Science.gov

Sample records for leaf rolling angle

  1. Critical rolling angle of microparticles

    NASA Astrophysics Data System (ADS)

    Farzi, Bahman; Vallabh, Chaitanya K. P.; Stephens, James D.; Cetinkaya, Cetin

    2016-03-01

    At the micrometer-scale and below, particle adhesion becomes particularly relevant as van der Waals force often dominates volume and surface proportional forces. The rolling resistance of microparticles and their critical rolling angles prior to the initiation of free-rolling and/or complete detachment are critical in numerous industrial processes and natural phenomenon involving particle adhesion and granular dynamics. The current work describes a non-contact measurement approach for determining the critical rolling angle of a single microparticle under the influence of a contact-point base-excitation generated by a transient displacement field of a prescribed surface acoustic wave pulse and reports the critical rolling angle data for a set of polystyrene latex microparticles.

  2. Semi-Rolled Leaf2 modulates rice leaf rolling by regulating abaxial side cell differentiation.

    PubMed

    Liu, Xiaofei; Li, Ming; Liu, Kai; Tang, Ding; Sun, Mingfa; Li, Yafei; Shen, Yi; Du, Guijie; Cheng, Zhukuan

    2016-04-01

    Moderate leaf rolling maintains the erectness of leaves and minimizes the shadowing between leaves which is helpful to establish ideal plant architecture. Here, we describe asrl2(semi-rolled leaf2) rice mutant, which has incurved leaves due to the presence of defective sclerenchymatous cells on the abaxial side of the leaf and displays narrow leaves and reduced plant height. Map-based cloning revealed that SRL2 encodes a novel plant-specific protein of unknown biochemical function.SRL2 was mainly expressed in the vascular bundles of leaf blades, leaf sheaths, and roots, especially in their sclerenchymatous cells. The transcriptional activities of several leaf development-related YABBY genes were significantly altered in the srl2 mutant. Double mutant analysis suggested that SRL2 and SHALLOT-LIKE1(SLL1)/ROLLED LEAF9(RL9) function in distinct pathways that regulate abaxial-side leaf development. Hence, SRL2 plays an important role in regulating leaf development, particularly during sclerenchymatous cell differentiation.

  3. Semi-Rolled Leaf2 modulates rice leaf rolling by regulating abaxial side cell differentiation

    PubMed Central

    Liu, Xiaofei; Li, Ming; Liu, Kai; Tang, Ding; Sun, Mingfa; Li, Yafei; Shen, Yi; Du, Guijie; Cheng, Zhukuan

    2016-01-01

    Moderate leaf rolling maintains the erectness of leaves and minimizes the shadowing between leaves which is helpful to establish ideal plant architecture. Here, we describe a srl2 (semi-rolled leaf2) rice mutant, which has incurved leaves due to the presence of defective sclerenchymatous cells on the abaxial side of the leaf and displays narrow leaves and reduced plant height. Map-based cloning revealed that SRL2 encodes a novel plant-specific protein of unknown biochemical function. SRL2 was mainly expressed in the vascular bundles of leaf blades, leaf sheaths, and roots, especially in their sclerenchymatous cells. The transcriptional activities of several leaf development-related YABBY genes were significantly altered in the srl2 mutant. Double mutant analysis suggested that SRL2 and SHALLOT-LIKE1 (SLL1)/ROLLED LEAF9 (RL9) function in distinct pathways that regulate abaxial-side leaf development. Hence, SRL2 plays an important role in regulating leaf development, particularly during sclerenchymatous cell differentiation. PMID:26873975

  4. Molecular cytogenetic characterization of a new leaf rolling triticale.

    PubMed

    Yang, E N; Yang, Z J; Zhang, J F; Zou, Y C; Ren, Z L

    2011-11-29

    Leaf rolling occurs in some cereal genotypes in response to drought. We identified and made a phenotypic, cytological and physiological analysis of a leaf-rolling genotype (CMH83) of hexaploid triticale (X Triticosecale Wittmack) that exhibited reduced plant height, rolled and narrow leaves. Gliadin electrophoresis of seed protein showed that CMH83 was genetically stable. Sequential Giemsa-C-banding and genomic in situ hybridization showed that CMH83 contains 12 rye chromosomes; two pairs of these chromosomes have reduced telomeric heterochromatin bands. Tests of relative water content and water loss rate of leaves of CMH83 compared with those of wheat cultivars indicated that rapid water loss after drought stress in CMH83 is associated with the leaf rolling phenotypes. Leaf rolling in CMH83 was a dominant trait in our inheritance studies. Triticale line CMH83 could be used to study drought resistance mechanisms in triticale.

  5. Characterization of Rolled and Erect Leaf 1 in regulating leave morphology in rice

    PubMed Central

    Chen, Qiaoling; Xie, Qingjun; Gao, Ju; Wang, Wenyi; Sun, Bo; Liu, Bohan; Zhu, Haitao; Peng, Haifeng; Zhao, Haibing; Liu, Changhong; Wang, Jiang; Zhang, Jingliu; Zhang, Guiquan; Zhang, Zemin

    2015-01-01

    Leaf morphology, particularly in crop, is one of the most important agronomic traits because it influences the yield through the manipulation of photosynthetic capacity and transpiration. To understand the regulatory mechanism of leaf morphogenesis, an Oryza sativa dominant mutant, rolled and erect leaf 1 (rel1) has been characterized. This mutant has a predominant rolled leaf, increased leaf angle, and reduced plant height phenotype that results in a reduction in grain yield. Electron microscope observations indicated that the leaf incurvations of rel1 dominant mutants result from the alteration of the size and number of bulliform cells. Molecular cloning revealed that the rel1 dominant mutant phenotype is caused by the activation of the REL1 gene, which encodes a novel unknown protein, despite its high degree of conservation among monocot plants. Moreover, the downregulation of the REL1 gene in the rel1 dominant mutant restored the phenotype of this dominant mutant. Alternatively, overexpression of REL1 in wild-type plants induced a phenotype similar to that of the dominant rel1 mutant, indicating that REL1 plays a positive role in leaf rolling and bending. Consistent with the observed rel1 phenotype, the REL1 gene was predominantly expressed in the meristem of various tissues during plant growth and development. Nevertheless, the responsiveness of both rel1 dominant mutants and REL1-overexpressing plants to exogenous brassinosteroid (BR) was reduced. Moreover, transcript levels of BR response genes in the rel1 dominant mutants and REL1-overexpressing lines were significantly altered. Additionally, seven REL1-interacting proteins were also identified from a yeast two-hybrid screen. Taken together, these findings suggest that REL1 regulates leaf morphology, particularly in leaf rolling and bending, through the coordination of BR signalling transduction. PMID:26142419

  6. Predicting Roll Angle Of A Spinning Spacecraft

    NASA Technical Reports Server (NTRS)

    Smith, M. A.; Dyer, J. W.

    1988-01-01

    Data for corrections of attitude derived on Earth from secondary measurements. Paper describes how attitude of Pioneer 10 spacecraft controlled since spacecraft lost signal from Sun-sensor signal. Roll calculations in paper yields insight into environment of solar system at great distances.

  7. SEMI-ROLLED LEAF1 Encodes a Putative Glycosylphosphatidylinositol-Anchored Protein and Modulates Rice Leaf Rolling by Regulating the Formation of Bulliform Cells1[W][OA

    PubMed Central

    Xiang, Jing-Jing; Zhang, Guang-Heng; Qian, Qian; Xue, Hong-Wei

    2012-01-01

    Leaf rolling is an important agronomic trait in rice (Oryza sativa) breeding and moderate leaf rolling maintains the erectness of leaves and minimizes shadowing between leaves, leading to improved photosynthetic efficiency and grain yields. Although a few rolled-leaf mutants have been identified and some genes controlling leaf rolling have been isolated, the molecular mechanisms of leaf rolling still need to be elucidated. Here we report the isolation and characterization of SEMI-ROLLED LEAF1 (SRL1), a gene involved in the regulation of leaf rolling. Mutants srl1-1 (point mutation) and srl1-2 (transferred DNA insertion) exhibit adaxially rolled leaves due to the increased numbers of bulliform cells at the adaxial cell layers, which could be rescued by complementary expression of SRL1. SRL1 is expressed in various tissues and is expressed at low levels in bulliform cells. SRL1 protein is located at the plasma membrane and predicted to be a putative glycosylphosphatidylinositol-anchored protein. Moreover, analysis of the gene expression profile of cells that will become epidermal cells in wild type but probably bulliform cells in srl1-1 by laser-captured microdissection revealed that the expression of genes encoding vacuolar H+-ATPase (subunits A, B, C, and D) and H+-pyrophosphatase, which are increased during the formation of bulliform cells, were up-regulated in srl1-1. These results provide the transcript profile of rice leaf cells that will become bulliform cells and demonstrate that SRL1 regulates leaf rolling through inhibiting the formation of bulliform cells by negatively regulating the expression of genes encoding vacuolar H+-ATPase subunits and H+-pyrophosphatase, which will help to understand the mechanism regulating leaf rolling. PMID:22715111

  8. Light airplane crash tests at three roll angles

    NASA Technical Reports Server (NTRS)

    Castle, C. B.; Alfaro-Bou, E.

    1979-01-01

    Three similar twin engine general aviation airplanes were crash tested at the Langley impact dynamics research facility at 27 m/sec and at nominal roll angles of 0 deg, -15 deg, and -30 deg. Other flight parameters were held constant. The test facility, instrumentation, test specimens, and test method are briefly described. Structural damage and accelerometer data for each of the three impact conditions are presented and discussed.

  9. The Influence of Leaf Angle and Leaf Surface Characteristics on the Process of Rainfall Interception

    NASA Astrophysics Data System (ADS)

    Holder, C.; Ginebra, R.; Webb, R.

    2015-12-01

    Individual choice in plant selection for household landscaping influences differences in runoff from urban watersheds because the variation in plant canopy architecture results in rainfall interception differences. Understanding the variables that influence rainfall interception and understanding the mechanism of rainfall interception are important concepts for sustainable watershed management. The broad objective of this study was to explore the influence of leaf hydrophobicity, water droplet retention, and leaf angle on the mechanism and process of rainfall interception and raindrop impaction on leaf surfaces of common tree species from the semi-arid regions of the western United States. Leaf hydrophobicity is determined by the cohesive forces of the water molecules among themselves and the adhesive forces that result from the molecular interactions between the water droplet and the leaf surface. Water droplet retention is a measure of how easily a water droplet drains off a leaf surface. The specific hypotheses examined were 1) larger raindrops falling on leaf surfaces will deflect the leaf to an angle greater than the water droplet retention angle; 2) an increased leaf angle, whether from natural position or deflection due to droplet impact and retention, reduces interception from raindrop impaction on hydrophobic and hydrophilic leaf surfaces; and 3) increased droplet size and frequency decrease rainfall interception more significantly in the hydrophilic case. These hypotheses were addressed in a laboratory experiment by 1) measuring leaf hydrophobicity and water droplet retention using a goniometer with a tilting base; 2) measuring leaf traits such as leaf area, leaf surface roughness, trichome density, and specific storage capacity; 3) examining raindrop splash on leaf surfaces with varying leaf hydrophobicity, water droplet retention, and leaf angle with a raindrop generator and high-speed video camera; and 4) modeling the impact of raindrop splash on leaf

  10. Phytohormones signaling and crosstalk regulating leaf angle in rice.

    PubMed

    Luo, Xiangyu; Zheng, Jingsheng; Huang, Rongyu; Huang, Yumin; Wang, Houcong; Jiang, Liangrong; Fang, Xuanjun

    2016-12-01

    Leaf angle is an important agronomic trait in rice (Oryza sativa L.). It affects both the efficiency of sunlight capture and nitrogen reservoirs. The erect leaf phenotype is suited for high-density planting and thus increasing crop yields. Many genes regulate leaf angle by affecting leaf structure, such as the lamina joint, mechanical tissues, and the midrib. Signaling of brassinosteroids (BR), auxin (IAA), and gibberellins (GA) plays important roles in the regulation of lamina joint bending in rice. In addition, the biosynthesis and signaling of BR are known to have dominant effects on leaf angle development. In this review, we summarize the factors and genes associated with the development of leaf angle in rice, outline the regulatory mechanisms based on the signaling of BR, IAA, and GA, and discuss the contribution of crosstalk between BR and IAA or GA in the formation of leaf angle. Promising lines of research in the transgenic engineering of rice leaf angle to increase grain yield are proposed.

  11. A study of roll attractor and wing rock of delta wings at high angles of attack

    NASA Technical Reports Server (NTRS)

    Niranjana, T.; Rao, D. M.; Pamadi, Bandu N.

    1993-01-01

    Wing rock is a high angle of attack dynamic phenomenon of limited cycle motion predominantly in roll. The wing rock is one of the limitations to combat effectiveness of the fighter aircraft. Roll Attractor is the steady state or equilibrium trim angle (phi(sub trim)) attained by the free-to-roll model, held at some angle of attack, and released form rest at a given initial roll (bank) angle (phi(sub O)). Multiple roll attractors are attained at different trim angles depending on initial roll angle. The test facility (Vigyan's low speed wind tunnel) and experimental work is presented here along with mathematical modelling of roll attractor phenomenon and analysis and comparison of predictions with experimental data.

  12. SHALLOT-LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development.

    PubMed

    Zhang, Guang-Heng; Xu, Qian; Zhu, Xu-Dong; Qian, Qian; Xue, Hong-Wei

    2009-03-01

    As an important agronomic trait, rice (Oryza sativa L.) leaf rolling has attracted much attention from plant biologists and breeders. Moderate leaf rolling increases the photosynthesis of cultivars and hence raises grain yield. However, the relevant molecular mechanism remains unclear. Here, we show the isolation and functional characterization of SHALLOT-LIKE1 (SLL1), a key gene controlling rice leaf rolling. sll1 mutant plants have extremely incurved leaves due to the defective development of sclerenchymatous cells on the abaxial side. Defective development can be functionally rescued by expression of SLL1. SLL1 is transcribed in various tissues and accumulates in the abaxial epidermis throughout leaf development. SLL1 encodes a SHAQKYF class MYB family transcription factor belonging to the KANADI family. SLL1 deficiency leads to defective programmed cell death of abaxial mesophyll cells and suppresses the development of abaxial features. By contrast, enhanced SLL1 expression stimulates phloem development on the abaxial side and suppresses bulliform cell and sclerenchyma development on the adaxial side. Additionally, SLL1 deficiency results in increased chlorophyll and photosynthesis. Our findings identify the role of SLL1 in the modulation of leaf abaxial cell development and in sustaining abaxial characteristics during leaf development. These results should facilitate attempts to use molecular breeding to increase the photosynthetic capacity of rice, as well as other crops, by modulating leaf development and rolling.

  13. Modeling the leaf angle dynamics in rice plant

    PubMed Central

    Zhang, Yonghui; Tang, Liang; Liu, Xiaojun; Liu, Leilei; Cao, Weixing; Zhu, Yan

    2017-01-01

    The leaf angle between stem and sheath (SSA) is an important rice morphological trait. The objective of this study was to develop and validate a dynamic SSA model under different nitrogen (N) rates for selected rice cultivars. The time-course data of SSA were collected in three years, and a dynamic SSA model was developed for different main stem leaf ranks under different N rates for two selected rice cultivars. SSA increased with tiller age. The SSA of the same leaf rank increased with increase in N rate. The maximum SSA increased with leaf rank from the first to the third leaf, then decreased from the third to the final leaf. The relationship between the maximum SSA and leaf rank on main stem could be described with a linear piecewise function. The change of SSA with thermal time (TT) was described by a logistic equation. A variety parameter (the maximum SSA of the 3rd leaf on main stem) and a nitrogen factor were introduced to quantify the effect of cultivar and N rate on SSA. The model was validated against data collected from both pot and field experiments. The relative root mean square error (RRMSE) was 11.56% and 14.05%, respectively. The resulting models could be used for virtual rice plant modeling and plant-type design. PMID:28207799

  14. Modeling the leaf angle dynamics in rice plant.

    PubMed

    Zhang, Yonghui; Tang, Liang; Liu, Xiaojun; Liu, Leilei; Cao, Weixing; Zhu, Yan

    2017-01-01

    The leaf angle between stem and sheath (SSA) is an important rice morphological trait. The objective of this study was to develop and validate a dynamic SSA model under different nitrogen (N) rates for selected rice cultivars. The time-course data of SSA were collected in three years, and a dynamic SSA model was developed for different main stem leaf ranks under different N rates for two selected rice cultivars. SSA increased with tiller age. The SSA of the same leaf rank increased with increase in N rate. The maximum SSA increased with leaf rank from the first to the third leaf, then decreased from the third to the final leaf. The relationship between the maximum SSA and leaf rank on main stem could be described with a linear piecewise function. The change of SSA with thermal time (TT) was described by a logistic equation. A variety parameter (the maximum SSA of the 3rd leaf on main stem) and a nitrogen factor were introduced to quantify the effect of cultivar and N rate on SSA. The model was validated against data collected from both pot and field experiments. The relative root mean square error (RRMSE) was 11.56% and 14.05%, respectively. The resulting models could be used for virtual rice plant modeling and plant-type design.

  15. Analysis of the differential gene and protein expression profile of the rolled leaf mutant of transgenic rice (Oryza sativa L.).

    PubMed

    Zhu, Qiuqiang; Yu, Shuguang; Chen, Guanshui; Ke, Lanlan; Pan, Daren

    2017-01-01

    The importance of leaf rolling in rice (Oryza sativa L.) has been widely recognized. Although several studies have investigated rice leaf rolling and identified some related genes, knowledge of the molecular mechanism underlying rice leaf rolling, especially outward leaf rolling, is limited. Therefore, in this study, differential proteomics and gene expression profiling were used to analyze rolled leaf mutant of transgenic rice in order to investigate differentially expressed genes and proteins related to rice leaf rolling. To this end, 28 differentially expressed proteins related to rolling leaf traits were isolated and identified. Digital expression profiling detected 10 genes related to rice leaf rolling. Some of the proteins and genes detected are involved in lipid metabolism, which is related to the development of bulliform cells, such as phosphoinositide phospholipase C, Mgll gene, and At4g26790 gene. The "omics"-level techniques were useful for simultaneously isolating several proteins and genes related to rice leaf rolling. In addition, the results of the analysis of differentially expressed proteins and genes were closely consistent with those from a corresponding functional analysis of cellular mechanisms; our study findings might form the basis for further research on the molecular mechanisms underlying rice leaf rolling.

  16. Wind and gravity mechanical effects on leaf inclination angles.

    PubMed

    Tadrist, Loïc; Saudreau, Marc; de Langre, Emmanuel

    2014-01-21

    In a tree, the distribution of leaf inclination angles plays an important role in photosynthesis and water interception. We investigate here the effect of mechanical deformations of leaves due to wind or their own weight on this distribution. First, the specific role of the geometry of the tree is identified and shown to be weak, using models of idealized tree and tools of statistical mechanics. Then the deformation of individual leaves under gravity or wind is quantified experimentally. New dimensionless parameters are proposed, and used in simple models of these deformations. By combining models of tree geometry and models of leaf deformation, we explore the role of all mechanical parameters on the Leaf Inclination Angle Distributions. These are found to have a significant influence, which is exemplified finally in computations of direct light interception by idealized trees.

  17. A field calibration method to eliminate the error caused by relative tilt on roll angle measurement

    NASA Astrophysics Data System (ADS)

    Qi, Jingya; Wang, Zhao; Huang, Junhui; Yu, Bao; Gao, Jianmin

    2016-11-01

    The roll angle measurement method based on a heterodyne interferometer is an efficient technique for its high precision and environmental noise immunity. The optical layout bases on a polarization-assisted conversion of the roll angle into an optical phase shift, read by a beam passing through the objective plate actuated by the roll rotation. The measurement sensitivity or the gain coefficient G is calibrated before. However, a relative tilt between the laser and objective plate always exist due to the tilt of the laser and the roll of the guide in the field long rail measurement. The relative tilt affect the value of G, thus result in the roll angle measurement error. In this paper, a method for field calibration of G is presented to eliminate the measurement error above. The field calibration layout turns the roll angle into an optical path change (OPC) by a rotary table. Thus, the roll angle can be obtained from the OPC read by a two-frequency interferometer. Together with the phase shift, an accurate G in field measurement can be obtained and the measurement error can be corrected. The optical system of the field calibration method is set up and the experiment results are given. Contrasted with the Renishaw XL-80 for calibration, the proposed field calibration method can obtain the accurate G in the field rail roll angle measurement.

  18. Repellency of the lotus leaf: contact angles, drop retention, and sliding angles.

    PubMed

    Extrand, C W; Moon, Sung In

    2014-07-29

    Much of the modeling done on repellency and super hydrophobicity has focused on surfaces with rectilinear geometries, but their wetting behavior is simpler and can be quite different from that of repellent surfaces with curved features. In this study, we model the contact angles and sliding angles exhibited by the lotus leaf, accounting for the influence of curvature and pinning. Our estimates agree reasonably well with experimental observations.

  19. Coherent optical determination of the leaf angle distribution of corn

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T. (Principal Investigator); Pihlman, M.

    1981-01-01

    A coherent optical technique for the diffraction analysis of an image is presented. Developments in radar remote sensing shows a need to understand plant geometry and its relationship to plant moisture, soil moisture, and the radar backscattering coefficient. A corn plant changes its leaf angle distribution, as a function of time, from a uniform distribution to one that is strongly vertical. It is shown that plant and soil moisture may have an effect on plant geometry.

  20. Real-time estimation of projectile roll angle using magnetometers: in-lab experimental validation

    NASA Astrophysics Data System (ADS)

    Changey, S.; Pecheur, E.; Wey, P.; Sommer, E.

    2013-12-01

    The knowledge of the roll angle of a projectile is decisive to apply guidance and control law. For example, the goal of ISL's project GSP (Guided Supersonic Projectile) is to change the flight path of an airdefence projectile in order to correct the aim error due to the target manoeuvres. The originality of the concept is based on pyrotechnical actuators and onboard sensors which control the angular motion of the projectile. First of all, the control of the actuators requires the precise control of the roll angle of the projectile. To estimate the roll angle of the projectile, two magnetometers are embedded in the projectile to measure the projection of the Earth magnetic field along radial axes of the projectiles. Then, an extended Kalman filter (EKF) is used to compute the roll angle estimation. As the rolling frequency of the GSP is about 22 Hz, it was easy to test the navigation algorithm in laboratory. In a previous paper [1], the In-Lab demonstration of this concept showed that the roll angle estimation was possible with an accuracy of about 1◦ . In this paper, the demonstration is extended to high-speed roll rate, up to 1000 Hz. Thus, two magnetometers, a DSP (Digital Signal Processor) and a LED (Light Eminent Diode), are rotated using a pneumatic motor; the DSP runs an EKF and a guidance algorithm to compute the trigger times of the LED. By using a high-speed camera, the accuracy of the method can be observed and improved.

  1. Quantitative trait loci mapping of leaf angle and leaf orientation value in maize (Zea mays L.).

    PubMed

    Ku, L X; Zhao, W M; Zhang, J; Wu, L C; Wang, C L; Wang, P A; Zhang, W Q; Chen, Y H

    2010-09-01

    A major limiting factor for high productivity of maize (Zea mays L.) in dense planting is light penetration through the canopy. Plant architecture with a narrower leaf angle (LA) and an optimum leaf orientation value (LOV) is desirable to increase light capture for photosynthesis and production per unit area. However, the genetic control of the plant architecture traits remains poorly understood in maize. In this study, QTL for LA, LOV, and related traits were mapped using a set of 229 F(2:3) families derived from the cross between compact and expanded inbred lines, evaluated in three environments. Twenty-five QTL were detected in total. Three of the QTL explained 37.4% and five of the QTL explained 53.9% of the phenotypic variance for LA and LOV, respectively. Two key genome regions controlling leaf angle and leaf orientation were identified. qLA1 and qLOV1 at nearest marker umc2226 on chromosome 1.02 accounted for 20.4 and 23.2% of the phenotypic variance, respectively; qLA5 and qLOV5 at nearest bnlg1287 on chromosome 5 accounted for 9.7 and 9.8% of the phenotypic variance, respectively. These QTL could provide useful information for marker-assisted selection in improving performance of plant architecture with regard to leaf angle and orientation.

  2. Determination of the Nip Angle in Roller Compactors With Serrated Rolls.

    PubMed

    Tan, Bernice Mei Jin; Chan, Lai Wah; Heng, Paul Wan Sia

    2016-06-01

    In roller compaction, the nip angle defines the critical transition interface between the slip and nip regions which is used to model material densification behavior and the properties of compacted ribbons. Current methods to determine the nip angle require either sophisticated instrumentation on smooth rolls or input parameters that are difficult to obtain experimentally. In this study, a practical method to determine nip angles for serrated rolls was developed based on mass balance considerations established around the nip region. Experimental input relating to roll geometry, powder density, and mass output from the compactor were required and they could be obtained reliably. The calculated nip angles were validated against those obtained from physical measurements during actual roll compaction. These nip angles were in agreement for various powder formulations containing plastic and brittle materials. The nip angles ranged from 4° to 12° and decreased significantly when the proportion of brittle material increased. Nip angles were also calculated using the widely used Johanson model. However, wall friction measurement on serrated roll surfaces could be impractical. The Johanson model-derived nip angles could differ by 3°-8° just by altering the roughness of the reference wall and this had compromised their reliability.

  3. Modified bubble level senses pitch and roll angles over wide range

    NASA Technical Reports Server (NTRS)

    Mattson, E. J.; Mcnally, P. F.

    1971-01-01

    Bubble level sensor with fiber-optic field flattener is simple, rugged, small, and impervious to temperature and vibration effects. Pitch angles from -15 deg to +40 deg and roll angles of +30 deg are determined within 0.5 deg.

  4. Characterization of R genes involved in resistance to Cherry leaf roll virus in paradox hybrids

    USDA-ARS?s Scientific Manuscript database

    A single dominant ‘R’ gene (clrvR), in black walnuts (Juglans hindsii) or ‘paradox’ hybrids (J. hindsii x J. regia) confers resistance to Cherry leaf roll virus (CLRV), the causal agent of blackline disease. The identification and cloning of the ‘R’ gene is expected to aid the walnut breeding progra...

  5. Notes on the ecology of rolled-leaf hispines (Chrysomelidae, Cassidinae) at La Gamba (Costa Rica).

    PubMed

    Schmitt, Michael; Frank, Meike

    2013-01-01

    A total of 301 adult hispine beetles of the genera Cephaloleia and Chelobasis were found in rolled leaves of plants of 17 species of Zingiberales (families Costaceae, Heliconiaceae, Maranthaceae, Musaceae, and Zingiberaceae) during a field study at La Gamba, Golfito region, Costa Rica. Of these beetles, Cephaloleia belti was recorded from 12 potential host plant species, C. distincta from 7, C. dilaticollis from 5, C., Chelobasis bicolor, C. championi, and C. histrionica from 3, Chelobasis perplexa and C. instabilis from 2, whereas C. trivittata from only one. Of the plant species, Heliconia latispatha had 7 beetle species in its leaf rolls, Calathea lutea had 5, H. imbricata and H. rostrata had 4, H. stricta and Musa paradisiaca had 3, H. wagneriana had 2, while on H. vaginalis, H. danielsiana, H. densiflora, H. longiflora, Calathea crotalifera, C. platystachya, Goeppertia lasiophylla, Alpinia purpurata, Costus pulverulentus and Costus barbatus, H. densiflora, H. vaginalis, and H. danielsana only hispines of one species were found. Cephaloleia belti occurred together with beetles of six other hispine species, whereas Cephaloleia trivittata never shared a leaf roll with another hispine species. The remaining beetle species aggregated with one to four other hispines. Adults of C. belti and C. championi were frequently seen, occasionally also with C. dilaticollis, C. histrionica, and Chelobasis perplexa, to co-occur with the carabid Calophaena ligata in the same leaf roll without any sign of interspecific aggression. A comparison of host choices and the phylogeny of the hispines and of their host plants revealed no signs that beetles used species level phylogenetic relationships within the Zingiberales to select food plants. Obviously, within this plant order, rolled-leaf hispines choose their plant hosts in a nearly opportunistic manner. Seemingly, they use differences among plants at higher taxonomic levels but within the Zingiberales, the availability of young

  6. Photosystem II functionality and antioxidant system changes during leaf rolling in post-stress emerging Ctenanthe setosa exposed to drought.

    PubMed

    Terzi, Rabiye; Saruhan, Neslihan; Sağlam, A; Nar, Hatice; Kadioğlu, A

    2009-12-01

    We studied the changes in antioxidant system and chlorophyll fluorescence parameters in post-stress emerging Ctenanthe setosa (Rosc.) Eichler (Marantaceae) plants (PSE plants) having reduced leaf area under drought stress causing leaf rolling and re-watering. PSE plants were compared to primary stressed plants (PS) in previous studies. The parameters were measured at different visual leaf rolling scores from 1 to 4 (1 is unrolled, 4 is tightly rolled and the others is intermediate form). Water potentials and stomatal conductance of leaves were gradually decreased during leaf rolling. Similarly, maximum quantum efficiency of open PS II center and quantum yield of PS II decreased during the rolling period. Non-photochemical quenching of chlorophyll fluorescence decreased at score 2 then increased while photochemical quenching did not change during leaf rolling. Electron transport rate decreased only at score 4 but approximately reached to score 1 level after re-watering. Superoxide dismutase activity was not constant at all leaf rolling scores. Ascorbate peroxidase, catalase and glutathione reductase activities generally tended to increase during leaf rolling. Lipid peroxidation and H 2 O 2 content increased at score 2 but decreased at the later scores. On the other hand, O 2 .- production increased during the rolling period. After re-watering of the plants having score 4 of leaf rolling, antioxidant enzyme activities were lower than those of score 1. Other physiological parameters also tended to reach the value of score 1. The results indicated that PSE plants gained drought tolerance by reducing leaf area effectively induced their antioxidant systems and protected the photosynthesis under drought stress similar to PS plants.

  7. Determination of angles of attack and sideslip from radar data and a roll-stabilized platform

    NASA Technical Reports Server (NTRS)

    Preisser, J. S.

    1972-01-01

    Equations for angles of attack and sideslip relative to both a rolling and nonrolling body axis system are derived for a flight vehicle for which radar and gyroscopic attitude data are available. The method is limited to application where a flat, nonrotating earth may be assumed. The gyro measures attitude relative to an inertial reference in an Euler angle sequence. In particular, a pitch, yaw, and roll sequence is used as an example in the derivation. Sample calculations based on flight data are presented to illustrate the method. Results obtained with the present gyro method are compared with another technique that uses onboard camera data.

  8. High resolution and stability roll angle measurement method for precision linear displacement stages

    NASA Astrophysics Data System (ADS)

    Jin, Tao; Xia, Guizheng; Hou, Wenmei; Le, Yanfen; Han, Sen

    2017-02-01

    A method for high resolution roll angle measurement of linear displacement stages is developed theoretically and tested experimentally. The new optical configuration is based on a special differential plane mirror interferometer, a wedge prism assembly, and a wedge mirror assembly. The wedge prisms assembly is used as a roll angle sensor, which converts roll angle to the changes of optical path. The special interferometer, composed a polarization splitter plane, a half wave plate, a beam splitter, a retro-reflector and a quarter wave plate, is designed for high resolution measurement of the changes of the optical path. The interferometric beams are a completely common path for the adoption of the centrosymmetrical measurement structure, and the cross talk of the straightness, yaw, and pitch errors is avoided. The angle measurement resolution of the proposed method is 3.5 μrad in theoretical with a phase meter which has a resolution of 2 π /512 . The experimental result also shows the great stability and accuracy of the present roll angle measurement system.

  9. Leaf Rolling Controlled by the Homeodomain Leucine Zipper Class IV Gene Roc5 in Rice1[W

    PubMed Central

    Zou, Liang-ping; Sun, Xue-hui; Zhang, Zhi-guo; Liu, Peng; Wu, Jin-xia; Tian, Cai-juan; Qiu, Jin-long; Lu, Tie-gang

    2011-01-01

    Leaf rolling is considered an important agronomic trait in rice (Oryza sativa) breeding. To understand the molecular mechanism controlling leaf rolling, we screened a rice T-DNA insertion population and isolated the outcurved leaf1 (oul1) mutant showing abaxial leaf rolling. The phenotypes were caused by knockout of Rice outermost cell-specific gene5 (Roc5), an ortholog of the Arabidopsis (Arabidopsis thaliana) homeodomain leucine zipper class IV gene GLABRA2. Interestingly, overexpression of Roc5 led to adaxially rolled leaves, whereas cosuppression of Roc5 resulted in abaxial leaf rolling. Bulliform cell number and size increased in oul1 and Roc5 cosuppression plants but were reduced in Roc5-overexpressing lines. The data indicate that Roc5 negatively regulates bulliform cell fate and development. Gene expression profiling, quantitative polymerase chain reaction, and RNA interference (RNAi) analyses revealed that Protodermal Factor Like (PFL) was probably down-regulated in oul1. The mRNA level of PFL was increased in Roc5-overexpressing lines, and PFL-RNAi transgenic plants exhibit reversely rolling leaves by reason of increases of bulliform cell number and size, indicating that Roc5 may have a conserved function. These are, to our knowledge, the first functional data for a gene encoding a homeodomain leucine zipper class IV transcriptional factor in rice that modulates leaf rolling. PMID:21596949

  10. Fluid-structure interaction of a rolling restrained body of revolution at high angles of attack

    NASA Astrophysics Data System (ADS)

    Degani, D.; Ishay, M.; Gottlieb, O.

    2017-03-01

    The current work investigates numerically rolling instabilities of a free-to-roll slender rigid-body of revolution placed in a wind tunnel at a high angle of attack. The resistance to the roll moment is represented by a linear torsion spring and equivalent linear damping representing friction in the bearings of a simulated wind tunnel model. The body is subjected to a three-dimensional, compressible, laminar flow. The full Navier-Stokes equations are solved using the second-order implicit finite difference Beam-Warming scheme, adapted to a curvilinear coordinate system, whereas the coupled structural second order equation of motion for roll is solved by a fourth-order Runge-Kutta method. The body consists of a 3.5-diameter tangent ogive forebody with a 7.0-diameter long cylindrical afterbody extending aft of the nose-body junction to x/D = 10.5. We describe in detail the investigation of three angles of attack 20°, 40°, and 65°, at a Reynolds number of 30 000 (based on body diameter) and a Mach number of 0.2. Three distinct configurations are investigated as follows: a fixed body, a free-to-roll body with a weak torsion spring, and a free-to-roll body with a strong torsion spring. For each angle of attack the free-to-roll configuration portrays a distinct and different behavior pattern, including bi-stable limit-cycle oscillations. The bifurcation structure incorporates both large and small amplitude periodic roll oscillations where the latter lose their periodicity with increasing stiffness of the restraining spring culminating with distinct quasiperiodic oscillations. We note that removal of an applied upstream disturbance for a restrained body does not change the magnitude or complexity of the oscillations or of the flow patterns along the body. Depending on structure characteristics and flow conditions even a small rolling moment coefficient at the relatively low angle of attack of 20° may lead to large amplitude resonant roll oscillations.

  11. Harnessing Genetic Variation in Leaf Angle to Increase Productivity of Sorghum bicolor

    PubMed Central

    Truong, Sandra K.; McCormick, Ryan F.; Rooney, William L.; Mullet, John E.

    2015-01-01

    The efficiency with which a plant intercepts solar radiation is determined primarily by its architecture. Understanding the genetic regulation of plant architecture and how changes in architecture affect performance can be used to improve plant productivity. Leaf inclination angle, the angle at which a leaf emerges with respect to the stem, is a feature of plant architecture that influences how a plant canopy intercepts solar radiation. Here we identify extensive genetic variation for leaf inclination angle in the crop plant Sorghum bicolor, a C4 grass species used for the production of grain, forage, and bioenergy. Multiple genetic loci that regulate leaf inclination angle were identified in recombinant inbred line populations of grain and bioenergy sorghum. Alleles of sorghum dwarf-3, a gene encoding a P-glycoprotein involved in polar auxin transport, are shown to change leaf inclination angle by up to 34° (0.59 rad). The impact of heritable variation in leaf inclination angle on light interception in sorghum canopies was assessed using functional-structural plant models and field experiments. Smaller leaf inclination angles caused solar radiation to penetrate deeper into the canopy, and the resulting redistribution of light is predicted to increase the biomass yield potential of bioenergy sorghum by at least 3%. These results show that sorghum leaf angle is a heritable trait regulated by multiple loci and that genetic variation in leaf angle can be used to modify plant architecture to improve sorghum crop performance. PMID:26323882

  12. Harnessing Genetic Variation in Leaf Angle to Increase Productivity of Sorghum bicolor.

    PubMed

    Truong, Sandra K; McCormick, Ryan F; Rooney, William L; Mullet, John E

    2015-11-01

    The efficiency with which a plant intercepts solar radiation is determined primarily by its architecture. Understanding the genetic regulation of plant architecture and how changes in architecture affect performance can be used to improve plant productivity. Leaf inclination angle, the angle at which a leaf emerges with respect to the stem, is a feature of plant architecture that influences how a plant canopy intercepts solar radiation. Here we identify extensive genetic variation for leaf inclination angle in the crop plant Sorghum bicolor, a C4 grass species used for the production of grain, forage, and bioenergy. Multiple genetic loci that regulate leaf inclination angle were identified in recombinant inbred line populations of grain and bioenergy sorghum. Alleles of sorghum dwarf-3, a gene encoding a P-glycoprotein involved in polar auxin transport, are shown to change leaf inclination angle by up to 34° (0.59 rad). The impact of heritable variation in leaf inclination angle on light interception in sorghum canopies was assessed using functional-structural plant models and field experiments. Smaller leaf inclination angles caused solar radiation to penetrate deeper into the canopy, and the resulting redistribution of light is predicted to increase the biomass yield potential of bioenergy sorghum by at least 3%. These results show that sorghum leaf angle is a heritable trait regulated by multiple loci and that genetic variation in leaf angle can be used to modify plant architecture to improve sorghum crop performance.

  13. Angle Measurement System (AMS) for Establishing Model Pitch and Roll Zero, and Performing Single Axis Angle Comparisons

    NASA Technical Reports Server (NTRS)

    Crawford, Bradley L.

    2007-01-01

    The angle measurement system (AMS) developed at NASA Langley Research Center (LaRC) is a system for many uses. It was originally developed to check taper fits in the wind tunnel model support system. The system was further developed to measure simultaneous pitch and roll angles using 3 orthogonally mounted accelerometers (3-axis). This 3-axis arrangement is used as a transfer standard from the calibration standard to the wind tunnel facility. It is generally used to establish model pitch and roll zero and performs the in-situ calibration on model attitude devices. The AMS originally used a laptop computer running DOS based software but has recently been upgraded to operate in a windows environment. Other improvements have also been made to the software to enhance its accuracy and add features. This paper will discuss the accuracy and calibration methodologies used in this system and some of the features that have contributed to its popularity.

  14. Rolling-leaf14 is a 2OG-Fe (II) oxygenase family protein that modulates rice leaf rolling by affecting secondary cell wall formation in leaves.

    PubMed

    Fang, Likui; Zhao, Fangming; Cong, Yunfei; Sang, Xianchun; Du, Qing; Wang, Dezhong; Li, Yunfeng; Ling, Yinghua; Yang, Zhenglin; He, Guanghua

    2012-06-01

    As an important agronomic trait, leaf rolling in rice (Oryza sativa L.) has attracted much attention from plant biologists and breeders. Moderate leaf rolling increases the amount of photosynthesis in cultivars and hence raises grain yield. Here, we describe the map-based cloning of the gene RL14, which was found to encode a 2OG-Fe (II) oxygenase of unknown function. rl14 mutant plants had incurved leaves because of the shrinkage of bulliform cells on the adaxial side. In addition, rl14 mutant plants displayed smaller stomatal complexes and decreased transpiration rates, as compared with the wild type. Defective development could be rescued functionally by the expression of wild-type RL14. RL14 was transcribed in sclerenchymatous cells in leaves that remained wrapped inside the sheath. In mature leaves, RL14 accumulated mainly in the mesophyll cells that surround the vasculature. Expression of genes related to secondary cell wall formation was affected in rl14-1 mutants, and cellulose and lignin content were altered in rl14-1 leaves. These results reveal that the RL14 gene affects water transport in leaves by affecting the composition of the secondary cell wall. This change in water transport results in water deficiency, which is the major reason for the abnormal shape of the bulliform cells.

  15. Simulations of Seasonal and Latitudinal Variations in Leaf Inclination Angle Distribution: Implications for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Huemmrich, Karl F.

    2013-01-01

    The leaf inclination angle distribution (LAD) is an important characteristic of vegetation canopy structure affecting light interception within the canopy. However, LADs are difficult and time consuming to measure. To examine possible global patterns of LAD and their implications in remote sensing, a model was developed to predict leaf angles within canopies. Canopies were simulated using the SAIL radiative transfer model combined with a simple photosynthesis model. This model calculated leaf inclination angles for horizontal layers of leaves within the canopy by choosing the leaf inclination angle that maximized production over a day in each layer. LADs were calculated for five latitude bands for spring and summer solar declinations. Three distinct LAD types emerged: tropical, boreal, and an intermediate temperate distribution. In tropical LAD, the upper layers have a leaf angle around 35 with the lower layers having horizontal inclination angles. While the boreal LAD has vertical leaf inclination angles throughout the canopy. The latitude bands where each LAD type occurred changed with the seasons. The different LADs affected the fraction of absorbed photosynthetically active radiation (fAPAR) and Normalized Difference Vegetation Index (NDVI) with similar relationships between fAPAR and leaf area index (LAI), but different relationships between NDVI and LAI for the different LAD types. These differences resulted in significantly different relationships between NDVI and fAPAR for each LAD type. Since leaf inclination angles affect light interception, variations in LAD also affect the estimation of leaf area based on transmittance of light or lidar returns.

  16. Computer programs for calculation of sting pitch and roll angles required to obtain angles of attack and sideslip on wind tunnel models

    NASA Technical Reports Server (NTRS)

    Peterson, John B., Jr.

    1988-01-01

    Two programs have been developed to calculate the pitch and roll angles of a wind-tunnel sting drive system that will position a model at the desired angle of attack and and angle of sideslip in the wind tunnel. These programs account for the effects of sting offset angles, sting bending angles and wind-tunnel stream flow angles. In addition, the second program incorporates inputs from on-board accelerometers that measure model pitch and roll with respect to gravity. The programs are presented in the report and a description of the numerical operation of the programs with a definition of the variables used in the programs is given.

  17. Roll-yaw control at high angle of attack by forebody tangential blowing

    NASA Technical Reports Server (NTRS)

    Pedreiro, N.; Rock, S. M.; Celik, Z. Z.; Roberts, L.

    1995-01-01

    The feasibility of using forebody tangential blowing to control the roll-yaw motion of a wind tunnel model is experimentally demonstrated. An unsteady model of the aerodynamics is developed based on the fundamental physics of the flow. Data from dynamic experiments is used to validate the aerodynamic model. A unique apparatus is designed and built that allows the wind tunnel model two degrees of freedom, roll and yaw. Dynamic experiments conducted at 45 degrees angle of attack reveal the system to be unstable. The natural motion is divergent. The aerodynamic model is incorporated into the equations of motion of the system and used for the design of closed loop control laws that make the system stable. These laws are proven through dynamic experiments in the wind tunnel using blowing as the only actuator. It is shown that asymmetric blowing is a highly non-linear effector that can be linearized by superimposing symmetric blowing. The effects of forebody tangential blowing and roll and yaw angles on the flow structure are determined through flow visualization experiments. The transient response of roll and yaw moments to a step input blowing are determined. Differences on the roll and yaw moment dependence on blowing are explained based on the physics of the phenomena.

  18. Roll-Yaw control at high angle of attack by forebody tangential blowing

    NASA Technical Reports Server (NTRS)

    Pedreiro, N.; Rock, S. M.; Celik, Z. Z.; Roberts, L.

    1995-01-01

    The feasibility of using forebody tangential blowing to control the roll-yaw motion of a wind tunnel model is experimentally demonstrated. An unsteady model of the aerodynamics is developed based on the fundamental physics of the flow. Data from dynamic experiments is used to validate the aerodynamic model. A unique apparatus is designed and built that allows the wind tunnel model two degrees of freedom, roll and yaw. Dynamic experiments conducted at 45 degrees angle of attack reveal the system to be unstable. The natural motion is divergent. The aerodynamic model is incorporated into the equations of motion of the system and used for the design of closed loop control laws that make the system stable. These laws are proven through dynamic experiments in the wind tunnel using blowing as the only actuator. It is shown that asymmetric blowing is a highly non-linear effector that can be linearized by superimposing symmetric blowing. The effects of forebody tangential blowing and roll and yaw angles on the flow structure are determined through flow visualization experiments. The transient response of roll and yaw moments to a step input blowing are determined. Differences on the roll and yaw moment dependence on blowing are explained based on the physics of the phenomena.

  19. SHALLOT-LIKE1 Is a KANADI Transcription Factor That Modulates Rice Leaf Rolling by Regulating Leaf Abaxial Cell Development[W][OA

    PubMed Central

    Zhang, Guang-Heng; Xu, Qian; Zhu, Xu-Dong; Qian, Qian; Xue, Hong-Wei

    2009-01-01

    As an important agronomic trait, rice (Oryza sativa L.) leaf rolling has attracted much attention from plant biologists and breeders. Moderate leaf rolling increases the photosynthesis of cultivars and hence raises grain yield. However, the relevant molecular mechanism remains unclear. Here, we show the isolation and functional characterization of SHALLOT-LIKE1 (SLL1), a key gene controlling rice leaf rolling. sll1 mutant plants have extremely incurved leaves due to the defective development of sclerenchymatous cells on the abaxial side. Defective development can be functionally rescued by expression of SLL1. SLL1 is transcribed in various tissues and accumulates in the abaxial epidermis throughout leaf development. SLL1 encodes a SHAQKYF class MYB family transcription factor belonging to the KANADI family. SLL1 deficiency leads to defective programmed cell death of abaxial mesophyll cells and suppresses the development of abaxial features. By contrast, enhanced SLL1 expression stimulates phloem development on the abaxial side and suppresses bulliform cell and sclerenchyma development on the adaxial side. Additionally, SLL1 deficiency results in increased chlorophyll and photosynthesis. Our findings identify the role of SLL1 in the modulation of leaf abaxial cell development and in sustaining abaxial characteristics during leaf development. These results should facilitate attempts to use molecular breeding to increase the photosynthetic capacity of rice, as well as other crops, by modulating leaf development and rolling. PMID:19304938

  20. Influence of the angle between cold rolling direction and hot rolling direction on the texture evolution of non-oriented electrical steels

    NASA Astrophysics Data System (ADS)

    He, Y.; Hilinski, E.; Attard, M.; Bibby, D.; Santos, R.; Zavadil, R.

    2015-04-01

    In processing non-oriented electrical steel sheets using conventional rolling schemes, the most common texture components obtained after final annealing are the magnetically unfavourable <111>//ND (γ) and <110>//RD (α) fibres. A lot of researches have been carried out trying to optimize the processes to produce the favourable <001>//ND (θ) fibre. However, since the final texture is formed through a series of texture evolution steps during the solidification, hot rolling, cold rolling and annealing processes, it is quite challenging to tailor the texture of the final product. In this study, a new rolling scheme was examined, in which the cold rolling direction (CRD) was inclined to the hot rolling direction (HRD) at an angle from 0° to 90° (with a 15° increment). This was intended to alter the texture commonly produced by cold rolling along the HRD, and to optimize the final recrystallization texture. The cold rolling and recrystallization textures of two non-oriented electrical steels with 0.9% and 2.8% Si were measured. It was found that the inclination of CRD to HRD has a substantial effect on the cold rolling texture for both steels, but only in the low Si steel, does it lead to significantly different recrystallization textures. A strong cube texture was produced at an inclination angle of 60°, and the <111>//ND (γ) fibre was significantly weakened or essentially disappeared. The core losses of these steels were measured by Epstein frame method and the results showed a ∼10% difference among strips cold rolled at different angles. A minimum core loss occurred at a 45° inclination angle in the low Si steel.

  1. Leaf angle, tree species, and the functioning of broadleaf deciduous forest ecosystems

    NASA Astrophysics Data System (ADS)

    McNeil, B. E.; Brzostek, E. R.; Fahey, R. T.; King, C. J.; Flamenco, E. A.; Rescorl, S.; Erazo, D.; Heimerl, T.

    2016-12-01

    The effects of temperate forests on the global cycles of carbon, water, and energy depends strongly on how individual tree species adjust to the novel environmental conditions of the Anthropocene. Here, we seek to identify and understand ecological variability in one important component of tree canopies, the inclination angles of leaves. Leaf angle has important effects on forest albedo, photosynthesis, and evapotranspiration, but there is relatively little data to constrain the many models that include (or perhaps should include) this essential aspect of canopy architecture. We employ a relatively new technique for using an electronic protractor to measure leaf angles from leveled digital photographs. From a suite of observation platforms (e.g. UAVs, eddy flux towers, old fire towers) in Connecticut, Indiana, Maryland, Michigan, Pennsylvania, and West Virginia, USA, we have measured leaf angles periodically throughout the 2014, 2015, and 2016 growing seasons. Based on over 25,000 measurements taken from 15 tree species, we find highly significant differences in mean leaf angle by canopy position, tree species, location, and observation date. In addition to replicating findings where upper-canopy sun leaves are more vertical than lower-canopy shade leaves, our analysis on sun leaves also finds other ecologically meaningful differences. For instance, we find that the mesic, shade tolerant sugar maple had significantly more horizontal leaf angles than drought-resistant species such as white oak. Species also appear to have unique patterns of leaf angle phenology, with most species tending toward more vertical leaf angles during droughty conditions later in the year. We discuss these empirical results in light of an emerging theoretical framework that positions leaf angle as a functional trait. Like leaf traits such as %N or SLA, we suggest that leaf angle is an essential part of the adaptive resource strategy of each tree species. Finally, by linking our leaf angle

  2. Wheel squeal noise: A simplified model to simulate the effect of rolling speed and angle of attack

    NASA Astrophysics Data System (ADS)

    Liu, Xiaogang; Meehan, Paul A.

    2015-03-01

    The sound pressure level of wheel squeal has been shown to increase with angle of attack and rolling speed in both field and laboratory tests. However, the exact causes behind the manner of increase are still unknown. To investigate this, a simplified analytical vibration model in the time domain is integrated with nonlinear rolling contact theory developed for wheel squeal. This model is used to simulate the vibration velocity of a test rig wheel at different rolling speeds and angles of attack. The simulated vibration velocities correlate well in the trend with the recorded sound pressure levels of wheel squeal in laboratory tests. Lateral creepage and force at various angles of attack and rolling speeds in the rolling contact are simulated. It is found that due to the interaction of wheel vibration, lateral force and creepage, the vibration velocity amplitude of the wheel increases with angle of attack and rolling speed. The generation mechanism of wheel squeal is explained from the view of energy input per cycle of vibration. Furthermore, the reasons why the sound pressure levels of wheel squeal increase with rolling speed and angle of attack are investigated, and these phenomena are explained theoretically based on energy input and the nonlinear creep behaviour.

  3. On the impact of rolling direction and tool orientation angle in Rotary Peen Forming

    NASA Astrophysics Data System (ADS)

    Gottschalk, M.; Hirt, G.

    2016-10-01

    Shot Peen Forming processes are suitable to produce surface curvatures that are commonly required for aircraft fuselage as well as structural components. The so called Rotary Peen Forming is an alternative process for manufacturing sheet metals with slight curvature. The forming tool consists of impactors which are connected flexibly to a rotating hub and thus moving on a circular trajectory. An industrial robot guides the Rotary Peen Forming tools. As a result, the machine design is more compact compared to traditional Shot Peen Forming. In the present work, the impact of both, the tool orientation angle and the rolling direction, on the curvature of aluminum AA5083 samples is examined. By means of a point laser measurement, the set-up enables a distance control to adjust a determined indentation depth. It can be shown, that the highest curvature is achieved when the tool is orientated parallel and when the rolling direction of the sheet metal is transversal to the curvature plane.

  4. 40 CFR 174.513 - Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Potato Leaf Roll Virus Resistance Gene... Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the requirement of a tolerance. An... protectant Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene) in or on all food...

  5. 40 CFR 174.513 - Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Potato Leaf Roll Virus Resistance Gene... Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the requirement of a tolerance. An... protectant Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene) in or on all food...

  6. 40 CFR 174.513 - Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Potato Leaf Roll Virus Resistance Gene... Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the requirement of a tolerance. An... protectant Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene) in or on all food...

  7. 40 CFR 174.513 - Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Potato Leaf Roll Virus Resistance Gene... Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the requirement of a tolerance. An... protectant Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene) in or on all food...

  8. 40 CFR 174.513 - Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Potato Leaf Roll Virus Resistance Gene... Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the requirement of a tolerance. An... protectant Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene) in or on all food...

  9. SU-E-T-195: Gantry Angle Dependency of MLC Leaf Position Error

    SciTech Connect

    Ju, S; Hong, C; Kim, M; Chung, K; Kim, J; Han, Y; Ahn, S; Chung, S; Shin, E; Shin, J; Kim, H; Kim, D; Choi, D

    2014-06-01

    Purpose: The aim of this study was to investigate the gantry angle dependency of the multileaf collimator (MLC) leaf position error. Methods: An automatic MLC quality assurance system (AutoMLCQA) was developed to evaluate the gantry angle dependency of the MLC leaf position error using an electronic portal imaging device (EPID). To eliminate the EPID position error due to gantry rotation, we designed a reference maker (RM) that could be inserted into the wedge mount. After setting up the EPID, a reference image was taken of the RM using an open field. Next, an EPID-based picket-fence test (PFT) was performed without the RM. These procedures were repeated at every 45° intervals of the gantry angle. A total of eight reference images and PFT image sets were analyzed using in-house software. The average MLC leaf position error was calculated at five pickets (-10, -5, 0, 5, and 10 cm) in accordance with general PFT guidelines using in-house software. This test was carried out for four linear accelerators. Results: The average MLC leaf position errors were within the set criterion of <1 mm (actual errors ranged from -0.7 to 0.8 mm) for all gantry angles, but significant gantry angle dependency was observed in all machines. The error was smaller at a gantry angle of 0° but increased toward the positive direction with gantry angle increments in the clockwise direction. The error reached a maximum value at a gantry angle of 90° and then gradually decreased until 180°. In the counter-clockwise rotation of the gantry, the same pattern of error was observed but the error increased in the negative direction. Conclusion: The AutoMLCQA system was useful to evaluate the MLC leaf position error for various gantry angles without the EPID position error. The Gantry angle dependency should be considered during MLC leaf position error analysis.

  10. Joint Mapping and Allele Mining of the Rolled Leaf Trait in Rice (Oryza sativa L.)

    PubMed Central

    Wang, Chunchao; Nafisah; Joseph, Charles; Zhang, Wenzhong; Xu, Jianlong; Li, Zhikang

    2016-01-01

    The rolled leaf trait, long considered to be a key component of plant architecture, represents an important target trait for improving plant architecture at the population level. We therefore performed linkage mapping using a set of 262 highly variable RILs from two rice cultivars (Minghui 63 and 02428) with minor differences in leaf rolling index (LRI) in conjunction with GWAS mapping of a random subset of the 1127 germplasms from the 3K Rice Genomes Project (3K Rice). A total of seven main-effect loci were found to underlie the transgressive segregation of progenies from parents with minor differences in LRI. Five of these loci were previously identified and two (qRl7b and qRl9b) are newly reported with additional evidence from GWAS mapping for qRl7b. A total of 18 QTLs were identified by GWAS, including four newly identified QTLs. Six QTLs were confirmed by linkage mapping with the above RIL population, and 83.3% were found to be consistent with previously reported loci based on comparative mapping. We also performed allele mining with representative SNPs and identified the elite germplasms for the improvement of rolled leaf trait. Most favorable alleles at the detected loci were contributed by various 3K Rice germplasms. By a re-scanning of the candidate region with more saturated SNP markers, we dissected the region harboring gRl4-2 into three subregions, in which the average effect on LRI was 3.5% with a range from 2.4 to 4.1% in the third subregion, suggesting the presence of a new locus or loci within this region. The representative SNPs for favorable alleles in the reliable QTLs which were consistently identified in both bi-parental mapping and GWAS, such as qRl4, qRl5, qRl6, qRl7a, and qRl7b will be useful for future molecular breeding programs for ideal plant type in rice. PMID:27441398

  11. Notes on the ecology of rolled-leaf hispines (Chrysomelidae, Cassidinae) at La Gamba (Costa Rica)1

    PubMed Central

    Schmitt, Michael; Frank, Meike

    2013-01-01

    Abstract A total of 301 adult hispine beetles of the genera Cephaloleia and Chelobasis were found in rolled leaves of plants of 17 species of Zingiberales (families Costaceae, Heliconiaceae, Maranthaceae, Musaceae, and Zingiberaceae) during a field study at La Gamba, Golfito region, Costa Rica. Of these beetles, Cephaloleia belti was recorded from 12 potential host plant species, C. distincta from 7, C. dilaticollis from 5, C., Chelobasis bicolor, C. championi, and C. histrionica from 3, Chelobasis perplexa and C. instabilis from 2, whereas C. trivittata from only one. Of the plant species, Heliconia latispatha had 7 beetle species in its leaf rolls, Calathea lutea had 5, H. imbricata and H. rostrata had 4, H. stricta and Musa paradisiaca had 3, H. wagneriana had 2, while on H. vaginalis, H. danielsiana, H. densiflora, H. longiflora, Calathea crotalifera, C. platystachya, Goeppertia lasiophylla, Alpinia purpurata, Costus pulverulentus and Costus barbatus, H. densiflora, H. vaginalis, and H. danielsana only hispines of one species were found. Cephaloleia belti occurred together with beetles of six other hispine species, whereas Cephaloleia trivittata never shared a leaf roll with another hispine species. The remaining beetle species aggregated with one to four other hispines. Adults of C. belti and C. championi were frequently seen, occasionally also with C. dilaticollis, C. histrionica, and Chelobasis perplexa, to co-occur with the carabid Calophaena ligata in the same leaf roll without any sign of interspecific aggression. A comparison of host choices and the phylogeny of the hispines and of their host plants revealed no signs that beetles used species level phylogenetic relationships within the Zingiberales to select food plants. Obviously, within this plant order, rolled-leaf hispines choose their plant hosts in a nearly opportunistic manner. Seemingly, they use differences among plants at higher taxonomic levels but within the Zingiberales, the availability of

  12. A Sensor Fusion Method Based on an Integrated Neural Network and Kalman Filter for Vehicle Roll Angle Estimation.

    PubMed

    Vargas-Meléndez, Leandro; Boada, Beatriz L; Boada, María Jesús L; Gauchía, Antonio; Díaz, Vicente

    2016-08-31

    This article presents a novel estimator based on sensor fusion, which combines the Neural Network (NN) with a Kalman filter in order to estimate the vehicle roll angle. The NN estimates a "pseudo-roll angle" through variables that are easily measured from Inertial Measurement Unit (IMU) sensors. An IMU is a device that is commonly used for vehicle motion detection, and its cost has decreased during recent years. The pseudo-roll angle is introduced in the Kalman filter in order to filter noise and minimize the variance of the norm and maximum errors' estimation. The NN has been trained for J-turn maneuvers, double lane change maneuvers and lane change maneuvers at different speeds and road friction coefficients. The proposed method takes into account the vehicle non-linearities, thus yielding good roll angle estimation. Finally, the proposed estimator has been compared with one that uses the suspension deflections to obtain the pseudo-roll angle. Experimental results show the effectiveness of the proposed NN and Kalman filter-based estimator.

  13. Is the spherical leaf inclination angle distribution a valid assumption for temperate and boreal tree and shrub species?

    NASA Astrophysics Data System (ADS)

    Pisek, J.

