaf economic traits in response to nutrient addition in subtropical tree species.

    PubMed

    Villagra, Mariana; Campanello, Paula I; Bucci, Sandra J; Goldstein, Guillermo

    2013-12-01

    Leaves can be both a hydraulic bottleneck and a safety valve against hydraulic catastrophic dysfunctions, and thus changes in traits related to water movement in leaves and associated costs may be critical for the success of plant growth. A 4-year fertilization experiment with nitrogen (N) and phosphorus (P) addition was done in a semideciduous Atlantic forest in northeastern Argentina. Saplings of five dominant canopy species were grown in similar gaps inside the forests (five control and five N + P addition plots). Leaf lifespan (LL), leaf mass per unit area (LMA), leaf and stem vulnerability to cavitation, leaf hydraulic conductance (K(leaf_area) and K(leaf_mass)) and leaf turgor loss point (TLP) were measured in the five species and in both treatments. Leaf lifespan tended to decrease with the addition of fertilizers, and LMA was significantly higher in plants with nutrient addition compared with individuals in control plots. The vulnerability to cavitation of leaves (P50(leaf)) either increased or decreased with the nutrient treatment depending on the species, but the average P50(leaf) did not change with nutrient addition. The P50(leaf) decreased linearly with increasing LMA and LL across species and treatments. These trade-offs have an important functional significance because more expensive (higher LMA) and less vulnerable leaves (lower P50(leaf)) are retained for a longer period of time. Osmotic potentials at TLP and at full turgor became more negative with decreasing P50(leaf) regardless of nutrient treatment. The K(leaf) on a mass basis was negatively correlated with LMA and LL, indicating that there is a carbon cost associated with increased water transport that is compensated by a longer LL. The vulnerability to cavitation of stems and leaves were similar, particularly in fertilized plants. Leaves in the species studied may not function as safety valves at low water potentials to protect the hydraulic pathway from water stress-induced cavitation

  17. The Nitrogen Use Efficiency of C(3) and C(4) Plants: I. Leaf Nitrogen, Growth, and Biomass Partitioning in Chenopodium album (L.) and Amaranthus retroflexus (L.).

    PubMed

    Sage, R F; Pearcy, R W

    1987-07-01

    The effect of applied nitrogen (N) on the growth, leaf expansion rate, biomass partitioning and leaf N levels of Chenopodium album (C(3)) and Amaranthus retroflexus (C(4)) were investigated. At a given applied N level, C. album had 50% greater leaf N per unit area (N(a)) than A. retroflexus. Nitrate accumulated at lower N(a) in A. retroflexus than C. album. A. retroflexus was more productive than C. album at high N, but C. album was more productive at low N. At high applied N, nitrogen use efficiency (NUE), expressed either as net assimilation rate (NAR) per unit N or relative growth rate per unit N, was greater in A. retroflexus than C. album. However, at low applied N, C. album had a greater NUE on both an NAR and growth basis than A. retroflexus. The leaf area partitioning coefficient was similar in the species at high N, but was greater in A. retroflexus than C. album at low N. At low N, greater leaf area partitioning apparently lowered leaf N in A. retroflexus to levels at which necrosis occurred. In C. album by contrast, leaf area partitioning declined to a greater degree with declining N than it did in A. retroflexus, so that leaf N did not decline as much. Consequently, low N C. album plants did not lose leaf area to necrosis and had a greater NAR and NUE at low applied N than A. retroflexus.

  18. Overwintering evergreen oaks reverse typical relationships between leaf traits in a species spectrum

    PubMed Central

    Harayama, Hisanori; Ishida, Atsushi

    2016-01-01

    The leaf economics spectrum has given us a fundamental understanding of the species variations in leaf variables. Across plant species, tight correlations among leaf mass per area (LMA), mass-based nitrogen (Nm) and photosynthetic rate (Am) and leaf lifespan have been well known as trade-offs in leaf carbon economy. However, the regional or biome-level correlations may not be necessary to correspond with the global-scale analysis. Here, we show that almost all leaf variables in overwintering evergreen oaks in Japan were relatively well included within the evergreen-broadleaved trees in worldwide temperate forests, but Nm was more consistent with that in deciduous broadleaved trees. Contrary to the universal correlations, the correlation between Am and Nm among the evergreen oaks was negative and the correlation between Am and LMA disappeared. The unique performance was due to specific nitrogen allocation within leaves, i.e. the evergreen oaks with later leaf maturation had lower Nm but higher nitrogen allocation to photosynthetic enzymes within leaves, to enhance carbon gain against the delayed leaf maturation and the shortened photosynthetic period due to cold winters. Our data demonstrate that correlations between leaf variables in a local scale are occasionally different from averaged global-scale datasets, because of the constraints in each biome. PMID:27493781

  19. Overwintering evergreen oaks reverse typical relationships between leaf traits in a species spectrum.

    PubMed

    Harayama, Hisanori; Ishida, Atsushi; Yoshimura, Jin

    2016-07-01

    The leaf economics spectrum has given us a fundamental understanding of the species variations in leaf variables. Across plant species, tight correlations among leaf mass per area (LMA), mass-based nitrogen (N m) and photosynthetic rate (A m) and leaf lifespan have been well known as trade-offs in leaf carbon economy. However, the regional or biome-level correlations may not be necessary to correspond with the global-scale analysis. Here, we show that almost all leaf variables in overwintering evergreen oaks in Japan were relatively well included within the evergreen-broadleaved trees in worldwide temperate forests, but N m was more consistent with that in deciduous broadleaved trees. Contrary to the universal correlations, the correlation between A m and N m among the evergreen oaks was negative and the correlation between A m and LMA disappeared. The unique performance was due to specific nitrogen allocation within leaves, i.e. the evergreen oaks with later leaf maturation had lower N m but higher nitrogen allocation to photosynthetic enzymes within leaves, to enhance carbon gain against the delayed leaf maturation and the shortened photosynthetic period due to cold winters. Our data demonstrate that correlations between leaf variables in a local scale are occasionally different from averaged global-scale datasets, because of the constraints in each biome.

  20. [Exploring novel hyperspectral band and key index for leaf nitrogen accumulation in wheat].

    PubMed

    Yao, Xia; Zhu, Yan; Feng, Wei; Tian, Yong-Chao; Cao, Wei-Xing

    2009-08-01

    The objectives of the present study were to explore new sensitive spectral bands and ratio spectral indices based on precise analysis of ground-based hyperspectral information, and then develop regression model for estimating leaf N accumulation per unit soil area (LNA) in winter wheat (Triticum aestivum L.). Three field experiments were conducted with different N rates and cultivar types in three consecutive growing seasons, and time-course measurements were taken on canopy hyperspectral reflectance and LNA tinder the various treatments. By adopting the method of reduced precise sampling, the detailed ratio spectral indices (RSI) within the range of 350-2 500 nm were constructed, and the quantitative relationships between LNA (gN m(-2)) and RSI (i, j) were analyzed. It was found that several key spectral bands and spectral indices were suitable for estimating LNA in wheat, and the spectral parameter RSI (990, 720) was the most reliable indicator for LNA in wheat. The regression model based on the best RSI was formulated as y = 5.095x - 6.040, with R2 of 0.814. From testing of the derived equations with independent experiment data, the model on RSI (990, 720) had R2 of 0.847 and RRMSE of 24.7%. Thus, it is concluded that the present hyperspectral parameter of RSI (990, 720) and derived regression model can be reliably used for estimating LNA in winter wheat. These results provide the feasible key bands and technical basis for developing the portable instrument of monitoring wheat nitrogen status and for extracting useful spectral information from remote sensing images.

  1. Co-optimal distribution of leaf nitrogen and hydraulic conductance in plant canopies.

    PubMed

    Peltoniemi, Mikko S; Duursma, Remko A; Medlyn, Belinda E

    2012-05-01

    Leaf properties vary significantly within plant canopies, due to the strong gradient in light availability through the canopy, and the need for plants to use resources efficiently. At high light, photosynthesis is maximized when leaves have a high nitrogen content and water supply, whereas at low light leaves have a lower requirement for both nitrogen and water. Studies of the distribution of leaf nitrogen (N) within canopies have shown that, if water supply is ignored, the optimal distribution is that where N is proportional to light, but that the gradient of N in real canopies is shallower than the optimal distribution. We extend this work by considering the optimal co-allocation of nitrogen and water supply within plant canopies. We developed a simple 'toy' two-leaf canopy model and optimized the distribution of N and hydraulic conductance (K) between the two leaves. We asked whether hydraulic constraints to water supply can explain shallow N gradients in canopies. We found that the optimal N distribution within plant canopies is proportional to the light distribution only if hydraulic conductance, K, is also optimally distributed. The optimal distribution of K is that where K and N are both proportional to incident light, such that optimal K is highest to the upper canopy. If the plant is constrained in its ability to construct higher K to sun-exposed leaves, the optimal N distribution does not follow the gradient in light within canopies, but instead follows a shallower gradient. We therefore hypothesize that measured deviations from the predicted optimal distribution of N could be explained by constraints on the distribution of K within canopies. Further empirical research is required on the extent to which plants can construct optimal K distributions, and whether shallow within-canopy N distributions can be explained by sub-optimal K distributions.

  2. Relationships between functional traits and inorganic nitrogen acquisition among eight contrasting European grass species

    PubMed Central

    Grassein, Fabrice; Lemauviel-Lavenant, Servane; Lavorel, Sandra; Bahn, Michael; Bardgett, Richard D.; Desclos-Theveniau, Marie; Laîné, Philippe

    2015-01-01

    Backgrounds and Aims Leaf functional traits have been used as a basis to categoize plants across a range of resource-use specialization, from those that conserve available resources to those that exploit them. However, the extent to which the leaf functional traits used to define the resource-use strategies are related to root traits and are good indicators of the ability of the roots to take up nitrogen (N) are poorly known. This is an important question because interspecific differences in N uptake have been proposed as one mechanism by which species’ coexistence may be determined. This study therefore investigated the relationships between functional traits and N uptake ability for grass species across a range of conservative to exploitative resource-use strategies. Methods Root uptake of NH4+ and NO3–, and leaf and root functional traits were measured for eight grass species sampled at three grassland sites across Europe, in France, Austria and the UK. Species were grown in hydroponics to determine functional traits and kinetic uptake parameters (Imax and Km) under standardized conditions. Key Results Species with high specific leaf area (SLA) and shoot N content, and low leaf and root dry matter content (LDMC and RDMC, respectively), which are traits associated with the exploitative syndrome, had higher uptake and affinity for both N forms. No trade-off was observed in uptake between the two forms of N, and all species expressed a higher preference for NH4+. Conclusions The results support the use of leaf traits, and especially SLA and LDMC, as indicators of the N uptake ability across a broad range of grass species. The difficulties associated with assessing root properties are also highlighted, as root traits were only weakly correlated with leaf traits, and only RDMC and, to a lesser extent, root N content were related to leaf traits. PMID:25471096

  3. Interrelated responses of tomato plants and the leaf miner Tuta absoluta to nitrogen supply.

    PubMed

    Larbat, R; Adamowicz, S; Robin, C; Han, P; Desneux, N; Le Bot, J

    2016-05-01

    Plant-insect interactions are strongly modified by environmental factors. This study evaluates the influence of nitrogen fertilisation on the tomato (Solanum lycopersicum L.) cv. Santa clara and the leafminer (Tuta absoluta (Meyrick), Lepidoptera: Gelechiidae). Greenhouse-grown tomato plants were fed hydroponically on a complete nutrient solution containing either a high nitrogen concentration (HN) sustaining maximum growth or a low nitrogen concentration (LN) limiting plant growth. Insect-free plants were compared with plants attacked by T. absoluta. Seven and 14 days after artificial oviposition leading to efficacious hatching and larvae development, we measured total carbon, nitrogen and soluble protein as well as defence compounds (phenolics, glycoalkaloids, polyphenol oxidase activity) in the HN versus LN plants. Only in the HN treatment did T. absoluta infestation slightly impair leaf growth and induce polyphenol oxidase (PPO) activity in the foliage. Neither the concentration of phenolic compounds and proteins nor the distribution of nitrogen within the plant was affected by T. absoluta infestation. In contrast, LN nutrition impaired T. absoluta-induced PPO activity. It decreased protein and total nitrogen concentration of plant organs and enhanced the accumulation of constitutive phenolics and tomatine. Moreover, LN nutrition impaired T. absoluta development by notably decreasing pupal weight and lengthening the development period from egg to adult. Adjusting the level of nitrogen nutrition may thus be a means of altering the life cycle of T. absoluta. This study provides a comprehensive dataset concerning interrelated responses of tomato plants and T. absoluta to nitrogen nutrition.

  4. Nitrogen turnover in the leaf litter and fine roots of sugar maple.

    PubMed

    Pregitzer, Kurt S; Zak, Donald R; Talhelm, Alan F; Burton, Andrew J; Eikenberry, Jennifer R

    2010-12-01

    In order to better understand the nitrogen (N) cycle, a pulse of 15NO3- was applied in 1998 to a sugar maple (Acer saccharum) dominated northern hardwood forest receiving long-term (1994-2008) simulated atmospheric N deposition. Sugar maple leaf litter and live fine-root 15N were quantified for four years prior to labeling and for 11 subsequent years. Continuous sampling of 15N following addition of the tracer enabled calculation of leaf litter and fine-root N pool turnover utilizing an exponential decay function. Fine-root 15N recovery peaked at 3.7% +/- 1.7% the year the tracer was applied, while leaf litter 15N recovery peaked in the two years following tracer application at approximately 8%. These results suggest shoots are primarily constructed from N taken up in previous years, while fine roots are constructed from new N. The residence time of N was 6.5 years in leaf litter and 3.1 years in fine roots. The longer residence time and higher recovery rate are evidence that leaves were a stronger sink for labeled N than fine roots, but the relatively short residence time of tracer N in both pools suggests that there is not tight intra-ecosystem cycling of N in this mature forest.

  5. Estimation of tomato leaf nitrogen content using continuum-removal spectroscopy analysis technique

    NASA Astrophysics Data System (ADS)

    Ding, Yongjun; Li, Minzan; Zheng, Lihua; Sun, Hong

    2012-11-01

    In quantitative analysis of spectral data, noises and background interference always degrades the accuracy of spectral feature extraction. Continuum-removal analysis enables the isolation of absorption features of interest, thus increasing the coefficients of determination and facilitating the identification of more sensible absorption features. The purpose of this study was to test continuum-removal methodology with Visual-NIR spectral data of tomato leaf. Through analyzing the correlation between continuum-removal spectrum and nitrogen content, 15 characteristics parameters reflected changing tendency of nitrogen content were chosen, which is at 335, 405, 500, 520, 540, 550, 560, 580, 620, 640, 683, 704, 720, 736 and 770 nm. Finally, the variance inflation analysis and stepwise regression method was used to develop the prediction model of the nitrogen content of tomato leaf. The result showed that the predicted model, which used the values of continuum-removal spectrum at 335 and 720nm as input variables, had high predictive ability, with R2 of 0.755. The root mean square errors of prediction using a leave-one-out cross validation method were 0.513. These results suggest that the continuum-removal spectroscopy analysis has better potential to diagnose tomato growth in greenhouse.

  6. Nodule and Leaf Nitrate Reductases and Nitrogen Fixation in Medicago sativa L. under Water Stress

    PubMed Central

    Aparicio-Tejo, P.; Sánchez-Díaz, Manuel

    1982-01-01

    The effect of water stress on patterns of nitrate reductase activity in the leaves and nodules and on nitrogen fixation were investigated in Medicago sativa L. plants watered 1 week before drought with or without NO3−. Nitrogen fixation was decreased by water stress and also inhibited strongly by the presence of NO3−. During drought, leaf nitrate reductase activity (NRA) decreased significantly particularly in plants watered with NO3−, while with rewatering, leaf NRA recovery was quite important especially in the NO3−-watered plants. As water stress progressed, the nodular NRA increased both in plants watered with NO3− and in those without NO3− contrary to the behavior of the leaves. Beyond −15.105 pascal, nodular NRA began to decrease in plants watered with NO3−. This phenomenon was not observed in nodules of plants given water only. Upon rewatering, it was observed that in plants watered with NO3− the nodular NRA increased again, while in plants watered but not given NO3−, such activity began to decrease. Nitrogen fixation increased only in plants without NO3−. PMID:16662233

  7. [Determination of total nitrogen content in fresh tea leaf using visible-near infrared spectroscopy].

    PubMed

    Hu, Yong-guang; Li, Ping-ping; Mu, Jian-hua; Mao, Han-ping; Wu, Cai-cong; Chen, Bin

    2008-12-01

    To monitor tea tree growth and nitrogen nutrition in tea leaves, visible-near infrared spectroscopy was used to determine total nitrogen content. One hundred eleven fresh tea leaves of different nitrogen levels were sampled according to different tea type, plant age, leaf age, leaf position and soil nutrients, which covered a wide range of nitrogen content. Visible-near infrared reflectance spectra were scanned under the sunlight with a portable spectroradiometer (ASD FieldSpec 3) in field. The software of NIRSA developed by Jiangsu University was used to establish the calibration models and prediction models, which included spectra data editing, preprocessing, sample analysis, spectrogram comparison, calibration model and prediction model, analysis reporting and system configuration Eighty six samples were used to establish the calibration model with the preprocessing of first/second-order derivative plus moving average filter and the algorithm of PLS regression, stepwise regression, principal component regression, PLS regression plus artificial neural network and so on The result shows that the PLS regression calibration model with 7 principal component factors after the preprocessing of first-order derivative plus moving average filter is the best and correspondingly the root mean square error of calibration is 0. 973. Twenty five unknown samples were used to establish the prediction model and the correlation coefficient between predicted values and real values is 0.8881, while the root mean square error of prediction is 0. 130 4 with the mean relative error of 4.339%. Therefore, visible-near infrared spectroscopy has a huge potential for the determination of total nitrogen content in fresh tea leaves in a rapid and nondestructive way. Consequently, the technique can be significant to monitoring the tea tree growth and fertilization management.

  8. Biomechanical and leaf-climate relationships: a comparison of ferns and seed plants.

    PubMed

    Peppe, Daniel J; Lemons, Casee R; Royer, Dana L; Wing, Scott L; Wright, Ian J; Lusk, Christopher H; Rhoden, Chazelle H

    2014-02-01

    Relationships of leaf size and shape (physiognomy) with climate have been well characterized for woody non-monocotyledonous angiosperms (dicots), allowing the development of models for estimating paleoclimate from fossil leaves. More recently, petiole width of seed plants has been shown to scale closely with leaf mass. By measuring petiole width and leaf area in fossils, leaf mass per area (MA) can be estimated and an approximate leaf life span inferred. However, little is known about these relationships in ferns, a clade with a deep fossil record and with the potential to greatly expand the applicability of these proxies. We measured the petiole width, MA, and leaf physiognomic characters of 179 fern species from 188 locations across six continents. We applied biomechanical models and assessed the relationship between leaf physiognomy and climate using correlational approaches. The scaling relationship between area-normalized petiole width and MA differs between fern fronds and pinnae. The scaling relationship is best modeled as an end-loaded cantilevered beam, which is different from the best-fit biomechanical model for seed plants. Fern leaf physiognomy is not influenced by climatic conditions. The cantilever beam model can be applied to fossil ferns. The lack of sensitivity of leaf physiognomy to climate in ferns argues against their use to reconstruct paleoclimate. Differences in climate sensitivity and biomechanical relationships between ferns and seed plants may be driven by differences in their hydraulic conductivity and/or their differing evolutionary histories of vein architecture and leaf morphology.

  9. The comparison for leaf nitrogen estimating in rice by chlorophyll meters and reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Lin, Fenfang; Wang, Ke

    Handheld chlorophyll sensors is a very important technique to determine the timing and number of N applications, which can improve the fertilizer-N use efficiency and monitor leaf N status of irrigated rice. One solution-culture and two field experiments with four rice genotypes were conducted to obtain variables reflecting nitrogen (N) status at different developmental stages. The paper systemically compared SPAD indices calculated from the SPAD readings of various leaf positions and hyperspectral vegetation indices. The results showed that the indices RSI and RDSI were more reliable SPAD indices for estimating foliar N status in rice plant; In addition, from view of quickness and cheapness, chlorophyll meters are more suitable for estimating foliar N status in rice than reflectance spectroscopy on the basis of meeting accuracy requirements.

  10. Characterization of leaf blade- and leaf sheath-associated bacterial communities and assessment of their responses to environmental changes in CO₂, temperature, and nitrogen levels under field conditions.

    PubMed

    Ikeda, Seishi; Tokida, Takeshi; Nakamura, Hirofumi; Sakai, Hidemitsu; Usui, Yasuhiro; Okubo, Takashi; Tago, Kanako; Hayashi, Kentaro; Sekiyama, Yasuyo; Ono, Hiroshi; Tomita, Satoru; Hayatsu, Masahito; Hasegawa, Toshihiro; Minamisawa, Kiwamu

    2015-01-01

    Rice shoot-associated bacterial communities at the panicle initiation stage were characterized and their responses to elevated surface water-soil temperature (ET), low nitrogen (LN), and free-air CO2 enrichment (FACE) were assessed by clone library analyses of the 16S rRNA gene. Principal coordinate analyses combining all sequence data for leaf blade- and leaf sheath-associated bacteria revealed that each bacterial community had a distinct structure, as supported by PC1 (61.5%), that was mainly attributed to the high abundance of Planctomycetes in leaf sheaths. Our results also indicated that the community structures of leaf blade-associated bacteria were more sensitive than those of leaf sheath-associated bacteria to the environmental factors examined. Among these environmental factors, LN strongly affected the community structures of leaf blade-associated bacteria by increasing the relative abundance of Bacilli. The most significant effect of FACE was also observed on leaf blade-associated bacteria under the LN condition, which was explained by decreases and increases in Agrobacterium and Pantoea, respectively. The community structures of leaf blade-associated bacteria under the combination of FACE and ET were more similar to those of the control than to those under ET or FACE. Thus, the combined effects of environmental factors need to be considered in order to realistically assess the effects of environmental changes on microbial community structures.

  11. Flood flows, leaf breakdown, and plant-available nitrogen on a dryland river floodplain

    USGS Publications Warehouse

    Andersen, Douglas C.; Nelson, S. Mark; Binkley, Dan

    2003-01-01

    We tested the hypothesis that decomposition in flood-inundated patches of riparian tree leaf litter results in higher plant-available nitrogen in underlying, nutrient-poor alluvium. We used leafpacks (n = 56) containing cottonwood (Populus deltoides ssp. wislizenii) leaf litter to mimic natural accumulations of leaves in an experiment conducted on the Yampa River floodplain in semi-arid northwestern Colorado, USA. One-half of the leafpacks were set on the sandy alluvial surface, and one-half were buried 5 cm below the surface. The presence of NO3− and NH4+ presumed to result from a leafpack's submergence during the predictable spring flood pulse was assessed using an ion-exchange resin bag (IER) placed beneath each leafpack and at control locations. Leafpacks and IERs were collected one week after flood peak (71 days total exposure) at half the stations; the remainder were collected three weeks later (93 days exposure). A multi-peaked spring flood with above-average maximum discharge inundated leafpacks for total time periods ranging from 133 to 577 hours. Litter lost from 43 to 68 percent of its initial organic matter (OM) content. Organic matter loss increased with total time inundated and total time of exposure on the floodplain. Burial retarded OM loss if the total time inundated was relatively long, and substrate texture (sand vs. silt) affected OM loss in a complex manner through interactions with total time inundated and total time of exposure. No pulse of N attributable to leaf breakdown was detected in the IERs, and leafpack litter showed no net change in the mass of nitrogen present. Patterns of leafpack and IER nitrogen levels suggested that litter removed N from floodwater and thereby reduced N availability in underlying sediment. Immobilization of floodwater-N by litter and N mineralization outside the flood period may be important components of N flux in semi-arid and arid floodplain environments.

  12. Wavelength Selection of Hyperspectral LIDAR Based on Feature Weighting for Estimation of Leaf Nitrogen Content in Rice

    NASA Astrophysics Data System (ADS)

    Du, Lin; Shi, Shuo; Gong, Wei; Yang, Jian; Sun, Jia; Mao, Feiyue

    2016-06-01

    Hyperspectral LiDAR (HSL) is a novel tool in the field of active remote sensing, which has been widely used in many domains because of its advantageous ability of spectrum-gained. Especially in the precise monitoring of nitrogen in green plants, the HSL plays a dispensable role. The exiting HSL system used for nitrogen status monitoring has a multi-channel detector, which can improve the spectral resolution and receiving range, but maybe result in data redundancy, difficulty in system integration and high cost as well. Thus, it is necessary and urgent to pick out the nitrogen-sensitive feature wavelengths among the spectral range. The present study, aiming at solving this problem, assigns a feature weighting to each centre wavelength of HSL system by using matrix coefficient analysis and divergence threshold. The feature weighting is a criterion to amend the centre wavelength of the detector to accommodate different purpose, especially the estimation of leaf nitrogen content (LNC) in rice. By this way, the wavelengths high-correlated to the LNC can be ranked in a descending order, which are used to estimate rice LNC sequentially. In this paper, a HSL system which works based on a wide spectrum emission and a 32-channel detector is conducted to collect the reflectance spectra of rice leaf. These spectra collected by HSL cover a range of 538 nm - 910 nm with a resolution of 12 nm. These 32 wavelengths are strong absorbed by chlorophyll in green plant among this range. The relationship between the rice LNC and reflectance-based spectra is modeled using partial least squares (PLS) and support vector machines (SVMs) based on calibration and validation datasets respectively. The results indicate that I) wavelength selection method of HSL based on feature weighting is effective to choose the nitrogen-sensitive wavelengths, which can also be co-adapted with the hardware of HSL system friendly. II) The chosen wavelength has a high correlation with rice LNC which can be

  13. Detection of nitrogen-overfertilized rice plants with leaf positional difference in hyperspectral vegetation index*

    PubMed Central

    Zhou, Qi-fa; Liu, Zhan-yu; Huang, Jing-feng

    2010-01-01

    The main objective of this work was to compare the applicability of the single leaf (the uppermost leaf L1 and the third uppermost leaf L3) modified simple ratio (mSR705 index) and the leaf positional difference in the vegetation index between L1 and L3 (mSR705L1−mSR705L3) in detecting nitrogen (N)-overfertilized rice plants. A field experiment consisting of three rice genotypes and five N fertilization levels (0, 75, 180, 285, and 390 kg N/ha) was conducted at Xiaoshan, Hangzhou, Zhejiang Province, China in 2008. The hyperspectral reflectance (350–2500 nm) and the chlorophyll concentration (ChlC) of L1 and L3 were measured at different stages. The mSR705L1 and mSR705L3 indices appeared not to be highly sensitive to the N rates, especially when the N rate was high (above 180 kg N/ha). The mean mSR705L1−mSR705L3 across the genotypes increased significantly (P<0.05) or considerably from 180 to 285 kg N/ha treatment and from 285 to 390 kg N/ha treatment at all the stages. Also, use of the difference (mSR705L1−mSR705L3) greatly reduced the influence of the stages and genotypes in assessing the N status with reflectance data. The results of this study show that the N-overfertilized rice plants can be effectively detected with the leaf positional difference in the mSR705 index. PMID:20506579

  14. DEVELOPMENT OF NITROGEN LOAD-REPONSE RELATIONSHIPS FOR ESTUARIES

    EPA Science Inventory

    A research program is currently underway to meet the United States Environmental Protection Agency's need to develop nutrient criteria for estuarine and coastal marine waters. This research is intended to develop nitrogen load-response relationships for submerged aquatic vegetati...

  15. The relationship between leaf water status, gas exchange, and spectral reflectance in cotton leaves

    NASA Technical Reports Server (NTRS)

    Bowman, William D.

    1989-01-01

    Measurements of leaf spectral reflectance, the components of water potential, and leaf gas exchanges as a function of leaf water content were made to evaluate the use of NIR reflectance as an indicator of plant water status. Significant correlations were determined between spectral reflectance at 810 nm, 1665 nm, and 2210 nm and leaf relative water content, total water potential, and turgor pressure. However, the slopes of these relationships were relatively shallow and, when evaluated over the range of leaf water contents in which physiological activity occurs (e.g., photosynthesis), had lower r-squared values, and some relationships were not statistically significant. NIR reflectance varied primarily as a function of leaf water content, and not independently as a function of turgor pressure, which is a sensitive indicator of leaf water status. The limitations of this approach to measuring plant water stress are discussed.

  16. Leaf structure vs. nutrient relationships vary with soil conditions in temperate shrubs and trees

    NASA Astrophysics Data System (ADS)

    Niinemets, Ülo; Kull, Kalevi

    2003-09-01

    Often there are significant positive interspecific relationships between leaf area per unit dry mass (SLA) and foliar phosphorus and nitrogen concentrations ([P] and [N]). Most of these studies have been conducted on moderately acidic soils, and little is known of the generality of these relations as potentially affected by soil characteristics. We investigated foliage mineral composition in relation to leaf structure in a wooded meadow on calcareous alkaline soil, in a bog on strongly acidic soil, and in a flood plain on moderately acidic soil. Foliar nutrient contents and fertilization experiments indicated that foliage physiological activity was co-limited by both P and N availabilities in the wooded meadow, by P in the bog, and by N in the flood plain. In the wooded meadow and in the bog, there were positive relationships between SLA and P concentration ([P]), and no relationship between SLA and nitrogen concentration [N]. Given that the fraction of support tissues generally increases with decreasing SLA, the requirement for mineral nutrients is lower at low SLA. Thus, these contrasting relations between mineral nutrients and SLA suggest that P was distributed in a more "optimal" manner among the leaves with varying structure than N in P-limited communities. In the flood plain, SLA was positively related to both [P] and [N], possibly manifesting a strategy to cope with N limitations by enhancing N turnover, and accordingly, greater P requirement for nucleic acid formation in N-limited soils. Total variation in foliar structural and chemical characteristics was similar in all sites, and was mainly determined by variation among the species. Part of this variability was explained by life form and plant size. [P] was higher in trees than in shrubs, and [P] and P/N ratio increased with increasing total plant height, indicating that P nutrition was improved relative to N nutrition with increasing plant size. Since the capture of less mobile soil elements such as P is

  17. Estimating leaf nitrogen accumulation in maize based on canopy hyperspectrum data

    NASA Astrophysics Data System (ADS)

    Gu, Xiaohe; Wang, Lizhi; Song, Xiaoyu; Xu, Xingang

    2016-10-01

    Leaf nitrogen accumulation (LNA) has important influence on the formation of crop yield and grain protein. Monitoring leaf nitrogen accumulation of crop canopy quantitively and real-timely is helpful for mastering crop nutrition status, diagnosing group growth and managing fertilization precisely. The study aimed to develop a universal method to monitor LNA of maize by hyperspectrum data, which could provide mechanism support for mapping LNA of maize at county scale. The correlations between LNA and hyperspectrum reflectivity and its mathematical transformations were analyzed. Then the feature bands and its transformations were screened to develop the optimal model of estimating LNA based on multiple linear regression method. The in-situ samples were used to evaluate the accuracy of the estimating model. Results showed that the estimating model with one differential logarithmic transformation (lgP') of reflectivity could reach highest correlation coefficient (0.889) with lowest RMSE (0.646 g·m-2), which was considered as the optimal model for estimating LNA in maize. The determination coefficient (R2) of testing samples was 0.831, while the RMSE was 1.901 g·m-2. It indicated that the one differential logarithmic transformation of hyperspectrum had good response with LNA of maize. Based on this transformation, the optimal estimating model of LNA could reach good accuracy with high stability.

  18. [Effects of nitrogen fertilization on wheat leaf photosynthesis under elevated atmospheric CO2 concentration].

    PubMed

    Yu, Xian-feng; Zhang, Xu-cheng; Guo, Tian-wen; Yu, Jia

    2010-09-01

    In this paper, the effects of nitrogen (N) fertilization on the wheat leaf photosynthesis under long-term elevated atmospheric CO2 concentration (760 micromol x mol(-1)) was studied, based on the measurements of photosynthetic gas exchange parameters and light intensity-photosynthetic rate response curves at jointing stage. Under the long-term elevated atmospheric CO2 concentration, applying sufficient N could increase the wheat leaf photosynthetic rate (Pn), transpiration rate (Tr), and instantaneous water use efficiency (WUEi). Comparing with those under ambient atmospheric CO2 concentration, the Po and WUEi under the elevated atmospheric CO2 concentration increased, while the stomatal conductance (Gs) and intercellular CO2 concentration (Ci) decreased. With the increase of light flux intensity, the Pn and WUEi under the elevated atmospheric CO2 concentration were higher those under ambient atmospheric CO2 concentration, Gs was in adverse, while Ci and Tr had less change. At high fertilization rate of N, the Gs was linearly positively correlated with Pn, Tr, and WUEi, and the Gs and Ci had no correlation with each other under the elevated atmospheric CO2 concentration but negatively correlated under ambient atmospheric CO2 concentration. At low fertilization rate of N, the Gs had no correlations with Pn and WUEi but linearly positively correlated with Ci and Tr. It was suggested that under the elevated atmospheric CO2 concentration, the wheat leaf Pn at low N fertilization rate was limited by non-stomatal factor.

  19. Relationship between carbon and nitrogen mineralization in a subtropical soil

    NASA Astrophysics Data System (ADS)

    Li, Qianru; Sun, Yue; Zhang, Xinyu; Xu, Xingliang; Kuzyakov, Yakov

    2014-05-01

    In most soils, more than 90% nitrogen is bonded with carbon in organic forms. This indicates that carbon mineralization should be closely coupled with nitrogen mineralization, showing a positive correlation between carbon and nitrogen mineralization. To test this hypothesis above, we conducted an incubation using a subtropical soil for 10 days at 15 °C and 25 °C. 13C-labeled glucose and 15N-labeled ammonium or nitrate was used to separate CO2 and mineral N released from mineralization of soil organic matter and added glucose or inorganic nitrogen. Phospholipid fatty acid (PLFA) and four exoenzymes (i.e. β-1,4- Glucosaminidase, chitinase, acid phosphatase, β-1,4-N- acetyl glucosamine glycosidase) were also analyzed to detect change in microbial activities during the incubation. Our results showed that CO2 release decreased with increasing nitrogen mineralization rates. Temperature did not change this relationship between carbon and nitrogen mineralization. Although some changes in PLFA and the four exoenzymes were observed, these changes did not contribute to changes in carbon and nitrogen mineralization. These findings indicates that carbon and nitrogen mineralization in soil are more complicated than as previously expected. Future investigation should focus on why carbon and nitrogen mineralization are coupled in a negative correlation not in a positive correlation in many soils for a better understanding of carbon and nitrogen transformation during their mineralization.

  20. Leaf nitrogen from first principles: field evidence for adaptive variation with climate

    NASA Astrophysics Data System (ADS)

    Dong, Ning; Prentice, Iain Colin; Evans, Bradley J.; Caddy-Retalic, Stefan; Lowe, Andrew J.; Wright, Ian J.

    2017-01-01

    Nitrogen content per unit leaf area (Narea) is a key variable in plant functional ecology and biogeochemistry. Narea comprises a structural component, which scales with leaf mass per area (LMA), and a metabolic component, which scales with Rubisco capacity. The co-ordination hypothesis, as implemented in LPJ and related global vegetation models, predicts that Rubisco capacity should be directly proportional to irradiance but should decrease with increases in ci : ca and temperature because the amount of Rubisco required to achieve a given assimilation rate declines with increases in both. We tested these predictions using LMA, leaf δ13C, and leaf N measurements on complete species assemblages sampled at sites on a north-south transect from tropical to temperate Australia. Partial effects of mean canopy irradiance, mean annual temperature, and ci : ca (from δ13C) on Narea were all significant and their directions and magnitudes were in line with predictions. Over 80 % of the variance in community-mean (ln) Narea was accounted for by these predictors plus LMA. Moreover, Narea could be decomposed into two components, one proportional to LMA (slightly steeper in N-fixers), and the other to Rubisco capacity as predicted by the co-ordination hypothesis. Trait gradient analysis revealed ci : ca to be perfectly plastic, while species turnover contributed about half the variation in LMA and Narea. Interest has surged in methods to predict continuous leaf-trait variation from environmental factors, in order to improve ecosystem models. Coupled carbon-nitrogen models require a method to predict Narea that is more realistic than the widespread assumptions that Narea is proportional to photosynthetic capacity, and/or that Narea (and photosynthetic capacity) are determined by N supply from the soil. Our results indicate that Narea has a useful degree of predictability, from a combination of LMA and ci : ca - themselves in part environmentally determined - with Rubisco activity

  1. Assessing the ratio of leaf carbon to nitrogen in winter wheat and spring barley based on hyperspectral data

    NASA Astrophysics Data System (ADS)

    Xu, Xin-gang; Gu, Xiao-he; Song, Xiao-yu; Xu, Bo; Yu, Hai-yang; Yang, Gui-jun; Feng, Hai-kuan

    2016-10-01

    The metabolic status of carbon (C) and nitrogen (N) as two essential elements of crop plants has significant influence on the ultimate formation of yield and quality in crop production. The ratio of carbon to nitrogen (C/N) from crop leaves, defined as ratio of LCC (leaf carbon concentration) to LNC (leaf nitrogen concentration), is an important index that can be used to diagnose the balance between carbon and nitrogen, nutrient status, growth vigor and disease resistance in crop plants. Thus, it is very significant for effectively evaluating crop growth in field to monitor changes of leaf C/N quickly and accurately. In this study, some typical indices aimed at N estimation and chlorophyll evaluation were tested to assess leaf C/N in winter wheat and spring barley. The multi-temporal hyperspectral measurements from the flag-leaf, anthesis, filling, and milk-ripe stages were used to extract these selected spectral indices to estimate leaf C/N in wheat and barley. The analyses showed that some tested indices such as MTCI, MCARI/OSAVI2, and R-M had the better performance of assessing C/N for both of crops. Besides, a mathematic algorithm, Branch-and-Bound (BB) method was coupled with the spectral indices to assess leaf C/N in wheat and barley, and yielded the R2 values of 0.795 for winter wheat, R2 of 0.727 for spring barley, 0.788 for both crops combined. It demonstrates that using hyperspectral data has a good potential for remote assessment of leaf C/N in crops.

  2. Roles for redox regulation in leaf senescence of pea plants grown on different sources of nitrogen nutrition.

    PubMed

    Vanacker, H; Sandalio, Lm; Jiménez, A; Palma, J M; Corpas, F J; Meseguer, V; Gómez, M; Sevilla, F; Leterrier, M; Foyer, C H; del Río, L A

    2006-01-01

    Leaf senescence and associated changes in redox components were monitored in commercial pea (Pisum sativum L. cv. Phoenix) plants grown under different nitrogen regimes for 12 weeks until both nodules and leaves had fully senesced. One group of plants was inoculated with Rhizobium leguminosarum and grown with nutrient solution without nitrogen. A second group was not inoculated and these were grown on complete nutrient solution containing nitrogen. Leaf senescence was evident at 11 weeks in both sets of plants as determined by decreases in leaf chlorophyll and protein. However, a marked decrease in photosynthesis was observed in nodulated plants at 9 weeks. Losses in the leaf ascorbate pool preceded leaf senescence, but leaf glutathione decreased only during the senescence phase. Large decreases in dehydroascorbate reductase and catalase activities were observed after 9 weeks, but the activities of other antioxidant enzymes remained high even at 11 weeks. The extent of lipid peroxidation, the number of protein carbonyl groups and the level of H(2)O(2) in the leaves of both nitrate-fed and nodulated plants were highest at the later stages of senescence. At 12 weeks, the leaves of nodulated plants had more protein carbonyl groups and greater lipid peroxidation than the nitrate-fed controls. These results demonstrate that the leaves of nodulated plants undergo an earlier inhibition of photosynthesis and suffer enhanced oxidation during the senescence phase than those from nitrate-fed plants.

  3. Leaf senescence and nitrogen remobilization efficiency in oilseed rape (Brassica napus L.).

    PubMed

    Avice, Jean-Christophe; Etienne, Philippe

    2014-07-01

    Despite its worldwide economic importance for food (oil, meal) and non-food (green energy and chemistry) uses, oilseed rape has a low nitrogen (N) use efficiency (NUE), mainly due to the low N remobilization efficiency (NRE) observed during the vegetative phase when sequential leaf senescence occurs. Assuming that improvement of NRE is the main lever for NUE optimization, unravelling the cellular mechanisms responsible for the recycling of proteins (the main N source in leaf) during sequential senescence is a prerequisite for identifying the physiological and molecular determinants that are associated with high NRE. The development of a relevant molecular indicator (SAG12/Cab) of leaf senescence progression in combination with a (15)N-labelling method were used to decipher the N remobilization associated with sequential senescence and to determine modulation of this process by abiotic factors especially N deficiency. Interestingly, in young leaves, N starvation delayed senescence and induced BnD22, a water-soluble chlorophyll-binding protein that acts against oxidative alterations of chlorophylls and exhibits a protease inhibitor activity. Through its dual function, BnD22 may help to sustain sink growth of stressed plants and contribute to a better utilization of N recycled from senescent leaves, a physiological trait that could improve NUE. Proteomics approaches have revealed that proteolysis involves chloroplastic FtsH protease in the early stages of senescence, aspartic protease during the course of leaf senescence, and the proteasome β1 subunit, mitochondria processing protease and SAG12 (cysteine protease) during the later senescence phases. Overall, the results constitute interesting pathways for screening genotypes with high NRE and NUE.

  4. Autoregulation of nodulation interferes with impacts of nitrogen fertilization levels on the leaf-associated bacterial community in soybeans.

    PubMed

    Ikeda, Seishi; Anda, Mizue; Inaba, Shoko; Eda, Shima; Sato, Shusei; Sasaki, Kazuhiro; Tabata, Satoshi; Mitsui, Hisayuki; Sato, Tadashi; Shinano, Takuro; Minamisawa, Kiwamu

    2011-03-01

    The diversities leaf-associated bacteria on nonnodulated (Nod(-)), wild-type nodulated (Nod(+)), and hypernodulated (Nod(++)) soybeans were evaluated by clone library analyses of the 16S rRNA gene. To analyze the impact of nitrogen fertilization on the bacterial leaf community, soybeans were treated with standard nitrogen (SN) (15 kg N ha(-1)) or heavy nitrogen (HN) (615 kg N ha(-1)) fertilization. Under SN fertilization, the relative abundance of Alphaproteobacteria was significantly higher in Nod(-) and Nod(++) soybeans (82% to 96%) than in Nod(+) soybeans (54%). The community structure of leaf-associated bacteria in Nod(+) soybeans was almost unaffected by the levels of nitrogen fertilization. However, differences were visible in Nod(-) and Nod(++) soybeans. HN fertilization drastically decreased the relative abundance of Alphaproteobacteria in Nod(-) and Nod(++) soybeans (46% to 76%) and, conversely, increased those of Gammaproteobacteria and Firmicutes in these mutant soybeans. In the Alphaproteobacteria, cluster analyses identified two operational taxonomic units (OTUs) (Aurantimonas sp. and Methylobacterium sp.) that were especially sensitive to nodulation phenotypes under SN fertilization and to nitrogen fertilization levels. Arbuscular mycorrhizal infection was not observed on the root tissues examined, presumably due to the rotation of paddy and upland fields. These results suggest that a subpopulation of leaf-associated bacteria in wild-type Nod(+) soybeans is controlled in similar ways through the systemic regulation of autoregulation of nodulation, which interferes with the impacts of N levels on the bacterial community of soybean leaves.

  5. Total belowground carbon flux in subalpine forests is related to leaf area index, soil nitrogen, and tree height

    USGS Publications Warehouse

    Berryman, Erin Michele; Ryan, Michael G.; Bradford, John B.; Hawbaker, Todd J.; Birdsey, R.

    2016-01-01

    In forests, total belowground carbon (C) flux (TBCF) is a large component of the C budget and represents a critical pathway for delivery of plant C to soil. Reducing uncertainty around regional estimates of forest C cycling may be aided by incorporating knowledge of controls over soil respiration and TBCF. Photosynthesis, and presumably TBCF, declines with advancing tree size and age, and photosynthesis increases yet C partitioning to TBCF decreases in response to high soil fertility. We hypothesized that these causal relationships would result in predictable patterns of TBCF, and partitioning of C to TBCF, with natural variability in leaf area index (LAI), soil nitrogen (N), and tree height in subalpine forests in the Rocky Mountains, USA. Using three consecutive years of soil respiration data collected from 22 0.38-ha locations across three 1-km2 subalpine forested landscapes, we tested three hypotheses: (1) annual soil respiration and TBCF will show a hump-shaped relationship with LAI; (2) variability in TBCF unexplained by LAI will be related to soil nitrogen (N); and (3) partitioning of C to TBCF (relative to woody growth) will decline with increasing soil N and tree height. We found partial support for Hypothesis 1 and full support for Hypotheses 2 and 3. TBCF, but not soil respiration, was explained by LAI and soil N patterns (r2 = 0.49), and the ratio of annual TBCF to TBCF plus aboveground net primary productivity (ANPP) was related to soil N and tree height (r2 = 0.72). Thus, forest C partitioning to TBCF can vary even within the same forest type and region, and approaches that assume a constant fraction of TBCF relative to ANPP may be missing some of this variability. These relationships can aid with estimates of forest soil respiration and TBCF across landscapes, using spatially explicit forest data such as national inventories or remotely sensed data products.

  6. Comparison of dwarf bamboos (Indocalamus sp.) leaf parameters to determine relationship between spatial density of plants and total leaf area per plant.

    PubMed

    Shi, Pei-Jian; Xu, Qiang; Sandhu, Hardev S; Gielis, Johan; Ding, Yu-Long; Li, Hua-Rong; Dong, Xiao-Bo

    2015-10-01

    The relationship between spatial density and size of plants is an important topic in plant ecology. The self-thinning rule suggests a -3/2 power between average biomass and density or a -1/2 power between stand yield and density. However, the self-thinning rule based on total leaf area per plant and density of plants has been neglected presumably because of the lack of a method that can accurately estimate the total leaf area per plant. We aimed to find the relationship between spatial density of plants and total leaf area per plant. We also attempted to provide a novel model for accurately describing the leaf shape of bamboos. We proposed a simplified Gielis equation with only two parameters to describe the leaf shape of bamboos one model parameter represented the overall ratio of leaf width to leaf length. Using this method, we compared some leaf parameters (leaf shape, number of leaves per plant, ratio of total leaf weight to aboveground weight per plant, and total leaf area per plant) of four bamboo species of genus Indocalamus Nakai (I. pedalis (Keng) P.C. Keng, I. pumilus Q.H. Dai and C.F. Keng, I. barbatus McClure, and I. victorialis P.C. Keng). We also explored the possible correlation between spatial density and total leaf area per plant using log-linear regression. We found that the simplified Gielis equation fit the leaf shape of four bamboo species very well. Although all these four species belonged to the same genus, there were still significant differences in leaf shape. Significant differences also existed in leaf area per plant, ratio of leaf weight to aboveground weight per plant, and leaf length. In addition, we found that the total leaf area per plant decreased with increased spatial density. Therefore, we directly demonstrated the self-thinning rule to improve light interception.

  7. Altitudinal Variation in Leaf Nitrogen Concentration on the Eastern Slope of Mount Gongga on the Tibetan Plateau, China

    PubMed Central

    Shi, Weiqi; Wang, Guoan; Han, Wenxuan

    2012-01-01

    Mount Gongga spans 6500 m in elevation and has intact and continuous vertical vegetation belts, ranging from subtropical evergreen broad-leaved vegetation to an alpine frigid sparse grass and desert zone. Investigating the altitudinal trends in leaf nitrogen (N) on Mount Gongga can increase our understanding of the global biogeography of foliar N. In this study, 460 leaf samples from mosses, ferns, and seed plants were collected along an altitudinal gradient on the eastern slope of Mount Gongga, and the variation in leaf N concentration (mass basis) with elevation was analyzed. There are considerable differences in leaf N between mosses and ferns, mosses and seed plants, C4 and C3 plants, and evergreen and deciduous woody plants. The general altitudial pattern of leaf N in Mount Gongga plants was that leaf N kept increasing until an elevation of about 2200 m above sea level, with a corresponding mean annual temperature (MAT) of 8.5°C, and then decreased with increasing elevation. However, the evergreen woody plants displayed a decline trend in leaf N across the altitude gradient. Our findings provide an insight into the altitudinal variation in leaf N. PMID:23028570

  8. On the relationship between leaf photosynthetic capacity and leaf chlorophyll and implications for simulating GPP in space and time

    NASA Astrophysics Data System (ADS)

    Houborg, R.; Cescatti, A.; Migliavacca, M.

    2012-12-01

    Advancing the use of remote sensing data for retrieving key vegetation physiological controls is of critical importance for modeling spatio-temporal variations in gross primary productivity (GPP) with high fidelity. Key land-surface model controls on GPP, such as the maximum rate of carboxylation (Vcmax) that governs leaf photosynthetic efficiency, are typically assigned fixed literature-based values for broad categories of vegetation types although in reality temporal and spatial variability can be significant in response to differences in plant phenology and physiological condition, nutrient availability and climate. Vcmax defines the biochemical capacity of leaves to assimilate CO2 and is related to the nitrogen content of leaves, which is indirectly related to leaf reflectance and transmittance spectra. However, the fact that Vcmax is a leaf level parameter complicates larger scale parameterizations based on remote sensing observations due to confounding influences from the canopy and soil. Thus a key challenge is to separate the leaf contribution associated with changes in Vcmax from the total remote sensing signal. Chlorophylls are vital pigments for photosynthesis and directly controls leaf absorption in the visible waveband region. Here we report on the utility of satellite-based leaf chlorophyll (Chl) retrievals for quantifying Vcmax variability in space and time, and look into a mechanistic methodology for exploiting Chl information within the Community Land Model (CLM4) for improved predictability of GPP. Chl is retrieved from Landsat imagery by inversion of leaf optics and canopy reflectance models within the framework of REGFLEC (REGularized canopy reFLECtance tool). The potential of Chl retrievals for constraining model simulations of GPP is evaluated at multiple flux tower sites.ig. 1 Benefit of using satellite-based leaf chlorophyll (Chl) for parameterizing Vcmax and constraining modeled carbon fluxes over the growing season at a corn site in

  9. Interactions between leaf nitrogen status and longevity in relation to N cycling in three contrasting European forest canopies

    NASA Astrophysics Data System (ADS)

    Wang, L.; Ibrom, A.; Korhonen, J. F. J.; Arnoud Frumau, K. F.; Wu, J.; Pihlatie, M.; Schjoerring, J. K.

    2013-02-01

    Seasonal and spatial variations in foliar nitrogen (N) parameters were investigated in three European forests with different tree species, viz. beech (Fagus sylvatica L.), Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) and Scots pine (Pinus sylvestris L.) growing in Denmark, the Netherlands and Finland, respectively. The objectives were to investigate the distribution of N pools within the canopies of the different forests and to relate this distribution to factors and plant strategies controlling leaf development throughout the seasonal course of a vegetation period. Leaf N pools generally showed much higher seasonal and vertical variability in beech than in the coniferous canopies. However, also the two coniferous tree species behaved very differently with respect to peak summer canopy N content and N re-translocation efficiency, showing that generalisations on tree internal vs. ecosystem internal N cycling cannot be made on the basis of the leaf duration alone. During phases of intensive N turnover in spring and autumn, the NH4+ concentration in beech leaves rose considerably, while fully developed green beech leaves had relatively low tissue NH4+, similar to the steadily low levels in Douglas fir and, particularly, in Scots pine. The ratio between bulk foliar concentrations of NH4+ and H+, which is an indicator of the NH3 emission potential, reflected differences in foliage N concentration, with beech having the highest values followed by Douglas fir and Scots pine. Irrespectively of the leaf habit, i.e. deciduous versus evergreen, the majority of the canopy foliage N was retained within the trees. This was accomplished through an effective N re-translocation (beech), higher foliage longevity (fir) or both (boreal pine forest). In combination with data from a literature review, a general relationship of decreasing N re-translocation efficiency with the time needed for canopy renewal was deduced, showing that leaves which live longer re

  10. Southern leaf blight disease severity is correlated with decreased maize leaf epiphytic bacterial species richness and the phyllosphere bacterial diversity decline is enhanced by nitrogen fertilization.

