Leaf shrinkage with dehydration: coordination with hydraulic vulnerability and drought tolerance.
Scoffoni, Christine; Vuong, Christine; Diep, Steven; Cochard, Hervé; Sack, Lawren
2014-04-01
Leaf shrinkage with dehydration has attracted attention for over 100 years, especially as it becomes visibly extreme during drought. However, little has been known of its correlation with physiology. Computer simulations of the leaf hydraulic system showed that a reduction of hydraulic conductance of the mesophyll pathways outside the xylem would cause a strong decline of leaf hydraulic conductance (K(leaf)). For 14 diverse species, we tested the hypothesis that shrinkage during dehydration (i.e. in whole leaf, cell and airspace thickness, and leaf area) is associated with reduction in K(leaf) at declining leaf water potential (Ψ(leaf)). We tested hypotheses for the linkage of leaf shrinkage with structural and physiological water relations parameters, including modulus of elasticity, osmotic pressure at full turgor, turgor loss point (TLP), and cuticular conductance. Species originating from moist habitats showed substantial shrinkage during dehydration before reaching TLP, in contrast with species originating from dry habitats. Across species, the decline of K(leaf) with mild dehydration (i.e. the initial slope of the K(leaf) versus Ψ(leaf) curve) correlated with the decline of leaf thickness (the slope of the leaf thickness versus Ψ(leaf) curve), as expected based on predictions from computer simulations. Leaf thickness shrinkage before TLP correlated across species with lower modulus of elasticity and with less negative osmotic pressure at full turgor, as did leaf area shrinkage between full turgor and oven desiccation. These findings point to a role for leaf shrinkage in hydraulic decline during mild dehydration, with potential impacts on drought adaptation for cells and leaves, influencing plant ecological distributions.
Frank, Margaret H.; Balaguer, Maria A. de Luis; Li, Mao
2017-01-01
Thicker leaves allow plants to grow in water-limited conditions. However, our understanding of the genetic underpinnings of this highly functional leaf shape trait is poor. We used a custom-built confocal profilometer to directly measure leaf thickness in a set of introgression lines (ILs) derived from the desert tomato Solanum pennellii and identified quantitative trait loci. We report evidence of a complex genetic architecture of this trait and roles for both genetic and environmental factors. Several ILs with thick leaves have dramatically elongated palisade mesophyll cells and, in some cases, increased leaf ploidy. We characterized the thick IL2-5 and IL4-3 in detail and found increased mesophyll cell size and leaf ploidy levels, suggesting that endoreduplication underpins leaf thickness in tomato. Next, we queried the transcriptomes and inferred dynamic Bayesian networks of gene expression across early leaf ontogeny in these lines to compare the molecular networks that pattern leaf thickness. We show that thick ILs share S. pennellii-like expression profiles for putative regulators of cell shape and meristem determinacy as well as a general signature of cell cycle-related gene expression. However, our network data suggest that leaf thickness in these two lines is patterned at least partially by distinct mechanisms. Consistent with this hypothesis, double homozygote lines combining introgression segments from these two ILs show additive phenotypes, including thick leaves, higher ploidy levels, and larger palisade mesophyll cells. Collectively, these data establish a framework of genetic, anatomical, and molecular mechanisms that pattern leaf thickness in desert-adapted tomato. PMID:28794258
Genetic and Developmental Basis for Increased Leaf Thickness in the Arabidopsis Cvi Ecotype.
Coneva, Viktoriya; Chitwood, Daniel H
2018-01-01
Leaf thickness is a quantitative trait that is associated with the ability of plants to occupy dry, high irradiance environments. Despite its importance, leaf thickness has been difficult to measure reproducibly, which has impeded progress in understanding its genetic basis, and the associated anatomical mechanisms that pattern it. Here, we used a custom-built dual confocal profilometer device to measure leaf thickness in the Arabidopsis Ler × Cvi recombinant inbred line population and found statistical support for four quantitative trait loci (QTL) associated with this trait. We used publically available data for a suite of traits relating to flowering time and growth responses to light quality and show that three of the four leaf thickness QTL coincide with QTL for at least one of these traits. Using time course photography, we quantified the relative growth rate and the pace of rosette leaf initiation in the Ler and Cvi ecotypes. We found that Cvi rosettes grow slower than Ler, both in terms of the rate of leaf initiation and the overall rate of biomass accumulation. Collectively, these data suggest that leaf thickness is tightly linked with physiological status and may present a tradeoff between the ability to withstand stress and rapid vegetative growth. To understand the anatomical basis of leaf thickness, we compared cross-sections of Cvi and Ler leaves and show that Cvi palisade mesophyll cells elongate anisotropically contributing to leaf thickness. Flow cytometry of whole leaves show that endopolyploidy accompanies thicker leaves in Cvi. Overall, our data suggest that mechanistically, an altered schedule of cellular events affecting endopolyploidy and increasing palisade mesophyll cell length contribute to increase of leaf thickness in Cvi. Ultimately, knowledge of the genetic basis and developmental trajectory leaf thickness will inform the mechanisms by which natural selection acts to produce variation in this adaptive trait.
Genetic and Developmental Basis for Increased Leaf Thickness in the Arabidopsis Cvi Ecotype
Coneva, Viktoriya; Chitwood, Daniel H.
2018-01-01
Leaf thickness is a quantitative trait that is associated with the ability of plants to occupy dry, high irradiance environments. Despite its importance, leaf thickness has been difficult to measure reproducibly, which has impeded progress in understanding its genetic basis, and the associated anatomical mechanisms that pattern it. Here, we used a custom-built dual confocal profilometer device to measure leaf thickness in the Arabidopsis Ler × Cvi recombinant inbred line population and found statistical support for four quantitative trait loci (QTL) associated with this trait. We used publically available data for a suite of traits relating to flowering time and growth responses to light quality and show that three of the four leaf thickness QTL coincide with QTL for at least one of these traits. Using time course photography, we quantified the relative growth rate and the pace of rosette leaf initiation in the Ler and Cvi ecotypes. We found that Cvi rosettes grow slower than Ler, both in terms of the rate of leaf initiation and the overall rate of biomass accumulation. Collectively, these data suggest that leaf thickness is tightly linked with physiological status and may present a tradeoff between the ability to withstand stress and rapid vegetative growth. To understand the anatomical basis of leaf thickness, we compared cross-sections of Cvi and Ler leaves and show that Cvi palisade mesophyll cells elongate anisotropically contributing to leaf thickness. Flow cytometry of whole leaves show that endopolyploidy accompanies thicker leaves in Cvi. Overall, our data suggest that mechanistically, an altered schedule of cellular events affecting endopolyploidy and increasing palisade mesophyll cell length contribute to increase of leaf thickness in Cvi. Ultimately, knowledge of the genetic basis and developmental trajectory leaf thickness will inform the mechanisms by which natural selection acts to produce variation in this adaptive trait. PMID:29593772
Scoffoni, Christine; Vuong, Christine; Diep, Steven; Cochard, Hervé; Sack, Lawren
2014-01-01
Leaf shrinkage with dehydration has attracted attention for over 100 years, especially as it becomes visibly extreme during drought. However, little has been known of its correlation with physiology. Computer simulations of the leaf hydraulic system showed that a reduction of hydraulic conductance of the mesophyll pathways outside the xylem would cause a strong decline of leaf hydraulic conductance (Kleaf). For 14 diverse species, we tested the hypothesis that shrinkage during dehydration (i.e. in whole leaf, cell and airspace thickness, and leaf area) is associated with reduction in Kleaf at declining leaf water potential (Ψleaf). We tested hypotheses for the linkage of leaf shrinkage with structural and physiological water relations parameters, including modulus of elasticity, osmotic pressure at full turgor, turgor loss point (TLP), and cuticular conductance. Species originating from moist habitats showed substantial shrinkage during dehydration before reaching TLP, in contrast with species originating from dry habitats. Across species, the decline of Kleaf with mild dehydration (i.e. the initial slope of the Kleaf versus Ψleaf curve) correlated with the decline of leaf thickness (the slope of the leaf thickness versus Ψleaf curve), as expected based on predictions from computer simulations. Leaf thickness shrinkage before TLP correlated across species with lower modulus of elasticity and with less negative osmotic pressure at full turgor, as did leaf area shrinkage between full turgor and oven desiccation. These findings point to a role for leaf shrinkage in hydraulic decline during mild dehydration, with potential impacts on drought adaptation for cells and leaves, influencing plant ecological distributions. PMID:24306532
Giuliani, Rita; Koteyeva, Nuria; Voznesenskaya, Elena; Evans, Marc A; Cousins, Asaph B; Edwards, Gerald E
2013-07-01
The genus Oryza, which includes rice (Oryza sativa and Oryza glaberrima) and wild relatives, is a useful genus to study leaf properties in order to identify structural features that control CO(2) access to chloroplasts, photosynthesis, water use efficiency, and drought tolerance. Traits, 26 structural and 17 functional, associated with photosynthesis and transpiration were quantified on 24 accessions (representatives of 17 species and eight genomes). Hypotheses of associations within, and between, structure, photosynthesis, and transpiration were tested. Two main clusters of positively interrelated leaf traits were identified: in the first cluster were structural features, leaf thickness (Thick(leaf)), mesophyll (M) cell surface area exposed to intercellular air space per unit of leaf surface area (S(mes)), and M cell size; a second group included functional traits, net photosynthetic rate, transpiration rate, M conductance to CO(2) diffusion (g(m)), stomatal conductance to gas diffusion (g(s)), and the g(m)/g(s) ratio.While net photosynthetic rate was positively correlated with gm, neither was significantly linked with any individual structural traits. The results suggest that changes in gm depend on covariations of multiple leaf (S(mes)) and M cell (including cell wall thickness) structural traits. There was an inverse relationship between Thick(leaf) and transpiration rate and a significant positive association between Thick(leaf) and leaf transpiration efficiency. Interestingly, high g(m) together with high g(m)/g(s) and a low S(mes)/g(m) ratio (M resistance to CO(2) diffusion per unit of cell surface area exposed to intercellular air space) appear to be ideal for supporting leaf photosynthesis while preserving water; in addition, thick M cell walls may be beneficial for plant drought tolerance.
Coble, Adam P; Cavaleri, Molly A
2017-10-01
A key trait used in canopy and ecosystem function modeling, leaf mass per area (LMA), is influenced by changes in both leaf thickness and leaf density (LMA = Thickness × Density). In tall trees, LMA is understood to increase with height through two primary mechanisms: (i) increasing palisade layer thickness (and thus leaf thickness) in response to light and/or (ii) reduced cell expansion and intercellular air space in response to hydrostatic constraints, leading to increased leaf density. Our objective was to investigate within-canopy gradients in leaf anatomical traits in order to understand environmental factors that influence leaf morphology in a sugar maple (Acer saccharum Marshall) forest canopy. We teased apart the effects of light and height on anatomical traits by sampling at exposed and closed canopies that had different light conditions at similar heights. As expected, palisade layer thickness responded strongly to cumulative light exposure. Mesophyll porosity, however, was weakly and negatively correlated with light and height (i.e., hydrostatic gradients). Reduced mesophyll porosity was not likely caused by limitations on cell expansion; in fact, epidermal cell width increased with height. Palisade layer thickness was better related to LMA, leaf density and leaf thickness than was mesophyll porosity. Vein diameter and fraction of vascular tissue also increased with height and LMA, density and thickness, revealing that greater investment in vascular and support tissue may be a third mechanism for increased LMA with height. Overall, decreasing mesophyll porosity with height was likely due to palisade cells expanding into the available air space and also greater investments in vascular and support tissue, rather than a reduction of cell expansion due to hydrostatic constraints. Our results provide evidence that light influences both palisade layer thickness and mesophyll porosity and indicate that hydrostatic gradients influence leaf vascular and support tissues in mature Acer saccharum trees. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Comparison of gold leaf thickness in Namban folding screens using X-ray fluorescence
NASA Astrophysics Data System (ADS)
Pessanha, Sofia; Madeira, Teresa I.; Manso, Marta; Guerra, Mauro; Le Gac, Agnès; Carvalho, Maria Luisa
2014-09-01
In this work, the thickness of the gold leaf applied in six Japanese folding screens is compared using a nondestructive approach. Four screens belonging to the Momoyama period (~1573-1603) and two screens belonging to the early Edo period (~1603-1868) were analyzed in situ using energy dispersive X-ray fluorescence, and the thickness of the applied gold leaf was evaluated using a methodology based on the attenuation of the different characteristic lines of gold in the gold leaf layer. Considering that the leaf may well not be made of pure gold, we established that, for the purpose of comparing the intensity ratios of the Au lines, layers made with gold leaf of high grade can be considered identical. The gold leaf applied in one of the screens from the Edo period was found to be thinner than the gold leaf applied in the other ones. This is consistent with the development of the beating technology to obtain ever more thin gold leafs.
Light drives vertical gradients of leaf morphology in a sugar maple (Acer saccharum) forest.
Coble, Adam P; Cavaleri, Molly A
2014-02-01
Leaf mass per area (LMA, g m(-2)) is an essential trait for modeling canopy function due to its strong association with photosynthesis, respiration and leaf nitrogen. Leaf mass per area, which is influenced by both leaf thickness and density (LMA = thickness × density), generally increases from the bottom to the top of tree canopies, yet the mechanisms behind this universal pattern are not yet resolved. For decades, the light environment was assumed to be the most influential driver of within-canopy variation in LMA, yet recent evidence has shown hydrostatic gradients to be more important in upper canopy positions, especially in tall evergreen trees in temperate and tropical forests. The aim of this study was to disentangle the importance of various environmental drivers on vertical LMA gradients in a mature sugar maple (Acer saccharum Marshall) forest. We compared LMA, leaf density and leaf thickness relationships with height, light and predawn leaf water potential (ΨPre) within a closed and an exposed canopy to assess leaf morphological traits at similar heights but different light conditions. Contrary to our expectations and recent findings in the literature, we found strong evidence that light was the primary driver of vertical gradients in leaf morphology. At similar heights (13-23 m), LMA was greater within the exposed canopy than the closed canopy, and light had a stronger influence over LMA compared with ΨPre. Light also had a stronger influence over both leaf thickness and density compared with ΨPre; however, the increase in LMA within both canopy types was primarily due to increasing leaf thickness with increasing light availability. This study provides strong evidence that canopy structure and crown exposure, in addition to height, should be considered as a parameter for determining vertical patterns in LMA and modeling canopy function.
NASA Technical Reports Server (NTRS)
Gausman, H. W.; Cardenas, R.; Berumen, A.
1974-01-01
Pepper and sorghum plants (characterized by porous and compact leaf mesophylls, respectively) were used to study the influence of leaf age on light reflectance. Measurements were limited to the upper five nodal positions within each growth stage, since upper leaves make up most of the reflectance surfaces remotely sensed. The increase in leaf thickness and water content with increasing leaf age was taken into consideration, since each of these factors affects the reflectance as well as the selection of spectral wavelength intervals for optimum discrimination of vegetation.
SU-E-T-444: Gravity Effect On Maximum Leaf Speed in Dynamic IMRT Treatments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olasolo, J; Pellejero, S; Gracia, M
Purpose: A leaf sequencing algorithm has been recently developed in our department. Our purpose is to utilize this algorithm to reduce treatment time by studying the feasibility of using several maximum leaf speeds depending on gantry angle and leaf thickness (0.5 or 1 cm at isocenter). To do so, the gravity effect on MLC performance has been examined by means of analysing the dynalog files. Methods: Leaf position errors has been ascertained according to gantry angle and leaf speed in MLC Millenium120 (Varian). In order to do this, the following test has been designed: all leaves move in synchrony, withmore » same speed and 1 cm gap between opposite leaves. This test is implemented for 18 different speeds: 0.25-0.5-0.75-1-1.25-1.5-1.75-2-2.1-2.2-2.3-2.4-2.5-2.6-2.7-2.8-2.9-3.0 cm/s and 8 gantry angles: 0-45-90-135-180-225-270-315. Collimator angle is 2 degrees in all cases since it is the most usual one in IMRT treatments in our department. Dynamic tolerance is 2 mm. Dynalogs files of 10 repetitions of the test are analysed with a Mathlab in-house developed software and RMS error and 95th percentiles are calculated. Varian recommends 2.5 cm/s as the maximum leaf speed for its segmentation algorithm. In our case, we accept this speed in the most restrictive situation: gantry angle 270 and 1 cm leaf thickness. Maximum speeds for the rest of the cases are calculated by keeping the difference between 95th percentile and dynamic tolerance. In this way, beam hold-off probability does not increase. Results: Maximum speeds every 45 degrees of gantry rotation have been calculated for both leaf thickness. These results are 2.9-2.9-2.9-2.9-2.7-2.6-2.6-2.7 cm/s for 0.5 cm leaf thickness and 2.7-2.7-2.7-2.7-2.6-2.5-2.5-2.6 cm/s for 1 cm leaf thickness. Conclusion: Gravity effect on MLC positioning has been studied. Maximum leaf speed according to leaf thickness and gantry angle have been calculated which reduces treatment time.« less
Wuyts, Nathalie; Massonnet, Catherine; Dauzat, Myriam; Granier, Christine
2012-09-01
Light and soil water content affect leaf surface area expansion through modifications in epidermal cell numbers and area, while effects on leaf thickness and mesophyll cell volumes are far less documented. Here, three-dimensional imaging was applied in a study of Arabidopsis thaliana leaf growth to determine leaf thickness and the cellular organization of mesophyll tissues under moderate soil water deficit and two cumulative light conditions. In contrast to surface area, thickness was highly conserved in response to water deficit under both low and high cumulative light regimes. Unlike epidermal and palisade mesophyll tissues, no reductions in cell number were observed in the spongy mesophyll; cells had rather changed in volume and shape. Furthermore, leaf features of a selection of genotypes affected in leaf functioning were analysed. The low-starch mutant pgm had very thick leaves because of unusually large palisade mesophyll cells, together with high levels of photosynthesis and stomatal conductance. By means of an open stomata mutant and a 9-cis-epoxycarotenoid dioxygenase overexpressor, it was shown that stomatal conductance does not necessarily have a major impact on leaf dimensions and cellular organization, pointing to additional mechanisms for the control of CO(2) diffusion under high and low stomatal conductance, respectively. © 2012 Blackwell Publishing Ltd.
Tabassum, Muhammad Adnan; Zhu, Guanglong; Hafeez, Abdul; Wahid, Muhammad Atif; Shaban, Muhammad; Li, Yong
2016-01-01
The leaf venation architecture is an ideal, highly structured and efficient irrigation system in plant leaves. Leaf vein density (LVD) and vein thickness are the two major properties of this system. Leaf laminae carry out photosynthesis to harvest the maximum biological yield. It is still unknown whether the LVD and/or leaf vein thickness determines the plant hydraulic conductance (Kplant) and leaf photosynthetic rate (A). To investigate this topic, the current study was conducted with two varieties under three PEG-induced water deficit stress (PEG-IWDS) levels. The results showed that PEG-IWDS significantly decreased A, stomatal conductance (gs), and Kplant in both cultivars, though the IR-64 strain showed more severe decreases than the Hanyou-3 strain. PEG-IWDS significantly decreased the major vein thickness, while it had no significant effect on LVD. A, gs and Kplant were positively correlated with each other, and they were negatively correlated with LVD. A, gs and Kplant were positively correlated with the inter-vein distance and major vein thickness. Therefore, the decreased photosynthesis and hydraulic conductance in rice plants under water deficit conditions are related to the decrease in the major vein thickness. PMID:27848980
Spectroscopic determination of leaf traits using infrared spectra
NASA Astrophysics Data System (ADS)
Buitrago, Maria F.; Groen, Thomas A.; Hecker, Christoph A.; Skidmore, Andrew K.
2018-07-01
Leaf traits characterise and differentiate single species but can also be used for monitoring vegetation structure and function. Conventional methods to measure leaf traits, especially at the molecular level (e.g. water, lignin and cellulose content), are expensive and time-consuming. Spectroscopic methods to estimate leaf traits can provide an alternative approach. In this study, we investigated high spectral resolution (6612 bands) emissivity measurements from the short to the long wave infrared (1.4-16.0 μm) of leaves from 19 different plant species ranging from herbaceous to woody, and from temperate to tropical types. At the same time, we measured 14 leaf traits to characterise a leaf, including chemical (e.g., leaf water content, nitrogen, cellulose) and physical features (e.g., leaf area and leaf thickness). We fitted partial least squares regression (PLSR) models across the SWIR, MWIR and LWIR for each leaf trait. Then, reduced models (PLSRred) were derived by iteratively reducing the number of bands in the model (using a modified Jackknife resampling method with a Martens and Martens uncertainty test) down to a few bands (4-10 bands) that contribute the most to the variation of the trait. Most leaf traits could be determined from infrared data with a moderate accuracy (65 < Rcv2 < 77% for observed versus predicted plots) based on PLSRred models, while the accuracy using the whole infrared range (6612 bands) presented higher accuracies, 74 < Rcv2 < 90%. Using the full SWIR range (1.4-2.5 μm) shows similarly high accuracies compared to the whole infrared. Leaf thickness, leaf water content, cellulose, lignin and stomata density are the traits that could be estimated most accurately from infrared data (with Rcv2 above 0.80 for the full range models). Leaf thickness, cellulose and lignin were predicted with reasonable accuracy from a combination of single infrared bands. Nevertheless, for all leaf traits, a combination of a few bands yields moderate to accurate estimations.
Tabassum, Muhammad Adnan; Zhu, Guanglong; Hafeez, Abdul; Wahid, Muhammad Atif; Shaban, Muhammad; Li, Yong
2016-11-16
The leaf venation architecture is an ideal, highly structured and efficient irrigation system in plant leaves. Leaf vein density (LVD) and vein thickness are the two major properties of this system. Leaf laminae carry out photosynthesis to harvest the maximum biological yield. It is still unknown whether the LVD and/or leaf vein thickness determines the plant hydraulic conductance (K plant ) and leaf photosynthetic rate (A). To investigate this topic, the current study was conducted with two varieties under three PEG-induced water deficit stress (PEG-IWDS) levels. The results showed that PEG-IWDS significantly decreased A, stomatal conductance (g s ), and K plant in both cultivars, though the IR-64 strain showed more severe decreases than the Hanyou-3 strain. PEG-IWDS significantly decreased the major vein thickness, while it had no significant effect on LVD. A, g s and K plant were positively correlated with each other, and they were negatively correlated with LVD. A, g s and K plant were positively correlated with the inter-vein distance and major vein thickness. Therefore, the decreased photosynthesis and hydraulic conductance in rice plants under water deficit conditions are related to the decrease in the major vein thickness.
Wu, Yushan; Gong, Wanzhuo; Wang, Yangmei; Yong, Taiwen; Yang, Feng; Liu, Weigui; Wu, Xiaoling; Du, Junbo; Shu, Kai; Liu, Jiang; Liu, Chunyan; Yang, Wenyu
2018-03-29
Leaf anatomy and the stomatal development of developing leaves of plants have been shown to be regulated by the same light environment as that of mature leaves, but no report has yet been written on whether such a long-distance signal from mature leaves regulates the total leaf area of newly emerged leaves. To explore this question, we created an investigation in which we collected data on the leaf area, leaf mass per area (LMA), leaf anatomy, cell size, cell number, gas exchange and soluble sugar content of leaves from three soybean varieties grown under full sunlight (NS), shaded mature leaves (MS) or whole plants grown in shade (WS). Our results show that MS or WS cause a marked decline both in leaf area and LMA in newly developing leaves. Leaf anatomy also showed characteristics of shade leaves with decreased leaf thickness, palisade tissue thickness, sponge tissue thickness, cell size and cell numbers. In addition, in the MS and WS treatments, newly developed leaves exhibited lower net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (E), but higher carbon dioxide (CO 2 ) concentration in the intercellular space (Ci) than plants grown in full sunlight. Moreover, soluble sugar content was significantly decreased in newly developed leaves in MS and WS treatments. These results clearly indicate that (1) leaf area, leaf anatomical structure, and photosynthetic function of newly developing leaves are regulated by a systemic irradiance signal from mature leaves; (2) decreased cell size and cell number are the major cause of smaller and thinner leaves in shade; and (3) sugars could possibly act as candidate signal substances to regulate leaf area systemically.
Murray, Brad R.; Hardstaff, Lyndle K.; Phillips, Megan L.
2013-01-01
The flammability of plant leaves influences the spread of fire through vegetation. Exotic plants invading native vegetation may increase the spread of bushfires if their leaves are more flammable than native leaves. We compared fresh-leaf and dry-leaf flammability (time to ignition) between 52 native and 27 exotic plant species inhabiting dry sclerophyll forest. We found that mean time to ignition was significantly faster in dry exotic leaves than in dry native leaves. There was no significant native-exotic difference in mean time to ignition for fresh leaves. The significantly higher fresh-leaf water content that was found in exotics, lost in the conversion from a fresh to dry state, suggests that leaf water provides an important buffering effect that leads to equivalent mean time to ignition in fresh exotic and native leaves. Exotic leaves were also significantly wider, longer and broader in area with significantly higher specific leaf area–but not thicker–than native leaves. We examined scaling relationships between leaf flammability and leaf size (leaf width, length, area, specific leaf area and thickness). While exotics occupied the comparatively larger and more flammable end of the leaf size-flammability spectrum in general, leaf flammability was significantly correlated with all measures of leaf size except leaf thickness in both native and exotic species such that larger leaves were faster to ignite. Our findings for increased flammability linked with larger leaf size in exotics demonstrate that exotic plant species have the potential to increase the spread of bushfires in dry sclerophyll forest. PMID:24260169
Yin, Qiulong; Wang, Lei; Lei, Maolin; Dang, Han; Quan, Jiaxin; Tian, Tingting; Chai, Yongfu; Yue, Ming
2018-04-15
Leaf economics and hydraulic traits are simultaneously involved in the process of trading water for CO 2 , but the relationships between these two suites of traits remain ambiguous. Recently, Li et al. (2015) reported that leaf economics and hydraulic traits were decoupled in five tropical-subtropical forests in China. We tested the hypothesis that the relationships between economics and hydraulic traits may depend on water availability. We analysed five leaf economics traits, four hydraulic traits and anatomical structures of 47 woody species on the Loess Plateau with poor water availability and compared those data with Li et al. (2015) obtained in tropical-subtropical regions with adequate water. The results showed that plants on the Loess Plateau tend to have higher leaf tissue density (TD), leaf nitrogen concentrations and venation density (VD) and lower stomatal guard cell length (SL) and maximum stomatal conductance to water vapour (g wmax ). VD showed positive correlations with leaf nitrogen concentrations, palisade tissue thickness (PT) and ratio of palisade tissue thickness to spongy tissue thickness (PT/ST). Principal component analysis (PCA) showed a result opposite from those of tropical-subtropical regions: leaf economics and hydraulic traits were coupled on the Loess Plateau. A stable correlation between these two suites of traits may be more cost-effective on the Loess Plateau, where water availability is poor. The correlation of leaf economics and hydraulic traits may be a type of adaptation mechanism in arid conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
Liu, Yang; Qian, Chenyun; Ding, Sihui; Shang, Xulan; Yang, Wanxia; Fang, Shengzuo
2016-12-01
As a highly valued and multiple function tree species, Cyclocarya paliurus is planted and managed for timber production and medical use. However, limited information is available on its genotype selection and cultivation for growth and phytochemicals. Responses of growth and secondary metabolites to light regimes and genotypes are useful information to determine suitable habitat conditions for the cultivation of medicinal plants. Both light regime and provenance significantly affected the leaf characteristics, leaf flavonoid contents, biomass production and flavonoid accumulation per plant. Leaf thickness, length of palisade cells and chlorophyll a/b decreased significantly under shading conditions, while leaf areas and total chlorophyll content increased obviously. In the full light condition, leaf flavonoid contents showed a bimodal temporal variation pattern with the maximum observed in August and the second peak in October, while shading treatment not only reduced the leaf content of flavonoids but also delayed the peak appearing of the flavonoid contents in the leaves of C. paliurus. Strong correlations were found between leaf thickness, palisade length, monthly light intensity and measured flavonoid contents in the leaves of C. paliurus. Muchuan provenance with full light achieved the highest leaf biomass and flavonoid accumulation per plant. Cyclocarya paliurus genotypes show diverse responses to different light regimes in leaf characteristics, biomass production and flavonoid accumulation, highlighting the opportunity for extensive selection in the leaf flavonoid production.
Evolutionary Association of Stomatal Traits with Leaf Vein Density in Paphiopedilum, Orchidaceae
Sun, Mei; Zhang, Juan-Juan; Cao, Kun-Fang; Hu, Hong
2012-01-01
Background Both leaf attributes and stomatal traits are linked to water economy in land plants. However, it is unclear whether these two components are associated evolutionarily. Methodology/Principal Findings In characterizing the possible effect of phylogeny on leaf attributes and stomatal traits, we hypothesized that a correlated evolution exists between the two. Using a phylogenetic comparative method, we analyzed 14 leaf attributes and stomatal traits for 17 species in Paphiopedilum. Stomatal length (SL), stomatal area (SA), upper cuticular thickness (UCT), and total cuticular thickness (TCT) showed strong phylogenetic conservatism whereas stomatal density (SD) and stomatal index (SI) were significantly convergent. Leaf vein density was correlated with SL and SD whether or not phylogeny was considered. The lower epidermal thickness (LET) was correlated positively with SL, SA, and stomatal width but negatively with SD when phylogeny was not considered. When this phylogenetic influence was factored in, only the significant correlation between SL and LET remained. Conclusion/Significance Our results support the hypothesis for correlated evolution between stomatal traits and vein density in Paphiopedilum. However, they do not provide evidence for an evolutionary association between stomata and leaf thickness. These findings lend insight into the evolution of traits related to water economy for orchids under natural selection. PMID:22768224
Shahba, Mohamed A; Bauerle, William L
2009-07-01
Our understanding of leaf acclimation in relation to temperature of fully grown or juvenile tree crowns is mainly based on research involving spatially uncontrolled growth temperature. In this study, we test the hypothesis that leaf morphology and chemical elements are modulated by within-crown growth temperature differences. We ask whether within-species variation can influence acclimation to elevated temperatures. Within-crown temperature dependence of leaf morphology, carbon and nitrogen was examined in two genotypes of Acer rubrum L. (red maple) from different latitudes, where the mean annual temperature varies between 7.2 and 19.4 degrees C. Crown sections were grown in temperature-controlled chambers at three daytime growth temperatures (25, 33 and 38 degrees C). Leaf growth and resource acquisition were measured at regular intervals over long-term (50 days) controlled daytime growth temperatures. We found significant intraspecific variation in temperature dependence of leaf carbon and nitrogen accumulation between genotypes. Additionally, there was evidence that leaf morphology depended on inherited adaptation. Leaf dry matter and nitrogen content decreased as growth temperature was elevated above 25 degrees C in the genotype native to the cooler climate, whereas they remained fairly constant in response to temperature in the genotype native to the warmer climate. Specific leaf area (SLA) was correlated positively to leaf nitrogen content in both genotypes. The SLA and the relative leaf dry matter content (LM), on the other hand, were correlated negatively to leaf thickness. However, intraspecific variation in SLA and LM versus leaf thickness was highly significant. Intraspecific differences in leaf temperature response between climatically divergent genotypes yielded important implications for convergent evolution of leaf adaptation. Comparison of our results with those of previous studies showed that leaf carbon allocation along a vertical temperature gradient was modulated by growth temperature in the genotype native to the cooler climate. This indicates that within-crown temperature-induced variations in leaf morphology and chemical content should be accounted for in forest ecosystem models.
The Relationship between Anatomy and Photosynthetic Performance of Heterobaric Leaves1
Nikolopoulos, Dimosthenis; Liakopoulos, Georgios; Drossopoulos, Ioannis; Karabourniotis, George
2002-01-01
Heterobaric leaves show heterogeneous pigmentation due to the occurrence of a network of transparent areas that are created from the bundle sheaths extensions (BSEs). Image analysis showed that the percentage of photosynthetically active leaf area (Ap) of the heterobaric leaves of 31 plant species was species dependent, ranging from 91% in Malva sylvestris to only 48% in Gynerium sp. Although a significant portion of the leaf surface does not correspond to photosynthetic tissue, the photosynthetic capacity of these leaves, expressed per unit of projected area (Pmax), was not considerably affected by the size of their transparent leaf area (At). This means that the photosynthetic capacity expressed per Ap (P*max) should increase with At. Moreover, the expression of P*max could be allowing the interpretation of the photosynthetic performance in relation to some critical anatomical traits. The P*max, irrespective of plant species, correlated with the specific leaf transparent volume (λt), as well as with the transparent leaf area complexity factor (CFAt), parameters indicating the volume per unit leaf area and length/density of the transparent tissues, respectively. Moreover, both parameters increased exponentially with leaf thickness, suggesting an essential functional role of BSEs mainly in thick leaves. The results of the present study suggest that although the Ap of an heterobaric leaf is reduced, the photosynthetic performance of each areole is increased, possibly due to the light transferring capacity of BSEs. This mechanism may allow a significant increase in leaf thickness and a consequent increase of the photosynthetic capacity per unit (projected) area, offering adaptive advantages in xerothermic environments. PMID:12011354
Pauli, Duke; White, Jeffrey W.; Andrade-Sanchez, Pedro; Conley, Matthew M.; Heun, John; Thorp, Kelly R.; French, Andrew N.; Hunsaker, Douglas J.; Carmo-Silva, Elizabete; Wang, Guangyao; Gore, Michael A.
2017-01-01
Many systems for field-based, high-throughput phenotyping (FB-HTP) quantify and characterize the reflected radiation from the crop canopy to derive phenotypes, as well as infer plant function and health status. However, given the technology's nascent status, it remains unknown how biophysical and physiological properties of the plant canopy impact downstream interpretation and application of canopy reflectance data. In that light, we assessed relationships between leaf thickness and several canopy-associated traits, including normalized difference vegetation index (NDVI), which was collected via active reflectance sensors carried on a mobile FB-HTP system, carbon isotope discrimination (CID), and chlorophyll content. To investigate the relationships among traits, two distinct cotton populations, an upland (Gossypium hirsutum L.) recombinant inbred line (RIL) population of 95 lines and a Pima (G. barbadense L.) population composed of 25 diverse cultivars, were evaluated under contrasting irrigation regimes, water-limited (WL) and well-watered (WW) conditions, across 3 years. We detected four quantitative trait loci (QTL) and significant variation in both populations for leaf thickness among genotypes as well as high estimates of broad-sense heritability (on average, above 0.7 for both populations), indicating a strong genetic basis for leaf thickness. Strong phenotypic correlations (maximum r = −0.73) were observed between leaf thickness and NDVI in the Pima population, but not the RIL population. Additionally, estimated genotypic correlations within the RIL population for leaf thickness with CID, chlorophyll content, and nitrogen discrimination (r^gij = −0.32, 0.48, and 0.40, respectively) were all significant under WW but not WL conditions. Economically important fiber quality traits did not exhibit significant phenotypic or genotypic correlations with canopy traits. Overall, our results support considering variation in leaf thickness as a potential contributing factor to variation in NDVI or other canopy traits measured via proximal sensing, and as a trait that impacts fundamental physiological responses of plants. PMID:28868055
Strategies of leaf expansion in Ficus carica under semiarid conditions.
González-Rodríguez, A M; Peters, J
2010-05-01
Leaf area expansion, thickness and inclination, gas exchange parameters and relative chlorophyll content were analysed in field-grown fig (Ficus carica L.) leaves over time, from emergence until after full leaf expansion (FLE). Ficus carica leaves showed a subtle change in shape during the early stages of development, and FLE was reached within ca. 30 days after emergence. Changes in leaf thickness and inclination after FLE demonstrated good adaptation to environmental conditions during summer in areas with a Mediterranean climate. Changes in gas exchange parameters and relative chlorophyll content showed that F. carica is a delayed-greening species, reaching maximum values 20 days after FLE. Correlation analysis of datasets collected during leaf expansion, confirmed dependence among structural and functional traits in F. carica. Pn was directly correlated with stomatal conductance (Gs), transpiration (E), leaf area (LA) and relative chlorophyll content up to FLE. The effect of pruning on leaf expansion, a cultural technique commonly applied in this fruit tree, was also evaluated. Although leaf development in pruned branches gave a significantly higher relative leaf area growth rate (RGR(l)) and higher LA than non-pruned branches, no significant differences were found in other morphological and physiological traits, indicating no pruning effect on leaf development. All studied morphological and physiological characteristics indicate that F. carica is well adapted to semiarid conditions. The delayed greening strategy of this species is discussed.
Retta, Moges; Yin, Xinyou; van der Putten, Peter E L; Cantre, Denis; Berghuijs, Herman N C; Ho, Quang Tri; Verboven, Pieter; Struik, Paul C; Nicolaï, Bart M
2016-11-01
The mechanism of photosynthesis in C 4 crops depends on the archetypal Kranz-anatomy. To examine how the leaf anatomy, as altered by nitrogen supply and leaf age, affects the bundle sheath conductance (g bs ), maize (Zea mays L.) plants were grown under three contrasting nitrogen levels. Combined gas exchange and chlorophyll fluorescence measurements were done on fully grown leaves at two leaf ages. The measured data were analysed using a biochemical model of C 4 photosynthesis to estimate g bs . The leaf microstructure and ultrastructure were quantified using images obtained from micro-computed tomography and microscopy. There was a strong positive correlation between g bs and leaf nitrogen content (LNC) while old leaves had lower g bs than young leaves. Leaf thickness, bundle sheath cell wall thickness and surface area of bundle sheath cells per unit leaf area (S b ) correlated well with g bs although they were not significantly affected by LNC. As a result, the increase of g bs with LNC was little explained by the alteration of leaf anatomy. In contrast, the combined effect of LNC and leaf age on S b was responsible for differences in g bs between young leaves and old leaves. Future investigations should consider changes at the level of plasmodesmata and membranes along the CO 2 leakage pathway to unravel LNC and age effects further. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Zheng, Liang; Van Labeke, Marie-Christine
2017-01-01
Light quality critically affects plant development and growth. Development of light-emitting diodes (LEDs) enables the use of narrow band red and/or blue wavelengths as supplementary lighting in ornamental production. Yet, long periods under these wavelengths will affect leaf morphology and physiology. Leaf anatomy, stomatal traits, and stomatal conductance, leaf hydraulic conductance (K leaf ), and photosynthetic efficiency were investigated in three ornamental pot plants, namely Cordyline australis (monocot), Ficus benjamina (dicot, evergreen leaves), and Sinningia speciosa (dicot, deciduous leaves) after 8 weeks under LED light. Four light treatments were applied at 100 μmol m -2 s -1 and a photoperiod of 16 h using 100% red (R), 100% blue (B), 75% red with 25% blue (RB), and full spectrum white light (W), respectively. B and RB resulted in a greater maximum quantum yield (F v /F m ) and quantum efficiency (Φ PSII ) in all species compared to R and W and this correlated with a lower biomass under R. B increased the stomatal conductance compared with R. This increase was linked to an increasing stomatal index and/or stomatal density but the stomatal aperture area was unaffected by the applied light quality. Leaf hydraulic conductance (K leaf ) was not significantly affected by the applied light qualities. Blue light increased the leaf thickness of F. benjamina , and a relative higher increase in palisade parenchyma was observed. Also in S. speciosa , increase in palisade parenchyma was found under B and RB, though total leaf thickness was not affected. Palisade parenchyma tissue thickness was correlated to the leaf photosynthetic quantum efficiency (Φ PSII ). In conclusion, the role of blue light addition in the spectrum is essential for the normal anatomical leaf development which also impacts the photosynthetic efficiency in the three studied species.
Aridity induces super-optimal investment in leaf venation by Eucalyptus and Corymbia
NASA Astrophysics Data System (ADS)
Drake, Paul L.; de Boer, Hugo J.; Price, Charles A.; Veneklaas, Erik J.
2016-04-01
The close relationship between leaf water status and stomatal conductance implies that the hydraulic architecture of leaves poses an important constraint on carbon uptake, specifically in arid environments with high evaporative demands. However, it remains uncertain how morphological, hydraulic and photosynthetic traits are coordinated to achieve optimal leaf functioning in arid environments. Zwieniecki and Boyce (2014) proposed a generic framework on the hydraulic architecture of leaves based on the argument that water is optimally distributed when the lateral distance between neighboring water transport veins (dx) is approximately equal to the distance from these veins to the epidermis (dy), expressed as dx:dy ≈1. Many derived angiosperms realize this optimal hydraulic architecture by closely coordinating leaf vein density with leaf thickness and the lateral position of veins inside the leaf. Zwieniecki and Boyce (2014) further suggested that over-investment in veins (dx:dy <1) provides no functional benefit owing to the minor additional increases in leaf gas exchange that may be achieved by reducing dx beyond dy. Although this framework is valid for derived angiosperms adapted to temperate and moist (sub)tropical environments, we hypothesize that super-investment in leaf venation (resulting in dx:dy<<1) may provide a specific gas exchange advantage in arid environments that select for thick and amphistomatous leaf morphologies. The relatively long dy inherent to these leaf morphologies imposes hydraulic constraints on productivity that may (partially) be offset by reducing dx beyond dy. To test our hypothesis we assembled the leaf hydraulic, morphological and photosynthetic traits of 65 species (401 individuals) within the widely distributed and closely related genera Eucalyptus and Corymbia along a 2000-km-long aridity gradient in Western Australia (see Schulze et al., 2006). We inferred the potential functional benefit of reducing dx beyond dy using a semi-empirical model that links leaf morphology and hydraulics to photosynthesis. Our results reveal that Eucalyptus and Corymbia evolved extremely high vein densities in addition to thick amphistomatous leaf morphologies along the natural aridity gradient resulting in dx:dy ratios ranging between 0.8 and 0.08. We propose that as the thickness of amphistomatous leaves increases, the effect of reducing dx beyond dy is to offset the reduction in photosynthesis that would result from the theoretical optimal architecture of dx:dy ≈1. Our model quantified the resulting relative gain in photosynthesis at 10% to 15%, which could provide a crucial gas exchange advantage. We conclude that aridity confounds selection for leaf traits associated with a long leaf lifespan and thermal capacitance as well as those supporting higher rates of leaf water transport and photosynthesis. References Schulze, E.-D., Turner, N. C., Nicolle, D. and Schumacher, J.: Species differences in carbon isotope ratios, specific leaf area and nitrogen concentrations in leaves of Eucalyptus growing in a common garden compared with along an aridity gradient, Physiol. Plant., 127(3), 434-444, 2006. Zwieniecki, M. A. and Boyce, C. K.: Evolution of a unique anatomical precision in angiosperm leaf venation lifts constraints on vascular plant ecology, Proc. R. Soc. B Biol. Sci., 281(1779), 2014.
Richardson, Sarah J.; Allen, Robert B.; Buxton, Rowan P.; Easdale, Tomás A.; Hurst, Jennifer M.; Morse, Christopher W.; Smissen, Rob D.; Peltzer, Duane A.
2013-01-01
Plant functional traits capture important variation in plant strategy and function. Recent literature has revealed that within-species variation in traits is greater than previously supposed. However, we still have a poor understanding of how intraspecific variation is coordinated among different traits, and how it is driven by environment. We quantified intraspecific variation in wood density and five leaf traits underpinning the leaf economics spectrum (leaf dry matter content, leaf mass per unit area, size, thickness and density) within and among four widespread Nothofagus tree species in southern New Zealand. We tested whether intraspecific relationships between wood density and leaf traits followed widely reported interspecific relationships, and whether variation in these traits was coordinated through shared responses to environmental factors. Sample sites varied widely in environmental variables, including soil fertility (25–900 mg kg–1 total P), precipitation (668–4875 mm yr–1), temperature (5.2–12.4 °C mean annual temperature) and latitude (41–46 °S). Leaf traits were strongly correlated with one another within species, but not with wood density. There was some evidence for a positive relationship between wood density and leaf tissue density and dry matter content, but no evidence that leaf mass or leaf size were correlated with wood density; this highlights that leaf mass per unit area cannot be used as a surrogate for component leaf traits such as tissue density. Trait variation was predicted by environmental factors, but not consistently among different traits; e.g., only leaf thickness and leaf density responded to the same environmental cues as wood density. We conclude that although intraspecific variation in wood density and leaf traits is strongly driven by environmental factors, these responses are not strongly coordinated among functional traits even across co-occurring, closely-related plant species. PMID:23527041
Zheng, Liang; Van Labeke, Marie-Christine
2017-01-01
Light quality critically affects plant development and growth. Development of light-emitting diodes (LEDs) enables the use of narrow band red and/or blue wavelengths as supplementary lighting in ornamental production. Yet, long periods under these wavelengths will affect leaf morphology and physiology. Leaf anatomy, stomatal traits, and stomatal conductance, leaf hydraulic conductance (Kleaf), and photosynthetic efficiency were investigated in three ornamental pot plants, namely Cordyline australis (monocot), Ficus benjamina (dicot, evergreen leaves), and Sinningia speciosa (dicot, deciduous leaves) after 8 weeks under LED light. Four light treatments were applied at 100 μmol m−2 s−1 and a photoperiod of 16 h using 100% red (R), 100% blue (B), 75% red with 25% blue (RB), and full spectrum white light (W), respectively. B and RB resulted in a greater maximum quantum yield (Fv/Fm) and quantum efficiency (ΦPSII) in all species compared to R and W and this correlated with a lower biomass under R. B increased the stomatal conductance compared with R. This increase was linked to an increasing stomatal index and/or stomatal density but the stomatal aperture area was unaffected by the applied light quality. Leaf hydraulic conductance (Kleaf) was not significantly affected by the applied light qualities. Blue light increased the leaf thickness of F. benjamina, and a relative higher increase in palisade parenchyma was observed. Also in S. speciosa, increase in palisade parenchyma was found under B and RB, though total leaf thickness was not affected. Palisade parenchyma tissue thickness was correlated to the leaf photosynthetic quantum efficiency (ΦPSII). In conclusion, the role of blue light addition in the spectrum is essential for the normal anatomical leaf development which also impacts the photosynthetic efficiency in the three studied species. PMID:28611818
Tsutsumi, Koichi; Konno, Masae; Miyazawa, Shin-Ichi; Miyao, Mitsue
2014-02-01
Elevated CO2 concentrations (eCO2) trigger various plant responses. Despite intensive studies of these responses, the underlying mechanisms remain obscure. In this work, we investigated when and how leaf physiology and anatomy are affected by eCO2 in rice plants. We analyzed the most recently fully expanded leaves that developed successively after transfer of the plant to eCO2. To discriminate between the effects of eCO2 and those of nitrogen deficiency, we used three different levels of N application. We found that a decline in the leaf soluble protein content (on a leaf area basis) at eCO2 was only observed under N deficiency. The length and width of the leaf blade were reduced by both eCO2 and N deficiency, whereas the blade thickness was increased by eCO2 but was not affected by N deficiency. The change in length by eCO2 became detectable in the secondly fully expanded leaf, and those in width and thickness in the thirdly fully expanded leaf, which were at the leaf developmental stages P4 and P3, respectively, at the onset of the eCO2 treatment. The decreased blade length at eCO2 was associated with a decrease in the epidermal cell number on the adaxial side and a reduction in cell length on the abaxial side. The decreased width resulted from decreased numbers of small vascular bundles and epidermal cell files. The increased thickness was ascribed mainly to enhanced development of bundle sheath extensions at the ridges of vascular bundles. These observations enable us to identify the sites of action of eCO2 on rice leaf development.
Zinc deficiency in field-grown pecan trees: changes in leaf nutrient concentrations and structure.
Ojeda-Barrios, Dámaris; Abadía, Javier; Lombardini, Leonardo; Abadía, Anunciación; Vázquez, Saúl
2012-06-01
Zinc (Zn) deficiency is a typical nutritional disorder in pecan trees [Carya illinoinensis (Wangenh.) C. Koch] grown under field conditions in calcareous soils in North America, including northern Mexico and south-western United States. The aim of this study was to assess the morphological and nutritional changes in pecan leaves affected by Zn deficiency as well as the Zn distribution within leaves. Zinc deficiency led to decreases in leaf chlorophyll concentrations, leaf area and trunk cross-sectional area. Zinc deficiency increased significantly the leaf concentrations of K and Ca, and decreased the leaf concentrations of Zn, Fe, Mn and Cu. All nutrient values found in Zn-deficient leaves were within the sufficiency ranges, with the only exception of Zn, which was approximately 44, 11 and 9 µg g(-1) dry weight in Zn-sufficient, moderately and markedly Zn-deficient leaves, respectively. Zinc deficiency led to decreases in leaf thickness, mainly due to a reduction in the thickness of the palisade parenchyma, as well as to increases in stomatal density and size. The localisation of Zn was determined using the fluorophore Zinpyr-1 and ratio-imaging technique. Zinc was mainly localised in the palisade mesophyll area in Zn-sufficient leaves, whereas no signal could be obtained in Zn-deficient leaves. The effects of Zn deficiency on the leaf characteristics of pecan trees include not only decreases in leaf chlorophyll and Zn concentrations, but also a reduction in the thickness of the palisade parenchyma, an increase in stomatal density and pore size and the practical disappearance of Zn leaf pools. These characteristics must be taken into account to design strategies to correct Zn deficiency in pecan tree in the field. Copyright © 2012 Society of Chemical Industry.
Punwong, Paramita; Juprasong, Yotin; Traiperm, Paweena
2017-09-01
This study investigated the short-term impacts of an oil spill on the leaf anatomical structures of Terminalia catappa L. from crude oil leakage in Rayong province, Thailand, in 2013. Approximately 3 weeks after the oil spill, leaves of T. catappa were collected along the coastline of Rayong from one affected site, five adjacent sites, and a control site. Slides of the leaf epidermis were prepared by the peeling method, while leaf and petiole transverse sections were prepared by paraffin embedding. Cell walls of adaxial epidermal cell on leaves in the affected site were straight instead of the jigsaw shape found in leaves from the adjacent and control sites. In addition, the stomatal index of the abaxial leaf surface was significantly lower in the affected site. Leaf and petiole transverse sections collected from the affected site showed increased cuticle thickness, epidermal cell diameter on both sides, and palisade mesophyll thickness; in contrast, vessel diameter and spongy mesophyll thickness were reduced. These significant changes in the leaf anatomy of T. catappa correspond with previous research and demonstrate the negative effects of oil spill pollution on plants. The anatomical changes of T. catappa in response to crude oil pollution are discussed as a possible indicator of pollution and may be used in monitoring crude oil pollution.
Leaf Photosynthetic Rate of Tropical Ferns Is Evolutionarily Linked to Water Transport Capacity
Cao, Kun-Fang; Hu, Hong; Zhang, Jiao-Lin
2014-01-01
Ferns usually have relatively lower photosynthetic potential than angiosperms. However, it is unclear whether low photosynthetic potential of ferns is linked to leaf water supply. We hypothesized that there is an evolutionary association of leaf water transport capacity with photosynthesis and stomatal density in ferns. In the present study, a series of functional traits relating to leaf anatomy, hydraulics and physiology were assessed in 19 terrestrial and 11 epiphytic ferns in a common garden, and analyzed by a comparative phylogenetics method. Compared with epiphytic ferns, terrestrial ferns had higher vein density (Dvein), stomatal density (SD), stomatal conductance (gs), and photosynthetic capacity (Amax), but lower values for lower epidermal thickness (LET) and leaf thickness (LT). Across species, all traits varied significantly, but only stomatal length (SL) showed strong phylogenetic conservatism. Amax was positively correlated with Dvein and gs with and without phylogenetic corrections. SD correlated positively with Amax, Dvein and gs, with the correlation between SD and Dvein being significant after phylogenetic correction. Leaf water content showed significant correlations with LET, LT, and mesophyll thickness. Our results provide evidence that Amax of the studied ferns is linked to leaf water transport capacity, and there was an evolutionary association between water supply and demand in ferns. These findings add new insights into the evolutionary correlations among traits involving carbon and water economy in ferns. PMID:24416265
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leigh, A.; Sevanto, Sanna Annika; Close, J. D.
Laboratory studies on artificial leaves suggest that leaf thermal dynamics are strongly influenced by the two-dimensional size and shape of leaves and associated boundary layer thickness. Hot environments are therefore said to favour selection for small, narrow or dissected leaves. Empirical evidence from real leaves under field conditions is scant and traditionally based on point measurements that do not capture spatial variation in heat load. Here in this study, we used thermal imagery under field conditions to measure the leaf thermal time constant (τ) in summer and the leaf-to-air temperature difference (ΔT) and temperature range across laminae (T range) duringmore » winter, autumn and summer for 68 Proteaceae species. We investigated the influence of leaf area and margin complexity relative to effective leaf width (w e), the latter being a more direct indicator of boundary layer thickness. Normalized difference of margin complexity had no or weak effects on thermal dynamics, but w e strongly predicted τ and ΔT, whereas leaf area influenced T range. Unlike artificial leaves, however, spatial temperature distribution in large leaves appeared to be governed largely by structural variation. Therefore, we agree that small size, specifically we, has adaptive value in hot environments but not with the idea that thermal regulation is the primary evolutionary driver of leaf dissection.« less
Leigh, A.; Sevanto, Sanna Annika; Close, J. D.; ...
2016-11-05
Laboratory studies on artificial leaves suggest that leaf thermal dynamics are strongly influenced by the two-dimensional size and shape of leaves and associated boundary layer thickness. Hot environments are therefore said to favour selection for small, narrow or dissected leaves. Empirical evidence from real leaves under field conditions is scant and traditionally based on point measurements that do not capture spatial variation in heat load. Here in this study, we used thermal imagery under field conditions to measure the leaf thermal time constant (τ) in summer and the leaf-to-air temperature difference (ΔT) and temperature range across laminae (T range) duringmore » winter, autumn and summer for 68 Proteaceae species. We investigated the influence of leaf area and margin complexity relative to effective leaf width (w e), the latter being a more direct indicator of boundary layer thickness. Normalized difference of margin complexity had no or weak effects on thermal dynamics, but w e strongly predicted τ and ΔT, whereas leaf area influenced T range. Unlike artificial leaves, however, spatial temperature distribution in large leaves appeared to be governed largely by structural variation. Therefore, we agree that small size, specifically we, has adaptive value in hot environments but not with the idea that thermal regulation is the primary evolutionary driver of leaf dissection.« less
Tosens, Tiina
2012-01-01
In sclerophylls, photosynthesis is particularly strongly limited by mesophyll diffusion resistance from substomatal cavities to chloroplasts (r m), but the controls on diffusion limits by integral leaf variables such as leaf thickness, density, and dry mass per unit area and by the individual steps along the diffusion pathway are imperfectly understood. To gain insight into the determinants of r m in leaves with varying structure, the full CO2 physical diffusion pathway was analysed in 32 Australian species sampled from sites contrasting in soil nutrients and rainfall, and having leaf structures from mesophytic to strongly sclerophyllous. r m was estimated based on combined measurements of gas exchange and chlorophyll fluorescence. In addition, r m was modelled on the basis of detailed anatomical measurements to separate the importance of different serial resistances affecting CO2 diffusion into chloroplasts. The strongest sources of variation in r m were S c/S, the exposed surface area of chloroplasts per unit leaf area, and mesophyll cell wall thickness, t cw. The strong correlation of r m with t cw could not be explained by cell wall thickness alone, and most likely arose from a further effect of cell wall porosity. The CO2 drawdown from intercellular spaces to chloroplasts was positively correlated with t cw, suggesting enhanced diffusional limitations in leaves with thicker cell walls. Leaf thickness and density were poorly correlated with S c/S, indicating that widely varying combinations of leaf anatomical traits occur at given values of leaf integrated traits, and suggesting that detailed anatomical studies are needed to predict r m for any given species. PMID:22888123
Limited acclimation in leaf anatomy to experimental drought in tropical rainforest trees
Binks, Oliver; Meir, Patrick; Rowland, Lucy; da Costa, Antonio Carlos Lola; Vasconcelos, Steel Silva; de Oliveira, Alex Antonio Ribeiro; Ferreira, Leandro; Mencuccini, Maurizio
2016-01-01
Dry periods are predicted to become more frequent and severe in the future in some parts of the tropics, including Amazonia, potentially causing reduced productivity, higher tree mortality and increased emissions of stored carbon. Using a long-term (12 year) through-fall exclusion (TFE) experiment in the tropics, we test the hypothesis that trees produce leaves adapted to cope with higher levels of water stress, by examining the following leaf characteristics: area, thickness, leaf mass per area, vein density, stomatal density, the thickness of palisade mesophyll, spongy mesophyll and both of the epidermal layers, internal cavity volume and the average cell sizes of the palisade and spongy mesophyll. We also test whether differences in leaf anatomy are consistent with observed differential drought-induced mortality responses among taxa, and look for relationships between leaf anatomy, and leaf water relations and gas exchange parameters. Our data show that trees do not produce leaves that are more xeromorphic in response to 12 years of soil moisture deficit. However, the drought treatment did result in increases in the thickness of the adaxial epidermis (TFE: 20.5 ± 1.5 µm, control: 16.7 ± 1.0 µm) and the internal cavity volume (TFE: 2.43 ± 0.50 mm3 cm−2, control: 1.77 ± 0.30 mm3 cm−2). No consistent differences were detected between drought-resistant and drought-sensitive taxa, although interactions occurred between drought-sensitivity status and drought treatment for the palisade mesophyll thickness (P = 0.034) and the cavity volume of the leaves (P = 0.025). The limited response to water deficit probably reflects a tight co-ordination between leaf morphology, water relations and photosynthetic properties. This suggests that there is little plasticity in these aspects of plant anatomy in these taxa, and that phenotypic plasticity in leaf traits may not facilitate the acclimation of Amazonian trees to the predicted future reductions in dry season water availability. PMID:27614360
de Boer, Hugo J.; Drake, Paul L.; Wendt, Erin; Price, Charles A.; Schulze, Ernst-Detlef; Turner, Neil C.; Nicolle, Dean
2016-01-01
Leaf veins supply the mesophyll with water that evaporates when stomata are open to allow CO2 uptake for photosynthesis. Theoretical analyses suggest that water is optimally distributed in the mesophyll when the lateral distance between veins (dx) is equal to the distance from these veins to the epidermis (dy), expressed as dx:dy ≈ 1. Although this theory is supported by observations of many derived angiosperms, we hypothesize that plants in arid environments may reduce dx:dy below unity owing to climate-specific functional adaptations of increased leaf thickness and increased vein density. To test our hypothesis, we assembled leaf hydraulic, morphological, and photosynthetic traits of 68 species from the Eucalyptus and Corymbia genera (termed eucalypts) along an aridity gradient in southwestern Australia. We inferred the potential gas-exchange advantage of reducing dx beyond dy using a model that links leaf morphology and hydraulics to photosynthesis. Our observations reveal that eucalypts in arid environments have thick amphistomatous leaves with high vein densities, resulting in dx:dy ratios that range from 1.6 to 0.15 along the aridity gradient. Our model suggests that, as leaves become thicker, the effect of reducing dx beyond dy is to offset the reduction in leaf gas exchange that would result from maintaining dx:dy at unity. This apparent overinvestment in leaf venation may be explained from the selective pressure of aridity, under which traits associated with long leaf life span, high hydraulic and thermal capacitances, and high potential rates of leaf water transport confer a competitive advantage. PMID:27784769
Giuliani, Rita; Koteyeva, Nuria; Voznesenskaya, Elena; Evans, Marc A.; Cousins, Asaph B.; Edwards, Gerald E.
2013-01-01
The genus Oryza, which includes rice (Oryza sativa and Oryza glaberrima) and wild relatives, is a useful genus to study leaf properties in order to identify structural features that control CO2 access to chloroplasts, photosynthesis, water use efficiency, and drought tolerance. Traits, 26 structural and 17 functional, associated with photosynthesis and transpiration were quantified on 24 accessions (representatives of 17 species and eight genomes). Hypotheses of associations within, and between, structure, photosynthesis, and transpiration were tested. Two main clusters of positively interrelated leaf traits were identified: in the first cluster were structural features, leaf thickness (Thickleaf), mesophyll (M) cell surface area exposed to intercellular air space per unit of leaf surface area (Smes), and M cell size; a second group included functional traits, net photosynthetic rate, transpiration rate, M conductance to CO2 diffusion (gm), stomatal conductance to gas diffusion (gs), and the gm/gs ratio. While net photosynthetic rate was positively correlated with gm, neither was significantly linked with any individual structural traits. The results suggest that changes in gm depend on covariations of multiple leaf (Smes) and M cell (including cell wall thickness) structural traits. There was an inverse relationship between Thickleaf and transpiration rate and a significant positive association between Thickleaf and leaf transpiration efficiency. Interestingly, high gm together with high gm/gs and a low Smes/gm ratio (M resistance to CO2 diffusion per unit of cell surface area exposed to intercellular air space) appear to be ideal for supporting leaf photosynthesis while preserving water; in addition, thick M cell walls may be beneficial for plant drought tolerance. PMID:23669746
Extremely thick cell walls and low mesophyll conductance: welcome to the world of ancient living!