    2012-12-01

    Directional distribution of leaves is one primary parameter for determining the radiation transmission through the canopy. When inverting canopy transmittance measurements for estimating the leaf area index or foliage clumping, incorrect assumptions on leaf angles may lead to considerable errors. Often spherical distribution of leaf normals is assumed, i.e. leaf normals are assumed to have no preferred direction in situations where no measurement data are available. The goal of this study is to examine if a spherical leaf angle distribution and the resulting isotropic G-function (G≡0.5) is indeed a valid assumption for temperate and boreal tree and shrub species. Leaf angle distributions were measured for over 80 deciduous broadleaf species commonly found in temperate and boreal ecoclimatic regions. The leaf inclination angles were obtained by sampling the complete vertical extent of trees and shrubs using a recently introduced technique based on digital photography. It is found a spherical leaf angle distribution is not a valid assumption for both tree and shrub species in temperate and boreal ecoclimatic regions. Given the influence of leaf angle distribution on inverting clumping and LAI estimates from canopy transmittance measurements, it is recommended to use planophile or plagiophile leaf angle distribution as more appropriate for modeling radiation transmission in temperate and boreal ecoclimatic regions when no actual leaf inclination angle measurements are available.

  14. A detailed analysis of the leaf rolling mutant sll2 reveals complex nature in regulation of bulliform cell development in rice (Oryza sativa L.).

    PubMed

    Zhang, J-J; Wu, S-Y; Jiang, L; Wang, J-L; Zhang, X; Guo, X-P; Wu, C-Y; Wan, J-M

    2015-03-01

    Bulliform cells are large, thin-walled and highly vacuolated cells, and play an important role in controlling leaf rolling in response to drought and high temperature. However, the molecular mechanisms regulating bulliform cell development have not been well documented. Here, we report isolation and characterisation of a rice leaf-rolling mutant, named shallot-like 2 (sll2). The sll2 plants exhibit adaxially rolled leaves, starting from the sixth leaf stage, accompanied by increased photosynthesis and reduced plant height and tiller number. Histological analyses showed shrinkage of bulliform cells, resulting in inward-curved leaves. The mutant is recessive and revertible at a rate of 9%. The leaf rolling is caused by a T-DNA insertion. Cloning of the insertion using TAIL-PCR revealed that the T-DNA was inserted in the promoter region of LOC_Os07 g38664. Unexpectedly, the enhanced expression of LOC_Os07 g38664 by the 35S enhancer in the T-DNA is not responsible for the leaf rolling phenotype. Further, the enhancer also exerted a long-distance effect, including up-regulation of several bulliform cell-related genes. sll2 suppressed the outward leaf rolling of oul1 in the sll2oul1 double mutant. We conclude that leaf rolling in sll2 could be a result of the combined effect of multi-genes, implying a complex network in regulation of bulliform cell development.

  15. A Sensor Fusion Method Based on an Integrated Neural Network and Kalman Filter for Vehicle Roll Angle Estimation

    PubMed Central

    Vargas-Meléndez, Leandro; Boada, Beatriz L.; Boada, María Jesús L.; Gauchía, Antonio; Díaz, Vicente

    2016-01-01

    This article presents a novel estimator based on sensor fusion, which combines the Neural Network (NN) with a Kalman filter in order to estimate the vehicle roll angle. The NN estimates a “pseudo-roll angle” through variables that are easily measured from Inertial Measurement Unit (IMU) sensors. An IMU is a device that is commonly used for vehicle motion detection, and its cost has decreased during recent years. The pseudo-roll angle is introduced in the Kalman filter in order to filter noise and minimize the variance of the norm and maximum errors’ estimation. The NN has been trained for J-turn maneuvers, double lane change maneuvers and lane change maneuvers at different speeds and road friction coefficients. The proposed method takes into account the vehicle non-linearities, thus yielding good roll angle estimation. Finally, the proposed estimator has been compared with one that uses the suspension deflections to obtain the pseudo-roll angle. Experimental results show the effectiveness of the proposed NN and Kalman filter-based estimator. PMID:27589763

  16. The transient roll moment response due to forebody tangential blowing at high angles of attack

    NASA Astrophysics Data System (ADS)

    Chow, Jonathan Kwokching

    The sustained ability for controlled flight at high angles of attack is desirable for future aircraft. For combat aircraft, enhancing maneuverability is important to increasing its survivability. For future supersonic commercial aircraft, an increase in lift at high angles of attack leads to improved performance during take-offs and landing, and a reduction in noise pollution. However, nonlinear and unsteady phenomena, such as flow separation and vortex shedding dominate the aerodynamics in the high angle of attack regime. These phenomena cause the onset of lateral loads and decrease the effectiveness of conventional control surfaces. For conventional aircraft, controlled flight at high angle of attack is difficult or unfeasible without augmented means of control and a good understanding of their impact on vehicle characteristics and dynamics. The injection of thin sheets of air tangentially to the forebody of the vehicle has been found to be an extremely promising method for augmenting the control of a flight vehicle at high angles of attack. Forebody Tangential Blowing (FTB) allows the flow structure to be altered in a rational manner and increase the controllability of the vehicle under these flight conditions. The feasibility of using FTB to control the roll-yaw motion of flight vehicles has been demonstrated. Existing knowledge of FTB's nonlinear impact on the aerodynamic moment responses is limited. Currently available dynamic models predict the general trends in the behavior but do not capture important transient effects that dominate the responses when small amounts of blowing is used. These transients can be large in comparison to the steady-state values. This thesis summarizes the experimental and theoretical results of an investigation into the transient effects of Forebody Tangential Blowing. The relationship between the aerodynamic roll moment, vortical flowfield, and blowing strength is examined to obtain a fundamental understanding of the physics of

  17. Response properties of gerbil otolith afferents to small angle pitch and roll tilts

    NASA Technical Reports Server (NTRS)

    Dickman, J. D.; Angelaki, D. E.; Correia, M. J.

    1991-01-01

    The responses from isolated single otolith afferent fibers were obtained to small angle sinusoidal pitch and roll tilts in anesthetized gerbils. The stimulus directions that produced the maximum (response vector) and minimum response sensitivities were determined for each otolith afferent, with response vectors for the units being spread throughout the horizontal plane, similar to those reported for other species. A breadth of tuning measure was derived, with narrowly tuned neurons responding maximally to stimulation in one direction and minimally along an orthogonal ('null') direction. Most (approximately 80%) otolith afferents are narrowly tuned, however, some fibers were broadly tuned responding significantly to stimulations in any direction in the horizontal plane. The number of broadly tuned otolith afferents (approximately 20%) differs significantly from the more substantial number of broadly tuned vestibular nuclei neurons (88%) recently reported in rats.

  18. The relationship between leaf rolling and ascorbate-glutathione cycle enzymes in apoplastic and symplastic areas of Ctenanthe setosa subjected to drought stress.

    PubMed

    Saruhan, Neslihan; Terzi, Rabiye; Saglam, Aykut; Kadioglu, Asim

    2009-01-01

    The ascorbate-glutathione (ASC-GSH) cycle has an important role in defensive processes against oxidative damage generated by drought stress. In this study, the changes that take place in apoplastic and symplastic ASC-GSH cycle enzymes of the leaf and petiole were investigated under drought stress causing leaf rolling in Ctenanthe setosa (Rose.) Eichler (Marantaceae). Apoplastic and symplastic extractions of leaf and petiole were performed at different visual leaf rolling scores from 1 to 4 (1 is unrolled, 4 is tightly rolled and the others are intermediate forms). Glutathione reductase (GR), a key enzyme in the GSH regeneration cycle, and ascorbate (ASC) were present in apoplastic spaces of the leaf and petiole, whereas dehydroascorbate reductase (DHAR), which uses glutathione as reductant, monodehydroascorbate reductase (MDHAR), which uses NAD(P)H as reductant, and glutathione were absent. GR, DHAR and MDHAR activities increased in the symplastic and apoplastic areas of the leaf. Apoplastic and symplastic ASC and dehydroascorbate (DHA), the oxidized form of ascorbate, rose at all scores except score 4 of symplastic ASC in the leaf. On the other hand, while reduced glutathione (GSH) content was enhanced, oxidized glutathione (GSSG) content decreased in the leaf during rolling. As for the petiole, GR activity increased in the apoplastic area but decreased in the symplastic area. DHAR and MDHAR activities increased throughout all scores, but decreased to the score 1 level at score 4. The ASC content of the apoplast increased during leaf rolling. Conversely, symplastic ASC content increased at score 2, however decreased at the later scores. While the apoplastic DHA content declined, symplastic DHA rose at score 2, but later was down to the level of score 1. While GSH content enhanced during leaf rolling, GSSG content did not change except at score 2. As well, there were good correlations between leaf rolling and ASC-GSH cycle enzyme activities in the leaf (GR and DHAR

  19. Polarization Methods of Measuring the Roll Angle of an Object in Motion in Radio Beacon Navigation Systems

    NASA Astrophysics Data System (ADS)

    Gulko, V. L.; Mescheryakov, A. A.

    2016-06-01

    Polarization methods of measuring the roll angle of an object in motion with the help of radio beacon systems are considered. The polarization properties of the beacon signals received on board the object and amplitude-phase processing of their orthogonal polarized components are used to accomplish this goal.

  20. Leaf-rolling sawflies (Hymenoptera, Pamphiliidae, Pamphiliinae) of Tianmushan Mountains, Zhejiang Province, China.

    PubMed

    Shinohara, Akihiko; Wei, Mei-Cai

    2016-02-02

    Two species of Neurotoma, six species of Onycholyda, and five species of Pamphilius are recorded from Tianmushan, Zhejiang Province, China, and a key is given to these three genera and 13 species. Three new species, Onycholyda atra Shinohara & Wei, sp. nov. from Zhejiang Province, O. fulvicornis Shinohara, sp. nov. from Shaanxi Province and Zhejiang Province, and Pamphilius padus Shinohara, sp. nov. from Zhejiang Province, are described. New distribution records are: Onycholyda shaanxiana Shinohara, 1999, from Hubei Province, Zhejiang Province and Guangxi Zhuang Autonomous Region, O. subquadrata (Maa, 1944) from Zhejiang Province, O. tianmushana Shinohara & Xiao, 2006, from Hunan Province and Jiangxi Province, Pamphilius palliceps Shinohara & Xiao, 2006, from Anhui Province, P. lizejiani Shinohara in Shinohara & Wei, 2012, from Zhejiang Province, P. shengi Wei in Wei & Xiao, 1999, from Hubei Province and Zhejiang Province, and P. qinlingicus Wei in Wu & Wei, 2010, from Zhejiang Province. The larva of P. padus feeds on Padus obtusata (Rosaceae) and that of P. palliceps feeds on Rosa multiflora (Rosaceae), both singly making a leaf-roll. Rubus peltatus (Rosaceae) is recorded as a host plant of O. atra based on the observation of oviposition.

  1. Genomic Dissection of Leaf Angle in Maize (Zea mays L.) Using a Four-Way Cross Mapping Population.

    PubMed

    Ding, Junqiang; Zhang, Luyan; Chen, Jiafa; Li, Xiantang; Li, Yongming; Cheng, Hongliang; Huang, Rongrong; Zhou, Bo; Li, Zhimin; Wang, Jiankang; Wu, Jianyu

    2015-01-01

    Increasing grain yield by the selection for optimal plant architecture has been the key focus in modern maize breeding. As a result, leaf angle, an important determinant of plant architecture, has been significantly improved to adapt to the ever-increasing plant density in maize production over the past several decades. To extend our understanding on the genetic mechanisms of leaf angle in maize, we developed the first four-way cross mapping population, consisting of 277 lines derived from four maize inbred lines with varied leaf angles. The four-way cross mapping population together with the four parental lines were evaluated for leaf angle in two environments. In this study, we reported linkage maps built in the population and quantitative trait loci (QTL) on leaf angle detected by inclusive composite interval mapping (ICIM). ICIM applies a two-step strategy to effectively separate the cofactor selection from the interval mapping, which controls the background additive and dominant effects at the same time. A total of 14 leaf angle QTL were identified, four of which were further validated in near-isogenic lines (NILs). Seven of the 14 leaf angle QTL were found to overlap with the published leaf angle QTL or genes, and the remaining QTL were unique to the four-way population. This study represents the first example of QTL mapping using a four-way cross population in maize, and demonstrates that the use of specially designed four-way cross is effective in uncovering the basis of complex and polygenetic trait like leaf angle in maize.

  2. Genomic Dissection of Leaf Angle in Maize (Zea mays L.) Using a Four-Way Cross Mapping Population

    PubMed Central

    Li, Xiantang; Li, Yongming; Cheng, Hongliang; Huang, Rongrong; Zhou, Bo; Li, Zhimin; Wang, Jiankang; Wu, Jianyu

    2015-01-01

    Increasing grain yield by the selection for optimal plant architecture has been the key focus in modern maize breeding. As a result, leaf angle, an important determinant of plant architecture, has been significantly improved to adapt to the ever-increasing plant density in maize production over the past several decades. To extend our understanding on the genetic mechanisms of leaf angle in maize, we developed the first four-way cross mapping population, consisting of 277 lines derived from four maize inbred lines with varied leaf angles. The four-way cross mapping population together with the four parental lines were evaluated for leaf angle in two environments. In this study, we reported linkage maps built in the population and quantitative trait loci (QTL) on leaf angle detected by inclusive composite interval mapping (ICIM). ICIM applies a two-step strategy to effectively separate the cofactor selection from the interval mapping, which controls the background additive and dominant effects at the same time. A total of 14 leaf angle QTL were identified, four of which were further validated in near-isogenic lines (NILs). Seven of the 14 leaf angle QTL were found to overlap with the published leaf angle QTL or genes, and the remaining QTL were unique to the four-way population. This study represents the first example of QTL mapping using a four-way cross population in maize, and demonstrates that the use of specially designed four-way cross is effective in uncovering the basis of complex and polygenetic trait like leaf angle in maize. PMID:26509792

  3. Rolling element bearing defect diagnosis under variable speed operation through angle synchronous averaging of wavelet de-noised estimate

    NASA Astrophysics Data System (ADS)

    Mishra, C.; Samantaray, A. K.; Chakraborty, G.

    2016-05-01

    Rolling element bearings are widely used in rotating machines and their faults can lead to excessive vibration levels and/or complete seizure of the machine. Under special operating conditions such as non-uniform or low speed shaft rotation, the available fault diagnosis methods cannot be applied for bearing fault diagnosis with full confidence. Fault symptoms in such operating conditions cannot be easily extracted through usual measurement and signal processing techniques. A typical example is a bearing in heavy rolling mill with variable load and disturbance from other sources. In extremely slow speed operation, variation in speed due to speed controller transients or external disturbances (e.g., varying load) can be relatively high. To account for speed variation, instantaneous angular position instead of time is used as the base variable of signals for signal processing purposes. Even with time synchronous averaging (TSA) and well-established methods like envelope order analysis, rolling element faults in rolling element bearings cannot be easily identified during such operating conditions. In this article we propose to use order tracking on the envelope of the wavelet de-noised estimate of the short-duration angle synchronous averaged signal to diagnose faults in rolling element bearing operating under the stated special conditions. The proposed four-stage sequential signal processing method eliminates uncorrelated content, avoids signal smearing and exposes only the fault frequencies and its harmonics in the spectrum. We use experimental data1

  4. Modeling and Analysis of Phase Fluctuation in a High-Precision Roll Angle Measurement Based on a Heterodyne Interferometer

    PubMed Central

    Huang, Junhui; Wang, Zhao; Gao, Jianmin; Yu, Bao

    2016-01-01

    Heterodyne interferometry is a high-precision method applied in roll angle measurements. Phase metering is essential for high precision. During a high-precision measurement, a phase fluctuation appears even when the roll angle does not vary, which has never been analyzed before. Herein, the reason for the phase fluctuation is revealed, which results from the frequency-difference fluctuation and time difference between measurement and reference beams. A mathematical model of that phase-fluctuation mechanism is established, and that model provides a theoretical basis for analyzing and reducing the phase fluctuation. The impact that the main factors have on the phase metering is analyzed quantitatively, and experiments are carried out to validate the model. Finally, the phase fluctuation decreases to 0.02° by frequency reduction, which conversely verifies the theoretical model. PMID:27490552

  5. Electron transport efficiency at opposite leaf sides: effect of vertical distribution of leaf angle, structure, chlorophyll content and species in a forest canopy.

    PubMed

    Mänd, Pille; Hallik, Lea; Peñuelas, Josep; Kull, Olevi

    2013-02-01

    We investigated changes in chlorophyll a fluorescence from alternate leaf surfaces to assess the intraleaf light acclimation patterns in combination with natural variations in radiation, leaf angles, leaf mass per area (LMA), chlorophyll content (Chl) and leaf optical parameters. Measurements were conducted on bottom- and top-layer leaves of Tilia cordata Mill. (a shade-tolerant sub-canopy species, sampled at heights of 11 and 16 m) and Populus tremula L. (a light-demanding upper canopy species, sampled at canopy heights of 19 and 26 m). The upper canopy species P. tremula had a six times higher PSII quantum yield (Φ(II)) and ratio of open reaction centres (qP), and a two times higher LMA than T. cordata. These species-specific differences were also present when the leaves of both species were in similar light conditions. Leaf adaxial/abaxial fluorescence ratio was significantly larger in the case of more horizontal leaves. Populus tremula (more vertical leaves), had smaller differences in fluorescence parameters between alternate leaf sides compared with T. cordata (more horizontal leaves). However, optical properties on alternate leaf sides showed a larger difference for P. tremula. Intraspecifically, the measured optical parameters were better correlated with LMA than with leaf Chl. Species-specific differences in leaf anatomy appear to enhance the photosynthetic potential of leaf biochemistry by decreasing the interception of excess light in P. tremula and increasing the light absorptance in T. cordata. Our results indicate that intraleaf light absorption gradient, described here as leaf adaxial/abaxial side ratio of chlorophyll a fluorescence, varies significantly with changes in leaf light environment in a multi-layer multi-species tree canopy. However, this variation cannot be described merely as a simple function of radiation, leaf angle, Chl or LMA, and species-specific differences in light acclimation strategies should also be considered.

  6. View angle effects on relationships between leaf area index in wheat and vegetation indices

    NASA Astrophysics Data System (ADS)

    Chen, H.; Li, W.; Huang, W.; Niu, Z.

    2016-12-01

    The effects of plant types and view angles on the canopy-reflected spectrum can not be ignored in the estimation of leaf area index (LAI) using remote sensing vegetation indices. While vegetation indices derived from nadir-viewing remote sensors are insufficient in leaf area index (LAI) estimation because of its misinterpretation of structural characteristecs, vegetation indices derived from multi-angular remote sensors have potential to improve detection of LAI. However, view angle effects on relationships between these indices and LAI for low standing crops (i.e. wheat) has not been fully evaluated and thus limits them to applied for consistent and accurate monitoring of vegetation. View angles effects of two types of winter wheat (wheat 411, erectophile; and wheat 9507, planophile) on relationship between LAI and spectral reflectance are assessed and compared in this study. An evaluation is conducted with in-situ measurements of LAI and bidirectional reflectance in the principal plane from -60° (back-scattering direction ) ot 60° (forward scattering direction) in the growth cycle of winter wheat. A variety of vegetation indices (VIs) published are calculated by BRDF. Additionally, all combinations of the bands are used in order to calculate Normalized difference Spectral Indices (NDSI) and Simple Subtraction Indices (SSI). The performance of the above indices along with raw reflectance and reflectance derivatives on LAI estimation are examined based on a linearity comparison. The results will be helpful in further developing multi-angle remote sensing models for accurate LAI evaluation.

  7. Seasonal and vertical changes in leaf angle distribution for selected deciduous broadleaf tree species common to Europe

    NASA Astrophysics Data System (ADS)

    Raabe, Kairi; Pisek, Jan; Sonnentag, Oliver; Annuk, Kalju

    2014-05-01

    Leaf inclination angle distribution is a key parameter in determining the transmission and reflection of radiation by vegetation canopies. It has been previously observed that leaf inclination angle might change gradually from more vertical in the upper canopy and in high light habitats to more horizontal in the lower canopy and in low light habitats [1]. Despite its importance, relatively few measurements on actual leaf angle distributions have been reported for different tree species. Even smaller number of studies have dealt with the possible seasonal changes in leaf angle distribution [2]. In this study the variation of leaf inclination angle distributions was examined both temporally throughout the growing season and vertically at different heights of trees. We report on leaf inclination angle distributions for five deciduous broadleaf species found commonly in several parts of Europe: grey alder (Alnus incana), Silver birch (Betula pendula Roth), chestnut (Castanea), Norway maple (Acer platanoides), and aspen (Populus tremula). The angles were measured using the leveled camera method [3], with the data collected at several separate heights and four times during the period of May-September 2013. The results generally indicate the greatest change in leaf inclination angles for spring, with the changes usually being the most pronounced at the top of the canopy. It should also be noted, however, that whereas the temporal variation proved to be rather consistent for different species, the vertical variation differed more between species. The leveled camera method was additionally tested in terms of sensitivity to different users. Ten people were asked to measure the leaf angles for four different species. The results indicate the method is quite robust in providing coinciding distributions irrespective of the user and level of previous experience with the method. However, certain caution must be exercised when measuring long narrow leaves. References [1] G.G. Mc

  8. Effect of MLC leaf position, collimator rotation angle, and gantry rotation angle errors on intensity-modulated radiotherapy plans for nasopharyngeal carcinoma

    SciTech Connect

    Bai, Sen; Li, Guangjun; Wang, Maojie; Jiang, Qinfeng; Zhang, Yingjie; Wei, Yuquan

    2013-07-01

    The purpose of this study was to investigate the effect of multileaf collimator (MLC) leaf position, collimator rotation angle, and accelerator gantry rotation angle errors on intensity-modulated radiotherapy plans for nasopharyngeal carcinoma. To compare dosimetric differences between the simulating plans and the clinical plans with evaluation parameters, 6 patients with nasopharyngeal carcinoma were selected for simulation of systematic and random MLC leaf position errors, collimator rotation angle errors, and accelerator gantry rotation angle errors. There was a high sensitivity to dose distribution for systematic MLC leaf position errors in response to field size. When the systematic MLC position errors were 0.5, 1, and 2 mm, respectively, the maximum values of the mean dose deviation, observed in parotid glands, were 4.63%, 8.69%, and 18.32%, respectively. The dosimetric effect was comparatively small for systematic MLC shift errors. For random MLC errors up to 2 mm and collimator and gantry rotation angle errors up to 0.5°, the dosimetric effect was negligible. We suggest that quality control be regularly conducted for MLC leaves, so as to ensure that systematic MLC leaf position errors are within 0.5 mm. Because the dosimetric effect of 0.5° collimator and gantry rotation angle errors is negligible, it can be concluded that setting a proper threshold for allowed errors of collimator and gantry rotation angle may increase treatment efficacy and reduce treatment time.

  9. Investigation on Stability in Roll of Square Section Missile at High Angle of Attack

    NASA Astrophysics Data System (ADS)

    Tao, Yang; Fan, Zhaolin; Wu, Jifei; Wu, Wenhua

    An experimental investigation of the stability in roll of a square section missile at high incidence was conducted in FL-23 wind tunnel. Dynamic motions were obtained on a square section missile that is free to rotate about its longitudinal axis. Different dynamic rolling motions were observed depending on the incidence of the model sting. These dynamic regimes include damped oscillations, quasi-limit-cycle wing-rock motion, and constant rolling. A coupling numerical method was established by solving the fluid dynamics equations and the rigid-body dynamics equations synchronously in order to predict the onset and the development of uncommented motions and then explore the unsteady movement characteristics of the aircraft. The study indicates that the aircraft loss stability at high incidence is caused by the asymmetric vertex on the level fin tip liftoff and attach alternately. The computation results are in line with the experiment results.

  10. Surface Characterization Of Cold-Rolled Steel By Grazing-Angle Reflection-Absorption FT-IR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pilon, Andre; Cole, Kenneth C.; Noel, D.

    1989-12-01

    Residues from the oil-in-water emulsions used in the cold-rolling of steel are responsible in large part for an undesirable film of contamination sometimes found on the steel surface, even after the annealing stage. This contamination can have significant effects on the adhesion and corrosion resistance of paint coatings subsequently applied to the surface. The object of the work reported here was to determine the potential of grazing-angle reflection-absorption FT-IR spectroscopy for qualitative and quantitative analysis of the residues left on the surface.

  11. Examining view angle effects on leaf N estimation in wheat using field reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Song, Xiao; Feng, Wei; He, Li; Xu, Duanyang; Zhang, Hai-Yan; Li, Xiao; Wang, Zhi-Jie; Coburn, Craig A.; Wang, Chen-Yang; Guo, Tian-Cai

    2016-12-01

    Real-time, nondestructive monitoring of crop nitrogen (N) status is a critical factor for precision N management during wheat production. Over a 3-year period, we analyzed different wheat cultivars grown under different experimental conditions in China and Canada and studied the effects of viewing angle on the relationships between various vegetation indices (VIs) and leaf nitrogen concentration (LNC) using hyperspectral data from 11 field experiments. The objective was to improve the prediction accuracy by minimizing the effects of viewing angle on LNC estimation to construct a novel vegetation index (VI) for use under different experimental conditions. We examined the stability of previously reported optimum VIs obtained from 13 traditional indices for estimating LNC at 13 viewing zenith angles (VZAs) in the solar principal plane (SPP). Backscattering direction showed better index performance than forward scattering direction. Red-edge VIs including modified normalized difference vegetation index (mND705), ratio index within the red edge region (RI-1dB) and normalized difference red edge index (NDRE) were highly correlated with LNC, as confirmed by high R2 determination coefficients. However, these common VIs tended to saturation, as the relationships strongly depended on experimental conditions. To overcome the influence of VZA on VIs, the chlorophyll- and LNC-sensitive NDRE index was divided by the floating-position water band index (FWBI) to generate the integrated narrow-band vegetation index. The highest correlation between the novel NDRE/FWBI parameter and LNC (R2 = 0.852) occurred at -10°, while the lowest correlation (R2 = 0.745) occurred at 60°. NDRE/FWBI was more highly correlated with LNC than existing commonly used VIs at an identical viewing zenith angle. Upon further analysis of angle combinations, our novel VI exhibited the best performance, with the best prediction accuracy at 0° to -20° (R2 = 0.838, RMSE = 0.360) and relatively good accuracy

  12. A leaf-rolling weevil benefits from general saprophytic fungi in polysaccharide degradation

    USDA-ARS?s Scientific Manuscript database

    Insects form symbiosis with fungi widely, especially those feeding on leaf litter. As dead plant tissues provide poor quality diets which contain relatively high levels of indigestible lignin and cellulose, saprophytic fungi may increase nutrient availability by polysaccharide degradation. Although ...

  13. Rice ONAC106 Inhibits Leaf Senescence and Increases Salt Tolerance and Tiller Angle.

    PubMed

    Sakuraba, Yasuhito; Piao, Weilan; Lim, Jung-Hyun; Han, Su-Hyun; Kim, Ye-Sol; An, Gynheung; Paek, Nam-Chon

    2015-12-01

    NAM/ATAF1/ATAF2/CUC2 (NAC) is a plant-specific transcription factor (TF) family, and NACs participate in many diverse processes during the plant life cycle. Several Arabidopsis thaliana NACs have important roles in positively or negatively regulating leaf senescence, but in other plant species, including rice, the senescence-associated NACs (senNACs) remain largely unknown. Here we show that the rice senNAC TF ONAC106 negatively regulates leaf senescence. Leaves of onac106-1D (insertion of the 35S enhancer in the promoter region of the ONAC106 gene) mutants retained their green color under natural senescence and dark-induced senescence conditions. Genome-wide transcriptome analysis revealed that key senescence-associated genes (SGR, NYC1, OsNAC5, OsNAP, OsEIN3 and OsS3H) were differentially expressed in onac106-1D during dark-induced senescence. In addition to delayed senescence, onac106-1D also showed a salt stress-tolerant phenotype; key genes that down-regulate salt response signaling (OsNAC5, OsDREB2A, OsLEA3 and OsbZIP23) were rapidly up-regulated in onac106-1D under salt stress. Interestingly, onac106-1D also exhibited a wide tiller angle phenotype throughout development, and the tiller angle-related gene LPA1 was down-regulated in onac106-1D. Using yeast one-hybrid assays, we found that ONAC106 binds to the promoter regions of SGR, NYC1, OsNAC5 and LPA1. Taking these results together, we propose that ONAC106 functions in leaf senescence, salt stress tolerance and plant architecture by modulating the expression of its target genes that function in each signaling pathway.

  14. Self-rolling and light-trapping in flexible quantum well-embedded nanomembranes for wide-angle infrared photodetectors.

    PubMed

    Wang, Han; Zhen, Honglou; Li, Shilong; Jing, Youliang; Huang, Gaoshan; Mei, Yongfeng; Lu, Wei

    2016-08-01

    Three-dimensional (3D) design and manufacturing enable flexible nanomembranes to deliver unique properties and applications in flexible electronics, photovoltaics, and photonics. We demonstrate that a quantum well (QW)-embedded nanomembrane in a rolled-up geometry facilitates a 3D QW infrared photodetector (QWIP) device with enhanced responsivity and detectivity. Circular geometry of nanomembrane rolls provides the light coupling route; thus, there are no external light coupling structures, which are normally necessary for QWIPs. This 3D QWIP device under tube-based light-trapping mode presents broadband enhancement of coupling efficiency and omnidirectional detection under a wide incident angle (±70°), offering a unique solution to high-performance focal plane array. The winding number of these rolled-up QWIPs provides well-tunable blackbody photocurrents and responsivity. 3D self-assembly of functional nanomembranes offers a new path for high conversion efficiency between light and electricity in photodetectors, solar cells, and light-emitting diodes.

  15. Self-rolling and light-trapping in flexible quantum well–embedded nanomembranes for wide-angle infrared photodetectors

    PubMed Central

    Wang, Han; Zhen, Honglou; Li, Shilong; Jing, Youliang; Huang, Gaoshan; Mei, Yongfeng; Lu, Wei

    2016-01-01

    Three-dimensional (3D) design and manufacturing enable flexible nanomembranes to deliver unique properties and applications in flexible electronics, photovoltaics, and photonics. We demonstrate that a quantum well (QW)–embedded nanomembrane in a rolled-up geometry facilitates a 3D QW infrared photodetector (QWIP) device with enhanced responsivity and detectivity. Circular geometry of nanomembrane rolls provides the light coupling route; thus, there are no external light coupling structures, which are normally necessary for QWIPs. This 3D QWIP device under tube-based light-trapping mode presents broadband enhancement of coupling efficiency and omnidirectional detection under a wide incident angle (±70°), offering a unique solution to high-performance focal plane array. The winding number of these rolled-up QWIPs provides well-tunable blackbody photocurrents and responsivity. 3D self-assembly of functional nanomembranes offers a new path for high conversion efficiency between light and electricity in photodetectors, solar cells, and light-emitting diodes. PMID:27536723

  16. Considerations involved in the design of a roll-angle computer for a bank-to-turn interceptor

    NASA Technical Reports Server (NTRS)

    Triplett, William C

    1955-01-01

    At the Ames Aeronautical Laboratory some flight and analog computer studies have been made on the final attack phase of automatic interceptions. The ultimate objective of these studies is to define the behavior of various types of automatic control systems as influenced by a wide range of aerodynamic characteristics. This is a continuing program still in its initial stages; however, it is felt that conclusions of general significance can be drawn from these preliminary studies. One point of particular importance is the necessity for including a gain charger or computer in the azimuth loop of any bank-to-turn airplane or missile. This device translates azimuth error signals into appropriate roll commands. The results to date have shown that the characteristics of this component have a predominant effect on the behavior of a automatic system. It is the purpose of this paper to discuss considerations of importance in the design of a suitable roll-angle computer. In this regard, the present paper complements the analytical work reported in NACA RM L54E27, 1954.

  17. Computer programs for the calculation of dual sting pitch and roll angles required for an articulated sting to obtain angles of attack and sideslip on wind-tunnel models

    NASA Technical Reports Server (NTRS)

    Peterson, John B., Jr.

    1991-01-01

    Two programs were developed to calculate the pitch and roll position of the conventional sting drive and the pitch of a high angle articulated sting to position a wind tunnel model at the desired angle of attack and sideslip and position the model as near as possible to the centerline of the tunnel. These programs account for the effects of sting offset angles, sting bending angles, and wind-tunnel stream flow angles. In addition, the second program incorporates inputs form on-board accelerometers that measure model pitch and roll with respect to gravity. The programs are presented and a description of the numerical operation of the programs with a definition of the variables used in the programs is given.

  18. Comparison of diagnostic techniques for the detection and differentiation of Cherry leaf roll virus strains for quarantine purposes.

    PubMed

    Lebas, B S M; Veerakone, S; Liefting, L W; Tang, J; Perez-Egusquiza, Z; von Bargen, S; Ward, L

    2016-08-01

    Some strains of Cherry leaf roll virus (CLRV) are considered as quarantine pests in New Zealand. CLRV was detected in seven plant host species: Actinidia chinensis, Hydrangea macrophylla, Malus domestica, Plantago major, Ribes rubrum, Rubus idaeus and Rumex sp. collected from New Zealand between 2005 and 2012. Biological, serological and molecular techniques were compared for the detection and differentiation of CLRV isolates. The biological analysis revealed differences in symptomatology and disease severity among the isolates. The five isolates tested by ELISA were serologically related to each other using polyclonal antisera with only one out of four commercially-available antisera successfully detecting all of them. The phylogenetic analysis of sequences obtained from parts of the coat protein, polymerase and 3'-untranslated regions revealed that the New Zealand CLRV isolates clustered into two closely related but distinct phylogenetic groups with some isolates grouping differently depending on the gene studied. The New Zealand CLRV isolates were clearly distinct to overseas isolates found in phylogenetic groups A, D and E. The conventional RT-PCR using primers targeting the CLRV coat protein coding region is recommended for determining sequence differences between strains. These findings will be useful in making regulatory decisions with regard to the testing requirements and the CLRV strains to be regulated in New Zealand. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Host Species-Dependent Population Structure of a Pollen-Borne Plant Virus, Cherry Leaf Roll Virus

    PubMed Central

    Rebenstorf, Kathrin; Candresse, Thierry; Dulucq, Marie Josée; Büttner, Carmen; Obermeier, Christian

    2006-01-01

    Cherry leaf roll virus (CLRV) belongs to the Nepovirus genus within the family Comoviridae. It has a host range which includes a number of wild tree and shrub species. The serological and molecular diversity of CLRV was assessed using a collection of isolates and samples recovered from woody and herbaceous host plants from different geographical origins. Molecular diversity was assessed by sequencing a short (375-bp) region of the 3′ noncoding region (NCR) of the genomic RNAs while serological diversity was assessed using a panel of seven monoclonal antibodies raised initially against a walnut isolate of CLRV. The genomic region analyzed was shown to exhibit a significant degree of molecular variability with an average pairwise divergence of 8.5% (nucleotide identity). Similarly, serological variability proved to be high, with no single monoclonal antibody being able to recognize all isolates analyzed. Serological and molecular phylogenetic reconstructions showed a strong correlation. Remarkably, the diversity of CLRV populations is to a large extent defined by the host plant from which the viral samples are originally obtained. There are relatively few reports of plant viruses for which the genetic diversity is structured by the host plant. In the case of CLRV, we hypothesize that this situation may reflect the exclusive mode of transmission in natural plant populations by pollen and by seeds. These modes of transmission are likely to impose barriers to host change by the virus, leading to rapid biological and genetic separation of CLRV variants coevolving with different plant host species. PMID:16474152

  20. Optimal photosynthetic use of light by tropical tree crowns achieved by adjustment of individual leaf angles and nitrogen content.

    PubMed

    Posada, Juan M; Lechowicz, Martin J; Kitajima, Kaoru

    2009-03-01

    Theory for optimal allocation of foliar nitrogen (ONA) predicts that both nitrogen concentration and photosynthetic capacity will scale linearly with gradients of insolation within plant canopies. ONA is expected to allow plants to efficiently use both light and nitrogen. However, empirical data generally do not exhibit perfect ONA, and light-use optimization per se is little explored. The aim was to examine to what degree partitioning of nitrogen or light is optimized in the crowns of three tropical canopy tree species. Instantaneous photosynthetic photon flux density (PPFD) incident on the adaxial surface of individual leaves was measured along vertical PPFD gradients in tree canopies at a frequency of 0.5 Hz over 9-17 d, and summed to obtain the average daily integral of PPFD for each leaf to characterize its insolation regime. Also measured were leaf N per area (N(area)), leaf mass per area (LMA), the cosine of leaf inclination and the parameters of the photosynthetic light response curve [photosynthetic capacity (A(max)), dark respiration (R(d)), apparent quantum yield (phi) and curvature (theta)]. The instantaneous PPFD measurements and light response curves were used to estimate leaf daily photosynthesis (A(daily)) for each leaf. Leaf N(area) and A(max) changed as a hyperbolic asymptotic function of the PPFD regime, not the linear relationship predicted by ONA. Despite this suboptimal nitrogen partitioning among leaves, A(daily) did increase linearly with PPFD regime through co-ordinated adjustments in both leaf angle and physiology along canopy gradients in insolation, exhibiting a strong convergence among the three species. The results suggest that canopy tree leaves in this tropical forest optimize photosynthetic use of PPFD rather than N per se. Tropical tree canopies then can be considered simple 'big-leaves' in which all constituent 'small leaves' use PPFD with the same photosynthetic efficiency.

  1. Contributions of leaf photosynthetic capacity, leaf angle and self-shading to the maximization of net photosynthesis in Acer saccharum: a modelling assessment

    PubMed Central

    Posada, Juan M.; Sievänen, Risto; Messier, Christian; Perttunen, Jari; Nikinmaa, Eero; Lechowicz, Martin J.

    2012-01-01

    Background and Aims Plants are expected to maximize their net photosynthetic gains and efficiently use available resources, but the fundamental principles governing trade-offs in suites of traits related to resource-use optimization remain uncertain. This study investigated whether Acer saccharum (sugar maple) saplings could maximize their net photosynthetic gains through a combination of crown structure and foliar characteristics that let all leaves maximize their photosynthetic light-use efficiency (ɛ). Methods A functional–structural model, LIGNUM, was used to simulate individuals of different leaf area index (LAIind) together with a genetic algorithm to find distributions of leaf angle (LA) and leaf photosynthetic capacity (Amax) that maximized net carbon gain at the whole-plant level. Saplings grown in either the open or in a forest gap were simulated with Amax either unconstrained or constrained to an upper value consistent with reported values for Amax in A. saccharum. Key Results It was found that total net photosynthetic gain was highest when whole-plant PPFD absorption and leaf ɛ were simultaneously maximized. Maximization of ɛ required simultaneous adjustments in LA and Amax along gradients of PPFD in the plants. When Amax was constrained to a maximum, plants growing in the open maximized their PPFD absorption but not ɛ because PPFD incident on leaves was higher than the PPFD at which ɛmax was attainable. Average leaf ɛ in constrained plants nonetheless improved with increasing LAIind because of an increase in self-shading. Conclusions It is concluded that there are selective pressures for plants to simultaneously maximize both PPFD absorption at the scale of the whole individual and ɛ at the scale of leaves, which requires a highly integrated response between LA, Amax and LAIind. The results also suggest that to maximize ɛ plants have evolved mechanisms that co-ordinate the LA and Amax of individual leaves with PPFD availability. PMID:22665700

  2. Estimates of leaf area index from spectral reflectance of wheat under different cultural practices and solar angle

    NASA Technical Reports Server (NTRS)

    Asrar, G.; Kanemasu, E. T.; Yoshida, M.

    1985-01-01

    The influence of management practices and solar illumination angle on the leaf area index (LAI) was estimated from measurements of wheat canopy reflectance evaluated by two methods, a regression formula and an indirect technique. The date of planting and the time of irrigation in relation to the stage of plant growth were found to have significant effects on the development of leaves in spring wheat. A reduction in soil moisture adversely affected both the duration and magnitude of the maximum LAI for late planting dates. In general, water stress during vegetative stages resulted in a reduction in maximum LAI, while water stress during the reproductive period shortened the duration of green LAI in spring wheat. Canopy geometry and solar angle also affected the spectral properties of the canopies, and hence the estimated LAI. Increase in solar zenith angles resulted in a general increase in estimated LAI obtained from both methods.

  3. Terminal guidance of a gliding flight vehicle on the basis of the angle of roll at the final stage of descent

    NASA Astrophysics Data System (ADS)

    Morozov, L. V.; Belokonov, V. M.

    A method for the nonatonomous terminal guidance of a gliding flight vehicle at the final stage of descent is proposed which is based on monitoring the angle of roll for a balancing angle of attack. The terminal values of the motion parameters are predicted on the basis of a mathematical model of motion using on-board computers. The accuracy of the nonatonomous terminal guidance algorithm proposed here has been evaluated through a numerical simulation of the descent of a hypothetical flight vehicle with a hypersonic lift/drag ratio of 1.4.

  4. Cherry leaf roll virus

    USDA-ARS?s Scientific Manuscript database

    In the blackberry cultivar Himalaya Giant naturally infected in England, CLRV is reported to cause chlorotic mottling and line patterning in leaves. Infected plants are stunted and may be killed. In three red raspberry cultivars naturally infected by CLRV in New Zealand, infected plants had stunted,...

  5. Acute effects of anterior thigh foam rolling on hip angle, knee angle, and rectus femoris length in the modified Thomas test.

    PubMed

    Vigotsky, Andrew D; Lehman, Gregory J; Contreras, Bret; Beardsley, Chris; Chung, Bryan; Feser, Erin H

    2015-01-01

    Background. Foam rolling has been shown to acutely increase range of motion (ROM) during knee flexion and hip flexion with the experimenter applying an external force, yet no study to date has measured hip extensibility as a result of foam rolling with controlled knee flexion and hip extension moments. The purpose of this study was to investigate the acute effects of foam rolling on hip extension, knee flexion, and rectus femoris length during the modified Thomas test. Methods. Twenty-three healthy participants (male = 7; female = 16; age = 22 ± 3.3 years; height = 170 ± 9.18 cm; mass = 67.7 ± 14.9 kg) performed two, one-minute bouts of foam rolling applied to the anterior thigh. Hip extension and knee flexion were measured via motion capture before and after the foam rolling intervention, from which rectus femoris length was calculated. Results. Although the increase in hip extension (change = +1.86° (+0.11, +3.61); z(22) = 2.08; p = 0.0372; Pearson's r = 0.43 (0.02, 0.72)) was not due to chance alone, it cannot be said that the observed changes in knee flexion (change = -1.39° (-5.53, +2.75); t(22) = -0.70; p = 0.4933; Cohen's d = - 0.15 (-0.58, 0.29)) or rectus femoris length (change = -0.005 (-0.013, +0.003); t(22) = -1.30; p = 0.2070; Cohen's d = - 0.27 (-0.70, 0.16)) were not due to chance alone. Conclusions. Although a small change in hip extension was observed, no changes in knee flexion or rectus femoris length were observed. From these data, it appears unlikely that foam rolling applied to the anterior thigh will improve passive hip extension and knee flexion ROM, especially if performed in combination with a dynamic stretching protocol.

  6. Contributions of leaf photosynthetic capacity, leaf angle and self-shading to the maximization of net photosynthesis in Acer saccharum: a modelling assessment.

    PubMed

    Posada, Juan M; Sievänen, Risto; Messier, Christian; Perttunen, Jari; Nikinmaa, Eero; Lechowicz, Martin J

    2012-08-01

    Plants are expected to maximize their net photosynthetic gains and efficiently use available resources, but the fundamental principles governing trade-offs in suites of traits related to resource-use optimization remain uncertain. This study investigated whether Acer saccharum (sugar maple) saplings could maximize their net photosynthetic gains through a combination of crown structure and foliar characteristics that let all leaves maximize their photosynthetic light-use efficiency (ε). A functional-structural model, LIGNUM, was used to simulate individuals of different leaf area index (LAI(ind)) together with a genetic algorithm to find distributions of leaf angle (L(A)) and leaf photosynthetic capacity (A(max)) that maximized net carbon gain at the whole-plant level. Saplings grown in either the open or in a forest gap were simulated with A(max) either unconstrained or constrained to an upper value consistent with reported values for A(max) in A. saccharum. It was found that total net photosynthetic gain was highest when whole-plant PPFD absorption and leaf ε were simultaneously maximized. Maximization of ε required simultaneous adjustments in L(A) and A(max) along gradients of PPFD in the plants. When A(max) was constrained to a maximum, plants growing in the open maximized their PPFD absorption but not ε because PPFD incident on leaves was higher than the PPFD at which ε(max) was attainable. Average leaf ε in constrained plants nonetheless improved with increasing LAI(ind) because of an increase in self-shading. It is concluded that there are selective pressures for plants to simultaneously maximize both PPFD absorption at the scale of the whole individual and ε at the scale of leaves, which requires a highly integrated response between L(A), A(max) and LAI(ind). The results also suggest that to maximize ε plants have evolved mechanisms that co-ordinate the L(A) and A(max) of individual leaves with PPFD availability.

  7. Acute effects of anterior thigh foam rolling on hip angle, knee angle, and rectus femoris length in the modified Thomas test

    PubMed Central

    Lehman, Gregory J.; Contreras, Bret; Beardsley, Chris; Chung, Bryan; Feser, Erin H.

    2015-01-01

    Background. Foam rolling has been shown to acutely increase range of motion (ROM) during knee flexion and hip flexion with the experimenter applying an external force, yet no study to date has measured hip extensibility as a result of foam rolling with controlled knee flexion and hip extension moments. The purpose of this study was to investigate the acute effects of foam rolling on hip extension, knee flexion, and rectus femoris length during the modified Thomas test. Methods. Twenty-three healthy participants (male = 7; female = 16; age = 22 ± 3.3 years; height = 170 ± 9.18 cm; mass = 67.7 ± 14.9 kg) performed two, one-minute bouts of foam rolling applied to the anterior thigh. Hip extension and knee flexion were measured via motion capture before and after the foam rolling intervention, from which rectus femoris length was calculated. Results. Although the increase in hip extension (change = +1.86° (+0.11, +3.61); z(22) = 2.08; p = 0.0372; Pearson’s r = 0.43 (0.02, 0.72)) was not due to chance alone, it cannot be said that the observed changes in knee flexion (change = −1.39° (−5.53, +2.75); t(22) = −0.70; p = 0.4933; Cohen’s d = − 0.15 (−0.58, 0.29)) or rectus femoris length (change = −0.005 (−0.013, +0.003); t(22) = −1.30; p = 0.2070; Cohen’s d = − 0.27 (−0.70, 0.16)) were not due to chance alone. Conclusions. Although a small change in hip extension was observed, no changes in knee flexion or rectus femoris length were observed. From these data, it appears unlikely that foam rolling applied to the anterior thigh will improve passive hip extension and knee flexion ROM, especially if performed in combination with a dynamic stretching protocol. PMID:26421244

  8. Transgenic resistance in potato plants expressing potato leaf roll virus (PLRV) replicase gene sequences is RNA-mediated and suggests the involvement of post-transcriptional gene silencing.

    PubMed

    Vazquez Rovere, C; Asurmendi, S; Hopp, H E

    2001-07-01

    Genetically engineered expression of replicase encoding sequences has been proposed as an efficient system to confer protection against virus diseases by eliciting protection mechanisms in the plant. Potato leaf-roll was one of the first diseases for which this kind of protection was engineered in potato plants. However, details of the protecting mechanism were not reported, so far. The ORF2b of an Argentinean strain of PLRV was cloned and sequenced finding 94% and 97% of homology with Australian and Dutch strains, respectively. To elucidate the mechanism of protection against PLRV infection, three versions of ORF2b (non-translatable sense, translatable sense with an engineered ATG and antisense) were constructed under the control of the 35S CaMV promoter and the nos terminator and introduced in potato plants (cv. Kennebec) by Agrobacterium tumefaciens-mediated transformation. Grafting infection experiments showed that resistant transgenic plants could be obtained with any of the constructs, suggesting that the mechanism of protection is independent of the expression of protein and is RNA mediated. Field trial infection confirmed that resistant transgenic events were obtained. Biolistic transient transformation experiments of leaves derived from transgenic plants using a gene coding for the fusion protein GUS-ORF2b, followed by scoring of the number of GUS expressing leaf spots, supported that the protection is mediated by a post-transcriptional gene silencing mechanism.

  9. The silver lining of a viral agent: increasing seed yield and harvest index in Arabidopsis by ectopic expression of the potato leaf roll virus movement protein.

    PubMed

    Kronberg, Kristin; Vogel, Florian; Rutten, Twan; Hajirezaei, Mohammed-Reza; Sonnewald, Uwe; Hofius, Daniel

    2007-11-01

    Ectopic expression of viral movement proteins (MPs) has previously been shown to alter plasmodesmata (PD) function and carbon partitioning in transgenic plants, giving rise to the view of PD being dynamic and highly regulated structures that allow resource allocation to be adapted to environmental and developmental needs. However, most work has been restricted to solanaceous species and the potential use of MP expression to improve biomass and yield parameters has not been addressed in detail. Here we demonstrate that MP-mediated modification of PD function can substantially alter assimilate allocation, biomass production, and reproductive growth in Arabidopsis (Arabidopsis thaliana). These effects were achieved by constitutive expression of the potato leaf roll virus 17-kD MP (MP17) fused to green fluorescent protein (GFP) in different Arabidopsis ecotypes. The resulting transgenic plants were analyzed for PD localization of the MP17:GFP fusion protein and different lines with low to high expression levels were selected for further analysis. Low-level accumulation of MP17 resulted in enhanced sucrose efflux from source leaves and a considerably increased vegetative biomass production. In contrast, high MP17 levels impaired sucrose export, resulting in source leaf-specific carbohydrate accumulation and a strongly reduced vegetative growth. Surprisingly, later during development the MP17-mediated inhibition of resource allocation was reversed, and final seed yield increased in average up to 30% in different transgenic lines as compared to wild-type plants. This resulted in a strongly improved harvest index. The release of the assimilate export block was paralleled by a reduced PD binding of MP17 in senescing leaves, indicating major structural changes of PD during leaf senescence.

  10. Assessing the Impact of Central Appalachian Tree Species on Canopy Albedo via Measurement of Leaf Angles from Repeated Ground-based, Drone, and Hemispherical Photography

    NASA Astrophysics Data System (ADS)

    McNeil, B. E.; Erazo, D.; Heimerl, T.

    2014-12-01

    Satellite measurements of forest albedo are directly used in climate models, and could be used in models of the C and N cycles if we more fully understood the mechanism causing a strong correlation of forest albedo with canopy N and C assimilation. One attractive mechanism posits that tree species have evolved convergent leaf and canopy traits. While the leaf traits of tree species are known to drive variability in canopy N and C assimilation, linking tree species to variability in albedo is challenging because of the difficulty in measuring important canopy traits like leaf angle. To refine techniques for measuring leaf angle, and test the hypothesis that high albedo in the central Appalachians could be linked to the abundance of species with canopy traits of more horizontal leaf angles, we conducted four tests with ground-based, drone, and hemispherical photographs. First, we used a leveled camera on a steep slope to repeatedly, and directly measure the leaf angle of over 400 leaves within the canopies of oak, maple, and beech trees. Across all 21 repetitions (3 times a day on 7 dates between May and July), we observed consistent species differences in mean leaf angle (MLA), with maple always being the most horizontal (MLA = 14-18°) and oak the most vertical (MLA = 19-28°). Second, we again found highly significant species differences in MLA when we used a hexacopter drone with a camera on a self-leveling gimbal to make over 1020 direct measurements of leaf angle from six tree species in three broadleaf deciduous forest plots. Third, to measure MLA of a whole multi-species canopy, we compared a species abundance-weighted plot average of the drone-measured MLA values with an indirect, ground-based hemispherical photograph method. The strong agreement of these direct and indirect plot-level methods finally led us to compare a broader set of 61 plot-level hemispherical photo MLA measurements with canopy albedo measured by AVIRIS in broadleaf deciduous forests. In

  11. Rapid measurement of the three-dimensional distribution of leaf orientation and the leaf angle probability density function using terrestrial LiDAR scanning

    USDA-ARS?s Scientific Manuscript database

    Leaf orientation plays a fundamental role in many transport processes in plant canopies. At the plant or stand level, leaf orientation is often highly anisotropic and heterogeneous, yet most analyses neglect such complexity. In many cases, this is due to the difficulty in measuring the spatial varia...

  12. Molecular phylogenetics and evolution of host plant use in the Neotropical rolled leaf 'hispine' beetle genus Cephaloleia (Chevrolat) (Chrysomelidae: Cassidinae).

    PubMed

    McKenna, Duane D; Farrell, Brian D

    2005-10-01

    Here, we report the results of a species level phylogenetic study of Cephaloleia beetles designed to clarify relationships and patterns of host plant taxon and tissue use among species. Our study is based on up to 2088bp of mtDNA sequence data. Maximum parsimony, maximum likelihood, and Bayesian methods of phylogenetic inference consistently recover a monophyletic Cephaloleia outside of a basal clade of primarily palm feeding species (the 'Arecaceae-feeding clade'), and C. irregularis. In all three analyses, the 'Arecaceae-feeding clade' includes Cephaloleia spp. with unusual morphological features, and a few species currently placed in other cassidine genera and tribes. All three analyses also recover a clade that includes all Zingiberales feeding Cephaloleia and most Cephaloleia species (the 'Zingiberales-feeding clade'). Two notable clades are found within the 'Zingiberales-feeding clade.' One is comprised of beetles that normally feed only on the young rolled leaves of plants in the families Heliconiaceae and Marantaceae (the 'Heliconiaceae & Marantaceae-feeding clade'). The other is comprised of relative host tissue generalist, primarily Zingiberales feeding species (the 'generalist-feeding clade'). A few species in the 'generalist-feeding clade' utilize Cyperaceae or Poaceae as hosts. Overall, relatively basal Cephaloleia (e.g., the 'Arecaceae clade') feed on relatively basal monocots (e.g., Cyclanthaceae and Arecaceae), and relatively derived Cephaloleia (e.g., the 'Zingiberales-feeding clade') feed on relatively derived monocots (mostly in the order Zingiberales). Zingiberales feeding and specialization on young rolled Zingiberales leaves have each apparently evolved just once in Cephaloleia.

  13. Dorsoventral asymmetry of photosynthesis and photoinhibition in flag leaves of two rice cultivars that differ in nitrogen response and leaf angle.

    PubMed

    Kumagai, Etsushi; Hamaoka, Norimitsu; Araki, Takuya; Ueno, Osamu

    2014-08-01

    Rice is believed to show photosynthetic symmetry between adaxial and abaxial leaf sides. To verify this, we re-examined dorsoventral asymmetry in photosynthesis, chlorophyll fluorescence and anatomical traits in flag leaves of two Oryza sativa cultivars that differ in nitrogen (N) response and in leaf angle: 'Akenohoshi', a cultivar that can adapt to low-N (LN), with low leaf angle (more erect leaves), and 'Shirobeniya', a cultivar that is unable to adapt to LN, with higher leaf angle. Plants were grown under standard-N (SN) and LN conditions. LN leaves of both cultivars became more erect than SN, but LN Akenohoshi still had more erect ones than Shirobeniya. Contrary to results of previous studies, leaves of both cultivars showed an asymmetry in photosynthetic rate between adaxial and abaxial sides (higher on the adaxial side) under SN. SN leaves of both cultivars showed lower susceptibility to photoinhibition on the adaxial side than on the abaxial side. However, leaves of Akenohoshi showed less asymmetry in these traits under LN than under SN, whereas leaves of Shirobeniya had similar degrees of asymmetry in these traits under both SN and LN. Both cultivars also showed dorsoventral asymmetry in anatomical traits of mesophyll tissue regardless of N level, but the degree of asymmetry was lower in LN Akenohoshi. These data reveal that rice leaves exhibit dorsoventral asymmetry in photosynthetic and anatomical features, and that the degree of asymmetry varies with cultivar and N level. It is suggested that lower leaf angles (particularly in Akenohoshi) in the presence of LN represent a light acclimation to prevent photoinhibition. © 2013 Scandinavian Plant Physiology Society.

  14. Evaluation of Moderate Angle of Attack Roll of a Dual Engine, Thrust Vectoring Aircraft Using Quantitative Feedback Theory

    DTIC Science & Technology

    1993-12-01

    Vehicle (HARV). The HARV is a pre- production , single-seat F/A-18 aircraft, on loan to NASA from the US Navy. The HARV’s a twin engines have been...rate and the Euler angles can still be represented as perturbation quantities (denoted by lower-case variables), and the 14 squares and products of...of reference. This is accomplished by appropriately transforming each stability derivative and the moments and products of inertia. The stability

  15. Leaf rolling and stem fasciation in grass pea (Lathyrus sativus L.) mutant are mediated through glutathione-dependent cellular and metabolic changes and associated with a metabolic diversion through cysteine during phenotypic reversal.

    PubMed

    Talukdar, Dibyendu; Talukdar, Tulika

    2014-01-01

    A Lathyrus sativus L. mutant isolated in ethylmethane sulfonate-treated M2 progeny of mother variety BioL-212 and designated as rlfL-1 was characterized by inwardly rolled-leaf and stem and bud fasciations. The mutant exhibited karyomorphological peculiarities in both mitosis and meiosis with origin of aneuploidy. The mitosis was vigorous with high frequency of divisional cells and their quick turnover presumably steered cell proliferations. Significant transcriptional upregulations of cysteine and glutathione synthesis and concomitant stimulations of glutathione-mediated antioxidant defense helped rlfL-1 mutant to maintain balanced reactive oxygen species (ROS) metabolisms, as deduced by ROS-imaging study. Glutathione synthesis was shut down in buthionine sulfoximine- (BSO-) treated mother plant and mutant, and leaf-rolling and stems/buds fasciations in the mutant were reversed, accompanied by normalization of mitotic cell division process. Antioxidant defense was downregulated under low glutathione-redox but cysteine-desulfurations and photorespiratory glycolate oxidase transcripts were markedly overexpressed, preventing cysteine overaccumulation but resulted in excess H2O2 in BSO-treated mutant. This led to oxidative damage in proliferating cells, manifested by severe necrosis in rolled-leaf and fasciated stems. Results indicated vital role of glutathione in maintaining abnormal proliferations in plant organs, and its deficiency triggered phenotypic reversal through metabolic diversions of cysteine and concomitant cellular and metabolic modulations.

  16. Leaf Rolling and Stem Fasciation in Grass Pea (Lathyrus sativus L.) Mutant Are Mediated through Glutathione-Dependent Cellular and Metabolic Changes and Associated with a Metabolic Diversion through Cysteine during Phenotypic Reversal

    PubMed Central

    Talukdar, Dibyendu; Talukdar, Tulika

    2014-01-01

    A Lathyrus sativus L. mutant isolated in ethylmethane sulfonate-treated M2 progeny of mother variety BioL-212 and designated as rlfL-1 was characterized by inwardly rolled-leaf and stem and bud fasciations. The mutant exhibited karyomorphological peculiarities in both mitosis and meiosis with origin of aneuploidy. The mitosis was vigorous with high frequency of divisional cells and their quick turnover presumably steered cell proliferations. Significant transcriptional upregulations of cysteine and glutathione synthesis and concomitant stimulations of glutathione-mediated antioxidant defense helped rlfL-1 mutant to maintain balanced reactive oxygen species (ROS) metabolisms, as deduced by ROS-imaging study. Glutathione synthesis was shut down in buthionine sulfoximine- (BSO-) treated mother plant and mutant, and leaf-rolling and stems/buds fasciations in the mutant were reversed, accompanied by normalization of mitotic cell division process. Antioxidant defense was downregulated under low glutathione-redox but cysteine-desulfurations and photorespiratory glycolate oxidase transcripts were markedly overexpressed, preventing cysteine overaccumulation but resulted in excess H2O2 in BSO-treated mutant. This led to oxidative damage in proliferating cells, manifested by severe necrosis in rolled-leaf and fasciated stems. Results indicated vital role of glutathione in maintaining abnormal proliferations in plant organs, and its deficiency triggered phenotypic reversal through metabolic diversions of cysteine and concomitant cellular and metabolic modulations. PMID:24987684

  17. Generating and Evaluation Leaf Area Index (LAI) from MODIS MultiAngle Implementation of Atmospheric Correction (MAIAC) Surface Reflectance Dataset

    NASA Astrophysics Data System (ADS)

    Chen, C.; Park, T.; Yan, K.; Lyapustin, A.; Wang, Y.; CHOI, S.; Yang, B.; Knyazikhin, Y.; Myneni, R. B.