    PubMed

    Manching, Heather C; Balint-Kurti, Peter J; Stapleton, Ann E

    2014-01-01

    Plant leaves are inhabited by a diverse group of microorganisms that are important contributors to optimal growth. Biotic and abiotic effects on plant growth are usually studied in controlled settings examining response to variation in single factors and in field settings with large numbers of variables. Multi-factor experiments with combinations of stresses bridge this gap, increasing our understanding of the genotype-environment-phenotype functional map for the host plant and the affiliated epiphytic community. The maize inbred B73 was exposed to single and combination abiotic and the biotic stress treatments: low nitrogen fertilizer and high levels of infection with southern leaf blight (causal agent Cochliobolus heterostrophus). Microbial epiphyte samples were collected at the vegetative early-season phase and species composition was determined using 16S ribosomal intergenic spacer analysis. Plant traits and level of southern leaf blight disease were measured late-season. Bacterial diversity was different among stress treatment groups (P < 0.001). Lower species richness-alpha diversity-was correlated with increased severity of southern leaf blight disease when disease pressure was high. Nitrogen fertilization intensified the decline in bacterial alpha diversity. While no single bacterial ribotype was consistently associated with disease severity, small sets of ribotypes were good predictors of disease levels. Difference in leaf bacterial-epiphyte diversity early in the season were correlated with plant disease severity, supporting further tests of microbial epiphyte-disease correlations for use in predicting disease progression.

  11. Southern leaf blight disease severity is correlated with decreased maize leaf epiphytic bacterial species richness and the phyllosphere bacterial diversity decline is enhanced by nitrogen fertilization

    PubMed Central

    Manching, Heather C.; Balint-Kurti, Peter J.; Stapleton, Ann E.

    2014-01-01

    Plant leaves are inhabited by a diverse group of microorganisms that are important contributors to optimal growth. Biotic and abiotic effects on plant growth are usually studied in controlled settings examining response to variation in single factors and in field settings with large numbers of variables. Multi-factor experiments with combinations of stresses bridge this gap, increasing our understanding of the genotype-environment-phenotype functional map for the host plant and the affiliated epiphytic community. The maize inbred B73 was exposed to single and combination abiotic and the biotic stress treatments: low nitrogen fertilizer and high levels of infection with southern leaf blight (causal agent Cochliobolus heterostrophus). Microbial epiphyte samples were collected at the vegetative early-season phase and species composition was determined using 16S ribosomal intergenic spacer analysis. Plant traits and level of southern leaf blight disease were measured late-season. Bacterial diversity was different among stress treatment groups (P < 0.001). Lower species richness—alpha diversity—was correlated with increased severity of southern leaf blight disease when disease pressure was high. Nitrogen fertilization intensified the decline in bacterial alpha diversity. While no single bacterial ribotype was consistently associated with disease severity, small sets of ribotypes were good predictors of disease levels. Difference in leaf bacterial-epiphyte diversity early in the season were correlated with plant disease severity, supporting further tests of microbial epiphyte-disease correlations for use in predicting disease progression. PMID:25177328

  12. Relationships among leaf functional traits, litter traits, and mass loss during early phases of leaf litter decomposition in 12 woody plant species.

    PubMed

    Zukswert, Jenna M; Prescott, Cindy E

    2017-09-08

    Litter 'quality' or decomposability has historically been estimated through measuring chemical attributes, such as concentrations of nitrogen or 'lignin'. More recently, foliar functional traits, which may incorporate indications of the physical structures of tissues, have been found to correlate with litter mass loss rates. However, these traits may not be adequate to predict early rates of mass loss, in which two factors are crucial: the amount of material quickly lost through leaching, and the ease of access of decomposer organisms to the more labile tissues in the interior of the litter. We investigated relationships among physical and chemical traits in foliage and litter of 12 species native to British Columbia and then observed how these traits related to mass loss during the first 3 months (Phase I) and between 3 and 12 months (Phase II). Novel traits measured in this study include cuticle thickness, litter leaching loss, and litter water uptake. Foliar and litter traits both co-varied along spectra, but several chemical traits, such as nitrogen concentration, changed from foliage to litter, i.e., during senescence. Phase I mass loss was best predicted by leaching loss and traits relating to leaching, such as cuticle thickness and specific leaf area. Phase II mass loss was predicted by traits that may relate to decomposer access and activity, such as leaf dry matter content and foliar nitrogen. Physical traits predicted mass loss as well or better than chemical traits, suggesting that physical characteristics of litter are important in determining early rates of decomposition.

  13. Relationship between instrumental leaf grade and Shirley Analyzer trash content in lint cottons

    USDA-ARS?s Scientific Manuscript database

    With the increasing acceptance of high volume instrument (HVITM) instrumental leaf grade index in both domestic and international trading, there is a continued interest in the relationship between instrumental leaf grade and equivalent trash gravimetric content (% percent by mass) from cotton custom...

  14. Coordinated modifications in mesophyll conductance, photosynthetic potentials and leaf nitrogen contribute to explain the large variation in foliage net assimilation rates across Quercus ilex provenances.

    PubMed

    Peguero-Pina, José Javier; Sisó, Sergio; Flexas, Jaume; Galmés, Jeroni; Niinemets, Ülo; Sancho-Knapik, Domingo; Gil-Pelegrín, Eustaquio

    2017-08-01

    Leaf dry mass per unit area (LMA) has been suggested to negatively affect the mesophyll conductance to CO2 (gm), the most limiting factor for photosynthesis per unit leaf area (AN) in many evergreens. Several anatomical traits (i.e., greater leaf thickness and thicker cell walls) constraining gm could explain the negative scaling of gm and AN with LMA across species. However, the Mediterranean sclerophyll Quercus ilex L. shows a major within-species variation in functional traits (greater LMA associated with higher nitrogen content and AN) that might contrast the worldwide trends. The objective of this study was to elucidate the existence of variations in other leaf anatomical parameters determining gm and/or biochemical traits improving the capacity of carboxylation (Vc,max) that could modulate the relationship of AN with LMA across this species. The results revealed that gm was the most limiting factor for AN in all the studied Q. ilex provenances from Spain and Italy. The within-species differences in gm can be partly attributed to the variation in several leaf anatomical traits, mainly cell-wall thickness (Tcw), chloroplast thickness (Tchl) and chloroplast exposed surface area facing intercellular air spaces (Sc/S). A positive scaling of gm and AN with Vc,max was also found, associated with an increased nitrogen content per area. A strong correlation of maximum photosynthetic electron transport (Jmax) with AN further indicated a coordination between the carboxylase activity and the electron transport chain. In conclusion, we have confirmed the strong ecotypic variation in the photosynthetic performance of individual provenances of Q. ilex. Thus, the within-species increases found in AN for Q. ilex with increasing foliage robustness can be explained by a synergistic effect among anatomical (at the subcellular and cellular level) and biochemical traits, which markedly improved gm and Vc,max. © The Author 2017. Published by Oxford University Press. All rights

  15. Effects of soil compaction, forest leaf litter and nitrogen fertilizer on two oak species and microbial activity

    Treesearch

    D. Jordan; F., Jr. Ponder; V. C. Hubbard

    2003-01-01

    A greenhouse study examined the effects of soil compaction and forest leaf litter on the growth and nitrogen (N) uptake and recovery of red oak (Quercus rubra L.) and scarlet oak (Quercus coccinea Muencch) seedlings and selected microbial activity over a 6-month period. The experiment had a randomized complete block design with...

  16. Flood regime and leaf fall determine soil inorganic nitrogen dynamics in semiarid riparian forests.

    PubMed

    Shah, J J Follstad; Dahm, C N

    2008-04-01

    Flow regulation has reduced the exchange of water, energy, and materials between rivers and floodplains, caused declines in native plant populations, and advanced the spread of nonnative plants. Naturalized flow regimes are regarded as a means to restore degraded riparian areas. We examined the effects of flood regime (short [SIFI] vs. long [LIFI] inter-flood interval) on plant community and soil inorganic nitrogen (N) dynamics in riparian forests dominated by native Populus deltoides var. wislizenii Eckenwalder (Rio Grande cottonwood) and nonnative Tamarix chinensis Lour. (salt cedar) along the regulated middle Rio Grande of New Mexico. The frequency of inundation (every 2-3 years) at SIFI sites better reflected inundation patterns prior to the closure of an upstream dam relative to the frequency of inundation at LIFI sites (> or =10 years). Riparian inundation at SIFI sites varied from 7 to 45 days during the study period (April 2001-July 2004). SIFI vs. LIFI sites had higher soil moisture but greater groundwater table elevation fluctuation in response to flooding and drought. Rates of net N mineralization were consistently higher at LIFI vs. SIFI sites, and soil inorganic N concentrations were greatest at sites with elevated leaf-litter production. Sites with stable depth to ground water (approximately 1.5 m) supported the greatest leaf-litter production. Reduced leaf production at P. deltoides SIFI sites was attributed to drought-induced recession of ground water and prolonged inundation. We recommend that natural resource managers and restoration practitioners (1) utilize naturalized flows that help maintain riparian groundwater elevations between 1 and 3 m in reaches with mature P. deltoides or where P. deltoides revegetation is desired, (2) identify areas that naturally undergo long periods of inundation and consider restoring these areas to seasonal wetlands, and (3) use native xeric-adapted riparian plants to revegetate LIFI and SIFI sites where

  17. Sixteen cytosolic glutamine synthetase genes identified in the Brassica napus L. genome are differentially regulated depending on nitrogen regimes and leaf senescence.

    PubMed

    Orsel, Mathilde; Moison, Michaël; Clouet, Vanessa; Thomas, Justine; Leprince, Françoise; Canoy, Anne-Sophie; Just, Jérémy; Chalhoub, Boulos; Masclaux-Daubresse, Céline

    2014-07-01

    A total of 16 BnaGLN1 genes coding for cytosolic glutamine synthetase isoforms (EC 6.3.1.2.) were found in the Brassica napus genome. The total number of BnaGLN1 genes, their phylogenetic relationships, and genetic locations are in agreement with the evolutionary history of Brassica species. Two BnaGLN1.1, two BnaGLN1.2, six BnaGLN1.3, four BnaGLN1.4, and two BnaGLN1.5 genes were found and named according to the standardized nomenclature for the Brassica genus. Gene expression showed conserved responses to nitrogen availability and leaf senescence among the Brassiceae tribe. The BnaGLN1.1 and BnaGLN1.4 families are overexpressed during leaf senescence and in response to nitrogen limitation. The BnaGLN1.2 family is up-regulated under high nitrogen regimes. The members of the BnaGLN1.3 family are not affected by nitrogen availability and are more expressed in stems than in leaves. Expression of the two BnaGLN1.5 genes is almost undetectable in vegetative tissues. Regulations arising from plant interactions with their environment (such as nitrogen resources), final architecture, and therefore sink-source relations in planta, seem to be globally conserved between Arabidopsis and B. napus. Similarities of the coding sequence (CDS) and protein sequences, expression profiles, response to nitrogen availability, and ageing suggest that the roles of the different GLN1 families have been conserved among the Brassiceae tribe. These findings are encouraging the transfer of knowledge from the Arabidopsis model plant to the B. napus crop plant. They are of special interest when considering the role of glutamine synthetase in crop yield and grain quality in maize and wheat. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. Sixteen cytosolic glutamine synthetase genes identified in the Brassica napus L. genome are differentially regulated depending on nitrogen regimes and leaf senescence

    PubMed Central

    Orsel, Mathilde; Moison, Michaël; Clouet, Vanessa; Thomas, Justine; Leprince, Françoise; Canoy, Anne-Sophie; Just, Jérémy; Chalhoub, Boulos; Masclaux-Daubresse, Céline

    2014-01-01

    A total of 16 BnaGLN1 genes coding for cytosolic glutamine synthetase isoforms (EC 6.3.1.2.) were found in the Brassica napus genome. The total number of BnaGLN1 genes, their phylogenetic relationships, and genetic locations are in agreement with the evolutionary history of Brassica species. Two BnaGLN1.1, two BnaGLN1.2, six BnaGLN1.3, four BnaGLN1.4, and two BnaGLN1.5 genes were found and named according to the standardized nomenclature for the Brassica genus. Gene expression showed conserved responses to nitrogen availability and leaf senescence among the Brassiceae tribe. The BnaGLN1.1 and BnaGLN1.4 families are overexpressed during leaf senescence and in response to nitrogen limitation. The BnaGLN1.2 family is up-regulated under high nitrogen regimes. The members of the BnaGLN1.3 family are not affected by nitrogen availability and are more expressed in stems than in leaves. Expression of the two BnaGLN1.5 genes is almost undetectable in vegetative tissues. Regulations arising from plant interactions with their environment (such as nitrogen resources), final architecture, and therefore sink–source relations in planta, seem to be globally conserved between Arabidopsis and B. napus. Similarities of the coding sequence (CDS) and protein sequences, expression profiles, response to nitrogen availability, and ageing suggest that the roles of the different GLN1 families have been conserved among the Brassiceae tribe. These findings are encouraging the transfer of knowledge from the Arabidopsis model plant to the B. napus crop plant. They are of special interest when considering the role of glutamine synthetase in crop yield and grain quality in maize and wheat. PMID:24567494

  19. Control of Leaf Expansion by Nitrogen Nutrition in Sunflower Plants : ROLE OF HYDRAULIC CONDUCTIVITY AND TURGOR.

    PubMed

    Radin, J W; Boyer, J S

    1982-04-01

    Nitrogen nutrition strongly affected the growth rate of young sunflower (Helianthus annuus L.) leaves. When plants were grown from seed on either of two levels of N availability, a 33% decrease in tissue N of expanding leaves was associated with a 75% overall inhibition of leaf growth. Almost all of the growth inhibition resulted from a depression of the daytime growth rate. Measurements of pressure-induced water flux through roots showed that N deficiency decreased root hydraulic conductivity by about half. Thus, N deficiency lowered the steady-state water potential of expanding leaves during the daytime when transpiration was occurring. As a result, N-deficient leaves were unable to maintain adequate turgor for growth in the daytime. N deficiency also decreased the hydraulic conductivity for water movement into expanding leaf cells in the absence of transpiration, but growth inhibition at night was much less than in the daytime. N nutrition had no detectable effects on plastic extensibility or the threshold turgor for growth.

  20. Influence of mitochondrial genome rearrangement on cucumber leaf carbon and nitrogen metabolism

    PubMed Central

    Jastrzębska, Agata; Kulka, Marek; Leśniak, Karolina; Podgórska, Anna; Pärnik, Tiit; Ivanova, Hiie; Keerberg, Olav; Gardeström, Per; Rychter, Anna M.

    2010-01-01

    The MSC16 cucumber (Cucumis sativus L.) mitochondrial mutant was used to study the effect of mitochondrial dysfunction and disturbed subcellular redox state on leaf day/night carbon and nitrogen metabolism. We have shown that the mitochondrial dysfunction in MSC16 plants had no effect on photosynthetic CO2 assimilation, but the concentration of soluble carbohydrates and starch was higher in leaves of MSC16 plants. Impaired mitochondrial respiratory chain activity was associated with the perturbation of mitochondrial TCA cycle manifested, e.g., by lowered decarboxylation rate. Mitochondrial dysfunction in MSC16 plants had different influence on leaf cell metabolism under dark or light conditions. In the dark, when the main mitochondrial function is the energy production, the altered activity of TCA cycle in mutated plants was connected with the accumulation of pyruvate and TCA cycle intermediates (citrate and 2-OG). In the light, when TCA activity is needed for synthesis of carbon skeletons required as the acceptors for NH4+ assimilation, the concentration of pyruvate and TCA intermediates was tightly coupled with nitrate metabolism. Enhanced incorporation of ammonium group into amino acids structures in mutated plants has resulted in decreased concentration of organic acids and accumulation of Glu. PMID:20830597

  1. Decline of Leaf Hydraulic Conductance with Dehydration: Relationship to Leaf Size and Venation Architecture1[W][OA

    PubMed Central

    Scoffoni, Christine; Rawls, Michael; McKown, Athena; Cochard, Hervé; Sack, Lawren

    2011-01-01

    Across plant species, leaves vary enormously in their size and their venation architecture, of which one major function is to replace water lost to transpiration. The leaf hydraulic conductance (Kleaf) represents the capacity of the transport system to deliver water, allowing stomata to remain open for photosynthesis. Previous studies showed that Kleaf relates to vein density (vein length per area). Additionally, venation architecture determines the sensitivity of Kleaf to damage; severing the midrib caused Kleaf and gas exchange to decline, with lesser impacts in leaves with higher major vein density that provided more numerous water flow pathways around the damaged vein. Because xylem embolism during dehydration also reduces Kleaf, we hypothesized that higher major vein density would also reduce hydraulic vulnerability. Smaller leaves, which generally have higher major vein density, would thus have lower hydraulic vulnerability. Tests using simulations with a spatially explicit model confirmed that smaller leaves with higher major vein density were more tolerant of major vein embolism. Additionally, for 10 species ranging strongly in drought tolerance, hydraulic vulnerability, determined as the leaf water potential at 50% and 80% loss of Kleaf, was lower with greater major vein density and smaller leaf size (|r| = 0.85–0.90; P < 0.01). These relationships were independent of other aspects of physiological and morphological drought tolerance. These findings point to a new functional role of venation architecture and small leaf size in drought tolerance, potentially contributing to well-known biogeographic trends in leaf size. PMID:21511989

  2. Regulation Effects of Water and Nitrogen on the Source-Sink Relationship in Potato during the Tuber Bulking Stage.

    PubMed

    Li, Wenting; Xiong, Binglin; Wang, Shiwen; Deng, Xiping; Yin, Lina; Li, Hongbing

    2016-01-01

    The source-sink relationship determines crop yield, and it is largely regulated by water and nutrients in agricultural production. This has been widely investigated in cereals, but fewer studies have been conducted in root and tuber crops such as potato (Solanum tuberosum L.). The objective of this study was to investigate the source-sink relationship in potato and the regulation of water and nitrogen on the source-sink relationship during the tuber bulking stage. A pot experiment using virus-free plantlets of the Atlantic potato cultivar was conducted, using three water levels (50%, 70% and 90% of field capacity) and three nitrogen levels (0, 0.2, 0.4 g N∙kg-1 soil). The results showed that, under all water and nitrogen levels, plant source capacity were small at the end of the experiment, since photosynthetic activity in leaves were low and non-structural reserves in underground stems were completely remobilized. While at this time, there were very big differences in maximum and minimum tuber number and tuber weight, indicating that the sink tuber still had a large potential capacity to take in assimilates. These results suggest that the source-supplied assimilates were not sufficient enough to meet the demands of sink growth. Thus, we concluded that, unlike cereals, potato yield is more likely to be source-limited than sink-limited during the tuber bulking stage. Water and nitrogen are two key factors in potato production management. Our results showed that water level, nitrogen level and the interaction between water and nitrogen influence potato yield mainly through affecting source capacity via the net photosynthetic rate, total leaf area and leaf life span. Well-watered, sufficient nitrogen and well-watered combined with sufficient nitrogen increased yield mainly by enhancing the source capacity. Therefore, this suggests that increasing source capacity is more crucial to improve potato yield.

  3. Regulation Effects of Water and Nitrogen on the Source-Sink Relationship in Potato during the Tuber Bulking Stage

    PubMed Central

    Li, Wenting; Xiong, Binglin; Wang, Shiwen; Deng, Xiping; Yin, Lina; Li, Hongbing

    2016-01-01

    The source-sink relationship determines crop yield, and it is largely regulated by water and nutrients in agricultural production. This has been widely investigated in cereals, but fewer studies have been conducted in root and tuber crops such as potato (Solanum tuberosum L.). The objective of this study was to investigate the source-sink relationship in potato and the regulation of water and nitrogen on the source-sink relationship during the tuber bulking stage. A pot experiment using virus-free plantlets of the Atlantic potato cultivar was conducted, using three water levels (50%, 70% and 90% of field capacity) and three nitrogen levels (0, 0.2, 0.4 g N∙kg−1 soil). The results showed that, under all water and nitrogen levels, plant source capacity were small at the end of the experiment, since photosynthetic activity in leaves were low and non-structural reserves in underground stems were completely remobilized. While at this time, there were very big differences in maximum and minimum tuber number and tuber weight, indicating that the sink tuber still had a large potential capacity to take in assimilates. These results suggest that the source-supplied assimilates were not sufficient enough to meet the demands of sink growth. Thus, we concluded that, unlike cereals, potato yield is more likely to be source-limited than sink-limited during the tuber bulking stage. Water and nitrogen are two key factors in potato production management. Our results showed that water level, nitrogen level and the interaction between water and nitrogen influence potato yield mainly through affecting source capacity via the net photosynthetic rate, total leaf area and leaf life span. Well-watered, sufficient nitrogen and well-watered combined with sufficient nitrogen increased yield mainly by enhancing the source capacity. Therefore, this suggests that increasing source capacity is more crucial to improve potato yield. PMID:26752657

  4. Carbon and Nitrogen dynamics in deciduous and broad leaf trees under drought stress

    NASA Astrophysics Data System (ADS)

    Joseph, Jobin; Schaub, Marcus; Arend, Matthias; Saurer, Matthias; siegwolf, Rolf; Weiler, Markus; Gessler, Arthur

    2017-04-01

    Climate change is projected to lead to an increased frequency and duration of severe drought events in future. Already within the last twenty years, however, drought stress related forest mortality has been increasing across the globe. Tree and forest die off events have multiple adverse effects on ecosystem functioning and might convert previous carbon sinks to act as carbon sources instead and can thus intensify the effect of climate change and global warming. Current predictions of forest's functioning under drought and thus forest mortality under future climatic conditions are constrained by a still incomplete picture of the trees' physiological reactions that allows some trees to survive drought periods while others succumb. Concerning the effects of drought on the carbon balance and on tree hydraulics our picture is getting more complete, but still interactions between abiotic factors and pest and diseases as well as the interaction between carbon and nutrient balances as factors affecting drought induced mortality are not well understood. Reduced carbon allocation from shoots to roots might cause a lack of energy for root nutrient uptake and to a shortage of carbon skeletons for nitrogen assimilation and thus to an impaired nutrient status of trees. To tackle these points, we have performed a drought stress experiment with six different plant species, 3 broad leaf (maple, beech and oak) and 3 deciduous (pine, fir and spruce). Potted two-year-old seedlings were kept inside a greenhouse for 5 months and 3 levels of drought stress (no stress (control), intermediate and intensive drought stress) were applied by controlling water supply. Gas exchange measurements were performed periodically to monitor photosynthesis, transpiration, stomatal conductance. At the pinnacle of drought stress, we applied isotopic pulse labelling: On the one hand we exposed trees to 13CO2 to investigate on carbon dynamics and the allocation of new assimilates within the plant. Moreover

  5. Acclimation of Leaf Nitrogen to Vertical Light Gradient at Anthesis in Wheat Is a Whole-Plant Process That Scales with the Size of the Canopy1[W][OA

    PubMed Central

    Moreau, Delphine; Allard, Vincent; Gaju, Oorbessy; Le Gouis, Jacques; Foulkes, M. John; Martre, Pierre

    2012-01-01

    Vertical leaf nitrogen (N) gradient within a canopy is classically considered as a key adaptation to the local light environment that would tend to maximize canopy photosynthesis. We studied the vertical leaf N gradient with respect to the light gradient for wheat (Triticum aestivum) canopies with the aims of quantifying its modulation by crop N status and genetic variability and analyzing its ecophysiological determinants. The vertical distribution of leaf N and light was analyzed at anthesis for 16 cultivars grown in the field in two consecutive seasons under two levels of N. The N extinction coefficient with respect to light (b) varied with N supply and cultivar. Interestingly, a scaling relationship was observed between b and the size of the canopy for all the cultivars in the different environmental conditions. The scaling coefficient of the b-green area index relationship differed among cultivars, suggesting that cultivars could be more or less adapted to low-productivity environments. We conclude that the acclimation of the leaf N gradient to the light gradient is a whole-plant process that depends on canopy size. This study demonstrates that modeling leaf N distribution and canopy expansion based on the assumption that leaf N distribution parallels that of the light is inappropriate. We provide a robust relationship accounting for vertical leaf N gradient with respect to vertical light gradient as a function of canopy size. PMID:22984122

  6. [Effects of nitrogen fertilization on leaf photosynthesis and respiration of different drought-resistance winter wheat varieties].

    PubMed

    Zhang, Xucheng; Shangguan, Zhouping

    2006-11-01

    Under field condition, this paper measured the leaf gas exchange parameters and photosynthetic pigments content of different drought-resistance wheat varieties at all growth stages, with their responses to different nitrogen fertilization levels studied. The results showed that in treatment N180, the leaf G(s), P(n), and total photosynthetic pigments content of dry land varieties increased by 43.75%, 18.54% and 49.66% , while those of watered land varieties increased by 12.12% , 20.88% and 29.25%, respectively, compared with control. On the contrary, the respiration rate of dry land and watered land varieties decreased by 4.8% and 4.5%, respectively. Nitrogen supply accelerated the photosynthetic carbon assimilation, because the gas exchange capacity and photosynthetic pigments content increased while the respiration rate decreased with increasing nitrogen supply. The difference in photosynthetic capacity between different winter varieties was mainly dependent on non - stomatal factors. The dry land varieties had higher capacities of light energy absorption and photosynthetic carbon assimilation, because they had higher leaf photosynthetic pigments content but lower respiration rate. Compared with watered land varieties, dry land varieties had an 8.9% decrease of respiration rate and a 14.12% increase of P(n). At the same growth stage, the photosynthetic and respiration rates in the control varied consistently, while in treatments N180 and N360, the photosynthetic rate increased but the respiration rate decreased. Nitrogen fertilization promoted the absorbed light energy allocating to the process of photosynthetic carbon assimilation. It could be concluded that nitrogen supply was favorable to the improvement of winter wheat drought-resistance, because it could improve leaf gas exchange capacity, increase leaf photosynthetic pigments content, and optimize the allocation of absorbed light energy.

  7. Determination by near infrared microscopy of the nitrogen and carbon content of tomato (Solanum lycopersicum L.) leaf powder

    PubMed Central

    Lequeue, Gauthier; Draye, Xavier; Baeten, Vincent

    2016-01-01

    Near infrared microscopy (NIRM) has been developed as a rapid technique to predict the chemical composition of foods, reduce analytical costs and time and ease sample preparation. In this study, NIRM has been evaluated as an alternative to classical chemical analysis to determine the nitrogen and carbon content of small samples of tomato (Solanum lycopersicum L.) leaf powder. Near infrared spectra were obtained by NIRM for independent leaf samples collected on 216 plants grown under six different levels of nitrogen. From these, 30 calibration and 30 validation samples covering the spectral range of the whole set were selected and their nitrogen and carbon contents were determined by a reference method. The calibration model obtained for nitrogen content proved to be excellent, with a coefficient of determination in calibration (R2c) higher than 0.9 and a ratio of performance to deviation (RPDc) higher than 3. Statistical indicators of prediction using the validation set were also very high (R2p values > 0.90). However, the calibration model obtained for carbon content was much less satisfactory (R2c < 0.50). NIRM appears as a promising and suitable tool for a rapid, non-destructive and reliable determination of nitrogen content of tiny samples of tomato leaf powder. PMID:27634485

  8. The Nitrogen Use Efficiency of C(3) and C(4) Plants: II. Leaf Nitrogen Effects on the Gas Exchange Characteristics of Chenopodium album (L.) and Amaranthus retroflexus (L.).

    PubMed

    Sage, R F; Pearcy, R W

    1987-07-01

    The effect of leaf nitrogen (N) on the photosynthetic capacity and the light and temperature response of photosynthesis was studied in the ecologically similar annuals Chenopodium album (C(3)) and Amaranthus retroflexus (C(4)). Photosynthesis was linearly dependent on leaf N per unit area (N(a)) in both species. A. retroflexus exhibited a greater dependence of photosynthesis on N(a) than C. album and at any given N(a), it had a greater light saturated photosynthesis rate than C. album. The difference between the species became larger as N(a) increased. These results demonstrate a greater photosynthetic N use efficiency in A. retroflexus than C. album. However, at a given applied N level, C. album allocated more N to a unit of leaf area so that photosynthetic rates were similar in the two species. Leaf conductance to water vapor increased linearly with N(a) in both species, but at a given photosynthetic rate, leaf conductance was higher in C. album. Thus, A. retroflexus had a greater water use efficiency than C. album. Water use efficiency was independent of leaf N in C. album, but declined with decreasing N in A. retroflexus.

  9. Relationship between grain crop yield potential and nitrogen response

    USDA-ARS?s Scientific Manuscript database

    Cereal grain fertilizer nitrogen (N) recommendations should conform to accepted theory. The objective of this study was to evaluate the relationship between yield potential (yield level) and N responsiveness in long-term winter wheat (Triticum aestivum L.) and maize (Zea mays L.) field experiments ...

  10. Leaf yellowing and anthocyanin accumulation are two genetically independent strategies in response to nitrogen limitation in Arabidopsis thaliana.

    PubMed

    Diaz, Céline; Saliba-Colombani, Vera; Loudet, Olivier; Belluomo, Pierre; Moreau, Laurence; Daniel-Vedele, Françoise; Morot-Gaudry, Jean-François; Masclaux-Daubresse, Céline

    2006-01-01

    For the first time in Arabidopsis thaliana, this work proposes the identification of quantitative trait loci (QTLs) associated with leaf senescence and stress response symptoms such as yellowing and anthocyanin-associated redness. When Arabidopsis plants were cultivated under low nitrogen conditions, we observed that both yellowing of the old leaves of the rosette and whole rosette redness were promoted. Leaf yellowing is a senescence symptom related to chlorophyll breakdown. Redness is a symptom of anthocyanin accumulation related to whole plant ageing and nutrient limitation. In this work, Arabidopsis is used as a model system to dissect the genetic variation of these parameters by QTL mapping in the 415 recombinant inbred lines of the Bay-0xShahdara population. Fifteen new QTLs and two epistatic interactions were described in this study. The yellowing of the rosette, estimated by visual notation and image processing, was controlled by four and five QTLs, respectively. The visual estimation of redness allowed us to detect six QTLs among which the major one explained 33% of the total variation. Two main QTLs were confirmed in near-isogenic lines (heterogenous inbred family; HIF), thus confirming the relevance of the visual notation of these traits. Co-localizations between QTLs for leaf yellowing, redness and nitrogen use efficiency described in a previous publication indicate complex interconnected pathways involved in both nitrogen management and senescence- and stress-related processes. No co-localization between QTLs for leaf yellowing and redness has been found, suggesting that the two characters are genetically independent.

  11. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana

    SciTech Connect

    Weraduwage, Sarathi M.; Chen, Jin; Anozie, Fransisca C.; Morales, Alejandro; Weise, Sean E.; Sharkey, Thomas D.

    2015-04-09

    Leaf area growth determines the light interception capacity of a crop and is often used as a surrogate for plant growth in high-throughput phenotyping systems. The relationship between leaf area growth and growth in terms of mass will depend on how carbon is partitioned among new leaf area, leaf mass, root mass, reproduction, and respiration. A model of leaf area growth in terms of photosynthetic rate and carbon partitioning to different plant organs was developed and tested with Arabidopsis thaliana L. Heynh. ecotype Columbia (Col-0) and a mutant line, gigantea-2 (gi-2), which develops very large rosettes. Data obtained from growth analysis and gas exchange measurements was used to train a genetic programming algorithm to parameterize and test the above model. The relationship between leaf area and plant biomass was found to be non-linear and variable depending on carbon partitioning. The model output was sensitive to the rate of photosynthesis but more sensitive to the amount of carbon partitioned to growing thicker leaves. The large rosette size of gi-2 relative to that of Col-0 resulted from relatively small differences in partitioning to new leaf area vs. leaf thickness.

  12. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana

    DOE PAGES

    Weraduwage, Sarathi M.; Chen, Jin; Anozie, Fransisca C.; ...

    2015-04-09

    Leaf area growth determines the light interception capacity of a crop and is often used as a surrogate for plant growth in high-throughput phenotyping systems. The relationship between leaf area growth and growth in terms of mass will depend on how carbon is partitioned among new leaf area, leaf mass, root mass, reproduction, and respiration. A model of leaf area growth in terms of photosynthetic rate and carbon partitioning to different plant organs was developed and tested with Arabidopsis thaliana L. Heynh. ecotype Columbia (Col-0) and a mutant line, gigantea-2 (gi-2), which develops very large rosettes. Data obtained from growthmore » analysis and gas exchange measurements was used to train a genetic programming algorithm to parameterize and test the above model. The relationship between leaf area and plant biomass was found to be non-linear and variable depending on carbon partitioning. The model output was sensitive to the rate of photosynthesis but more sensitive to the amount of carbon partitioned to growing thicker leaves. The large rosette size of gi-2 relative to that of Col-0 resulted from relatively small differences in partitioning to new leaf area vs. leaf thickness.« less

  13. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana.

    PubMed

    Weraduwage, Sarathi M; Chen, Jin; Anozie, Fransisca C; Morales, Alejandro; Weise, Sean E; Sharkey, Thomas D

    2015-01-01

    Leaf area growth determines the light interception capacity of a crop and is often used as a surrogate for plant growth in high-throughput phenotyping systems. The relationship between leaf area growth and growth in terms of mass will depend on how carbon is partitioned among new leaf area, leaf mass, root mass, reproduction, and respiration. A model of leaf area growth in terms of photosynthetic rate and carbon partitioning to different plant organs was developed and tested with Arabidopsis thaliana L. Heynh. ecotype Columbia (Col-0) and a mutant line, gigantea-2 (gi-2), which develops very large rosettes. Data obtained from growth analysis and gas exchange measurements was used to train a genetic programming algorithm to parameterize and test the above model. The relationship between leaf area and plant biomass was found to be non-linear and variable depending on carbon partitioning. The model output was sensitive to the rate of photosynthesis but more sensitive to the amount of carbon partitioned to growing thicker leaves. The large rosette size of gi-2 relative to that of Col-0 resulted from relatively small differences in partitioning to new leaf area vs. leaf thickness.

  14. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana

    PubMed Central

    Weraduwage, Sarathi M.; Chen, Jin; Anozie, Fransisca C.; Morales, Alejandro; Weise, Sean E.; Sharkey, Thomas D.

    2015-01-01

    Leaf area growth determines the light interception capacity of a crop and is often used as a surrogate for plant growth in high-throughput phenotyping systems. The relationship between leaf area growth and growth in terms of mass will depend on how carbon is partitioned among new leaf area, leaf mass, root mass, reproduction, and respiration. A model of leaf area growth in terms of photosynthetic rate and carbon partitioning to different plant organs was developed and tested with Arabidopsis thaliana L. Heynh. ecotype Columbia (Col-0) and a mutant line, gigantea-2 (gi-2), which develops very large rosettes. Data obtained from growth analysis and gas exchange measurements was used to train a genetic programming algorithm to parameterize and test the above model. The relationship between leaf area and plant biomass was found to be non-linear and variable depending on carbon partitioning. The model output was sensitive to the rate of photosynthesis but more sensitive to the amount of carbon partitioned to growing thicker leaves. The large rosette size of gi-2 relative to that of Col-0 resulted from relatively small differences in partitioning to new leaf area vs. leaf thickness. PMID:25914696

  15. Leaf movements and their relationship with the lunisolar gravitational force

    PubMed Central

    Barlow, Peter W.

    2015-01-01

    Background Observation of the diurnal ascent and descent of leaves of beans and other species, as well as experimental interventions into these movements, such as exposures to light at different times during the movement cycle, led to the concept of an endogenous ‘clock’ as a regulator of these oscillations. The physiological basis of leaf movement can be traced to processes that modulate cell volume in target tissues of the pulvinus and petiole. However, these elements of the leaf-movement process do not completely account for the rhythms that are generated following germination in constant light or dark conditions, or when plants are transferred to similar free-running conditions. Scope To develop a new perspective on the regulation of leaf-movement rhythms, many of the published time courses of leaf movements that provided evidence for the concept of the endogenous clock were analysed in conjunction with the contemporaneous time courses of the lunisolar tidal acceleration at the relevant experimental locations. This was made possible by application of the Etide program, which estimates, with high temporal resolution, local gravitational changes as a consequence of the diurnal variations of the lunisolar gravitational force due to the orbits and relative positions of Earth, Moon and Sun. In all cases, it was evident that a synchronism exists between the times of the turning points of both the lunisolar tide and of the leaftide when the direction of leaf movement changes. This finding of synchrony leads to the hypothesis that the lunisolar tide is a regulator of the leaftide, and that the rhythm of leaf movement is not necessarily of endogenous origin but is an expression of an exogenous lunisolar ‘clock’ impressed upon the leaf-movement apparatus. Conclusions Correlation between leaftide and Etide time courses holds for leaf movement rhythms in natural conditions of the greenhouse, in conditions of constant light or dark, under microgravity conditions of

  16. Leaf movements and their relationship with the lunisolar gravitational force.

    PubMed

    Barlow, Peter W

    2015-08-01

    Observation of the diurnal ascent and descent of leaves of beans and other species, as well as experimental interventions into these movements, such as exposures to light at different times during the movement cycle, led to the concept of an endogenous 'clock' as a regulator of these oscillations. The physiological basis of leaf movement can be traced to processes that modulate cell volume in target tissues of the pulvinus and petiole. However, these elements of the leaf-movement process do not completely account for the rhythms that are generated following germination in constant light or dark conditions, or when plants are transferred to similar free-running conditions. To develop a new perspective on the regulation of leaf-movement rhythms, many of the published time courses of leaf movements that provided evidence for the concept of the endogenous clock were analysed in conjunction with the contemporaneous time courses of the lunisolar tidal acceleration at the relevant experimental locations. This was made possible by application of the Etide program, which estimates, with high temporal resolution, local gravitational changes as a consequence of the diurnal variations of the lunisolar gravitational force due to the orbits and relative positions of Earth, Moon and Sun. In all cases, it was evident that a synchronism exists between the times of the turning points of both the lunisolar tide and of the leaftide when the direction of leaf movement changes. This finding of synchrony leads to the hypothesis that the lunisolar tide is a regulator of the leaftide, and that the rhythm of leaf movement is not necessarily of endogenous origin but is an expression of an exogenous lunisolar 'clock' impressed upon the leaf-movement apparatus. Correlation between leaftide and Etide time courses holds for leaf movement rhythms in natural conditions of the greenhouse, in conditions of constant light or dark, under microgravity conditions of the International Space Station, and

  17. Differences between winter oilseed rape (Brassica napus L.) cultivars in nitrogen starvation-induced leaf senescence are governed by leaf-inherent rather than root-derived signals.

    PubMed

    Koeslin-Findeklee, Fabian; Becker, Martin A; van der Graaff, Eric; Roitsch, Thomas; Horst, Walter J

    2015-07-01

    Nitrogen (N) efficiency of winter oilseed rape (Brassica napus L.) line-cultivars (cvs.), defined as high grain yield under N limitation, has been primarily attributed to maintained N uptake during reproductive growth (N uptake efficiency) in combination with delayed senescence of the older leaves accompanied with maintained photosynthetic capacity (functional stay-green). However, it is not clear whether genotypic variation in N starvation-induced leaf senescence is due to leaf-inherent factors and/or governed by root-mediated signals. Therefore, the N-efficient and stay-green cvs. NPZ-1 and Apex were reciprocally grafted with the N-inefficient and early-senescing cvs. NPZ-2 and Capitol, respectively and grown in hydroponics. The senescence status of older leaves after 12 days of N starvation assessed by SPAD, photosynthesis and the expression of the senescence-specific cysteine protease gene SAG12-1 revealed that the stay-green phenotype of the cvs. NPZ-1 and Apex under N starvation was primarily under the control of leaf-inherent factors. The same four cultivars were submitted to N starvation for up to 12 days in a time-course experiment. The specific leaf contents of biologically active and inactive cytokinins (CKs) and the expression of genes involved in CK homeostasis revealed that under N starvation leaves of early-senescing cultivars were characterized by inactivation of biologically active CKs, whereas in stay-green cultivars synthesis, activation, binding of and response to biologically active CKs were favoured. These results suggest that the homeostasis of biologically active CKs was the predominant leaf-inherent factor for cultivar differences in N starvation-induced leaf senescence and thus N efficiency. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. Differences between winter oilseed rape (Brassica napus L.) cultivars in nitrogen starvation-induced leaf senescence are governed by leaf-inherent rather than root-derived signals

    PubMed Central

    Koeslin-Findeklee, Fabian; Becker, Martin A.; van der Graaff, Eric; Roitsch, Thomas; Horst, Walter J.

    2015-01-01

    Nitrogen (N) efficiency of winter oilseed rape (Brassica napus L.) line-cultivars (cvs.), defined as high grain yield under N limitation, has been primarily attributed to maintained N uptake during reproductive growth (N uptake efficiency) in combination with delayed senescence of the older leaves accompanied with maintained photosynthetic capacity (functional stay-green). However, it is not clear whether genotypic variation in N starvation-induced leaf senescence is due to leaf-inherent factors and/or governed by root-mediated signals. Therefore, the N-efficient and stay-green cvs. NPZ-1 and Apex were reciprocally grafted with the N-inefficient and early-senescing cvs. NPZ-2 and Capitol, respectively and grown in hydroponics. The senescence status of older leaves after 12 days of N starvation assessed by SPAD, photosynthesis and the expression of the senescence-specific cysteine protease gene SAG12-1 revealed that the stay-green phenotype of the cvs. NPZ-1 and Apex under N starvation was primarily under the control of leaf-inherent factors. The same four cultivars were submitted to N starvation for up to 12 days in a time-course experiment. The specific leaf contents of biologically active and inactive cytokinins (CKs) and the expression of genes involved in CK homeostasis revealed that under N starvation leaves of early-senescing cultivars were characterized by inactivation of biologically active CKs, whereas in stay-green cultivars synthesis, activation, binding of and response to biologically active CKs were favoured. These results suggest that the homeostasis of biologically active CKs was the predominant leaf-inherent factor for cultivar differences in N starvation-induced leaf senescence and thus N efficiency. PMID:25944925

  19. Differential Nitrogen Cycling in Semiarid Sub-Shrubs with Contrasting Leaf Habit

    PubMed Central

    Palacio, Sara; Maestro, Melchor; Montserrat-Martí, Gabriel

    2014-01-01

    Nitrogen (N) is, after water, the most limiting resource in semiarid ecosystems. However, knowledge on the N cycling ability of semiarid woody plants is still very rudimentary. This study analyzed the seasonal change in the N concentrations and pools of the leaves and woody organs of two species of semiarid sub-shrubs with contrasting leaf habit. The ability of both species to uptake, remobilize and recycle N, plus the main storage organ for N during summer drought were evaluated. We combined an observational approach in the field with experimental 15N labelling of adult individuals grown in sand culture. Seasonal patterns of N concentrations were different between species and organs and foliar N concentrations of the summer deciduous Lepidium subulatum were almost double those of the evergreen Linum suffruticosum. L. subulatum up took ca. 60% more external N than the evergreen and it also had a higher N resorption efficiency and proficiency. Contrastingly, L. suffruticosum relied more on internal N remobilization for shoot growth. Differently to temperate species, the evergreen stored N preferentially in the main stem and old trunks, while the summer deciduous stored it in the foliage and young stems. The higher ability of L. subulatum to uptake external N can be related to its ability to perform opportunistic growth and exploit the sporadic pulses of N typical of semiarid ecosystems. Such ability may also explain its high foliar N concentrations and its preferential storage of N in leaves and young stems. Finally, L. suffruticosum had a lower ability to recycle N during leaf senescence. These strategies contrast with those of evergreen and deciduous species from temperate and boreal areas, highlighting the need of further studies on semiarid and arid plants. PMID:24675650

  20. Building relationships between plant traits and leaf spectra to reduce uncertainty in terrestrial ecosystem models

    NASA Astrophysics Data System (ADS)

    Lieberman-Cribbin, W.; Rogers, A.; Serbin, S.; Ely, K.

    2015-12-01

    Despite climate projections, there is uncertainty in how terrestrial ecosystems will respond to warming temperatures and increased atmospheric carbon dioxide concentrations. Earth system models are used to determine how ecosystems will respond in the future, but there is considerable variation in how plant traits are represented within these models. A potential approach to reducing uncertainty is the establishment of spectra-trait linkages among plant species. These relationships allow the accurate estimation of biochemical characteristics of plants from their shortwave spectral profiles. Remote sensing approaches can then be implemented to acquire spectral data and estimate plant traits over large spatial and temporal scales. This paper describes a greenhouse experiment conducted at Brookhaven National Laboratory in which spectra-trait relationships were investigated for 8 different plant species. This research was designed to generate a broad gradient in plant traits, using a range of species grown in different sized pots with different soil type. Fertilizer was also applied in different amounts to generate variation in plant C and N status that will be reflected in the traits measured, as well as the spectra observed. Leaves were sampled at different developmental stages to increase variation. Spectra and plant traits were then measured and a partial least-squares regression (PLSR) modeling approach was used to establish spectra-trait relationships. Despite the variability in growing conditions and plant species, our PLSR models could be used to accurately estimate plant traits from spectral signatures, yielding model calibration R2 and root mean square error (RMSE) values, respectively, of 0.85 and 0.30 for percent nitrogen by mass (Nmass%), R2 0.78 and 0.75 for carbon to nitrogen (C:N) ratio, 0.87 and 2.39 for leaf mass area (LMA), and 0.76 R2 and 15.16 for water (H2O) content. This research forms the basis for establishing new and more comprehensive spectra

  1. Leaf photosynthesis and respiration of three bioenergy crops in relation to temperature and leaf nitrogen: how conserved are biochemical model parameters among crop species?

    PubMed

    Archontoulis, S V; Yin, X; Vos, J; Danalatos, N G; Struik, P C

    2012-01-01

    Given the need for parallel increases in food and energy production from crops in the context of global change, crop simulation models and data sets to feed these models with photosynthesis and respiration parameters are increasingly important. This study provides information on photosynthesis and respiration for three energy crops (sunflower, kenaf, and cynara), reviews relevant information for five other crops (wheat, barley, cotton, tobacco, and grape), and assesses how conserved photosynthesis parameters are among crops. Using large data sets and optimization techniques, the C(3) leaf photosynthesis model of Farquhar, von Caemmerer, and Berry (FvCB) and an empirical night respiration model for tested energy crops accounting for effects of temperature and leaf nitrogen were parameterized. Instead of the common approach of using information on net photosynthesis response to CO(2) at the stomatal cavity (A(n)-C(i)), the model was parameterized by analysing the photosynthesis response to incident light intensity (A(n)-I(inc)). Convincing evidence is provided that the maximum Rubisco carboxylation rate or the maximum electron transport rate was very similar whether derived from A(n)-C(i) or from A(n)-I(inc) data sets. Parameters characterizing Rubisco limitation, electron transport limitation, the degree to which light inhibits leaf respiration, night respiration, and the minimum leaf nitrogen required for photosynthesis were then determined. Model predictions were validated against independent sets. Only a few FvCB parameters were conserved among crop species, thus species-specific FvCB model parameters are needed for crop modelling. Therefore, information from readily available but underexplored A(n)-I(inc) data should be re-analysed, thereby expanding the potential of combining classical photosynthetic data and the biochemical model.

  2. Leaf photosynthesis and respiration of three bioenergy crops in relation to temperature and leaf nitrogen: how conserved are biochemical model parameters among crop species?

    PubMed Central

    Archontoulis, S. V.; Yin, X.; Vos, J.; Danalatos, N. G.; Struik, P. C.

    2012-01-01

    Given the need for parallel increases in food and energy production from crops in the context of global change, crop simulation models and data sets to feed these models with photosynthesis and respiration parameters are increasingly important. This study provides information on photosynthesis and respiration for three energy crops (sunflower, kenaf, and cynara), reviews relevant information for five other crops (wheat, barley, cotton, tobacco, and grape), and assesses how conserved photosynthesis parameters are among crops. Using large data sets and optimization techniques, the C3 leaf photosynthesis model of Farquhar, von Caemmerer, and Berry (FvCB) and an empirical night respiration model for tested energy crops accounting for effects of temperature and leaf nitrogen were parameterized. Instead of the common approach of using information on net photosynthesis response to CO2 at the stomatal cavity (An–Ci), the model was parameterized by analysing the photosynthesis response to incident light intensity (An–Iinc). Convincing evidence is provided that the maximum Rubisco carboxylation rate or the maximum electron transport rate was very similar whether derived from An–Ci or from An–Iinc data sets. Parameters characterizing Rubisco limitation, electron transport limitation, the degree to which light inhibits leaf respiration, night respiration, and the minimum leaf nitrogen required for photosynthesis were then determined. Model predictions were validated against independent sets. Only a few FvCB parameters were conserved among crop species, thus species-specific FvCB model parameters are needed for crop modelling. Therefore, information from readily available but underexplored An–Iinc data should be re-analysed, thereby expanding the potential of combining classical photosynthetic data and the biochemical model. PMID:22021569

  3. Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat.

    PubMed

    Shangguan; Shao; Dyckmans

    2000-10-01

    The responses of gas exchange and water use efficiency to nitrogen nutrition for winter wheat were investigated under well-watered and drought conditions. The photosynthetic gas exchange parameters of winter wheat are remarkably improved by water and nitrogen nutrition and the regulative capability of nitrogen nutrition is influenced by water status. The effects of nitrogen nutrition on photosynthetic characteristics and on the limited factors to photosynthesis are not identical under different water status. Intrinsic water use efficiency (WUE(i)) of the plants at the high-N nutrition was decreased by a larger value than that of the plants in the low-N treatment due to a larger decrease in photosynthetic rate than in transpiration rate. Carbon isotope composition of plant material (delta(p)) is increased by the increase of drought intensity. The delta(p) at a given level of C(i)/C(a) is reduced by nitrogen deficiency. Leaf carbon isotope discrimination (Delta) is increased by the increase of nitrogen nutrition and decreased by the increase of drought intensity. Transpirational water use efficiency (WUE(t)) is negatively correlated with Delta in both nitrogen supply treatments and increased with the nitrogen supply.

  4. Adaptation of maize source leaf metabolism to stress related disturbances in carbon, nitrogen and phosphorus balance

    PubMed Central

    2013-01-01

    Background Abiotic stress causes disturbances in the cellular homeostasis. Re-adjustment of balance in carbon, nitrogen and phosphorus metabolism therefore plays a central role in stress adaptation. However, it is currently unknown which parts of the primary cell metabolism follow common patterns under different stress conditions and which represent specific responses. Results To address these questions, changes in transcriptome, metabolome and ionome were analyzed in maize source leaves from plants suffering low temperature, low nitrogen (N) and low phosphorus (P) stress. The selection of maize as study object provided data directly from an important crop species and the so far underexplored C4 metabolism. Growth retardation was comparable under all tested stress conditions. The only primary metabolic pathway responding similar to all stresses was nitrate assimilation, which was down-regulated. The largest group of commonly regulated transcripts followed the expression pattern: down under low temperature and low N, but up under low P. Several members of this transcript cluster could be connected to P metabolism and correlated negatively to different phosphate concentration in the leaf tissue. Accumulation of starch under low temperature and low N stress, but decrease in starch levels under low P conditions indicated that only low P treated leaves suffered carbon starvation. Conclusions Maize employs very different strategies to manage N and P metabolism under stress. While nitrate assimilation was regulated depending on demand by growth processes, phosphate concentrations changed depending on availability, thus building up reserves under excess conditions. Carbon and energy metabolism of the C4 maize leaves were particularly sensitive to P starvation. PMID:23822863

  5. Relationship between leaf traits and fire-response strategies in shrub species of a mountainous region of south-eastern Australia.

    PubMed

    Vivian, Lyndsey M; Cary, Geoffrey J

    2012-01-01

    Resprouting and seed recruitment are important ways in which plants respond to fire. However, the investments a plant makes into ensuring the success of post-fire resprouting or seedling recruitment can result in trade-offs that are manifested in a range of co-occurring morphological, life history and physiological traits. Relationships between fire-response strategies and other traits have been widely examined in fire-prone Mediterranean-type climates. In this paper, we aim to determine whether shrubs growing in a non-Mediterranean climate region exhibit relationships between their fire-response strategy and leaf traits. Field surveys were used to classify species into fire-response types. We then compared specific leaf area, leaf dry-matter content, leaf width, leaf nitrogen and carbon to nitrogen ratios between (a) obligate seeders and all other resprouters, and (b) obligate seeders, facultative resprouters and obligate resprouters. Leaf traits only varied between fire-response types when we considered facultative resprouters as a separate group to obligate resprouters, as observed after a large landscape-scale fire. We found no differences between obligate seeders and obligate resprouters, nor between obligate seeders and resprouters considered as one group. The results suggest that facultative resprouters may require a strategy of rapid resource acquisition and fast growth in order to compete with species that either resprout, or recruit from seed. However, the overall lack of difference between obligate seeders and obligate resprouters suggests that environmental factors are exerting similar effects on species' ecological strategies, irrespective of the constraints and trade-offs that may be associated with obligate seeding and obligate resprouting. These results highlight the limits to trait co-occurrences across different ecosystems and the difficulty in identifying global-scale relationships amongst traits.