Tosens, Tiina; Laanisto, Lauri; Niinemets, Ülo
2017-01-01
Abstract Mesophyll conductance is thought to be an important photosynthetic limitation in gymnosperms, but they currently constitute the most understudied plant group in regard to the extent to which photosynthesis and intrinsic water use efficiency are limited by mesophyll conductance. A comprehensive analysis of leaf gas exchange, photosynthetic limitations, mesophyll conductance (calculated by three methods previously used for across-species comparisons), and the underlying ultra-anatomical, morphological and chemical traits in 11 gymnosperm species varying in evolutionary history was performed to gain insight into the evolution of structural and physiological controls on photosynthesis at the lower return end of the leaf economics spectrum. Two primitive herbaceous species were included in order to provide greater evolutionary context. Low mesophyll conductance was the main limiting factor of photosynthesis in the majority of species. The strongest sources of limitation were extremely thick mesophyll cell walls, high chloroplast thickness and variation in chloroplast shape and size, and the low exposed surface area of chloroplasts per unit leaf area. In gymnosperms, the negative relationship between net assimilation per mass and leaf mass per area reflected an increased mesophyll cell wall thickness, whereas the easy-to-measure integrative trait of leaf mass per area failed to predict the underlying ultrastructural traits limiting mesophyll conductance. PMID:28419340
de Boer, Hugo J; Drake, Paul L; Wendt, Erin; Price, Charles A; Schulze, Ernst-Detlef; Turner, Neil C; Nicolle, Dean; Veneklaas, Erik J
2016-12-01
Leaf veins supply the mesophyll with water that evaporates when stomata are open to allow CO 2 uptake for photosynthesis. Theoretical analyses suggest that water is optimally distributed in the mesophyll when the lateral distance between veins (d x ) is equal to the distance from these veins to the epidermis (d y ), expressed as d x :d y ≈ 1. Although this theory is supported by observations of many derived angiosperms, we hypothesize that plants in arid environments may reduce d x :d y below unity owing to climate-specific functional adaptations of increased leaf thickness and increased vein density. To test our hypothesis, we assembled leaf hydraulic, morphological, and photosynthetic traits of 68 species from the Eucalyptus and Corymbia genera (termed eucalypts) along an aridity gradient in southwestern Australia. We inferred the potential gas-exchange advantage of reducing d x beyond d y using a model that links leaf morphology and hydraulics to photosynthesis. Our observations reveal that eucalypts in arid environments have thick amphistomatous leaves with high vein densities, resulting in d x :d y ratios that range from 1.6 to 0.15 along the aridity gradient. Our model suggests that, as leaves become thicker, the effect of reducing d x beyond d y is to offset the reduction in leaf gas exchange that would result from maintaining d x :d y at unity. This apparent overinvestment in leaf venation may be explained from the selective pressure of aridity, under which traits associated with long leaf life span, high hydraulic and thermal capacitances, and high potential rates of leaf water transport confer a competitive advantage. © 2016 American Society of Plant Biologists. All Rights Reserved.
Kröber, W; Heklau, H; Bruelheide, H
2015-03-01
We explored potential of morphological and anatomical leaf traits for predicting ecophysiological key functions in subtropical trees. We asked whether the ecophysiological parameters stomatal conductance and xylem cavitation vulnerability could be predicted from microscopy leaf traits. We investigated 21 deciduous and 19 evergreen subtropical tree species, using individuals of the same age and from the same environment in the Biodiversity-Ecosystem Functioning experiment at Jiangxi (BEF-China). Information-theoretic linear model selection was used to identify the best combination of morphological and anatomical predictors for ecophysiological functions. Leaf anatomy and morphology strongly depended on leaf habit. Evergreen species tended to have thicker leaves, thicker spongy and palisade mesophyll, more palisade mesophyll layers and a thicker subepidermis. Over 50% of all evergreen species had leaves with multi-layered palisade parenchyma, while only one deciduous species (Koelreuteria bipinnata) had this. Interactions with leaf habit were also included in best multi-predictor models for stomatal conductance (gs ) and xylem cavitation vulnerability. In addition, maximum gs was positively related to log ratio of palisade to spongy mesophyll thickness. Vapour pressure deficit (vpd) for maximum gs increased with the log ratio of palisade to spongy mesophyll thickness in species having leaves with papillae. In contrast, maximum specific hydraulic conductivity and xylem pressure at which 50% loss of maximum specific xylem hydraulic conductivity occurred (Ψ50 ) were best predicted by leaf habit and density of spongy parenchyma. Evergreen species had lower Ψ50 values and lower maximum xylem hydraulic conductivities. As hydraulic leaf and wood characteristics were reflected in structural leaf traits, there is high potential for identifying further linkages between morphological and anatomical leaf traits and ecophysiological responses. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
NASA Technical Reports Server (NTRS)
Tucker, C. J.; Garratt, M. W.
1977-01-01
A stochastic leaf radiation model based upon physical and physiological properties of dicot leaves has been developed. The model accurately predicts the absorbed, reflected, and transmitted radiation of normal incidence as a function of wavelength resulting from the leaf-irradiance interaction over the spectral interval of 0.40-2.50 micron. The leaf optical system has been represented as Markov process with a unique transition matrix at each 0.01-micron increment between 0.40 micron and 2.50 micron. Probabilities are calculated at every wavelength interval from leaf thickness, structure, pigment composition, and water content. Simulation results indicate that this approach gives accurate estimations of actual measured values for dicot leaf absorption, reflection, and transmission as a function of wavelength.
NASA Astrophysics Data System (ADS)
de Boer, Hugo; Drake, Paul; Veneklaas, Erik
2017-04-01
The close relationship between leaf water status and stomatal conductance implies that the hydraulic architecture of leaves poses an important constraint on transpiration, specifically in arid environments with high evaporative demands. However, it remains uncertain how morphological, hydraulic and photosynthetic traits are coordinated to achieve optimal leaf functioning in arid environments. Critical is that leaf veins supply the mesophyll with water that evaporates when stomata are open to allow CO2 uptake for photosynthesis. Theoretical analyses suggest that water is optimally distributed in the mesophyll when the lateral distance between veins (dx) is equal to the distance from these veins to the epidermis (dy), expressed as dx:dy≈1. Although this theory is supported by observations on many derived angiosperms, we hypothesize that plants in arid environments may reduce dx:dy below unity owing to climate-specific functional adaptations of increased leaf thickness and increased vein density. To test our hypothesis we assembled leaf hydraulic, morphological and photosynthetic traits of 68 species from the Eucalyptus and Corymbia genera (termed eucalypts) along an aridity gradient in southwestern Australia. We inferred the potential gas exchange advantage of reducing dx beyond dy using a model that links leaf morphology and hydraulics to photosynthesis. Our observations reveal that eucalypts in arid environments have thick amphistomatous leaves with high vein densities, resulting in dx:dy ratios that range from 1.6 to 0.15 along the aridity gradient. Our model suggests that as leaves become thicker, the effect of reducing dx beyond dy is to offset the reduction in leaf gas exchange that would result from maintaining dx:dy at unity. This apparent over-investment in leaf venation may be explained from the selective pressure of aridity, under which traits associated with long leaf lifespan, high hydraulic and thermal capacitances, and high potential rates of leaf water transport confer a competitive advantage. Our results highlight the need to consider the specific leaf hydraulic architecture of aridity-adapted plants when studying ecohydrological processes in arid ecosystems.
Limited acclimation in leaf anatomy to experimental drought in tropical rainforest trees.
Binks, Oliver; Meir, Patrick; Rowland, Lucy; da Costa, Antonio Carlos Lola; Vasconcelos, Steel Silva; de Oliveira, Alex Antonio Ribeiro; Ferreira, Leandro; Mencuccini, Maurizio
2016-12-01
Dry periods are predicted to become more frequent and severe in the future in some parts of the tropics, including Amazonia, potentially causing reduced productivity, higher tree mortality and increased emissions of stored carbon. Using a long-term (12 year) through-fall exclusion (TFE) experiment in the tropics, we test the hypothesis that trees produce leaves adapted to cope with higher levels of water stress, by examining the following leaf characteristics: area, thickness, leaf mass per area, vein density, stomatal density, the thickness of palisade mesophyll, spongy mesophyll and both of the epidermal layers, internal cavity volume and the average cell sizes of the palisade and spongy mesophyll. We also test whether differences in leaf anatomy are consistent with observed differential drought-induced mortality responses among taxa, and look for relationships between leaf anatomy, and leaf water relations and gas exchange parameters. Our data show that trees do not produce leaves that are more xeromorphic in response to 12 years of soil moisture deficit. However, the drought treatment did result in increases in the thickness of the adaxial epidermis (TFE: 20.5 ± 1.5 µm, control: 16.7 ± 1.0 µm) and the internal cavity volume (TFE: 2.43 ± 0.50 mm 3 cm -2 , control: 1.77 ± 0.30 mm 3 cm -2 ). No consistent differences were detected between drought-resistant and drought-sensitive taxa, although interactions occurred between drought-sensitivity status and drought treatment for the palisade mesophyll thickness (P = 0.034) and the cavity volume of the leaves (P = 0.025). The limited response to water deficit probably reflects a tight co-ordination between leaf morphology, water relations and photosynthetic properties. This suggests that there is little plasticity in these aspects of plant anatomy in these taxa, and that phenotypic plasticity in leaf traits may not facilitate the acclimation of Amazonian trees to the predicted future reductions in dry season water availability. © The Author 2016. Published by Oxford University Press.
Durkovic, Jaroslav; Canová, Ingrid; Lagana, Rastislav; Kucerová, Veronika; Moravcík, Michal; Priwitzer, Tibor; Urban, Josef; Dvorák, Milon; Krajnáková, Jana
2013-02-01
Previous studies have shown that Ophiostoma novo-ulmi, the causative agent of Dutch elm disease (DED), is able to colonize remote areas in infected plants of Ulmus such as the leaf midrib and secondary veins. The objective of this study was to compare the performances in leaf traits between two Dutch elm hybrids 'Groeneveld' and 'Dodoens' which possess a contrasting tolerance to DED. Trait linkages were also tested with leaf mass per area (LMA) and with the reduced Young's modulus of elasticity (MOE) as a result of structural, developmental or functional linkages. Measurements and comparisons were made of leaf growth traits, primary xylem density components, gas exchange variables and chlorophyll a fluorescence yields between mature plants of 'Groeneveld' and 'Dodoens' grown under field conditions. A recently developed atomic force microscopy technique, PeakForce quantitative nanomechanical mapping, was used to reveal nanomechanical properties of the cell walls of tracheary elements such as MOE, adhesion and dissipation. 'Dodoens' had significantly higher values for LMA, leaf tissue thickness variables, tracheary element lumen area (A), relative hydraulic conductivity (RC), gas exchange variables and chlorophyll a fluorescence yields. 'Groeneveld' had stiffer cell walls of tracheary elements, and higher values for water-use efficiency and leaf water potential. Leaves with a large carbon and nutrient investment in LMA tended to have a greater leaf thickness and a higher net photosynthetic rate, but LMA was independent of RC. Significant linkages were also found between the MOE and some vascular traits such as RC, A and the number of tracheary elements per unit area. Strong dissimilarities in leaf trait performances were observed between the examined Dutch elm hybrids. Both hybrids were clearly separated from each other in the multivariate leaf trait space. Leaf growth, vascular and gas exchange traits in the infected plants of 'Dodoens' were unaffected by the DED fungus. 'Dodoens' proved to be a valuable elm germplasm for further breeding strategies.
Vasfilov, S P
2011-01-01
The lamina dry mass: area ratio (LMA - Leaf Mass per Area) is a quite variable trait. Leaf dry mass consists of symplast mass (a set of all leaf protoplasts) and apoplast mass (a set of all cell walls in a leaf). The ratio between symplast and apoplast masses is positively related to any functional trait of leaf calculated per unit of dry mass. The value of this ratio is defined by cells size and their number per unit of leaf area, number of mesophyll cells layers and their differentiation between palisade and spongy ones, and also by density of cells packing. The LMA value is defined by leaf thickness and density. The extent and direction of variability in both leaf traits define the extent and direction of variability in LMA. Negative correlation between leaf thickness and density reduces the level of LMA variability. As a consequence of this correlation the following pattern emerges: the thinner a leaf, the denser it is. Changes in the traits that define the LMA value take place both within a species under the influence of environmental factors and between species that differ in leaf structure and functions. Light is the most powerful environmental factor that influences the LMA, increase in illumination leading to increase in LMA. This effect occurs during leaf growth at the expense of structural changes associated with the reduction of symplast/apoplast mass ratio. Under conditions of intense illumination, LMA may increase due to accumulation of starch. With regard to the majority of leaf functions, the mass of starch may be ascribed to apoplast. Starch accumulation in leaves is observed also under conditions of elevated CO2 concentration in the air. Under high illumination, however, LMA increases also due to increased apoplast contribution to leaf dry mass. Scarce mineral nutrition leads to LMA increase due to lowering of growth zones demands for phothosyntates and, therefore, to increase in starch content of leaves. High level of mineral nutrition during leaf growth period leads to LMA increase at the expense of mesophyll thickening where components of photosynthesis system are located. When additional environmental factors are involved, starch accumulation may be partly responsible for increase in LMA. LMA increase at the expense of starch accumulation, unlike that at the expense of mesophyll thickening, is accompanied by increased leaf density. Under conditions of water deficiency LMA increases, which in mature leaf may be caused by starch accumulation. LMA increase during leaf growth period under conditions of water deficiency is associated with decrease in the symplast/apoplast mass ratio.
Endophytic fungi reduce leaf-cutting ant damage to seedlings
Bittleston, L. S.; Brockmann, F.; Wcislo, W.; Van Bael, S. A.
2011-01-01
Our study examines how the mutualism between Atta colombica leaf-cutting ants and their cultivated fungus is influenced by the presence of diverse foliar endophytic fungi (endophytes) at high densities in tropical leaf tissues. We conducted laboratory choice trials in which ant colonies chose between Cordia alliodora seedlings with high (Ehigh) or low (Elow) densities of endophytes. The Ehigh seedlings contained 5.5 times higher endophyte content and a greater diversity of fungal morphospecies than the Elow treatment, and endophyte content was not correlated with leaf toughness or thickness. Leaf-cutting ants cut over 2.5 times the leaf area from Elow relative to Ehigh seedlings and had a tendency to recruit more ants to Elow plants. Our findings suggest that leaf-cutting ants may incur costs from cutting and processing leaves with high endophyte loads, which could impact Neotropical forests by causing variable damage rates within plant communities. PMID:20610420
Wijesinghe, Ruchire Eranga; Lee, Seung-Yeol; Kim, Pilun; Jung, Hee-Young; Jeon, Mansik; Kim, Jeehyun
2016-08-12
The feasibility of using the bio-photonic imaging technique to assess symptoms of circular leaf spot (CLS) disease in Diospyros kaki (persimmon) leaf samples was investigated. Leaf samples were selected from persimmon plantations and were categorized into three groups: healthy leaf samples, infected leaf samples, and healthy-looking leaf samples from infected trees. Visually non-identifiable reduction of the palisade parenchyma cell layer thickness is the main initial symptom, which occurs at the initial stage of the disease. Therefore, we established a non-destructive bio-photonic inspection method using a 1310 nm swept source optical coherence tomography (SS-OCT) system. These results confirm that this method is able to identify morphological differences between healthy leaves from infected trees and leaves from healthy and infected trees. In addition, this method has the potential to generate significant cost savings and good control of CLS disease in persimmon fields.
Wijesinghe, Ruchire Eranga; Lee, Seung-Yeol; Kim, Pilun; Jung, Hee-Young; Jeon, Mansik; Kim, Jeehyun
2016-01-01
The feasibility of using the bio-photonic imaging technique to assess symptoms of circular leaf spot (CLS) disease in Diospyros kaki (persimmon) leaf samples was investigated. Leaf samples were selected from persimmon plantations and were categorized into three groups: healthy leaf samples, infected leaf samples, and healthy-looking leaf samples from infected trees. Visually non-identifiable reduction of the palisade parenchyma cell layer thickness is the main initial symptom, which occurs at the initial stage of the disease. Therefore, we established a non-destructive bio-photonic inspection method using a 1310 nm swept source optical coherence tomography (SS-OCT) system. These results confirm that this method is able to identify morphological differences between healthy leaves from infected trees and leaves from healthy and infected trees. In addition, this method has the potential to generate significant cost savings and good control of CLS disease in persimmon fields. PMID:27529250
Frost and leaf-size gradients in forests: global patterns and experimental evidence.
Lusk, Christopher H; Clearwater, Michael J; Laughlin, Daniel C; Harrison, Sandy P; Prentice, Iain Colin; Nordenstahl, Marisa; Smith, Benjamin
2018-05-16
Explanations of leaf size variation commonly focus on water availability, yet leaf size also varies with latitude and elevation in environments where water is not strongly limiting. We provide the first conclusive test of a prediction of leaf energy balance theory that may explain this pattern: large leaves are more vulnerable to night-time chilling, because their thick boundary layers impede convective exchange with the surrounding air. Seedlings of 15 New Zealand evergreens spanning 12-fold variation in leaf width were exposed to clear night skies, and leaf temperatures were measured with thermocouples. We then used a global dataset to assess several climate variables as predictors of leaf size in forest assemblages. Leaf minus air temperature was strongly correlated with leaf width, ranging from -0.9 to -3.2°C in the smallest- and largest-leaved species, respectively. Mean annual temperature and frost-free period were good predictors of evergreen angiosperm leaf size in forest assemblages, but no climate variable predicted deciduous leaf size. Although winter deciduousness makes large leaves possible in strongly seasonal climates, large-leaved evergreens are largely confined to frost-free climates because of their susceptibility to radiative cooling. Evergreen leaf size data can therefore be used to enhance vegetation models, and to infer palaeotemperatures from fossil leaf assemblages. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.
Jumrani, Kanchan; Bhatia, Virender Singh; Pandey, Govind Prakash
2017-03-01
High-temperature stress is a major environmental stress and there are limited studies elucidating its impact on soybean (Glycine max L. Merril.). The objectives of present study were to quantify the effect of high temperature on changes in leaf thickness, number of stomata on adaxial and abaxial leaf surfaces, gas exchange, chlorophyll fluorescence parameters and seed yield in soybean. Twelve soybean genotypes were grown at day/night temperatures of 30/22, 34/24, 38/26 and 42/28 °C with an average temperature of 26, 29, 32 and 35 °C, respectively, under greenhouse conditions. One set was also grown under ambient temperature conditions where crop season average maximum, minimum and mean temperatures were 28.0, 22.4 and 25.2 °C, respectively. Significant negative effect of temperature was observed on specific leaf weight (SLW) and leaf thickness. Rate of photosynthesis, stomatal conductance and water use efficiency declined as the growing temperatures increased; whereas, intercellular CO 2 and transpiration rate were increased. With the increase in temperature chlorophyll fluorescence parameters such as Fv/Fm, qP and PhiPSII declined while there was increase in qN. Number of stomata on both abaxial and adaxial surface of leaf increased significantly with increase in temperatures. The rate of photosynthesis, PhiPSII, qP and SPAD values were positively associated with leaf thickness and SLW. This indicated that reduction in photosynthesis and associated parameters appears to be due to structural changes observed at higher temperatures. The average seed yield was maximum (13.2 g/pl) in plants grown under ambient temperature condition and declined by 8, 14, 51 and 65% as the temperature was increased to 30/22, 34/24, 38/26 and 42/28 °C, respectively.
Hasanuzzaman, Abu Tayeb Mohammad; Islam, Md Nazrul; Zhang, Yi; Zhang, Chen-Yang; Liu, Tong-Xian
2016-01-01
The sweetpotato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) MEAM1, is considered a serious pest of horticultural and many other crops. While eggplant (Solanum melongena) is one of the most favored host plants, the whiteflies exhibit preferences among different varieties. We hypothesized that certain morphological leaf characteristics of different varieties, like leaf trichome density, trichome length, leaf lamina thickness and leaf color, may affect whitefly landing, feeding and oviposition. In this study, we investigated the variation in leaf morphological characters among selected eggplant varieties and evaluated the effect of these leaf characteristics in rendering eggplant varieties either susceptible or resistant to B. tabaci. We evaluated eight eggplant varieties in choice feeding tests, and we found that the varieties JinSheng Zilongchangqie (JSZ) and H149 were the highly preferred varieties with the highest numbers of whitefly adults and eggs. Significantly lower numbers of whitefly adult eggs were found on the resistant variety Tuo Lu Bamu (TLB). The varieties JinGuangbo Luqie (JGL), JinGuangbo Ziquanqie (JGZ), DaYang Ziguanqie (DYZ), QinXing Ziguanqie (QXZ), and QinXing Niuxinqie (QXN) were moderately favored by B. tabaci. Leaf trichome density, trichome length and leaf lamina thickness were positively correlated with numbers of whitefly adults and eggs. B. tabaci was less attracted to the leaves that reflect long and middle wavelength light (higher R and G values) than to the bright green leaves (medium G value), but the short wavelength light (higher B value) had no significant effect on whitefly preference. The degree of hue had a positive effect, and saturation and brightness had a negative effect on whitefly attraction.
"Breath figures" on leaf surfaces-formation and effects of microscopic leaf wetness.
Burkhardt, Juergen; Hunsche, Mauricio
2013-01-01
"Microscopic leaf wetness" means minute amounts of persistent liquid water on leaf surfaces which are invisible to the naked eye. The water is mainly maintained by transpired water vapor condensing onto the leaf surface and to attached leaf surface particles. With an estimated average thickness of less than 1 μm, microscopic leaf wetness is about two orders of magnitude thinner than morning dewfall. The most important physical processes which reduce the saturation vapor pressure and promote condensation are cuticular absorption and the deliquescence of hygroscopic leaf surface particles. Deliquescent salts form highly concentrated solutions. Depending on the type and concentration of the dissolved ions, the physicochemical properties of microscopic leaf wetness can be considerably different from those of pure water. Microscopic leaf wetness can form continuous thin layers on hydrophobic leaf surfaces and in specific cases can act similar to surfactants, enabling a strong potential influence on the foliar exchange of ions. Microscopic leaf wetness can also enhance the dissolution, the emission, and the reaction of specific atmospheric trace gases e.g., ammonia, SO2, or ozone, leading to a strong potential role for microscopic leaf wetness in plant/atmosphere interaction. Due to its difficult detection, there is little knowledge about the occurrence and the properties of microscopic leaf wetness. However, based on the existing evidence and on physicochemical reasoning it can be hypothesized that microscopic leaf wetness occurs on almost any plant worldwide and often permanently, and that it significantly influences the exchange processes of the leaf surface with its neighboring compartments, i.e., the plant interior and the atmosphere. The omission of microscopic water in general leaf wetness concepts has caused far-reaching, misleading conclusions in the past.
Leaf traits and herbivory levels in a tropical gymnosperm, Zamia stevensonii (Zamiaceae).
Prado, Alberto; Sierra, Adriel; Windsor, Donald; Bede, Jacqueline C
2014-03-01
Slow-growing understory cycads invest heavily in defenses to protect the few leaves they produce annually. The Neotropical cycad Zamia stevensonii has chemical and mechanical barriers against insect herbivores. Mechanical barriers, such as leaf toughness, can be established only after the leaf has expanded. Therefore, chemical defenses may be important during leaf expansion. How changes in leaf traits affect the feeding activity of cycad specialist insects is unknown. We investigated leaf defenses and incidence of specialist herbivores on Z. stevensonii during the first year after leaf flush. Herbivore incidence, leaf production, and leaf traits that might affect herbivory-including leaf age, lamina thickness, resistance-to-fracture, work-to-fracture, trichome density, and chlorophyll, water, and toxic azoxyglycoside (AZG) content-were measured throughout leaf development. Principal component analysis and generalized linear models identified characteristics that may explain herbivore incidence. Synchronized leaf development in Z. stevensonii is characterized by quick leaf expansion and delayed greening. Specialist herbivores feed on leaves between 10 and 100 d after flush and damage ∼37% of all leaflets produced. Young leaves are protected by AZGs, but these defenses rapidly decrease as leaves expand. Leaves older than 100 d are protected by toughness. Because AZG concentrations drop before leaves become sufficiently tough, there is a vulnerable period during which leaves are susceptible to herbivory by specialist insects. This slow-growing gymnosperm invests heavily in constitutive defenses against highly specialized herbivores, underlining the convergence in defensive syndromes by major plant lineages.
Nanoporous Au: An experimental study on the porosity of dealloyed AuAg leafs
NASA Astrophysics Data System (ADS)
Grillo, R.; Torrisi, V.; Ruffino, F.
2016-12-01
We present a study on the fraction of porosity for dealloyed nanoporous Au leafs. Nanoporous Au is attracting great scientific interest due to its peculiar plasmonic properties and the high exposed surface (∼10 m2/g). As examples, it was used in prototypes of chemical and biological devices. However, the maximization of the devices sensitivity is subjected to the maximization of the exposed surface by the nanoporous Au, i. e. maximization of the porosity fraction. So, we report on the analyses of the porosity fraction in nanoporous Au leafs as a function of the fabrication process parameters. We dealloyed 60 μm-thick Au23Ag77 at.% leafs and we show that: a) for dealloying time till to 6 h, only a 450 nm-thick surface layer of the leafs assumes a nanoporous structure with a porosity fraction of 32%. For a dealloying time of 20 h the leafs result fragmented in small black pieces with a porosity fraction increased to 60%. b) After 600 °C-30 minutes annealing of the previous samples, the nanopores disappear due to the Au/residual Ag inter-diffusion. c) After a second dealloying process on the previously annealed samples, the surface nanoporous structure is, again, obtained with the porosity fraction increased to 50%.
The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana
Weraduwage, Sarathi M.; Chen, Jin; Anozie, Fransisca C.; Morales, Alejandro; Weise, Sean E.; Sharkey, Thomas D.
2015-01-01
Leaf area growth determines the light interception capacity of a crop and is often used as a surrogate for plant growth in high-throughput phenotyping systems. The relationship between leaf area growth and growth in terms of mass will depend on how carbon is partitioned among new leaf area, leaf mass, root mass, reproduction, and respiration. A model of leaf area growth in terms of photosynthetic rate and carbon partitioning to different plant organs was developed and tested with Arabidopsis thaliana L. Heynh. ecotype Columbia (Col-0) and a mutant line, gigantea-2 (gi-2), which develops very large rosettes. Data obtained from growth analysis and gas exchange measurements was used to train a genetic programming algorithm to parameterize and test the above model. The relationship between leaf area and plant biomass was found to be non-linear and variable depending on carbon partitioning. The model output was sensitive to the rate of photosynthesis but more sensitive to the amount of carbon partitioned to growing thicker leaves. The large rosette size of gi-2 relative to that of Col-0 resulted from relatively small differences in partitioning to new leaf area vs. leaf thickness. PMID:25914696
The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana
Weraduwage, Sarathi M.; Chen, Jin; Anozie, Fransisca C.; ...
2015-04-09
Leaf area growth determines the light interception capacity of a crop and is often used as a surrogate for plant growth in high-throughput phenotyping systems. The relationship between leaf area growth and growth in terms of mass will depend on how carbon is partitioned among new leaf area, leaf mass, root mass, reproduction, and respiration. A model of leaf area growth in terms of photosynthetic rate and carbon partitioning to different plant organs was developed and tested with Arabidopsis thaliana L. Heynh. ecotype Columbia (Col-0) and a mutant line, gigantea-2 (gi-2), which develops very large rosettes. Data obtained from growthmore » analysis and gas exchange measurements was used to train a genetic programming algorithm to parameterize and test the above model. The relationship between leaf area and plant biomass was found to be non-linear and variable depending on carbon partitioning. The model output was sensitive to the rate of photosynthesis but more sensitive to the amount of carbon partitioned to growing thicker leaves. The large rosette size of gi-2 relative to that of Col-0 resulted from relatively small differences in partitioning to new leaf area vs. leaf thickness.« less
Leaf maximum photosynthetic rate and venation are linked by hydraulics.
Brodribb, Tim J; Feild, Taylor S; Jordan, Gregory J
2007-08-01
Leaf veins are almost ubiquitous across the range of terrestrial plant diversity, yet their influence on leaf photosynthetic performance remains uncertain. We show here that specific physical attributes of the vascular plumbing network are key limiters of the hydraulic and photosynthetic proficiency of any leaf. Following the logic that leaf veins evolved to bypass inefficient water transport through living mesophyll tissue, we examined the hydraulic pathway beyond the distal ends of the vein system as a possible limiter of water transport in leaves. We tested a mechanistic hypothesis that the length of this final traverse, as water moves from veins across the mesophyll to where it evaporates from the leaf, governs the hydraulic efficiency and photosynthetic carbon assimilation of any leaf. Sampling 43 species across the breadth of plant diversity from mosses to flowering plants, we found that the post-vein traverse as determined by characters such as vein density, leaf thickness, and cell shape, was strongly correlated with the hydraulic conductivity and maximum photosynthetic rate of foliage. The shape of this correlation provided clear support for the a priori hypothesis that vein positioning limits photosynthesis via its influence on leaf hydraulic efficiency.
Leaf spring made of fiber-reinforced resin
NASA Technical Reports Server (NTRS)
Hori, J.
1986-01-01
A leaf spring made of a matrix reinforced by at least two types of reinforcing fibers with different Young's modulus is described in this Japanese patent. At least two layers of reinforcing fibers are formed by partially arranging the reinforcing fibers toward the direction of the thickness of the leaf spring. A mixture of different types of reinforced fibers is used at the area of boundary between the two layers of reinforced fibers. The ratio of blending of each type of reinforced fiber is frequently changed to eliminate the parts where discontinuous stress may be applied to the leaf spring. The objective of this invention is to prevent the rapid change in Young's modulus at the boundary area between each layer of reinforced fibers in the leaf spring.
Luo, Ya-Huang; Liu, Jie; Tan, Shao-Lin; Cadotte, Marc William; Wang, Yue-Hua; Xu, Kun; Li, De-Zhu; Gao, Lian-Ming
2016-01-01
Understanding how communities respond to environmental variation is a central goal in ecology. Plant communities respond to environmental gradients via intraspecific and/or interspecific variation in plant functional traits. However, the relative contribution of these two responses to environmental factors remains poorly tested. We measured six functional traits (height, leaf thickness, specific leaf area (SLA), leaf carbon concentration (LCC), leaf nitrogen concentration (LNC) and leaf phosphorus concentration (LPC)) for 55 tree species occurring at five elevations across a 1200 m elevational gradient of subalpine forests in Yulong Mountain, Southwest China. We examined the relative contribution of interspecific and intraspecific traits variability based on community weighted mean trait values and functional diversity, and tested how different components of trait variation respond to different environmental axes (climate and soil variables). Species turnover explained the largest amount of variation in leaf morphological traits (leaf thickness and SLA) across the elevational gradient. However, intraspecific variability explained a large amount of variation (49.3%-76.3%) in three other traits (height, LNC and LPC) despite high levels of species turnover. The detection of limiting similarity in community assembly was improved when accounting for both intraspecific and interspecific variability. Different components of trait variation respond to different environmental axes, especially soil water content and climatic variables. Our results indicate that intraspecific variation is critical for understanding community assembly and evaluating community response to environmental change.
Luo, Ya-Huang; Liu, Jie; Tan, Shao-Lin; Cadotte, Marc William; Wang, Yue-Hua; Xu, Kun; Li, De-Zhu; Gao, Lian-Ming
2016-01-01
Understanding how communities respond to environmental variation is a central goal in ecology. Plant communities respond to environmental gradients via intraspecific and/or interspecific variation in plant functional traits. However, the relative contribution of these two responses to environmental factors remains poorly tested. We measured six functional traits (height, leaf thickness, specific leaf area (SLA), leaf carbon concentration (LCC), leaf nitrogen concentration (LNC) and leaf phosphorus concentration (LPC)) for 55 tree species occurring at five elevations across a 1200 m elevational gradient of subalpine forests in Yulong Mountain, Southwest China. We examined the relative contribution of interspecific and intraspecific traits variability based on community weighted mean trait values and functional diversity, and tested how different components of trait variation respond to different environmental axes (climate and soil variables). Species turnover explained the largest amount of variation in leaf morphological traits (leaf thickness and SLA) across the elevational gradient. However, intraspecific variability explained a large amount of variation (49.3%–76.3%) in three other traits (height, LNC and LPC) despite high levels of species turnover. The detection of limiting similarity in community assembly was improved when accounting for both intraspecific and interspecific variability. Different components of trait variation respond to different environmental axes, especially soil water content and climatic variables. Our results indicate that intraspecific variation is critical for understanding community assembly and evaluating community response to environmental change. PMID:27191402
Ďurkovič, Jaroslav; Čaňová, Ingrid; Lagaňa, Rastislav; Kučerová, Veronika; Moravčík, Michal; Priwitzer, Tibor; Urban, Josef; Dvořák, Miloň; Krajňáková, Jana
2013-01-01
Background and Aims Previous studies have shown that Ophiostoma novo-ulmi, the causative agent of Dutch elm disease (DED), is able to colonize remote areas in infected plants of Ulmus such as the leaf midrib and secondary veins. The objective of this study was to compare the performances in leaf traits between two Dutch elm hybrids ‘Groeneveld’ and ‘Dodoens’ which possess a contrasting tolerance to DED. Trait linkages were also tested with leaf mass per area (LMA) and with the reduced Young's modulus of elasticity (MOE) as a result of structural, developmental or functional linkages. Methods Measurements and comparisons were made of leaf growth traits, primary xylem density components, gas exchange variables and chlorophyll a fluorescence yields between mature plants of ‘Groeneveld’ and ‘Dodoens’ grown under field conditions. A recently developed atomic force microscopy technique, PeakForce quantitative nanomechanical mapping, was used to reveal nanomechanical properties of the cell walls of tracheary elements such as MOE, adhesion and dissipation. Key Results ‘Dodoens’ had significantly higher values for LMA, leaf tissue thickness variables, tracheary element lumen area (A), relative hydraulic conductivity (RC), gas exchange variables and chlorophyll a fluorescence yields. ‘Groeneveld’ had stiffer cell walls of tracheary elements, and higher values for water-use efficiency and leaf water potential. Leaves with a large carbon and nutrient investment in LMA tended to have a greater leaf thickness and a higher net photosynthetic rate, but LMA was independent of RC. Significant linkages were also found between the MOE and some vascular traits such as RC, A and the number of tracheary elements per unit area. Conclusions Strong dissimilarities in leaf trait performances were observed between the examined Dutch elm hybrids. Both hybrids were clearly separated from each other in the multivariate leaf trait space. Leaf growth, vascular and gas exchange traits in the infected plants of ‘Dodoens’ were unaffected by the DED fungus. ‘Dodoens’ proved to be a valuable elm germplasm for further breeding strategies. PMID:23264236
Seki, Kousuke
2016-10-01
The development of a cultivar resistant to the two-spotted spider mite has provided both ecological and economic benefits to the production of cut flowers. This study aimed to clarify the mechanism of resistance to mites using an inbred population of carnations. In the resistant and susceptible plants selected from an inbred population, a difference was recognised in the thickness of the abaxial palisade tissue by microscopic examination of the damaged leaf. Therefore, it was assumed that mites displayed feeding preferences within the internal leaf structure of the carnation leaf. The suitability of the host plant for mites was investigated using several cultivars selected using an index of the thickness from the abaxial leaf surface to the spongy tissue. The results suggested that the cultivar associated with a thicker abaxial tissue lowered the intrinsic rate of natural increase of the mites. The cultivars with a thicker abaxial tissue of over 120 µm showed slight damage in the field test. The ability of mites to feed on the spongy tissue during an early life stage from hatching to adult emergence was critical. It was possible to select a cultivar that is resistant to mites under a real cultivation environment by observing the internal structure of the leaf. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Kahmen, A.; Merchant, A.; Callister, A.; Dawson, T. E.; Arndt, S. K.
2006-12-01
Stable isotopes have been a valuable tool to study water or carbon fluxes of plants and ecosystems. In particular oxygen isotopes (δ18O) in leaf water or plant organic material are now beginning to be established as a simple and integrative measure for plant - water relations. Current δ18O models, however, are still limited in their application to a broad range of different species and ecosystems. It remains for example unclear, if species-specific effects such as different leaf morphologies need to be included in the models for a precise understanding and prediction of δ18O signals. In a common garden experiment (Currency Creek Arboretum, South Australia), where over 900 different Eucalyptus species are cultivated in four replicates, we tested effects of leaf morphology and anatomy on δ18O signals in leaf water of 25 different species. In particular, we determined for all species enrichment in 18O of mean lamina leaf water above source water (Δ18O) as related to leaf physiology as well as leaf thickness, leaf area, specific leaf area and weight and selected anatomical properties. Our data revealed that diurnal Δ18O in leaf water at steady state was significantly different among the investigated species and with differences up to 10% at midday. Fitting factors (effective path length) of leaf water Δ18O models were also significantly different among the investigated species and were highly affected by species-specific morphological parameters. For example, leaf area explained a high percentage of the differences in effective path length observed among the investigated species. Our data suggest that leaf water δ18O can act as powerful tool to estimate plant - water relations in comparative studies but that additional leaf morphological parameters need to be considered in existing δ18O models for a better interpretation of the observed δ18O signals.
Leaf area dynamics of conifer forests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Margolis, H.; Oren, R.; Whitehead, D.
1995-07-01
Estimating the surface area of foliage supported by a coniferous forest canopy is critical for modeling its biological properties. Leaf area represents the surface area available for the interception of energy, the absorption of carbon dioxide, and the diffusion of water from the leaf to the atmosphere. The concept of leaf area is pertinent to the physiological and ecological dynamics of conifers at a wide range of spatial scales, from individual leaves to entire biomes. In fact, the leaf area of vegetation at a global level can be thought of as a carbon-absorbing, water-emitting membrane of variable thickness, which canmore » have an important influence on the dynamics and chemistry of the Earth`s atmosphere over both the short and the long term. Unless otherwise specified, references to leaf area herein refer to projected leaf area, i.e., the vertical projection of needles placed on a flat plane. Total leaf surface area is generally from 2.0 to 3.14 times that of projected leaf area for conifers. It has recently been suggested that hemisurface leaf area, i.e., one-half of the total surface area of a leaf, a more useful basis for expressing leaf area than is projected area. This chapter is concerned with the dynamics of coniferous forest leaf area at different spatial and temporal scales. In the first part, we consider various hypotheses related to the control of leaf area development, ranging from simple allometric relations with tree size to more complex mechanistic models that consider the movement of water and nutrients to tree canopies. In the second part, we consider various aspects of leaf area dynamics at varying spatial and temporal scales, including responses to perturbation, seasonal dynamics, genetic variation in crown architecture, the responses to silvicultural treatments, the causes and consequences of senescence, and the direct measurement of coniferous leaf area at large spatial scales using remote sensing.« less
Palisade cell shape affects the light-induced chloroplast movements and leaf photosynthesis.
Gotoh, Eiji; Suetsugu, Noriyuki; Higa, Takeshi; Matsushita, Tomonao; Tsukaya, Hirokazu; Wada, Masamitsu
2018-01-24
Leaf photosynthesis is regulated by multiple factors that help the plant to adapt to fluctuating light conditions. Leaves of sun-light-grown plants are thicker and contain more columnar palisade cells than those of shade-grown plants. Light-induced chloroplast movements are also essential for efficient leaf photosynthesis and facilitate efficient light utilization in leaf cells. Previous studies have demonstrated that leaves of most of the sun-grown plants exhibited no or very weak chloroplast movements and could accomplish efficient photosynthesis under strong light. To examine the relationship between palisade cell shape, chloroplast movement and distribution, and leaf photosynthesis, we used an Arabidopsis thaliana mutant, angustifolia (an), which has thick leaves that contain columnar palisade cells similar to those in the sun-grown plants. In the highly columnar cells of an mutant leaves, chloroplast movements were restricted. Nevertheless, under white light condition (at 120 µmol m -2 s -1 ), the an mutant plants showed higher chlorophyll content per unit leaf area and, thus, higher light absorption by the leaves than the wild type, which resulted in enhanced photosynthesis per unit leaf area. Our findings indicate that coordinated regulation of leaf cell shape and chloroplast movement according to the light conditions is pivotal for efficient leaf photosynthesis.
Gap effects on leaf traits of tropical rainforest trees differing in juvenile light requirement.
Houter, Nico C; Pons, Thijs L
2014-05-01
The relationships of 16 leaf traits and their plasticity with the dependence of tree species on gaps for regeneration (gap association index; GAI) were examined in a Neotropical rainforest. Young saplings of 24 species with varying GAI were grown under a closed canopy, in a medium-sized and in a large gap, thus capturing the full range of plasticity with respect to canopy openness. Structural, biomechanical, chemical and photosynthetic traits were measured. At the chloroplast level, the chlorophyll a/b ratio and plasticity in this variable were not related to the GAI. However, plasticity in total carotenoids per unit chlorophyll was larger in shade-tolerant species. At the leaf level, leaf mass per unit area (LMA) decreased with the GAI under the closed canopy and in the medium gap, but did not significantly decrease with the GAI in the large gap. This was a reflection of the larger plasticity in LMA and leaf thickness of gap-dependent species. The well-known opposite trends in LMA for adaptation and acclimation to high irradiance in evergreen tropical trees were thus not invariably found. Although leaf strength was dependent on LMA and thickness, plasticity in this trait was not related to the GAI. Photosynthetic capacity expressed on each basis increased with the GAI, but the large plasticity in these traits was not clearly related to the GAI. Although gap-dependent species tended to have a greater plasticity overall, as evident from a principle component analysis, leaf traits of gap-dependent species are thus not invariably more phenotypically plastic.
Leaf traits in parental and hybrid species of Sorbus (Rosaceae).
Durkovic, Jaroslav; Kardosová, Monika; Canová, Ingrid; Lagana, Rastislav; Priwitzer, Tibor; Chorvát, Dusan; Cicák, Alojz; Pichler, Viliam
2012-09-01
Knowledge of functional leaf traits can provide important insights into the processes structuring plant communities. In the genus Sorbus, the generation of taxonomic novelty through reticulate evolution that gives rise to new microspecies is believed to be driven primarily by a series of interspecific hybridizations among closely related taxa. We tested hypotheses for dispersion of intermediacy across the leaf traits in Sorbus hybrids and for trait linkages with leaf area and specific leaf area. Here, we measured and compared the whole complex of growth, vascular, and ecophysiological leaf traits among parental (Sorbus aria, Sorbus aucuparia, Sorbus chamaemespilus) and natural hybrid (Sorbus montisalpae, Sorbus zuzanae) species growing under field conditions. A recently developed atomic force microscopy technique, PeakForce quantitative nanomechanical mapping, was used to characterize the topography of cell wall surfaces of tracheary elements and to map the reduced Young's modulus of elasticity. Intermediacy was associated predominantly with leaf growth traits, whereas vascular and ecophysiological traits were mainly parental-like and transgressive phenotypes. Larger-leaf species tended to have lower modulus of elasticity values for midrib tracheary element cell walls. Leaves with a biomass investment related to a higher specific leaf area had a lower density. Leaf area- and length-normalized theoretical hydraulic conductivity was related to leaf thickness. For the whole complex of examined leaf traits, hybrid microspecies were mosaics of parental-like, intermediate, and transgressive phenotypes. The high proportion of transgressive character expressions found in Sorbus hybrids implies that generation of extreme traits through transgressive segregation played a key role in the speciation process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chibani, O; Tahanout, F; Ma, C
2016-06-15
Purpose: To commission a new MLC model for the GEPTS Monte Carlo system. The model is based on the concept of leaves and interleaves effective densities Methods: GEPTS is a Monte Carlo system to be used for external beam planning verification. GEPTS incorporates detailed photon and electron transport algorithms (Med.Phys. 29, 2002, 835). A new GEPTS model for the Varian Millennium MLC is presented. The model accounts for: 1) thick (1 cm) and thin (0.5 cm) leaves, 2) tongue-and-groove design, 3) High-Transmission (HT) and Low-Transmission (LT) interleaves, and 4) rounded leaf end. Leaf (and interleaf) height is set equal tomore » 6 cm. Instead of modeling air gaps, screw holes, and complex leaf heads, “effective densities” are assigned to: 1) thin leaves, 2) thick leaves, 3) HT-, and 4) LT-interleaves. Results: The new MLC model is used to calculate dose profiles for Closed-MLC and Tongue-and-Groove fields at 5 cm depth for 6, 10 and 15 MV Varian beams. Calculations are compared with 1) Pin-point ionization chamber transmission ratios and 2) EBT3 Radiochromic films. Pinpoint readings were acquired beneath thick and thin leaves, and HT and LT interleaves. The best fit of measured dose profiles was obtained for the following parameters: Thick-leaf density = 16.1 g/cc, Thin-leaf density = 17.2 g/cc; HT Interleaf density = 12.4 g/cc, LT Interleaf density = 14.3 g/cc; Interleaf thickness = 1.1 mm. Attached figures show comparison of calculated and measured transmission ratios for the 3 energies. Note this is the only study where transmission profiles are compared with measurements for 3 different energies. Conclusion: The new MLC model reproduces transmission measurements within 0.1%. The next step is to implement the MLC model for real plans and quantify the improvement in dose calculation accuracy gained using this model for IMRT plans with high modulation factors.« less
Moura, Bárbara B; Alves, Edenise S
2014-11-01
Phenotypic plasticity of the leaves can interfere with the plant sensitivity to ozone (O3) toxic effect. This study aimed to assess whether the leaf structure of Ipomoea nil changes due to climatic variations and whether these changes affect the species' sensitivity. Field exposures, in different seasons (winter and spring) were made. The leaves that developed during the winter were thinner, with a lower proportion of photosynthetic tissues, higher proportion of intercellular spaces and lower density and stomatal index compared to those developed during the spring. The temperature and relative humidity positively influenced the leaf thickness and stomatal index. The visible injuries during winter were positively correlated with the palisade parenchyma thickness and negatively correlated with the percentage of spongy parenchyma; during the spring, the symptoms were positively correlated with the stomatal density. In conclusion, the leaf structure of I. nil varied among the seasons, interfering in its sensitivity to O3. Copyright © 2014 Elsevier Ltd. All rights reserved.
Photosynthetic capacity peaks at intermediate size in temperate deciduous trees.
Thomas, Sean C
2010-05-01
Studies of age-related changes in leaf functional biology have generally been based on dichotomous comparisons of young and mature individuals (e.g., saplings and mature canopy trees), with little data available to describe changes through the entire ontogeny of trees, particularly of broadleaf angiosperms. Leaf-level gas-exchange and morphological parameters were quantified in situ in the upper canopy of trees acclimated to high light conditions, spanning a wide range of ontogenetic stages from saplings (approximately 1 cm in stem diameter) to trees >60 cm d.b.h. and nearing their maximum lifespan, in three temperate deciduous tree species in central Ontario, Canada. Traits associated with growth performance, including leaf photosynthetic capacity (expressed on either an area, mass or leaf N basis), stomatal conductance, leaf size and leaf N content, generally showed a unimodal ('hump-shaped') pattern, with peak values at an intermediate ontogenetic stage. In contrast, leaf mass per area (LMA) and related morphological parameters (leaf thickness, leaf tissue density, leaf C content) increased monotonically with tree size, as did water-use efficiency; these monotonic relationships were well described by simple allometric functions of the form Y = aX(b). For traits showing unimodal patterns, tree size corresponding to the trait maximum differed markedly among traits: all three species showed a similar pattern in which the peak for leaf size occurred in trees approximately 2-6 cm d.b.h., followed by leaf chemical traits and photosynthetic capacity on a mass or leaf N basis and finally by photosynthetic capacity on a leaf area basis, which peaked approximately at the size of reproductive onset. It is argued that ontogenetic increases in photosynthetic capacity and related traits early in tree ontogeny are general among relatively shade-tolerant tree species that have a low capacity for leaf-level acclimation, as are declines in this set of traits late in tree ontogeny.
[Relationship between leaf anatomical structure and heat resistance of 15 Rhododendron cultivars].
Shen, Hui Fei; Zhao, Bing; Xu, Jing Jing
2016-12-01
In this study, 17 anatomical structure indexes of 15 Rhododendron cultivars were mea-sured by scanning electron microscope (SEM). Leaf anatomical structure indexes were screened via coefficient of variation, analysis of correlation and hierarchical cluster analysis, and comprehensive evaluation on heat resistance for each cultivar was conducted by the subordinate function. The results showed that the leaves of Rhododendron cultivars were typical bifacial leaf and the epidermal anticlinal walls showed slightly sinuate. The stomata only distributed in the lower epidermis and the shape was ruleless. The anatomical structure indexes all reached a significant level difference among 15 cultivars (P<0.01), except for lower epidermis thickness (P<0.05). Thickness of lamina corneum, stomatal density, stomatal width, the thickness palisade tissue and looseness of leaf spongy tissue were the main factors related to the hardness, while other indexes, such as stomatal length, stoma aperture, stomatal opening, length and thickness of upper epidermis, length and thickness of lower epidermis, thickness of spongy tissue, the ratio of the palisade tissue to spongy tissue, tightness of leaf palisade tissue, leaf thickness and media thickness didn't show much effect on heat resistance. There were some differences among 15 cultivars in heat resistance, and the order was Rhododendron 'Song Jiang Da Tao Hong' > Rhododendron 'Zhuang Yuan Hong' > Rhododendron 'Lv Se Guang Hui' > Rhododendron 'Fen Zhen Zhu' > Rhododendron 'Wai Guo Hong' > Rhododendron 'Lan Yin' > Rhododendron 'Bi Zhi' >Rhododendron 'Da He Zhi Chun' > Rhododendron 'Guo Qi Hong' > Rhododendron 'Yu Ling Long' > Rhododendron 'Hong Shan Hu' > Rhododendron 'Ning Bo Hong' > Rhododendron 'Tao Ban Zhu Sha' > Rhododendron 'Ai Ding Bao' > Rhododendron 'Liu Qiu Hong'. According to the heat hardiness, the cultivars could be divided into 4 groups: R. 'Song Jiang Da Tao Hong', R. 'Zhuang Yuan Hong' and R. 'Lv Se Guang Hui' with high heat resistance, R. 'Fen Zhen Zhu', R. 'Wai Guo Hong', R. 'Lan Yin', R. 'Bi Zhi', R. 'Da He Zhi Chun', R. 'Guo Qi Hong' and R. 'Yu Ling Long' with medium heat resistance, R. 'Hong Shan Hu', R. 'Ning Bo Hong', R. 'Tao Ban Zhu Sha' and R. 'Ai Ding Bao' with lower heat resistance, R. 'Liu Qiu Hong' without heat resistance. However, the accurate heat hardiness evaluation of Rhododendron still needs to consider other factors, including morphological structure, physiological and biochemical indicators and genetic factor of heat resistance, the harmfulness of Rhododendron, and the recovery state after being injured by high temperature.
How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis.
Sack, Lawren; Scoffoni, Christine; John, Grace P; Poorter, Hendrik; Mason, Chase M; Mendez-Alonzo, Rodrigo; Donovan, Lisa A
2013-10-01
Leaf vein traits are implicated in the determination of gas exchange rates and plant performance. These traits are increasingly considered as causal factors affecting the 'leaf economic spectrum' (LES), which includes the light-saturated rate of photosynthesis, dark respiration, foliar nitrogen concentration, leaf dry mass per area (LMA) and leaf longevity. This article reviews the support for two contrasting hypotheses regarding a key vein trait, vein length per unit leaf area (VLA). Recently, Blonder et al. (2011, 2013) proposed that vein traits, including VLA, can be described as the 'origin' of the LES by structurally determining LMA and leaf thickness, and thereby vein traits would predict LES traits according to specific equations. Careful re-examination of leaf anatomy, published datasets, and a newly compiled global database for diverse species did not support the 'vein origin' hypothesis, and moreover showed that the apparent power of those equations to predict LES traits arose from circularity. This review provides a 'flux trait network' hypothesis for the effects of vein traits on the LES and on plant performance, based on a synthesis of the previous literature. According to this hypothesis, VLA, while virtually independent of LMA, strongly influences hydraulic conductance, and thus stomatal conductance and photosynthetic rate. We also review (i) the specific physiological roles of VLA; (ii) the role of leaf major veins in influencing LES traits; and (iii) the role of VLA in determining photosynthetic rate per leaf dry mass and plant relative growth rate. A clear understanding of leaf vein traits provides a new perspective on plant function independently of the LES and can enhance the ability to explain and predict whole plant performance under dynamic conditions, with applications towards breeding improved crop varieties.
Oldham, Alana R; Sillett, Stephen C; Tomescu, Alexandru M F; Koch, George W
2010-07-01
Leaves at the tops of most trees are smaller, thicker, and in many other ways different from leaves on the lowermost branches. This height-related variation in leaf structure has been explained as acclimation to differing light environments and, alternatively, as a consequence of hydrostatic, gravitational constraints on turgor pressure that reduce leaf expansion. • To separate hydrostatic effects from those of light availability, we used anatomical analysis of height-paired samples from the inner and outer tree crowns of tall redwoods (Sequoia sempervirens). • Height above the ground correlates much more strongly with leaf anatomy than does light availability. Leaf length, width, and mesophyll porosity all decrease linearly with height and help explain increases in leaf-mass-to-area ratio and decreases in both photosynthetic capacity and internal gas-phase conductance with increasing height. Two functional traits-leaf thickness and transfusion tissue-also increase with height and may improve water-stress tolerance. Transfusion tissue area increases enough that whole-leaf vascular volume does not change significantly with height in most trees. Transfusion tracheids become deformed with height, suggesting they may collapse under water stress and act as a hydraulic buffer that improves leaf water status and reduces the likelihood of xylem dysfunction. • That such variation in leaf structure may be caused more by gravity than by light calls into question use of the terms "sun" and "shade" to describe leaves at the tops and bottoms of tall tree crowns.
Algorithm for retrieving vegetative canopy and leaf parameters from multi- and hyperspectral imagery
NASA Astrophysics Data System (ADS)
Borel, Christoph
2009-05-01
In recent years hyper-spectral data has been used to retrieve information about vegetative canopies such as leaf area index and canopy water content. For the environmental scientist these two parameters are valuable, but there is potentially more information to be gained as high spatial resolution data becomes available. We developed an Amoeba (Nelder-Mead or Simplex) based program to invert a vegetative canopy radiosity model coupled with a leaf (PROSPECT5) reflectance model and modeled for the background reflectance (e.g. soil, water, leaf litter) to a measured reflectance spectrum. The PROSPECT5 leaf model has five parameters: leaf structure parameter Nstru, chlorophyll a+b concentration Cab, carotenoids content Car, equivalent water thickness Cw and dry matter content Cm. The canopy model has two parameters: total leaf area index (LAI) and number of layers. The background reflectance model is either a single reflectance spectrum from a spectral library() derived from a bare area pixel on an image or a linear mixture of soil spectra. We summarize the radiosity model of a layered canopy and give references to the leaf/needle models. The method is then tested on simulated and measured data. We investigate the uniqueness, limitations and accuracy of the retrieved parameters on canopy parameters (low, medium and high leaf area index) spectral resolution (32 to 211 band hyperspectral), sensor noise and initial conditions.
NASA Astrophysics Data System (ADS)
Hall, Carlton Raden
A major objective of remote sensing is determination of biochemical and biophysical characteristics of plant canopies utilizing high spectral resolution sensors. Canopy reflectance signatures are dependent on absorption and scattering processes of the leaf, canopy properties, and the ground beneath the canopy. This research investigates, through field and laboratory data collection, and computer model parameterization and simulations, the relationships between leaf optical properties, canopy biophysical features, and the nadir viewed above-canopy reflectance signature. Emphasis is placed on parameterization and application of an existing irradiance radiative transfer model developed for aquatic systems. Data and model analyses provide knowledge on the relative importance of leaves and canopy biophysical features in estimating the diffuse absorption a(lambda,m-1), diffuse backscatter b(lambda,m-1), beam attenuation alpha(lambda,m-1), and beam to diffuse conversion c(lambda,m-1 ) coefficients of the two-flow irradiance model. Data sets include field and laboratory measurements from three plant species, live oak (Quercus virginiana), Brazilian pepper (Schinus terebinthifolius) and grapefruit (Citrus paradisi) sampled on Cape Canaveral Air Force Station and Kennedy Space Center Florida in March and April of 1997. Features measured were depth h (m), projected foliage coverage PFC, leaf area index LAI, and zenith leaf angle. Optical measurements, collected with a Spectron SE 590 high sensitivity narrow bandwidth spectrograph, included above canopy reflectance, internal canopy transmittance and reflectance and bottom reflectance. Leaf samples were returned to laboratory where optical and physical and chemical measurements of leaf thickness, leaf area, leaf moisture and pigment content were made. A new term, the leaf volume correction index LVCI was developed and demonstrated in support of model coefficient parameterization. The LVCI is based on angle adjusted leaf thickness Ltadj, LAI, and h (m). Its function is to translate leaf level estimates of diffuse absorption and backscatter to the canopy scale allowing the leaf optical properties to directly influence above canopy estimates of reflectance. The model was successfully modified and parameterized to operate in a canopy scale and a leaf scale mode. Canopy scale model simulations produced the best results. Simulations based on leaf derived coefficients produced calculated above canopy reflectance errors of 15% to 18%. A comprehensive sensitivity analyses indicated the most important parameters were beam to diffuse conversion c(lambda, m-1), diffuse absorption a(lambda, m-1), diffuse backscatter b(lambda, m-1), h (m), Q, and direct and diffuse irradiance. Sources of error include the estimation procedure for the direct beam to diffuse conversion and attenuation coefficients and other field and laboratory measurement and analysis errors. Applications of the model include creation of synthetic reflectance data sets for remote sensing algorithm development, simulations of stress and drought on vegetation reflectance signatures, and the potential to estimate leaf moisture and chemical status.
Olsen, Jacob T; Caudle, Keri L; Johnson, Loretta C; Baer, Sara G; Maricle, Brian R
2013-10-01
Phenotypes of two Andropogon gerardii subspecies, big bluestem and sand bluestem, vary throughout the prairie ecosystem of North America. This study sought to determine the role of genetics and environment in driving adaptive variation of leaf structure in big bluestem and sand bluestem. • Four populations of big bluestem and one population of sand bluestem were planted in common gardens at four sites across a precipitation gradient from western Kansas to southern Illinois. Internal leaf structure and trichome density of A. gerardii were examined by light microscopy to separate genetic and environmentally controlled traits. Leaf thickness, midrib thickness, bulliform cells, interveinal distance, vein size, and trichome density were quantified. • At all planting sites, sand bluestem and the xeric population of A. gerardii had thicker leaves and fewer bulliform cells compared with mesic populations. Environment and genetic source population were both influential for leaf anatomy. Leaves from plants grown in mesic sites (Carbondale, Illinois and Manhattan, Kansas) had thicker midribs, larger veins, fewer trichomes, and a greater proportion of bulliform cells compared to plants grown in drier sites (Colby and Hays, Kansas). • Water availability has driven adaptive variation in leaf structure in populations of A. gerardii, particularly between sand bluestem and big bluestem. Genetically based differences in leaves of A. gerardii indicate adaptive variation and evolutionary forces differentiating sand bluestem from big bluestem. Environmental responses of A. gerardii leaves suggest an ability to adjust to drought, even in populations adapted to mesic home environments.
Sano, Tomohito; Horie, Hideki; Matsunaga, Akiko; Hirono, Yuhei
2018-05-02
Use of covering cultivation to shade tea (Camellia sinensis L.) trees to produce high-quality, high-priced green tea has recently increased in Japan. Knowledge of shading effects on morphological and color traits, and chemical components of new tea shoots is important for product quality and productivity. We assessed these traits of tea shoots and their relationships under covering cultivation of various radiation intensities. Leaf thickness, LMA (leaf mass per area), and leaf density of new tea leaves were smaller under covering culture than under open-field culture. SPAD values and chlorophyll contents were larger under covering culture than under open culture. The derived exponential equation for estimating chlorophyll contents from SPAD values was improved by considering leaf thickness. Covering culture decreased EC (epicatechin) and EGC (epigallocatechin) contents, and increased theanine and caffeine contents. Principal component analysis on shoot and leaf traits indicated that LMA, and chlorophyll, EC, and EGC contents were strongly associated with shading effects. Morphological and color traits, and chemical components of new tea shoots and leaves varied depending on radiation intensity, shoot growth, and cropping season. These findings are useful for covering cultivation with high quality and high productivity in tea gardens. This article is protected by copyright. All rights reserved.
Influence of atmospheric oxygen on leaf structure and starch deposition in Arabidopsis thaliana
NASA Technical Reports Server (NTRS)
Ramonell, K. M.; Kuang, A.; Porterfield, D. M.; Crispi, M. L.; Xiao, Y.; McClure, G.; Musgrave, M. E.
2001-01-01
Plant culture in oxygen concentrations below ambient is known to stimulate vegetative growth, but apart from reports on increased leaf number and weight, little is known about development at subambient oxygen concentrations. Arabidopsis thaliana (L.) Heynh. (cv. Columbia) plants were grown full term in pre-mixed atmospheres with oxygen partial pressures of 2.5, 5.1, 10.1, 16.2, and 21.3 kPa O2, 0.035 kPa CO2 and the balance nitrogen under continuous light. Fully expanded leaves were harvested and processed for light and transmission electron microscopy or for starch quantification. Growth in subambient oxygen concentrations caused changes in leaf anatomy (increased thickness, stomatal density and starch content) that have also been described for plants grown under carbon dioxide enrichment. However, at the lowest oxygen treatment (2.5 kPa), developmental changes occurred that could not be explained by changes in carbon budget caused by suppressed photorespiration, resulting in very thick leaves and a dwarf morphology. This study establishes the leaf parameters that change during growth under low O2, and identifies the lower concentration at which O2 limitation on transport and biosynthetic pathways detrimentally affects leaf development. Grant numbers: NAG5-3756, NAG2-1020, NAG2-1375.
Wyka, Tomasz P; Oleksyn, J; Zytkowiak, R; Karolewski, P; Jagodziński, A M; Reich, P B
2012-09-01
Spectra of leaf traits in northern temperate forest canopies reflect major differences in leaf longevity between evergreen conifers and deciduous broadleaf angiosperms, as well as plastic modifications caused by within-crown shading. We investigated (1) whether long-lived conifer leaves exhibit similar intra-canopy plasticity as short-lived broadleaves, and (2) whether global interspecific relationships between photosynthesis, nitrogen, and leaf structure identified for sun leaves adequately describe leaves differentiated in response to light gradients. We studied structural and photosynthetic properties of intra-tree sun and shade foliage in adult trees of seven conifer and four broadleaf angiosperm species in a common garden in Poland. Shade leaves exhibited lower leaf mass-per-area (LMA) than sun leaves; however, the relative difference was smaller in conifers than in broadleaves. In broadleaves, LMA was correlated with lamina thickness and tissue density, while in conifers, it was correlated with thickness but not density. In broadleaves, but not in conifers, reduction of lamina thickness was correlated with a thinner palisade layer. The more conservative adjustment of conifer leaves could result from a combination of phylogenetic constraints, contrasting leaf anatomies and shoot geometries, but also from functional requirements of long-lived foliage. Mass-based nitrogen concentration (N(mass)) was similar between sun and shade leaves, and was lower in conifers than in deciduous broadleaved species. Given this, the smaller LMA in shade corresponded with a lower area-based N concentration (N(area)). In evergreen conifers, LMA and N(area) were less powerful predictors of area-based photosynthetic rate (A (max(area))) in comparison with deciduous broadleaved angiosperms. Multiple regression for sun and shade leaves showed that, in each group, A (max(mass)) was related to N(mass) but not to LMA, whereas LMA became a significant codeterminant of A (max(mass)) in analysis combining both groups. Thus, a fundamental mass-based relationship between photosynthesis, nitrogen, and leaf structure reported previously also exists in a dataset combining within-crown and across-functional type variation.