    2015-12-01

    This study generates and evaluates prototype Leaf Area Index (LAI) product based on MODerate resolution Imaging Spectroradiometer's (MODIS) Bidirectional Reflectance Factor (BRF, commonly known as surface reflectance) which is a product of MultiAngle Implementation of Atmospheric Correction (MAIAC) package. LAI is a key parameter of vegetation in characterizing interactions of energy and mass between the Earth's surface and atmosphere. On the other hand, MAIAC BRF is retrieved from a new atmospheric correction algorithm, which has higher spatial resolution and is believed to have more reliable cloud/aerosol detection technique than standard MODIS BRF product. Two main objectives of this study are: 1). Maintaining the radiative transfer theory based LAI algorithm's look up table (LUT) unchanged, to compare LAI product retrieved from different versions of BRF products (MODIS collection 5, collection 6 and MAIAC); 2). To adjust the LUT to resolve LAI's possible systematic discrepancies resulting from atmospheric correction methods within the input BRF other than our LAI algorithm. Before the LUT adjusting, comparing to standard MODIS products shows that MAIAC LAI product will overestimate among herbaceous biome types which have low LAI values, while underestimate among woody biome types which have relatively higher values. Based on the theory of radiative transfer of canopy spectral invariants, two biome and MAIAC specific configurable parameters (Single Scattering Albedo and Uncertainty) in the LUT are adjusted to minimize the inconsistency due to input BRFs. Experiments shows that our new result: 1). has good agreement with field measured data (e.g. DIRECT); 2) is consistent with standard MODIS LAI product.

  18. Cross-directional interlocking of rolls in an air press of a papermaking machine

    DOEpatents

    Beck, David A.; Gorshe, Thomas

    2003-05-13

    An air press for pressing a paper web is composed of a plurality of rolls including at least a first roll and a second roll. The first roll and the second roll are positioned adjacent one another and form a first nip therebetween. Further, the first roll and the second roll each have a roll end, the roll end of the first roll adjoining the roll end of the second roll. A bevel plate is attached to the roll end of the first roll, the bevel plate having at least a first angled plate face. A seal ring is positioned adjacent the roll end of the second roll, the seal ring being juxtaposed to the bevel plate. The seal ring has at least a first angled ring face, and the first angled ring face mates with the first angled plate face.

  19. Video Analysis of Rolling Cylinders

    ERIC Educational Resources Information Center

    Phommarach, S.; Wattanakasiwich, P.; Johnston, I.

    2012-01-01

    In this work, we studied the rolling motion of solid and hollow cylinders down an inclined plane at different angles. The motions were captured on video at 300 frames s[superscript -1], and the videos were analyzed frame by frame using video analysis software. Data from the real motion were compared with the theory of rolling down an inclined…

  20. Video Analysis of Rolling Cylinders

    ERIC Educational Resources Information Center

    Phommarach, S.; Wattanakasiwich, P.; Johnston, I.

    2012-01-01

    In this work, we studied the rolling motion of solid and hollow cylinders down an inclined plane at different angles. The motions were captured on video at 300 frames s[superscript -1], and the videos were analyzed frame by frame using video analysis software. Data from the real motion were compared with the theory of rolling down an inclined…

  1. Computational Analysis of Ares I Roll Control System Jet Interaction Effects on Rolling Moment

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.; Pao, S. Paul; Abdol-Hamid, Khaled S.

    2011-01-01

    The computational flow solver USM3D was used to investigate the jet interaction effects from the roll control system on the rolling moment of the Ares I full protuberance configuration at wind tunnel Reynolds numbers. Solutions were computed at freestream Mach numbers from M = 0.5 to M = 5 at the angle of attack 0deg, at the angle of attack 3.5deg for a roll angle of 120deg, and at the angle of attack 7deg for roll angles of 120deg and 210deg. Results indicate that the RoCS housing provided a beneficial jet interaction effect on vehicle rolling moment for M > or = 0.9. Most of the components downstream of the roll control system housing contributed to jet interaction penalties on vehicle rolling moment.

  2. The ZmCLA4 gene in the qLA4-1 QTL controls leaf angle in maize (Zea mays L.).

    PubMed

    Zhang, J; Ku, L X; Han, Z P; Guo, S L; Liu, H J; Zhang, Z Z; Cao, L R; Cui, X J; Chen, Y H

    2014-09-01

    Maize architecture is a major contributing factor to their high level of productivity. Maize varieties with an erect-leaf-angle (LA) phenotype, which increases light harvesting for photosynthesis and grain-filling, have elevated grain yields. Although a large body of information is available on the map positions of quantitative trait loci (QTL) for LA, little is known about the molecular mechanism of these QTL. In this study, the ZmCLA4 gene, which is responsible for the qLA4-1 QTL associated with LA, was identified and isolated by fine mapping and positional cloning. The ZmCLA4 gene is an orthologue of LAZY1 in rice and Arabidopsis. Sequence analysis revealed two SNPs and two indel sites in ZmCLA4 between the D132 and D132-NIL inbred maize lines. Association analysis showed that C/T/mutation667 and CA/indel965 were strongly associated with LA. Subcellular localization verified the functions of a predicted transmembrane domain and a nuclear localization signal in ZmCLA4. Transgenic maize plants with a down-regulated ZmCLA4 RNAi construct and transgenic rice plants over-expressing ZmCLA4 confirmed that the ZmCLA4 gene located in the qLA4 QTL regulated LA. The allelic variants of ZmCLA4 in the D132 and D132-NIL lines exhibited significant differences in leaf angle. ZmCLA4 transcript accumulation was higher in D132-NIL than in D132 during all the developmental stages and was negatively correlated with LA. The gravitropic response was increased and cell shape and number at the leaf and stem junctions were altered in D132-NIL relative to D132. These findings suggest that ZmCLA4 plays a negative role in the control of maize LA through the alteration of mRNA accumulation, leading to altered shoot gravitropism and cell development. The cloning of the gene responsible for the qLA4-1 QTL provides information on the molecular mechanisms of LA in maize and an opportunity for the improvement of plant architecture with regard to LA through maize breeding. © The Author 2014

  3. Rolling Reloaded

    ERIC Educational Resources Information Center

    Jones, Simon A.; Nieminen, John M.

    2008-01-01

    Not so long ago a new observation about rolling motion was described: for a rolling wheel, there is a set of points with instantaneous velocities directed at or away from the centre of the wheel; these points form a circle whose diameter connects the centre of the wheel to the wheel's point of contact with the ground (Sharma 1996 "Eur. J. Phys."…

  4. Nonlinear Analysis of the Rolling Motion of a Wrap-Around Fin Missile at Angles of Attack from 0 to 90 deg in Incompressible Flow

    DTIC Science & Technology

    1977-09-01

    finned bo-)dis,, it both small and large angles of attack. This work was supported by the Naval Air Systems Command (Mr. W. C. Volz , AIR-320C) under...From To Multiply By in. cm 2.54 ft m 0.30479 deg rad 0.1686 ft/s r m/s 0.3479 lb/ft (force) Pa 4.788026 ii LIST OF ILLUSTRATIONS Figure Page 1 WAF...s) 6 Fin cant deflection angle (rad or deg) D-2 DISTRIBUTION Commander Naval Air Systems Command Washington, DC 20360 ATTN: AIR-320, Mr. Bill Volz

  5. Rolling Ribbons

    NASA Astrophysics Data System (ADS)

    Raux, P. S.; Reis, P. M.; Bush, J. W. M.; Clanet, C.

    2010-07-01

    We present the results of a combined experimental and theoretical investigation of rolling elastic ribbons. Particular attention is given to characterizing the steady shapes that arise in static and dynamic rolling configurations. In both cases, above a critical value of the forcing (either gravitational or centrifugal), the ribbon assumes a two-lobed, peanut shape similar to that assumed by rolling droplets. Our theoretical model allows us to rationalize the observed shapes through consideration of the ribbon’s bending and stretching in response to the applied forcing.

  6. How to pattern a leaf

    USDA-ARS?s Scientific Manuscript database

    Leaf development presents a tremendous resource for tackling the question of patterning in biology. Leaves can be simple or highly dissected. They may have elaborated parts such as the tendrils of a pea leaf or the rolled blade of a carnivorous pitcher plant. Despite the variation in size, shape, an...

  7. Rolling Robot

    NASA Technical Reports Server (NTRS)

    Larimer, Stanley J.; Lisec, Thomas R.; Spiessbach, Andrew J.

    1990-01-01

    Proposed rolling robot routinely traverses rough terrain, clearing rocks as high as 1 m. Climbs steps 1 m high and spans ditches 2.3 m wide. Simple but rugged semiautonomous rover has large wheels and articulated body. With combined yaw, roll, and four-wheel drive, robot crawls slowly to pass over soft or sandy terrain. Senses terrain along corridor, chooses path to avoid insurmountable obstacles, and monitors state of vehicle for unexpected hazards.

  8. Stochastic disks that roll.

    PubMed

    Holmes-Cerfon, Miranda

    2016-11-01

    We study a model of rolling particles subject to stochastic fluctuations, which may be relevant in systems of nano- or microscale particles where rolling is an approximation for strong static friction. We consider the simplest possible nontrivial system: a linear polymer of three disks constrained to remain in contact and immersed in an equilibrium heat bath so the internal angle of the polymer changes due to stochastic fluctuations. We compare two cases: one where the disks can slide relative to each other and the other where they are constrained to roll, like gears. Starting from the Langevin equations with arbitrary linear velocity constraints, we use formal homogenization theory to derive the overdamped equations that describe the process in configuration space only. The resulting dynamics have the formal structure of a Brownian motion on a Riemannian or sub-Riemannian manifold, depending on if the velocity constraints are holonomic or nonholonomic. We use this to compute the trimer's equilibrium distribution with and without the rolling constraints. Surprisingly, the two distributions are different. We suggest two possible interpretations of this result: either (i) dry friction (or other dissipative, nonequilibrium forces) changes basic thermodynamic quantities like the free energy of a system, a statement that could be tested experimentally, or (ii) as a lesson in modeling rolling or friction more generally as a velocity constraint when stochastic fluctuations are present. In the latter case, we speculate there could be a "roughness" entropy whose inclusion as an effective force could compensate the constraint and preserve classical Boltzmann statistics. Regardless of the interpretation, our calculation shows the word "rolling" must be used with care when stochastic fluctuations are present.

  9. Stochastic disks that roll

    NASA Astrophysics Data System (ADS)

    Holmes-Cerfon, Miranda

    2016-11-01

    We study a model of rolling particles subject to stochastic fluctuations, which may be relevant in systems of nano- or microscale particles where rolling is an approximation for strong static friction. We consider the simplest possible nontrivial system: a linear polymer of three disks constrained to remain in contact and immersed in an equilibrium heat bath so the internal angle of the polymer changes due to stochastic fluctuations. We compare two cases: one where the disks can slide relative to each other and the other where they are constrained to roll, like gears. Starting from the Langevin equations with arbitrary linear velocity constraints, we use formal homogenization theory to derive the overdamped equations that describe the process in configuration space only. The resulting dynamics have the formal structure of a Brownian motion on a Riemannian or sub-Riemannian manifold, depending on if the velocity constraints are holonomic or nonholonomic. We use this to compute the trimer's equilibrium distribution with and without the rolling constraints. Surprisingly, the two distributions are different. We suggest two possible interpretations of this result: either (i) dry friction (or other dissipative, nonequilibrium forces) changes basic thermodynamic quantities like the free energy of a system, a statement that could be tested experimentally, or (ii) as a lesson in modeling rolling or friction more generally as a velocity constraint when stochastic fluctuations are present. In the latter case, we speculate there could be a "roughness" entropy whose inclusion as an effective force could compensate the constraint and preserve classical Boltzmann statistics. Regardless of the interpretation, our calculation shows the word "rolling" must be used with care when stochastic fluctuations are present.

  10. Rolling Uphill

    ERIC Educational Resources Information Center

    Cross, Rod

    2017-01-01

    In a recent letter to this journal, Mungan noted that translational energy can be converted into gravitational potential energy when an object is projected vertically, but rotational energy is not usually converted in this manner. As an exception, he gave an example where "a ball initially rolling without slipping will travel higher up a…

  11. 46 CFR 28.575 - Severe wind and roll.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Severe wind and roll. 28.575 Section 28.575 Shipping... INDUSTRY VESSELS Stability § 28.575 Severe wind and roll. (a) Each vessel must meet paragraphs (f) and (g) of this section when subjected to the gust wind heeling arm and the angle of roll to windward as...

  12. 46 CFR 28.575 - Severe wind and roll.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Severe wind and roll. 28.575 Section 28.575 Shipping... INDUSTRY VESSELS Stability § 28.575 Severe wind and roll. (a) Each vessel must meet paragraphs (f) and (g) of this section when subjected to the gust wind heeling arm and the angle of roll to windward as...

  13. Roll paper pilot. [mathematical model for predicting pilot rating of aircraft in roll task

    NASA Technical Reports Server (NTRS)

    Naylor, F. R.; Dillow, J. D.; Hannen, R. A.

    1973-01-01

    A mathematical model for predicting the pilot rating of an aircraft in a roll task is described. The model includes: (1) the lateral-directional aircraft equations of motion; (2) a stochastic gust model; (3) a pilot model with two free parameters; and (4) a pilot rating expression that is a function of rms roll angle and the pilot lead time constant. The pilot gain and lead time constant are selected to minimize the pilot rating expression. The pilot parameters are then adjusted to provide a 20% stability margin and the adjusted pilot parameters are used to compute a roll paper pilot rating of the aircraft/gust configuration. The roll paper pilot rating was computed for 25 aircraft/gust configurations. A range of actual ratings from 2 to 9 were encountered and the roll paper pilot ratings agree quite well with the actual ratings. In addition there is good correlation between predicted and measured rms roll angle.

  14. Effect of temper rolling on final shape defects in a V-section roll forming process

    NASA Astrophysics Data System (ADS)

    Abvabi, Akbar; Rolfe, Bernard; Hodgson, Peter D.; Weiss, Matthias

    2013-12-01

    Roll forming is a continuous process in which a flat strip is shaped to the desired profile by sequential bending in a series of roll stands. Because of the large variety of applications of roll forming in the industry, Finite Element Analysis (FEA) is increasingly utilized for roll forming process design. Bending is the dominant deformation mode in roll forming. Sheet materials used in this process are generally temper rolled, roller- or tension- leveled. These processes introduce residual stresses into the material, and recent studies have shown that those affect the material behavior in bending. In this study a numerical model of the temper rolling (skin passing) process was used to determine a residual stress distribution in a dual phase, DP780, steel strip. A 5-stand roll forming process for the forming of a V-section was modeled, and the effect of various thickness reduction levels in the temper rolling process on the final shape defects was analyzed. The results show that a small thickness reduction in the temper rolling process decreases the maximum bow height but the final springback angle increases. It is also shown that reasonable model accuracy can be achieved by including the residual stress information due to temper rolling as initial condition in the numerical modeling of a roll forming process.

  15. Maize YABBY genes drooping leaf1 and drooping leaf2 affect agronomic traits by regulating leaf architecture

    USDA-ARS?s Scientific Manuscript database

    Leaf architectural traits, such as length, width and angle, directly influence canopy structure and light penetration, photosynthate production and overall yield. We discovered and characterized a maize (Zea mays) mutant with aberrant leaf architecture we named drooping leaf1 (drl1), as leaf blades ...

  16. CONTROL FOR ROLLING MILL

    DOEpatents

    Shuck, A.B.; Shaw, W.C.

    1961-06-20

    A plutonium-rolling apparatus is patented that has two sets of feed rolls, shaping rolls between the feed rolls, and grippers beyond the feed rolls, which ready a workpiece for a new pass through the shaping rolls by angularly shifting the workpiece about its axis or transversely moving it on a line parallel to the axes of the shaping rolls. Actuation of each gripper for gripping or releasing the workpiece is produced by the relative positions assumed by the feed rolls adjacent to the gripper as the workpiece enters or leaves the feed rolls.

  17. Rolling Uphill

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2017-04-01

    In a recent letter to this journal, Mungan noted that translational energy can be converted into gravitational potential energy when an object is projected vertically, but rotational energy is not usually converted in this manner. As an exception, he gave an example where "a ball initially rolling without slipping will travel higher up a rough ramp than it will up a frictionless ramp." However, such a result is unlikely to be observed in practice. A better example would be a ball spinning rapidly forwards as it slides up the ramp, since the friction force on the ball then acts in a direction up the ramp.

  18. Navier-Stokes prediction of large-amplitude delta-wing roll oscillations characterizing wing rock

    NASA Technical Reports Server (NTRS)

    Chaderjian, Neal M.

    1992-01-01

    High-incidence vortical flow about a 65-deg sweep delta wing undergoing static roll and large-amplitude, high-rate-of-roll oscillations is simulated numerically using the time-dependent, three-dimensional, Reynolds-averaged, Navier-Stokes equations. Turbulent computations are presented for static roll angles up through 42 degrees. The effects of roll angle on the vortex aerodynamics are discussed, and the solution accuracy is evaluated by comparison with experimental data. The effects of grid refinement and zonal boundary condition treatment on solution accuracy are assessed at zero roll angle. Numerical simulation of a forced periodic roll motion is also presented.

  19. Aerodynamics of a rolling airframe missile

    NASA Astrophysics Data System (ADS)

    Tisserand, L. E.

    1981-05-01

    For guidance-related reasons, there is considerable interest in rolling missiles having single-plane steering capability. To aid the aerodynamic design of these airframes, a unique investigation into the aerodynamics of a rolling, steering missile has been carried out. It represents the first known attempt to measure in a wind tunnel the aerodynamic forces and moments that act on a spinning body-canard-tail configuration that exercises canard steering in phase with body roll position. Measurements were made with the model spinning at steady-state roll rates ranging from 15 to 40 Hz over an angle-of-attack range up to about 16 deg. This short, exploratory investigation has demonstrated that a better understanding and a more complete definition of the aerodynamics of rolling, steering vehicles can be developed by way of simulative wind-tunnel testing.

  20. Rolling-Element Bearings

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Anderson, W. J.

    1983-01-01

    Rolling element bearings are a precision, yet simple, machine element of great utility. A brief history of rolling element bearings is reviewed and the type of rolling element bearings, their geometry and kinematics, as well as the materials they are made from and the manufacturing processes they involve are described. Unloaded and unlubricated rolling element bearings, loaded but unlubricated rolling element bearings and loaded and lubricated rolling element bearings are considered. The recognition and understanding of elastohydrodynamic lubrication covered, represents one of the major development in rolling element bearings.

  1. Silk gland gene expression during larval-pupal transitionin the cotton leaf roller Sylepta derogate (Lepidoptera: pyralidae)

    USDA-ARS?s Scientific Manuscript database

    The cotton leaf roller, Sylepta derogata, is a silk-producing insect pest. While young larvae feed on the underside of leaves, the older ones roll cotton leaves and feed on the leaf edges, which defoliates cotton plants. The larvae produce silk to stabilize the rolled leaf and to balloon from used t...

  2. Texture Evolution of a Non-oriented Electrical Steel Cold Rolled at Directions Different from the Hot Rolling Direction

    NASA Astrophysics Data System (ADS)

    He, Youliang; Hilinski, Erik; Li, Jian

    2015-11-01

    With the objective of optimizing the crystallographic texture of non-oriented electrical steel, i.e., reducing the <111>//ND and <110>//RD fibers and promoting the <001>//ND texture, a new rolling scheme was proposed and tested, in which the cold rolling direction (CRD) was intentionally inclined at an angle to the hot rolling direction (HRD) in order to change the orientation flow paths during cold rolling and alter the final texture of the annealed sheets. A non-oriented electrical steel containing 0.88 wt pct Si was hot rolled using conventional routes and annealed, and a number of rectangular plates were cut from the hot band with the longitudinal directions inclined at various angles, i.e., 0, 15, 30, 45, 60, 75, and 90 deg, to the HRD. These plates were then cold rolled along the longitudinal directions with a thickness reduction of 72 pct. The cold-rolled samples were annealed, temper rolled and annealed again (final annealing). The texture evolution during hot rolling, hot band annealing, cold rolling, and final annealing was characterized by electron backscatter diffraction and X-ray diffraction techniques. By changing the CRD with respect to the HRD, the initial texture and the orientation flow paths were altered, which resulted in apparent differences in the textures as compared to conventional cold rolling. After temper rolling and final annealing, the recrystallization textures consisted of mainly a <001>//ND fiber and there was almost no <111>//ND fiber. The sample cold rolled at an angle of 60 deg to the HRD had the strongest texture (intensity almost 2× of conventional rolling) with a maximum at the cube {001}<100> orientation—a magnetically favorable orientation for non-oriented electrical steels.

  3. Rolling-Contact Rheostat

    NASA Technical Reports Server (NTRS)

    Ruoff, C. F.

    1985-01-01

    Contact noise in rheostats and potentiometers reduced by rolling contact design. Smooth rolling action eliminates sporadic variations in resistance caused by bouncing and stick/slip motion of conventional sliding contacts.

  4. 4. ROLL LATHE OF THE MAIN ROLL SHOP. THE LATHE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. ROLL LATHE OF THE MAIN ROLL SHOP. THE LATHE WAS CLOSED WITH TWO ROLLS IN PLACE, AND THE LOWER ROLL WAS TURNED TO MATCH THE UPPER ROLL. - U.S. Steel Homestead Works, Main Roll Shop, Along Monongahela River, Homestead, Allegheny County, PA

  5. Internal roll compression system

    DOEpatents

    Anderson, Graydon E.

    1985-01-01

    This invention is a machine for squeezing water out of peat or other material of low tensile strength; the machine including an inner roll eccentrically positioned inside a tubular outer roll, so as to form a gradually increasing pinch area at one point therebetween, so that, as the rolls rotate, the material is placed between the rolls, and gets wrung out when passing through the pinch area.

  6. 46 CFR 58.01-40 - Machinery, angles of inclination.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... AUXILIARY MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-40 Machinery, angles of inclination. (a... angle of list up to and including 15°, and when the vessel is inclined under dynamic conditions (rolling...

  7. 46 CFR 58.01-40 - Machinery, angles of inclination.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... AUXILIARY MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-40 Machinery, angles of inclination. (a... angle of list up to and including 15°, and when the vessel is inclined under dynamic conditions (rolling...

  8. Facility No. 175, interior detail showing rolling doors, trusses, and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Facility No. 175, interior detail showing rolling doors, trusses, and angled monitor roof - U.S. Naval Base, Pearl Harbor, Landplane Hangar Type, Wasp Boulevard and Gambier Bay Street, Pearl City, Honolulu County, HI

  9. Existence and role of large micropillars on the leaf surfaces of The President lotus.

    PubMed

    Xiang, Mingming; Wilhelm, Anderson; Luo, Cheng

    2013-06-25

    It is reported that a lotus surface has hybrid micro/nanostructures (i.e., small micropillars are covered with nanopillars), which make a water drop easily roll off from the lotus surface. However, we have recently found that, in addition to nanopillars and small micropillars, there also exist sparsely distributed large micropillars on the leaf surface of The President lotus. Accordingly, in this work, we examined the effects of these large micropillars on the wetting properties of The President through four types of wetting experiments: pressing tests, measurement of tilt and contact angles, condensation, and evaporation. For the purpose of comparison, we also did the same experiments on the leaf surfaces of another two lotuses, Carolina Queen and Chawan Basu, which only have hybrid micro/nanostructures. The President, Carolina Queen, and Chawan Basu are three different lotus varieties.

  10. Rolling Friction on a Wheeled Laboratory Cart

    ERIC Educational Resources Information Center

    Mungan, Carl E.

    2012-01-01

    A simple model is developed that predicts the coefficient of rolling friction for an undriven laboratory cart on a track that is approximately independent of the mass loaded onto the cart and of the angle of inclination of the track. The model includes both deformation of the wheels/track and frictional torque at the axles/bearings. The concept of…

  11. Rolling Friction on a Wheeled Laboratory Cart

    ERIC Educational Resources Information Center

    Mungan, Carl E.

    2012-01-01

    A simple model is developed that predicts the coefficient of rolling friction for an undriven laboratory cart on a track that is approximately independent of the mass loaded onto the cart and of the angle of inclination of the track. The model includes both deformation of the wheels/track and frictional torque at the axles/bearings. The concept of…

  12. Roll compaction/dry granulation: comparison between roll mill and oscillating granulator in dry granulation.

    PubMed

    Sakwanichol, Jarunee; Puttipipatkhachorn, Satit; Ingenerf, Gernot; Kleinebudde, Peter

    2012-01-01

    Different experimental factorial designs were employed to evaluate granule properties obtained from oscillating granulator and roll mill. Four oscillating-granulator parameters were varied, i.e. rotor speed, oscillating angle, aperture of mesh screen and rotor type. Six roll-mill parameters that were throughput, speed ratio in both first and second stages, gap between roll pair in both stages and roll-surface texture were also investigated. Afterwards, the granule properties obtained from two milling types with similar median particle size were compared. All milling parameters in both milling types affected significantly the median particle size, size distribution and amount of fine particles (P < 0.05), except the rotor types of oscillating granulator on fines. Only three milling parameters influenced significantly the flowability (P < 0.05). These were the throughput and the gap size in the first stage of roll mill and the sieve size of oscillating granulator. In comparison between milling types, the differences of granule properties were not practically relevant. However, the roll mill had much higher capacity than the oscillating granulator about seven times, resulting in improving energy savings per unit of product. Consequently, the roll mill can be applied instead of oscillating granulator for roll compaction/dry granulation technique.

  13. Modelling pressure rolling of asymmetric rolling process

    NASA Astrophysics Data System (ADS)

    Alexa, V.; Ratiu, S. A.; Kiss, I.; Cioata, V. G.

    2017-05-01

    The paper presents a comparative analysis between experimental results and modelling in order to interpret the value of the contact pressure on the asymmetric longitudinal rolling. It is also intended action and the different behaviour of upper cylinder compared to the lower cylinder action in situations when both are driven, or only one operates. In the modelling will be presented on the basis of boundary conditions imposed rolling pressure variation in the degree of reduction and also re size arc length of contact. Determining a curve is also important to determine the locus of points which characterize symmetry conditions partial rolling process between unequal diameters cylinders.

  14. Post-roll effects on attitude perception: "the Gillingham Illusion".

    PubMed

    Ercoline, W R; Devilbiss, C A; Yauch, D W; Brown, D L

    2000-05-01

    Several aircraft each year are lost because of an unexplained collision with the ground. The attitude of most of these aircraft prior to impact was nose-low and with excessive bank, i.e., greater than 90 degrees . Prior to these accidents, each aircraft was noted as either changing heading or making an abrupt roll. Could there be some underlying tendency for the pilot to make unnoticed stick inputs after completing a roll from one bank angle to another? Since ground-based flight simulators cannot create the true sensation of rolling an aircraft from one side to the other, the instrumented CALSPAN NT-33 aircraft was used for this study. Six pilots were given a series of three roll rates and two head positions while the aircraft automatically changed bank from 45 degrees of bank in one direction to 45 degrees of bank in the opposite direction. The subject's view of the external visual scene was restricted with a blue-amber vision restricting transparency combination. All attitude-indicating instruments were blanked, requiring the subjects to make stick inputs based on their vestibular (somatosensory) feedback. Subjects experienced a consistent tendency to increase bank angle after given control of the aircraft immediately following the roll maneuver, while thinking they were maintaining a constant bank angle. In some cases, the pilots rolled the aircraft completely inverted. When pilots rely on their perception of bank, following a roll, they will inadvertently increase their bank in the direction of the previous roll.

  15. Measurement method for roll angular displacement with a high resolution by using diffraction gratings and a heterodyne interferometer

    SciTech Connect

    Tang, Shanzhi; Wang, Zhao; Gao, Jianmin; Guo, Junjie

    2014-04-15

    The roll angle measurement is difficult to be achieved directly using a typical commercial interferometer due to its low sensitivity in axial direction, where the axial direction is orthogonal to the plane of the roll angular displacement. A roll angle measurement method combined diffraction gratings with a laser heterodyne interferometer is discussed in this paper. The diffraction grating placed in the plane of a roll angular displacement and the interferometer arranged in the plane's orthogonal direction, constitute the measurement pattern for the roll angle with high resolution. The roll angular displacement, considered as the linear, can be tested precisely when the corresponding angle is very small. Using the proposed method, the angle roll measurement obtains the high resolution of 0.002{sup ″}. Experiment has proved its feasibility and practicability.

  16. The Effects of Forming Parameters on Conical Ring Rolling Process

    PubMed Central

    Meng, Wen; Zhao, Guoqun; Guan, Yanjin

    2014-01-01

    The plastic penetration condition and biting-in condition of a radial conical ring rolling process with a closed die structure on the top and bottom of driven roll, simplified as RCRRCDS, were established. The reasonable value range of mandrel feed rate in rolling process was deduced. A coupled thermomechanical 3D FE model of RCRRCDS process was established. The changing laws of equivalent plastic strain (PEEQ) and temperature distributions with rolling time were investigated. The effects of ring's outer radius growth rate and rolls sizes on the uniformities of PEEQ and temperature distributions, average rolling force, and average rolling moment were studied. The results indicate that the PEEQ at the inner layer and outer layer of rolled ring are larger than that at the middle layer of ring; the temperatures at the “obtuse angle zone” of ring's cross-section are higher than those at “acute angle zone”; the temperature at the central part of ring is higher than that at the middle part of ring's outer surfaces. As the ring's outer radius growth rate increases at its reasonable value ranges, the uniformities of PEEQ and temperature distributions increase. Finally, the optimal values of the ring's outer radius growth rate and rolls sizes were obtained. PMID:25202716

  17. Multilayer roll bonded aluminium foil: processing, microstructure and flow stress

    SciTech Connect

    Barlow, C.Y.; Nielsen, P.; Hansen, N

    2004-08-02

    Bulk aluminium has been produced by warm-rolling followed by cold-rolling of commercial purity (99% purity) aluminium foil. The bonding appeared perfect from observation with the naked eye, light and transmission electron microscopy. By comparison with bulk aluminium of similar purity (AA1200) rolled to a similar strain (90%RA), the roll-bonded metal showed a much higher density of high-angle grain boundaries, similar strength and improved thermal stability. This study has implications for a number of applications in relation to the processing of aluminium. Roll bonding is of interest as a method for grain size refinement; oxide-containing materials have increased strength, enhanced work-hardening behaviour, and exhibit alterations in recrystallisation behaviour. The behaviour of the hard oxide film is of interest in aluminium processing, and has been investigated by characterising the size and distribution of oxide particles in the roll-bonded samples.

  18. Comparison of half and full-leaf shape feature extraction for leaf classification

    NASA Astrophysics Data System (ADS)

    Sainin, Mohd Shamrie; Ahmad, Faudziah; Alfred, Rayner

    2016-08-01

    Shape is the main information for leaf feature that most of the current literatures in leaf identification utilize the whole leaf for feature extraction and to be used in the leaf identification process. In this paper, study of half-leaf features extraction for leaf identification is carried out and the results are compared with the results obtained from the leaf identification based on a full-leaf features extraction. Identification and classification is based on shape features that are represented as cosines and sinus angles. Six single classifiers obtained from WEKA and seven ensemble methods are used to compare their performance accuracies over this data. The classifiers were trained using 65 leaves in order to classify 5 different species of preliminary collection of Malaysian medicinal plants. The result shows that half-leaf features extraction can be used for leaf identification without decreasing the predictive accuracy.

  19. Leaf movement in Calathea lutea (Marantaceae).

    PubMed

    Herbert, Thomas J; Larsen, Parry B

    1985-09-01

    Calathea lutea is a broad-leaved, secondary successional plant which shows complex leaf movements involving both elevation and folding of the leaf surface about the pulvinus. In the plants studied, mean leaf elevation increased from approximately 34 degrees in the early morning to 70 degrees at noon while the angle of leaf folding increased from 13 degrees to 50 degrees over the same time period. During the period from early morning to noon, these movements resulted in a significant decrease in the cosine of the angle of incidence, a measure of the direct solar radiation intercepted. The observed changes in elevational angle significantly reduce the cosine of angle of incidence while folding does not significantly reduce the fraction of direct solar radiation intercepted during the period of direct exposure of the leaf surface to the solar beam. Since elevational changes seem to account for the reduction in exposure to direct solar radiation, the role of folding remains unclear.

  20. Evaluation of leaf cuticle biophysical characteristics by laser polarimetry method

    NASA Astrophysics Data System (ADS)

    Tsaruk, Aleh V.; Vashchula, Ihar V.; Zhumar, Andrew Y.

    2005-09-01

    The appearance of elliptical polarization for linear polarized radiation reflected by plant leaves was investigated. The leaf cuticle reflectance model was proposed. The evaluation of refractive index and mean angle of cuticle roughness to leaf surface was carried out.

  1. Kinematics and aerodynamics of the velocity vector roll

    NASA Technical Reports Server (NTRS)

    Durham, Wayne C.; Lutze, Frederick H.; Mason, W.

    1993-01-01

    The velocity vector roll is an angular rotation of an aircraft about its instantaneous velocity vector, constrained to be performed at constant angle-of-attack (AOA), no sideslip, and constant velocity. Consideration of the aerodynamic force equations leads to requirements for body-axis yawing and pitching rotations that satisfy these constraints. Here, the body axis rotations, and the constraints, are used in the moment equations to determine the aerodynamic moments required to perform the velocity vector roll. For representative tactical aircraft, the conditions for maximum pitching moment are a function of orientation, occurring at about 90 deg of bank in a level trajectory. Maximum required pitching moment occurs at peak roll rate, and is achieved at AOA above 45 deg. The conditions for maximum rolling moment depend on the value of the roll mode time constant. For a small time constant (fast response) the maximum rolling moment occurs at maximum roll acceleration and zero AOA, largely independent of aircraft orientation; for a large time constant, maximum required rolling moment occurs at maximum roll rate, at maximum AOA, and at 180 deg of bank in level flight. Maximum yawing moment occurs at maximum roll acceleration, maximum AOA, and is largely independent of airplane orientation.

  2. Integrated aeroservoelastic synthesis for roll control

    NASA Technical Reports Server (NTRS)

    Nam, Chang-Ho; Weisshaar, Terrence A.

    1990-01-01

    The objective of this study is to illustrate an integrated, parallel design procedure for optimal structural, aerodynamic, and aileron synthesis of an aircraft wing. The effects of combining weight minimization with structural tailoring (ply orientation and thickness) of a lifting surface, together with the wing geometry (sweep angle and taper ratio), and the aileron geometry (spanwise location and chordwise size) upon the lateral control effectiveness are discussed. Several optimization studies for the minimization of aileron hinge moment and wing weight, subject to a specified constant aircraft roll rate at a design airspeed (roll effectiveness), are performed.

  3. Integrated aeroservoelastic synthesis for roll control

    NASA Technical Reports Server (NTRS)

    Nam, Chang-Ho; Weisshaar, Terrence A.

    1990-01-01

    The objective of this study is to illustrate an integrated, parallel design procedure for optimal structural, aerodynamic, and aileron synthesis of an aircraft wing. The effects of combining weight minimization with structural tailoring (ply orientation and thickness) of a lifting surface, together with the wing geometry (sweep angle and taper ratio), and the aileron geometry (spanwise location and chordwise size) upon the lateral control effectiveness are discussed. Several optimization studies for the minimization of aileron hinge moment and wing weight, subject to a specified constant aircraft roll rate at a design airspeed (roll effectiveness), are performed.

  4. Conical Euler analysis and active roll suppression for unsteady vortical flows about rolling delta wings

    NASA Technical Reports Server (NTRS)

    Lee-Rausch, Elizabeth M.; Batina, John T.

    1993-01-01

    A conical Euler code was developed to study unsteady vortex-dominated flows about rolling, highly swept delta wings undergoing either forced motions or free-to-roll motions that include active roll suppression. The flow solver of the code involves a multistage, Runge-Kutta time-stepping scheme that uses a cell-centered, finite-volume, spatial discretization of the Euler equations on an unstructured grid of triangles. The code allows for the additional analysis of the free to-roll case by simultaneously integrating in time the rigid-body equation of motion with the governing flow equations. Results are presented for a delta wing with a 75 deg swept, sharp leading edge at a free-stream Mach number of 1.2 and at 10 deg, 20 deg, and 30 deg angle of attack alpha. At the lower angles of attack (10 and 20 deg), forced-harmonic analyses indicate that the rolling-moment coefficients provide a positive damping, which is verified by free-to-roll calculations. In contrast, at the higher angle of attack (30 deg), a forced-harmonic analysis indicates that the rolling-moment coefficient provides negative damping at the small roll amplitudes. A free-to-roll calculation for this case produces an initially divergent response, but as the amplitude of motion grows with time, the response transitions to a wing-rock type of limit cycle oscillation, which is characteristic of highly swept delta wings. This limit cycle oscillation may be actively suppressed through the use of a rate-feedback control law and antisymmetrically deflected leading-edge flaps. Descriptions of the conical Euler flow solver and the free-to roll analysis are included in this report. Results are presented that demonstrate how the systematic analysis of the forced response of the delta wing can be used to predict the stable, neutrally stable, and unstable free response of the delta wing. These results also give insight into the flow physics associated with unsteady vortical flows about delta wings undergoing forced

  5. Origins of rolling friction

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2017-09-01

    When a hard object rolls on a soft surface, or vice versa, rolling friction arises from deformation of the soft object or the soft surface. The friction force can be described in terms of an offset in the normal reaction force or in terms of energy loss arising from the deformation. The origin of the friction force itself is not entirely clear. It is investigated qualitatively in this paper by rolling a steel ball on soft foam and by rolling a foam cylinder on a hard surface. The deformation of the foam was observed visually, providing simple insights into the origin of the friction force.

  6. 'Magic Angle Precession'

    SciTech Connect

    Binder, Bernd

    2008-01-21

    An advanced and exact geometric description of nonlinear precession dynamics modeling very accurately natural and artificial couplings showing Lorentz symmetry is derived. In the linear description it is usually ignored that the geometric phase of relativistic motion couples back to the orbital motion providing for a non-linear recursive precession dynamics. The high coupling strength in the nonlinear case is found to be a gravitomagnetic charge proportional to the precession angle and angular velocity generated by geometric phases, which are induced by high-speed relativistic rotations and are relevant to propulsion technologies but also to basic interactions. In the quantum range some magic precession angles indicating strong coupling in a phase-locked chaotic system are identified, emerging from a discrete time dynamical system known as the cosine map showing bifurcations at special precession angles relevant to heavy nuclei stability. The 'Magic Angle Precession' (MAP) dynamics can be simulated and visualized by cones rolling in or on each other, where the apex and precession angles are indexed by spin, charge or precession quantum numbers, and corresponding magic angles. The most extreme relativistic warping and twisting effect is given by the Dirac spinor half spin constellation with 'Hyperdiamond' MAP, which resembles quark confinement.

  7. Effect of herbivore damage on broad leaf motion in wind

    NASA Astrophysics Data System (ADS)

    Burnett, Nicholas; Kothari, Adit

    2015-11-01

    Terrestrial plants regularly experience wind that imposes aerodynamic forces on the plants' leaves. Passive leaf motion (e.g. fluttering) and reconfiguration (e.g. rolling into a cone shape) in wind can affect the drag on the leaf. In the study of passive leaf motion in wind, little attention has been given to the effect of herbivory. Herbivores may alter leaf motion in wind by making holes in the leaf. Also, a small herbivore (e.g. snail) on a leaf can act as a point mass, thereby affecting the leaf's motion in wind. Conversely, accelerations imposed on an herbivore sitting on a leaf by the moving leaf may serve as a defense by dislodging the herbivore. In the present study, we investigated how point masses (>1 g) and holes in leaves of the tuliptree affected passive leaf motion in turbulent winds of 1 and 5 m s-1. Leaf motion was unaffected by holes in the leaf surface (about 10% of leaf area), but an herbivore's mass significantly damped the accelerations of fluttering leaves. These results suggest that an herbivore's mass, but not the damage it inflicts, can affect leaf motion in the wind. Furthermore, the damping of leaf fluttering from an herbivore's mass may prevent passive leaf motions from being an effective herbivore defense.

  8. 46 CFR 28.575 - Severe wind and roll.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... roll to windward, A1, is measured from the equilibrium angle, Ael, and is calculated by the following... metric units are used. (d) The angle of equilibrium, Ael in figure 28.575, is calculated by determining... equilibrium, Ael in figure 28.575, must not exceed 14° (0.24 radians). (g) Area “b” in figure 28.575 must...

  9. 46 CFR 28.575 - Severe wind and roll.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... roll to windward, A1, is measured from the equilibrium angle, Ael, and is calculated by the following... metric units are used. (d) The angle of equilibrium, Ael in figure 28.575, is calculated by determining... equilibrium, Ael in figure 28.575, must not exceed 14° (0.24 radians). (g) Area “b” in figure 28.575 must...

  10. Understanding Rolle's Theorem

    ERIC Educational Resources Information Center

    Parameswaran, Revathy

    2009-01-01

    This paper reports on an experiment studying twelfth grade students' understanding of Rolle's Theorem. In particular, we study the influence of different concept images that students employ when solving reasoning tasks related to Rolle's Theorem. We argue that students' "container schema" and "motion schema" allow for rich…

  11. Controlling roll perturbations in fruit flies

    PubMed Central

    Beatus, Tsevi; Guckenheimer, John M.; Cohen, Itai

    2015-01-01

    Owing to aerodynamic instabilities, stable flapping flight requires ever-present fast corrective actions. Here, we investigate how flies control perturbations along their body roll angle, which is unstable and their most sensitive degree of freedom. We glue a magnet to each fly and apply a short magnetic pulse that rolls it in mid-air. Fast video shows flies correct perturbations up to 100° within 30 ± 7 ms by applying a stroke-amplitude asymmetry that is well described by a linear proportional–integral controller. For more aggressive perturbations, we show evidence for nonlinear and hierarchical control mechanisms. Flies respond to roll perturbations within 5 ms, making this correction reflex one of the fastest in the animal kingdom. PMID:25762650

  12. Leaf Activities.

    ERIC Educational Resources Information Center

    Mingie, Walter

    Leaf activities can provide a means of using basic concepts of outdoor education to learn in elementary level subject areas. Equipment needed includes leaves, a clipboard with paper, and a pencil. A bag of leaves may be brought into the classroom if weather conditions or time do not permit going outdoors. Each student should pick a leaf, examine…

  13. Application of double laser interferometer in the measurement of translational stages' roll characteristics

    NASA Astrophysics Data System (ADS)

    Jin, Tao; Shen, Lu; Ke, Youlong; Hou, Wenmei; Ju, Aisong; Yang, Wei; Luo, Jialin

    2016-10-01

    In order to achieve rapid measurement of larger travel translation stages' roll-angle error in industry and to study the roll characteristics, this paper designs a small roll-angle measurement system based on laser heterodyne interferometry technology, test and researched on the roll characteristics of ball screw linear translation stage to fill the blank of the market. The results show that: during the operation of the ball screw linear translation stage, the workbench's roll angle changes complexly, its value is not only changing with different positions, but also shows different levels of volatility, what's more, the volatility varies with the workbench's work speed . Because of the non uniform stiffness of ball screw, at the end of each movement, the elastic potential energy being stored from the working process should release slowly, and the workbench will cost a certain time to roll fluctuate before it achieves a stable tumbling again.

  14. Wind-tunnel investigation at supersonic speeds of a canard-controlled missile with fixed and free-rolling tail fins

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.

    1978-01-01

    A wind tunnel investigation was made at free stream Mach numbers from 1.70 to 2.86 to determine the effects of fixed and free rolling tail fin afterbodies on the static longitudinal and lateral aerodynamic characteristics of a cruciform canard controlled missile model. The effect of small canard roll and yaw control deflections was also examined. The results indicate that the fixed and free rolling tail configurations have about the same lift curve slope and longitudinal stability level at low angles of attack. For the free rolling tail configuration, the canards provide conventional roll control with no roll control reversal at low angles of attack. The free rolling tail configuration reduced induced roll due to model roll angle and canard yaw control.

  15. OsLBD3-7 Overexpression Induced Adaxially Rolled Leaves in Rice

    PubMed Central

    Zhang, Chunyu; Shao, Qinghao; Liu, Jun; Liu, Bin; Li, Hongyu

    2016-01-01

    Appropriate leaf rolling enhances erect-leaf habits and photosynthetic efficiency, which consequently improves grain yield. Here, we reported the novel lateral organ boundaries domain (LBD) gene OsLBD3-7, which is involved in the regulation of leaf rolling. OsLBD3-7 works as a transcription activator and its protein is located on the plasma membrane and in the nucleus. Overexpression of OsLBD3-7 leads to narrow and adaxially rolled leaves. Microscopy of flag leaf cross-sections indicated that overexpression of OsLBD3-7 led to a decrease in both bulliform cell size and number. Transcriptional analysis showed that key genes that had been reported to be negative regulators of bulliform cell development were up-regulated in transgenic plants. These results indicated that OsLBD3-7 might acts as an upstream regulatory gene of bulliform cell development to regulate leaf rolling, which will give more insights on the leaf rolling regulation mechanism. PMID:27258066

  16. Bubble departure frequency during rolling motion in a single-side heated narrow channel

    NASA Astrophysics Data System (ADS)

    Xu, Chao; Gao, Puzhen; Li, Shaodan

    2013-07-01

    In a single-side heated rectangular channel, the bubble departure frequency in subcooled flow boiling under non-rolling and rolling motions was investigated by using a high speed camera. The deionized water was used as the working fluid. The experimental results showed that the bubble departure frequency under non-rolling condition had similar tendencies with general channel. The frequency increased with increasing heat flux and decreasing inlet subcooling and mass flux. When the heat flux was high enough, the frequency curve slowed down due to the increasing of bubble density. Under rolling condition, the bubble departure frequency was affected by the rolling motion. The frequency exhibited a sine wave with the same period as rolling motion. The fluctuation ofthat increased with increasing the rolling frequency and rolling angle. The reason for this phenomenon was the periodic affection of secondary flow due to temperature gradient.

  17. 78 FR 67320 - Special Conditions: Airbus, Model A350-900 series Airplane; Pitch and Roll Limiting by Electronic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ... feature(s) associated with the Electronic Flight Control System that limits pitch and roll attitude... order to substantiate the pitch and roll attitude limiting functions and the appropriateness of the... attitudes greater than +30 degrees and less than -15 degrees, and roll angles greater than plus or minus...

  18. Roll-to-roll embossing of optical linear Fresnel lens polymer film for solar concentration.

    PubMed

    Zhang, XinQuan; Liu, Kui; Shan, Xuechuan; Liu, Yuchan

    2014-12-15

    Roll-to-roll manufacturing has been proven to be a high-throughput and low-cost technology for continuous fabrication of functional optical polymer films. In this paper, we have firstly studied a complete manufacturing cycle of linear Fresnel lens polymer film for solar concentration in the aspects of ultra-precision diamond machining of metal roller mold, roll-to-roll embossing, and measurement on film profile and functionality. A metal roller mold patterned with linear Fresnel lenses is obtained using single point diamond turning technique. The roller mold is installed onto a self-developed roll-to-roll UV embossing system to realize continuous manufacturing of linear Fresnel lens film. Profile measurement of the machined roller mold and the embossed polymer film, which is conducted using a stylus profilometer, shows good agreement between measured facet angles with designed ones. Functionality test is conducted on a solar simulation system with a reference solar cell, and results show that strong light concentration is realized.

  19. Effect of Roll Material on Surface Quality of Rolled Aluminum

    NASA Astrophysics Data System (ADS)

    Zhao, Qi

    The surface defects of aluminum alloys that have undergone hot rolling were studied. The effects of different roll materials, of the number of rolling passes and of lubrication on surface defects of hot rolled aluminum alloys were investigated by laboratory hot rolling. Two different aluminum alloys, Al-Mn and Al-Mg, were each rolled against three different steel alloy rolls, AISI 52100, AISI 440C and AISI D2. The results showed that different roll materials do affect the morphology of the mating aluminum alloy surface with apparent surface defects, which included magnesium and oxygen rich dark regions on both alloys. The carbide protrusions in 440C and D2 steel rolls are confirmed to be responsible for the dark, rich magnesium and oxygen regions on both the rolled Al-Mn and Al-Mg alloy surfaces. As the number of passes increases, Mg and O deposit in the form of patches and grain boundaries near the surface area.

  20. Project LEAF

    EPA Pesticide Factsheets

    Project LEAF has a goal of educating farmworkers about how to reduce pesticide exposure to their families from pesticide residues they may be inadvertently taking home on their clothing, etc. Find outreach materials.

  1. On the normal force and the rolling moment due to wing-tail interference of a sounding rocket model

    NASA Astrophysics Data System (ADS)

    Shirouzu, M.; Soga, K.

    The induced normal force and rolling moment due to wing-tail interference is studied experimentally. Wind tunnel tests of TT-500A rocket model and a roll-controllable rocket model were performed at the NAL 2 m x 2 m Transonic Wind Tunnel and the 1 m x 1 m Blowdown Supersonic Wind Tunnel. Characteristics of normal-force-induced normal force and rolling moment, and rolling-moment-induced rolling moment on the tail-fins are obtained by varying flow Mach number, angle of attack and bank angle. The results are compared with theoretical results based on the strip-theory.

  2. Correcting Quadrupole Roll in Magnetic Lenses with Skew Quadrupoles

    SciTech Connect

    Walstrom, Peter Lowell

    2014-11-10

    Quadrupole rolls (i.e. rotation around the magnet axis) are known to be a significant source of image blurring in magnetic quadrupole lenses. These rolls may be caused by errors in mechanical mounting of quadrupoles, by uneven radiation-induced demagnetization of permanent-magnet quadrupoles, etc. Here a four-quadrupole ×10 lens with so-called ”Russian” or A -B B-A symmetry is used as a model problem. Existing SLAC 1/2 in. bore high-gradient quadrupoles are used in the design. The dominant quadrupole roll effect is changes in the first-order part of the transfer map (the R matrix) from the object to the image plane (Note effects on the R matrix can be of first order in rotation angle for some R-matrix elements and second order in rotation angle for other elements, as shown below). It is possible to correct roll-induced image blur by mechanically adjusting the roll angle of one or more of the quadrupoles. Usually, rotation of one quadrupole is sufficient to correct most of the combined effect of rolls in all four quadrupoles. There are drawbacks to this approach, however, since mechanical roll correction requires multiple entries into experimental area to make the adjustments, which are made according to their effect on images. An alternative is to use a single electromagnetic skew quadrupole corrector placed either between two of the quadrupoles or after the fourth quadrupole (so-called “non-local” correction). The basic feasibility of skew quadrupole correction of quadrupole roll effects is demonstrated here. Rolls of the third lens quadrupole of up to about 1 milliradian can be corrected with a 15 cm long skew quadrupole with a gradient of up to 1 T/m. Since the effect of rolls of the remaining three lens quadrupoles are lower, a weaker skew quadrupole can be used to correct them. Non-local correction of quadrupole roll effects by skew quadrupoles is shown to be about one-half as effective as local correction (i.e. rotating individual quadrupoles to zero

  3. Biomechanics of leukocyte rolling

    PubMed Central

    Sundd, Prithu; Pospieszalska, Maria K.; Cheung, Luthur Siu-Lun; Konstantopoulos, Konstantinos; Ley, Klaus

    2011-01-01

    Leukocyte rolling on endothelial cells and other P-selectin substrates is mediated by P-selectin binding to P-selectin glycoprotein ligand-1 expressed on the tips of leukocyte microvilli. Leukocyte rolling is a result of rapid, yet balanced formation and dissociation of selectin-ligand bonds in the presence of hydrodynamic shear forces. The hydrodynamic forces acting on the bonds may either increase (catch bonds) or decrease (slip-bonds) their lifetimes. The force-dependent ‘catch-slip’ bond kinetics are explained using the ‘two pathway model’ for bond dissociation. Both the ‘sliding-rebinding’ and the ‘allosteric’ mechanisms attribute ‘catch-slip’ bond behavior to the force-induced conformational changes in the lectin-EGF domain hinge of selectins. Below a threshold shear stress, selectins cannot mediate rolling. This ‘shear-threshold’ phenomenon is a consequence of shear-enhanced tethering and catch-bond enhanced rolling. Quantitative dynamic footprinting microscopy has revealed that leukocytes rolling at venular shear stresses (> 0.6 Pa) undergo cellular deformation (large footprint) and form long tethers. The hydrodynamic shear force and torque acting on the rolling cell are thought to be synergistically balanced by the forces acting on tethers and stressed microvilli, however, their relative contribution remains to be determined. Thus, improvement beyond the current understanding requires in silico models that can predict both cellular and microvillus deformation and experiments that allow measurement of forces acting on individual microvilli and tethers. PMID:21515934

  4. Leaf Development

    PubMed Central

    Tsukaya, Hirokazu

    2002-01-01

    The shoot system is the basic unit of development of seed plants and is composed of a leaf, a stem, and a lateral bud that differentiates into a lateral shoot. The most specialized organ in angiosperms, the flower, can be considered to be part of the same shoot system since floral organs, such as the sepal, petal, stamen, and carpel, are all modified leaves. Scales, bracts, and certain kinds of needle are also derived from leaves. Thus, an understanding of leaf development is critical to an understanding of shoot development. Moreover, leaves play important roles in photosynthesis, respiration and photoperception. Thus, a full understanding of leaves is directly related to a full understanding of seed plants. The details of leaf development remain unclear. The difficulties encountered in studies of leaf development, in particular in dicotyledonous plants such as Arabidopsis thaliana (L.) Henyn., are derived from the complex process of leaf development, during which the division and elongation of cells occur at the same time and in the same region of the leaf primordium (Maksymowych, 1963; Poethig and Sussex, 1985). Thus, we cannot divide the entire process into unit processes in accordance with the tenets of classical anatomy. Genetic approaches in Arabidopsis, a model plant (Meyerowitz and Pruitt, 1985), have provided a powerful tool for studies of mechanisms of leaf development in dicotyledonous plants, and various aspects of the mechanisms that control leaf development have been revealed in recent developmental and molecular genetic studies of Arabidopsis (for reviews, see Tsukaya, 1995 and 1998; Van Lijsebettens and Clarke, 1998; Sinha, 1999; Van Volkenburgh, 1999; Tsukaya, 2000; Byrne et al., 2001; Dengler and Kang, 2001; Dengler and Tsukaya, 2001; Tsukaya, 2001). In this review, we shall examine the information that is currently available about various mechanisms of leaf development in Arabidopsis. Vascular patterning is also an important factor in the

  5. Scavenging of reactive oxygen species in apoplastic and symplastic areas of rolled leaves in Ctenanthe setosa under drought stress.

    PubMed

    Saruhan, Neslihan; Terzi, Rabiye; Sağlam, Aykut; Kadioğlu, Asim

    2010-09-01

    The correspondence among apoplastic and symplastic antioxidant status, stomatal conductance and water potential was investigated during leaf rolling in Ctenanthe setosa (Rosc.) Eichler (Marantaceae) under drought stress. Apoplastic and symplastic extractions of leaf and petiole were performed at different visual leaf rolling scores from 1 to 4 (1 is unrolled, 4 is tightly rolled and the others are intermediate form). In the leaf symplast, the highest changes were found in catalase (CAT) and guaiacol peroxidase (GPX) activities when compared to score 1 during leaf rolling. No significant change was observed in superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities in the symplast of leaf during the rolling. The same phenomenon was also present in the symplast of petiole except APX activity. In the leaf apoplast, the highest increase occurred in APX and GPX activities, whilst a slight increase in CAT and SOD activities. In the apoplast of petiole, the highest increment was found only in GPX activity, while there were small increases in SOD, APX and CAT activities. Hydrogen peroxide content increased up to score 3 in the apoplast and symplast of leaf and petiole but then slightly decreased. Also, superoxide production increased in the leaf and petiole apoplast but its quantity in the apoplast was much more than that of the symplast. On the other hand, NAD(P)H oxidase activity increased in the leaf but no change was observed in the petiole. In conclusion, as a result of water deficit during leaf rolling antioxidant enzymes are induced to scavenging of ROS produced in symplast and apoplast.

  6. Facile three-dimensional nanoarchitecturing of double-bent gold strips on roll-to-roll nanoimprinted transparent nanogratings for flexible and scalable plasmonic sensors.

    PubMed

    Wi, Jung-Sub; Lee, Seungjo; Lee, Sung Ho; Oh, Dong Kyo; Lee, Kyu-Tae; Park, Inkyu; Kwak, Moon Kyu; Ok, Jong G

    2017-01-26

    We develop scalable 3D plasmonic nanoarchitectures comprising a double-bent nanoscale Au strip array integrated within the transparent nanograting framework, which can be continuously fabricated on a large-area flexible substrate via roll-to-roll nanoimprint lithography and angled Au deposition, realizing localized surface plasmon resonance with higher sensitivity in a smaller footprint.

  7. Spray coating of superhydrophobic and angle-independent coloured films.

    PubMed

    Ge, Dengteng; Yang, Lili; Wu, Gaoxiang; Yang, Shu

    2014-03-07

    Angle-independent coloured films with superhydrophobicity were fabricated from quasi-amorphous arrays of monodispersed fluorinated silica nanoparticles via one-step spray coating. The film exhibited a high contact angle (>150°) and a low roll-off angle (~2°) and the colour could be tuned to blue, green and moccasin by varying the size of the nanoparticles.

  8. Storage effects on genomic DNA in rolled and mature coca leaves.

    PubMed

    Johnson, Emanuel L; Kim, Soo-Hyung; Emche, Stephen D

    2003-08-01

    Rolled and mature leaf tissue was harvested from Erythroxylum coca var. coca Lam. (coca) to determine a method for storage that would maintain DNA with high quality and content up to 50 days. Harvesting coca leaf tissue under Andean field conditions often requires storage from 3 to 10 days before extraction where tissue integrity is lost. All samples of rolled and mature coca leaf tissue were harvested and separately stored fresh in RNAlater for 50 days at 4 degrees, -20 degrees, and 23 degrees C, while similar samples were air-dried for 72 h at 23 degrees C or oven-dried for 72 h at 40 degrees C after storage, before extraction. Triplicate samples of each tissue type were extracted for DNA at 10-day intervals and showed that DNA integrity and content were preserved in leaf tissue stored at 4 degrees and -20 degrees C for 50 days. Rolled and mature leaf tissue stored at 4 degrees, -20 degrees, and 23 degrees C showed insignificant degradation of DNA after 10 days, and by day 50, only leaf tissue stored at 4 degrees and -20 degrees C had not significantly degraded. All air- and oven-dried leaf tissue extracts showed degradation upon drying (day 0) and continuous degradation up to day 50, despite storage conditions. Amplified fragment length polymorphism analysis of DNA from rolled and mature leaf tissue of coca stored at 4 degrees and -20 degrees C for 0, 10, and 50 days showed that DNA integrity and content were preserved. We recommend that freshly harvested rolled or mature coca leaf tissue be stored at 4 degrees, -20 degrees, and 23 degrees C for 10 days after harvest, and if a longer storage is required, then store at 4 degrees or -20 degrees C.