  6. Acromyrmex Leaf-Cutting Ants Have Simple Gut Microbiota with Nitrogen-Fixing Potential.

    PubMed

    Sapountzis, Panagiotis; Zhukova, Mariya; Hansen, Lars H; Sørensen, Søren J; Schiøtt, Morten; Boomsma, Jacobus J

    2015-08-15

    Ants and termites have independently evolved obligate fungus-farming mutualisms, but their gardening procedures are fundamentally different, as the termites predigest their plant substrate whereas the ants deposit it directly on the fungus garden. Fungus-growing termites retained diverse gut microbiota, but bacterial gut communities in fungus-growing leaf-cutting ants have not been investigated, so it is unknown whether and how they are specialized on an exclusively fungal diet. Here we characterized the gut bacterial community of Panamanian Acromyrmex species, which are dominated by only four bacterial taxa: Wolbachia, Rhizobiales, and two Entomoplasmatales taxa. We show that the Entomoplasmatales can be both intracellular and extracellular across different gut tissues, Wolbachia is mainly but not exclusively intracellular, and the Rhizobiales species is strictly extracellular and confined to the gut lumen, where it forms biofilms along the hindgut cuticle supported by an adhesive matrix of polysaccharides. Tetracycline diets eliminated the Entomoplasmatales symbionts but hardly affected Wolbachia and only moderately reduced the Rhizobiales, suggesting that the latter are protected by the biofilm matrix. We show that the Rhizobiales symbiont produces bacterial NifH proteins that have been associated with the fixation of nitrogen, suggesting that these compartmentalized hindgut symbionts alleviate nutritional constraints emanating from an exclusive fungus garden diet reared on a substrate of leaves.

  7. Analyzing the performance of fluorescence parameters in the monitoring of leaf nitrogen content of paddy rice

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Gong, Wei; Shi, Shuo; Du, Lin; Sun, Jia; Song, Shalei; Chen, Biwu; Zhang, Zhenbing

    2016-06-01

    Leaf nitrogen content (LNC) is a significant factor which can be utilized to monitor the status of paddy rice and it requires a reliable approach for fast and precise quantification. This investigation aims to quantitatively analyze the correlation between fluorescence parameters and LNC based on laser-induced fluorescence (LIF) technology. The fluorescence parameters exhibited a consistent positive linear correlation with LNC in different growing years (2014 and 2015) and different rice cultivars. The R2 of the models varied from 0.6978 to 0.9045. Support vector machine (SVM) was then utilized to verify the feasibility of the fluorescence parameters for monitoring LNC. Comparison of the fluorescence parameters indicated that F740 is the most sensitive (the R2 of linear regression analysis of the between predicted and measured values changed from 0.8475 to 0.9226, and REs ranged from 3.52% to 4.83%) to the changes in LNC among all fluorescence parameters. Experimental results demonstrated that fluorescence parameters based on LIF technology combined with SVM is a potential method for realizing real-time, non-destructive monitoring of paddy rice LNC, which can provide guidance for the decision-making of farmers in their N fertilization strategies.

  8. Acromyrmex Leaf-Cutting Ants Have Simple Gut Microbiota with Nitrogen-Fixing Potential

    PubMed Central

    Zhukova, Mariya; Hansen, Lars H.; Sørensen, Søren J.; Schiøtt, Morten

    2015-01-01

    Ants and termites have independently evolved obligate fungus-farming mutualisms, but their gardening procedures are fundamentally different, as the termites predigest their plant substrate whereas the ants deposit it directly on the fungus garden. Fungus-growing termites retained diverse gut microbiota, but bacterial gut communities in fungus-growing leaf-cutting ants have not been investigated, so it is unknown whether and how they are specialized on an exclusively fungal diet. Here we characterized the gut bacterial community of Panamanian Acromyrmex species, which are dominated by only four bacterial taxa: Wolbachia, Rhizobiales, and two Entomoplasmatales taxa. We show that the Entomoplasmatales can be both intracellular and extracellular across different gut tissues, Wolbachia is mainly but not exclusively intracellular, and the Rhizobiales species is strictly extracellular and confined to the gut lumen, where it forms biofilms along the hindgut cuticle supported by an adhesive matrix of polysaccharides. Tetracycline diets eliminated the Entomoplasmatales symbionts but hardly affected Wolbachia and only moderately reduced the Rhizobiales, suggesting that the latter are protected by the biofilm matrix. We show that the Rhizobiales symbiont produces bacterial NifH proteins that have been associated with the fixation of nitrogen, suggesting that these compartmentalized hindgut symbionts alleviate nutritional constraints emanating from an exclusive fungus garden diet reared on a substrate of leaves. PMID:26048932

  9. Inconsistent intraspecific pattern in leaf life span along nitrogen-supply gradient.

    PubMed

    Oikawa, Shimpei; Suno, Koya; Osada, Noriyuki

    2017-02-01

    Leaf life span (LLS) has long been hypothesized to plastically increase with decreasing nitrogen (N) supply from soil to maximize N retention, carbon assimilation, and fitness; however, accumulating evidence shows no consistent trend. The apparent inconsistencies are explained by a recent model that assumes LLS has a hump-shaped quadratic response to the N-supply gradient. The available evidence mostly originates from comparisons of LLS at only two levels of N availability, and the hypothesis remains unanswered. We investigated LLS of two asteraceous forbs (Adenocaulon himalaicum and Xanthium canadense) experimentally grown at eight levels of N supply, which covered a range of N supply in their natural habitats. We additionally conducted a literature search to retrieve studies reporting LLS response along an N-supply gradient. The LLS of neither species showed a hump-shaped response along the N-supply gradient. Past studies examining the LLS of an aquatic forb and terrestrial shrubs and trees along the N-supply gradient (more than four levels of N supply) also refuted the hypothesis. The LLS of a single species exhibited neither an increase nor a hump-shaped response to decreased N supply in a variety of life forms. Comparisons at only a few N levels are misleading with regard to LLS response to N supply. © 2017 Botanical Society of America.

  10. Analyzing the performance of fluorescence parameters in the monitoring of leaf nitrogen content of paddy rice

    PubMed Central

    Yang, Jian; Gong, Wei; Shi, Shuo; Du, Lin; Sun, Jia; Song, Shalei; Chen, Biwu; Zhang, Zhenbing

    2016-01-01

    Leaf nitrogen content (LNC) is a significant factor which can be utilized to monitor the status of paddy rice and it requires a reliable approach for fast and precise quantification. This investigation aims to quantitatively analyze the correlation between fluorescence parameters and LNC based on laser-induced fluorescence (LIF) technology. The fluorescence parameters exhibited a consistent positive linear correlation with LNC in different growing years (2014 and 2015) and different rice cultivars. The R2 of the models varied from 0.6978 to 0.9045. Support vector machine (SVM) was then utilized to verify the feasibility of the fluorescence parameters for monitoring LNC. Comparison of the fluorescence parameters indicated that F740 is the most sensitive (the R2 of linear regression analysis of the between predicted and measured values changed from 0.8475 to 0.9226, and REs ranged from 3.52% to 4.83%) to the changes in LNC among all fluorescence parameters. Experimental results demonstrated that fluorescence parameters based on LIF technology combined with SVM is a potential method for realizing real-time, non-destructive monitoring of paddy rice LNC, which can provide guidance for the decision-making of farmers in their N fertilization strategies. PMID:27350029

  11. The relative importance of exogenous and substrate-derived nitrogen for microbial growth during leaf decomposition.

    PubMed

    Cheever, B M; Webster, J R; Bilger, E E; Thomas, S A

    2013-07-01

    Heterotrophic microbes colonizing detritus obtain nitrogen (N) for growth by assimilating N from their substrate or immobilizing exogenous inorganic N. Microbial use of these two pools has different implications for N cycling and organic matter decomposition in the face of the global increase in biologically available N. We used sugar maple leaves labeled with 15N to differentiate between microbial N that had been assimilated from the leaf substrate (enriched with 15N) or immobilized from the water (natural abundance 15N:14N) in five Appalachian streams ranging in ambient NO3(-)N concentrations from about 5 to 900 microg NO3(-)N/L. Ambient NO3(-) concentration increased sugar maple decomposition rate but did not influence the proportion of microbial N derived from substrate or exogenous pools. Instead, these proportions were strongly influenced by the percentage of detrital ash-free dry mass (AFDM) remaining. Substrate-derived N made up a large proportion of the microbial N after the first 24 h in all streams. Detrital and microbial isotopic 15N signatures approached that of the water as decomposition progressed in all streams, suggesting that exogenous N may be the predominant source of N for meeting microbial requirements even when exogenous N concentrations are low. Our results support predictions of more rapid decomposition of organic matter in response to increased N availability and highlight the tight coupling of processes driving microbial N cycling and organic matter decomposition.

  12. Analyzing the performance of fluorescence parameters in the monitoring of leaf nitrogen content of paddy rice.

    PubMed

    Yang, Jian; Gong, Wei; Shi, Shuo; Du, Lin; Sun, Jia; Song, Shalei; Chen, Biwu; Zhang, Zhenbing

    2016-06-28

    Leaf nitrogen content (LNC) is a significant factor which can be utilized to monitor the status of paddy rice and it requires a reliable approach for fast and precise quantification. This investigation aims to quantitatively analyze the correlation between fluorescence parameters and LNC based on laser-induced fluorescence (LIF) technology. The fluorescence parameters exhibited a consistent positive linear correlation with LNC in different growing years (2014 and 2015) and different rice cultivars. The R(2) of the models varied from 0.6978 to 0.9045. Support vector machine (SVM) was then utilized to verify the feasibility of the fluorescence parameters for monitoring LNC. Comparison of the fluorescence parameters indicated that F740 is the most sensitive (the R(2) of linear regression analysis of the between predicted and measured values changed from 0.8475 to 0.9226, and REs ranged from 3.52% to 4.83%) to the changes in LNC among all fluorescence parameters. Experimental results demonstrated that fluorescence parameters based on LIF technology combined with SVM is a potential method for realizing real-time, non-destructive monitoring of paddy rice LNC, which can provide guidance for the decision-making of farmers in their N fertilization strategies.

  13. Leaf- and cell-level carbon cycling responses to a nitrogen and phosphorus gradient in two Arctic tundra species.

    PubMed

    Heskel, Mary A; Anderson, O Roger; Atkin, Owen K; Turnbull, Matthew H; Griffin, Kevin L

    2012-10-01

    Consequences of global climate change are detectable in the historically nitrogen- and phosphorus-limited Arctic tundra landscape and have implications for the terrestrial carbon cycle. Warmer temperatures and elevated soil nutrient availability associated with increased microbial activity may influence rates of photosynthesis and respiration. • This study examined leaf-level gas exchange, cellular ultrastructure, and related leaf traits in two dominant tundra species, Betula nana, a woody shrub, and Eriophorum vaginatum, a tussock sedge, under a 3-yr-old treatment gradient of nitrogen (N) and phosphorus (P) fertilization in the North Slope of Alaska. • Respiration increased with N and P addition-the highest rates corresponding to the highest concentrations of leaf N in both species. The inhibition of respiration by light ("Kok effect") significantly reduced respiration rates in both species (P < 0.001), ranged from 12-63% (mean 34%), and generally decreased with fertilization for both species. However, in both species, observed rates of photosynthesis did not increase, and photosynthetic nitrogen use efficiency generally decreased under increasing fertilization. Chloroplast and mitochondrial size and density were highly sensitive to N and P fertilization (P < 0.001), though species interactions indicated divergent cellular organizational strategies. • Results from this study demonstrate a species-specific decoupling of respiration and photosynthesis under N and P fertilization, implying an alteration of the carbon balance of the tundra ecosystem under future conditions.

  14. Influence of nitrogen and potassium fertilization on leaf lifespan and allocation of above-ground growth in Eucalyptus plantations.

    PubMed

    Laclau, Jean-Paul; Almeida, Julio C R; Gonçalves, José Leonardo M; Saint-André, Laurent; Ventura, Marcelo; Ranger, Jacques; Moreira, Rildo M; Nouvellon, Yann

    2009-01-01

    Eucalyptus grandis (W. Hill ex Maiden) leaf traits and tree growth were studied over 3 years after the establishment of two adjacent complete randomized block designs in southern Brazil. In a nitrogen (N) input experiment, a treatment with the application of 120 kg N ha(-1) was compared to a control treatment without N addition, and in a potassium (K) input experiment a control treatment without K addition was compared to a treatment with the application of 116 kg K ha(-1). Young leaves were tagged 9 months after planting to estimate the effect of N and K fertilizations on leaf lifespan. Leaf mass, specific leaf area and nutrient concentrations were measured on a composite sample per plot every 28 days until the last tagged leaf fell. Successive inventories, destructive sampling of trees and leaf litter fall collection made it possible to assess the effect of N and K fertilization on the dynamics of biomass accumulation in above-ground tree components. Whilst the effects of N fertilization on tree growth only occurred in the first 24 months after planting, K fertilization increased the above-ground net primary production from 4478 to 8737 g m(-2) over the first 36 months after planting. The average lifespan of tagged leaves was not modified by N addition but it increased from 111 to 149 days with K fertilization. The peak of leaf production occurred in the second year after planting (about 800 g m(-2) year(-1)) and was not significantly modified (P < 0.05) by N and K fertilizations. By contrast, K addition significantly increased the maximum leaf standing biomass from 292 to 528 g m(-2), mainly as a consequence of the increase in leaf lifespan. Potassium fertilization increased the stand biomass mainly through the enhancement in leaf area index (LAI) since growth efficiency (defined as the ratio between woody biomass production and LAI) was not significantly modified. A better understanding of the physiological processes governing the leaf lifespan is necessary to

  15. Variation in foliar nitrogen and albedo in response to nitrogen fertilization and elevated CO2.

    PubMed

    Wicklein, Haley F; Ollinger, Scott V; Martin, Mary E; Hollinger, David Y; Lepine, Lucie C; Day, Michelle C; Bartlett, Megan K; Richardson, Andrew D; Norby, Richard J

    2012-08-01

    Foliar nitrogen has been shown to be positively correlated with midsummer canopy albedo and canopy near infrared (NIR) reflectance over a broad range of plant functional types (e.g., forests, grasslands, and agricultural lands). To date, the mechanism(s) driving the nitrogen–albedo relationship have not been established, and it is unknown whether factors affecting nitrogen availability will also influence albedo. To address these questions, we examined variation in foliar nitrogen in relation to leaf spectral properties, leaf mass per unit area, and leaf water content for three deciduous species subjected to either nitrogen (Harvard Forest, MA, and Oak Ridge, TN) or CO(2) fertilization (Oak Ridge, TN). At Oak Ridge, we also obtained canopy reflectance data from the airborne visible/infrared imaging spectrometer (AVIRIS) to examine whether canopy-level spectral responses were consistent with leaf-level results. At the leaf level, results showed no differences in reflectance or transmittance between CO(2) or nitrogen treatments, despite significant changes in foliar nitrogen. Contrary to our expectations, there was a significant, but negative, relationship between foliar nitrogen and leaf albedo, a relationship that held for both full spectrum leaf albedo as well as leaf albedo in the NIR region alone. In contrast, remote sensing data indicated an increase in canopy NIR reflectance with nitrogen fertilization. Collectively, these results suggest that altered nitrogen availability can affect canopy albedo, albeit by mechanisms that involve canopy-level processes rather than changes in leaf-level reflectance.

  16. Differences in Leaf Flammability, Leaf Traits and Flammability-Trait Relationships between Native and Exotic Plant Species of Dry Sclerophyll Forest

    PubMed Central

    Murray, Brad R.; Hardstaff, Lyndle K.; Phillips, Megan L.

    2013-01-01

    The flammability of plant leaves influences the spread of fire through vegetation. Exotic plants invading native vegetation may increase the spread of bushfires if their leaves are more flammable than native leaves. We compared fresh-leaf and dry-leaf flammability (time to ignition) between 52 native and 27 exotic plant species inhabiting dry sclerophyll forest. We found that mean time to ignition was significantly faster in dry exotic leaves than in dry native leaves. There was no significant native-exotic difference in mean time to ignition for fresh leaves. The significantly higher fresh-leaf water content that was found in exotics, lost in the conversion from a fresh to dry state, suggests that leaf water provides an important buffering effect that leads to equivalent mean time to ignition in fresh exotic and native leaves. Exotic leaves were also significantly wider, longer and broader in area with significantly higher specific leaf area–but not thicker–than native leaves. We examined scaling relationships between leaf flammability and leaf size (leaf width, length, area, specific leaf area and thickness). While exotics occupied the comparatively larger and more flammable end of the leaf size-flammability spectrum in general, leaf flammability was significantly correlated with all measures of leaf size except leaf thickness in both native and exotic species such that larger leaves were faster to ignite. Our findings for increased flammability linked with larger leaf size in exotics demonstrate that exotic plant species have the potential to increase the spread of bushfires in dry sclerophyll forest. PMID:24260169

  17. Differences in leaf flammability, leaf traits and flammability-trait relationships between native and exotic plant species of dry sclerophyll forest.

    PubMed

    Murray, Brad R; Hardstaff, Lyndle K; Phillips, Megan L

    2013-01-01

    The flammability of plant leaves influences the spread of fire through vegetation. Exotic plants invading native vegetation may increase the spread of bushfires if their leaves are more flammable than native leaves. We compared fresh-leaf and dry-leaf flammability (time to ignition) between 52 native and 27 exotic plant species inhabiting dry sclerophyll forest. We found that mean time to ignition was significantly faster in dry exotic leaves than in dry native leaves. There was no significant native-exotic difference in mean time to ignition for fresh leaves. The significantly higher fresh-leaf water content that was found in exotics, lost in the conversion from a fresh to dry state, suggests that leaf water provides an important buffering effect that leads to equivalent mean time to ignition in fresh exotic and native leaves. Exotic leaves were also significantly wider, longer and broader in area with significantly higher specific leaf area-but not thicker-than native leaves. We examined scaling relationships between leaf flammability and leaf size (leaf width, length, area, specific leaf area and thickness). While exotics occupied the comparatively larger and more flammable end of the leaf size-flammability spectrum in general, leaf flammability was significantly correlated with all measures of leaf size except leaf thickness in both native and exotic species such that larger leaves were faster to ignite. Our findings for increased flammability linked with larger leaf size in exotics demonstrate that exotic plant species have the potential to increase the spread of bushfires in dry sclerophyll forest.

  18. Integrating remotely sensed leaf area index and leaf nitrogen accumulation with RiceGrow model based on particle swarm optimization algorithm for rice grain yield assessment

    NASA Astrophysics Data System (ADS)

    Wang, Hang; Zhu, Yan; Li, Wenlong; Cao, Weixing; Tian, Yongchao

    2014-01-01

    A regional rice (Oryza sativa) grain yield prediction technique was proposed by integration of ground-based and spaceborne remote sensing (RS) data with the rice growth model (RiceGrow) through a new particle swarm optimization (PSO) algorithm. Based on an initialization/parameterization strategy (calibration), two agronomic indicators, leaf area index (LAI) and leaf nitrogen accumulation (LNA) remotely sensed by field spectra and satellite images, were combined to serve as an external assimilation parameter and integrated with the RiceGrow model for inversion of three model management parameters, including sowing date, sowing rate, and nitrogen rate. Rice grain yield was then predicted by inputting these optimized parameters into the reinitialized model. PSO was used for the parameterization and regionalization of the integrated model and compared with the shuffled complex evolution-University of Arizona (SCE-UA) optimization algorithm. The test results showed that LAI together with LNA as the integrated parameter performed better than each alone for crop model parameter initialization. PSO also performed better than SCE-UA in terms of running efficiency and assimilation results, indicating that PSO is a reliable optimization method for assimilating RS information and the crop growth model. The integrated model also had improved precision for predicting rice grain yield.

  19. Abscisic acid and aldehyde oxidase activity in maize ear leaf and grain relative to post-flowering photosynthetic capacity and grain-filling rate under different water/nitrogen treatments.

    PubMed

    Qin, Shujun; Zhang, Zongzheng; Ning, Tangyuan; Ren, Shizhong; Su, Licheng; Li, Zengjia

    2013-09-01

    This study investigated changes in leaf abscisic acid (ABA) concentrations and grain ABA concentrations in two maize cultivars and analyzed the following relationships under different water/nitrogen treatments: leaf ABA concentrations and photosynthetic parameters; leaf ABA concentrations and grain ABA concentrations; leaf/grain ABA concentrations and grain-filling parameters; and aldehyde oxidase (AO, EC 1.2.3.1) activities and ABA concentrations. The ear leaf average AO activities and ABA concentrations were lower in the controlled release urea treatments compared with the conventional urea treatments. The average AO activities in the grains were higher in the controlled release urea treatments, and the ABA concentrations were significantly increased at 11-30 DAF. The Pn and ABA concentrations in ear leaves were negatively correlated. And the Gmean were positively correlated with the grain ABA concentrations at 11-30 DAF and negatively correlated with the leaf ABA concentrations at 20 and 40-50 DAF. The grain ABA concentrations and leaf ABA concentrations were positively correlated. Thus, the Gmean were closely related to the AO activities and to the ear leaf and grain ABA concentrations. As compared to other treatments, the subsoiling and controlled release urea treatment promoted the uptake of water and nitrogen by maize, increased the photosynthetic capacity of the ear leaves, increased the grain-filling rate, and improved the movement of photosynthetic assimilates toward the developing grains. In the cultivar Z958, higher ABA concentrations in grains at 11-30 DAF and lower ABA concentrations in ear leaves during the late grain-filling stage, resulted in higher grain-filling rate and increased accumulation of photosynthetic products (relative to the cultivar D3).

  20. Interactive effects of elevated CO2 and precipitation change on leaf nitrogen of dominant Stipa L. species

    PubMed Central

    Shi, Yaohui; Zhou, Guangsheng; Jiang, Yanling; Wang, Hui; Xu, Zhenzhu; Song, Jian

    2015-01-01

    Nitrogen (N) serves as an important mineral element affecting plant productivity and nutritional quality. However, few studies have addressed the interactive effects of elevated CO2 and precipitation change on leaf N of dominant grassland genera such as Stipa L. This has restricted our understanding of the responses of grassland to climate change. We simulated the interactive effects of elevated CO2 concentration and varied precipitation on leaf N concentration (Nmass) of four Stipa species (Stipa baicalensis, Stipa bungeana, Stipa grandis, and Stipa breviflora; the most dominant species in arid and semiarid grassland) using open-top chambers (OTCs). The relationship between the Nmass of these four Stipa species and precipitation well fits a logarithmic function. The sensitivity of these four species to precipitation change was ranked as follows: S. bungeana > S. breviflora > S. baicalensis > S. grandis. The Nmass of S. bungeana was the most sensitive to precipitation change, while S. grandis was the least sensitive among these Stipa species. Elevated CO2 exacerbated the effect of precipitation on Nmass. Nmass decreased under elevated CO2 due to growth dilution and a direct negative effect on N assimilation. Elevated CO2 reduced Nmass only in a certain precipitation range for S. baicalensis (163–343 mm), S. bungeana (164–355 mm), S. grandis (148–286 mm), and S. breviflora (130–316 mm); severe drought or excessive rainfall would be expected to result in a reduced impact of elevated CO2. Elevated CO2 affected the Nmass of S. grandis only in a narrow precipitation range. The effect of elevated CO2 reached a maximum when the amount of precipitation was 253, 260, 217, and 222 mm for S. baicalensis, S. bungeana, S. grandis, and S. breviflora, respectively. The Nmass of S. grandis was the least sensitive to elevated CO2. The Nmass of S. breviflora was more sensitive to elevated CO2 under a drought condition compared with the other Stipa

  1. Interactive effects of elevated CO2 and precipitation change on leaf nitrogen of dominant Stipa L. species.

    PubMed

    Shi, Yaohui; Zhou, Guangsheng; Jiang, Yanling; Wang, Hui; Xu, Zhenzhu; Song, Jian

    2015-07-01

    Nitrogen (N) serves as an important mineral element affecting plant productivity and nutritional quality. However, few studies have addressed the interactive effects of elevated CO2 and precipitation change on leaf N of dominant grassland genera such as Stipa L. This has restricted our understanding of the responses of grassland to climate change. We simulated the interactive effects of elevated CO2 concentration and varied precipitation on leaf N concentration (Nmass) of four Stipa species (Stipa baicalensis, Stipa bungeana, Stipa grandis, and Stipa breviflora; the most dominant species in arid and semiarid grassland) using open-top chambers (OTCs). The relationship between the Nmass of these four Stipa species and precipitation well fits a logarithmic function. The sensitivity of these four species to precipitation change was ranked as follows: S. bungeana > S. breviflora > S. baicalensis > S. grandis. The Nmass of S. bungeana was the most sensitive to precipitation change, while S. grandis was the least sensitive among these Stipa species. Elevated CO2 exacerbated the effect of precipitation on Nmass. Nmass decreased under elevated CO2 due to growth dilution and a direct negative effect on N assimilation. Elevated CO2 reduced Nmass only in a certain precipitation range for S. baicalensis (163-343 mm), S. bungeana (164-355 mm), S. grandis (148-286 mm), and S. breviflora (130-316 mm); severe drought or excessive rainfall would be expected to result in a reduced impact of elevated CO2. Elevated CO2 affected the Nmass of S. grandis only in a narrow precipitation range. The effect of elevated CO2 reached a maximum when the amount of precipitation was 253, 260, 217, and 222 mm for S. baicalensis, S. bungeana, S. grandis, and S. breviflora, respectively. The Nmass of S. grandis was the least sensitive to elevated CO2. The Nmass of S. breviflora was more sensitive to elevated CO2 under a drought condition compared with the other Stipa species.

  2. Scaling chlorophyll content in corn from leaf reflectances to airborne imaging spectrometers

    USDA-ARS?s Scientific Manuscript database

    Chlorophyll content is an important variable for agricultural remote sensing because of its close relationship to leaf nitrogen content and nitrogen fertilizer recommendations. In 1999, Dr. Paul Doraiswamy and investigators funded by NASA's Earth Observations Commercialization and Applications Prog...

  3. Leaf trait-environment relationships in a subtropical broadleaved forest in South-East China.

    PubMed

    Kröber, Wenzel; Böhnke, Martin; Welk, Erik; Wirth, Christian; Bruelheide, Helge

    2012-01-01

    Although trait analyses have become more important in community ecology, trait-environment correlations have rarely been studied along successional gradients. We asked which environmental variables had the strongest impact on intraspecific and interspecific trait variation in the community and which traits were most responsive to the environment. We established a series of plots in a secondary forest in the Chinese subtropics, stratified by successional stages that were defined by the time elapsed since the last logging activities. On a total of 27 plots all woody plants were recorded and a set of individuals of every species was analysed for leaf traits, resulting in a trait matrix of 26 leaf traits for 122 species. A Fourth Corner Analysis revealed that the mean values of many leaf traits were tightly related to the successional gradient. Most shifts in traits followed the leaf economics spectrum with decreasing specific leaf area and leaf nutrient contents with successional time. Beside succession, few additional environmental variables resulted in significant trait relationships, such as soil moisture and soil C and N content as well as topographical variables. Not all traits were related to the leaf economics spectrum, and thus, to the successional gradient, such as stomata size and density. By comparing different permutation models in the Fourth Corner Analysis, we found that the trait-environment link was based more on the association of species with the environment than of the communities with species traits. The strong species-environment association was brought about by a clear gradient in species composition along the succession series, while communities were not well differentiated in mean trait composition. In contrast, intraspecific trait variation did not show close environmental relationships. The study confirmed the role of environmental trait filtering in subtropical forests, with traits associated with the leaf economics spectrum being the most

  4. Leaf Trait-Environment Relationships in a Subtropical Broadleaved Forest in South-East China

    PubMed Central

    Kröber, Wenzel; Böhnke, Martin; Welk, Erik; Wirth, Christian; Bruelheide, Helge

    2012-01-01

    Although trait analyses have become more important in community ecology, trait-environment correlations have rarely been studied along successional gradients. We asked which environmental variables had the strongest impact on intraspecific and interspecific trait variation in the community and which traits were most responsive to the environment. We established a series of plots in a secondary forest in the Chinese subtropics, stratified by successional stages that were defined by the time elapsed since the last logging activities. On a total of 27 plots all woody plants were recorded and a set of individuals of every species was analysed for leaf traits, resulting in a trait matrix of 26 leaf traits for 122 species. A Fourth Corner Analysis revealed that the mean values of many leaf traits were tightly related to the successional gradient. Most shifts in traits followed the leaf economics spectrum with decreasing specific leaf area and leaf nutrient contents with successional time. Beside succession, few additional environmental variables resulted in significant trait relationships, such as soil moisture and soil C and N content as well as topographical variables. Not all traits were related to the leaf economics spectrum, and thus, to the successional gradient, such as stomata size and density. By comparing different permutation models in the Fourth Corner Analysis, we found that the trait-environment link was based more on the association of species with the environment than of the communities with species traits. The strong species-environment association was brought about by a clear gradient in species composition along the succession series, while communities were not well differentiated in mean trait composition. In contrast, intraspecific trait variation did not show close environmental relationships. The study confirmed the role of environmental trait filtering in subtropical forests, with traits associated with the leaf economics spectrum being the most

  5. Xylem and Phloem Transport and the Functional Economy of Carbon and Nitrogen of a Legume Leaf 1

    PubMed Central

    Pate, John Stewart; Atkins, Craig Anthony

    1983-01-01

    Exchanges of CO2 and changes in content of C and N were studied over the life of a leaf of Lupinus albus L. These data were combined with measurements of C:N weight ratios of xylem (upper stem tracheal) and phloem (petiole) sap to determine net fluxes of C and N between leaf and plant. Phase 1 of leaf development (first 11 days, leaf to one-third area) showed increasing net import of C and N, with phloem contributing 61% of the imported C and 18% of the N. 14C feeding studies suggested the potential for simultaneous import and export through phloem over the period 9 to 12 days. Phase 2 (11-20 days, leaf attaining maximum area and net photosynthesis rate) exhibited net import through xylem and increasing export through phloem. Eighty-two% of xylem-delivered N was consumed in leaf growth, the remainder exported in phloem. Phase 3 (20-38 days) showed high but declining rates of photosynthesis, translocation, and net export of N. Phase 4 (38-66 days) exhibited substantial losses of N and declining photosynthesis and translocation of C. C:N ratio of xylem sap remained constant (2.3-2.6) during leaf life; petiole phloem sap C:N ratio varied from 25 to 135 over leaf development. The relationships between net photosynthesis and N import in xylem were: phase 1, 4.8 milligrams C per milligram N; phase 2, 24.7 milligrams C per milligram N; phase 3, 91.9 milligrams C per milligram N; and phase 4, 47.7 milligrams C per milligram N. PMID:16662916

  6. Invasive species' leaf traits and dissimilarity from natives shape their impact on nitrogen cycling: a meta-analysis.

    PubMed

    Lee, Marissa R; Bernhardt, Emily S; van Bodegom, Peter M; Cornelissen, J Hans C; Kattge, Jens; Laughlin, Daniel C; Niinemets, Ülo; Peñuelas, Josep; Reich, Peter B; Yguel, Benjamin; Wright, Justin P

    2017-01-01

    Many exotic species have little apparent impact on ecosystem processes, whereas others have dramatic consequences for human and ecosystem health. There is growing evidence that invasions foster eutrophication. We need to identify species that are harmful and systems that are vulnerable to anticipate these consequences. Species' traits may provide the necessary insights. We conducted a global meta-analysis to determine whether plant leaf and litter functional traits, and particularly leaf and litter nitrogen (N) content and carbon: nitrogen (C : N) ratio, explain variation in invasive species' impacts on soil N cycling. Dissimilarity in leaf and litter traits among invaded and noninvaded plant communities control the magnitude and direction of invasion impacts on N cycling. Invasions that caused the greatest increases in soil inorganic N and mineralization rates had a much greater litter N content and lower litter C : N in the invaded than the reference community. Trait dissimilarities were better predictors than the trait values of invasive species alone. Quantifying baseline community tissue traits, in addition to those of the invasive species, is critical to understanding the impacts of invasion on soil N cycling. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  7. Benefit to N2-fixing alder of extending growth period at the cost of leaf nitrogen loss without resorption.

    PubMed

    Tateno, Masaki

    2003-11-01

    This study examines the adaptive role of not resorbing N in N(2)-fixing deciduous trees in terms of their energy balance. The autumnal growth of N(2)-fixing Alnus firma Sieb. et Zucc. (alder) was compared with that of the non-N(2)-fixing Morus bombycis Koizumi (mulberry), which resorbs leaf N. The freezing resistance of leaves of both species was -2 degrees C. Mulberry seedlings lost their photosynthetic ability in mid-October, although the minimum temperature was still above 0 degrees C. Thereafter, their leaves turned yellow and were gradually shed. In contrast, seedlings of the alder maintained their photosynthetic ability until mid-November, when the minimum temperature fell to the freezing resistance limit. Thereafter, their leaves were shed quickly without an autumn tint. The mulberry resorbed 48.9% of leaf N, whereas the alder resorbed hardly any. These results show that, compared with the mulberry tree, the alder extended its growth period for 1 month in return for losing leaf N without resorption. The amount of energy assimilated by the alder in the extended growth period was about six times that required for compensating for the nitrogen loss, if the compensation is dependent only on the tree's own nitrogen fixation. This surplus energy balance has probably allowed N(2)-fixing deciduous trees to evolve their non-N-resorbing trait.

  8. Remote sensing of LAI, chlorophyll and leaf nitrogen pools of crop- and grasslands in five European landscapes

    NASA Astrophysics Data System (ADS)

    Boegh, E.; Houborg, R.; Bienkowski, J.; Braban, C. F.; Dalgaard, T.; van Dijk, N.; Dragosits, U.; Holmes, E.; Magliulo, V.; Schelde, K.; Di Tommasi, P.; Vitale, L.; Theobald, M. R.; Cellier, P.; Sutton, M.

    2012-08-01

    Leaf nitrogen and leaf surface area influence the exchange of gases between terrestrial ecosystems and the atmosphere, and they play a significant role in the global cycles of carbon, nitrogen and water. Remote sensing data from satellites can be used to estimate leaf area index (LAI), leaf chlorophyll (CHLl) and leaf nitrogen density (Nl). However, methods are often developed using plot scale data and not verified over extended regions that represent a variety of soil spectral properties and canopy structures. In this paper, field measurements and high spatial resolution (10-20 m) remote sensing images acquired from the HRG and HRVIR sensors aboard the SPOT satellites were used to assess the predictability of LAI, CHLl and Nl. Five spectral vegetation indices (SVIs) were used (the Normalized Difference Vegetation index, the Simple Ratio, the Enhanced Vegetation Index-2, the Green Normalized Difference Vegetation Index, and the green Chlorophyll Index) together with the image-based inverse canopy radiative transfer modelling system, REGFLEC (REGularized canopy reFLECtance). While the SVIs require field data for empirical model building, REGFLEC can be applied without calibration. Field data measured in 93 fields within crop- and grasslands of five European landscapes showed strong vertical CHLl gradient profiles in 20% of fields. This affected the predictability of SVIs and REGFLEC. However, selecting only homogeneous canopies with uniform CHLl distributions as reference data for statistical evaluation, significant (p < 0.05) predictions were achieved for all landscapes, by all methods. The best performance was achieved by REGFLEC for LAI (r2=0.7; rmse = 0.73), canopy chlorophyll content (r2=0.51; rmse = 439 mg m-2) and canopy nitrogen content (r2 = 0.53; rmse = 2.21 g m-2). Predictabilities of SVIs and REGFLEC simulations generally improved when constrained to single land use categories (wheat, maize, barley, grass) across the European landscapes, reflecting

  9. Plant Chlorophyll fluorescence: active and passive measurements at canopy and leaf scales with different nitrogen treatments

    USDA-ARS?s Scientific Manuscript database

    Most studies assessing chlorophyll fluorescence (ChlF) have examined leaf responses to environmental stress conditions using active techniques. Alternatively, passive techniques are able to measure ChlF at both leaf and canopy scales. However, although the measurement principles of both techniques a...

  10. Misting and nitrogen fertilization of shoots of a saltmarsh grass: effects upon fungal decay of leaf blades.

    PubMed

    Newell, Steven Y; Arsuffi, Thomas L; Palm, Laura A

    1996-11-01

    We conducted a 12-week field manipulation experiment in which we raised the nitrogen availability (ammonium sulfate fertilization to roots) and/or water potential (freshwater misting) of decaying leaf blades of a saltmarsh grass (smooth cordgrass, Spartina alterniflora) in triplicate 11-m(2) plots, and compared the manipulated plots to unmanipulated, control plots. The ascomycetous fungi that dominate cordgrass leaf decomposition processes under natural conditions exhibited a boosting (>2-fold) of living standing crop (ergosterol content) by misting at the 1 st week after tagging of senescent leaves, but afterwards, living-fungal standing crop on misted blades was equivalent to that on control blades, confirming prior evidence that Spartina fungi are well adapted to natural, irregular wetting. Misting also caused 2-fold sharper temporal declines than control in instantaneous rates of fungal production (ergosterol synthesis), 5-fold declines in density of sexual reproductive structures that were not shown by controls, and 2-fold higher rates of loss of plant organic mass. Extra nitrogen gave a long-term boost to living-fungal standing crop (about 2-fold at 12 weeks), which was also reflected in rates of fungal production at 4 weeks, suggesting that saltmarsh fungal production is nitrogen-limited. Although bacterial and green-microalgal crops were boosted by manipulations of nitrogen and/or water, their maximal crops remained ≤0.3 or 2% (bacteria or green microalgae, respectively) of contemporaneous living-fungal crop. The fungal carbon-productivity values obtained, in conjunction with rates of loss of plant carbon, hinted that fungal yield can be high (>50%), and that it is boosted by high availability of nitrogen. We speculate that one partial cause of high fungal yield could be subsidy of fungal growth by dissolved organic carbon from outside decomposing leaves.

  11. Evaluation of relationship between HVI estimated leaf grade and MDTA3 measured percent trash

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to determine the relationship between HIV leaf grade and mass of trash in a bale of cotton fibers. Data from lint samples collected during the 2005 ginning season from 11 different gins across the cotton belt were used for this evaluation. HVI and MDTA3 measurements w...

  12. Relationship between Tomato yellow leaf curl viruses and the whitefly vector.

    PubMed

    Ssekyewa, Charles; Van Damme, Patrick L J; Hofte, Monica

    2007-01-01

    Tomato Yellow Leaf Curl Virus (TYLCV) and Tomato Leaf Curl Virus (ToLCV) are the currently known begomoviruses in Uganda. The relationship with their whiteflies (Bemisia tabaci) vector and its management were not known in Uganda. A direct relationship was expected between these begomoviruses and whiteflies at Buwama in Mpigi district of Uganda. Farmer practices were expected to have limited efficacy. To investigate this, a completely randomised block design was used for all trials with six treatments replicated three times. Treatments evaluated were farmer whitefly pest management practices. These included both chemical pesticide and non-pesticide applications. Data on whitefly population and tomato yellow leaf curl virus disease incidence was recorded weekly, and analysed using SAS and SPSS statistical programmes for ANOVA, and correlations. Ranked means, coefficients of variation and standard errors were noted. Virus-vector relationship field studies established that virus occurrence varied in space and time, and with management practices, crop development stage, and weather conditions. A negative relationship (R = -0.14, p 0.04) was established between number of plants infected with TYLCV (sensu lato) and percentage marketable tomato yield. Tomato maturity was inversely propotional to whitefly infestation (R = -0.5, p 0.0001). Uprooting and application of dimethoate was most effective of the six treatments. Tomato leaf curl virus diseases and whitefly management options were established in Uganda.

  13. Chronic nitrogen deposition influences the chemical dynamics of leaf litter and fine roots during decomposition

    EPA Science Inventory

    Atmospheric nitrogen deposition induces a forest carbon sink across broad parts of the Northern Hemisphere; this carbon sink may partly result from slower litter decomposition. Although microbial responses to experimental nitrogen deposition have been well-studied, evidence linki...

  14. Relationship of Nitrogen Use Efficiency with the Activities of Enzymes Involved in Nitrogen Uptake and Assimilation of Finger Millet Genotypes Grown under Different Nitrogen Inputs

    PubMed Central

    Gupta, Nidhi; Gupta, Atul K.; Gaur, Vikram S.; Kumar, Anil

    2012-01-01

    Nitrogen responsiveness of three-finger millet genotypes (differing in their seed coat colour) PRM-1 (brown), PRM-701 (golden), and PRM-801 (white) grown under different nitrogen doses was determined by analyzing the growth, yield parameters and activities of nitrate reductase (NR), glutamine synthetase (GS), glutamate synthase; GOGAT, and glutamate dehydrogenase (GDH) at different developmental stages. High nitrogen use efficiency and nitrogen utilization efficiency were observed in PRM-1 genotype, whereas high nitrogen uptake efficiency was observed in PRM-801 genotype. At grain filling nitrogen uptake efficiency in PRM-1 negatively correlated with NR, GS, GOGAT activities whereas it was positively correlated in PRM-701 and PRM-801, however, GDH showed a negative correlation. Growth and yield parameters indicated that PRM-1 responds well at high nitrogen conditions while PRM-701 and PRM-801 respond well at normal and low nitrogen conditions respectively. The study indicates that PRM-1 is high nitrogen responsive and has high nitrogen use efficiency, whereas golden PRM-701 and white PRM-801 are low nitrogen responsive genotypes and have low nitrogen use efficiency. However, the crude grain protein content was higher in PRM-801 genotype followed by PRM-701 and PRM-1, indicating negative correlation of nitrogen use efficiency with source to sink relationship in terms of seed protein content. PMID:22919342

  15. The effect of a red leaf pigment on the relationship between red edge and chlorophyll concentration

    NASA Technical Reports Server (NTRS)

    Curran, Paul J.; Dungan, Jennifer L.; Macler, Bruce A.; Plummer, Stephen E.

    1991-01-01

    The effect of a leaf pigment - red amaranthin - on red edge and chlorophyll concentration is investigated in amaranth leaves by means of treatments with nitrate and salts. A near-linear relationship between red edge and chlorophyll concentration is observed for leaves with low amaranthin concentration, and no relationship is noted at high concentrations. The study demonstrates the limitation inherent in estimating chlorophyll concentration by using remotely sensed red edge.

  16. The effect of a red leaf pigment on the relationship between red edge and chlorophyll concentration

    NASA Technical Reports Server (NTRS)

    Curran, Paul J.; Dungan, Jennifer L.; Macler, Bruce A.; Plummer, Stephen E.

    1991-01-01

    The effect of a leaf pigment - red amaranthin - on red edge and chlorophyll concentration is investigated in amaranth leaves by means of treatments with nitrate and salts. A near-linear relationship between red edge and chlorophyll concentration is observed for leaves with low amaranthin concentration, and no relationship is noted at high concentrations. The study demonstrates the limitation inherent in estimating chlorophyll concentration by using remotely sensed red edge.

  17. Nitrogen deficiency inhibits leaf blade growth in Lolium perenne by increasing cell cycle duration and decreasing mitotic and post-mitotic growth rates.

    PubMed

    Kavanová, Monika; Lattanzi, Fernando Alfredo; Schnyder, Hans

    2008-06-01

    Nitrogen deficiency severely inhibits leaf growth. This response was analysed at the cellular level by growing Lolium perenne L. under 7.5 mM (high) or 1 mM (low) nitrate supply, and performing a kinematic analysis to assess the effect of nitrogen status on cell proliferation and cell growth in the leaf blade epidermis. Low nitrogen supply reduced leaf elongation rate (LER) by 43% through a similar decrease in the cell production rate and final cell length. The former was entirely because of a decreased average cell division rate (0.023 versus 0.032 h(-1)) and thus longer cell cycle duration (30 versus 22 h). Nitrogen status did not affect the number of division cycles of the initial cell's progeny (5.7), and accordingly the meristematic cell number (53). Meristematic cell length was unaffected by nitrogen deficiency, implying that the division and mitotic growth rates were equally impaired. The shorter mature cell length arose from a considerably reduced post-mitotic growth rate (0.033 versus 0.049 h(-1)). But, nitrogen stress did not affect the position where elongation stopped, and increased cell elongation duration. In conclusion, nitrogen deficiency limited leaf growth by increasing the cell cycle duration and decreasing mitotic and post-mitotic elongation rates, delaying cell maturation.

  18. On the relationships between leaf-litter lignin and net primary productivity in tropical rain forests.

    PubMed

    Kitayama, Kanehiro; Suzuki, Shizuo; Hori, Masato; Takyu, Masaaki; Aiba, Shin-Ichiro; Majalap-Lee, Noreen; Kikuzawa, Kihachiro

    2004-07-01

    We investigated if tropical rainforest trees produced more-lignified leaves in less productive environments using forests on Mount Kinabalu, Borneo. Our investigation was based on two earlier suggestions that slower litter decomposition occurs under less productive forests and that trees under resource limitation invest a large amount of carbon as lignin as a defense substance to minimize the loss from herbivores. When nine forests at different altitudes (700-3100 m) and soil conditions (derived from sedimentary or ultrabasic rocks) but with the same gentle relief position were compared, the concentrations of leaf-litter lignin were positively correlated with litterfall rates and leaf-litter nitrogen concentrations. These patterns would be reinforced in intact leaves if the effects of resorption at the time of leaf shedding were taken into account, because greater magnitude of resorption of mobile elements but not of lignin would occur in less productive environments (i.e. dilution of lignin in intact leaves). These results did not support earlier suggestions to explain the variation of leaf-litter lignin. Instead, we suggest that lower lignin contents are adaptive to recycle minerals without retarding decomposition in less productive environments.

  19. Leaf photosynthesis/respiration relationships of different tree species in the northwestern part of Russia.

    NASA Astrophysics Data System (ADS)

    Pridacha, V.; Sazonova, T.; Olchev, A.

    2012-04-01

    Measurements of leaf photosynthesis, respiration and stomatal conductance of Norway spruce (Picea abies (L.) Karst), Silver (Betula pendula Roth), White (Betula pubescens) and Karelian (Betula pendula var. carelica) birches were provided using the portable photosynthesis system LI-6400 (Li-Cor, USA) on the experimental plots of the Forest research Institute of Karelian Research Center of RAS in Petrozavodsk, Russia. LI-6400 allows to provide the measurements of photosynthesis and respiration rates of individual leaves at various PAR, temperatures, humidity and concentration of CO2 in the measuring chamber. During the field campaigns in 2011 the CO2 and light response curves of photosynthesis of leaves under different air temperatures as well as the temperature response functions of dark respiration (Rd) of the leaves of different species were estimated. The measuring program is include also the measurements of nitrogen content in leaves. The method suggested by Sharkey et al (2007) was used to estimate the maximal velocity of Rubisco for carboxylation (Vcmax), the rate of electron transport at light saturation (Jmax), photorespiratory compensation point as well as the rate of use of triose phosphates (TPU) that characterizes the availability of internal inorganic phosphates (Ci) in leaves for Calvin's cycle. It was assumed that the initial slope of the relationship between leaf photosynthesis rate and CO2 concentration in sub-stomatal air space (Ci < 200 ppm) can be considered as an area of Rubisco limitation of photosynthesis. The upper part of CO2 response curve from approximately 300 ppm and higher is influenced by, first of all, the rate of regeneration of RuBP, and after that by availability of inorganic phosphate in leaves. The temperature dependences of Vcmax, Jmax and TPU were estimated using the statistical analysis of Vcmax and Jmax data set using equations suggested by Medlin et al (2002). Temperature dependence function of TPU was derived using

  20. Effect of clone selection, nitrogen supply, leaf damage and mycorrhizal fungi on stilbene and emodin production in knotweed

    PubMed Central

    2011-01-01

    Background Fallopia japonica and its hybrid, F. xbohemica, due to their fast spread, are famous as nature threats rather than blessings. Their fast growth rate, height, coverage, efficient nutrient translocation between tillers and organs and high phenolic production, may be perceived either as dangerous or beneficial features that bring about the elimination of native species or a life-supporting source. To the best of our knowledge, there have not been any studies aimed at increasing the targeted production of medically desired compounds by these remarkable plants. We designed a two-year pot experiment to determine the extent to which stilbene (resveratrol, piceatannol, resveratrolosid, piceid and astringins) and emodin contents of F. japonica, F. sachalinensis and two selected F. xbohemica clones are affected by soil nitrogen (N) supply, leaf damage and mycorrhizal inoculation. Results 1) Knotweeds are able to grow on substrates with extremely low nitrogen content and have a high efficiency of N translocation. The fast-spreading hybrid clones store less N in their rhizomes than the parental species. 2) The highest concentrations of stilbenes were found in the belowground biomass of F. japonica. However, because of the high belowground biomass of one clone of F. xbohemica, this hybrid produced more stilbenes per plant than F. japonica. 3) Leaf damage increased the resveratrol and emodin contents in the belowground biomass of the non-inoculated knotweed plants. 4) Although knotweed is supposed to be a non-mycorrhizal species, its roots are able to host the fungi. Inoculation with mycorrhizal fungi resulted in up to 2% root colonisation. 5) Both leaf damage and inoculation with mycorrhizal fungi elicited an increase of the piceid (resveratrol-glucoside) content in the belowground biomass of F. japonica. However, the mycorrhizal fungi only elicited this response in the absence of leaf damage. Because the leaf damage suppressed the effect of the root fungi, the

  1. Non-destructive Assessment of Plant Nitrogen Parameters Using Leaf Chlorophyll Measurements in Rice

    PubMed Central

    Ata-Ul-Karim, Syed Tahir; Cao, Qiang; Zhu, Yan; Tang, Liang; Rehmani, Muhammad Ishaq Asif; Cao, Weixing

    2016-01-01

    Non-destructive assessment of plant nitrogen (N) status is essential for efficient crop production and N management in intensive rice (Oryza sativa L.) cropping systems. Chlorophyll meter (SPAD-502) has been widely used as a rapid, non-destructive and cost-effective diagnostic tool for in-season assessment of crop N status. The present study was intended to establish the quantitative relationships between chlorophyll meters readings, plant N concentration (PNC), N nutrition index (NNI), accumulated N deficit (AND), and N requirement (NR), as well as to compare the stability of these relationships at different vegetative growth stages in Japonica and Indica rice cultivars. Seven multi-locational field experiments using varied N rates and seven rice cultivars were conducted in east China. The results showed that the PNC and chlorophyll meters readings increased with increasing N application rates across the cultivars, growing seasons, and sites. The PNC and chlorophyll meters readings under varied N rates ranged from 2.29 to 3.21, 1.06 to 1.82 and 37.10 to 45.4 and 37.30 to 46.6, respectively, at TL and HD stages for Japonica rice cultivars, while they ranged from 2.25 to 3.23, 1.34 to 1.91 and 35.6 to 43.3 and 37.3 to 45.5 for Indica rice cultivars, respectively. The quantitative relationships between chlorophyll meters readings, PNC, NNI, AND, and NR established at different crop growth stages in two rice ecotypes, were highly significant with R2 values ranging from 0.69 to 0.93 and 0.71 to 0.86 for Japonica and Indica rice, respectively. The strongest relationships were observed for AND and NR at panicle initiation and booting stages in both rice ecotypes. The validation of the relationships developed in the present study with an independent data exhibited a solid model performance and confirmed their robustness as a reliable and rapid diagnostic tool for in-season estimation of plant N parameters for sustainable N management in rice. The results of this study

  2. Non-destructive Assessment of Plant Nitrogen Parameters Using Leaf Chlorophyll Measurements in Rice.

    PubMed

    Ata-Ul-Karim, Syed Tahir; Cao, Qiang; Zhu, Yan; Tang, Liang; Rehmani, Muhammad Ishaq Asif; Cao, Weixing

    2016-01-01

    Non-destructive assessment of plant nitrogen (N) status is essential for efficient crop production and N management in intensive rice (Oryza sativa L.) cropping systems. Chlorophyll meter (SPAD-502) has been widely used as a rapid, non-destructive and cost-effective diagnostic tool for in-season assessment of crop N status. The present study was intended to establish the quantitative relationships between chlorophyll meters readings, plant N concentration (PNC), N nutrition index (NNI), accumulated N deficit (AND), and N requirement (NR), as well as to compare the stability of these relationships at different vegetative growth stages in Japonica and Indica rice cultivars. Seven multi-locational field experiments using varied N rates and seven rice cultivars were conducted in east China. The results showed that the PNC and chlorophyll meters readings increased with increasing N application rates across the cultivars, growing seasons, and sites. The PNC and chlorophyll meters readings under varied N rates ranged from 2.29 to 3.21, 1.06 to 1.82 and 37.10 to 45.4 and 37.30 to 46.6, respectively, at TL and HD stages for Japonica rice cultivars, while they ranged from 2.25 to 3.23, 1.34 to 1.91 and 35.6 to 43.3 and 37.3 to 45.5 for Indica rice cultivars, respectively. The quantitative relationships between chlorophyll meters readings, PNC, NNI, AND, and NR established at different crop growth stages in two rice ecotypes, were highly significant with R(2) values ranging from 0.69 to 0.93 and 0.71 to 0.86 for Japonica and Indica rice, respectively. The strongest relationships were observed for AND and NR at panicle initiation and booting stages in both rice ecotypes. The validation of the relationships developed in the present study with an independent data exhibited a solid model performance and confirmed their robustness as a reliable and rapid diagnostic tool for in-season estimation of plant N parameters for sustainable N management in rice. The results of this study

  3. On the Complementary Relationship Between Nitrogen and Water Use Efficiencies Among Pinus taeda L. Leaves Grown Under Ambient and Enriched CO2 Environments

    NASA Astrophysics Data System (ADS)

    Palmroth, S.; Katul, G. G.; Maier, C.; Ward, E.; Manzoni, S.; Vico, G.; Oren, R.