Responses of tropical legumes from the Brazilian Atlantic Rainforest to simulated acid rain.
Andrade, Guilherme C; Silva, Luzimar C
2017-07-01
We investigated the morphological and anatomical effects of simulated acid rain on leaves of two species native to the Brazilian Atlantic Rainforest: Paubrasilia echinata and Libidibia ferrea var. leiostachya. Saplings were subjected to acid rain in a simulation chamber during 10 days for 15 min daily, using H 2 SO 4 solution pH 3.0 and, in the control, deionized water. At the end of the experiment, fragments from young and expanding leaves were anatomically analyzed. Although L. ferrea var. leiostachya leaves are more hydrophobic, rain droplets remained in contact with them for a longer time, as in the hydrophilic P. echinata leaves, droplets coalesce and rapidly run off. Visual symptomatology consisted in interveinal and marginal necrotic dots. Microscopic damage found included epicuticular wax flaking, turgor loss and epidermal cell shape alteration, hypertrophy of parenchymatous cells, and epidermal and mesophyll cell collapse. Formation of a wound tissue was observed in P. echinata, and it isolated the necrosis to the adaxial leaf surface. Acid rain increased thickness of all leaf tissues except spongy parenchyma in young leaves of L. ferrea var. leiostachya, and such thickness was maintained throughout leaf expansion. To our knowledge, this is the first report of acidity causing increase in leaf tissue thickness. This could represent the beginning of cell hypertrophy, which was seen in visually affected leaf regions. Paubrasilia echinata was more sensitive, showing earlier symptoms, but the anatomical damage in L. ferrea var. leiostachya was more severe, probably due to the higher time of contact with acid solution in this species.
Relative water content of Spruce needles determined by the leaf water content index
NASA Technical Reports Server (NTRS)
Hunt, E. Raymond, Jr.; Wong, Sam K. S.; Rock, Barrett N.
1987-01-01
Leaf relative water content (RWC) is defined as the volume of water in a leaf divided by the volume at full turgor. Using reflectance factors of wavelengths 0.83 micron and 1.6 microns, a Leaf Water Content Index (LWCI) was derived from the Lambert-Beer Law such that LWCI should equal RWC; LWCI was equal to RWC for Picea pungens, Picea rubens, Liquidambar styraciflua, and Quercus agrifolia. Algebraic manipulation shows that R(1.6)/R(0.83) termed the Moisture Stress Index (MSI), is near-linearly correlated to RWC and to the Equivalent Water Thickness (EWT). Five species tested so far had the same relationship between MSI and EWT, but EWT is not a measure of plant water status.
Is leaf dry matter content a better predictor of soil fertility than specific leaf area?
Hodgson, J. G.; Montserrat-Martí, G.; Charles, M.; Jones, G.; Wilson, P.; Shipley, B.; Sharafi, M.; Cerabolini, B. E. L.; Cornelissen, J. H. C.; Band, S. R.; Bogard, A.; Castro-Díez, P.; Guerrero-Campo, J.; Palmer, C.; Pérez-Rontomé, M. C.; Carter, G.; Hynd, A.; Romo-Díez, A.; de Torres Espuny, L.; Royo Pla, F.
2011-01-01
Background and Aims Specific leaf area (SLA), a key element of the ‘worldwide leaf economics spectrum’, is the preferred ‘soft’ plant trait for assessing soil fertility. SLA is a function of leaf dry matter content (LDMC) and leaf thickness (LT). The first, LDMC, defines leaf construction costs and can be used instead of SLA. However, LT identifies shade at its lowest extreme and succulence at its highest, and is not related to soil fertility. Why then is SLA more frequently used as a predictor of soil fertility than LDMC? Methods SLA, LDMC and LT were measured and leaf density (LD) estimated for almost 2000 species, and the capacity of LD to predict LDMC was examined, as was the relative contribution of LDMC and LT to the expression of SLA. Subsequently, the relationships between SLA, LDMC and LT with respect to soil fertility and shade were described. Key Results Although LD is strongly related to LDMC, and LDMC and LT each contribute equally to the expression of SLA, the exact relationships differ between ecological groupings. LDMC predicts leaf nitrogen content and soil fertility but, because LT primarily varies with light intensity, SLA increases in response to both increased shade and increased fertility. Conclusions Gradients of soil fertility are frequently also gradients of biomass accumulation with reduced irradiance lower in the canopy. Therefore, SLA, which includes both fertility and shade components, may often discriminate better between communities or treatments than LDMC. However, LDMC should always be the preferred trait for assessing gradients of soil fertility uncoupled from shade. Nevertheless, because leaves multitask, individual leaf traits do not necessarily exhibit exact functional equivalence between species. In consequence, rather than using a single stand-alone predictor, multivariate analyses using several leaf traits is recommended. PMID:21948627
Xiong, Dongliang; Wang, Dan; Liu, Xi; Peng, Shaobing; Huang, Jianliang; Li, Yong
2016-05-01
Leaf mass per area (LMA) is an important leaf trait; however, correlations between LMA and leaf anatomical features and photosynthesis have not been fully investigated, especially in cereal crops. The objectives of this study were (a) to investigate the correlations between LMA and leaf anatomical traits; and (b) to clarify the response of LMA to nitrogen supply and its effect on photosynthetic nitrogen use efficiency (PNUE). In the present study, 11 rice varieties were pot grown under sufficient nitrogen (SN) conditions, and four selected rice cultivars were grown under low nitrogen (LN) conditions. Leaf anatomical traits, gas exchange and leaf N content were measured. There was large variation in LMA across selected rice varieties. Regression analysis showed that the variation in LMA was more closely related to leaf density (LD) than to leaf thickness (LT). LMA was positively related to the percentage of mesophyll tissue area (%mesophyll), negatively related to the percentage of epidermis tissue area (%epidermis) and unrelated to the percentage of vascular tissue area (%vascular). The response of LMA to N supplementation was dependent on the variety and was also mainly determined by the response of LD to N. Compared with SN, photosynthesis was significantly decreased under LN, while PNUE was increased. The increase in PNUE was more critical in rice cultivars with a higher LMA under SN supply. Leaf density is the major cause of the variation in LMA across rice varieties and N treatments, and an increase in LMA under high N conditions would aggravate the decrease in PNUE. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Is leaf dry matter content a better predictor of soil fertility than specific leaf area?
Hodgson, J G; Montserrat-Martí, G; Charles, M; Jones, G; Wilson, P; Shipley, B; Sharafi, M; Cerabolini, B E L; Cornelissen, J H C; Band, S R; Bogard, A; Castro-Díez, P; Guerrero-Campo, J; Palmer, C; Pérez-Rontomé, M C; Carter, G; Hynd, A; Romo-Díez, A; de Torres Espuny, L; Royo Pla, F
2011-11-01
Specific leaf area (SLA), a key element of the 'worldwide leaf economics spectrum', is the preferred 'soft' plant trait for assessing soil fertility. SLA is a function of leaf dry matter content (LDMC) and leaf thickness (LT). The first, LDMC, defines leaf construction costs and can be used instead of SLA. However, LT identifies shade at its lowest extreme and succulence at its highest, and is not related to soil fertility. Why then is SLA more frequently used as a predictor of soil fertility than LDMC? SLA, LDMC and LT were measured and leaf density (LD) estimated for almost 2000 species, and the capacity of LD to predict LDMC was examined, as was the relative contribution of LDMC and LT to the expression of SLA. Subsequently, the relationships between SLA, LDMC and LT with respect to soil fertility and shade were described. Although LD is strongly related to LDMC, and LDMC and LT each contribute equally to the expression of SLA, the exact relationships differ between ecological groupings. LDMC predicts leaf nitrogen content and soil fertility but, because LT primarily varies with light intensity, SLA increases in response to both increased shade and increased fertility. Gradients of soil fertility are frequently also gradients of biomass accumulation with reduced irradiance lower in the canopy. Therefore, SLA, which includes both fertility and shade components, may often discriminate better between communities or treatments than LDMC. However, LDMC should always be the preferred trait for assessing gradients of soil fertility uncoupled from shade. Nevertheless, because leaves multitask, individual leaf traits do not necessarily exhibit exact functional equivalence between species. In consequence, rather than using a single stand-alone predictor, multivariate analyses using several leaf traits is recommended.
Yadav, R K P; Karamanoli, K; Vokou, D
2005-08-01
In this study, we assessed various leaf structural and chemical features as possible predictors of the size of the phyllosphere bacterial population in the Mediterranean environment. We examined eight perennial species, naturally occurring and coexisting in the same area, in Halkidiki (northern Greece). They are Arbutus unedo, Quercus coccifera, Pistacia lentiscus, and Myrtus communis (evergreen sclerophyllous species), Lavandula stoechas and Cistus incanus (drought semi-deciduous species), and Calamintha nepeta and Melissa officinalis (non-woody perennial species). M. communis, L. stoechas, C. nepeta, and M. officinalis produce essential oil in substantial quantities. We sampled summer leaves from these species and (1) estimated the size of the bacterial population of their phyllosphere, (2) estimated the concentration of different leaf constituents, and (3) studied leaf morphological and anatomical features and expressed them in a quantitative way. The aromatic plants are on average more highly colonized than the other species, whereas the non-woody perennials are more highly colonized than the woody species. The population size of epiphytic bacteria is positively correlated with glandular and non-glandular trichome densities, and with water and phosphorus contents; it is negatively correlated with total phenolics content and the thickness of the leaf, of the mesophyll, and of the abaxial epidermis. No correlation was found with the density of stomata, the nitrogen, and the soluble sugar contents. By regression tree analysis, we found that the leaf-microbe system can be effectively described by three leaf attributes with leaf water content being the primary explanatory attribute. Leaves with water content >73% are the most highly colonized. For leaves with water content <73%, the phosphorus content, with a critical value of 1.34 mg g(-1) d.w., is the next explanatory leaf attribute, followed by the thickness of the adaxial epidermis. Leaves higher in phosphorus (>1.34 mg g(-1) d.w.) are more colonized, and leaves with the adaxial epidermis thicker than 20.77 microm are the least colonized. Although these critical attributes and values hold true only within the Mediterranean ecosystem studied and the range of observations taken, they are important because they provide a hypothesis to be tested in other Mediterranean ecosystems and other biomes. Such comparative studies may give insight as to the general properties governing the leaf-microbe system.
Santiago, Louis S; Kitajima, Kaoru; Wright, S Joseph; Mulkey, Stephen S
2004-05-01
We investigated leaf physiological traits of dominant canopy trees in four lowland Panamanian forests with contrasting mean annual precipitation (1,800, 2,300, 3,100 and 3,500 mm). There was near complete turn-over of dominant canopy tree species among sites, resulting in greater dominance of evergreen species with long-lived leaves as precipitation increased. Mean structural and physiological traits changed along this gradient as predicted by cost-benefit theories of leaf life span. Nitrogen content per unit mass (Nmass) and light- and CO2-saturated photosynthetic rates per unit mass (Pmass) of upper canopy leaves decreased with annual precipitation, and these changes were partially explained by increasing leaf thickness and decreasing specific leaf area (SLA). Comparison of 1,800 mm and 3,100 mm sites, where canopy access was available through the use of construction cranes, revealed an association among extended leaf longevity, greater structural defense, higher midday leaf water potential, and lower Pmass, Nmass, and SLA at wetter sites. Shorter leaf life spans and more enriched foliar delta15N values in drier sites suggest greater resorption and re-metabolism of leaf N in drier forest. Greater dominance of short-lived leaves with relatively high Pmass in drier sites reflects a strategy to maximize photosynthesis when water is available and to minimize water loss and respiration costs during rainless periods. Overall, our study links coordinated change in leaf functional traits that affect productivity and nutrient cycling to seasonality in lowland tropical forests. Copyright 2004 Springer-Verlag
Roa-Fuentes, Lilia L; Templer, Pamela H; Campo, Julio
2015-10-01
Leaf traits are closely associated with nutrient use by plants and can be utilized as a proxy for nutrient cycling processes. However, open questions remain, in particular regarding the variability of leaf traits within and across seasonally dry tropical forests. To address this, we considered six leaf traits (specific area, thickness, dry matter content, N content, P content and natural abundance (15)N) of four co-occurring tree species (two that are not associated with N2-fixing bacteria and two that are associated with N2-fixing bacteria) and net N mineralization rates and inorganic N concentrations along a precipitation gradient (537-1036 mm per year) in the Yucatan Peninsula, Mexico. Specifically we sought to test the hypothesis that leaf traits of dominant plant species shift along a precipitation gradient, but are affected by soil N cycling. Although variation among different species within each site explains some leaf trait variation, there is also a high level of variability across sites, suggesting that factors other than precipitation regime more strongly influence leaf traits. Principal component analyses indicated that across sites and tree species, covariation in leaf traits is an indicator of soil N availability. Patterns of natural abundance (15)N in foliage and foliage minus soil suggest that variation in precipitation regime drives a shift in plant N acquisition and the openness of the N cycle. Overall, our study shows that both plant species and site are important determinants of leaf traits, and that the leaf trait spectrum is correlated with soil N cycling.
Kenzo, Tanaka; Ichie, Tomoaki; Watanabe, Yoko; Yoneda, Reiji; Ninomiya, Ikuo; Koike, Takayoshi
2006-07-01
Variations in leaf photosynthetic, morphological and biochemical properties with increasing plant height from seedlings to emergent trees were investigated in five dipterocarp species in a Malaysian tropical rain forest. Canopy openness increased significantly with tree height. Photosynthetic properties, such as photosynthetic capacity at light saturation, light compensation point, maximum rate of carboxylation and maximum rate of photosynthetic electron transport, all increased significantly with tree height. Leaf morphological and biochemical traits, such as leaf mass per area, palisade layer thickness, nitrogen concentration per unit area, chlorophyll concentration per unit dry mass and chlorophyll to nitrogen ratio, also changed significantly with tree height. Leaf properties had simple and significant relationships with tree height, with few intra- and interspecies differences. Our results therefore suggest that the photosynthetic capacity of dipterocarp trees depends on tree height, and that the trees adapt to the light environment by adjusting their leaf morphological and biochemical properties. These results should aid in developing models that can accurately estimate carbon dioxide flux and biomass production in tropical rain forests.
Leaf trait variations associated with habitat affinity of tropical karst tree species.
Geekiyanage, Nalaka; Goodale, Uromi Manage; Cao, Kunfang; Kitajima, Kaoru
2018-01-01
Karst hills, that is, jagged topography created by dissolution of limestone and other soluble rocks, are distributed extensively in tropical forest regions, including southern parts of China. They are characterized by a sharp mosaic of water and nutrient availability, from exposed hilltops with poor soil development to valleys with occasional flooding, to which trees show species-specific distributions. Here we report the relationship of leaf functional traits to habitat preference of tropical karst trees. We described leaf traits of 19 tropical tree species in a seasonal karst rainforest in Guangxi Province, China, 12 species in situ and 13 ex situ in a non-karst arboretum, which served as a common garden, with six species sampled in both. We examined how the measured leaf traits differed in relation to species' habitat affinity and evaluated trait consistency between natural habitats vs . the arboretum. Leaf mass per area (LMA) and optical traits (light absorption and reflectance characteristics between 400 and 1,050 nm) showed significant associations with each other and habitats, with hilltop species showing high values of LMA and low values of photochemical reflectance index (PRI). For the six species sampled in both the karst forest and the arboretum, LMA, leaf dry matter content, stomatal density, and vein length per area showed inconsistent within-species variations, whereas some traits (stomatal pore index and lamina thickness) were similar between the two sites. In conclusion, trees specialized in exposed karst hilltops with little soils are characterized by thick leaves with high tissue density indicative of conservative resources use, and this trait syndrome could potentially be sensed remotely with PRI.
The enigma of effective path length for (18) O enrichment in leaf water of conifers.
Roden, John; Kahmen, Ansgar; Buchmann, Nina; Siegwolf, Rolf
2015-12-01
The Péclet correction is often used to predict leaf evaporative enrichment and requires an estimate of effective path length (L). Studies to estimate L in conifer needles have produced unexpected patterns based on Péclet theory and leaf anatomy. We exposed seedlings of six conifer species to different vapour pressure deficits (VPD) in controlled climate chambers to produce steady-state leaf water enrichment (in (18) O). We measured leaf gas exchange, stable oxygen isotopic composition (δ(18) O) of input and plant waters as well as leaf anatomical characteristics. Variation in bulk needle water δ(18) O was strongly related to VPD. Conifer needles had large amounts of water within the vascular strand that was potentially unenriched (up to 40%). Both standard Craig-Gordon and Péclet models failed to accurately predict conifer leaf water δ(18) O without taking into consideration the unenriched water in the vascular strand and variable L. Although L was linearly related to mesophyll thickness, large within-species variation prevented the development of generalizations that could allow a broader use of the Péclet effect in predictive models. Our results point to the importance of within needle water pools and isolating mechanisms that need further investigation in order to integrate Péclet corrections with 'two compartment' leaf water concepts. © 2015 John Wiley & Sons Ltd.
Nguyen, Hoa T; Meir, Patrick; Sack, Lawren; Evans, John R; Oliveira, Rafael S; Ball, Marilyn C
2017-08-01
Leaf structure and water relations were studied in a temperate population of Avicennia marina subsp. australasica along a natural salinity gradient [28 to 49 parts per thousand (ppt)] and compared with two subspecies grown naturally in similar soil salinities to those of subsp. australasica but under different climates: subsp. eucalyptifolia (salinity 30 ppt, wet tropics) and subsp. marina (salinity 46 ppt, arid tropics). Leaf thickness, leaf dry mass per area and water content increased with salinity and aridity. Turgor loss point declined with increase in soil salinity, driven mainly by differences in osmotic potential at full turgor. Nevertheless, a high modulus of elasticity (ε) contributed to maintenance of high cell hydration at turgor loss point. Despite similarity among leaves in leaf water storage capacitance, total leaf water storage increased with increasing salinity and aridity. The time that stored water alone could sustain an evaporation rate of 1 mmol m -2 s -1 ranged from 77 to 126 min from subspecies eucalyptifolia to ssp. marina, respectively. Achieving full leaf hydration or turgor would require water from sources other than the roots, emphasizing the importance of multiple water sources to growth and survival of Avicennia marina across gradients in salinity and aridity. © 2017 John Wiley & Sons Ltd.
The mechanism of improved aeration due to gas films on leaves of submerged rice.
Verboven, Pieter; Pedersen, Ole; Ho, Quang Tri; Nicolai, Bart M; Colmer, Timothy D
2014-10-01
Some terrestrial wetland plants, such as rice, have super-hydrophobic leaf surfaces which retain a gas film when submerged. O2 movement through the diffusive boundary layer (DBL) of floodwater, gas film and stomata into leaf mesophyll was explored by means of a reaction-diffusion model that was solved in a three-dimensional leaf anatomy model. The anatomy and dark respiration of leaves of rice (Oryza sativa L.) were measured and used to compute O2 fluxes and partial pressure of O2 (pO2 ) in the DBL, gas film and leaf when submerged. The effects of floodwater pO2 , DBL thickness, cuticle permeability, presence of gas film and stomatal opening were explored. Under O2 -limiting conditions of the bulk water (pO2 < 10 kPa), the gas film significantly increases the O2 flux into submerged leaves regardless of whether stomata are fully or partly open. With a gas film, tissue pO2 substantially increases, even for the slightest stomatal opening, but not when stomata are completely closed. The effect of gas films increases with decreasing cuticle permeability. O2 flux and tissue pO2 decrease with increasing DBL thickness. The present modelling analysis provides a mechanistic understanding of how leaf gas films facilitate O2 entry into submerged plants. © 2014 John Wiley & Sons Ltd.
TERASHIMA, ICHIRO; ARAYA, TAKAO; MIYAZAWA, SHIN-ICHI; SONE, KOSEI; YANO, SATOSHI
2004-01-01
• Background and Aims The paper by Monsi and Saeki in 1953 (Japanese Journal of Botany 14: 22–52) was pioneering not only in mathematical modelling of canopy photosynthesis but also in eco-developmental studies of seasonal changes in leaf canopies. • Scope Construction and maintenance mechanisms of efficient photosynthetic systems at three different scaling levels—single leaves, herbaceous plants and trees—are reviewed mainly based on the nitrogen optimization theory. First, the nitrogen optimization theory with respect to the canopy and the single leaf is briefly introduced. Secondly, significance of leaf thickness in CO2 diffusion in the leaf and in leaf photosynthesis is discussed. Thirdly, mechanisms of adjustment of photosynthetic properties of the leaf within the herbaceous plant individual throughout its life are discussed. In particular, roles of sugar sensing, redox control and of cytokinin are highlighted. Finally, the development of a tree is considered. • Conclusions Various mechanisms contribute to construction and maintenance of efficient photosynthetic systems. Molecular backgrounds of these ecologically important mechanisms should be clarified. The construction mechanisms of the tree cannot be explained solely by the nitrogen optimization theory. It is proposed that the pipe model theory in its differential form could be a potential tool in future studies in this research area. PMID:15598701
Huang, C. W.; Lin, M. Y.; Khlystov, A.; ...
2015-03-02
In this study, wind tunnel experiments were performed to explore how leaf size and leaf microroughness impact the collection efficiency of ultrafine particles (UFP) at the branch scale. A porous media model previously used to characterize UFP deposition onto conifers (Pinus taeda and Juniperus chinensis) was employed to interpret these wind tunnel measurements for four different broadleaf species (Ilex cornuta, Quercus alba, Magnolia grandiflora, and Lonicera fragrantissima) and three wind speed (0.3–0.9 ms -1) conditions. Among the four broadleaf species considered, Ilex cornuta with its partially folded shape and sharp edges was the most efficient at collecting UFP followed bymore » the other three flat-shaped broadleaf species. The findings here suggest that a connection must exist between UFP collection and leaf dimension and roughness. This connection is shown to be primarily due to the thickness of a quasi-laminar boundary layer pinned to the leaf surface assuming the flow over a leaf resembles that of a flat plate. A scaling analysis that utilizes a three-sublayer depositional model for a flat plate of finite size and roughness embedded within the quasi-laminar boundary layer illustrates these connections. The analysis shows that a longer leaf dimension allows for thicker quasi-laminar boundary layers to develop. A thicker quasi-laminar boundary layer depth in turn increases the overall resistance to UFP deposition due to an increase in the diffusional path length thereby reducing the leaf-scale UFP collection efficiency. Finally, it is suggested that the effects of leaf microroughness are less relevant to the UFP collection efficiency than are the leaf dimensions for the four broadleaf species explored here.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, C. W.; Lin, M. Y.; Khlystov, A.
In this study, wind tunnel experiments were performed to explore how leaf size and leaf microroughness impact the collection efficiency of ultrafine particles (UFP) at the branch scale. A porous media model previously used to characterize UFP deposition onto conifers (Pinus taeda and Juniperus chinensis) was employed to interpret these wind tunnel measurements for four different broadleaf species (Ilex cornuta, Quercus alba, Magnolia grandiflora, and Lonicera fragrantissima) and three wind speed (0.3–0.9 ms -1) conditions. Among the four broadleaf species considered, Ilex cornuta with its partially folded shape and sharp edges was the most efficient at collecting UFP followed bymore » the other three flat-shaped broadleaf species. The findings here suggest that a connection must exist between UFP collection and leaf dimension and roughness. This connection is shown to be primarily due to the thickness of a quasi-laminar boundary layer pinned to the leaf surface assuming the flow over a leaf resembles that of a flat plate. A scaling analysis that utilizes a three-sublayer depositional model for a flat plate of finite size and roughness embedded within the quasi-laminar boundary layer illustrates these connections. The analysis shows that a longer leaf dimension allows for thicker quasi-laminar boundary layers to develop. A thicker quasi-laminar boundary layer depth in turn increases the overall resistance to UFP deposition due to an increase in the diffusional path length thereby reducing the leaf-scale UFP collection efficiency. Finally, it is suggested that the effects of leaf microroughness are less relevant to the UFP collection efficiency than are the leaf dimensions for the four broadleaf species explored here.« less
[Cold resistance of four evergreen broad-leaved tree species].
Wang, Na; Wang, Kui Ling; Liu, Qing Hua; Liu, Qing Chao
2016-10-01
The leaves of four evergreen plants, i.e., Fatsia japonica, Nerium indicum, Mahonia bealei and Acer cinnamomifolium were used as the experimental materials. By measuring the changes of in vitro leaf in soluble sugar, soluble protein, free proline, POD activity, chlorophyll content and relative electrolytic conductivity under aritificial simulated low temperature, combining the measurements of SPAD, leaf surface features and anatomical changes in organizational structure in the process of natural wintering, the cold resistance of four evergreen tree species was evaluated comprehensively. The results showed that in the process of artificial low temperature stress, the chlorophyll content of the leaves of four evergreen species decreased, the content of soluble protein pea-ked at -20 ℃, and the soluble sugar, free proline, POD activity and relative electrolytic conductivity showed an overall upward trend. The semilethal temperatures of four species were -8.0, -13.4, -19.4 and -14.8 ℃, respectively. During the winter, the leaf SPAD of the four species changed markedly, reflecting that the change of relative chlorophyll content was related to the change of temperature. Meanwhile, the leaf thickness, cutin layer thickness, stockade tissue thickness and tightness of four species increased and the plasmolysis occurred thereafter. Also the content of starch grains and calcium oxalate cluster crystal increased. The typical stomatal pits and the intensive non-glandular trichome within the pits of N. indicum and the sclerenchyma of M. Bealei could improve the cold resistance of plants to some extent. In addition, the phenomena like the breakage of wax layer in leaf surface, the fracture of epidermal hair and the deformation of palisade tissue indicated that plants were damaged to a certain extent by low temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paparozzi, E.T.; Tukey, H.B. Jr.
Leaves of Betula alleghaniensis Britt. (yellow birch) and Phaseolus vulgaris L cv. Red Kidney (bean) were examined microscopically during development and after exposure to simulated rain of pH 5.5, 4.3, 3.2, and 2.8. Yellow birch leaves attained maximal leaf area, midvein length, and cuticle thickness at 21 days. Trichomes were either long, unicellular, or multicellular with caplike head and stalk. Epicuticular wax was a bumpy and amorphous layer. The 2nd trifoliolate leaf of red kidney bean attained maximal leaf area, midvein length, and cuticle thickness when the 3rd trifoliolate leaf was expanding. Trichomes present were long, with a unicellular headmore » and a multicellular base; long, unicellular, and terminally hooked; and small and multicellular. Epicuticular wax was present as small irregular flakes. After 2 days of pH 2.8 and 4 days of pH 3.2 simulated acid rain, round yellow and small tan lesions appeared on birch and bean leaves, respectively. Most injury occurred on or between small veins. Most trichome types were uninjured. Lesions formed as a result of collapsed epidermal and highly plasmolyzed palisade cells. The cuticle was still present over injured epidermal cells and epicuticular waxes were unchanged. There was not statistical difference in mean cuticle thickness due to pH of simulated rain. 25 references, 10 figures, 4 tables.« less
Calcium oxalate druses affect leaf optical properties in selenium-treated Fagopyrum tataricum.
Golob, Aleksandra; Stibilj, Vekoslava; Nečemer, Marijan; Kump, Peter; Kreft, Ivan; Hočevar, Anja; Gaberščik, Alenka; Germ, Mateja
2018-03-01
Plants of the genus Fagopyrum contain high levels of crystalline calcium oxalate (CaOx) deposits, or druses, that can affect the leaf optical properties. As selenium has been shown to modify the uptake and accumulation of metabolically important elements such as calcium, we hypothesised that the numbers of druses can be altered by selenium treatment, and this would affect the leaf optical properties. Tartary buckwheat (Fagopyrum tataricum Gaertn.) was grown outdoors in an experimental field. At the beginning of flowering, plants were foliarly sprayed with sodium selenate solution at 10 mg selenium L -1 or only with water. Plant morphological, biochemical, physiological and optical properties were examined, along with leaf elemental composition and content. Se spraying did not affect leaf biochemical and functional properties. However, it increased leaf thickness and the contents of Se in the leaves, and decreased the density of calcium oxalate druses in the leaves. Except Se content, Se spraying did not affect contents of other elements in leaves, including total calcium per dry mass of leaf tissue. Redundancy analysis showed that of all parameters tested, only the calcium oxalate druses parameters were significant in explaining the variability of the leaf reflectance and transmittance spectra. The density of CaOx druses positively correlated with the reflectance in the blue, green, yellow and UV-B regions of the spectrum, while the area of CaOx druses per mm 2 of leaf transection area positively correlated with the transmittance in the green and yellow regions of the spectrum. Copyright © 2018 Elsevier B.V. All rights reserved.
Kalve, Shweta; Fotschki, Joanna; Beeckman, Tom; Vissenberg, Kris; Beemster, Gerrit T S
2014-12-01
Variations in size and shape of multicellular organs depend on spatio-temporal regulation of cell division and expansion. Here, cell division and expansion rates were quantified relative to the three spatial axes in the first leaf pair of Arabidopsis thaliana. The results show striking differences in expansion rates: the expansion rate in the petiole is higher than in the leaf blade; expansion rates in the lateral direction are higher than longitudinal rates between 5 and 10 days after stratification, but become equal at later stages of leaf blade development; and anticlinal expansion co-occurs with, but is an order of magnitude slower than periclinal expansion. Anticlinal expansion rates also differed greatly between tissues: the highest rates occurred in the spongy mesophyll and the lowest in the epidermis. Cell division rates were higher and continued for longer in the epidermis compared with the palisade mesophyll, causing a larger increase of palisade than epidermal cell area over the course of leaf development. The cellular dynamics underlying the effect of shading on petiole length and leaf thickness were then investigated. Low light reduced leaf expansion rates, which was partly compensated by increased duration of the growth phase. Inversely, shading enhanced expansion rates in the petiole, so that the blade to petiole ratio was reduced by 50%. Low light reduced leaf thickness by inhibiting anticlinal cell expansion rates. This effect on cell expansion was preceded by an effect on cell division, leading to one less layer of palisade cells. The two effects could be uncoupled by shifting plants to contrasting light conditions immediately after germination. This extended kinematic analysis maps the spatial and temporal heterogeneity of cell division and expansion, providing a framework for further research to understand the molecular regulatory mechanisms involved. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Yadong Qi; Shuju Bai; Gordon M. Heisler
2003-01-01
UV-B (280-320 nm) and visible (400-760 nm) spectral reflectance, transmittance, and absorptance; chlorophyll content; UV-B absorbing compound concentration; and leaf thickness were measured for pecan (Carya illinoensis) leaves over a growing season (April-October). Leaf samples were collected monthly from a pecan plantation located on the Southern...
Estimating the Relative Water Content of Single Leaves from Optical Polarization Measurements
NASA Technical Reports Server (NTRS)
Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert
2016-01-01
Remotely sensing the water status of plants and the water content of canopies remain long-term goals of remote sensing research. For monitoring canopy water status, existing approaches such as the Crop Water Stress Index and the Equivalent Water Thickness have limitations. The CWSI does not work well in humid regions, requires estimates of the vapor pressure deficit near the canopy during the remote sensing over-flight and, once stomata close, provides little information regarding the canopy water status. The EWI is based upon the physics of water-light interaction, not plant physiology. In this research, we applied optical polarization techniques to monitor the VISNIR light reflected from the leaf interior, R, as well as the leaf transmittance, T, as the relative water content (RWC) of corn (Zea mays) leaves decreased. Our results show that R and T both changed nonlinearly as each leaf dried, R increasing and T decreasing. Our results tie changes in the VISNIR R and T to leaf physiological changes linking the light scattered out of the drying leaf interior to its relative water content and to changes in leaf cellular structure and pigments. Our results suggest remotely sensing the physiological water status of a single leaf and perhaps of a plant canopy might be possible in the future. However, using our approach to estimate the water status of a leaf does not appear possible at present, because our results display too much variability that we do not yet understand.
Estimating the Relative Water Content of Single Leaves from Optical Polarization Measurements.
NASA Astrophysics Data System (ADS)
Vanderbilt, V. C.; Daughtry, C. S. T.; Dahlgren, R. P.
2016-12-01
Remotely sensing the water status of plants and the water content of canopies remain long term goals of remote sensing research. For monitoring canopy water status, existing approaches such as the Crop Water Stress Index and the Equivalent Water Thickness have limitations. The CWSI does not work well in humid regions, requires estimates of the vapor pressure deficit near the canopy during the remote sensing over-flight and, once stomata close, provides little information regarding the canopy water status. The EWI is based upon the physics of water-light interaction, not plant physiology. In this research, we applied optical polarization techniques to monitor the VIS/NIR light reflected from the leaf interior, R, as well as the leaf transmittance, T, as the relative water content (RWC) of corn (Zea mays) leaves decreased. Our results show that R and T both changed nonlinearly as each leaf dried, R increasing and T decreasing. Our results tie changes in the VIS/NIR R and T to leaf physiological changes - linking the light scattered out of the drying leaf interior to its relative water content and to changes in leaf cellular structure and pigments. Our results suggest remotely sensing the physiological water status of a single leaf - and perhaps of a plant canopy - might be possible in the future. However, using our approach to estimate the water status of a leaf does not appear possible at present, because our results display too much variability that we do not yet understand.
Avicennia schaueriana (Acanthaceae) from Southern Brazil.
Pelozo, Andressa; Boeger, Maria Regina T; Sereneski-de-Lima, Carolina; Soffiatti, Patricia
2016-03-01
The initial phase of a plant life cycle is a short and critical period, when individuals are more vulnerable to environmental factors. The morphological and anatomical study of seedlings and saplings leaf type enables the understanding of species strategies of fundamental importance in their establishment and survival. The objective of this study was to analyze the structure of seedlings and saplings leaf types of three mangrove species, Avicennia schaueriana, Laguncularia racemosa, Rhizophora mangle, to understand their early life adaptive strategies to the environment. A total of 30 fully expanded cotyledons (A. schaueriana and L. racemosa), 30 leaves of seedlings, and 30 leaves of saplings of each species were collected from a mangrove area in Guaratuba Bay, Paraná State, Brazil. Following standard methods, samples were prepared for morphological (leaf dry mass, density, thickness) and anatomical analysis (epidermis and sub-epidermal layers, stomata types, density of salt secretion glands, palisade and spongy parenchyma thickness). To compare leaf types among species one-way ANOVA and Principal Component Analysis were used, while Cluster Analysis evaluated differences between the species. We observed significant structural differences among species leaf types. A. schaueriana showed the thickest cotyledons, while L. racemosa presented a dorsiventral structure. Higher values of the specific leaf area were observed for seedlings leaves of A. schaueriana, cotyledons of L. racemosa and saplings leaves of A. schaueriana and R. mangle. Leaf density was similar to cotyledons and seedlings leaves in A. schaueriana and L. racemosa, while R. mangle had seedlings leaves denser than saplings. A. schaueriana and R. mangle showed hypostomatic leaves, while L. racemosa amphistomatic; besides, A. chaueriana showed diacytic stomata, while L. racemosa anomocytic, and R. mangle ciclocytic. Seedling leaves were thicker in R. mangle (535 μm) and L. racemosa (520 μm) than in A. schaueriana (470.3 μm); while saplings leaves were thicker in L. racemosa (568.3 μm) than in A. schaueriana seedlings (512.4 μm) and R. mangle (514.6 μm). Besides, seedlings leaves palisade parenchyma showed increasing thickness in L. racemosa (119.2 μm) < A. schaueriana (155.5 μm) < R. mangle (175.4 μm); while in saplings leaves as follows R. mangle (128.4 μm) < A. schaueriana (183.4 μm) < L. racemosa (193.9 μm). Similarly, seedlings leaves spongy parenchyma thickness values were as follows A. schaueriana (182.6 μm) = R. mangle (192.8 μm) < L. racemosa (354.4 μm); while in saplings were A. schaueriana (182.6 μm) = R. mangle (187.3 μm) < L. racemosa (331.3 μm). The analyzed traits, in different combinations, represent morphological adjustments of leaf types to reduce water loss, eliminate salt excess, increase the absorption of light, allowing a higher efficiency on the maintenance of physiological processes in this initial growth stage.
NASA Astrophysics Data System (ADS)
Qi, Yadong; Bai, Shuju; Vogelmann, Thomas C.; Heisler, Gordon M.
2003-11-01
The depth of light penetration from the adaxial surfaces of the mature leaves of pecan (Carya illinoensis) was measured using a fiber optic microprobe system at four wavelengths: UV-B (310nm), UV-A (360 nm), blue light (430nm), and red light (680nm). The average thickness of the leaf adaxial epidermal layer was 15um and the total leaf thickness was 219um. The patterns of the light attenuation by the leaf tissues exhibited strong wavelength dependence. The leaf adaxial epidermal layer was chiefly responsible for absorbing the UV-A UV-B radiation. About 98% of 310 nm light was steeply attenuated within the first 5 um of the adaxial epidermis; thus, very little UV-B radiation was transmitted to the mesophyll tissues where contain photosynthetically sensitive sites. The adaxial epidermis also attenuated 96% of the UV-A radiation. In contrast, the blue and red light penetrated much deeper and was gradually attenutated by the leaves. The mesophyll tissues attenuated 17% of the blue light and 42% of the red light, which were available for photosynthesis use. Since the epidermal layer absorbed nearly all UV-B light, it acted as an effective filter screening out the harmful radiation and protecting photosynthetically sensitive tissues from the UV-B damage. Therefore, the epidermal function of the UV-B screening effectiveness can be regarded as one of the UV-B protection mechanisms in pecan.
Spring Constants for Stacks of Curved Leaves of Pyrolytic Boron Nitride
NASA Technical Reports Server (NTRS)
Kaforey, M. L.; Deeb, C. W.; Matthiesen, D. H.
1999-01-01
Stacks of curved leaves of pyrolytic boron nitride (PBN) were deflected and the force versus deflection data was recorded. From this data, the spring constant for a given spring geometry (radius of curvature of a leaf, width of a leaf, thickness of a leaf, and number of leaves in the stack) was determined. These experiments were performed at room temperature, 500 C and 1000 C. However, temperature was not found to affect the spring constant. The measured values were generally within one order of magnitude of predictions made using a previously derived equation for a simply supported cylindrical section with a line force at the center.
Light-dependent leaf trait variation in 43 tropical dry forest tree species.
Markesteijn, Lars; Poorter, Lourens; Bongers, Frans
2007-04-01
Our understanding of leaf acclimation in relation to irradiance of fully grown or juvenile trees is mainly based on research involving tropical wet forest species. We studied sun-shade plasticity of 24 leaf traits of 43 tree species in a Bolivian dry deciduous forest. Sampling was confined to small trees. For each species, leaves were taken from five of the most and five of the least illuminated crowns. Trees were selected based on the percentage of the hemisphere uncovered by other crowns. We examined leaf trait variation and the relation between trait plasticity and light demand, maximum adult stature, and ontogenetic changes in crown exposure of the species. Leaf trait variation was mainly related to differences among species and to a minor extent to differences in light availability. Traits related to the palisade layer, thickness of the outer cell wall, and N(area) and P(area) had the greatest plasticity, suggesting their importance for leaf function in different light environments. Short-lived pioneers had the highest trait plasticity. Overall plasticity was modest and rarely associated with juvenile light requirements, adult stature, or ontogenetic changes in crown exposure. Dry forest tree species had a lower light-related plasticity than wet forest species, probably because wet forests cast deeper shade. In dry forests light availability may be less limiting, and low water availability may constrain leaf trait plasticity in response to irradiance.
Rodríguez-Calcerrada, J; Reich, P B; Rosenqvist, E; Pardos, J A; Cano, F J; Aranda, I
2008-05-01
We investigated light acclimation in seedlings of the temperate oak Quercus petraea (Matt.) Liebl. and the co-occurring sub-Mediterranean oak Quercus pyrenaica Willd. Seedlings were raised in a greenhouse for 1 year in either 70 (HL) or 5.3% (LL) of ambient irradiance of full sunlight, and, in the following year, subsets of the LL-grown seedlings were transferred to HL either before leaf flushing (LL-HLBF plants) or after full leaf expansion (LL-HLAF plants). Gas exchange, chlorophyll a fluorescence, nitrogen fractions in photosynthetic components and leaf anatomy were examined in leaves of all seedlings 5 months after plants were moved from LL to HL. Differences between species in the acclimation of LL-grown plants to HL were minor. For LL-grown plants in HL, area-based photosynthetic capacity, maximum rate of carboxylation, maximum rate of electron transport and the effective photochemical quantum yield of photosystem II were comparable to those for plants grown solely in HL. A rapid change in nitrogen distribution among photosynthetic components was observed in LL-HLAF plants, which had the highest photosynthetic nitrogen-use efficiency. Increases in mesophyll thickness and dry mass per unit area governed leaf acclimation in LL-HLBF plants, which tended to have less nitrogen in photosynthetic components and a lower assimilation potential per unit of leaf mass or nitrogen than LL-HLAF plants. The data indicate that the phenological state of seedlings modified the acclimatory response of leaf attributes to increased irradiance. Morphological adaptation of leaves of LL-HLBF plants enhanced photosynthetic capacity per unit leaf area, but not per unit leaf dry mass, whereas substantial redistribution of nitrogen among photosynthetic components in leaves of LL-HLAF plants enhanced both mass- and area-based photosynthetic capacity.
NASA Astrophysics Data System (ADS)
Mediavilla, Sonia; Gallardo-López, Victoria; González-Zurdo, Patricia; Escudero, Alfonso
2012-09-01
The competitive equilibrium between deciduous and perennial species in a new scenario of climate change may depend closely on the productivity of leaves along the different seasons of the year and on the morphological and chemical adaptations required for leaf survival during the different seasons. The aim of the present work was to analyze such adaptations in the leaves of three evergreen species ( Quercus ilex, Q. suber and Pinus pinaster) and their responses to between-site differences in the intensity of winter harshness. We explore the hypothesis that the harshness of winter would contribute to enhancing the leaf traits that allow them to persist under conditions of stress. The results revealed that as winter harshness increases a decrease in leaf size occurs in all three species, together with an increase in the content of nitrogen per unit leaf area and a greater leaf mass per unit area, which seems to be achieved only through increased thickness, with no associated changes in density. P. pinaster was the species with the most intense response to the harshening of winter conditions, undergoing a more marked thickening of its needles than the two Quercus species. Our findings thus suggest that lower winter temperatures involve an increase in the cost of leaf production of evergreen species, which must be taken into account in the estimation of the final cost and benefit balance of evergreens. Such cost increases would be more pronounced for those species that, like P. pinaster, show a stronger response to the winter cold.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, L.S.; Gmur, N.F.; Da Costa, F.
1977-08-01
Initial injury to adaxial leaf surfaces of Phaseolus vulgaris and Helianthus annuus occurred near trichomes and stomata after exposure to simulated sulfate acid rain. Lesion frequency was not correlated with density of either stomata or trichomes but was correlated with degree of leaf expansion. The number of lesions per unit area increased with total leaf area. Results suggest that characteristics of the leaf indumentum such as development of trichomes and guard cells and/or cuticle thickness near these structures may be involved in lesion development. Adaxial epidermal cell collapse was the first event in lesion development. Palisade cells and eventually spongymore » mesophyll cells collapsed after continued, daily exposure to simulated rain of low pH. Lesion development on Phaseolus vulgaris followed a specific course of events after exposure to simulated rain of known composition, application rate, drop size frequency, drop velocities, and frequency of exposures. These results allow development of further experiments to observe accurately other parameters, such as nutrient inputs and nutrient leaching from foliage, after exposure to simulated sulfate acid rain.« less
Spectral characteristics of normal and nutrient-deficient maize leaves
NASA Technical Reports Server (NTRS)
Al-Abbas, A. H.; Barr, R.; Hall, J. D.; Crane, F. L.; Baumgardner, M. F.
1972-01-01
Reflectance, transmittance and absorbance spectra of normal and six types of mineral-deficient (N,P,K,S,Mg and Ca) maize (Zea mays L.) leaves were analyzed at 30 selected wavelengths along the electromagnetic spectrum from 500 to 2600 nm. Chlorophyll content and percent leaf moisture were also determined. Leaf thermograms were obtained for normal, N- and S- deficient leaves. The results of the analysis of variance showed significant differences in reflectance, transmittance and absorbance in the visible wavelengths among leaf numbers 3, 4, and 5, among the seven nutrient treatments, and among the interactions of leaves and treatments. In the reflective infrared wavelengths only treatments produced significant differences. The chlorophyll content of leaves was reduced in all deficiencies in comparison to controls. Percent moisture was increased in S-, Mg- and N- deficiencies. Positive correlation (r = 0.707) between moisture content and percent absorption at both 1450 and 1930 nm were obtained. Polynomial regression analysis of leaf thickness and leaf moisture content showed that these two variables were significantly and directly related (r = 0.894).
Rozema, Jelte; Cornelisse, Danny; Zhang, Yuancheng; Li, Hongxiu; Bruning, Bas; Katschnig, Diana; Broekman, Rob; Ji, Bin; van Bodegom, Peter
2015-01-01
Salt tolerance of higher plants is determined by a complex set of traits, the timing and rate of evolution of which are largely unknown. We compared the salt tolerance of cultivars of sugar beet and their ancestor, sea beet, in hydroponic studies and evaluated whether traditional domestication and more recent breeding have changed salt tolerance of the cultivars relative to their ancestor. Our comparison of salt tolerance of crop cultivars is based on values of the relative growth rate (RGR) of the entire plant at various salinity levels. We found considerable salt tolerance of the sea beet and slightly, but significantly, reduced salt tolerance of the sugar beet cultivars. This indicates that traditional domestication by selection for morphological traits such as leaf size, beet shape and size, enhanced productivity, sugar content and palatability slightly affected salt tolerance of sugar beet cultivars. Salt tolerance among four sugar beet cultivars, three of which have been claimed to be salt tolerant, did not differ. We analysed the components of RGR to understand the mechanism of salt tolerance at the whole-plant level. The growth rate reduction at higher salinity was linked with reduced leaf area at the whole-plant level (leaf area ratio) and at the individual leaf level (specific leaf area). The leaf weight fraction was not affected by increased salinity. On the other hand, succulence and leaf thickness and the net assimilation per unit of leaf area (unit leaf rate) increased in response to salt treatment, thus partially counteracting reduced capture of light by lower leaf area. This compensatory mechanism may form part of the salt tolerance mechanism of sea beet and the four studied sugar beet cultivars. Together, our results indicate that domestication of the halophytic ancestor sea beet slightly reduced salt tolerance and that breeding for improved salt tolerance of sugar beet cultivars has not been effective. PMID:25492122
NASA Astrophysics Data System (ADS)
Al Farishy, D. D.; Nisyawati, Metusala, D.
2017-07-01
Nepenthes is one of carnivorous plant genera which have key characters on leaf and pitcher as the modification. However, wide varieties of morphological features on pitcher intraspecies and between species could be tough for identification process. The objective was to provide alternative characters for identification process by anatomical features. Kerinci Seblat National Park was chosen because lack of update data on wild type of species there. Whole five species were collected at Lingkat Lake and Gunung Tujuh Lake as representative lowland and highland species. Leaves collected fresh, flawless, and has grown pitcher. Each leaf was separated into the paradermal and transversal section, dehydrated by series alcohol, and stained by safranin and fast green. Sections observed by light microscope. Result show there were specific differences between species that could be potential to be key characters. That features are stomatal density, stomatal length, sessile glands surface shaped, sessile glands density, trichome distribution, adaxial cuticle thickness, adaxial hypodermic thickness, and the number of layers of adaxial hypodermis
Methods for characterizing plant fibers.
Cruthers, Natasha; Carr, Debra; Niven, Brian; Girvan, Elizabeth; Laing, Raechel
2005-08-01
The effectiveness of different microscopy techniques for measuring the dimensions of ultimate fibers from harakeke (Phormium tenax, New Zealand flax) was investigated using a factorial experimental design. Constant variables were geographical location, location of specimens along the leaf, season (winter), individual plant, a fourth leaf from a north-facing fan, age of plant, and cultivars (two). Experimental variables were microscopy techniques and measurement axis. Measurements of width and length of harakeke ultimate fibers depended on the microscopic preparation/technique used as well as the cultivar examined. The best methods were (i) transverse sections of leaf specimens 4 microm thick, embedded in Paraplast and observed using light microscopy, and (ii) nonfixed ultimate fibers observed using scanning electron microscopy. (c) 2005 Wiley-Liss, Inc.
Genetic variation and plasticity of Plantago coronopus under saline conditions
NASA Astrophysics Data System (ADS)
Smekens, Marret J.; van Tienderen, Peter H.
2001-08-01
Phenotypic plasticity may allow organisms to cope with variation in the environmental conditions they encounter in their natural habitats. Salt adaptation appears to be an excellent example of such a plastic response. Many plant species accumulate organic solutes in response to saline conditions. Comparative and molecular studies suggest that this is an adaptation to osmotic stress. However, evidence relating the physiological responses to fitness parameters is rare and requires assessing the potential costs and benefits of plasticity. We studied the response of thirty families derived from plants collected in three populations of Plantago coronopus in a greenhouse experiment under saline and non-saline conditions. We indeed found a positive selection gradient for the sorbitol percentage under saline conditions: plant families with a higher proportion of sorbitol produced more spikes. No effects of sorbitol on fitness parameters were found under non-saline conditions. Populations also differed genetically in leaf number, spike number, sorbitol concentration and percentages of different soluble sugars. Salt treatment led to a reduction of vegetative biomass and spike production but increased leaf dry matter percentage and leaf thickness. Both under saline and non-saline conditions there was a negative trade-off between vegetative growth and reproduction. Families with a high plasticity in leaf thickness had a lower total spike length under non-saline conditions. This would imply that natural selection under predominantly non-saline conditions would lead to a decrease in the ability to change leaf morphology in response to exposure to salt. All other tests revealed no indication for any costs of plasticity to saline conditions.
Wanger, Thomas C; Iskandar, Djoko T; Motzke, Iris; Brook, Barry W; Sodhi, Navjot S; Clough, Yann; Tscharntke, Teja
2010-06-01
Little is known about the effects of anthropogenic land-use change on the amphibians and reptiles of the biodiverse tropical forests of Southeast Asia. We studied a land-use modification gradient stretching from primary forest, secondary forest, natural-shade cacao agroforest, planted-shade cacao agroforest to open areas in central Sulawesi, Indonesia. We determined species richness, abundance, turnover, and community composition in all habitat types and related these to environmental correlates, such as canopy heterogeneity and thickness of leaf litter. Amphibian species richness decreased systematically along the land-use modification gradient, but reptile richness and abundance peaked in natural-shade cacao agroforests. Species richness and abundance patterns across the disturbance gradient were best explained by canopy cover and leaf-litter thickness in amphibians and by canopy heterogeneity and cover in reptiles. Amphibians were more severely affected by forest disturbance in Sulawesi than reptiles. Heterogeneous canopy cover and thick leaf litter should be maintained in cacao plantations to facilitate the conservation value for both groups. For long-term and sustainable use of plantations, pruned shade trees should be permanently kept to allow rejuvenation of cacao and, thus, to prevent repeated forest encroachment.
Enemy release and plant invasion: patterns of defensive traits and leaf damage in Hawaii.
Funk, Jennifer L; Throop, Heather L
2010-04-01
Invasive species may be released from consumption by their native herbivores in novel habitats and thereby experience higher fitness relative to native species. However, few studies have examined release from herbivory as a mechanism of invasion in oceanic island systems, which have experienced particularly high loss of native species due to the invasion of non-native animal and plant species. We surveyed putative defensive traits and leaf damage rates in 19 pairs of taxonomically related invasive and native species in Hawaii, representing a broad taxonomic diversity. Leaf damage by insects and pathogens was monitored in both wet and dry seasons. We found that native species had higher leaf damage rates than invasive species, but only during the dry season. However, damage rates across native and invasive species averaged only 2% of leaf area. Native species generally displayed high levels of structural defense (leaf toughness and leaf thickness, but not leaf trichome density) while native and invasive species displayed similar levels of chemical defenses (total phenolics). A defense index, which integrated all putative defense traits, was significantly higher for native species, suggesting that native species may allocate fewer resources to growth and reproduction than do invasive species. Thus, our data support the idea that invasive species allocate fewer resources to defense traits, allowing them to outperform native species through increased growth and reproduction. While strong impacts of herbivores on invasion are not supported by the low damage rates we observed on mature plants, population-level studies that monitor how herbivores influence recruitment, mortality, and competitive outcomes are needed to accurately address how herbivores influence invasion in Hawaii.
Iogna, Patricia A; Bucci, Sandra J; Scholz, Fabián G; Goldstein, Guillermo
2013-11-01
Phenotypic plasticity in morphophysiological leaf traits in response to wind was studied in two dominant shrub species of the Patagonian steppe, used as model systems for understanding effects of high wind speed on leaf water relations and hydraulic properties of small woody plants. Morpho-anatomical traits, hydraulic conductance and conductivity and water relations in leaves of wind-exposed and protected crown sides were examined during the summer with nearly continuous high winds. Although exposed sides of the crowns were subjected to higher wind speeds and air saturation deficits than the protected sides, leaves throughout the crown had similar minimum leaf water potential (ΨL). The two species were able to maintain homeostasis in minimum ΨL using different physiological mechanisms. Berberis microphylla avoided a decrease in the minimum ΨL in the exposed side of the crown by reducing water loss by stomatal control, loss of cell turgor and low epidermal conductance. Colliguaja integerrima increased leaf water transport efficiency to maintain transpiration rates without increasing the driving force for water loss in the wind-exposed crown side. Leaf physiological changes within the crown help to prevent the decrease of minimum ΨL and thus contribute to the maintenance of homeostasis, assuring the hydraulic integrity of the plant under unfavorable conditions. The responses of leaf traits that contribute to mechanical resistance (leaf mass per area and thickness) differed from those of large physiological traits by exhibiting low phenotypic plasticity. The results of this study help us to understand the unique properties of shrubs which have different hydraulic architecture compared to trees.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haddad, K; Alopoor, H
Purpose: Recently, the multileaf collimators (MLC) have become an important part of any LINAC collimation systems because they reduce the treatment planning time and improves the conformity. Important factors that affects the MLCs collimation performance are leaves material composition and their thickness. In this study, we investigate the main dosimetric parameters of 120-leaf Millennium MLC including dose in the buildup point, physical penumbra as well as average and end leaf leakages. Effects of the leaves geometry and density on these parameters are evaluated Methods: From EGSnrc Monte Carlo code, BEAMnrc and DOSXYZnrc modules are used to evaluate the dosimetric parametersmore » of a water phantom exposed to a Varian xi for 100cm SSD. Using IAEA phasespace data just above MLC (Z=46cm) and BEAMnrc, for the modified 120-leaf Millennium MLC a new phase space data at Z=52cm is produces. The MLC is modified both in leaf thickness and material composition. EGSgui code generates 521ICRU library for tungsten alloys. DOSXYZnrc with the new phase space evaluates the dose distribution in a water phantom of 60×60×20 cm3 with voxel size of 4×4×2 mm3. Using DOSXYZnrc dose distributions for open beam and closed beam as well as the leakages definition, end leakage, average leakage and physical penumbra are evaluated. Results: A new MLC with improved dosimetric parameters is proposed. The physical penumbra for proposed MLC is 4.7mm compared to 5.16 mm for Millennium. Average leakage in our design is reduced to 1.16% compared to 1.73% for Millennium, the end leaf leakage suggested design is also reduced to 4.86% compared to 7.26% of Millennium. Conclusion: The results show that the proposed MLC with enhanced dosimetric parameters could improve the conformity of treatment planning.« less
Leaf Phenology of Amazonian Canopy Trees as Revealed by Spectral and Physiochemical Measurements
NASA Astrophysics Data System (ADS)
Chavana-Bryant, C.; Gerard, F. F.; Malhi, Y.; Enquist, B. J.; Asner, G. P.
2013-12-01
The phenological dynamics of terrestrial ecosystems reflect the response of the Earth's biosphere to inter- and intra-annual dynamics of climatic and hydrological regimes. Some Dynamic Global Vegetation Models (GDVMs) have predicted that by 2050 the Amazon rainforest will begin to dieback (Cox et al. 2000, Nature) or that the ecosystem will become unsustainable (Salazar et al. 2007, GRL). One major component in DGVMs is the simulation of vegetation phenology, however, modelers are challenged with the estimation of tropical phenology which is highly complex. Current modeled phenology is based on observations of temperate vegetation and accurate representation of tropical phenology is long overdue. Remote sensing (RS) data are a key tool in monitoring vegetation dynamics at regional and global scales. Of the many RS techniques available, time-series analysis of vegetation indices (VIs) has become the most common approach in monitoring vegetation phenology (Samanta et al. 2010, GRL; Bradley et al. 2011, GCB). Our research focuses on investigating the influence that age related variation in the spectral reflectance and physiochemical properties of leaves may have on VIs of tropical canopies. In order to do this, we collected a unique leaf and canopy phenological dataset at two different Amazonian sites: Inselberg, French Guyana (FG) and Tambopata, Peru (PE). Hyperspectral reflectance measurements were collected from 4,102 individual leaves sampled to represent different leaf ages and vertical canopy positions (top, mid and low canopy) from 20 different canopy tree species (8 in FG and 12 in PE). These leaf spectra were complemented with 1) leaf physical measurements: fresh and dry weight, area and thickness, LMA and LWC and 2) leaf chemical measurements: %N, %C, %P, C:N and d13C. Canopy level observations included top-of-canopy reflectance measurements obtained using a multispectral 16-band radiometer, leaf demography (tot. number and age distribution) and branch structural measurements (space between leaves, min. and max. season's growth and diameter) of two 1m branches harvested from each canopy level. Both leaf and canopy-level observations where collected monthly when trees where not in flush and weekly during the period of leaf flushing. Here, we present our leaf spectral and physiochemical results. Results show 1) changes in leaf spectral and physiochemical properties related to leaf age, 2) the most significant changes in the leaves' spectrum during different stages in their life cycle, and 3) how leaf spectral changes are related to changes in the chemical and physical properties of the leaves as they progress through their life cycle. Future work will involve the incorporation of leaf and canopy observations into a light canopy interaction model to investigate the possibility that seasonal variation in VIs may be driven by leaf aging as well as by the shedding or appearance of new leaves.
Cohu, Christopher M; Muller, Onno; Adams, William W; Demmig-Adams, Barbara
2014-09-01
Acclimation of foliar features to cool temperature and high light was characterized in winter (Spinacia oleracea L. cv. Giant Nobel; Arabidopsis thaliana (L.) Heynhold Col-0 and ecotypes from Sweden and Italy) versus summer (Helianthus annuus L. cv. Soraya; Cucurbita pepo L. cv. Italian Zucchini Romanesco) annuals. Significant relationships existed among leaf dry mass per area, photosynthesis, leaf thickness and palisade mesophyll thickness. While the acclimatory response of the summer annuals to cool temperature and/or high light levels was limited, the winter annuals increased the number of palisade cell layers, ranging from two layers under moderate light and warm temperature to between four and five layers under cool temperature and high light. A significant relationship was also found between palisade tissue thickness and either cross-sectional area or number of phloem cells (each normalized by vein density) in minor veins among all four species and growth regimes. The two winter annuals, but not the summer annuals, thus exhibited acclimatory adjustments of minor vein phloem to cool temperature and/or high light, with more numerous and larger phloem cells and a higher maximal photosynthesis rate. The upregulation of photosynthesis in winter annuals in response to low growth temperature may thus depend on not only (1) a greater volume of photosynthesizing palisade tissue but also (2) leaf veins containing additional phloem cells and presumably capable of exporting a greater volume of sugars from the leaves to the rest of the plant. © 2014 Scandinavian Plant Physiology Society.
Influence of phytochemicals in piper betle linn leaf extract on wound healing.
Lien, Le Thi; Tho, Nguyen Thi; Ha, Do Minh; Hang, Pham Luong; Nghia, Phan Tuan; Thang, Nguyen Dinh
2015-01-01
Wound healing has being extensively investigated over the world. Healing impairment is caused by many reasons including increasing of free-radicals-mediated damage, delaying in granulation tissue formation, reducing in angiogenesis and decreasing in collagen reorganization. These facts consequently lead to chronic wound healing. Piper betle Linn (Betle) leaves have been folklore used as an ingredient of drugs for cutaneous wound treatment. However, the effect of betle leaf on wound healing is not yet well elucidated. In this study, we aimed to investigate the healing efficacy of methanol leaf extract of Piper betle Linn on proliferation of fibroblast NIH3T3 cells as well as full-thickness burn and excision wounds in swiss mice. Scratch wound healing assays were conducted to examine the effects of betle leaf extract on healing activity of fibroblast cells. Burn and excision wounds on swiss mouse skins were created for investigating the wound healing progress caused by the betle leaf extract. Malondialdehyde (MDA) was also evaluated to examine the products of lipid hydroperoxide (LPO) under conditions of with or without betle leaf extract treatment. The results of this study showed that Piper betle Linn leaf extract in methanol increased proliferation of NIH3T3 cells and promoted wound healing in vitro and in vivo with both burn wound and excision wound models. In addition, this extract significant decreased level of malondialdehyde (MDA) in liver of treated-mice compared with that in non-treated mice. Our results suggest that Piper betle Linn can be used as an ingredient in developing natural origin drugs for treatment of cutaneous wounds.