  9. Spray Rolling Aluminum Strip

    SciTech Connect

    Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

    2006-05-10

    Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

  10. Static roll-tilt over 5 minutes locally distorts the internal estimate of direction of gravity.

    PubMed

    Tarnutzer, A A; Bockisch, C J; Straumann, D; Marti, S; Bertolini, G

    2014-12-01

    The subjective visual vertical (SVV) indicates perceived direction of gravity. Even in healthy human subjects, roll angle-dependent misestimations, roll overcompensation (A-effect, head-roll > 60° and <135°) and undercompensation (E-effect, head-roll < 60°), occur. Previously, we demonstrated that, after prolonged roll-tilt, SVV estimates when upright are biased toward the preceding roll position, which indicates that perceived vertical (PV) is shifted by the prior tilt (Tarnutzer AA, Bertolini G, Bockisch CJ, Straumann D, Marti S. PLoS One 8: e78079, 2013). Hypothetically, PV in any roll position could be biased toward the previous roll position. We asked whether such a "global" bias occurs or whether the bias is "local". The SVV of healthy human subjects (N = 9) was measured in nine roll positions (-120° to +120°, steps = 30°) after 5 min of roll-tilt in one of two adaptation positions (±90°) and compared with control trials without adaptation. After adapting, adjustments were shifted significantly (P < 0.05) toward the previous adaptation position for nearby roll-tilted positions (±30°, ±60°) and upright only. We computationally simulated errors based on the sum of a monotonically increasing function (producing roll undercompensation) and a mixture of Gaussian functions (representing roll overcompensation centered around PV). In combination, the pattern of A- and E-effects could be generated. By shifting the function representing local overcompensation toward the adaptation position, the experimental postadaptation data could be fitted successfully. We conclude that prolonged roll-tilt locally distorts PV rather than globally shifting it. Short-term adaptation of roll overcompensation may explain these shifts and could reflect the brain's strategy to optimize SVV estimates around recent roll positions. Thus postural stability can be improved by visually-mediated compensatory responses at any sustained body-roll orientation.

  11. Leaf Development

    PubMed Central

    2013-01-01

    Leaves are the most important organs for plants. Without leaves, plants cannot capture light energy or synthesize organic compounds via photosynthesis. Without leaves, plants would be unable perceive diverse environmental conditions, particularly those relating to light quality/quantity. Without leaves, plants would not be able to flower because all floral organs are modified leaves. Arabidopsis thaliana is a good model system for analyzing mechanisms of eudicotyledonous, simple-leaf development. The first section of this review provides a brief history of studies on development in Arabidopsis leaves. This history largely coincides with a general history of advancement in understanding of the genetic mechanisms operating during simple-leaf development in angiosperms. In the second section, I outline events in Arabidopsis leaf development, with emphasis on genetic controls. Current knowledge of six important components in these developmental events is summarized in detail, followed by concluding remarks and perspectives. PMID:23864837

  12. Roll cooling and its relationship to roll life

    NASA Astrophysics Data System (ADS)

    Tseng, A. A.; Lin, F. H.; Gunderia, A. S.; Ni, D. S.

    1989-11-01

    Combined experimental and numerical research has been conducted to investigate the roll cooling system used in steel rolling mills and its relationship to roll life. Roll cooling has been identified as a critical factor in the problems of excessive roll wear or spalling, which cause shortened roll life. A special laboratory apparatus resembling the cooling systems used in the steel mills has been developed to evaluate the corresponding heat transfer coefficients. These coefficients have then been utilized for numerical simulation of the rolling processes. In simulation, the thermal behavior of both the roll and the strip have been considered with emphasis on roll temperature and the induced cyclic thermal stresses. An understanding of the cyclic stress can be utilized to evaluate roll wear, and leads to reduction of the roll spalling, or to extension of the roll life by minimizing the cyclic stress or the resultant fatigue stress. As indicated by the present study, in order to minimize the cyclic or fatigue stresses, the roll should be subjected to uniform cooling, as the sharper the heat transfer coefficient distribution, the higher the thermal stress induced.

  13. Wear of hot rolling mill rolls: An overview

    NASA Astrophysics Data System (ADS)

    Spuzic, S.; Strafford, K. N.; Subramanian, C.; Savage, G.

    1994-08-01

    Rolling is today one of the most important industrial processes because a greater volume of material is worked by rolling than by any other technique. Roll wear is a multiplex process where mechanical and thermal fatigue combines with impact, abrasion, adhesion and corrosion, which all depend on system interactions rather than material characteristics only. The situation is more complicated in section rolling because of the intricacy of roll geometry. Wear variables and modes are reviewed along with published methods and models used in the study and testing of roll wear. This paper reviews key aspects of roll wear control - roll material properties, roll pass design, and system factors such as temperature, loads and sliding velocity. An overview of roll materials is given including adamites, high Cr materials, high speed tool steels and compound rolls. Non-uniform wear, recognized as the most detrimental phenomenon in section rolling, can be controlled by roll pass design. This can be achieved by computer-aided graphical and statistical analyses of various pass series. Preliminary results obtained from pilot tests conducted using a two-disc hot wear rig and a scratch tester are discussed.

  14. Studies on the influence of surface morphology of ZnO nail beds on easy roll off of water droplets

    NASA Astrophysics Data System (ADS)

    Sutha, S.; Vanithakumari, S. C.; George, R. P.; Mudali, U. Kamachi; Raj, Baldev; Ravi, K. R.

    2015-08-01

    A ZnO nanorods based superhydrophobic surface with extremely low roll-off angle is fabricated using a two-step solution based approach-Successive Ionic Layer Adsorption and Reaction (SILAR) and Chemical Bath Deposition (CBD). The grown ZnO nanorods have average diameter of 285 nm with a predominant growth direction of [002]. The static contact angle of ZnO nanorods superhydrophobic surface is 155°, and the dynamic contact angles contact angle hysteresis and roll-off angle is 2° and 1°, respectively. Furthermore, to comprehend the mechanism governing the extremely low roll-off angle of ZnO nanorods based superhydrophobic surface, an analytical model has been developed by incorporating the topographical (diameter, density of nanorods and solid area fraction) and droplet parameters (surface tension, mass and volume). The theoretically calculated roll-off angle closely matches with the experimental results and reported results.

  15. Navier-Stokes prediction of a delta wing in roll with vortex breakdown

    NASA Technical Reports Server (NTRS)

    Chaderjian, Neal M.; Schiff, Lewis B.

    1993-01-01

    The three-dimensional, Reynolds-averaged, Navier-Stokes (RANS) equations are used to numerically simulate vortical flow about a 65 degree sweep delta wing. Subsonic turbulent flow computations are presented for this delta wing at 30 degrees angle of attack and static roll angles up to 42 degrees. This work is part of an on going effort to validate the RANS approach for predicting high-incidence vortical flows, with the eventual application to wing rock. The flow is unsteady and includes spiral-type vortex breakdown. The breakdown positions, mean surface pressures, rolling moments, normal forces, and streamwise center-of-pressure locations compare reasonably well with experiment. In some cases, the primary vortex suction peaks are significantly underpredicted due to grid coarseness. Nevertheless, the computations are able to predict the same nonlinear variation of rolling moment with roll angle that appeared in the experiment. This nonlinearity includes regions of local static roll instability, which is attributed to vortex breakdown.

  16. Experimental Flight Characterization of Spin Stabilized Projectiles at High Angle of Attack

    DTIC Science & Technology

    2017-08-07

    of downrange travel ) is also evident in the horizontal data. Fig. 3 Center-of-gravity motion The rolling motion is captured in Fig. 4. These...data are strongly linear with distance travelled because the launch spin rate is around 90 Hz and roll decelerates slightly due to aerodynamic damping...This vehicle rolls about 70 times over 200 m of downrange travel . For some of the high-angle-of-attack flights a significant amount of roll data

  17. Extended slow-roll conditions and rapid-roll conditions

    SciTech Connect

    Chiba, Takeshi; Yamaguchi, Masahide E-mail: gucci@phys.aoyama.ac.jp

    2008-10-15

    We derive slow-roll conditions for a scalar field which is non-minimally coupled with gravity in a consistent manner and express spectral indices of scalar/tensor perturbations in terms of the slow-roll parameters. The conformal invariance of the curvature perturbation is proved without linear approximations. Rapid-roll conditions are also derived, and the relation with the slow-roll conditions is discussed.

  18. Rolling through a vacuum

    NASA Astrophysics Data System (ADS)

    van der Schaar, Jan Pieter; Yang, I.-Sheng

    2013-12-01

    We clarify under what conditions slow-roll inflation can continue almost undisturbed, while briefly evolving through a (semi-classically) metastable false vacuum. Furthermore, we look at potential signatures in the primordial power spectrum that could point towards the existence of traversed metastable false vacua. Interestingly, the theoretical constraints for the existence of traversable metastable vacua imply that Planck should be able to detect the resulting features in the primordial power spectrum. In other words, if Planck does not see features this immediately implies the non-existence of metastable false vacua rolled through during the inflationary epoch.

  19. METHOD OF ROLLING URANIUM

    DOEpatents

    Smith, C.S.

    1959-08-01

    A method is described for rolling uranium metal at relatively low temperatures and under non-oxidizing conditions. The method involves the steps of heating the uranium to 200 deg C in an oil bath, withdrawing the uranium and permitting the oil to drain so that only a thin protective coating remains and rolling the oil coated uranium at a temperature of 200 deg C to give about a 15% reduction in thickness at each pass. The operation may be repeated to accomplish about a 90% reduction without edge cracking, checking or any appreciable increase in brittleness.

  20. Roll Utilization of an F-100A Airplane During Service Operational Flying

    NASA Technical Reports Server (NTRS)

    Matranga, Gene J.

    1959-01-01

    As a means of evaluating the roll utilization of a fighter airplane capable of supersonic speeds, an instrumented North American F-100A fighter airplane was flown by U.S. Air Force pilots at Nellis Air Force Base, NV, during 20 hours of service operational flying. Mach numbers up to 1.22 and altitudes up to 50,000 feet were realized in this investigation. Results of the study showed that except for high g barrel rolls performed as evasive maneuvers and rolls performed in acrobatic flying, rolling was utilized primarily as a means of changing heading. Acrobatic and air combat maneuvering produced the largest bank angles (1,200 deg), roll velocities (3.3 radians/sec), rolling accelerations (8 radians/sq sec) and sideslip angles (10.8 deg). Full aileron deflections were utilized on numerous occasions. Although high rolling velocities and accelerations also were experienced during several air-to-air gunnery missions, generally, air-to-air gunnery and air-to-ground gunnery and bombing required only two-thirds of maximum aileron deflection. The air-to-air gunnery and air combat maneuvers initiated from supersonic speeds utilized up to two-thirds aileron deflection and bank angles of less than 18 deg and resulted in rolling velocities and accelerations of 2 radians per second and 4.6 radians/sq sec, respectively. Rolling maneuvers were often initiated from high levels of normal acceleration, but from levels of negative normal acceleration only once.

  1. Nanocasting technique to prepare lotus-leaf-like superhydrophobic electroactive polyimide as advanced anticorrosive coatings.

    PubMed

    Chang, Kung-Chin; Lu, Hsin-I; Peng, Chih-Wei; Lai, Mei-Chun; Hsu, Sheng-Chieh; Hsu, Min-Hsiang; Tsai, Yuan-Kai; Chang, Chi-Hao; Hung, Wei-I; Wei, Yen; Yeh, Jui-Ming

    2013-02-01

    Nanocasting technique was used to obtain a biomimetic superhydrophobic electroactive polyimide (SEPI) surface structure from a natural Xanthosoma sagittifolium leaf. An electroactive polyimide (EPI) was first synthesized through thermal imidization. An impression of the superhydrophobic Xanthosoma sagittifolium leaf was then nanocasted onto the surface of the EPI so that the resulting EPI was superhydrophobic and would prevent corrosion. Polydimethylsiloxane (PDMS) was then used as a negative template to transfer the impression of the superhydrophobic surface of the biomimetic EPI onto a cold-rolled steel (CRS) electrode. The superhydrophobic electroactive material could be used as advanced coatings that protect metals against corrosion. The morphology of the surface of the as-synthesized SEPI coating was investigated using scanning electron microscopy (SEM). The surface showed numerous micromastoids, each decorated with many nanowrinkles. The water contact angle (CA) for the SEPI coating was 155°, which was significantly larger than that for the EPI coating (i.e., CA = 87°). The significant increase in the contact angle indicated that the biomimetic morphology effectively repelled water. Potentiodynamic and electrochemical impedance spectroscopic measurements indicated that the SEPI coating offered better protection against corrosion than the EPI coating did.

  2. Rocking and rolling: a can that appears to rock might actually roll.

    PubMed

    Srinivasan, Manoj; Ruina, Andy

    2008-12-01

    A beer bottle or soda can on a table, when slightly tipped and released, falls to an upright position and then rocks up to a somewhat opposite tilt. Superficially this rocking motion involves a collision when the flat circular base of the container slaps the table before rocking up to the opposite tilt. A keen eye notices that the after-slap rising tilt is not generally just diametrically opposite the initial tilt but is veered to one side or the other. Cushman and Duistermaat [Regular Chaotic Dyn. 11, 31 (2006)] recently noticed such veering when a flat disk with rolling boundary conditions is dropped nearly flat. Here, we generalize these rolling disk results to arbitrary axi-symmetric bodies and to frictionless sliding. More specifically, we study motions that almost but do not quite involve a face-down collision of the round container's bottom with the tabletop. These motions involve a sudden rapid motion of the contact point around the circular base. Surprisingly, similar to the rolling disk, the net angle of motion of this contact point is nearly independent of initial conditions. This angle of turn depends simply on the geometry and mass distribution but not on the moment of inertia about the symmetry axis. We derive simple asymptotic formulas for this "angle of turn" of the contact point and check the result with numerics and with simple experiments. For tall containers (height much bigger than radius) the angle of turn is just over pi and the sudden rolling motion superficially appears as a nearly symmetric collision leading to leaning on an almost diametrically opposite point on the bottom rim.

  3. Angular and Linear Accelerations of a Rolling Cylinder Acted by an External Force

    ERIC Educational Resources Information Center

    Oliveira, V.

    2011-01-01

    The dynamics of a cylinder rolling on a horizontal plane acted on by an external force applied at an arbitrary angle is studied with emphasis on the directions of the acceleration of the centre-of-mass and the angular acceleration of the body. If rolling occurs without slipping, there is a relationship between the directions of these…

  4. Angular and Linear Accelerations of a Rolling Cylinder Acted by an External Force

    ERIC Educational Resources Information Center

    Oliveira, V.

    2011-01-01

    The dynamics of a cylinder rolling on a horizontal plane acted on by an external force applied at an arbitrary angle is studied with emphasis on the directions of the acceleration of the centre-of-mass and the angular acceleration of the body. If rolling occurs without slipping, there is a relationship between the directions of these…

  5. Maize YABBY Genes drooping leaf1 and drooping leaf2 Regulate Plant Architecture[OPEN

    PubMed Central

    Briggs, Sarah; Bradbury, Peter J.

    2017-01-01

    Leaf architecture directly influences canopy structure, consequentially affecting yield. We discovered a maize (Zea mays) mutant with aberrant leaf architecture, which we named drooping leaf1 (drl1). Pleiotropic mutations in drl1 affect leaf length and width, leaf angle, and internode length and diameter. These phenotypes are enhanced by natural variation at the drl2 enhancer locus, including reduced expression of the drl2-Mo17 allele in the Mo17 inbred. A second drl2 allele, produced by transposon mutagenesis, interacted synergistically with drl1 mutants and reduced drl2 transcript levels. The drl genes are required for proper leaf patterning, development and cell proliferation of leaf support tissues, and for restricting auricle expansion at the midrib. The paralogous loci encode maize CRABS CLAW co-orthologs in the YABBY family of transcriptional regulators. The drl genes are coexpressed in incipient and emergent leaf primordia at the shoot apex, but not in the vegetative meristem or stem. Genome-wide association studies using maize NAM-RIL (nested association mapping-recombinant inbred line) populations indicated that the drl loci reside within quantitative trait locus regions for leaf angle, leaf width, and internode length and identified rare single nucleotide polymorphisms with large phenotypic effects for the latter two traits. This study demonstrates that drl genes control the development of key agronomic traits in maize. PMID:28698237

  6. Rolling behavior of a micro-cylinder in adhesional contact

    PubMed Central

    Saito, Shigeki; Ochiai, Toshihiro; Yoshizawa, Fumikazu; Dao, Ming

    2016-01-01

    Understanding the rolling behavior of a micro-object is essential to establish the techniques of micro-manipulation and micro-assembly by mechanical means. Using a combined theoretical/computational approach, we studied the critical conditions of rolling resistance of an elastic cylindrical micro-object in adhesional contact with a rigid surface. Closed-form dimensionless expressions for the critical rolling moment, the initial rolling contact area, and the initial rolling angle were extracted after a systematic parametric study using finite element method (FEM) simulations. The total energy of this system is defined as the sum of three terms: the elastic energy stored in the deformed micro-cylinder, the interfacial energy within the contact area, and the mechanical potential energy that depends on the external moment applied to the cylindrical micro-object. A careful examination of the energy balance of the system surprisingly revealed that the rolling resistance per unit cylindrical length can be simply expressed by “work of adhesion times cylindrical radius” independent of the Young’s modulus. In addition, extending a linear elastic fracture mechanics based approach in the literature, we obtained the exact closed-form asymptotic solutions for the critical conditions for initial rolling; these asymptotic solutions were found in excellent agreement with the full-field FEM results. PMID:27677706

  7. Rolling behavior of a micro-cylinder in adhesional contact

    NASA Astrophysics Data System (ADS)

    Saito, Shigeki; Ochiai, Toshihiro; Yoshizawa, Fumikazu; Dao, Ming

    2016-09-01

    Understanding the rolling behavior of a micro-object is essential to establish the techniques of micro-manipulation and micro-assembly by mechanical means. Using a combined theoretical/computational approach, we studied the critical conditions of rolling resistance of an elastic cylindrical micro-object in adhesional contact with a rigid surface. Closed-form dimensionless expressions for the critical rolling moment, the initial rolling contact area, and the initial rolling angle were extracted after a systematic parametric study using finite element method (FEM) simulations. The total energy of this system is defined as the sum of three terms: the elastic energy stored in the deformed micro-cylinder, the interfacial energy within the contact area, and the mechanical potential energy that depends on the external moment applied to the cylindrical micro-object. A careful examination of the energy balance of the system surprisingly revealed that the rolling resistance per unit cylindrical length can be simply expressed by “work of adhesion times cylindrical radius” independent of the Young’s modulus. In addition, extending a linear elastic fracture mechanics based approach in the literature, we obtained the exact closed-form asymptotic solutions for the critical conditions for initial rolling; these asymptotic solutions were found in excellent agreement with the full-field FEM results.

  8. Rolling behavior of a micro-cylinder in adhesional contact.

    PubMed

    Saito, Shigeki; Ochiai, Toshihiro; Yoshizawa, Fumikazu; Dao, Ming

    2016-09-28

    Understanding the rolling behavior of a micro-object is essential to establish the techniques of micro-manipulation and micro-assembly by mechanical means. Using a combined theoretical/computational approach, we studied the critical conditions of rolling resistance of an elastic cylindrical micro-object in adhesional contact with a rigid surface. Closed-form dimensionless expressions for the critical rolling moment, the initial rolling contact area, and the initial rolling angle were extracted after a systematic parametric study using finite element method (FEM) simulations. The total energy of this system is defined as the sum of three terms: the elastic energy stored in the deformed micro-cylinder, the interfacial energy within the contact area, and the mechanical potential energy that depends on the external moment applied to the cylindrical micro-object. A careful examination of the energy balance of the system surprisingly revealed that the rolling resistance per unit cylindrical length can be simply expressed by "work of adhesion times cylindrical radius" independent of the Young's modulus. In addition, extending a linear elastic fracture mechanics based approach in the literature, we obtained the exact closed-form asymptotic solutions for the critical conditions for initial rolling; these asymptotic solutions were found in excellent agreement with the full-field FEM results.

  9. Rolling Spot Welder

    NASA Technical Reports Server (NTRS)

    Wagner, Garret E.; Fonteyne, Steve L.

    1990-01-01

    Wheeled tool speeds tack-welding operations. Spotwelds foil to parts in preparation for brazing. Includes electrode wheel rolling across foil. Welding current in electrode pulsed as electrode moves along, making series of uniformly-spaced low-current spot welds.

  10. Rolling Spot Welder

    NASA Technical Reports Server (NTRS)

    Wagner, Garret E.; Fonteyne, Steve L.

    1990-01-01

    Wheeled tool speeds tack-welding operations. Spotwelds foil to parts in preparation for brazing. Includes electrode wheel rolling across foil. Welding current in electrode pulsed as electrode moves along, making series of uniformly-spaced low-current spot welds.

  11. Aircraft roll steering command system

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor)

    1985-01-01

    Aircraft roll command signals are generated as a function of the Microwave Landing System based azimuth, groundtrack, groundspeed and azimuth rate or range distance input parameters. On initial approach, roll command signals are inhibited until a minimum roll command requirement is met. As the aircraft approaches the centerline of the runway, the system reverts to a linear track control.

  12. A comparative study of roll compaction of free-flowing and cohesive pharmaceutical powders.

    PubMed

    Yu, Shen; Gururajan, Bindhu; Reynolds, Gavin; Roberts, Ron; Adams, Michael J; Wu, Chuan-Yu

    2012-05-30

    Roll compaction is widely adopted as a dry granulation method in the pharmaceutical industry. The roll compaction behaviour of feed powders is primarily governed by two parameters: the maximum pressure and the nip angle. Although the maximum pressure can be measured directly using pressure sensors fitted in the rolls, it is not a trivial task to determine the nip angle, which is a measure of the size of the compaction zone and hence the degree of compression. Thus a robust approach based upon the calculation of the pressure gradient, which can be obtained directly from experiments using an instrumented roll compactor, was developed. It has been shown that the resulting nip angles are comparable to those obtained using the methods reported in literature. Nevertheless, the proposed approach has distinctive advantages including (1) it is based on the intrinsic features of slip and no-slip interactions between the powder and roll surface and (2) it is not necessary to carry out wall friction measurements that involve plates that may not be representative of the roll compactor in terms of the surface topography and surface energy. The method was evaluated by investigating the effect of roll speed for two pharmaceutical excipients with distinctive material properties: microcrystalline cellulose (MCC) and di-calcium phosphate dihydrate (DCPD). It was found that the maximum pressure and nip angle for DCPD, which is a cohesive powder, decrease sharply with increasing roll speed whereas they are essentially independent of roll speed for MCC, which is an easy flowing powder. The roll compaction behaviour of MCC-DCPD mixtures with various compositions was also investigated in order to evaluate the effect of flowability. It was found that the nip angle and maximum pressure generally increased with improved flowability of the feed powders.

  13. Precession of a Spinning Ball Rolling down an Inclined Plane

    ERIC Educational Resources Information Center

    Cross, Rod

    2015-01-01

    A routine problem in an introductory physics course considers a rectangular block at rest on a plane inclined at angle a to the horizontal. In order for the block not to slide down the incline, the coefficient of sliding friction, µ, must be at least tan a. The situation is similar for the case of a ball rolling down an inclined plane. In order…

  14. Precession of a Spinning Ball Rolling down an Inclined Plane

    ERIC Educational Resources Information Center

    Cross, Rod

    2015-01-01

    A routine problem in an introductory physics course considers a rectangular block at rest on a plane inclined at angle a to the horizontal. In order for the block not to slide down the incline, the coefficient of sliding friction, µ, must be at least tan a. The situation is similar for the case of a ball rolling down an inclined plane. In order…

  15. 9. COMPLETED ROLLING CAMERA CAR ON RAILROAD TRACK AND BRIDGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. COMPLETED ROLLING CAMERA CAR ON RAILROAD TRACK AND BRIDGE LOOKING WEST, APRIL 26, 1948. (ORIGINAL PHOTOGRAPH IN POSSESSION OF DAVE WILLIS, SAN DIEGO, CALIFORNIA.) - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  16. Roll Eccentricity Control Using Identified Eccentricity of Top/Bottom Rolls by Roll Force

    NASA Astrophysics Data System (ADS)

    Imanari, Hiroyuki; Koshinuma, Kazuyoshi

    Roll eccentricity is a periodic disturbance caused by a structure of back up rolls in rolling mills, and it affects product thickness accuracy. It cannot be measured directly by sensors, so it should be identified by measured thickness or measured roll force. When there is a large difference of diameters between top and bottom back up roll, the performance of roll eccentricity control using feedback signals of roll force or thickness has not been so good. Also it has been difficult for the control to be applied from the most head end because it is necessary to identify the roll eccentricity during rolling. A new roll eccentricity control has been developed to improve these disadvantages and to get better performance. The method identifies top and bottom roll eccentricity respectively from one signal of roll force and it can start the control from head end. In this paper the new control method is introduced and actual application results to a hot strip mill are shown.

  17. GRCop-84 Rolling Parameter Study

    NASA Technical Reports Server (NTRS)

    Loewenthal, William S.; Ellis, David L.

    2008-01-01

    This report is a section of the final report on the GRCop-84 task of the Constellation Program and incorporates the results obtained between October 2000 and September 2005, when the program ended. NASA Glenn Research Center (GRC) has developed a new copper alloy, GRCop-84 (Cu-8 at.% Cr-4 at.% Nb), for rocket engine main combustion chamber components that will improve rocket engine life and performance. This work examines the sensitivity of GRCop-84 mechanical properties to rolling parameters as a means to better define rolling parameters for commercial warm rolling. Experiment variables studied were total reduction, rolling temperature, rolling speed, and post rolling annealing heat treatment. The responses were tensile properties measured at 23 and 500 C, hardness, and creep at three stress-temperature combinations. Understanding these relationships will better define boundaries for a robust commercial warm rolling process. The four processing parameters were varied within limits consistent with typical commercial production processes. Testing revealed that the rolling-related variables selected have a minimal influence on tensile, hardness, and creep properties over the range of values tested. Annealing had the expected result of lowering room temperature hardness and strength while increasing room temperature elongations with 600 C (1112 F) having the most effect. These results indicate that the process conditions to warm roll plate and sheet for these variables can range over wide levels without negatively impacting mechanical properties. Incorporating broader process ranges in future rolling campaigns should lower commercial rolling costs through increased productivity.

  18. Flight Simulator Experiments on Influence of Wideness of Front View for Pilot's Roll Control

    NASA Astrophysics Data System (ADS)

    Kumata, Kazunari; Nishihata, Michiteru; Kobayashi, Osamu

    Fixed based flight simulator experiments were conducted to investigate the influences of wideness of front view for pilot's roll control. In these experiments, the airplane's motion was considered as a single-degree-of-freedom system in roll, and three front views having different view-angle were provided. The results of these experiments showed that the pilot's roll control characteristics, and the pilot's sensing parameter and reaction time for rolling motion were influenced by the differences of wideness of front view in flight simulator.

  19. Walk and roll robot

    NASA Technical Reports Server (NTRS)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2011-01-01

    A mobile robotic unit features a main body, a plurality of legs for supporting the main body on and moving the main body in forward and reverse directions about a base surface, and a drive assembly. According to an exemplary embodiment each leg includes a respective pivotal hip joint, a pivotal knee joint, and a wheeled foot adapted to roll along the base surface. Also according to an exemplary embodiments the drive assembly includes a motor operatively associated with the hip and knee joints and the wheeled foot for independently driving pivotal movement of the hip joint and the knee joint and rolling motion of the wheeled foot. The hip joint may include a ball-and-socket-type joint interconnecting top portion of the leg to the main body, such that the hip joint is adapted to pivot said leg in a direction transverse to a forward-and-reverse direction.

  20. Roll Angle Estimation Using Thermopiles for a Flight Controlled Mortar

    DTIC Science & Technology

    2012-06-01

    MICHAEL DON1, DAVID GRZYBOWSKI2, and RICHARD CHRISTIAN IV3 1Electrical Engineer , United States Army Research Laboratory, Guidance Technologies Branch...can be used in a wide range of applications such as bio chemical , medical, automotive, obstacle detection & avoidance, robotics, satellites, unmanned...Using Xilinx’s System generator, the entire design was implemented at a relatively high level within Malab’s Simulink . This allowed VHDL code to

  1. Shear Roll Mill Reactivation

    DTIC Science & Technology

    2012-09-13

    pneumatically operated paste dumper and belt conveyor system, the loss in weight feeder system, the hydraulically operated shear roll mill, the pellet...out feed belt conveyor , and the pack out system comprised of the metal detector, scale, and pack out empty and full drum roller conveyors . Page | 4...feed hopper and conveyor supplying the loss in weight feeder were turned on, and it was verified that these items functioned as designed. The

  2. Investigation of thermomechanical behavior of a work roll and of roll life in hot strip rolling

    NASA Astrophysics Data System (ADS)

    Sun, C. G.; Hwang, S. M.; Yun, C. S.; Chung, J. S.

    1998-09-01

    An integrated finite element-based model is presented for the prediction of the steady-state thermomechanical behavior of the roll-strip system and of roll life in hot strip rolling. The model is comprised of basic finite-element models, which are incorporated into an iterative-solution procedure to deal with the interdependence between the thermomechanical behavior of the strip and that of the work roll, which arises from roll-strip contact, as well as with the interdependence between the thermal and mechanical behavior. Comparison is made between the predictions and the measurements to assess solution accuracy. Then, the effect of various process parameters on the detailed aspects of thermomechanical behavior of the work roll and on roll life is investigated via a series of process simulations.

  3. In-situ Roll-to-Roll Printing of Highly Efficient Organic Solar Cells

    SciTech Connect

    Bao, Zhenan; Toney, Michael; Clancy, Paulette

    2016-05-30

    This project focuses on developing a roll-to-roll printing setup for organic solar cells with the capability to follow the film formation in situ with small and wide angle X-ray scattering, and to improve the performance of printed organic solar cells. We demonstrated the use of the printing setup to capture important aspects of existing industrial printing methods, which ensures that the solar cell performance achieved in our printing experiments would be largely retained in an industrial fabrication process. We employed both known and newly synthesized polymers as the donor and acceptor materials, and we studied the morphological changes in real time during the printing process by X-ray scattering. Our experimental efforts are also accompanied by theoretical modeling of both the fluid dynamic aspects of the printing process and the nucleation and crystallization kinetics during the film formation. The combined insight into the printing process gained from the research provides a detailed understanding of the factors governing the printed solar cell’s performance. Finally using the knowledge we gained, we demonstrated large area ( > 10 cm2) printed organic solar cells with more than 5 percent power conversion efficiency, which is best achieved performance for roll-to-roll printed organic solar cells.

  4. Roll-to-Roll production of carbon nanotubes based supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhu, Jingyi; Childress, Anthony; Karakaya, Mehmet; Roberts, Mark; Arcilla-Velez, Margarita; Podila, Ramakrishna; Rao, Apparao

    2014-03-01

    Carbon nanomaterials provide an excellent platform for electrochemical double layer capacitors (EDLCs). However, current industrial methods for producing carbon nanotubes are expensive and thereby increase the costs of energy storage to more than 10 Wh/kg. In this regard, we developed a facile roll-to-roll production technology for scalable manufacturing of multi-walled carbon nanotubes (MWNTs) with variable density on run-of-the-mill kitchen Al foils. Our method produces MWNTs with diameter (heights) between 50-100 nm (10-100 μm), and a specific capacitance as high as ~ 100 F/g in non-aqueous electrolytes. In this talk, the fundamental challenges involved in EDLC-suitable MWNT growth, roll-to-roll production, and device manufacturing will be discussed along with electrochemical characteristics of roll-to-roll MWNTs. Research supported by NSF CMMI Grant1246800.

  5. Hierarchically structured superoleophobic surfaces with ultralow contact angle hysteresis.

    PubMed

    Kota, Arun K; Li, Yongxin; Mabry, Joseph M; Tuteja, Anish

    2012-11-14

    Hierarchically structured, superoleophobic surfaces are demonstrated that display one of the lowest contact angle hysteresis values ever reported - even with extremely low-surface-tension liquids such as n-heptane. Consequently, these surfaces allow, for the first time, even ≈2 μL n-heptane droplets to bounce and roll-off at tilt angles. ≤ 2°.

  6. Explicit Nonlinear Finite Element Geometric Analysis of Parabolic Leaf Springs under Various Loads

    PubMed Central

    Kong, Y. S.; Omar, M. Z.; Chua, L. B.; Abdullah, S.

    2013-01-01

    This study describes the effects of bounce, brake, and roll behavior of a bus toward its leaf spring suspension systems. Parabolic leaf springs are designed based on vertical deflection and stress; however, loads are practically derived from various modes especially under harsh road drives or emergency braking. Parabolic leaf springs must sustain these loads without failing to ensure bus and passenger safety. In this study, the explicit nonlinear dynamic finite element (FE) method is implemented because of the complexity of experimental testing A series of load cases; namely, vertical push, wind-up, and suspension roll are introduced for the simulations. The vertical stiffness of the parabolic leaf springs is related to the vehicle load-carrying capability, whereas the wind-up stiffness is associated with vehicle braking. The roll stiffness of the parabolic leaf springs is correlated with the vehicle roll stability. To obtain a better bus performance, two new parabolic leaf spring designs are proposed and simulated. The stress level during the loadings is observed and compared with its design limit. Results indicate that the newly designed high vertical stiffness parabolic spring provides the bus a greater roll stability and a lower stress value compared with the original design. Bus safety and stability is promoted, as well as the load carrying capability. PMID:24298209

  7. Mach 6 experimental and theoretical stability and performance of a cruciform missile at angles of attack up to 65 degrees

    NASA Technical Reports Server (NTRS)

    Hartman, Edward R.; Johnston, Patrick J.

    1987-01-01

    An experimental and theoretical investigation of the longitudinal and lateral-directional stability and control of an axisymmetric cruciform-finned missile has been conducted at Mach 6. The angle-of-attack range extended from 20 to 65 deg to encompass maximum lift. Longitudinal stability, performance, and trim could be accurately predicted with the fins at a fin roll angle of 0 deg but not when the fins were at a fin roll angle of 45 deg. At this roll angle, windward fin choking occurred at angles of attack above 50 deg and reduced the effectiveness of the fins and caused pitch-up.

  8. Angle detector

    NASA Technical Reports Server (NTRS)

    Parra, G. T. (Inventor)

    1978-01-01

    An angle detector for determining a transducer's angular disposition to a capacitive pickup element is described. The transducer comprises a pendulum mounted inductive element moving past the capacitive pickup element. The capacitive pickup element divides the inductive element into two parts L sub 1 and L sub 2 which form the arms of one side of an a-c bridge. Two networks R sub 1 and R sub 2 having a plurality of binary weighted resistors and an equal number of digitally controlled switches for removing resistors from the networks form the arms of the other side of the a-c bridge. A binary counter, controlled by a phase detector, balances the bridge by adjusting the resistance of R sub 1 and R sub 2. The binary output of the counter is representative of the angle.

  9. Ecosystem engineers on plants: indirect facilitation of arthropod communities by leaf-rollers at different scales.

    PubMed

    Vieira, Camila; Romero, Gustavo Q

    2013-07-01

    Ecosystem engineering is a process by which organisms change the distribution of resources and create new habitats for other species via non-trophic interactions. Leaf-rolling caterpillars can act as ecosystem engineers because they provide shelter to secondary users. In this study, we report the influence of leaf-rolling caterpillars on speciose tropical arthropod communities along both spatial scales (leaf-level and plant-level effects) and temporal scales (dry and rainy seasons). We predict that rolled leaves can amplify arthropod diversity at both the leaf and plant levels and that this effect is stronger in dry seasons, when arthropods are prone to desiccation. Our results show that the abundance, richness, and biomass of arthropods within several guilds increased up to 22-fold in naturally and artificially created leaf shelters relative to unaltered leaves. These effects were observed at similar magnitudes at both the leaf and plant scales. Variation in the shelter architecture (funnel, cylinders) did not influence arthropod parameters, as diversity, abundance, orbiomass, but rolled leaves had distinct species composition if compared with unaltered leaves. As expected, these arthropod parameters on the plants with rolled leaves were on average approximately twofold higher in the dry season. Empty leaf rolls and whole plants were rapidly recolonized by arthropods over time, implying a fast replacement of individuals; within 15-day intervals the rolls and plants reached a species saturation. This study is the first to examine the extended effects of engineering caterpillars as diversity amplifiers at different temporal and spatial scales. Because shelter-building caterpillars are ubiquitous organisms in tropical and temperate forests, they can be considered key structuring elements for arthropod communities on plants.

  10. Accuracy of System Step Response Roll Magnitude Estimation from Central and Peripheral Visual Displays and Simulator Cockpit Motion

    NASA Technical Reports Server (NTRS)

    Hosman, R. J. A. W.; Vandervaart, J. C.

    1984-01-01

    An experiment to investigate visual roll attitude and roll rate perception is described. The experiment was also designed to assess the improvements of perception due to cockpit motion. After the onset of the motion, subjects were to make accurate and quick estimates of the final magnitude of the roll angle step response by pressing the appropriate button of a keyboard device. The differing time-histories of roll angle, roll rate and roll acceleration caused by a step response stimulate the different perception processes related the central visual field, peripheral visual field and vestibular organs in different, yet exactly known ways. Experiments with either of the visual displays or cockpit motion and some combinations of these were run to asses the roles of the different perception processes. Results show that the differences in response time are much more pronounced than the differences in perception accuracy.

  11. Rolling cuff flexible bellows

    DOEpatents

    Lambert, Donald R.

    1985-01-01

    A flexible connector apparatus used to join two stiff non-deformable members, such as piping. The apparatus is provided with one or more flexible sections or assemblies each utilizing a bellows of a rolling cuff type connected between two ridge members, with the bellows being supported by a back-up ring, such that only the curved end sections of the bellows are unsupported. Thus, the bellows can be considered as being of a tube-shaped configuration and thus have high pressure resistance. The components of the flexible apparatus are sealed or welded one to another such that it is fluid tight.

  12. VIEW OF HANDOPERATED ROLLING MILLS ROLLING STANDS FROM LEFT TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF HAND-OPERATED ROLLING MILLS ROLLING STANDS FROM LEFT TO RIGHT: THREE HIGH; THREE HIGH; THREE HIGH; THREE HIGH (OPERATED AS A TWO-HIGH); TWO HIGH TWO HIGH MANUFACTURED BY BLAW-KNOX THREE HIGH MANUFACTURED BY LEWIS FOUNDRY AND MACHINE CO. - Cambria Iron Company, Gautier Works, 12" Mill, Clinton Street & Little Conemaugh River, Johnstown, Cambria County, PA

  13. Expression of a mutant maize gene in the ventral leaf epidermis is sufficient to signal a switch of the leaf's dorsoventral axis.

    PubMed

    Nelson, Jennifer M; Lane, Barbara; Freeling, Michael

    2002-10-01

    Maize leaves are initiated from the shoot apex with an inherent leaf dorsoventral polarity; the leaf surface closest to the meristem is the adaxial (upper, dorsal) surface whereas the opposite leaf surface is the abaxial (lower, ventral) surface. The Rolled leaf1 (Rld1) semi-dominant maize mutations affect dorsoventral patterning by causing adaxialization of abaxial leaf regions. This adaxialization is sometimes associated with abaxialization of the adaxial leaf regions, which constitutes a "switch". Dosage analysis indicates Rld1 mutants are antimorphs. We mapped Rld1's action to a single cell layer using a mosaic analysis and show Rld1 acts non cell-autonomously along the dorsoventral axis. The presence of Rld1 mutant product in the abaxial epidermis is necessary and sufficient to induce the Rolled leaf1 phenotype within the lower epidermis as well as in other leaf layers along the dorsoventral axis. These results support a model for the involvement of wild-type RLD1 in the maintenance of dorsoventral features of the leaf. In addition, they demonstrate the abaxial epidermis sends/receives a cell fate determining signal to/from the adaxial epidermis and controls the dorsoventral patterning of the maize leaf.

  14. Ocimum sanctum leaf extract induces drought stress tolerance in rice

    PubMed Central

    Pandey, Veena; Ansari, M.W.; Tula, Suresh; Sahoo, R.K.; Bains, Gurdeep; Kumar, J.; Tuteja, Narendra; Shukla, Alok

    2016-01-01

    ABSTRACT Ocimum leaves are highly enriched in antioxidant components. Thus, its leaf extract, if applied in plants, is believed to efficiently scavenge ROS, thereby preventing oxidative damage under drought stress. Thus, the present study was performed in kharif 2013 and rabi 2014 season to evaluate the effect of aqueous leaf extract of Ocimum sanctum against drought stress in 2 rice genotype under glass house conditions. Here we show that various morpho- physiological (chlorophyll fluorescence, leaf rolling score, leaf tip burn, number of senesced leaves and total dry matter) and biochemical parameters (proline, malondialdehyde and superoxide dismutase content) were amended by Ocimum treatment in both the seasons. Application of Ocimum extract increased expression of dehydrin genes, while reducing expression of aquaporin genes in drought stressed rice plant. Thus, application of Ocimum leaf extract under drought stress can be suggested as a promising strategy to mitigate drought stress in economical, accessible and ecofriendly manner. PMID:26890603

  15. Apparatus and method for variable angle slant hole collimator

    DOEpatents

    Lee, Seung Joon; Kross, Brian J.; McKisson, John E.

    2017-07-18

    A variable angle slant hole (VASH) collimator for providing collimation of high energy photons such as gamma rays during radiological imaging of humans. The VASH collimator includes a stack of multiple collimator leaves and a means of quickly aligning each leaf to provide various projection angles. Rather than rotate the detector around the subject, the VASH collimator enables the detector to remain stationary while the projection angle of the collimator is varied for tomographic acquisition. High collimator efficiency is achieved by maintaining the leaves in accurate alignment through the various projection angles. Individual leaves include unique angled cuts to maintain a precise target collimation angle. Matching wedge blocks driven by two actuators with twin-lead screws accurately position each leaf in the stack resulting in the precise target collimation angle. A computer interface with the actuators enables precise control of the projection angle of the collimator.

  16. Aerodynamic roll characteristics of a 0.00548 scale 146-inch solid rocket booster reentry configuration (MSFC Model Number 486) over a portion of the reentry flight regime in the NASA MSF 14-inch trisonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Ramsey, P. E.

    1978-01-01

    An experimental investigation was conducted in the MSFC 14 inch TWT to study the roll characteristics of a 0.00548 scale model of the 146 inch shuttle solid rocket booster to obtain more accurate rolling moment data on the solid rocket booster. A sensitive single component roll balance was utilized. Data were obtained for a single nose mounted sting. The angle of attack range consisted of angles from 150 deg to 190 deg; roll angles consisted of angles from 0 deg to 337 1/2 deg in increments of 22 1/2 deg; and Mach numbers were 1.46, 1.96, 2.74 and 2.48.

  17. Lubrication of rolling element bearings

    NASA Technical Reports Server (NTRS)

    Parker, R. J.

    1980-01-01

    This paper is a broad survey of the lubrication of rolling-element bearings. Emphasis is on the critical design aspects related to speed, temperature, and ambient pressure environment. Types of lubrication including grease, jets, mist, wick, and through-the-race are discussed. The paper covers the historical development, present state of technology, and the future problems of rolling-element bearing lubrication.

  18. Heat generation in Aircraft tires under yawed rolling conditions

    NASA Technical Reports Server (NTRS)

    Dodge, Richard N.; Clark, Samuel K.

    1987-01-01

    An analytical model was developed for approximating the internal temperature distribution in an aircraft tire operating under conditions of yawed rolling. The model employs an assembly of elements to represent the tire cross section and treats the heat generated within the tire as a function of the change in strain energy associated with predicted tire flexure. Special contact scrubbing terms are superimposed on the symmetrical free rolling model to account for the slip during yawed rolling. An extensive experimental program was conducted to verify temperatures predicted from the analytical model. Data from this program were compared with calculation over a range of operating conditions, namely, vertical deflection, inflation pressure, yaw angle, and direction of yaw. Generally the analytical model predicted overall trends well and correlated reasonably well with individual measurements at locations throughout the cross section.

  19. Microstructure and texture evolution in cold-rolled and annealed alloy MA-956

    NASA Astrophysics Data System (ADS)

    Hosoda, Takashi

    The microstructural and texture development with thermomechanical processing, performed through a combination of cold-rolling and annealing, in MA-956 plate consisting of a layered and inhomogeneous microstructure was systematically assessed. The alloy contained in mass percent, 20 Cr, 4.8 Al, 0.4 Ti, 0.4 Y2O3, and the balance iron. The starting material was as-hot-rolled plate, 9.7 mm thick. The as-hot-rolled plate was subjected to 40%, 60%, and 80% cold-rolling reduction and subsequently annealed at 1000, 1200, or 1380. Assessment of microstructural and texture developments before and after cold-rolling and annealing was performed using light optical microscopy (LOM), Vickers hardness testing, and electron backscatter diffraction (EBSD). Locally introduced misorientations by cold-rolling in each region were evaluated by Kernel Average Misorientation (KAM) maps. The as-hot-rolled condition contained a layered and inhomogeneous microstructure consisting of thin and coarse elongated grains, and aggregated regions which consisted of fine grains and sub-grains with {100} texture parallel to the longitudinal direction. The microstructure of the 40% cold-rolled condition contained deformation bands, and the 60% and 80% cold-rolled conditions also contained highly deformed regions where the deformation bands were intricately tangled. A predominant orientation of (001) parallel to the rolling direction was developed during cold-rolling, becoming more prominent with increasing reduction. The magnitudes of KAM angles varied through the thickness depending on the initial microstructures. Recrystallization occurred in regions where high KAM angles were dense after annealing and nucleation sites were the aggregation regions, deformation bands, and highly deformed regions. The shape and size of the recrystallized grains varied depending on the nucleation sites.

  20. Roll mill for milling coal

    SciTech Connect

    Brundiek, H.; Werner, L.

    1984-02-21

    A roll mill, more specially for coal, has a turning pan and a number of rolls running thereon for producing a milling effect. Each roll is supported on a rocker arm, able to be turned about a horizontal axis which is roughly tangential to the pan. The rocker arm and the roll on it are forced down against the pan by a hydraulic cylinder joined with a fork which, in turn, is joined with the rocker arm for turning it about the turnpin. The fork may be unjoined from the rocker arm for upkeep work on the roll. Each rocker arm has a gas-tight cover structure which is part of the casing of the mill.

  1. Polarized and specular reflectance variation with leaf surface features

    NASA Technical Reports Server (NTRS)

    Grant, Lois; Daughtry, C. S. T.; Vanderbilt, V. C.

    1993-01-01

    The linearly polarized reflectance from a leaf depends on the characteristics of the leaf surface. In the present study the leaf reflectance of a number of plant species with varying surface characteristics was measured at the Brewster angle with a polarization photometer having 5 visible and near-infrared wavelength bands. We found that all leaf surfaces polarized incident light. Differences among species could be explained by variation in surface features. The results support our hypothesis that the polarized light is reflected by the leaf surface, not by its interior. Two mechanisms appeared responsible for the linearly polarized reflectance: (1) specular reflectance and (2) surface particle scattering. In most cases, large values of linearly polarized reflectance could be attributed to specular reflectance from the leaf surface. Attribution required knowledge of the optical dimensions of features on the leaf surface.

  2. Avoiding the parametric roll

    NASA Astrophysics Data System (ADS)

    Acomi, Nicoleta; Ancuţa, Cristian; Andrei, Cristian; Boştinǎ, Alina; Boştinǎ, Aurel

    2016-12-01

    Ships are mainly built to sail and transport cargo at sea. Environmental conditions and state of the sea are communicated to vessels through periodic weather forecasts. Despite officers being aware of the sea state, their sea time experience is a decisive factor when the vessel encounters severe environmental conditions. Another important factor is the loading condition of the vessel, which triggers different behaviour in similar marine environmental conditions. This paper aims to analyse the behaviour of a port container vessel in severe environmental conditions and to estimate the potential conditions of parametric roll resonance. Octopus software simulation is employed to simulate vessel motions under certain conditions of the sea, with possibility to analyse the behaviour of ships and the impact of high waves on ships due to specific wave encounter situations. The study should be regarded as a supporting tool during the decision making process.

  3. Role of micropillar arrays in cell rolling dynamics.

    PubMed

    Kim, Kisoo; Koo, Junemo; Moon, SangJun; Lee, Won Gu

    2016-12-19

    In this study, we present a role of arrayed micropillar structures in cell rolling dynamics. Cell rolling on a ligand coated surface as a means of cell separation was demonstrated using a micropillar-integrated microfluidic channel. This approach allows the separation of cells according to characteristic surface properties, regardless of cell size. In these experiments, different moving trajectories of the cells between a ligand-coated micropost structure and a 1% BSA coated micropost structure were observed using sequential images. Based on the analysis of the angle of travel of cells in the trajectory, the average angles of travel on the ligand-coated microposts were 1.5° and -3.1° on a 1% BSA-coated micropost structure. The overall force equivalent applied to a cell can be analyzed to predict the cell rolling dynamics when a cell is detached. These results show that it will be possible to design chip geometry for delicate operations and to separate target cells. Furthermore, we believe that these control techniques based on a ligand coated micropillar surface can be used for enhancing cell rolling-based separation in a faster and more continuous manner.

  4. Numerical investigation of the angle of repose of monosized spheres.

    PubMed

    Zhou, Y C; Xu, B H; Yu, A B; Zulli, P

    2001-08-01

    This paper presents a numerical study of the angle of repose, a most important macroscopic parameter in characterizing granular materials, by means of a modified distinct element method. Emphasis is given to the effect of variables related to factors such as particle characteristics, material properties, and geometrical constraints. The results show that sliding and rolling frictions are the primary reasons for the formation of a sandpile; particle size and container thickness significantly influence the angle of repose; and the angle of repose is not so sensitive to density, Poisson's ratio, damping coefficient, and Young's modulus. Increasing rolling friction coefficient or sliding friction coefficient increases the angle of repose. Conversely, increasing particle size or container thickness decreases the angle of repose. The underlying mechanisms for these effects are discussed in terms of particle-particle and particle-wall interactions.

  5. A hotspot model for leaf canopies

    NASA Technical Reports Server (NTRS)

    Jupp, David L. B.; Strahler, Alan H.

    1991-01-01

    The hotspot effect, which provides important information about canopy structure, is modeled using general principles of environmental physics as driven by parameters of interest in remote sensing, such as leaf size, leaf shape, leaf area index, and leaf angle distribution. Specific examples are derived for canopies of horizontal leaves. The hotspot effect is implemented within the framework of the model developed by Suits (1972) for a canopy of leaves to illustrate what might occur in an agricultural crop. Because the hotspot effect arises from very basic geometrical principles and is scale-free, it occurs similarly in woodlands, forests, crops, rough soil surfaces, and clouds. The scaling principles advanced are also significant factors in the production of image spatial and angular variance and covariance which can be used to assess land cover structure through remote sensing.

  6. Reflectance model of a plant leaf

    NASA Technical Reports Server (NTRS)

    Kumar, R.; Silva, L.

    1973-01-01

    A light ray, incident at 5 deg to the normal, is geometrically plotted through the drawing of the cross section of a soybean leaf using Fresnel's Equations and Snell's Law. The optical mediums of the leaf considered for ray tracing are: air, cell sap, chloroplast, and cell wall. The above ray is also drawn through the same leaf cross section considering cell wall and air as the only optical mediums. The values of the reflection and transmission found from ray tracing agree closely with the experimental results obtained using a Beckman DK-2A Spectroreflectometer. Similarly a light ray, incident at about 60 deg to the normal, is drawn through the palisade cells of a soybean leaf to illustrate the pathway of light, incident at an oblique angle, through the palisade cells.

  7. Numerical Simulation of Forced and Free-to-Roll Delta-Wing Motions

    NASA Technical Reports Server (NTRS)

    Chaderjian, Neal M.; Schiff, Lewis B.

    1996-01-01

    The three-dimensional, Reynolds-averaged, Navier-Stokes (RANS) equations are used to numerically simulate nonsteady vortical flow about a 65-deg sweep delta wing at 30-deg angle of attack. Two large-amplitude, high-rate, forced-roll motions, and a damped free-to-roll motion are presented. The free-to-roll motion is computed by coupling the time-dependent RANS equations to the flight dynamic equation of motion. The computed results are in good agreement with the forces, moments, and roll-angle time histories. Vortex breakdown is present in each case. Significant time lags in the vortex breakdown motions relative to the body motions strongly influence the dynamic forces and moments.

  8. Human Ocular Counter-Rolling and Roll Tilt Perception during Off-Vertical Axis Rotation after Spaceflight

    NASA Technical Reports Server (NTRS)

    Clement, Gilles; Denise, Pierre; Reschke, Millard; Wood, Scott J.

    2007-01-01

    Ocular counter-rolling (OCR) induced by whole body tilt in roll has been explored after spaceflight as an indicator of the adaptation of the otolith function to microgravity. It has been claimed that the overall pattern of OCR responses during static body tilt after spaceflight is indicative of a decreased role of the otolith function, but the results of these studies have not been consistent, mostly due to large variations in the OCR within and across individuals. By contrast with static head tilt, off-vertical axis rotation (OVAR) presents the advantage of generating a sinusoidal modulation of OCR, allowing averaged measurements over several cycles, thus improving measurement accuracy. Accordingly, OCR and the sense of roll tilt were evaluated in seven astronauts before and after spaceflight during OVAR at 45 /s in darkness at two angles of tilt (10 and 20 ). There was no significant difference in OCR during OVAR immediately after landing compared to preflight. However, the amplitude of the perceived roll tilt during OVAR was significantly larger immediately postflight, and then returned to control values in the following days. Since the OCR response is predominantly attributed to the shearing force exerted on the utricular macula, the absence of change in OCR postflight suggests that the peripheral otolith organs function normally after short-term spaceflight. However, the increased sense of roll tilt indicates an adaptation in the central processing of gravitational input, presumably related to a re-weigthing of the internal representation of gravitational vertical as a result of adaptation to microgravity.

  9. Human Ocular Counter-Rolling and Roll Tilt Perception during Off-Vertical Axis Rotation after Spaceflight

    NASA Technical Reports Server (NTRS)

    Clement, Gilles; Denise, Pierre; Reschke, Millard; Wood, Scott J.

    2007-01-01

    Ocular counter-rolling (OCR) induced by whole body tilt in roll has been explored after spaceflight as an indicator of the adaptation of the otolith function to microgravity. It has been claimed that the overall pattern of OCR responses during static body tilt after spaceflight is indicative of a decreased role of the otolith function, but the results of these studies have not been consistent, mostly due to large variations in the OCR within and across individuals. By contrast with static head tilt, off-vertical axis rotation (OVAR) presents the advantage of generating a sinusoidal modulation of OCR, allowing averaged measurements over several cycles, thus improving measurement accuracy. Accordingly, OCR and the sense of roll tilt were evaluated in seven astronauts before and after spaceflight during OVAR at 45 /s in darkness at two angles of tilt (10 and 20 ). There was no significant difference in OCR during OVAR immediately after landing compared to preflight. However, the amplitude of the perceived roll tilt during OVAR was significantly larger immediately postflight, and then returned to control values in the following days. Since the OCR response is predominantly attributed to the shearing force exerted on the utricular macula, the absence of change in OCR postflight suggests that the peripheral otolith organs function normally after short-term spaceflight. However, the increased sense of roll tilt indicates an adaptation in the central processing of gravitational input, presumably related to a re-weigthing of the internal representation of gravitational vertical as a result of adaptation to microgravity.

  10. Rolling Spheres on Bioinspired Microstructured Surfaces.

    PubMed

    Ryu, Brian K; Dhong, Charles; Fréchette, Joëlle

    2017-01-10

    Microstructured surfaces, such as those inspired by nature, mediate surface interactions and are actively sought after to control wetting, adhesion, and friction. In particular, the rolling motion of spheres on microstructured surfaces in fluid environments is important for the transport of particles in microfluidic devices or in tribology. Here, we characterize the motion of smooth silicon nitride spheres (diameters 3-5 mm) as they roll down inclined planes decorated with hexagonal arrays of microwells and micropillars. For both types of patterned surfaces, we vary the area fraction of the micropatterned features from 0.04 to 0.96. We measure directly and independently the rotational and translational velocities of the spheres as they roll down planes with inclination angles that vary between 5 and 30°. For a given area fraction, we find that spheres have a higher translational and rotational velocity on surfaces with microwells than on micropillars. We rely on the model of Smart and Leighton [Phys. Fluids A 5, 13 (1993)] to obtain an effective gap width and coefficient of friction for all microstructured surfaces investigated. We find that the coefficient of friction is significantly higher for a surface with micropillars than that for one with microwells, likely due to the presence of interconnected drainage channels that provide additional paths for the fluid flow and favor solid-solid contact on the surface with micropillars. We find that while the effective gap width at a very low solid fraction is equal to the height of the patterned features, the effective separation decreases exponentially as the surface coverage of microstructures increases, with little measured differences between the two geometries. Superposition of resistance functions is used to relate the rapid decrease in the effective gap height with increase in the surface coverage observed in experiments.

  11. Development of a novel quality assurance system based on rolled-up and rolled-out radiochromic films in volumetric modulated arc therapy

    SciTech Connect

    Park, Ji-Yeon; Lee, Jeong-Woo; Choi, Kyoung-Sik; Lee, Jung Seok; Kim, You-Hyun; Hong, Semie; Suh, Tae-Suk

    2011-12-15

    Purpose: To develop a cylindrical phantom with rolled-up radiochromic films and dose analysis software in the rolled-out plane for quality assurance (QA) in volumetric modulated arc therapy (VMAT). Methods: The phantom consists of an acrylic cylindrical body wrapped with radiochromic film inserted into an outer cylindrical shell of 5 cm thickness. The rolled-up films with high spatial resolution enable detection of specific dose errors along the arc trajectory of continuously irradiated and modulated beams in VMAT. The developed dose analysis software facilitates dosimetric evaluation in the rolled-up and rolled-out planes of the film; the calculated doses on the corresponding points where the rolled-up film was placed were reconstructed into a rectangular dose matrix equivalent to that of the rolled-out plane of the film. The VMAT QA system was implemented in 3 clinical cases of prostate, nasopharynx, and pelvic metastasis. Each calculated dose on the rolled-out plane was compared with measurement values by modified gamma evaluation. Detected positions of dose disagreement on the rolled-out plane were also distinguished in cylindrical coordinates. The frequency of error occurrence and error distribution were summarized in a histogram and in an axial view of rolled-up plane to intuitively identify the corresponding positions of detected errors according to the gantry angle. Results: The dose matrix reconstructed from the developed VMAT QA system was used to verify the measured dose distribution along the arc trajectory. Dose discrepancies were detected on the rolled-out plane and visualized on the calculated dose matrix in cylindrical coordinates. The error histogram obtained by gamma evaluation enabled identification of the specific error frequency at each gantry angular position. The total dose error occurring on the cylindrical surface was in the range of 5%-8% for the 3 cases. Conclusions: The developed system provides a practical and reliable QA method to

  12. Manufacturing Demonstration Facility: Roll-to-Roll Processing

    SciTech Connect

    Datskos, Panos G; Joshi, Pooran C; List III, Frederick Alyious; Duty, Chad E; Armstrong, Beth L; Ivanov, Ilia N; Jacobs, Christopher B; Graham, David E; Moon, Ji Won

    2015-08-01

    This Manufacturing Demonstration Facility (MDF)e roll-to-roll processing effort described in this report provided an excellent opportunity to investigate a number of advanced manufacturing approaches to achieve a path for low cost devices and sensors. Critical to this effort is the ability to deposit thin films at low temperatures using nanomaterials derived from nanofermentation. The overarching goal of this project was to develop roll-to-roll manufacturing processes of thin film deposition on low-cost flexible substrates for electronics and sensor applications. This project utilized ORNL s unique Pulse Thermal Processing (PTP) technologies coupled with non-vacuum low temperature deposition techniques, ORNL s clean room facility, slot dye coating, drop casting, spin coating, screen printing and several other equipment including a Dimatix ink jet printer and a large-scale Kyocera ink jet printer. The roll-to-roll processing project had three main tasks: 1) develop and demonstrate zinc-Zn based opto-electronic sensors using low cost nanoparticulate structures manufactured in a related MDF Project using nanofermentation techniques, 2) evaluate the use of silver based conductive inks developed by project partner NovaCentrix for electronic device fabrication, and 3) demonstrate a suite of low cost printed sensors developed using non-vacuum deposition techniques which involved the integration of metal and semiconductor layers to establish a diverse sensor platform technology.