    2009-12-01

    Understanding leaf water and nitrogen use strategies is important for predicting vegetation response to climate change. To address this issue from a modeling perspective, two specific hypotheses on the complementary relationship between marginal nitrogen use efficiency (η) and marginal water use efficiency (λ) are formulated based on optimality principles. When a time scale separation exists between variations in stomatal conductance (less than hourly) and in foliar nitrogen (exceeding daily), optimal resource use implies that η and λ1/2 are complementary (hypothesis 1), and that increasing atmospheric CO2 concentration increases both η and λ (hypothesis 2). These two hypotheses are explored at the leaf scale using an extensive gas exchange dataset for Pinus taeda L. collected as part of the Duke Forest Free Air CO2 Enrichment (FACE) experiment. At Duke FACE, trees are growing under elevated atmospheric CO2, soil nitrogen fertilization, or their combination. The observed light-saturated net photosynthesis (Asat) and foliar N in P. taeda at various canopy positions span a significant proportion of the entire range of values observed globally across species and functional types. This wide spread in Asat and foliar N for an individual species allows examining linkages between η and λ. When leaf temperature effects on the physiological parameters are accounted for, the gas exchange data are consistent with the two theory-based hypotheses. Thus, the linkages quantified between η and λ can be used to constrain models of the coupled carbon-nitrogen-water cycles in terrestrial ecosystems.

  4. Nitrogen Stress Affects the Turnover and Size of Nitrogen Pools Supplying Leaf Growth in a Grass1[C][W][OPEN

    PubMed Central

    Lehmeier, Christoph Andreas; Wild, Melanie; Schnyder, Hans

    2013-01-01

    The effect of nitrogen (N) stress on the pool system supplying currently assimilated and (re)mobilized N for leaf growth of a grass was explored by dynamic 15N labeling, assessment of total and labeled N import into leaf growth zones, and compartmental analysis of the label import data. Perennial ryegrass (Lolium perenne) plants, grown with low or high levels of N fertilization, were labeled with 15NO3−/14NO3− from 2 h to more than 20 d. In both treatments, the tracer time course in N imported into the growth zones fitted a two-pool model (r2 > 0.99). This consisted of a “substrate pool,” which received N from current uptake and supplied the growth zone, and a recycling/mobilizing “store,” which exchanged with the substrate pool. N deficiency halved the leaf elongation rate, decreased N import into the growth zone, lengthened the delay between tracer uptake and its arrival in the growth zone (2.2 h versus 0.9 h), slowed the turnover of the substrate pool (half-life of 3.2 h versus 0.6 h), and increased its size (12.4 μg versus 5.9 μg). The store contained the equivalent of approximately 10 times (low N) and approximately five times (high N) the total daily N import into the growth zone. Its turnover agreed with that of protein turnover. Remarkably, the relative contribution of mobilization to leaf growth was large and similar (approximately 45%) in both treatments. We conclude that turnover and size of the substrate pool are related to the sink strength of the growth zone, whereas the contribution of the store is influenced by partitioning between sinks. PMID:23757403

  5. Support for a photoprotective function of winter leaf reddening in nitrogen-deficient individuals of Lonicera japonica.

    PubMed

    Carpenter, Kaylyn L; Keidel, Timothy S; Pihl, Melissa C; Hughes, Nicole M

    2014-11-03

    Plants growing in high-light environments during winter often exhibit leaf reddening due to synthesis of anthocyanin pigments, which are thought to alleviate photooxidative stress associated with low-temperature photoinhibition through light attenuation and/or antioxidant activity. Seasonal high-light stress can be further exacerbated by a limited photosynthetic capacity, such as nitrogen-deficiency. In the present study, we test the following hypotheses using three populations of the semi-evergreen vine Lonicera japonica: (1) nitrogen deficiency corresponds with reduced photosynthetic capacity; (2) individuals with reduced photosynthetic capacity synthesize anthocyanin pigments in leaves during winter; and (3) anthocyanin pigments help alleviate high-light stress by attenuating green light. All populations featured co-occurring winter-green and winter-red leafed individuals on fully-exposed (high-light), south-facing slopes in the Piedmont of North Carolina, USA. Consistent with our hypotheses, red leaves consistently exhibited significantly lower foliar nitrogen than green leaves, as well as lower total chlorophyll, quantum yield efficiency, carboxylation efficiency, and photosynthesis at saturating irradiance (Asat). Light-response curves measured using ambient sunlight versus red-blue LED (i.e., lacking green wavelengths) demonstrated significantly reduced quantum yield efficiency and a higher light compensation point under sunlight relative to red-blue LED in red leaves, but not in green leaves, consistent with a (green) light-attenuating function of anthocyanin pigments. These results are consistent with the hypothesis that intraspecific anthocyanin synthesis corresponds with nitrogen deficiency and reduced photosynthetic capacity within populations, and support a light-attenuating function of anthocyanin pigments.

  6. Leaf structural and photosynthetic characteristics, and biomass allocation to foliage in relation to foliar nitrogen content and tree size in three Betula species.

    PubMed

    Niinemets, Ulo; Portsmuth, Angelika; Truus, Laimi

    2002-02-01

    Young trees 0.03-1.7 m high of three coexisting Betula species were investigated in four sites of varying soil fertility, but all in full daylight, to separate nutrient and plant size controls on leaf dry mass per unit area (MA), light-saturated foliar photosynthetic electron transport rate (J) and the fraction of plant biomass in foliage (F(L)). Because the site effect was generally non-significant in the analyses of variance with foliar nitrogen content per unit dry mass (N(M)) as a covariate, N(M) was used as an explaining variable of leaf structural and physiological characteristics. Average leaf area (S) and dry mass per leaf scaled positively with N(M) and total tree height (H) in all species. Leaf dry mass per unit area also increased with increasing H, but decreased with increasing N(M), whereas the effects were species-specific. Increases in plant size led to a lower and increases in N(M) to a greater FL and total plant foliar area per unit plant biomass (LAR). Thus, the self-shading probably increased with increasing N(M) and decreased with increasing H. Nevertheless, the whole-plant average M(A), as well as M(A) values of topmost fully exposed leaves, correlated with N(M) and H in a similar manner, indicating that scaling of MA with N(M) and H did not necessarily result from the modified degree of within-plant shading. The rate of photosynthetic electron transport per unit dry mass (J(M)) scaled positively with N(M), but decreased with increasing H and M(A). Thus, increases in M(A) with tree height and decreasing nitrogen content not only resulted in a lower plant foliar area (LAR = F(L)/M(A)), but also led to lower physiological activity of unit foliar biomass. The leaf parameters (J(M), N(M) and M(A)) varied threefold, but the whole-plant characteristic FL varied 20-fold and LAR 30-fold, indicating that the biomass allocation was more plastically adjusted to different plant internal nitrogen contents and to tree height than the foliar variables. Our

  7. Amino Acid Transport and Metabolism in Relation to the Nitrogen Economy of a Legume Leaf 1

    PubMed Central

    Atkins, Craig A.; Pate, John S.; Peoples, Mark B.; Joy, Kenneth W.

    1983-01-01

    Net balances of amino acids were constructed for stages of development of a leaf of white lupin (Lupinus albus L.) using data on the N economy of the leaf, its exchanges of amino acids through xylem and phloem, and net changes in its soluble and protein-bound amino acids. Asparagine, aspartate, and γ-aminobutyrate were delivered to the leaf in excess of amounts consumed in growth and/or phloem export. Glutamine was supplied in excess until full leaf expansion (20 days) but was later synthesized in large amounts in association with mobilization of N from the leaf. Net requirements for glutamate, threonine, serine, proline, glycine, alanine, valine, isoleucine, leucine, tyrosine, phenylalanine, histidine, lysine, and arginine were met mainly or entirely by synthesis within the leaf. Amides furnished the bulk of the N for amino acid synthesis, asparagine providing from 24 to 68%. In vitro activity of asparaginase (EC 3.5.1.1) exceeded that of asparagine:pyruvate aminotransferase (EC 2.6.1.14) during early leaf expansion, when in vivo estimates of asparagine metabolism were highest. Thereafter, aminotransferase activity greatly exceeded that of asparaginase. Rates of activity of one or both asparagine-utilizing enzymes exceeded estimated rates of asparagine catabolism throughout leaf development. In vitro activities of glutamine synthetase (EC 6.3.1.2) and glutamate synthase (EC 1.4.7.1) were consistently much higher than that of glutamate dehydrogenase (EC 1.4.1.3), and activities of the former two enzymes more than accounted for estimated rates of ammonia release in photorespiration and deamidation of asparagine. PMID:16662917

  8. Investigation on the relationship between leaf water use efficiency and physio-biochemical traits of winter wheat under rained condition.

    PubMed

    Baodi, Dong; Mengyu, Liu; Hongbo, Shao; Quanqi, Li; Lei, Shi; Feng, Du; Zhengbin, Zhang

    2008-04-01

    Different statistical methods and path analysis were used to study the relationship between leaf water use efficiency (WUE) and physio-biochemical traits for 19 wheat genotypes, including photosynthesis rate (P(n)), stomatal conductance (g(s)), transpiration rate (T(r)), intercellular concentration of carbon oxide (C(i)), leaf water potential (Psi(w)), leaf temperature, wax content, leaf relative water content (RWC), rate of water loss from excised-leaf (RWL), peroxidase (POD) and superoxide dismutase (SOD) activities. The results showed that photosynthesis rate, stomatal conductance and transpiration rate were the most important leaf WUE variables under rained conditions. Based on the results of five statistical analyses, it is reasonable to assume that high leaf WUE wheat under the rained could be obtained by selecting breeding materials with high photosynthesis rate, low transpiration rate and stomatal conductance.

  9. Zinc oxide nanoparticles affect carbon and nitrogen mineralization of Phoenix dactylifera leaf litter in a sandy soil.

    PubMed

    Rashid, Muhammad Imtiaz; Shahzad, Tanvir; Shahid, Muhammad; Ismail, Iqbal M I; Shah, Ghulam Mustafa; Almeelbi, Talal

    2017-02-15

    We investigated the impact of zinc oxide nanoparticles (ZnO NPs; 1000mgkg(-1) soil) on soil microbes and their associated soil functions such as date palm (Phoenix dactylifera) leaf litter (5gkg(-1) soil) carbon and nitrogen mineralization in mesocosms containing sandy soil. Nanoparticles application in litter-amended soil significantly decreased the cultivable heterotrophic bacterial and fungal colony forming units (cfu) compared to only litter-amended soil. The decrease in cfu could be related to lower microbial biomass carbon in nanoparticles-litter amended soil. Likewise, ZnO NPs also reduced CO2 emission by 10% in aforementioned treatment but this was higher than control (soil only). Labile Zn was only detected in the microbial biomass of nanoparticles-litter applied soil indicating that microorganisms consumed this element from freely available nutrients in the soil. In this treatment, dissolved organic carbon and mineral nitrogen were 25 and 34% lower respectively compared to litter-amended soil. Such toxic effects of nanoparticles on litter decomposition resulted in 130 and 122% lower carbon and nitrogen mineralization efficiency respectively. Hence, our results entail that ZnO NPs are toxic to soil microbes and affect their function i.e., carbon and nitrogen mineralization of applied litter thus confirming their toxicity to microbial associated soil functions. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. [Effects of nitrogen supply on flag leaf photosynthesis and grain starch accumulation of wheat from its anthesis to maturity under drought or waterlogging].

    PubMed

    Fan, Xuemei; Jiang, Dong; Dai, Tingbo; Jing, Qi; Cao, Weixing

    2005-10-01

    In this paper, a cement pool culture experiment with three water treatments (waterlogging, drought, and moderate water supply) and two nitrogen levels (120 and 240 kg x hm(-2)) was conducted to study the effects of nitrogen supply on the flag leaf photosynthesis and grain starch accumulation of two wheat varieties from anthesis to maturity under soil drought and waterlogging. In comparing with moderate water supply, soil drought and waterlogging reduced the photosynthesis rate (Pn) and SPAD of flag leaf and dry matter accumulation. Nitrogen supply under drought increased Pn and SPAD, while that under waterlogging was in adverse. The total soluble sugar content in grain was reduced under both drought and waterlogging, while that in leaf was decreased under waterlogging but increased under drought. Under waterlogging, increasing nitrogen application rate reduced starch accumulation. The unit grain weight and the yields of grain and starch were reduced under both drought and waterlogging, but nitrogen application favored them under drought while in adverse under waterlogging. It was indicated that both leaf photosynthesis and grain starch accumulation could be regulated by nitrogen supply under stress of soil drought or waterlogging from anthesis to maturity of wheat.

  11. Enhancement of rice canopy carbon gain by elevated CO(2) is sensitive to growth stage and leaf nitrogen concentration.

    PubMed

    Sakai, H; Hasegawa, T; Kobayashi, K

    2006-01-01

    Increasing our understanding of the factors regulating seasonal changes in rice canopy carbon gain (C(gain): daily net photosynthesis -- night respiration) under elevated CO(2) concentrations ([CO(2)]) will reduce our uncertainty in predicting future rice yields and assist in the development of adaptation strategies. In this study we measured CO(2) exchange from rice (Oryza sativa) canopies grown at c. 360 and 690 micromol mol(-1)[CO(2)] in growth chambers continuously over three growing seasons. Stimulation of C(gain) by elevated [CO(2)] was 22-79% during vegetative growth, but decreased to between -12 and 5% after the grain-filling stage, resulting in a 7-22% net enhancement for the whole season. The decreased stimulation of C(gain) resulted mainly from decreased canopy net photosynthesis and partially from increased respiration. A decrease in canopy photosynthetic capacity was noted where leaf nitrogen (N) decreased. The effect of elevated [CO(2)] on leaf area was generally small, but most dramatic under ample N conditions; this increased the stimulation of whole-season C(gain). These results suggest that a decrease in C(gain) enhancement following elevated CO(2) levels is difficult to avoid, but that careful management of nitrogen levels can alter the whole-season C(gain) enhancement.

  12. Relationship between the natural abundance of soil nitrogen ...

    EPA Pesticide Factsheets

    A statewide condition assessment of North Dakota wetlands in the summer of 2011 was conducted as part of the U.S. Environmental Protection Agency’s National Wetland Condition Assessment (NWCA). Two other wetland condition assessments, the Index of Plant Community Integrity (IPCI) and North Dakota Rapid Assessment Method (NDRAM), were also completed at each wetland. Previous studies have identified how the distinct signatures of stable isotopes can be used to determine different land uses, anthropogenic impacts, nutrient cycling, and biological processes. To evaluate if these relationships existed in northern prairie wetlands, the data collected from the wetland assessments were compared with the natural abundance of soil nitrogen (δ15N) isotopes. Wetland soil δ15N was significantly higher (isotopically heavier) in wetlands surrounded by cropland compared to those surrounded by idle or grazed/hayed grasslands, possibly reflecting anthropogenic impacts and multiple nitrogen sources. Soil δ15N was significantly correlated with floristic quality, IPCI scores, NDRAM scores, and average buffer width, indicating that soil δ15N values may be representative of wetland condition. Soil δ15N exhibited significant differences among wetland types, although limited sample sizes of certain wetland types may have affected this result. Additional studies on the natural abundance of wetland soil isotopes need to be performed in northern prairie wetlands. This study

  13. Net anthropogenic nitrogen inputs (NANI) into the Yangtze River basin and the relationship with riverine nitrogen export

    NASA Astrophysics Data System (ADS)

    Chen, Fei; Hou, Lijun; Liu, Min; Zheng, Yanling; Yin, Guoyu; Lin, Xianbiao; Li, Xiaofei; Zong, Haibo; Deng, Fengyu; Gao, Juan; Jiang, Xiaofen

    2016-02-01

    This study investigated net anthropogenic nitrogen inputs (NANI, including atmospheric nitrogen deposition, nitrogenous fertilizer use, net nitrogen import in food and feed, and agricultural nitrogen fixation) and the associated relationship with riverine dissolved inorganic nitrogen (DIN) export in the Yangtze River basin during the 1980-2012 period. The total NANI in the Yangtze River basin has increased by more than twofold over the past three decades (3537.0 ± 615.3 to 8176.6 ± 1442.1 kg N km-2 yr-1). The application of chemical fertilizer was the largest component of NANI in the basin (51.1%), followed by net nitrogen import in food and feed (26.0%), atmospheric nitrogen deposition (13.2%), and agricultural nitrogen fixation (9.7%). A regression analysis showed that the riverine DIN export was strongly correlated with NANI and the annual water discharge (R2 = 0.90, p < 0.01). NANI in the Yangtze River basin was estimated to contribute 37-66% to the riverine DIN export. We also forecasted future variations in NANI and riverine DIN export for the years 2013 to 2030, based on possible future changes in human activities and the climate. This work provides a quantitative understanding of NANI in the Yangtze River basin and its effects on riverine DIN export and helps to develop integrated watershed nitrogen management strategies.

  14. The Leaf Size–Twig Size Spectrum of Temperate Woody Species Along an Altitudinal Gradient: An Invariant Allometric Scaling Relationship

    PubMed Central

    SUN, SHUCUN; JIN, DONGMEI; SHI, PEILI

    2006-01-01

    • Background and Aims The leaf size–twig size spectrum is one of the leading dimensions of plant ecological variation, and now it is under development. The purpose of this study was to test whether the relationship between leaf size and twig size is isometric or allometric, and to examine the relationship between plant allometric growth and life history strategies in the spectrum. • Methods Leaf and stem characters—including leaf and stem mass, total leaf area, individual leaf area, stem cross-sectional area, leaf number and stem length—at the twig level for 59 woody species were investigated along an altitudinal gradient on Changbaishan Mountain in the temperate zone of China. The environmental gradient ranges from temperate broad-leaved mixed forest at low altitude, to conifer forest at middle altitude, and to sub-alpine birch forest at high altitude. The scaling relationships between stem cross-sectional area and stem mass, stem mass and leaf mass, and leaf mass and leaf area at the twig level were simultaneously determined. • Key Results Twig cross-sectional area was found to have invariant allometric scaling relationships with the stem mass, leaf mass, total leaf area and individual leaf area, all with common slopes being significantly larger than 1, for three altitudinal-zoned vegetation types under investigation. However, leaf mass was found to be isometrically related to stem mass and leaf area along the environmental gradient. Based on the predictions of previous models, the exponent value of the relationship between twig cross-sectional area and total leaf area can be inferred to be 1·5, which falls between the confidence intervals of the relationship at each altitude, and between the confidence intervals of the common slope value (1·17–1·56) of this study. This invariant scaling relationship is assumed to result from the fractural network and/or developmental constraints of plants. The allometric constants (y-intercepts) of the

  15. Relationship between site-specific nitrogen concentrations in mosses and measured wet bulk atmospheric nitrogen deposition across Europe.

    PubMed

    Harmens, Harry; Schnyder, Elvira; Thöni, Lotti; Cooper, David M; Mills, Gina; Leblond, Sébastien; Mohr, Karsten; Poikolainen, Jarmo; Santamaria, Jesus; Skudnik, Mitja; Zechmeister, Harald G; Lindroos, Antti-Jussi; Hanus-Illnar, Andrea

    2014-11-01

    To assess the relationship between nitrogen concentrations in mosses and wet bulk nitrogen deposition or concentrations in precipitation, moss tissue and deposition were sampled within a distance of 1 km of each other in seven European countries. Relationships for various forms of nitrogen appeared to be asymptotic, with data for different countries being positioned at different locations along the asymptotic relationship and saturation occurring at a wet bulk nitrogen deposition of ca. 20 kg N ha(-1) yr(-1). The asymptotic behaviour was more pronounced for ammonium-N than nitrate-N, with high ammonium deposition at German sites being most influential in providing evidence of the asymptotic behaviour. Within countries, relationships were only significant for Finland and Switzerland and were more or less linear. The results confirm previous relationships described for modelled total deposition. Nitrogen concentration in mosses can be applied to identify areas at risk of high nitrogen deposition at European scale. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Responses of leaf nitrogen and mobile carbohydrates in different Quercus species/provenances to moderate climate changes.

    PubMed

    Li, M-H; Cherubini, P; Dobbertin, M; Arend, M; Xiao, W-F; Rigling, A

    2013-01-01

    Global warming and shortage of water have been evidenced in the recent past and are predicted for the future. Climate change will inevitably have considerable impact on plant physiology, growth, productivity and forest ecosystem functions. The present study determined the effects of simulated daytime air warming (+1 to 1.5 °C during the growing season), drought (-40% and -57% of mean precipitation of 728 mm during the 2007 and 2008 growing season, respectively) and their combination, on leaf nitrogen (N) and non-structural carbohydrates (NSC) of two Quercus species (Q. robur and Q. petraea) and provenances (two provenances for each species) grown in two soil types in Switzerland across two treatment years, to test the hypothesis that leaf N and NSC in the more water-sensitive species (Q. robur) and provenances (originating from water-rich locations) will more strongly respond to global warming and water deficit, compared to those in the more drought-tolerant species (Q. petraea) or provenances. No species- and provenance-specific responses in leaf N and NSC to the climate treatment were found, indicating that the results failed to support our hypothesis. The between-species variation of leaf N and NSC concentrations mainly reflected differences in biology of the two species, and the between-provenance variation of N and NSC concentrations apparently mirrored the climate of their origins. Hence, we conclude that (i) the two Quercus species studied are somewhat insensitive, due to their distribution covering a wide geographical and climate range, to moderate climate change within Switzerland, and (ii) a moderate global warming of B1 scenario (IPCC 2007) will not, or at least less, negatively affect the N and carbon physiology in Q. robur and Q. petraea.

  17. Characterization of Leaf Blade- and Leaf Sheath-Associated Bacterial Communities and Assessment of Their Responses to Environmental Changes in CO2, Temperature, and Nitrogen Levels under Field Conditions

    PubMed Central

    Ikeda, Seishi; Tokida, Takeshi; Nakamura, Hirofumi; Sakai, Hidemitsu; Usui, Yasuhiro; Okubo, Takashi; Tago, Kanako; Hayashi, Kentaro; Sekiyama, Yasuyo; Ono, Hiroshi; Tomita, Satoru; Hayatsu, Masahito; Hasegawa, Toshihiro; Minamisawa, Kiwamu

    2015-01-01

    Rice shoot-associated bacterial communities at the panicle initiation stage were characterized and their responses to elevated surface water-soil temperature (ET), low nitrogen (LN), and free-air CO2 enrichment (FACE) were assessed by clone library analyses of the 16S rRNA gene. Principal coordinate analyses combining all sequence data for leaf blade- and leaf sheath-associated bacteria revealed that each bacterial community had a distinct structure, as supported by PC1 (61.5%), that was mainly attributed to the high abundance of Planctomycetes in leaf sheaths. Our results also indicated that the community structures of leaf blade-associated bacteria were more sensitive than those of leaf sheath-associated bacteria to the environmental factors examined. Among these environmental factors, LN strongly affected the community structures of leaf blade-associated bacteria by increasing the relative abundance of Bacilli. The most significant effect of FACE was also observed on leaf blade-associated bacteria under the LN condition, which was explained by decreases and increases in Agrobacterium and Pantoea, respectively. The community structures of leaf blade-associated bacteria under the combination of FACE and ET were more similar to those of the control than to those under ET or FACE. Thus, the combined effects of environmental factors need to be considered in order to realistically assess the effects of environmental changes on microbial community structures. PMID:25740174

  18. Foliar nitrogen and phosphorus dynamics of three Chilean Nothofagus (Fagaceae) species in relation to leaf lifespan.

    PubMed

    Hevia, F; Minoletti O, M L; Decker, K L; Boerner, R E

    1999-03-01

    This study examined foliar nutrient dynamics and nutrient resorption (retranslocation) in three species of Chilean Nothofagus (Fagaceae) that differed in leaf lifespan and elevational distribution. In our central Chile study area the elevations at which these three species are most abundant increase from N. obliqua (deciduous) at low elevations to N. dombeyi at intermediate elevation and N. pumilio (deciduous) at higher elevations up to treeline. We sampled a single stand at 1680 m in which all three species co-occurred. Nothofagus dombeyi leaves were structurally heavier, with specific leaf mass approximately twice that of the two deciduous species. On a concentration basis, foliar N increased in the order N. dombeyi < N. pumilio < N. obliqua and foliar P increased in the order N. dombeyi < N. obliqua < N. pumilio. However, when the differences in specific leaf mass among species were taken into account by calculating N and P content on a leaf area basis, N. dombeyi had the greatest N and P content. N and P remained relatively constant throughout most of the 4-yr N. dombeyi leaf lifespan, then decreased prior to abscission. Nothofagus dombeyi resorbed significantly less N (44-50%) than did the two deciduous species (63-78%), both on proportional and absolute bases. In contrast, N. pumilio and N. dombeyi resorbed similar amounts of P prior to abscission (40-50%), whereas no significant resorption of P from leaves of N. obliqua was noted. We use these results to clarify the relative importance of environmental gradients associated with elevation vs. genetically fixed leaf lifespans in controlling the nutrient dynamics of these congeneric tree species.

  19. Biomonitoring of traffic-related nitrogen oxides in the Maurienne valley (Savoie, France), using purple moor grass growth parameters and leaf (15)N/(14)N ratio.

    PubMed

    Laffray, Xavier; Rose, Christophe; Garrec, Jean-Pierre

    2010-05-01

    Effects of traffic-related nitrogenous emissions on purple moor grass (Molinia caerulea (L.) Moench) transplants, used here as a new biomonitoring species, were assessed along 500 m long transects orthogonal to roads located in two open areas in the Maurienne valley (French Alps). Leaves were sampled during summer 2004 and 2005 for total N-content and (15)N-abundance determination while nitrogen oxides (NO and NO(2)) concentrations were determined using passive diffusion samplers. A significant and negative correlation was observed between plant total N-content, and (15)N-abundance and the logarithm of the distance to the road axis. The strongest decreases in plant N parameters were observed between 15 and 100 m from road axis. They were equivalent to background levels at a distance of about 800 m from the roads. In addition, motor vehicle pollution significantly affected vegetation at road edge, as was established from the relationship between leaf (15)N-abundance, total N-content and road traffic densities.

  20. The times they are a-changin': seasonal variations of leaf spectra in relation with leaf biochemical and biophysical properties

    NASA Astrophysics Data System (ADS)

    Yang, X.; Tang, J.; Mustard, J. F.

    2013-12-01

    Leaf traits such as chlorophyll concentration, leaf mass per area (LMA), and mesophyll cell area exposed to the internal area space per leaf area (Ames/A) are key biochemical or biophysical properties to understand the vegetation functioning. Measurements of leaf spectra provided a non-destructive way to estimate those parameters. Many studies have linked leaf spectra with some of leaf traits successfully, but the understanding of spectra-traits relationship is still limited in the following aspects: (1) how does the ability of spectra to estimate leaf traits change (or not) throughout the growing season? (2) How to quantify leaf internal structure with leaf spectra? (3) What are the leaf traits that contribute to the structure parameter in leaf reflectance model such as PROSPECT? To answer the questions above, we conducted weekly measurements of leaf spectra, leaf biochemical properties (chlorophyll, carotenoids, water, and total carbon and nitrogen) and biophysical properties (LMA and internal structures) during the growing seasons of year 2011 and 2012. We found that leaf traits express themselves in the leaf spectra at different wavelengths; the relationships between spectra and leaf traits vary throughout the season. Leaf internal structure parameters are mostly related to the near-infrared reflectance. The structure parameter (N) in PROSPECT is related to the Ames/A, LMA, and water content. Our results have broad implications for using hyperspectral imagers/sensors to monitor vegetations that have clear seasonal patterns.

  1. Leaf area index, biomass carbon and growth rate of radiata pine genetic types and relationships with LiDAR

    Treesearch

    Peter N. Beets; Stephen Reutebuch; Mark O. Kimberley; Graeme R. Oliver; Stephen H. Pearce; Robert J. McGaughey

    2011-01-01

    Relationships between discrete-return light detection and ranging (LiDAR) data and radiata pine leaf area index (LAI), stem volume, above ground carbon, and carbon sequestration were developed using 10 plots with directly measured biomass and leaf area data, and 36 plots with modelled carbon data. The plots included a range of genetic types established on north- and...

  2. The Nitrogen Use Efficiency of C(3) and C(4) Plants : III. Leaf Nitrogen Effects on the Activity of Carboxylating Enzymes in Chenopodium album (L.) and Amaranthus retroflexus (L.).

    PubMed

    Sage, R F; Pearcy, R W; Seemann, J R

    1987-10-01

    The relationships between leaf nitrogen content per unit area (N(a)) and (a) the initial slope of the photosynthetic CO(2) response curve, (b) activity and amount of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC), and (c) chlorophyll content were studied in the ecologically similar weeds Chenopodium album (C(3)) and Amaranthus retroflexus (C(4)). In both species, all parameters were linearly dependent upon leaf N(a). The dependence of the initial slope of the CO(2) response of photosynthesis on N(a) was four times greater in A. retroflexus than in C. album. At equivalent leaf N(a) contents, C. album had 1.5 to 2.6 times more CO(2) saturated Rubisco activity than A. retroflexus. At equal assimilation capacities, C. album had four times the Rubisco activity as A. retroflexus. In A. retroflexus, a one to one ratio between Rubisco activity and photosynthesis was observed, whereas in C. album, the CO(2) saturated Rubisco activity was three to four times the corresponding photosynthetic rate. The ratio of PEPC to Rubisco activity in A. retroflexus ranged from four at low N(a) to seven at high N(a). The fraction of organic N invested in carboxylation enzymes increased with increased N(a) in both species. The fraction of N invested in Rubisco ranged from 10 to 27% in C. album. In A. retroflexus, the fraction of N(a) invested in Rubisco ranged from 5 to 9% and the fraction invested in PEPC ranged from 2 to 5%.

  3. Relationship between 18O enrichment in leaf biomass and stomatal conductance.

    PubMed

    Sheshshayee, Madavalam Sreeman; Bindumadhava, Hanumantha Rao; Ramesh, Rengaswamy; Prasad, Trichy Ganesh; Udayakumar, Makarla

    2010-03-01

    Models that explain the oxygen isotope enrichment in leaf water (and biomass) treat the relationship between the kinetic fractionation that occurs during evapotranspiration and the stomatal conductance in an empirical way. Consequently, the isotopic enrichment is always predicted to decrease with increasing stomatal conductance, regardless of the experimental evidence to the contrary. We explain why and suggest an alternative method to reconcile theory and experiment. We support this with our experimental data on rice and groundnut plants.

  4. Food preferences of mangrove crabs related to leaf nitrogen compounds in the Segara Anakan Lagoon, Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Nordhaus, Inga; Salewski, Tabea; Jennerjahn, Tim C.

    2011-05-01

    The large amounts of leaf litter produced by tropical mangrove forests serve as a major food source for the benthic fauna. The reasons for the preferential consumption of mangrove leaves by crabs are unclear as yet. We investigated the diet, food preferences and consumption rates of 8 dominant grapsoid crab species ( Perisesarma spp., Episesarma spp., Metopograpsus latifrons, and Metaplax elegans) in mangroves of Segara Anakan, Java, Indonesia, by means of stomach-content analysis and feeding experiments. Leaves from the five most abundant mangrove tree species ( Aegiceras corniculatum, Avicennia alba, Ceriops decandra, Rhizophora apiculata, and Sonneratia caseolaris) were analyzed for organic carbon, total nitrogen, δ 13C, δ 15N and amino acids and hexosamines. This study is the first that investigated crab food preferences related to the nitrogen compound composition of leaves. Our results show that Episesarma spp. and Perisesarma spp. are omnivorous crabs which mainly feed on detritus, mangrove litter and bark, and on a small amount of roots, algae and animal matter whereas M. elegans is a detritus feeder. In feeding experiments with green, yellow and brown leaves Perisesarma spp. and E. singaporense had the highest consumption rates for brown leaves of R. apiculata and S. caseolaris, and for green leaves of A. alba. Preferred leaves were characterized by a high amount and/or freshness of nitrogenous compounds and their biochemical composition was significantly different from that of disliked leaves (all leaves of A. corniculatum and C. decandra, green and yellow leaves of R. apiculata and S. caseolaris). The presence of the hexosamine galactosamine found only in brown leaves indicates that bacteria contribute to the amount of bioavailable nitrogen compounds. We infer that the nitrogen compound composition rather than the C/N ratio alone is a determinant for bioavailability of mangrove leaves and hence may partly explain the crabs' food preferences.

  5. Exploring Novel Bands and Key Index for Evaluating Leaf Equivalent Water Thickness in Wheat Using Hyperspectra Influenced by Nitrogen

    PubMed Central

    Yao, Xia; Jia, Wenqing; Si, Haiyang; Guo, Ziqing; Tian, Yongchao; Liu, Xiaojun; Cao, Weixing; Zhu, Yan

    2014-01-01

    Leaf equivalent water thickness (LEWT) is an important indicator of crop water status. Effectively monitoring the water status of wheat under different nitrogen treatments is important for effective water management in precision agriculture. Trends in the variation of LEWT in wheat plants during plant growth were analyzed based on field experiments in which wheat plants under various water and nitrogen treatments in two consecutive growing seasons. Two-band spectral indices [normalized difference spectral indices (NDSI), ratio spectral indices (RSI), different spectral indices (DSI)], and then three-band spectral indices were established based on the best two-band spectral index within the range of 350–2500 nm to reduce the noise caused by nitrogen and saturation. Then, optimal spectral indices were selected to construct models of LEWT monitoring in wheat. The results showed that the two-band spectral index NDSI(R1204, R1318) could be used for LEWT monitoring throughout the wheat growth season, but the model performed differently before and after anthesis. Therefore, further two-band spectral indices NDSIb(R1445, R487), NDSIa(R1714, R1395), and NDSI(R1429, R416), were constructed for the two developmental phases, with NDSI(R1429, R416) considered to be the best index. Finally, a three-band index (R1429−R416−R1865)/(R1429+R416+R1865), which was superior for monitoring LEWT and reducing the noise caused by nitrogen, was formed on the best two-band spectral index NDSI(R1429, R416) by adding the 1,865 nm wavelenght as the third band. This produced more uniformity and stable performance compared with the two-band spectral indices in the LEWT model. The results are of technical significance for monitoring the water status of wheat under different nitrogen treatments in precision agriculture. PMID:24914778

  6. Effects of CO[sub 2] enrichment and nitrogen fertilization on leaf gas exchange and yield of field-grown sweet potatoes

    SciTech Connect

    Hileman, D.R.; Strachan, R.; Alemayehu, M.; Huluka, G.; Moore, J.; Biswas, P.K. )

    1993-06-01

    Sweet potatoes (Ipomoea batatas L.) were grown in the field in open-top chambers at two levels of CO[sub 2] (ambient and 300 [mu]L L[sup [minus]1] above ambient) and two levels of nitrogen fertilization. Leaf gas exchange rates were determined during midday hours under sunny conditions. CO[sub 2] enrichment led to an increase of 48% in net photosynthetic rates and to decreases of 15% and 29% in leaf transpiration and stomatal conductance. The nitrogen treatment had no significant effects on leaf gas exchange, The number of storage roots and total storage root fresh weight increased 33% and 38%, respectively, at elevated CO[sub 2]. There was a non-significant trend towards larger storage roots at high nitrogen levels. The lack of significant effects due to the nitrogen treatment (except for a positive effect on leaf size) may indicate that nitrogen was not limiting, Elemental analysis of plant and soil samples, currently in progress, will help clarify this situation.

  7. Vertical Chlorophyll Canopy Structure Affects the Remote Sensing Based Predictability of LAI, Chlorophyll and Leaf Nitrogen in Agricultural Fields

    NASA Astrophysics Data System (ADS)

    Boegh, E.; Houborg, R.; Bienkowski, J.; Braban, C. F.; Dalgaard, T.; van Dijk, N.; Dragosits, U.; Holmes, E.; Magliulo, V.; Schelde, K.; Di Tommasi, P.; Vitale, L.; Theobald, M.; Cellier, P.; Sutton, M.

    2012-12-01

    Leaf nitrogen and leaf surface area influence the exchange of gases between terrestrial ecosystems and the atmosphere, and they play a significant role in the global cycles of carbon, nitrogen and water. Remote sensing can be used to estimate leaf area index (LAI), chlorophyll content (CHL) and leaf nitrogen (N), but methods are often developed using plot-scale data and not verified over extended regions characterized by variations in environmental boundary conditions (soil, atmosphere) and canopy structures. Estimation of N can be indirect due to its association with CHL, however N is also included in pigments such as carotenoids and anthocyanin which have different spectral signatures than CHL. Photosynthesis optimization theory suggests that plants will distribute their N resources in proportion to the light gradient within the canopy. Such vertical variation in CHL and N complicates the evaluation of remote sensing-based methods. Typically remote sensing studies measure CHL of the upper leaf, which is then multiplied by the green LAI to represent canopy chlorophyll content, or random sampling is used. In this study, field measurements and high spatial resolution (10-20 m) remote sensing images acquired from the HRG and HRVIR sensors aboard the SPOT satellites were used to assess the predictability of LAI, CHL and N in five European agricultural landscapes located in Denmark, Scotland (United Kingdom), Poland, The Netherlands and Italy . All satellite images were atmospherically using the 6SV1 model with atmospheric inputs estimated by MODIS and AIRS data. Five spectral vegetation indices (SVIs) were calculated (the Normalized Difference Vegetation index, the Simple Ratio, the Enhanced Vegetation Index-2, the Green Normalized Difference Vegetation Index, and the green Chlorophyll Index), and an image-based inverse canopy radiative transfer modelling system, REGFLEC (REGularized canopy reFLECtance) was applied to each of the five European landscapes. While the

  8. A comparison between fertigation and granular fertilizer applications on yield and leaf nitrogen in red raspberry

    USDA-ARS?s Scientific Manuscript database

    A study was conducted in 2011-2012 to compare the effects of applying N by fertigation or as granular fertilizer on yield and leaf N in ‘Meeker’ red raspberry. The planting was established in Apr. 2006 at site located in western Oregon. Plants were irrigated by drip or sprinklers and grown with or w...

  9. Canopy position affects the relationships between leaf respiration and associated traits in a tropical rainforest in Far North Queensland.

    PubMed

    Weerasinghe, Lasantha K; Creek, Danielle; Crous, Kristine Y; Xiang, Shuang; Liddell, Michael J; Turnbull, Matthew H; Atkin, Owen K

    2014-06-01

    We explored the impact of canopy position on leaf respiration (R) and associated traits in tree and shrub species growing in a lowland tropical rainforest in Far North Queensland, Australia. The range of traits quantified included: leaf R in darkness (RD) and in the light (RL; estimated using the Kok method); the temperature (T)-sensitivity of RD; light-saturated photosynthesis (Asat); leaf dry mass per unit area (LMA); and concentrations of leaf nitrogen (N), phosphorus (P), soluble sugars and starch. We found that LMA, and area-based N, P, sugars and starch concentrations were all higher in sun-exposed/upper canopy leaves, compared with their shaded/lower canopy and deep-shade/understory counterparts; similarly, area-based rates of RD, RL and Asat (at 28 °C) were all higher in the upper canopy leaves, indicating higher metabolic capacity in the upper canopy. The extent to which light inhibited R did not differ significantly between upper and lower canopy leaves, with the overall average inhibition being 32% across both canopy levels. Log-log RD-Asat relationships differed between upper and lower canopy leaves, with upper canopy leaves exhibiting higher rates of RD for a given Asat (both on an area and mass basis), as well as higher mass-based rates of RD for a given [N] and [P]. Over the 25-45 °C range, the T-sensitivity of RD was similar in upper and lower canopy leaves, with both canopy positions exhibiting Q10 values near 2.0 (i.e., doubling for every 10 °C rise in T) and Tmax values near 60 °C (i.e., T where RD reached maximal values). Thus, while rates of RD at 28 °C decreased with increasing depth in the canopy, the T-dependence of RD remained constant; these findings have important implications for vegetation-climate models that seek to predict carbon fluxes between tropical lowland rainforests and the atmosphere.

  10. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass.

    PubMed

    Xu, Zhenzhu; Zhou, Guangsheng

    2008-01-01

    Responses of plant leaf stomatal conductance and photosynthesis to water deficit have been extensively reported; however, little is known concerning the relationships of stomatal density with regard to water status and gas exchange. The responses of stomatal density to leaf water status were determined, and correlation with specific leaf area (SLA) in a photosynthetic study of a perennial grass, Leymus chinensis, subjected to different soil moisture contents. Moderate water deficits had positive effects on stomatal number, but more severe deficits led to a reduction, described in a quadratic parabolic curve. The stomatal size obviously decreased with water deficit, and stomatal density was positively correlated with stomatal conductance (g(s)), net CO(2) assimilation rate (A(n)), and water use efficiency (WUE). A significantly negative correlation of SLA with stomatal density was also observed, suggesting that the balance between leaf area and its matter may be associated with the guard cell number. The present results indicate that high flexibilities in stomatal density and guard cell size will change in response to water status, and this process may be closely associated with photosynthesis and water use efficiency.

  11. Long-Term Simulated Atmospheric Nitrogen Deposition Alters Leaf and Fine Root Decomposition

    EPA Science Inventory

    Atmospheric nitrogen deposition has been suggested to increase forest carbon sequestration across much of the Northern Hemisphere; slower organic matter decomposition could contribute to this increase. At four sugar maple (Acer saccharum)-dominated northern hardwood forests, we p...

  12. Leaf δ15N as an indicator of arbuscular mycorrhizal nitrogen uptake in a coastal-plain forest (restinga forest) at Southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Mardegan, S. F.; Valadares, R.; Martinelli, L.

    2013-12-01

    cleared and stained according to Phillips and Hayman (1970), being scored for mycorrhizal colonization using the grid-line intersection method. We used analysis of variance (ANOVA) followed by a post hoc Tukey HSD test to determine differences amongst compartments. Spearman correlation coefficient was calculated to quantify the relationship between leaf δ15N and root colonization rates. Vegetation nitrogen concentration was around 22.5 g kg-1, being higher than those from litter and soil. Vegetation δ15N mean values were around -0.2 ‰, ranging from -1.6 to 2.0 ‰, being lower than those from the soils where they grow (mean values close to 3.0 ‰). Roots from all species were colonized, with the presence of typical AMF structures (hyphae, vesicles and arbuscules within root cortex). Root colonization rates ranged from less than 1 to about 55 %. In most cases, species with δ15N values had colonization rates exceeding 20 %. We observed an inverse relationship between the rate of root colonization and leaf δ15N of the species analyzed. These results suggest the importance of AMF symbiosis for nitrogen supply at such nutrient-limited coastal environments.

  13. Investigating a physical basis for spectroscopic estimates of leaf nitrogen concentration

    USGS Publications Warehouse

    Kokaly, R.F.

    2001-01-01

    The reflectance spectra of dried and ground plant foliage are examined for changes directly due to increasing nitrogen concentration. A broadening of the 2.1-??m absorption feature is observed as nitrogen concentration increases. The broadening is shown to arise from two absorptions at 2.054 ??m and 2.172 ??m. The wavelength positions of these absorptions coincide with the absorption characteristics of the nitrogen-containing amide bonds in proteins. The observed presence of these absorption features in the reflectance spectra of dried foliage is suggested to form a physical basis for high correlations established by stepwise multiple linear regression techniques between the reflectance of dry plant samples and their nitrogen concentration. The consistent change in the 2.1-??m absorption feature as nitrogen increases and the offset position of protein absorptions compared to those of other plant components together indicate that a generally applicable algorithm may be developed for spectroscopic estimates of nitrogen concentration from the reflectance spectra of dried plant foliage samples. ?? 2001 Published by Elsevier Science Ireland Ltd.

  14. Leaching Test Relationships, Laboratory-to-Field Comparisons and Recommendations for Leaching Evaluation using the Leaching Environmental Assessment Framework (LEAF)

    EPA Science Inventory

    This report presents examples of the relationships between the results of laboratory leaching tests, as defined by the Leaching Environmental Assessment Framework (LEAF) or analogous international test methods, and leaching of constituents from a broad range of materials under di...

  15. Leaching Test Relationships, Laboratory-to-Field Comparisons and Recommendations for Leaching Evaluation using the Leaching Environmental Assessment Framework (LEAF)

    EPA Science Inventory

    This report presents examples of the relationships between the results of laboratory leaching tests, as defined by the Leaching Environmental Assessment Framework (LEAF) or analogous international test methods, and leaching of constituents from a broad range of materials under di...

  16. RELATIONSHIPS BETWEEEN NITROGEN LOADING AND CONCENTRATIONS OF NITROGEN AND CHLOROPHYLL IN COASTAL EMBAYMENTS

    EPA Science Inventory

    We describe results obtained with a simple model that uses loading rates of total nitrogen (TN), defined as dissolved inorganic nitrogen plus dissolved and particulate organic nitrogen, to calculate annually and spatially averaged concentrations of TN in coastal embayments. We al...

  17. Relationship of Thematic Mapper simulator data to leaf area index of temperate coniferous forests

    NASA Technical Reports Server (NTRS)

    Peterson, David L.; Spanner, Michael A.; Running, Steven W.; Teuber, Kurt B.

    1987-01-01

    Regional relationships between remote sensing data and the leaf area index (LAI) of coniferous forests were analyzed using data acquired by an Airborne Thematic Mapper. Eighteen coniferous forest stands with a range of projected leaf area index of 0.6-16.1 were sampled from an environmental gradient in moisture and temperature across west-central Oregon. Spectral radiance measurements to account for atmospheric effects were acquired above the canopies from a radiometer mounted on a helicopter. A strong positive relationship was observed between LAI of closed canopy forest stands and the ratio of near-infrared and red spectral bands. A linear regression based on LAI explained 83 percent of the variation in the ratio of the atmospherically corrected bands. A log-linear equation fit the asymptotic characteristic of the relationship better, explaining 91 percent of the variance. The positive relationship is explained by a strong asymptotic inverse relationship between LAI and red radiation and a relatively flat response between LAI and near-infrared radiation.

  18. [Relationships of wheat leaf stomatal traits with wheat yield and drought-resistance].

    PubMed

    Wang, Shu-Guang; Li, Zhong-Qing; Jia, Shou-Shan; Sun, Dai-Zhen; Shi, Yu-Gang; Fan, Hua; Liang, Zeng-Hao; Jing, Rui-Lian

    2013-06-01

    Taking the DH population of wheat cultivar Hanxuan10/Lumai14 as test object, and by the methods of correlation analysis and path analysis, this paper studied the relationships of the flag leaf stomatal density (SD), stomatal length and width (SL and SW), stomatal conductance (g(s)), photosynthetic rate (P(n)), and transpiration rate (T(r)) on the 10th and 20th day after anthesis with the yield and the index of drought-resistance under the conditions of drought stress and normal irrigation. Under the two conditions, most of the test leaf traits on the 10th day after anthesis had less correlation with the yield and the index of drought-resistance, whereas the leaf traits on the 20th day after anthesis had significant positive correlations with thousand kernel weight but less correlation with grain number per ear, grain yield per plant, and index of drought-resistance. Path analysis showed that g(s), P(n), and T(r) were the main factors affecting the grain yield per plant (YPP) and the index of drought resistance (IDR), and the effects were stronger both in direct and in indirect ways. The direct and indirect effects of SD, SL, and SW on the YPP and IDR were lesser. Under both drought stress and normal irrigation, and on the 10th and 20th day after anthesis, there were significant correlations between SD and SL, and between SL and SW, g(s), P(n), and Tr, but the correlations of SD and SL with g(s), P(n), and T(r) changed with water condition or growth stage. Therefore, it would be not always a good means to select the leaf stomatal density and size as the targets for breeding to improve the leaf stomatal conductance, photosynthetic rate, and transpiration rate, and further, to promote the yield.

  19. A functional characterisation of a wide range of cover crop species: growth and nitrogen acquisition rates, leaf traits and ecological strategies.

    PubMed

    Tribouillois, Hélène; Fort, Florian; Cruz, Pablo; Charles, Raphaël; Flores, Olivier; Garnier, Eric; Justes, Eric

    2015-01-01

    Cover crops can produce ecosystem services during the fallow period, as reducing nitrate leaching and producing green manure. Crop growth rate (CGR) and crop nitrogen acquisition rate (CNR) can be used as two indicators of the ability of cover crops to produce these services in agrosystems. We used leaf functional traits to characterise the growth strategies of 36 cover crops as an approach to assess their ability to grow and acquire N rapidly. We measured specific leaf area (SLA), leaf dry matter content (LDMC), leaf nitrogen content (LNC) and leaf area (LA) and we evaluated their relevance to characterise CGR and CNR. Cover crop species were positioned along the Leaf Economics Spectrum (LES), the SLA-LDMC plane, and the CSR triangle of plant strategies. LA was positively correlated with CGR and CNR, while LDMC was negatively correlated with CNR. All cover crops could be classified as resource-acquisitive species from their relative position on the LES and the SLA-LDMC plane. Most cover crops were located along the Competition/Ruderality axis in the CSR triangle. In particular, Brassicaceae species were classified as very competitive, which was consistent with their high CGR and CNR. Leaf functional traits, especially LA and LDMC, allowed to differentiate some cover crops strategies related to their ability to grow and acquire N. LDMC was lower and LNC was higher in cover crop than in wild species, pointing to an efficient acquisitive syndrome in the former, corresponding to the high resource availability found in agrosystems. Combining several leaf traits explained approximately half of the CGR and CNR variances, which might be considered insufficient to precisely characterise and rank cover crop species for agronomic purposes. We hypothesised that may be the consequence of domestication process, which has reduced the range of plant strategies and modified the leaf trait syndrome in cultivated species.

  20. A Functional Characterisation of a Wide Range of Cover Crop Species: Growth and Nitrogen Acquisition Rates, Leaf Traits and Ecological Strategies

    PubMed Central

    Tribouillois, Hélène; Fort, Florian; Cruz, Pablo; Charles, Raphaël; Flores, Olivier; Garnier, Eric; Justes, Eric

    2015-01-01

    Cover crops can produce ecosystem services during the fallow period, as reducing nitrate leaching and producing green manure. Crop growth rate (CGR) and crop nitrogen acquisition rate (CNR) can be used as two indicators of the ability of cover crops to produce these services in agrosystems. We used leaf functional traits to characterise the growth strategies of 36 cover crops as an approach to assess their ability to grow and acquire N rapidly. We measured specific leaf area (SLA), leaf dry matter content (LDMC), leaf nitrogen content (LNC) and leaf area (LA) and we evaluated their relevance to characterise CGR and CNR. Cover crop species were positioned along the Leaf Economics Spectrum (LES), the SLA-LDMC plane, and the CSR triangle of plant strategies. LA was positively correlated with CGR and CNR, while LDMC was negatively correlated with CNR. All cover crops could be classified as resource-acquisitive species from their relative position on the LES and the SLA-LDMC plane. Most cover crops were located along the Competition/Ruderality axis in the CSR triangle. In particular, Brassicaceae species were classified as very competitive, which was consistent with their high CGR and CNR. Leaf functional traits, especially LA and LDMC, allowed to differentiate some cover crops strategies related to their ability to grow and acquire N. LDMC was lower and LNC was higher in cover crop than in wild species, pointing to an efficient acquisitive syndrome in the former, corresponding to the high resource availability found in agrosystems. Combining several leaf traits explained approximately half of the CGR and CNR variances, which might be considered insufficient to precisely characterise and rank cover crop species for agronomic purposes. We hypothesised that may be the consequence of domestication process, which has reduced the range of plant strategies and modified the leaf trait syndrome in cultivated species. PMID:25789485

  1. Optimum Leaf Removal Increases Nitrogen Accumulation in Kernels of Maize Grown at High Density

    PubMed Central

    Liu, Tiening; Huang, Rundong; Cai, Tie; Han, Qingfang; Dong, Shuting

    2017-01-01

    Increasing plant density is one of the main approaches of achieving higher yields for modern maize crop. However, there exists leaf redundancy for high-density maize, and leaves of the upper canopy shade more competent leaves at the middle strata. In a two-year field experiments, Jinhai5, a semi-compact corn cultivar, was grown at a density of 105,000 plants ha−1 grown until 3 days after silking (3DAS), when plants were subjected to removal of the uppermost two leaves (S2), four leaves (S4) or six leaves (S6), with no leaf removal as control (S0). We evaluated the effects of leaf removal on N remobilization, photosynthetic capacity of the remaining leaves for N uptake, and N accumulation in kernels. Our present results concluded that, under high plant density, excising the uppermost two leaves promoted N remobilization from vegetative organs to kernels and enhanced photosynthetic capacity for N uptake, leading to an increased N accumulation in kernels (19.6% higher than control). However, four or six uppermost leaves removal reduced N remobilization from stem and photosynthesis for poor N uptake, resulting in 37.5 and 50.2% significantly reduced N accumulation in kernels, respectively. PMID:28084467

  2. Optimum Leaf Removal Increases Nitrogen Accumulation in Kernels of Maize Grown at High Density.

    PubMed

    Liu, Tiening; Huang, Rundong; Cai, Tie; Han, Qingfang; Dong, Shuting

    2017-01-13

    Increasing plant density is one of the main approaches of achieving higher yields for modern maize crop. However, there exists leaf redundancy for high-density maize, and leaves of the upper canopy shade more competent leaves at the middle strata. In a two-year field experiments, Jinhai5, a semi-compact corn cultivar, was grown at a density of 105,000 plants ha(-1) grown until 3 days after silking (3DAS), when plants were subjected to removal of the uppermost two leaves (S2), four leaves (S4) or six leaves (S6), with no leaf removal as control (S0). We evaluated the effects of leaf removal on N remobilization, photosynthetic capacity of the remaining leaves for N uptake, and N accumulation in kernels. Our present results concluded that, under high plant density, excising the uppermost two leaves promoted N remobilization from vegetative organs to kernels and enhanced photosynthetic capacity for N uptake, leading to an increased N accumulation in kernels (19.6% higher than control). However, four or six uppermost leaves removal reduced N remobilization from stem and photosynthesis for poor N uptake, resulting in 37.5 and 50.2% significantly reduced N accumulation in kernels, respectively.