Carriquí, Marc; Douthe, Cyril; Molins, Arántzazu; Flexas, Jaume
2018-05-10
Mesophyll conductance to CO 2 (g m ), a key photosynthetic trait, is strongly constrained by leaf anatomy. Leaf anatomical parameters such as cell wall thickness and chloroplast area exposed to the mesophyll intercellular airspace have been demonstrated to determine g m in species with diverging phylogeny, leaf structure and ontogeny. However, the potential implication of leaf anatomy, especially chloroplast movement, on the short-term response of g m to rapid changes (i.e. seconds to minutes) under different environmental conditions (CO 2 , light or temperature) has not been examined. The aim of this study was to determine whether the observed rapid variations of g m in response to variations of light and CO 2 could be explained by changes in any leaf anatomical arrangements. When compared to high light and ambient CO 2 , the values of g m estimated by chlorophyll fluorescence decreased under high CO 2 and increased at low CO 2 , while it decreased with decreasing light. Nevertheless, no changes in anatomical parameters, including chloroplast distribution, were found. Hence, the g m estimated by analytical models based on anatomical parameters was constant under varying light and CO 2 . Considering this discrepancy between anatomy and chlorophyll fluorescence estimates, it is concluded that apparent fast g m variations should be due to artifacts in its estimation and/or to changes in the biochemical components acting on diffusional properties of the leaf (e.g. aquaporins and carbonic anhydrase). This article is protected by copyright. All rights reserved.
Poot-Pech, M A; Ruiz-Sánchez, E; Ballina-Gómez, H S; Gamboa-Angulo, M M; Reyes-Ramírez, A
2016-08-01
The Central American locust (CAL) Schistocerca piceifrons piceifrons Walker is one of the most harmful plant pests in the Yucatan Peninsula, where an important gregarious zone is located. The olfactory response and host plant acceptance by the CAL have not been studied in detail thus far. In this work, the olfactory response of the CAL to odor of various plant species was evaluated using an olfactometer test system. In addition, the host plant acceptance was assessed by the consumption of leaf area. Results showed that the CAL was highly attracted to odor of Pisonia aculeata. Evaluation of host plant acceptance showed that the CAL fed on Leucaena glauca and Waltheria americana, but not on P. aculeata or Guazuma ulmifolia. Analysis of leaf thickness, and leaf content of nitrogen (N) and carbon (C) showed that the CAL was attracted to plant species with low leaf C content.
Spectra of normal and nutrient-deficient maize leaves
NASA Technical Reports Server (NTRS)
Al-Abbas, A. H.; Barr, R.; Hall, J. D.; Crane, F. L.; Baumgardner, M. F.
1973-01-01
Reflectance, transmittance and absorptance spectra of normal and six types of nutrient-deficient (N, P, K, S, Mg, and Ca) maize (Zea mays L.) leaves were analyzed at 30 selected wavelengths from 500 to 2600 nm. The analysis of variance showed significant differences in reflectance, transmittance and absorptance in the visible wavelengths among leaf numbers 3, 4, and 5, among the seven treatments, and among the interactions of leaf number and treatments. In the infrared wavelengths only treatments produced significant differences. The chlorophyll content of leaves was reduced in all nutrient-deficient treatments. Percent moisture was increased in S-, Mg-, and N-deficiencies. Polynomial regression analysis of leaf thickness and leaf moisture content showed that these two variables were significantly and directly related. Leaves from the P- and Ca-deficient plants absorbed less energy in the near infrared than the normal plants; S-, Mg-, K-, and N-deficient leaves absorbed more than the normal. Both S- and N-deficient leaves had higher temperatues than normal maize leaves.
Galmés, Jeroni; Ochogavía, Joan Manuel; Gago, Jorge; Roldán, Emilio José; Cifre, Josep; Conesa, Miquel Àngel
2013-05-01
In a previous study, important acclimation to water stress was observed in the Ramellet tomato cultivar (TR) from the Balearic Islands, related to an increase in the water-use efficiency through modifications in both stomatal (g(s)) and mesophyll conductances (g(m)). In the present work, the comparison of physiological and morphological traits between TR accessions grown with and without water stress confirmed that variability in the photosynthetic capacity was mostly explained by differences in the diffusion of CO2 through stomata and leaf mesophyll. Maximization of gm under both treatments was mainly achieved through adjustments in the mesophyll thickness and porosity and the surface area of chloroplasts exposed to intercellular airspace (S(c)). In addition, the lower g(m) /S(c) ratio for a given porosity in drought-acclimated plants suggests that the decrease in gm was due to an increased cell wall thickness. Stomatal conductance was also affected by drought-associated changes in the morphological properties of stomata, in an accession and treatment-dependent manner. The results confirm the presence of advantageous physiological traits in the response to drought stress in Mediterranean accessions of tomato, and relate them to particular changes in the leaf anatomical properties, suggesting specific adaptive processes operating at the leaf anatomical level. © 2012 Blackwell Publishing Ltd.
Balsamo, Ronald A; Bauer, Aaron M; Davis, Stephen D; Rice, Benita M
2003-01-01
Leaf tensile properties were compared between the mesic deciduous tree Prunus serrulata (var. "Kwanzan") and the xeric and sclerophyllous chaparral evergreen shrub Heteromeles arbutifolia (M. Roem). All values for biomechanical parameters for H. arbutifolia were significantly greater than those of P. serrulata. The fracture planes also differed between the two species with P. serrulata fracturing along the secondary veins, while H. arbutifolia most often fractured across the leaf irrespective of the vein or mesophyll position, thus yielding qualitative differences in the stress-strain curves of the two species. Anatomically, P. serrulata exhibits features typical for a deciduous mesophytic leaf such as a thin cuticle, a single layer of palisade mesophyll, isodiametric spongy mesophyll, and extensive reticulation of the laminar veins. Heteromeles arbutifolia leaves, however, are typically two- to three-fold thicker with a 35% higher dry mass/fresh mass ratio. The vascular tissue is restricted to the interface of the palisade and spongy mesophyll near the center of the leaf. Both epidermal layers have a thick cuticle. The palisade mesophyll is tightly packed and two to three layers thick. The spongy mesophyll cells are ameboid in shape and tightly interlinked both to other spongy cells as well as to the overlying palisade layer. We conclude that the qualitative and quantitative biomechanical differences between the leaves of these two species are likely due to a complex interaction of internal architectural arrangement and the physical/chemical differences in the properties of their respective cell walls. These studies illustrate the importance that morphological and anatomical correlates play with mechanical behavior in plant material and ultimately reflect adaptations present in the leaves of chaparral shrubs that are conducive to surviving in arid environments.
Hunsche, Mauricio; Blanke, Michael M; Noga, Georg
2010-08-15
A higher frequency of hail storms, possibly due to climate change, has led to increased installation of hail nets worldwide. The objective of the present work was to investigate potential effects of the microclimate under these hail nets on micromorphological characteristics of the leaves and adaxial leaf cuticles. Leaves of apple cultivars 'Pinova' and 'Fuji' grown on trees under white (highly translucent) or red-black (low transmittance) hail nets or on uncovered (control) trees were evaluated in June, August, September and October. The microclimate under the colored hail nets had no impact on leaf micromorphology, amount of cuticular wax, or leaf thickness. Similarly, no differences in thickness and permeability for calcium could be established between cuticles of leaves grown on trees under the two types of hail nets or uncovered trees. For all evaluated parameters, significant differences were detected between the two cultivars examined. In both cultivars, leaf wax synthesis followed a characteristic curve, increasing from the first to the second evaluation, and then decreasing continuously without affecting cuticular penetration of calcium. Overall, our results show that a reduction of the hail nets by 6-10% in both light and humidity was insufficient to influence the surface properties of apple leaves and permeability of cuticles. This may suggest that pest management strategies, i.e. formulation of agrochemicals, their application and dose, do not need to be adapted when used under hail nets. Overall, the present results indicate that the microclimatic changes brought about by colored hail nets are sufficient to enhance the vegetative growth and induce the 'shade avoidance syndrome', but do not appear to affect the leaf cuticular properties. Copyright 2010 Elsevier GmbH. All rights reserved.
Estimates of Leaf Relative Water Content from Optical Polarization Measurements
NASA Astrophysics Data System (ADS)
Dahlgren, R. P.; Vanderbilt, V. C.; Daughtry, C. S. T.
2017-12-01
Remotely sensing the water status of plant canopies remains a long term goal of remote sensing research. Existing approaches to remotely sensing canopy water status, such as the Crop Water Stress Index (CWSI) and the Equivalent Water Thickness (EWT), have limitations. The CWSI, based upon remotely sensing canopy radiant temperature in the thermal infrared spectral region, does not work well in humid regions, requires estimates of the vapor pressure deficit near the canopy during the remote sensing over-flight and, once stomata close, provides little information regarding the canopy water status. The EWT is based upon the physics of water-light interaction in the 900-2000nm spectral region, not plant physiology. Our goal, development of a remote sensing technique for estimating plant water status based upon measurements in the VIS/NIR spectral region, would potentially provide remote sensing access to plant dehydration physiology - to the cellular photochemistry and structural changes associated with water deficits in leaves. In this research, we used optical, crossed polarization filters to measure the VIS/NIR light reflected from the leaf interior, R, as well as the leaf transmittance, T, for 78 corn (Zea mays) and soybean (Glycine max) leaves having relative water contents (RWC) between 0.60 and 0.98. Our results show that as RWC decreases R increases while T decreases. Our results tie R and T changes in the VIS/NIR to leaf physiological changes - linking the light scattered out of the drying leaf interior to its relative water content and to changes in leaf cellular structure and pigments. Our results suggest remotely sensing the physiological water status of a single leaf - and perhaps of a plant canopy - might be possible in the future.
Plant morphological characteristics and resistance to simulated trampling
NASA Astrophysics Data System (ADS)
Sun, Dan; Liddle, Michael J.
1993-07-01
The relationship between responses of plants to trampling and their morphological characteristics was studied in a glasshouse experiment. Thirteen species with four different growth forms were used in this experiment. They were five tussock species. Chloris gayana, Eragrostis tenuifolia, Lolium perenne, Panicum maximum, and Sporobolus elongatus; three prostate grasses, Axonopus compressus, Cynodon dactylon, and Trifolium repens, two herbaceous species, Daucus glochidiatus and Hypochoeris radicata; and three woody species, Acacia macradenia, Acrotriche aggregata, and Sida rhombifolia. These species were subjected to three levels of simulated trampling. For each species, measurements were taken of aboveground biomass, root biomass, leaf length, leaf width, leaf thickness, leaf number, broken leaf number and plant height. Overall, these measurements were greatest in the control plants, moderate in the level of light trampling, and the lowest in the level of heavy trampling. Biomass was used as a basis of the assessment of plant resistance to trampling. Three tussock species, Eragrostis tenuifolia, Lolium perenne, and Sporobolus elongatus had a high resistance. Woody and erect herbaceous plants were more intolerant to trampling. There appear to be two processes involved in the reduction of the plant parameters: direct physical damage with portions of the plants detached, and physiological changes, which slow down vegetative growth rates. Plant height was found to be the most sensitive indicator of trampling damage.
Pereira, Marcio Paulo; Corrêa, Felipe Fogaroli; de Castro, Evaristo Mauro; de Oliveira, Jean Paulo Vitor; Pereira, Fabricio José
2017-11-01
Previous works show the development of thicker leaves on tolerant plants growing under cadmium (Cd 2+ ) contamination. The aim of this study was to evaluate the Cd 2+ effects on the leaf meristems of the tolerant species Schinus molle. Plants were grown in nutrient solution containing 0, 10, and 50 μM of Cd 2+ . Anatomical analysis was performed on leaf primordia sampled at regular time intervals. Under the lowest Cd 2+ level (10 μM), increased ground meristem thickness, diameter of the cells, cell elongation rate, and leaf dry mass were found. However, 50 μM of Cd 2+ reduced all these variables. In addition, the ground meristem cells became larger when exposed to any Cd 2+ level. The epidermis, palisade parenchyma, and vascular tissues developed earlier in Cd 2+ -exposed leaves. The modifications found on the ground meristem may be related to the development of thicker leaves on S. molle plants exposed to low Cd 2+ levels. Furthermore, older leaves showed higher Cd 2+ content when compared to the younger ones, preventing the Cd 2+ toxicity to these leaves. Thus, low Cd 2+ concentrations change the ground meristem structure and function reflecting on the development of thicker and enhanced leaves.
Boesgaard, Kristine S; Mikkelsen, Teis N; Ro-Poulsen, Helge; Ibrom, Andreas
2013-07-01
There is an ongoing debate on how to correct leaf gas exchange measurements for the unavoidable diffusion leakage that occurs when measurements are done in non-ambient CO2 concentrations. In this study, we present a theory on how the CO2 diffusion gradient over the gasket is affected by leaf-mediated pores (LMP) and how LMP reduce diffusive exchange across the gaskets. Recent discussions have so far neglected the processes in the quasi-laminar boundary layer around the gasket. Counter intuitively, LMP reduce the leakage through gaskets, which can be explained by assuming that the boundary layer at the exterior of the cuvette is enriched with air from the inside of the cuvette. The effect can thus be reduced by reducing the boundary layer thickness. The theory clarifies conflicting results from earlier studies. We developed leaf adaptor frames that eliminate LMP during measurements on delicate plant material such as grass leaves with circular cross section, and the effectiveness is shown with respiration measurements on a harp of Deschampsia flexuosa leaves. We conclude that the best solution for measurements with portable photosynthesis systems is to avoid LMP rather than trying to correct for the effects. © 2013 John Wiley & Sons Ltd.
Stress optimization of leaf-spring crossed flexure pivots for an active Gurney flap mechanism
NASA Astrophysics Data System (ADS)
Freire Gómez, Jon; Booker, Julian D.; Mellor, Phil H.
2015-04-01
The EU's Green Rotorcraft programme is pursuing the development of a functional and airworthy Active Gurney Flap (AGF) for a full-scale helicopter rotor blade. Interest in the development of this `smart adaptive rotor blade' technology lies in its potential to provide a number of aerodynamic benefits, which would in turn translate into a reduction in fuel consumption and noise levels. The AGF mechanism selected employs leaf-spring crossed flexure pivots. These provide important advantages over bearings as they are not susceptible to seizing and do not require maintenance (i.e. lubrication or cleaning). A baseline design of this mechanism was successfully tested both in a fatigue rig and in a 2D wind tunnel environment at flight-representative deployment schedules. For full validation, a flight test would also be required. However, the severity of the in-flight loading conditions would likely compromise the mechanical integrity of the pivots' leaf-springs in their current form. This paper investigates the scope for stress reduction through three-dimensional shape optimization of the leaf-springs of a generic crossed flexure pivot. To this end, a procedure combining a linear strain energy formulation, a parametric leaf-spring profile definition and a series of optimization algorithms is employed. The resulting optimized leaf-springs are proven to be not only independent of the angular rotation at which the pivot operates, but also linearly scalable to leaf-springs of any length, minimum thickness and width. Validated using non-linear finite element analysis, the results show very significant stress reductions relative to pivots with constant cross section leaf-springs, of up to as much as 30% for the specific pivot configuration employed in the AGF mechanism. It is concluded that shape optimization offers great potential for reducing stress in crossed flexure pivots and, consequently, for extending their fatigue life and/or rotational range.
NASA Astrophysics Data System (ADS)
Velázquez-Rosas, Noé; Barradas, Víctor L.; Vázquez-Santana, Sonia; Cruz-Ortega, Rocio; García-Jiménez, Federico; Toledo-Alvarado, Edith; Orozco-Segovia, Alma
2010-11-01
The physiological, anatomical and optical leaf properties relative to photosynthetically active (PAR) and ultraviolet (UV-B) radiation were assessed in Ticodendron incognitum, Drimys granadensis, Podocarpus matudae var. macrocarpus and Vaccinium consanguineum, growing along an elevation gradient (1520-2550 m asl) in a montane cloud forest in México. PAR and UV-B absorptance, transmittance and reflectance, UV-B absorptance by foliar compounds, chlorophylls, carotenoids, leaf nitrogen, leaf mass per area, leaf blades, cuticles, epidermis and parenchymas thickness were measured. PAR absorptance efficiencies were calculated. Among the evaluated morpho-functional traits, the studied species displayed different patterns of variation with elevation. Leaf traits could be explained in part by changes in elevation or the distribution of PAR and UV-B in the elevation gradient. Ticodendron and Drimys leaf traits were likely determined by two cloud banks located at 1940 and 2380 m. In Vaccinium, eight traits were related to elevation and PAR or UV-B. Contrary to this, in Podocarpus, most of the nine leaf traits could be explained by only one of these factors. The morphological traits of the studied species were similar to those of species growing in other oligotrophic ecosystems. Significant differences between sun exposed and shade leaves were limited to particular elevations or to particular traits of each species. Vaccinium showed more significant differences between sun and shade leaves than did the other species growing along the gradient. The morpho-functional traits measured in Podocarpus and Vaccinium showed that, some leaf traits did not change linearly with elevation or PAR. At elevation levels where species co-occur, the species ranking with respect to evaluated traits varied from trait to trait. This indicate that each species copes with light and other environmental factors, that vary with elevation, according to its morpho-functional plasticity and susceptibility to these factors; which may determine the distribution of these species along the gradient.
NASA Astrophysics Data System (ADS)
Zarco-Tejada, P. J.; Miller, J. R.; Pedrós, R.; Verhoef, W.; Berger, M.
2006-06-01
The FluorMODgui Graphic User Interface (GUI) software package developed within the frame of the FluorMOD project Development of a Vegetation Fluorescence Canopy Model is presented in this manuscript. The FluorMOD project was launched in 2002 by the European Space Agency (ESA) to advance the science of vegetation fluorescence simulation through the development and integration of leaf and canopy fluorescence models based on physical methods. The design of airborne or space missions dedicated to the measurement of solar-induced chlorophyll fluorescence using remote-sensing instruments require physical methods for quantitative feasibility analysis and sensor specification studies. The FluorMODgui model developed as part of this project is designed to simulate the effects of chlorophyll fluorescence at leaf and canopy levels using atmospheric inputs, running the leaf model, FluorMODleaf, and the canopy model, FluorSAIL, independently, through a coupling scheme, and by a multiple iteration protocol to simulate changes in the viewing geometry and atmospheric characteristics. Inputs for the FluorMODleaf model are the number of leaf layers, chlorophyll a+ b content, water equivalent thickness, dry matter content, fluorescence quantum efficiency, temperature, species type, and stoichiometry. Inputs for the FluorSAIL canopy model are a MODTRAN-4 6-parameter spectra or measured direct horizontal irradiance and diffuse irradiance spectra, a soil reflectance spectrum, leaf reflectance & transmittance spectra and a excitation-fluorescence response matrix in upward and downward directions (all from FluorMODleaf), 2 PAR-dependent coefficients for the fluorescence response to light level, relative azimuth angle and viewing zenith angle, canopy leaf area index, leaf inclination distribution function, and a hot spot parameter. Outputs available in the 400-1000 nm spectral range from the graphical user interface, FluorMODgui, are the leaf spectral reflectance and transmittance, and the canopy reflectance, with and without fluorescence effects. In addition, solar and sky irradiance on the ground, radiance with and without fluorescence on the ground, and top-of-atmosphere (TOA) radiances for bare soil and surroundings same as target are also produced. The models and documentation regarding the FluorMOD project can be downloaded at http://www.ias.csic.es/fluormod.
Coordination of leaf structure and gas exchange along a height gradient in a tall conifer.
Woodruff, D R; Meinzer, F C; Lachenbruch, B; Johnson, D M
2009-02-01
The gravitational component of water potential and frictional resistance during transpiration lead to substantial reductions in leaf water potential (Psi(l)) near the tops of tall trees, which can influence both leaf growth and physiology. We examined the relationships between morphological features and gas exchange in foliage collected near the tops of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees of different height classes ranging from 5 to 55 m. This sampling allowed us to investigate the effects of tree height on leaf structural characteristics in the absence of potentially confounding factors such as irradiance, temperature, relative humidity and branch length. The use of cut foliage for measurement of intrinsic gas-exchange characteristics allowed identification of height-related trends without the immediate influences of path length and gravity. Stomatal density, needle length, needle width and needle area declined with increasing tree height by 0.70 mm(-2) m(-1), 0.20 mm m(-1), 5.9 x 10(-3) mm m(-1) and 0.012 mm(2) m(-1), respectively. Needle thickness and mesophyll thickness increased with tree height by 4.8 x 10(-2) mm m(-1) and 0.74 microm m(-1), respectively. Mesophyll conductance (g(m)) and CO(2) assimilation in ambient [CO(2)] (A(amb)) decreased by 1.1 mmol m(-2) s(-1) per m and 0.082 micromol m(-2) s(-1) per m increase in height, respectively. Mean reductions in g(m) and A(amb) of foliage from 5 to 55 m were 47% and 42%, respectively. The observed trend in A(amb) was associated with g(m) and several leaf anatomic characteristics that are likely to be determined by the prevailing vertical tension gradient during foliar development. A linear increase in foliar delta(13)C values with height (0.042 per thousand m(-1)) implied that relative stomatal and mesophyll limitations of photosynthesis in intact shoots increased with height. These data suggest that increasing height leads to both fixed structural constraints on leaf gas exchange and dynamic constraints related to prevailing stomatal behavior.
Coming of Age: Polarization as a Probe of Plant Canopy Water Status
NASA Astrophysics Data System (ADS)
Vanderbilt, V. C.; Daughtry, C. S. T.; Kupinski, M.; Bradley, C. L.; Dahlgren, R. P.
2015-12-01
We tested the hypothesis that the relative water content (RWC) of the sunlit leaves in a plant canopy may be estimated from polarized canopy imagery. Recently (IGARSS, July 27-31, 2015, Milan, Italy), we reported the results of laboratory polarization measurements of single detached leaves during dry down. We found that RWC was linearly related to the ratio of the reflectance of the interior of the leaf and the leaf transmittance. Here we report application of the laboratory results to estimate RWC for sunlit leaves in a plant canopy. Using a commercial-off-the-shelf (COTS) Nikon 810 camera with Nikkor 300 mm lens and Polaroid type HN-22 linear polarizer, we photographed in the principle plane a plant canopy displaying a gradient of water stress and collected, at each of multiple points along the gradient, two images, one with the polarization filter oriented for maximum scene response and a second with the filter oriented for minimum scene response. We converted the digital values in the two images to reflectance factor with reference to images of a white, flat, horizontal Spectralon surface. We classified the polarization imagery, identifying reflecting leaves, transmitting leaves, other sunlit vegetation and shadows. For each image pair we normalized the leaf internal reflectance by dividing by the cosine of the angle of incidence of the sunlight on the leaf, selected the leaf maximum transmittance in the scene and divided to obtain the ratio reflectance/transmittance, which we compared with leaf RWC. We determined the leaf relative water content by harvesting a section of leaf and immediately placing it in a sealed container in an ice chest. Later in the laboratory the leaf sample was weighed, rehydrated, weighed, dried and again weighed. RWC was determined using the standard formula.Our experimental results support our hypothesis, suggesting that the RWC of sunlit leaves in a plant canopy may be estimated from analysis of polarization imagery collected by a COTS camera system. Unlike remotely sensed estimates of canopy equivalent water thickness, our estimates of the RWC of sunlit canopy leaves provide leaf physiological information. We propose RWC estimates based upon sunlit leaves are more relevant to assessing the water status of a plant canopy than would be RWC estimates based upon large FOV canopy measurements.
Coming of Age: Polarization as a Probe of Plant Canopy Water Status
NASA Technical Reports Server (NTRS)
Vanderbilt, Vern C.; Daughtry, Craig S. T.; Kupinski, Meredith; Bradley, Christine Lavella; Dahlgren, Robert P.
2015-01-01
We tested the hypothesis that the relative water content (RWC) of the sunlit leaves in a plant canopy may be estimated from polarized canopy imagery. Recently (IGARSS, July 27-31, 2015, Milan, Italy), we reported the results of laboratory polarization measurements of single detached leaves during dry down. We found that RWC was linearly related to the ratio of the reflectance of the interior of the leaf and the leaf transmittance. Here we report application of the laboratory results to estimate RWC for sunlit leaves in a plant canopy. Using a commercial-off-the-shelf (COTS) Nikon 810 camera with Nikkor 300 mm lens and Polaroid type HN-22 linear polarizer, we photographed in the principle plane a plant canopy displaying a gradient of water stress and collected, at each of multiple points along the gradient, two images, one with the polarization filter oriented for maximum scene response and a second with the filter oriented for minimum scene response. We converted the digital values in the two images to reflectance factor with reference to images of a white, flat, horizontal Spectralon surface. We classified the polarization imagery, identifying reflecting leaves, transmitting leaves, other sunlit vegetation and shadows. For each image pair we normalized the leaf internal reflectance by dividing by the cosine of the angle of incidence of the sunlight on the leaf, selected the leaf maximum transmittance in the scene and divided to obtain the ratio reflectance/transmittance, which we compared with leaf RWC. We determined the leaf relative water content by harvesting a section of leaf and immediately placing it in a sealed container in an ice chest. Later in the laboratory the leaf sample was weighed, rehydrated, weighed, dried and again weighed. RWC was determined using the standard formula. Our experimental results support our hypothesis, suggesting that the RWC of sunlit leaves in a plant canopy may be estimated from analysis of polarization imagery collected by a COTS camera system. Unlike remotely sensed estimates of canopy equivalent water thickness, our estimates of the RWC of sunlit canopy leaves provide leaf physiological information. We propose RWC estimates based upon sunlit leaves are more relevant to assessing the water status of a plant canopy than would be RWC estimates based upon large FOV canopy measurements.
Wang, Jing; Wen, Xuefa; Zhang, Xinyu; Li, Shenggong; Zhang, Da-Yong
2018-05-09
Leaf photosynthetic capacity is mainly constrained by nitrogen (N) and phosphorus (P). Little attention has been given to the photosynthetic capacity of mature forests with high calcium (Ca) and magnesium (Mg) in the Karst critical zone. We measured light-saturated net photosynthesis (A sat ), photosynthetic capacity (maximum carboxylation rate [V cmax ], and maximum electron transport rate [J max ]) as well as leaf nutrient contents (N, P, Ca, Mg, potassium [K], and sodium [Na]), leaf mass per area (LMA), and leaf thickness (LT) in 63 dominant plants in a mature subtropical forest in the Karst critical zone in southwestern China. Compared with global data, plants showed higher A sat for a given level of P. V cmax and J max were mainly co-regulated by N, P, Mg, and LT. The ratios of V cmax to N or P, and J max to N or P were significantly positively related to Mg. We speculate that the photosynthetic capacity of Karst plants can be modified by Mg because Mg can enhance photosynthetic N and P use efficiency.
A Theoretical Model of Jigsaw-Puzzle Pattern Formation by Plant Leaf Epidermal Cells.
Higaki, Takumi; Kutsuna, Natsumaro; Akita, Kae; Takigawa-Imamura, Hisako; Yoshimura, Kenji; Miura, Takashi
2016-04-01
Plant leaf epidermal cells exhibit a jigsaw puzzle-like pattern that is generated by interdigitation of the cell wall during leaf development. The contribution of two ROP GTPases, ROP2 and ROP6, to the cytoskeletal dynamics that regulate epidermal cell wall interdigitation has already been examined; however, how interactions between these molecules result in pattern formation remains to be elucidated. Here, we propose a simple interface equation model that incorporates both the cell wall remodeling activity of ROP GTPases and the diffusible signaling molecules by which they are regulated. This model successfully reproduces pattern formation observed in vivo, and explains the counterintuitive experimental results of decreased cellulose production and increased thickness. Our model also reproduces the dynamics of three-way cell wall junctions. Therefore, this model provides a possible mechanism for cell wall interdigitation formation in vivo.
Ookawa, Taiichiro; Inoue, Kazuya; Matsuoka, Makoto; Ebitani, Takeshi; Takarada, Takeshi; Yamamoto, Toshio; Ueda, Tadamasa; Yokoyama, Tadashi; Sugiyama, Chisato; Nakaba, Satoshi; Funada, Ryo; Kato, Hiroshi; Kanekatsu, Motoki; Toyota, Koki; Motobayashi, Takashi; Vazirzanjani, Mehran; Tojo, Seishu; Hirasawa, Tadashi
2014-01-01
Lignin modification has been a breeding target for the improvements of forage digestibility and energy yields in forage and bioenergy crops, but decreased lignin levels are often accompanied by reduced lodging resistance. The rice mutant gold hull and internode2 (gh2) has been identified to be lignin deficient. GH2 has been mapped to the short arm of chromosome 2 and encodes cinnamyl-alcohol dehydrogenase (CAD). We developed a long-culm variety, ‘Leaf Star’, with superior lodging resistance and a gh phenotype similar to one of its parents, ‘Chugoku 117’. The gh loci in Leaf Star and Chugoku 117 were localized to the same region of chromosome 2 as the gh2 mutant. Leaf Star had culms with low lignin concentrations due to a natural mutation in OsCAD2 that was not present in Chugoku 117. However, this variety had high culm strength due to its strong, thick culms. Additionally, this variety had a thick layer of cortical fiber tissue with well-developed secondary cell walls. Our results suggest that rice can be improved for forage and bioenergy production by combining superior lodging resistance, which can be obtained by introducing thick and stiff culm traits, with low lignin concentrations, which can be obtained using the gh2 variety. PMID:25298209
Blade life span, structural investment, and nutrient allocation in giant kelp.
Rodriguez, Gabriel E; Reed, Daniel C; Holbrook, Sally J
2016-10-01
The turnover of plant biomass largely determines the amount of energy flowing through an ecosystem and understanding the processes that regulate turnover has been of interest to ecologists for decades. Leaf life span theory has proven useful in explaining patterns of leaf turnover in relation to resource availability, but the predictions of this theory have not been tested for macroalgae. We measured blade life span, size, thickness, nitrogen content, pigment content, and maximum photosynthetic rate (P max) in the giant kelp (Macrocystis pyrifera) along a strong resource (light) gradient to test whether the predictions of leaf life span theory applied to this alga. We found that shorter blade life spans and larger blade areas were associated with increased light availability. In addition, nitrogen and P max decreased with blade age, and their decrease was greater in shorter lived blades. These observations are generally consistent with patterns observed for higher plants and the prevailing theory of leaf life span. By contrast, variation observed in pigments of giant kelp was inconsistent with that predicted by leaf life span theory, as blades growing in the most heavily shaded portion of the forest had the lowest chlorophyll content. This result may reflect the dual role of macroalgal blades in carbon fixation and nutrient absorption and the ability of giant kelp to modify blade physiology to optimize the acquisition of light and nutrients. Thus, the marine environment may place demands on resource acquisition and allocation that have not been previously considered with respect to leaf life span optimization.
da Silva, Vicente Elício Porfiro Sales Gonçalves; Buarque, Patrícia Marques Carneiro; Ferreira, Wanessa Nepomuceno; Buarque, Hugo Leonardo de Brito; Silva, Maria Amanda Menezes
2018-04-24
This work aimed to evaluate the effect of sewage sludge application as fertilizer on the plasticity of functional characteristics of species commonly found in the Caatinga. The research was developed in the nursery of the Federal Institute of Education, Science and Technology of Ceará (IFCE), Quixadá campus, located in northeastern Brazil. Three treatments were applied: raw sludge, sanitized sludge, and no manipulation. In each treatment, five species were planted, each with five individuals, totaling 75 individuals, which were tagged, and 4 months after germination, they were destroyed to obtain dry matter content (TMSF) from leaf, stem (TMSC), fine root (TMSRF), and thick root (TMSRG); leaf area; height and diameter of the seedling; and length above and below the ground. The sanitized sludge was responsible for giving higher values for leaf area, height of the seedlings, and diameter and length of stem and root. However, the dry matter content of the fine roots was higher in the treatment without manipulation. At the community level, as TMSRG increased, TMSC also increased, the same occurred between TMSRG and TMSRF, TMSC and TMSRF, and stem length and leaf area. In the treatment without manipulation, there was a positive correlation between leaf area, height and plant diameter, and negative correlation between root length and plant diameter. Thus, it can be concluded that the use of sanitized sludge is a good tool to increase the availability of soil resources, conferring to individuals' greater dry matter content, greater leaf area, and higher height and diameter above the ground.
The Role of Liuwei Dihuang Pills and Ginkgo Leaf Tablets in Treating Diabetic Complications.
Zhao, Yue; Yu, Jiangyi; Liu, Jingshun; An, Xiaofei
2016-01-01
Objective. To observe the clinical prophylactic and therapeutic efficacy of Liuwei Dihuang Pills and Ginkgo Leaf Tablets for type 2 diabetic vascular complications. Methods. It was a randomized, double-blind and placebo-controlled clinical trial. 140 outpatients with type 2 diabetes were recruited and randomly divided into the treatment group and control group. The two groups were given basic therapy (management of blood sugar, blood pressure, etc.). Additionally, the treatment group was given Liuwei Dihuang Pills and Ginkgo Leaf Tablets, while the control group was given Liuwei Dihuang Pills and Ginkgo Leaf Tablets placebos. All subjects were followed up for consecutive 36 months and observed monthly. The clinical data as urinary microalbumin to urinary creatinine ratio (Umalb/cr), carotid intima-media thickness (IMT), diabetic nephropathy (DN) and diabetic retinopathy (DR) prevalence, cardiovascular and cerebrovascular events, blood glucose, and blood pressure were collected and analyzed statistically. Results. After 36-month treatment, the Umalb/cr level and DN and DR prevalence in treatment group were all significantly lower than control group ( P < 0.05). However, the IMT level and the incidence of cardiovascular and cerebrovascular events were not significantly different between the two groups ( P > 0.05). Conclusions. Liuwei Dihuang Pills and Ginkgo Leaf Tablets are beneficial to diabetic microvascular complications, while the efficacy to diabetic macrovascular complications needs more observations.
Onoda, Yusuke; Schieving, Feike; Anten, Niels P. R.
2015-01-01
Plant leaves commonly exhibit a thin, flat structure that facilitates a high light interception per unit mass, but may increase risks of mechanical failure when subjected to gravity, wind and herbivory as well as other stresses. Leaf laminas are composed of thin epidermis layers and thicker intervening mesophyll layers, which resemble a composite material, i.e. sandwich structure, used in engineering constructions (e.g. airplane wings) where high bending stiffness with minimum weight is important. Yet, to what extent leaf laminas are mechanically designed and behave as a sandwich structure remains unclear. To resolve this issue, we developed and applied a novel method to estimate stiffness of epidermis- and mesophyll layers without separating the layers. Across a phylogenetically diverse range of 36 angiosperm species, the estimated Young’s moduli (a measure of stiffness) of mesophyll layers were much lower than those of the epidermis layers, indicating that leaf laminas behaved similarly to efficient sandwich structures. The stiffness of epidermis layers was higher in evergreen species than in deciduous species, and strongly associated with cuticle thickness. The ubiquitous nature of sandwich structures in leaves across studied species suggests that the sandwich structure has evolutionary advantages as it enables leaves to be simultaneously thin and flat, efficiently capturing light and maintaining mechanical stability under various stresses. PMID:25675956
Wentworth, Mark; Murchie, Erik H; Gray, Julie E; Villegas, Daniel; Pastenes, Claudio; Pinto, Manuel; Horton, Peter
2006-01-01
The photosynthetic characteristics of two contrasting varieties of common bean (Phaseolus vulgaris) have been determined. These varieties, Arroz and Orfeo, differ in their productivity under stress conditions, resistance to drought stress, and have distinctly different stomatal behaviour. When grown under conditions of high irradiance and high temperature, both varieties displayed evidence of photosynthetic acclimation at the chloroplast level-there was an increase in chlorophyll a/b ratio, a decreased content of Lhcb proteins, and an increased xanthophyll cycle pool size. Both varieties also showed reduced chlorophyll content on a leaf area basis and a decrease in leaf area. Both varieties showed an increase in leaf thickness but only Arroz showed the characteristic elongated palisade cells in the high light-grown plants; Orfeo instead had a larger number of smaller, rounded cells. Differences were found in stomatal development: whereas Arroz showed very little change in stomatal density, Orfeo exhibited a large increase, particularly on the upper leaf surface. It is suggested that these differences in leaf cell structure and stomatal density give rise to altered rates of photosynthesis and stomatal conductance. Whereas, Arroz had the same photosynthetic rate in plants grown at both low and high irradiance, Orfeo showed a higher photosynthetic capacity at high irradiance. It is suggested that the higher yield of Orfeo compared with Arroz under stress conditions can be explained, in part, by these cellular differences.
PhytoBeta imager: a positron imager for plant biology
NASA Astrophysics Data System (ADS)
Weisenberger, Andrew G.; Kross, Brian; Lee, Seungjoon; McKisson, John; McKisson, J. E.; Xi, Wenze; Zorn, Carl; Reid, Chantal D.; Howell, Calvin R.; Crowell, Alexander S.; Cumberbatch, Laurie; Fallin, Brent; Stolin, Alexander; Smith, Mark F.
2012-07-01
Several positron emitting radioisotopes such as 11C and 13N can be used in plant biology research. The 11CO2 tracer is used to facilitate plant biology research toward optimization of plant productivity, biofuel development and carbon sequestration in biomass. Positron emission tomography (PET) imaging has been used to study carbon transport in live plants using 11CO2. Because plants typically have very thin leaves, little medium is present for the emitted positrons to undergo an annihilation event. The emitted positrons from 11C (maximum energy 960 keV) could require up to approximately 4 mm of water equivalent material for positron annihilation. Thus many of the positrons do not annihilate inside the leaf, resulting in limited sensitivity for PET imaging. To address this problem we have developed a compact beta-positive, beta-minus particle imager (PhytoBeta imager) for 11CO2 leaf imaging. The detector is based on a Hamamatsu H8500 position sensitive photomultiplier tube optically coupled via optical grease to a 0.5 mm thick Eljen EJ-212 plastic scintillator. The detector is equipped with a flexible arm to allow its placement and orientation over or under the leaf to be studied while maintaining the leaf's original orientation. To test the utility of the system the detector was used to measure carbon translocation in a leaf of the spicebush (Lindera benzoin) under two transient light conditions.
PhytoBeta imager: a positron imager for plant biology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisenberger, Andrew G; Lee, Seungjoon; McKisson, John
2012-06-01
Several positron emitting radioisotopes such as 11C and 13N can be used in plant biology research. The 11CO2 tracer is used to facilitate plant biology research toward optimization of plant productivity, biofuel development and carbon sequestration in biomass. Positron emission tomography (PET) imaging has been used to study carbon transport in live plants using 11CO2. Because plants typically have very thin leaves, little medium is present for the emitted positrons to undergo an annihilation event. The emitted positrons from 11C (maximum energy 960 keV) could require up to approximately 4 mm of water equivalent material for positron annihilation. Thus manymore » of the positrons do not annihilate inside the leaf, resulting in limited sensitivity for PET imaging. To address this problem we have developed a compact beta-positive, beta-minus particle imager (PhytoBeta imager) for 11CO2 leaf imaging. The detector is based on a Hamamatsu H8500 position sensitive photomultiplier tube optically coupled via optical grease to a 0.5 mm thick Eljen EJ-212 plastic scintillator. The detector is equipped with a flexible arm to allow its placement and orientation over or under the leaf to be studied while maintaining the leaf's original orientation. To test the utility of the system the detector was used to measure carbon translocation in a leaf of the spicebush (Lindera benzoin) under two transient light conditions.« less
A Theoretical Model of Jigsaw-Puzzle Pattern Formation by Plant Leaf Epidermal Cells
Higaki, Takumi; Kutsuna, Natsumaro; Akita, Kae; Takigawa-Imamura, Hisako; Yoshimura, Kenji; Miura, Takashi
2016-01-01
Plant leaf epidermal cells exhibit a jigsaw puzzle–like pattern that is generated by interdigitation of the cell wall during leaf development. The contribution of two ROP GTPases, ROP2 and ROP6, to the cytoskeletal dynamics that regulate epidermal cell wall interdigitation has already been examined; however, how interactions between these molecules result in pattern formation remains to be elucidated. Here, we propose a simple interface equation model that incorporates both the cell wall remodeling activity of ROP GTPases and the diffusible signaling molecules by which they are regulated. This model successfully reproduces pattern formation observed in vivo, and explains the counterintuitive experimental results of decreased cellulose production and increased thickness. Our model also reproduces the dynamics of three-way cell wall junctions. Therefore, this model provides a possible mechanism for cell wall interdigitation formation in vivo. PMID:27054467
Yokoi, Michinori; Shimoda, Mitsuya
2017-03-01
A low-density polyethylene (LDPE) membrane pouch method was developed to extract volatile flavor compounds from tobacco leaf. Tobacco leaf suspended in water was enclosed in a pouch prepared from a LDPE membrane of specific gravity 0.92 g/cm3 and 0.03 mm thickness and then extracted with diethyl ether. In comparison with direct solvent extraction, LDPE membrane excluded larger and higher boiling point compounds which could contaminate a gas chromatograph inlet and damage a column. Whilst being more convenient than a reduced-pressure steam distillation, it could extract volatile flavor compounds of wide range of molecular weight and polarity. Repeatabilities in the extracted amounts were ranged from 0.38% of 2.3-bipyridyl to 26% of β-ionone, and average value of 39 compounds was 5.9%. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Or, Dani; Assouline, Shmuel; Aminzadeh, Milad; Haghighi, Erfan; Schymanski, Stan; Lehmann, Peter
2014-05-01
Land plants developed a dynamically gas-permeable layer at their leaf surfaces to allow CO2 uptake for photosynthesis while controlling water vapor loss through numerous adjustable openings (stomata) in the impervious leaf epidermis. Details of stomata structure, density and function may vary greatly among different plant families and respond to local environmental conditions, yet they share basic traits in dynamically controlling gaseous exchange rates by varying stomata apertures. We implement a pore scale gas diffusion model to quantitatively interpret the functionality of different combinations of stomata size and pattern on leaf gas exchange and thermal management based on data from fossil records and contemporary data sets. Considering all available data we draw several general conclusions concerning stomata design considerations: (1) the sizes and densities of stomata in the available fossil record leaves were designed to evaporate at rates in the range 0.75≤e/e0 ≤0.99 (relative to free water evaporation); (2) examination of evaporation curves show that for a given stomata size, the density (jointly defining the leaf evaporating area when fully open) was chosen to enable a high sensitivity in reducing evaporation rate with incremental stomatal closure, nevertheless, results show the design includes safety margins to account for different wind conditions (boundary layer thickness); (3) scaled for mean vapor flux, the size of stomata plays a minor role in the uniformity of leaf thermal field for a given stomata density. These principles enable rationale assessment of plant response to raising CO2, and provide a physical framework for considering the consequences of different stomata patterns (patchy) on leaf gas exchange (and thermal regime). In contrast with present quantitative description of traits and functionality of these dynamic covers in terms of gaseous diffusion resistance (or conductance), where stomata size, density and spatial pattern are lumped into a single effective resistance parameter, the present approach enables derivation of nuanced insights and offers predictive capabilities that link changes in stomata structure and geometrical attributes to quantifying environmental influences and feedbacks on leaf structure and function.
Li, Chunyan; Liu, Biao; Li, Chunhua; Zeng, Qing; Hao, Mingzhuo; Han, Zhengmin; Zhu, Jianguo; Li, Xiaogang; Shen, Wenjing
2013-01-01
Background Elevated tropospheric ozone severely affects not only yield but also the morphology, structure and physiological functions of plants. Because of concerns regarding the potential environmental risk of transgenic crops, it is important to monitor changes in transgenic insect-resistant rice under the projected high tropospheric ozone before its commercial release. Methodology/Principal Findings Using a free-air concentration enrichment (FACE) system, we investigated the changes in leaf morphology and leaf ultrastructure of two rice varieties grown in plastic pots, transgenic Bt Shanyou 63 (Bt-SY63, carrying a fusion gene of cry1Ab and cry1Ac) and its non-transgenic counterpart (SY63), in elevated O3 (E-O3) versus ambient O3 (A-O3) after 64-DAS (Days after seeding), 85-DAS and 102-DAS. Our results indicated that E-O3 had no significant effects on leaf length, leaf width, leaf area, stomatal length and stomatal density for both Bt-SY63 and SY63. E-O3 increased the leaf thickness of Bt-SY63, but decreased that of SY63. O3 stress caused early swelling of the thylakoids of chloroplasts, a significant increase in the proportion of total plastoglobule area in the entire cell area (PCAP) and a significant decrease in the proportion of total starch grain area in the entire cell area (SCAP), suggesting that E-O3 accelerated the leaf senescence of the two rice genotypes. Compared with SY63, E-O3 caused early swelling of the thylakoids of chloroplasts and more substantial breakdown of chloroplasts in Bt-SY63. Conclusions/Significance Our results suggest that the incorporation of cry1Ab/Ac into SY63 could induce unintentional changes in some parts of plant morphology and that O3 stress results in greater leaf damage to Bt-SY63 than to SY63, with the former coupled with higher O3 sensitivity in CCAP (the proportions of total chloroplast area in the entire cell area), PCAP and SCAP. This study provides valuable baseline information for the prospective commercial release of transgenic crops under the projected future climate. PMID:24324764
Mason, Norman W H; Orwin, Kate; Lambie, Suzanne; Woodward, Sharon L; McCready, Tiffany; Mudge, Paul
2016-05-01
Plant functional traits are thought to drive variation in primary productivity. However, there is a lack of work examining how dominant species identity affects trait-productivity relationships. The productivity of 12 pasture mixtures was determined in a 3-year field experiment. The mixtures were based on either the winter-active ryegrass (Lolium perenne) or winter-dormant tall fescue (Festuca arundinacea). Different mixtures were obtained by adding forb, legume, and grass species that differ in key leaf economics spectrum (LES) traits to the basic two-species dominant grass-white clover (Trifolium repens) mixtures. We tested for correlations between community-weighted mean (CWM) trait values, functional diversity, and productivity across all plots and within those based on either ryegrass or tall fescue. The winter-dormant forb species (chicory and plantain) had leaf traits consistent with high relative growth rates both per unit leaf area (high leaf thickness) and per unit leaf dry weight (low leaf dry matter content). Together, the two forb species achieved reasonable abundance when grown with either base grass (means of 36% and 53% of total biomass, respectively, with ryegrass tall fescue), but they competed much more strongly with tall fescue than with ryegrass. Consequently, they had a net negative impact on productivity when grown with tall fescue, and a net positive effect when grown with ryegrass. Strongly significant relationships between productivity and CWM values for LES traits were observed across ryegrass-based mixtures, but not across tall fescue-based mixtures. Functional diversity did not have a significant positive effect on productivity for any of the traits. The results show dominant species identity can strongly modify trait-productivity relationships in intensively grazed pastures. This was due to differences in the intensity of competition between dominant species and additional species, suggesting that resource-use complementarity is a necessary prerequisite for trait-productivity relationships.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, X; Harris, J; Spitznagel, D
2015-06-15
Purpose: To analyze the radiation transmission of the Agility MLC and make recommendation based on the MLC dosimetric characteristics for SRT, SBRT and VMAT planning Method and Materials: Agility MLC is the newest model from Elekta and has no back up diaphragm behind leaves for this generation. Leaves are single focused with rounded end; composed of leafs each 0.5cm wide, 9cm thick, constructed from tungsten alloy and provide low transmission <0.5%. Total radiation transmission from leaves and diaphragm is <0.13%. A 360degree arc was generated using iCom tools; leaves were programmed closed while keeping the diaphragm fully open to maximizemore » the MLC transmission effect. Gafchromic EBT films were sandwiched between 4cm of solid water and situated at midplane to take dose measurement. 5000MU was delivered using 6MV VersaHD, various collimator angles, and a 5cm central axis offset was tested also. Films were scanned with Epson 10000XL scanner and analyzed using DoseLab Pro. Results: Due to the rounded leaf end and nature of rotation therapy, dose accumulation through the leaf gap is significant. By offsetting the leaf gap from central axis, this accumulation can be greatly reduced. There are dark bands showing accumulation of interleaf transmission which is improved by increasing collimator angle from 0 to 45dgree. However for 45 degree, in most cases, there are larger volumes sweeping under MLC alone, which needs considered planning. Conclusions: While inter-leaf leakage is minimized by using collimator angles greater than 0 degrees, the location of the leaf gap must also be managed. The leaf gap position becomes critically important when the treatment area is off axis such is the case when more than one PTV is being treated. With VMAT for SRT, SBRT becoming a more popular planning technique, special attention needs to be paid when initially setting up the field geometry.« less
Simonin, Kevin A.; Burns, Emily; Choat, Brendan; Barbour, Margaret M.; Dawson, Todd E.; Franks, Peter J.
2015-01-01
Leaf hydraulic conductance (k leaf) is a central element in the regulation of leaf water balance but the properties of k leaf remain uncertain. Here, the evidence for the following two models for k leaf in well-hydrated plants is evaluated: (i) k leaf is constant or (ii) k leaf increases as transpiration rate (E) increases. The difference between stem and leaf water potential (ΔΨstem–leaf), stomatal conductance (g s), k leaf, and E over a diurnal cycle for three angiosperm and gymnosperm tree species growing in a common garden, and for Helianthus annuus plants grown under sub-ambient, ambient, and elevated atmospheric CO2 concentration were evaluated. Results show that for well-watered plants k leaf is positively dependent on E. Here, this property is termed the dynamic conductance, k leaf(E), which incorporates the inherent k leaf at zero E, which is distinguished as the static conductance, k leaf(0). Growth under different CO2 concentrations maintained the same relationship between k leaf and E, resulting in similar k leaf(0), while operating along different regions of the curve owing to the influence of CO2 on g s. The positive relationship between k leaf and E minimized variation in ΔΨstem–leaf. This enables leaves to minimize variation in Ψleaf and maximize g s and CO2 assimilation rate over the diurnal course of evaporative demand. PMID:25547915
Detection of changes in leaf water content using near- and middle-infrared reflectances
NASA Technical Reports Server (NTRS)
Hunt, E. Raymond, Jr.; Rock, Barrett N.
1989-01-01
A method to detect plant water stress by remote sensing is proposed using indices of near-IR and mid-IR wavelengths. The ability of the Leaf Water Content Index (LWCI) to determine leaf relative water content (RWC) is tested on species with different leaf morphologies. The way in which the Misture Stress Index (MSI) varies with RWC is studied. On test with several species, it is found that LWCI is equal to RWC, although the reflectances at 1.6 microns for two different RWC must be known to accurately predict unknown RWC. A linear correlation is found between MSI and RWC with each species having a different regression equation. Also, MSI is correlated with log sub 10 Equivalent Water Thickness (EWT) with data for all species falling on the same regression line. It is found that the minimum significant change of RWC that could be detected by appying the linear regression equation of MSI to EWT is 52 percent. Because the natural RWC variation from water stress is about 20 percent for most species, it is concluded that the near-IR and mid-IR reflectances cannot be used to remotely sense water stress.
A molecular basis behind heterophylly in an amphibious plant, Ranunculus trichophyllus.
Kim, Juhyun; Joo, Youngsung; Kyung, Jinseul; Jeon, Myeongjune; Park, Jong Yoon; Lee, Ho Gyun; Chung, Doo Soo; Lee, Eunju; Lee, Ilha
2018-02-01
Ranunculus trichophyllus is an amphibious plant that produces thin and cylindrical leaves if grown under water but thick and broad leaves if grown on land. We found that such heterophylly is widely controlled by two plant hormones, abscisic acid (ABA) and ethylene, which control terrestrial and aquatic leaf development respectively. Aquatic leaves produced higher levels of ethylene but lower levels of ABA than terrestrial leaves. In aquatic leaves, their distinct traits with narrow shape, lack of stomata, and reduced vessel development were caused by EIN3-mediated overactivation of abaxial genes, RtKANADIs, and accompanying with reductions of STOMAGEN and VASCULAR-RELATED NAC-DOMAIN7 (VDN7). In contrast, in terrestrial leaves, ABI3-mediated activation of the adaxial genes, RtHD-ZIPIIIs, and STOMAGEN and VDN7 established leaf polarity, and stomata and vessel developments. Heterophylly of R.trichophyllus could be also induced by external cues such as cold and hypoxia, which is accompanied with the changes in the expression of leaf polarity genes similar to aquatic response. A closely-related land plant R. sceleratus did not show such heterophyllic responses, suggesting that the changes in the ABA/ethylene signaling and leaf polarity are one of key evolutionary steps for aquatic adaptation.
Shi, Zuomin; Haworth, Matthew; Feng, Qiuhong; Cheng, Ruimei; Centritto, Mauro
2015-01-01
Plant growth at high elevations necessitates physiological and morphological plasticity to enable photosynthesis (A) under conditions of reduced temperature, increased radiation and the lower partial pressure of atmospheric gases, in particular carbon dioxide (pCO2). Previous studies have observed a wide range of responses to elevation in plant species depending on their adaptation to temperature, elevational range and growth habit. Here, we investigated the effect of an increase in elevation from 2500 to 3500 m above sea level (a.s.l.) on three montane species with contrasting growth habits and leaf economic strategies. While all of the species showed identical increases in foliar δ13C, dark respiration and nitrogen concentration with elevation, contrasting leaf gas exchange and photosynthetic responses were observed between species with different leaf economic strategies. The deciduous shrub Salix atopantha and annual herb Rumex dentatus exhibited increased stomatal (Gs) and mesophyll (Gm) conductance and enhanced photosynthetic capacity at the higher elevation. However, evergreen Quercus spinosa displayed reduced conductance to CO2 that coincided with lower levels of photosynthetic carbon fixation at 3500 m a.s.l. The lower Gs and Gm values of evergreen species at higher elevations currently constrains their rates of A. Future rises in the atmospheric concentration of CO2 ([CO2]) will likely predominantly affect evergreen species with lower specific leaf areas (SLAs) and levels of Gm rather than deciduous species with higher SLA and Gm values. We argue that climate change may affect plant species that compose high-elevation ecosystems differently depending on phenotypic plasticity and adaptive traits affecting leaf economics, as rising [CO2] is likely to benefit evergreen species with thick sclerophyllous leaves. PMID:26433706
Guo, Wei Hong; Wang, Hua; Yu, Mu Kui; Wu, Tong Gui; Han, You Zhi
2017-03-18
We analyzed the rules of Metasequoia glyptostroboides along with latitude, including leaf length, leaf width, leaf perimeter, leaf area, ratio of leaf length to width, specific leaf area (SLA), and leaf dry mass based on eight stands growing at different latitudes in the coastal area of eastern China, as well as their relationships with climatic and soil factors. The results showed that the leaf length, leaf width and leaf perimeter increased with increasing latitude, while the leaf area and SLA firstly increased and then decreased. The mean annual temperature and annual precipitation were the major environmental factors affecting the leaf traits along latitude gradient. With the increase of soil N content, the SLA decreased firstly and then increased, while the leaf mass decreased significantly. With the increase of soil P content, the SLA increased, and the leaf mass decreased significantly.
Research on spatial distribution of photosynthetic characteristics of Winter Wheat
NASA Astrophysics Data System (ADS)
Yan, Q. Q.; Zhou, Q. Y.; Zhang, B. Z.; Han, X.; Han, N. N.; Li, S. M.
2018-03-01
In order to explore the spatial distribution of photosynthetic characteristics of winter wheat leaf, the photosynthetic rate on different parts of leaf (leaf base-leaf middle-leaf apex) and that on each canopy (top layer-middle layer-bottom layer) leaf during the whole growth period of winter wheat were measured. The variation of photosynthetic rate with PAR and the spatial distribution of winter wheat leaf during the whole growth periods were analysed. The results showed that the photosynthetic rate of different parts of winter wheat increased with the increase of PAR, which was showed as leaf base>leaf middle>leaf apex. In the same growth period, photosynthetic rate in different parts of the tablet was showed as leaf middle>leaf base>leaf apex. For the different canopy layer of winter wheat, the photosynthetic rate of the top layer leaf was significantly greater than that of the middle layer and lower layer leaf. The photosynthetic rate of the top layer leaf was the largest in the leaf base position. The photosynthetic rate of leaf of the same canopy layer at different growth stages were showed as tasseling stage >grain filling stage > maturation stage.
NASA Astrophysics Data System (ADS)
Ding, J.; Johnson, E. A.; Martin, Y. E.
2017-12-01
Leaf is the basic production unit of plants. Water is the most critical resource of plants. Its availability controls primary productivity of plants by affecting leaf carbon budget. To avoid the damage of cavitation from lowering vein water potential t caused by evapotranspiration, the leaf must increase the stomatal resistance to reduce evapotranspiration rate. This comes at the cost of reduced carbon fixing rate as increasing stoma resistance meanwhile slows carbon intake rate. Studies suggest that stoma will operate at an optimal resistance to maximize the carbon gain with respect to water. Different plant species have different leaf shapes, a genetically determined trait. Further, on the same plant leaf size can vary many times in size that is related to soil moisture, an indicator of water availability. According to metabolic scaling theory, increasing leaf size will increase total xylem resistance of vein, which may also constrain leaf carbon budget. We present a Constrained Maximization Model of leaf (leaf CMM) that incorporates metabolic theory into the coupling of evapotranspiration and carbon fixation to examine how leaf size, stoma resistance and maximum net leaf primary productivity change with petiole xylem water potential. The model connects vein network structure to leaf shape and use the difference between petiole xylem water potential and the critical minor vein cavitation forming water potential as the budget. The CMM shows that both maximum net leaf primary production and optimal leaf size increase with petiole xylem water potential while optimal stoma resistance decreases. Narrow leaf has overall lower optimal leaf size and maximum net leaf carbon gain and higher optimal stoma resistance than those of broad leaf. This is because with small width to length ratio, total xylem resistance increases faster with leaf size. Total xylem resistance of narrow leaf increases faster with leaf size causing higher average and marginal cost of xylem water potential with respect to net leaf carbon gain. With same leaf area, total xylem resistance of narrow leaf is higher than broad leaf. Given same stoma resistance and petiole water potential, narrow leaf will lose more xylem water potential than broad leaf. Consequently, narrow leaf has smaller size and higher stoma resistance at optimum.
Assessing soybean leaf area and leaf biomass by spectral measurements
NASA Technical Reports Server (NTRS)
Holben, B. N.; Tucker, C. J.; Fan, C. J.
1979-01-01
Red and photographic infrared spectral radiances were correlated with soybean total leaf area index, green leaf area index, chlorotic leaf area index, green leaf biomass, chlorotic leaf biomass, and total biomass. The most significant correlations were found to exist between the IR/red radiance ratio data and green leaf area index and/or green leaf biomass (r squared equals 0.85 and 0.86, respectively). These findings demonstrate that remote sensing data can supply information basic to soybean canopy growth, development, and status by nondestructive determination of the green leaf area or green leaf biomass.
Woodruff, D R; Meinzer, F C; Lachenbruch, B
2008-01-01
Hydraulic vulnerability of Douglas-fir (Pseudotsuga menziesii) branchlets decreases with height, allowing shoots at greater height to maintain hydraulic conductance (K shoot) at more negative leaf water potentials (Psi l). To determine the basis for this trend shoot hydraulic and tracheid anatomical properties of foliage from the tops of Douglas-fir trees were analysed along a height gradient from 5 to 55 m. Values of Psi l at which K shoot was substantially reduced, declined with height by 0.012 Mpa m(-1). Maximum K shoot was reduced by 0.082 mmol m(-2) MPa(-1) s(-1) for every 1 m increase in height. Total tracheid lumen area per needle cross-section, hydraulic mean diameter of leaf tracheid lumens, total number of tracheids per needle cross-section and leaf tracheid length decreased with height by 18.4 microm(2) m(-1), 0.029 microm m(-1), 0.42 m(-1) and 5.3 microm m(-1), respectively. Tracheid thickness-to-span ratio (tw/b)2 increased with height by 1.04 x 10(-3) m(-1) and pit number per tracheid decreased with height by 0.07 m(-1). Leaf anatomical adjustments that enhanced the ability to cope with vertical gradients of increasing xylem tension were attained at the expense of reduced water transport capacity and efficiency, possibly contributing to height-related decline in growth of Douglas fir.
Onoda, Yusuke; Schieving, Feike; Anten, Niels P R
2015-05-01
Plant leaves commonly exhibit a thin, flat structure that facilitates a high light interception per unit mass, but may increase risks of mechanical failure when subjected to gravity, wind and herbivory as well as other stresses. Leaf laminas are composed of thin epidermis layers and thicker intervening mesophyll layers, which resemble a composite material, i.e. sandwich structure, used in engineering constructions (e.g. airplane wings) where high bending stiffness with minimum weight is important. Yet, to what extent leaf laminas are mechanically designed and behave as a sandwich structure remains unclear. To resolve this issue, we developed and applied a novel method to estimate stiffness of epidermis- and mesophyll layers without separating the layers. Across a phylogenetically diverse range of 36 angiosperm species, the estimated Young's moduli (a measure of stiffness) of mesophyll layers were much lower than those of the epidermis layers, indicating that leaf laminas behaved similarly to efficient sandwich structures. The stiffness of epidermis layers was higher in evergreen species than in deciduous species, and strongly associated with cuticle thickness. The ubiquitous nature of sandwich structures in leaves across studied species suggests that the sandwich structure has evolutionary advantages as it enables leaves to be simultaneously thin and flat, efficiently capturing light and maintaining mechanical stability under various stresses. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Peter B. Reich; Michael B. Walters; David S. Ellsworth; [and others; [Editor’s note: James M.. Vose is the SRS co-author for this publication.
1998-01-01
Based on prior evidence of coordinated multiple leaf trait scaling, the authors hypothesized that variation among species in leaf dark respiration rate (Rd) should scale with variation in traits such as leaf nitrogen (N), leaf life-span, specific leaf area (SLA), and net photosynthetic capacity (Amax). However, it is not known whether such scaling, if it exists, is...
Response of Leaf Water Potential, Stomatal Resistance, and Leaf Rolling to Water Stress
O'Toole, John C.; Cruz, Rolando T.