  13. A study of the nonlinear aerodynamic characteristics of a slender double-delta wing in roll

    NASA Astrophysics Data System (ADS)

    Pelletier, Alain

    An experimental investigation of the dynamic behavior of an 80sp°/65sp° double-delta wing at high angles of incidence was conducted. It was found that depending upon the angle of incidence, different dynamic regimes were encountered as the wing was free to rotate about its longitudinal axis. These dynamic regimes included damped oscillations, quasi-limit-cycle wing-rock motion, and chaotic oscillations. The presence of vortex breakdown on the model was shown to influence the type of dynamic regime obtained and the location of the roll attractors. Results are presented that indicate how the individual physical features of the double-delta wing affected the overall dynamic behavior of the 80sp°/65sp° double-delta wing. It is shown that the 65sp° main wing had a strong influence on the location of the roll attractors, while the presence of the 80sp° strake seemed to affect the amplitude of oscillation. Force balance experiments and flow visualization tests were also conducted and the results show a relationship between vortex behavior and wing aerodynamics. The behavior of the leeward strake vortex at large roll angle was shown to have a strong influence on the roll moment acting on the wing. Flow visualization also helped explain the presence of critical states in the force and moment data. It also showed that different dynamic regimes were associated with different flow regimes. Moreover, a method was developed to predict the roll attractors and amplitude of oscillation from static roll moment coefficient results. Finally, numerical simulation of the free-to-roll behavior of the wing led to a better understanding of the possible chaotic nature of the free-to-roll response of the wing at certain angles of incidence.

  14. Rolling Process Modeling Report: Finite-Element Prediction of Roll Separating Force and Rolling Defects

    SciTech Connect

    Soulami, Ayoub; Lavender, Curt A.; Paxton, Dean M.; Burkes, Douglas

    2014-04-23

    Pacific Northwest National Laboratory (PNNL) has been investigating manufacturing processes for the uranium-10% molybdenum (U-10Mo) alloy plate-type fuel for the U.S. high-performance research reactors. This work supports the Convert Program of the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA) Global Threat Reduction Initiative. This report documents modeling results of PNNL’s efforts to perform finite-element simulations to predict roll separating forces and rolling defects. Simulations were performed using a finite-element model developed using the commercial code LS-Dyna. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel have been conducted following two different schedules. Model predictions of the roll-separation force and roll-pack thicknesses at different stages of the rolling process were compared with experimental measurements. This report discusses various attributes of the rolled coupons revealed by the model (e.g., dog-boning and thickness non-uniformity).

  15. Body roll in swimming: a review.

    PubMed

    Psycharakis, Stelios G; Sanders, Ross H

    2010-02-01

    In this article, we present a critical review of the swimming literature on body roll, for the purposes of summarizing and highlighting existing knowledge, identifying the gaps and limitations, and stimulating further research. The main research findings can be summarized as follows: swimmers roll their shoulders significantly more than their hips; swimmers increase hip roll but maintain shoulder roll when fatigued; faster swimmers roll their shoulders less than slower swimmers during a 200-m swim; roll asymmetries, temporal differences in shoulder roll and hip roll, and shoulder roll side dominance exist in front crawl swimming, but there is no evidence to suggest that they affect swimming performance; and buoyancy contributes strongly to generating body roll in front crawl swimming. Based on and stimulated by current knowledge, future research should focus on the following areas: calculation of body roll for female swimmers and for backstroke swimming; differences in body roll between breathing and non-breathing cycles; causes of body roll asymmetries and their relation to motor laterality; body roll analysis across a wide range of velocities and swimming distances; exploration of the association between body roll and the magnitude and direction of propulsive/resistive forces developed during the stroke cycle; and the influence of kicking actions on the generation of body roll.

  16. Precision instrumentation for rolling element bearing characterization

    SciTech Connect

    Marsh, Eric R.; Vigliano, Vincent C.; Weiss, Jeffrey R.; Moerlein, Alex W.; Vallance, R. Ryan

    2007-03-15

    This article describes an instrument to measure the error motion of rolling element bearings. This challenge is met by simultaneously satisfying four requirements. First, an axial preload must be applied to seat the rolling elements in the bearing races. Second, one of the races must spin under the influence of an applied torque. Third, rotation of the remaining race must be prevented in a way that leaves the radial, axial/face, and tilt displacements free to move. Finally, the bearing must be fixtured and measured without introducing off-axis loading or other distorting influences. In the design presented here, an air bearing reference spindle with error motion of less than 10 nm rotates the inner race of the bearing under test. Noninfluencing couplings are used to prevent rotation of the bearing outer race and apply an axial preload without distorting the bearing or influencing the measurement. Capacitive displacement sensors with 2 nm resolution target the nonrotating outer race. The error motion measurement repeatability is shown to be less than 25 nm. The article closes with a discussion of how the instrument may be used to gather data with sufficient resolution to accurately estimate the contact angle of deep groove ball bearings.

  17. Precision instrumentation for rolling element bearing characterization.

    PubMed

    Marsh, Eric R; Vigliano, Vincent C; Weiss, Jeffrey R; Moerlein, Alex W; Vallance, R Ryan

    2007-03-01

    This article describes an instrument to measure the error motion of rolling element bearings. This challenge is met by simultaneously satisfying four requirements. First, an axial preload must be applied to seat the rolling elements in the bearing races. Second, one of the races must spin under the influence of an applied torque. Third, rotation of the remaining race must be prevented in a way that leaves the radial, axial/face, and tilt displacements free to move. Finally, the bearing must be fixtured and measured without introducing off-axis loading or other distorting influences. In the design presented here, an air bearing reference spindle with error motion of less than 10 nm rotates the inner race of the bearing under test. Noninfluencing couplings are used to prevent rotation of the bearing outer race and apply an axial preload without distorting the bearing or influencing the measurement. Capacitive displacement sensors with 2 nm resolution target the nonrotating outer race. The error motion measurement repeatability is shown to be less than 25 nm. The article closes with a discussion of how the instrument may be used to gather data with sufficient resolution to accurately estimate the contact angle of deep groove ball bearings.

  18. Frontal Impact of Rolling Spheres.

    ERIC Educational Resources Information Center

    Domenech, A.; Casasus, E.

    1991-01-01

    A model of the inelastic collision between two spheres rolling along a horizontal track is presented, taking into account the effects of frictional forces at impact. This experiment makes possible direct estimates of the coefficients of restitution and friction. (Author)

  19. Rolling Stitch Welder For Foil

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffery L.; Morgan, Gene E.

    1992-01-01

    Hand-operated rolling spotwelder stitch-welds foil faster and more consistently than single-spotwelding gun without damaging it. Internal spring reacts against roller frame, exerting force on welding wheel when rollers contact workpiece.

  20. Reduced Blood Coagulation on Roll-to-Roll, Shrink-Induced Superhydrophobic Plastics.

    PubMed

    Nokes, Jolie M; Liedert, Ralph; Kim, Monica Y; Siddiqui, Ali; Chu, Michael; Lee, Eugene K; Khine, Michelle

    2016-03-09

    The unique antiwetting properties of superhydrophobic (SH) surfaces prevent the adhesion of water and bodily fluids, including blood, urine, and saliva. While typical manufacturable approaches to create SH surfaces rely on chemical and structural modifications, such approaches are expensive, require postprocessing, and are often not biocompatible. By contrast, it is demonstrated that purely structural SH features are easily formed using high throughput roll-to-roll (R2R) manufacturing by shrinking a prestressed thermoplastic with a thin, stiff layer of silver and calcium. These features are subsequently embossed into any commercially available and Food and Drug Administration (FDA)-approved plastic. The R2R SH surfaces have contact angles >150° and contact angle hysteresis <10°. Importantly, the surfaces minimize blood adhesion, leading to reduced blood coagulation without the need for anticoagulants. SH surfaces have >4200× reduction of blood residue area compared to the nonstructured controls of the same material. In addition, blood clotting is reduced >5× using whole blood directly from the patient. Furthermore, these surfaces can be easily configured into 3D shapes, as demonstrated with SH tubes. With the simple scale-up production and the eliminated need for anticoagulants to prevent clotting, the proposed conformable SH surfaces can be impactful for a wide range of medical tools, including catheters and microfluidic channels. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. An Initial Examination of Roll-Lateral Coordination Motion Requirements in Flight Simulation

    NASA Technical Reports Server (NTRS)

    Schroeder, Jeffery A.; Chung, William W.; Laforce, Soren; Sridhar, Banavar (Technical Monitor)

    1996-01-01

    A piloted simulation that examined the effects of uncoordinated roll-lateral motion cues from a coordinated math model was conducted. The vehicle model represented a typical helicopter with satisfactory handling qualities in the roll-lateral axes. The task was a two-degree-of-freedom horizontal sidestep, where the pilot controlled lateral position through roll angle. The motion platform commands were varied via two motion control system gains. One gain reduced the ratio between platform roll angle to math model (and thus visual) roll angle. The other gain was placed on how much lateral platform movement would result from platform roll attitude in an attempt to align the apparent gravity vector vertically relative to the pilot. Gains from one to zero were examined in both axes. Thus, the true 1:1 motion case, where the motion cues matched the visual cues was evaluated. Pilots subjective ratings of motion fidelity matched well against an earlier developed motion fidelity criteria. Significant differences were noted in the fixed-base versus motion base configurations.

  2. An experimental study on the aerodynamic feasibility of a roll-controllable sounding rocket

    NASA Astrophysics Data System (ADS)

    Shirouzu, M.; Soga, K.; Shibato, Y.

    1986-02-01

    The aerodynamic feasibility of a roll-controllable two-stage sounding rocket is investigated experimentally. The rocket has ailerons on front-fins to generate the rolling moment for the control and free-rolling tail-fins to prevent the induced rolling moment on the tail-fins from transmitting to the fuselage. Wind tunnel tests were made at free-stream Mach numbers ranging from 0.5 to 2.5 and alpha = 0 deg, 4 deg, and 8 deg varying the deflection angle of the ailerons for the models with fixed tail-fins, with free-rolling tail-fins and without tail-fins. Aerodynamic characteristics were measured by using a six-component balance. The effectiveness of the free-rolling tail-fins for the elimination of the influence of the induced rolling moment is confirmed. It is concluded that the characteristics of the rolling moment generated by the ailerons are desirable for the control, and the rotation of the tail-fins would not raise mechanical and other aerodynamic problems.

  3. Numerical analysis of the flexible roll forming of an automotive component from high strength steel

    NASA Astrophysics Data System (ADS)

    Abeyrathna, B.; Abvabi, A.; Rolfe, B.; Taube, R.; Weiss, M.

    2016-11-01

    Conventional roll forming is limited to components with uniform cross-section; the recently developed flexible roll forming (FRF) process can be used to form components which vary in both width and depth. It has been suggested that this process can be used to manufacture automotive components from Ultra High Strength Steel (UHSS) which has limited tensile elongation. In the flexible roll forming process, the pre-cut blank is fed through a set of rolls; some rolls are computer-numerically controlled (CNC) to follow the 3D contours of the part and hence parts with a variable cross-section can be produced. This paper introduces a new flexible roll forming technique which can be used to form a complex shape with the minimum tooling requirements. In this method, the pre-cut blank is held between two dies and the whole system moves back and forth past CNC forming rolls. The forming roll changes its angle and position in each pass to incrementally form the part. In this work, the process is simulated using the commercial software package Copra FEA. The distribution of total strain and final part quality are investigated as well as related shape defects observed in the process. Different tooling concepts are used to improve the strain distribution and hence the part quality.

  4. Development of roll-to-roll hot embossing system with induction heater for micro fabrication.

    PubMed

    Yun, Dongwon; Son, Youngsu; Kyung, Jinho; Park, Heechang; Park, Chanhun; Lee, Sunghee; Kim, Byungin

    2012-01-01

    In this paper, a hot embossing heating roll with induction heater inside the roll is proposed. The induction heating coil is installed inside a roll that is used as a heating roll of a roll-to-roll (R2R) hot embossing apparatus. Using an inside installed heating coil gives the roll-to-roll hot embossing system a more even temperature distribution on the surface of the heating roll compared to that of previous systems, which used an electric wire for heating. This internal induction heating roll can keep the working environment much cleaner because there is no oil leakage compared to the oiled heating roll. This paper describes the principles and provides an analysis of this proposed system; some evaluation has also been performed for the system. A real R2R hot embossing heating roll system was fabricated and some experiments on micro-pattering have been performed. After that, evaluation has been performed on the results.

  5. Human perceptual overestimation of whole body roll tilt in hypergravity

    PubMed Central

    Newman, Michael C.; Oman, Charles M.; Merfeld, Daniel M.; Young, Laurence R.

    2014-01-01

    Hypergravity provides a unique environment to study human perception of orientation. We utilized a long-radius centrifuge to study perception of both static and dynamic whole body roll tilt in hypergravity, across a range of angles, frequencies, and net gravito-inertial levels (referred to as G levels). While studies of static tilt perception in hypergravity have been published, this is the first to measure dynamic tilt perception (i.e., with time-varying canal stimulation) in hypergravity using a continuous matching task. In complete darkness, subjects reported their orientation perception using a haptic task, whereby they attempted to align a hand-held bar with their perceived horizontal. Static roll tilt was overestimated in hypergravity, with more overestimation at larger angles and higher G levels, across the conditions tested (overestimated by ∼35% per additional G level, P < 0.001). As our primary contribution, we show that dynamic roll tilt was also consistently overestimated in hypergravity (P < 0.001) at all angles and frequencies tested, again with more overestimation at higher G levels. The overestimation was similar to that for static tilts at low angular velocities but decreased at higher angular velocities (P = 0.006), consistent with semicircular canal sensory integration. To match our findings, we propose a modification to a previous Observer-type canal-otolith interaction model. Specifically, our data were better modeled by including the hypothesis that the central nervous system treats otolith stimulation in the utricular plane differently than stimulation out of the utricular plane. This modified model was able to simulate quantitatively both the static and the dynamic roll tilt overestimation in hypergravity measured experimentally. PMID:25540216

  6. Fundamental phenomena governing heat transfer during rolling

    NASA Astrophysics Data System (ADS)

    Chen, W. C.; Samarasekera, I. V.; Hawbolt, E. B.

    1993-06-01

    To quantify the effect of roll chilling on the thermal history of a slab during hot rolling, tests were conducted at the Canada Center for Mineral and Energy Technology (CANMET) and at the University of British Columbia (UBC). In these tests, the surface and the interior temperatures of specimens were recorded during rolling using a data acquisition system. The corresponding heat-transfer coefficients in the roll bite were back-calculated by a trial-and-error method using a heat-transfer model. The heat-transfer coefficient was found to increase along the arc of contact and reach a maximum, followed by a decrease, until the exit of the roll bite. Its value was influenced by rolling parameters, such as percent reduction, rolling speed, rolling temperature, material type, etc. It was shown that the heat-transfer coefficient in the roll gap was strongly dependent on the roll pressure, and the effect of different variables on the interfacial heat-transfer coefficient can be related to their influence on pressure. At low mean roll pressure, such as in the case of rolling plain carbon steels at elevated temperature, the maximum heat-transfer coefficient in the roll bite was in the 25 to 35 kW/m2 °C range. As the roll pressure increased with lower rolling temperature and higher deformation resistance of stainless steel and microalloyed grades, the maximum heat-transfer coefficient reached a value of 620 kW/m2 °C. Obviously, the high pressure improved the contact between the roll and the slab surface, thereby reducing the resistance to heat flow. The mean roll-gap heat-transfer coefficient at the interface was shown to be linearly related to mean roll pressure. This finding is important because it permitted a determination of heat-transfer coefficients applicable to industrial rolling from pilot mill data. Thus, the thermal history of a slab during rough rolling was computed using a model in which the mean heat-transfer coefficient between the roll and the slab was

  7. 75 FR 64254 - Certain Hot-Rolled Flat-Rolled Carbon Quality Steel Products From Brazil; Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-19

    ... International Trade Administration Certain Hot-Rolled Flat-Rolled Carbon Quality Steel Products From Brazil... order on certain hot-rolled, flat-rolled carbon quality steel products (hot-rolled steel) from Brazil. See Certain Hot- Rolled Flat-Rolled Carbon Quality Steel Products From Brazil: Preliminary Results of...

  8. Hot rolling of thick uranium molybdenum alloys

    DOEpatents

    DeMint, Amy L.; Gooch, Jack G.

    2015-11-17

    Disclosed herein are processes for hot rolling billets of uranium that have been alloyed with about ten weight percent molybdenum to produce cold-rollable sheets that are about one hundred mils thick. In certain embodiments, the billets have a thickness of about 7/8 inch or greater. Disclosed processes typically involve a rolling schedule that includes a light rolling pass and at least one medium rolling pass. Processes may also include reheating the rolling stock and using one or more heavy rolling passes, and may include an annealing step.

  9. Photosynthetic responses to leaf surface wetness in tropical plant species of Costa Rica with varying leaf traits

    NASA Astrophysics Data System (ADS)

    Aparecido, L. M. T.; Moore, G. W.; Miller, G. R.; Cahill, A. T.

    2015-12-01

    Wet tropical forests are some of the environments with the greatest annual precipitation, but are also considered as the world's major carbon sink; however, literature postulates that phothsynthesis rates are inhibited while leaves are wet. Yet measurements of photosynthesis during wet conditions are challenging to obtain due to equipment limitations and the extreme complexity of canopy-atmosphere interactions in tropical environments. The objective of this study was to evaluate tropical species reactions to simulated leaf wetness and test the hypothesis that leaf wetness reduces rates of photosynthesis. In a central Costa Rica site with an average 4200 mm annual rainfall, we selected six tropical species with distinct leaf traits in which five sun-exposed leaf replicates from each species were subjected to gas exchange measurements using a LI-6400 IRGA (LICOR Inc., Lincoln, NE) under dry and wet/misted leaf conditions. Relationships between photosynthesis (As) and stomatal conductance (gs) with leaf to air temperature difference (DT), VPD, and relative humidity were evaluated using linear regression analysis. We found that the responses varied greatly among species, but all plants maintained a baseline of activity under wet leaf conditions, suggesting that abaxial leaf As was a significant percentage of total leaf As. Stachytarpheta jamaicens had an 18.7% reduction in As, while others, like Zamia skinneri, had a 7% increase in As. Tibouchina heteromalla showed a rapid stomatal recovery of 2 mins, while Carapa guianensis was slower with 7 mins. This variability between species suggests that leaf traits, such as presence or absence of trichomes, water repellency, vein distribution and size and leaf angle variation, may be critical for optimizing photosynthesis under wet conditions. Relative humidity and leaf temperature were the strongest secondary influences on As and gs under wet leaf conditions. While tropical vegetation-atmosphere interactions are complex, such

  10. Improvement of rolling 6 mm thin plates in plate rolling mill PT. Krakatau Posco

    NASA Astrophysics Data System (ADS)

    Pujiyanto, Hamdani

    2017-01-01

    A 6-mm thin plate is difficult to produce especially if the product requires wide size and high strength. Flatness is the main quality issue in rolling 6-mm plate using a 4-high reversing mill which use ±1100-mm work roll. Thus some methods are applied to overcome such issue in order to comply to customer quality requirement. Pre-rolling, rolling, and post-rolling conditions have to be considered comprehensively. Roll unit management will be the key factor before rolling condition. The roll unit itself has a significant impact on work roll crown wearness in relation with work roll intial crown and thermal crown. Work roll crown along with the modification of hydraulic gap control (HGC) could directly alter the flatness of the plate.

  11. Do liquid drops roll or slide on inclined surfaces?

    PubMed

    Thampi, Sumesh P; Adhikari, Ronojoy; Govindarajan, Rama

    2013-03-12

    We study the motion of a two-dimensional droplet on an inclined surface, under the action of gravity, using a diffuse interface model which allows for arbitrary equilibrium contact angles. The kinematics of motion is analyzed by decomposing the gradient of the velocity inside the droplet into a shear and a residual flow. This decomposition helps in distinguishing sliding versus rolling motion of the drop. Our detailed study confirms intuition, in that rolling motion dominates as the droplet shape approaches a circle, and the viscosity contrast between the droplet and the ambient fluid becomes large. As a consequence of kinematics, the amount of rotation in a general droplet shape follows a universal curve characterized by geometry, and independent of Bond number, surface inclination and equilibrium contact angle, but determined by the slip length and viscosity contrast. Our results open the way toward a rational design of droplet-surface properties, both when rolling motion is desirable (as in self-cleaning hydrophobic droplets) and when it must be prevented (as in insecticide sprays on leaves).

  12. Fabrication of biomimetic superhydrophobic surfaces inspired by lotus leaf and silver ragwort leaf

    NASA Astrophysics Data System (ADS)

    Lin, Jinyou; Cai, Yu; Wang, Xianfeng; Ding, Bin; Yu, Jianyong; Wang, Moran

    2011-03-01

    Inspired by the self-cleaning lotus leaf and silver ragwort leaf, here we demonstrate the fabrication of biomimetic superhydrophobic fibrous mats via electrospinning polystyrene (PS) solution in the presence of silica nanoparticles. The resultant electrospun fiber surfaces exhibited a fascinating structure with the combination of nano-protrusions and numerous grooves due to the rapid phase separation in electrospinning. The content of silica nanoparticles incorporated into the fibers proved to be the key factor affecting the fiber surface morphology and hydrophobicity. The PS fibrous mats containing 14.3 wt% silica nanoparticles showed a stable superhydrophobicity with a water contact angle as high as 157.2°, exceeding that (147°) of the silver ragwort leaf and approaching that (160°) of the lotus leaf. The superhydrophobicity was explained by the hierarchical surfaces increasing the surface roughness which trapped more air under the water droplets that fell on the fibers.Inspired by the self-cleaning lotus leaf and silver ragwort leaf, here we demonstrate the fabrication of biomimetic superhydrophobic fibrous mats via electrospinning polystyrene (PS) solution in the presence of silica nanoparticles. The resultant electrospun fiber surfaces exhibited a fascinating structure with the combination of nano-protrusions and numerous grooves due to the rapid phase separation in electrospinning. The content of silica nanoparticles incorporated into the fibers proved to be the key factor affecting the fiber surface morphology and hydrophobicity. The PS fibrous mats containing 14.3 wt% silica nanoparticles showed a stable superhydrophobicity with a water contact angle as high as 157.2°, exceeding that (147°) of the silver ragwort leaf and approaching that (160°) of the lotus leaf. The superhydrophobicity was explained by the hierarchical surfaces increasing the surface roughness which trapped more air under the water droplets that fell on the fibers. Electronic

  13. Initiation of multi-leaf collimator conformal radiation therapy.

    PubMed

    Powlis, W D; Smith, A R; Cheng, E; Galvin, J M; Villari, F; Bloch, P; Kligerman, M M

    1993-01-15

    Clinical studies have been initiated in conformal radiotherapy using a computer controlled multi-leaf collimator. Quantitative dosimetry and treatment planning studies comparing field shaping by lead alloy blocks and the multi-leaf collimator demonstrate the clinical acceptability of the multi-leaf collimator. Sixteen patients with tumors in multiple sites have received some part of their treatments with both blocking systems. Studies of dosimetry and field shaping show that the multi-leaf collimator produces clinically acceptable blocking for most field shapes and disease sites. The 80-20% penumbra was characterized for a wide range of shaped beams. For straight edges perpendicular to the leaf travel, the penumbra of measured dose distributions from the multi-leaf collimator is equal to conventional divergent blocking. When the multi-leaf collimator leaves approach a contour at an angle, the penumbra increases. At forty-five degrees, the maximum angle of approach, the penumbra is approximately 4 mm wider than that for divergent blocks. Three-dimensional treatment planning demonstrates that equivalent dose distributions can be obtained from the two field shaping systems. The multi-leaf collimator can be used effectively and efficiently to treat a variety of disease sites. Its optimal utility may be in treating complex fields--five or more shaped coplanar or non-coplanar beams. It is well suited for conformal therapy applications.

  14. Roll-to-roll DBD plasma pretreated polyethylene web for enhancement of Al coating adhesion and barrier property

    NASA Astrophysics Data System (ADS)

    Zhang, Haibao; Li, Hua; Fang, Ming; Wang, Zhengduo; Sang, Lijun; Yang, Lizhen; Chen, Qiang

    2016-12-01

    In this paper the roll-to-roll atmospheric dielectric barrier discharge (DBD) was used to pre-treat polyethylene (PE) web surface before the conventional thermal evaporation aluminum (Al) was performed as a barrier layer. We emphasized the plasma environment effect based on the inlet three kinds of reactive monomers. The cross hatch test was employed to assess the Al coating adhesion; and the oxygen transmission rate (OTR) was used to evaluate gas barrier property. The results showed that after roll-to-roll DBD plasma treatment all Al coatings adhered strongly on PE films and were free from pinhole defects with mirror morphology. The OTR was reduced from 2673 cm3/m2 day for Al-coated original PE to 138 cm3/m2 day for Al-coated allyamine (C3H7N) modified PE. To well understand the mechanism the chemical compositions of the untreated and DBD plasma pretreated PE films were analyzed by X-ray photoelectron spectroscopy (XPS). The surface topography was characterized by atomic force microscopy (AFM). For the property of surface energy the water contact angle measurement was also carried out in the DBD plasma treated samples with deionized water.

  15. Texture and magnetic properties of non-oriented electrical steels processed by an unconventional cold rolling scheme

    NASA Astrophysics Data System (ADS)

    He, Youliang; Hilinski, Erik J.

    2016-05-01

    Two non-oriented electrical steels containing 0.9 wt% and 2.8 wt% of silicon were processed using an unconventional cold rolling scheme, i.e. the cold rolling direction (CRD) was intentionally inclined at an angle to the hot rolling direction (HRD) so that the initial texture before cold rolling and the rotation paths of crystals during cold deformation were both altered as compared to conventional cold rolling along the original HRD. The cold-rolled steel strips were then annealed, skin-pass rolled and final annealed. The texture and microstructure of the materials were characterized by X-ray diffraction (XRD), electron backscatter diffraction (EBSD) and optical microscopy, and considerable differences in average grain size and texture were observed at different inclination angles. The magnetic properties of the steel strips were measured at 400 Hz and 1.0 T/1.5 T using a specially designed Epstein frame, and apparent differences were also noticed at various angles. The magnetic quality of texture was evaluated using different texture factors/parameters and compared to the measured magnetic properties. Although apparent improvement on the magnetic quality of texture can be noted by inclining the CRD to HRD, the trend does not match the measured magnetic properties at 400 Hz, which may have been affected by other parameters in addition to crystallographic texture.

  16. Self-induced roll oscillations of low-aspect-ratio rectangular wings

    NASA Technical Reports Server (NTRS)

    Levin, Daniel; Katz, Joseph

    1990-01-01

    Experimental investigation of small aspect ratio rectangular wings mounted on a free-to-roll sting balance indicated that self-induced roll oscillations are possible when the aspect ratio of such wings is less than 0.5. The oscillations are probably driven by the periodic changes in the location and strength of the side edge vortices, as it has been shown for the 'wing rock' motion of delta wings, where similar changes in the leading edge vortex strength and position cause the roll oscillations. During the roll oscillation cycle the roll angle, normal force, and the side force were recorded and presented for three wings with aspect ratios of 0.25, 0.35, and 0.47. This data indicates that the lift loss during roll oscillations of rectangular wings is less than what was measured for similar delta wings. Also, the flow field of such slender rectangular wings at high angles of attack is more complicated due to the additional leading edge vortex, when compared with the flow field over slender delta wings.

  17. Resistance to Rolling in the Adhesive Contact of Two Elastic Spheres

    NASA Technical Reports Server (NTRS)

    Dominik, C.; Tielens, A. G. G. M.

    1995-01-01

    For the stability of agglomerates of micron sized particles it is of considerable importance to study the effects of tangential forces on the contact of two particles. If the particles can slide or roll easily over each other, fractal structures of these agglomerates will not be stable. We use the description of contact forces by Johnson, Kendall and Roberts, along with arguments based on the atomic structure of the surfaces in contact, in order to calculate the resistance to rolling in such a contact. It is shown that the contact reacts elastically to torque forces up to a critical bending angle. Beyond that, irreversible rolling occurs. In the elastic regime, the moment opposing the attempt to roll is proportional to the bending angle and to the pull-off force P(sub c). Young's modulus of the involved materials has hardly any influence on the results. We show that agglomerates of sub-micron sized particles will in general be quite rigid and even long chains of particles cannot be bent easily. For very small particles, the contact will rather break than allow for rolling. We further discuss dynamic properties such as the possibility of vibrations in this degree of freedom and the typical amount of rolling during a collision of two particles.

  18. Roll-to-Roll Nanoimprint Lithography Simulations for Flexible Substrates

    NASA Astrophysics Data System (ADS)

    Spann, Andrew; Jain, Akhilesh; Bonnecaze, Roger

    2015-11-01

    UV roll-to-roll nanoimprint lithography enables the patterning of features onto a flexible substrate for bendable electronics in a continuous process. One of the most important design goals in this process is to make the residual layer thickness of the photoresist in unpatterned regions as thin and uniform as possible. Another important goal is to minimize the imprint time to maximize throughput. We develop a multi-scale model to simulate the spreading of photoresist drops as the template is pressed against the substrate. We include the effect of capillary pressure on the bending of the substrate and show how this distorts uniformity in the residual thickness layer. Our simulation code is parallelized and can simulate the flow and merging of thousands of drops. We investigate the effect of substrate tension and the initial arrangement of drops on the residual layer thickness and imprint time. We find that for a given volume of photoresist, distributing that volume to more drops initially decreases the imprint time. We conclude with recommendations for scale-up and optimal operations of roll-to-roll nanoimprint lithography systems. The authors acknowledge the Texas Advanced Computing Center at The University of Texas at Austin for providing high performance computing resources.

  19. Climate Ready Estuaries Rolling Easements Primer

    EPA Pesticide Factsheets

    Rolling easements enable wetlands and beaches to migrate inland and allow society to avoid the costs and hazards of protecting low lands from rising sea levels. This document provides a primer on more than a dozen rolling easement approaches.

  20. Canopy bidirectional reflectance dependence on leaf orientation

    NASA Technical Reports Server (NTRS)

    Brakke, Thomas W.; Otterman, Joseph

    1990-01-01

    The dependence of the bidirectional reflectance (BR) on the inclination and azimuthal orientation of a leaf is analyzed, with the primary assumption that, in terms of both obscuration and shadowing, the entire canopy consists of the same leaves. The BR patterns of a dense canopy are examined as a function of canopy architecture. It is assumed that the leaves are opaque Lambertian reflectors, having identical orientation and relfecting properties throughout the canopy, and distributed randomly with respect to the the irradiation field and the viewing direction. Analytical expressions are presented and analyzed for the BR factor. It is noted that maximal BR occurs at large viewing zenith angles. A complex and often steep dependence of the BR on azimuthal location is reported, noting that the BR thus depends on the leaf azimuth as well as the zenith angle. It is concluded that the question of azimuthal distribution has to be addressed when conducting model inversions to infer canopy characteristics and architecture.

  1. Analysis of the effects of wing interference on the tail contributions to the rolling derivatives

    NASA Technical Reports Server (NTRS)

    Michael, William H , Jr

    1952-01-01

    An analysis of the effects of wing interference on the tail contributions to the rolling stability derivatives of complete airplane configurations is made by calculating the angularity of the air stream at the vertical tail due to rolling and determining the resulting forces and moments. Some of the important factors which affect the resultant angularity on the vertical tail are wing aspect ratio and sweepback, vertical-tail span, and considerations associated with angle of attack and airplane geometry. Some calculated sidewash results for a limited range of plan forms and vertical-tail sizes are presented. Equations taking into account the sidewash results are given for determining the tail contributions to the rolling derivatives. Comparisons of estimated and experimental results indicate that a consideration of wing interference effects improves the estimated values of the tail contributions to the rolling derivatives and that fair agreement with available experimental data is obtained.

  2. Theoretical development of a simplified wheelset model to evaluate collision-induced derailments of rolling stock

    NASA Astrophysics Data System (ADS)

    Koo, Jeong Seo; Choi, Se Young

    2012-06-01

    A theoretical method is proposed to predict and evaluate collision-induced derailments of rolling stock by using a simplified wheelset model and is verified with dynamic simulations. Because the impact forces occurring during collision are transmitted from the car body to the bogies and axles through suspensions, rolling stock leads to derailment as a result of the combination of horizontal and vertical impact forces applied to the axle and a simplified wheelset model enforced at the axle can be used to theoretically formulate derailment behaviors. The derailment type depends on the combination of the horizontal and vertical forces, the flange angle and the friction coefficient. According to collision conditions, wheel-climb, wheel-lift or roll-over derailment can occur between the wheel and the rail. In this theoretical derailment model of a simplified wheelset, the derailment types are classified as Slip-up, Slip/roll-over, Climb-up, Climb/roll-over and pure Roll-over according to the derailment mechanisms between the wheel and the rail and the theoretical conditions needed to generate each derailment mechanism are proposed. The theoretical wheelset model is verified by dynamic simulation and its applicability is demonstrated by comparing the simulation results of the theoretical wheelset model with those of an actual wheelset model. The theoretical derailment wheelset model is in good agreement with the virtual testing model simulation for a collision-induced derailment of rolling stock.

  3. Rolling moment response of a wing-body to stagnation point actuation

    NASA Astrophysics Data System (ADS)

    Darden, Leigh-Ann

    1997-08-01

    Vehicles at high angle of attack experience unwanted lateral moments due to asymmetry of the forebody vortices. In order to extend the flight envelope of high performance aircraft, it is necessary to understand and control these moments. This thesis explores the use of a stagnation point actuator (SPA) to achieve desired lateral moments from forebody vortex control. The SPA is a miniature movable nosetip that rotates in the yaw plane. It creates a geometric microasymmetry which biases the growth of the stagnation region boundary layer and hence controls the origin of the forebody vortices. The control effectiveness of the SPA and the flow mechanisms which create the lateral forces and moments were studied on a delta wing-body of revolution model of aspect ratio 2.0. Flow visualization proved the effectiveness of the SPA in static and dynamic control of forebody vortex asymmetry for angles of attack from 20sp° to 50sp°. The rolling moment response, incorporating the effects of all interactions, was used to study control effectiveness and response time scales. In roll-constrained experiments at bank angles ranging from {-}5sp° to +5sp°, measurements were made of rolling moment, forebody lateral pressure difference, and the time scales of the system response. Free-to-roll experiments were used to explore the roll motion response to SPA excitation and the onset and control of wing rock. The effects of wing interaction with the forebody vortices and wind tunnel wall proximity on the vortex response were studied. Frequency domain analysis shows that the asymmetry in the flowfield is causally and linearly related to stagnation point displacement. The lateral pressure difference is a high fidelity metric of asymmetry, with a time lag substantially higher than that explained by freestream convection. Though complex, the rolling moment response is piece-wise linear within families of angle of attack and bank angle. The system response is successfully simulated by a two

  4. High performance rolling element bearing

    NASA Technical Reports Server (NTRS)

    Bursey, Jr., Roger W. (Inventor); Olinger, Jr., John B. (Inventor); Owen, Samuel S. (Inventor); Poole, William E. (Inventor); Haluck, David A. (Inventor)

    1993-01-01

    A high performance rolling element bearing (5) which is particularly suitable for use in a cryogenically cooled environment, comprises a composite cage (45) formed from glass fibers disposed in a solid lubricant matrix of a fluorocarbon polymer. The cage includes inserts (50) formed from a mixture of a soft metal and a solid lubricant such as a fluorocarbon polymer.

  5. Rolling Tachyon in Nonlocal Cosmology

    SciTech Connect

    Joukovskaya, L.

    2007-11-20

    Nonlocal cosmological models derived from String Field Theory are considered. A new method for constructing rolling tachyon solutions in the FRW metric in two field configuration is proposed and solutions of the Friedman equations with nonlocal operator are presented. The cosmological properties of these solutions are discussed.

  6. Towing tank tests for surface combatant for coupled pitch and heave and free roll decay motions

    NASA Astrophysics Data System (ADS)

    Irvine, Martin, Jr.

    Towing-tank experiments are performed for an advancing surface combatant in free roll decay and coupled pitch and heave motions. For free roll decay experiments, results are presented for motions (surge, sway, heave, roll, pitch and yaw), forces (resistance, sway and heave), moments (pitch and yaw), phase-averaged velocities (U, V and W) for measurement region near bilge keel and free surface elevations. For coupled pitch and heave experiments, results are presented for pitch and heave transfer functions, and pitch and heave phase angles. The geometry of interest is DTMB model 5512, which is a 1/46.6 scale geosym of DTMB model 5415 (DDG-51), with L = 3.048 m. The experiments are performed in a 3 x 3 x 100m towing tank equipped with a plunger-type wavemaker. The measurement systems include Krypton contactless motion tracker, 4-component load cell, towed 2-D particle image velocimetry (PIV) system, and servo wave probes with 2-D traverse. Uncertainty assessment following standard procedures is used to evaluate the quality of the data. Pitch and heave transfer functions and phase angles collapse to a single value independent of wave steepness. Free roll decay results show the addition of bilge keels to a ship model increases roll period and roll damping. Results show non-linear roll decay for Fr ≤ 0.138, a transition region for 0.190 ≤ Fr ≤ 0.340, and linear roll decay for Fr ≥ 0.410 for both without and with bilge keels. Phase-averaged flow-field velocity results show the evolution and subsequent decay of the bilge keel vortex. The vortex trails the motion of the bilge keel rotating clockwise for counter-clockwise model rotation (rolling to port) and rotates counter-clockwise for clockwise model rotation (rolling to starboard). The phase-averaged wave-field resembles the steady wave pattern (Kelvin wave pattern) with a superimposed oscillation due to the rolling motion of the model. As the model rolls, alternating crests and troughs radiate from the hull

  7. Modulation of internal estimates of gravity during and after prolonged roll-tilts.

    PubMed

    Tarnutzer, Alexander A; Bertolini, Giovanni; Bockisch, Christopher J; Straumann, Dominik; Marti, Sarah

    2013-01-01

    Perceived direction of gravity, as assessed by the subjective visual vertical (SVV), shows roll-angle dependent errors that drift over time and a bias upon return to upright. According to Bayesian observer theory, the estimated direction of gravity is derived from the posterior probability distribution by combining sensory input and prior knowledge about earth-vertical in a statistically optimal fashion. Here we aimed to further characterize the stability of SVV during and after prolonged roll-tilts. Specifically we asked whether the post-tilt bias is related to the drift pattern while roll-tilted. Twenty-nine healthy human subjects (23-56 yo) repetitively adjusted a luminous arrow to the SVV over periods of 5 min while upright, roll-tilted (± 45°, ± 90°), and immediately after returning to upright. Significant (p<0.05) drifts (median absolute drift-amplitude: 10°/5 min) were found in 71% (± 45°) and 78% (± 90°) of runs. At ± 90° roll-tilt significant increases in absolute adjustment errors were more likely (76%), whereas significant increases (56%) and decreases (44%) were about equally frequent at ± 45°. When returning to upright, an initial bias towards the previous roll-position followed by significant exponential decay (median time-constant: 71 sec) was noted in 47% of all runs (all subjects pooled). No significant correlations were found between the drift pattern during and immediately after prolonged roll-tilt. We conclude that the SVV is not stable during and after prolonged roll-tilt and that the direction and magnitude of drift are individually distinct and roll-angle-dependent. Likely sensory and central adaptation and random-walk processes contribute to drift while roll-tilted. Lack of correlation between the drift and the post-tilt bias suggests that it is not the inaccuracy of the SVV estimate while tilted that determines post-tilt bias, but rather the previous head-roll orientation relative to gravity. We therefore favor central

  8. Pulvinus activity, leaf movement and leaf water-use efficiency of bush bean ( Phaseplus vulgaris L.) in a hot environment

    NASA Astrophysics Data System (ADS)

    Raeini-Sarjaz, Mahmoud; Chalavi, Vida

    2008-11-01

    Pulvinus activity of Phaseolus species in response to environmental stimuli plays an essential role in heliotropic leaf movement. The aims of this study were to monitor the continuous daily pulvinus movement and pulvinus temperature, and to evaluate the effects of leaf movements, on a hot day, on instantaneous leaf water-use efficiency (WUEi), leaf gas exchange, and leaf temperature. Potted plants of Phaseolus vulgaris L. var. Provider were grown in Chicot sandy loam soil under well-watered conditions in a greenhouse. When the second trifoliate leaf was completely extended, one plant was selected to measure pulvinus movement using a beta-ray gauging (BRG) meter with a point source of thallium-204 (204Tl). Leaf gas exchange measurements took place on similar leaflets of three plants at an air temperature interval of 33-42°C by a steady-state LI-6200 photosynthesis system. A copper-constantan thermocouple was used to monitor pulvinus temperature. Pulvinus bending followed the daily diurnal rhythm. Significant correlations were found between the leaf-incident angle and the stomatal conductance ( R 2 = 0.54; P < 0.01), and photosynthesis rate ( R 2 = 0.84; P < 0.01). With a reduction in leaf-incidence angle and increase in air temperature, WUEi was reduced. During the measurements, leaf temperature remained below air temperature and was a significant function of air temperature ( r = 0.92; P < 0.01). In conclusion, pulvinus bending followed both light intensity and air temperature and influenced leaf gas exchange.

  9. One-zone rolling of composite materials

    NASA Astrophysics Data System (ADS)

    Kokhan, L. S.; Morozov, Yu. A.; Slavgorodskaya, Yu. B.

    2016-12-01

    The energy-force parameters of free rolling of a strip without its tension and rolling with one backward or forward creep zone in the deformation zone are compared. The limiting backward or forward tensions are determined, and the change in the linear sizes of a composite billet during deformation in a rolling mill is considered.

  10. Prediction of Rolling Force Using AN Adaptive Neural Network Model during Cold Rolling of Thin Strip

    NASA Astrophysics Data System (ADS)

    Xie, H. B.; Jiang, Z. Y.; Tieu, A. K.; Liu, X. H.; Wang, G. D.

    Customers for cold rolled strip products expect the good flatness and surface finish, consistent metallurgical properties and accurate strip thickness. These requirements demand accurate prediction model for rolling parameters. This paper presents a set-up optimization system developed to predict the rolling force during cold strip rolling. As the rolling force has the very nonlinear and time-varying characteristics, conventional methods with simple mathematical models and a coarse learning scheme are not sufficient to achieve a good prediction for rolling force. In this work, all the factors that influence the rolling force are analyzed. A hybrid mathematical roll force model and an adaptive neural network have been improved by adjusting the adaptive learning algorithm. A good agreement between the calculated results and measured values verifies that the approach is applicable in the prediction of rolling force during cold rolling of thin strips, and the developed model is efficient and stable.

  11. A new angle on the Euler angles

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Shuster, Malcolm D.

    1995-01-01

    We present a generalization of the Euler angles to axes beyond the twelve conventional sets. The generalized Euler axes must satisfy the constraint that the first and the third are orthogonal to the second; but the angle between the first and third is arbitrary, rather than being restricted to the values 0 and pi/2, as in the conventional sets. This is the broadest generalization of the Euler angles that provides a representation of an arbitrary rotation matrix. The kinematics of the generalized Euler angles and their relation to the attitude matrix are presented. As a side benefit, the equations for the generalized Euler angles are universal in that they incorporate the equations for the twelve conventional sets of Euler angles in a natural way.

  12. Mixed convective/dynamic roll vortices and their effects on initial wind and temperature profiles

    NASA Technical Reports Server (NTRS)

    Haack, Tracy; Shirer, Hampton N.

    1991-01-01

    The onset and development of both dynamically and convectively forced boundary layer rolls are studied with linear and nonlinear analyses of a truncated spectral model of shallow Boussinesq flow. Emphasis is given here on the energetics of the dominant roll modes, on the magnitudes of the roll-induced modifications of the initial basic state wind and temperature profiles, and on the sensitivity of the linear stability results to the use of modified profiles as basic states. It is demonstrated that the roll circulations can produce substantial changes to the cross-roll component of the initial wind profile and that significant changes in orientation angle estimates can result from use of a roll-modified profile in the stability analysis. These results demonstrate that roll contributions must be removed from observed background wind profiles before using them to investigate the mechanisms underlying actual secondary flows in the boundary layer. The model is developed quite generally to accept arbitrary basic state wind profiles as dynamic forcing. An Ekman profile is chosen here merely to provide a means for easy comparison with other theoretical boundary layer studies; the ultimate application of the model is to study observed boundary layer profiles. Results of the analytic stability analysis are validated by comparing them with results from a larger linear model. For an appropriate Ekman depth, a complete set of transition curves is given in forcing parameter space for roll modes driven both thermally and dynamically. Preferred orientation angles, horizontal wavelengths and propagation frequencies, as well as energetics and wind profile modifications, are all shown to agree rather well with results from studies on Ekman layers as well as with studies on near-neutral and convective atmospheric boundary layers.

  13. Grain Boundary Evolution of Cold-Rolled FePd Alloy during Recrystallization at Disordering Temperature

    PubMed Central

    Lin, Hung-Pin; Chen, Delphic; Kuo, Jui-Chao

    2015-01-01

    In this study, the grain boundary character and texture of 50% and 90% cold-rolled FePd alloy was investigated during recrystallization at 700 °C. Electron backscatter diffraction (EBSD) measurements were performed on the rolling direction to normal direction section. Kernel average misorientation (KAM) calculated from EBSD measurements was employed to determine the recrystallization fraction. The Avrami exponent n of recrystallization is 1.9 and 4.9 for 50% and 90% cold rolling, respectively. The new formation of texture reveals random texture during the recrystallization process. As annealing time increased, the number of high angle boundary (HAGB) and coincidence site lattice (CSL) increased with consumption of low angle boundary (LAGB). In addition, possible transformations between different grain boundaries are observed here.

  14. The Discovery of Rolling Circle Amplification and Rolling Circle Transcription.

    PubMed

    Mohsen, Michael G; Kool, Eric T

    2016-11-15

    Nucleic acid amplification is a hugely important technology for biology and medicine. While the polymerase chain reaction (PCR) has been highly useful and effective, its reliance on heating and cooling cycles places some constraints on its utility. For example, the heating step of PCR can destroy biological molecules under investigation and heat/cool cycles are not applicable in living systems. Thus, isothermal approaches to DNA and RNA amplification are under widespread study. Perhaps the simplest of these are the rolling circle approaches, including rolling circle amplification (RCA) and rolling circle transcription (RCT). In this strategy, a very small circular oligonucleotide (e.g., 25-100 nucleotides in length) acts as a template for a DNA or an RNA polymerase, producing long repeating product strands that serve as amplified copies of the circle sequence. Here we describe the early developments and studies involving circular oligonucleotides that ultimately led to the burgeoning rolling circle technologies currently under development. This Account starts with our studies on the design of circular oligonucleotides as novel DNA- and RNA-binding motifs. We describe how we developed chemical and biochemical strategies for synthesis of well-defined circular oligonucleotides having defined sequence and open (unpaired) structure, and we outline the unusual ways in which circular DNAs can interact with other nucleic acids. We proceed next to the discovery of DNA and RNA polymerase activity on these very small cyclic DNAs. DNA polymerase "rolling circle" activities were discovered concurrently in our laboratory and that of Andrew Fire. We describe the surprising efficiency of this process even on shockingly small circular DNAs, producing repeating DNAs thousands of nucleotides in length. RNA polymerase activity on circular oligonucleotides was first documented in our group in 1995; especially surprising in this case was the finding that the process occurs efficiently

  15. A method for determining the gantry angle for megavoltage cone beam imaging.

    PubMed

    Sillanpaa, J; Chang, J; Amols, H; Mageras, G

    2005-02-01

    Accurate knowledge of gantry angle is essential in megavoltage cone beam imaging (MVCBI) with an electronic portal imager. We present a method for determining the gantry angle by detecting multileaf collimator (MLC) leaf positions in projection images. During image acquisition the gantry moves continuously and the MLC operates in dynamic arc mode. Our algorithm detects the leaf positions in the images and compares them with a stationary reference leaf. Comparison of the algorithm against angles determined from the locations of fiducial markers shows the accuracy (0.26 degrees rms error) to be sufficient for MVCBI.

  16. Human ocular counter-rolling and roll tilt perception during off-vertical axis rotation after spaceflight.

    PubMed

    Clément, Gilles; Denise, Pierre; Reschke, Millard F; Wood, Scott J

    2007-01-01

    Ocular counter-rolling (OCR) induced by whole body tilt in roll has been explored after spaceflight as an indicator of the adaptation of the otolith function to microgravity. It has been claimed that the overall pattern of OCR responses during static body tilt after spaceflight is indicative of a decreased role of the otolith function, but the results of these studies have not been consistent, mostly due to large variations in the OCR within and across individuals. By contrast with static head tilt, off-vertical axis rotation (OVAR) presents the advantage of generating a sinusoidal modulation of OCR, allowing averaged measurements over several cycles, thus improving measurement accuracy. Accordingly, OCR and the sense of roll tilt were evaluated in seven astronauts before and after spaceflight during OVAR at 45 degrees/s in darkness at two angles of tilt (10 degrees and 20 degrees). There was no significant difference in OCR during OVAR immediately after landing compared to preflight. However, the amplitude of the perceived roll tilt during OVAR was significantly larger immediately postflight, and then returned to control values in the following days. Since the OCR response is predominantly attributed to the shearing force exerted on the utricular macula, the absence of change in OCR postflight suggests that the peripheral otolith organs function normally after short-term spaceflight. However, the increased sense of roll tilt indicates an adaptation in the central processing of gravitational input, presumably related to a re-weighting of the internal representation of gravitational vertical as a result of adaptation to microgravity.

  17. Influence of process parameters on the microstructural evolution of a rear axle tube during cross wedge rolling

    NASA Astrophysics Data System (ADS)

    Ma, Jia-wei; Yang, Cui-ping; Zheng, Zhen-hua; Zhang, Kang-sheng; Ma, Wen-yu

    2016-11-01

    In the shaping process of cross wedge rolling (CWR), metal undergoes a complex microstructural evolution, which affects the quality and mechanical properties of the product. Through secondary development of the DEFORM-3D software, we developed a rigid plastic finite element model for a CWR-processed rear axle tube, coupled with thermomechanical and microstructural aspects of workpieces. Using the developed model, we investigated the microstructural evolution of the CWR process. Also, the influence of numerous parameters, including the initial temperature of workpieces, the roll speed, the forming angle, and the spreading angle, on the grain size and the grain-size uniformity of the rolled workpieces was analyzed. The numerical simulation was verified through rolling and metallographic experiments. Good agreement was obtained between the calculated and experimental results, which demonstrated the reliability of the model constructed in this work.

  18. Navier-Stokes prediction of large-amplitude forced and free-to-roll delta-wing oscillations

    NASA Technical Reports Server (NTRS)

    Chaderjian, Neal M.; Schiff, Lewis B.

    1994-01-01

    The three-dimensional Reynolds-averaged, Navier-Stokes (RANS) equations are used to numerically simulate nonsteady vortical flow about a 65 degree sweep delta wing at 30 degrees angle of attack. Two large-amplitude, high-rate, forced-roll motions and a damped free-to-roll motion are presented. The free-to-roll motion is computed by coupling the time-dependent RANS equations to the flight dynamic equation of motion. The computed results are compared with experimental forces, moments, and roll-angle time histories. The overall agreement is good. Vortex breakdown is present in each case, which causes significant time lags in the vortex breakdown motions relative to the body motions. This behavior strongly influences the dynamic forces and moments.

  19. Wind-tunnel investigation at supersonic speeds of a remote-controlled canard missile with a free-rolling-tail brake torque system

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.

    1985-01-01

    Wind tunnel tests were conducted at Mach numbers 1.70, 2.16, and 2.86 to determine the static aerodynamic characteristics of a cruciform canard-controlled missile with fixed or free rolling tailfin afterbodies. Mechanical coupling effects of the free-rolling-tail afterbody were investigated by using an electronic electromagnetic brake system providing arbitrary tail-fin brake torques with continuous measurements of tail-to-mainframe torque and tail roll rate. Remote-controlled canards were deflected to provide pitch, yaw, and roll control. Results indicate that the induced rolling moment coefficients due to canard yaw control are reduced and linearized for the free-rolling-tail (free-tail) configuration. The canards of the latter provide conventional roll control for the entire angle-of-attack test range. For the free-tail configuration, the induced rolling moment coefficient due to canard yaw control increased and the canard roll control decreased with increases in brake torque, which simulated bearing friction torque. It appears that a compromise in regard to bearing friction, for example, low-cost bearings with some friction, may allow satisfactory free-tail aerodynamic characteristics that include reductions in adverse rolling-moment coefficients and lower tail roll rates.

  20. A review of roll-to-roll nanoimprint lithography.

    PubMed

    Kooy, Nazrin; Mohamed, Khairudin; Pin, Lee Tze; Guan, Ooi Su

    2014-01-01

    Since its introduction in 1995, nanoimprint lithography has been demonstrated in many researches as a simple, low-cost, and high-throughput process for replicating micro- and nanoscale patterns. Due to its advantages, the nanoimprint lithography method has been rapidly developed over the years as a promising alternative to conventional nanolithography processes to fulfill the demands generated from the recent developments in the semiconductor and flexible electronics industries, which results in variations of the process. Roll-to-roll (R2R) nanoimprint lithography (NIL) is the most demanded technique due to its high-throughput fulfilling industrial-scale application. In the present work, a general literature review on the various types of nanoimprint lithography processes especially R2R NIL and the methods commonly adapted to fabricate imprint molds are presented to provide a clear view and understanding on the nanoimprint lithography technique as well as its recent developments. 81.16.Nd.

  1. A review of roll-to-roll nanoimprint lithography

    PubMed Central

    2014-01-01

    Since its introduction in 1995, nanoimprint lithography has been demonstrated in many researches as a simple, low-cost, and high-throughput process for replicating micro- and nanoscale patterns. Due to its advantages, the nanoimprint lithography method has been rapidly developed over the years as a promising alternative to conventional nanolithography processes to fulfill the demands generated from the recent developments in the semiconductor and flexible electronics industries, which results in variations of the process. Roll-to-roll (R2R) nanoimprint lithography (NIL) is the most demanded technique due to its high-throughput fulfilling industrial-scale application. In the present work, a general literature review on the various types of nanoimprint lithography processes especially R2R NIL and the methods commonly adapted to fabricate imprint molds are presented to provide a clear view and understanding on the nanoimprint lithography technique as well as its recent developments. PACS 81.16.Nd PMID:25024682

  2. A rolling 3-UPU parallel mechanism

    NASA Astrophysics Data System (ADS)

    Miao, Zhihuai; Yao, Yan'an; Kong, Xianwen

    2013-12-01

    A novel rolling mechanism is proposed based on a 3-UPU parallel mechanism in this paper. The rolling mechanism is composed of two platforms connected by three UPU (universal-prismatic-universal) serial-chain type limbs. The degree-of-freedom of the mechanism is analyzed using screw theory. Gait analysis and stability analysis are presented in detail. Four rolling modes of the mechanism are discussed and simulated. The feasibility of the rolling mechanism is verified by means of a physical prototype. Finally, its terrain adaptability is enhanced through planning the rolling gaits.

  3. Reconstruction of constant slow-roll inflation

    NASA Astrophysics Data System (ADS)

    Gao, Qing

    2017-09-01

    Using the relations between the slow-roll parameters and the power spectra for the single field slow-roll inflation, we derive the scalar spectral tilt n s and the tensor to scalar ratio r for the constant slow-roll inflation, and obtain the constraint on the slow-roll parameter η from the Planck 2015 results. The inflationary potential for the constant slow-roll inflation is then reconstructed in the framework of both general relativity and the scalar-tensor theory of gravity, and compared with the recently reconstructed E model potential. In the strong coupling limit, we show that the η attractor is reached.

  4. 75 FR 65453 - Certain Hot-Rolled Flat-Rolled Carbon Quality Steel Flat Products From Brazil: Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-25

    ... International Trade Administration Certain Hot-Rolled Flat-Rolled Carbon Quality Steel Flat Products From Brazil... duty order on certain hot-rolled flat-rolled carbon quality steel flat products (hot-rolled steel) from Brazil. The review covers four producers/exporters of hot-rolled steel from Brazil, all mandatory...

  5. 76 FR 22868 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil: Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ... International Trade Administration Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil... certain hot-rolled flat-rolled carbon- quality steel products (HRS) from Brazil for the period January 1...: Background Since the issuance of Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil...

  6. Towards roll-to-roll manufacturing of polymer photonic devices

    NASA Astrophysics Data System (ADS)

    Subbaraman, Harish; Lin, Xiaohui; Ling, Tao; Guo, L. Jay; Chen, Ray T.

    2014-03-01

    Traditionally, polymer photonic devices are fabricated using clean-room processes such as photolithography, e-beam lithography, reactive ion etching (RIE) and lift-off methods etc, which leads to long fabrication time, low throughput and high cost. We have utilized a novel process for fabricating polymer photonic devices using a combination of imprinting and ink jet printing methods, which provides high throughput on a variety of rigid and flexible substrates with low cost. We discuss the manufacturing challenges that need to be overcome in order to realize true implementation of roll-to-roll manufacturing of flexible polymer photonic systems. Several metrology and instrumentation challenges involved such as availability of particulate-free high quality substrate, development and implementation of high-speed in-line and off-line inspection and diagnostic tools with adaptive control for patterned and unpatterned material films, development of reliable hardware, etc need to be addressed and overcome in order to realize a successful manufacturing process. Due to extreme resolution requirements compared to print media, the burden of software and hardware tools on the throughput also needs to be carefully determined. Moreover, the effect of web wander and variations in web speed need to accurately be determined in the design of the system hardware and software. In this paper, we show the realization of solutions for few challenges, and utilizing these solutions for developing a high-rate R2R dual stage ink-jet printer that can provide alignment accuracy of <10μm at a web speed of 5m/min. The development of a roll-to-roll manufacturing system for polymer photonic systems opens limitless possibilities for the deployment of high performance components in a variety of applications including communication, sensing, medicine, agriculture, energy, lighting etc.

  7. Rubber rolling over a sphere

    NASA Astrophysics Data System (ADS)

    Koiller, J.; Ehlers, K.

    2007-04-01

    “Rubber” coated bodies rolling over a surface satisfy a no-twist condition in addition to the no slip condition satisfied by “marble” coated bodies [1]. Rubber rolling has an interesting differential geometric appeal because the geodesic curvatures of the curves on the surfaces at corresponding points are equal. The associated distribution in the 5 dimensional configuration space has 2 3 5 growth (these distributions were first studied by Cartan; he showed that the maximal symmetries occurs for rubber rolling of spheres with 3:1 diameters ratio and materialize the exceptional group G 2). The 2 3 5 nonholonomic geometries are classified in a companion paper [2] via Cartan’s equivalence method [3]. Rubber rolling of a convex body over a sphere defines a generalized Chaplygin system [4 8] with SO(3) symmetry group, total space Q = SO(3) × S 2 and base S 2, that can be reduced to an almost Hamiltonian system in T* S 2 with a non-closed 2-form ωNH. In this paper we present some basic results on the sphere-sphere problem: a dynamically asymmetric but balanced sphere of radius b (unequal moments of inertia I j but with center of gravity at the geometric center), rubber rolling over another sphere of radius a. In this example ωNH is conformally symplectic [9]: the reduced system becomes Hamiltonian after a coordinate dependent change of time. In particular there is an invariant measure, whose density is the determinant of the reduced Legendre transform, to the power p = 1/2( b/a - 1). Using sphero-conical coordinates we verify the result by Borisov and Mamaev [10] that the system is integrable for p = -1/2 (ball over a plane). They have found another integrable case [11] corresponding to p = -3/2 (rolling ball with twice the radius of a fixed internal ball). Strikingly, a different set of sphero-conical coordinates separates the Hamiltonian in this case. No other integrable cases with different I j are known.