  3. Transcriptomic analysis of nitrogen starvation- and cultivar-specific leaf senescence in winter oilseed rape (Brassica napus L.).

    PubMed

    Koeslin-Findeklee, Fabian; Rizi, Vajiheh Safavi; Becker, Martin A; Parra-Londono, Sebastian; Arif, Muhammad; Balazadeh, Salma; Mueller-Roeber, Bernd; Kunze, Reinhard; Horst, Walter J

    2015-04-01

    High nitrogen (N) efficiency, characterized by high grain yield under N limitation, is an important agricultural trait in Brassica napus L. cultivars related to delayed senescence of older leaves during reproductive growth (a syndrome called stay-green). The aim of this study was thus to identify genes whose expression is specifically altered during N starvation-induced leaf senescence and that can be used as markers to distinguish cultivars at early stages of senescence prior to chlorophyll loss. To this end, the transcriptomes of leaves of two B. napus cultivars differing in stay-green characteristics and N efficiency were analyzed 4 days after the induction of senescence by either N starvation, leaf shading or detaching. In addition to N metabolism genes, N starvation mostly (and specifically) repressed genes related to photosynthesis, photorespiration and cell-wall structure, while genes related to mitochondrial electron transport and flavonoid biosynthesis were predominately up-regulated. A kinetic study over a period of 12 days with four B. napus cultivars differing in their stay-green characteristics confirmed the cultivar-specific regulation of six genes in agreement with their senescence behavior: the senescence regulator ANAC029, the anthocyanin synthesis-related genes ANS and DFR-like1, the ammonium transporter AMT1;4, the ureide transporter UPS5, and SPS1 involved in sucrose biosynthesis. The identified genes represent markers for the detection of cultivar-specific differences in N starvation-induced leaf senescence and can thus be employed as valuable tools in B. napus breeding. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Leaf nitrogen productivity is the major factor behind the growth reduction induced by long-term salt stress.

    PubMed

    Nieves, Manuel; Nieves-Cordones, Manuel; Poorter, Hendrik; Simón, Maria Dolores

    2011-01-01

    Plant growth response to salinity on a scale of years has not been studied in terms of growth analysis. To gain insights into this topic, 2-year-old Mediterranean Fan Palm (Chamaerops humilis L.) and Mexican Fan Palm (Washingtonia robusta H. Wendl) seedlings, each with its own distinct plant morphology, were grown for 2 years in a peat soil and irrigated with water of 2 dS m(-1) (control) or 8 dS m(-1) (saline). Plants were harvested on seven occasions and the time trends in relative growth rate (RGR, the rate of increase of biomass per unit of biomass already existing) and its components were analysed. In the long term, salinity produced a slight reduction in the mean RGR, values in both species. In the short term, salinity caused a reduction in RGR. However, during the second year, plants irrigated with 8 dS m(-1) grew somewhat more quickly than the control plants, probably as a result of delay in the growth kinetics due to salinity. Regarding RGR components, leaf nitrogen productivity (the rate of biomass gain per unit leaf N and time) was the major factor causing the differences in RGR resulting from salinity. Washingtonia robusta showed a relatively high plasticity in plant morphology by increasing root and decreasing stem biomass allocation in the presence of salinity. However, the long-term response of W. robusta to salinity, based to a great extent, on this morphological plasticity, was less effective than that of C. humilis, which is based mainly on the contribution of leaf N to RGR values.

  5. [Effect of UV-B radiation on release of nitrogen and phosphorus from leaf litter in subtropical region in China].

    PubMed

    Song, Xin-Zhang; Zhang, Hui-Ling; Jiang, Hong; Yu, Shu-Quan

    2012-02-01

    The release of nitrogen and phosphorus from leaf litter of six representative species, Cunninghamia lanceolata, Pinus massoniana, Schima superba, Cinnamanun camphora, Cyclobalanopsis glauca and Castanopsis eyeri, was investigated with litterbag method under ambient and reduced UV-B radiation (22.1% below ambient) treatments in subtropical region. The results showed that, the N dynamics exhibited three patterns: immobilization, mineralization-immobilization and mineralization-immobilization-mineralization. P dynamics also exhibited three different patterns: mineralization, immobilization-mineralization-immobilization and no large change. Compared with ambient treatment, the reduced treatment significantly delayed the N release from C. eyeri and P release from both C. glanca and C. eyeri (P<0.05), but significantly stimulated P release from C. camphora (P<0.05). The initial N contents and C: N ratios can not account for the N dynamics during leaf litter decomposition. The C: P ratios can partly explain the P dynamics during decomposition. The more works need to be done to better understand the role of UV-B radiation in the forest ecosystem in humid subtropical China under global environment change.

  6. Decomposition and nitrogen dynamics of (15)N-labeled leaf, root, and twig litter in temperate coniferous forests.

    PubMed

    van Huysen, Tiff L; Harmon, Mark E; Perakis, Steven S; Chen, Hua

    2013-12-01

    Litter nutrient dynamics contribute significantly to biogeochemical cycling in forest ecosystems. We examined how site environment and initial substrate quality influence decomposition and nitrogen (N) dynamics of multiple litter types. A 2.5-year decomposition study was installed in the Oregon Coast Range and West Cascades using (15)N-labeled litter from Acer macrophyllum, Picea sitchensis, and Pseudotsuga menziesii. Mass loss for leaf litter was similar between the two sites, while root and twig litter exhibited greater mass loss in the Coast Range. Mass loss was greatest from leaves and roots, and species differences in mass loss were more prominent in the Coast Range. All litter types and species mineralized N early in the decomposition process; only A. macrophyllum leaves exhibited a net N immobilization phase. There were no site differences with respect to litter N dynamics despite differences in site N availability, and litter N mineralization patterns were species-specific. For multiple litter × species combinations, the difference between gross and net N mineralization was significant, and gross mineralization was 7-20 % greater than net mineralization. The mineralization results suggest that initial litter chemistry may be an important driver of litter N dynamics. Our study demonstrates that greater amounts of N are cycling through these systems than may be quantified by only measuring net mineralization and challenges current leaf-based biogeochemical theory regarding patterns of N immobilization and mineralization.

  7. Decomposition and nitrogen dynamics of 15N-labeled leaf, root, and twig litter in temperate coniferous forests

    USGS Publications Warehouse

    van Huysen, Tiff L.; Harmon, Mark E.; Perakis, Steven S.; Chen, Hua

    2013-01-01

    Litter nutrient dynamics contribute significantly to biogeochemical cycling in forest ecosystems. We examined how site environment and initial substrate quality influence decomposition and nitrogen (N) dynamics of multiple litter types. A 2.5-year decomposition study was installed in the Oregon Coast Range and West Cascades using 15N-labeled litter from Acer macrophyllum, Picea sitchensis, and Pseudotsuga menziesii. Mass loss for leaf litter was similar between the two sites, while root and twig litter exhibited greater mass loss in the Coast Range. Mass loss was greatest from leaves and roots, and species differences in mass loss were more prominent in the Coast Range. All litter types and species mineralized N early in the decomposition process; only A. macrophyllum leaves exhibited a net N immobilization phase. There were no site differences with respect to litter N dynamics despite differences in site N availability, and litter N mineralization patterns were species-specific. For multiple litter × species combinations, the difference between gross and net N mineralization was significant, and gross mineralization was 7–20 % greater than net mineralization. The mineralization results suggest that initial litter chemistry may be an important driver of litter N dynamics. Our study demonstrates that greater amounts of N are cycling through these systems than may be quantified by only measuring net mineralization and challenges current leaf-based biogeochemical theory regarding patterns of N immobilization and mineralization.

  8. The winter-red-leaf syndrome in Pistacia lentiscus: evidence that the anthocyanic phenotype suffers from nitrogen deficiency, low carboxylation efficiency and high risk of photoinhibition.

    PubMed

    Nikiforou, Constantinos; Nikolopoulos, Dimosthenis; Manetas, Yiannis

    2011-12-15

    Recent evidence indicates that winter-red leaf phenotypes in the mastic tree (Pistacia lentiscus) are more vulnerable to chronic photoinhibition during the cold season relative to winter-green phenotypes occurring in the same high light environment. This was judged by limitations in the maximum quantum yield of photosystem II (PSII), found in previous studies. In this investigation, we asked whether corresponding limitations in leaf gas exchange and carboxylation reactions could also be manifested. During the cold ("red") season, net CO₂ assimilation rates (A) and stomatal conductances (g(s)) in the red phenotype were considerably lower than in the green phenotype, while leaf internal CO₂ concentration (Ci) was higher. The differences were abolished in the "green" period of the year, the dry summer included. Analysis of A versus Ci curves indicated that CO₂ assimilation during winter in the red phenotype was limited by Rubisco content and/or activity rather than stomatal conductance. Leaf nitrogen levels in the red phenotype were considerably lower during the red-leaf period. Consequently, we suggest that the inherently low leaf nitrogen levels are linked to the low net photosynthetic rates of the red plants through a decrease in Rubisco content. Accordingly, the reduced capacity of the carboxylation reactions to act as photosynthetic electron sinks may explain the corresponding loss of PSII photon trapping efficiency, which cannot be fully alleviated by the screening effect of the accumulated anthocyanins.

  9. The relative importance of exogenous and substrate-derived nitrogen for microbial growth during leaf decomposition

    Treesearch

    B.M. Cheever; J. R. Webster; E. E. Bilger; S. A. Thomas

    2013-01-01

    Heterotrophic microbes colonizing detritus obtain nitrogen (N) for growth by assimilating N from their substrate or immobilizing exogenous inorganic N. Microbial use of these two pools has different implications for N cycling and organic matter decomposition in the face of the global increase in biologically available N. We used sugar maple leaves labeled with

  10. Estimating cotton nitrogen nutrition status using leaf greenness and ground cover information

    USDA-ARS?s Scientific Manuscript database

    Assessing nitrogen (N) status is important from economic and environmental standpoints. To date, many spectral indices to estimate cotton chlorophyll or N content have been purely developed using statistical analysis approach where they are often subject to site-specific problems. This study describ...

  11. Symbiotic Nitrogen Fixation in the Fungus Gardens of Leaf-Cutter Ants

    USDA-ARS?s Scientific Manuscript database

    Bacteria-mediated acquisition of atmospheric dinitrogen by plants serves as a critical nitrogen source in terrestrial ecosystems, and through its key role in agriculture, this phenomenon has shaped the development of human civilizations. Here we show that, paralleling human agriculture, cultivation ...

  12. Stream carbon and nitrogen supplements during leaf litter decomposition: contrasting patterns for two foundation species.

    PubMed

    Pastor, Ada; Compson, Zacchaeus G; Dijkstra, Paul; Riera, Joan L; Martí, Eugènia; Sabater, Francesc; Hungate, Bruce A; Marks, Jane C

    2014-12-01

    Leaf litter decomposition plays a major role in nutrient dynamics in forested streams. The chemical composition of litter affects its processing by microorganisms, which obtain nutrients from litter and from the water column. The balance of these fluxes is not well known, because they occur simultaneously and thus are difficult to quantify separately. Here, we examined C and N flow from streamwater and leaf litter to microbial biofilms during decomposition. We used isotopically enriched leaves ((13)C and (15)N) from two riparian foundation tree species: fast-decomposing Populus fremontii and slow-decomposing Populus angustifolia, which differed in their concentration of recalcitrant compounds. We adapted the isotope pool dilution method to estimate gross elemental fluxes into litter microbes. Three key findings emerged: litter type strongly affected biomass and stoichiometry of microbial assemblages growing on litter; the proportion of C and N in microorganisms derived from the streamwater, as opposed to the litter, did not differ between litter types, but increased throughout decomposition; gross immobilization of N from the streamwater was higher for P. fremontii compared to P. angustifolia, probably as a consequence of the higher microbial biomass on P. fremontii. In contrast, gross immobilization of C from the streamwater was higher for P. angustifolia, suggesting that dissolved organic C in streamwater was used as an additional energy source by microbial assemblages growing on slow-decomposing litter. These results indicate that biofilms on decomposing litter have specific element requirements driven by litter characteristics, which might have implications for whole-stream nutrient retention.

  13. Estimation of leaf nitrogen concentration on winter wheat by multispectral imaging

    NASA Astrophysics Data System (ADS)

    Leemans, Vincent; Marlier, Guillaume; Destain, Marie-France; Dumont, Benjamin; Mercatoris, Benoit

    2017-04-01

    Precision agriculture can be considered as one of the solutions to optimize agricultural practice such as nitrogen fertilization. Nitrogen deficiency is a major limitation to crop production worldwide whereas excess leads to environmental pollution. In this context, some devices were developed as reflectance spot sensors for on-the-go applications to detect leaves nitrogen concentration deduced from chlorophyll concentration. However, such measurements suffer from interferences with the crop growth stage and the water content of plants. The aim of this contribution is to evaluate the nitrogen status in winter wheat by using multispectral imaging. The proposed system is composed of a CMOS camera and a set of filters ranged from 450 nm to 950 nm and mounted on a wheel which moves due to a stepper motor. To avoid the natural irradiance variability, a white reference is used to adjust the integration time. The segmentation of Photosynthetically Active Leaves is performed by using Bayes theorem to extract their mean reflectance. In order to introduce information related to the canopy architecture, i.e. the crop growth stage, textural attributes are also extracted from raw images at different wavelength ranges. Nc was estimated by partial least squares regression (R² = 0.94). The best attribute was homogeneity extracted from the gray level co-occurrence matrix (R² = 0.91). In order to select in limited number of filters, best subset selection was performed. Nc could be estimated by four filters (450 +/- 40 nm, 500 +/- 20 nm, 650 +/- 40 nm, 800 +/- 50 nm) (R² = 0.91).

  14. Modification of yield and chlorophyll content in leaf lettuce by HPS radiation and nitrogen treatments

    NASA Technical Reports Server (NTRS)

    Mitchell, Cary A.; Leakakos, Tina; Ford, Tameria L.

    1991-01-01

    The potential of realizing high photosynthetic photon flux from radiation by high-pressure sodium (HPS) lamp, alone or in combination with metal halide (MH) plus quartz iodide (QI) incandescent lamps, to support lettuce grow, with or without nitrogen supplement, was investigated. It was found that varying exposures to radiation from combined HPS, MH, and QI lamps influenced dry weight gain and photosynthetic pigment content of hydroponically grown lettuce (Lactuca sativa L.) seedlings.

  15. Modification of yield and chlorophyll content in leaf lettuce by HPS radiation and nitrogen treatments

    NASA Technical Reports Server (NTRS)

    Mitchell, Cary A.; Leakakos, Tina; Ford, Tameria L.

    1991-01-01

    The potential of realizing high photosynthetic photon flux from radiation by high-pressure sodium (HPS) lamp, alone or in combination with metal halide (MH) plus quartz iodide (QI) incandescent lamps, to support lettuce grow, with or without nitrogen supplement, was investigated. It was found that varying exposures to radiation from combined HPS, MH, and QI lamps influenced dry weight gain and photosynthetic pigment content of hydroponically grown lettuce (Lactuca sativa L.) seedlings.

  16. Relationship between hexokinase and cytokinin in the regulation of leaf senescence and seed germination.

    PubMed

    Swartzberg, D; Hanael, R; Granot, D

    2011-05-01

    Arabidopsis hexokinase (AtHXK1), an enzyme that catalyses hexose phosphorylation, accelerates leaf senescence, whereas the plant hormone cytokinin inhibits senescence. Previous work in our laboratory has shown that isopentenyl transferase (IPT), a key gene in the biosynthesis of cytokinin, expressed under promoters of the senescence-associated genes SAG12 or SAG13 (P(SAG12)::IPT and P(SAG13)::IPT, respectively), inhibits leaf senescence in tomato plants. To study the relationship between hexokinase and cytokinin in the regulation of leaf senescence, we created and analysed double-transgenic tomato plants expressing both AtHXK1 and either P(SAG12)::IPT or P(SAG13)::IPT. We found that expression of IPT in the double-transgenic plants could not prevent the accelerated senescence induced by over-expression of AtHXK1. Since cytokinin inhibits senescence via an apoplastic invertase that produces extracellular hexoses, whereas AtHXK1 is an intracellular mitochondria-associated hexokinase, our results suggest that intracellular sugar sensing via AtHXK1 is dominant over extracellular sugar sensing with regard to leaf senescence. Interestingly, the heterologous SAG12 and SAG13 promoters are also expressed in germinating tomato seed, around the radicle penetration zone, suggesting that seed germination involves a senescence process that is probably necessary for radicle emergence. Indeed, seed expressing P(SAG12)::IPT and P(SAG13)::IPT exhibited delayed radicle emergence, possibly due to delayed endosperm senescence. © 2010 German Botanical Society and The Royal Botanical Society of the Netherlands.

  17. Predicting apple tree leaf nitrogen content based on hyperspectral applying wavelet and wavelet packet analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Zheng, Lihua; Li, Minzan; Deng, Xiaolei; Sun, Hong

    2012-11-01

    The visible and NIR spectral reflectance were measured for apple leaves by using a spectrophotometer in fruit-bearing, fruit-falling and fruit-maturing period respectively, and the nitrogen content of each sample was measured in the lab. The analysis of correlation between nitrogen content of apple tree leaves and their hyperspectral data was conducted. Then the low frequency signal and high frequency noise reduction signal were extracted by using wavelet packet decomposition algorithm. At the same time, the original spectral reflectance was denoised taking advantage of the wavelet filtering technology. And then the principal components spectra were collected after PCA (Principal Component Analysis). It was known that the model built based on noise reduction principal components spectra reached higher accuracy than the other three ones in fruit-bearing period and physiological fruit-maturing period. Their calibration R2 reached 0.9529 and 0.9501, and validation R2 reached 0.7285 and 0.7303 respectively. While in the fruit-falling period the model based on low frequency principal components spectra reached the highest accuracy, and its calibration R2 reached 0.9921 and validation R2 reached 0.6234. The results showed that it was an effective way to improve ability of predicting apple tree nitrogen content based on hyperspectral analysis by using wavelet packet algorithm.

  18. Global meta-analysis shows that relationships of leaf mass per area with species shade tolerance depend on leaf habit and ontogeny.

    PubMed

    Lusk, Christopher H; Warton, David I

    2007-01-01

    It was predicted that relationships of leaf mass per area (LMA) with juvenile shade tolerance will depend on leaf habit, and on whether species are compared at a common age as young seedlings, or at a common size as saplings. A meta-analysis of 47 comparative studies (372 species) was used to test predictions, and the effect of light environment on this relationship. The LMA of evergreens was positively correlated with shade tolerance, irrespective of ontogeny or light environment. The LMA of young seedlings (relationship of LMA with shade tolerance of deciduous trees, but has little impact on that of evergreens. Size-specific comparisons reveal opposing trends in deciduous and evergreen taxa: the negative relationship of LMA with shade tolerance of deciduous species is probably dominated by interspecific differences in palisade thickness, whereas patterns in evergreens are probably shaped more by the degree of structural reinforcement, linked to wide variation in leaf lifespan.

  19. The influence of leaf-atmosphere NH3(g ) exchange on the isotopic composition of nitrogen in plants and the atmosphere.

    PubMed

    Johnson, Jennifer E; Berry, Joseph A

    2013-10-01

    The distribution of nitrogen isotopes in the biosphere has the potential to offer insights into the past, present and future of the nitrogen cycle, but it is challenging to unravel the processes controlling patterns of mixing and fractionation. We present a mathematical model describing a previously overlooked process: nitrogen isotope fractionation during leaf-atmosphere NH3(g ) exchange. The model predicts that when leaf-atmosphere exchange of NH3(g ) occurs in a closed system, the atmospheric reservoir of NH3(g ) equilibrates at a concentration equal to the ammonia compensation point and an isotopic composition 8.1‰ lighter than nitrogen in protein. In an open system, when atmospheric concentrations of NH3(g ) fall below or rise above the compensation point, protein can be isotopically enriched by net efflux of NH3(g ) or depleted by net uptake. Comparison of model output with existing measurements in the literature suggests that this process contributes to variation in the isotopic composition of nitrogen in plants as well as NH3(g ) in the atmosphere, and should be considered in future analyses of nitrogen isotope circulation. The matrix-based modelling approach that is introduced may be useful for quantifying isotope dynamics in other complex systems that can be described by first-order kinetics. © 2013 John Wiley & Sons Ltd.

  20. Leaf chlorophyll content as a proxy for leaf photosynthetic capacity.

    PubMed

    Croft, Holly; Chen, Jing M; Luo, Xiangzhong; Bartlett, Paul; Chen, Bin; Staebler, Ralf M

    2017-09-01

    Improving the accuracy of estimates of forest carbon exchange is a central priority for understanding ecosystem response to increased atmospheric CO2 levels and improving carbon cycle modelling. However, the spatially continuous parameterization of photosynthetic capacity (Vcmax) at global scales and appropriate temporal intervals within terrestrial biosphere models (TBMs) remains unresolved. This research investigates the use of biochemical parameters for modelling leaf photosynthetic capacity within a deciduous forest. Particular attention is given to the impacts of seasonality on both leaf biophysical variables and physiological processes, and their interdependent relationships. Four deciduous tree species were sampled across three growing seasons (2013-2015), approximately every 10 days for leaf chlorophyll content (ChlLeaf ) and canopy structure. Leaf nitrogen (NArea ) was also measured during 2014. Leaf photosynthesis was measured during 2014-2015 using a Li-6400 gas-exchange system, with A-Ci curves to model Vcmax. Results showed that seasonality and variations between species resulted in weak relationships between Vcmax normalized to 25°C (Vcmax25) and NArea (R(2)  = 0.62, P < 0.001), whereas ChlLeaf demonstrated a much stronger correlation with Vcmax25 (R(2)  = 0.78, P < 0.001). The relationship between ChlLeaf and NArea was also weak (R(2)  = 0.47, P < 0.001), possibly due to the dynamic partitioning of nitrogen, between and within photosynthetic and nonphotosynthetic fractions. The spatial and temporal variability of Vcmax25 was mapped using Landsat TM/ETM satellite data across the forest site, using physical models to derive ChlLeaf . TBMs largely treat photosynthetic parameters as either fixed constants or varying according to leaf nitrogen content. This research challenges assumptions that simple NArea -Vcmax25 relationships can reliably be used to constrain photosynthetic capacity in TBMs, even within the same plant functional type. It

  1. Assessing the Metabolic Impact of Nitrogen Availability Using a Compartmentalized Maize Leaf Genome-Scale Model1[C][W][OPEN

    PubMed Central

    Simons, Margaret; Saha, Rajib; Amiour, Nardjis; Kumar, Akhil; Guillard, Lenaïg; Clément, Gilles; Miquel, Martine; Li, Zhenni; Mouille, Gregory; Lea, Peter J.; Hirel, Bertrand; Maranas, Costas D.

    2014-01-01

    Maize (Zea mays) is an important C4 plant due to its widespread use as a cereal and energy crop. A second-generation genome-scale metabolic model for the maize leaf was created to capture C4 carbon fixation and investigate nitrogen (N) assimilation by modeling the interactions between the bundle sheath and mesophyll cells. The model contains gene-protein-reaction relationships, elemental and charge-balanced reactions, and incorporates experimental evidence pertaining to the biomass composition, compartmentalization, and flux constraints. Condition-specific biomass descriptions were introduced that account for amino acids, fatty acids, soluble sugars, proteins, chlorophyll, lignocellulose, and nucleic acids as experimentally measured biomass constituents. Compartmentalization of the model is based on proteomic/transcriptomic data and literature evidence. With the incorporation of information from the MetaCrop and MaizeCyc databases, this updated model spans 5,824 genes, 8,525 reactions, and 9,153 metabolites, an increase of approximately 4 times the size of the earlier iRS1563 model. Transcriptomic and proteomic data have also been used to introduce regulatory constraints in the model to simulate an N-limited condition and mutants deficient in glutamine synthetase, gln1-3 and gln1-4. Model-predicted results achieved 90% accuracy when comparing the wild type grown under an N-complete condition with the wild type grown under an N-deficient condition. PMID:25248718

  2. Variation in bulk-leaf (13) C discrimination, leaf traits and water-use efficiency-trait relationships along a continental-scale climate gradient in Australia.

    PubMed

    Rumman, Rizwana; Atkin, Owen K; Bloomfield, Keith J; Eamus, Derek

    2017-09-26

    Large spatial and temporal gradients in rainfall and temperature occur across Australia. This heterogeneity drives ecological differentiation in vegetation structure and ecophysiology. We examined multiple leaf-scale traits, including foliar (13) C isotope discrimination (Δ(13) C), rates of photosynthesis and foliar N concentration and their relationships with multiple climate variables. 55 species across 27 families were examined across eight sites spanning contrasting biomes. Key questions addressed include: 1) Does Δ (13) C and intrinsic water use efficiency (WUEi ) vary with climate at a continental scale? 2) What are the seasonal and spatial patterns in Δ(13) C / WUEi across biomes and species? 3) To what extent does Δ(13) C reflect variation in leaf structural, functional and nutrient traits across climate gradients? and 4) Does the relative importance of assimilation and stomatal conductance in driving variation in Δ(13) C differ across seasons? We found that MAP, temperature seasonality, isothermality and annual temperature range exerted independent effects on foliar Δ(13) C / WUEi . Temperature-related variables exerted larger effects than rainfall-related variables. The relative importance of photosynthesis and stomatal conductance (gs ) in determining Δ(13) C differed across seasons: Δ(13) C was more strongly regulated by gs during the dry season and by photosynthetic capacity during the wet-season. Δ(13) C was most strongly correlated, inversely, with leaf mass area ratio among all leaf attributes considered. Leaf Nmass was significantly and positively correlated with MAP during dry- and wet- seasons and with moisture index (MI) during the wet-season but was not correlated with Δ(13) C. Leaf Pmass showed significant positive relationship with MAP and Δ(13) C only during the dry-season. For all leaf nutrient-related traits, the relationships obtained for Δ(13) C with MAP or MI indicated that Δ(13) C at the species level reliably reflects the

  3. Anatomical basis of the change in leaf mass per area and nitrogen investment with relative irradiance within the canopy of eight temperate tree species

    NASA Astrophysics Data System (ADS)

    Aranda, I.; Pardo, F.; Gil, L.; Pardos, J. A.

    2004-05-01

    Changes in leaf mass per area (LMA), nitrogen content on a mass-basis (N m) and on an area basis (N a) with relative irradiance were assessed in leaves of eight temperate species harvested at different depths in a canopy. Relative irradiance (GSF) at the points of leaf sampling was estimated by hemispheric photographs. There was a strong species-dependent positive relationship between LMA and GSF for all species. Shade-tolerant species such as Fagus sylvatica showed lower LMA for the same GSF than less tolerant species as Quercus pyrenaica or Quercus petraea. The only evergreen species in the study, Ilex aquifollium, had the highest LMA, independent of light environment, with minimum values much higher than the rest of the broad-leaved species studied. There was no relation between N m and GSF for most species studied and only a very weak relation for the relative shade-intolerant species Q. pyrenaica. Within each species, the pattern of N a investment with regard to GSF was linked mainly to LMA. At the same relative irradiance, differences in N a among species were conditioned both by the LMA-GSF relationship and by the species N m value. The lowest N m value was measured in I. aquifollium (14.3 ± 0.6 mg g -1); intermediate values in Crataegus monogyna (16.9 ± 0.6 mg g -1) and Prunus avium (19.1 ± 0.6 mg g -1) and higher values, all in a narrow range (21.3 ± 0.6 to 23 ± 0.6 mg g -1), were measured for the other five species. Changes in LMA with the relative irradiance were linked both to lamina thickness (LT) and to palisade/spongy parenchyma ratio (PP/SP). In the second case, the LMA changes may be related to an increase in lamina density as palisade parenchyma involves higher cell packing than spongy parenchyma. However, since PP/SP ratio showed a weak species-specific relationship with LMA, the increase in LT should be the main cause of LMA variation.

  4. View angle effects on relationships between leaf area index in wheat and vegetation indices

    NASA Astrophysics Data System (ADS)

    Chen, H.; Li, W.; Huang, W.; Niu, Z.

    2016-12-01

    The effects of plant types and view angles on the canopy-reflected spectrum can not be ignored in the estimation of leaf area index (LAI) using remote sensing vegetation indices. While vegetation indices derived from nadir-viewing remote sensors are insufficient in leaf area index (LAI) estimation because of its misinterpretation of structural characteristecs, vegetation indices derived from multi-angular remote sensors have potential to improve detection of LAI. However, view angle effects on relationships between these indices and LAI for low standing crops (i.e. wheat) has not been fully evaluated and thus limits them to applied for consistent and accurate monitoring of vegetation. View angles effects of two types of winter wheat (wheat 411, erectophile; and wheat 9507, planophile) on relationship between LAI and spectral reflectance are assessed and compared in this study. An evaluation is conducted with in-situ measurements of LAI and bidirectional reflectance in the principal plane from -60° (back-scattering direction ) ot 60° (forward scattering direction) in the growth cycle of winter wheat. A variety of vegetation indices (VIs) published are calculated by BRDF. Additionally, all combinations of the bands are used in order to calculate Normalized difference Spectral Indices (NDSI) and Simple Subtraction Indices (SSI). The performance of the above indices along with raw reflectance and reflectance derivatives on LAI estimation are examined based on a linearity comparison. The results will be helpful in further developing multi-angle remote sensing models for accurate LAI evaluation.

  5. Hydraulic conductance as well as nitrogen accumulation plays a role in the higher rate of leaf photosynthesis of the most productive variety of rice in Japan.

    PubMed

    Taylaran, Renante D; Adachi, Shunsuke; Ookawa, Taiichiro; Usuda, Hideaki; Hirasawa, Tadashi

    2011-07-01

    An indica variety Takanari is known as one of the most productive rice varieties in Japan and consistently produces 20-30% heavier dry matter during ripening than Japanese commercial varieties in the field. The higher rate of photosynthesis of individual leaves during ripening has been recognized in Takanari. By using pot-grown plants under conditions of minimal mutual shading, it was confirmed that the higher rate of leaf photosynthesis is responsible for the higher dry matter production after heading in Takanari as compared with a japonica variety, Koshihikari. The rate of leaf photosynthesis and shoot dry weight became larger in Takanari after the panicle formation and heading stages, respectively, than in Koshihikari. Roots grew rapidly in the panicle formation stage until heading in Takanari compared with Koshihikari. The higher rate of leaf photosynthesis in Takanari resulted not only from the higher content of leaf nitrogen, which was caused by its elevated capacity for nitrogen accumulation, but also from higher stomatal conductance. When measured under light-saturated conditions, stomatal conductance was already decreased due to the reduction in leaf water potential in Koshihikari even under conditions of a relatively small difference in leaf-air vapour pressure difference. In contrast, the higher stomatal conductance was supported by the maintenance of higher leaf water potential through the higher hydraulic conductance in Takanari with the larger area of root surface. However, no increase in root hydraulic conductivity was expected in Takanari. The larger root surface area of Takanari might be a target trait in future rice breeding for increasing dry matter production.

  6. Effects of Salinity on Leaf Spectral Reflectance and Biochemical Parameters of Nitrogen Fixing Soybean Plants (Glycine max L.)

    NASA Astrophysics Data System (ADS)

    Krezhova, Dora D.; Kirova, Elisaveta B.; Yanev, Tony K.; Iliev, Ilko Ts.

    2010-01-01

    Measurements of physiology and hyperspectral leaf reflectance were used to detect salinity stress in nitrogen fixing soybean plants. Seedlings were inoculated with suspension of Bradyrhizobium japonicum strain 273. Salinity was performed at the stage of 2nd-4th trifoliate expanded leaves by adding of NaCl in the nutrient solution of Helrigel in concentrations 40 mM and 80 mM. A comparative analysis was performed between the changes in the biochemical parameters - stress markers (phenols, proline, malondialdehyde, thiol groups), chlorophyll a and b, hydrogen peroxide, and leaf spectral reflectance in the spectral range 450-850 nm. The spectral measurements were carried out by an USB2000 spectrometer. The reflectance data of the control and treated plants in the red, green, red-edge and the near infrared ranges of the spectrum were subjected to statistical analysis. Statistically significant differences were found through the Student's t-criterion at the two NaCl concentrations in all of the ranges examined with the exception of the near infrared range at 40 mM NaCl concentration. Similar results were obtained through linear discriminant analysis. The tents of the phenols, malondialdehyde and chlorophyll a and b were found to decrease at both salinity treatments. In the spectral data this effect is manifested by decrease of the reflectance values in the green and red ranges. The contents of proline, hydrogen peroxide and thiol groups rose with the NaCl concentration increase. At 80 mM NaCl concentration the values of these markers showed a considerable increase giving evidence that the soybean plants were stressed in comparison with the control. This finding is in agreement with the results from the spectral reflectance analysis.

  7. The seasonality of AVHRR data of temperate coniferous forests - Relationship with leaf area index

    NASA Technical Reports Server (NTRS)

    Spanner, Michael A.; Pierce, Lars L.; Running, Steven W.; Peterson, David L.

    1990-01-01

    The relationship between the advanced very high resolution radiometer (AVHRR) normalized difference vegetation index (NDVI) and coniferous forest leaf area index (LAI) over the western United States is examined. AVHRR data from the NOAA-9 satellite were acquired of the western U.S. from March 1986 to November 1987 and monthly maximum value composites of AVHRR NDVI were calculated for 19 coniferous forest stands in Oregon, Washington, Montana, and California. It is concluded that the relationships under investigation vary according to seasonal changes in surface reflectance based on key biotic and abiotic controls including phenological changes in LAI caused by seasonal temperature and precipitation variations, the proportions of surface cover types contributing to the overall reflectance, and effects resulting from large variations in the solar zenith angle.

  8. The seasonality of AVHRR data of temperate coniferous forests - Relationship with leaf area index

    NASA Technical Reports Server (NTRS)

    Spanner, Michael A.; Pierce, Lars L.; Running, Steven W.; Peterson, David L.

    1990-01-01

    The relationship between the advanced very high resolution radiometer (AVHRR) normalized difference vegetation index (NDVI) and coniferous forest leaf area index (LAI) over the western United States is examined. AVHRR data from the NOAA-9 satellite were acquired of the western U.S. from March 1986 to November 1987 and monthly maximum value composites of AVHRR NDVI were calculated for 19 coniferous forest stands in Oregon, Washington, Montana, and California. It is concluded that the relationships under investigation vary according to seasonal changes in surface reflectance based on key biotic and abiotic controls including phenological changes in LAI caused by seasonal temperature and precipitation variations, the proportions of surface cover types contributing to the overall reflectance, and effects resulting from large variations in the solar zenith angle.

  9. Leaf area index, leaf mass density, and allometric relationships derived from harvest of blue oaks in a California oak savanna

    Treesearch

    John F. Karlik; Alistair H. McKay

    2002-01-01

    Given the key role played by biogenic volatile organic compounds (BVOC) in tropospheric chemistry and regional air quality, it is critical to generate accurate BVOC emission inventories. Because oak species found in California often have high BVOC emission rates, and are often of large stature with corresponding large leaf masses, oaks may be the most important genus...

  10. Relationships between Concentrations of Phytoplankton Chlorophyll a and Total Nitrogen in Ten U.S. Estuaries

    EPA Science Inventory

    This presentation focuses on the summertime response of phytoplankton chlorophyll to nitrogen concentrations in the upper water columns of ten U.S. estuaries. Using publicly available data from monitoring programs, regression relationships have been developed between summer surfa...

  11. Relationships between Concentrations of Phytoplankton Chlorophyll a and Total Nitrogen in Ten U.S. Estuaries

    EPA Science Inventory

    This presentation focuses on the summertime response of phytoplankton chlorophyll to nitrogen concentrations in the upper water columns of ten U.S. estuaries. Using publicly available data from monitoring programs, regression relationships have been developed between summer surfa...

  12. Spatial patterns of leaf δ13C and its relationship with plant functional groups and environmental factors in China

    NASA Astrophysics Data System (ADS)

    Li, Mingxu; Peng, Changhui; Wang, Meng; Yang, Yanzheng; Zhang, Kerou; Li, Peng; Yang, Yan; Ni, Jian; Zhu, Qiuan

    2017-07-01

    The leaf carbon isotope ratio (δ13C) is a useful parameter for predicting a plant's water use efficiency, as an indicator for plant classification, and even in the reconstruction of paleoclimatic environments. In this study, we investigated the spatial pattern of leaf δ13C values and its relationship with plant functional groups and environmental factors throughout China. The high leaf δ13C in the database appeared in central and western China, and the averaged leaf δ13C was -27.15‰, with a range from -21.05‰ to -31.5‰. The order of the averaged δ13C for plant life forms from most positive to most negative was subshrubs > herbs = shrubs > trees > subtrees. Leaf δ13C is also influenced by some environmental factors, such as mean annual precipitation, relative humidity, mean annual temperature, solar hours, and altitude, although the overall influences are still relatively weak, in particular the influence of MAT and altitude. And we further found that plant functional types are dominant factors that regulate the magnitude of leaf δ13C for an individual site, whereas environmental conditions are key to understanding spatial patterns of leaf δ13C when we consider China as a whole. Ultimately, we conducted a multiple regression model of leaf δ13C with environmental factors and mapped the spatial distribution of leaf δ13C in China by using this model. However, this partial least squares model overestimated leaf δ13C for most life forms, especially for deciduous trees, evergreen shrubs, and subtrees, and thus need more improvement in the future.

  13. Nitrogen-addition effects on leaf traits and photosynthetic carbon gain of boreal forest understory shrubs.

    PubMed

    Palmroth, Sari; Bach, Lisbet Holm; Nordin, Annika; Palmqvist, Kristin

    2014-06-01

    Boreal coniferous forests are characterized by fairly open canopies where understory vegetation is an important component of ecosystem C and N cycling. We used an ecophysiological approach to study the effects of N additions on uptake and partitioning of C and N in two dominant understory shrubs: deciduous Vaccinium myrtillus in a Picea abies stand and evergreen Vaccinium vitis-idaea in a Pinus sylvestris stand in northern Sweden. N was added to these stands for 16 and 8 years, respectively, at rates of 0, 12.5, and 50 kg N ha(-1) year(-1). N addition at the highest rate increased foliar N and chlorophyll concentrations in both understory species. Canopy cover of P. abies also increased, decreasing light availability and leaf mass per area of V. myrtillus. Among leaves of either shrub, foliar N content did not explain variation in light-saturated CO2 exchange rates. Instead photosynthetic capacity varied with stomatal conductance possibly reflecting plant hydraulic properties and within-site variation in water availability. Moreover, likely due to increased shading under P. abies and due to water limitations in the sandy soil under P. sylvestris, individuals of the two shrubs did not increase their biomass or shift their allocation between above- and belowground parts in response to N additions. Altogether, our results indicate that the understory shrubs in these systems show little response to N additions in terms of photosynthetic physiology or growth and that changes in their performance are mostly associated with responses of the tree canopy.

  14. VARYING STABLE NITROGEN ISOTOPIC RATIOS OF DIFFERENT COASTAL MARSH PLANTS AND THEIR RELATIONSHIPS WITH WASTEWATER NITROGEN AND LAND USE IN NEW ENGLAND, USA

    EPA Science Inventory

    Stable nitrogen isotopic ratios of coastal biota have been used as indicators of sources of anthropogenic nitrogen. In this study the relationships of the stable nitrogen isotopic ratios of salt marsh plants, Iva frutescens (L.), Phragmites australis (Cav.) Trin ex Steud, Spar...

  15. VARYING STABLE NITROGEN ISOTOPIC RATIOS OF DIFFERENT COASTAL MARSH PLANTS AND THEIR RELATIONSHIPS WITH WASTEWATER NITROGEN AND LAND USE IN NEW ENGLAND, USA

    EPA Science Inventory

    Stable nitrogen isotopic ratios of coastal biota have been used as indicators of sources of anthropogenic nitrogen. In this study the relationships of the stable nitrogen isotopic ratios of salt marsh plants, Iva frutescens (L.), Phragmites australis (Cav.) Trin ex Steud, Spar...

  16. Carbon and Nitrogen Chemistry of Lodranites: Relationship to Acapulco?

    NASA Astrophysics Data System (ADS)

    Grady, M. M.; Franchi, I. A.; Pillinger, C. T.

    1993-07-01

    Recent studies on the mineralogy, petrology, and oxygen isotopic composition of lodranites and acapulcoites indicate that these meteorites are probably derived from a common parent body, but experienced different degrees of partial melting [1,2]. Ar-Ar chronometry implies that lodranites were heated ca. 100 degrees C higher than acapulcoites, and cooled more slowly [3], however measurement of nitrogen and xenon in Acapulco [4,5] shows that volatiles are not equilibrated between different phases within the meteorite, hence its thermal history has been complex. The aim of this study is to determine the carbon and nitrogen chemistry of lodranites, for comparison with Acapulco, to indicate the effect that differing thermal histories might have had on the volatile inventories of these meteorites. The carbon chemistry of Acapulco has been described previously [6]. The meteorite contains ca. 400 ppm indigenous carbon, distributed between two major phases: graphite and carbides. Graphite has been identified petrographically in Acapulco [7], where it is intimately associated with metal. In contrast, both Lodran and MAC 88177 contain much lower quantities of indigenous carbon: approximately 100 ppm and 38 ppm respectively, released in decreasing amounts up to 1200 degrees C. In Lodran, delta^13C rises almost monotonically, from -25 per mil at 600 degrees C to -12 per mil at 1200 degrees C; total delta^13C is ca. -23 per mil. Neither meteorite shows evidence for the occurrence of graphite. Nitrogen released by pyrolysis of Acapulco totals ca. 2.8 ppm [4,5], and is resolvable into two components, with delta^15N ca. +10 per mil and -120 per mil [8]. The first component is, as yet, unidentified, but the second is believed to be associated with the metal fraction [8]. The procedure used herein, of several combustion steps below 500 degrees C to remove contaminants, followed by high resolution combustion up to 1200 degrees C, would also resolve discrete nitrogen-bearing components

  17. Leaf Mass per Area (LMA) and Its Relationship with Leaf Structure and Anatomy in 34 Mediterranean Woody Species along a Water Availability Gradient.

    PubMed

    de la Riva, Enrique G; Olmo, Manuel; Poorter, Hendrik; Ubera, José Luis; Villar, Rafael

    2016-01-01

    Leaf mass per area (LMA) is a morphological trait widely used as a good indicator of plant functioning (i.e. photosynthetic and respiratory rates, chemical composition, resistance to herbivory, etc.). The LMA can be broken down into the leaf density (LD) and leaf volume to area ratio (LVA or thickness), which in turn are determined by anatomical tissues and chemical composition. The aim of this study is to understand the anatomical and chemical characteristics related to LMA variation in species growing in the field along a water availability gradient. We determined LMA and its components (LD, LVA and anatomical tissues) for 34 Mediterranean (20 evergreen and 14 deciduous) woody species. Variation in LMA was due to variation in both LD and LVA. For both deciduous and evergreen species LVA variation was strongly and positively related with mesophyll volume per area (VA or thickness), but for evergreen species positive relationships of LVA with the VA of epidermis, vascular plus sclerenchyma tissues and air spaces were found as well. The leaf carbon concentration was positively related with mesophyll VA in deciduous species, and with VA of vascular plus sclerenchymatic tissues in evergreens. Species occurring at the sites with lower water availability were generally characterised by a high LMA and LD.

  18. Leaf Mass per Area (LMA) and Its Relationship with Leaf Structure and Anatomy in 34 Mediterranean Woody Species along a Water Availability Gradient

    PubMed Central

    de la Riva, Enrique G.; Olmo, Manuel; Poorter, Hendrik; Ubera, José Luis; Villar, Rafael

    2016-01-01

    Leaf mass per area (LMA) is a morphological trait widely used as a good indicator of plant functioning (i.e. photosynthetic and respiratory rates, chemical composition, resistance to herbivory, etc.). The LMA can be broken down into the leaf density (LD) and leaf volume to area ratio (LVA or thickness), which in turn are determined by anatomical tissues and chemical composition. The aim of this study is to understand the anatomical and chemical characteristics related to LMA variation in species growing in the field along a water availability gradient. We determined LMA and its components (LD, LVA and anatomical tissues) for 34 Mediterranean (20 evergreen and 14 deciduous) woody species. Variation in LMA was due to variation in both LD and LVA. For both deciduous and evergreen species LVA variation was strongly and positively related with mesophyll volume per area (VA or thickness), but for evergreen species positive relationships of LVA with the VA of epidermis, vascular plus sclerenchyma tissues and air spaces were found as well. The leaf carbon concentration was positively related with mesophyll VA in deciduous species, and with VA of vascular plus sclerenchymatic tissues in evergreens. Species occurring at the sites with lower water availability were generally characterised by a high LMA and LD. PMID:26867213

  19. Sites of action of elevated CO2 on leaf development in rice: discrimination between the effects of elevated CO2 and nitrogen deficiency.

    PubMed

    Tsutsumi, Koichi; Konno, Masae; Miyazawa, Shin-Ichi; Miyao, Mitsue

    2014-02-01

    Elevated CO2 concentrations (eCO2) trigger various plant responses. Despite intensive studies of these responses, the underlying mechanisms remain obscure. In this work, we investigated when and how leaf physiology and anatomy are affected by eCO2 in rice plants. We analyzed the most recently fully expanded leaves that developed successively after transfer of the plant to eCO2. To discriminate between the effects of eCO2 and those of nitrogen deficiency, we used three different levels of N application. We found that a decline in the leaf soluble protein content (on a leaf area basis) at eCO2 was only observed under N deficiency. The length and width of the leaf blade were reduced by both eCO2 and N deficiency, whereas the blade thickness was increased by eCO2 but was not affected by N deficiency. The change in length by eCO2 became detectable in the secondly fully expanded leaf, and those in width and thickness in the thirdly fully expanded leaf, which were at the leaf developmental stages P4 and P3, respectively, at the onset of the eCO2 treatment. The decreased blade length at eCO2 was associated with a decrease in the epidermal cell number on the adaxial side and a reduction in cell length on the abaxial side. The decreased width resulted from decreased numbers of small vascular bundles and epidermal cell files. The increased thickness was ascribed mainly to enhanced development of bundle sheath extensions at the ridges of vascular bundles. These observations enable us to identify the sites of action of eCO2 on rice leaf development.

  20. [Effects of nitrogen application and elevated atmospheric CO2 on electron transport and energy partitioning in flag leaf photosynthesis of wheat].

    PubMed

    Zhang, Xu-cheng; Yu, Xian-feng; Ma, Yi-fan

    2011-03-01

    Wheat (Triticum aestivum) plants were pot-cultured in open top chambers at the nitrogen application rate of 0 and 200 mg x kg(-1) soil and the atmospheric CO2 concentration of 400 and 760 micromol x mol(-1). Through the determination of flag leaf nitrogen and chlorophyll contents, photosynthetic rate (Pn)-intercellar CO2 concentration (Ci) response curve, and chlorophyll fluorescence parameters at heading stage, the photosynthetic electron transport rate and others were calculated, aimed to investigate the effects of nitrogen application and elevated atmospheric CO2 concentration on the photosynthetic energy partitioning in wheat flag leaves. Elevated atmospheric CO2 concentration decreased the leaf nitrogen and chlorophyll contents, compared with the ambient one, and the chlorophyll a/b ratio increased at the nitrogen application rate of 200 mg x kg(-1). With the application of nitrogen, no evident variations were observed in the maximal photochemical efficiency (Fv/Fm), maximal quantum yield under irradiance (Fv'/Fm') of PS II reaction center, photochemical fluorescence quenching coefficient (q(p)), and actual PS II efficiency under irradiance (phi(PS II) at elevated atmospheric CO2 concentration, and the total photosynthetic electron transport rate (J(F)) of PS II reaction center had no evident increase, though the non-photochemical fluorescence quenching coefficient (NPQ) decreased significantly. With no nitrogen application, the Fv'/Fm', psi(PS II), and NPQ at elevated atmospheric CO2 concentration decreased significantly, and the J(F) had a significant decrease though the Fv/Fm and q(p) did not vary remarkably. Nitrogen application increased the J(F) and photochemical electron transport rate (Jc); while elevated atmospheric CO2 concentration decreased the photorespiration electron transport rate (J0), Rubisco oxidation rate (V0), ratio of photorespiration to photochemical electron transport rate (J0/Jc) , and Rubisco oxidation/carboxylation rate (Vo/Vc), but

  1. Toward a mechanistic modeling of nitrogen limitation for photosynthesis

    NASA Astrophysics Data System (ADS)

    Xu, C.; Fisher, R. A.; Travis, B. J.; Wilson, C. J.; McDowell, N. G.

    2011-12-01

    The nitrogen limitation is an important regulator for vegetation growth and global carbon cycle. Most current ecosystem process models simulate nitrogen effects on photosynthesis based on a prescribed relationship between leaf nitrogen and photosynthesis; however, there is a large amount of variability in this relationship with different light, temperature, nitrogen availability and CO2 conditions, which can affect the reliability of photosynthesis prediction under future climate conditions. To account for the variability in nitrogen-photosynthesis relationship under different environmental conditions, in this study, we developed a mechanistic model of nitrogen limitation for photosynthesis based on nitrogen trade-offs among light absorption, electron transport, carboxylization and carbon sink. Our model shows that strategies of nitrogen storage allocation as determined by tradeoff among growth and persistence is a key factor contributing to the variability in relationship between leaf nitrogen and photosynthesis. Nitrogen fertilization substantially increases the proportion of nitrogen in storage for coniferous trees but much less for deciduous trees, suggesting that coniferous trees allocate more nitrogen toward persistence compared to deciduous trees. The CO2 fertilization will cause lower nitrogen allocation for carboxylization but higher nitrogen allocation for storage, which leads to a weaker relationship between leaf nitrogen and maximum photosynthesis rate. Lower radiation will cause higher nitrogen allocation for light absorption and electron transport but less nitrogen allocation for carboxylyzation and storage, which also leads to weaker relationship between leaf nitrogen and maximum photosynthesis rate. At the same time, lower growing temperature will cause higher nitrogen allocation for carboxylyzation but lower allocation for light absorption, electron transport and storage, which leads to a stronger relationship between leaf nitrogen and maximum

  2. Landscape Soil Respiration Fluxes are Related to Leaf Area Index, Stand Height and Density, and Soil Nitrogen in Rocky Mountain Subalpine Forests

    NASA Astrophysics Data System (ADS)

    Berryman, E.; Bradford, J. B.; Hawbaker, T. J.; Birdsey, R.; Ryan, M. G.