1980-01-01
Numerous studies have associated increased stomatal resistance with response to water deficit in cereals. However, consideration of change in leaf form seems to have been neglected. The response of adaxial and abaxial stomatal resistance and leaf rolling in rice to decreasing leaf water potential was investigated. Two rice cultivars were subjected to control and water stress treatments in a deep (1-meter) aerobic soil. Concurrent measurements of leaf water potential, stomatal resistance, and degree of leaf rolling were made through a 29-day period after cessation of irrigation. Kinandang Patong, an upland adapted cultivar, maintained higher dawn and midday leaf water potential than IR28, a hybrid selected in irrigated conditions. This was not explained by differences in leaf diffusive resistance or leaf rolling, and is assumed to result from a difference in root system extent. Stomatal resistance increased more on the abaxial than the adaxial leaf surface in both cultivars. This was associated with a change in leaf form or rolling inward of the upper leaf surface. Both responses, increased stomatal resistance and leaf rolling, were initiated in a similar leaf water potential range (−8 to −12 bars). Leaves of IR28 became fully rolled at leaf water potential of about −22 bars; however, total leaf diffusive resistance was only about 4 to 5 seconds per centimeter (conductance 0.25 to 0.2 centimeter per second) at that stage. Leaf diffusive resistance and degree of leaf rolling were linearly related to leaf water potential. Thus, leaf rolling in rice may be used as an estimate of the other two less obvious effects of water deficit. PMID:16661206
Martorell, Sebastian; Medrano, Hipolito; Tomàs, Magdalena; Escalona, José M; Flexas, Jaume; Diaz-Espejo, Antonio
2015-03-01
Previous studies have reported correlation of leaf hydraulic vulnerability with pressure-volume parameters related to cell turgor. This link has been explained on the basis of the effects of turgor on connectivity among cells and tissue structural integrity, which affect leaf water transport. In this study, we tested the hypothesis that osmotic adjustment to water stress would shift the leaf vulnerability curve toward more negative water potential (Ψ leaf ) by increasing turgor at low Ψ leaf . We measured leaf hydraulic conductance (K leaf ), K leaf vulnerability [50 and 80% loss of K leaf (P50 and P80 ); |Ψ leaf | at 50 and 80% loss of K leaf , respectively), bulk leaf water relations, leaf gas exchange and sap flow in two Vitis vinifera cultivars (Tempranillo and Grenache), under two water treatments. We found that P50 , P80 and maximum K leaf decreased seasonally by more than 20% in both cultivars and watering treatments. However, K leaf at 2 MPa increased threefold, while osmotic potential at full turgor and turgor loss point decreased. Our results indicate that leaf resistance to hydraulic dysfunction is seasonally plastic, and this plasticity may be mediated by osmotic adjustment. © 2014 Scandinavian Plant Physiology Society.
de Bock, Martin; Derraik, José G B; Brennan, Christine M; Biggs, Janene B; Morgan, Philip E; Hodgkinson, Steven C; Hofman, Paul L; Cutfield, Wayne S
2013-01-01
Olive plant leaves (Olea europaea L.) have been used for centuries in folk medicine to treat diabetes, but there are very limited data examining the effects of olive polyphenols on glucose homeostasis in humans. To assess the effects of supplementation with olive leaf polyphenols (51.1 mg oleuropein, 9.7 mg hydroxytyrosol per day) on insulin action and cardiovascular risk factors in middle-aged overweight men. Randomized, double-blinded, placebo-controlled, crossover trial in New Zealand. 46 participants (aged 46.4 ± 5.5 years and BMI 28.0 ± 2.0 kg/m(2)) were randomized to receive capsules with olive leaf extract (OLE) or placebo for 12 weeks, crossing over to other treatment after a 6-week washout. Primary outcome was insulin sensitivity (Matsuda method). Secondary outcomes included glucose and insulin profiles, cytokines, lipid profile, body composition, 24-hour ambulatory blood pressure, and carotid intima-media thickness. Treatment evaluations were based on the intention-to-treat principle. All participants took >96% of prescribed capsules. OLE supplementation was associated with a 15% improvement in insulin sensitivity (p = 0.024) compared to placebo. There was also a 28% improvement in pancreatic β-cell responsiveness (p = 0.013). OLE supplementation also led to increased fasting interleukin-6 (p = 0.014), IGFBP-1 (p = 0.024), and IGFBP-2 (p = 0.015) concentrations. There were however, no effects on interleukin-8, TNF-α, ultra-sensitive CRP, lipid profile, ambulatory blood pressure, body composition, carotid intima-media thickness, or liver function. Supplementation with olive leaf polyphenols for 12 weeks significantly improved insulin sensitivity and pancreatic β-cell secretory capacity in overweight middle-aged men at risk of developing the metabolic syndrome.
Kombucha fermentation test used for various types of herbal teas
NASA Astrophysics Data System (ADS)
Novi Primiani, C.; Pujiati; Mumtahanah, Mahda; Ardhi, Waskitho
2018-05-01
Tea is a common drink in the community, the benefits of tea can be improved by processing fermented tea called kombucha. Kombucha is a refreshing drink made from tea water plus sugar, obtained through the fermentation process by acetic acid bacteria and fungi, is consumed for its health benefits. The common Kombucha starter is called SCOOBY (Simbyotic of Bacteri and Yeast). Kombucha research using herbal tea is very rarely done, it is necessary kombucha research using a variety of herbal teas to determine the quality of its inhibitory power against bacteria and its quality compared with kombucha berkomposisi tea Camelia sinensis in general. The purpose of this research was to know kombucha quality with ph parameter, thickness of nata, total acid and its inhibitory power to Escherchia coli and Staphylococcus aureus bacteria. This research used Randomized Block Design (RAK) method using 1 tea type treatment, with 3 replications. The first type of green tea (P1), roselle tea (P2), mangosteen peel tea (P3), soursop leaf tea (P4), moringa leaf tea (P5) and yellow leaf tea (P6), so there are 18 treatment combinations. Based on statistical analysis, there was influence of tea type to kombucha quality. Treatments of P1 and P2 were found to have an optimum and significant effect for kombucha. the results in level of acidity [pH] on green tea (P1) was 3.05, nata thickness of 4.63 and total acid of 0.69. Acidity in roselle tea (P2) was 2.86, nata thickness of 3.83, and total acid of 0.71. While the lowest quality was found in the treatment of mangosteen peel (P3) tea with pH 2.57, nata thickness of 0.35, and total acid of 0.79.
Monitoring plant response to environmental stimuli by ultrasonic sensing of the leaves.
Fariñas, Maria Dolores; Sancho Knapik, Domingo; Peguero Pina, Jose Javier; Gil Pelegrin, Eustaquio; Gómez Álvarez-Arenas, Tomás E
2014-09-01
Described here is the application of a technique based on the excitation, sensing and spectral analysis of thickness resonances of plant leaves using air-coupled and wide-band ultrasound pulses (150-900 kHz) to monitor variations in leaf properties caused by plant responses to different environmental stimuli, such as a sudden variation in light intensity (from 2000 to 150 μmol m(-2) s(-1)), sudden watering after a drought period, and along the diurnal cycle (3-5 days, with continuous variation in light intensity from 150 to 2000 μmol m(-2) s(-1) and change in temperature of about 5°C). Four different widely available species, both monocots and dicots and evergreen and deciduous, with different leaf features (shape, size, thickness, flatness, vascular structure), were selected to test the technique. After a sudden decrease in light intensity, and depending on the species, there was a relative increase in the thickness resonant frequency from 8% to 12% over a 25- to 50-min period. After sudden watering, the relative increase in the resonant frequency varied from 5% to 30% and the period from 10 to 400 min. Finally, along the diurnal cycle, the measured relative variation is between 4% and 10%. The technique revealed differences in both the amplitude of the frequency oscillations and the kinetics of the leaf response for different species and also within the same species, but for specimens grown under different conditions that present different cell structures at the tissue level. The technique can be equally applied to the leaves of any species that present thickness resonances. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Vandergriff, D.H.
1999-08-31
A hinge assembly is disclosed having a first leaf, a second leaf and linking member. The first leaf has a contact surface. The second leaf has a first contact surface and a second contact surface. The linking member pivotally connects to the first leaf and to the second leaf. The hinge assembly is capable of moving from a closed position to an open position. In the closed position, the contact surface of the first leaf merges with the first contact surface of the second leaf. In the open position, the contact surface of the first leaf merges with the second contact surface of the second leaf. The hinge assembly can include a seal on the contact surface of the first leaf. 8 figs.
Vandergriff, David Houston
1999-01-01
A hinge assembly having a first leaf, a second leaf and linking member. The first leaf has a contact surface. The second leaf has a first contact surface and a second contact surface. The linking member pivotally connects to the first leaf and to the second leaf. The hinge assembly is capable of moving from a closed position to an open position. In the closed position, the contact surface of the first leaf merges with the first contact surface of the second leaf. In the open position, the contact surface of the first leaf merges with the second contact surface of the second leaf. The hinge assembly can include a seal on the contact surface of the first leaf.
Leaf phenological characters of main tree species in urban forest of Shenyang.
Xu, Sheng; Xu, Wenduo; Chen, Wei; He, Xingyuan; Huang, Yanqing; Wen, Hua
2014-01-01
Plant leaves, as the main photosynthetic organs and the high energy converters among primary producers in terrestrial ecosystems, have attracted significant research attention. Leaf lifespan is an adaptive characteristic formed by plants to obtain the maximum carbon in the long-term adaption process. It determines important functional and structural characteristics exhibited in the environmental adaptation of plants. However, the leaf lifespan and leaf characteristics of urban forests were not studied up to now. By using statistic, linear regression methods and correlation analysis, leaf phenological characters of main tree species in urban forest of Shenyang were observed for five years to obtain the leafing phenology (including leafing start time, end time, and duration), defoliating phenology (including defoliation start time, end time, and duration), and the leaf lifespan of the main tree species. Moreover, the relationships between temperature and leafing phenology, defoliating phenology, and leaf lifespan were analyzed. The timing of leafing differed greatly among species. The early leafing species would have relatively early end of leafing; the longer it took to the end of leafing would have a later time of completed leafing. The timing of defoliation among different species varied significantly, the early defoliation species would have relatively longer duration of defoliation. If the mean temperature rise for 1°C in spring, the time of leafing would experience 5 days earlier in spring. If the mean temperature decline for 1°C, the time of defoliation would experience 3 days delay in autumn. There is significant correlation between leaf longevity and the time of leafing and defoliation. According to correlation analysis and regression analysis, there is significant correlation between temperature and leafing and defoliation phenology. Early leafing species would have a longer life span and consequently have advantage on carbon accumulation compared with later defoliation species.
Influence of Water Relations and Temperature on Leaf Movements of Rhododendron Species 1
Nilsen, Erik Tallak
1987-01-01
Rhododendron maximum L. and R. Catawbiense L. are subcanopy evergreen shrubs of the eastern United States deciduous forest. Field measurements of climate factors and leaf movements of these species indicated a high correlation between leaf temperature and leaf curling; and between leaf water potential and leaf angle. Laboratory experiments were performed to isolate the influence of temperature and cellular water relations on leaf movements. Significant differences were found between the patterns of temperature induction of leaf curling in the two species. Leaves of the species which curled at higher temperatures (R. catawbiense) also froze at higher leaf temperatures. However, in both cases leaf curling occurred at leaf temperatures two to three degrees above the leaf freezing point. Pressure volume curves indicated that cellular turgor loss was associated with a maximum of 45% curling while 100% or more curling occurred in field leaves which still had positive cell turgor. Moisture release curves indicated that 70% curling requires a loss of greater than 60% of symplastic water which corresponds to leaf water potentials far below those experienced in field situations. Conversely, most laboratory induced changes in leaf angle could be related to leaf cell turgor loss. PMID:16665296
USDA-ARS?s Scientific Manuscript database
Leaf architectural traits, such as length, width and angle, directly influence canopy structure and light penetration, photosynthate production and overall yield. We discovered and characterized a maize (Zea mays) mutant with aberrant leaf architecture we named drooping leaf1 (drl1), as leaf blades ...
7 CFR 29.1162 - Leaf (B Group).
Code of Federal Regulations, 2010 CFR
2010-01-01
... Specifications, and Tolerances B1L—Choice Quality Lemon Leaf Ripe, firm leaf structure, medium body, rich in oil... percent. B2L—Fine Quality Lemon Leaf Ripe, firm leaf structure, medium body, rich in oil, deep color.... B3L—Good Quality Lemon Leaf Ripe, firm leaf structure, medium body, oily, strong color intensity...
7 CFR 29.1162 - Leaf (B Group).
Code of Federal Regulations, 2011 CFR
2011-01-01
... Specifications, and Tolerances B1L—Choice Quality Lemon Leaf Ripe, firm leaf structure, medium body, rich in oil... percent. B2L—Fine Quality Lemon Leaf Ripe, firm leaf structure, medium body, rich in oil, deep color.... B3L—Good Quality Lemon Leaf Ripe, firm leaf structure, medium body, oily, strong color intensity...
7 CFR 28.471 - Below Leaf Grade Cotton.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Below Leaf Grade Cotton. 28.471 Section 28.471... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Below Leaf Grade Cotton § 28.471 Below Leaf Grade Cotton. Below leaf grade cotton is American Upland cotton which is lower in leaf grade than Leaf...
7 CFR 28.471 - Below Leaf Grade Cotton.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Below Leaf Grade Cotton. 28.471 Section 28.471... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Below Leaf Grade Cotton § 28.471 Below Leaf Grade Cotton. Below leaf grade cotton is American Upland cotton which is lower in leaf grade than Leaf...
7 CFR 28.471 - Below Leaf Grade Cotton.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Below Leaf Grade Cotton. 28.471 Section 28.471... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Below Leaf Grade Cotton § 28.471 Below Leaf Grade Cotton. Below leaf grade cotton is American Upland cotton which is lower in leaf grade than Leaf...
7 CFR 28.471 - Below Leaf Grade Cotton.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Below Leaf Grade Cotton. 28.471 Section 28.471... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Below Leaf Grade Cotton § 28.471 Below Leaf Grade Cotton. Below leaf grade cotton is American Upland cotton which is lower in leaf grade than Leaf...
7 CFR 28.471 - Below Leaf Grade Cotton.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Below Leaf Grade Cotton. 28.471 Section 28.471... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Below Leaf Grade Cotton § 28.471 Below Leaf Grade Cotton. Below leaf grade cotton is American Upland cotton which is lower in leaf grade than Leaf...
Ab Hamid, Suhaila; Md Rawi, Che Salmah
2017-01-01
Leaf litter decomposition in a tropical stream was examined in two types of leaf packs; single species leaf packs of Pometia pinnata and two species leaf packs of equal combination of Pometia pinnata and Dolichandrone spathacea leaves. Both leaf packs were immersed in a river and weekly examined for remains of decomposed leaves and presence of EPT. In the control leaf packs, leaves in the two species leaf packs treatments decomposed within 35 days, faster than in single species leaf packs which decomposed after 42 days. In the presence of EPT, the leaf breakdown took 28 days in two species and 35 days for single species leaf packs. Higher abundance of EPT was observed in single species leaf packs but its diversity was higher in two species leaf packs. Litter breakdown in the stream was faster in the presence of EPT and softer leaves of D. spathacea with higher nitrogen content underwent faster decomposition and sustained higher numbers of EPT. PMID:28890763
Ab Hamid, Suhaila; Md Rawi, Che Salmah
2017-07-01
Leaf litter decomposition in a tropical stream was examined in two types of leaf packs; single species leaf packs of Pometia pinnata and two species leaf packs of equal combination of Pometia pinnata and Dolichandrone spathacea leaves. Both leaf packs were immersed in a river and weekly examined for remains of decomposed leaves and presence of EPT. In the control leaf packs, leaves in the two species leaf packs treatments decomposed within 35 days, faster than in single species leaf packs which decomposed after 42 days. In the presence of EPT, the leaf breakdown took 28 days in two species and 35 days for single species leaf packs. Higher abundance of EPT was observed in single species leaf packs but its diversity was higher in two species leaf packs. Litter breakdown in the stream was faster in the presence of EPT and softer leaves of D. spathacea with higher nitrogen content underwent faster decomposition and sustained higher numbers of EPT.
Argue, Denise M.; Kiah, Richard G.; Denny, Jane F.; Deacon, Jeffrey R.; Danforth, William W.; Johnston, Craig M.; Smagula, Amy P.
2007-01-01
Geophysical, water, and sediment surveys were done to characterize the effects of surficial geology, water and sediment chemistry, and surficial-sediment composition on the distribution of variable leaf water-milfoil in Moultonborough Bay, Lake Winnipesaukee, New Hampshire. Geophysical surveys were conducted in a 180-square-kilometer area, and water-quality and sediment samples were collected from 24 sites in the survey area during July 2005. Swath-bathymetric data revealed that Moultonborough Bay ranged in depth from less than 1 meter (m) to about 15 m and contained three embayments. Seismic-reflection profiles revealed erosion of the underlying bedrock and subsequent deposition of glaciolacustrine and Holocene lacustrine sediments within the survey area. Sediment thickness ranged from 5 m along the shoreward margins to more than 15 m in the embayments. Data from sidescan sonar, surficial-sediment samples, bottom photographs, and video revealed three distinct lake-floor environments: rocky nearshore, mixed nearshore, and muddy basin. Rocky nearshore environments were found in shallow water (less than 5 m deep) and contained sediments ranging from coarse silt to very coarse sand. Mixed nearshore environments also were found in shallow water and contained sediments ranging from silt to coarse sand with different densities of aquatic vegetation. Muddy basin environments contained the finest-grained sediments, ranging from fine to medium silt, and were in the deepest waters of the bay. Acoustic Ground Discrimination Systems (AGDS) survey data revealed that 86 percent of the littoral zone (the area along the margins of the bay and islands that extends from 0 to 4.3 m in water depth) contained submerged aquatic vegetation (SAV) in varying densities: approximately 36 percent contained SAV bottom cover of 25 percent or less, 43 percent contained SAV bottom cover of more than 25 and less than 75 percent, and approximately 7 percent contained SAV bottom cover of more than 75 percent. SAV included variable leaf water-milfoil, native milfoil, bassweed, pipewort, and other species, which were predominantly found near shoreward margins and at depths ranging from less than 1 to 4 m. AGDS data were used in a Geographic Information System to generate an interpolated map that distinguished variable leaf water-milfoil from other SAV. Furthermore, these data were used to isolate areas susceptible to variable leaf water-milfoil growth. Approximately 21 percent of the littoral zone contained dense beds (more than 59 percent bottom cover) of variable leaf water-milfoil, and an additional 44 percent was determined to be susceptible to variable leaf water-milfoil infestation. Depths differed significantly between sites with variable leaf water-milfoil and sites with other SAV (p = 0.04). Variable leaf water-milfoil was found at depths that ranged from 1 to 4 m, and other SAV had a depth range of 1 to 2 m. Although variable leaf water-milfoil was observed at greater depths than other SAV, it was not observed below the photic zone. Analysis of constituent concentrations from the water column, interstitial pore water, and sediment showed little correlation with the presence of variable leaf water-milfoil, with two exceptions. Iron concentrations were significantly lower at variable leaf water-milfoil sites than at other sampling sites (p = 0.04). Similarly, the percentage of total organic carbon also was significantly lower at the variable leaf water-milfoil sites than at other sampling sites (p = 0.04). Surficial-sediment-grain size had the greatest correlation to the presence of variable leaf water-milfoil. Variable leaf water-milfoil was predominantly growing in areas of coarse sand (median grain-size 0.62 millimeters). Surficial-sediment-grain size was also correlated with total ammonia plus organic nitrogen (Rho = 0.47; p = 0.02) and with total phosphorus (Rho = 0.44; p = 0.05) concentrations in interstitial pore-water samples.
Functional Groups Based on Leaf Physiology: Are they Spatially and Temporally Robust?
NASA Technical Reports Server (NTRS)
Foster, Tammy E.; Brooks, J. Renee
2004-01-01
The functional grouping hypothesis, which suggests that complexity in ecosystem function can be simplified by grouping species with similar responses, was tested in the Florida scrub habitat. Functional groups were identified based on how species in fire maintained Florida scrub regulate exchange of carbon and water with the atmosphere as indicated by both instantaneous gas exchange measurements and integrated measures of function (%N, delta C-13, delta N-15, C-N ratio). Using cluster analysis, five distinct physiologically-based functional groups were identified in the fire maintained scrub. These functional groups were tested to determine if they were robust spatially, temporally, and with management regime. Analysis of Similarities (ANOSIM), a non-parametric multivariate analysis, indicated that these five physiologically-based groupings were not altered by plot differences (R = -0.115, p = 0.893) or by the three different management regimes; prescribed burn, mechanically treated and burn, and fire-suppressed (R = 0.018, p = 0.349). The physiological groupings also remained robust between the two climatically different years 1999 and 2000 (R = -0.027, p = 0.725). Easy-to-measure morphological characteristics indicating functional groups would be more practical for scaling and modeling ecosystem processes than detailed gas-exchange measurements, therefore we tested a variety of morphological characteristics as functional indicators. A combination of non-parametric multivariate techniques (Hierarchical cluster analysis, non-metric Multi-Dimensional Scaling, and ANOSIM) were used to compare the ability of life form, leaf thickness, and specific leaf area classifications to identify the physiologically-based functional groups. Life form classifications (ANOSIM; R = 0.629, p 0.001) were able to depict the physiological groupings more adequately than either specific leaf area (ANOSIM; R = 0.426, p = 0.001) or leaf thickness (ANOSIM; R 0.344, p 0.001). The ability of life forms to depict the physiological groupings was improved by separating the parasitic Ximenia americana from the shrub category (ANOSIM; R = 0.794, p = 0.001). Therefore, a life form classification including parasites was determined to be a good indicator of the physiological processes of scrub species, and would be a useful method of grouping for scaling physiological processes to the ecosystem level.
Žanić, Katja; Dumičić, Gvozden; Mandušić, Marija; Vuletin Selak, Gabriela; Bočina, Ivana; Urlić, Branimir; Ljubenkov, Ivica; Bučević Popović, Viljemka; Goreta Ban, Smiljana
2018-01-01
Bemisia tabaci is one of the most devastating pests in tomato greenhouse production. Insecticide resistance management for B. tabaci requires a novel approach that maximizes non-chemical methods for pest control. The aim of this study was to test the effects of rootstocks on B. tabaci populations in hydroponically grown tomato plants. In order to contribute to the better understanding of the mechanisms defining the attractiveness of plant to the aerial pest, the effects of rootstocks on leaf anatomy and the amino acid composition of phloem sap were assessed. A two-factorial experimental design was adopted using cultivars (rootstock cultivars and Clarabella) grown as either non-grafted or grafted with cultivar Clarabella as a scion. The rootstock cultivars included Arnold, Buffon, Emperador, and Maxifort. A reduction in B. tabaci density was observed using all rootstock cultivars. The number of adult individuals per leaf was 2.7–5.4 times lower on rootstock cultivars than on Clarabella. The number of large nymphs per square centimeter was at least 24% higher on non–grafted Clarabella compared with all other treatments. The leaf lamina thickness and mesophyll thickness were lower in self-grafted Clarabella than in non-grafted or in one grafted on rootstock cultivars; however, the extent of this reduction depended on the rootstock. The leaves with thinner laminae were generally less attractive to B. tabaci. Eighteen amino acids were detected in the exudates of phloem sap. In all treatments, the most abundant amino acid was γ-aminobutyric acid (GABA), followed by proline, serine, alanine, and histidine. The scion cultivar Clarabella was the most attractive to B. tabaci and had a higher content of leucine than did rootstock cultivars, and a higher content of lysine compared to Buffon and Maxifort. The features modified by rootstock such are changes in leaf anatomy can affect the attractiveness of plants to B. tabaci. Thus, the grafting of tomato could constitute a valuable tool in an integrated management strategy against this aerial pest. PMID:29459878
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, T; Dang, J; Dai, C
2015-06-15
Purpose: To evaluate dosimetric impact of spinal SBRT when MLC leaf positions deviate from planning positions for different energies and doserates. Methods and Materials: 18 localized spinal metastases patients were selected for SBRT using IMRT planning with 9 posterior beams delivered at gantry angles ranging between 100°–260°. A modern linear accelerator(Varian Turebeam STX with HDMLC 2.5 mm thick leaf at isocenter) IMRT plans were generated using both 6X and 6X-FFF(Flattening filter free) beams with a nominal prescription dose of 6 Gy/fraction to PTV. Doserates ranging from 200–600 MU/min for 6X and 400–1400 MU/min for 6X-FFF, with 200 increments were examined.more » A fixed amount(0.3, 0.5, 1, and 2 mm) of MLC-leaf position deviation was simulated to each plan under following conditions: 1)only along X1 collimator; 2)with increments at both X1 and X2 collimator directions;3)with reductions at both X1 and X2 collimator directions. Dose was recalculated for each modified plans. Both original and modified plans were delivered using Turebeam STX machine and measured using both portal dosimetry and a 3D dosimeter(Delta4 of ScandiDos). Each field’s Result were compared using following three parameters: the 95% iso-dose level Conformal Index(95%CI), the spinal cord maximum dose(SCDmax), and the planned target volume(PTV) mean dose. Results: Dosimetric impacts on the 95%CI, SCDmax and the PTV mean dose are: 1)negligible if MLC-leaf position deviation only along a single collimator direction ≥1.0 mm,2)substantial if MLC-leaf position increment along both collimator directions ≥0.3 mm(95% CI decreases while SCDmax and PTV mean-dose increase), 3)substantial if MLC-leaf position reduction along both collimator directions ≥0.3 mm(95% CI first increases and then decreases while SCDmax and PTV mean-dose decrease). Different energies and doserates demonstrated comparable dosimetric impacts. Conclusion: Substantial dose deviations could happen for spinal SBRT using IMRT plan with HD-MLC if leaf position deviation ≥0.3 mm. The effects of different energy and doserate are negligible.« less
Locke, Anna M.; Ort, Donald R.
2014-01-01
Photosynthesis requires sufficient water transport through leaves for stomata to remain open as water transpires from the leaf, allowing CO2 to diffuse into the leaf. The leaf water needs of soybean change over time because of large microenvironment changes over their lifespan, as leaves mature in full sun at the top of the canopy and then become progressively shaded by younger leaves developing above. Leaf hydraulic conductance (K leaf), a measure of the leaf’s water transport capacity, can often be linked to changes in microenvironment and transpiration demand. In this study, we tested the hypothesis that K leaf would decline in coordination with transpiration demand as soybean leaves matured and aged. Photosynthesis (A), stomatal conductance (g s) and leaf water potential (Ψleaf) were also measured at various leaf ages with both field- and chamber-grown soybeans to assess transpiration demand. K leaf was found to decrease as soybean leaves aged from maturity to shading to senescence, and this decrease was strongly correlated with midday A. Decreases in K leaf were further correlated with decreases in g s, although the relationship was not as strong as that with A. Separate experiments investigating the response of K leaf to drought demonstrated no acclimation of K leaf to drought conditions to protect against cavitation or loss of g s during drought and confirmed the effect of leaf age in K leaf observed in the field. These results suggest that the decline of leaf hydraulic conductance as leaves age keeps hydraulic supply in balance with demand without K leaf becoming limiting to transpiration water flux. PMID:25281701
Deer predation on leaf miners via leaf abscission
NASA Astrophysics Data System (ADS)
Yamazaki, Kazuo; Sugiura, Shinji
2008-03-01
The evergreen oak Quercus gilva Blume sheds leaves containing mines of the leaf miner Stigmella sp. (Lepidoptera: Nepticulidae) earlier than leaves with no mines in early spring in Nara, central Japan. The eclosion rates of the leaf miner in abscised and retained leaves were compared in the laboratory to clarify the effects of leaf abscission on leaf miner survival in the absence of deer. The leaf miner eclosed successfully from both fallen leaves and leaves retained on trees. However, sika deer ( Cervus nippon centralis Kishida) feed on the fallen mined leaves. Field observations showed that deer consume many fallen leaves under Q. gilva trees, suggesting considerable mortality of leaf miners due to deer predation via leaf abscission. This is a previously unreported relationship between a leaf miner and a mammalian herbivore via leaf abscission.
Rossatto, Davi Rodrigo; Franco, Augusto Cesar
2017-04-01
The assessment of leaf strategies has been a common theme in ecology, especially where multiple sources of environmental constraints (fire, seasonal drought, nutrient-poor soils) impose a strong selection pressure towards leaf functional diversity, leading to inevitable tradeoffs among leaf traits, and ultimately to niche segregation among coexisting species. As diversification on leaf functional strategies is dependent on integration at whole plant level, we hypothesized that regardless of phylogenetic relatedness, leaf trait functional syndromes in a multivariate space would be associated with the type of growth form. We measured traits related to leaf gas exchange, structure and nutrient status in 57 coexisting species encompassing all Angiosperms major clades, in a wide array of plant morphologies (trees, shrubs, sub-shrubs, herbs, grasses and palms) in a savanna of Central Brazil. Growth forms differed in mean values for the studied functional leaf traits. We extracted 4 groups of functional typologies: grasses (elevated leaf dark respiration, light-saturated photosynthesis on a leaf mass and area basis, lower values of leaf Ca and Mg), herbs (high values of SLA, leaf N and leaf Fe), palms (high values of stomatal conductance, leaf transpiration and leaf K) and woody eudicots (sub-shrubs, shrubs and trees; low SLA and high leaf Ca and Mg). Despite the large range of variation among species for each individual trait and the independent evolutionary trajectory of individual species, growth forms were strongly associated with particular leaf trait combinations, suggesting clear evolutionary constraints on leaf function for morphologically similar species in savanna ecosystems.
A molecular basis behind heterophylly in an amphibious plant, Ranunculus trichophyllus
Kim, Juhyun; Joo, Youngsung; Kyung, Jinseul; Jeon, Myeongjune; Park, Jong Yoon; Chung, Doo Soo; Lee, Eunju
2018-01-01
Ranunculus trichophyllus is an amphibious plant that produces thin and cylindrical leaves if grown under water but thick and broad leaves if grown on land. We found that such heterophylly is widely controlled by two plant hormones, abscisic acid (ABA) and ethylene, which control terrestrial and aquatic leaf development respectively. Aquatic leaves produced higher levels of ethylene but lower levels of ABA than terrestrial leaves. In aquatic leaves, their distinct traits with narrow shape, lack of stomata, and reduced vessel development were caused by EIN3-mediated overactivation of abaxial genes, RtKANADIs, and accompanying with reductions of STOMAGEN and VASCULAR-RELATED NAC-DOMAIN7 (VDN7). In contrast, in terrestrial leaves, ABI3-mediated activation of the adaxial genes, RtHD-ZIPIIIs, and STOMAGEN and VDN7 established leaf polarity, and stomata and vessel developments. Heterophylly of R.trichophyllus could be also induced by external cues such as cold and hypoxia, which is accompanied with the changes in the expression of leaf polarity genes similar to aquatic response. A closely-related land plant R. sceleratus did not show such heterophyllic responses, suggesting that the changes in the ABA/ethylene signaling and leaf polarity are one of key evolutionary steps for aquatic adaptation. PMID:29447166
Colored shade nets induced changes in growth, anatomy and essential oil of Pogostemon cablin.
Ribeiro, Aurislaine S; Ribeiro, Mariana S; Bertolucci, Suzan K V; Bittencourt, Wanderley J M; Carvalho, Alexandre A DE; Tostes, Wesley N; Alves, Eduardo; Pinto, José E B P
2018-04-16
The purpose of this investigation was to determine the influence of colored shade nets on the growth, anatomy and essential oil content, yield and chemical composition of Pogostemon cablin. The plants were cultivated under full sunlight, black, blue and red nets. The harvesting was performed 5 months after planting and it was followed by the analysis of plant growth parameters, leaf anatomy, essential oil content, yield and chemical composition. The plants grown under red net have produced more leaf, shoot, total dry weight and leaf area. Plants cultivated under colored nets showed differences in morphological features. Plants maintained under red net had a higher leaf blade thickness and polar and equatorial diameter of the stomata ratio. Additionally, higher yield of essential oil in the leaves was observed under red and blue colored shade net. The essential oil of the plants grown under red net showed the highest relative percentage of patchoulol (66.84%). Therefore, it is possible using colored shade nets to manipulate P. cablin growth, as well as its essential oil production with several chemical compositions. The analyses of principal components allowed observing that pogostol has negative correlation with α-guaiene and α-bulnesene. There was difference in total dry weight and patchoulol content when the patchouli is cultured under the red colored shade nets.
Aspinwall, Michael J; Lowry, David B; Taylor, Samuel H; Juenger, Thomas E; Hawkes, Christine V; Johnson, Mari-Vaughn V; Kiniry, James R; Fay, Philip A
2013-09-01
Examining intraspecific variation in growth and function in relation to climate may provide insight into physiological evolution and adaptation, and is important for predicting species responses to climate change. Under common garden conditions, we grew nine genotypes of the C₄ species Panicum virgatum originating from different temperature and precipitation environments. We hypothesized that genotype productivity, morphology and physiological traits would be correlated with climate of origin, and a suite of adaptive traits would show high broad-sense heritability (H(2)). Genotype productivity and flowering time increased and decreased, respectively, with home-climate temperature, and home-climate temperature was correlated with genotypic differences in a syndrome of morphological and physiological traits. Genotype leaf and tiller size, leaf lamina thickness, leaf mass per area (LMA) and C : N ratios increased with home-climate temperature, whereas leaf nitrogen per unit mass (Nm ) and chlorophyll (Chl) decreased with home-climate temperature. Trait variation was largely explained by genotypic differences (H(2) = 0.33-0.85). Our results provide new insight into the role of climate in driving functional trait coordination, local adaptation and genetic divergence within species. These results emphasize the importance of considering intraspecific variation in future climate change scenarios. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
A scattering model for forested area
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.
1988-01-01
A forested area is modeled as a volume of randomly oriented and distributed disc-shaped, or needle-shaped leaves shading a distribution of branches modeled as randomly oriented finite-length, dielectric cylinders above an irregular soil surface. Since the radii of branches have a wide range of sizes, the model only requires the length of a branch to be large compared with its radius which may be any size relative to the incident wavelength. In addition, the model also assumes the thickness of a disc-shaped leaf or the radius of a needle-shaped leaf is much smaller than the electromagnetic wavelength. The scattering phase matrices for disc, needle, and cylinder are developed in terms of the scattering amplitudes of the corresponding fields which are computed by the forward scattering theorem. These quantities along with the Kirchoff scattering model for a randomly rough surface are used in the standard radiative transfer formulation to compute the backscattering coefficient. Numerical illustrations for the backscattering coefficient are given as a function of the shading factor, incidence angle, leaf orientation distribution, branch orientation distribution, and the number density of leaves. Also illustrated are the properties of the extinction coefficient as a function of leaf and branch orientation distributions. Comparisons are made with measured backscattering coefficients from forested areas reported in the literature.
de Gaspi, Fernanda Oliveira de G.; Foglio, Mary Ann; de Carvalho, João Ernesto; Santos, Gláucia Maria T.; Testa, Milene; Passarini, José Roberto; de Moraes, Cristiano Pedroso; Esquisatto, Marcelo A. Marreto; Mendonça, Josué S.; Mendonça, Fernanda A. Sampaio
2011-01-01
This study evaluated the wound healing activity of hydroalcoholic leaf extract of Oncidium flexuosum Sims. (Orchidaceae), an important native plant of Brazil, combined or not with microcurrent stimulation. Wistar rats were randomly divided into four groups of nine animals: control (C), topical application of the extract (OF), treated with a microcurrent (10 μA/2 min) (MC), and topical application of the extract plus microcurrent (OF + MC). Tissue samples were obtained 2, 6, and 10 days after injury and submitted to structural and morphometric analysis. The simultaneous application of OF + MC was found to be highly effective in terms of the parameters analyzed (P < .05), with positive effects on the area of newly formed tissue, number of fibroblasts, number of newly formed blood vessels, and epithelial thickness. Morphometric data confirmed the structural findings. The O. flexuosum leaf extract contains active compounds that speed the healing process, especially when applied simultaneously with microcurrent stimulation. PMID:21716707
Photoperiod-H1 (Ppd-H1) Controls Leaf Size1[OPEN
Digel, Benedikt; Tavakol, Elahe; Verderio, Gabriele; Xu, Xin
2016-01-01
Leaf size is a major determinant of plant photosynthetic activity and biomass; however, it is poorly understood how leaf size is genetically controlled in cereal crop plants like barley (Hordeum vulgare). We conducted a genome-wide association scan for flowering time, leaf width, and leaf length in a diverse panel of European winter cultivars grown in the field and genotyped with a single-nucleotide polymorphism array. The genome-wide association scan identified PHOTOPERIOD-H1 (Ppd-H1) as a candidate gene underlying the major quantitative trait loci for flowering time and leaf size in the barley population. Microscopic phenotyping of three independent introgression lines confirmed the effect of Ppd-H1 on leaf size. Differences in the duration of leaf growth and consequent variation in leaf cell number were responsible for the leaf size differences between the Ppd-H1 variants. The Ppd-H1-dependent induction of the BARLEY MADS BOX genes BM3 and BM8 in the leaf correlated with reductions in leaf size and leaf number. Our results indicate that leaf size is controlled by the Ppd-H1- and photoperiod-dependent progression of plant development. The coordination of leaf growth with flowering may be part of a reproductive strategy to optimize resource allocation to the developing inflorescences and seeds. PMID:27457126
Leaf Phenological Characters of Main Tree Species in Urban Forest of Shenyang
Xu, Sheng; Xu, Wenduo; Chen, Wei; He, Xingyuan; Huang, Yanqing; Wen, Hua
2014-01-01
Background Plant leaves, as the main photosynthetic organs and the high energy converters among primary producers in terrestrial ecosystems, have attracted significant research attention. Leaf lifespan is an adaptive characteristic formed by plants to obtain the maximum carbon in the long-term adaption process. It determines important functional and structural characteristics exhibited in the environmental adaptation of plants. However, the leaf lifespan and leaf characteristics of urban forests were not studied up to now. Methods By using statistic, linear regression methods and correlation analysis, leaf phenological characters of main tree species in urban forest of Shenyang were observed for five years to obtain the leafing phenology (including leafing start time, end time, and duration), defoliating phenology (including defoliation start time, end time, and duration), and the leaf lifespan of the main tree species. Moreover, the relationships between temperature and leafing phenology, defoliating phenology, and leaf lifespan were analyzed. Findings The timing of leafing differed greatly among species. The early leafing species would have relatively early end of leafing; the longer it took to the end of leafing would have a later time of completed leafing. The timing of defoliation among different species varied significantly, the early defoliation species would have relatively longer duration of defoliation. If the mean temperature rise for 1°C in spring, the time of leafing would experience 5 days earlier in spring. If the mean temperature decline for 1°C, the time of defoliation would experience 3 days delay in autumn. Interpretation There is significant correlation between leaf longevity and the time of leafing and defoliation. According to correlation analysis and regression analysis, there is significant correlation between temperature and leafing and defoliation phenology. Early leafing species would have a longer life span and consequently have advantage on carbon accumulation compared with later defoliation species. PMID:24963625
Shi, Pei-Jian; Xu, Qiang; Sandhu, Hardev S; Gielis, Johan; Ding, Yu-Long; Li, Hua-Rong; Dong, Xiao-Bo
2015-10-01
The relationship between spatial density and size of plants is an important topic in plant ecology. The self-thinning rule suggests a -3/2 power between average biomass and density or a -1/2 power between stand yield and density. However, the self-thinning rule based on total leaf area per plant and density of plants has been neglected presumably because of the lack of a method that can accurately estimate the total leaf area per plant. We aimed to find the relationship between spatial density of plants and total leaf area per plant. We also attempted to provide a novel model for accurately describing the leaf shape of bamboos. We proposed a simplified Gielis equation with only two parameters to describe the leaf shape of bamboos one model parameter represented the overall ratio of leaf width to leaf length. Using this method, we compared some leaf parameters (leaf shape, number of leaves per plant, ratio of total leaf weight to aboveground weight per plant, and total leaf area per plant) of four bamboo species of genus Indocalamus Nakai (I. pedalis (Keng) P.C. Keng, I. pumilus Q.H. Dai and C.F. Keng, I. barbatus McClure, and I. victorialis P.C. Keng). We also explored the possible correlation between spatial density and total leaf area per plant using log-linear regression. We found that the simplified Gielis equation fit the leaf shape of four bamboo species very well. Although all these four species belonged to the same genus, there were still significant differences in leaf shape. Significant differences also existed in leaf area per plant, ratio of leaf weight to aboveground weight per plant, and leaf length. In addition, we found that the total leaf area per plant decreased with increased spatial density. Therefore, we directly demonstrated the self-thinning rule to improve light interception.
Ecophysiological response of Crambe maritima to airborne and soil-borne salinity
de Vos, Arjen C.; Broekman, Rob; Groot, Maartje P.; Rozema, Jelte
2010-01-01
Background and Aims There is a need to evaluate the salt tolerance of plant species that can be cultivated as crops under saline conditions. Crambe maritima is a coastal plant, usually occurring on the driftline, with potential use as a vegetable crop. The aim of this experiment was to determine the growth response of Crambe maritima to various levels of airborne and soil-borne salinity and the ecophysiological mechanisms underlying these responses. Methods In the greenhouse, plants were exposed to salt spray (400 mm NaCl) as well as to various levels of root-zone salinity (RZS) of 0, 50, 100, 200 and 300 mm NaCl during 40 d. The salt tolerance of Crambe maritima was assessed by the relative growth rate (RGR) and its components. To study possible salinity effects on the tissue and cellular level, the leaf succulence, tissue Na+ concentrations, Na+ : K+ ratio, net K+/Na+ selectivity, N, P, K+, Ca2+, Mg2+, proline, soluble sugar concentrations, osmotic potential, total phenolics and antioxidant capacity were measured. Key Results Salt spray did not affect the RGR of Crambe maritima. However, leaf thickness and leaf succulence increased with salt spray. Root zone salinities up to 100 mm NaCl did not affect growth. However, at 200 mm NaCl RZS the RGR was reduced by 41 % compared with the control and by 56 % at 300 mm NaCl RZS. The reduced RGR with increasing RZS was largely due to the reduced specific leaf area, which was caused by increased leaf succulence as well as by increased leaf dry matter content. No changes in unit leaf rate were observed but increased RZS resulted in increased Na+ and proline concentrations, reduced K+, Ca2+ and Mg2+ concentrations, lower osmotic potential and increased antioxidant capacity. Proline concentrations of the leaves correlated strongly (r = 0·95) with RZS concentrations and not with plant growth. Conclusions Based on its growth response, Crambe maritima can be classified as a salt spray tolerant plant that is sensitive to root zone salinities exceeding 100 mm NaCl. PMID:20354071
Xiong, Dongliang; Flexas, Jaume; Yu, Tingting; Peng, Shaobing; Huang, Jianliang
2017-01-01
Leaf hydraulic conductance (K leaf ) and mesophyll conductance (g m ) both represent major constraints to photosynthetic rate (A), and previous studies have suggested that K leaf and g m is correlated in leaves. However, there is scarce empirical information about their correlation. In this study, K leaf , leaf hydraulic conductance inside xylem (K x ), leaf hydraulic conductance outside xylem (K ox ), A, stomatal conductance (g s ), g m , and anatomical and structural leaf traits in 11 Oryza genotypes were investigated to elucidate the correlation of H 2 O and CO 2 diffusion inside leaves. All of the leaf functional and anatomical traits varied significantly among genotypes. K leaf was not correlated with the maximum theoretical stomatal conductance calculated from stomatal dimensions (g smax ), and neither g s nor g smax were correlated with K x . Moreover, K ox was linearly correlated with g m and both were closely related to mesophyll structural traits. These results suggest that K leaf and g m are related to leaf anatomical and structural features, which may explain the mechanism for correlation between g m and K leaf . © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf. 29.3033 Section 29.3033 Agriculture Regulations... Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16758, Apr. 20, 1984] ...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf. 29.3033 Section 29.3033 Agriculture Regulations... Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16758, Apr. 20, 1984] ...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf. 29.3033 Section 29.3033 Agriculture Regulations... Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16758, Apr. 20, 1984] ...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf. 29.3033 Section 29.3033 Agriculture Regulations... Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16758, Apr. 20, 1984] ...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf. 29.3033 Section 29.3033 Agriculture Regulations... Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16758, Apr. 20, 1984] ...
Reich, Peter B; Walters, Michael B; Ellsworth, David S; Vose, James M; Volin, John C; Gresham, Charles; Bowman, William D
1998-05-01
Based on prior evidence of coordinated multiple leaf trait scaling, we hypothesized that variation among species in leaf dark respiration rate (R d ) should scale with variation in traits such as leaf nitrogen (N), leaf life-span, specific leaf area (SLA), and net photosynthetic capacity (A max ). However, it is not known whether such scaling, if it exists, is similar among disparate biomes and plant functional types. We tested this idea by examining the interspecific relationships between R d measured at a standard temperature and leaf life-span, N, SLA and A max for 69 species from four functional groups (forbs, broad-leafed trees and shrubs, and needle-leafed conifers) in six biomes traversing the Americas: alpine tundra/subalpine forest, Colorado; cold temperate forest/grassland, Wisconsin; cool temperate forest, North Carolina; desert/shrubland, New Mexico; subtropical forest, South Carolina; and tropical rain forest, Amazonas, Venezuela. Area-based R d was positively related to area-based leaf N within functional groups and for all species pooled, but not when comparing among species within any site. At all sites, mass-based R d (R d-mass ) decreased sharply with increasing leaf life-span and was positively related to SLA and mass-based A max and leaf N (leaf N mass ). These intra-biome relationships were similar in shape and slope among sites, where in each case we compared species belonging to different plant functional groups. Significant R d-mass -N mass relationships were observed in all functional groups (pooled across sites), but the relationships differed, with higher R d at any given leaf N in functional groups (such as forbs) with higher SLA and shorter leaf life-span. Regardless of biome or functional group, R d-mass was well predicted by all combinations of leaf life-span, N mass and/or SLA (r 2 ≥ 0.79, P < 0.0001). At any given SLA, R d-mass rises with increasing N mass and/or decreasing leaf life-span; and at any level of N mass , R d-mass rises with increasing SLA and/or decreasing leaf life-span. The relationships between R d and leaf traits observed in this study support the idea of a global set of predictable interrelationships between key leaf morphological, chemical and metabolic traits.
George, Justin; Ammar, El-Desouky; Hall, David G.
2017-01-01
Asian citrus psyllid (Diaphorina citri) feeding behaviors play a significant role in the transmission of the phloem-limited Candidatus Liberibacter asiaticus (CLas) bacterium that causes the economically devastating citrus greening disease. Sustained phloem ingestion by D. citri on CLas infected plants is required for pathogen acquisition and transmission. Recent studies have shown a fibrous ring of thick-walled sclerenchyma around the phloem in mature, fully expanded citrus leaves that is more prominent on the abaxial compared with the adaxial side. The composition and thickness of this fibrous ring may have an important role in selection of feeding sites by D. citri based on leaf age and leaf surface, which in turn can affect pathogen acquisition and transmission. We measured feeding behavior using electrical penetration graph (EPG) recordings of individual D. citri adults placed on abaxial or adaxial surfaces of young or mature Valencia orange leaves to study the role of the sclerenchymatous ring in modifying D. citri feeding behavior. Feeding sites on the same leaf tissues were then sectioned and examined by epifluorescence microscopy. The duration of phloem ingestion (E2 waveform) by psyllids was significantly reduced on mature compared with young leaves, and on abaxial compared with adaxial leaf surfaces. The longest duration of phloem ingestion was observed from psyllids placed on the adaxial side of young leaves that had the least developed sclerenchyma. Bouts of phloem salivation (E1 waveform), however, were significantly longer on mature leaves compared with young leaves. D. citri adults made consecutive phloem feeding attempts (bouts) on the abaxial side of mature leaves and those bouts resulted in unsuccessful or shorter periods of phloem ingestion. Adults also made more frequent and longer bouts of xylem ingestion on mature leaves compared with adult psyllids placed on young leaves. Epifluorescence microscopy showed that the fibrous ring in young leaves was thinner and autofluoresced in red whereas the ring in mature leaves was thicker and autofluoresced in blue, indicating changes in structure and composition (e.g., lignification) of sclerenchyma correlated with leaf age. Our results support the hypothesis that the presence of a thick, well-developed fibrous ring around phloem tissues of mature leaves acts as a barrier to frequent or prolonged phloem ingestion by D. citri from citrus leaves. This may have an important role in limiting or preventing CLas acquisition and/or transmission by D. citri, and could be used for identification and development of resistant citrus cultivars. PMID:28278248
George, Justin; Ammar, El-Desouky; Hall, David G; Lapointe, Stephen L
2017-01-01
Asian citrus psyllid (Diaphorina citri) feeding behaviors play a significant role in the transmission of the phloem-limited Candidatus Liberibacter asiaticus (CLas) bacterium that causes the economically devastating citrus greening disease. Sustained phloem ingestion by D. citri on CLas infected plants is required for pathogen acquisition and transmission. Recent studies have shown a fibrous ring of thick-walled sclerenchyma around the phloem in mature, fully expanded citrus leaves that is more prominent on the abaxial compared with the adaxial side. The composition and thickness of this fibrous ring may have an important role in selection of feeding sites by D. citri based on leaf age and leaf surface, which in turn can affect pathogen acquisition and transmission. We measured feeding behavior using electrical penetration graph (EPG) recordings of individual D. citri adults placed on abaxial or adaxial surfaces of young or mature Valencia orange leaves to study the role of the sclerenchymatous ring in modifying D. citri feeding behavior. Feeding sites on the same leaf tissues were then sectioned and examined by epifluorescence microscopy. The duration of phloem ingestion (E2 waveform) by psyllids was significantly reduced on mature compared with young leaves, and on abaxial compared with adaxial leaf surfaces. The longest duration of phloem ingestion was observed from psyllids placed on the adaxial side of young leaves that had the least developed sclerenchyma. Bouts of phloem salivation (E1 waveform), however, were significantly longer on mature leaves compared with young leaves. D. citri adults made consecutive phloem feeding attempts (bouts) on the abaxial side of mature leaves and those bouts resulted in unsuccessful or shorter periods of phloem ingestion. Adults also made more frequent and longer bouts of xylem ingestion on mature leaves compared with adult psyllids placed on young leaves. Epifluorescence microscopy showed that the fibrous ring in young leaves was thinner and autofluoresced in red whereas the ring in mature leaves was thicker and autofluoresced in blue, indicating changes in structure and composition (e.g., lignification) of sclerenchyma correlated with leaf age. Our results support the hypothesis that the presence of a thick, well-developed fibrous ring around phloem tissues of mature leaves acts as a barrier to frequent or prolonged phloem ingestion by D. citri from citrus leaves. This may have an important role in limiting or preventing CLas acquisition and/or transmission by D. citri, and could be used for identification and development of resistant citrus cultivars.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf. 29.3525 Section 29.3525 Agriculture Regulations... Type 95) § 29.3525 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16759, Apr. 20, 1984] ...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf. 29.3525 Section 29.3525 Agriculture Regulations... Type 95) § 29.3525 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16759, Apr. 20, 1984] ...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf. 29.3525 Section 29.3525 Agriculture Regulations... Type 95) § 29.3525 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16759, Apr. 20, 1984] ...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf. 29.3525 Section 29.3525 Agriculture Regulations... Type 95) § 29.3525 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16759, Apr. 20, 1984] ...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf. 29.3525 Section 29.3525 Agriculture Regulations... Type 95) § 29.3525 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16759, Apr. 20, 1984] ...
Photoperiod-H1 (Ppd-H1) Controls Leaf Size.
Digel, Benedikt; Tavakol, Elahe; Verderio, Gabriele; Tondelli, Alessandro; Xu, Xin; Cattivelli, Luigi; Rossini, Laura; von Korff, Maria
2016-09-01
Leaf size is a major determinant of plant photosynthetic activity and biomass; however, it is poorly understood how leaf size is genetically controlled in cereal crop plants like barley (Hordeum vulgare). We conducted a genome-wide association scan for flowering time, leaf width, and leaf length in a diverse panel of European winter cultivars grown in the field and genotyped with a single-nucleotide polymorphism array. The genome-wide association scan identified PHOTOPERIOD-H1 (Ppd-H1) as a candidate gene underlying the major quantitative trait loci for flowering time and leaf size in the barley population. Microscopic phenotyping of three independent introgression lines confirmed the effect of Ppd-H1 on leaf size. Differences in the duration of leaf growth and consequent variation in leaf cell number were responsible for the leaf size differences between the Ppd-H1 variants. The Ppd-H1-dependent induction of the BARLEY MADS BOX genes BM3 and BM8 in the leaf correlated with reductions in leaf size and leaf number. Our results indicate that leaf size is controlled by the Ppd-H1- and photoperiod-dependent progression of plant development. The coordination of leaf growth with flowering may be part of a reproductive strategy to optimize resource allocation to the developing inflorescences and seeds. © 2016 American Society of Plant Biologists. All rights reserved.
Limousin, Jean-Marc; Rambal, Serge; Ourcival, Jean-Marc; Rodríguez-Calcerrada, Jesus; Pérez-Ramos, Ignacio M; Rodríguez-Cortina, Raquel; Misson, Laurent; Joffre, Richard
2012-06-01
Mediterranean trees must adjust their canopy leaf area to the unpredictable timing and severity of summer drought. The impact of increased drought on the canopy dynamics of the evergreen Quercus ilex was studied by measuring shoot growth, leaf production, litterfall, leafing phenology and leaf demography in a mature forest stand submitted to partial throughfall exclusion for 7 years. The leaf area index rapidly declined in the throughfall-exclusion plot and was 19% lower than in the control plot after 7 years of treatment. Consequently, leaf litterfall was significantly lower in the dry treatment. Such a decline in leaf area occurred through a change in branch allometry with a decreased number of ramifications produced and a reduction of the leaf area supported per unit sapwood area of the shoot (LA/SA). The leafing phenology was slightly delayed and the median leaf life span was slightly longer in the dry treatment. The canopy dynamics in both treatments were driven by water availability with a 1-year lag: leaf shedding and production were reduced following dry years; in contrast, leaf turnover was increased following wet years. The drought-induced decrease in leaf area, resulting from both plasticity in shoot development and slower leaf turnover, appeared to be a hydraulic adjustment to limit canopy transpiration and maintain leaf-specific hydraulic conductivity under drier conditions.
Leaf dynamics in growth and reproduction of Xanthium canadense as influenced by stand density
Ogawa, Takahiro; Oikawa, Shimpei; Hirose, Tadaki
2015-01-01
Background and Aims Leaf longevity is controlled by the light gradient in the canopy and also by the nitrogen (N) sink strength in the plant. Stand density may influence leaf dynamics through its effects on light gradient and on plant growth and reproduction. This study tests the hypothesis that the control by the light gradient is manifested more in the vegetative period, whereas the opposite is true when the plant becomes reproductive and develops a strong N sink. Methods Stands of Xanthium canadense were established at two densities. Emergence, growth and death of every leaf on the main stem and branches, and plant growth and N uptake were determined from germination to full senescence. Mean residence time and dry mass productivity were calculated per leaf number, leaf area, leaf mass and leaf N (collectively termed ‘leaf variables’) in order to analyse leaf dynamics and its effect on plant growth. Key Results Branching and reproductive activities were higher at low than at high density. Overall there was no significant difference in mean residence time of leaf variables between the two stands. However, early leaf cohorts on the main stem had a longer retention time at low density, whereas later cohorts had a longer retention time at high density. Branch leaves emerged earlier and tended to live longer at low than at high density. Leaf efficiencies, defined as carbon export per unit investment of leaf variables, were higher at low density in all leaf variables except for leaf number. Conclusions In the vegetative phase of plant growth, the light gradient strongly controls leaf longevity, whereas later the effects of branching and reproductive activities become stronger and over-rule the effect of light environment. As leaf N supports photosynthesis and also works as an N source for plant development, N use is pivotal in linking leaf dynamics with plant growth and reproduction. PMID:26248476
[Spectrum Variance Analysis of Tree Leaves Under the Condition of Different Leaf water Content].
Wu, Jian; Chen, Tai-sheng; Pan, Li-xin
2015-07-01
Leaf water content is an important factor affecting tree spectral characteristics. So Exploring the leaf spectral characteristics change rule of the same tree under the condition of different leaf water content and the spectral differences of different tree leaves under the condition of the same leaf water content are not only the keys of hyperspectral vegetation remote sensing information identification but also the theoretical support of research on vegetation spectrum change as the differences in leaf water content. The spectrometer was used to observe six species of tree leaves, and the reflectivity and first order differential spectrum of different leaf water content were obtained. Then, the spectral characteristics of each tree species leaves under the condition of different leaf water content were analyzed, and the spectral differences of different tree species leaves under the condition of the same leaf water content were compared to explore possible bands of the leaf water content identification by hyperspectral remote sensing. Results show that the spectra of each tree leaf have changed a lot with the change of the leaf water content, but the change laws are different. Leaf spectral of different tree species has lager differences in some wavelength range under the condition of same leaf water content, and it provides some possibility for high precision identification of tree species.
Effect of packaging materials on shelf life and quality of banana cultivars (Musa spp.).
Hailu, M; Seyoum Workneh, T; Belew, D
2014-11-01
This study was carried out to evaluate the effect of packaging materials on the shelf life of three banana cultivars. Four packaging materials, namely, perforated low density polyethylene bag, perforated high density polyethylene bag, dried banana leaf, teff straw and no packaging materials (control) were used with three banana cultivars, locally known as, Poyo, Giant Cavendish and Williams I. The experiment was carried out in Randomized Complete Block Design in a factorial combination with three replications. Physical parameters including weight loss, peel colour, peel thickness, pulp thickness, pulp to peel ratio, pulp firmness, pulp dry matter, decay, loss percent of marketability were assessed every 3 days. Banana remained marketable for 36 days in the high density polyethylene and low density polyethylene bags, and for 18 days in banana leaf and teff straw packaging treatments. Unpackaged fruits remained marketable for 15 days only. Fruits that were not packaged lost their weight by 24.0 % whereas fruits packaged in banana leaf and teff straw became unmarketable with final weight loss of 19.8 % and 20.9 %, respectively. Packaged fruits remained well until 36th days of storage with final weight loss of only 8.2 % and 9.20 %, respectively. Starting from green mature stage, the colour of the banana peel changed to yellow and this process was found to be fast for unpackaged fruits. Packaging maintained the peel and the pulp thickness, firmness, dry matter and pulp to peel ratio was kept lower. Decay loss for unpackaged banana fruits was16 % at the end of date 15, whereas the decay loss of fruits packaged using high density and low density polyethylene bags were 43.0 % and 41.2 %, respectively at the end of the 36th day of the experiment. It can, thus, be concluded that packaging of banana fruits in high density and low density polyethylene bags resulted in longer shelf life and improved quality of the produce followed by packaging in dried banana leaf and teff straw.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, L; Huang, B; Rowedder, B
Purpose: The Smart leaf motion calculator (SLMC) in Eclipse treatment planning system is an advanced fluence delivery modeling algorithm as it takes into account fine MLC features including inter-leaf leakage, rounded leaf tips, non-uniform leaf thickness, and the spindle cavity etc. In this study, SLMC and traditional Varian LMC (VLMC) algorithms were investigated, for the first time, in dosimetric characteristics and delivery accuracy of sliding window (SW) IMRT. Methods: The SW IMRT plans of 51 cancer cases were included to evaluate dosimetric characteristics and dose delivery accuracy from leaf motion calculated by SLMC and VLMC, respectively. All plans were deliveredmore » using a Varian TrueBeam Linac. The DVH and MUs of the plans were analyzed. Three patient specific QA tools - independent dose calculation software IMSure, Delta4 phantom, and EPID portal dosimetry were also used to measure the delivered dose distribution. Results: Significant differences in the MUs were observed between the two LMCs (p≤0.001).Gamma analysis shows an excellent agreement between the planned dose distribution calculated by both LMC algorithms and delivered dose distribution measured by three QA tools in all plans at 3%/3 mm, leading to a mean pass rate exceeding 97%. The mean fraction of pixels with gamma < 1 of SLMC is slightly lower than that of VLMC in the IMSure and Delta4 results, but higher in portal dosimetry (the highest spatial resolution), especially in complex cases such as nasopharynx. Conclusion: The study suggests that the two LMCs generates the similar target coverage and sparing patterns of critical structures. However, SLMC is modestly more accurate than VLMC in modeling advanced MLC features, which may lead to a more accurate dose delivery in SW IMRT. Current clinical QA tools might not be specific enough to differentiate the dosimetric discrepancies at the millimeter level calculated by these two LMC algorithms. NIH/NIGMS grant U54 GM104944, Lincy Endowed Assistant Professorship.« less
Connecting infrared spectra with plant traits to identify species
NASA Astrophysics Data System (ADS)
Buitrago, Maria F.; Skidmore, Andrew K.; Groen, Thomas A.; Hecker, Christoph A.
2018-05-01
Plant traits are used to define species, but also to evaluate the health status of forests, plantations and crops. Conventional methods of measuring plant traits (e.g. wet chemistry), although accurate, are inefficient and costly when applied over large areas or with intensive sampling. Spectroscopic methods, as used in the food industry and mineralogy, are nowadays applied to identify plant traits, however, most studies analysed visible to near infrared, while infrared spectra of longer wavelengths have been little used for identifying the spectral differences between plant species. This study measured the infrared spectra (1.4-16.0 μm) on individual, fresh leaves of 19 species (from herbaceous to woody species), as well as 14 leaf traits for each leaf. The results describe at which wavelengths in the infrared the leaves' spectra can differentiate most effectively between these plant species. A Quadratic Discrimination Analysis (QDA) shows that using five bands in the SWIR or the LWIR is enough to accurately differentiate these species (Kappa: 0.93, 0.94 respectively), while the MWIR has a lower classification accuracy (Kappa: 0.84). This study also shows that in the infrared spectra of fresh leaves, the identified species-specific features are correlated with leaf traits as well as changes in their values. Spectral features in the SWIR (1.66, 1.89 and 2.00 μm) are common to all species and match the main features of pure cellulose and lignin spectra. The depth of these features varies with changes of cellulose and leaf water content and can be used to differentiate species in this region. In the MWIR and LWIR, the absorption spectra of leaves are formed by key species-specific traits including lignin, cellulose, water, nitrogen and leaf thickness. The connection found in this study between leaf traits, features and spectral signatures are novel tools to assist when identifying plant species by spectroscopy and remote sensing.
Leaf-IT: An Android application for measuring leaf area.