  8. Roll Casting of Al-25%Si

    SciTech Connect

    Haga, Toshio; Harada, Hideto; Watari, Hisaki

    2011-05-04

    Strip casting of Al-25%Si strip was tried using an unequal diameter twin roll caster. The diameter of the lower roll (large roll) was 1000 mm and the diameter of the upper roll (small roll) was 250 mm. Roll material was mild steel. The sound strip could be cast at the speeds ranging from 8 m/min to 12 m/min. The strip did not stick to the roll without the parting material. The primary Si, which existed at centre area of the thickness direction, was larger than that which existed at other area. The size of the primary Si was smaller than 0.2 mm. Eutectic Si was smaller 5 {mu}m. The as-cast strip was ranging from 2 mm to 3 mm thick and its width was 100 mm. The as-cast strip could be hot rolled down to 1 mm. The hot rolled strip was cold rolled. The primary Si became smaller and the pore occurred around the primary Si after the rolling.

  9. Leaf Size in Swietenia

    Treesearch

    Charles B. Briscoe; F. Bruce. Lamb

    1962-01-01

    A study was made of the putative hybrid of bigleaf and small-leaf mahoganies. Initial measurements indicated that bigleaf mahogany can be distinguished from small-leaf mahogany by gross measurements of leaflets. Isolated mother trees yield typical progeny. Typical mother trees in mixed stands yield like progeny plus, usually, mediumleaf progeny. Mediumleaf mother trees...

  10. Two blowing concepts for roll and lateral control of aircraft

    NASA Technical Reports Server (NTRS)

    Tavella, D. A.; Wood, N. J.; Lee, C. S.; Roberts, L.

    1986-01-01

    Two schemes to modulate aerodynamic forces for roll and lateral control of aircraft have been investigated. The first scheme, called the lateral blowing concept, consists of thin jets of air exiting spanwise, or at small angle with the spanwise direction, from slots at the tips of straight wings. For this scheme, in addition to experimental measurements, a theory was developed showing the analytical relationship between aerodynamic forces and jet and wing parameters. Experimental results confirmed the theoretically derived scaling laws. The second scheme, which was studied experimentally, is called the jet spoiler concept and consists of thin jets exiting normally to the wing surface from slots aligned with the spanwise direction.

  11. Tribological Testing of Anti-Adhesive coatings for Cold Rolling Mill Rolls--Application to TiN-Coated Rolls

    SciTech Connect

    Ould, Choumad; Montmitonnet, Pierre; Gachon, Yves; Badiche, Xavier

    2011-05-04

    Roll life is a major issue in cold strip rolling. Roll wear may result either in too low roll roughness, bringing friction below the minimum requested for strip entrainment; or it may degrade strip surface quality. On the contrary, adhesive wear and transfer (''roll coating'', ''pick up'') may form a thick metallic deposits on the roll which increases friction excessively and degrades strip surface again [1]. The roll surface, with the help of a materials-adapted lubricant, must therefore possess anti-wear and anti-adhesive properties. Thus, High Speed Steeel (HSS) rolls show superior properties compared with standard Cr-steel rolls due to their high carbide surface coverage. Another way to improve wear and adhesion properties of surfaces is to apply hard metallic (hard-Cr) or ceramic coatings. Chromium is renowned for its excellent anti-wear and anti-adhesive properties and may serve as a reference. Here, as a first step towards alternative, optimised coatings, a PVD TiN coating has been deposited on tool steels, as previous attempts have proved TiN to be rather successful in cold rolling experiments [2,3]. Different tribological tests are reported here, giving insight in both anti-adhesive properties and fatigue life improvement.

  12. Slow-roll thawing quintessence

    SciTech Connect

    Chiba, Takeshi

    2009-04-15

    We derive slow-roll conditions for thawing quintessence. We solve the equation of motion of {phi} for a Taylor expanded potential (up to the quadratic order) in the limit where the equation of state w is close to -1 to derive the equation of state as a function of the scale factor. We find that the evolution of {phi} and hence w are described by only two parameters. The expression for w(a), which can be applied to general thawing models, coincides precisely with that derived recently by Dutta and Scherrer for hilltop quintessence. The consistency conditions of |w+1|<<1 are derived. The slow-roll conditions for freezing quintessence are also derived.

  13. Rolling process and its influence analysis on hot continuous rolling mill vibration

    NASA Astrophysics Data System (ADS)

    Fan, Xiaobin; Zang, Yong; Jin, Ke

    2016-12-01

    Rolling mill vibration is a worldwide problem, although it has been found that the mill structure defects are the main cause of vibration, but the inhibition measures are difficult to implement. So we discussed the rolling force parameters influence on rolling mill vibration and suppression measures from rolling technology in this article. The results show that the rolling force is increased as the reduction ratio and speed increases, and decreases with the increase in temperature; reduction ratio has more obvious influence than rolling temperature and speed, so we should give priority to the reduction allocation in production. Rolled strip is thinner; the self-excited relations in mill system are stronger, namely the stability of the rolling mill is poor and mill vibration would more likely produce. The comprehensive field tests and analysis were carried out, and it shows that roll horizontal vibration and torsional vibration have less relationship and the mechanism between horizontal and vertical vibration is same.

  14. A model for leaf initiation

    PubMed Central

    Abraham-Shrauner, Barbara; Pickard, Barbara G

    2011-01-01

    A biophysical model is proposed for how leaf primordia are positioned on the shoot apical
    meristem in both spiral and whorl phyllotaxes. Primordia are initiated by signals that propagate
    in the epidermis in both azimuthal directions away from the cotyledons or the most recently
    specified primordia. The signals are linear waves as inferred from the spatial periodicity of the
    divergence angle and a temporal periodicity. The periods of the waves, which represent actively
    transported auxin, are much smaller than the plastochron interval. Where oppositely directed
    waves meet at one or more angular positions on the periphery of the generative circle, auxin
    concentration builds and as in most models this stimulates local movement of auxin to
    underlying cells, where it promotes polarized cell division and expansion. For higher order
    spirals the wave model requires asymmetric function of auxin transport; that is, opposite wave
    speeds differ. An algorithm for determination of the angular positions of leaves in common leaf
    phyllotaxic configurations is proposed. The number of turns in a pattern repeat, number of leaves
    per level and per pattern repeat, and divergence angle are related to speed of auxin transport and
    radius of the generative circle. The rule for composition of Fibonacci or Lucas numbers
    associated with some phyllotaxes is discussed. A subcellular model suggests how the shoot
    meristem might specify either symmetric or asymmetric transport of auxin away from the
    forming primordia that produce it. Biological tests that could make or break the mathematical
    and molecular hypotheses are proposed. PMID:22212121

  15. Roll force, torque, lever arm coefficient, and strain distribution in edge rolling

    NASA Astrophysics Data System (ADS)

    Lundberg, S.-E.; Gustafsson, T.

    1993-12-01

    Due to the growing importance of width control in strip and plate mills, edge rolling is currently an im-portant process in hot rolling mills. Research in edge rolling has been carried out, and in the present ar-ticle, models for roll force, torque, and lever arm coefficient are derived using the upper bound method. A simple, kinematically admissible deformation zone and velocity field, independent of friction in the roll gap, is proposed, and the energy dissipation rate is derived. The formula for energy dissipation rate has, in practice, no limitation because all edge rolling geometries are safely in the area where the formula is valid. Roll force and torque are derived by means of two independent integrals. Thus, the lever arm coef-ficient is evaluated from the expressions for roll force and torque using conventional rolling theory. Roll-ing trials report good agreement with theory. Measured roll forces are similar to calculated forces. Furthermore, the shape of the dogbone that arises during edge rolling is in fairly good agreement with the calculated dogbone shape. Deviations are due to the deviation from ideally plastic material in the ex-periments. Also, the strain distribution over the dogbone is similar to the proposed deformation zone. Thus, a new formula has been developed to a stage that it can be implemented in width control systems for edge rolling stands in hot strip and plate mills.

  16. Slow-roll extended quintessence

    SciTech Connect

    Chiba, Takeshi; Siino, Masaru; Yamaguchi, Masahide

    2010-04-15

    We derive the slow-roll conditions for a nonminimally coupled scalar field (extended quintessence) during the radiation/matter dominated era extending our previous results for thawing quintessence. We find that the ratio {phi}e/3H{phi} becomes constant but negative, in sharp contrast to the ratio for the minimally coupled scalar field. We also find that the functional form of the equation of state of the scalar field asymptotically approaches that of the minimally coupled thawing quintessence.

  17. Rolling Mill Hill, Nashville, TN

    EPA Pesticide Factsheets

    Rolling Mill Hill was the home to Nashville General Hospital from 1890 to the 1990s and encompassed several buildings and structures. These existing buildings of historical significance were re-used in the form of apartments. The original Trolley Barns on the site are now artists’ lofts and are home to several companies and non-profit offices. Nance Place, which entails additional buildings built on-site, is a Tax Credit Workforce Housing Development and is Platinum LEED certified.

  18. Rolling-Friction Robotic Gripper

    NASA Technical Reports Server (NTRS)

    Vranish, John M.

    1992-01-01

    Robotic gripper using rolling-friction fingers closes in on object with interface designed to mate with rollers somewhat misaligned initially, aligns object with respect to itself, then holds object securely in uniquely determined position and orientation. Operation of gripper causes minimal wear and burring of gripper and object. Exerts minimal friction forces on object when grasping and releasing. Releases object easily and reliably even when side forces and torques are between itself and object.

  19. Roll formed pan solar module

    SciTech Connect

    Jester, T.L.; Bottenberg, W.R.; Gay, C.F.; Yerkes, J.W.

    1984-02-21

    A solar module comprising a solar cell string laminated between layers of pottant material and a transparent superstrate and a steel substrate. The steel substrate is roll formed to provide stiffening flanges on its edges while simultaneously forming a pan-shaped structure to hold other portions of the laminate in position during the laminating process. An improved terminal provides high voltage protection and improved mechanical strength. A conduit element provides protected raceways for external wires connected to module terminals.

  20. Nanogrid rolling circle DNA sequencing

    DOEpatents

    Church, George M.; Porreca, Gregory J.; Shendure, Jay; Rosenbaum, Abraham Meir

    2017-04-18

    The present invention relates to methods for sequencing a polynucleotide immobilized on an array having a plurality of specific regions each having a defined diameter size, including synthesizing a concatemer of a polynucleotide by rolling circle amplification, wherein the concatemer has a cross-sectional diameter greater than the diameter of a specific region, immobilizing the concatemer to the specific region to make an immobilized concatemer, and sequencing the immobilized concatemer.

  1. Mechanisms of rolling contact spalling

    NASA Technical Reports Server (NTRS)

    Kumar, A. M.; Kulkarni, S. M.; Bhargava, V.; Hahn, G. T.; Rubin, C. A.

    1987-01-01

    The results of a study aimed at analyzing the mechanical material interactions responsible for rolling contact spalling of the 440 C steel, high pressure oxygen turbopump bearings are presented. A coupled temperature displacement finite element analysis of the effects of friction heating under the contact is presented. The contact is modelled as a stationary, heat generating, 2 dimensional indent in an elastic perfectly plastic half-space with heat fluxes up to 8.6 x 10000 KW/m sq comparable to those generated in the bearing. Local temperatures in excess of 1000 C are treated. The calculations reveal high levels of residual tension after the contact is unloaded and cools. Efforts to promote Mode 2/Mode 3 fatigue crack growth under cyclic torsion in hardened 440 C steel are described. Spalls produced on 440 C steel by a 3 ball/rod rolling contact testing machine were studied with scanning microscopy. The shapes of the cyclic, stress strain hysteresis loops displayed by hardened 440 C steel in cyclic torsion at room temperature are defined for the plastic strain amplitudes encountered in rolling/sliding contact. Results of these analyses are discussed in detail.

  2. Rolling Contact Fatigue of Ceramics

    SciTech Connect

    Wereszczak, Andrew A; Wang, W.; Wang, Y.; Hadfield, M.; Kanematsu, W.; Kirkland, Timothy Philip; Jadaan, Osama M.

    2006-09-01

    High hardness, low coefficient of thermal expansion and high temperature capability are properties also suited to rolling element materials. Silicon nitride (Si{sub 3}N{sub 4}) has been found to have a good combination of properties suitable for these applications. However, much is still not known about rolling contact fatigue (RCF) behavior, which is fundamental information to assess the lifetime of the material. Additionally, there are several test techniques that are employed internationally whose measured RCF performances are often irreconcilable. Due to the lack of such information, some concern for the reliability of ceramic bearings still remains. This report surveys a variety of topics pertaining to RCF. Surface defects (cracks) in Si{sub 3}N{sub 4} and their propagation during RCF are discussed. Five methods to measure RCF are then briefly overviewed. Spalling, delamination, and rolling contact wear are discussed. Lastly, methods to destructively (e.g., C-sphere flexure strength testing) and non-destructively identify potential RCF-limiting flaws in Si{sub 3}N{sub 4} balls are described.

  3. Contact angle hysteresis on superhydrophobic stripes.

    PubMed

    Dubov, Alexander L; Mourran, Ahmed; Möller, Martin; Vinogradova, Olga I

    2014-08-21

    We study experimentally and discuss quantitatively the contact angle hysteresis on striped superhydrophobic surfaces as a function of a solid fraction, ϕS. It is shown that the receding regime is determined by a longitudinal sliding motion of the deformed contact line. Despite an anisotropy of the texture the receding contact angle remains isotropic, i.e., is practically the same in the longitudinal and transverse directions. The cosine of the receding angle grows nonlinearly with ϕS. To interpret this we develop a theoretical model, which shows that the value of the receding angle depends both on weak defects at smooth solid areas and on the strong defects due to the elastic energy of the deformed contact line, which scales as ϕS(2)lnϕS. The advancing contact angle was found to be anisotropic, except in a dilute regime, and its value is shown to be determined by the rolling motion of the drop. The cosine of the longitudinal advancing angle depends linearly on ϕS, but a satisfactory fit to the data can only be provided if we generalize the Cassie equation to account for weak defects. The cosine of the transverse advancing angle is much smaller and is maximized at ϕS ≃ 0.5. An explanation of its value can be obtained if we invoke an additional energy due to strong defects in this direction, which is shown to be caused by the adhesion of the drop on solid sectors and is proportional to ϕS(2). Finally, the contact angle hysteresis is found to be quite large and generally anisotropic, but it becomes isotropic when ϕS ≤ 0.2.

  4. A Heading and Flight-Path Angle Control of Aircraft Based on Required Acceleration Vector

    NASA Astrophysics Data System (ADS)

    Yoshitani, Naoharu

    This paper describes a control of heading and flight-path angles of aircraft to time-varying command angles. The controller first calculates an acceleration command vector (acV), which is vertical to the velocity vector. acV consists of two components; the one is feedforward acceleration obtained from the rates of command angles, and the other is feedback acceleration obtained from angle deviations by using PID control law. A bank angle command around the velocity vector and commands of pitch and yaw rates are then obtained to generate the required acceleration. A roll rate command is calculated from bank angle deviation. Roll, pitch and yaw rate commands are put into the attitude controller, which can be composed of any suitable control laws such as PID control. The control requires neither aerodynamic coefficients nor online calculation of the inverse dynamics of the aircraft. A numerical simulation illustrates the effects of the control.

  5. Roller compaction process development and scale up using Johanson model calibrated with instrumented roll data.

    PubMed

    Nesarikar, Vishwas V; Patel, Chandrakant; Early, William; Vatsaraj, Nipa; Sprockel, Omar; Jerzweski, Robert

    2012-10-15

    Roller compaction is a dry granulation process used to convert powder blends into free flowing agglomerates. During scale up or transfer of roller compaction process, it is critical to maintain comparable ribbon densities at each scale in order to achieve similar tensile strengths and subsequently similar particle size distribution of milled material. Similar ribbon densities can be reached by maintaining analogous normal stress applied by the rolls on ribbon for a given gap between rolls. Johanson (1965) developed a model to predict normal stress based on material properties and roll diameter. However, the practical application of Johanson model to estimate normal stress on the ribbon is limited due to its requirement of accurate estimate of nip pressure i.e. pressure at the nip angle. Another weakness of Johanson model is the assumption of a fixed angle of wall friction that leads to use of a fixed nip angle in the model. To overcome the above mentioned limitations, we developed a novel approach using roll force equations based on a modified Johanson model in which the requirement of pressure value at nip angle was eliminated. An instrumented roll on WP120 roller compactor was used to collect normal stress data measured at three locations across the width of a roll (P1, P2, P3), as well as gap and nip angle data on ribbon for placebo and various active blends along with corresponding process parameters. The nip angles were estimated directly using experimental pressure profile data of each run. The roll force equation of Johanson model was validated using normal stress, gap, and nip angle data of the placebo runs. The calculated roll force values compared well with those determined from the roll force equation provided for the Alexanderwerk(®) WP120 roller compactor. Subsequently, the calculation was reversed to estimate normal stress and corresponding ribbon densities as a function of gap and RFU (roll force per unit roll width). A placebo model was developed

  6. Mesomorphic Lamella Rolling of Au in Vacuum

    PubMed Central

    2009-01-01

    Lamellar nanocondensates in partial epitaxy with larger-sized multiply twinned particles (MTPs) or alternatively in the form of multiple-walled tubes (MWTs) having nothing to do with MTP were produced by the very energetic pulse laser ablation of Au target in vacuum under specified power density and pulses. Transmission electron microscopic observations revealed (111)-motif diffraction and low-angle scattering. They correspond to layer interspacing (0.241–0.192 nm) and the nearest neighbor distance (ca. 0.74–0.55 nm) of atom clusters within the layer, respectively, for the lamella, which shows interspacing contraction with decreasing particle size under the influence of surface stress and rolls up upon electron irradiation. The uncapped MWT has nearly concentric amorphous layers interspaced by 0.458–0.335 nm depending on dislocation distribution and becomes spherical onions for surface-area reduction upon electron dosage. Analogous to graphene-derived tubular materials, the lamella-derived MWT of Au could have pentagon–hexagon pair at its zig-zag junction and useful optoelectronic properties worthy of exploration. PMID:20628452

  7. Mesomorphic Lamella Rolling of Au in Vacuum

    NASA Astrophysics Data System (ADS)

    Huang, Chang-Ning; Chen, Shuei-Yuan; Shen, Pouyan

    2009-07-01

    Lamellar nanocondensates in partial epitaxy with larger-sized multiply twinned particles (MTPs) or alternatively in the form of multiple-walled tubes (MWTs) having nothing to do with MTP were produced by the very energetic pulse laser ablation of Au target in vacuum under specified power density and pulses. Transmission electron microscopic observations revealed (111)-motif diffraction and low-angle scattering. They correspond to layer interspacing (0.241-0.192 nm) and the nearest neighbor distance (ca. 0.74-0.55 nm) of atom clusters within the layer, respectively, for the lamella, which shows interspacing contraction with decreasing particle size under the influence of surface stress and rolls up upon electron irradiation. The uncapped MWT has nearly concentric amorphous layers interspaced by 0.458-0.335 nm depending on dislocation distribution and becomes spherical onions for surface-area reduction upon electron dosage. Analogous to graphene-derived tubular materials, the lamella-derived MWT of Au could have pentagon-hexagon pair at its zig-zag junction and useful optoelectronic properties worthy of exploration.

  8. A Semianalytic Model of Leukocyte Rolling

    PubMed Central

    Krasik, Ellen F.; Hammer, Daniel A.

    2004-01-01

    Rolling allows leukocytes to maintain adhesion to vascular endothelium and to molecularly coated surfaces in flow chambers. Using insights from adhesive dynamics, a computational method for simulating leukocyte rolling and firm adhesion, we have developed a semianalytic model for the steady-state rolling of a leukocyte. After formation in a force-free region of the contact zone, receptor-ligand bonds are transported into the trailing edge of the contact zone. Rolling velocity results from a balance of the convective flux of bonds and the rate of dissociation at the back edge of the contact zone. We compare the model's results to that of adhesive dynamics and to experimental data on the rolling of leukocytes, with good agreement. We calculate the dependence of rolling velocity on shear rate, intrinsic forward and reverse reaction rates, bond stiffness, and reactive compliance, and use the model to calculate a state diagram relating molecular parameters and the dynamic state of adhesion. A dimensionless form of the analytic model permits exploration of the parameters that control rolling. The chemical affinity of a receptor-ligand pair does not uniquely determine rolling velocity. We elucidate a fundamental relationship between off-rate, ligand density, and reactive compliance at the transition between firm and rolling adhesion. The model provides a rapid method for screening system parameters for the potential to mediate rolling. PMID:15315955

  9. Effect of a nonconstant C/m-alpha/ on the stability of rolling aircraft

    NASA Technical Reports Server (NTRS)

    Davari, B.; Laitone, E. V.

    1977-01-01

    An analytical study is carried out of the behavior of modern high-speed aircraft of inertially slender configurations in maneuvers involving large rates of roll. Inertia cross-coupling, as well as a linear variation of longitudinal static stability (C/m-alpha/) with angle of attack, are considered. The steady-state solutions of the nonlinear equations of motion, based on principal inertia axes, are studied to obtain useful information on the response behavior of the state variables during roll maneuvers. It is shown that, in addition to the critical values of aileron deflection that have been previously found to limit a steady-state roll with constant longitudinal static stability, there can be two new critical values introduced by a linear decrease of the absolute value of longitudinal static stability with angle of attack. For aileron deflections near these critical values, the response of the aircraft exhibits violent oscillations and dangerous peak loads, due to the cross-coupled motion accompanying a roll maneuver. These critical values define a new range of aileron deflections in which no steady-state roll is possible.

  10. Low-Speed Yawed-Rolling Characteristics of a Pair of 56-Inch-Diameter, 32-Ply-Rating, Type 7 Aircraft Tires

    NASA Technical Reports Server (NTRS)

    Thompson, Wilbur E.; Horne, Walter B.

    1959-01-01

    The low-speed (up to 4 miles per hour) yawed-rolling characteristics of two 56 x 16 32-ply-rating, type 7 aircraft tires under straight-yawed rolling were determined over a range of inflation pressures and yaw angles for a vertical load approximately equal to 75 percent of the rated vertical load. The quantities measured or determined included cornering force, drag force self-alining torque, pneumatic caster vertical tire deflection, yaw angle, and relaxation length. During straight-yawed rolling the normal force generally increased with increasing yaw angle within the test range. The self-alining torque increased to a maximum value and then decreased with increasing angle of yaw. The pneumatic caster tended to decrease with increasing yaw angle.

  11. Effect of Dynamic Rolling Oscillations on Twin Tail Buffet Response

    NASA Technical Reports Server (NTRS)

    Sheta, Essam F.; Kandil, Osama A.

    1999-01-01

    The effect of dynamic rolling oscillations of delta-wing/twin-tail configuration on twin-tail buffet response is investigated. The computational model consists of a sharp-edged delta wing of aspect ratio one and swept-back flexible twin tail with taper ratio of 0.23. The configuration model is statically pitched at 30 deg. angle of attack and then forced to oscillate in roll around the symmetry axis at a constant amplitude of 4 deg. and reduced frequency of pi and 2(pi). The freestream Mach number and Reynolds number are 0.3 and 1.25 million, respectively. This multidisciplinary problem is solved using three sets of equations on a dynamic multi-block grid structure. The first set is the unsteady, full Navier-Stokes equations, the second set is the aeroelastic equations for coupled bending and torsion vibrations of the tails, and the third set is the grid-displacement equations. The configuration is investigated for inboard position of the twin tails which corresponds to a separation distance between the twin tails of 33% wing span. The computed results are compared with the results of stationary configuration, which previously have been validated using experimental data. The results conclusively showed that the rolling oscillations of the configuration have led to higher loads, higher deflections, and higher excitation peaks than those of the stationary configuration. Moreover, increasing the reduced frequency has led to higher loads and excitation peaks and lower bending and torsion deflections and acceleration.

  12. Kinematics investigations of cylinders rolling down a ramp using tracker

    NASA Astrophysics Data System (ADS)

    Prima, Eka Cahya; Mawaddah, Menurseto; Winarno, Nanang; Sriwulan, Wiwin

    2016-02-01

    Nowadays, students' exploration as well as students' interaction in the application stage of learning cycle can be improved by directly model real-world objects based on Newton's Law using Open Source Physics (OSP) computer-modeling tools. In a case of studying an object rolling down a ramp, a traditional experiment method commonly uses a ticker tape sliding through a ticker timer. However, some kinematics parameters such as the instantaneous acceleration and the instantaneous speed of object cannot be investigated directly. By using the Tracker video analysis method, all kinematics parameters of cylinders rolling down a ramp can be investigated by direct visual inspection. The result shows that (1) there are no relations of cylinders' mass as well as cylinders' radius towards their kinetics parameters. (2) Excluding acceleration data, the speed and position as function of time follow the theory. (3) The acceleration data are in the random order, but their trend-lines closely fit the theory with 0.15% error. (4) The decrease of acceleration implicitly occurs due to the air friction acting on the cylinder during rolling down. (5) The cylinder's inertial moment constant has been obtained experimentally with 3.00% error. (6) The ramp angle linearly influences the cylinders' acceleration with 2.36% error. This research implied that the program can be further applied to physics educational purposes.

  13. Leaf growth is conformal

    NASA Astrophysics Data System (ADS)

    Alim, Karen; Armon, Shahaf; Shraiman, Boris I.; Boudaoud, Arezki

    2016-10-01

    Growth pattern dynamics lie at the heart of morphogenesis. Here, we investigate the growth of plant leaves. We compute the conformal transformation that maps the contour of a leaf at a given stage onto the contour of the same leaf at a later stage. Based on the mapping we predict the local displacement field in the leaf blade and find it to agree with the experimentally measured displacement field to 92%. This approach is applicable to any two-dimensional system with locally isotropic growth, enabling the deduction of the whole growth field just from observation of the tissue contour.

  14. Effect of rolling motion on local characteristics of gas-liquid two-phase flow using an optical probe

    NASA Astrophysics Data System (ADS)

    Tian, Daogui; Sun, Licheng; Yan, Changqi; Liu, Jingyu; Sun, Bo

    2013-07-01

    In order to get more local interfacial information as well as to further comprehend the intrinsic mechanism of two-phase flow under rolling condition to improve and extend the two-fluid model in rolling condition, an experimental investigation of two-phase flow under rolling as well as vertical steady condition was conducted by using double-sensor optical probe fabricated by the authors. The experimental loop is fixed on a rolling platform, which can simulate the rolling movement of a ship with the rolling period and rolling angle in the ranges of 0-20s and 0-45°, respectively. An optical probe driven by a mechanical traverser is installed on the test section, wherein making it move diametrically. Experimental investigations were conducted on this experimental loop for air-water two-phase flow under rolling and steady conditions. Local void fraction, interfacial area concentration (IAC) and bubble velocity were obtained for further improving the interface transportation equation. Both the measured void fraction and IAC demonstrated wall peak or core peak distributions under vertical condition. The typical distribution of IAC under vertical conditions showed that IAC changes from wall peak to core peak with the gas flow rate increasing; while as the liquid flow rate increases, the distribution changes inversely. In the case of rolling conditions, despite similar to the distribution under vertical condition, the local time-averaged void fraction and IAC have lower value in centerline and high value near wall region. The results also indicated that the rolling amplitude has an influence on the local bubble frequency, void fraction and IAC, except interface velocity, while rolling period almost has no effect on the local characteristics.

  15. Control of semi-active anti-roll systems on heavy vehicles

    NASA Astrophysics Data System (ADS)

    Stone, E. J.; Cebon, D.

    2010-10-01

    Semi-active anti-roll systems, with a high and low roll stiffness, or, since cornering is typically a transient event, damping setting have the capacity to improve heavy vehicle stability while having very low power consumption. If a vehicle is travelling around a right-hand bend and a low roll damping setting is selected, the vehicle will roll outwards. If a high damping setting is then selected, the outward roll will be locked-in. When the vehicle enters a left-hand bend, the inward roll becomes locked-in. This has the potential to increase critical lateral acceleration by up to 12.5% if the vehicle's future course can be predicted accurately (e.g. with a Global Positioning System). However, if the vehicle does not follow the expected path, the critical lateral acceleration may be degraded. Exploiting the delay between a steer angle being applied and the lateral acceleration developing could avoid this problem. However, the benefits from such a system are considerably lower, up to a 2.4% improvement in critical lateral acceleration. Hence, a 'modal control strategy' is developed aimed at providing high levels of benefit while being robust to deviations from the expected path. The modal strategy is able to provide benefits of up to 11%, while being robust to most deviations.

  16. Long term prediction of roll phase for an undisturbed spinning spacecraft

    NASA Technical Reports Server (NTRS)

    Smith, M. A.; Dyer, J. W.

    1987-01-01

    This paper describes the attitude control of the Pioneer 10 spacecraft since the loss of the sun-sensor signal in late 1983. It is necessary to control the attitude of the spin-stablized spacecraft so as to maintain communications with earth. Roll phase is calculated on earth using data from a science instrument on-board Pioneer 10, the imaging-photopolarimeter, which, along with its other functions, was designed to collect images of Jupiter during encounter in 1973. With calculation of instantaneous roll phase performed only once per week, the spacecraft roll angle can be predicted more than a week ahead for timing reorientation impulses. Attitude reorientation maneuvers based on roll phase predictions have been successfully executed for several years on Pioneer 10. Of 10 maneuvers analyzed in this paper, predictions were made for as many as 10 days in the future based on a roll-phase measurements spanning only 12 days of data. The average maneuver was planned by projecting the roll phase for 3 days (22,000 spacecraft revolutions) and resulted in a maneuver execution phase error of only 11 deg.

  17. Mechanical properties and structure of friction stir welds of rolled Zr-modified AA5083 alloy

    NASA Astrophysics Data System (ADS)

    Malopheyev, S.; Mironov, S.; Kaibyshev, R.

    2016-11-01

    Microstructure and mechanical properties of friction stir welds of Zr-modified AA5083 aluminum sheets were studied. The sheets were produced by cold or hot rolling with a total reduction of 80%. In both rolled conditions, the average high angle boundary spacing was 17-18 µm. The density of free dislocations was ˜5.6 × 1013 and ˜3.5 × 1014 m-2 in hot rolled and cold rolled conditions, respectively. The volume fraction of incoherent Al6Mn dispersoids with an average diameter of ˜25 nm was measured to be ˜0.076%. Defect-free welds were produced by double-side friction stir welding (FSW). Friction stir welding led to the formation of fully recrystallized microstructures with the average grain size about 2.5 µm and low dislocation density in the stir zone in both conditions. The average size and volume fraction of Al6Mn particles increased to ˜25 nm and ˜0.1%, respectively. The joint efficiency of the friction stir welds for ultimate tensile strength was found to be 74 and 94% in the cold-rolled and hot-rolled preprocessed material conditions. The relatively low weld strength was attributed to the elimination of dislocation substructure strengthening during FSW.

  18. Deformation Analysis of Surface Crack in Rolling and Wire Drawing

    NASA Astrophysics Data System (ADS)

    Shinohara, Tetsuo; Yoshida, Kazunari

    The surface flaw of a drawn wire has a significant influence on the quality of a product. High-surface-quality drawn wires and rods have been required for the manufacture of automobiles and machines. Wire breaks due to large surface defects are common problems in wire drawing. The authors carried out rolling and multi-pass drawing of a stainless-steel wire with an artificial scratch, and investigated the growth and disappearance of a scratch from both sides by experiments and Finite Element Analysis (FEA). When the scratch angle is small, the scratch side surfaces are pushed toward each other and the scratch becomes an overlap defect. In contrast, when the scratch angle is large, the bottom of the scratch rises, and the scratch is recovered satisfactorily. Furthermore, the scratch shape and the drawing conditions were varied, and the deformation state of a scratch was clarified.

  19. In situ monitoring of structure formation in the active layer of polymer solar cells during roll-to-roll coating

    SciTech Connect

    Rossander, Lea H.; Zawacka, Natalia K.; Dam, Henrik F.; Krebs, Frederik C.; Andreasen, Jens W.

    2014-08-15

    The active layer crystallization during roll-to-roll coating of organic solar cells is studied in situ. We developed an X-ray setup where the coater unit is an integrated part of the small angle X-ray scattering instrument, making it possible to control the coating process while recording scattering measurements in situ, enabling us to follow the crystal formation during drying. By varying the distance between the coating head and the point where the X-ray beam hits the film, we obtained measurements of 4 different stages of drying. For each of those stages, the scattering from as long a foil as possible is summed together, with the distance from coating head to scattering point kept constant. The results are average crystallographic properties for the active layer coated on a 30 m long foil. With this insight into the dynamics of crystallization in a roll-coated polymer film, we find that the formation of textured and untextured crystallites seems uncorrelated, and happens at widely different rates. Untextured P3HT crystallites form later in the drying process than expected which may explain previous studies speculating that untextured crystallization depends on concentration. Textured crystallites, however, begin forming much earlier and steadily increases as the film dries, showing a development similar to other in situ studies of these materials.

  20. A model for roll stall and the inherent stability modes of low aspect ratio wings at low Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Shields, Matt

    The development of Micro Aerial Vehicles has been hindered by the poor understanding of the aerodynamic loading and stability and control properties of the low Reynolds number regime in which the inherent low aspect ratio (LAR) wings operate. This thesis experimentally evaluates the static and damping aerodynamic stability derivatives to provide a complete aerodynamic model for canonical flat plate wings of aspect ratios near unity at Reynolds numbers under 1 x 105. This permits the complete functionality of the aerodynamic forces and moments to be expressed and the equations of motion to solved, thereby identifying the inherent stability properties of the wing. This provides a basis for characterizing the stability of full vehicles. The influence of the tip vortices during sideslip perturbations is found to induce a loading condition referred to as roll stall, a significant roll moment created by the spanwise induced velocity asymmetry related to the displacement of the vortex cores relative to the wing. Roll stall is manifested by a linearly increasing roll moment with low to moderate angles of attack and a subsequent stall event similar to a lift polar; this behavior is not experienced by conventional (high aspect ratio) wings. The resulting large magnitude of the roll stability derivative, Cl,beta and lack of roll damping, Cl ,rho, create significant modal responses of the lateral state variables; a linear model used to evaluate these modes is shown to accurately reflect the solution obtained by numerically integrating the nonlinear equations. An unstable Dutch roll mode dominates the behavior of the wing for small perturbations from equilibrium, and in the presence of angle of attack oscillations a previously unconsidered coupled mode, referred to as roll resonance, is seen develop and drive the bank angle? away from equilibrium. Roll resonance requires a linear time variant (LTV) model to capture the behavior of the bank angle, which is attributed to the

  1. Project LEAF Documents

    EPA Pesticide Factsheets

    Project LEAF has a goal of educating farmworkers about how to reduce pesticide exposure to their families from pesticide residues they may be inadvertently taking home on their clothing, etc. Find outreach materials.

  2. Theoretical and Experimental Methods in the Solution of Missile Nonlinear Roll Problems

    DTIC Science & Technology

    1978-03-01

    angle rad p Air density slug/ft 3 (01 Nutation frequency rad/sec N Side moment ft/lb 1- iii Noy Side moment derivative due to roll ft-lb/rad 2...Ground revealed that the low drag bomb occasionally exhibited a severe instability of the nutation mode that could not be accounted for by the linear...motion. Initially the rolling velocity increases due to the fin cant. However, when it reaches a value equal to the nutation frequency it holds

  3. Some theoretical low-speed span loading characteristics of swept wings in roll and sideslip

    NASA Technical Reports Server (NTRS)

    Bird, John D

    1950-01-01

    The Weissinger method for determining additional span loading for incompressible flow is used to find the damping in roll, the lateral center of pressure of the rolling for wing plan forms of various aspect ratios, taper ratios, and sweep angles. In addition, the applicability of the method to the determination of certain other aerodynamic derivatives is investigated, and corrections for the first-order effects of compressibility are indicated. The agreement obtained between experimentally and theoretically determined values for the aerodynamic coefficients indicates that the method of Weissinger is well suited to the calculation of such resulting aerodynamic derivatives of wings as do not involve considerations of tip suction.

  4. Effect of viscosity on rolling-element fatigue life at cryogenic temperature with fluorinated ether lubricants

    NASA Technical Reports Server (NTRS)

    Dietrich, M. W.; Zaretsky, E. V.

    1975-01-01

    Rolling-element fatigue tests were conducted with 12.7-mm-(1/2-in.-) diameter AISI 52100 steel balls in the NASA five-ball fatigue tester, with a maximum hertz stress of 5500 mN/m2 (800 000 psi), a shaft speed of 4750 rpm, lubricant temperature of 200 K (360 R), a contact angle of 20 deg, using four fluorinated ether lubricants of varying viscosities. No statistically significant differences in rolling-element fatigue life occurred using the four viscosity levels. Elastohydrodynamic calculations indicate that values of the lubricant film parameter were approximately 2 or greater.

  5. Examining the Lateral Displacement of HL60 Cells Rolling on Asymmetric P-Selectin Patterns

    PubMed Central

    Lee, Chia-Hua; Bose, Suman; Van Vliet, Krystyn J.; Karp, Jeffrey M.; Karnik, Rohit

    2011-01-01

    The lateral displacement of cells orthogonal to a flow stream by rolling on asymmetrical receptor patterns presents a new opportunity for the label-free separation and analysis of cells. Understanding the nature of cell rolling trajectories on such substrates is necessary to the engineering of substrates and the design of devices for cell separation and analysis. Here, we investigate the statistical nature of cell rolling and the effect of pattern geometry and flow shear stress on cell rolling trajectories using micrometer-scale patterns of biomolecular receptors with well-defined edges. Leukemic myeloid HL60 cells expressing the PSGL-1 ligand were allowed to flow across a field of patterned lines fabricated using microcontact printing and functionalized with the P-selectin receptor, leveraging both the specific adhesion of this ligand–receptor pair and the asymmetry of the receptor pattern inclination angle with respect to the fluid shear flow direction (α = 5, 10, 15, and 20°). The effects of the fluid shear stress magnitude (τ = 0.5, 1, 1.5, and 2.0 dyn/cm2), α, and P-selectin incubation concentration were quantified in terms of the rolling velocity and edge tracking length. Rolling cells tracked along the inclined edges of the patterned lines before detaching and reattaching on another line. The detachment of rolling cells after tracking along the edge was consistent with a Poisson process of history-independent interactions. Increasing the edge inclination angle decreased the edge tracking length in an exponential manner, contrary to the shear stress magnitude and P-selectin incubation concentration, which did not have a significant effect. On the basis of these experimental data, we constructed an empirical model that predicted the occurrence of the maximum lateral displacement at an edge angle of 7.5°. We also used these findings to construct a Monte Carlo simulation for the prediction of rolling trajectories of HL60 cells on P

  6. How rolling forecasting facilitates dynamic, agile planning.

    PubMed

    Miller, Debra; Allen, Michael; Schnittger, Stephanie; Hackman, Theresa

    2013-11-01

    Rolling forecasting may be used to replace or supplement the annual budget process. The rolling forecast typically builds on the organization's strategic financial plan, focusing on the first three years of plan projections and comparing the strategic financial plan assumptions with the organization's expected trajectory. Leaders can then identify and respond to gaps between the rolling forecast and the strategic financial plan on an ongoing basis.

  7. Numerical investigation of the temperature distribution in a roll system

    SciTech Connect

    Eriksson, D.: Sunden, B.; Postoaca, I.

    1996-12-31

    An analysis of heat transfer in a fast rotating roll system is carried out. A hot film is transported between a steel roll and a roll of a soft material. The soft roll is supported by another steel roll at the opposite side. The inner surfaces of the rolls are water-cooled while the outer surfaces are cooled by combined convection and thermal radiation. The soft roll is also cooled by an impinging jet. The surface temperature of the soft roll is very important and the influence of various cooling parameters is assessed by numerical solutions to the problem. The importance of modelling the whole system of rolls has been proved. Rolling processes are widely used in forming of metals and polymeric materials. The adequate cooling of the rolls and the rolled products is a major concern at the design stage and during operation. Non-adequate cooling may shorten the roll life and severely affect the processed material.

  8. Fluid management in roll-to-roll nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Jain, A.; Bonnecaze, R. T.

    2013-06-01

    The key process parameters of UV roll-to-roll nanoimprint lithography are identified from an analysis of the fluid, curing, and peeling dynamics. The process includes merging of droplets of imprint material, curing of the imprint material from a viscous liquid to elastic solid resist, and pattern replication and detachment of the resist from template. The time and distances on the web or rigid substrate over which these processes occur are determined as function of the physical properties of the uncured liquid, the cured solid, and the roller configuration. The upper convected Maxwell equation is used to model the viscoelastic liquid and to calculate the force on the substrate and the torque on the roller. The available exposure time is found to be the rate limiting parameter and it is O(√Rho /uo), where R is the radius of the roller, ho is minimum gap between the roller and web, and uo is the velocity of the web. The residual layer thickness of the resist should be larger than the gap between the roller and the substrate to ensure complete feature filling and optimal pattern replication. For lower residual layer thickness, the droplets may not merge to form a continuous film for pattern transfer.

  9. METHOD OF HOT ROLLING URANIUM METAL

    DOEpatents

    Kaufmann, A.R.

    1959-03-10

    A method is given for quickly and efficiently hot rolling uranium metal in the upper part of the alpha phase temperature region to obtain sound bars and sheets possessing a good surface finish. The uranium metal billet is heated to a temperature in the range of 1000 deg F to 1220 deg F by immersion iii a molten lead bath. The heated billet is then passed through the rolls. The temperature is restored to the desired range between successive passes through the rolls, and the rolls are turned down approximately 0.050 inch between successive passes.

  10. Spray Rolling Aluminum Strip for Transportation Applications

    SciTech Connect

    Kevin M. McHugh; Y. Lin; Y. Zhou; E. J. Lavernia; J.-P. Delplanque; S. B. Johnson

    2005-02-01

    Spray rolling is a novel strip casting technology in which molten aluminum alloy is atomized and deposited into the roll gap of mill rolls to produce aluminum strip. A combined experimental/modeling approach has been followed in developing this technology with active participation from industry. The feasibility of this technology has been demonstrated at the laboratory scale and it is currently being scaled-up. This paper provides an overview of the process and compares the microstructure and properties of spray-rolled 2124 aluminum alloy with commercial ingot-processed material

  11. Interactions between stably rolling leukocytes in vivo

    NASA Astrophysics Data System (ADS)

    King, Michael R.; Ruscio, Aimee D.; Kim, Michael B.; Sarelius, Ingrid H.

    2005-03-01

    We have characterized the two-dimensional spatial dependence of the hydrodynamic interactions between two adhesively rolling leukocytes in a live venule in the mouse cremaster muscle. Two rolling leukocytes were observed to slow each other down when rolling together in close proximity due to mutual sheltering from the external blood flow in the vessel lumen. A previous study of leukocyte rolling interactions using carbohydrate-coated beads in a parallel-plate flow chamber and a detailed computer model of adhesion in a multicellular environment is in qualitative agreement with the current in vivo results.

  12. Enhancement of roll maneuverability using post-reversal design

    NASA Astrophysics Data System (ADS)

    Li, Wei-En

    This dissertation consists of three main parts. The first part is to discuss aileron reversal problem for a typical section with linear aerodynamic and structural analysis. The result gives some insight and ideas for this aeroelastic problem. Although the aileron in its post-reversal state will work the opposite of its design, this type of phenomenon as a design root should not be ruled out on these grounds alone, as current active flight-control systems can compensate for this. Moreover, one can get considerably more (negative) lift for positive flap angle in this unusual regime than positive lift for positive flap angle in the more conventional setting. This may have important implications for development of highly maneuverable aircraft. The second part is to involve the nonlinear aerodynamic and structural analyses into the aileron reversal problem. Two models, a uniform cantilevered lifting surface and a rolling aircraft with rectangular wings, are investigated here. Both models have trailing-edge control surfaces attached to the main wings. A configuration that reverses at a relatively low dynamic pressure and flies with the enhanced controls at a higher level of effectiveness is demonstrated. To evaluate how reliable for the data from XFOIL, the data for the wing-aileron system from advanced CFD codes and experiment are used to compare with that from XFOIL. To enhance rolling maneuverability for an aircraft, the third part is to search for the optimal configuration during the post-reversal regime from a design point of view. Aspect ratio, hinge location, airfoil dimension, inner structure of wing section, composite skin, aeroelastic tailoring, and airfoil selection are investigated for cantilevered wing and rolling aircraft models, respectively. Based on these parametric structural designs as well as the aerodynamic characteristics of different airfoils, recommendations are given to expand AAW flight program.

  13. Rolling-cuff flexible bellows

    DOEpatents

    Lambert, D.R.

    1982-09-27

    A flexible connector apparatus used to join two stiff non-deformable members, such as piping, is described. The apparatus is provided with one or more flexible sections or assemblies each utilizing a bellows of a rolling cuff type connected between two ridge members, with the bellows being supported by a back-up ring, such that only the curved end sections of the bellows are unsupported. Thus, the bellows can be considered as being of a tube-shaped configuration and thus have high pressure resistance. The components of the flexible apparatus are sealed or welded one to another such that it is fluid tight.

  14. Deer predation on leaf miners via leaf abscission

    NASA Astrophysics Data System (ADS)

    Yamazaki, Kazuo; Sugiura, Shinji

    2008-03-01

    The evergreen oak Quercus gilva Blume sheds leaves containing mines of the leaf miner Stigmella sp. (Lepidoptera: Nepticulidae) earlier than leaves with no mines in early spring in Nara, central Japan. The eclosion rates of the leaf miner in abscised and retained leaves were compared in the laboratory to clarify the effects of leaf abscission on leaf miner survival in the absence of deer. The leaf miner eclosed successfully from both fallen leaves and leaves retained on trees. However, sika deer ( Cervus nippon centralis Kishida) feed on the fallen mined leaves. Field observations showed that deer consume many fallen leaves under Q. gilva trees, suggesting considerable mortality of leaf miners due to deer predation via leaf abscission. This is a previously unreported relationship between a leaf miner and a mammalian herbivore via leaf abscission.

  15. Deer predation on leaf miners via leaf abscission.

    PubMed

    Yamazaki, Kazuo; Sugiura, Shinji

    2008-03-01

    The evergreen oak Quercus gilva Blume sheds leaves containing mines of the leaf miner Stigmella sp. (Lepidoptera: Nepticulidae) earlier than leaves with no mines in early spring in Nara, central Japan. The eclosion rates of the leaf miner in abscised and retained leaves were compared in the laboratory to clarify the effects of leaf abscission on leaf miner survival in the absence of deer. The leaf miner eclosed successfully from both fallen leaves and leaves retained on trees. However, sika deer (Cervus nippon centralis Kishida) feed on the fallen mined leaves. Field observations showed that deer consume many fallen leaves under Q. gilva trees, suggesting considerable mortality of leaf miners due to deer predation via leaf abscission. This is a previously unreported relationship between a leaf miner and a mammalian herbivore via leaf abscission.

  16. 49 CFR 393.134 - What are the rules for securing roll-on/roll-off or hook lift containers?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... or hook lift containers? 393.134 Section 393.134 Transportation Other Regulations Relating to... for securing roll-on/roll-off or hook lift containers? (a) Applicability. The rules in this section apply to the transportation of roll-on/roll-off or hook lift containers. (b) Securement of a roll-on...

  17. 75 FR 47263 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From the Russian Federation; Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-05

    ... International Trade Administration Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From the Russian... carbon- quality steel products from the Russian Federation; final results. SUMMARY: On April 1, 2010, the... antidumping duty investigation of certain hot-rolled flat- rolled carbon-quality steel products (``hot-rolled...

  18. The influence of rolling practice on notch toughness and texture development in high-strength linepipe

    SciTech Connect

    Baczynski, G.J.; Jonas, J.J.; Collins, L.E.

    1999-12-01

    The mechanical properties and notch toughnesses of an X80 linepipe steel were determined for various test directions in the plane of sheet that had been finish rolled in the {gamma} and in the intercritical ({alpha} + {gamma}) regions. The anisotropies of yield strength (YS) and of impact energy are correlated to the presence of various texture components, as detected by the use of an orientation distribution function (ODF) analysis. The final microstructures were similar and consisted of polygonal and acicular ferrite. The textures were also similar; however, after rolling in the ({alpha} + {gamma}) region, the intensity of the texture was significantly higher. These textures were mainly comprised of two fibers, the rolling direction (RD), {l{underscore}angle}110{r{underscore}angle}//RD, and the normal direction (ND), {l{underscore}angle}111{r{underscore}angle}//ND, fibers. The observations show that the RD fiber centered at {l{underscore}brace}112{r{underscore}brace}{l{underscore}angle}110{r{underscore}angle} and the {l{underscore}brace}10{r{underscore}brace}{l{underscore}angle}001{r{underscore}angle} orientation were responsible for the YS anisotropy. The relationships between notch toughness and texture were considered for the brittle or cleavage ({minus}196 C), mixed brittle-ductile ({minus}60 C), and ductile (room temperature (RT)) modes of fracture. This work shows that the anisotropy of impact energy associated with ductile fracture at the higher temperatures is caused by the {l{underscore}brace}112{r{underscore}brace}{l{underscore}angle}110{r{underscore}angle} component, and that the {l{underscore}brace}001{r{underscore}brace}{l{underscore}angle}110{r{underscore}angle} and {l{underscore}brace}110{r{underscore}brace}{l{underscore}angle}001{r{underscore}angle} components (if present) are responsible for the anisotropy of the impact energy associated with cleavage at low temperatures. The lack of anisotropy of the impact energy observed at {minus}196 C and

  19. The role of gravity in leaf blade curvatures

    NASA Technical Reports Server (NTRS)

    Hayes, A. B.

    1984-01-01

    In the past year we have gained useful information on several aspects of leaf blade growth. The most important observations are as follows: The C(14)-1AA moves preferentially in a gravipositive dorsiventral direction through the blade. This movement is inhibited by inversion of the blade. The responding cells in leaf blade hyponasty are in the lower epidermis and bundle sheath cells. Two additional responses in the leaf were characterized. In addition to blade curvature, the leaf shows petiole curvature and changes in the liminal angle subtended by the pulvinus. Ethylene production was studied under a number of conditions. The blade, rather than the petiole or pulvinus, is the principal site of auxin-promoted ethylene synthesis. The effects of a variety of agents on the blade, including gibberellic acid, abscisic acid, vanadate, low pH buffers, and blue light were reviewed.

  20. Controlled-Shape, Ultrasonic-Angle-Beam Standard Reflector

    NASA Technical Reports Server (NTRS)

    Berry, J., Robertf.

    1986-01-01

    New ultrasonic angle-beam standard reflector uses impression of letter "l" steel-die stamp. NDE techniques and standard reflector apply to use of pulse-echo-type ultrasonic equipment for inspection of wrought metals including forgings and forging stock; rolled billet, bar or plate; and extruded bar, tube, and shapes. "l" reference standard reflector affords advantages of easy insertion in inspected item using common hand-tools and greatly reduced implementation time through elimination of machining operations.

  1. Aqueous processing of low-band-gap polymer solar cells using roll-to-roll methods.

    PubMed

    Andersen, Thomas R; Larsen-Olsen, Thue T; Andreasen, Birgitta; Böttiger, Arvid P L; Carlé, Jon E; Helgesen, Martin; Bundgaard, Eva; Norrman, Kion; Andreasen, Jens W; Jørgensen, Mikkel; Krebs, Frederik C

    2011-05-24

    Aqueous nanoparticle dispersions of a series of three low-band-gap polymers poly[4,8-bis(2-ethylhexyloxy)benzo(1,2-b:4,5-b')dithiophene-alt-5,6-bis(octyloxy)-4,7-di(thiophen-2-yl)(2,1,3-benzothiadiazole)-5,5'-diyl] (P1), poly[(4,4'-bis(2-ethylhexyl)dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl] (P2), and poly[2,3-bis-(3-octyloxyphenyl)quinoxaline-5,8-diyl-alt-thiophene-2,5-diyl] (P3) were prepared using ultrasonic treatment of a chloroform solution of the polymer and [6,6]-phenyl-C(61)-butyric acid methyl ester ([60]PCBM) mixed with an aqueous solution of sodium dodecylsulphate (SDS). The size of the nanoparticles was established using small-angle X-ray scattering (SAXS) of the aqueous dispersions and by both atomic force microscopy (AFM) and using both grazing incidence SAXS (GISAXS) and grazing incidence wide-angle X-ray scattering (GIWAXS) in the solid state as coated films. The aqueous dispersions were dialyzed to remove excess detergent and concentrated to a solid content of approximately 60 mg mL(-1). The formation of films for solar cells using the aqueous dispersion required the addition of the nonionic detergent FSO-100 at a concentration of 5 mg mL(-1). This enabled slot-die coating of high quality films with a dry thickness of 126 ± 19, 500 ± 25, and 612 ± 22 nm P1, P2, and P3, respectively for polymer solar cells. Large area inverted polymer solar cells were thus prepared based on the aqueous inks. The power conversion efficiency (PCE) reached for each of the materials was 0.07, 0.55, and 0.15% for P1, P2, and P3, respectively. The devices were prepared using coating and printing of all layers including the metal back electrodes. All steps were carried out using roll-to-roll (R2R) slot-die and screen printing methods on flexible substrates. All five layers were processed using environmentally friendly methods and solvents. Two of the layers were processed entirely from water (the electron transport layer and the active

  2. 76 FR 62894 - Following Procedures When Going Between Rolling Equipment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-11

    ... Federal Railroad Administration Following Procedures When Going Between Rolling Equipment AGENCY: Federal... of following procedures when going ] between rolling equipment. This safety advisory contains various... who, in the course of their work, place themselves between rolling equipment. The railroad...

  3. Model development of work roll wear in hot strip mill

    NASA Astrophysics Data System (ADS)

    Liu, Ziying; Guan, Yingping; Wang, Fengqin

    2017-06-01

    This paper, based on the analysis of the main factors(specific roll force, mean roll surface temperature, irregular edge wear and contact arc length) affecting roll wear, designed a new work roll wear model, the test data shows that the model can more accurately reflect the work roll wear, can be on-line prediction of work roll wear. The roll wear curve, including constant wear and irregular edge wear, presents a box shape, and the reasons also are showed in this paper. The top roll wear and bottom roll wear in the same mill are inconsistent, and the reasons are also analysed in this paper. Results show that the construction of the work roll mathematical model accords with the general law of work roll wear and tear; it can more accurately forecast roll wear online.

  4. Lubrication of rolling-element bearings

    NASA Technical Reports Server (NTRS)

    Parker, R. J.

    1980-01-01

    The lubrication of rolling element bearings is surveyed. Emphasis is on the critical design aspects related to speed, temperature, and ambient pressure environment. Types of lubrication including grease, jets, mist, wick, and through the race are discussed. The historical development, present state of technology, and the future problems of rolling element bearing lubrication are discussed.

  5. School Roll Forecasting Methods: A Review.

    ERIC Educational Resources Information Center

    Simpson, Stephen

    1987-01-01

    A review of the literature concerning local school roll forecasting describes the theoretical model common to most local education agency (LEA) forecasts, identifies a variety of issues relevant to this area of LEA planning, and suggests some opportunities for improvement in LEA school roll forecasting. (Author/CB)

  6. Roll splitting for field processing of biomass

    Treesearch

    Dennis T. Curtin; Donald L. Sirois; John A. Sturos

    1987-01-01

    The concept of roll splitting wood originated in 1967 when the Tennessee Valley Authority (TVA) forest products specialists developed a wood fibrator. The objective of that work was to produce raw materials for reconstituted board products. More recently, TVA focused on roll splitting as a field process to accelerate drying of small trees (3-15 cm diameter), much...

  7. Roll-forming tubes to header plates

    NASA Technical Reports Server (NTRS)

    Kramer, K.

    1976-01-01

    Technique has been developed for attaching and sealing tubes to header plates using a unique roll-forming tool. Technique is useful for attaching small tubes which are difficult to roll into conventional grooves in header plate tube holes, and for attaching when welding, brazing, or soldering is not desirable.

  8. School Roll Forecasting Methods: A Review.

    ERIC Educational Resources Information Center

    Simpson, Stephen

    1987-01-01

    A review of the literature concerning local school roll forecasting describes the theoretical model common to most local education agency (LEA) forecasts, identifies a variety of issues relevant to this area of LEA planning, and suggests some opportunities for improvement in LEA school roll forecasting. (Author/CB)

  9. Numerical analysis of Swiss roll metamaterials.

    PubMed

    Demetriadou, A; Pendry, J B

    2009-08-12

    A Swiss roll metamaterial is a resonant magnetic medium, with a negative magnetic permeability for a range of frequencies, due to its self-inductance and self-capacitance components. In this paper, we discuss the band structure, S-parameters and effective electromagnetic parameters of Swiss roll metamaterials, with both analytical and numerical results, which show an exceptional convergence.

  10. 33 CFR 159.107 - Rolling test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Rolling test. 159.107 Section 159.107 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.107 Rolling test. (a) The device,...

  11. Rolling maneuver load alleviation using active controls

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica A.; Pototzky, Anthony S.

    1992-01-01

    Rolling Maneuver Load Alleviation (RMLA) was demonstrated on the Active Flexible Wing (AFW) wind tunnel model in the LaRC Transonic Dynamics Tunnel. The design objective was to develop a systematic approach for developing active control laws to alleviate wing incremental loads during roll maneuvers. Using linear load models for the AFW wind-tunnel model which were based on experimental measurements, two RMLA control laws were developed based on a single-degree-of-freedom roll model. The RMLA control laws utilized actuation of outboard control surface pairs to counteract incremental loads generated during rolling maneuvers and roll performance. To evaluate the RMLA control laws, roll maneuvers were performed in the wind tunnel at dynamic pressures of 150, 200, and 250 psf and Mach numbers of .33, .38, and .44, respectively. Loads obtained during these maneuvers were compared to baseline maneuver loads. For both RMLA controllers, the incremental torsion moments were reduced by up to 60 percent at all dynamic pressures and performance times. Results for bending moment load reductions during roll maneuvers varied. In addition, in a multiple function test, RMLA and flutter suppression system control laws were operated simultaneously during roll maneuvers at dynamic pressures 11 percent above the open-loop flutter dynamic pressure.

  12. Power roll 2007: A five year summary

    USDA-ARS?s Scientific Manuscript database

    The powered roll gin stand (PRT – Powered Roll Technology) was first tested in a field application on seed cotton during the 2002 ginning season at Servico, Inc., Courtland Alabama. During the 2003 season, Servico installed and operated PRT stands in all three lines. In subsequent years, mechanical ...

  13. Contact-angle hysteresis on super-hydrophobic surfaces.

    PubMed

    McHale, G; Shirtcliffe, N J; Newton, M I

    2004-11-09

    The relationship between perturbations to contact angles on a rough or textured surface and the super-hydrophobic enhancement of the equilibrium contact angle is discussed theoretically. Two models are considered. In the first (Wenzel) case, the super-hydrophobic surface has a very high contact angle and the droplet completely contacts the surface upon which it rests. In the second (Cassie-Baxter) case, the super-hydrophobic surface has a very high contact angle, but the droplet bridges across surface protrusions. The theoretical treatment emphasizes the concept of contact-angle amplification or attenuation and distinguishes between the increases in contact angles due to roughening or texturing surfaces and perturbations to the resulting contact angles. The theory is applied to predicting contact-angle hysteresis on rough surfaces from the hysteresis observable on smooth surfaces and is therefore relevant to predicting roll-off angles for droplets on tilted surfaces. The theory quantitatively predicts a "sticky" surface for Wenzel-type surfaces and a "slippy" surface for Cassie-Baxter-type surfaces.

  14. Modeling Particle Rolling Behavior by the Modified Eccentric Circle Model of DEM

    NASA Astrophysics Data System (ADS)

    Chang, Yi-Long; Chen, Tsung-Hsien; Weng, Meng-Chia

    2012-09-01

    This study proposes a modified eccentric circle model to simulate the rolling resistance of circle particles through the distinct element method (DEM) simulation. The proposed model contains two major concepts: eccentric circle and local rotational damping. The mass center of a circular particle is first adjusted slightly for eccentricity to provide rotational stiffness. Local rotational damping is adopted to dissipate energy in the rotational direction. These associated material parameters can be obtained easily from the rolling behavior of one rod. This study verifies the proposed model with the repose angle tests of chalk rod assemblies, and the simulated results were satisfactory. Simulations using other existing models were also conducted for comparison, showing that the proposed model achieved better results. A landslide model test was further simulated, and this simulation agreed with both the failure pattern and the sliding process. In conclusion, particle rolling simulation using the proposed model appears to approach the actual particle trajectory, making it useful for various applications.