    2015-12-01

    There is a recent multi-agency push for accurate assessments of terrestrial carbon stocks and fluxes in the United States. Assessing the state of the carbon cycle in the US requires estimates of stocks and fluxes at large spatial scales. Such assessments are difficult, especially for soil respiration, which dominates ecosystem respiration and is notoriously highly variable over space and time. Here, we report three consecutive years of measurement of soil respiration fluxes in three 1 km2 subalpine forest landscapes: Fraser Experimental Forest (Colorado), Glacier Lakes Ecosystems Experimental Site ("GLEES", Wyoming), and Niwot Ridge (Colorado). Plots were established following the protocol of the US Forest Service's Forest Inventory and Analysis (FIA) Program. Clusters of plots were distributed across the landscape in a 0.25 km grid pattern. From 2004 through 2006, measurements of soil respiration were made once monthly during the growing season and twice during snowpack coverage for each year. Annual cumulative soil respiration was 6.10 (+/- 0.21) Mg ha-1y-1 for Fraser, 6.55 (+/- 0.27) Mg ha-1y-1 for GLEES, and 6.97 (+/- 0.20) Mg ha-1y-1 for Niwot. Variability in annual cumulative soil respiration varied by less than 20% among the three subalpine forests, despite differences in terrain, climate, disturbance history and anthropogenic nitrogen deposition. We quantified the relationship between respiration fluxes and commonly-measured forest properties and found that soil respiration was nonlinearly related to leaf area index, peaking around 2.5 m2m-2 then slowly declining. Annual litterfall (FA) was subtracted from soil respiration (FR) to calculate total belowground carbon flux (TBCF), which declined with increasing tree height, density and soil nitrogen. This landscape analysis of soil respiration confirmed experimentally-derived principles governing carbon fluxes in forests: as trees age and get taller, and in high-fertility areas, carbon flux to roots declines

  3. Hydraulic conductance as well as nitrogen accumulation plays a role in the higher rate of leaf photosynthesis of the most productive variety of rice in Japan

    PubMed Central

    Taylaran, Renante D.; Adachi, Shunsuke; Ookawa, Taiichiro; Usuda, Hideaki; Hirasawa, Tadashi

    2011-01-01

    An indica variety Takanari is known as one of the most productive rice varieties in Japan and consistently produces 20–30% heavier dry matter during ripening than Japanese commercial varieties in the field. The higher rate of photosynthesis of individual leaves during ripening has been recognized in Takanari. By using pot-grown plants under conditions of minimal mutual shading, it was confirmed that the higher rate of leaf photosynthesis is responsible for the higher dry matter production after heading in Takanari as compared with a japonica variety, Koshihikari. The rate of leaf photosynthesis and shoot dry weight became larger in Takanari after the panicle formation and heading stages, respectively, than in Koshihikari. Roots grew rapidly in the panicle formation stage until heading in Takanari compared with Koshihikari. The higher rate of leaf photosynthesis in Takanari resulted not only from the higher content of leaf nitrogen, which was caused by its elevated capacity for nitrogen accumulation, but also from higher stomatal conductance. When measured under light-saturated conditions, stomatal conductance was already decreased due to the reduction in leaf water potential in Koshihikari even under conditions of a relatively small difference in leaf–air vapour pressure difference. In contrast, the higher stomatal conductance was supported by the maintenance of higher leaf water potential through the higher hydraulic conductance in Takanari with the larger area of root surface. However, no increase in root hydraulic conductivity was expected in Takanari. The larger root surface area of Takanari might be a target trait in future rice breeding for increasing dry matter production. PMID:21527630

  4. Water- and nitrogen-dependent alterations in the inheritance mode of transpiration efficiency in winter wheat at the leaf and whole-plant level.

    PubMed

    Ratajczak, Dominika; Górny, Andrzej G

    2012-11-01

    The effects of contrasting water and nitrogen (N) supply on the observed inheritance mode of transpiration efficiency (TE) at the flag-leaf and whole-season levels were examined in winter wheat. Major components of the photosynthetic capacity of leaves and the season-integrated efficiency of water use in vegetative and grain mass formation were evaluated in parental lines of various origins and their diallel F(2)-hybrids grown in a factorial experiment under different moisture and N status of the soil. A broad genetic variation was mainly found for the season-long TE measures. The variation range in the leaf photosynthetic indices was usually narrow, but tended to slightly enhance under water and N shortage. Genotype-treatment interaction effects were significant for most characters. No consistency between the leaf- and season-long TE measures was observed. Preponderance of additivity-dependent variance was mainly identified for the season-integrated TE and leaf CO(2) assimilation rate. Soil treatments exhibited considerable influence on the phenotypic expression of gene action for the residual leaf measures. The contribution of non-additive gene effects and degree of dominance tended to increase in water- and N-limited plants, especially for the leaf transpiration rate and stomatal conductance. The results indicate that promise exists to improve the season-integrated TE. However, selection for TE components should be prolonged for later hybrid generations to eliminate the masking of non-additive causes. Such evaluation among families grown under sub-optimal water and nitrogen supply seems to be the most promising strategy in winter wheat.

  5. Coastal nitrogen plumes and their relationship with seagrass distribution

    NASA Astrophysics Data System (ADS)

    Fernandes, Milena B.; Benger, Simon; Stuart-Williams, Hilary; Gaylard, Sam; Bryars, Simon

    2015-12-01

    Urbanised coastlines are affected by cumulative impacts from a variety of anthropogenic stressors, but spatial information on the distribution of these stressors at the local scale is scarce, hindering the ability of managers to prioritise mitigation options. This work investigated the spatial footprint of land-based nitrogen discharges to a metropolitan coastline and assessed the potential role of this stressor alone on seagrass dynamics at the scale of the ecosystem. The macroalga Caulocystis cephalornithos was used as a time-integrative sampler of nitrogen in the water column over 202 sites monitored across an area of ˜800 km2. The stable isotopic signature of nitrogen in tissues (δ15N) was used to map plumes of anthropogenic origin. The surface area of these plumes was found to be proportional to nitrogen loads from land. The largest plume was associated with discharges from an industrialised estuary and a wastewater treatment plant, where a monthly nitrogen load in excess of 110 tonnes affected an area >80 km2. The location and size of the plumes changed with seasons as a result of wind forcing and rainfall/wastewater reuse. The location of the plumes was compared to published seagrass distribution obtained from video transects. Dense seagrass meadows only occurred in areas unimpacted by plumes throughout the year, mostly in shallow (<5 m) regions for Amphibolis antarctica, and deeper (5-10 m) for Posidonia sp., possibly as a result of this species higher tolerance of low light conditions. This higher tolerance might also explain why Posidonia sp. is observed to preferentially recolonise areas of previous loss in the region. While a decrease in the spatial footprint of nutrient plumes has created conditions for natural seagrass recolonisation in some areas, it did not halt seagrass loss in others, suggesting the influence of additional stressors such as wave dynamics and light attenuation due to turbid/coloured stormwater.

  6. Nitrogen and water availability interact to affect leaf stoichiometry in a semi-arid grassland.

    PubMed

    Lü, Xiao-Tao; Kong, De-Liang; Pan, Qing-Min; Simmons, Matthew E; Han, Xing-Guo

    2012-02-01

    The effects of global change factors on the stoichiometric composition of green and senesced plant tissues are critical determinants of ecosystem feedbacks to anthropogenic-driven global change. So far, little is known about species stoichiometric responses to these changes. We conducted a manipulative field experiment with nitrogen (N; 17.5 g m(-2) year(-1)) and water addition (180 mm per growing season) in a temperate steppe of northern China that is potentially highly vulnerable to global change. A unique and important outcome of our study is that water availability modulated plant nutritional and stoichiometric responses to increased N availability. N addition significantly reduced C:N ratios and increased N:P ratios but only under ambient water conditions. Under increased water supply, N addition had no effect on C:N ratios in green and senesced leaves and N:P ratios in senesced leaves, and significantly decreased C:P ratios in both green and senesced leaves and N:P ratios in green leaves. Stoichiometric ratios varied greatly among species. Our results suggest that N and water addition and species identity can affect stoichiometric ratios of both green and senesced tissues through direct and interactive means. Our findings highlight the importance of water availability in modulating stoichiometric responses of plants to potentially increased N availability in semi-arid grasslands.

  7. Fungi exposed to chronic nitrogen enrichment are less able to decay leaf litter.

    PubMed

    van Diepen, Linda T A; Frey, Serita D; Landis, Elizabeth A; Morrison, Eric W; Pringle, Anne

    2017-01-01

    Saprotrophic fungi are the primary decomposers of plant litter in temperate forests, and their activity is critical for carbon (C) and nitrogen (N) cycling. Simulated atmospheric N deposition is associated with reduced fungal biomass, shifts in fungal community structure, slowed litter decay, and soil C accumulation. Although rarely studied, N deposition may also result in novel selective pressures on fungi, affecting evolutionary trajectories. To directly test if long-term N enrichment reshapes fungal responses to N, we isolated decomposer fungi from a long-term (28 yr) N-addition experiment and used a common garden approach to compare growth rates and decay abilities of isolates from control and N-amended plots. Both growth and decay were significantly altered by long-term exposure to N enrichment. Changes in growth rates were idiosyncratic, as different species grew either more quickly or more slowly after exposure to N, but litter decay by N isolates was consistent and generally lower compared to control isolates of the same species, a response not readily reversed when N isolates were grown in control (low N) environments. Changes in fungal responses accompany and perhaps drive previously observed N-induced shifts in fungal diversity, community composition, and litter decay dynamics. © 2016 by the Ecological Society of America.

  8. The relationship of global green leaf biomass to atmospheric CO2 concentrations

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.; Fung, Inez Y.; Keeling, C. D.; Gammon, R. H.

    1985-01-01

    Advanced very high resolution radiometer data from NOAA's polar orbiting meteorological satellite have been obtained globally for a 21 month period, processed to produce a green leaf biomass spectral vegetative index for the entire terrestrial surface by month, zonally aggregated by latitude, and compared to atmospheric CO2 concentrations from observing stations. A strong inverse association was found between the monthly Pt. Barrow CO2 concentrations and the vegetation index measurements from 50 deg N to 80 deg N, between the monthly Mauna Loa CO2 concentrations and the vegetation index measurements from 10 deg N to 30 deg N, 10 deg N to 80 deg N, and the global total, and between the globally averaged CO2 concentrations and the globally averaged vegetation index. No relationships between atmospheric CO2 concentrations and the vegetative index measurements from any latitude zone or combinations of zones were found for the South Pole station.

  9. Nitrogen

    USGS Publications Warehouse

    Apodaca, Lori E.

    2013-01-01

    The article presents an overview of the nitrogen chemical market as of July 2013, including the production of ammonia compounds. Industrial uses for ammonia include fertilizers, explosives, and plastics. Other topics include industrial capacity of U.S. ammonia producers CF Industries Holdings Inc., Koch Nitrogen Co., PCS Nitrogen, Inc., and Agrium Inc., the impact of natural gas prices on the nitrogen industry, and demand for corn crops for ethanol production.

  10. Residual Ferrite and Relationship Between Composition and Microstructure in High-Nitrogen Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Wang, Qingchuan; Ren, Yibin; Yao, Chunfa; Yang, Ke; Misra, R. D. K.

    2015-12-01

    A series of high-nitrogen stainless steels (HNS) containing δ-ferrite, which often retained in HNS, were studied to establish the relationship between composition and microstructure. Both ferrite and nitrogen depletions were found in the center regions of cast ingots, and the depletion of nitrogen in that area was found to be the main reason for the existence of δ-ferrite. Because of the existence of heterogeneity, the variation of microstructure with nitrogen content was detected. Hence, the critical contents of nitrogen (CCN) for the fully austenitic HNS were obtained. Then the effects of elements such as N, Cr, Mn, and Mo on austenite stability were investigated via thermodynamic calculations. The CCN of HNS alloys were also obtained by calculations. Comparing the CCN obtained from experiment and calculation, it was found that the forged microstructure of the HNS was close to the thermodynamic equilibrium. To elucidate the above relationship, by regression analysis using calculated thermodynamic data, nitrogen equivalent and a new constitution diagram were proposed. The constitution diagram accurately distinguishes the austenitic single-phase region and the austenite + ferrite dual-phase region. The nitrogen equivalent and the new constitution diagram can be used for alloying design and microstructural prediction in HNS. According to the nitrogen equivalent, the ferrite stabilizing ability of Mo is weaker than Cr, and with Mn content increases, Mn behaves as a weak austenite stabilizer first and then as a ferrite stabilizer.

  11. The effects of cleared larch canopy and nitrogen supply on gas exchange and leaf traits in deciduous broad-leaved tree seedlings.

    PubMed

    Kitaoka, Satoshi; Watanabe, Yoko; Koike, Takayoshi

    2009-12-01

    To understand the leaf-level responses of successional tree species to forest gap formation and nitrogen deposition, we performed canopy clearing and nitrogen-amendment treatments in larch plantations and investigated the changes in the light-use characteristics and the leaf structure of the invading deciduous broad-leaved tree seedlings. We hypothesized that the responses of the tree seedlings to clearing and nitrogen input would reflect specific traits in the shoot development that would be related to the species-specific successional characteristics. The gap phase species Magnolia hyporeuca Siebold et Zucc. and the mid-late successional tree species Quercus mongolica Fischer ex Ledeb. var. crispula (Blume) Ohashi., which grow in or near the forest gaps, had higher light-saturated photosynthetic rates (Psat), enhanced mesophyll surface area (Smes) and increased leaf mass per area (LMA) under both the clearing treatment and the clearing with nitrogen-amendment treatment. These two species therefore increased their Psat via an increase in Smes and LMA. The LMA values of the late successional tree species Prunus ssiori F. Schmidt and Carpinus cordata Blume, which grow in the forest understory, were enhanced by the clearing treatment. However, they displayed lesser responses to the clearing treatment under which there were no marked increases in Psat or Smes values in the second year. These results indicate distinct and varied responses to disturbance regimes among the four seral tree seedlings. The Psat value largely increased in line with the increase in Smes value during the second year in M. hyporeuca and Q. mongolica. The nitrogen supply accelerated the change in LMA and increased the Smes value in the leaves of Q. mongolica.

  12. Interactions between leaf nitrogen status and longevity in relation to N cycling in three contrasting European forest canopies

    NASA Astrophysics Data System (ADS)

    Wang, L.; Ibrom, A.; Korhonen, J. F. J.; Arnoud Frumau, K. F.; Wu, J.; Pihlatie, M.; Schjoerring, J. K.

    2012-07-01

    Seasonal and spatial variations in foliar nitrogen (N) parameters were investigated in three European forests with different tree species, viz. beech (Fagus sylvatica L.), Douglas fir (Pseudotsuga menziesii, Mirb., Franco) and Scots pine (Pinus sylvestris L.) in Denmark, The Netherlands and Finland, respectively. This was done in order to obtain information about functional acclimation, tree internal N conservation and its relevance for both ecosystem internal N cycling and foliar N exchange with the atmosphere. Leaf N pools generally showed much higher seasonal variability in beech trees than in the coniferous canopies. The concentrations of N and chlorophyll in the beech leaves were synchronized with the seasonal course of solar radiation implying close physiological acclimation, which was not observed in the coniferous needles. During phases of intensive N metabolism in the beech leaves, the NH4+ concentration rose considerably. This was compensated for by a strong pH decrease resulting in relatively low Γ values (ratio between tissue NH4+ and H+). The Γ values in the coniferous were even smaller than in beech, indicating low probability of NH3 emissions from the foliage to the atmosphere as an N conserving mechanism. The reduction in foliage N content during senescence was interpreted as N re-translocation from the senescing leaves into the rest of the trees. The N re-translocation efficiency (ηr) ranged from 37 to 70% and decreased with the time necessary for full renewal of the canopy foliage. Comparison with literature data from in total 23 tree species showed a general tendency for ηr to on average be reduced by 8% per year the canopy stays longer, i.e. with each additional year it takes for canopy renewal. The boreal pine site returned the lowest amount of N via foliage litter to the soil, while the temperate Douglas fir stand which had the largest peak canopy N content and the lowestηr returned the highest amount of N to the soil. These results

  13. Relationships between NDVI and Leaf Area Index for spring and winter camelina in Northeastern Montana

    NASA Astrophysics Data System (ADS)

    Jabro, Jay; Allen, Brett; long, Dan; Isbell, Terry; Gesch, Russ; Brown, Jack; Hatfield, Jerry; Archer, David; Oblath, Emily; Vigil, Merle; Kiniry, Jim

    2016-04-01

    To our knowledge no research has been reported on the relationship between the normalized difference vegetation index (NDVI) and leaf area index (LAI) in spring and winter camelina. Relationships between NDVI and LAI for winter camelina (Camelina sativa) "Joelle" and spring camelina "CO46" were determined and evaluated in a 3-yr field study conducted in Sidney Montana under dryland conditions. The NDVI and LAI were measured weekly throughout the growing season. The NDVI was continually measured at one sample per second across the whole plot using a Crop Circle ACS-470 active crop canopy sensor. The LAI was measured at two locations at 12 samples per plot using an AccuPar model LP-80 Ceptometer. Treatments were replicated four times in a randomized complete block design in plots of 3 m×9 m. Temporal dynamics of NDVI and LAI in various growth stages of both spring and winter camelina were evaluated throughout 2013, 2014 and 2015 growing seasons. Significant linear relationships between NDVI and LAI were obtained for both spring and winter camelina when all the measurements were pooled across three growing seasons. Coefficients of determination (R2) of linearity were 0.77 and 0.79 for spring and winter camelina, respectively.

  14. In situ measurement of leaf chlorophyll concentration: analysis of the optical/absolute relationship.

    PubMed

    Parry, Christopher; Blonquist, J Mark; Bugbee, Bruce

    2014-11-01

    In situ optical meters are widely used to estimate leaf chlorophyll concentration, but non-uniform chlorophyll distribution causes optical measurements to vary widely among species for the same chlorophyll concentration. Over 30 studies have sought to quantify the in situ/in vitro (optical/absolute) relationship, but neither chlorophyll extraction nor measurement techniques for in vitro analysis have been consistent among studies. Here we: (1) review standard procedures for measurement of chlorophyll; (2) estimate the error associated with non-standard procedures; and (3) implement the most accurate methods to provide equations for conversion of optical to absolute chlorophyll for 22 species grown in multiple environments. Tests of five Minolta (model SPAD-502) and 25 Opti-Sciences (model CCM-200) meters, manufactured from 1992 to 2013, indicate that differences among replicate models are less than 5%. We thus developed equations for converting between units from these meter types. There was no significant effect of environment on the optical/absolute chlorophyll relationship. We derive the theoretical relationship between optical transmission ratios and absolute chlorophyll concentration and show how non-uniform distribution among species causes a variable, non-linear response. These results link in situ optical measurements with in vitro chlorophyll concentration and provide insight to strategies for radiation capture among diverse species. © 2014 John Wiley & Sons Ltd.

  15. Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests.

    PubMed

    Li, Le; McCormack, M Luke; Ma, Chengen; Kong, Deliang; Zhang, Qian; Chen, Xiaoyong; Zeng, Hui; Niinemets, Ülo; Guo, Dali

    2015-09-01

    Leaf economics and hydraulic traits are critical to leaf photosynthesis, yet it is debated whether these two sets of traits vary in a fully coordinated manner or there is room for independent variation. Here, we tested the relationship between leaf economics traits, including leaf nitrogen concentration and leaf dry mass per area, and leaf hydraulic traits including stomatal density and vein density in five tropical-subtropical forests. Surprisingly, these two suites of traits were statistically decoupled. This decoupling suggests that independent trait dimensions exist within a leaf, with leaf economics dimension corresponding to light capture and tissue longevity, and the hydraulic dimension to water-use and leaf temperature maintenance. Clearly, leaf economics and hydraulic traits can vary independently, thus allowing for more possible plant trait combinations. Compared with a single trait dimension, multiple trait dimensions may better enable species adaptations to multifarious niche dimensions, promote diverse plant strategies and facilitate species coexistence.

  16. How universal is the relationship between remotely sensed vegetation indices and crop leaf area index? A global assessment

    USDA-ARS?s Scientific Manuscript database

    This study aims to assess the relationship between Leaf Area Index (LAI) and remotely sensed Vegetation Indices (VIs) for major crops, based on a globally explicit dataset of in situ LAI measurements over a significant set of locations. We used a total of 1394 LAI measurements from 29 sites spannin...

  17. Nitrogen Limited Red and Green Leaf Lettuce Accumulate Flavonoid Glycosides, Caffeic Acid Derivatives, and Sucrose while Losing Chlorophylls, Β-Carotene and Xanthophylls

    PubMed Central

    Becker, Christine; Urlić, Branimir; Jukić Špika, Maja; Kläring, Hans-Peter; Krumbein, Angelika; Baldermann, Susanne; Goreta Ban, Smiljana; Perica, Slavko; Schwarz, Dietmar

    2015-01-01

    Reduction of nitrogen application in crop production is desirable for ecological and health-related reasons. Interestingly, nitrogen deficiency can lead to enhanced concentrations of polyphenols in plants. The reason for this is still under discussion. The plants’ response to low nitrogen concentration can interact with other factors, for example radiation intensity. We cultivated red and green leaf lettuce hydroponically in a Mediterranean greenhouse, supplying three different levels of nitrogen (12 mM, 3 mM, 0.75 mM), either in full or reduced (-50%) radiation intensity. In both red and green lettuce, we found clear effects of the nitrogen treatments on growth characteristics, phenolic and photosynthetic compounds, nitrogen, nitrate and carbon concentration of the plants. Interestingly, the concentrations of all main flavonoid glycosides, caffeic acid derivatives, and sucrose increased with decreasing nitrogen concentration, whereas those of chlorophylls, β-carotene, neoxanthin, lactucaxanthin, all trans- and cis-violaxanthin decreased. The constitutive concentrations of polyphenols were lower in the green cultivar, but their relative increase was more pronounced than in the red cultivar. The constitutive concentrations of chlorophylls, β-carotene, neoxanthin, all trans- and cis-violaxanthin were similar in red and green lettuce and with decreasing nitrogen concentration they declined to a similar extent in both cultivars. We only detected little influence of the radiation treatments, e.g. on anthocyanin concentration, and hardly any interaction between radiation and nitrogen concentration. Our results imply a greater physiological plasticity of green compared to the red lettuce regarding its phenolic compounds. They support the photoprotection theory regarding anthocyanins as well as the theory that the deamination activity of phenylalanine ammonia-lyase drives phenylpropanoid synthesis. PMID:26569488

  18. Nitrogen Limited Red and Green Leaf Lettuce Accumulate Flavonoid Glycosides, Caffeic Acid Derivatives, and Sucrose while Losing Chlorophylls, Β-Carotene and Xanthophylls.

    PubMed

    Becker, Christine; Urlić, Branimir; Jukić Špika, Maja; Kläring, Hans-Peter; Krumbein, Angelika; Baldermann, Susanne; Goreta Ban, Smiljana; Perica, Slavko; Schwarz, Dietmar

    2015-01-01

    Reduction of nitrogen application in crop production is desirable for ecological and health-related reasons. Interestingly, nitrogen deficiency can lead to enhanced concentrations of polyphenols in plants. The reason for this is still under discussion. The plants' response to low nitrogen concentration can interact with other factors, for example radiation intensity. We cultivated red and green leaf lettuce hydroponically in a Mediterranean greenhouse, supplying three different levels of nitrogen (12 mM, 3 mM, 0.75 mM), either in full or reduced (-50%) radiation intensity. In both red and green lettuce, we found clear effects of the nitrogen treatments on growth characteristics, phenolic and photosynthetic compounds, nitrogen, nitrate and carbon concentration of the plants. Interestingly, the concentrations of all main flavonoid glycosides, caffeic acid derivatives, and sucrose increased with decreasing nitrogen concentration, whereas those of chlorophylls, β-carotene, neoxanthin, lactucaxanthin, all trans- and cis-violaxanthin decreased. The constitutive concentrations of polyphenols were lower in the green cultivar, but their relative increase was more pronounced than in the red cultivar. The constitutive concentrations of chlorophylls, β-carotene, neoxanthin, all trans- and cis-violaxanthin were similar in red and green lettuce and with decreasing nitrogen concentration they declined to a similar extent in both cultivars. We only detected little influence of the radiation treatments, e.g. on anthocyanin concentration, and hardly any interaction between radiation and nitrogen concentration. Our results imply a greater physiological plasticity of green compared to the red lettuce regarding its phenolic compounds. They support the photoprotection theory regarding anthocyanins as well as the theory that the deamination activity of phenylalanine ammonia-lyase drives phenylpropanoid synthesis.

  19. Spatiotemporal relationships between disease development and airborne inoculum in unmanaged and managed Botrytis leaf blight epidemics.

    PubMed

    Carisse, O; Savary, S; Willocquet, L

    2008-01-01

    Comparatively little quantitative information is available on both the spatial and temporal relationships that develop between airborne inoculum and disease intensity during the course of aerially spread epidemics. Botrytis leaf blight and Botrytis squamosa airborne inoculum were analyzed over space and time during 2 years (2002 and 2004) in a nonprotected experimental field, using a 6 x 8 lattice of quadrats of 10 x 10 m each. A similar experiment was conducted in 2004 and 2006 in a commercial field managed for Botrytis leaf blight using a 5 x 5 lattice of quadrats of 25 x 25 m each. Each quadrat was monitored weekly for lesion density (LD) and aerial conidium concentration (ACC). The adjustment of the Taylor's power law showed that heterogeneity in both LD and ACC generally increased with increasing mean. Unmanaged epidemics were characterized in either year, with aggregation indices derived from SADIE (Spatial Analysis by Distance Indices). For LD, the aggregation indices suggested a random pattern of disease early in the season, followed by an aggregated pattern in the second part of the epidemic. The index of aggregation for ACC in 2002 was significantly greater than 1 at only one date, while it was significantly greater than 1 at most sampling dates in 2004. In both years and for both variables, positive trends in partial autocorrelation were observed mainly for a spatial lag of 1. In 2002, the overall pattern of partial autocorrelations over sampling dates was similar for LD and ACC with no significant partial autocorrelation during the first part of the epidemic, followed by a period with significant positive autocorrelation, and again no autocorrelation on the last three sampling dates. In 2004, there was no significant positive autocorrelation for LD at most sampling dates while for ACC, there was a fluctuation between significant and non-significant positive correlation over sampling dates. There was a significant spatial correlation between ACC at given

  20. Investigating the Relationship Between Liquid Water and Leaf Area in Clonal Populus

    NASA Technical Reports Server (NTRS)

    Roberts, Dar; Brown, K.; Green, R.; Ustin, S.; Hinckley, T.

    1998-01-01

    Leaf Area Index (LAI) is one of the most commonly employed biophysical parameters used to characterize vegetation canopies and scale leaf physiological processes to larger scales. For example, LAI is a critical parameter used in regional scale estimates of evapotranspiration, photosynthesis, primary productivity, and carbon cycling (Running et al., 1989; Dorman and Sellers, 1989; Potter et al., 1993). LAI is typically estimated using ratio-based techniques, such as the Normalized Difference Vegetation Index (NDVI: e.g. Tucker 1979; Asrar et al., 1989; Sellers 1985, 1987). The physical basis behind this relationship depends on the high spectral contrast between scattered near-infrared (NIR) and absorbed red radiation in canopies. As the number of leaves present in a canopy increases over a unit area, NIR reflectance increases, while red reflectance decreases, resulting in an increase in the ratio. Through time series and image compositing, NDVI provides an additional temporal measure of how these parameters change, providing a means to monitor fluxes and productivity (Tucker et al., 1983). NDVI, while highly successful for agriculture and grassland ecosystems has been found to be less successful in evergreen chaparral and forested ecosystems (Badhwar et al., 1986; Gamon et al., 1993; Hall et al., 1995). Typically, the relationship between NDVI and LAI becomes progressively more asymptotic at LAI values above three (Sellers, 1985), although linear relationships have been observed in conifers at LAis as high as 13 (Spanner et al., 1990). In this paper, we explore an alternative approach for estimating LAI for remotely sensed data from AVIRIS based on estimates of canopy liquid water. Our primary objective is to test the hypothesis that the depth of the liquid water bands expressed in canopy reflectance spectra at 960, 1200, 1400 and 1900 nm increases with increasing LAI in canopies. This study builds from work by Roberts et al. (1997), in which liquid water was shown

  1. Investigating the Relationship Between Liquid Water and Leaf Area in Clonal Populus

    NASA Technical Reports Server (NTRS)

    Roberts, Dar; Brown, K.; Green, R.; Ustin, S.; Hinckley, T.

    1998-01-01

    Leaf Area Index (LAI) is one of the most commonly employed biophysical parameters used to characterize vegetation canopies and scale leaf physiological processes to larger scales. For example, LAI is a critical parameter used in regional scale estimates of evapotranspiration, photosynthesis, primary productivity, and carbon cycling (Running et al., 1989; Dorman and Sellers, 1989; Potter et al., 1993). LAI is typically estimated using ratio-based techniques, such as the Normalized Difference Vegetation Index (NDVI: e.g. Tucker 1979; Asrar et al., 1989; Sellers 1985, 1987). The physical basis behind this relationship depends on the high spectral contrast between scattered near-infrared (NIR) and absorbed red radiation in canopies. As the number of leaves present in a canopy increases over a unit area, NIR reflectance increases, while red reflectance decreases, resulting in an increase in the ratio. Through time series and image compositing, NDVI provides an additional temporal measure of how these parameters change, providing a means to monitor fluxes and productivity (Tucker et al., 1983). NDVI, while highly successful for agriculture and grassland ecosystems has been found to be less successful in evergreen chaparral and forested ecosystems (Badhwar et al., 1986; Gamon et al., 1993; Hall et al., 1995). Typically, the relationship between NDVI and LAI becomes progressively more asymptotic at LAI values above three (Sellers, 1985), although linear relationships have been observed in conifers at LAis as high as 13 (Spanner et al., 1990). In this paper, we explore an alternative approach for estimating LAI for remotely sensed data from AVIRIS based on estimates of canopy liquid water. Our primary objective is to test the hypothesis that the depth of the liquid water bands expressed in canopy reflectance spectra at 960, 1200, 1400 and 1900 nm increases with increasing LAI in canopies. This study builds from work by Roberts et al. (1997), in which liquid water was shown

  2. Nondestructive diagnostic test for nitrogen nutrition of grapevine (Vitis vinifera L.) based on dualex leaf-clip measurements in the field.

    PubMed

    Cerovic, Zoran G; Ghozlen, Naïma Ben; Milhade, Charlotte; Obert, Mickaël; Debuisson, Sébastien; Le Moigne, Marine

    2015-04-15

    Crop nitrogen status is a major issue for crop yield and quality. It is usually assessed by destructive leaf or petiole tissue analysis. A quantitative nondestructive optical estimation of N sufficiency would be a great leap forward toward precision crop management. We therefore calibrated three optical indices against leaf nitrogen content: chlorophyll (Chl), epidermal flavonols, and the nitrogen balance index (NBI), which is the ratio of the former two indices. NBI was the best estimator of leaf N content measured by the Dumas or Kjeldahl method with a root-mean-square error smaller than 2 mg of N g(-1) dry weight, followed by Chl (3 mg g(-1)) and flavonols (4 mg g(-1)). This allowed us to propose the threshold values for the Dualex optical indices that characterize nitrogen supply to grapevines: the first is the threshold below which N supply to the vine can be considered deficient, and the second is the threshold above which N supply is excessive. For a putative optimal N content of 30 mg g(-1) < x < 40 mg g(-1), these thresholds are 30 μg cm(-2) < x < 40 μg cm(-2) for Chl and 11 < x < 18 for NBI at flowering. At bunch closure, for N thresholds of 22 < x < 32, Chl is 29 < x < 37 and NBI is 8 < x < 11, in respective units. These values should be verified and refined in the future for various growth regions and cultivars using the specified protocol. The sample size should be 36-60 leaves from a fixed node position, preferably node no. 5 from the tip of the shoot. An alternative to the use of the NBI would be to discard leaves that are not light exposed by checking their flavonol content and to deduce the N sufficiency directly from the Chl values.

  3. Relationships Between Phenomenon of Growing Weakness and Leaf Elements Contents in Pinus tabulaeformis

    NASA Astrophysics Data System (ADS)

    Zhang, Juan; Wu, Jianzhi; Wang, Yanchun; Liu, Yan

    2014-01-01

    In order to find the relationships between leaf elements contents and phenomenon of growing weakness of plant, the variation of thirteen mineral elements in pine needles were determined at the period from well growth to weak growth for six consecutive years. Twelve elements consisting toxic metals (Pb, Cr, and Cd) and essential mineral elements (P, K, Fe, Mn, Cu, Zn, Ca, Mg and Na) were analyzed using inductively coupled plasma atomic emission spectroscopy (ICP-AES), and the N content was analyzed using automatic azotometer (KDY-9820 type). The results showed that there were no significantly variatation in elements N, K, Ca, Mg and Fe between normal and abnormal growing trees. However, the sharply increase of Na and toxic heavy metal Cr, and the gradually decrease of trace elements such as Mn, Cu, Zn, and further the rising of P year by year in pine needles might had much more relationships with the weak growth of Pinus tabulaeformis. The correlations of each element could be used to improve the ratios of different element in order to make plant grow well.

  4. Relationships of Leaf Area Index and NDVI for 12 Brassica Cultivars in Northeastern Montana

    NASA Astrophysics Data System (ADS)

    Jabro, Jay; Allen, Brett; Long, Dan; Isbell, Terry; Gesch, Russ; Brown, Jack; Hatfield, Jerry; Archer, David; Oblath, Emily; Vigil, Merle; Kiniry, Jim; Hunter, Kimberly; Shonnard, David

    2017-04-01

    To our knowledge, there is limited information on the relationship of the normalized difference vegetation index (NDVI) and leaf area index (LAI) in spring Brassica oilseed crops. The 2014 results of NDVI and LAI of 12 spring varieties of oilseed crops were measured in a field study conducted in Sidney, Montana, USA under dryland conditions. These 12 varieties were grouped under six species (B. napus, B. rapa, B. juncea, B. carinata, Sinapis alba, and Camelina sativa). The NDVI and LAI were measured weekly throughout the growing season. The NDVI was continually measured at one sample per second across the whole plot using a Crop Circle ACS-470 active crop canopy sensor. The LAI was measured at two locations at 12 samples per plot using an AccuPar model LP-80 Ceptometer. Treatments were replicated four times in a randomized complete block design in plots of 3 m×9 m. Temporal dynamics of NDVI and LAI in various growth stages of 12 varieties were evaluated throughout the growing season. Significant relationships and models between NDVI and LAI were obtained when 12 varieties were grouped under six species.

  5. Effects of precipitation regime and soil nitrogen on leaf traits in seasonally dry tropical forests of the Yucatan Peninsula, Mexico.

    PubMed

    Roa-Fuentes, Lilia L; Templer, Pamela H; Campo, Julio

    2015-10-01

    Leaf traits are closely associated with nutrient use by plants and can be utilized as a proxy for nutrient cycling processes. However, open questions remain, in particular regarding the variability of leaf traits within and across seasonally dry tropical forests. To address this, we considered six leaf traits (specific area, thickness, dry matter content, N content, P content and natural abundance (15)N) of four co-occurring tree species (two that are not associated with N2-fixing bacteria and two that are associated with N2-fixing bacteria) and net N mineralization rates and inorganic N concentrations along a precipitation gradient (537-1036 mm per year) in the Yucatan Peninsula, Mexico. Specifically we sought to test the hypothesis that leaf traits of dominant plant species shift along a precipitation gradient, but are affected by soil N cycling. Although variation among different species within each site explains some leaf trait variation, there is also a high level of variability across sites, suggesting that factors other than precipitation regime more strongly influence leaf traits. Principal component analyses indicated that across sites and tree species, covariation in leaf traits is an indicator of soil N availability. Patterns of natural abundance (15)N in foliage and foliage minus soil suggest that variation in precipitation regime drives a shift in plant N acquisition and the openness of the N cycle. Overall, our study shows that both plant species and site are important determinants of leaf traits, and that the leaf trait spectrum is correlated with soil N cycling.

  6. Intraspecific Relationships among Wood Density, Leaf Structural Traits and Environment in Four Co-Occurring Species of Nothofagus in New Zealand

    PubMed Central

    Richardson, Sarah J.; Allen, Robert B.; Buxton, Rowan P.; Easdale, Tomás A.; Hurst, Jennifer M.; Morse, Christopher W.; Smissen, Rob D.; Peltzer, Duane A.

    2013-01-01

    Plant functional traits capture important variation in plant strategy and function. Recent literature has revealed that within-species variation in traits is greater than previously supposed. However, we still have a poor understanding of how intraspecific variation is coordinated among different traits, and how it is driven by environment. We quantified intraspecific variation in wood density and five leaf traits underpinning the leaf economics spectrum (leaf dry matter content, leaf mass per unit area, size, thickness and density) within and among four widespread Nothofagus tree species in southern New Zealand. We tested whether intraspecific relationships between wood density and leaf traits followed widely reported interspecific relationships, and whether variation in these traits was coordinated through shared responses to environmental factors. Sample sites varied widely in environmental variables, including soil fertility (25–900 mg kg–1 total P), precipitation (668–4875 mm yr–1), temperature (5.2–12.4 °C mean annual temperature) and latitude (41–46 °S). Leaf traits were strongly correlated with one another within species, but not with wood density. There was some evidence for a positive relationship between wood density and leaf tissue density and dry matter content, but no evidence that leaf mass or leaf size were correlated with wood density; this highlights that leaf mass per unit area cannot be used as a surrogate for component leaf traits such as tissue density. Trait variation was predicted by environmental factors, but not consistently among different traits; e.g., only leaf thickness and leaf density responded to the same environmental cues as wood density. We conclude that although intraspecific variation in wood density and leaf traits is strongly driven by environmental factors, these responses are not strongly coordinated among functional traits even across co-occurring, closely-related plant species. PMID:23527041

  7. Acclimation of light and dark respiration to experimental and seasonal warming are mediated by changes in leaf nitrogen in Eucalyptus globulus.

    PubMed

    Crous, K Y; Wallin, G; Atkin, O K; Uddling, J; Af Ekenstam, A

    2017-08-01

    Quantifying the adjustments of leaf respiration in response to seasonal temperature variation and climate warming is crucial because carbon loss from vegetation is a large but uncertain part of the global carbon cycle. We grew fast-growing Eucalyptus globulus Labill. trees exposed to +3 °C warming and elevated CO2 in 10-m tall whole-tree chambers and measured the temperature responses of leaf mitochondrial respiration, both in light (RLight) and in darkness (RDark), over a 20-40 °C temperature range and during two different seasons. RLight was assessed using the Laisk method. Respiration rates measured at a standard temperature (25 °C - R25) were higher in warm-grown trees and in the warm season, related to higher total leaf nitrogen (N) investment with higher temperatures (both experimental and seasonal), indicating that leaf N concentrations modulated the respiratory capacity to changes in temperature. Once differences in leaf N were accounted for, there were no differences in R25 but the Q10 (i.e., short-term temperature sensitivity) was higher in late summer compared with early spring. The variation in RLight between experimental treatments and seasons was positively correlated with carboxylation capacity and photorespiration. RLight was less responsive to short-term changes in temperature than RDark, as shown by a lower Q10 in RLight compared with RDark. The overall light inhibition of R was ∼40%. Our results highlight the dynamic nature of leaf respiration to temperature variation and that the responses of RLight do not simply mirror those of RDark. Therefore, it is important not to assume that RLight is the same as RDark in ecosystem models, as doing so may lead to large errors in predicting plant CO2 release and productivity. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Leaf traits and photosynthetic responses of Betula pendula saplings to a range of ground-level ozone concentrations at a range of nitrogen loads.

    PubMed

    Harmens, Harry; Hayes, Felicity; Sharps, Katrina; Mills, Gina; Calatayud, Vicent

    2017-04-01

    Ground-level ozone (O3) concentrations and atmospheric nitrogen (N) deposition rates have increased strongly since the 1950s. Rising ground-level O3 concentrations and atmospheric N deposition both affect plant physiology and growth, however, impacts have often been studied in isolation rather than in combination. In addition, studies are often limited to a control treatment and one or two elevated levels of ozone and/or nitrogen supply. In the current study, three-year old Betula pendula saplings were exposed to seven different O3 profiles (24h mean O3 concentration of 36-68ppb in 2013, with peaks up to an average of 105ppb) in precision-controlled hemispherical glasshouses (solardomes) and four different N loads (10, 30, 50 or 70kgNha(-1)y(-1)) in 2012 and 2013. Here we report on the effects of enhanced O3 concentrations and N load on leaf traits and gas exchange in leaves of varying age and developmental stage in 2013. The response of leaf traits to O3 (but not N) vary with leaf developmental stage. For example, elevated O3 did not affect the chlorophyll content of the youngest fully expanded leaf, but it reduced the chlorophyll content and photosynthetic parameters in aging leaves, relatively more so later than earlier in the growing season. Elevated O3 enhanced the N content of senesced leaves prior to leaf fall, potentially affecting subsequent N cycling in the soil. Enhanced N generally stimulated the chlorophyll content and photosynthetic capacity. Whilst elevated O3 reduced the light-saturated rate of photosynthesis (Asat) in aging leaves, it did not affect stomatal conductance (gs). This suggests that photosynthesis and gs are not closely coupled at elevated O3 under-light saturating conditions. We did not observe any interactions between O3 and N regarding photosynthetic parameters (Vc,max, Jmax, Asat), chlorophyll content, gs, N content in senesced leaves and leaf number. Hence, the sensitivity of these leaf traits to O3 in young silver birch trees is

  9. Leaf blade versus petiole nutrient tests as predictors of nitrogen, phosphorus, and potassium status of ‘Pinot noir’ grapevines

    USDA-ARS?s Scientific Manuscript database

    Grape growers rely on tissues tests of leaf blades or petioles for routine monitoring of vine nutritional health and for diagnosing potential nutrient deficiency or toxicity. There has been a long standing debate as to which tissue better reflects the nutrient status of vines. A comparison of leaf b...

  10. MULTISCALE RELATIONSHIPS OF LANDSCAPE CHARACTERISTICS AND NITROGEN CONCENTRATIONS IN STREAMS

    EPA Science Inventory

    There have been numerous papers reporting relationships between watershed andlandscape characteristics and chemnical, physical,m and biological attributes of streams (see summary in Lee et al. 2001). Some of these studies have shown strong linkages between stream and near-site ...

  11. The influence of life form on carbon and nitrogen relationships in tropical rainforest ferns.

    PubMed

    Watkins, James E; Rundel, Philip W; Cardelús, Catherine L

    2007-08-01

    Tropical ferns are characterized by a high diversity of plant life forms, yet there have been few large-scale studies on the functional ecology of these different forms. We examined epiphytic, hemiepiphytic, and terrestrial ferns, and asked whether there are differences in the mineral nutrition and water relations across different growth forms of a diverse assemblage of species. We measured specific leaf area, leaf nitrogen concentrations, and natural abundance of the stable isotopes delta(15)N and delta(13)C of 48 fern species from 36 genera across a wide range of habitats at La Selva Biological Station in Costa Rica. We found that epiphytes were significantly different in all measured variables from hemiepiphytic and terrestrial species, and that terrestrial and soil-rooted hemiepiphytes were indistinguishable in all variables excluding SLW. A multivariate analysis revealed that aspects of N nutrition were the most reliable at separating epiphytic species from other life forms. Our study demonstrates that the natural abundance of both C and N as well as N relations and leaf morphology are useful when segregating different plant life forms, and that the N cycle of epiphytic and terrestrial habitats function independently from each other.

  12. Light, temperature, and leaf nitrogen distribution in the tropical rain forest of Biosphere 2 and their importance in the mathematical models for global environmental changes

    NASA Technical Reports Server (NTRS)

    Tohda, Motofumi

    1997-01-01

    As the environmental changes occur throughout the world in rapid rate, we need to have further understandings for our planet. Since the ecosystems are so complex, it is almost impossible for us to integrate every factor. However, mathematical models are powerful tools which can be used to simulate those ecosystems with limited data. In this project, I collected light intensity, canopy leaf temperature and Air Handler (AHU) temperature, and nitrogen concentration in the leaves for different profiles in the rainforest mesocosm. These data will later be put into mathematical models such as "big-leaf" and "sun/shade" models to determine how these factors will affect CO2 exchange in the rainforest. As rainforests are diminishing from our planet and their existence is very important for all living things on earth, it is necessary for us to learn more about the unique system of rainforests and how we can co-exist rather than destroy.

  13. Light, temperature, and leaf nitrogen distribution in the tropical rain forest of Biosphere 2 and their importance in the mathematical models for global environmental changes

    NASA Technical Reports Server (NTRS)

    Tohda, Motofumi

    1997-01-01

    As the environmental changes occur throughout the world in rapid rate, we need to have further understandings for our planet. Since the ecosystems are so complex, it is almost impossible for us to integrate every factor. However, mathematical models are powerful tools which can be used to simulate those ecosystems with limited data. In this project, I collected light intensity, canopy leaf temperature and Air Handler (AHU) temperature, and nitrogen concentration in the leaves for different profiles in the rainforest mesocosm. These data will later be put into mathematical models such as "big-leaf" and "sun/shade" models to determine how these factors will affect CO2 exchange in the rainforest. As rainforests are diminishing from our planet and their existence is very important for all living things on earth, it is necessary for us to learn more about the unique system of rainforests and how we can co-exist rather than destroy.

  14. Effects of copper on production of periphyton, nitrogen fixation and processing of leaf litter in a Sierra Nevada, California, stream

    USGS Publications Warehouse

    Leland, Harry V.; Carter, James L.

    1985-01-01

    1Production of periphyton, nitrogen fixation and processing of leaf litter were examined in an oligotrophic Sierra Nevada stream and the responses of these processes to copper (2.5, 5 and 10μg 1-1 CuT [total filtrable copper]; approximately 12, 25 and 50 ng 1-1 Cu2+) were determined.2Autotrophic and total production were estimated from 3-week accumulations of biomass on artificial substrates. Mean autotrophic production in the control ranged from 0.22 to 0.58 mg C m-2 h-1 in summer-autumn 1979, but declined to 0.08–0.28 mg C m 2 h-1 after peak discharge in summer 1980, apparently due to phosphorus-limited growth. Total production in the control ranged from 0.30 to 0.82 mg C m-2 h -1 in summer-autumn 1979 and from 0.16 to 0,68 mg C m -2 h -1 in 1980. Mean autotrophic productivity, estimated by l4C-bicarbonate uptake in daylight, ranged from 0.30 to 2.8 mg C m-2 h-1.3Autotrophic productivity was reduced by 57–81% at 2.5μg 1-1 CuT, 55–96% at 5μg 1-1CuT, and 81–100% at 10μg 1-1 CUT, Heterotrophic productivity (based on dark 35S-sulphate uptake) was inhibited to a lesser extent (28–63% at 2.5μg 1-1 CuT, 24–84% at 5μg 1-1 CuT, and 67–92% at 10μg 1-1 CuT), The inhibition of autotrophic and heterotrophic productivity persisted through the year of exposure. Production in stream sections previously exposed to 2.5 and 5μg 1-1CuT increased to control levels within 4 weeks after dosing, but remained depressed for more than 7 weeks after exposure to 10μg 1-1 CuT.4The specific rate of photosynthesis (mg C mg chlorophyll a-1 h-1) of mature periphyton communities declined at all test concentrations of copper, but the rate for periphyton on newly-colonized surfaces did not change. The species composition of benthic algae shifted during exposure to an assemblage more tolerant of copper. Achrtanthes minutissima and Fragilaria crotonensis were the primary replacement species on newly-colonized surfaces.5The nitrogenase activity of blue-green algae was low. with

  15. Seasonal variability of multiple leaf traits captured by leaf spectroscopy at two temperate deciduous forests

    DOE PAGES

    Yang, Xi; Tang, Jianwu; Mustard, John F.; ...

    2016-04-02

    Understanding the temporal patterns of leaf traits is critical in determining the seasonality and magnitude of terrestrial carbon, water, and energy fluxes. However, we lack robust and efficient ways to monitor the temporal dynamics of leaf traits. Here we assessed the potential of leaf spectroscopy to predict and monitor leaf traits across their entire life cycle at different forest sites and light environments (sunlit vs. shaded) using a weekly sampled dataset across the entire growing season at two temperate deciduous forests. In addition, the dataset includes field measured leaf-level directional-hemispherical reflectance/transmittance together with seven important leaf traits [total chlorophyll (chlorophyllmore » a and b), carotenoids, mass-based nitrogen concentration (Nmass), mass-based carbon concentration (Cmass), and leaf mass per area (LMA)]. All leaf traits varied significantly throughout the growing season, and displayed trait-specific temporal patterns. We used a Partial Least Square Regression (PLSR) modeling approach to estimate leaf traits from spectra, and found that PLSR was able to capture the variability across time, sites, and light environments of all leaf traits investigated (R2 = 0.6–0.8 for temporal variability; R2 = 0.3–0.7 for cross-site variability; R2 = 0.4–0.8 for variability from light environments). We also tested alternative field sampling designs and found that for most leaf traits, biweekly leaf sampling throughout the growing season enabled accurate characterization of the seasonal patterns. Compared with the estimation of foliar pigments, the performance of Nmass, Cmass and LMA PLSR models improved more significantly with sampling frequency. Our results demonstrate that leaf spectra-trait relationships vary with time, and thus tracking the seasonality of leaf traits requires statistical models calibrated with data sampled throughout the growing season. In conclusion, our results have broad implications for future

  16. The Genetics of Leaf Flecking in Maize and Its Relationship to Plant Defense and Disease Resistance.

    PubMed

    Olukolu, Bode A; Bian, Yang; De Vries, Brian; Tracy, William F; Wisser, Randall J; Holland, James B; Balint-Kurti, Peter J

    2016-11-01

    Physiological leaf spotting, or flecking, is a mild-lesion phenotype observed on the leaves of several commonly used maize (Zea mays) inbred lines and has been anecdotally linked to enhanced broad-spectrum disease resistance. Flecking was assessed in the maize nested association mapping (NAM) population, comprising 4,998 recombinant inbred lines from 25 biparental families, and in an association population, comprising 279 diverse maize inbreds. Joint family linkage analysis was conducted with 7,386 markers in the NAM population. Genome-wide association tests were performed with 26.5 million single-nucleotide polymorphisms (SNPs) in the NAM population and with 246,497 SNPs in the association population, resulting in the identification of 18 and three loci associated with variation in flecking, respectively. Many of the candidate genes colocalizing with associated SNPs are similar to genes that function in plant defense response via cell wall modification, salicylic acid- and jasmonic acid-dependent pathways, redox homeostasis, stress response, and vesicle trafficking/remodeling. Significant positive correlations were found between increased flecking, stronger defense response, increased disease resistance, and increased pest resistance. A nonlinear relationship with total kernel weight also was observed whereby lines with relatively high levels of flecking had, on average, lower total kernel weight. We present evidence suggesting that mild flecking could be used as a selection criterion for breeding programs trying to incorporate broad-spectrum disease resistance. © 2016 American Society of Plant Biologists. All Rights Reserved.

  17. Leaf Volatile Compounds and Associated Gene Expression during Short-Term Nitrogen Deficient Treatments in Cucumis Seedlings

    PubMed Central

    Deng, Jie; Yu, Hong-Jun; Li, Yun-Yun; Zhang, Xiao-Meng; Liu, Peng; Li, Qiang; Jiang, Wei-Jie

    2016-01-01

    Nitrogen (N) is an important macronutrient for plant growth and development, but the regulatory mechanism of volatile compounds in response to N deficiency is not well understood, especially in cucumber, which consumes excessive N during growth. In this study, the major volatile compounds from cucumber leaves subjected to N deficiency were analyzed by GC-MS. A total of 24 volatile components were identified including 15 aldehydes, two ketones, two alkenes, and five other volatile compounds in 9930 leaves. Principal component analysis using volatile compounds from cucumber leaves provided good separation between N-sufficient and N-deficient treatments. The main volatiles in cucumber leaves were found to be C6 and C9 aldehydes, especially (E)-2-hexanal and (E,Z)-2,6-nonadienal. (E)-2-hexanal belonged to the C6 aldehyde and was the most abundant compound, whereas (E,Z)-2,6-nonadienal was the chief component of C9 aldehydes. During N-deficient treatment, short-chain volatile content was significantly improved at 5 day, other volatiles displayed significant reduction or no significantly changes in all sampling points. Improvement of short-chain volatiles was confirmed in the six other inbred lines at 5 day after N-deficient treatments. The expression analysis of 12 cucumber LOX genes and two HPL genes revealed that CsLOX19, CsLOX20, and CsLOX22 had common up-regulated expression patterns in response to N-deficient stress in most inbred lines; meanwhile, most sample points of CsHPL1 also had significant up-regulated expression patterns. This research focused on the relationship between volatiles in cucumber and different nitrogen environments to provide valuable insight into the effect of cultivation and management of the quality of cucumber and contributes to further research on volatile metabolism in cucumber. PMID:27827841

  18. A visible band index for remote sensing leaf chlorophyll content at the canopy scale

    USDA-ARS?s Scientific Manuscript database

    Leaf chlorophyll content is an important variable for agricultural remote sensing because of its close relationship to leaf nitrogen content. The triangular greenness index (TGI) was developed based on the area of a triangle surrounding the spectral features of chlorophyll: TGI = -0.5((670 - 480)(R...

  19. Nitrogen

    USGS Publications Warehouse

    Kramer, D.A.