Schrader, Julian; Pillar, Giso; Kreft, Holger
2017-11-01
The use of plant functional traits has become increasingly popular in ecological studies because plant functional traits help to understand key ecological processes in plant species and communities. This also includes changes in diversity, inter- and intraspecific interactions, and relationships of species at different spatiotemporal scales. Leaf traits are among the most important traits as they describe key dimensions of a plant's life history strategy. Further, leaf area is a key parameter with relevance for other traits such as specific leaf area, which in turn correlates with leaf chemical composition, photosynthetic rate, leaf longevity, and carbon investment. Measuring leaf area usually involves the use of scanners and commercial software and can be difficult under field conditions. We present Leaf-IT, a new smartphone application for measuring leaf area and other trait-related areas. Leaf-IT is free, designed for scientific purposes, and runs on Android 4 or higher. We tested the precision and accuracy using objects with standardized area and compared the area measurements of real leaves with the well-established, commercial software WinFOLIA using the Altman-Bland method. Area measurements of standardized objects show that Leaf-IT measures area with high accuracy and precision. Area measurements with Leaf-IT of real leaves are comparable to those of WinFOLIA. Leaf-IT is an easy-to-use application running on a wide range of smartphones. That increases the portability and use of Leaf-IT and makes it possible to measure leaf area under field conditions typical for remote locations. Its high accuracy and precision are similar to WinFOLIA. Currently, its main limitation is margin detection of damaged leaves or complex leaf morphologies.
Peguero-Pina, José Javier; Sancho-Knapik, Domingo; Flexas, Jaume; Galmés, Jeroni; Niinemets, Ülo; Gil-Pelegrín, Eustaquio
2016-01-01
Leaves growing in the forest understory usually present a decreased mesophyll conductance (gm) and photosynthetic capacity. The role of leaf anatomy in determining the variability in gm among species is known, but there is a lack of information on how the acclimation of gm to shade conditions is driven by changes in leaf anatomy. Within this context, we demonstrated that Abies pinsapo Boiss. experienced profound modifications in needle anatomy to drastic changes in light availability that ultimately led to differential photosynthetic performance between trees grown in the open field and in the forest understory. In contrast to A. pinsapo, its congeneric Abies alba Mill. did not show differences either in needle anatomy or in photosynthetic parameters between trees grown in the open field and in the forest understory. The increased gm values found in trees of A. pinsapo grown in the open field can be explained by occurrence of stomata at both needle sides (amphistomatous needles), increased chloroplast surface area exposed to intercellular airspace, decreased cell wall thickness and, especially, decreased chloroplast thickness. To the best of our knowledge, the role of such drastic changes in ultrastructural needle anatomy in explaining the response of gm to the light environment has not been demonstrated in field conditions. PMID:26543153
Golob, Aleksandra; Kavčič, Jan; Stibilj, Vekoslava; Gaberščik, Alenka; Vogel-Mikuš, Katarina; Germ, Mateja
2017-02-01
UV radiation as an evolutionarily important environmental factor, significantly affects plants traits and alters the effects of other environmental factors. Single and combined effects of ambient UV radiation, its exclusion, and Se foliar treatments on Si concentrations and production of Si phytoliths in wheat (Triticum aestivum L.) cv. 'Reska' were studied. The effects of these treatments on growth parameters of the plants, structural and biochemical traits of the leaves, and interactions of the leaves with light, as Si incrustation is the first barrier to light at the leaf surface were also examined. Under ambient UV radiation and foliar treatment with 10mgL -1 sodium selenate solution, there was a trade-off between the plant investment in primary and secondary metabolism, as the production of UV-absorbing compounds was enhanced while photosynthetic pigment levels were reduced. Independent of Se treatment, ambient UV radiation lowered respiratory potential, Ca concentration, and leaf thickness, and increased Si concentration, Si phytoliths formation, and cuticle thickness. The Se treatment has little effect on plant traits and biomass production but it increased Se concentrations in the plants by >100-fold, independent of UV radiation. In combination with UV radiation Se strengthen the protection of plants against stress by increasing the amount of UV absorbing compounds, light reflectance and transmittance. Copyright © 2016 Elsevier Inc. All rights reserved.
Modeling canopy-level productivity: is the "big-leaf" simplification acceptable?
NASA Astrophysics Data System (ADS)
Sprintsin, M.; Chen, J. M.
2009-05-01
The "big-leaf" approach to calculating the carbon balance of plant canopies assumes that canopy carbon fluxes have the same relative responses to the environment as any single unshaded leaf in the upper canopy. Widely used light use efficiency models are essentially simplified versions of the big-leaf model. Despite its wide acceptance, subsequent developments in the modeling of leaf photosynthesis and measurements of canopy physiology have brought into question the assumptions behind this approach showing that big leaf approximation is inadequate for simulating canopy photosynthesis because of the additional leaf internal control on carbon assimilation and because of the non-linear response of photosynthesis on leaf nitrogen and absorbed light, and changes in leaf microenvironment with canopy depth. To avoid this problem a sunlit/shaded leaf separation approach, within which the vegetation is treated as two big leaves under different illumination conditions, is gradually replacing the "big-leaf" strategy, for applications at local and regional scales. Such separation is now widely accepted as a more accurate and physiologically based approach for modeling canopy photosynthesis. Here we compare both strategies for Gross Primary Production (GPP) modeling using the Boreal Ecosystem Productivity Simulator (BEPS) at local (tower footprint) scale for different land cover types spread over North America: two broadleaf forests (Harvard, Massachusetts and Missouri Ozark, Missouri); two coniferous forests (Howland, Maine and Old Black Spruce, Saskatchewan); Lost Creek shrubland site (Wisconsin) and Mer Bleue petland (Ontario). BEPS calculates carbon fixation by scaling Farquhar's leaf biochemical model up to canopy level with stomatal conductance estimated by a modified version of the Ball-Woodrow-Berry model. The "big-leaf" approach was parameterized using derived leaf level parameters scaled up to canopy level by means of Leaf Area Index. The influence of sunlit/shaded leaf separation on GPP prediction was evaluated accounting for the degree of the deviation of 3-dimensional leaf spatial distribution from the random case. More specifically, we compared and evaluated the behavior of both models showing the advantages of sunlit/shaded leaf separation strategy over a simplified big-leaf approach. Keywords: canopy photosynthesis, leaf area index, clumping index, remote sensing.
NASA Astrophysics Data System (ADS)
Tucić, Branka; Tomić, Vladimir; Avramov, Stevan; Pemac, Danijela
1998-12-01
A multivariate selection analysis has been used to test the adaptiveness of several Iris pumila leaf traits that display plasticity to natural light conditions. Siblings of a synthetic population comprising 31 families of two populations from contrasting light habitats were grown at an open dune site and in the understory of a Pinus nigra stand in order to score variation in phenotypic expression of six leaf traits: number of senescent leaves, number of live leaves, leaf length, leaf width, leaf angle, and specific leaf area. The ambient light conditions affected the values of all traits studied except for specific leaf area. In accordance to ecophysiological expectations for an adaptive response to light, both leaf length and width were significantly greater while the angle between sequential leaves was significantly smaller in the woodland understory than at the exposed dune site. The relationship between leaf traits and vegetative fitness (total leaf area) differed across light habitats as predicted by functional hypotheses. The standardized linear selection gradient ( β') for leaf length and width were positive in sign in both environments, but their magnitude for leaf length was higher in the shade than under full sunlight. Since plasticity of leaf length in the woodland shade has been recognized as adaptive, fitness cost of producing plastic change in leaf length was assessed. In both of the available methods used, the two-step and the multivariate regression procedures, a rather high negative association between the fitness value and the plasticity of leaf length was obtained, indicating a cost of plasticity. The selection gradient for leaf angle was weak and significant only in the woodland understory. Genetic correlations between trait expressions in contrasting light environments were negative in sign and low in magnitude, implying a significant genetic variation for plasticity in these leaf traits. Furthermore, leaf length and leaf width were found to be genetically positively coupled, which indicates that there is a potential for these two traits to evolve toward their optimal phenotypic values even faster than would be expected if they were genetically independent.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf. 29.2528 Section 29.2528 Agriculture Regulations...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2528 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16757, Apr. 20...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf Grade 4. 28.464 Section 28.464 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.464 Leaf Grade 4. Leaf Grade 4 is leaf which is within the range represented by...
78 FR 72579 - Revisions to the Arizona State Implementation Plan, Maricopa County Area
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-03
....01 Leaf Blower Use Restrictions 07/02/07 05/25/12 and Training; Leaf Blowers Equipment Sellers... recommend stronger control of emissions from leaf blowers, expanding leaf blowers requirements beyond county employees, control of leaf blowers in vacuum mode, control of leaf blowers on permitted sites, and greater...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf Grade 5. 28.465 Section 28.465 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.465 Leaf Grade 5. Leaf Grade 5 is leaf which is within the range represented by...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf. 29.1028 Section 29.1028 Agriculture Regulations... Type 92) § 29.1028 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16755, Apr. 20, 1984. Redesignated at 51 FR 25027, July...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf Grade 7. 28.467 Section 28.467 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.467 Leaf Grade 7. Leaf Grade 7 is leaf which is within the range represented by...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf. 29.2528 Section 29.2528 Agriculture Regulations...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2528 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16757, Apr. 20...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf Grade 3. 28.463 Section 28.463 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.463 Leaf Grade 3. Leaf Grade 3 is leaf which is within the range represented by...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf. 29.2528 Section 29.2528 Agriculture Regulations...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2528 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16757, Apr. 20...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf. 29.1028 Section 29.1028 Agriculture Regulations... Type 92) § 29.1028 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16755, Apr. 20, 1984. Redesignated at 51 FR 25027, July...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf. 29.1028 Section 29.1028 Agriculture Regulations... Type 92) § 29.1028 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16755, Apr. 20, 1984. Redesignated at 51 FR 25027, July...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf Grade 2. 28.462 Section 28.462 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.462 Leaf Grade 2. Leaf Grade 2 is leaf which is within the range represented by...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf Grade 2. 28.462 Section 28.462 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.462 Leaf Grade 2. Leaf Grade 2 is leaf which is within the range represented by...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf Grade 5. 28.465 Section 28.465 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.465 Leaf Grade 5. Leaf Grade 5 is leaf which is within the range represented by...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf Grade 4. 28.464 Section 28.464 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.464 Leaf Grade 4. Leaf Grade 4 is leaf which is within the range represented by...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf Grade 2. 28.462 Section 28.462 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.462 Leaf Grade 2. Leaf Grade 2 is leaf which is within the range represented by...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf Grade 5. 28.465 Section 28.465 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.465 Leaf Grade 5. Leaf Grade 5 is leaf which is within the range represented by...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf Grade 3. 28.463 Section 28.463 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.463 Leaf Grade 3. Leaf Grade 3 is leaf which is within the range represented by...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf Grade 2. 28.462 Section 28.462 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.462 Leaf Grade 2. Leaf Grade 2 is leaf which is within the range represented by...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf Grade 4. 28.464 Section 28.464 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.464 Leaf Grade 4. Leaf Grade 4 is leaf which is within the range represented by...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf Grade 3. 28.463 Section 28.463 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.463 Leaf Grade 3. Leaf Grade 3 is leaf which is within the range represented by...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf Grade 6. 28.466 Section 28.466 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.466 Leaf Grade 6. Leaf Grade 6 is leaf which is within the range represented by...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf. 29.1028 Section 29.1028 Agriculture Regulations... Type 92) § 29.1028 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16755, Apr. 20, 1984. Redesignated at 51 FR 25027, July...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf Grade 1. 28.461 Section 28.461 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.461 Leaf Grade 1. Leaf Grade 1 is leaf which is within the range represented by...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf Grade 1. 28.461 Section 28.461 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.461 Leaf Grade 1. Leaf Grade 1 is leaf which is within the range represented by...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf Grade 1. 28.461 Section 28.461 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.461 Leaf Grade 1. Leaf Grade 1 is leaf which is within the range represented by...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf Grade 5. 28.465 Section 28.465 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.465 Leaf Grade 5. Leaf Grade 5 is leaf which is within the range represented by...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf Grade 3. 28.463 Section 28.463 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.463 Leaf Grade 3. Leaf Grade 3 is leaf which is within the range represented by...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf Grade 7. 28.467 Section 28.467 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.467 Leaf Grade 7. Leaf Grade 7 is leaf which is within the range represented by...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf Grade 7. 28.467 Section 28.467 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.467 Leaf Grade 7. Leaf Grade 7 is leaf which is within the range represented by...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf Grade 6. 28.466 Section 28.466 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.466 Leaf Grade 6. Leaf Grade 6 is leaf which is within the range represented by...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf Grade 5. 28.465 Section 28.465 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.465 Leaf Grade 5. Leaf Grade 5 is leaf which is within the range represented by...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf Grade 2. 28.462 Section 28.462 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.462 Leaf Grade 2. Leaf Grade 2 is leaf which is within the range represented by...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf Grade 3. 28.463 Section 28.463 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.463 Leaf Grade 3. Leaf Grade 3 is leaf which is within the range represented by...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf. 29.1028 Section 29.1028 Agriculture Regulations... Type 92) § 29.1028 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16755, Apr. 20, 1984. Redesignated at 51 FR 25027, July...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf Grade 4. 28.464 Section 28.464 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.464 Leaf Grade 4. Leaf Grade 4 is leaf which is within the range represented by...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf Grade 1. 28.461 Section 28.461 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.461 Leaf Grade 1. Leaf Grade 1 is leaf which is within the range represented by...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf. 29.2528 Section 29.2528 Agriculture Regulations...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2528 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16757, Apr. 20...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf Grade 6. 28.466 Section 28.466 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.466 Leaf Grade 6. Leaf Grade 6 is leaf which is within the range represented by...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf. 29.2528 Section 29.2528 Agriculture Regulations...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2528 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16757, Apr. 20...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf Grade 4. 28.464 Section 28.464 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.464 Leaf Grade 4. Leaf Grade 4 is leaf which is within the range represented by...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf Grade 6. 28.466 Section 28.466 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.466 Leaf Grade 6. Leaf Grade 6 is leaf which is within the range represented by...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf Grade 6. 28.466 Section 28.466 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.466 Leaf Grade 6. Leaf Grade 6 is leaf which is within the range represented by...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf Grade 7. 28.467 Section 28.467 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.467 Leaf Grade 7. Leaf Grade 7 is leaf which is within the range represented by...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf Grade 1. 28.461 Section 28.461 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.461 Leaf Grade 1. Leaf Grade 1 is leaf which is within the range represented by...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf Grade 7. 28.467 Section 28.467 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.467 Leaf Grade 7. Leaf Grade 7 is leaf which is within the range represented by...
Walker, Anthony P.; Beckerman, Andrew P.; Gu, Lianhong; ...
2014-07-25
Great uncertainty exists in the global exchange of carbon between the atmosphere and the terrestrial biosphere. An important source of this uncertainty lies in the dependency of photosynthesis on the maximum rate of carboxylation (Vcmax) and the maximum rate of electron transport (Jmax). Understanding and making accurate prediction of C fluxes thus requires accurate characterization of these rates and their relationship with plant nutrient status over large geographic scales. Plant nutrient status is indicated by the traits: leaf nitrogen (N), leaf phosphorus (P), and specific leaf area (SLA). Correlations between Vcmax and Jmax and leaf nitrogen (N) are typically derivedmore » from local to global scales, while correlations with leaf phosphorus (P) and specific leaf area (SLA) have typically been derived at a local scale. Thus, there is no global-scale relationship between Vcmax and Jmax and P or SLA limiting the ability of global-scale carbon flux models do not account for P or SLA. We gathered published data from 24 studies to reveal global relationships of Vcmax and Jmax with leaf N, P, and SLA. Vcmax was strongly related to leaf N, and increasing leaf P substantially increased the sensitivity of Vcmax to leaf N. Jmax was strongly related to Vcmax, and neither leaf N, P, or SLA had a substantial impact on the relationship. Although more data are needed to expand the applicability of the relationship, we show leaf P is a globally important determinant of photosynthetic rates. In a model of photosynthesis, we showed that at high leaf N (3 gm 2), increasing leaf P from 0.05 to 0.22 gm 2 nearly doubled assimilation rates. Lastly, we show that plants may employ a conservative strategy of Jmax to Vcmax coordination that restricts photoinhibition when carboxylation is limiting at the expense of maximizing photosynthetic rates when light is limiting.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Anthony P.; Beckerman, Andrew P.; Gu, Lianhong
Great uncertainty exists in the global exchange of carbon between the atmosphere and the terrestrial biosphere. An important source of this uncertainty lies in the dependency of photosynthesis on the maximum rate of carboxylation (Vcmax) and the maximum rate of electron transport (Jmax). Understanding and making accurate prediction of C fluxes thus requires accurate characterization of these rates and their relationship with plant nutrient status over large geographic scales. Plant nutrient status is indicated by the traits: leaf nitrogen (N), leaf phosphorus (P), and specific leaf area (SLA). Correlations between Vcmax and Jmax and leaf nitrogen (N) are typically derivedmore » from local to global scales, while correlations with leaf phosphorus (P) and specific leaf area (SLA) have typically been derived at a local scale. Thus, there is no global-scale relationship between Vcmax and Jmax and P or SLA limiting the ability of global-scale carbon flux models do not account for P or SLA. We gathered published data from 24 studies to reveal global relationships of Vcmax and Jmax with leaf N, P, and SLA. Vcmax was strongly related to leaf N, and increasing leaf P substantially increased the sensitivity of Vcmax to leaf N. Jmax was strongly related to Vcmax, and neither leaf N, P, or SLA had a substantial impact on the relationship. Although more data are needed to expand the applicability of the relationship, we show leaf P is a globally important determinant of photosynthetic rates. In a model of photosynthesis, we showed that at high leaf N (3 gm 2), increasing leaf P from 0.05 to 0.22 gm 2 nearly doubled assimilation rates. Lastly, we show that plants may employ a conservative strategy of Jmax to Vcmax coordination that restricts photoinhibition when carboxylation is limiting at the expense of maximizing photosynthetic rates when light is limiting.« less
Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests.
Li, Le; McCormack, M Luke; Ma, Chengen; Kong, Deliang; Zhang, Qian; Chen, Xiaoyong; Zeng, Hui; Niinemets, Ülo; Guo, Dali
2015-09-01
Leaf economics and hydraulic traits are critical to leaf photosynthesis, yet it is debated whether these two sets of traits vary in a fully coordinated manner or there is room for independent variation. Here, we tested the relationship between leaf economics traits, including leaf nitrogen concentration and leaf dry mass per area, and leaf hydraulic traits including stomatal density and vein density in five tropical-subtropical forests. Surprisingly, these two suites of traits were statistically decoupled. This decoupling suggests that independent trait dimensions exist within a leaf, with leaf economics dimension corresponding to light capture and tissue longevity, and the hydraulic dimension to water-use and leaf temperature maintenance. Clearly, leaf economics and hydraulic traits can vary independently, thus allowing for more possible plant trait combinations. Compared with a single trait dimension, multiple trait dimensions may better enable species adaptations to multifarious niche dimensions, promote diverse plant strategies and facilitate species coexistence. © 2015 John Wiley & Sons Ltd/CNRS.
NASA Astrophysics Data System (ADS)
Hu, Jing; Li, Chenxiao; Wen, Yifang; Gao, Xinhao; Shi, Feifei; Han, Luhua
2018-01-01
To determine the best leaf position for nitrogen diagnosis in cucumber with SPAD meter, greenhouse experiments were carried out to study spatial distribution of SPAD value of different position of the 3rd fully expanded cucumber leaf in the effect of different nitrogen levels, and the correlations between SPAD values and nitrogen concentration of chlorophyll. The results show that there is remarkable different SPAD value in different positions of the 3rd fully expanded leaf in the flowering and fruiting stage. Comparing the coefficients of SPAD value variation, we find that the coefficient of variation of leaf edge was significantly higher than the edge of the main vein, and the coefficient of variation of triangular area of leaf tip is significantly higher than any other leaf area. There is a significant correlation between SPAD values and leaf nitrogen content. Preliminary study shows that triangular area of leaf tip from the 20% leaf tip to leaf edge is the best position for nitrogen diagnosis.
Yang, Wanneng; Guo, Zilong; Huang, Chenglong; Wang, Ke; Jiang, Ni; Feng, Hui; Chen, Guoxing; Liu, Qian; Xiong, Lizhong
2015-09-01
Leaves are the plant's solar panel and food factory, and leaf traits are always key issues to investigate in plant research. Traditional methods for leaf trait measurement are time-consuming. In this work, an engineering prototype has been established for high-throughput leaf scoring (HLS) of a large number of Oryza sativa accessions. The mean absolute per cent of errors in traditional measurements versus HLS were below 5% for leaf number, area, shape, and colour. Moreover, HLS can measure up to 30 leaves per minute. To demonstrate the usefulness of HLS in dissecting the genetic bases of leaf traits, a genome-wide association study (GWAS) was performed for 29 leaf traits related to leaf size, shape, and colour at three growth stages using HLS on a panel of 533 rice accessions. Nine associated loci contained known leaf-related genes, such as Nal1 for controlling the leaf width. In addition, a total of 73, 123, and 177 new loci were detected for traits associated with leaf size, colour, and shape, respectively. In summary, after evaluating the performance with a large number of rice accessions, the combination of GWAS and high-throughput leaf phenotyping (HLS) has proven a valuable strategy to identify the genetic loci controlling rice leaf traits. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
The light response of mesophyll conductance is controlled by structure across leaf profiles.
Théroux-Rancourt, Guillaume; Gilbert, Matthew E
2017-05-01
Mesophyll conductance to CO 2 (g m ) may respond to light either through regulated dynamic mechanisms or due to anatomical and structural factors. At low light, some layers of cells in the leaf cross-section approach photocompensation and contribute minimally to bulk leaf photosynthesis and little to whole leaf g m (g m,leaf ). Thus, the bulk g m,leaf will appear to respond to light despite being based upon cells having an anatomically fixed mesophyll conductance. Such behaviour was observed in species with contrasting leaf structure using the variable J or stable isotope method of measuring g m,leaf . A species with bifacial structure, Arbutus × 'Marina', and an isobilateral species, Triticum durum L., had contrasting responses of g m,leaf upon varying adaxial or abaxial illumination. Anatomical observations, when coupled with the proposed model of g m,leaf to photosynthetic photon flux density (PPFD) response, successfully represented the observed gas exchange data. The theoretical and observed evidence that g m,leaf apparently responds to light has large implications for how g m,leaf values are interpreted, particularly limitation analyses, and indicates the importance of measuring g m under full light saturation. Responses of g m,leaf to the environment should be treated as an emergent property of a distributed 3D structure, and not solely a leaf area-based phenomenon. © 2016 John Wiley & Sons Ltd.
7 CFR 28.517 - Leaf Grade No. 7.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf Grade No. 7. 28.517 Section 28.517 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Pima Cotton § 28.517 Leaf Grade No. 7. American Pima cotton which in leaf is inferior to Leaf...
7 CFR 28.517 - Leaf Grade No. 7.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf Grade No. 7. 28.517 Section 28.517 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Pima Cotton § 28.517 Leaf Grade No. 7. American Pima cotton which in leaf is inferior to Leaf...
7 CFR 28.517 - Leaf Grade No. 7.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf Grade No. 7. 28.517 Section 28.517 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Pima Cotton § 28.517 Leaf Grade No. 7. American Pima cotton which in leaf is inferior to Leaf...
7 CFR 28.517 - Leaf Grade No. 7.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf Grade No. 7. 28.517 Section 28.517 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Pima Cotton § 28.517 Leaf Grade No. 7. American Pima cotton which in leaf is inferior to Leaf...
7 CFR 28.517 - Leaf Grade No. 7.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf Grade No. 7. 28.517 Section 28.517 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Pima Cotton § 28.517 Leaf Grade No. 7. American Pima cotton which in leaf is inferior to Leaf...
Sack, Lawren; Scoffoni, Christine
2012-12-31
Water is a key resource, and the plant water transport system sets limits on maximum growth and drought tolerance. When plants open their stomata to achieve a high stomatal conductance (gs) to capture CO2 for photosynthesis, water is lost by transpiration(1,2). Water evaporating from the airspaces is replaced from cell walls, in turn drawing water from the xylem of leaf veins, in turn drawing from xylem in the stems and roots. As water is pulled through the system, it experiences hydraulic resistance, creating tension throughout the system and a low leaf water potential (Ψ(leaf)). The leaf itself is a critical bottleneck in the whole plant system, accounting for on average 30% of the plant hydraulic resistance(3). Leaf hydraulic conductance (K(leaf) = 1/ leaf hydraulic resistance) is the ratio of the water flow rate to the water potential gradient across the leaf, and summarizes the behavior of a complex system: water moves through the petiole and through several orders of veins, exits into the bundle sheath and passes through or around mesophyll cells before evaporating into the airspace and being transpired from the stomata. K(leaf) is of strong interest as an important physiological trait to compare species, quantifying the effectiveness of the leaf structure and physiology for water transport, and a key variable to investigate for its relationship to variation in structure (e.g., in leaf venation architecture) and its impacts on photosynthetic gas exchange. Further, K(leaf) responds strongly to the internal and external leaf environment(3). K(leaf) can increase dramatically with irradiance apparently due to changes in the expression and activation of aquaporins, the proteins involved in water transport through membranes(4), and K(leaf) declines strongly during drought, due to cavitation and/or collapse of xylem conduits, and/or loss of permeability in the extra-xylem tissues due to mesophyll and bundle sheath cell shrinkage or aquaporin deactivation(5-10). Because K(leaf) can constrain gs and photosynthetic rate across species in well watered conditions and during drought, and thus limit whole-plant performance they may possibly determine species distributions especially as droughts increase in frequency and severity(11-14). We present a simple method for simultaneous determination of K(leaf) and gs on excised leaves. A transpiring leaf is connected by its petiole to tubing running to a water source on a balance. The loss of water from the balance is recorded to calculate the flow rate through the leaf. When steady state transpiration (E, mmol • m(-2) • s(-1)) is reached, gs is determined by dividing by vapor pressure deficit, and K(leaf) by dividing by the water potential driving force determined using a pressure chamber (K(leaf)= E /- Δψ(leaf), MPa)(15). This method can be used to assess K(leaf) responses to different irradiances and the vulnerability of K(leaf) to dehydration(14,16,17).
NASA Astrophysics Data System (ADS)
Santiago, L. S.; Sickman, J. O.; Goulden, M.; DeVan, C.; Pasquini, S. C.; Pivovaroff, A. L.
2011-12-01
Leaf carbon isotopic composition and leaf water isotopic enrichment reflect physiological processes and are important for linking local and regional scale processes to global patterns. We investigated how seasonality affects the isotopic composition of bulk leaf carbon, leaf sugar carbon, and leaf water hydrogen under a Mediterranean climate. Leaf and stem samples were collected monthly from four tree species (Calocedrus decurrens, Pinus lambertiana, Pinus ponderosa, and Quercus chrysolepis) at the James San Jacinto Mountain Reserve in southern California. Mean monthly bulk leaf carbon isotopic composition varied from -34.5 % in P. ponderosa to -24.7 % in P. lambertiana and became more depleted in 13C from the spring to the summer. Mean monthly leaf sugar varied from -29.3 % in P. ponderosa to -21.8 % in P. lambertiana and was enriched in 13C during the winter, spring and autumn, but depleted during the mid-summer. Leaf water hydrogen isotopic composition was 28.4 to 68.8 % more enriched in deuterium than source water and this enrichment was greater as seasonal drought progressed. These data indicate that leaf carbon and leaf water hydrogen isotopic composition provide sensitive measures that connect plant physiological processes to short-term climatic variability.
Elevated CO{sub 2} and leaf shape: Are dandelions getting toothier?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, S.C.; Bazzaz, F.A.
1996-01-01
Heteroblastic leaf development in Taraxacum officinale is compared between plants grown under ambient (350 ppm) vs. elevated (700 ppm) CO{sub 2} levels. Leaves of elevated CO{sub 2} plants exhibited more deeply incised leaf margins and relatively more slender leaf laminae than leaves of ambient CO{sub 2} plants. These differences were found to be significant in allometric analyses that controlled for differences in leaf size, as well as analyses that controlled for leaf development order. The effects of elevated CO{sub 2} on leaf shape were most pronounced when plants were grown individually, but detectable differences were also found in plants grownmore » at high density. Although less dramatic than in Taraxacum, significant effects of elevated CO{sub 2} on leaf shape were also found in two other weedy rosette species, Plantago major and Rumex crispus. These observations support the long-standing hypothesis that leaf carbohydrate level plays an important role in regulating heteroblastic leaf development, though elevated CO{sub 2} may also affect leaf development through direct hormonal interactions or increased leaf water potential. In Taraxacum, pronounced modifications of leaf shape were found at CO{sub 2} levels predicted to occur within the next century. 33 refs., 5 figs.« less
Fajardo, Alex
2016-05-01
The study of scaling examines the relative dimensions of diverse organismal traits. Understanding whether global scaling patterns are paralleled within species is key to identify causal factors of universal scaling. I examined whether the foliage-stem (Corner's rules), the leaf size-number, and the leaf mass-leaf area scaling relationships remained invariant and isometric with elevation in a wide-distributed treeline species in the southern Chilean Andes. Mean leaf area, leaf mass, leafing intensity, and twig cross-sectional area were determined for 1-2 twigs of 8-15 Nothofagus pumilio individuals across four elevations (including treeline elevation) and four locations (from central Chile at 36°S to Tierra del Fuego at 54°S). Mixed effects models were fitted to test whether the interaction term between traits and elevation was nonsignificant (invariant). The leaf-twig cross-sectional area and the leaf mass-leaf area scaling relationships were isometric (slope = 1) and remained invariant with elevation, whereas the leaf size-number (i.e., leafing intensity) scaling was allometric (slope ≠ -1) and showed no variation with elevation. Leaf area and leaf number were consistently negatively correlated across elevation. The scaling relationships examined in the current study parallel those seen across species. It is plausible that the explanation of intraspecific scaling relationships, as trait combinations favored by natural selection, is the same as those invoked to explain across species patterns. Thus, it is very likely that the global interspecific Corner's rules and other leaf-leaf scaling relationships emerge as the aggregate of largely parallel intraspecific patterns. © 2016 Botanical Society of America.
Light-Induced Indeterminacy Alters Shade-Avoiding Tomato Leaf Morphology1[OPEN
Chitwood, Daniel H.; Kumar, Ravi; Ranjan, Aashish; Pelletier, Julie M.; Townsley, Brad T.; Ichihashi, Yasunori; Martinez, Ciera C.; Zumstein, Kristina; Harada, John J.; Maloof, Julin N.; Sinha, Neelima R.
2015-01-01
Plants sense the foliar shade of competitors and alter their developmental programs through the shade-avoidance response. Internode and petiole elongation, and changes in overall leaf area and leaf mass per area, are the stereotypical architectural responses to foliar shade in the shoot. However, changes in leaf shape and complexity in response to shade remain incompletely, and qualitatively, described. Using a meta-analysis of more than 18,000 previously published leaflet outlines, we demonstrate that shade avoidance alters leaf shape in domesticated tomato (Solanum lycopersicum) and wild relatives. The effects of shade avoidance on leaf shape are subtle with respect to individual traits but are combinatorially strong. We then seek to describe the developmental origins of shade-induced changes in leaf shape by swapping plants between light treatments. Leaf size is light responsive late into development, but patterning events, such as stomatal index, are irrevocably specified earlier. Observing that shade induces increases in shoot apical meristem size, we then describe gene expression changes in early leaf primordia and the meristem using laser microdissection. We find that in leaf primordia, shade avoidance is not mediated through canonical pathways described in mature organs but rather through the expression of KNOTTED1-LIKE HOMEOBOX and other indeterminacy genes, altering known developmental pathways responsible for patterning leaf shape. We also demonstrate that shade-induced changes in leaf primordium gene expression largely do not overlap with those found in successively initiated leaf primordia, providing evidence against classic hypotheses that shaded leaf morphology results from the prolonged production of juvenile leaf types. PMID:26381315
Genetic Dissection of Leaf Development in Brassica rapa Using a Genetical Genomics Approach1[W
Xiao, Dong; Wang, Huange; Basnet, Ram Kumar; Zhao, Jianjun; Lin, Ke; Hou, Xilin; Bonnema, Guusje
2014-01-01
The paleohexaploid crop Brassica rapa harbors an enormous reservoir of morphological variation, encompassing leafy vegetables, vegetable and fodder turnips (Brassica rapa, ssp. campestris), and oil crops, with different crops having very different leaf morphologies. In the triplicated B. rapa genome, many genes have multiple paralogs that may be regulated differentially and contribute to phenotypic variation. Using a genetical genomics approach, phenotypic data from a segregating doubled haploid population derived from a cross between cultivar Yellow sarson (oil type) and cultivar Pak choi (vegetable type) were used to identify loci controlling leaf development. Twenty-five colocalized phenotypic quantitative trait loci (QTLs) contributing to natural variation for leaf morphological traits, leaf number, plant architecture, and flowering time were identified. Genetic analysis showed that four colocalized phenotypic QTLs colocalized with flowering time and leaf trait candidate genes, with their cis-expression QTLs and cis- or trans-expression QTLs for homologs of genes playing a role in leaf development in Arabidopsis (Arabidopsis thaliana). The leaf gene BRASSICA RAPA KIP-RELATED PROTEIN2_A03 colocalized with QTLs for leaf shape and plant height; BRASSICA RAPA ERECTA_A09 colocalized with QTLs for leaf color and leaf shape; BRASSICA RAPA LONGIFOLIA1_A10 colocalized with QTLs for leaf size, leaf color, plant branching, and flowering time; while the major flowering time gene, BRASSICA RAPA FLOWERING LOCUS C_A02, colocalized with QTLs explaining variation in flowering time, plant architectural traits, and leaf size. Colocalization of these QTLs points to pleiotropic regulation of leaf development and plant architectural traits in B. rapa. PMID:24394778
Richardson, Sarah J; Laughlin, Daniel C; Lawes, Michael J; Holdaway, Robert J; Wilmshurst, Janet M; Wright, Monique; Curran, Timothy J; Bellingham, Peter J; McGlone, Matt S
2015-10-01
In fire-prone ecosystems, variation in bark thickness among species and communities has been explained by fire frequency; thick bark is necessary to protect cambium from lethal temperatures. Elsewhere this investment is deemed unnecessary, and thin bark is thought to prevail. However, in rain forest ecosystems where fire is rare, bark thickness varies widely among species and communities, and the causes of this variation remain enigmatic. We tested for functional explanations of bark thickness variation in temperate rain forest species and communities. We measured bark thickness in 82 tree species throughout New Zealand temperate rain forests that historically have experienced little fire and applied two complementary analyses. First, we examined correlations between bark traits and leaf habit, and leaf and stem traits. Second, we calculated community-weighted mean (CWM) bark thickness for 272 plots distributed throughout New Zealand to identify the environments in which thicker-barked communities occur. Conifers had higher size-independent bark thickness than evergreen angiosperms. Species with thicker bark or higher bark allocation coefficients were not associated with "slow economic" plant traits. Across 272 forest plots, communities with thicker bark occurred on infertile soils, and communities with thicker bark and higher bark allocation coefficients occurred in cooler, drier climates. In non-fire-prone temperate rain forest ecosystems, investment in bark is driven by soil resources, cool minimum temperatures, and seasonal moisture stress. The role of these factors in fire-prone ecosystems warrants testing. © 2015 Botanical Society of America.
Architectural mutation and leaf form, for the palmate series.
White, D A
2005-07-21
Palmate leaf form occurs in both the ferns and angiosperms. The palmate leaf form, and its variants, is present in distantly separated clades within both ferns and angiosperms. There tend not to be intermediate forms which link these palmate leaves to other leaf forms within the taxonomic groups in question. The recurrence of homoplasious leaf forms in separate taxonomic groups could be a consequence of the algorithmic like mode of leaf growth. Leaves develop through the reiteration of modular units. It is probable that the homoplasious leaf forms in different taxa are derived independently through re-combinations of the parameters in the basic leaf form development algorithm.
The energetic and carbon economic origins of leaf thermoregulation.
Michaletz, Sean T; Weiser, Michael D; McDowell, Nate G; Zhou, Jizhong; Kaspari, Michael; Helliker, Brent R; Enquist, Brian J
2016-08-22
Leaf thermoregulation has been documented in a handful of studies, but the generality and origins of this pattern are unclear. We suggest that leaf thermoregulation is widespread in both space and time, and originates from the optimization of leaf traits to maximize leaf carbon gain across and within variable environments. Here we use global data for leaf temperatures, traits and photosynthesis to evaluate predictions from a novel theory of thermoregulation that synthesizes energy budget and carbon economics theories. Our results reveal that variation in leaf temperatures and physiological performance are tightly linked to leaf traits and carbon economics. The theory, parameterized with global averaged leaf traits and microclimate, predicts a moderate level of leaf thermoregulation across a broad air temperature gradient. These predictions are supported by independent data for diverse taxa spanning a global air temperature range of ∼60 °C. Moreover, our theory predicts that net carbon assimilation can be maximized by means of a trade-off between leaf thermal stability and photosynthetic stability. This prediction is supported by globally distributed data for leaf thermal and photosynthetic traits. Our results demonstrate that the temperatures of plant tissues, and not just air, are vital to developing more accurate Earth system models.
Storage nitrogen co-ordinates leaf expansion and photosynthetic capacity in winter oilseed rape
Liu, Tao; Ren, Tao; White, Philip J; Cong, Rihuan
2018-01-01
Abstract Storage nitrogen (N) is a buffer pool for maintaining leaf growth and synthesizing photosynthetic proteins, but the dynamics of its forms within the life cycle of a single leaf and how it is influenced by N supply remain poorly understood. A field experiment was conducted to estimate the influence of N supply on leaf growth, photosynthetic characteristics, and N partitioning inthe sixth leaf of winter oilseed rape (Brassica napus L.) from emergence through senescence. Storage N content (Nstore) decreased gradually along with leaf expansion. The relative growth rate based on leaf area (RGRa) was positively correlated with Nstore during leaf expansion. The water-soluble protein form of storage N was the main N source for leaf expansion. After the leaves fully expanded, the net photosynthetic rate (An) followed a linear–plateau response to Nstore, with An stabilizing at the highest value above a threshold and declining below the threshold. Non-protein and SDS (detergent)-soluble protein forms of storage N were the main N sources for maintaining photosynthesis. For the leaf N economy, storage N is used for co-ordinating leaf expansion and photosynthetic capacity. N supply can improve Nstore, thereby promoting leaf growth and biomass. PMID:29669007
Panchen, Zoe A.; Primack, Richard B.; Gallinat, Amanda S.; Nordt, Birgit; Stevens, Albert-Dieter; Du, Yanjun; Fahey, Robert
2015-01-01
Background and Aims Autumn leaf senescence marks the end of the growing season in temperate ecosystems. Its timing influences a number of ecosystem processes, including carbon, water and nutrient cycling. Climate change is altering leaf senescence phenology and, as those changes continue, it will affect individual woody plants, species and ecosystems. In contrast to spring leaf out times, however, leaf senescence times remain relatively understudied. Variation in the phenology of leaf senescence among species and locations is still poorly understood. Methods Leaf senescence phenology of 1360 deciduous plant species at six temperate botanical gardens in Asia, North America and Europe was recorded in 2012 and 2013. This large data set was used to explore ecological and phylogenetic factors associated with variation in leaf senescence. Key Results Leaf senescence dates among species varied by 3 months on average across the six locations. Plant species tended to undergo leaf senescence in the same order in the autumns of both years at each location, but the order of senescence was only weakly correlated across sites. Leaf senescence times were not related to spring leaf out times, were not evolutionarily conserved and were only minimally influenced by growth habit, wood anatomy and percentage colour change or leaf drop. These weak patterns of leaf senescence timing contrast with much stronger leaf out patterns from a previous study. Conclusions The results suggest that, in contrast to the broader temperature effects that determine leaf out times, leaf senescence times are probably determined by a larger or different suite of local environmental effects, including temperature, soil moisture, frost and wind. Determining the importance of these factors for a wide range of species represents the next challenge for understanding how climate change is affecting the end of the growing season and associated ecosystem processes. PMID:25808654
Panchen, Zoe A; Primack, Richard B; Gallinat, Amanda S; Nordt, Birgit; Stevens, Albert-Dieter; Du, Yanjun; Fahey, Robert
2015-11-01
Autumn leaf senescence marks the end of the growing season in temperate ecosystems. Its timing influences a number of ecosystem processes, including carbon, water and nutrient cycling. Climate change is altering leaf senescence phenology and, as those changes continue, it will affect individual woody plants, species and ecosystems. In contrast to spring leaf out times, however, leaf senescence times remain relatively understudied. Variation in the phenology of leaf senescence among species and locations is still poorly understood. Leaf senescence phenology of 1360 deciduous plant species at six temperate botanical gardens in Asia, North America and Europe was recorded in 2012 and 2013. This large data set was used to explore ecological and phylogenetic factors associated with variation in leaf senescence. Leaf senescence dates among species varied by 3 months on average across the six locations. Plant species tended to undergo leaf senescence in the same order in the autumns of both years at each location, but the order of senescence was only weakly correlated across sites. Leaf senescence times were not related to spring leaf out times, were not evolutionarily conserved and were only minimally influenced by growth habit, wood anatomy and percentage colour change or leaf drop. These weak patterns of leaf senescence timing contrast with much stronger leaf out patterns from a previous study. The results suggest that, in contrast to the broader temperature effects that determine leaf out times, leaf senescence times are probably determined by a larger or different suite of local environmental effects, including temperature, soil moisture, frost and wind. Determining the importance of these factors for a wide range of species represents the next challenge for understanding how climate change is affecting the end of the growing season and associated ecosystem processes. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xi; Tang, Jianwu; Mustard, John F.
Understanding the temporal patterns of leaf traits is critical in determining the seasonality and magnitude of terrestrial carbon, water, and energy fluxes. However, we lack robust and efficient ways to monitor the temporal dynamics of leaf traits. Here we assessed the potential of leaf spectroscopy to predict and monitor leaf traits across their entire life cycle at different forest sites and light environments (sunlit vs. shaded) using a weekly sampled dataset across the entire growing season at two temperate deciduous forests. In addition, the dataset includes field measured leaf-level directional-hemispherical reflectance/transmittance together with seven important leaf traits [total chlorophyll (chlorophyllmore » a and b), carotenoids, mass-based nitrogen concentration (N mass), mass-based carbon concentration (C mass), and leaf mass per area (LMA)]. All leaf traits varied significantly throughout the growing season, and displayed trait-specific temporal patterns. We used a Partial Least Square Regression (PLSR) modeling approach to estimate leaf traits from spectra, and found that PLSR was able to capture the variability across time, sites, and light environments of all leaf traits investigated (R 2 = 0.6–0.8 for temporal variability; R 2 = 0.3–0.7 for cross-site variability; R 2 = 0.4–0.8 for variability from light environments). We also tested alternative field sampling designs and found that for most leaf traits, biweekly leaf sampling throughout the growing season enabled accurate characterization of the seasonal patterns. Compared with the estimation of foliar pigments, the performance of N mass, C mass and LMA PLSR models improved more significantly with sampling frequency. Our results demonstrate that leaf spectra-trait relationships vary with time, and thus tracking the seasonality of leaf traits requires statistical models calibrated with data sampled throughout the growing season. In conclusion, our results have broad implications for future research that use vegetation spectra to infer leaf traits at different growing stages.« less
Yang, Xi; Tang, Jianwu; Mustard, John F.; ...
2016-04-02
Understanding the temporal patterns of leaf traits is critical in determining the seasonality and magnitude of terrestrial carbon, water, and energy fluxes. However, we lack robust and efficient ways to monitor the temporal dynamics of leaf traits. Here we assessed the potential of leaf spectroscopy to predict and monitor leaf traits across their entire life cycle at different forest sites and light environments (sunlit vs. shaded) using a weekly sampled dataset across the entire growing season at two temperate deciduous forests. In addition, the dataset includes field measured leaf-level directional-hemispherical reflectance/transmittance together with seven important leaf traits [total chlorophyll (chlorophyllmore » a and b), carotenoids, mass-based nitrogen concentration (N mass), mass-based carbon concentration (C mass), and leaf mass per area (LMA)]. All leaf traits varied significantly throughout the growing season, and displayed trait-specific temporal patterns. We used a Partial Least Square Regression (PLSR) modeling approach to estimate leaf traits from spectra, and found that PLSR was able to capture the variability across time, sites, and light environments of all leaf traits investigated (R 2 = 0.6–0.8 for temporal variability; R 2 = 0.3–0.7 for cross-site variability; R 2 = 0.4–0.8 for variability from light environments). We also tested alternative field sampling designs and found that for most leaf traits, biweekly leaf sampling throughout the growing season enabled accurate characterization of the seasonal patterns. Compared with the estimation of foliar pigments, the performance of N mass, C mass and LMA PLSR models improved more significantly with sampling frequency. Our results demonstrate that leaf spectra-trait relationships vary with time, and thus tracking the seasonality of leaf traits requires statistical models calibrated with data sampled throughout the growing season. In conclusion, our results have broad implications for future research that use vegetation spectra to infer leaf traits at different growing stages.« less
Wasser, Leah; Day, Rick; Chasmer, Laura; Taylor, Alan
2013-01-01
Estimates of canopy height (H) and fractional canopy cover (FC) derived from lidar data collected during leaf-on and leaf-off conditions are compared with field measurements from 80 forested riparian buffer plots. The purpose is to determine if existing lidar data flown in leaf-off conditions for applications such as terrain mapping can effectively estimate forested riparian buffer H and FC within a range of riparian vegetation types. Results illustrate that: 1) leaf-off and leaf-on lidar percentile estimates are similar to measured heights in all plots except those dominated by deciduous compound-leaved trees where lidar underestimates H during leaf off periods; 2) canopy height models (CHMs) underestimate H by a larger margin compared to percentile methods and are influenced by vegetation type (conifer needle, deciduous simple leaf or deciduous compound leaf) and canopy height variability, 3) lidar estimates of FC are within 10% of plot measurements during leaf-on periods, but are underestimated during leaf-off periods except in mixed and conifer plots; and 4) depth of laser pulse penetration lower in the canopy is more variable compared to top of the canopy penetration which may influence within canopy vegetation structure estimates. This study demonstrates that leaf-off lidar data can be used to estimate forested riparian buffer canopy height within diverse vegetation conditions and fractional canopy cover within mixed and conifer forests when leaf-on lidar data are not available.
Ishida, Atsushi; Harayama, Hisanori; Yazaki, Kenichi; Ladpala, Phanumard; Sasrisang, Amornrat; Kaewpakasit, Kanokwan; Panuthai, Samreong; Staporn, Duriya; Maeda, Takahisa; Gamo, Minoru; Diloksumpun, Sapit; Puangchit, Ladawan; Ishizuka, Moriyoshi
2010-08-01
This study compared leaf gas exchange, leaf hydraulic conductance, twig hydraulic conductivity and leaf osmotic potential at full turgor between two drought-deciduous trees, Vitex peduncularis Wall. and Xylia xylocarpa (Roxb.) W. Theob., and two evergreen trees, Hopea ferrea Lanessan and Syzygium cumini (L.) Skeels, at the uppermost canopies in tropical dry forests in Thailand. The aims were to examine (i) whether leaf and twig hydraulic properties differ in relation to leaf phenology and (ii) whether xylem cavitation is a determinant of leaf shedding during the dry season. The variations in almost all hydraulic traits were more dependent on species than on leaf phenology. Evergreen Hopea exhibited the lowest leaf-area-specific twig hydraulic conductivity (leaf-area-specific K(twig)), lamina hydraulic conductance (K(lamina)) and leaf osmotic potential at full turgor (Ψ(o)) among species, whereas evergreen Syzygium exhibited the highest leaf-area-specific K(twig), K(lamina) and Ψ(o). Deciduous Xylia had the highest sapwood-area-specific K(twig), along with the lowest Huber value (sapwood area/leaf area). More negative osmotic Ψ(o) and leaf osmotic adjustment during the dry season were found in deciduous Vitex and evergreen Hopea, accompanied by low sapwood-area-specific K(twig). Regarding seasonal changes in hydraulics, no remarkable decrease in K(lamina) and K(twig) was found during the dry season in any species. Results suggest that leaf shedding during the dry season is not always associated with extensive xylem cavitation.
Wasser, Leah; Day, Rick; Chasmer, Laura; Taylor, Alan
2013-01-01
Estimates of canopy height (H) and fractional canopy cover (FC) derived from lidar data collected during leaf-on and leaf-off conditions are compared with field measurements from 80 forested riparian buffer plots. The purpose is to determine if existing lidar data flown in leaf-off conditions for applications such as terrain mapping can effectively estimate forested riparian buffer H and FC within a range of riparian vegetation types. Results illustrate that: 1) leaf-off and leaf-on lidar percentile estimates are similar to measured heights in all plots except those dominated by deciduous compound-leaved trees where lidar underestimates H during leaf off periods; 2) canopy height models (CHMs) underestimate H by a larger margin compared to percentile methods and are influenced by vegetation type (conifer needle, deciduous simple leaf or deciduous compound leaf) and canopy height variability, 3) lidar estimates of FC are within 10% of plot measurements during leaf-on periods, but are underestimated during leaf-off periods except in mixed and conifer plots; and 4) depth of laser pulse penetration lower in the canopy is more variable compared to top of the canopy penetration which may influence within canopy vegetation structure estimates. This study demonstrates that leaf-off lidar data can be used to estimate forested riparian buffer canopy height within diverse vegetation conditions and fractional canopy cover within mixed and conifer forests when leaf-on lidar data are not available. PMID:23382966
Exodermic bridge deck performance evaluation.
DOT National Transportation Integrated Search
2010-07-01
In 1998, the Wisconsin DOT completed a two"leaf bascule bridge in Green Bay with an exodermic deck system. The exodermic deck consisted of 4.5"in thick cast"in"place reinforced concrete supported by a 5.19"in tall unfilled steel grid. The concrete an...
Binks, Oliver; Meir, Patrick; Rowland, Lucy; da Costa, Antonio Carlos Lola; Vasconcelos, Steel Silva; de Oliveira, Alex Antonio Ribeiro; Ferreira, Leandro; Christoffersen, Bradley; Nardini, Andrea; Mencuccini, Maurizio
2016-07-01
The tropics are predicted to become warmer and drier, and understanding the sensitivity of tree species to drought is important for characterizing the risk to forests of climate change. This study makes use of a long-term drought experiment in the Amazon rainforest to evaluate the role of leaf-level water relations, leaf anatomy and their plasticity in response to drought in six tree genera. The variables (osmotic potential at full turgor, turgor loss point, capacitance, elastic modulus, relative water content and saturated water content) were compared between seasons and between plots (control and through-fall exclusion) enabling a comparison between short- and long-term plasticity in traits. Leaf anatomical traits were correlated with water relation parameters to determine whether water relations differed among tissues. The key findings were: osmotic adjustment occurred in response to the long-term drought treatment; species resistant to drought stress showed less osmotic adjustment than drought-sensitive species; and water relation traits were correlated with tissue properties, especially the thickness of the abaxial epidermis and the spongy mesophyll. These findings demonstrate that cell-level water relation traits can acclimate to long-term water stress, and highlight the limitations of extrapolating the results of short-term studies to temporal scales associated with climate change. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Pariyar, Shyam; Chang, Shih-Chieh; Zinsmeister, Daniel; Zhou, Haiyang; Grantz, David A; Hunsche, Mauricio; Burkhardt, Juergen
2017-07-01
Previous flux measurements in the perhumid cloud forest of northeastern Taiwan have shown efficient photosynthesis of the endemic tree species Chamaecyparis obtusa var. formosana even under foggy conditions in which leaf surface moisture would be expected. We hypothesized this to be the result of 'xeromorphic' traits of the Chamaecyparis leaves (hydrophobicity, stomatal crypts, stomatal clustering), which could prevent coverage of stomata by precipitation, fog, and condensation, thereby maintaining CO 2 uptake. Here we studied the amount, distribution, and composition of moisture accumulated on Chamaecyparis leaf surfaces in situ in the cloud forest. We studied the effect of surface tension on gas penetration to stomata using optical O 2 microelectrodes in the laboratory. We captured the dynamics of condensation to the leaf surfaces with an environmental scanning electron microscope (ESEM). In spite of substantial surface hydrophobicity, the mean water film thickness on branchlets under foggy conditions was 80 µm (upper surface) and 40 µm (lower surface). This amount of water could cover stomata and prevent CO 2 uptake. This is avoided by the clustered arrangement of stomata within narrow clefts and the presence of Florin rings. These features keep stomatal pores free from water due to surface tension and provide efficient separation of plant and atmosphere in this perhumid environment. Air pollutants, particularly hygroscopic aerosol, may disturb this functionality by enhancing condensation and reducing the surface tension of leaf surface water.
Ramírez-Valiente, José A; Deacon, Nicholas J; Etterson, Julie; Center, Alyson; Sparks, Jed P; Sparks, Kimberlee L; Longwell, Timothy; Pilz, George; Cavender-Bares, Jeannine
2018-05-01
The impacts of drought are expanding worldwide as a consequence of climate change. However, there is still little knowledge of how species respond to long-term selection in seasonally dry ecosystems. In this study, we used Q ST -F ST comparisons to investigate (i) the role of natural selection on population genetic differentiation for a set of functional traits related to drought resistance in the seasonally dry tropical oak Quercus oleoides and (ii) the influence of water availability at the site of population origin and in experimental treatments on patterns of trait divergence. We conducted a thorough phenotypic characterization of 1912 seedlings from ten populations growing in field and greenhouse common gardens under replicated watering treatments. We also genotyped 218 individuals from the same set of populations using eleven nuclear microsatellites. Q ST distributions for leaf lamina area, specific leaf area, leaf thickness and stomatal pore index were higher than F ST distribution. Results were consistent across growth environments. Genetic differentiation among populations for these functional traits was associated with the index of moisture at the origin of the populations. Together, our results suggest that drought is an important selective agent for Q. oleoides and that differences in length and severity of the dry season have driven the evolution of genetic differences in functional traits. © 2018 John Wiley & Sons Ltd.
Sánchez-Pardo, Beatriz; Fernández-Pascual, Mercedes; Zornoza, Pilar
2014-01-01
The microlocalisation of Cu was examined in the leaves of white lupin and soybean grown hydroponically in the presence of 1.6 (control) or 192 μM (excess) Cu, along with its effect on leaf morphology, (ultra)structure and the antioxidative response. The 192 μM dose led to a reduction in the total leaf area and leaf thickness in both species, although more strongly so in white lupin. In the latter species it was also associated with smaller spongy parenchyma cells, and smaller spaces between them, while in the soybean it more strongly reduced the size of the palisade parenchyma and epidermal cells. Energy-dispersive X-ray microanalysis showed that under Cu excess the metal was mainly localised inside the spongy parenchyma cells of the white lupin leaves, and in the lower epidermis cell walls in those of the soybean. Cu excess also promoted ultrastructural chloroplast alterations, reducing the photosynthetic capacity index and the green area of the leaves, especially in the soybean. Despite this, soybean appeared to be more tolerant to Cu excess than white lupin, because soybean displayed (1) lower accumulation of Cu in the leaves, (2) enhanced microlocalisation of Cu in the cell walls and (3) greater levels of induced total -SH content and superoxide dismutase and catalase activities that are expected for better antioxidative responses.
Response of Korean pine’s functional traits to geography and climate
Dong, Yichen
2017-01-01
This study analyzed the characteristics of Korean pine (Pinus koraiensis) functional trait responses to geographic and climatic factors in the eastern region of Northeast China (41°–48°N) and the linear relationships among Korean pine functional traits, to explore this species’ adaptability and ecological regulation strategies under different environmental conditions. Korean pine samples were collected from eight sites located at different latitudes, and the following factors were determined for each site: geographic factors—latitude, longitude, and altitude; temperature factors—mean annual temperature (MAT), growth season mean temperature (GST), and mean temperature of the coldest month (MTCM); and moisture factors—annual precipitation (AP), growth season precipitation (GSP), and potential evapotranspiration (PET). The Korean pine functional traits examined were specific leaf area (SLA), leaf thickness (LT), leaf dry matter content (LDMC), specific root length (SRL), leaf nitrogen content (LNC), leaf phosphorus content (LPC), root nitrogen content (RNC), and root phosphorus content (RPC). The results showed that Korean pine functional traits were significantly correlated to latitude, altitude, GST, MTCM, AP, GSP, and PET. Among the Korean pine functional traits, SLA showed significant linear relationships with LT, LDMC, LNC, LPC, and RPC, and LT showed significant linear relationships with LDMC, SRL, LNC, LPC, RNC, and RPC; the linear relationships between LNC, LPC, RNC, and RPC were also significant. In conclusion, Korean pine functional trait responses to latitude resulted in its adaptation to geographic and climatic factors. The main limiting factors were precipitation and evapotranspiration, followed by altitude, latitude, GST, and MTCM. The impacts of longitude and MAT were not obvious. Changes in precipitation and temperature were most responsible for the close correlation among Korean pine functional traits, reflecting its adaption to habitat variation. PMID:28886053
Sumbele, Sally; Fotelli, Mariangela N.; Nikolopoulos, Dimosthenis; Tooulakou, Georgia; Liakoura, Vally; Liakopoulos, Georgios; Bresta, Panagiota; Dotsika, Elissavet; Adams, Mark A.; Karabourniotis, George
2012-01-01
Background and aims Phenolic compounds are the most commonly studied of all secondary metabolites because of their significant protective–defensive roles and their significant concentration in plant tissues. However, there has been little study on relationships between gas exchange parameters and the concentration of leaf phenolic compounds (total phenolics (TP) and condensed tannins (CT)) across a range of species. Therefore, we addressed the question: is there any correlation between photosynthetic capacity (Amax) and TP and CT across species from different ecosystems in different continents? Methodology A plethora of functional and structural parameters were measured in 49 plant species following different growth strategies from five sampling sites located in Greece and Australia. The relationships between several leaf traits were analysed by means of regression and principal component analysis. Principal results The results revealed a negative relationship between TP and CT and Amax among the different plant species, growth strategies and sampling sites, irrespective of expression (with respect to mass, area or nitrogen content). Principal component analysis showed that high concentrations of TP and CT are associated with thick, dense leaves with low nitrogen. This leaf type is characterized by low growth, Amax and transpiration rates, and is common in environments with low water and nutrient availability, high temperatures and high light intensities. Therefore, the high TP and CT in such leaves are compatible with the protective and defensive functions ascribed to them. Conclusions Our results indicate a functional integration between carbon gain and the concentration of leaf phenolic compounds that reflects the trade-off between growth and defence/protection demands, depending on the growth strategy adopted by each species. PMID:23050073
Sumbele, Sally; Fotelli, Mariangela N; Nikolopoulos, Dimosthenis; Tooulakou, Georgia; Liakoura, Vally; Liakopoulos, Georgios; Bresta, Panagiota; Dotsika, Elissavet; Adams, Mark A; Karabourniotis, George
2012-01-01
Phenolic compounds are the most commonly studied of all secondary metabolites because of their significant protective-defensive roles and their significant concentration in plant tissues. However, there has been little study on relationships between gas exchange parameters and the concentration of leaf phenolic compounds (total phenolics (TP) and condensed tannins (CT)) across a range of species. Therefore, we addressed the question: is there any correlation between photosynthetic capacity (A(max)) and TP and CT across species from different ecosystems in different continents? A plethora of functional and structural parameters were measured in 49 plant species following different growth strategies from five sampling sites located in Greece and Australia. The relationships between several leaf traits were analysed by means of regression and principal component analysis. The results revealed a negative relationship between TP and CT and A(max) among the different plant species, growth strategies and sampling sites, irrespective of expression (with respect to mass, area or nitrogen content). Principal component analysis showed that high concentrations of TP and CT are associated with thick, dense leaves with low nitrogen. This leaf type is characterized by low growth, A(max) and transpiration rates, and is common in environments with low water and nutrient availability, high temperatures and high light intensities. Therefore, the high TP and CT in such leaves are compatible with the protective and defensive functions ascribed to them. Our results indicate a functional integration between carbon gain and the concentration of leaf phenolic compounds that reflects the trade-off between growth and defence/protection demands, depending on the growth strategy adopted by each species.
Response of Korean pine's functional traits to geography and climate.
Dong, Yichen; Liu, Yanhong
2017-01-01
This study analyzed the characteristics of Korean pine (Pinus koraiensis) functional trait responses to geographic and climatic factors in the eastern region of Northeast China (41°-48°N) and the linear relationships among Korean pine functional traits, to explore this species' adaptability and ecological regulation strategies under different environmental conditions. Korean pine samples were collected from eight sites located at different latitudes, and the following factors were determined for each site: geographic factors-latitude, longitude, and altitude; temperature factors-mean annual temperature (MAT), growth season mean temperature (GST), and mean temperature of the coldest month (MTCM); and moisture factors-annual precipitation (AP), growth season precipitation (GSP), and potential evapotranspiration (PET). The Korean pine functional traits examined were specific leaf area (SLA), leaf thickness (LT), leaf dry matter content (LDMC), specific root length (SRL), leaf nitrogen content (LNC), leaf phosphorus content (LPC), root nitrogen content (RNC), and root phosphorus content (RPC). The results showed that Korean pine functional traits were significantly correlated to latitude, altitude, GST, MTCM, AP, GSP, and PET. Among the Korean pine functional traits, SLA showed significant linear relationships with LT, LDMC, LNC, LPC, and RPC, and LT showed significant linear relationships with LDMC, SRL, LNC, LPC, RNC, and RPC; the linear relationships between LNC, LPC, RNC, and RPC were also significant. In conclusion, Korean pine functional trait responses to latitude resulted in its adaptation to geographic and climatic factors. The main limiting factors were precipitation and evapotranspiration, followed by altitude, latitude, GST, and MTCM. The impacts of longitude and MAT were not obvious. Changes in precipitation and temperature were most responsible for the close correlation among Korean pine functional traits, reflecting its adaption to habitat variation.
The effect of glyphosate on import into a sink leaf of sugar beet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shieh, Wenjang; Geiger, D.R.