  15. Static and yawed-rolling mechanical properties of two type 7 aircraft tires

    NASA Technical Reports Server (NTRS)

    Tanner, J. A.; Stubbs, S. M.; Mccarty, J. L.

    1981-01-01

    Selected mechanical properties of 18 x 5.5 and 49 x 17 size, type 7 aircraft tires were evaluated. The tires were subjected to pure vertical loads and to combined vertical and lateral loads under both static and rolling conditions. Parameters for the static tests consisted of tire load in the vertical and lateral directions, and parameters for the rolling tests included tire vertical load, yaw angle, and ground speed. Effects of each of these parameters on the measured tire characteristics are discussed and, where possible, compared with previous work. Results indicate that dynamic tire properties under investigation were generally insensitive to speed variations and therefore tend to support the conclusion that many tire dynamic characteristics can be obtained from static and low speed rolling tests. Furthermore, many of the tire mechanical properties are in good agreement with empirical predictions based on earlier research.

  16. An EBSD investigation of cryogenically-rolled Cu–30%Zn brass

    SciTech Connect

    Konkova, T.; Mironov, S.; Korznikov, A.; Korznikova, G.; Myshlyaev, M.M.; Semiatin, S.L.

    2015-03-15

    Electron backscatter diffraction was used to study grain structure development in heavily cryogenically-rolled Cu–30%Zn brass. The produced microstructure was found to be very inhomogeneous. At a relatively coarse scale, it consisted of texture bands having crystallographic orientations close to the α- and γ-fibers. The texture bands contained internal structure comprising shear bands, mechanical twins, and low-angle boundaries. Such features were more pronounced within the γ-fiber, and this resulted in a heterogeneous ultrafine grain structure. The cryogenic rolling was concluded to be not straightforward for production of nanocrystalline grain structure in Cu–30%Zn brass. - Highlights: • Cryogenic rolling produced an inhomogeneous ultrafine-grained microstructure. • Grain refinement was mainly related with twinning and shear banding. • Grain refinement preferentially occurred in (111) fiber texture.

  17. Roll tracking effects of G-vector tilt and various types of motion washout

    NASA Technical Reports Server (NTRS)

    Jex, H. R.; Magdaleno, R. E.; Junker, A. M.

    1978-01-01

    In a dogfight scenario, the task was to follow the target's roll angle while suppressing gust disturbances. All subjects adopted the same behavioral strategies in following the target while suppressing the gusts, and the MFP-fitted math model response was generally within one data symbol width. The results include the following: (1) comparisons of full roll motion (both with and without the spurious gravity tilt cue) with the static case. These motion cues help suppress disturbances with little net effect on the visual performance. Tilt cues were clearly used by the pilots but gave only small improvement in tracking errors. (2) The optimum washout (in terms of performance close to real world, similar behavioral parameters, significant motion attenuation (60 percent), and acceptable motion fidelity) was the combined attenuation and first-order washout. (3) Various trends in parameters across the motion conditions were apparent, and are discussed with respect to a comprehensive model for predicting adaptation to various roll motion cues.

  18. Damped leaf flexure hinge

    NASA Astrophysics Data System (ADS)

    Chen, Zhong; Chen, Guisheng; Zhang, Xianmin

    2015-05-01

    Flexure-based mechanism like compliant actuation system embeds complex dynamics that will reduce the control bandwidth and limits their dynamic positioning precision. This paper presents a theoretical model of a leaf flexure hinge with damping layers using strain energy method and Kelvin damping model. The modified loss factor of the damped leaf flexure hinge is derived, and the equivalent viscous damping coefficient of the damped leaf hinge is obtained, which could be used to improve the pseudo-rigid-model. The free vibration signals of the hinge in three different damping configurations are measured. The experimental modal analysis also is performed on the three kinds of damped leaf flexure hinges in order to evaluate their 1st order bending natural frequency and vibration-suppressing effects. The evaluation of modified loss factor model also is performed. The experimental results indicate that the constrained layer damping can enhance the structure damping of the hinge even if only single damping layer each side, the modified loss factor model can get good predicts of a damped leaf flexure hinge in the frequency range below 1st order natural frequency, and it is necessary that the dimensional parameters of the damping layers and basic layer of the hinge should be optimized for simplification at the mechanism's design stage.

  19. Damped leaf flexure hinge.

    PubMed

    Chen, Zhong; Chen, Guisheng; Zhang, Xianmin

    2015-05-01

    Flexure-based mechanism like compliant actuation system embeds complex dynamics that will reduce the control bandwidth and limits their dynamic positioning precision. This paper presents a theoretical model of a leaf flexure hinge with damping layers using strain energy method and Kelvin damping model. The modified loss factor of the damped leaf flexure hinge is derived, and the equivalent viscous damping coefficient of the damped leaf hinge is obtained, which could be used to improve the pseudo-rigid-model. The free vibration signals of the hinge in three different damping configurations are measured. The experimental modal analysis also is performed on the three kinds of damped leaf flexure hinges in order to evaluate their 1st order bending natural frequency and vibration-suppressing effects. The evaluation of modified loss factor model also is performed. The experimental results indicate that the constrained layer damping can enhance the structure damping of the hinge even if only single damping layer each side, the modified loss factor model can get good predicts of a damped leaf flexure hinge in the frequency range below 1st order natural frequency, and it is necessary that the dimensional parameters of the damping layers and basic layer of the hinge should be optimized for simplification at the mechanism's design stage.

  20. Roll-to-Roll Atomic Layer Deposition for Ultrabarriers

    NASA Astrophysics Data System (ADS)

    Yersak, Alexander

    Atomic layer deposition (ALD) is a bottom-up, gas phase, thin film deposition technique based on sequential, self-limiting binary surface reactions. The precise sub-nanometer film thickness control and conformal nature of this process have led to various commercial applications of ALD. However, ALD films are most commonly deposited in batch processes at low pressures, which raises throughput and/or cost concerns for many otherwise promising applications. This problem can be solved by spatial ALD (S-ALD) which is a version of the ALD technique where the precursors are separated in space rather than time. We have demonstrated the first atmospheric pressure roll-to-roll (R2R) ALD web coating system. A thickness uniformity of +/-2% was achieved across the web. ALD cycle times as low as 76 ms were demonstrated with a web speed of 1 m/s and a vertical gap height of 0.5 mm. Extrinsic defects in the ALD films were investigated, and a predictive cluster model was proposed, and was demonstrated with a residual (i.e. difference between the actual defect counts and those predicted by the cluster model) of <10%. A R2R ALD web coating tool with molecular layer deposition (MLD) capabilities was investigated and achieved a defect density <10 /cm2. A hyperbaric corrosion chamber with in situ monitoring of film thickness was demonstrated with the ability to characterize R2R ALD films using water dissolution as a metric. ALD SiO2 films were determined to be dissolution-predictable with a predicted dissolution rate of 3.7 nm/year at physiological temperatures. ALD TiO2 films were observed with no measurable dissolution in 150 °C water over the measurement period of 12 days.

  1. Advances in roll-to-roll imprint lithography for display applications

    NASA Astrophysics Data System (ADS)

    Jeans, Albert; Almanza-Workman, Marcia; Cobene, Robert; Elder, Richard; Garcia, Robert; Gomez-Pancorbo, Fernando; Jackson, Warren; Jam, Mehrban; Kim, Han-Jun; Kwon, Ohseung; Luo, Hao; Maltabes, John; Mei, Ping; Perlov, Craig; Smith, Mark; Taussig, Carl; Jeffrey, Frank; Braymen, Steve; Hauschildt, Jason; Junge, Kelly; Larson, Don; Stieler, Dan

    2010-03-01

    A solution to the problems of roll-to-roll lithography on flexible substrates is presented. We have developed a roll-toroll imprint lithography technique to fabricate active matrix transistor backplanes on flexible webs of polyimide that have a blanket material stack of metals, dielectrics, and semiconductors. Imprint lithography produces a multi-level 3- dimensional mask that is then successively etched to pattern the underlying layers into the desired structures. This process, Self-Aligned Imprint Lithography (SAIL), solves the layer-to-layer alignment problem because all masking levels are created with one imprint step. The processes and equipment required for complete roll-to-roll SAIL fabrication will be described. Emphasis will be placed on the advances in the roll-to-roll imprint process which have enabled us to produce working transistor arrays.

  2. Automated Procedure for Roll Pass Design

    NASA Astrophysics Data System (ADS)

    Lambiase, F.; Langella, A.

    2009-04-01

    The aim of this work has been to develop an automatic roll pass design method, capable of minimizing the number of roll passes. The adoption of artificial intelligence technologies, particularly expert systems, and a hybrid model for the surface profile evaluation of rolled bars, has allowed us to model the search for the minimal sequence with a tree path search. This approach permitted a geometrical optimization of roll passes while allowing automation of the roll pass design process. Moreover, the heuristic nature of the inferential engine contributes a great deal toward reducing search time, thus allowing such a system to be employed for industrial purposes. Finally, this new approach was compared with other recently developed automatic systems to validate and measure possible improvements among them.

  3. Roll Casting of Aluminum Alloy Clad Strip

    SciTech Connect

    Nakamura, R.; Tsuge, H.; Haga, T.; Watari, H.; Kumai, S.

    2011-01-17

    Casting of aluminum alloy three layers of clad strip was tried using the two sets of twin roll casters, and effects of the casting parameters on the cladding conditions were investigated. One twin roll caster was mounted on the other twin roll caster. Base strip was 8079 aluminum alloy and overlay strips were 6022 aluminum alloy. Effects of roll-load of upper and lower casters and melt temperature of the lower caster were investigated. When the roll-load of the upper and lower caster was large enough, the overlay strip could be solidified and be connected. The overlay strip could be connected when the melt of the overlay strip cast by the lower caster was low enough. Sound three layers of clad strip could be cast by proper conditions.

  4. Effect of Stretch Orientation and Rolling Orientation on the Mechanical Properties of 2195 Al-Cu-Li Alloy

    NASA Astrophysics Data System (ADS)

    Es-Said, O. S.; Parrish, C. J.; Bradberry, C. A.; Hassoun, J. Y.; Parish, R. A.; Nash, A.; Smythe, N. C.; Tran, K. N.; Ruperto, T.; Lee, E. W.; Mitchell, D.; Vinquist, C.

    2011-10-01

    Sheets of 2195 aluminum-lithium alloy were solution-treated at 507 °C for 30 min. One set was stretched to 3-5% in the 0°, 45°, and 90° angle with respect to the original rolling direction. Two other sets were rolled 6% reduction in thickness and 24% reduction in thickness in the 0°, 45°, and 90° angle with respect to the original rolling direction. All specimens were aged at 143 °C for 36 h. A second group of samples was rolled at 24 and 50% reduction in thickness after a solution treatment of 507 °C for 1 h prior to aging at 190 °C for 24 h. Tensile specimens were machined from each sheet at 0°, 45°, and 90° angles to the original grain orientation. Tensile testing was used to determine the mechanical properties and anisotropic behavior of each condition. Rolling 6% reduction in thickness in the 45° orientation yielded anisotropy of 7.6% in the yield strength.

  5. Adaptation of an Asperity Ploughing Model to Measured Roll Topographies

    NASA Astrophysics Data System (ADS)

    Lalli, L. A.; Malkani, H. G.; Sheu, S.

    2004-06-01

    A previously published asperity ploughing model has been adapted in order to approximate the measured as-ground roll surface topography. The model is then integrated with classical cold rolling plastic deformation equations including coupling to the lubricant film evolution through the roll bite. The friction distribution through the roll bite is thus a function of the specific details of the roll surface topography as well as the process parameters. predictions of roll force, torque and forward slip as well as sliding distance and volume of metal swept out by the asperities are then made and compared to experimental measurements for an aluminum alloy rolled on a laboratory rolling mill.

  6. Stability of rolls in rotating magnetoconvection in a layer with no-slip electrically insulating horizontal boundaries.

    PubMed

    Podvigina, Olga

    2010-05-01

    We consider the onset of Boussinesq convection in a horizontal layer of electrically conducting fluid rotating about a vertical axis with an imposed vertical magnetic field. Rigid electrically insulating horizontal boundaries are assumed. Our goal is to identify the region of parameter values, for which rolls emerge at the onset of convection. The following conditions are necessary for convective fluid motion to set in as stable rolls: instability of the trivial steady state is monotonic; the rolls bifurcate supercritically; they are stable to perturbations of the form of rolls rotated by any angle (without an imposed magnetic field this is called the Küppers-Lortz instability). For each of the three conditions we derive equations for respective boundaries in the parameter space and determine the boundaries numerically.

  7. Penetration of sunlight into a canopy - Explicit models based on vertical and horizontal leaf projections

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Brakke, T.

    1986-01-01

    The projections of leaf areas onto a horizontal plane and onto a vertical plane are examined for their utility in characterizing canopies for sunlight penetration (direct beam only) models. These projections exactly specify the penetration if the projections on the principal plane of the normals to the top surfaces of the leaves are in the same quadrant as the sun. Inferring the total leaf area from these projections (and therefore the penetration as a function of the total leaf area) is possible only with a large uncertainty (up to + or - 32 percent) because the projections are a specific measure of the total leaf area only if the leaf angle distribution is known. It is expected that this uncertainty could be reduced to more acceptable levels by making an approximate assessment of whether the zenith angle distribution is that of an extremophile canopy.

  8. Smart change in leaf morphology to tune the wettability

    NASA Astrophysics Data System (ADS)

    Kang, Hosung; Fleetwood, Sara; Jung, Sunghwan

    2016-11-01

    Plants are sessile organisms, but some of them are able to change their features to survive. We found Cercidiphyllum japonicum (Katsura) leaves actively adapt to their fine structures on the leaf surface in response to external stimuli. It is fascinating how the structural changes can affect their physical properties. In this present study, we are investigating the effect of external environments (temperature, cell hydration, and acid rain) on microscale papillose epidermal cells and nanoscale waxes. Using environmental scanning electron microscopy (ESEM) and atomic force microscopy (AFM), we measured micro and nano structures of the Katsura leaves. We found a functional relation between the micro and nano structures and the contact angle of the leaf's surface. As the epidermal cells shrink and the waxes erode, the contact angle decreases. A simple Cassie-Baxter model based on the wettability of textured surfaces has been used to characterize changes of the contact angle.

  9. Reading Angles in Maps

    ERIC Educational Resources Information Center

    Izard, Véronique; O'Donnell, Evan; Spelke, Elizabeth S.

    2014-01-01

    Preschool children can navigate by simple geometric maps of the environment, but the nature of the geometric relations they use in map reading remains unclear. Here, children were tested specifically on their sensitivity to angle. Forty-eight children (age 47:15-53:30 months) were presented with fragments of geometric maps, in which angle sections…

  10. Reading Angles in Maps

    ERIC Educational Resources Information Center

    Izard, Véronique; O'Donnell, Evan; Spelke, Elizabeth S.

    2014-01-01

    Preschool children can navigate by simple geometric maps of the environment, but the nature of the geometric relations they use in map reading remains unclear. Here, children were tested specifically on their sensitivity to angle. Forty-eight children (age 47:15-53:30 months) were presented with fragments of geometric maps, in which angle sections…

  11. Pose measurement method and experiments for high-speed rolling targets in a wind tunnel.

    PubMed

    Jia, Zhenyuan; Ma, Xin; Liu, Wei; Lu, Wenbo; Li, Xiao; Chen, Ling; Wang, Zhengqu; Cui, Xiaochun

    2014-12-12

    High-precision wind tunnel simulation tests play an important role in aircraft design and manufacture. In this study, a high-speed pose vision measurement method is proposed for high-speed and rolling targets in a supersonic wind tunnel. To obtain images with high signal-to-noise ratio and avoid impacts on the aerodynamic shape of the rolling targets, a high-speed image acquisition method based on ultrathin retro-reflection markers is presented. Since markers are small-sized and some of them may be lost when the target is rolling, a novel markers layout with which markers are distributed evenly on the surface is proposed based on a spatial coding method to achieve highly accurate pose information. Additionally, a pose acquisition is carried out according to the mentioned markers layout after removing mismatching points by Case Deletion Diagnostics. Finally, experiments on measuring the pose parameters of high-speed targets in the laboratory and in a supersonic wind tunnel are conducted to verify the feasibility and effectiveness of the proposed method. Experimental results indicate that the position measurement precision is less than 0.16 mm, the pitching and yaw angle precision less than 0.132° and the roll angle precision 0.712°.

  12. Pose Measurement Method and Experiments for High-Speed Rolling Targets in a Wind Tunnel

    PubMed Central

    Jia, Zhenyuan; Ma, Xin; Liu, Wei; Lu, Wenbo; Li, Xiao; Chen, Ling; Wang, Zhengqu; Cui, Xiaochun

    2014-01-01

    High-precision wind tunnel simulation tests play an important role in aircraft design and manufacture. In this study, a high-speed pose vision measurement method is proposed for high-speed and rolling targets in a supersonic wind tunnel. To obtain images with high signal-to-noise ratio and avoid impacts on the aerodynamic shape of the rolling targets, a high-speed image acquisition method based on ultrathin retro-reflection markers is presented. Since markers are small-sized and some of them may be lost when the target is rolling, a novel markers layout with which markers are distributed evenly on the surface is proposed based on a spatial coding method to achieve highly accurate pose information. Additionally, a pose acquisition is carried out according to the mentioned markers layout after removing mismatching points by Case Deletion Diagnostics. Finally, experiments on measuring the pose parameters of high-speed targets in the laboratory and in a supersonic wind tunnel are conducted to verify the feasibility and effectiveness of the proposed method. Experimental results indicate that the position measurement precision is less than 0.16 mm, the pitching and yaw angle precision less than 0.132° and the roll angle precision 0.712°. PMID:25615732

  13. Characterization of iris pattern stretches and application to the measurement of roll axis eye movements.

    PubMed

    Nishiyama, Junpei; Hashimoto, Tsutomu; Sakashita, Yusuke; Fujiyoshi, Hironobu; Hirata, Yutaka

    2008-01-01

    Eye movements are utilized in many scientific studies as a probe that reflects the neural representation of 3 dimensional extrapersonal space. This study proposes a method to accurately measure the roll component of eye movements under the conditions in which the pupil diameter changes. Generally, the iris pattern matching between a reference and a test iris image is performed to estimate roll angle of the test image. However, iris patterns are subject to change when the pupil size changes, thus resulting in less accurate roll angle estimation if the pupil sizes in the test and reference images are different. We characterized non-uniform iris pattern contraction/expansion caused by pupil dilation/constriction, and developed an algorithm to convert an iris pattern with an arbitrary pupil size into that with the same pupil size as the reference iris pattern. It was demonstrated that the proposed method improved the accuracy of the measurement of roll eye movement by up to 76.9%.

  14. Design and optimization of wheel-legged robot: Rolling-Wolf

    NASA Astrophysics Data System (ADS)

    Luo, Yang; Li, Qimin; Liu, Zhangxing

    2014-11-01

    Though the studies of wheel-legged robots have achieved great success, the existing ones still have defects in load distribution, structure stability and carrying capacity. For overcoming these shortcomings, a new kind of wheel-legged robot(Rolling-Wolf) is designed. It is actuated by means of ball screws and sliders, and each leg forms two stable triangle structures at any moment, which is simple but has high structure stability. The positional posture model and statics model are built and used to analyze the kinematic and mechanical properties of Rolling-Wolf. Based on these two models, important indexes for evaluating its motion performance are analyzed. According to the models and indexes, all of the structure parameters which influence the motion performance of Rolling-Wolf are optimized by the method of Archive-based Micro Genetic Algorithm(AMGA) by using Isight and Matlab software. Compared to the initial values, the maximum rotation angle of the thigh is improved by 4.17%, the maximum lifting height of the wheel is improved by 65.53%, and the maximum driving forces of the thigh and calf are decreased by 25.5% and 12.58%, respectively. The conspicuous optimization results indicate that Rolling-Wolf is much more excellent. The novel wheel-leg structure of Rolling-Wolf is efficient in promoting the load distribution, structure stability and carrying capacity of wheel-legged robot and the proposed optimization method provides a new approach for structure optimization.

  15. Inflationary dynamics with a smooth slow-roll to constant-roll era transition

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2017-04-01

    In this paper we investigate the implications of having a varying second slow-roll index on the canonical scalar field inflationary dynamics. We shall be interested in cases that the second slow-roll can take small values and correspondingly large values, for limiting cases of the function that quantifies the variation of the second slow-roll index. As we demonstrate, this can naturally introduce a smooth transition between slow-roll and constant-roll eras. We discuss the theoretical implications of the mechanism we introduce and we use various illustrative examples in order to better understand the new features that the varying second slow-roll index introduces. In the examples we will present, the second slow-roll index has exponential dependence on the scalar field, and in one of these cases, the slow-roll era corresponds to a type of α-attractor inflation. Finally, we briefly discuss how the combination of slow-roll and constant-roll may lead to non-Gaussianities in the primordial perturbations.

  16. Rolling into spatial disorientation: simulator demonstration of the post-roll (Gillingham) illusion.

    PubMed

    Nooij, Suzanne A E; Groen, Eric L

    2011-05-01

    Spatial disorientation (SD) is still a contributing factor in many aviation accidents, stressing the need for adequate SD training scenarios. In this article we focused on the post-roll effect (the sensation of rolling back after a roll maneuver, such as an entry of a coordinated turn) and investigated the effect of roll stimuli on the pilot's ability to stabilize their roll attitude. This resulted in a ground-based demonstration scenario for pilots. The experiments took place in the advanced 6-DOF Desdemona motion simulator, with the subject in a supine position. Roll motions were either fully automated with the subjects blindfolded (BLIND), automated with the subject viewing the cockpit interior (COCKPIT), or self-controlled (LEAD). After the roll stimulus subjects had to cancel all perceived simulator motion without any visual feedback. Both the roll velocity and duration were varied. In 68% of all trials subjects corrected for the perceived motion of rolling back by initiating a roll motion in the same direction as the preceeding roll. The effect was dependent on both rate and duration, in a manner consistent with semicircular canal dynamics. The effect was smallest in the BLIND scenario, but differences between simulation scenarios were non-significant. The results show that the effects of the post-roll illusion on aircraft control can be demonstrated adequately in a flight simulator using an attitude control task. The effect is present even after short roll movements, occurring frequently in flight. Therefore this demonstration is relevant for spatial disorientation training programs for pilots.

  17. 'Slings' enable neutrophil rolling at high shear.

    PubMed

    Sundd, Prithu; Gutierrez, Edgar; Koltsova, Ekaterina K; Kuwano, Yoshihiro; Fukuda, Satoru; Pospieszalska, Maria K; Groisman, Alex; Ley, Klaus

    2012-08-16

    Most leukocytes can roll along the walls of venules at low shear stress (1 dyn cm−2), but neutrophils have the ability to roll at tenfold higher shear stress in microvessels in vivo. The mechanisms involved in this shear-resistant rolling are known to involve cell flattening and pulling of long membrane tethers at the rear. Here we show that these long tethers do not retract as postulated, but instead persist and appear as 'slings' at the front of rolling cells. We demonstrate slings in a model of acute inflammation in vivo and on P-selectin in vitro, where P-selectin-glycoprotein-ligand-1 (PSGL-1) is found in discrete sticky patches whereas LFA-1 is expressed over the entire length on slings. As neutrophils roll forward, slings wrap around the rolling cells and undergo a step-wise peeling from the P-selectin substrate enabled by the failure of PSGL-1 patches under hydrodynamic forces. The 'step-wise peeling of slings' is distinct from the 'pulling of tethers' reported previously. Each sling effectively lays out a cell-autonomous adhesive substrate in front of neutrophils rolling at high shear stress during inflammation.

  18. Inflation with a constant rate of roll

    SciTech Connect

    Motohashi, Hayato; Starobinsky, Alexei A.; Yokoyama, Jun'ichi E-mail: alstar@landau.ac.ru

    2015-09-01

    We consider an inflationary scenario where the rate of inflaton roll defined by {sup ··}φ/H φ-dot remains constant. The rate of roll is small for slow-roll inflation, while a generic rate of roll leads to the interesting case of 'constant-roll' inflation. We find a general exact solution for the inflaton potential required for such inflaton behaviour. In this model, due to non-slow evolution of background, the would-be decaying mode of linear scalar (curvature) perturbations may not be neglected. It can even grow for some values of the model parameter, while the other mode always remains constant. However, this always occurs for unstable solutions which are not attractors for the given potential. The most interesting particular cases of constant-roll inflation remaining viable with the most recent observational data are quadratic hilltop inflation (with cutoff) and natural inflation (with an additional negative cosmological constant). In these cases even-order slow-roll parameters approach non-negligible constants while the odd ones are asymptotically vanishing in the quasi-de Sitter regime.

  19. Inflation with a constant rate of roll

    NASA Astrophysics Data System (ADS)

    Motohashi, Hayato; Starobinsky, Alexei A.; Yokoyama, Jun'ichi

    2015-09-01

    We consider an inflationary scenario where the rate of inflaton roll defined by ̈phi/H dot phi remains constant. The rate of roll is small for slow-roll inflation, while a generic rate of roll leads to the interesting case of 'constant-roll' inflation. We find a general exact solution for the inflaton potential required for such inflaton behaviour. In this model, due to non-slow evolution of background, the would-be decaying mode of linear scalar (curvature) perturbations may not be neglected. It can even grow for some values of the model parameter, while the other mode always remains constant. However, this always occurs for unstable solutions which are not attractors for the given potential. The most interesting particular cases of constant-roll inflation remaining viable with the most recent observational data are quadratic hilltop inflation (with cutoff) and natural inflation (with an additional negative cosmological constant). In these cases even-order slow-roll parameters approach non-negligible constants while the odd ones are asymptotically vanishing in the quasi-de Sitter regime.

  20. Comparative leaf development in angiosperms.

    PubMed

    Tsukaya, Hirokazu

    2014-02-01

    Recent accumulation of our knowledge on basic leaf development mechanisms in model angiosperm species has allowed us to pursue evolutionary development (evo/devo) studies of various kinds of leaf development. As a result, unexpected findings and clues have been unearthed aiding our understanding of the mechanisms involved in the diversity of leaf morphology, although the covered remain limited. In this review, we highlight recent findings of diversified leaf development in angiosperms.

  1. Effect of Microstructural Anisotropy on the Electrochemical Behavior of Rolled Mild Steel

    NASA Astrophysics Data System (ADS)

    Choudhary, S.; Nanda, V.; Shekhar, S.; Garg, A.; Mondal, K.

    2017-01-01

    Warm rolling of a mild steel at 600 °C generates a microstructural anisotropy in the different planes corresponding to rolling direction, normal direction and transverse direction manifested by differences in the grain structure and the type of grain boundaries. The work concentrates on studying the effect of this microstructural anisotropy on the electrochemical behavior of the steel plates using microscopic examination and electron backscattered diffraction. The results show that the corrosion behavior of the samples depends mainly on the fraction of high-angle grain boundaries or corresponding average grain size, which, in turn, depends on the degree of deformation on different planes determined by the extent of thickness reduction. On the other hand, low-angle grain boundaries have little effect on the corrosion of all the three different planes.

  2. Maple Leaf Outdoor Centre.

    ERIC Educational Resources Information Center

    Maguire, Molly; Gunton, Ric

    2000-01-01

    Maple Leaf Outdoor Centre (Ontario) has added year-round outdoor education facilities and programs to help support its summer camp for disadvantaged children. Schools, youth centers, religious groups, and athletic teams conduct their own programs, collaborate with staff, or use staff-developed programs emphasizing adventure education and personal…

  3. Bacterial leaf spot

    USDA-ARS?s Scientific Manuscript database

    Bacterial leaf spot has been reported in Australia (Queensland), Egypt, El Salvador, India, Japan, Nicaragua, Sudan, and the United States (Florida, Iowa, Kansas, Maryland, and Wisconsin). It occasionally causes locally severe defoliation and post-emergence damping-off and stunting. The disease is...

  4. Cucumber leaf spot virus

    USDA-ARS?s Scientific Manuscript database

    Cucumber leaf spot virus (CLSV) was originally identified from cucumber (Cucumis sativus) in Germany, but has since been found in various parts of Europe, the UK, and the Middle East, including Jordan, Saudi Arabia, Bulgaria, Poland, and Spain. CLSV is known to cause symptoms ranging from chloroti...

  5. Evaluation of two methods of predicting MLC leaf positions using EPID measurements

    SciTech Connect

    Parent, Laure; Seco, Joao; Evans, Phil M.; Dance, David R.; Fielding, Andrew

    2006-09-15

    In intensity modulated radiation treatments (IMRT), the position of the field edges and the modulation within the beam are often achieved with a multileaf collimator (MLC). During the MLC calibration process, due to the finite accuracy of leaf position measurements, a systematic error may be introduced to leaf positions. Thereafter leaf positions of the MLC depend on the systematic error introduced on each leaf during MLC calibration and on the accuracy of the leaf position control system (random errors). This study presents and evaluates two methods to predict the systematic errors on the leaf positions introduced during the MLC calibration. The two presented methods are based on a series of electronic portal imaging device (EPID) measurements. A comparison with film measurements showed that the EPID could be used to measure leaf positions without introducing any bias. The first method, referred to as the 'central leaf method', is based on the method currently used at this center for MLC leaf calibration. It mimics the manner in which leaf calibration parameters are specified in the MLC control system and consequently is also used by other centers. The second method, a new method proposed by the authors and referred to as the ''individual leaf method,'' involves the measurement of two positions for each leaf (-5 and +15 cm) and the interpolation and extrapolation from these two points to any other given position. The central leaf method and the individual leaf method predicted leaf positions at prescribed positions of -11, 0, 5, and 10 cm within 2.3 and 1.0 mm, respectively, with a standard deviation (SD) of 0.3 and 0.2 mm, respectively. The individual leaf method provided a better prediction of the leaf positions than the central leaf method. Reproducibility tests for leaf positions of -5 and +15 cm were performed. The reproducibility was within 0.4 mm on the same day and 0.4 mm six weeks later (1 SD). Measurements at gantry angles of 0 deg., 90 deg., and 270 deg

  6. Leaf Surface Wettability and Implications for Drop Shedding and Evaporation from Forest Canopies

    NASA Astrophysics Data System (ADS)

    Konrad, W.; Ebner, M.; Traiser, C.; Roth-Nebelsick, A.

    2012-05-01

    Wettability and retention capacity of leaf surfaces are parameters that contribute to interception of rain, fog or dew by forest canopies. Contrary to common expectation, hydrophobicity or wettability of a leaf do not dictate the stickiness of drops to leaves. Crucial for the adhesion of drops is the contact angle hysteresis, the difference between leading edge contact angle and trailing edge contact angle for a running drop. Other parameters that are dependent on the static contact angle are the maximum volume of drops that can stick to the surface and the persistence of an adhering drop with respect to evaporation. Adaption of contact angle and contact angle hysteresis allow one to pursue different strategies of drop control, for example efficient water shedding or maximum retention of adhering water. Efficient water shedding is achieved if contact angle hysteresis is low. Retention of (isolated) large drops requires a high contact angle hysteresis and a static contact angle of 65.5°, while maximum retention by optimum spacing of drops necessitates a high contact angle hysteresis and a static contact angle of 111.6°. Maximum persistence with respect to evaporation is obtained if the static contact angle amounts to 77.5°, together with a high contact angle hysteresis. It is to be expected that knowledge of these parameters can contribute to the capacity of a forest to intercept water.

  7. Signal and power roll ring testing update

    NASA Technical Reports Server (NTRS)

    Smith, Dennis W.

    1989-01-01

    The development of the roll ring as a long-life, low-torque alternative to the slip ring is discussed. A roll ring consists of one or more circular flexures captured by their own spring force in the annular space between two concentric conductors or contact rings. The advantages of roll rings over other types of electrical transfer devices are: extremely low drag torque, high transfer efficiencies in high-power configurations, extremely low wear debris generation, long life, and low weight for high-power applications.

  8. f( R) constant-roll inflation

    NASA Astrophysics Data System (ADS)

    Motohashi, Hayato; Starobinsky, Alexei A.

    2017-08-01

    The previously introduced class of two-parametric phenomenological inflationary models in general relativity in which the slow-roll assumption is replaced by the more general, constant-roll condition is generalized to the case of f( R) gravity. A simple constant-roll condition is defined in the original Jordan frame, and exact expressions for a scalaron potential in the Einstein frame, for a function f( R) (in the parametric form) and for inflationary dynamics are obtained. The region of the model parameters permitted by the latest observational constraints on the scalar spectral index and the tensor-to-scalar ratio of primordial metric perturbations generated during inflation is determined.

  9. Viewing angle changeable display

    NASA Astrophysics Data System (ADS)

    Leng, Jinbi; Huang, Ziqiang; Yang, Wenjun; Chen, Xiaoxi

    2010-10-01

    Viewing angle changeable display can change the display viewing angle as needed: In the public place the display could have a narrow viewing angle for privacy, while in the private place the displays could have a wide viewing angle for the convenience of the operation and better viewing experience. This article propose a novel adjustable optical transmission device to realize the viewing angle changes for LCD by using the principle of guest- host effect of liquid crystal. The major technology is to insert a special equipment between the backlight and the LCD, through which the backlight will display either parallel or scattered features to get an either narrow or wide viewing angle. The equipment is an adjustable transmission cell (ATC) which is actually a black G-H LC cell. This ATC is the main focus of our invention. The ATC consists of a polarizer sheet and a special guest-host liquid crystal device filled with the two-phase dye (called as GH-LC in this report), to achieve the viewing angle change in the LCD. When an electrical field charges to the ATC, only the so-called near-axis lights can pass through the ATC within a relatively small angle, while the other scattered lights are absorbed sequentially by GH-LC and the polarizer sheet. On the other hand, when there is no electrical charge to the ATC, the cell behaves like a normal polarizer; and the scattered light can pass through the cell and polarizer in a normal way. This paper describes the principle and structure of the device, applies the electric field on the sample to observe the electro-optical properties, combine the theoretical and experimental research, getting the viewing angle effects of the display.

  10. Photoelectric angle converter

    NASA Astrophysics Data System (ADS)

    Podzharenko, Volodymyr A.; Kulakov, Pavlo I.

    2001-06-01

    The photo-electric angle transmitter of rotation is offered, at which the output voltage is linear function of entering magnitude. In a transmitter the linear phototransducer is used on the basis of pair photo diode -- operating amplifier, which output voltage is linear function of the area of an illuminated photosensitive stratum, and modulator of a light stream of the special shape, which ensures a linear dependence of this area from an angle of rotation. The transmitter has good frequent properties and can be used for dynamic measurements of an angular velocity and angle of rotation, in systems of exact drives and systems of autocontrol.

  11. Meteorite incidence angles

    NASA Astrophysics Data System (ADS)

    Hughes, D. W.

    1993-06-01

    Think about an asteroid smashing into the surface of the Moon and excavating a crater; or hitting Earth and scattering meteorite fragments over a strewn field. Imagine a fragment of cometary dust burning out in the Earth's atmosphere and producing a meteor. These bodies have paths that are inclined at some angle to the vertical. But what is the predominant value of this angle of incidence, i? How does the number of incident bodies vary as a function of angle i? And how do both these affect the prevalence of non- circular lunar craters and the ellipticity of meteorite strewn fields?

  12. Simulating droplet motion on virtual leaf surfaces

    PubMed Central

    Mayo, Lisa C.; McCue, Scott W.; Moroney, Timothy J.; Forster, W. Alison; Kempthorne, Daryl M.; Belward, John A.; Turner, Ian W.

    2015-01-01

    A curvilinear thin film model is used to simulate the motion of droplets on a virtual leaf surface, with a view to better understand the retention of agricultural sprays on plants. The governing model, adapted from Roy et al. (2002 J. Fluid Mech. 454, 235–261 (doi:10.1017/S0022112001007133)) with the addition of a disjoining pressure term, describes the gravity- and curvature-driven flow of a small droplet on a complex substrate: a cotton leaf reconstructed from digitized scan data. Coalescence is the key mechanism behind spray coating of foliage, and our simulations demonstrate that various experimentally observed coalescence behaviours can be reproduced qualitatively. By varying the contact angle over the domain, we also demonstrate that the presence of a chemical defect can act as an obstacle to the droplet's path, causing break-up. In simulations on the virtual leaf, it is found that the movement of a typical spray size droplet is driven almost exclusively by substrate curvature gradients. It is not until droplet mass is sufficiently increased via coalescence that gravity becomes the dominating force. PMID:26064657

  13. Natural Rolling Responses of a Delta Wing in Transonic and Subsonic Flows

    NASA Technical Reports Server (NTRS)

    Menzies, Margaret A.; Kandil, Osama A.

    1996-01-01

    The unsteady, three-dimensional, full Navier-Stokes (NS) equations and the Euler equations of rigid-body dynamics are sequentially solved to simulate the natural rolling response of slender delta wings of zero thickness at moderate to high angles of attack, to transonic and subsonic flows. The governing equations of fluid flow and dynamics of the present multi-disciplinary problem are solved using the time-accurate solution of the NS equations with the implicit, upwind, Roe flux-difference splitting, finite-volume scheme and a four-stage Runge-Kutta scheme, respectively. The main focus is to analyze the effect of Mach number and angle of attack on the leading edge vortices and their breakdown, the resultant rolling motion, and overall aerodynamic response of the wing. Three cases demonstrate the natural response of a 65 deg swept, cropped delta wing in a transonic flow with breakdown of the leading edge vortices and an 80 deg swept delta wing in a subsonic flow undergoing either damped or self-excited limit-cycle rolling oscillations as a function of angle of attack. Comparisons with an experimental investigation completes this study, validating the analysis and illustrating the complex details afforded by computational investigations.

  14. Why Low Bounce Balls Exhibit High Rolling Resistance

    ERIC Educational Resources Information Center

    Cross, Rod

    2015-01-01

    A simple experiment is described to measure the coefficient of rolling friction for a low bounce ball rolling on a horizontal surface. As observed previously by others, the coefficient increased with rolling speed. The energy loss due to rolling friction can be explained in terms of the measured coefficient of restitution for the ball, meaning…

  15. Why Low Bounce Balls Exhibit High Rolling Resistance

    ERIC Educational Resources Information Center

    Cross, Rod

    2015-01-01

    A simple experiment is described to measure the coefficient of rolling friction for a low bounce ball rolling on a horizontal surface. As observed previously by others, the coefficient increased with rolling speed. The energy loss due to rolling friction can be explained in terms of the measured coefficient of restitution for the ball, meaning…

  16. Roll-to-roll cohesive, coated, flexible, high-efficiency polymer light-emitting diodes utilizing ITO-free polymer anodes.

    PubMed

    Shin, Seongbeom; Yang, Minyang; Guo, L Jay; Youn, Hongseok

    2013-12-09

    This paper reports solution-processed, high-efficiency polymer light-emitting diodes fabricated by a new type of roll-to-roll coating method under ambient air conditions. A noble roll-to-roll cohesive coating system utilizes only natural gravity and the surface tension of the solution to flow out from the capillary to the surface of the substrate. Because this mechanism uses a minimally cohesive solution, the roll-to-roll cohesive coating can effectively realize an ultra-thin film thickness for the electron injection layer. In addition, the roll-to-roll cohesive coating enables the fabrication of a thicker polymer anode film more than 250 nm at one time by modification of the surface energy and without wasting the solution. It is observed that the standard sheet resistance deviation of the polymer anode is only 2.32 Ω/□ over 50 000 bending cycles. The standard sheet resistance deviation of the polymer anode in the different bending angles (0 to 180°) is 0.313 Ω/□, but the case of the ITO-PET is 104.93 Ω/□. The average surface roughness of the polymer anode measured by atomic force microscopy is only 1.06 nm. Because the surface of the polymer anode has a better quality, the leakage current of the polymer light-emitting diodes (PLEDs) using the polymer anode is much lower than that using the ITO-PET substrate. The luminous power efficiency of the two devices is 4.13 lm/W for the polymer anode and 3.21 lm/W for the ITO-PET. Consequently, the PLEDs made by using the polymer anode exhibited 28% enhanced performance because the polymer anode represents not only a higher transparency than the ITO-PET in the wavelength of 560 nm but also greatly reduced roughness. The optimized the maximum current efficiency and power efficiency of the device show around 6.1 cd/A and 5.1 lm/W, respectively, which is comparable to the case of using the ITO-glass.

  17. Development of a Technical Practice for Roll Stabilization System Selection. Phase I

    DTIC Science & Technology

    1974-10-01

    STABILIZATION SYSTEM SELECTION. • ". , . „ 7 -^ #*s^ READ INSTRUCTIONS BEFORE COMPLETING FORM 1. RCClPICNfS CATALOG NUMBCN s. rv»c or ntwom...PCRIOD COVERED Final Technical Report, 7 . AUTMORf«; Eugene R. Miller, John J. Slager and William C. Webster •■ »KMrOHMINOOftO. *E»ORT...Destroyer Type Ship at 7 /\\L" 1.2 Figure 20 - Change in Roll Angle as a Function of the Heading Angle for all Sea States; Unstabil’’zed Destroyer Type

  18. Angles, Time, and Proportion

    ERIC Educational Resources Information Center

    Pagni, David L.

    2005-01-01

    This article describes an investigation making connections between the time on an analog clock and the angle between the minute hand and the hour hand. It was posed by a middle school mathematics teacher. (Contains 8 tables and 6 figures.)

  19. Roll Damping Characterisation Program: User Guide

    DTIC Science & Technology

    2014-06-01

    sallying test. The Defence Science and Technology Organisation (DSTO) have developed a software-based tool called the Roll Damping Characterisation...Murray Riding Maritime Division Murray obtained a Bachelor of Science (Honours) Degree from the

  20. Rover Rehearses Roll-Off at JPL

    NASA Image and Video Library

    2004-01-15

    Footage from the JPL In-Situ Instruments Laboratory, or testbed, shows engineers rehearsing a crucial maneuver called egress in which NASA Mars Exploration Rover Spirit rolls off its lander platform and touches martian soil.

  1. Next-Generation Space Ambitions Keep Rolling

    NASA Image and Video Library

    As space shuttle Atlantis rolled to its new home at the Kennedy Space Center Visitor Complex earlier this month, NASA and its commercial crew partners reflected on the Space Shuttle Program's treme...

  2. Roll Dynamics in a Free Flying Dragonfly

    NASA Astrophysics Data System (ADS)

    Melfi, James; Leonardo, Anthony; Wang, Z. Jane

    2014-11-01

    Dragonflies are capable of executing fast turning maneuvers. A typical free-flight maneuver includes rotations in all three degrees of freedom; yaw, pitch, and roll. This makes it difficult to identify the key changes to wing kinematics responsible for controlling each degree of freedom. Therefore we focus on a single motion; roll about the body longitudinal axis in a combined experimental and computational study. To induce rolling, a dragonfly is released from a magnetic tether while inverted. Both wing and body kinematics are recorded using multiple high speed cameras. The kinematics are replayed in a computer simulation of the flight, with forces and torques based on quasi-steady aerodynamics. By examining the effect of each kinematic change individually, we determine the key changes a dragonfly uses to both instigate, maintain, and end a rolling motion.

  3. Moesin regulates neutrophil rolling velocity in vivo.

    PubMed

    Matsumoto, Masanori; Hirata, Takako

    2016-01-01

    During inflammation, the selectin-induced slow rolling of neutrophils on venules cooperates with chemokine signaling to mediate neutrophil recruitment into tissues. Previous studies identified P-selectin glycoprotein ligand-1 (PSGL-1) and CD44 as E-selectin ligands that activate integrins to induce slow rolling. We show here that in TNF-α-treated cremaster muscle venules, slow leukocyte rolling was impaired in mice deficient in moesin, a member of the ezrin-radixin-moesin (ERM) family. Accordingly, neutrophil recruitment in a peritonitis model was decreased in moesin-deficient mice when chemokine signaling was blocked with pertussis toxin. These results suggest that moesin contributes to the slow rolling and subsequent recruitment of neutrophils during inflammation.

  4. Mathematical modeling of deformation during hot rolling

    SciTech Connect

    Jin, D.; Stachowiak, R.G.; Samarasekera, I.V.; Brimacombe, J.K.

    1994-12-31

    The deformation that occurs in the roll bite during the hot rolling of steel, particularly the strain-rate and strain distribution, has been mathematically modeled using finite-element analysis. In this paper three different finite-element models are compared with one another and with industrial measurements. The first model is an Eulerian analysis based on the flow formulation method, while the second utilizes an Updated Lagrangian approach. The third model is based on a commercially available program DEFORM which also utilizes a Lagrangian reference frame. Model predictions of strain and strain-rate distribution, particularly near the surface of the slab, are strongly influenced by the treatment of friction at the boundary and the magnitude of the friction coefficient or shear factor. Roll forces predicted by the model have been compared with industrial rolling loads from a seven-stand hot-strip mill.

  5. SU-E-T-444: Gravity Effect On Maximum Leaf Speed in Dynamic IMRT Treatments

    SciTech Connect

    Olasolo, J; Pellejero, S; Gracia, M; Gallardo, N; Martin, ML; Lozares, S; Maneru, F; Bragado, L; Miquelez, S; Artacho, JM

    2015-06-15

    Purpose: A leaf sequencing algorithm has been recently developed in our department. Our purpose is to utilize this algorithm to reduce treatment time by studying the feasibility of using several maximum leaf speeds depending on gantry angle and leaf thickness (0.5 or 1 cm at isocenter). To do so, the gravity effect on MLC performance has been examined by means of analysing the dynalog files. Methods: Leaf position errors has been ascertained according to gantry angle and leaf speed in MLC Millenium120 (Varian). In order to do this, the following test has been designed: all leaves move in synchrony, with same speed and 1 cm gap between opposite leaves. This test is implemented for 18 different speeds: 0.25-0.5-0.75-1-1.25-1.5-1.75-2-2.1-2.2-2.3-2.4-2.5-2.6-2.7-2.8-2.9-3.0 cm/s and 8 gantry angles: 0-45-90-135-180-225-270-315. Collimator angle is 2 degrees in all cases since it is the most usual one in IMRT treatments in our department. Dynamic tolerance is 2 mm. Dynalogs files of 10 repetitions of the test are analysed with a Mathlab in-house developed software and RMS error and 95th percentiles are calculated. Varian recommends 2.5 cm/s as the maximum leaf speed for its segmentation algorithm. In our case, we accept this speed in the most restrictive situation: gantry angle 270 and 1 cm leaf thickness. Maximum speeds for the rest of the cases are calculated by keeping the difference between 95th percentile and dynamic tolerance. In this way, beam hold-off probability does not increase. Results: Maximum speeds every 45 degrees of gantry rotation have been calculated for both leaf thickness. These results are 2.9-2.9-2.9-2.9-2.7-2.6-2.6-2.7 cm/s for 0.5 cm leaf thickness and 2.7-2.7-2.7-2.7-2.6-2.5-2.5-2.6 cm/s for 1 cm leaf thickness. Conclusion: Gravity effect on MLC positioning has been studied. Maximum leaf speed according to leaf thickness and gantry angle have been calculated which reduces treatment time.

  6. Plasmid Rolling-Circle Replication.

    PubMed

    Ruiz-Masó, J A; MachóN, C; Bordanaba-Ruiseco, L; Espinosa, M; Coll, M; Del Solar, G

    2015-02-01

    Plasmids are DNA entities that undergo controlled replication independent of the chromosomal DNA, a crucial step that guarantees the prevalence of the plasmid in its host. DNA replication has to cope with the incapacity of the DNA polymerases to start de novo DNA synthesis, and different replication mechanisms offer diverse solutions to this problem. Rolling-circle replication (RCR) is a mechanism adopted by certain plasmids, among other genetic elements, that represents one of the simplest initiation strategies, that is, the nicking by a replication initiator protein on one parental strand to generate the primer for leading-strand initiation and a single priming site for lagging-strand synthesis. All RCR plasmid genomes consist of a number of basic elements: leading strand initiation and control, lagging strand origin, phenotypic determinants, and mobilization, generally in that order of frequency. RCR has been mainly characterized in Gram-positive bacterial plasmids, although it has also been described in Gram-negative bacterial or archaeal plasmids. Here we aim to provide an overview of the RCR plasmids' lifestyle, with emphasis on their characteristic traits, promiscuity, stability, utility as vectors, etc. While RCR is one of the best-characterized plasmid replication mechanisms, there are still many questions left unanswered, which will be pointed out along the way in this review.

  7. Control system of roll crushes in emergency situations

    NASA Astrophysics Data System (ADS)

    Nikitin, A. G.; Tagiltsev-Galeta, K. V.; Chaynikov, K. A.

    2017-09-01

    The system of emergency control of a roll crusher is developed, which allows the hardness of the crushed material to be evaluated indirectly estimating the current strength of the unit, or directly by swing of the deflecting the crusher jaw, and the pieces with the increased hardness to be recrushed, increasing compression, reducing the motor rotation frequency. This system reduces the number of emergencies and provides less downtime for equipment in the event of an accident than crushers using conventional safety elements: toggle plates and restraining spring or hydraulic fuses. Besides, this system is extensible, i.e. it does not interfere with the inclusion of additional devices (for example, mechanical breakers such as toggle plates), sensors (for example, angle protractor to improve the accuracy of measurements). With the combined use of direct and indirect evaluation of the crusher condition the accuracy and efficiency of the crusher control increases improving the reliability of a crushing unit as a whole.

  8. Rolling Friction on a Wheeled Laboratory Cart

    DTIC Science & Technology

    2012-01-01

    by gravity, and a vehicle (such as a car or bicycle ) accelerating along a level road is driven by a motor or by pedalling. In such cases, static...of dirt or other obstacles). This slowing will arise even in the absence of air drag , as one can verify by rolling the object inside an evacuated...air drag is negligible compared to rolling friction at the speeds of motion of typical lab carts by substituting appropriate values into the formula

  9. Influence of cold rolling direction on texture, inhibitor and magnetic properties in strip-cast grain-oriented 3% silicon steel

    NASA Astrophysics Data System (ADS)

    Fang, F.; Lu, X.; Zhang, Y. X.; Wang, Y.; Jiao, H. T.; Cao, G. M.; Yuan, G.; Xu, Y. B.; Misra, R. D. K.; Wang, G. D.

    2017-02-01

    An unconventional cold rolling scheme (inclined rolling at 0°, 30°, 45°, 90° during second-stage cold rolling process) was adopted to process grain-oriented silicon steel based on strip casting process. The influences of inclination angles on microstructure, texture, inhibitor and magnetic properties were studied by a combination of EBSD, XRD and TEM. It was found that the α-fiber texture was weakened and γ-fiber was strengthened in cold rolled sheet with increase in inclination angle. The primary recrystallization sheet exhibited more homogeneous microstructure with relatively strong γ-fiber, medium α-fiber texture, weak λ-fiber texture and Goss component at high inclination angles. Fine and homogeneous inhibitors were obtained after primary annealing with increase in inclination angle from 0° to 90° because of more uniform deformation after inclined rolling. The grain-oriented silicon steel experienced completely secondary recrystallization at various inclination angles after final annealing process, with superior magnetic properties at 0° and 90°. Furthermore, Goss nuclei capable of final secondary recrystallization in strip casting process newly formed both in-grain shear bands and grain boundaries region during second-stage cold rolling and subsequent annealing process, which is different from the well-accepted results that Goss texture originated from the subsurface layer of the hot rolled sheet or during intermediate annealing process. In addition, the Goss texture that nucleated in-grain shear bands was weaker but more accurate as compared to that in grain boundaries region.

  10. Strip edge cracking simulation in cold rolling

    SciTech Connect

    Hubert, C.; Dubar, L.; Dubar, M.; Dubois, A.

    2011-01-17

    This research work focuses on a specific defect which occurs during cold rolling of steel strips: edge-serration. Investigations on the industrial processes have led to the conclusion that this defect is the result of the edge-trimming and cold rolling sequences. The aim of this research work is to analyze the effect of the cutting process and the cold rolling on cracks occurrence, especially on strip edges.This study is performed using an experimental testing stand called Upsetting Rolling Test (URT). It allows to reproduce cold rolling contact parameters such as forward slip, reduction ratio and friction coefficients. Specimens sampled near trimmed industrial strip edges are deformed using the URT stand. Two sets of specimens with different stress states, obtained by annealing, are submitted to two reduction passes with extreme forward slips.Scanning electron microscopy observations added to 3D optical surface profiler topographies show that on one hand, forward slip has a major effect on cracks opening. On the other hand, cracks opening decreases according to high roll strip speed gradient. Concerning the heat-treated specimens, no crack appeared after all reduction passes, showing a large influence of the cutting process and consequently of the local stress state in the vicinity of the burnish and fracture regions.

  11. Strip edge cracking simulation in cold rolling

    NASA Astrophysics Data System (ADS)

    Hubert, C.; Dubar, L.; Dubar, M.; Dubois, A.

    2011-01-01

    This research work focuses on a specific defect which occurs during cold rolling of steel strips: edge-serration. Investigations on the industrial processes have led to the conclusion that this defect is the result of the edge-trimming and cold rolling sequences. The aim of this research work is to analyze the effect of the cutting process and the cold rolling on cracks occurrence, especially on strip edges. This study is performed using an experimental testing stand called Upsetting Rolling Test (URT). It allows to reproduce cold rolling contact parameters such as forward slip, reduction ratio and friction coefficients. Specimens sampled near trimmed industrial strip edges are deformed using the URT stand. Two sets of specimens with different stress states, obtained by annealing, are submitted to two reduction passes with extreme forward slips. Scanning electron microscopy observations added to 3D optical surface profiler topographies show that on one hand, forward slip has a major effect on cracks opening. On the other hand, cracks opening decreases according to high roll strip speed gradient. Concerning the heat-treated specimens, no crack appeared after all reduction passes, showing a large influence of the cutting process and consequently of the local stress state in the vicinity of the burnish and fracture regions.

  12. Ultra slow-roll G inflation

    NASA Astrophysics Data System (ADS)

    Hirano, Shin'ichi; Kobayashi, Tsutomu; Yokoyama, Shuichiro

    2016-11-01

    The conventional slow-roll approximation is broken in the so-called "ultra slow-roll" models of inflation, for which the inflaton potential is exactly (or extremely) flat. The interesting nature of (canonical) ultra slow-roll inflation is that the curvature perturbation grows on superhorizon scales, but has a scale-invariant power spectrum. We study the ultra slow-roll inflationary dynamics in the presence of noncanonical kinetic terms of the scalar field, namely ultra slow-roll G inflation. We compute the evolution of the curvature perturbation and show that the primordial power spectrum follows a broken power law with an oscillation feature. It is demonstrated that this could explain the lack of large-scale power in the cosmic microwave background temperature anisotropies. We also point out that the violation of the null energy condition is prohibited in ultra slow-roll G inflation, and hence a blue tensor tilt is impossible as long as inflation is driven by the potential. This statement is, however, not true if the energy density is dominated by the kinetic energy of the scalar field.

  13. 75 FR 62566 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... COMMISSION Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia AGENCY: United... Brazil, the antidumping duty orders on hot-rolled steel from Brazil and Japan, and the suspended... steel from Brazil, the antidumping duty orders on hot-rolled steel from Brazil and Japan, and/ or the...

  14. 75 FR 42782 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... COMMISSION Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia AGENCY: United... Brazil and Japan, and the suspended investigation on hot-rolled steel from Russia. SUMMARY: The... Japan, and the suspended investigation on hot-rolled steel from Russia would be likely to lead to...

  15. 76 FR 34101 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-10

    ... COMMISSION Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia Determinations... steel products from Brazil and Japan would not be likely to lead to continuation or recurrence of...-rolled flat-rolled carbon-quality steel products from Brazil and Japan. Background The Commission...

  16. 75 FR 16504 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... COMMISSION Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia AGENCY: United...'') from Brazil, the antidumping duty orders on hot-rolled steel from Brazil and Japan, and the suspended... antidumping duty orders on hot-rolled steel from Brazil and Japan, and the suspended investigation on hot...

  17. 76 FR 35400 - Continuation of Suspended Antidumping Duty Investigation on Certain Hot-Rolled Flat-Rolled Carbon...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ...-Rolled Flat-Rolled Carbon-Quality Steel Products From the Russian Federation AGENCY: Import... carbon quality steel products (``hot- rolled steel'') from the Russian Federation (``Russia'') would... instituted, a sunset review of the suspended antidumping duty investigation on hot- rolled steel from Russia...

  18. Evaluation of roll designs on a roll-crusher/ crusher/splitter biomass harvester: test bench results

    Treesearch

    Colin Ashmore; Donald L. Sirois; Bryce J. Stokes

    1987-01-01

    Four different roll designs were evaluated on a test bench roll crusher/splitter to determine feeding and crushing efficiencies. For each design, different gap settings for the primary and secondary rolls were tested at two hydraulic cylinder pressures on the primary crush roll to determine their ability to crush and/or feed tree bolts. Seven different diameter classes...

  19. 49 CFR 393.134 - What are the rules for securing roll-on/roll-off or hook lift containers?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false What are the rules for securing roll-on/roll-off... Shifting and Falling Cargo Specific Securement Requirements by Commodity Type § 393.134 What are the rules for securing roll-on/roll-off or hook lift containers? (a) Applicability. The rules in this...

  20. Plant-Microbe Interactions: Wetting of Ivy (Hedera helix L.) Leaf Surfaces in Relation to Colonization by Epiphytic Microorganisms.

    PubMed

    Knoll, D; Schreiber, L

    2000-07-01

    Leaf wettability, cuticular wax composition, and microbial colonization of upper and lower leaf surfaces of ivy (Hedera helix L.) was investigated for young and old leaves sampled in June and September. Contact angles of aqueous buffered solutions measured on young leaf surfaces ranged between 76° and 86° and were not dependent on the pH value of the applied droplets. Contact angles measured on old leaf surfaces were up to 32°, significantly lower than on young leaf surfaces. Furthermore, contact angles were significantly lower using aqueous solutions of pH 9.0 compared to pH 3.0, indicating the influence of ionizable functional groups on leaf surface wetting properties. Observed changes in leaf wetting properties did not correlate with different levels of alkanoic acids in cuticular waxes. However, microscopic examination of the leaf surfaces indicated the influence of epiphytic microorganisms on wetting properties of old leaves, since their surfaces were always colonized by epiphytic microorganisms (filamentous fungi, yeasts, and bacteria), whereas surfaces of young leaves were basically clean. In order to analyze the effect of epiphytic microorganisms on leaf surface wetting, surfaces of young and clean ivy leaves were artificially colonized with Pseudomonas fluorescens. This resulted in a significant increase and a pH dependence of leaf surface wetting in the same way as it was observed on old ivy leaf surfaces. From these results it can be deduced that the native wetting properties of leaf surfaces can be significantly masked by the presence of epiphytic microorganisms. The ecological implications of altered wetting properties for microorganisms using the leaf/atmosphere interface as habitat are discussed.

  1. Leaf absorbance and photosynthesis

    NASA Technical Reports Server (NTRS)

    Schurer, Kees

    1994-01-01

    The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.

  2. Hysteresis effects of the subjective visual vertical during continuous quasi-static whole-body roll rotation.

    PubMed

    Palla, A; Tatalias, M; Straumann, D

    2008-01-01

    Healthy human subjects, when roll tilted in darkness, make systematic errors in estimating subjective visual vertical (SVV). Typically, roll tilt underestimation occurs at angles beyond 60 degrees (A-effect). At smaller tilt angles, overestimation may occur (E-effect). At approximately 135 degrees whole-body roll tilt, Kaptein and Van Gisbergen (2004, 2005) found an abrupt A/E transition, the exact location of which depended on the preceding rotation direction indicating hysteresis. Since this was observed using relatively fast roll velocity, it remains unclear whether the described hysteresis is dynamic or static. To clarify this uncertainty, we continuously rotated nine healthy subjects about the earth-horizontal naso-occipital axis, while they performed SVV adjustments every 2 s. Starting from the upright position, three full quasi-static constant velocity rotations (2 degrees/s) were completed in both directions (CW: clockwise; CCW: counterclockwise). SVV deviation from earth-verticality was plotted as a function of whole-body roll position. A bimodal Gaussian distribution function was fitted to SVV differences between CW and CCW rotations. A-effects (peaks at 88 degrees and 257 degrees chair position) at identical whole-body positions were larger after rotations from upside-down than after rotations from upright (average peak difference: 26 degrees). These results demonstrate static hysteresis for SVV estimation.