    2006-01-01

    In 2005, ammonia was produced by 15 companies at 26 plants in 16 states in the United States. Of the total ammonia production capacity, 55% was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas. US producers operated at 66% of their rated capacity. In descending order, Koch Nitrogen, Terra Industries, CF Industries, Agrium and PCS Nitrogen accounted for 81% of the US ammonia production capacity.

  20. RELATIONSHIPS BETWEEN TOTAL NITROGEN AND PLANKTONIC CHLOROPHYLL IN LONG ISLAND SOUND

    EPA Science Inventory

    We used data collected by the Connecticut Department of Environmental Protection's Long Island Sound Water Quality Monitoring Program to examine spatial and temporal trends in concentrations of total nitrogen and chlorophyll in the water column and in the relationship between the...

  1. LOAD-RESPONSE RELATIONSHIPS FOR NITROGEN AND CHLOROPHYLL A IN COASTAL EMBAYMENTS

    EPA Science Inventory

    The U.S. Environmental Protection Agency is conducting research to develop relationships between nitrogen loads and responses of submerged aquatic vegetation, dissolved oxygen, and food webs in coastal systems. We present an overview of the research program; then we describe in d...

  2. SPATIAL AND TEMPORAL RELATIONSHIPS BETWEEN TOTAL NITROGEN AND PLANKTONIC CHLOROPHYLL IN LONG ISLAND SOUND

    EPA Science Inventory

    We used data collected by the Connecticut Department of Environmental Protection's Long Island Sound Water Quality Monitoring Program to examine spatial and temporal trends in concentrations of total nitrogen and chlorophyll in the water column and in the relationship between the...

  3. RELATIONSHIPS BETWEEN TOTAL NITROGEN AND PLANKTONIC CHLOROPHYLL IN LONG ISLAND SOUND

    EPA Science Inventory

    We used data collected by the Connecticut Department of Environmental Protection's Long Island Sound Water Quality Monitoring Program to examine spatial and temporal trends in concentrations of total nitrogen and chlorophyll in the water column and in the relationship between the...

  4. LOAD-RESPONSE RELATIONSHIPS FOR NITROGEN AND CHLOROPHYLL A IN COASTAL EMBAYMENTS

    EPA Science Inventory

    The U.S. Environmental Protection Agency is conducting research to develop relationships between nitrogen loads and responses of submerged aquatic vegetation, dissolved oxygen, and food webs in coastal systems. We present an overview of the research program; then we describe in d...

  5. Dorsoventral asymmetry of photosynthesis and photoinhibition in flag leaves of two rice cultivars that differ in nitrogen response and leaf angle.

    PubMed

    Kumagai, Etsushi; Hamaoka, Norimitsu; Araki, Takuya; Ueno, Osamu

    2014-08-01

    Rice is believed to show photosynthetic symmetry between adaxial and abaxial leaf sides. To verify this, we re-examined dorsoventral asymmetry in photosynthesis, chlorophyll fluorescence and anatomical traits in flag leaves of two Oryza sativa cultivars that differ in nitrogen (N) response and in leaf angle: 'Akenohoshi', a cultivar that can adapt to low-N (LN), with low leaf angle (more erect leaves), and 'Shirobeniya', a cultivar that is unable to adapt to LN, with higher leaf angle. Plants were grown under standard-N (SN) and LN conditions. LN leaves of both cultivars became more erect than SN, but LN Akenohoshi still had more erect ones than Shirobeniya. Contrary to results of previous studies, leaves of both cultivars showed an asymmetry in photosynthetic rate between adaxial and abaxial sides (higher on the adaxial side) under SN. SN leaves of both cultivars showed lower susceptibility to photoinhibition on the adaxial side than on the abaxial side. However, leaves of Akenohoshi showed less asymmetry in these traits under LN than under SN, whereas leaves of Shirobeniya had similar degrees of asymmetry in these traits under both SN and LN. Both cultivars also showed dorsoventral asymmetry in anatomical traits of mesophyll tissue regardless of N level, but the degree of asymmetry was lower in LN Akenohoshi. These data reveal that rice leaves exhibit dorsoventral asymmetry in photosynthetic and anatomical features, and that the degree of asymmetry varies with cultivar and N level. It is suggested that lower leaf angles (particularly in Akenohoshi) in the presence of LN represent a light acclimation to prevent photoinhibition. © 2013 Scandinavian Plant Physiology Society.

  6. Bulk tank milk urea nitrogen: seasonal patterns and relationship to individual cow milk urea nitrogen values.

    PubMed

    Arunvipas, P; VanLeeuwen, J A; Dohoo, I R; Keefe, G P

    2004-07-01

    The objectives of this study were: 1) to determine if bulk tank milk urea nitrogen (BTMUN) and whole herd weighted average of the individual cow MUN levels (WHMUN) were equivalent measurements of herd MUN status; and 2) to determine the seasonal variation in BTMUN concentrations in Prince Edward Island (PEI) dairy herds. For BTMUN-WHMUN correlation testing, bulk tank milk samples from 176 herds were tested for MUN once every 1 to 2 wk between September 1999 and August 2002, as part of routine BTM testing for milk components. During this 3-year period, all herds had all milking cows tested for MUN once a month at the same lab. The WHMUN levels (weighted for milk production) were calculated for each month, and were compared to BTMUN levels using a concordance correlation coefficient (CCC) and a graphic procedure. Tests were only compared if they occurred on the same date, producing a final dataset of 669 comparisons. The BTMUN had good (but not perfect) correlation with WHMUN (CCC = 0.91). This high reliability extended to both the pasture and non-pasture seasons, various milk sampling protocols, and all herd sizes seen in PEI. For evaluating the seasonal variation of BTMUN, the 3 y worth of data (24 803 observations) were divided into 15 seasonal categories, 5 seasons per year (early, mid, and late pasture, and early and late stable). Using linear mixed modelling, significantly (P < 0.05) higher BTMUN values were found during the mid and late pasture seasons of 2000, likely because the precipitation was unusually high during this period, enhancing pasture growth.

  7. Metabolic Adaptation, a Specialized Leaf Organ Structure and Vascular Responses to Diurnal N2 Fixation by Nostoc azollae Sustain the Astonishing Productivity of Azolla Ferns without Nitrogen Fertilizer

    PubMed Central

    Brouwer, Paul; Bräutigam, Andrea; Buijs, Valerie A.; Tazelaar, Anne O. E.; van der Werf, Adrie; Schlüter, Urte; Reichart, Gert-Jan; Bolger, Anthony; Usadel, Björn; Weber, Andreas P. M.; Schluepmann, Henriette

    2017-01-01

    Sustainable agriculture demands reduced input of man-made nitrogen (N) fertilizer, yet N2 fixation limits the productivity of crops with heterotrophic diazotrophic bacterial symbionts. We investigated floating ferns from the genus Azolla that host phototrophic diazotrophic Nostoc azollae in leaf pockets and belong to the fastest growing plants. Experimental production reported here demonstrated N-fertilizer independent production of nitrogen-rich biomass with an annual yield potential per ha of 1200 kg−1 N fixed and 35 t dry biomass. 15N2 fixation peaked at noon, reaching 0.4 mg N g−1 dry weight h−1. Azolla ferns therefore merit consideration as protein crops in spite of the fact that little is known about the fern’s physiology to enable domestication. To gain an understanding of their nitrogen physiology, analyses of fern diel transcript profiles under differing nitrogen fertilizer regimes were combined with microscopic observations. Results established that the ferns adapted to the phototrophic N2-fixing symbionts N. azollae by (1) adjusting metabolically to nightly absence of N supply using responses ancestral to ferns and seed plants; (2) developing a specialized xylem-rich vasculature surrounding the leaf-pocket organ; (3) responding to N-supply by controlling transcripts of genes mediating nutrient transport, allocation and vasculature development. Unlike other non-seed plants, the Azolla fern clock is shown to contain both the morning and evening loops; the evening loop is known to control rhythmic gene expression in the vasculature of seed plants and therefore may have evolved along with the vasculature in the ancestor of ferns and seed plants. PMID:28408911

  8. Metabolic Adaptation, a Specialized Leaf Organ Structure and Vascular Responses to Diurnal N2 Fixation by Nostoc azollae Sustain the Astonishing Productivity of Azolla Ferns without Nitrogen Fertilizer.

    PubMed

    Brouwer, Paul; Bräutigam, Andrea; Buijs, Valerie A; Tazelaar, Anne O E; van der Werf, Adrie; Schlüter, Urte; Reichart, Gert-Jan; Bolger, Anthony; Usadel, Björn; Weber, Andreas P M; Schluepmann, Henriette

    2017-01-01

    Sustainable agriculture demands reduced input of man-made nitrogen (N) fertilizer, yet N2 fixation limits the productivity of crops with heterotrophic diazotrophic bacterial symbionts. We investigated floating ferns from the genus Azolla that host phototrophic diazotrophic Nostoc azollae in leaf pockets and belong to the fastest growing plants. Experimental production reported here demonstrated N-fertilizer independent production of nitrogen-rich biomass with an annual yield potential per ha of 1200 kg(-1) N fixed and 35 t dry biomass. (15)N2 fixation peaked at noon, reaching 0.4 mg N g(-1) dry weight h(-1). Azolla ferns therefore merit consideration as protein crops in spite of the fact that little is known about the fern's physiology to enable domestication. To gain an understanding of their nitrogen physiology, analyses of fern diel transcript profiles under differing nitrogen fertilizer regimes were combined with microscopic observations. Results established that the ferns adapted to the phototrophic N2-fixing symbionts N. azollae by (1) adjusting metabolically to nightly absence of N supply using responses ancestral to ferns and seed plants; (2) developing a specialized xylem-rich vasculature surrounding the leaf-pocket organ; (3) responding to N-supply by controlling transcripts of genes mediating nutrient transport, allocation and vasculature development. Unlike other non-seed plants, the Azolla fern clock is shown to contain both the morning and evening loops; the evening loop is known to control rhythmic gene expression in the vasculature of seed plants and therefore may have evolved along with the vasculature in the ancestor of ferns and seed plants.

  9. Leaf habit and woodiness regulate different leaf economy traits at a given nutrient supply.

    PubMed

    Ordoñez, Jenny C; van Bodegom, Peter M; Witte, Jan-Philip M; Bartholomeus, Ruud P; van Dobben, Han F; Aerts, Rien

    2010-11-01

    The large variation in the relationships between environmental factors and plant traits observed in natural communities exemplifies the alternative solutions that plants have developed in response to the same environmental limitations. Qualitative attributes, such as growth form, woodiness, and leaf habit can be used to approximate these alternative solutions. Here, we quantified the extent to which these attributes affect leaf trait values at a given resource supply level, using measured plant traits from 105 different species (254 observations) distributed across 50 sites in mesic to wet plant communities in The Netherlands. For each site, soil total N, soil total P, and water supply estimates were obtained by field measurements and modeling. Effects of growth forms, woodiness, and leaf habit on relations between leaf traits (SLA, specific leaf area; LNC, leaf nitrogen concentration; and LPC, leaf phosphorus concentration) vs. nutrient and water supply were quantified using maximum-likelihood methods and Bonferroni post hoc tests. The qualitative attributes explained 8-23% of the variance within sites in leaf traits vs. soil fertility relationships, and therefore they can potentially be used to make better predictions of global patterns of leaf traits in relation to nutrient supply. However, at a given soil fertility, the strength of the effect of each qualitative attribute was not the same for all leaf traits. These differences may imply a differential regulation of the leaf economy traits at a given nutrient supply, in which SLA and LPC seem to be regulated in accordance to changes in plant size and architecture while LNC seems to be primarily regulated at the leaf level by factors related to leaf longevity.

  10. Ozone exposure- and flux-based response relationships with photosynthesis, leaf morphology and biomass in two poplar clones.

    PubMed

    Shang, Bo; Feng, Zhaozhong; Li, Pin; Yuan, Xiangyang; Xu, Yansen; Calatayud, Vicent

    2017-12-15

    Poplar clones 546 (P. deltoides cv. '55/56'×P. deltoides cv. 'Imperial') and 107 (P. euramericana cv. '74/76') were exposed to five ozone concentrations in 15 open-top chambers (OTCs). Both ozone exposure (AOT40, Accumulation Over a Threshold hourly ozone concentration of 40ppb) and flux-based (POD7, Phytotoxic Ozone Dose above an hourly flux threshold of 7nmol O3 m(-2) PLA (projected leaf area) s(-1)) response relationships were established with photosynthesis, leaf morphology and biomass variables. Increases in both metrics showed significant negative relationships with light-saturated photosynthesis rate, chlorophyll content, leaf mass per area, actual photochemical efficiency of PSII in the light and root biomass but not with stomatal conductance (gs), leaf and stem biomass. Ozone had a greater impact on belowground than on aboveground biomass. The ranking of these indicators from higher to lower sensitivity to ozone was: photosynthetic parameters, morphological index, and biomass. Clone 546 had a higher sensitivity to ozone than clone 107. The coefficients of determination (R(2)) were similar between exposure- and flux-based dose-response relationships for each variable. The critical levels (CLs) for a 5% reduction in total biomass for the two poplar clones were 14.8ppmh for AOT40 and 9.8mmol O3 m(-2) PLA for POD7. In comparison, equivalent reduction occurred at much lower values in photosynthetic parameters (4ppmh for AOT40 and 3mmol O3 m(-2) PLA for POD7) and LMA (5.8ppmh for AOT40 and 4mmol O3 m(-2) PLA for POD7). While in recent decades different CLs have been proposed for several plant receptors especially in Europe, studies focusing on both flux-based dose-response relationships and CLs are still scarce in Asia. This study is therefore valuable for regional O3 risk assessment in Asia. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Relationships between the photochemical reflectance index (PRI) and chlorophyll fluorescence parameters and plant pigment indices at different leaf growth stages.

    PubMed

    Rahimzadeh-Bajgiran, Parinaz; Munehiro, Masashi; Omasa, Kenji

    2012-09-01

    This study aimed to evaluate the photochemical reflectance index (PRI) for assessing plant photosynthetic performance throughout the plant life cycle. The relationships between PRI, chlorophyll fluorescence parameters, and leaf pigment indices in Solanum melongena L. (aubergine; eggplant) were studied using photosynthetic induction curves both in short-term (diurnal) and long-term (seasonal) periods under different light intensities. We found good correlations between PRI/non-photochemical quenching (NPQ) and PRI/electron transport rate (ETR) in the short term at the same site of a single leaf but these relationships did not hold throughout the life of the plant. In general, changes in PRI owing to NPQ or ETR variations in the short term were <20 % of those that occurred with leaf aging. Results also showed that PRI was highly correlated to plant pigments, especially chlorophyll indices measured by spectral reflectance. Moreover, relationships of steady-state PRI/ETR and steady-state PRI/photochemical yield of photosystem II (Φ(PSII)) measured at uniform light intensity at different life stages proved that overall photosynthesis capacity and steady-state PRI were better correlated through chlorophyll content than NPQ and xanthophylls. The calibrated PRI index accommodated these pigments effects and gave better correlation with NPQ and ETR than PRI. Further studies of PRI indices based on pigments other than xanthophylls, and studies on PRI mechanisms in different species are recommended.

  12. UPLC-QTOF analysis reveals metabolomic changes in the flag leaf of wheat (Triticum aestivum L.) under low-nitrogen stress.

    PubMed

    Zhang, Yang; Ma, Xin-Ming; Wang, Xiao-Chun; Liu, Ji-Hong; Huang, Bing-Yan; Guo, Xiao-Yang; Xiong, Shu-Ping; La, Gui-Xiao

    2017-02-01

    Wheat is one of the most important grain crop plants worldwide. Nitrogen (N) is an essential macronutrient for the growth and development of wheat and exerts a marked influence on its metabolites. To investigate the influence of low nitrogen stress on various metabolites of the flag leaf of wheat (Triticum aestivum L.), a metabolomic analysis of two wheat cultivars under different induced nitrogen levels was conducted during two important growth periods based on large-scale untargeted metabolomic analysis using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF). Multivariate analyses-such as principle components analysis (PCA) and orthogonal partial least square discriminant analysis (OPLS-DA)-were used for data analysis. PCA yielded distinctive clustering information among the samples, classifying the wheat flag samples into two categories: those under normal N treatment and low N treatment. By processing OPLS-DA, eleven secondary metabolites were shown to be responsible for classifying the two groups. The secondary metabolites may be considered potential biomarkers of low nitrogen stress. Chemical analyses showed that most of the identified secondary metabolites were flavonoids and their related derivatives, such as iso-vitexin, iso-orientin and methylisoorientin-2″-O-rhamnoside, etc. This study confirmed the effect of low nitrogen stress on the metabolism of wheat, and revealed that the accumulation of secondary metabolites is a response to abiotic stresses. Meanwhile, we aimed to identify markers which could be used to monitor the nitrogen status of wheat crops, presumably to guide appropriate fertilization regimens. Furthermore, the UPLC-QTOF metabolic platform technology can be used to study metabolomic variations of wheat under abiotic stresses. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Relationships between phenology and the remobilization of nitrogen, phosphorus and potassium in branches of eight Mediterranean evergreens.

    PubMed

    Milla, R; Castro-Díez, P; Maestro-Martínez, M; Montserrat-Martí, G

    2005-10-01

    Few studies have examined the effects of plant growth on nutrient remobilization in phenologically contrasting species. Here we evaluated the consequences of above-ground seasonality of growth and leaf shedding on the remobilization of nutrients from branches in eight evergreen Mediterranean phanaerophytes that differ widely in phenology. Vegetative growth, flower bud formation, flowering, fruiting, leaf shedding, and the variations in nitrogen (N), phosphorus (P) and potassium (K) pools in branches throughout the year were monitored in each species. Nitrogen and P remobilization occurred in summer, after vegetative growth and synchronously with leaf shedding. Despite the time-lag between growth and remobilization, the branches that invested more nutrients in vegetative growth also remobilized more nutrients from their old organs. Potassium remobilization peaked in the climatically harshest periods, and appears to be related to osmotic requirements. We conclude that N and P remobilization occurs mainly associated with leaf senescence, which might be triggered by factors such as the replenishment of nutrient reserves in woody organs, the hormonal relations between new and old leaves, or the constraints that summer drought poses on the amount of leaf area per branch in summer.

  14. Leaf-litter inputs from an invasive nitrogen-fixing tree influence organic-matter dynamics and nitrogen inputs in a Hawaiian river

    Treesearch

    Richard A. MacKenzie; Tracy N. Wiegner; Frances Kinslow; Nicole Cormier; Ayron M. Strauch

    2013-01-01

    Abstract. We examined how invasion of tropical riparian forests by an exotic N-fixing tree (Falcataria moluccana) affects organic-matter dynamics in a Hawaiian river by comparing early stages of leaf-litter breakdown between the exotic F. moluccana and native Metrosideros polymorpha trees. We examined early...

  15. [Comparative leaf anatomy and phylogenetic relationships of 11 species of Laeliinae with emphasis on Brassavola (Orchidaceae)].

    PubMed

    Noguera-Savelli, Eliana; Jáuregui, Damelis

    2011-09-01

    Brassavola inhabits a wide altitude range and habitat types from Northern Mexico to Northern Argentina. Classification schemes in plants have normally used vegetative and floral characters, but when species are very similar, as in this genus, conflicts arise in species delimitation, and alternative methods should be applied. In this study we explored the taxonomic and phylogenetic value of the anatomical structure of leaves in Brassavola; as ingroup, seven species of Brassavola were considered, and as an outgroup Guarianthe skinneri, Laelia anceps, Rhyncholaelia digbyana and Rhyncholaelia glauca were evaluated. Leaf anatomical characters were studied in freehand cross sections of the middle portion with a light microscope. Ten vegetative anatomical characters were selected and coded for the phylogenetic analysis. Phylogenetic reconstruction was carried out under maximum parsimony using the program NONA through WinClada. Overall, Brassavola species reveal a wide variety of anatomical characters, many of them associated with xeromorphic plants: thick cuticle, hypodermis and cells of the mesophyll with spiral thickenings in the secondary wall. Moreover, mesophyll is either homogeneous or heterogeneous, often with extravascular bundles of fibers near the epidermis at both terete and flat leaves. All vascular bundles are collateral, arranged in more than one row in the mesophyll. The phylogenetic analysis did not resolve internal relationships of the genus; we obtained a polytomy, indicating that the anatomical characters by themselves have little phylogenetic value in Brassavola. We concluded that few anatomical characters are phylogenetically important; however, they would provide more support to elucidate the phylogenetic relantionships in the Orchidaceae and other plant groups if they are used in conjunction with morphological and/or molecular characters.

  16. Effect of fluorescence characteristics and different algorithms on the estimation of leaf nitrogen content based on laser-induced fluorescence lidar in paddy rice.

    PubMed

    Yang, Jian; Sun, Jia; Du, Lin; Chen, Biwu; Zhang, Zhenbing; Shi, Shuo; Gong, Wei

    2017-02-20

    Paddy rice is one of the most significant food sources and an important part of the ecosystem. Thus, accurate monitoring of paddy rice growth is highly necessary. Leaf nitrogen content (LNC) serves as a crucial indicator of growth status of paddy rice and determines the dose of nitrogen (N) fertilizer to be used. This study aims to compare the predictive ability of the fluorescence spectra excited by different excitation wavelengths (EWs) combined with traditional multivariate analysis algorithms, such as principal component analysis (PCA), back-propagation neural network (BPNN), and support vector machine (SVM), for estimating paddy rice LNC from the leaf level with three different fluorescence characteristics as input variables. Then, six estimation models were proposed. Compared with the five other models, PCA-BPNN was the most suitable model for the estimation of LNC by improving R2 and reducing RMSE and RE. For 355, 460 and 556 nm EWs, R2 was 0.89, 0.80 and 0.88, respectively. Experimental results demonstrated that the fluorescence spectra excited by 355 and 556 nm EWs were superior to those excited by 460 nm for the estimation of LNC with different models. BPNN algorithm combined with PCA may provide a helpful exploratory and predictive tool for fluorescence spectra excited by appropriate EW based on practical application requirements for monitoring the N status of crops.

  17. Nitrogen

    USGS Publications Warehouse

    Apodaca, L.E.

    2012-01-01

    Ammonia was produced by 12 companies at 27 plants in 15 states in the United States during 2011. Sixty-one percent of total U.S. ammonia production capacity was centered in Louisiana, Oklahoma and Texas because of those states' large reserves of natural gas, the dominant domestic feedstock. In 2011, U.S. producers operated at about 84 percent of their rated capacity (excluding plants that were idle for the entire year). Four companies — CF Industries Holdings Inc.; Koch Nitrogen Co.; PCS Nitrogen Inc. and Agrium Inc., in descending order — accounted for 77 percent of the total U.S. ammonia production capacity.

  18. Relationship between lightning activity and tropospheric nitrogen dioxide and the estimation of lightning-produced nitrogen oxides over China

    NASA Astrophysics Data System (ADS)

    Guo, Fengxia; Ju, Xiaoyu; Bao, Min; Lu, Ganyi; Liu, Zupei; Li, Yawen; Mu, Yijun

    2017-02-01

    To better understand the relationship between lightning activity and nitrogen oxides (NO X ) in the troposphere and to estimate lightning-produced NO X (LNO X ) production in China more precisely, spatial and temporal distributions of vertical column densities of tropospheric nitrogen dioxide (NO2 VCDs) and lightning activity were analyzed using satellite measurements. The results showed that the spatial distribution of lightning activity is greater in the east than in the west of China, as with NO2 VCDs. However, the seasonal and annual variation between lightning and NO2 density show different trends in the east and west. The central Tibetan Plateau is sparsely populated without modern industry, and NO2 VCDs across the plateau are barely affected by anthropogenic sources. The plateau is an ideal area to study LNO X . By analyzing 15 years of satellite data from that region, it was found that lightning density is in strong agreement with annual, spatial and seasonal variations of NO2 VCDs, with a correlation coefficient of 0.79 from the linear fit. Combining Beirle's method and the linear fit equation, LNO X production in the Chinese interior was determined to be 0.07 (0.02-0.27) TgN yr-1 for 1997-2012, within the range of 0.016-0.384 TgN yr-1 from previous estimates.

  19. Distinctive Responses of Ribulose-1,5-Bisphosphate Carboxylase and Carbonic Anhydrase in Wheat Leaves to Nitrogen Nutrition and their Possible Relationships to CO2-Transfer Resistance 1

    PubMed Central

    Makino, Amane; Sakashita, Hiroshi; Hidema, Jun; Mae, Tadahiko; Ojima, Kunihiko; Osmond, Barry

    1992-01-01

    The amounts of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), total chlorophyll (Chl), and total leaf nitrogen were measured in fully expanded, young leaves of wheat (Triticum aestivum L.), rice (Oryza sativa L.), spinach (Spinacia oleracea L.), bean (Phaseolus vulgaris L.), and pea (Pisum sativum L.). In addition, the activities of whole-chain electron transport and carbonic anhydrase were measured. All plants were grown hydroponically at different nitrogen concentrations. Although a greater than proportional increase in Rubisco content relative to leaf nitrogen content and Chl was found with increasing nitrogen supply for rice, spinach, bean, and pea, the ratio of Rubisco to total leaf nitrogen or Chl in wheat was essentially independent of nitrogen treatment. In addition, the ratio of Rubisco to electron transport activities remained constant only in wheat. Nevertheless, gas-exchange analysis showed that the in vivo balance between the capacities of Rubisco and electron transport in wheat, rice, and spinach remained almost constant, irrespective of nitrogen treatment. The in vitro carbonic anhydrase activity in wheat was very low and strongly responsive to increasing nitrogen content. Such a response was not found for the other C3 plants examined, which had 10- to 30-fold higher carbonic anhydrase activity than wheat at any leaf-nitrogen content. These distinctive responses of carbonic anhydrase activity in wheat were discussed in relation to CO2-transfer resistance and the in vivo balance between the capacities of Rubisco and electron transport. PMID:16653191

  20. Relationships of Leaf Net Photosynthesis, Stomatal Conductance, and Mesophyll Conductance to Primary Metabolism: A Multispecies Meta-Analysis Approach.

    PubMed

    Gago, Jorge; Daloso, Danilo de Menezes; Figueroa, Carlos María; Flexas, Jaume; Fernie, Alisdair Robert; Nikoloski, Zoran

    2016-05-01

    Plant metabolism drives plant development and plant-environment responses, and data readouts from this cellular level could provide insights in the underlying molecular processes. Existing studies have already related key in vivo leaf gas-exchange parameters with structural traits and nutrient components across multiple species. However, insights in the relationships of leaf gas-exchange with leaf primary metabolism are still limited. We investigated these relationships through a multispecies meta-analysis approach based on data sets from 17 published studies describing net photosynthesis (A) and stomatal (gs) and mesophyll (gm) conductances, alongside the 53 data profiles from primary metabolism of 14 species grown in different experiments. Modeling results highlighted the conserved patterns between the different species. Consideration of species-specific effects increased the explanatory power of the models for some metabolites, including Glc-6-P, Fru-6-P, malate, fumarate, Xyl, and ribose. Significant relationships of A with sugars and phosphorylated intermediates were observed. While gs was related to sugars, organic acids, myo-inositol, and shikimate, gm showed a more complex pattern in comparison to the two other traits. Some metabolites, such as malate and Man, appeared in the models for both conductances, suggesting a metabolic coregulation between gs and gm The resulting statistical models provide the first hints for coregulation patterns involving primary metabolism plus leaf water and carbon balances that are conserved across plant species, as well as species-specific trends that can be used to determine new biotechnological targets for crop improvement. © 2016 American Society of Plant Biologists. All Rights Reserved.

  1. Nitrogen

    USGS Publications Warehouse

    Kramer, D.A.

    2004-01-01

    Ammonia is the principal source of fixed nitrogen. It was produced by 17 companies at 34 plants in the United States during 2003. Fifty-three percent of U.S. ammonia production capacity was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas, the dominant domestic feedstock.

  2. Use of an inexpensive chlorophyll meter to predict Nitrogen levels in leaf tissues of water hyacinth (Eichhornia crassipes (Mart.) Solms

    USDA-ARS?s Scientific Manuscript database

    Tissue nitrogen is also an important indicator of plant health and can be a useful predictor of plant vigor and susceptibility to disease and pests. Hence, knowing nitrogen content may aid in determining establishment success of plants used in restoration programs, including those destined for aqua...

  3. Using plant traits to explain plant-microbe relationships involved in nitrogen acquisition.

    PubMed

    Cantarel, Amélie A M; Pommier, Thomas; Desclos-Theveniau, Marie; Diquélou, Sylvain; Dumont, Maxime; Grassein, Fabrice; Kastl, Eva-Maria; Grigulis, Karl; Laîné, Philippe; Lavorel, Sandra; Lemauviel-Lavenant, Servane; Personeni, Emmanuelle; Schloter, Michael; Poly, Franck

    2015-03-01

    It has long been recognized that plant species and soil microorganisms. are tightly linked, but understanding how different species vary in their effects on soil is currently limited. In this study, we identified those. plant characteristics (identity, specific functional traits, or resource acquisition strategy) that were the best predictors of nitrification and denitrification processes. Ten plant populations representing eight species collected from three European grassland sites were chosen for their contrasting plant trait values and resource acquisition strategies. For each individual plant, leaf and root traits and the associated potential microbial activities (i.e., potential denitrification rate [DEA], maximal nitrification rate [NEA], and NH4+ affinity of the microbial community [NHScom]) were measured at two fertilization levels under controlled growth conditions. Plant traits were powerful predictors of plant-microbe interactions, but relevant plant traits differed in relation to the microbial function studied. Whereas denitrification was linked to the relative growth rate of plants, nitrification was strongly correlated to root trait characteristics (specific root length, root nitrogen concentration, and plant affinity for NH4+) linked to plant N cycling. The leaf economics spectrum (LES) that commonly serves as an indicator of resource acquisition strategies was not correlated to microbial activity. These results suggest that the LES alone is not a good predictor of microbial activity, whereas root traits appeared critical in understanding plant-microbe interactions.

  4. Changes in leaf area, nitrogen content and canopy photosynthesis in soybean exposed to an ozone concentration gradient.

    PubMed

    Oikawa, Shimpei; Ainsworth, Elizabeth A

    2016-08-01

    Influences of ozone (O3) on light-saturated rates of photosynthesis in crop leaves have been well documented. To increase our understanding of O3 effects on individual- or stand level productivity, a mechanistic understanding of factors determining canopy photosynthesis is necessary. We used a canopy model to scale photosynthesis from leaf to canopy, and analyzed the importance of canopy structural and leaf ecophysiological characteristics in determining canopy photosynthesis in soybean stands exposed to 9 concentrations of [O3] (37-116 ppb; 9-h mean). Light intensity and N content peaked in upper canopy layers, and sharply decreased through the lower canopy. Plant leaf area decreased with increasing [O3] allowing for greater light intensity to reach lower canopy levels. At the leaf level, light-saturated photosynthesis decreased and dark respiration increased with increasing [O3]. These data were used to calculate daily net canopy photosynthesis (Pc). Pc decreased with increasing [O3] with an average decrease of 10% for an increase in [O3] of 10 ppb, and which was similar to changes in above-ground dry mass production of the stands. Absolute daily net photosynthesis of lower layers was very low and thus the decrease in photosynthesis in the lower canopy caused by elevated [O3] had only minor significance for total canopy photosynthesis. Sensitivity analyses revealed that the decrease in Pc was associated with changes in leaf ecophysiology but not with decrease in leaf area. The soybean stands were very crowded, the leaves were highly mutually shaded, and sufficient light for positive carbon balance did not penetrate to lower canopy leaves, even under elevated [O3].

  5. Effects of growth irradiance, nitrogen nutrition and watering regime on photosynthesis, leaf conductance and isoprene emission in leaves of Post Oak, Quercus stellata

    SciTech Connect

    Harley, P.; Archer, S.; Guenther, A. Texas A M Univ., College Station )

    1994-06-01

    Seedlings of Post Oak (Quercus stellata), the dominant woody species of oak savannas of east-central Texas, were grown outside in College Station, TX from April to November 1993. Plants were randomly placed in one cell of a 3 [times] 2 [times] 2 factorial experiment, employing 3 nitrogen fertilization (25, 100 and 225 ppm NH[sub 4]NO[sub 23]), 2 light levels (70% and 20% of full sun) and 2 watering regimes (to maintain 80-100% or 30-50% of field capacity). In November, net photosynthesis, leaf conductance and leaf isoprene emission rates at 30[degrees]C and PPFD=1000 [mu]mol m[sup [minus]2]s[sup [minus]1] were determined for two mature leaves on each of four plants from eight growth treatments and data were analyzed stastically. For plants grown under the lower watering regime, photosynthesis and isoprene emission increased with both increasing PPFD and nitrogen (effects significant at p<0.01). For plants grown at 70% full sun, effects of nitrogen treatment on photosynthesis, conductance and isoprene emission were significant (p<0.0001) while effects of watering treatment were not significant (p<0.2). Although watering treatment did not lead to significant differences between treatments, in a short-term drying experiment conducted on four plants, isoprene emissions increased through the drying period in previously well-watered plants, but decreased in previously droughted plants. Measurements were also made on two leaves to determine the effects of varying PPFD and temperature on rates of isoprene emission.

  6. Interspecific variation of photosynthesis and leaf characteristics in canopy trees of five species of Dipterocarpaceae in a tropical rain forest.

    PubMed

    Kenzo, Tanaka; Ichie, Tomoaki; Yoneda, Reiji; Kitahashi, Yoshinori; Watanabe, Yoko; Ninomiya, Ikuo; Koike, Takayoshi

    2004-10-01

    Photosynthetic rate, nitrogen concentration and morphological properties of canopy leaves were studied in 18 trees, comprising five dipterocarp species, in a tropical rain forest in Sarawak, Malaysia. Photosynthetic rate at light saturation (Pmax) differed significantly across species, varying from 7 to 18 micro mol m(-2) s(-1). Leaf nitrogen concentration and morphological properties, such as leaf blade and palisade layer thickness, leaf mass per area (LMA) and surface area of mesophyll cells per unit leaf area (Ames/A), also varied significantly across species. Among the relationships with leaf characteristics, Pmax had the strongest correlation with leaf mesophyll parameters, such as palisade cell layer thickness (r2 = 0.76, P < 0.001) and Ames/A (r2 = 0.73, P < 0.001). Leaf nitrogen concentration and Pmax per unit area also had a significant but weaker correlation (r2 = 0.46, P < 0.01), whereas Pmax had no correlation, or only weakly significant correlations, with leaf blade thickness and LMA. Shorea beccariana Burck, which had the highest P(max) of the species studied, also had the thickest palisade layer, with up to five or more layers. We conclude that interspecific variation in photosynthetic capacity in tropical rain forest canopies is influenced more by leaf mesophyll structure than by leaf thickness, LMA or leaf nitrogen concentration.

  7. Nitrogen

    USGS Publications Warehouse

    Kramer, D.A.

    2007-01-01

    Ammonia was produced by 15 companies at 25 plants in 16 states in the United States during 2006. Fifty-seven percent of U.S. ammonia production capacity was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas, the dominant domestic feedstock. In 2006, U.S. producers operated at about 72 percent of their rated capacity (excluding plants that were idle for the entire year). Five companies, Koch Nitrogen, Terra Industries, CF Industries, PCS Nitro-gen, and Agrium, in descending order, accounted for 79 percent U.S. ammonia production capacity. The United States was the world's fourth-ranked ammonia producer and consumer following China, India and Russia. Urea, ammonium nitrate, ammonium phosphates, nitric acid and ammonium sulfate were the major derivatives of ammonia in the United States, in descending order of importance.

  8. Nitrogen

    USGS Publications Warehouse

    Apodaca, L.E.

    2010-01-01

    Ammonia was produced by 13 companies at 23 plants in 16 states during 2009. Sixty percent of all U.S. ammonia production capacity was centered in Louisiana. Oklahoma and Texas because of those states' large reserves of natural gas, the dominant domestic feedstock. In 2009, U.S. producers operated at about 83 percent of their rated capacity (excluding plants that were idle for the entire year). Five companies — Koch Nitrogen Co.; Terra Industries Inc.; CF Industries Inc.; PCS Nitrogen Inc. and Agrium Inc., in descending order — accounted for 80 percent of the total U.S. ammonia production capacity. U.S. production was estimated to be 7.7 Mt (8.5 million st) of nitrogen (N) content in 2009 compared with 7.85 Mt (8.65 million st) of N content in 2008. Apparent consumption was estimated to have decreased to 12.1 Mt (13.3 million st) of N, a 10-percent decrease from 2008. The United States was the world's fourth-ranked ammonia producer and consumer following China, India and Russia. Urea, ammonium nitrate, ammonium phosphates, nitric acid and ammonium sulfate were the major derivatives of ammonia in the United States, in descending order of importance.

  9. Land surface phenology in eastern United States watersheds: relationship between remote sensing metrics, stream chemistry, snow cover, and leaf and bird phenology

    NASA Astrophysics Data System (ADS)

    White, M. A.; Baker, M.; Weller, D.; Jordan, T.

    2006-12-01

    Remote sensing of terrestrial land surfaces has long promised an unprecedented ability to regularly and consistently monitor patterns of vegetation phenology, which in turn implied an ability to develop prognostic phenology models and/or directly to force seasonality within climate models. Within the last five years, though, research has shown that land surface phenology, which is the integral signal of atmospheric, snow, soil, cloud, and vegetation, can be dramatically different than vegetation phenology alone. Consequently, there is a strong need to understand the usually unique relationship between remotely sensed land surface phenology and a continuum of ground-based processes. Here, using a network of watersheds in the Coastal Plain and Piedmont regions of the Chesapeake Bay, we conducted a four-part analysis for the 1997 to 1999 period. First, using a recently developed land surface phenology technique designed to represent a continuum, rather than a specific event (i.e. the start of the growing season), we calculated the daily percent above threshold (PAT), a metric of the percent of the watershed above a locally assigned greenness threshold. Second, we assembled a collection of measured leaf and hummingbird phenology and snow cover data. Third, we obtained weekly measurements of stream flow, total nitrogen (N), organic N, Kjeldahl N, ammonium, nitrate, total phosphorous, organic phosphorous, and phosphate. Fourth, as the stream chemistry data was collected irregularly across watersheds, we then calculated weekly average PAT and stream chemistry values. We found that for these watersheds, observed patterns of PAT increase were unrelated to snow cover and coincident with a continuum of ground-measured leaf phenology and hummingbird appearance. The spring increase in PAT also was consistently related to reductions in nitrate load, but not to other water chemistry measurement, suggesting an interaction between vegetative N demand and stream nitrate.

  10. Effects of understory vegetation and litter on plant nitrogen (N), phosphorus (P), N:P ratio and their relationships with growth rate of indigenous seedlings in subtropical plantations.

    PubMed

    Wang, Jun; Hui, Dafeng; Ren, Hai; Liu, Zhanfeng; Yang, Long

    2013-01-01

    Establishing seedlings in subtropical plantations is very important for forest health, succession and management. Information on seedling nutrient concentrations is essential for both the selection of suitable indigenous tree species to accelerate succession of the established plantation and sustainable forest management. In this study, we investigated the concentrations of nitrogen ([N]), phosphorus ([P]), and N:P ratio in leaves, stems and roots of seedlings of three indigenous tree species (Castanopsis chinensis, Michelia chapensis and Psychotria rubra) transplanted with removing or retaining understory vegetation and litter at two typical subtropical forest plantations (Eucalyptus plantation and native species plantation). We also measured the relative growth rate (RGR) of seedling height, and developed the relationships between RGR and leaf [N], [P] and N:P ratio. Results showed that treatments of understory vegetation and associated litter (i.e. removal or retained) generally had no significant effects on leaf [N], [P], N:P ratio and RGR of the transplanted tree seedlings for the experimental period. But among different species, there were significant differences in nutrient concentrations. M. chapensis and P. rubra had higher [N] and [P] compared to C. chinensis. [N] and [P] also varied among different plant tissues with much higher values in leaves than in roots for all indigenous species. RGR of indigenous tree seedlings was mostly positively correlated with leaf [N] and [P], but negatively correlated with leaf N:P ratio. Considering the low [P] and high N:P ratio observed in the introduced indigenous tree seedlings, we propose that the current experimental plantations might be P limited for plant growth.

  11. Effects of Understory Vegetation and Litter on Plant Nitrogen (N), Phosphorus (P), N∶P Ratio and Their Relationships with Growth Rate of Indigenous Seedlings in Subtropical Plantations

    PubMed Central

    Wang, Jun; Hui, Dafeng; Ren, Hai; Liu, Zhanfeng; Yang, Long

    2013-01-01

    Establishing seedlings in subtropical plantations is very important for forest health, succession and management. Information on seedling nutrient concentrations is essential for both the selection of suitable indigenous tree species to accelerate succession of the established plantation and sustainable forest management. In this study, we investigated the concentrations of nitrogen ([N]), phosphorus ([P]), and N∶P ratio in leaves, stems and roots of seedlings of three indigenous tree species (Castanopsis chinensis, Michelia chapensis and Psychotria rubra) transplanted with removing or retaining understory vegetation and litter at two typical subtropical forest plantations (Eucalyptus plantation and native species plantation). We also measured the relative growth rate (RGR) of seedling height, and developed the relationships between RGR and leaf [N], [P] and N∶P ratio. Results showed that treatments of understory vegetation and associated litter (i.e. removal or retained) generally had no significant effects on leaf [N], [P], N∶P ratio and RGR of the transplanted tree seedlings for the experimental period. But among different species, there were significant differences in nutrient concentrations. M. chapensis and P. rubra had higher [N] and [P] compared to C. chinensis. [N] and [P] also varied among different plant tissues with much higher values in leaves than in roots for all indigenous species. RGR of indigenous tree seedlings was mostly positively correlated with leaf [N] and [P], but negatively correlated with leaf N∶P ratio. Considering the low [P] and high N∶P ratio observed in the introduced indigenous tree seedlings, we propose that the current experimental plantations might be P limited for plant growth. PMID:24386340

  12. Probing the evolution of biological nitrogen fixation by examining phylogenetic relationships of nitrogen fixation genes related by gene duplication

    NASA Astrophysics Data System (ADS)

    Peters, J.; Boyd, E. S.; Hamilton, T.

    2011-12-01

    Mounting evidence indicates the presence of a near complete biological nitrogen cycle in redox stratified oceans during the late Archean to early Proterozoic (~2.5 to 2.0 Ga). It has been suggested that the iron (Fe)-only or vanadium (V)-dependent alternative forms of nitrogenase rather than molybdenum (Mo)-dependent form was responsible for dinitrogen (N2) fixation during this time because oceans were depleted in Mo and rich in Fe. However, the only extant nitrogen fixing organisms that harbor alternative nitrogenases also harbor a Mo-dependent nitrogenase. Furthermore, our recent global gene expression analysis revealed that the alternative enzymes rely on genes encoding biosynthetic machinery to assemble active enzymes that are associated with the Mo-dependent nitrogenase. In our recent work we conducted an in-depth phylogenetic analysis of the proteins required for molybdenum (Mo)-nitrogenase that arose from gene fusion and duplication, expanding on previous analyses of single gene loci and multiple gene loci. The results of this analysis are highly suggestive that Mo-nitrogenase is unlikely to have been associated with the last universal common ancestor (LUCA). Rather, the oldest extant organisms harboring Mo-nitrogenase can be traced to hydrogenotrophic methanogens with acquisition in the bacterial domain via lateral gene transfer involving an anaerobic member of the Firmicutes. An origin and ensuing proliferation of Mo-nitrogenase under anoxic conditions would likely have occurred in an environment where anaerobic methanogens and Firmicutes coexisted and where Mo was at least episodically available, such as in a redox stratified Proterozoic ocean basin. In more recent work we have examined the hypothesis that the alternative forms predate the Mo-dependent nitrogenase by examining the phylogenetic relationships of the genetically distinct structural proteins of the Fe-only, V-, and Mo-nitrogenase that are required for activity. As a result, a clear and

  13. Relationships between Nitrate and Dissolved Organic Nitrogen and Watershed Characteristics in a Rural Temperate Basin

    NASA Astrophysics Data System (ADS)

    Daley, M. L.; McDowell, W. H.

    2002-05-01

    Global models have been developed to predict nitrate export, a main component of dissolved inorganic nitrogen (DIN) export, based on human population density and human activity. Controls on dissolved organic nitrogen (DON) export are largely unknown. We tested several global nitrate models and examined potential sources of riverine DON in the Lamprey River basin (479 km2) located in rural southeastern New Hampshire, and 11 of its sub-catchments. Dissolved organic nitrogen dominated total N export. Export of nitrate and DON from the Lamprey was 0.53 and 1.28 kg/ha/yr respectively. Mean annual nitrate and DON concentration in the Lamprey was 0.11 and 0.30 mg/L respectively. The global nitrate models over predicted (>200% difference) nitrate export for the Lamprey and all its sub-catchments except for the smallest most populated catchment. Population density (R2>0.89, p<0.00001) and riparian percentage agriculture (R2>0.90, p<0.00001) showed strong positive relationships with nitrate concentration and export. Dissolved organic nitrogen was not related to factors that control inorganic nitrogen (human population density or percentage agriculture). Non-purgeable organic carbon (NPOC) concentration and export (R2>0.84, p<0.0001), percentage wetland (R2=0.79, p<0.001) and riparian carbon storage (R2=0.84, p<0.0001) all showed strong positive relationships with DON. We conclude from the results of this study that human population density and activity are the main factors controlling DIN export and that wetlands and riparian soils are main sources of DON.

  14. Relationship of host recurrence in fungi to rates of tropical leaf decomposition

    Treesearch

    Mirna E. Santana; D. Jean Lodge; Patricia Lebow

    2005-01-01

    Here we explore the significance of fungal diversity on ecosystem processes by testing whether microfungal ‘preferences’ for (i.e., host recurrence) different tropical leaf species increases the rate of decomposition. We used pairwise combinations of [gamma]-irradiated litter of five tree species with cultures of two dominant microfungi derived from each plant in a...

  15. Modelling the relationship between CO2 assimilation and leaf anatomical properties in tomato leaves.

    PubMed

    Berghuijs, Herman N C; Yin, Xinyou; Ho, Q Tri; van der Putten, Peter E L; Verboven, Pieter; Retta, Moges A; Nicolaï, Bart M; Struik, Paul C

    2015-09-01

    The CO2 concentration near Rubisco and, therefore, the rate of CO2 assimilation, is influenced by both leaf anatomical factors and biochemical processes. Leaf anatomical structures act as physical barriers for CO2 transport. Biochemical processes add or remove CO2 along its diffusion pathway through mesophyll. We combined a model that quantifies the diffusive resistance for CO2 using anatomical properties, a model that partitions this resistance and an extended version of the Farquhar-von Caemmerer-Berry model. We parametrized the model by gas exchange, chlorophyll fluorescence and leaf anatomical measurements from three tomato cultivars. There was generally a good agreement between the predicted and measured light and CO2 response curves. We did a sensitivity analysis to assess how the rate of CO2 assimilation responds to changes in various leaf anatomical properties. Next, we conducted a similar analysis for assumed diffusive properties and curvature factors. Some variables (diffusion pathway length in stroma, diffusion coefficient of the stroma, curvature factors) substantially affected the predicted CO2 assimilation. We recommend more research on the measurements of these variables and on the development of 2-D and 3-D gas diffusion models, since these do not require the diffusion pathway length in the stroma as predefined parameter. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Molecular phylogenetic relationships of the brown leaf rust fungi on wheat, rye and other grasses

    USDA-ARS?s Scientific Manuscript database

    Phylogenetic analyses were conducted with DNA sequence data from the rDNA internal transcribed spacer region and elongation factor 1–alpha to elucidate the species complex of brown leaf rust fungi infecting wheat, rye and other grasses. Three phylogenetic lineages were recovered within the complex o...

  17. Relationship of host recurrence in fungi to rates of tropical leaf decomposition

    Treesearch

    Mirna E. Santanaa; JeanD. Lodgeb; Patricia Lebowc

    2004-01-01

    Here we explore the significance of fungal diversity on ecosystem processes by testing whether microfungal ‘preferences’ for (i.e., host recurrence) different tropical leaf species increases the rate of decomposition. We used pairwise combinations of girradiated litter of five tree species with cultures of two dominant microfungi derived from each plant in a microcosm...

  18. On the relationship between nominal light use efficiency and leaf chlorophyll

    USDA-ARS?s Scientific Manuscript database

    Remotely sensed data allows for indirect estimates of key biophysical and biochemical parameters needed for accurate and reliable assessments of land-surface carbon, energy and water fluxes. Biophysical parameters such as Leaf Area Index (LAI), which provides information useful for determining vari...

  19. The genetics of leaf flecking in maize and its relationship to plant defense and disease resistance

    USDA-ARS?s Scientific Manuscript database

    Physiological/genetic leaf spotting, or flecking, is a mild lesion phenotype observed on the leaves of several commonly used maize inbred lines and has been anecdotally linked to enhanced broad-spectrum disease resistance. Flecking was assessed in the maize nested association mapping (NAM) populati...

  20. Convergence in relationships between leaf traits, spectra and age across diverse canopy environments and two contrasting tropical forests

    DOE PAGES

    Wu, Jin; Chavana-Bryant, Cecilia; Prohaska, Neill; ...

    2016-07-06

    Leaf age structures the phenology and development of plants, as well as the evolution of leaf traits over life histories. Furthermore, a general method for efficiently estimating leaf age across forests and canopy environments is lacking.

  1. Water supply and demand remain coordinated during breakdown of the global scaling relationship between leaf size and major vein density.

    PubMed

    Schneider, Julio V; Habersetzer, Jörg; Rabenstein, Renate; Wesenberg, Jens; Wesche, Karsten; Zizka, Georg

    2017-04-01

    Vein networks that disobey the global scaling of major vein density with leaf size shed light on functional constraints of vein network formation in dicotyledons. Understanding their evolution, distribution and impact on vein-stomata-climate associations is an important contribution to our global view of vein network organization. Based on vein traits of 55 species of pantropical Ochnaceae, stomata and climatic niche data, and a dated molecular phylogeny, we unveil major structural shifts in vein networks through deep time, relationships between leaf size, vein and stomata traits, and their interplay with climate. Dense 2° veins, reduction of minor veins and the associated breakdown of vein-leaf size scaling evolved multiple times independently in Ochnaceae. In spite of the drastic changes in vein architecture in this venation type, vein and stomatal densities remain correlated. Our study demonstrates that shortening the major vein-stomata distance is economically not less advantageous than by increasing minor vein density, as illustrated by the same degree of coordination between vein and stomatal densities and the similar construction costs across networks with dense 2° veins and those with 'normally' spaced 2° veins.

  2. Spectral dependence of SIF: assessing the relationships among photosynthesis, active, and passive fluorescence at the leaf-scale

    NASA Astrophysics Data System (ADS)

    Magney, T. S.; Frankenberg, C.; Fisher, J.; Sun, Y.; North, G.; Davis, T. S.

    2016-12-01

    Chlorophyll a fluorescence (ChlF) has been used for decades to better understand plant physiological function at the leaf scale. In a significant scale-jump, recent advances have been made in the retrieval of chlorophyll fluorescence from space (solar induced chlorophyll fluorescence, SIF) that could provide a significant step towards mapping instantaneous plant photosynthesis across space and time. While these advances are promising, there are still many unresolved issues related to the spatial, spectral, and temporal scale-change problem, making interpretation of the mechanisms driving the SIF signal from space challenging. To address scaling issues, we developed a leaf level measurement system to simultaneously measure active and passive fluorescence in conjunction with leaf level gas-exchange. We describe the necessity for such methodological advances, the instrumentation, and present initial results highlighting the importance of understanding the spectral response of saturation-pulse derived and steady-state chlorophyll fluorescence. The results presented here are intended to establish the fundamental link between the wavelength dependencies of fluorescence parameters, and the potential for such measurements to improve our understanding of the non-linear relationships between fluorescence and photosynthesis yields.

  3. [Relationships between decomposition rate of leaf litter and initial quality across the alpine timberline ecotone in Western Sichuan, China].

    PubMed

    Yang, Lin; Deng, Chang-chun; Chen Ya-mei; He, Run-lian; Zhang, Jian; Liu, Yang

    2015-12-01

    The relationships between litter decomposition rate and their initial quality of 14 representative plants in the alpine forest ecotone of western Sichuan were investigated in this paper. The decomposition rate k of the litter ranged from 0.16 to 1.70. Woody leaf litter and moss litter decomposed much slower, and shrubby litter decomposed a little faster. Then, herbaceous litters decomposed fastest among all plant forms. There were significant linear regression relationships between the litter decomposition rate and the N content, lignin content, phenolics content, C/N, C/P and lignin/N. Lignin/N and hemicellulose content could explain 78.4% variation of the litter decomposition rate (k) by path analysis. The lignin/N could explain 69.5% variation of k alone, and the direct path coefficient of lignin/N on k was -0.913. Principal component analysis (PCA) showed that the contribution rate of the first sort axis to k and the decomposition time (t) reached 99.2%. Significant positive correlations existed between lignin/N, lignin content, C/N, C/P and the first sort axis, and the closest relationship existed between lignin/N and the first sort axis (r = 0.923). Lignin/N was the key quality factor affecting plant litter decomposition rate across the alpine timberline ecotone, with the higher the initial lignin/N, the lower the decomposition rate of leaf litter.