1990-05-01
The basis for glyphosate inducted limitation of carbon import into developing leaves was studied in sugar beet. To separate the effects of the herbicide on export from those on import, glyphosate was supplied to a developing leaf from two exporting source leaves which fed the sink leaf. Carbon import into the sink leaf was determined by supplying {sup 14}CO{sub 2} to a third source leaf which also supplies carbon to the monitored sink leaf. Import into the sink leaf decreased within 2 to 3 h after glyphosate application, even though photosynthesis and export in the source leaf supplying {sup 14}Cmore » were unaffected. Reduced import into the sink leaf was accompanied by increased import by the tap root. Elongation of the sink leaf was only slightly decreased following arrival of glyphosate. Photosynthesis by the sink leaf was not inhibited. The results to data support the view that import is slowed by the inhibition of synthesis of structural or storage compounds in the developing leaves.« less
Kröber, Wenzel; Zhang, Shouren; Ehmig, Merten; Bruelheide, Helge
2014-01-01
While the fundamental trade-off in leaf traits related to carbon capture as described by the leaf economics spectrum is well-established among plant species, the relationship of the leaf economics spectrum to stem hydraulics is much less known. Since carbon capture and transpiration are coupled, a close connection between leaf traits and stem hydraulics should be expected. We thus asked whether xylem traits that describe drought tolerance and vulnerability to cavitation are linked to particular leaf traits. We assessed xylem vulnerability, using the pressure sleeve technique, and anatomical xylem characteristics in 39 subtropical tree species grown under common garden conditions in the BEF-China experiment and tested for correlations with traits related to the leaf economics spectrum as well as to stomatal control, including maximum stomatal conductance, vapor pressure deficit at maximum stomatal conductance and vapor pressure deficit at which stomatal conductance is down-regulated. Our results revealed that specific xylem hydraulic conductivity and cavitation resistance were closely linked to traits represented in the leaf economic spectrum, in particular to leaf nitrogen concentration, as well as to log leaf area and leaf carbon to nitrogen ratio but not to any parameter of stomatal conductance. The study highlights the potential use of well-known leaf traits from the leaf economics spectrum to predict plant species' drought resistance. PMID:25423316
Kröber, Wenzel; Zhang, Shouren; Ehmig, Merten; Bruelheide, Helge
2014-01-01
While the fundamental trade-off in leaf traits related to carbon capture as described by the leaf economics spectrum is well-established among plant species, the relationship of the leaf economics spectrum to stem hydraulics is much less known. Since carbon capture and transpiration are coupled, a close connection between leaf traits and stem hydraulics should be expected. We thus asked whether xylem traits that describe drought tolerance and vulnerability to cavitation are linked to particular leaf traits. We assessed xylem vulnerability, using the pressure sleeve technique, and anatomical xylem characteristics in 39 subtropical tree species grown under common garden conditions in the BEF-China experiment and tested for correlations with traits related to the leaf economics spectrum as well as to stomatal control, including maximum stomatal conductance, vapor pressure deficit at maximum stomatal conductance and vapor pressure deficit at which stomatal conductance is down-regulated. Our results revealed that specific xylem hydraulic conductivity and cavitation resistance were closely linked to traits represented in the leaf economic spectrum, in particular to leaf nitrogen concentration, as well as to log leaf area and leaf carbon to nitrogen ratio but not to any parameter of stomatal conductance. The study highlights the potential use of well-known leaf traits from the leaf economics spectrum to predict plant species' drought resistance.
Leaf habit and woodiness regulate different leaf economy traits at a given nutrient supply.
Ordoñez, Jenny C; van Bodegom, Peter M; Witte, Jan-Philip M; Bartholomeus, Ruud P; van Dobben, Han F; Aerts, Rien
2010-11-01
The large variation in the relationships between environmental factors and plant traits observed in natural communities exemplifies the alternative solutions that plants have developed in response to the same environmental limitations. Qualitative attributes, such as growth form, woodiness, and leaf habit can be used to approximate these alternative solutions. Here, we quantified the extent to which these attributes affect leaf trait values at a given resource supply level, using measured plant traits from 105 different species (254 observations) distributed across 50 sites in mesic to wet plant communities in The Netherlands. For each site, soil total N, soil total P, and water supply estimates were obtained by field measurements and modeling. Effects of growth forms, woodiness, and leaf habit on relations between leaf traits (SLA, specific leaf area; LNC, leaf nitrogen concentration; and LPC, leaf phosphorus concentration) vs. nutrient and water supply were quantified using maximum-likelihood methods and Bonferroni post hoc tests. The qualitative attributes explained 8-23% of the variance within sites in leaf traits vs. soil fertility relationships, and therefore they can potentially be used to make better predictions of global patterns of leaf traits in relation to nutrient supply. However, at a given soil fertility, the strength of the effect of each qualitative attribute was not the same for all leaf traits. These differences may imply a differential regulation of the leaf economy traits at a given nutrient supply, in which SLA and LPC seem to be regulated in accordance to changes in plant size and architecture while LNC seems to be primarily regulated at the leaf level by factors related to leaf longevity.
Delaney, K J; Haile, F J; Peterson, R K D; Higley, L G
2008-10-01
Insect herbivory has variable consequences on plant physiology, growth, and reproduction. In some plants, herbivory reduces photosynthetic rate (Pn) activity on remaining tissue of injured leaves. We sought to better understand the influence of leaf injury on Pn of common milkweed, Asclepias syriaca (Asclepiadaceae), leaves. Initially, we tested whether Pn reductions occurred after insect herbivory or mechanical injury. We also (1) examined the duration of photosynthetic recovery, (2) compared mechanical injury with insect herbivory, (3) studied the relationship between leaf Pn with leaf injury intensity, and (4) considered uninjured leaf compensatory Pn responses neighboring an injured leaf. Leaf Pn was significantly reduced on mechanically injured or insect-fed leaves in all reported experiments except one, so some factor(s) (cardiac glycoside induction, reproductive investment, and water stress) likely interacts with leaf injury to influence whether Pn impairment occurs. Milkweed tussock moth larval herbivory, Euchaetes egle L. (Arctiidae), impaired leaf Pn more severely than mechanical injury in one experiment. Duration of Pn impairment lasted > 5 d to indicate high leaf Pn sensitivity to injury, but Pn recovery occurred within 13 d in one experiment. The degree of Pn reduction was more severe from E. egle herbivory than similar levels of mechanical tissue removal. Negative linear relationships characterized leaf Pn with percentage tissue loss from single E. egle-fed leaves and mechanically injured leaves and suggested that the signal to trigger leaf Pn impairment on remaining tissue of an injured leaf was amplified by additional tissue loss. Finally, neighboring uninjured leaves to an E. egle-fed leaf had a small (approximately 10%) degree of compensatory Pn to partly offset tissue loss and injured leaf Pn impairment.
Cytotoxic activity screening of Bangladeshi medicinal plant extracts.
Akter, Raushanara; Uddin, Shaikh J; Grice, I Darren; Tiralongo, Evelin
2014-01-01
The cytotoxic activity of 23 crude methanol extracts from 19 Bangladeshi medicinal plants was investigated against healthy mouse fibroblasts (NIH3T3), healthy monkey kidney (VERO) and four human cancer cell lines (gastric, AGS; colon, HT-29; and breast, MCF-7 and MDA-MB-231) using MTT assay. High cytotoxicity across all cell lines tested was exhibited by Aegiceras corniculatum (fruit) and Hymenodictyon excelsum (bark) extracts (IC50 values ranging from 0.0005 to 0.9980 and 0.08 to 0.44 mg/mL, respectively). Fourteen extracts from 11 plant species, namely Clitoria ternatea (flower and leaf), Dillenia indica (leaf), Diospyros peregrina (leaf), Dipterocarpus turbinatus (bark and leaf), Ecbolium viride (leaf), Glinus oppositifolius (whole plant), Gnaphalium luteoalbum (leaf), Jasminum sambac (leaf), Lannea coromandelica (bark and leaf), Mussaenda glabrata (leaf) and Saraca asoca (leaf), were also significantly cytotoxic (IC50 < 1.0 mg/mL) against at least one of the cancer cell lines tested. More selectively, Avicennia alba (leaf), C. ternatea (flower and leaf), Caesalpinia pulcherrima (leaf), E. viride (leaf) and G. oppositifolius (whole plant) showed cytotoxicity only against both of the breast cancer cell lines (MCF-7 and MDA-MB-231). In contrast, C. ternatea (flower and leaf) exhibited high cytotoxic activity against MDA-MB-231 (IC50 values of 0.11 and 0.49 mg/mL, respectively), whereas E. viride and G. oppositifolius whole plant extracts exhibited high activity against MCF-7 cells (IC50 values of 0.06 and 0.15 mg/mL, respectively). The cytotoxic activity test results for 9 of the plant species correlate with their traditional use as anticancer agents, thus making them interesting sources for further drug development.
Coble, Adam P; Cavaleri, Molly A
2015-04-01
Within-canopy gradients of leaf functional traits have been linked to both light availability and vertical gradients in leaf water potential. While observational studies can reveal patterns in leaf traits, within-canopy experimental manipulations can provide mechanistic insight to tease apart multiple interacting drivers. Our objectives were to disentangle effects of height and light environment on leaf functional traits by experimentally shading branches along vertical gradients within a sugar maple (Acer saccharum) forest. Shading reduced leaf mass per area (LMA), leaf density, area-based leaf nitrogen (N(area)), and carbon:nitrogen (C:N) ratio, and increased mass-based leaf nitrogen (N(mass)), highlighting the importance of light availability on leaf morphology and chemistry. Early in the growing season, midday leaf water potential (Ψ(mid)), LMA, and N(area) were driven primarily by height; later in the growing season, light became the most important driver for LMA and Narea. Carbon isotope composition (δ(13)C) displayed strong, linear correlations with height throughout the growing season, but did not change with shading, implying that height is more influential than light on water use efficiency and stomatal behavior. LMA, leaf density, N(mass), C:N ratio, and δ(13)C all changed seasonally, suggesting that leaf ageing effects on leaf functional traits are equally as important as microclimatic conditions. Overall, our results indicate that: (1) stomatal sensitivity to vapor pressure deficit or Ψ(mid) constrains the supply of CO2 to leaves at higher heights, independent of light environment, and (2) LMA and N(area) distributions become functionally optimized through morphological acclimation to light with increasing leaf age despite height-related constraints.
Cao, Zhe; Sui, Shunzhao; Yang, Qian; Deng, Zhanao
2017-01-01
Modern cultivated caladiums ( Caladium × hortulanum ) are grown for their long-lasting and colorful leaves. Understanding the mode of inheritance for caladium leaf characteristics is critical for plant breeders to select appropriate parents, predict progeny performance, estimate breeding population sizes needed, and increase breeding efficiencies. This study was conducted to determine the mode of inheritance of two leaf background colors (lemon and green) in caladium and to understand their relationships with four other important leaf characteristics including leaf shape, main vein color, spotting, and rugosity. Seven caladium cultivars and three breeding lines were used as parents in 19 crosses, and their progeny were phenotyped for segregation of leaf traits. Results showed that the two leaf background colors are controlled by a single nuclear locus, with two alleles, LEM and lem , which control the dominant lemon and the recessive green leaf background color, respectively. The lemon-colored cultivar 'Miss Muffet' and breeding lines UF-52 and UF-53 have a heterozygous genotype LEMlem . Chi-square tests showed that the leaf background color locus LEM is independent from the leaf shape locus F , but is tightly linked to three loci ( S , V and RLF ) controlling leaf spotting, main vein color, and rugosity in caladium. A linkage map that consists of four loci controlling major caladium leaf characteristics and extends ~15 cM was developed based on the observed recombination frequencies. This is the first report on the mode of inheritance of leaf background colors in caladium and in the Araceae family. The information gained in this study will be very useful for caladium breeding and study of the inheritance of leaf colors in other ornamental aroids, an important group of ornamental plants in the world.
Cao, Zhe; Sui, Shunzhao; Yang, Qian; Deng, Zhanao
2017-01-01
Modern cultivated caladiums (Caladium×hortulanum) are grown for their long-lasting and colorful leaves. Understanding the mode of inheritance for caladium leaf characteristics is critical for plant breeders to select appropriate parents, predict progeny performance, estimate breeding population sizes needed, and increase breeding efficiencies. This study was conducted to determine the mode of inheritance of two leaf background colors (lemon and green) in caladium and to understand their relationships with four other important leaf characteristics including leaf shape, main vein color, spotting, and rugosity. Seven caladium cultivars and three breeding lines were used as parents in 19 crosses, and their progeny were phenotyped for segregation of leaf traits. Results showed that the two leaf background colors are controlled by a single nuclear locus, with two alleles, LEM and lem, which control the dominant lemon and the recessive green leaf background color, respectively. The lemon-colored cultivar ‘Miss Muffet’ and breeding lines UF-52 and UF-53 have a heterozygous genotype LEMlem. Chi-square tests showed that the leaf background color locus LEM is independent from the leaf shape locus F, but is tightly linked to three loci (S, V and RLF) controlling leaf spotting, main vein color, and rugosity in caladium. A linkage map that consists of four loci controlling major caladium leaf characteristics and extends ~15 cM was developed based on the observed recombination frequencies. This is the first report on the mode of inheritance of leaf background colors in caladium and in the Araceae family. The information gained in this study will be very useful for caladium breeding and study of the inheritance of leaf colors in other ornamental aroids, an important group of ornamental plants in the world. PMID:28101369
Gama-aminobutyric acid accumulation in Elsholtzia splendens in response to copper toxicity*
Yang, Xiao-e; Peng, Hong-yun; Tian, Sheng-ke
2005-01-01
A solution with different Cu supply levels was cultured to investigate gama-aminobutyric acid (GABA) accumulation in Elsholtzia splendens, a native Chinese Cu-tolerant and accumulating plant species. Increasing Cu from 0.25 to 500 μmol/L significantly enhanced levels of GABA and histidine (His), but considerably decreased levels of aspartate (Asp) and glutamate (Glu) in the leaves. The leaf Asp level negatively correlated with leaf Cu level, while leaf GABA level positively correlated with leaf Cu level. The leaf Glu level negatively correlated with leaf GABA level in Elsholtzia splendens. The depletion of leaf Glu may be related to the enhanced synthesis of leaf GABA under Cu stress. PMID:15633244
Khavaninzadeh, Ali Reza; Veroustraete, Frank; Van Wittenberghe, Shari; Verrelst, Jochem; Samson, Roeland
2015-09-01
The reflectometry of leaf asymmetry is a novel approach in the bio-monitoring of tree health in urban or industrial habitats. Leaf asymmetry responds to the degree of environmental pollution and reflects structural changes in a leaf due to environmental pollution. This paper describes the boundary conditions to scale up from leaf to canopy level reflectance, by describing the variability of adaxial and abaxial leaf reflectance, hence leaf asymmetry, along the crown height gradients of two tree species. Our findings open a research pathway towards bio-monitoring based on the airborne remote sensing of tree canopies and their leaf asymmetric properties. Copyright © 2015 Elsevier Ltd. All rights reserved.
Spectral reflectance relationships to leaf water stress
NASA Technical Reports Server (NTRS)
Ripple, William J.
1986-01-01
Spectral reflectance data were collected from detached snapbean leaves in the laboratory with a multiband radiometer. Four experiments were designed to study the spectral response resulting from changes in leaf cover, relative water content of leaves, and leaf water potential. Spectral regions included in the analysis were red (630-690 nm), NIR (760-900 nm), and mid-IR (2.08-2.35 microns). The red and mid-IR bands showed sensitivity to changes in both leaf cover and relative water content of leaves. The NIR was only highly sensitive to changes in leaf cover. Results provided evidence that mid-IR reflectance was governed primarily by leaf moisture content, although soil reflectance was an important factor when leaf cover was less than 100 percent. High correlations between leaf water potentials and reflectance were attributed to covariances with relative water content of leaves and leaf cover.
Larger temperature response of autumn leaf senescence than spring leaf-out phenology.
Fu, Yongshuo H; Piao, Shilong; Delpierre, Nicolas; Hao, Fanghua; Hänninen, Heikki; Liu, Yongjie; Sun, Wenchao; Janssens, Ivan A; Campioli, Matteo
2018-05-01
Climate warming is substantially shifting the leaf phenological events of plants, and thereby impacting on their individual fitness and also on the structure and functioning of ecosystems. Previous studies have largely focused on the climate impact on spring phenology, and to date the processes underlying leaf senescence and their associated environmental drivers remain poorly understood. In this study, experiments with temperature gradients imposed during the summer and autumn were conducted on saplings of European beech to explore the temperature responses of leaf senescence. An additional warming experiment during winter enabled us to assess the differences in temperature responses of spring leaf-out and autumn leaf senescence. We found that warming significantly delayed the dates of leaf senescence both during summer and autumn warming, with similar temperature sensitivities (6-8 days delay per °C warming), suggesting that, in the absence of water and nutrient limitation, temperature may be a dominant factor controlling the leaf senescence in European beech. Interestingly, we found a significantly larger temperature response of autumn leaf senescence than of spring leaf-out. This suggests a possible larger contribution of delays in autumn senescence, than of the advancement in spring leaf-out, to extending the growing season under future warmer conditions. © 2017 John Wiley & Sons Ltd.
Hu, Yu-Kun; Zhang, Ya-Lin; Liu, Guo-Fang; Pan, Xu; Yang, Xuejun; Li, Wen-Bing; Dai, Wen-Hong; Tang, Shuang-Li; Xiao, Tao; Chen, Ling-Yun; Xiong, Wei; Song, Yao-Bin; Dong, Ming
2017-02-24
Geographic patterns in leaf stoichiometry reflect plant adaptations to environments. Leaf stoichiometry variations along environmental gradients have been extensively studied among terrestrial plants, but little has been known about intraspecific leaf stoichiometry, especially for wetland plants. Here we analyzed the dataset of leaf N and P of a cosmopolitan wetland species, Phragmites australis, and environmental (geographic, climate and soil) variables from literature and field investigation in natural wetlands distributed in three climatic regions (subtropical, temperate and highland) across China. We found no clear geographic patterns in leaf nutrients of P. australis across China, except for leaf N:P ratio increasing with altitude. Leaf N and N:P decreased with mean annual temperature (MAT), and leaf N and P were closely related to soil pH, C:N ratio and available P. Redundancy analysis showed that climate and soil variables explained 62.1% of total variation in leaf N, P and N:P. Furthermore, leaf N in temperate region and leaf P in subtropical region increased with soil available P, while leaf N:P in subtropical region decreased with soil pH. These patterns in P. australis different from terrestrial plants might imply that changes in climate and soil properties can exert divergent effects on wetland and terrestrial ecosystems.
Internal coordination between hydraulics and stomatal control in leaves.
Brodribb, Tim J; Jordan, Gregory J
2008-11-01
The stomatal response to changing leaf-atmospheric vapour pressure gradient (D(l)) is a crucial yet enigmatic process that defines the daily course of leaf gas exchange. Changes in the hydration of epidermal cells are thought to drive this response, mediated by the transpiration rate and hydraulic conductance of the leaf. Here, we examine whether species-specific variation in the sensitivity of leaves to perturbation of D(l) is related to the efficiency of water transport in the leaf (leaf hydraulic conductivity, K(leaf)). We found good correlation between maximum liquid (K(leaf)) and gas phase conductances (g(max)) in leaves, but there was no direct correlation between normalized D(l) sensitivity and K(leaf). The impact of K(leaf) on D(l) sensitivity in our diverse sample of eight species was important only after accounting for the strong relationship between K(leaf) and g(max). Thus, the ratio of g(max)/K(leaf) was strongly correlated with stomatal sensitivity to D(l). This ratio is an index of the degree of hydraulic buffering of the stomata against changes in D(l), and species with high g(max) relative to K(leaf) were the most sensitive to D(l) perturbation. Despite the potentially high adaptive significance of this phenomenon, we found no significant phylogenetic or ecological trend in our species.
Blackman, Christopher J; Brodribb, Timothy J; Jordan, Gregory J
2009-11-01
Efficient conduction of water inside leaves is essential for leaf function, yet the hydraulic-mediated impact of drought on gas exchange remains poorly understood. Here we examine the decline and subsequent recovery of leaf water potential (Psi(leaf)), leaf hydraulic conductance (K(leaf)), and midday transpiration (E) in four temperate woody species exposed to controlled drought conditions ranging from mild to lethal. During drought the vulnerability of K(leaf) to declining Psi(leaf) varied greatly among the species sampled. Following drought, plants were rewatered and the rate of E and K(leaf) recovery was found to be strongly dependent on the severity of the drought imposed. Gas exchange recovery was strongly correlated with the relatively slow recovery of K(leaf) for three of the four species, indicating conformity to a hydraulic-stomatal limitation model of plant recovery. However, there was also a shift in the sensitivity of stomata to Psi(leaf) suggesting that the plant hormone abscisic acid may be involved in limiting the rate of stomatal reopening. The level of drought tolerance varied among the four species and was correlated with leaf hydraulic vulnerability. These results suggest that species-specific variation in hydraulic properties plays a fundamental role in steering the dynamic response of plants during recovery.
UV radiation is the primary factor driving the variation in leaf phenolics across Chinese grasslands
Chen, Litong; Niu, Kechang; Wu, Yi; Geng, Yan; Mi, Zhaorong; Flynn, Dan FB; He, Jin-Sheng
2013-01-01
Due to the role leaf phenolics in defending against ultraviolet B (UVB) under previously controlled conditions, we hypothesize that ultraviolet radiation (UVR) could be a primary factor driving the variation in leaf phenolics in plants over a large geographic scale. We measured leaf total phenolics, ultraviolet-absorbing compounds (UVAC), and corresponding leaf N, P, and specific leaf area (SLA) in 151 common species. These species were from 84 sites across the Tibetan Plateau and Inner Mongolian grasslands of China with contrasting UVR (354 vs. 161 mW/cm2 on average). Overall, leaf phenolics and UVAC were all significantly higher on the Tibetan Plateau than in the Inner Mongolian grasslands, independent of phylogenetic relationships between species. Regression analyses showed that the variation in leaf phenolics was strongly affected by climatic factors, particularly UVR, and soil attributes across all sites. Structural equation modeling (SEM) identified the primary role of UVR in determining leaf phenolic concentrations, after accounting for colinearities with altitude, climatic, and edaphic factors. In addition, phenolics correlated positively with UVAC and SLA, and negatively with leaf N and N: P. These relationships were steeper in the lower-elevation Inner Mongolian than on the Tibetan Plateau grasslands. Our data support that the variation in leaf phenolics is controlled mainly by UV radiation, implying high leaf phenolics facilitates the adaptation of plants to strong irradiation via its UV-screening and/or antioxidation functions, particularly on the Tibetan Plateau. Importantly, our results also suggest that leaf phenolics may influence on vegetation attributes and indirectly affect ecosystem processes by covarying with leaf functional traits. PMID:24363898
Genetic dissection and validation of candidate genes for flag leaf size in rice (Oryza sativa L.).
Tang, Xinxin; Gong, Rong; Sun, Wenqiang; Zhang, Chaopu; Yu, Sibin
2018-04-01
Two major loci with functional candidate genes were identified and validated affecting flag leaf size, which offer desirable genes to improve leaf architecture and photosynthetic capacity in rice. Leaf size is a major determinant of plant architecture and yield potential in crops. However, the genetic and molecular mechanisms regulating leaf size remain largely elusive. In this study, quantitative trait loci (QTLs) for flag leaf length and flag leaf width in rice were detected with high-density single nucleotide polymorphism genotyping of a chromosomal segment substitution line (CSSL) population, in which each line carries one or a few chromosomal segments from the japonica cultivar Nipponbare in a common background of the indica variety Zhenshan 97. In total, 14 QTLs for flag leaf length and nine QTLs for flag leaf width were identified in the CSSL population. Among them, qFW4-2 for flag leaf width was mapped to a 37-kb interval, with the most likely candidate gene being the previously characterized NAL1. Another major QTL for both flag leaf width and length was delimited by substitution mapping to a small region of 13.5 kb that contains a single gene, Ghd7.1. Mutants of Ghd7.1 generated using CRISPR/CAS9 approach showed reduced leaf size. Allelic variation analyses also validated Ghd7.1 as a functional candidate gene for leaf size, photosynthetic capacity and other yield-related traits. These results provide useful genetic information for the improvement of leaf size and yield in rice breeding programs.
Zhang, Ji-Li; Liu, Bo-Fei; Di, Xue-Ying; Chu, Teng-Fei; Jin, Sen
2013-12-01
Mongolian oak (Quercus mongolica) is an important constructive and accompanying species in mixed broadleaf-conifer forest in Northeast China, In this paper, a laboratory burning experiment was conducted under zero-slope and no-wind conditions to study the effects of fuel moisture content, loading, and thickness on the fireline intensity, fuel consumption, and combustion efficiency of the Mongolian oak leaf litter fuelbed. The fuel moisture content, loading, and thickness all had significant effects on the three fire behavior indices, and there existed interactions between these three affecting factors. Among the known models, the Byram model could be suitable for the prediction of local leaf litter fire intensity only after re-parameterization. The re-estimated alpha and beta parameters of the re-parameterized Byram model were 98.009 and 1.099, with an adjusted determination coefficient of 0.745, the rooted mean square error (RMSE) of 8.676 kW x m(-1), and the mean relative error (MRE) of 21%, respectively (R2 = 0.745). The re-estimated a and b by the burning efficiency method proposed by Albini were 0.069 and 0.169, and the re-estimated values were all higher than 93%, being mostly overestimated. The Consume model had a stronger suitability for the fuel. The R2 of the general linear models established for fireline intensity, fuel consumption, and burning efficiency was 0.82, 0.73 and 0.53, and the RMSE was 8.266 kW x m(-1) 0.081 kg x m(-2), and 0.203, respectively. In low intensity surface fires, the fine fuels could not be completely consumed, and thus, to consider the leaf litter and fine fuel in some forest ecosystems being completely consumed would overestimate the carbon release from forest fires.
de Bock, Martin; Derraik, José G. B.; Brennan, Christine M.; Biggs, Janene B.; Morgan, Philip E.; Hodgkinson, Steven C.; Hofman, Paul L.; Cutfield, Wayne S.
2013-01-01
Background Olive plant leaves (Olea europaea L.) have been used for centuries in folk medicine to treat diabetes, but there are very limited data examining the effects of olive polyphenols on glucose homeostasis in humans. Objective To assess the effects of supplementation with olive leaf polyphenols (51.1 mg oleuropein, 9.7 mg hydroxytyrosol per day) on insulin action and cardiovascular risk factors in middle-aged overweight men. Design Randomized, double-blinded, placebo-controlled, crossover trial in New Zealand. 46 participants (aged 46.4±5.5 years and BMI 28.0±2.0 kg/m2) were randomized to receive capsules with olive leaf extract (OLE) or placebo for 12 weeks, crossing over to other treatment after a 6-week washout. Primary outcome was insulin sensitivity (Matsuda method). Secondary outcomes included glucose and insulin profiles, cytokines, lipid profile, body composition, 24-hour ambulatory blood pressure, and carotid intima-media thickness. Results Treatment evaluations were based on the intention-to-treat principle. All participants took >96% of prescribed capsules. OLE supplementation was associated with a 15% improvement in insulin sensitivity (p = 0.024) compared to placebo. There was also a 28% improvement in pancreatic β-cell responsiveness (p = 0.013). OLE supplementation also led to increased fasting interleukin-6 (p = 0.014), IGFBP-1 (p = 0.024), and IGFBP-2 (p = 0.015) concentrations. There were however, no effects on interleukin-8, TNF-α, ultra-sensitive CRP, lipid profile, ambulatory blood pressure, body composition, carotid intima-media thickness, or liver function. Conclusions Supplementation with olive leaf polyphenols for 12 weeks significantly improved insulin sensitivity and pancreatic β-cell secretory capacity in overweight middle-aged men at risk of developing the metabolic syndrome. Trial Registration Australian New Zealand Clinical Trials Registry #336317. PMID:23516412
A survey of trampling effects on vegetation and soil in eight tropical and subtropical sites
NASA Astrophysics Data System (ADS)
Sun, Dan; Liddle, Michael J.
1993-07-01
Impacts of recreation, especially of vehicles and walkers, were studied in eight tropical or subtropical public sites in Queensland. In each site, plant species number, vegetation cover, plant height, and species cover and frequency in untrampled, slightly trampled, moderately trampled, and heavily trampled areas were counted or measured. Soil penetration resistance and soil organic matter were also recorded. In two of these eight sites, plant cover, height, leaf length, leaf width, and leaf thickness of each species were measured. Some species of grass such as Cynodon dactylon were present in areas subject to all degrees of trampling impact and some tussock species, particularly Eragrostis tenuifolia and Sporobolus elongatus, were only present in trampled areas. Woody plants occurred only on untrampled areas. The number of species and all the vegetative measurements mentioned above were reduced as wear increased. Plant height was reduced dramatically by even light trampling. Tall plants appeared to be more sensitive to trampling than short plants. No clear relationship between soil organic matter content and trampling intensity was found.
Benz, Brett W; Martin, Craig E
2006-04-01
We examined the relationships between H2O and CO2 gas exchange parameters and leaf trichome cover in 12 species of Tillandsia that exhibit a wide range in trichome size and trichome cover. Previous investigations have hypothesized that trichomes function to enhance boundary layers around Tillandsioid leaves thereby buffering the evaporative demand of the atmosphere and retarding transpirational water loss. Data presented herein suggest that trichome-enhanced boundary layers have negligible effects on Tillandsia gas exchange, as indicated by the lack of statistically significant relationships in regression analyses of gas exchange parameters and trichome cover. We calculated trichome and leaf boundary layer components, and their associated effects on H2O and CO2 gas exchange. The results further indicate trichome-enhanced boundary layers do not significantly reduce transpirational water loss. We conclude that although the trichomes undoubtedly increase the thickness of the boundary layer, the increase due to Tillandsioid trichomes is inconsequential in terms of whole leaf boundary layers, and any associated reduction in transpirational water loss is also negligible within the whole plant gas exchange pathway.
A new virus in Luteoviridae is associated with raspberry leaf curl disease
USDA-ARS?s Scientific Manuscript database
To determine the etiology of Raspberry Leaf Curl Disease (RLCD), which causes leaf curling, leaf distortion, leaf chlorosis, shoot dwarfing, shoot proliferation in raspberries and can kill plants within three years, a next generation sequences approach was applied. Two red raspberry plants collected...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf surface. 29.3036 Section 29.3036 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf surface. The smoothness or roughness of the web or lamina of a tobacco leaf. Leaf surface is...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf surface. 29.3036 Section 29.3036 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf surface. The smoothness or roughness of the web or lamina of a tobacco leaf. Leaf surface is...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf surface. 29.3036 Section 29.3036 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf surface. The smoothness or roughness of the web or lamina of a tobacco leaf. Leaf surface is...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf tobacco. 30.2 Section 30.2 Agriculture... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.2 Leaf... stemming, sweating or fermenting, and conditioning are not regarded as manufacturing processes. Leaf...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf surface. 29.3036 Section 29.3036 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf surface. The smoothness or roughness of the web or lamina of a tobacco leaf. Leaf surface is...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf tobacco. 30.2 Section 30.2 Agriculture... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.2 Leaf... stemming, sweating or fermenting, and conditioning are not regarded as manufacturing processes. Leaf...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf tobacco. 30.2 Section 30.2 Agriculture... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.2 Leaf... stemming, sweating or fermenting, and conditioning are not regarded as manufacturing processes. Leaf...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf tobacco. 30.2 Section 30.2 Agriculture... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.2 Leaf... stemming, sweating or fermenting, and conditioning are not regarded as manufacturing processes. Leaf...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf surface. 29.3036 Section 29.3036 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf surface. The smoothness or roughness of the web or lamina of a tobacco leaf. Leaf surface is...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf tobacco. 30.2 Section 30.2 Agriculture... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.2 Leaf... stemming, sweating or fermenting, and conditioning are not regarded as manufacturing processes. Leaf...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Body. 29.6003 Section 29.6003 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6003 Body. The thickness and density of a leaf or the weight per unit...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Body. 29.3004 Section 29.3004 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Body. The thickness and density of a leaf or the weight per unit of surface. (See Elements of quality.) ...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Body. 29.3004 Section 29.3004 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Body. The thickness and density of a leaf or the weight per unit of surface. (See Elements of quality.) ...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Body. 29.6003 Section 29.6003 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6003 Body. The thickness and density of a leaf or the weight per unit...
Effect of harvest timing and leaf hairiness on fiber quality
USDA-ARS?s Scientific Manuscript database
Recent concerns over leaf grades have generated questions of how both time of day cotton is harvested, as well as leaf hairiness levels of certain varieties, influence fiber quality. To address this, two smooth leaf varieties and two varieties with higher levels of leaf pubescence were harvested at...
7 CFR 29.1163 - Smoking Leaf (H Group).
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Smoking Leaf (H Group). 29.1163 Section 29.1163... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.1163 Smoking Leaf (H Group). This group consists of... Quality Orange Smoking Leaf Mellow, open leaf structure, medium body, lean in oil, strong color intensity...
7 CFR 29.1163 - Smoking Leaf (H Group).
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Smoking Leaf (H Group). 29.1163 Section 29.1163... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.1163 Smoking Leaf (H Group). This group consists of... Quality Orange Smoking Leaf Mellow, open leaf structure, medium body, lean in oil, strong color intensity...
7 CFR 29.1163 - Smoking Leaf (H Group).
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Smoking Leaf (H Group). 29.1163 Section 29.1163... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.1163 Smoking Leaf (H Group). This group consists of... Quality Orange Smoking Leaf Mellow, open leaf structure, medium body, lean in oil, strong color intensity...
7 CFR 29.1163 - Smoking Leaf (H Group).
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Smoking Leaf (H Group). 29.1163 Section 29.1163... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.1163 Smoking Leaf (H Group). This group consists of... Quality Orange Smoking Leaf Mellow, open leaf structure, medium body, lean in oil, strong color intensity...
7 CFR 29.1163 - Smoking Leaf (H Group).
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Smoking Leaf (H Group). 29.1163 Section 29.1163... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.1163 Smoking Leaf (H Group). This group consists of... Quality Orange Smoking Leaf Mellow, open leaf structure, medium body, lean in oil, strong color intensity...
7 CFR 30.31 - Classification of leaf tobacco.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Classification of leaf tobacco. 30.31 Section 30.31... REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.31 Classification of leaf tobacco. For the purpose of this classification leaf tobacco shall...
7 CFR 30.31 - Classification of leaf tobacco.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Classification of leaf tobacco. 30.31 Section 30.31... REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.31 Classification of leaf tobacco. For the purpose of this classification leaf tobacco shall...
7 CFR 30.31 - Classification of leaf tobacco.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Classification of leaf tobacco. 30.31 Section 30.31... REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.31 Classification of leaf tobacco. For the purpose of this classification leaf tobacco shall...
7 CFR 30.31 - Classification of leaf tobacco.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Classification of leaf tobacco. 30.31 Section 30.31... REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.31 Classification of leaf tobacco. For the purpose of this classification leaf tobacco shall...
7 CFR 30.31 - Classification of leaf tobacco.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Classification of leaf tobacco. 30.31 Section 30.31... REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.31 Classification of leaf tobacco. For the purpose of this classification leaf tobacco shall...
USDA-ARS?s Scientific Manuscript database
Leaf area index (LAI) and leaf chlorophyll (Chl) content represent key biophysical and biochemical controls on water, energy and carbon exchange processes in the terrestrial biosphere. In combination, LAI and leaf Chl content provide critical information on vegetation density, vitality and photosynt...
Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area.
Easlon, Hsien Ming; Bloom, Arnold J
2014-07-01
Measurement of leaf areas from digital photographs has traditionally required significant user input unless backgrounds are carefully masked. Easy Leaf Area was developed to batch process hundreds of Arabidopsis rosette images in minutes, removing background artifacts and saving results to a spreadsheet-ready CSV file. • Easy Leaf Area uses the color ratios of each pixel to distinguish leaves and calibration areas from their background and compares leaf pixel counts to a red calibration area to eliminate the need for camera distance calculations or manual ruler scale measurement that other software methods typically require. Leaf areas estimated by this software from images taken with a camera phone were more accurate than ImageJ estimates from flatbed scanner images. • Easy Leaf Area provides an easy-to-use method for rapid measurement of leaf area and nondestructive estimation of canopy area from digital images.
Transcriptomic Analysis of Leaf in Tree Peony Reveals Differentially Expressed Pigments Genes.
Luo, Jianrang; Shi, Qianqian; Niu, Lixin; Zhang, Yanlong
2017-02-20
Tree peony (Paeonia suffruticosa Andrews) is an important traditional flower in China. Besides its beautiful flower, the leaf of tree peony has also good ornamental value owing to its leaf color change in spring. So far, the molecular mechanism of leaf color change in tree peony is unclear. In this study, the pigment level and transcriptome of three different color stages of tree peony leaf were analyzed. The purplish red leaf was rich in anthocyanin, while yellowish green leaf was rich in chlorophyll and carotenoid. Transcriptome analysis revealed that 4302 differentially expressed genes (DEGs) were upregulated, and 4225 were downregulated in the purplish red leaf vs. yellowish green leaf. Among these DEGs, eight genes were predicted to participate in anthocyanin biosynthesis, eight genes were predicted involved in porphyrin and chlorophyll metabolism, and 10 genes were predicted to participate in carotenoid metabolism. In addition, 27 MYBs, 20 bHLHs, 36 WD40 genes were also identified from DEGs. Anthocyanidin synthase (ANS) is the key gene that controls the anthocyanin level in tree peony leaf. Protochlorophyllide oxido-reductase (POR) is the key gene which regulated the chlorophyll content in tree peony leaf.
Leaf drop affects herbivory in oaks.
Pearse, Ian S; Karban, Richard
2013-11-01
Leaf phenology is important to herbivores, but the timing and extent of leaf drop has not played an important role in our understanding of herbivore interactions with deciduous plants. Using phylogenetic general least squares regression, we compared the phenology of leaves of 55 oak species in a common garden with the abundance of leaf miners on those trees. Mine abundance was highest on trees with an intermediate leaf retention index, i.e. trees that lost most, but not all, of their leaves for 2-3 months. The leaves of more evergreen species were more heavily sclerotized, and sclerotized leaves accumulated fewer mines in the summer. Leaves of more deciduous species also accumulated fewer mines in the summer, and this was consistent with the idea that trees reduce overwintering herbivores by shedding leaves. Trees with a later leaf set and slower leaf maturation accumulated fewer herbivores. We propose that both leaf drop and early leaf phenology strongly affect herbivore abundance and select for differences in plant defense. Leaf drop may allow trees to dispose of their herbivores so that the herbivores must recolonize in spring, but trees with the longest leaf retention also have the greatest direct defenses against herbivores.
Yang, Bin; Knyazikhin, Yuri; Lin, Yi; Yan, Kai; Chen, Chi; Park, Taejin; Choi, Sungho; Mõttus, Matti; Rautiainen, Miina; Myneni, Ranga B.; Yan, Lei
2017-01-01
Leaf scattering spectrum is the key optical variable that conveys information about leaf absorbing constituents from remote sensing. It cannot be directly measured from space because the radiation scattered from leaves is affected by the 3D canopy structure. In addition, some radiation is specularly reflected at the surface of leaves. This portion of reflected radiation is partly polarized, does not interact with pigments inside the leaf and therefore contains no information about its interior. Very little empirical data are available on the spectral and angular scattering properties of leaf surfaces. Whereas canopy-structure effects are well understood, the impact of the leaf surface reflectance on estimation of leaf absorption spectra remains uncertain. This paper presents empirical and theoretical analyses of angular, spectral, and polarimetric measurements of light reflected by needles and shoots of Pinus koraiensis and Picea koraiensis species. Our results suggest that ignoring the leaf surface reflected radiation can result in an inaccurate estimation of the leaf absorption spectrum. Polarization measurements may be useful to account for leaf surface effects because radiation reflected from the leaf surface is partly polarized, whereas that from the leaf interior is not. PMID:28868160
Raeini-Sarjaz, Mahmoud; Chalavi, Vida
2008-11-01
Pulvinus activity of Phaseolus species in response to environmental stimuli plays an essential role in heliotropic leaf movement. The aims of this study were to monitor the continuous daily pulvinus movement and pulvinus temperature, and to evaluate the effects of leaf movements, on a hot day, on instantaneous leaf water-use efficiency (WUEi), leaf gas exchange, and leaf temperature. Potted plants of Phaseolus vulgaris L. var. Provider were grown in Chicot sandy loam soil under well-watered conditions in a greenhouse. When the second trifoliate leaf was completely extended, one plant was selected to measure pulvinus movement using a beta-ray gauging (BRG) meter with a point source of thallium-204 (204Tl). Leaf gas exchange measurements took place on similar leaflets of three plants at an air temperature interval of 33-42 degrees C by a steady-state LI-6200 photosynthesis system. A copper-constantan thermocouple was used to monitor pulvinus temperature. Pulvinus bending followed the daily diurnal rhythm. Significant correlations were found between the leaf-incident angle and the stomatal conductance (R2 = 0.54; P < 0.01), and photosynthesis rate (R2 = 0.84; P < 0.01). With a reduction in leaf-incidence angle and increase in air temperature, WUEi was reduced. During the measurements, leaf temperature remained below air temperature and was a significant function of air temperature (r = 0.92; P < 0.01). In conclusion, pulvinus bending followed both light intensity and air temperature and influenced leaf gas exchange.
Usual and unusual development of the dicot leaf: involvement of transcription factors and hormones.
Fambrini, Marco; Pugliesi, Claudio
2013-06-01
Morphological diversity exhibited by higher plants is essentially related to the tremendous variation of leaf shape. With few exceptions, leaf primordia are initiated postembryonically at the flanks of a group of undifferentiated and proliferative cells within the shoot apical meristem (SAM) in characteristic position for the species and in a regular phyllotactic sequence. Auxin is critical for this process, because genes involved in auxin biosynthesis, transport, and signaling are required for leaf initiation. Down-regulation of transcription factors (TFs) and cytokinins are also involved in the light-dependent leaf initiation pathway. Furthermore, mechanical stresses in SAM determine the direction of cell division and profoundly influence leaf initiation suggesting a link between physical forces, gene regulatory networks and biochemical gradients. After the leaf is initiated, its further growth depends on cell division and cell expansion. Temporal and spatial regulation of these processes determines the size and the shape of the leaf, as well as the internal structure. A complex array of intrinsic signals, including phytohormones and TFs control the appropriate cell proliferation and differentiation to elaborate the final shape and complexity of the leaf. Here, we highlight the main determinants involved in leaf initiation, epidermal patterning, and elaboration of lamina shape to generate small marginal serrations, more deep lobes or a dissected compound leaf. We also outline recent advances in our knowledge of regulatory networks involved with the unusual pattern of leaf development in epiphyllous plants as well as leaf morphology aberrations, such as galls after pathogenic attacks of pests.
Müller-Linow, Mark; Pinto-Espinosa, Francisco; Scharr, Hanno; Rascher, Uwe
2015-01-01
Three-dimensional canopies form complex architectures with temporally and spatially changing leaf orientations. Variations in canopy structure are linked to canopy function and they occur within the scope of genetic variability as well as a reaction to environmental factors like light, water and nutrient supply, and stress. An important key measure to characterize these structural properties is the leaf angle distribution, which in turn requires knowledge on the 3-dimensional single leaf surface. Despite a large number of 3-d sensors and methods only a few systems are applicable for fast and routine measurements in plants and natural canopies. A suitable approach is stereo imaging, which combines depth and color information that allows for easy segmentation of green leaf material and the extraction of plant traits, such as leaf angle distribution. We developed a software package, which provides tools for the quantification of leaf surface properties within natural canopies via 3-d reconstruction from stereo images. Our approach includes a semi-automatic selection process of single leaves and different modes of surface characterization via polygon smoothing or surface model fitting. Based on the resulting surface meshes leaf angle statistics are computed on the whole-leaf level or from local derivations. We include a case study to demonstrate the functionality of our software. 48 images of small sugar beet populations (4 varieties) have been analyzed on the base of their leaf angle distribution in order to investigate seasonal, genotypic and fertilization effects on leaf angle distributions. We could show that leaf angle distributions change during the course of the season with all varieties having a comparable development. Additionally, different varieties had different leaf angle orientation that could be separated in principle component analysis. In contrast nitrogen treatment had no effect on leaf angles. We show that a stereo imaging setup together with the appropriate image processing tools is capable of retrieving the geometric leaf surface properties of plants and canopies. Our software package provides whole-leaf statistics but also a local estimation of leaf angles, which may have great potential to better understand and quantify structural canopy traits for guided breeding and optimized crop management.
NASA Astrophysics Data System (ADS)
Zhao, Wenqiang; Reich, Peter B.; Yu, Qiannan; Zhao, Ning; Yin, Chunying; Zhao, Chunzhang; Li, Dandan; Hu, Jun; Li, Ting; Yin, Huajun; Liu, Qing
2018-04-01
Understanding leaf stoichiometric patterns is crucial for improving predictions of plant responses to environmental changes. Leaf stoichiometry of terrestrial ecosystems has been widely investigated along latitudinal and longitudinal gradients. However, very little is known about the vertical distribution of leaf C : N : P and the relative effects of environmental parameters, especially for shrubs. Here, we analyzed the shrub leaf C, N and P patterns in 125 mountainous sites over an extensive altitudinal gradient (523-4685 m) on the Tibetan Plateau. Results showed that the shrub leaf C and C : N were 7.3-47.5 % higher than those of other regional and global flora, whereas the leaf N and N : P were 10.2-75.8 % lower. Leaf C increased with rising altitude and decreasing temperature, supporting the physiological acclimation mechanism that high leaf C (e.g., alpine or evergreen shrub) could balance the cell osmotic pressure and resist freezing. The largest leaf N and high leaf P occurred in valley region (altitude 1500 m), likely due to the large nutrient leaching from higher elevations, faster litter decomposition and nutrient resorption ability of deciduous broadleaf shrub. Leaf N : P ratio further indicated increasing N limitation at higher altitudes. Interestingly, drought severity was the only climatic factor positively correlated with leaf N and P, which was more appropriate for evaluating the impact of water status than precipitation. Among the shrub ecosystem and functional types (alpine, subalpine, montane, valley, evergreen, deciduous, broadleaf, and conifer), their leaf element contents and responses to environments were remarkably different. Shrub type was the largest contributor to the total variations in leaf stoichiometry, while climate indirectly affected the leaf C : N : P via its interactive effects on shrub type or soil. Collectively, the large heterogeneity in shrub type was the most important factor explaining the overall leaf C : N : P variations, despite the broad climate gradient on the plateau. Temperature and drought induced shifts in shrub type distribution will influence the nutrient accumulation in mountainous shrubs.
NASA Astrophysics Data System (ADS)
Zheng, S. X.; Ren, H. Y.; Lan, Z. C.; Li, W. H.; Wang, K. B.; Bai, Y. F.
2010-03-01
Understanding the mechanistic links between environmental drivers, human disturbance, plant functional traits, and ecosystem properties is a fundamental aspect of biodiversity-ecosystem functioning research. Recent studies have focused mostly on leaf-level traits or community-level weighted traits to predict species responses to grazing and the consequent change in ecosystem functioning. However, studies of leaf-level traits or community-level weighted traits seldom identify the mechanisms linking grazing impact on leaf traits to ecosystem functioning. Here, using a multi-organization-level approach, we examined the effects of grazing on leaf traits (i.e., leaf area, leaf dry mass and specific leaf area) and ecosystem functioning across six communities of three vegetation types along a soil moisture gradient in the Xilin River Basin of Inner Mongolia grassland, China. Our results showed that the effects of grazing on leaf traits differed substantially when scaling up from leaf-level to species, functional group (i.e., life forms and water ecotype types), and community levels; and they also varied with vegetation type or site conditions. The effects of grazing on leaf traits diminished progressively along the hierarchy of organizational levels in the meadow, whereas the impacts were predominantly negative and the magnitude of the effects increased considerably at higher organizational levels in the typical steppe. Soil water and nutrient availability, functional trade-offs between leaf size and number of leaves per individual, and differentiation in avoidance and tolerance strategies among coexisting species are likely to be responsible for the observed responses of leaf traits to grazing at different levels of organization and among vegetation types. Our findings also demonstrate that, at both the functional group and community levels, standing aboveground biomass increased with leaf area and specific leaf area. Compared with the large changes in leaf traits and standing aboveground biomass, the soil properties were relatively unaffected by grazing. Our study indicates that a multi-organization-level approach provides more robust and comprehensive predictions of the effects of grazing on leaf traits and ecosystem functioning.
Leaf aging of Amazonian canopy trees as revealed by spectral and physiochemical measurements.
Chavana-Bryant, Cecilia; Malhi, Yadvinder; Wu, Jin; Asner, Gregory P; Anastasiou, Athanasios; Enquist, Brian J; Cosio Caravasi, Eric G; Doughty, Christopher E; Saleska, Scott R; Martin, Roberta E; Gerard, France F
2017-05-01
Leaf aging is a fundamental driver of changes in leaf traits, thereby regulating ecosystem processes and remotely sensed canopy dynamics. We explore leaf reflectance as a tool to monitor leaf age and develop a spectra-based partial least squares regression (PLSR) model to predict age using data from a phenological study of 1099 leaves from 12 lowland Amazonian canopy trees in southern Peru. Results demonstrated monotonic decreases in leaf water (LWC) and phosphorus (P mass ) contents and an increase in leaf mass per unit area (LMA) with age across trees; leaf nitrogen (N mass ) and carbon (C mass ) contents showed monotonic but tree-specific age responses. We observed large age-related variation in leaf spectra across trees. A spectra-based model was more accurate in predicting leaf age (R 2 = 0.86; percent root mean square error (%RMSE) = 33) compared with trait-based models using single (R 2 = 0.07-0.73; %RMSE = 7-38) and multiple (R 2 = 0.76; %RMSE = 28) predictors. Spectra- and trait-based models established a physiochemical basis for the spectral age model. Vegetation indices (VIs) including the normalized difference vegetation index (NDVI), enhanced vegetation index 2 (EVI2), normalized difference water index (NDWI) and photosynthetic reflectance index (PRI) were all age-dependent. This study highlights the importance of leaf age as a mediator of leaf traits, provides evidence of age-related leaf reflectance changes that have important impacts on VIs used to monitor canopy dynamics and productivity and proposes a new approach to predicting and monitoring leaf age with important implications for remote sensing. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Wang, Xianzhong; Lewis, James D.; Tissue, David T.; Seemann, Jeffrey R.; Griffin, Kevin L.
2001-01-01
Leaf dark respiration (R) is an important component of plant carbon balance, but the effects of rising atmospheric CO2 on leaf R during illumination are largely unknown. We studied the effects of elevated CO2 on leaf R in light (RL) and in darkness (RD) in Xanthium strumarium at different developmental stages. Leaf RL was estimated by using the Kok method, whereas leaf RD was measured as the rate of CO2 efflux at zero light. Leaf RL and RD were significantly higher at elevated than at ambient CO2 throughout the growing period. Elevated CO2 increased the ratio of leaf RL to net photosynthesis at saturated light (Amax) when plants were young and also after flowering, but the ratio of leaf RD to Amax was unaffected by CO2 levels. Leaf RN was significantly higher at the beginning but significantly lower at the end of the growing period in elevated CO2-grown plants. The ratio of leaf RL to RD was used to estimate the effect of light on leaf R during the day. We found that light inhibited leaf R at both CO2 concentrations but to a lesser degree for elevated (17–24%) than for ambient (29–35%) CO2-grown plants, presumably because elevated CO2-grown plants had a higher demand for energy and carbon skeletons than ambient CO2-grown plants in light. Our results suggest that using the CO2 efflux rate, determined by shading leaves during the day, as a measure for leaf R is likely to underestimate carbon loss from elevated CO2-grown plants. PMID:11226264
Wang, X; Lewis, J D; Tissue, D T; Seemann, J R; Griffin, K L
2001-02-27
Leaf dark respiration (R) is an important component of plant carbon balance, but the effects of rising atmospheric CO(2) on leaf R during illumination are largely unknown. We studied the effects of elevated CO(2) on leaf R in light (R(L)) and in darkness (R(D)) in Xanthium strumarium at different developmental stages. Leaf R(L) was estimated by using the Kok method, whereas leaf R(D) was measured as the rate of CO(2) efflux at zero light. Leaf R(L) and R(D) were significantly higher at elevated than at ambient CO(2) throughout the growing period. Elevated CO(2) increased the ratio of leaf R(L) to net photosynthesis at saturated light (A(max)) when plants were young and also after flowering, but the ratio of leaf R(D) to A(max) was unaffected by CO(2) levels. Leaf R(N) was significantly higher at the beginning but significantly lower at the end of the growing period in elevated CO(2)-grown plants. The ratio of leaf R(L) to R(D) was used to estimate the effect of light on leaf R during the day. We found that light inhibited leaf R at both CO(2) concentrations but to a lesser degree for elevated (17-24%) than for ambient (29-35%) CO(2)-grown plants, presumably because elevated CO(2)-grown plants had a higher demand for energy and carbon skeletons than ambient CO(2)-grown plants in light. Our results suggest that using the CO(2) efflux rate, determined by shading leaves during the day, as a measure for leaf R is likely to underestimate carbon loss from elevated CO(2)-grown plants.
Cendrero-Mateo, M. Pilar; Moran, M. Susan; Papuga, Shirley A.; Thorp, K.R.; Alonso, L.; Moreno, J.; Ponce-Campos, G.; Rascher, U.; Wang, G.
2016-01-01
Most studies assessing chlorophyll fluorescence (ChlF) have examined leaf responses to environmental stress conditions using active techniques. Alternatively, passive techniques are able to measure ChlF at both leaf and canopy scales. However, the measurement principles of both techniques are different, and only a few datasets concerning the relationships between them are reported in the literature. In this study, we investigated the potential for interchanging ChlF measurements using active techniques with passive measurements at different temporal and spatial scales. The ultimate objective was to determine the limits within which active and passive techniques are comparable. The results presented in this study showed that active and passive measurements were highly correlated over the growing season across nitrogen treatments at both canopy and leaf-average scale. At the single-leaf scale, the seasonal relation between techniques was weaker, but still significant. The variability within single-leaf measurements was largely related to leaf heterogeneity associated with variations in CO2 assimilation and stomatal conductance, and less so to variations in leaf chlorophyll content, leaf size or measurement inputs (e.g. light reflected and emitted by the leaf and illumination conditions and leaf spectrum). This uncertainty was exacerbated when single-leaf analysis was limited to a particular day rather than the entire season. We concluded that daily measurements of active and passive ChlF at the single-leaf scale are not comparable. However, canopy and leaf-average active measurements can be used to better understand the daily and seasonal behaviour of passive ChlF measurements. In turn, this can be used to better estimate plant photosynthetic capacity and therefore to provide improved information for crop management. PMID:26482242
James M. Vose; Neal H. Sullivan; Barton D. Clinton; Paul V. Bolstad
1995-01-01
We quantified stand leaf area index and vertical leaf area distribution, and developed canopy extinction coefficients (k), in four mature hardwood stands. Leaf area index, calculated from litter fall and specific leaf area (cm²·g-1), ranged from 4.3 to 5.4 m²·m-2. In three of the four stands, leaf area was distributed in...
Maize YABBY Genes drooping leaf1 and drooping leaf2 Regulate Plant Architecture[OPEN
Briggs, Sarah; Bradbury, Peter J.
2017-01-01
Leaf architecture directly influences canopy structure, consequentially affecting yield. We discovered a maize (Zea mays) mutant with aberrant leaf architecture, which we named drooping leaf1 (drl1). Pleiotropic mutations in drl1 affect leaf length and width, leaf angle, and internode length and diameter. These phenotypes are enhanced by natural variation at the drl2 enhancer locus, including reduced expression of the drl2-Mo17 allele in the Mo17 inbred. A second drl2 allele, produced by transposon mutagenesis, interacted synergistically with drl1 mutants and reduced drl2 transcript levels. The drl genes are required for proper leaf patterning, development and cell proliferation of leaf support tissues, and for restricting auricle expansion at the midrib. The paralogous loci encode maize CRABS CLAW co-orthologs in the YABBY family of transcriptional regulators. The drl genes are coexpressed in incipient and emergent leaf primordia at the shoot apex, but not in the vegetative meristem or stem. Genome-wide association studies using maize NAM-RIL (nested association mapping-recombinant inbred line) populations indicated that the drl loci reside within quantitative trait locus regions for leaf angle, leaf width, and internode length and identified rare single nucleotide polymorphisms with large phenotypic effects for the latter two traits. This study demonstrates that drl genes control the development of key agronomic traits in maize. PMID:28698237
Mitchell, Patrick J; Veneklaas, Erik J; Lambers, Hans; Burgess, Stephen S O
2008-12-01
We measured leaf water relations and leaf structural traits of 20 species from three communities growing along a topographical gradient. Our aim was to assess variation in seasonal responses in leaf water status and leaf tissue physiology between sites and among species in response to summer water deficit. Species from a ridge-top heath community showed the greatest reductions in pre-dawn leaf water potentials (Psi(leaf)) and stomatal conductance during summer; species from a valley-floor woodland and a midslope mallee community showed less reductions in these parameters. Heath species also displayed greater seasonal reduction in turgor-loss point (Psi(TLP)) than species from woodland or mallee communities. In general, species that had larger reductions in Psi(leaf) during summer showed significant shifts in either their osmotic potential at full turgor (Psi(pi 100); osmotic adjustment) or in tissue elasticity (epsilon(max)). Psi(pi 100) and epsilon(max) were negatively correlated, during both spring and summer, suggesting a trade-off between these different mechanisms to cope with water stress. Specific leaf area varied greatly among species, and was significantly correlated with seasonal changes in Psi(TLP) and pre-dawn Psi(leaf). These correlations suggest that leaf structure is a prerequisite for cellular mechanisms to be effective in adjusting to water deficit.
Photo-oxidative stress in emerging and senescing leaves: a mirror image?
Juvany, Marta; Müller, Maren; Munné-Bosch, Sergi
2013-08-01
The life cycle of a leaf can be characterized as consisting of different stages: from primordial leaf initiation in the shoot apical meristem (SAM) to leaf senescence. Leaf development, from early leaf growth to senescence, is tightly controlled by plant development and the environment. Here, we primarily focus on summarizing current evidence indicating that photo-oxidative stress occurs at the two extremes of a leaf's lifespan. Some recent studies clearly indicate that--as happens in senescing leaves--emerging new leaves suffer from photo-oxidative stress, which suggests that oxidative stress plays a key role at both ends of the leaf life cycle. We discuss the causes and consequences of suffering from photo-oxidative stress during leaf development, paying attention to the particularities of this process at the two extremes of leaf development. Of particular importance is the current evidence showing mechanisms that maintain an adequate cellular reactive oxygen species/antioxidant (redox) balance that allows growth and prevents oxidative damage in young emerging leaves, while later on photo-oxidative stress induces cell death in senescing leaves. Also of interest is the fact that reductions in the efficiency of photosystem II photochemistry may not necessarily indicate photo-oxidative stress in emerging leaves. In this review, we summarize current knowledge of photoinhibition, photoprotection, and photo-oxidative stress at the two ends of the leaf life cycle: early leaf growth and leaf senescence.
Are leaf physiological traits related to leaf water isotopic enrichment in restinga woody species?
Rosado, Bruno H P; De Mattos, Eduardo A; Sternberg, Leonel Da S L
2013-09-01
During plant-transpiration, water molecules having the lighter stable isotopes of oxygen and hydrogen evaporate and diffuse at a faster rate through the stomata than molecules having the heavier isotopes, which cause isotopic enrichment of leaf water. Although previous models have assumed that leaf water is well-mixed and isotopically uniform, non-uniform stomatal closure, promoting different enrichments between cells, and different pools of water within leaves, due to morpho-physiological traits, might lead to inaccuracies in isotopic models predicting leaf water enrichment. We evaluate the role of leaf morpho-physiological traits on leaf water isotopic enrichment in woody species occurring in a coastal vegetation of Brazil known as restinga. Hydrogen and oxygen stable isotope values of soil, plant stem and leaf water and leaf traits were measured in six species from restinga vegetation during a drought and a wet period. Leaf water isotopic enrichment relative to stem water was more homogeneous among species during the drought in contrast to the wet period suggesting convergent responses to deal to temporal heterogeneity in water availability. Average leaf water isotopic enrichment relative to stem water during the drought period was highly correlated with relative apoplastic water content. We discuss this observation in the context of current models of leaf water isotopic enrichment as a function of the Péclet effect. We suggest that future studies should include relative apoplastic water content in isotopic models.
Wagner, Lucas; Schmal, Christoph; Staiger, Dorothee; Danisman, Selahattin
2017-01-01
The analysis of circadian leaf movement rhythms is a simple yet effective method to study effects of treatments or gene mutations on the circadian clock of plants. Currently, leaf movements are analysed using time lapse photography and subsequent bioinformatics analyses of leaf movements. Programs that are used for this purpose either are able to perform one function (i.e. leaf tip detection or rhythm analysis) or their function is limited to specific computational environments. We developed a leaf movement analysis tool-PALMA-that works in command line and combines image extraction with rhythm analysis using Fast Fourier transformation and non-linear least squares fitting. We validated PALMA in both simulated time series and in experiments using the known short period mutant sensitivity to red light reduced 1 ( srr1 - 1 ). We compared PALMA with two established leaf movement analysis tools and found it to perform equally well. Finally, we tested the effect of reduced iron conditions on the leaf movement rhythms of wild type plants. Here, we found that PALMA successfully detected period lengthening under reduced iron conditions. PALMA correctly estimated the period of both simulated and real-life leaf movement experiments. As a platform-independent console-program that unites both functions needed for the analysis of circadian leaf movements it is a valid alternative to existing leaf movement analysis tools.
Yendrek, Craig R.; Tomaz, Tiago; Montes, Christopher M.; Cao, Youyuan; Morse, Alison M.; Brown, Patrick J.; McIntyre, Lauren M.; Leakey, Andrew D.B.