  3. Effect of the sequence of tube rolling in a tube bundle of a shell and tube heat exchanger on the stress-deformed state of the tube sheet

    NASA Astrophysics Data System (ADS)

    Tselishchev, M. F.; Plotnikov, P. N.; Brodov, Yu. M.

    2015-11-01

    Rolling the tube sheet of a heat exchanger with U-shaped tubes, as exemplified by the vapor cooler GP-24, was simulated. The simulation was performed using the finite element method with account of elas- tic-plastic properties of the tube and tube sheet materials. The simulation consisted of two stages; at the first stage, maximum and residual contact stress in the conjunction of a separate tube and the tube sheet was determined using the "equivalent sleeve" model; at the second stage, the obtained contact stress was applied to the hole surface in the tube sheet. Thus, different tube rolling sequences were simulated: from the center to the periphery of the tube sheet and from the periphery to the center along a spiral line. The studies showed that the tube rolling sequence noticeably influences the value of the tube sheet residual deflection for the same rolling parameters of separate tubes. Residual deflection of the tube sheet in different planes was determined. It was established that the smallest residual deflection corresponds to the tube rolling sequence from the periphery to the center of the tube sheet. The following dependences were obtained for different rolling sequences: maximum deformation of the tube sheet as a function of the number of rolled tubes, residual deformation of the tube sheet along its surface, and residual deflection of the tube sheet as a function of the rotation angle at the periphery. The preferred sequence of tube rolling for minimizing the tube sheet deformation is indicated.

  4. Experimental investigations of single-phase and two-phase flow resistance in narrow rectangular duct under rolling condition

    NASA Astrophysics Data System (ADS)

    Xing, Dianchuan; Yan, Changqi; Sun, Licheng; Wang, Yang

    2013-07-01

    Effects of rolling motion on single-phase and two-phase flow resistance were compared experimentally under ambient temperature and pressure. In the single-phase flow experiments, the different pump head was obtained by a variable speed electromotor, and the flow rate was adjusted combining with a regulating valve. However, for the two-phase pressure drop measurements, the pump delivering water operated with an invariable pressure head of 48m, in order to neglect the effect of pump head on flow fluctuation. The results indicated that effects of rolling motion on single-phase flow resistance depend on the pump head. The fluctuation amplitude of flow rate and frictional pressure drop decreases rapidly as the pump head increases, finally, the flow will tend to be steady if the pump head dramatically exceeds the additional pressure drop. Different from the case of single-phase flow, transient frictional pressure drop of two-phase flow fluctuates synchronously with the rolling motion when liquid Reynolds number is less than 1400, whereas keeps a stable steady state without obvious oscillation for other cases. The fluctuation amplitude is independent of rolling period and amplitude and decreases with the increase of flow rate. The inclination angle and phase interface distribution is taken into account in analyzing the influence of rolling motion on two-phase flow resistance. Comparing with the vertical condition, rolling motion nearly has no effects on time-averaged frictional resistance for both the single-phase and two-phase flow.

  5. Rolling-element bearings in China: From ancient times to the 20th century

    NASA Astrophysics Data System (ADS)

    Sun, Lie; Li, Ang

    2016-03-01

    The development of rolling-element bearings in China has spanned a long period. Based on several typical and important cases, the present article reconstructs the history of rolling-element bearings in China by dividing it into four stages according to the various characteristics of the bearings. The first stage represents the origin of rolling bearings in China, which remains controversial because of several suspected races and cages that were likely the components of bearings more than a millennium ago. At the second stage, a type of simple roller bearing was used for astronomical instruments not later than the 13th century based on clear philological and physical evidence. A similar bearing was also applied to an abridged armillary in the 17th century. Another type of spherical thrust bearings with rolling elements, which is a key component of a traditional Chinese windmill, could support a rotating shaft that moves rotationally and at an angle. At the third stage, the Chinese began studying and using the so-called Europeanstyle bearing since the 17th century. Moreover, over the last 100 years, the modern rolling bearing industry was gradually established in China, particularly because of the technology transfer from the Soviet Union in the 1950s. At the fourth stage, the Chinese government initiated the relatively rapid development of bearing technology. The government launched the "bearing movement" from the 1950s to the 1960s to establish the modern bearing industry and to promote rolling bearings as replacement for traditional sliding bearings. Furthermore, a number of large professional factories and institutions in China have continually introduced advanced technology and equipment. At present, these companies and institutions play a significant role in the international bearing industry.

  6. Mechanical forces in the development of leaf venation networks

    NASA Astrophysics Data System (ADS)

    Corson, Francis; Boudaoud, Arezki; Adda-Bedia, Mokhtar

    2008-03-01

    Leaf venation patterns, like leaf shapes, are extremely diverse, yet their local structure has been shown to satisfy a simple, universal property: the angles veins form at junctions are related to their diameters by a vectorial equation analogous to a force balance. This structure is the signature of a reorganization of vein networks during the development of leaves, a process we investigated numerically using a cell proliferation model. Provided that vein cells are given different mechanical properties, tensile forces develop along the veins during growth, causing the network to deform progressively. The statistics of the patterns obtained in these simulations are in good quantitative agreement with observations on leaves, supporting the notion that the local structure of leaf venation networks reflects a balance of mechanical forces.

  7. Practice of Improving Roll Deformation Theory in Strip Rolling Process Based on Boundary Integral Equation Method

    NASA Astrophysics Data System (ADS)

    Yuan, Zhengwen; Xiao, Hong; Xie, Hongbiao

    2014-02-01

    Precise strip-shape control theory is significant to improve rolled strip quality, and roll flattening theory is a primary part of the strip-shape theory. To improve the accuracy of roll flattening calculation based on semi-infinite body model, a new and more accurate roll flattening model is proposed in this paper, which is derived based on boundary integral equation method. The displacement fields of the finite length semi-infinite body on left and right sides are simulated by using finite element method (FEM) and displacement decay functions on left and right sides are established. Based on the new roll flattening model, a new 4Hi mill deformation model is established and verified by FEM. The new model is compared with Foppl formula and semi-infinite body model in different strip width, roll shifting value and bending force. The results show that the pressure and flattening between rolls calculated by the new model are more precise than other two models, especially near the two roll barrel edges.

  8. Quantifying texture evolution during hot rolling of AZ31 Twin Roll Cast strip

    NASA Astrophysics Data System (ADS)

    Gorelova, S.; Schaeben, H.

    2015-04-01

    Multi-pass rolling experiments with an AZ31 Twin Roll Cast (TRC) alloy were performed on an industrial scaled four-high rolling mill. Within the rolling with an intermediate annealing the evolution of texture was investigated. To quantify the extent of preferred crystallographic orientation experimental X-ray pole figures were measured after different process steps and analyzed using the free and open Matlab® toolbox MTEX for texture analysis. The development of the fiber texture was observed and analyzed in dependence on rolling conditions. In the initial state the specimen exhibits a texture composed of a weak basal texture and a cast texture with {0001}-planes oriented across the rolling direction. During the following rolling process a fiber texture was developed. The expected strength increment of the fiber texture was quantitatively confirmed in terms of volume portions of the orientation density function around the fiber and in terms of the canonical parameters of fitted pseudo Bingham distributions. On the results of this work a model for prediction of the texture evolution during the strip rolling of magnesium in the examined parameter range was developed.

  9. Comparing Acute Bouts of Sagittal Plane Progression Foam Rolling vs. Frontal Plane Progression Foam Rolling.

    PubMed

    Peacock, Corey A; Krein, Darren D; Antonio, Jose; Sanders, Gabriel J; Silver, Tobin A; Colas, Megan

    2015-08-01

    Many strength and conditioning professionals have included the use of foam rolling devices within a warm-up routine prior to both training and competition. Multiple studies have investigated foam rolling in regards to performance, flexibility, and rehabilitation; however, additional research is necessary in supporting the topic. Furthermore, as multiple foam rolling progressions exist, researching differences that may result from each is required. To investigate differences in foam rolling progressions, 16 athletically trained males underwent a 2-condition within-subjects protocol comparing the differences of 2 common foam rolling progressions in regards to performance testing. The 2 conditions included a foam rolling progression targeting the mediolateral axis of the body (FRml) and foam rolling progression targeting the anteroposterior axis (FRap). Each was administered in adjunct with a full-body dynamic warm-up. After each rolling progression, subjects performed National Football League combine drills, flexibility, and subjective scaling measures. The data demonstrated that FRml was effective at improving flexibility (p ≤ 0.05) when compared with FRap. No other differences existed between progressions.

  10. Experience in TMT with the use of cold lengthwise rolling in dead rolls

    NASA Astrophysics Data System (ADS)

    Agas'yants, G. A.; Semibratov, G. G.; Kodjaspirov, G. E.

    2007-01-01

    Experience in the thermomechanical treatment of long stepped preforms for shafts (including torsion ones), studs, forcing bolts, and other articles from high-strength and maraging steels with the use of cold lengthwise rolling in dead rolls is described. The used variants of TMT make it possible to obtain hardened highly loaded machine parts with high quality and performance parameters.

  11. Optimization of cold rolling process parameters in order to increasing rolling speed limited by chatter vibrations

    PubMed Central

    Heidari, Ali; Forouzan, Mohammad R.

    2012-01-01

    Chatter has been recognized as major restriction for the increase in productivity of cold rolling processes, limiting the rolling speed for thin steel strips. It is shown that chatter has close relation with rolling conditions. So the main aim of this paper is to attain the optimum set points of rolling to achieve maximum rolling speed, preventing chatter to occur. Two combination methods were used for optimization. First method is done in four steps: providing a simulation program for chatter analysis, preparing data from simulation program based on central composite design of experiment, developing a statistical model to relate system tendency to chatter and rolling parameters by response surface methodology, and finally optimizing the process by genetic algorithm. Second method has analogous stages. But central composite design of experiment is replaced by Taguchi method and response surface methodology is replaced by neural network method. Also a study on the influence of the rolling parameters on system stability has been carried out. By using these combination methods, new set points were determined and significant improvement achieved in rolling speed. PMID:25685398

  12. Influence of Carbon Content and Rolling Temperature on Rolling Texture in 3 Pct Si Steel

    NASA Astrophysics Data System (ADS)

    Shingaki, Y.; Takashima, M.; Hayakawa, Y.

    2017-01-01

    Effects of carbon and rolling temperature up to 453 K (180 °C) on rolling texture of 3 pct Si steel at a reduction of 66 pct were investigated using a single crystal with an initial orientation of {110}<001>. With residual-level carbon, uniform slip deformation was observed in the specimen cold rolled at room temperature and most of initial orientation {110}<001> rotated to {111}<112> during the rolling. With carbon addition, the formation of the deformation twins and the shear bands were promoted in the specimen cold rolled at room temperature. Regions with {110}<001> were observed inside the shear bands. Warm-rolled specimen with residual-level carbon had microbands containing tiny {110}<001> regions. Warm-rolled specimen with carbon addition had both the shear bands and the microbands but no deformation twin. Additionally, there were unique band structures with rotated crystal orientation around the rolling direction from initial orientation {110}<001>. These experimental results suggest that the carbon addition inhibits dislocation migration by the increase of the critical resolved shear stress (CRSS) and that the high deformation temperature activates multiple slip systems by the reduction of CRSS and further that the carbon addition and high deformation temperature superimposed bring about the activation of symmetrical {110} slip systems additionally.

  13. Development of a Rolling Process Design Tool for Use in Improving Hot Roll Slab Recovery

    SciTech Connect

    2001-10-01

    The project goal is to develop a numerical modeling capability to optimize the hot rolling process used to produce aluminum plate. This tool will be used in the forming process so that loss of product will be minimized. Product lost in the rolling process requires the energy-intensive steps of remelting and reforming into an ingot.

  14. Analytical study on web deformation by tension in roll-to-roll printing process

    NASA Astrophysics Data System (ADS)

    Kang, Y. S.; Hong, M. S.; Lee, S. H.; Jeon, Y. H.; Kang, D.; Lee, N. K.; Lee, M. G.

    2017-08-01

    Recently, flexible devices have gained high intentions for flexible display, Radio Frequency Identification (RFID), bio-sensor and so on. For manufacturing of the flexible devices, roll-to-roll process is a good candidate because of its low production cost and high productivity. Flexible substrate has a non-uniform deformation distribution by tension. Because the roll-to-roll process carries out a number of overlay printing processes, the deformation affect overlay printing precision and printable areas. In this study, the deformation of flexible substrate was analyzed by using finite element analysis and it was verified through experiments. More deformation occurred in the middle region in the direction parallel to rolling of the flexible substrate. It is confirmed through experiments and analysis that deformation occurs less at the both ends than in the middle region. Based on these results, a hourglass roll is proposed as a mechanical design of the roll to compensate the non-uniform deformation of the flexible substrate. In the hourglass roll, high stiffness material is used in the core and low stiffness material such as an elastic material is wrapped. The diameter of the core roll was designed to be the minimum at the middle and the maximum at both ends. We tried to compensate the non-uniform deformation distribution of the flexible substrate by using the variation of the contact stiffness between the roll and the flexible substrate. Deformation distribution of flexible substrates was confirmed by finite element analysis by applying hourglass roll shape. In the analysis when using the hourglass roll, it is confirmed that the stress distribution is compensated by about 70% and the strain distribution is compensated by about 67% compared to the case using the hourglass roll. To verify the compensation of the non-uniform deformation distribution due to the tension, deformation measurement experiment when using the proposed hourglass roll was carried out

  15. 75 FR 75455 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil: Final Results of Full...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-03

    ... International Trade Administration Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil... certain hot-rolled flat-rolled carbon-quality steel products (hot-rolled steel) from Brazil, pursuant to.../COSIPA) \\2\\ and Companhia Siderurgica Nacional (CSN), producers of hot-rolled steel, and the Government...

  16. 75 FR 77828 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil: Extension of Time Limit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... International Trade Administration Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil...-rolled flat-rolled carbon- quality steel products from Brazil for the period January 1, 2008, through December 31, 2008. See Certain Hot-Rolled Flat-Rolled Carbon Quality Steel Products From Brazil...

  17. 75 FR 32160 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products from Brazil: Extension of Time Limit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-07

    ... International Trade Administration Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products from Brazil... certain hot-rolled flat- rolled carbon-quality steel products from Brazil. See Agreement Suspending the... review of the countervailing duty order on certain hot-rolled flat-rolled carbon-quality steel products...

  18. Sensitivity analysis of roll load, torque and material properties in the roll forming process

    NASA Astrophysics Data System (ADS)

    Abeyrathna, Buddhika; Rolfe, Bernard; Hodgson, Peter; Weiss, Matthias

    2013-12-01

    Advanced High Strength Steel (AHSS) and Ultra High Strength Steel (UHSS) are increasingly used in the current automotive industry because of their high strength and weight saving potential. As a sheet forming process, roll forming is capable of forming such materials with precise dimensions, however a small change in processing may results in significant change in the material properties such as yield strength and hardening exponent from coil to coil or within the same coil. This paper presents the effect of yield strength and the hardening exponent on roll load, torque of the roll forming process and the longitudinal bow. The roll forming process is numerically simulated, and then the regression analysis and Analysis of Variance (ANOVA) techniques are employed to establish the relationships among the aforementioned parameters and to determine the percentage influence of material properties on longitudinal bow, roll load and torque.

  19. Research on the rolling moment in the symmetrical and asymmetrical rolling process

    NASA Astrophysics Data System (ADS)

    Alexa, V.; Raţiu, S. A.; Kiss, I.; Cioată, C. G.

    2017-01-01

    Research distribution the rolling moments symmetrical and asymmetrical report presents great importance both in theory and to introduce clarifications to the calculation of rolling resistance line assemblies. Clarifying individuals of metallic material deformation between the rolls single cylinder diameters act of any difference of work and analysis of advance and delay phenomena. Torque drive value for each of the rolling cylinders was done by reducing the thickness of the laminate samples, an experimental facility located in the laboratory of plastic deformation of the Faculty of Engineering Hunedoara. The analysis of research results show that in terms of power consumption for deformation and safety equipment in operation is rational for mills which require such a difference between the work rolls to execute about one cylinder operated.

  20. The worldwide leaf economics spectrum.

    PubMed

    Wright, Ian J; Reich, Peter B; Westoby, Mark; Ackerly, David D; Baruch, Zdravko; Bongers, Frans; Cavender-Bares, Jeannine; Chapin, Terry; Cornelissen, Johannes H C; Diemer, Matthias; Flexas, Jaume; Garnier, Eric; Groom, Philip K; Gulias, Javier; Hikosaka, Kouki; Lamont, Byron B; Lee, Tali; Lee, William; Lusk, Christopher; Midgley, Jeremy J; Navas, Marie-Laure; Niinemets, Ulo; Oleksyn, Jacek; Osada, Noriyuki; Poorter, Hendrik; Poot, Pieter; Prior, Lynda; Pyankov, Vladimir I; Roumet, Catherine; Thomas, Sean C; Tjoelker, Mark G; Veneklaas, Erik J; Villar, Rafael

    2004-04-22

    Bringing together leaf trait data spanning 2,548 species and 175 sites we describe, for the first time at global scale, a universal spectrum of leaf economics consisting of key chemical, structural and physiological properties. The spectrum runs from quick to slow return on investments of nutrients and dry mass in leaves, and operates largely independently of growth form, plant functional type or biome. Categories along the spectrum would, in general, describe leaf economic variation at the global scale better than plant functional types, because functional types overlap substantially in their leaf traits. Overall, modulation of leaf traits and trait relationships by climate is surprisingly modest, although some striking and significant patterns can be seen. Reliable quantification of the leaf economics spectrum and its interaction with climate will prove valuable for modelling nutrient fluxes and vegetation boundaries under changing land-use and climate.

  1. Improvement of vehicle roll stability by varying suspension properties

    NASA Astrophysics Data System (ADS)

    Shim, Taehyun; Velusamy, Pradheep C.

    2011-02-01

    Vehicle roll dynamics are strongly influenced by suspension properties such as roll centre height, roll steer, and roll camber. In this paper, the effects of suspension properties on vehicle roll response have been investigated using a multi-body vehicle dynamics programme. Roll dynamics of a vehicle model with MacPherson (front) and multilink (rear) suspensions were evaluated for the fishhook manoeuvre and variations of its roll response due to changes in the suspension properties were assessed by quantitatively analysing the vehicle response through simulation. Critical suspension design parameters for vehicle roll dynamics were identified and adjusted to improve roll stability of the vehicle model with passive suspension. Design of experiments has been used for identifying critical hardpoints affecting the suspension parameters, and optimisation techniques were employed for parameter optimisation. This approach provides a viable alternative to costlier active control systems for economy-class vehicles.

  2. Magnon inflation: slow roll with steep potentials

    SciTech Connect

    Adshead, Peter; Blas, Diego; Burgess, C.P.; Hayman, Peter; Patil, Subodh P.

    2016-11-04

    We find multi-scalar effective field theories (EFTs) that can achieve a slow inflationary roll despite having a scalar potential that does not satisfy G{sup ab}∂{sub a}V∂{sub b}V≪V{sup 2}/M{sub p}{sup 2} (where G{sub ab} is the target-space metric). They evade the usual slow-roll conditions on V because their kinetic energies are dominated by single-derivative terms rather than the usual two-derivative terms. Single derivatives dominate during slow roll and so do not require a breakdown of the usual derivative expansion that underpins calculational control in much of cosmology. The presence of such terms requires some sort of UV Lorentz-symmetry breaking during inflation (besides the usual cosmological breaking). Chromo-natural inflation provides one particular example of a UV theory that can generate the multi-field single-derivative terms we consider, and we argue that the EFT we find indeed captures the slow-roll conditions for its background evolution. We also show that our EFT can be understood as a multi-field generalization of the single-field Cuscuton models. The multi-field case introduces a new feature, however: the scalar kinetic terms define a target-space 2-form, F{sub ab}, whose antisymmetry gives new ways for slow roll to be achieved.

  3. Applying contextual interference to the Pawlata roll.

    PubMed

    Smith, P J; Davies, M

    1995-12-01

    Contextual interference is manipulated by changing the practice order of a number of similar motor tasks, so that the learning context of each interferes with that of the other. The effect has been found to generalize to baseball batting, badminton serving and volleyball skills. The present study examined whether this practice technique could be applied to a Pawlata roll in a kayak. The study was further motivated by the fact that many instructors in Britain currently advocate learning the Pawlata roll in one direction only to a criterion of accuracy, thereafter transferring to the opposite direction. Contextual interference literature predicts that skill retention would be better served by practising on alternate sides. Accordingly, 16 undergraduate students with no kayaking experience were randomly allocated to either a low contextual interference group, which followed U'ren's (1993) recommendations, or a high contextual interference group, which practised the skill on alternate sides. The high contextual interference group took less time to acquire the skill, and were also quicker to achieve successful performance in retention (full roll) and transfer (half roll) tests, regardless of the direction of the roll, 1 week later. The time savings in practice were not expected, as acquisition under high contextual interference was improved rather than impaired. This finding suggests that bilateral transfer was increased by randomizing practice. These results are worthy of further investigation, in that they suggest that the recommended training methods may not be optimal.

  4. Magnon inflation: slow roll with steep potentials

    NASA Astrophysics Data System (ADS)

    Adshead, Peter; Blas, Diego; Burgess, C. P.; Hayman, Peter; Patil, Subodh P.

    2016-11-01

    We find multi-scalar effective field theories (EFTs) that can achieve a slow inflationary roll despite having a scalar potential that does not satisfy Script Gab ∂a V ∂b V ll V2/Mp2 (where Script Gab is the target-space metric). They evade the usual slow-roll conditions on V because their kinetic energies are dominated by single-derivative terms rather than the usual two-derivative terms. Single derivatives dominate during slow roll and so do not require a breakdown of the usual derivative expansion that underpins calculational control in much of cosmology. The presence of such terms requires some sort of UV Lorentz-symmetry breaking during inflation (besides the usual cosmological breaking). Chromo-natural inflation provides one particular example of a UV theory that can generate the multi-field single-derivative terms we consider, and we argue that the EFT we find indeed captures the slow-roll conditions for its background evolution. We also show that our EFT can be understood as a multi-field generalization of the single-field Cuscuton models. The multi-field case introduces a new feature, however: the scalar kinetic terms define a target-space 2-form, ℱab, whose antisymmetry gives new ways for slow roll to be achieved.

  5. Leaf development: a cellular perspective

    PubMed Central

    Kalve, Shweta; De Vos, Dirk; Beemster, Gerrit T. S.

    2014-01-01

    Through its photosynthetic capacity the leaf provides the basis for growth of the whole plant. In order to improve crops for higher productivity and resistance for future climate scenarios, it is important to obtain a mechanistic understanding of leaf growth and development and the effect of genetic and environmental factors on the process. Cells are both the basic building blocks of the leaf and the regulatory units that integrate genetic and environmental information into the developmental program. Therefore, to fundamentally understand leaf development, one needs to be able to reconstruct the developmental pathway of individual cells (and their progeny) from the stem cell niche to their final position in the mature leaf. To build the basis for such understanding, we review current knowledge on the spatial and temporal regulation mechanisms operating on cells, contributing to the formation of a leaf. We focus on the molecular networks that control exit from stem cell fate, leaf initiation, polarity, cytoplasmic growth, cell division, endoreduplication, transition between division and expansion, expansion and differentiation and their regulation by intercellular signaling molecules, including plant hormones, sugars, peptides, proteins, and microRNAs. We discuss to what extent the knowledge available in the literature is suitable to be applied in systems biology approaches to model the process of leaf growth, in order to better understand and predict leaf growth starting with the model species Arabidopsis thaliana. PMID:25132838

  6. An Iterative Angle Trisection

    ERIC Educational Resources Information Center

    Muench, Donald L.

    2007-01-01

    The problem of angle trisection continues to fascinate people even though it has long been known that it can't be done with straightedge and compass alone. However, for practical purposes, a good iterative procedure can get you as close as you want. In this note, we present such a procedure. Using only straightedge and compass, our procedure…

  7. Casting and Angling.

    ERIC Educational Resources Information Center

    Little, Mildred J.; Bunting, Camille

    The self-contained packet contains background information, lesson plans, 15 transparency and student handout masters, drills and games, 2 objective examinations, and references for teaching a 15-day unit on casting and angling to junior high and senior high school students, either as part of a regular physical education program or as a club…

  8. Casting and Angling.

    ERIC Educational Resources Information Center

    Smith, Julian W.

    As part of a series of books and pamphlets on outdoor education, this manual consists of easy-to-follow instructions for fishing activities dealing with casting and angling. The manual may be used as a part of the regular physical education program in schools and colleges or as a club activity for the accomplished weekend fisherman or the…

  9. The Rainbow Angle.

    ERIC Educational Resources Information Center

    Sims, B.

    1978-01-01

    Two articles in the "Scientific American" form the background of this note. The rainbow angle for the primary bow of a monochromatic Cartesian rainbow is calculated. Special projects for senior high school students could be patterned after this quantitative study. (MP)

  10. Casting and Angling.

    ERIC Educational Resources Information Center

    Little, Mildred J.; Bunting, Camille

    The self-contained packet contains background information, lesson plans, 15 transparency and student handout masters, drills and games, 2 objective examinations, and references for teaching a 15-day unit on casting and angling to junior high and senior high school students, either as part of a regular physical education program or as a club…

  11. 7 CFR 29.3033 - Leaf.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf. 29.3033 Section 29.3033 Agriculture Regulations... Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16758, Apr. 20, 1984] ...

  12. 7 CFR 29.3525 - Leaf.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf. 29.3525 Section 29.3525 Agriculture Regulations... Type 95) § 29.3525 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16759, Apr. 20, 1984] ...

  13. 7 CFR 29.3033 - Leaf.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf. 29.3033 Section 29.3033 Agriculture Regulations... Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. ...

  14. 7 CFR 29.3525 - Leaf.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf. 29.3525 Section 29.3525 Agriculture Regulations... Type 95) § 29.3525 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. ...

  15. 7 CFR 29.3525 - Leaf.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf. 29.3525 Section 29.3525 Agriculture Regulations... Type 95) § 29.3525 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16759, Apr. 20, 1984] ...

  16. 7 CFR 29.1028 - Leaf.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf. 29.1028 Section 29.1028 Agriculture Regulations... Type 92) § 29.1028 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. ...

  17. 7 CFR 29.3033 - Leaf.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf. 29.3033 Section 29.3033 Agriculture Regulations... Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16758, Apr. 20, 1984] ...

  18. 7 CFR 29.3033 - Leaf.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf. 29.3033 Section 29.3033 Agriculture Regulations... Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. ...

  19. 7 CFR 29.3033 - Leaf.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf. 29.3033 Section 29.3033 Agriculture Regulations... Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16758, Apr. 20, 1984] ...

  20. 7 CFR 29.2528 - Leaf.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf. 29.2528 Section 29.2528 Agriculture Regulations...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2528 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. ...

  1. 7 CFR 29.1028 - Leaf.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf. 29.1028 Section 29.1028 Agriculture Regulations... Type 92) § 29.1028 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16755, Apr. 20, 1984. Redesignated at 51 FR 25027, July...

  2. 7 CFR 29.1028 - Leaf.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf. 29.1028 Section 29.1028 Agriculture Regulations... Type 92) § 29.1028 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16755, Apr. 20, 1984. Redesignated at 51 FR 25027, July...

  3. 7 CFR 29.3525 - Leaf.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf. 29.3525 Section 29.3525 Agriculture Regulations... Type 95) § 29.3525 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. ...

  4. 7 CFR 29.1028 - Leaf.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf. 29.1028 Section 29.1028 Agriculture Regulations... Type 92) § 29.1028 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. ...

  5. 7 CFR 29.3525 - Leaf.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf. 29.3525 Section 29.3525 Agriculture Regulations... Type 95) § 29.3525 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16759, Apr. 20, 1984] ...

  6. 7 CFR 29.1028 - Leaf.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf. 29.1028 Section 29.1028 Agriculture Regulations... Type 92) § 29.1028 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16755, Apr. 20, 1984. Redesignated at 51 FR 25027, July...

  7. 7 CFR 29.2528 - Leaf.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf. 29.2528 Section 29.2528 Agriculture Regulations...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2528 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. ...

  8. Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups

    Treesearch

    Peter B. Reich; Michael B. Walters; David S. Ellsworth; [and others; [Editor’s note: James M.. Vose is the SRS co-author for this publication.

    1998-01-01

    Based on prior evidence of coordinated multiple leaf trait scaling, the authors hypothesized that variation among species in leaf dark respiration rate (Rd) should scale with variation in traits such as leaf nitrogen (N), leaf life-span, specific leaf area (SLA), and net photosynthetic capacity (Amax). However, it is not known whether such scaling, if it exists, is...

  9. Effects of homogenization treatment on recrystallization behavior of 7150 aluminum sheet during post-rolling annealing

    SciTech Connect

    Guo, Zhanying; Zhao, Gang; Chen, X.-Grant

    2016-04-15

    The effects of two homogenization treatments applied to the direct chill (DC) cast billet on the recrystallization behavior in 7150 aluminum alloy during post-rolling annealing have been investigated using the electron backscatter diffraction (EBSD) technique. Following hot and cold rolling to the sheet, measured orientation maps, the recrystallization fraction and grain size, the misorientation angle and the subgrain size were used to characterize the recovery and recrystallization processes at different annealing temperatures. The results were compared between the conventional one-step homogenization and the new two-step homogenization, with the first step being pretreated at 250 °C. Al{sub 3}Zr dispersoids with higher densities and smaller sizes were obtained after the two-step homogenization, which strongly retarded subgrain/grain boundary mobility and inhibited recrystallization. Compared with the conventional one-step homogenized samples, a significantly lower recrystallized fraction and a smaller recrystallized grain size were obtained under all annealing conditions after cold rolling in the two-step homogenized samples. - Highlights: • Effects of two homogenization treatments on recrystallization in 7150 Al sheets • Quantitative study on the recrystallization evolution during post-rolling annealing • Al{sub 3}Zr dispersoids with higher densities and smaller sizes after two-step treatment • Higher recrystallization resistance of 7150 sheets with two-step homogenization.

  10. Behavioural evidence for a visual and proprioceptive control of head roll in hoverflies (Episyrphus balteatus).

    PubMed

    Goulard, Roman; Julien-Laferriere, Alice; Fleuriet, Jérome; Vercher, Jean-Louis; Viollet, Stéphane

    2015-12-01

    The ability of hoverflies to control their head orientation with respect to their body contributes importantly to their agility and their autonomous navigation abilities. Many tasks performed by this insect during flight, especially while hovering, involve a head stabilization reflex. This reflex, which is mediated by multisensory channels, prevents the visual processing from being disturbed by motion blur and maintains a consistent perception of the visual environment. The so-called dorsal light response (DLR) is another head control reflex, which makes insects sensitive to the brightest part of the visual field. In this study, we experimentally validate and quantify the control loop driving the head roll with respect to the horizon in hoverflies. The new approach developed here consisted of using an upside-down horizon in a body roll paradigm. In this unusual configuration, tethered flying hoverflies surprisingly no longer use purely vision-based control for head stabilization. These results shed new light on the role of neck proprioceptor organs in head and body stabilization with respect to the horizon. Based on the responses obtained with male and female hoverflies, an improved model was then developed in which the output signals delivered by the neck proprioceptor organs are combined with the visual error in the estimated position of the body roll. An internal estimation of the body roll angle with respect to the horizon might explain the extremely accurate flight performances achieved by some hovering insects.

  11. Free-to-Roll Investigation of Uncommanded Lateral Motions for an Aircraft With Vented Strakes

    NASA Technical Reports Server (NTRS)

    Bryan, Elaine M.; Owens, D. Bruce; Barlow, Jewel B.

    2004-01-01

    A free-to-roll study of the low-speed lateral characteristics of the pre-production F/A-18E was conducted in the NASA Langley 12-Foot Low-Speed Tunnel. In developmental flight tests the F/A-18E unexpectedly experienced uncommanded lateral motions in the power approach configuration. The objective of this study was to determine the feasibility of using the free-to-roll technique for the detection of uncommanded lateral motions for the preproduction F/A-18E in the power approach configuration. The data revealed that this technique in conjunction with static data revealed insight into the cause of the lateral motions. The free-to-roll technique identified uncommanded lateral motions at the same angle-of-attack range as experienced in flight tests. The cause of the uncommanded lateral motions was unsteady asymmetric wing stall. The paper also shows that free-to-roll data or static force and moment data alone are not enough to accurately capture the potential for an aircraft to experience uncommanded lateral motion.

  12. Free-to-Roll Investigation of Uncommanded Lateral Motions for an Aircraft with Vented Strakes

    NASA Technical Reports Server (NTRS)

    Owens, Elaine M.; Bryant, Elaine M.; Barlow, Jewel B.

    2005-01-01

    A free-to-roll study of the low-speed lateral characteristics of the pre-production F/A-l8E was conducted in the NASA Langley 12-Foot Low-Speed Tunnel. In developmental flight tests the F/A-18E unexpectedly experienced uncommanded lateral motions in the power approach configuration. The objective of this study was to determine the feasibility of using the free-to-roll technique for the detection of uncommanded lateral motions for the pre-production F/A-l8E in the power approach configuration. The data revealed that this technique in conjunction with static data revealed insight into the cause of the lateral motions. The free-to-roll technique identified uncommanded lateral motions at the same angle-of-attack range as experienced in flight tests. The cause of the uncommanded lateral motions was unsteady asymmetric wing stall. The paper also shows that free-to-roll data or static force and moment data alone are not enough to accurately capture the potential for an aircraft to experience uncommanded lateral motion.

  13. Methods for evaluating leaf surface free energy and polarity having accounted for surface roughness.

    PubMed

    Nairn, Justin J; Forster, W Alison

    2017-09-01

    Leaf surfaces can have similar wettability, while their roughness and polarity may be very different. This may affect agrochemical bioefficacy, hence there is a need to characterise leaf surface polarity and roughness separately. This paper reviews established surface evaluation techniques and then uses a comprehensive dataset of static contact angles (12 chemical solutions on 15 different species) to compare and contrast them for their ability to characterise leaf surface polarity in isolation from roughness. Many techniques were severely limited when applied to leaf surfaces. A failing of the surface free energy (SFE) concept is that both physical and chemical properties affect the SFE. Additionally, whilst the leaf surface chemistry does not change, the SFE values generated are dependent on the chemical properties of the probe solution employed. The wetting tension-dielectric (WTD) method stands out due to its ability to isolate and quantify leaf surface roughness and polarity. A novel (WTD) roughness correction factor is proposed to improve SFE determination. The strong correlation between leaf polarity and leaf wettability for polar solutions (such as water) makes the WTD method a valuable tool for the evaluation of leaf surface-droplet behaviour and the advancement of agrochemical spray formulation technologies. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Rolling Element Bearing Stiffness Matrix Determination (Presentation)

    SciTech Connect

    Guo, Y.; Parker, R.

    2014-01-01

    Current theoretical bearing models differ in their stiffness estimates because of different model assumptions. In this study, a finite element/contact mechanics model is developed for rolling element bearings with the focus of obtaining accurate bearing stiffness for a wide range of bearing types and parameters. A combined surface integral and finite element method is used to solve for the contact mechanics between the rolling elements and races. This model captures the time-dependent characteristics of the bearing contact due to the orbital motion of the rolling elements. A numerical method is developed to determine the full bearing stiffness matrix corresponding to two radial, one axial, and two angular coordinates; the rotation about the shaft axis is free by design. This proposed stiffness determination method is validated against experiments in the literature and compared to existing analytical models and widely used advanced computational methods. The fully-populated stiffness matrix demonstrates the coupling between bearing radial, axial, and tilting bearing deflections.

  15. Diagnosis of the rock crushing modes to increase the efficiency of one-roll crusher operation

    NASA Astrophysics Data System (ADS)

    Nikitin, A. G.; Laktionov, S. A.; Medvedeva, K. S.

    2017-09-01

    In the paper the hypotheses of destruction of brittle materials are given, as well as the analysis of energy costs for crushing. The methods of crushing are considered and a comparative analysis of their energy capacity and quality of the product is carried out. The parameters of the crushing process are determined from the point of view of their productivity and, accordingly, their energy efficiency. It is shown that the process of crushing in the one-roll crushers is due to the frictional forces acting between the surfaces of the roll and a piece of the crushed material, and also between the piece and the immovable jaw. The comparison of initial sizes of the crushed pieces in the crushes with the vertical and inclined surfaces of immovable jaw, which shows that with the increase in the bend angle of the immovable jaw the degree of crushing increases. Based on the analysis of forces acting on the crushed material in the one-roll crusher with the inclined surface of the jaw, the calculation of maximal possible value of the bend angle of the immovable jaw is performed.

  16. Dynamic modeling of moment wheel assemblies with nonlinear rolling bearing supports

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Han, Qinkai; Luo, Ruizhi; Qing, Tao

    2017-10-01

    Moment wheel assemblies (MWA) have been widely used in spacecraft attitude control and large angle slewing maneuvers over the years. Understanding and controlling vibration of MWAs is a crucial factor to achieving the desired level of payload performance. Dynamic modeling of a MWA with nonlinear rolling bearing supports is conducted. An improved load distribution analysis is proposed to more accurately obtain the contact deformations and angles between the rolling balls and raceways. Then, the bearing restoring forces are then obtained through iteratively solving the load distribution equations at every time step. The effects of preload condition, surface waviness, Hertz contact and elastohydrodynamic lubrication could all be reflected in the nonlinear bearing forces. Considering the mass imbalances of the flywheel, flexibility of supporting structures and rolling bearing nonlinearity, the dynamic model of a typical MWA is established based upon the energy theorem. Dynamic tests are conducted to verify the nonlinear dynamic model. The influences of flywheel mass eccentricity and inner/outer waviness amplitudes on the dynamic responses are discussed in detail. The obtained results would be useful for the design and vibration control of the MWA system.

  17. Rolling, sliding, and sticking of viscoplastic xanthan gum solution drops on a superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Kim, Minyoung; Lee, Eungjun; Kim, Do Hyun; Kwak, Rhokyun

    2016-11-01

    Dynamics of Newtonian fluid on a non-wettable substrate have been reported, but those of non-Newtonian fluid, especially of viscoplastic fluid showing a yield stress, are not fully characterized yet. Here, we investigate three distinct behaviors of a viscoplastic drop (xanthan gum solution) -rolling, sliding, and sticking- on an inclined superhydrophobic surface with various inclined angles (1-24 degree) and xanthan gum concentrations (0.25-1.5%). At a low concentration of xanthan gum (low yield stress) and/or a high inclined angle (high gravitational stress), the drop rolls down the surface as the gravitational stress exceeds the yield stress. As the concentration increases, and thus the yield stress exceeds the gravitational stress, the drop stays on the surface like a solid (sticking). However, if we adjust the gravitational stress to induce an adhesive failure between the xanthan gum drop and the surface (but still lower than the yield stress), the drop slides down the surface without rolling. To the best of our knowledge, this is the first direct characterization of the behavior of the viscoplastic drops on an inclined surface considering gravitational stress, yield stress, and adhesive failure.

  18. Parameters design of the dielectric elastomer spring-roll bending actuator (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Li, Jinrong; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2017-04-01

    Dielectric elastomers are novel soft smart material that could deform sustainably when subjected to external electric field. That makes dielectric elastomers promising materials for actuators. In this paper, a spring-roll actuator that would bend when a high voltage is applied was fabricated based on dielectric elastomer. Using such actuators as active parts, the flexible grippers and inchworm-inspired crawling robots were manufactured, which demonstrated some examples of applications in soft robotics. To guide the parameters design of dielectric elastomer based spring-roll bending actuators, the theoretical model of such actuators was established based on thermodynamic theories. The initial deformation and electrical induced bending angle of actuators were formulated. The failure of actuators was also analyzed considering some typical failure modes like electromechanical instability, electrical breakdown, loss of tension and maximum tolerant stretch. Thus the allowable region of actuators was determined. Then the bending angle-voltage relations and failure voltages of actuators with different parameters, including stretches of the dielectric elastomer film, number of active layers, and dimensions of spring, were investigated. The influences of each parameter on the actuator performances were discussed, providing meaningful guidance to the optical design of the spring-roll bending actuators.

  19. Stachytarpheta leaf curl virus is a novel monopartite begomovirus species.

    PubMed

    Xiong, Q; Fan, S; Guo, X; Zhou, X

    2005-11-01

    Begomovirus isolates were obtained from Stachytarpheta jamaicensis plants showing leaf curl and chlorosis symptoms collected in the Hainan province of China. The complete sequences of isolates Hn5-4, Hn6-1, Hn30 and Hn34 were determined to be 2748, 2751, 2748 and 2748 nucleotides long, respectively. The complete sequences of the four isolates share more than 94.9% nucleotide sequence identity, but all of them have less than 86% nucleotide sequence identity with other reported begomoviruses. The molecular data show that Hn5-4, Hn6-1, Hn30 and Hn34 are isolates of a distinct begomovirus species, for which the name Stachytarpheta leaf curl virus (StaLCV) is proposed. PCR and Southern blot analyses demonstrate that all the collected field samples are not associated with DNAbeta or DNA-B components. An infectious clone of StaLCV isolate Hn5-4 was constructed, and could efficiently infect Nicotiana benthamiana, N. tabacum Samsun, N. glutinosa, Lycopersicon esculentum and Petunia hybrida plants, inducing upward leaf roll and vein swelling symptoms. In addition, we illustrate that StaLCV can functionally interact with distinct DNAbeta molecules in plants.

  20. A Different Angle on Perspective

    ERIC Educational Resources Information Center

    Frantz, Marc

    2012-01-01

    When a plane figure is photographed from different viewpoints, lengths and angles appear distorted. Hence it is often assumed that lengths, angles, protractors, and compasses have no place in projective geometry. Here we describe a sense in which certain angles are preserved by projective transformations. These angles can be constructed with…

  1. A Different Angle on Perspective

    ERIC Educational Resources Information Center

    Frantz, Marc

    2012-01-01

    When a plane figure is photographed from different viewpoints, lengths and angles appear distorted. Hence it is often assumed that lengths, angles, protractors, and compasses have no place in projective geometry. Here we describe a sense in which certain angles are preserved by projective transformations. These angles can be constructed with…

  2. Damage mitigation in roll-to-roll transfer of CVD-graphene to flexible substrates

    NASA Astrophysics Data System (ADS)

    Jang, Bongkyun; Kim, Chang-Hyun; Choi, Seung Tae; Kim, Kyung-Shik; Kim, Kwang-Seop; Lee, Hak-Joo; Cho, Seungmin; Ahn, Jong-Hyun; Kim, Jae-Hyun

    2017-06-01

    Roll-to-roll (R2R) transfer of a chemical vapor deposition (CVD) graphene is an inevitable step for large scale and high throughput manufacturing of graphene transparent electrodes on flexible substrates. The damages on graphene induced by high contact pressure of nip rolls during the roll transfer degrade the electrical properties of the transferred graphene on flexible substrates. In this study, we developed a damage mitigation method for the roll transfer of graphene. By analyzing scanning electron microscope (SEM) images of the damages on the transferred graphene, three types of failure modes were classified, and the corresponding failure mechanisms were revealed using the surface morphology and the finite element analyses. Based on the understanding of the failure mechanisms, the graphene transfer with a width of 400 mm was realized at a speed of 1000 mm min-1 using an R2R transfer machine with the capability of nip force control. The high electrical conductivity and uniformity of the roll-transferred graphene demonstrates the scalability and the productivity of the developed roll transfer technology.

  3. Computer-aided roll pass design in rolling of airfoil shapes

    NASA Technical Reports Server (NTRS)

    Akgerman, N.; Lahoti, G. D.; Altan, T.

    1980-01-01

    This paper describes two computer-aided design (CAD) programs developed for modeling the shape rolling process for airfoil sections. The first program, SHPROL, uses a modular upper-bound method of analysis and predicts the lateral spread, elongation, and roll torque. The second program, ROLPAS, predicts the stresses, roll separating force, the roll torque and the details of metal flow by simulating the rolling process, using the slab method of analysis. ROLPAS is an interactive program; it offers graphic display capabilities and allows the user to interact with the computer via a keyboard, CRT, and a light pen. The accuracy of the computerized models was evaluated by (a) rolling a selected airfoil shape at room temperature from 1018 steel and isothermally at high temperature from Ti-6Al-4V, and (b) comparing the experimental results with computer predictions. The comparisons indicated that the CAD systems, described here, are useful for practical engineering purposes and can be utilized in roll pass design and analysis for airfoil and similar shapes.

  4. Inflation with a smooth constant-roll to constant-roll era transition

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2017-07-01

    In this paper, we study canonical scalar field models, with a varying second slow-roll parameter, that allow transitions between constant-roll eras. In the models with two constant-roll eras, it is possible to avoid fine-tunings in the initial conditions of the scalar field. We mainly focus on the stability of the resulting solutions, and we also investigate if these solutions are attractors of the cosmological system. We shall calculate the resulting scalar potential and, by using a numerical approach, we examine the stability and attractor properties of the solutions. As we show, the first constant-roll era is dynamically unstable towards linear perturbations, and the cosmological system is driven by the attractor solution to the final constant-roll era. As we demonstrate, it is possible to have a nearly scale-invariant power spectrum of primordial curvature perturbations in some cases; however, this is strongly model dependent and depends on the rate of the final constant-roll era. Finally, we present, in brief, the essential features of a model that allows oscillations between constant-roll eras.

  5. Importance in Remote sensing of the spectral dependency of leaf assymetry

    NASA Astrophysics Data System (ADS)

    Veroustraete, Frank

    2017-04-01

    Leaf dorsiventral asymmetry is a general occurring trait for many plant species. Though many leaf reflectance models start from the principle that leaves are dorsiventrally symmetric, the majority of plant species do have asymmetric leaves. This has an impact on the abaxial and adaxial spectral signature of a leave. Results will be presented of the NDAI, the Normalised Difference Asymmetry Index, which indicates the degree of asymmetry of a leave. At canopy level this asymmetry has a quite distinct impact on canopy level reflectance and hence the signal received by a sensor. To accommodate the interpretation of the measurements wit hyperspectral sensors, the signature of the NDAI for an asymmetric leaf is demonstrated. Together with leaf angle distribution (LAD) and LAI this can lead to spectrally distinct canopy signatures. The poster demonstrates this with simulations based on a leaf model of asymmetric leaves combined with a canopy model.

  6. Complete genome sequence of bean leaf crumple virus, a novel begomovirus infecting common bean in Colombia.

    PubMed

    Carvajal-Yepes, Monica; Zambrano, Leidy; Bueno, Juan M; Raatz, Bodo; Cuellar, Wilmer J

    2017-02-10

    A copy of the complete genome of a novel bipartite begomovirus infecting common bean (Phaseolus vulgaris L.) in Colombia was obtained by rolling-circle amplification (RCA), cloned, and sequenced. The virus is associated with leaf crumple symptoms and significant yield losses in Andean and Mesoamerican beans. Such symptoms have been reported increasingly in Colombia since at least 2002, and we detected the virus in leaf material collected since 2008. Sequence analysis showed that the virus is a member of a distinct species, sharing 81% and 76% nucleotide (nt) sequence identity (in DNA-A and DNA-B, respectively) to other begomoviruses infecting common bean in the Americas. The data obtained support the taxonomic status of this virus (putatively named 'bean leaf crumple virus', BLCrV) as a member of a novel species in the genus Begomovirus.

  7. The artificial leaf.

    PubMed

    Nocera, Daniel G

    2012-05-15

    To convert the energy of sunlight into chemical energy, the leaf splits water via the photosynthetic process to produce molecular oxygen and hydrogen, which is in a form of separated protons and electrons. The primary steps of natural photosynthesis involve the absorption of sunlight and its conversion into spatially separated electron-hole pairs. The holes of this wireless current are captured by the oxygen evolving complex (OEC) of photosystem II (PSII) to oxidize water to oxygen. The electrons and protons produced as a byproduct of the OEC reaction are captured by ferrodoxin of photosystem I. With the aid of ferrodoxin-NADP(+) reductase, they are used to produce hydrogen in the form of NADPH. For a synthetic material to realize the solar energy conversion function of the leaf, the light-absorbing material must capture a solar photon to generate a wireless current that is harnessed by catalysts, which drive the four electron/hole fuel-forming water-splitting reaction under benign conditions and under 1 sun (100 mW/cm(2)) illumination. This Account describes the construction of an artificial leaf comprising earth-abundant elements by interfacing a triple junction, amorphous silicon photovoltaic with hydrogen- and oxygen-evolving catalysts made from a ternary alloy (NiMoZn) and a cobalt-phosphate cluster (Co-OEC), respectively. The latter captures the structural and functional attributes of the PSII-OEC. Similar to the PSII-OEC, the Co-OEC self-assembles upon oxidation of an earth-abundant metal ion from 2+ to 3+, may operate in natural water at room temperature, and is self-healing. The Co-OEC also activates H(2)O by a proton-coupled electron transfer mechanism in which the Co-OEC is increased by four hole equivalents akin to the S-state pumping of the Kok cycle of PSII. X-ray absorption spectroscopy studies have established that the Co-OEC is a structural relative of Mn(3)CaO(4)-Mn cubane of the PSII-OEC, where Co replaces Mn and the cubane is extended in a

  8. Some Effects of Roll Rate on the Longitudinal Stability Characteristics of a Cruciform Missile Configuration as Determined from Flight Test for a Mach Number Range of 1.1 to 1.8

    NASA Technical Reports Server (NTRS)

    Barber, H. T., Jr.; Lundstrom, R. R.

    1956-01-01

    A model of a cruciform missile configuration having a low-aspectratio wing equipped with flap-type controls was flight tested in order to determine stability and control characteristics while rolling at about 5 radians per second. Comparison is made with results from a similar model which rolled at a much lower rate. Results showed that, if the ratio of roll rate to natural circular frequency in pitch is not greater than about 0.3, the motion following a step disturbance in pitch essentially remains in a plane in space. The slope of normal-force coefficient against angle of attack C(sub N(sub A)) was the same as for the slowly rolling model at O deg control deflection but C(sub N(sub A)) was much higher for the faster rolling model at about 5 deg control deflection. The slope of pitching-moment coefficient against angle of attack & same for both models at 0 deg control deflection but was lower for the faster rolling model at about 5 deg control deflection. Damping data for the faster rolling model showed considerably more scatter than for the slowly rolling model.

  9. Some Effects of Roll Rate on the Longitudinal Stability Characteristics of a Cruciform Missile Configuration as Determined from Flight Test for a Mach Number Range of 1.1. to 1.8

    NASA Technical Reports Server (NTRS)

    Lundstrom, Reginald R; Baber, Hal T , Jr

    1956-01-01

    A model of a cruciform missile configuration having a low-aspect-ratio wing equipped with flap-type controls was flight tested in order to determine stability and control characteristics while rolling at about 5 radians per second. Comparison is made with results from a similar model which rolled at a much lower rate. Results showed that, if the ratio of roll rate to natural circular frequency in pitch is not greater than about 0.3, the motion following a step disturbance in pitch essentially remains in a plane in space. The slope of normal- force coefficient against angle of attack C(sub N(sub alpha)) was the same as for the slowly rolling model at 0 degrees control deflection but C(sub N(sub alpha)) was much higher for the faster rolling model at about 5 degrees control deflection. The slope of pitching-moment coefficient against angle of attack C(sub m(sub alpha)) as determined from the model period of oscillation was the same for both models at 0 degrees control deflection but was lower for the faster rolling model at about 5 degrees control deflection. Damping data for the faster rolling model showed considerably more scatter than for the slowly rolling model.

  10. Routh symmetry in the Chaplygin's rolling ball

    NASA Astrophysics Data System (ADS)

    Kim, Byungsoo

    2011-12-01

    The Routh integral in the symmetric Chaplygin's rolling ball has been regarded as a mysterious conservation law due to its interesting form of sqrt {I_1 I_3 + m< {I_s ,s} rangle } Ω _3 . In this paper, a new form of the Routh integral is proposed as a Noether's pairing form of a conservation law. An explicit symmetry vector for the Routh integral is proved to associate the conserved quantity with the invariance of the Lagrangian function under the rollingly constrained nonholonomic variation. Then, the form of the Routh symmetry vector is discussed for its origin as the linear combination of the configurational vectors.

  11. Stress evaluations under rolling/sliding contacts

    NASA Technical Reports Server (NTRS)

    Kannel, J. W.; Tevaarwerk, J. L.

    1981-01-01

    The state of stress beneath traction drive type of contacts were analyzed. Computing stresses and stress reversals on various planes for points beneath the surface were examined. The effect of tangential and axial friction under gross slip conditions is evaluated with the models. Evaluations were performed on an RC (rolling contact) tester configuration and it is indicated that the classical fatigue stresses are not altered by friction forces typical of lubricated contact. Higher values of friction can result in surface shear reversal that exceeds the stresses at the depth of maximum shear reversal under rolling contact.

  12. Roll ring assemblies for the Space Station

    NASA Technical Reports Server (NTRS)

    Batista, J.; Vise, J.; Young, K.

    1994-01-01

    Space Station Freedom requires the transmission of high power and signals through three different rotational interfaces. Roll ring technology was baselined by NASA for rotary joints to transfer up to 65.5 kW of power for 30 years at greater than 99 percent efficiency. Signal transfer requirements included MIL-STD-1553 data transmission and 4.5 MHz RS250A base and color video. A unique design for each rotary joint was developed and tested to accomplish power and signal transfer. An overview of roll ring technology is presented, followed by design requirements, hardware configuration, and test results.

  13. Horizontal Roll Vortices and Crown Fires.

    NASA Astrophysics Data System (ADS)

    Haines, Donald A.

    1982-06-01

    Observational evidence from nine crown fires suggests that horizontal roll vortices are a major mechanism in crown-fire spread. Post-burn aerial photography indicates that unburned tree-crown streets are common with crown fire. Investigation of the understory of these crown streets after two fires showed uncharred tree trunks along a center line. This evidence supports a hypothesis of vortex action causing strong downward motion of air along the streets. Additionally, photographs of two ongoing crown fires show apparent horizontal roll vortices. Discussion also includes laboratory and numerical studies in fluid dynamics that may apply to crown fires.

  14. Rolling friction on a granular medium

    NASA Astrophysics Data System (ADS)

    de Blasio, Fabio Vittorio; Saeter, May-Britt

    2009-02-01

    We present experimental results for the rolling of spheres on a granular bed. We use two sets of glass and steel spheres with varying diameters and a high-speed camera to follow the motion of the spheres. Despite the complex phenomena occurring during the rolling, the results show a friction coefficient nearly independent of the velocity (0.45-0.5 for glass and 0.6-0.65 for steel). It is found that for a given sphere density, the large spheres reach a longer distance, a result that may also help explain the rock sorting along natural stone accumulations at the foot of mountain slopes.

  15. Trade-offs between light interception and leaf water shedding: a comparison of shade- and sun-adapted species in a subtropical rainforest.

    PubMed

    Meng, Fengqun; Cao, Rui; Yang, Dongmei; Niklas, Karl J; Sun, Shucun

    2014-01-01

    Species in high-rainfall regions have two major alternative approaches to quickly drain off water, i.e., increasing leaf inclination angles relative to the horizontal plane, or developing long leaf drip tips. We hypothesized that shade-adapted species will have more pronounced leaf drip tips but not greater inclination angles (which can reduce the ability to intercept light) compared to sun-adapted species and that length of leaf drip tips will be negatively correlated with photosynthetic capacity [characterized by light-saturated net photosynthetic rates (Amax), associated light compensation points (LCP), and light saturation points (LSP)]. We tested this hypothesis by measuring morphological and physiological traits that are associated with light-interception and water shedding for seven shade-adapted shrub species, ten sun-adapted understory shrub species, and 15 sun-adapted tree species in a subtropical Chinese rainforest, where mean annual precipitation is around 1,600 mm. Shade-adapted understory species had lower LMA, Amax, LSP, and LCP compared to understory or canopy sun-adapted species; their leaf and twig inclination angles were significantly smaller and leaf drip tips were significantly longer than those in sun-adapted species. This suggests that shade-adapted understory species tend to develop pronounced leaf drip tips but not large leaf inclination angles to shed water. The length of leaf drip tips was negatively correlated with leaf inclination angles and photosynthetic capacity. These relationships were consistent between ordinary regression and phylogenetic generalized least squares analyses. Our study illustrates the trade-offs between light interception and leaf water shedding and indicates that length of leaf drip tips can be used as an indicator of adaptation to shady conditions and overall photosynthetic performance of shrub species in subtropical rainforests.

  16. Fluidic emergency roll control system. [for emergency aircraft control following failure of primary roll control system

    NASA Technical Reports Server (NTRS)

    Haefner, K. B.; Honda, T. S.

    1973-01-01

    A fluidic emergency roll control system for aircraft stabilization in the event of primary flight control failure was evaluated. The fluidic roll control units were designed to provide roll torque proportional to an electrical command as operated by two diametrically opposed thrust nozzles located in the wing tips. The control package consists of a solid propellant gas generator, two diametrically opposed vortex valve modulated thrust nozzles, and an electromagnetic torque motor. The procedures for the design, development, and performance testing of the system are described.

  17. Effects of prolonged weightlessness on self-motion perception and eye movements evoked by roll and pitch

    NASA Technical Reports Server (NTRS)

    Reschke, Millard F.; Parker, Donald E.

    1987-01-01

    Seven astronauts reported translational self-motion during roll simulation 1-3 h after landing following 5-7 d of orbital flight. Two reported strong translational self-motion perception when they performed pitch head motions during entry and while the orbiter was stationary on the runway. One of two astronauts from whom adequate data were collected exhibited a 132-deg shift in the phase angle between roll stimulation and horizontal eye position 2 h after landing. Neither of two from whom adequate data were collected exhibited increased horizontal eye movement amplitude or disturbance of voluntary pitch or roll body motion immediately postflight. These results are generally consistent with an otolith tilt-translation reinterpretation model and are being applied to the development of apparatus and procedures intended to preadapt astronauts to the sensory rearrangement of weightlessness.

  18. Exserohilum Leaf Spot on Tigergrass

    USDA-ARS?s Scientific Manuscript database

    Tigergrass (Thysanolaena maxima (Roxb.) Kuntze ) is a popular ornamental grass grown throughout landscapes in South Florida. In the summer of 2006, a leaf spot was observed on tigergrass in the landscape and a commercial nursery in Homestead, FL. The causal agent of the leaf spot was isolated, cha...

  19. Angles in the Sky?

    NASA Astrophysics Data System (ADS)

    Behr, Bradford

    2005-09-01

    Tycho Brahe lived and worked in the late 1500s before the telescope was invented. He made highly accurate observations of the positions of planets, stars, and comets using large angle-measuring devices of his own design. You can use his techniques to observe the sky as well. For example, the degree, a common unit of measurement in astronomy, can be measured by holding your fist at arm's length up to the sky. Open your fist and observe the distance across the sky covered by the width of your pinky fingernail. That is, roughly, a degree! After some practice, and knowing that one degree equals four minutes, you can measure elapsed time by measuring the angle of the distance that the Moon appears to have moved and multiplying that number by four. You can also figure distances and sizes of things. These are not precise measurements, but rough estimates that can give you a "close-enough" answer.

  20. Laser angle sensor

    NASA Technical Reports Server (NTRS)

    Pond, C. R.; Texeira, P. D.

    1985-01-01

    A laser angle measurement system was designed and fabricated for NASA Langley Research Center. The instrument is a fringe counting interferometer that monitors the pitch attitude of a model in a wind tunnel. A laser source and detector are mounted above the model. Interference fringes are generated by a small passive element on the model. The fringe count is accumulated and displayed by a processor in the wind tunnel control room. This report includes optical and electrical schematics, system maintenance and operation procedures.