  4. Leaf Gas Exchange and Fluorescence of Two Winter Wheat Varieties in Response to Drought Stress and Nitrogen Supply.

    PubMed

    Wang, Xiubo; Wang, Lifang; Shangguan, Zhouping

    2016-01-01

    Water and nitrogen supply are the two primary factors limiting productivity of wheat (Triticum aestivum L.). In our study, two winter wheat varieties, Xinong 979 and large-spike wheat, were evaluated for their physiological responses to different levels of nitrogen and water status during their seedling stage grown in a phytotron. Our results indicated that drought stress greatly reduced the net photosynthetic rate (Pn), transpiration rate (E), and stomatal conductance (Gs), but with a greater increase in instantaneous water use efficiency (WUE). At the meantime, the nitrogen (N) supply improved photosynthetic efficiency under water deficit. Parameters inferred from chlorophyll a measurements, i.e., photochemical quenching coefficient (qP), the maximum photochemical efficiency (Fv/Fm), the quantum yield of photosystemII(ΦPSII), and the apparent photosynthetic electron transport rate (ETR) decreased under water stress at all nitrogen levels and declined in N-deficient plants. The root-shoot ratio (R/S) increased slightly with water stress at a low N level; the smallest root-shoot ratio was found at a high N level and moderate drought stress treatment. These results suggest that an appropriate nitrogen supply may be necessary to enhance drought resistance in wheat by improving photosynthetic efficiency and relieving photoinhibition under drought stress. However, an excessive N supply had no effect on drought resistance, which even showed an adverse effect on plant growth. Comparing the two cultivars, Xinong 979 has a stronger drought resistance compared with large-spike wheat under N deficiency.

  5. Leaf Gas Exchange and Fluorescence of Two Winter Wheat Varieties in Response to Drought Stress and Nitrogen Supply

    PubMed Central

    Wang, Xiubo; Wang, Lifang; Shangguan, Zhouping

    2016-01-01

    Water and nitrogen supply are the two primary factors limiting productivity of wheat (Triticum aestivum L.). In our study, two winter wheat varieties, Xinong 979 and large-spike wheat, were evaluated for their physiological responses to different levels of nitrogen and water status during their seedling stage grown in a phytotron. Our results indicated that drought stress greatly reduced the net photosynthetic rate (Pn), transpiration rate (E), and stomatal conductance (Gs), but with a greater increase in instantaneous water use efficiency (WUE). At the meantime, the nitrogen (N) supply improved photosynthetic efficiency under water deficit. Parameters inferred from chlorophyll a measurements, i.e., photochemical quenching coefficient (qP), the maximum photochemical efficiency (Fv/Fm), the quantum yield of photosystemII(ΦPSII), and the apparent photosynthetic electron transport rate (ETR) decreased under water stress at all nitrogen levels and declined in N-deficient plants. The root–shoot ratio (R/S) increased slightly with water stress at a low N level; the smallest root–shoot ratio was found at a high N level and moderate drought stress treatment. These results suggest that an appropriate nitrogen supply may be necessary to enhance drought resistance in wheat by improving photosynthetic efficiency and relieving photoinhibition under drought stress. However, an excessive N supply had no effect on drought resistance, which even showed an adverse effect on plant growth. Comparing the two cultivars, Xinong 979 has a stronger drought resistance compared with large-spike wheat under N deficiency. PMID:27802318

  6. Consistent differences between tropical forest and savanna nitrogen cycling characteristics as inferred by leaf and soil 15N/14N ratios across three continents

    NASA Astrophysics Data System (ADS)

    Schrodt, Franziska

    2017-04-01

    The ratio of 15N:14N can act as important indicator of ecosystem Nitrogen cycling and thus essential key ecosystem processes. Although evidence for general patterns accumulates across the globe, such as foliar δ15N decreasing with increasing mean annual precipitation and decreasing mean annual temperature, as well as forests generally having a more open Nitrogen cycle, a comprehensive understanding of the Nitrogen cycle in tropical ecosystems is still lacking. We present data on foliar and soil δ15N from 62 permanent sampling plots in tropical zones of transition - area where forest and savanna coexists under similar macro climatic conditions - across South America, Africa and Australia. After controlling for phylogeny and location, we show that δ15N relationships in tropical forests and Savannah are consistent irrespective of precipitation.

  7. Non-Destructive Evaluation of the Leaf Nitrogen Concentration by In-Field Visible/Near-Infrared Spectroscopy in Pear Orchards

    PubMed Central

    Wang, Jie; Shen, Changwei; Liu, Na; Jin, Xin; Fan, Xueshan; Dong, Caixia; Xu, Yangchun

    2017-01-01

    Non-destructive and timely determination of leaf nitrogen (N) concentration is urgently needed for N management in pear orchards. A two-year field experiment was conducted in a commercial pear orchard with five N application rates: 0 (N0), 165 (N1), 330 (N2), 660 (N3), and 990 (N4) kg·N·ha−1. The mid-portion leaves on the year’s shoot were selected for the spectral measurement first and then N concentration determination in the laboratory at 50 and 80 days after full bloom (DAB). Three methods of in-field spectral measurement (25° bare fibre under solar conditions, black background attached to plant probe, and white background attached to plant probe) were compared. We also investigated the modelling performances of four chemometric techniques (principal components regression, PCR; partial least squares regression, PLSR; stepwise multiple linear regression, SMLR; and back propagation neural network, BPNN) and three vegetation indices (difference spectral index, normalized difference spectral index, and ratio spectral index). Due to the low correlation of reflectance obtained by the 25° field of view method, all of the modelling was performed on two spectral datasets—both acquired by a plant probe. Results showed that the best modelling and prediction accuracy were found in the model established by PLSR and spectra measured with a black background. The randomly-separated subsets of calibration (n = 1000) and validation (n = 420) of this model resulted in high R2 values of 0.86 and 0.85, respectively, as well as a low mean relative error (<6%). Furthermore, a higher coefficient of determination between the leaf N concentration and fruit yield was found at 50 DAB samplings in both 2015 (R2 = 0.77) and 2014 (R2 = 0.59). Thus, the leaf N concentration was suggested to be determined at 50 DAB by visible/near-infrared spectroscopy and the threshold should be 24–27 g/kg. PMID:28282884

  8. Proteins associated with heat-induced leaf senescence in creeping bentgrass as affected by foliar application of nitrogen, cytokinins, and an ethylene inhibitor.

    PubMed

    Jespersen, David; Huang, Bingru

    2015-02-01

    Heat stress causes premature leaf senescence in cool-season grass species. The objective of this study was to identify proteins regulated by nitrogen, cytokinins, and ethylene inhibitor in relation to heat-induced leaf senescence in creeping bentgrass (Agrostis stolonifera). Plants (cv. Penncross) were foliar sprayed with 18 mM carbonyldiamide (N source), 25 μM aminoethoxyvinylglycine (AVG, ethylene inhibitor), 25 μM zeatin riboside (ZR, cytokinin), or a water control, and then exposed to 20/15°C (day/night) or 35/30°C (heat stress) in growth chambers. All treatments suppressed heat-induced leaf senescence, as shown by higher turf quality and chlorophyll content, and lower electrolyte leakage in treated plants compared to the untreated control. A total of 49 proteins were responsive to N, AVG, or ZR under heat stress. The abundance of proteins in photosynthesis increased, with ribulose-1,5-bisphosphate carboxylase/oxygenase affected by all three treatments, chlorophyll a/b-binding protein by AVG and N or Rubisco activase by AVG. Proteins for amino acid metabolism were upregulated, including alanine aminotransferase by three treatments and ferredoxin-dependent glutamate synthase by AVG and N. Upregulated proteins also included catalase by AVG and N and heat shock protein by ZR. Exogenous applications of AVG, ZR, or N downregulated proteins in respiration (enolase, glyceraldehyde 3-phosphate dehydrogenase, and succinate dehygrogenase) under heat stress. Alleviation of heat-induced senescence by N, AVG, or ZR was associated with enhanced protein abundance in photosynthesis and amino acid metabolism and stress defense systems (heat shock protection and antioxidants), as well as suppression of those imparting respiration metabolism.

  9. Non-Destructive Evaluation of the Leaf Nitrogen Concentration by In-Field Visible/Near-Infrared Spectroscopy in Pear Orchards.

    PubMed

    Wang, Jie; Shen, Changwei; Liu, Na; Jin, Xin; Fan, Xueshan; Dong, Caixia; Xu, Yangchun

    2017-03-08

    Non-destructive and timely determination of leaf nitrogen (N) concentration is urgently needed for N management in pear orchards. A two-year field experiment was conducted in a commercial pear orchard with five N application rates: 0 (N0), 165 (N1), 330 (N2), 660 (N3), and 990 (N4) kg·N·ha(-1). The mid-portion leaves on the year's shoot were selected for the spectral measurement first and then N concentration determination in the laboratory at 50 and 80 days after full bloom (DAB). Three methods of in-field spectral measurement (25° bare fibre under solar conditions, black background attached to plant probe, and white background attached to plant probe) were compared. We also investigated the modelling performances of four chemometric techniques (principal components regression, PCR; partial least squares regression, PLSR; stepwise multiple linear regression, SMLR; and back propagation neural network, BPNN) and three vegetation indices (difference spectral index, normalized difference spectral index, and ratio spectral index). Due to the low correlation of reflectance obtained by the 25° field of view method, all of the modelling was performed on two spectral datasets-both acquired by a plant probe. Results showed that the best modelling and prediction accuracy were found in the model established by PLSR and spectra measured with a black background. The randomly-separated subsets of calibration (n = 1000) and validation (n = 420) of this model resulted in high R² values of 0.86 and 0.85, respectively, as well as a low mean relative error (<6%). Furthermore, a higher coefficient of determination between the leaf N concentration and fruit yield was found at 50 DAB samplings in both 2015 (R² = 0.77) and 2014 (R² = 0.59). Thus, the leaf N concentration was suggested to be determined at 50 DAB by visible/near-infrared spectroscopy and the threshold should be 24-27 g/kg.

  10. Fine Mapping of Carbon Assimilation Rate 8, a Quantitative Trait Locus for Flag Leaf Nitrogen Content, Stomatal Conductance and Photosynthesis in Rice

    PubMed Central

    Adachi, Shunsuke; Yoshikawa, Kazuaki; Yamanouchi, Utako; Tanabata, Takanari; Sun, Jian; Ookawa, Taiichiro; Yamamoto, Toshio; Sage, Rowan F.; Hirasawa, Tadashi; Yonemaru, Junichi

    2017-01-01

    Increasing the rate of leaf photosynthesis is one important approach for increasing grain yield in rice (Oryza sativa). Exploiting the natural variation in CO2 assimilation rate (A) between rice cultivars using quantitative genetics is one promising means to identify genes contributing to higher photosynthesis. In this study, we determined precise location of Carbon Assimilation Rate 8 (CAR8) by crossing a high-yielding indica cultivar with a Japanese commercial cultivar. Fine mapping suggested that CAR8 encodes a putative Heme Activator Protein 3 (OsHAP3) subunit of a CCAAT-box-binding transcription factor called OsHAP3H. Sequencing analysis revealed that the indica allele of CAR8 has a 1-bp deletion at 322 bp from the start codon, resulting in a truncated protein of 125 amino acids. In addition, CAR8 is identical to DTH8/Ghd8/LHD1, which was reported to control rice flowering date. The increase of A is largely due to an increase of RuBP regeneration rate via increased leaf nitrogen content, and partially explained by reduced stomatal limitation via increased stomatal conductance relative to A. This allele also increases hydraulic conductivity, which would promote higher stomatal conductance. This indicates that CAR8 affects multiple physiological aspects relating to photosynthesis. The detailed analysis of molecular functions of CAR8 would help to understand the association between photosynthesis and flowering and demonstrate specific genetic mechanisms that can be exploited to improve photosynthesis in rice and potentially other crops. PMID:28197156

  11. Fine Mapping of Carbon Assimilation Rate 8, a Quantitative Trait Locus for Flag Leaf Nitrogen Content, Stomatal Conductance and Photosynthesis in Rice.

    PubMed

    Adachi, Shunsuke; Yoshikawa, Kazuaki; Yamanouchi, Utako; Tanabata, Takanari; Sun, Jian; Ookawa, Taiichiro; Yamamoto, Toshio; Sage, Rowan F; Hirasawa, Tadashi; Yonemaru, Junichi

    2017-01-01

    Increasing the rate of leaf photosynthesis is one important approach for increasing grain yield in rice (Oryza sativa). Exploiting the natural variation in CO2 assimilation rate (A) between rice cultivars using quantitative genetics is one promising means to identify genes contributing to higher photosynthesis. In this study, we determined precise location of Carbon Assimilation Rate 8 (CAR8) by crossing a high-yielding indica cultivar with a Japanese commercial cultivar. Fine mapping suggested that CAR8 encodes a putative Heme Activator Protein 3 (OsHAP3) subunit of a CCAAT-box-binding transcription factor called OsHAP3H. Sequencing analysis revealed that the indica allele of CAR8 has a 1-bp deletion at 322 bp from the start codon, resulting in a truncated protein of 125 amino acids. In addition, CAR8 is identical to DTH8/Ghd8/LHD1, which was reported to control rice flowering date. The increase of A is largely due to an increase of RuBP regeneration rate via increased leaf nitrogen content, and partially explained by reduced stomatal limitation via increased stomatal conductance relative to A. This allele also increases hydraulic conductivity, which would promote higher stomatal conductance. This indicates that CAR8 affects multiple physiological aspects relating to photosynthesis. The detailed analysis of molecular functions of CAR8 would help to understand the association between photosynthesis and flowering and demonstrate specific genetic mechanisms that can be exploited to improve photosynthesis in rice and potentially other crops.

  12. Relationship of Camphor Biosynthesis to Leaf Development in Sage (Salvia officinalis) 12

    PubMed Central

    Croteau, Rodney; Felton, Mark; Karp, Frank; Kjonaas, Robert

    1981-01-01

    The camphor content of sage (Salvia officinalis L.) leaves increases as the leaves expand, and the increase is roughly proportional to the number of filled peltate oil glands which appear on the leaf surface during the expansion process. 14CO2 is more rapidly incorporated into camphor and its direct progenitors in expanding leaves than in mature leaves, and direct in vitro measurement of the key enzymes involved in the conversion of geranyl pyrophosphate to camphor indicates that these enzymes, including the probable rate-limiting cyclization step, are at the highest levels during the period of maximum leaf expansion. These results clearly demonstrate that immature sage leaves synthesize and accumulate camphor most rapidly. Images PMID:16661761

  13. Scaling Relationships between Leaf Mass and Total Plant Mass across Chinese Forests

    PubMed Central

    Xu, Shanshan; Li, Yan; Wang, Genxuan

    2014-01-01

    Biomass partitioning is important for illustrating terrestrial ecosystem carbon flux. West, Brown and Enquist (WBE) model predicts that an optimal 3/4 allometric scaling of leaf mass and total biomass of individual plants will be applied in diverse communities. However, amount of scientific evidence suggests an involvement of some biological and environmental factors in interpreting the variation of scaling exponent observed in empirical studies. In this paper, biomass information of 1175 forested communities in China was collected and categorized into groups in terms of leaf form and function, as well as their locations to test whether the allocation pattern was conserved or variable with internal and/or environmental variations. Model Type II regression protocol was adopted to perform all the regressions. The results empirically showed that the slopes varied significantly across diverse forested biomes, between conifer and broadleaved forests, and between evergreen and deciduous forests. Based on the results, leaf form and function and their relations to environments play a significant role in the modification of the WBE model to explore more accurate laws in nature. PMID:24759801

  14. Relationship between Leaf Water Status and Endogenous Ethylene in Detached Leaves 1

    PubMed Central

    Aharoni, Nehemia

    1978-01-01

    The pattern of changes in the internal concentration of ethylene in response to water stress was investigated in species with leaves that do abscise and leaves that do not abscise. When leaves which abscise were detached and exposed to dry air for up to 6 hours, a continuous increase of internal ethylene was observed. In water-stressed leaves which do not abscise only a transient rise in ethylene occurred. The peak, which was attained after 30 to 120 minutes, depending on the species studied, was followed by a sharp decline to the initial level. The principal site of ethylene production in response to a short period of water stress was in the blades rather than the petioles in both types of leaves. The internal ethylene level in leaves was reduced by pretreatment with the ethoxy analog of rhizobitoxine (an inhibitor of ethylene biosynthesis) or by maintaining the leaves under subatmospheric pressure. The results obtained by these methods showed that ethylene was not involved in the mechanism of stomatal movement in either turgid or in stressed leaves. Also, the increase in leaf abscisic acid content and the depletion of gibberellins induced by water stress were not related to the internal concentration of ethylene in the detached leaf. The different patterns of drought-induced ethylene production observed in the blades of leaves which exhibit abscission compared with those which do not exhibit abscission may indicate the involvement of ethylene in a primary event in the process of leaf abscission induced by water stress. PMID:16660357

  15. Relationships between carbonyl sulfide (COS) and CO2 during leaf gas exchange.

    PubMed

    Stimler, Keren; Montzka, Stephen A; Berry, Joseph A; Rudich, Yinon; Yakir, Dan

    2010-06-01

    *Carbonyl sulfide (COS) exchange in C(3) leaves is linked to that of CO(2), providing a basis for the use of COS as a powerful tracer of gross CO(2) fluxes between plants and the atmosphere, a critical element in understanding the response of the land biosphere to global change. *Here, we carried out controlled leaf-scale gas-exchange measurements of COS and CO(2) in representative C(3) plants under a range of light intensities, relative humidities and temperatures, CO(2) and COS concentrations, and following abscisic acid treatments. *No 'respiration-like' emission of COS or detectable compensation point, and no cross-inhibition effects between COS and CO(2) were observed. The mean ratio of COS to CO(2) assimilation flux rates, A(s)/A(c), was c. 1.4 pmol micromol(-1) and the leaf relative uptake (assimilation normalized to ambient concentrations, (A(s)/A(c))(C(a)(c)/C(a)(s))) was 1.6-1.7 across species and conditions, with significant deviations under certain conditions. Stomatal conductance was enhanced by increasing COS, which was possibly mediated by hydrogen sulfide (H(2)S) produced from COS hydrolysis, and a correlation was observed between A(s) and leaf discrimination against C(18)OO. *The results provide systematic and quantitative information necessary for the use of COS in photosynthesis and carbon-cycle research on the physiological to global scales.

  16. Spur behaviour in almond trees: relationships between previous year spur leaf area, fruit bearing and mortality.

    PubMed

    Lampinen, Bruce D; Tombesi, Sergio; Metcalf, Samuel G; DeJong, Theodore M

    2011-07-01

    In mature almond (Prunus dulcis) orchards, the majority of crop is borne on spurs (short, proleptic shoots) that can live for several years and can produce from one to five fruits. Previous research has led to the hypothesis that spur longevity is related to spur light exposure, cropping and age. However, limited quantitative data are available to substantiate these hypotheses. The objective of this study was to determine spur characteristics that were most highly correlated with spur productivity and longevity in mature, bearing almond trees. Previous year spur leaf area was strongly related to spur viability and flowering; the greater the leaf area in the previous year, the higher the probability of spur survival into the next year and the higher the probability for the spur to bear one or more flowers. Previous year bearing also appeared to influence viability and return bloom, especially in spurs with low leaf area. These results suggest that spur source-sink balance is basic to the life cycle of almond spurs. Furthermore, the results are consistent with the hypothesis that spurs are semi-autonomous organs with respect to carbohydrate balance for much of the growing season. Finally, this information provides general thresholds for maintaining spur viability and productivity that will be useful for developing and evaluating tree training systems and orchard management practices.

  17. Nitrogen addition affects leaf nutrition and photosynthesis in sugar maple in a nutrient-poor northern Vermont forest

    Treesearch

    David S. Ellsworth

    1999-01-01

    Sugar maple-dominated forest ecosystems in the northeastern U.S. have been receiving precipitation nitrogen (N) inputs of 15 -20 kg N ha1 year1 since at least the mid 1980s sustained chronic N inputs of this magnitude into nutrient-poor forest ecosystems may cause eutrophication and affect ecosystem functioning as well as...

  18. Decomposition and nitrogen dynamics of 15N-labeled leaf, root, and twig litter in temperate coniferous forests

    Treesearch

    T.L. van Huysen; M.E. Harmon; S.S. Perakis; H. Chen

    2013-01-01

    Litter nutrient dynamics contribute significantly to biogeochemical cycling in forest ecosystems. We examined how site environment and initial substrate quality influence decomposition and nitrogen (N) dynamics of multiple litter types. A 2.5-year decomposition study was installed in the Oregon Coast Range and West Cascades using 15N-labeled...

  19. Evaluation of hyperspectral LiDAR for monitoring rice leaf nitrogen by comparison with multispectral LiDAR and passive spectrometer

    NASA Astrophysics Data System (ADS)

    Sun, Jia; Shi, Shuo; Gong, Wei; Yang, Jian; Du, Lin; Song, Shalei; Chen, Biwu; Zhang, Zhenbing

    2017-01-01

    Fast and nondestructive assessment of leaf nitrogen concentration (LNC) is critical for crop growth diagnosis and nitrogen management guidance. In the last decade, multispectral LiDAR (MSL) systems have promoted developments in the earth and ecological sciences with the additional spectral information. With more wavelengths than MSL, the hyperspectral LiDAR (HSL) system provides greater possibilities for remote sensing crop physiological conditions. This study compared the performance of ASD FieldSpec Pro FR, MSL, and HSL for estimating rice (Oryza sativa) LNC. Spectral reflectance and biochemical composition were determined in rice leaves of different cultivars (Yongyou 4949 and Yangliangyou 6) throughout two growing seasons (2014–2015). Results demonstrated that HSL provided the best indicator for predicting rice LNC, yielding a coefficient of determination (R2) of 0.74 and a root mean square error of 2.80 mg/g with a support vector machine, similar to the performance of ASD (R2 = 0.73). Estimation of rice LNC could be significantly improved with the finer spectral resolution of HSL compared with MSL (R2 = 0.56).

  20. Evaluation of hyperspectral LiDAR for monitoring rice leaf nitrogen by comparison with multispectral LiDAR and passive spectrometer.

    PubMed

    Sun, Jia; Shi, Shuo; Gong, Wei; Yang, Jian; Du, Lin; Song, Shalei; Chen, Biwu; Zhang, Zhenbing

    2017-01-16

    Fast and nondestructive assessment of leaf nitrogen concentration (LNC) is critical for crop growth diagnosis and nitrogen management guidance. In the last decade, multispectral LiDAR (MSL) systems have promoted developments in the earth and ecological sciences with the additional spectral information. With more wavelengths than MSL, the hyperspectral LiDAR (HSL) system provides greater possibilities for remote sensing crop physiological conditions. This study compared the performance of ASD FieldSpec Pro FR, MSL, and HSL for estimating rice (Oryza sativa) LNC. Spectral reflectance and biochemical composition were determined in rice leaves of different cultivars (Yongyou 4949 and Yangliangyou 6) throughout two growing seasons (2014-2015). Results demonstrated that HSL provided the best indicator for predicting rice LNC, yielding a coefficient of determination (R(2)) of 0.74 and a root mean square error of 2.80 mg/g with a support vector machine, similar to the performance of ASD (R(2) = 0.73). Estimation of rice LNC could be significantly improved with the finer spectral resolution of HSL compared with MSL (R(2) = 0.56).

  1. Evaluation of hyperspectral LiDAR for monitoring rice leaf nitrogen by comparison with multispectral LiDAR and passive spectrometer

    PubMed Central

    Sun, Jia; Shi, Shuo; Gong, Wei; Yang, Jian; Du, Lin; Song, Shalei; Chen, Biwu; Zhang, Zhenbing

    2017-01-01

    Fast and nondestructive assessment of leaf nitrogen concentration (LNC) is critical for crop growth diagnosis and nitrogen management guidance. In the last decade, multispectral LiDAR (MSL) systems have promoted developments in the earth and ecological sciences with the additional spectral information. With more wavelengths than MSL, the hyperspectral LiDAR (HSL) system provides greater possibilities for remote sensing crop physiological conditions. This study compared the performance of ASD FieldSpec Pro FR, MSL, and HSL for estimating rice (Oryza sativa) LNC. Spectral reflectance and biochemical composition were determined in rice leaves of different cultivars (Yongyou 4949 and Yangliangyou 6) throughout two growing seasons (2014–2015). Results demonstrated that HSL provided the best indicator for predicting rice LNC, yielding a coefficient of determination (R2) of 0.74 and a root mean square error of 2.80 mg/g with a support vector machine, similar to the performance of ASD (R2 = 0.73). Estimation of rice LNC could be significantly improved with the finer spectral resolution of HSL compared with MSL (R2 = 0.56). PMID:28091610

  2. Relationship of leaf oxygen and carbon isotopic composition with transpiration efficiency in the C4 grasses Setaria viridis and Setaria italica.

    PubMed

    Ellsworth, Patrick Z; Ellsworth, Patrícia V; Cousins, Asaph B

    2017-06-15

    Leaf carbon and oxygen isotope ratios can potentially provide a time-integrated proxy for stomatal conductance (gs) and transpiration rate (E), and can be used to estimate transpiration efficiency (TE). In this study, we found significant relationships of bulk leaf carbon isotopic signature (δ13CBL) and bulk leaf oxygen enrichment above source water (Δ18OBL) with gas exchange and TE in the model C4 grasses Setaria viridis and S. italica. Leaf δ13C had strong relationships with E, gs, water use, biomass, and TE. Additionally, the consistent difference in δ13CBL between well-watered and water-limited plants suggests that δ13CBL is effective in separating C4 plants with different availability of water. Alternatively, the use of Δ18OBL as a proxy for E and TE in S. viridis and S. italica was problematic. First, the oxygen isotopic composition of source water, used to calculate leaf water enrichment (Δ18OLW), was variable with time and differed across water treatments. Second, water limitations changed leaf size and masked the relationship of Δ18OLW and Δ18OBL with E. Therefore, the data collected here suggest that δ13CBL but not Δ18OBL may be an effective proxy for TE in C4 grasses. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  3. Modeling the leaf angle dynamics in rice plant

    PubMed Central

    Zhang, Yonghui; Tang, Liang; Liu, Xiaojun; Liu, Leilei; Cao, Weixing; Zhu, Yan

    2017-01-01

    The leaf angle between stem and sheath (SSA) is an important rice morphological trait. The objective of this study was to develop and validate a dynamic SSA model under different nitrogen (N) rates for selected rice cultivars. The time-course data of SSA were collected in three years, and a dynamic SSA model was developed for different main stem leaf ranks under different N rates for two selected rice cultivars. SSA increased with tiller age. The SSA of the same leaf rank increased with increase in N rate. The maximum SSA increased with leaf rank from the first to the third leaf, then decreased from the third to the final leaf. The relationship between the maximum SSA and leaf rank on main stem could be described with a linear piecewise function. The change of SSA with thermal time (TT) was described by a logistic equation. A variety parameter (the maximum SSA of the 3rd leaf on main stem) and a nitrogen factor were introduced to quantify the effect of cultivar and N rate on SSA. The model was validated against data collected from both pot and field experiments. The relative root mean square error (RRMSE) was 11.56% and 14.05%, respectively. The resulting models could be used for virtual rice plant modeling and plant-type design. PMID:28207799

  4. Modeling the leaf angle dynamics in rice plant.

    PubMed

    Zhang, Yonghui; Tang, Liang; Liu, Xiaojun; Liu, Leilei; Cao, Weixing; Zhu, Yan

    2017-01-01

    The leaf angle between stem and sheath (SSA) is an important rice morphological trait. The objective of this study was to develop and validate a dynamic SSA model under different nitrogen (N) rates for selected rice cultivars. The time-course data of SSA were collected in three years, and a dynamic SSA model was developed for different main stem leaf ranks under different N rates for two selected rice cultivars. SSA increased with tiller age. The SSA of the same leaf rank increased with increase in N rate. The maximum SSA increased with leaf rank from the first to the third leaf, then decreased from the third to the final leaf. The relationship between the maximum SSA and leaf rank on main stem could be described with a linear piecewise function. The change of SSA with thermal time (TT) was described by a logistic equation. A variety parameter (the maximum SSA of the 3rd leaf on main stem) and a nitrogen factor were introduced to quantify the effect of cultivar and N rate on SSA. The model was validated against data collected from both pot and field experiments. The relative root mean square error (RRMSE) was 11.56% and 14.05%, respectively. The resulting models could be used for virtual rice plant modeling and plant-type design.

  5. Remote sensing of leaf N to improve carbon assimilation prediction

    NASA Astrophysics Data System (ADS)

    Loozen, Yasmina; Rebel, Karin; Karssenberg, Derek; de Jong, Steven; Wassen, Martin

    2016-04-01

    Predicting and understanding carbon assimilation by terrestrial vegetation remains fundamental in the context of climate change. Carbon and nitrogen cycles are linked as nitrogen is an essential nutrient for plant growth. In this respect the N cycle is integrated into vegetation models predicting vegetation carbon uptake. However plant traits within the N cycle, such as leaf nitrogen, are lacking at large scales, which complicates the calibration and optimization of the N cycling modelling modules. Remote sensing techniques could offer the possibility to detect leaf N concentration at continental scales. In fact, it has already been used to sense leaf N at local, e.g. in agricultural oriented applications, as well as at regional scales. The objective of this study is to enhance the availability of leaf N estimates in forested ecosystems at European scale using remote sensing products. European forest leaf N data were obtained from the TRY database. The MERIS Terrestrial chlorophyll Index (MTCI) Level 3 product as well as two reflectance bands in the NIR region (band centers at 865 and 885nm) both from MERIS aboard ENVISAT (ESA) were used to study statistical relationship with leaf N data. In a first step, we analyzed 1892 Catalonian (NE Spain) forest plots using a linear regression method. The regressions results between leaf N and either MTCI or NIR bands were significant (p< 0.001). The R-square for the regression between leaf N and MTCI was equal to 0.13. The method performed better for broadleaves deciduous plots (R-square = 0.11) than for needleleaves or broadleaves evergreen plots. The relationship between leaf N and MTCI was also higher for the plots sampled during summer (R-square = 0.28 in July) than for the plots sampled during the rest of the year. In a second step the method will be applied on and will include more diverse forest types at the European level.

  6. Remote Sensing of Vegetation Nitrogen Content for Spatially Explicit Carbon and Water Cycle Estimation

    NASA Astrophysics Data System (ADS)

    Zhang, Y. L.; Miller, J. R.; Chen, J. M.

    2009-05-01

    Foliage nitrogen concentration is a determinant of photosynthetic capacity of leaves, thereby an important input to ecological models for estimating terrestrial carbon and water budgets. Recently, spectrally continuous airborne hyperspectral remote sensing imagery has proven to be useful for retrieving an important related parameter, total chlorophyll content at both leaf and canopy scales. Thus remote sensing of vegetation biochemical parameters has promising potential for improving the prediction of global carbon and water balance patterns. In this research, we explored the feasibility of estimating leaf nitrogen content using hyperspectral remote sensing data for spatially explicit estimation of carbon and water budgets. Multi-year measurements of leaf biochemical contents of seven major boreal forest species were carried out in northeastern Ontario, Canada. The variation of leaf chlorophyll and nitrogen content in response to various growth conditions, and the relationship between them,were investigated. Despite differences in plant type (deciduous and evergreen), leaf age, stand growth conditions and developmental stages, leaf nitrogen content was strongly correlated with leaf chlorophyll content on a mass basis during the active growing season (r2=0.78). With this general correlation, leaf nitrogen content was estimated from leaf chlorophyll content at an accuracy of RMSE=2.2 mg/g, equivalent to 20.5% of the average measured leaf nitrogen content. Based on this correlation and a hyperspectral remote sensing algorithm for leaf chlorophyll content retrieval, the spatial variation of leaf nitrogen content was inferred from the airborne hyperspectral remote sensing imagery acquired by Compact Airborne Spectrographic Imager (CASI). A process-based ecological model Boreal Ecosystem Productivity Simulator (BEPS) was used for estimating terrestrial carbon and water budgets. In contrast to the scenario with leaf nitrogen content assigned as a constant value without

  7. Leaf anatomy and its implications for phylogenetic relationships in Taxaceae s. l.

    PubMed

    Ghimire, Balkrishna; Lee, Chunghee; Heo, Kweon

    2014-05-01

    The comparative study on leaf anatomy and stomata structures of six genera of Taxaceae s. l. was conducted. Leaf anatomical structures were very comparable to each other in tissue shape and their arrangements. Taxus, Austrotaxus, and Pseudotaxus have no foliar resin canal, whereas Amentotaxus, Cephalotaxus, and Torreya have a single resin canal located below the vascular bundle. Among them, Torreya was unique with thick-walled, almost round sclerenchymatous epidermal cells. In addition, Amentotaxus and Torreya were comprised of some fiber cells around the vascular bundle. Also, Amentotaxus resembled Cephalotaxus harringtonia and its var. nana because they have discontinuous fibrous hypodermis. However, C. fortunei lacked the same kind of cells. Stomata were arranged in two stomatal bands separated by a mid-vein. The most unique stomatal structure was of Taxus with papillose accessory cells forming stomatal apparatus and of Torreya with deeply seated stomata covered with a special filament structure. Some morphological and molecular studies have already been discussed for the alternative classification of taxad genera into different minor families. The present study is also similar to these hypotheses because each genus has their own individuality in anatomical structure and stomata morphology. In conclusion, these differences in leaf and stomata morphology neither strongly support the two tribes in Taxaceae nor fairly recognize the monogeneric family, Cephalotaxaceae. Rather, it might support an alternative classification of taxad genera in different minor families or a single family Taxaceae including Cephalotaxus. In this study, we would prefer the latter one because there is no clear reason to separate Cephalotaxus from the rest genera of Taxaceae. Therefore, Taxaceae should be redefined with broad circumscriptions including Cephalotaxus.

  8. Temporal analysis of natural variation for the rate of leaf production and its relationship with flowering initiation in Arabidopsis thaliana

    PubMed Central

    Méndez-Vigo, Belén; de Andrés, M. Teresa; Ramiro, Mercedes; Martínez-Zapater, José M.; Alonso-Blanco, Carlos

    2010-01-01

    Vegetative growth and flowering initiation are two crucial developmental processes in the life cycle of annual plants that are closely associated. The timing of both processes affects several presumed adaptive traits, such as flowering time (FT), total leaf number (TLN), or the rate of leaf production (RLP). However, the interactions among these complex processes and traits, and their mechanistic bases, remain largely unknown. To determine the genetic relationships between them, the natural genetic variation between A. thaliana accessions Fei-0 and Ler has been studied using a new population of 222 Ler×Fei-0 recombinant inbred lines. Temporal analysis of the parental development under a short day photoperiod distinguishes two vegetative phases differing in their RLP. QTL mapping of RLP in consecutive time intervals of vegetative development indicates that Ler/Fei-0 variation is caused by 10 loci whose small to moderate effects mainly display two different temporal patterns. Further comparative QTL analyses show that most of the genomic regions affecting FT or TLN also alter RLP. In addition, the partially independent genetic bases observed for FT and TLN appear determined by several genomic regions with two different patterns of phenotypic effects: regions with a larger effect on FT than TLN, and vice versa. The distinct temporal and pleiotropic patterns of QTL effects suggest that natural variation for flowering time is caused by different genetic mechanisms involved in vegetative and/or reproductive phase changes, most of them interacting with the control of leaf production rate. Thus, natural selection might contribute to maintain this genetic variation due to its phenotypic effects not only on the timing of flowering initiation but also on the rate of vegetative growth. PMID:20190039

  9. [Relationship between Fe, Al oxides and stable organic carbon, nitrogen in the yellow-brown soils].

    PubMed

    Heng, Li-Sha; Wang, Dai-Zhang; Jiang, Xin; Rao, Wei; Zhang, Wen-Hao; Guo, Chun-Yan; Li, Teng

    2010-11-01

    The stable organic carbon and nitrogen of the different particles were gained by oxidation of 6% NaOCl in the yellow-brown soils. The relationships between the contents of selective extractable Fe/Al and the stable organic carbon/nitrogen were investigated. It shown that amounts of dithionite-citrate-(Fe(d)) and oxalate-(Fe(o)) and pyrophosphate extractable (Fe(p)) were 6-60.8 g x kg(-1) and 0.13-4.8 g x kg(-1) and 0.03-0.47 g x kg(-1) in 2-250 microm particles, respectively; 43.1-170 g x kg(-1) and 5.9-14.0 g x kg(-1) and 0.28-0.78 g x kg(-1) in < 2 microm particles, respectively. The contents of oxalate-(Al(o)) and pyrophosphate extractable (Al(p)) were 0.08-1.34 g x kg(-10 and 0.11-0.47 g x kg(-1) in 2-250 microm particles, respectively; 2.96-6.20 g x kg(-1) and 0.38-0.78 g x kg(-1) in < 2 microm particles, respectively. And amounts of selective extractable Fe are generally higher in paddy yellow-brown soils than in arid yellow-brown soils, and that of selective extractable Al are lower in the former than in the latter. Amounts of the stable organic carbon and nitrogen, higher in paddy yellow-brown soils than in arid yellow-brown soils, were 0.93-6.0 g x kg(-1) and 0.05-0.36 g x kg(-1) in 2-250 microm particles, respectively; 6.05-19.3 g x kg(-1) and 0.61-2.1 g x kg(-1) in < 2 microm particles, respectively. The ratio of the stable organic carbon and nitrogen (C(stable)/N(stable)) were 9.50-22.0 in 2-250 microm particles and 7.43-11.54 in < 2 microm particles, respectively. The stabilization index (SI(C) and SI(N)) of the organic carbon and nitrogen were 14.3-50.0 and 11.9-55.6 in 2-250 microm particles, respectively; 53.72-88.80 and 40.64-70.0 in < 2 microm particles, respectively. According to SI, it is lower in arid yellow-brown soils than in paddy yellow-brown soils. The organic carbon and nitrogen are advantageously conserved in paddy yellow-brown soil. An extremely significant positive correlation of the stable organic carbon and nitrogen with selective

  10. Evaluation of the relationship between nitrogen dry deposition and wildfire in a boreal forest of interior Alaska

    NASA Astrophysics Data System (ADS)

    Nagano, H.; Iwata, H.; Harazono, Y.

    2014-12-01

    In the boreal forests of interior Alaska, wildfires may play an important role in nitrogen dry deposition, which is one of the major input pathways affecting nitrogen availability. In order to examine the relationship between nitrogen dry deposition and wildfire, we applied regression analysis to the annual dry deposition of an Alaska boreal forest and annual burned area in Alaska for the 1999-2013 period. Furthermore, we estimated long-term nitrogen dry deposition for the past 54 years (1950-2013) at the same Alaska boreal forest, using an obtained regression equation and annual burned area. We used the data for annual nitrogen dry deposition (nitric acid, particulate nitrate, and particulate ammonium) measured at the CASTNET station (DEN417) in Denali National Park, available for 1999-2013. The annual burned area data for Alaska were referred to in previous reports (Todd and Jewkes, 2006; AICC, 2013). Nitrogen dry depositions at DEN417 were strongly correlated with the annual burned area in Alaska, where that area explained more than 68 % of the variation in annual nitrogen dry deposition. The background dry depositions defined as intercepts in the regression equations were 4.70, 0.24, and 2.15 mg m-2 year-1 for nitric acid, particulate nitrate, and particulate ammonium, respectively. Assuming that the increase in observed dry deposition above the background level (7.09 mg N m-2 year-1) was equal to nitrogen dry deposition originated from wildfire, we estimated that wildfire contributions to nitrogen dry deposition were 14 ± 20 % in 1999-2013. The long-term reproduction of nitrogen dry deposition revealed an increase in wildfire enhanced nitrogen dry deposition of up to 20 % for the 2000s, compared to the previous decadal age. The regression analysis and long-term reproduction in this study showed that the increase of wildfires in Alaska since 2000 has significantly enhanced the nitrogen dry deposition at DEN417.

  11. Arabidopsis thaliana ggt1 photorespiratory mutants maintain leaf carbon/nitrogen balance by reducing RuBisCO content and plant growth.

    PubMed

    Dellero, Younès; Lamothe-Sibold, Marlène; Jossier, Mathieu; Hodges, Michael

    2015-09-01

    Metabolic and physiological analyses of glutamate:glyoxylate aminotransferase 1 (GGT1) mutants were performed at the global leaf scale to elucidate the mechanisms involved in their photorespiratory growth phenotype. Air-grown ggt1 mutants showed retarded growth and development, that was not observed at high CO2 (3000 μL L(-1) ). When compared to wild-type (WT) plants, air-grown ggt1 plants exhibited glyoxylate accumulation, global changes in amino acid amounts including a decrease in serine content, lower organic acid levels, and modified ATP/ADP and NADP(+) /NADPH ratios. When compared to WT plants, their net CO2 assimilation rates (An ) were 50% lower and this mirrored decreases in ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) contents. High CO2 -grown ggt1 plants transferred to air revealed a rapid decrease of An and photosynthetic electron transfer rate while maintaining a high energetic state. Short-term (a night period and 4 h of light) transferred ggt1 leaves accumulated glyoxylate and exhibited low serine contents, while other amino acid levels were not modified. RuBisCO content, activity and activation state were not altered after a short-term transfer while the ATP/ADP ratio was lowered in ggt1 rosettes. However, plant growth and RuBisCO levels were both reduced in ggt1 leaves after a long-term (12 days) acclimation to air from high CO2 when compared to WT plants. The data are discussed with respect to a reduced photorespiratory carbon recycling in the mutants. It is proposed that the low An limits nitrogen-assimilation, this decreases leaf RuBisCO content until plants attain a new homeostatic state that maintains a constant C/N balance and leads to smaller, slower growing plants. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  12. Ubiquitin Ligase ATL31 Functions in Leaf Senescence in Response to the Balance Between Atmospheric CO2 and Nitrogen Availability in Arabidopsis

    PubMed Central

    Aoyama, Shoki; Huarancca Reyes, Thais; Guglielminetti, Lorenzo; Lu, Yu; Morita, Yoshie; Sato, Takeo; Yamaguchi, Junji

    2014-01-01

    Carbon (C) and nitrogen (N) are essential elements for metabolism, and their availability, called the C/N balance, must be tightly coordinated for optimal growth in plants. Previously, we have identified the ubiquitin ligase CNI1/ATL31 as a novel C/N regulator by screening plants grown on C/N stress medium containing excess sugar and limited N. To elucidate further the effect of C/N balance on plant growth and to determine the physiological function of ATL31, we performed C/N response analysis using an atmospheric CO2 manipulation system. Under conditions of elevated CO2 and sufficient N, plant biomass and total sugar and starch dramatically increased. In contrast, elevated CO2 with limited N did not increase plant biomass but promoted leaf chlorosis, with anthocyanin accumulation and increased senescence-associated gene expression. Similar results were obtained with plants grown in medium containing excess sugar and limited N, suggesting that disruption of the C/N balance affects senescence progression. In ATL31-overexpressing plants, promotion of senescence under disrupted CO2/N conditions was repressed, whereas in the loss-of-function mutant it was enhanced. The ATL31 gene was transcriptionally up-regulated under N deficiency and in senescent leaves, and ATL31 expression was highly correlated with WRKY53 expression, a key regulator of senescence. Furthermore, transient protoplast analysis implicated the direct activation of ATL31 expression by WRKY53, which was in accordance with the results of WRKY53 overexpression experiments. Together, these results demonstrate the importance of C/N balance in leaf senescence and the involvement of ubiquitin ligase ATL31 in the process of senescence in Arabidopsis. PMID:24399238

  13. Influence of atmospheric [CO2] on growth, carbon allocation and cost of plant tissues on leaf nitrogen concentration maintenance in nodulated Medicago sativa

    NASA Astrophysics Data System (ADS)

    Pereyra, Gabriela; Hartmann, Henrik; Ziegler, Waldemar; Michalzik, Beate; Gonzalez-Meler, Miquel; Trumbore, Susan

    2015-04-01

    Plant carbon (C) allocation and plant metabolic processes (i.e. photosynthesis and respiration) can be affected by changes in C availability, for example from changing atmospheric [CO2]. In nodulated plants, C availability may also influence nitrogen (N) fixation by bacteriods. But C allocation and N fixation are often studied independently and hence do not allow elucidating interactive effects. We investigated how different atmospheric [CO2] (Pleistocene: 170 ppm, ambient: 400 ppm and projected future: 700 ppm) influence plant growth, allocation to nodules, and the ratio of photosynthesis-to-respiration (R:A) as an indicator of C cost in Medicago sativa inoculated with Ensifer meliloti. M. sativa grew c. 38% more nodules at 400 ppm and 700 ppm than at 170 ppm. However, ratios of above- and belowground plant biomass to nodule biomass were constant over time and independent of atmospheric [CO2]. Total non-structural carbohydrate concentrations were not significantly different between plants grown at 400 and 700 ppm, but were four to five-fold higher than in 170 ppm plants. Leaf level N concentration was similar across treatments, but N-based photosynthetic rates were 82% and 93% higher in leaves of plants grown at 400 and 700 ppm, respectively, than plants grown at 170 ppm. In addition, leaf R:A was greater (48% or 55%) in plants grown at 170 ppm than plants grown at 400 and 700 ppm. Similarly, the greatest proportion of assimilated CO2 released by root respiration occurred in rhizobial plants growing at 170 ppm. Our results suggest that C limitation in nodulated Medicago sativa plants did not influence C allocation to nodule biomass but caused a proportionally greater allocation of C to belowground respiration, most likely to bacteriods. This suggests that N tissue concentration was maintained at low [CO2] by revving up bacteriod metabolism and at the expense of non-structural carbohydrate reserves.

  14. Maize Source Leaf Adaptation to Nitrogen Deficiency Affects Not Only Nitrogen and Carbon Metabolism But Also Control of Phosphate Homeostasis1[W][OA

    PubMed Central

    Schlüter, Urte; Mascher, Martin; Colmsee, Christian; Scholz, Uwe; Bräutigam, Andrea; Fahnenstich, Holger; Sonnewald, Uwe

    2012-01-01

    Crop plant development is strongly dependent on the availability of nitrogen (N) in the soil and the efficiency of N utilization for biomass production and yield. However, knowledge about molecular responses to N deprivation derives mainly from the study of model species. In this article, the metabolic adaptation of source leaves to low N was analyzed in maize (Zea mays) seedlings by parallel measurements of transcriptome and metabolome profiling. Inbred lines A188 and B73 were cultivated under sufficient (15 mm) or limiting (0.15 mm) nitrate supply for up to 30 d. Limited availability of N caused strong shifts in the metabolite profile of leaves. The transcriptome was less affected by the N stress but showed strong genotype- and age-dependent patterns. N starvation initiated the selective down-regulation of processes involved in nitrate reduction and amino acid assimilation; ammonium assimilation-related transcripts, on the other hand, were not influenced. Carbon assimilation-related transcripts were characterized by high transcriptional coordination and general down-regulation under low-N conditions. N deprivation caused a slight accumulation of starch but also directed increased amounts of carbohydrates into the cell wall and secondary metabolites. The decrease in N availability also resulted in accumulation of phosphate and strong down-regulation of genes usually involved in phosphate starvation response, underlining the great importance of phosphate homeostasis control under stress conditions. PMID:22972706

  15. On the complementary relationship between marginal nitrogen and water-use efficiencies among Pinus taeda leaves grown under ambient and CO2-enriched environments

    PubMed Central

    Palmroth, Sari; Katul, Gabriel G.; Maier, Chris A.; Ward, Eric; Manzoni, Stefano; Vico, Giulia

    2013-01-01

    Background and Aims Water and nitrogen (N) are two limiting resources for biomass production of terrestrial vegetation. Water losses in transpiration (E) can be decreased by reducing leaf stomatal conductance (gs) at the expense of lowering CO2 uptake (A), resulting in increased water-use efficiency. However, with more N available, higher allocation of N to photosynthetic proteins improves A so that N-use efficiency is reduced when gs declines. Hence, a trade-off is expected between these two resource-use efficiencies. In this study it is hypothesized that when foliar concentration (N) varies on time scales much longer than gs, an explicit complementary relationship between the marginal water- and N-use efficiency emerges. Furthermore, a shift in this relationship is anticipated with increasing atmospheric CO2 concentration (ca). Methods Optimization theory is employed to quantify interactions between resource-use efficiencies under elevated ca and soil N amendments. The analyses are based on marginal water- and N-use efficiencies, λ = (∂A/∂gs)/(∂E/∂gs) and η = ∂A/∂N, respectively. The relationship between the two efficiencies and related variation in intercellular CO2 concentration (ci) were examined using A/ci curves and foliar N measured on Pinus taeda needles collected at various canopy locations at the Duke Forest Free Air CO2 Enrichment experiment (North Carolina, USA). Key Results Optimality theory allowed the definition of a novel, explicit relationship between two intrinsic leaf-scale properties where η is complementary to the square-root of λ. The data support the model predictions that elevated ca increased η and λ, and at given ca and needle age-class, the two quantities varied among needles in an approximately complementary manner. Conclusions The derived analytical expressions can be employed in scaling-up carbon, water and N fluxes from leaf to ecosystem, but also to derive transpiration estimates from those of η, and assist in

  16. On the complementary relationship between marginal nitrogen and water-use efficiencies among Pinus taeda leaves grown under ambient and CO2-enriched environments.

    PubMed

    Palmroth, Sari; Katul, Gabriel G; Maier, Chris A; Ward, Eric; Manzoni, Stefano; Vico, Giulia

    2013-03-01

    Water and nitrogen (N) are two limiting resources for biomass production of terrestrial vegetation. Water losses in transpiration (E) can be decreased by reducing leaf stomatal conductance (g(s)) at the expense of lowering CO(2) uptake (A), resulting in increased water-use efficiency. However, with more N available, higher allocation of N to photosynthetic proteins improves A so that N-use efficiency is reduced when g(s) declines. Hence, a trade-off is expected between these two resource-use efficiencies. In this study it is hypothesized that when foliar concentration (N) varies on time scales much longer than g(s), an explicit complementary relationship between the marginal water- and N-use efficiency emerges. Furthermore, a shift in this relationship is anticipated with increasing atmospheric CO(2) concentration (c(a)). Optimization theory is employed to quantify interactions between resource-use efficiencies under elevated c(a) and soil N amendments. The analyses are based on marginal water- and N-use efficiencies, λ = (∂A/∂g(s))/(∂E/∂g(s)) and η = ∂A/∂N, respectively. The relationship between the two efficiencies and related variation in intercellular CO(2) concentration (c(i)) were examined using A/c(i) curves and foliar N measured on Pinus taeda needles collected at various canopy locations at the Duke Forest Free Air CO(2) Enrichment experiment (North Carolina, USA). Optimality theory allowed the definition of a novel, explicit relationship between two intrinsic leaf-scale properties where η is complementary to the square-root of λ. The data support the model predictions that elevated c(a) increased η and λ, and at given c(a) and needle age-class, the two quantities varied among needles in an approximately complementary manner. The derived analytical expressions can be employed in scaling-up carbon, water and N fluxes from leaf to ecosystem, but also to derive transpiration estimates from those of η, and assist in predicting how increasing

  17. Mercury concentrations and pools in four Sierra Nevada forest sites, and relationships to organic carbon and nitrogen

    NASA Astrophysics Data System (ADS)

    Obrist, D.; Johnson, D. W.; Lindberg, S. E.

    2009-05-01

    This study presents data on mercury (Hg) concentrations, stochiometric relations to carbon (C) and nitrogen (N), and Hg pool sizes in four Sierra Nevada forest sites of similar exposure and precipitation regimes, and hence similar atmospheric deposition, to evaluate how ecosystem parameters control Hg retention in ecosystems. In all four sites, the largest amounts of Hg reside in soils which account for 94-98% of ecosystem pools. Hg concentrations and Hg/C ratios increase in the following order: Green Needles/Leavesrelationships between Hg and organic C. Mineral soil layers show strong positive correlations of Hg to C across all sites and soil horizons (r2=0.83), but Hg concentrations are even more closely related to N with a similar slope to that observed in litter (r2=0.92). Soil N levels alone explain over 90% of Hg pool sizes across the four Sierra Nevada forest sites. This suggests that soil organic N and C groups provide sorption sites for Hg to retain atmospheric deposition. However, the patterns could be due to indirect relationships where high soil N and C levels reflect high ecosystem productivity which leads to corresponding high atmospheric Hg deposition inputs via leaf litterfall and plant senescence. Our results also show that two of the sites previously affected by prescribed burning and wildfires show significant depletion of above-ground Hg pools but that belowground Hg pools