2017-01-01
High-throughput, noninvasive field phenotyping has revealed genetic variation in crop morphological, developmental, and agronomic traits, but rapid measurements of the underlying physiological and biochemical traits are needed to fully understand genetic variation in plant-environment interactions. This study tested the application of leaf hyperspectral reflectance (λ = 500–2,400 nm) as a high-throughput phenotyping approach for rapid and accurate assessment of leaf photosynthetic and biochemical traits in maize (Zea mays). Leaf traits were measured with standard wet-laboratory and gas-exchange approaches alongside measurements of leaf reflectance. Partial least-squares regression was used to develop a measure of leaf chlorophyll content, nitrogen content, sucrose content, specific leaf area, maximum rate of phosphoenolpyruvate carboxylation, [CO2]-saturated rate of photosynthesis, and leaf oxygen radical absorbance capacity from leaf reflectance spectra. Partial least-squares regression models accurately predicted five out of seven traits and were more accurate than previously used simple spectral indices for leaf chlorophyll, nitrogen content, and specific leaf area. Correlations among leaf traits and statistical inferences about differences among genotypes and treatments were similar for measured and modeled data. The hyperspectral reflectance approach to phenotyping was dramatically faster than traditional measurements, enabling over 1,000 rows to be phenotyped during midday hours over just 2 to 4 d, and offers a nondestructive method to accurately assess physiological and biochemical trait responses to environmental stress. PMID:28049858
Drought effects on leaf abscission and leaf production in Populus clones
Stephen G. Pallardy; Julie L. Rhoads
1997-01-01
Leaf abscission and foliation responses to water stress were studied in potted plants of five Populus clones grown in a greenhouse. As predawn leaf water potential (Ψ1) fell to -3 MPa, drought-induced leaf abscission increased progressively to 30% for data pooled across clones. As predawn Ψ1...
76 FR 13171 - Leaf River Energy Center LLC; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-10
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP11-107-000] Leaf River Energy Center LLC; Notice of Application On February 25, 2011, Leaf River Energy Center LLC (Leaf River... Docket No. CP08-8-000 to authorize Leaf River to relocate and construct two of its certificated and not...
7 CFR 29.3648 - Thin Leaf (C Group).
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Thin Leaf (C Group). 29.3648 Section 29.3648... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.3648 Thin Leaf (C Group). This group consists of leaves... specifications, and tolerances C1L Choice Quality Light-brown Thin Leaf. Ripe, thin, open leaf structure, smooth...
7 CFR 29.3647 - Heavy Leaf (B Group).
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Heavy Leaf (B Group). 29.3647 Section 29.3647... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.3647 Heavy Leaf (B Group). This group consists of leaves... specifications, and tolerances B1F Choice Quality Medium-brown Heavy Leaf. Ripe medium body, open leaf structure...
7 CFR 29.3647 - Heavy Leaf (B Group).
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Heavy Leaf (B Group). 29.3647 Section 29.3647... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.3647 Heavy Leaf (B Group). This group consists of leaves... specifications, and tolerances B1F Choice Quality Medium-brown Heavy Leaf. Ripe medium body, open leaf structure...
7 CFR 29.3647 - Heavy Leaf (B Group).
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Heavy Leaf (B Group). 29.3647 Section 29.3647... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.3647 Heavy Leaf (B Group). This group consists of leaves... specifications, and tolerances B1F Choice Quality Medium-brown Heavy Leaf. Ripe medium body, open leaf structure...
7 CFR 29.3648 - Thin Leaf (C Group).
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Thin Leaf (C Group). 29.3648 Section 29.3648... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.3648 Thin Leaf (C Group). This group consists of leaves... specifications, and tolerances C1L Choice Quality Light-brown Thin Leaf. Ripe, thin, open leaf structure, smooth...
7 CFR 29.3648 - Thin Leaf (C Group).
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Thin Leaf (C Group). 29.3648 Section 29.3648... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.3648 Thin Leaf (C Group). This group consists of leaves... specifications, and tolerances C1L Choice Quality Light-brown Thin Leaf. Ripe, thin, open leaf structure, smooth...
7 CFR 29.3648 - Thin Leaf (C Group).
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Thin Leaf (C Group). 29.3648 Section 29.3648... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.3648 Thin Leaf (C Group). This group consists of leaves... specifications, and tolerances C1L Choice Quality Light-brown Thin Leaf. Ripe, thin, open leaf structure, smooth...
7 CFR 29.3648 - Thin Leaf (C Group).
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Thin Leaf (C Group). 29.3648 Section 29.3648... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.3648 Thin Leaf (C Group). This group consists of leaves... specifications, and tolerances C1L Choice Quality Light-brown Thin Leaf. Ripe, thin, open leaf structure, smooth...
7 CFR 29.3647 - Heavy Leaf (B Group).
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Heavy Leaf (B Group). 29.3647 Section 29.3647... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.3647 Heavy Leaf (B Group). This group consists of leaves... specifications, and tolerances B1F Choice Quality Medium-brown Heavy Leaf. Ripe medium body, open leaf structure...
What Is a Leaf? An Online Tutorial and Tests
ERIC Educational Resources Information Center
Burrows, Geoffrey
2008-01-01
A leaf is a fundamental unit in botany and understanding what constitutes a leaf is fundamental to many plant science activities. My observations and subsequent testing indicated that many students could not confidently and consistently recognise a leaf from a leaflet, or recognise basic leaf arrangements and the various types of compound or…
Artificial Surfaces in Phyllosphere Microbiology.
Doan, Hung K; Leveau, Johan H J
2015-08-01
The study of microorganisms that reside on plant leaf surfaces, or phyllosphere microbiology, greatly benefits from the availability of artificial surfaces that mimic in one or more ways the complexity of foliage as a microbial habitat. These leaf surface proxies range from very simple, such as nutrient agars that can reveal the metabolic versatility or antagonistic properties of leaf-associated microorganisms, to the very complex, such as silicon-based casts that replicate leaf surface topography down to nanometer resolution. In this review, we summarize the various uses of artificial surfaces in experimental phyllosphere microbiology and discuss how these have advanced our understanding of the biology of leaf-associated microorganisms and the habitat they live in. We also provide an outlook into future uses of artificial leaf surfaces, foretelling a greater role for microfluidics to introduce biological and chemical gradients into artificial leaf environments, stressing the importance of artificial surfaces to generate quantitative data that support computational models of microbial life on real leaves, and rethinking the leaf surface ('phyllosphere') as a habitat that features two intimately connected but very different compartments, i.e., the leaf surface landscape ('phylloplane') and the leaf surface waterscape ('phyllotelma').
The enigma of effective pathlength for 18O enrichment in leaf water of conifers
NASA Astrophysics Data System (ADS)
Roden, J. S.; Kahmen, A.; Buchmann, N. C.; Siegwolf, R. T.
2013-12-01
The stable isotopes of oxygen (δ18O) in tree ring cellulose provide valuable proxy information about past environments and climate. Mechanistic models have been used to clarify the important drivers of isotope fractionation and help interpret δ18O variation in tree rings. A critical component to these models is an estimate of leaf water enrichment. However, standard models seldom accurately predict 18O enrichment in conifer needles and Péclet corrections often require effective pathlengths (L) that seem unreasonable from the perspective of needle morphology (>0.5 m). To analyze the potential role of path length on the Péclet effect in conifers we carried out experiments in controlled environment chambers. We exposed seedlings of six species of conifer (Abies alba, Larix decidua, Picea abies, Pinus cembra, P. sylvestris, Taxus bacata), that differ in needle morphology, to four different vapor pressure deficits (VPD), in order to modify transpiration rates (E) and leaf water 18O enrichment. Environmental and δ18O data (leaf, stem and chamber water vapor) were collected to parameterize leaf water models. Cross-sections of needles were sampled for an analysis of needle anatomy. Conifer needles have a single strand of vascular tissue making pathlength determinations through anatomical assessments possible. The six species differed in mesophyll distance (measured from endodermis to epidermis) and cell number, with Pinus and Picea species having the shortest distance and Abies and Taxus the longest (flat needle morphology). Other anatomical measures (transfusion distance, cell size etc.) did not differ significantly. A suberized strip was apparent in the endodermis of all species except Taxus and Abies. Conifer needles have a large proportion (from 0.2 to 0.4) of needle cross-sectional area in vascular tissues that may not be subject to evaporative enrichment. As expected, leaf water δ18O and E responded strongly to VPD and standard models (Craig-Gordon) overestimated leaf water δ18O. A single species-specific value for L could not be determined as the fractional difference between modeled and measured leaf water δ18O did not increase with E as theory predicts. Accounting for potentially unenriched water in vascular and transfusion tissues as well as a Péclet correction that allows the value for L to change with E (as in Song et al., 2013) produced accurate predictions of leaf water δ18O. Estimates of L (for a given E) were positively correlated with mean mesophyll thickness, which to our knowledge is the first time L has been related to a leaf anatomical measure. We repeated the experiment using young needles with much higher values for E, and found a continuing trend of reduced fractional difference with E, implying that Péclet corrections may need to be modified to predict conifer needle water over the range of needle phenology and physiology. Our study will help to better quantify effective pathlength and needle water δ18O in conifers, which are some of the most important organisms used for paleoclimate reconstruction.
Hughes, Nicole M.; Smith, William K.; Gould, Kevin S.
2010-01-01
Background and Aims Red or purple coloration of leaf margins is common in angiosperms, and is found in approx. 25 % of New Zealand Veronica species. However, the functional significance of margin coloration is unknown. We hypothesized that anthocyanins in leaf margins correspond with increased phenolic content in leaf margins and/or the leaf entire, signalling low palatability or leaf quality to edge-feeding insects. Methods Five species of Veronica with red leaf margins, and six species without, were examined in a common garden. Phenolic content in leaf margins and interior lamina regions of juvenile and fully expanded leaves was quantified using the Folin–Ciocalteu assay. Proportions of leaf margins eaten and average lengths of continuous bites were used as a proxy for palatability. Key Results Phenolic content was consistently higher in leaf margins compared with leaf interiors in all species; however, neither leaf margins nor more interior tissues differed significantly in phenolic content with respects to margin colour. Mean phenolic content was inversely correlated with the mean length of continuous bites, suggesting effective deterrence of grazing. However, there was no difference in herbivore consumption of red and green margins, and the plant species with the longest continuous grazing patterns were both red-margined. Conclusions Red margin coloration was not an accurate indicator of total phenolic content in leaf margins or interior lamina tissue in New Zealand Veronica. Red coloration was also ineffective in deterring herbivory on the leaf margin, though studies controlling for variations in leaf structure and biochemistry (e.g. intra-specific studies) are needed before more precise conclusions can be drawn. It is also recommended that future studies focus on the relationship between anthocyanin and specific defence compounds (rather than general phenolic pools), and evaluate possible alternative functions of red margins in leaves (e.g. antioxidants, osmotic adjustment). PMID:20145003
Andres, Ryan J; Bowman, Daryl T; Kaur, Baljinder; Kuraparthy, Vasu
2014-01-01
A major leaf shape locus (L) was mapped with molecular markers and genomically targeted to a small region in the D-genome of cotton. By using expression analysis and candidate gene mapping, two LMI1 -like genes are identified as possible candidates for leaf shape trait in cotton. Leaf shape in cotton is an important trait that influences yield, flowering rates, disease resistance, lint trash, and the efficacy of foliar chemical application. The leaves of okra leaf cotton display a significantly enhanced lobing pattern, as well as ectopic outgrowths along the lobe margins when compared with normal leaf cotton. These phenotypes are the hallmark characteristics of mutations in various known modifiers of leaf shape that culminate in the mis/over-expression of Class I KNOX genes. To better understand the molecular and genetic processes underlying leaf shape in cotton, a normal leaf accession (PI607650) was crossed to an okra leaf breeding line (NC05AZ21). An F2 population of 236 individuals confirmed the incompletely dominant single gene nature of the okra leaf shape trait in Gossypium hirsutum L. Molecular mapping with simple sequence repeat markers localized the leaf shape gene to 5.4 cM interval in the distal region of the short arm of chromosome 15. Orthologous mapping of the closely linked markers with the sequenced diploid D-genome (Gossypium raimondii) tentatively resolved the leaf shape locus to a small genomic region. RT-PCR-based expression analysis and candidate gene mapping indicated that the okra leaf shape gene (L (o) ) in cotton might be an upstream regulator of Class I KNOX genes. The linked molecular markers and delineated genomic region in the sequenced diploid D-genome will assist in the future high-resolution mapping and map-based cloning of the leaf shape gene in cotton.
Barbosa, Eduardo R M; Tomlinson, Kyle W; Carvalheiro, Luísa G; Kirkman, Kevin; de Bie, Steven; Prins, Herbert H T; van Langevelde, Frank
2014-01-01
Changes in land use may lead to increased soil nutrient levels in many ecosystems (e.g. due to intensification of agricultural fertilizer use). Plant species differ widely in their response to differences in soil nutrients, and for savannas it is uncertain how this nutrient enrichment will affect plant community dynamics. We set up a large controlled short-term experiment in a semi-arid savanna to test how water supply (even water supply vs. natural rainfall) and nutrient availability (no fertilisation vs. fertilisation) affects seedlings' above-ground biomass production and leaf-nutrient concentrations (N, P and K) of broad-leafed and fine-leafed tree species. Contrary to expectations, neither changes in water supply nor changes in soil nutrient level affected biomass production of the studied species. By contrast, leaf-nutrient concentration did change significantly. Under regular water supply, soil nutrient addition increased the leaf phosphorus concentration of both fine-leafed and broad-leafed species. However, under uneven water supply, leaf nitrogen and phosphorus concentration declined with soil nutrient supply, this effect being more accentuated in broad-leafed species. Leaf potassium concentration of broad-leafed species was lower when growing under constant water supply, especially when no NPK fertilizer was applied. We found that changes in environmental factors can affect leaf quality, indicating a potential interactive effect between land-use changes and environmental changes on savanna vegetation: under more uneven rainfall patterns within the growing season, leaf quality of tree seedlings for a number of species can change as a response to changes in nutrient levels, even if overall plant biomass does not change. Such changes might affect herbivore pressure on trees and thus savanna plant community dynamics. Although longer term experiments would be essential to test such potential effects of eutrophication via changes in leaf nutrient concentration, our findings provide important insights that can help guide management plans that aim to preserve savanna biodiversity.
Ishida, Atsushi; Nakano, Takashi; Yazaki, Kenichi; Matsuki, Sawako; Koike, Nobuya; Lauenstein, Diego L; Shimizu, Michiru; Yamashita, Naoko
2008-05-01
We examined 15 traits in leaves and stems related to leaf C economy and water use for 32 co-existing angiosperms at ridge sites with shallow soil in the Bonin Islands. Across species, stem density was positively correlated to leaf mass per area (LMA), leaf lifespan (LLS), and total phenolics and condensed tannins per unit leaf N (N-based), and negatively correlated to leaf osmotic potential and saturated water content in leaves. LMA and LLS were negatively correlated to photosynthetic parameters, such as area-, mass-, and N-based assimilation rates. Although stem density and leaf osmotic potential were not associated with photosynthetic parameters, they were associated with some parameters of the leaf C economy, such as LMA and LLS. In the principal component (PCA) analysis, the first three axes accounted for 74.4% of total variation. Axis 1, which explained 41.8% of the total variation, was well associated with parameters for leaf C and N economy. Similarly, axis 2, which explained 22.3% of the total variation, was associated with parameters for water use. Axis 3, which explained 10.3% of the total variation, was associated with chemical defense within leaves. Axes 1 and 2 separated functional types relatively well, i.e., creeping trees, ruderal trees, other woody plants, C(3) shrubs and forbs, palms, and CAM plants, indicating that plant functional types were characterized by similar attributes of traits related to leaf C and N economy and water use. In addition, when the plot was extended by two unrelated traits, leaf mass-based assimilation rates and stem density, it also separated these functional types. These data indicate that differences in the functional types with contrasting plant strategies can be attributed to functional integration among leaf C economy, hydraulics, and leaf longevity, and that both leaf mass-based assimilation rates and stem density are key factors reflecting the different functions of plant species.
Leaf age dependent changes in within-canopy variation in leaf functional traits: a meta-analysis
Niinemets, Ülo
2018-01-01
Within-canopy variation in leaf structural and photosynthetic characteristics is a major means by which whole canopy photosynthesis is maximized at given total canopy nitrogen. As key acclimatory modifications, leaf nitrogen content (NA) and photosynthetic capacity (AA) per unit area increase with increasing light availability in the canopy and these increases are associated with increases in leaf dry mass per unit area (MA) and/or nitrogen content per dry mass and/or allocation. However, leaf functional characteristics change with increasing leaf age during leaf development and aging, but the importance of these alterations for within-canopy trait gradients is unknown. I conducted a meta-analysis based on 71 canopies that were sampled at different time periods or, in evergreens, included measurements for different-aged leaves to understand how within-canopy variations in leaf traits (trait plasticity) depend on leaf age. The analysis demonstrated that in evergreen woody species, MA and NA plasticity decreased with increasing leaf age, but the change in AA plasticity was less suggesting a certain re-acclimation of AA to altered light. In deciduous woody species, MA and NA gradients in flush-type species increased during leaf development and were almost invariable through the rest of the season, while in continuously leaf-forming species, trait gradients increased constantly with increasing leaf age. In forbs, NA plasticity increased, while in grasses, NA plasticity decreased with increasing leaf age, reflecting life form differences in age-dependent changes in light availability and in nitrogen resorption for growth of generative organs. Although more work is needed to improve the coverage of age-dependent plasticity changes in some plant life forms, I argue that the age-dependent variation in trait plasticity uncovered in this study is large enough to warrant incorporation in simulations of canopy photosynthesis through the growing period. PMID:27033356
Long term leaf phenology and leaf exchange strategies of a cerrado savanna community
NASA Astrophysics Data System (ADS)
de Camargo, Maria Gabriela G.; Costa Alberton, Bruna; de Carvalho, Gustavo H.; Magalhães, Paula A. N. R.; Morellato, Leonor Patrícia C.
2017-04-01
Leaf development and senescence cycles are linked to a range of ecosystem processes, affecting seasonal patterns of atmosphere-ecosystem carbon and energy exchanges, resource availability and nutrient cycling. The degree of deciduousness of tropical trees and communities depend on ecosystems characteristics such as amount of biomass, species diversity and the strength and length of the dry season. Besides defining the growing season, deciduousness can also be an indicator of species response to climate changes in the tropics, mainly because severity of dry season can intensify leaf loss. Based on seven-years of phenological observations (2005 to 2011) we describe the long-term patterns of leafing phenology of a Brazilian cerrado savanna, aiming to (i) identify leaf exchange strategies of species, quantifying the degree of deciduousness, and verify whether these strategies vary among years depending on the length and strength of the dry seasons; (ii) define the growing seasons along the years and the main drivers of leaf flushing in the cerrado. We analyzed leafing patterns of 107 species and classified 69 species as deciduous (11 species), semi-deciduous (29) and evergreen (29). Leaf exchange was markedly seasonal, as expected for seasonal tropical savannas. Leaf fall predominated in the dry season, peaking in July, and leaf flushing in the transition between dry to wet seasons, peaking in September. Leafing patterns were similar among years with the growing season starting at the end of dry season, in September, for most species. However, leaf exchange strategies varied among years for most species (65%), except for evergreen strategy, mainly constant over years. Leafing patterns of cerrado species were strongly constrained by rainfall. The length of the dry season and rainfall intensity were likely affecting the individuals' leaf exchange strategies and suggesting a differential resilience of species to changes of rainfall regime, predicted on future global change scenarios.
Mänd, Pille; Hallik, Lea; Peñuelas, Josep; Kull, Olevi
2013-02-01
We investigated changes in chlorophyll a fluorescence from alternate leaf surfaces to assess the intraleaf light acclimation patterns in combination with natural variations in radiation, leaf angles, leaf mass per area (LMA), chlorophyll content (Chl) and leaf optical parameters. Measurements were conducted on bottom- and top-layer leaves of Tilia cordata Mill. (a shade-tolerant sub-canopy species, sampled at heights of 11 and 16 m) and Populus tremula L. (a light-demanding upper canopy species, sampled at canopy heights of 19 and 26 m). The upper canopy species P. tremula had a six times higher PSII quantum yield (Φ(II)) and ratio of open reaction centres (qP), and a two times higher LMA than T. cordata. These species-specific differences were also present when the leaves of both species were in similar light conditions. Leaf adaxial/abaxial fluorescence ratio was significantly larger in the case of more horizontal leaves. Populus tremula (more vertical leaves), had smaller differences in fluorescence parameters between alternate leaf sides compared with T. cordata (more horizontal leaves). However, optical properties on alternate leaf sides showed a larger difference for P. tremula. Intraspecifically, the measured optical parameters were better correlated with LMA than with leaf Chl. Species-specific differences in leaf anatomy appear to enhance the photosynthetic potential of leaf biochemistry by decreasing the interception of excess light in P. tremula and increasing the light absorptance in T. cordata. Our results indicate that intraleaf light absorption gradient, described here as leaf adaxial/abaxial side ratio of chlorophyll a fluorescence, varies significantly with changes in leaf light environment in a multi-layer multi-species tree canopy. However, this variation cannot be described merely as a simple function of radiation, leaf angle, Chl or LMA, and species-specific differences in light acclimation strategies should also be considered.
Estimating Defoliation of Hardwoods Using Blade-petiole Relations
Harry T. Valentine
1978-01-01
Prediction equations for estimating leaf blade area and dry weight from measurements of petiole thickness were used to estimate defoliation of Populus tremuloides, Acer rubrum, Quercus rubra, and Q. alba. On one tree of each species, a sample of leaves was artifically browsed in May and...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Body. 29.1002 Section 29.1002 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1002 Body. The thickness and density of a leaf or the weight per unit of surface. (See...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Body. 29.3504 Section 29.3504 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3504 Body. The thickness and density of a leaf or the weight per unit of surface. (See...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Body. 29.3504 Section 29.3504 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3504 Body. The thickness and density of a leaf or the weight per unit of surface. (See...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Body. 29.1002 Section 29.1002 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1002 Body. The thickness and density of a leaf or the weight per unit of surface. (See...
NASA Astrophysics Data System (ADS)
Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; An Nguyen, Thien; Alfano, Robert R.
2014-06-01
Two-photon (2P) excitation of the second singlet (S) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S2 state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue.
Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; Nguyen, Thien An; Alfano, Robert R
2014-06-01
Two-photon (2P) excitation of the second singlet (S₂) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S₂ state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S₂ state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue.
Seasonal Changes in Leaf Area of Amazon Forests from Leaf Flushing and Abscission
NASA Astrophysics Data System (ADS)
Samanta, A.; Knyazikhin, Y.; Xu, L.; Dickinson, R.; Fu, R.; Costa, M. H.; Ganguly, S.; Saatchi, S. S.; Nemani, R. R.; Myneni, R.
2011-12-01
A large increase in near-infrared (NIR) reflectance of Amazon forests during the light-rich dry season and a corresponding decrease during the light-poor wet season has been observed in satellite measurements. This has been variously interpreted as seasonal changes in leaf area resulting from net leaf flushing in the dry season and net leaf abscission in the wet season, enhanced photosynthetic activity during the dry season from flushing new leaves and as change in leaf scattering and absorption properties between younger and older leaves covered with epiphylls. Reconciling these divergent views using theory and observations is the goal of this article. The observed changes in NIR reflectance of Amazon forests could be due to similar, but small, changes in NIR leaf albedo (reflectance plus transmittance) only, from exchanging older leaves with newer ones, with total leaf area unchanged. However, this argument ignores accumulating evidence from ground-based studies of higher leaf area in the dry season relative to the wet season, seasonal changes in litterfall and does not satisfactorily explain why NIR reflectance of these forests decreases in the wet season. A more convincing explanation for the observed increase in NIR reflectance during the dry season and decrease during the wet season is one that invokes changes in both leaf area and leaf optical properties. Such an argument is consistent with known phonological behavior of tropical forests, ground-based reports of seasonal changes in leaf area, litterfall, leaf optical properties and fluxes of evapotranspiration, and thus, reconciles the various seemingly divergent views.
Seasonal changes in leaf area of Amazon forests from leaf flushing and abscission
NASA Astrophysics Data System (ADS)
Samanta, Arindam; Knyazikhin, Yuri; Xu, Liang; Dickinson, Robert E.; Fu, Rong; Costa, Marcos H.; Saatchi, Sassan S.; Nemani, Ramakrishna R.; Myneni, Ranga B.
2012-03-01
A large increase in near-infrared (NIR) reflectance of Amazon forests during the light-rich dry season and a corresponding decrease during the light-poor wet season has been observed in satellite measurements. This increase has been variously interpreted as seasonal change in leaf area resulting from net leaf flushing in the dry season or net leaf abscission in the wet season, enhanced photosynthetic activity during the dry season from flushing new leaves and as change in leaf scattering and absorption properties between younger and older leaves covered with epiphylls. Reconciling these divergent views using theory and observations is the goal of this article. The observed changes in NIR reflectance of Amazon forests could be due to similar, but small, changes in NIR leaf albedo (reflectance plus transmittance) resulting from the exchange of older leaves for newer ones, but with the total leaf area unchanged. However, this argument ignores accumulating evidence from ground-based reports of higher leaf area in the dry season than the wet season, seasonal changes in litterfall and does not satisfactorily explain why NIR reflectance of these forests decreases in the wet season. More plausibly, the increase in NIR reflectance during the dry season and the decrease during the wet season would result from changes in both leaf area and leaf optical properties. Such change would be consistent with known phenological behavior of tropical forests, ground-based reports of seasonal changes in leaf area, litterfall, leaf optical properties and fluxes of evapotranspiration, and thus, would reconcile the various seemingly divergent views.
Control of leaf expansion: a developmental switch from metabolics to hydraulics.
Pantin, Florent; Simonneau, Thierry; Rolland, Gaëlle; Dauzat, Myriam; Muller, Bertrand
2011-06-01
Leaf expansion is the central process by which plants colonize space, allowing energy capture and carbon acquisition. Water and carbon emerge as main limiting factors of leaf expansion, but the literature remains controversial about their respective contributions. Here, we tested the hypothesis that the importance of hydraulics and metabolics is organized according to both dark/light fluctuations and leaf ontogeny. For this purpose, we established the developmental pattern of individual leaf expansion during days and nights in the model plant Arabidopsis (Arabidopsis thaliana). Under control conditions, decreases in leaf expansion were observed at night immediately after emergence, when starch reserves were lowest. These nocturnal decreases were strongly exaggerated in a set of starch mutants, consistent with an early carbon limitation. However, low-light treatment of wild-type plants had no influence on these early decreases, implying that expansion can be uncoupled from changes in carbon availability. From 4 d after leaf emergence onward, decreases of leaf expansion were observed in the daytime. Using mutants impaired in stomatal control of transpiration as well as plants grown under soil water deficit or high air humidity, we gathered evidence that these diurnal decreases were the signature of a hydraulic limitation that gradually set up as the leaf developed. Changes in leaf turgor were consistent with this pattern. It is concluded that during the course of leaf ontogeny, the predominant control of leaf expansion switches from metabolics to hydraulics. We suggest that the leaf is better armed to buffer variations in the former than in the latter.
Control of Leaf Expansion: A Developmental Switch from Metabolics to Hydraulics1[W][OA
Pantin, Florent; Simonneau, Thierry; Rolland, Gaëlle; Dauzat, Myriam; Muller, Bertrand
2011-01-01
Leaf expansion is the central process by which plants colonize space, allowing energy capture and carbon acquisition. Water and carbon emerge as main limiting factors of leaf expansion, but the literature remains controversial about their respective contributions. Here, we tested the hypothesis that the importance of hydraulics and metabolics is organized according to both dark/light fluctuations and leaf ontogeny. For this purpose, we established the developmental pattern of individual leaf expansion during days and nights in the model plant Arabidopsis (Arabidopsis thaliana). Under control conditions, decreases in leaf expansion were observed at night immediately after emergence, when starch reserves were lowest. These nocturnal decreases were strongly exaggerated in a set of starch mutants, consistent with an early carbon limitation. However, low-light treatment of wild-type plants had no influence on these early decreases, implying that expansion can be uncoupled from changes in carbon availability. From 4 d after leaf emergence onward, decreases of leaf expansion were observed in the daytime. Using mutants impaired in stomatal control of transpiration as well as plants grown under soil water deficit or high air humidity, we gathered evidence that these diurnal decreases were the signature of a hydraulic limitation that gradually set up as the leaf developed. Changes in leaf turgor were consistent with this pattern. It is concluded that during the course of leaf ontogeny, the predominant control of leaf expansion switches from metabolics to hydraulics. We suggest that the leaf is better armed to buffer variations in the former than in the latter. PMID:21474437
NASA Technical Reports Server (NTRS)
Gausman, H. W.; Everitt, J. H.; Escobar, D. E. (Principal Investigator)
1982-01-01
Annual variations in the nitrogen-chlorophyll leaf reflectance of hackberry, honey mesquite and live oak in south Texas, were compared. In spring, leaf reflectance at the 0.55 m wavelength and nitrogen (N) concentration was high but leaf chlorophyll (chl) concentrations were low. In summer, leaf reflectance and N-concentration were low but lead chl concentrations were high. Linear correlations for both spring and summer of leaf reflectance with N and chl concentration or deviations from linear regression were not statistically significant.
Pérez-Pérez, José Manuel; Rubio-Díaz, Silvia; Dhondt, Stijn; Hernández-Romero, Diana; Sánchez-Soriano, Joaquín; Beemster, Gerrit T S; Ponce, María Rosa; Micol, José Luis
2011-12-01
Despite the large number of genes known to affect leaf shape or size, we still have a relatively poor understanding of how leaf morphology is established. For example, little is known about how cell division and cell expansion are controlled and coordinated within a growing leaf to eventually develop into a laminar organ of a definite size. To obtain a global perspective of the cellular basis of variations in leaf morphology at the organ, tissue and cell levels, we studied a collection of 111 non-allelic mutants with abnormally shaped and/or sized leaves, which broadly represent the mutational variations in Arabidopsis thaliana leaf morphology not associated with lethality. We used image-processing techniques on these mutants to quantify morphological parameters running the gamut from the palisade mesophyll and epidermal cells to the venation, whole leaf and rosette levels. We found positive correlations between epidermal cell size and leaf area, which is consistent with long-standing Avery's hypothesis that the epidermis drives leaf growth. In addition, venation parameters were positively correlated with leaf area, suggesting that leaf growth and vein patterning share some genetic controls. Positional cloning of the genes affected by the studied mutations will eventually establish functional links between genotypes, molecular functions, cellular parameters and leaf phenotypes. © 2011 Blackwell Publishing Ltd.
Zhu, Qiuqiang; Yu, Shuguang; Chen, Guanshui; Ke, Lanlan; Pan, Daren
2017-01-01
The importance of leaf rolling in rice (Oryza sativa L.) has been widely recognized. Although several studies have investigated rice leaf rolling and identified some related genes, knowledge of the molecular mechanism underlying rice leaf rolling, especially outward leaf rolling, is limited. Therefore, in this study, differential proteomics and gene expression profiling were used to analyze rolled leaf mutant of transgenic rice in order to investigate differentially expressed genes and proteins related to rice leaf rolling. To this end, 28 differentially expressed proteins related to rolling leaf traits were isolated and identified. Digital expression profiling detected 10 genes related to rice leaf rolling. Some of the proteins and genes detected are involved in lipid metabolism, which is related to the development of bulliform cells, such as phosphoinositide phospholipase C, Mgll gene, and At4g26790 gene. The "omics"-level techniques were useful for simultaneously isolating several proteins and genes related to rice leaf rolling. In addition, the results of the analysis of differentially expressed proteins and genes were closely consistent with those from a corresponding functional analysis of cellular mechanisms; our study findings might form the basis for further research on the molecular mechanisms underlying rice leaf rolling.
Leaf-out phenology of temperate woody plants: from trees to ecosystems.
Polgar, Caroline A; Primack, Richard B
2011-09-01
Leafing-out of woody plants begins the growing season in temperate forests and is one of the most important drivers of ecosystem processes. There is substantial variation in the timing of leaf-out, both within and among species, but the leaf development of almost all temperate tree and shrub species is highly sensitive to temperature. As a result, leaf-out times of temperate forests are valuable for observing the effects of climate change. Analysis of phenology data from around the world indicates that leaf-out is generally earlier in warmer years than in cooler years and that the onset of leaf-out has advanced in many locations. Changes in the timing of leaf-out will affect carbon sequestration, plant-animal interactions, and other essential ecosystem processes. The development of remote sensing methods has expanded the scope of leaf-out monitoring from the level of an individual plant or forest to an entire region. Meanwhile, historical data have informed modeling and experimental studies addressing questions about leaf-out timing. For most species, onset of leaf-out will continue to advance, although advancement may be slowed for some species because of unmet chilling requirements. More information is needed to reduce the uncertainty in predicting the timing of future spring onset. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.
Ginseng leaf-stem: bioactive constituents and pharmacological functions
Wang, Hongwei; Peng, Dacheng; Xie, Jingtian
2009-01-01
Ginseng root is used more often than other parts such as leaf stem although extracts from ginseng leaf-stem also contain similar active ingredients with pharmacological functions. Ginseng's leaf-stems are more readily available at a lower cost than its root. This article reviews the pharmacological effects of ginseng leaf-stem on some diseases and adverse effects due to excessive consumption. Ginseng leaf-stem extract contains numerous active ingredients, such as ginsenosides, polysaccharides, triterpenoids, flavonoids, volatile oils, polyacetylenic alcohols, peptides, amino acids and fatty acids. The extract contains larger amounts of the same active ingredients than the root. These active ingredients produce multifaceted pharmacological effects on the central nervous system, as well as on the cardiovascular, reproductive and metabolic systems. Ginseng leaf-stem extract also has anti-fatigue, anti-hyperglycemic, anti-obesity, anti-cancer, anti-oxidant and anti-aging properties. In normal use, ginseng leaf-stem extract is quite safe; adverse effects occur only when it is over dosed or is of poor quality. Extracts from ginseng root and leaf-stem have similar multifaceted pharmacological activities (for example central nervous and cardiovascular systems). In terms of costs and source availability, however, ginseng leaf-stem has advantages over its root. Further research will facilitate a wider use of ginseng leaf-stem. PMID:19849852
Internal Water Balance of Barley Under Soil Moisture Stress 1
Millar, Agustin A.; Duysen, Murray E.; Wilkinson, Guy E.
1968-01-01
Leaf water potential, leaf relative water content, and relative transpiration of barley were determined daily under greenhouse conditions at 3 growth stages: tillering to boot, boot to heading, and heading to maturity. The leaf moisture characteristic curve (relative water content versus leaf water potential) was the same for leaves of the same age growing in the same environment for the first 2 stages of growth, but shifted at the heading to maturity stage to higher leaf relative water content for a given leaf water potential. Growth chamber experiments showed that the leaf moisture characteristic curve was not the same for plants growing in different environments. Relative transpiration data indicated that barley stomates closed at a water potential of about −22 bars at the 3 stages studied. The water potential was measured for all the leaves on barley to determine the variation of water potential with leaf position. Leaf water potential increased basipetally with plant leaf position. In soil with a moisture content near field capacity a difference of about 16.5 bars was observed between the top and bottom leaves on the same plant, while in soil with a moisture content near the permanent wilting point the difference was only 5.6 bars between the same leaf positions. PMID:16656869
The global distribution of leaf chlorophyll content and seasonal controls on carbon uptake
NASA Astrophysics Data System (ADS)
Croft, H.; Chen, J. M.; Luo, X.; Bartlett, P. A.; Staebler, R. M.; He, L.; Mo, G.; Luo, S.; Simic, A.; Arabian, J.; He, Y.; Zhang, Y.; Beringer, J.; Hutley, L. B.; Noland, T. L.; Arellano, P.; Stahl, C.; Homolová, L.; Bonal, D.; Malenovský, Z.; Yi, Q.; Amiri, R.
2017-12-01
Leaf chlorophyll (ChlLeaf) is crucial to biosphere-atmosphere exchanges of carbon and water, and the functioning of terrestrial ecosystems. Improving the accuracy of modelled photosynthetic carbon uptake is a central priority for understanding ecosystem response to a changing climate. A source of uncertainty within gross primary productivity (GPP) estimates is the failure to explicitly consider seasonal controls on leaf photosynthetic potential. Whilst the inclusion of ChlLeafinto carbon models has shown potential to provide a physiological constraint, progress has been hampered by the absence of a spatially-gridded, global chlorophyll product. Here, we present the first spatially-continuous, global view of terrestrial ChlLeaf, at weekly intervals. Satellite-derived ChlLeaf was modelled using a physically-based radiative transfer modelling approach, with a two stage model inversion method. 4-Scale and SAIL canopy models were first used to model leaf-level reflectance from ENIVSAT MERIS 300m satellite data. The PROSPECT leaf model was then used to derive ChlLeaf from the modelled leaf reflectance. This algorithm was validated using measured ChlLeaf data from 248 measurements within 26 field locations, covering six plant functional types (PFTs). Modelled results show very good relationships with measured data, particularly for deciduous broadleaf forests (R2 = 0.67; p<0.001) and croplands (R2 = 0.42; p<000.1). With all PFTs considered together, the overall validation against measured data was strong (R2 = 0.50; p<0.001). The incorporation of chlorophyll within a light-use efficiency GPP modelling approach and a Terrestrial Biosphere Model demonstrated that neglecting to account for seasonality in leaf physiology resulted in over-estimations in GPP at the start/end of a deciduous growing season, due to a divergence in canopy structure and leaf function. Across nine PFTs, Fluxnet eddy-covariance data was used to validate TBM GPP estimates using ChlLeaf-constrained Vcmax; reducing the seasonal bias and explaining 13%-49% of daily variations in GPP. This work demonstrates the importance of considering leaf pigment status in modelling photosynthetic carbon uptake. We anticipate that the global ChlLeaf product will make an important step towards improving the accuracy of global carbon budgets.
NASA Astrophysics Data System (ADS)
Xu, X.; Medvigy, D.; Wu, J.; Wright, S. J.; Kitajima, K.; Pacala, S. W.
2016-12-01
Tropical evergreen forests play a key role in the global carbon, water and energy cycles. Despite apparent evergreenness, this biome shows strong seasonality in leaf litter and photosynthesis. Recent studies have suggested that this seasonality is not directly related to environmental variability but is dominated by seasonal changes of leaf development and senescence. Meanwhile, current terrestrial biosphere models (TBMs) can not capture this pattern because leaf life cycle is highly underrepresented. One challenge to model this leaf life cycle is the remarkable diversity in leaf longevity, ranging from several weeks to multiple years. Ecologists have proposed models where leaf longevity is regarded as a strategy to optimize carbon gain. However previous optimality models can not be readily integrated into TBMs because (i) there are still large biases in predicted leaf longevity and (ii) it is never tested whether the carbon optimality model can capture the observed seasonality in leaf demography and canopy photosynthesis. In this study, we develop a new carbon optimality model for leaf demography. The novelty of our approach is two-fold. First, we incorporate a mechanistic photosynthesis model that can better estimate leaf carbon gain. Second, we consider the interspecific variations in leaf senescence rate, which strongly influence the modelled optimal carbon gain. We test our model with a leaf trait database for Panamanian evergreen forests. Then, we apply the model at seasonal scale and compare simulated seasonality of leaf litter and canopy photosynthesis with in-situ observations from several Amazonian forest sites. We find that (i) compared with original optimality model, the regression slope between observed and predicted leaf longevity increases from 0.15 to 1.04 in our new model and (ii) that our new model can capture the observed seasonal variations of leaf demography and canopy photosynthesis. Our results suggest that the phenology in tropical evergreen forests might result from plant adaptation to optimize canopy carbon gain. Finally, this proposed trait-driven prognostic phenology model could potentially be incorporated into next generation TBMs to improve simulation of carbon and water fluxes in the tropics.
Villagra, Mariana; Campanello, Paula I; Bucci, Sandra J; Goldstein, Guillermo
2013-12-01
Leaves can be both a hydraulic bottleneck and a safety valve against hydraulic catastrophic dysfunctions, and thus changes in traits related to water movement in leaves and associated costs may be critical for the success of plant growth. A 4-year fertilization experiment with nitrogen (N) and phosphorus (P) addition was done in a semideciduous Atlantic forest in northeastern Argentina. Saplings of five dominant canopy species were grown in similar gaps inside the forests (five control and five N + P addition plots). Leaf lifespan (LL), leaf mass per unit area (LMA), leaf and stem vulnerability to cavitation, leaf hydraulic conductance (K(leaf_area) and K(leaf_mass)) and leaf turgor loss point (TLP) were measured in the five species and in both treatments. Leaf lifespan tended to decrease with the addition of fertilizers, and LMA was significantly higher in plants with nutrient addition compared with individuals in control plots. The vulnerability to cavitation of leaves (P50(leaf)) either increased or decreased with the nutrient treatment depending on the species, but the average P50(leaf) did not change with nutrient addition. The P50(leaf) decreased linearly with increasing LMA and LL across species and treatments. These trade-offs have an important functional significance because more expensive (higher LMA) and less vulnerable leaves (lower P50(leaf)) are retained for a longer period of time. Osmotic potentials at TLP and at full turgor became more negative with decreasing P50(leaf) regardless of nutrient treatment. The K(leaf) on a mass basis was negatively correlated with LMA and LL, indicating that there is a carbon cost associated with increased water transport that is compensated by a longer LL. The vulnerability to cavitation of stems and leaves were similar, particularly in fertilized plants. Leaves in the species studied may not function as safety valves at low water potentials to protect the hydraulic pathway from water stress-induced cavitation. The lack of rainfall seasonality in the subtropical forest studied probably does not act as a selective pressure to enhance hydraulic segmentation between leaves and stems.
7 CFR 28.512 - Leaf Grade No. 2.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf Grade No. 2. 28.512 Section 28.512 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Pima Cotton § 28.512 Leaf Grade No. 2. Leaf grade No. 2 shall be American Pima cotton which in...
7 CFR 28.511 - Leaf Grade No. 1.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf Grade No. 1. 28.511 Section 28.511 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Pima Cotton § 28.511 Leaf Grade No. 1. Leaf grade No. 1 shall be American Pima cotton which in...
7 CFR 28.513 - Leaf Grade No. 3.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf Grade No. 3. 28.513 Section 28.513 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Pima Cotton § 28.513 Leaf Grade No. 3. Leaf grade No. 3 shall be American Pima cotton which in...
7 CFR 28.521 - Application of color and leaf grade standards.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Application of color and leaf grade standards. 28.521... Explanatory Terms § 28.521 Application of color and leaf grade standards. American Pima cotton which in color... the color standard irrespective of the leaf content. American Pima cotton which in leaf is within the...
7 CFR 28.521 - Application of color and leaf grade standards.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Application of color and leaf grade standards. 28.521... Explanatory Terms § 28.521 Application of color and leaf grade standards. American Pima cotton which in color... the color standard irrespective of the leaf content. American Pima cotton which in leaf is within the...
7 CFR 28.513 - Leaf Grade No. 3.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf Grade No. 3. 28.513 Section 28.513 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Pima Cotton § 28.513 Leaf Grade No. 3. Leaf grade No. 3 shall be American Pima cotton which in...
7 CFR 28.515 - Leaf Grade No. 5.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf Grade No. 5. 28.515 Section 28.515 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Pima Cotton § 28.515 Leaf Grade No. 5. Leaf grade No. 5 shall be American Pima cotton which in...
77 FR 19278 - Leaf River Energy Center LLC; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-30
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP12-91-000] Leaf River Energy Center LLC; Notice of Application On March 20, 2012, Leaf River Energy Center LLC (Leaf River), 53... Docket No. CP08-8-000 as amended in Docket No. CP11-107-000, to authorize Leaf River to reallocate the...
7 CFR 28.512 - Leaf Grade No. 2.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf Grade No. 2. 28.512 Section 28.512 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Pima Cotton § 28.512 Leaf Grade No. 2. Leaf grade No. 2 shall be American Pima cotton which in...
7 CFR 28.512 - Leaf Grade No. 2.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf Grade No. 2. 28.512 Section 28.512 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Pima Cotton § 28.512 Leaf Grade No. 2. Leaf grade No. 2 shall be American Pima cotton which in...
7 CFR 28.514 - Leaf Grade No. 4.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf Grade No. 4. 28.514 Section 28.514 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Pima Cotton § 28.514 Leaf Grade No. 4. Leaf grade No. 4 shall be American Pima cotton which in...
7 CFR 28.511 - Leaf Grade No. 1.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf Grade No. 1. 28.511 Section 28.511 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Pima Cotton § 28.511 Leaf Grade No. 1. Leaf grade No. 1 shall be American Pima cotton which in...
7 CFR 28.514 - Leaf Grade No. 4.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf Grade No. 4. 28.514 Section 28.514 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Pima Cotton § 28.514 Leaf Grade No. 4. Leaf grade No. 4 shall be American Pima cotton which in...
7 CFR 28.516 - Leaf Grade No. 6.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf Grade No. 6. 28.516 Section 28.516 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Pima Cotton § 28.516 Leaf Grade No. 6. Leaf grade No. 6 shall be American Pima cotton which in...
7 CFR 28.511 - Leaf Grade No. 1.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf Grade No. 1. 28.511 Section 28.511 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Pima Cotton § 28.511 Leaf Grade No. 1. Leaf grade No. 1 shall be American Pima cotton which in...
7 CFR 28.513 - Leaf Grade No. 3.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf Grade No. 3. 28.513 Section 28.513 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Pima Cotton § 28.513 Leaf Grade No. 3. Leaf grade No. 3 shall be American Pima cotton which in...
7 CFR 28.515 - Leaf Grade No. 5.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf Grade No. 5. 28.515 Section 28.515 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Pima Cotton § 28.515 Leaf Grade No. 5. Leaf grade No. 5 shall be American Pima cotton which in...
7 CFR 28.516 - Leaf Grade No. 6.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf Grade No. 6. 28.516 Section 28.516 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Pima Cotton § 28.516 Leaf Grade No. 6. Leaf grade No. 6 shall be American Pima cotton which in...
7 CFR 28.511 - Leaf Grade No. 1.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf Grade No. 1. 28.511 Section 28.511 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Pima Cotton § 28.511 Leaf Grade No. 1. Leaf grade No. 1 shall be American Pima cotton which in...
7 CFR 28.515 - Leaf Grade No. 5.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf Grade No. 5. 28.515 Section 28.515 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Pima Cotton § 28.515 Leaf Grade No. 5. Leaf grade No. 5 shall be American Pima cotton which in...
7 CFR 28.515 - Leaf Grade No. 5.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf Grade No. 5. 28.515 Section 28.515 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Pima Cotton § 28.515 Leaf Grade No. 5. Leaf grade No. 5 shall be American Pima cotton which in...
7 CFR 28.521 - Application of color and leaf grade standards.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Application of color and leaf grade standards. 28.521... Explanatory Terms § 28.521 Application of color and leaf grade standards. American Pima cotton which in color... the color standard irrespective of the leaf content. American Pima cotton which in leaf is within the...
7 CFR 28.514 - Leaf Grade No. 4.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf Grade No. 4. 28.514 Section 28.514 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Pima Cotton § 28.514 Leaf Grade No. 4. Leaf grade No. 4 shall be American Pima cotton which in...
7 CFR 28.511 - Leaf Grade No. 1.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf Grade No. 1. 28.511 Section 28.511 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Pima Cotton § 28.511 Leaf Grade No. 1. Leaf grade No. 1 shall be American Pima cotton which in...
7 CFR 28.521 - Application of color and leaf grade standards.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Application of color and leaf grade standards. 28.521... Explanatory Terms § 28.521 Application of color and leaf grade standards. American Pima cotton which in color... the color standard irrespective of the leaf content. American Pima cotton which in leaf is within the...
7 CFR 28.513 - Leaf Grade No. 3.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf Grade No. 3. 28.513 Section 28.513 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Pima Cotton § 28.513 Leaf Grade No. 3. Leaf grade No. 3 shall be American Pima cotton which in...
7 CFR 28.513 - Leaf Grade No. 3.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf Grade No. 3. 28.513 Section 28.513 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Pima Cotton § 28.513 Leaf Grade No. 3. Leaf grade No. 3 shall be American Pima cotton which in...
7 CFR 28.521 - Application of color and leaf grade standards.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Application of color and leaf grade standards. 28.521... Explanatory Terms § 28.521 Application of color and leaf grade standards. American Pima cotton which in color... the color standard irrespective of the leaf content. American Pima cotton which in leaf is within the...
7 CFR 28.516 - Leaf Grade No. 6.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf Grade No. 6. 28.516 Section 28.516 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Pima Cotton § 28.516 Leaf Grade No. 6. Leaf grade No. 6 shall be American Pima cotton which in...
7 CFR 28.514 - Leaf Grade No. 4.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf Grade No. 4. 28.514 Section 28.514 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Pima Cotton § 28.514 Leaf Grade No. 4. Leaf grade No. 4 shall be American Pima cotton which in...
7 CFR 28.516 - Leaf Grade No. 6.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf Grade No. 6. 28.516 Section 28.516 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Pima Cotton § 28.516 Leaf Grade No. 6. Leaf grade No. 6 shall be American Pima cotton which in...
7 CFR 28.512 - Leaf Grade No. 2.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf Grade No. 2. 28.512 Section 28.512 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Pima Cotton § 28.512 Leaf Grade No. 2. Leaf grade No. 2 shall be American Pima cotton which in...
7 CFR 28.514 - Leaf Grade No. 4.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf Grade No. 4. 28.514 Section 28.514 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Pima Cotton § 28.514 Leaf Grade No. 4. Leaf grade No. 4 shall be American Pima cotton which in...
7 CFR 28.512 - Leaf Grade No. 2.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf Grade No. 2. 28.512 Section 28.512 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Pima Cotton § 28.512 Leaf Grade No. 2. Leaf grade No. 2 shall be American Pima cotton which in...
7 CFR 28.515 - Leaf Grade No. 5.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf Grade No. 5. 28.515 Section 28.515 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Pima Cotton § 28.515 Leaf Grade No. 5. Leaf grade No. 5 shall be American Pima cotton which in...
7 CFR 28.516 - Leaf Grade No. 6.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf Grade No. 6. 28.516 Section 28.516 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Pima Cotton § 28.516 Leaf Grade No. 6. Leaf grade No. 6 shall be American Pima cotton which in...
NASA Astrophysics Data System (ADS)
Puglielli, Giacomo; Fiore Crescente, Maria; Frattaroli, Anna Rita; Gratani, Loretta
2016-04-01
Plant and leaf traits directly affect ecosystem processes ensuring carbon, nutrient and water exchanges between soil and atmosphere through the photosynthetic activity. Nevertheless, a great within sites variation in plant and leaf traits can be found resulting in different adaptive strategies in coexisting species. Leaf mass per unit of leaf area (LMA) is an important trait to understand plant functional ecology being the outcome of leaf anatomy and related to photosynthesis. We hypothesized that LMA was the main predictor of the adaptive strategies of Sesleria nitida (S1) and Sesleria juncifolia (S2), growing on the screes and on the crests of the summit area, respectively, on Mount Terminillo (Central Apennines, Loc. Sella di Leonessa, 1895 m a.s.l.). To test our hypothesis we broke LMA down into anatomical components, leaf tissue density (LTD) and thickness (LT) and then relating them to gas exchange parameters on twenty plants per species cultivated ex situ. LTD explained 69% of LMA variations in S1 while the relationship with LT was not significant. Moreover, LTD was negatively correlated with LT in S1 driving to a 17% higher volume of the intercellular air spaces, which increases the CO2 partial pressure at the carboxylation sites. This result was also attested by the significant relationship between LTD and both net photosynthesis per unit leaf area (Aa) and mass (Am) (R= 0.56 and -0.49, respectively), highlighting the role of LTD in determining the photosynthetic process in S1. LMA scaled with both LTD and LT explaining 82% and 70% of LMA variations in S2. Moreover, the positive relationship between LTD and LT (R2 = 0.52) highlighted a coordination between the variables in controlling the photosynthetic process. In particular, LTD and LT controlled the transactions of carbon and water through the leaf surface, being positively related to Aa (R= 0.93 and 0.79 for LTD and LT, respectively). Nevertheless, an increase in LT and LTD decreased Am (R = -0.9 and -0.8, respectively). This could be justified by the stronger control of water losses in S2 through a reduction of CO2 diffusion due to the increase in LT and LTD, attested by 6% and 30% lower sub stomatal CO2 concentration (Ci) and stomatal conductance (gs) compared to S1. By analyzing variations in LMA components we demonstrated that S. nitida maximizes carbon uptake mainly by LTD reduction while S. juncifolia reduces photosynthetic capacity and maximize water storage by increasing both LTD and LT. The analysis of the components for LMA provide better insight on uptake and storage strategies of resources such as CO2 and water by allowing the analysis of the relationship between physiological processes, leaf anatomy and environmental conditions.
Wang, Qian; Xu, Zheng; Hu, Tingxing; Rehman, Hafeez Ur; Chen, Hong; Li, Zhongbin; Ding, Bo; Hu, Hongling
2014-01-01
Walnut agroforestry systems have many ecological and economic benefits when intercropped with cool-season species. However, decomposing leaf litter is one of the main sources of allelochemicals in such systems. In this study, lettuce (Lactuca sativa var. angustata) was grown in the soil incorporated with walnut leaf litter to assess its allelopathic activity. Lettuce growth and physiological processes were inhibited by walnut leaf litter, especially during early growth stage (1-2 euphylla period) or with large amount of litter addition. The plants treated by small amount of leaf litter recovered their growth afterwards, while the inhibition for 180 g leaf litter persisted until harvest. Twenty-eight compounds were identified in the leaf litter, and several of them were reported to be phytotoxic, which may be responsible for the stress induced by walnut leaf litter. Thus, for highest economic value of vegetables such as lettuce, excessive incorporation of leaf litter should be discouraged.
Martin, C E; Brandmeyer, E A; Ross, R D
2013-01-01
Leaf temperatures were lower when light entry at the leaf tip window was prevented through covering the window with reflective tape, relative to leaf temperatures of plants with leaf tip windows covered with transparent tape. This was true when leaf temperatures were measured with an infrared thermometer, but not with a fine-wire thermocouple. Leaf tip windows of Lithops growing in high-rainfall regions of southern Africa were larger than the windows of plants (numerous individuals of 17 species) growing in areas with less rainfall and, thus, more annual insolation. The results of this study indicate that leaf tip windows of desert plants with an underground growth habit can allow entry of supra-optimal levels of radiant energy, thus most likely inhibiting photosynthetic activity. Consequently, the size of the leaf tip windows correlates inversely with habitat solar irradiance, minimising the probability of photoinhibition, while maximising the absorption of irradiance in cloudy, high-rainfall regions. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.
Phytohormones signaling and crosstalk regulating leaf angle in rice.
Luo, Xiangyu; Zheng, Jingsheng; Huang, Rongyu; Huang, Yumin; Wang, Houcong; Jiang, Liangrong; Fang, Xuanjun
2016-12-01
Leaf angle is an important agronomic trait in rice (Oryza sativa L.). It affects both the efficiency of sunlight capture and nitrogen reservoirs. The erect leaf phenotype is suited for high-density planting and thus increasing crop yields. Many genes regulate leaf angle by affecting leaf structure, such as the lamina joint, mechanical tissues, and the midrib. Signaling of brassinosteroids (BR), auxin (IAA), and gibberellins (GA) plays important roles in the regulation of lamina joint bending in rice. In addition, the biosynthesis and signaling of BR are known to have dominant effects on leaf angle development. In this review, we summarize the factors and genes associated with the development of leaf angle in rice, outline the regulatory mechanisms based on the signaling of BR, IAA, and GA, and discuss the contribution of crosstalk between BR and IAA or GA in the formation of leaf angle. Promising lines of research in the transgenic engineering of rice leaf angle to increase grain yield are proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, X; Studenski, M; Yang, F
Purpose: MRI-guided-radiotherapy (MRIGRT) systems lack many features of traditional Linac based RT systems and specialized tests need to be developed to evaluate MLC performance. This work describes automatic tools for the analysis of positional accuracy of an MLC equipped MRIGRT system. Methods: This MLC analysis tool was developed for the MRIdian™ RT system which has three Co-60 equipped treatment heads each with a double focused MLC containing 30 leaf pairs, leaf thickness is 1.05cm defined at isocenter (SAD 105 cm). For MLC positional analysis a picket fence test was performed using a 25.4cm × 25.4cm Gafchromic™ RTQA2 film placed betweenmore » 5cm solidwater and a 30cm × 30cm × 1cm jigwire phantom with seven embedded parallel metal strips 4cm apart. A plan was generated to deliver 2Gy per field and seven 23.1cm × 2cm fields centered over each wire in the phantom. For each leaf pair the center of the radiation profile was determined by fitting the horizontal profile with a Gaussian model and determining the center of the FWHM. This was compared with the metal strip location to determine any deviation. The following metrics were used to evaluate the deviations per gantry angle including maximum, minimum, mean, Kurtosis, and skewness. Results: The identified maximum/mean leaf deviations are, 1.32/0.55 mm for gantry 0°, 1.59/0.76 mm for gantry 90°, and 1.19/0.39 mm for gantry 270°. The percentage of leaf deviation less than 1mm are 90.0% at 0°, 74.6% at 90°, and 97.0% at 270°. Kurtosis/skewness of the leaf deviation are 2.41/0.14 at 0°, 2.53/0.23 at 90°, 3.33/0.83 at 270°, respectively. Conclusion: This work presents an automatic tool for evaluation of the MLC position accuracy of the MRIdian™ radiotherapy system which can be used to benchmark the performance of the MLC system for each treatment head and track the results longitudinally.« less
Plant traits and environment: floating leaf blade production and turnover of waterlilies.
Klok, Peter F; van der Velde, Gerard
2017-01-01
Floating leaf blades of waterlilies fulfill several functions in wetland ecosystems by production, decomposition and turnover as well as exchange processes. Production and turnover rates of floating leaf blades of three waterlily species, Nuphar lutea (L.) Sm., Nymphaea alba L. and Nymphaea candida Presl, were studied in three freshwater bodies, differing in trophic status, pH and alkalinity. Length and percentages of leaf loss of marked leaf blades were measured weekly during the growing season. Area and biomass were calculated based on leaf length and were used to calculate the turnover rate of floating leaf blades. Seasonal changes in floating leaf production showed that values decreased in the order: Nymphaea alba , Nuphar lutea , Nymphaea candida . The highest production was reached for Nuphar lutea and Nymphaea alba in alkaline, eutrophic water bodies. The production per leaf was relatively high for both species in the acid water body. Nymphaea candida showed a very short vegetation period and low turnover rates. The ratio Total potential leaf biomass/Maximum potential leaf biomass (P/B max ) of the three species ranged from 1.35-2.25. The ratio Vegetation period (Period with floating leaves)/Mean leaf life span ranged from 2.94-4.63, the ratio Growth period (Period with appearance of new floating leaves)/Vegetation period from 0.53-0.73. The clear differences between Nymphaea candida versus Nuphar lutea and Nymphaea alba , may be due to adaptations of Nymphaea candida to an Euro-Siberic climate with short-lasting summer conditions.
BIG LEAF is a regulator of organ size and adventitious root formation in poplar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena
Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stagesmore » of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. Additionally, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. Here, we conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.« less
BIG LEAF is a regulator of organ size and adventitious root formation in poplar
Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena; Meilan, Richard; Strauss, Steven H.; Busov, Victor B.
2017-01-01
Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stages of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. In addition, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. We conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting. PMID:28686626
BIG LEAF is a regulator of organ size and adventitious root formation in poplar
Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena; ...
2017-07-07
Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stagesmore » of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. Additionally, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. Here, we conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.« less
Leaf shape: genetic controls and environmental factors.
Tsukaya, Hirokazu
2005-01-01
In recent years, many genes have been identified that are involved in the developmental processes of leaf morphogenesis. Here, I review the mechanisms of leaf shape control in a model plant, Arabidopsis thaliana, focusing on genes that fulfill special roles in leaf development. The lateral, two-dimensional expansion of leaf blades is highly dependent on the determination of the dorsoventrality of the primordia, a defining characteristic of leaves. Having a determinate fate is also a characteristic feature of leaves and is controlled by many factors. Lateral expansion is not only controlled by general regulators of cell cycling, but also by the multi-level regulation of meristematic activities, e.g., specific control of cell proliferation in the leaf-length direction, in leaf margins and in parenchymatous cells. In collaboration with the polarized control of leaf cell elongation, these redundant and specialized regulating systems for cell cycling in leaf lamina may realize the elegantly smooth, flat structure of leaves. The unified, flat shape of leaves is also dependent on the fine integration of cell proliferation and cell enlargement. Interestingly, while a decrease in the number of cells in leaf primordia can trigger a cell volume increase, an increase in the number of cells does not trigger a cell volume decrease. This phenomenon is termed compensation and suggests the existence of some systems for integration between cell cycling and cell enlargement in leaf primordia via cell-cell communication. The environmental adjustment of leaf expansion to light conditions and gravity is also summarized.
BIG LEAF is a regulator of organ size and adventitious root formation in poplar.
Yordanov, Yordan S; Ma, Cathleen; Yordanova, Elena; Meilan, Richard; Strauss, Steven H; Busov, Victor B
2017-01-01
Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stages of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. In addition, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. We conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.
Effects of combination of leaf resources on competition in container mosquito larvae.
Reiskind, M H; Zarrabi, A A; Lounibos, L P
2012-08-01
Resource diversity is critical to fitness in many insect species, and may determine the coexistence of competitive species and the function of ecosystems. Plant material provides the nutritional base for numerous aquatic systems, yet the consequences of diversity of plant material have not been studied in aquatic container systems important for the production of mosquitoes. To address how diversity in leaf detritus affects container-inhabiting mosquitoes, we examined how leaf species affect competition between two container inhabiting mosquito larvae, Aedes aegypti and Aedes albopictus, that co-occur in many parts of the world. We tested the hypotheses that leaf species changes the outcome of intra- and interspecific competition between these mosquito species, and that combinations of leaf species affect competition in a manner not predictable based upon the response to each leaf species alone (i.e. the response to leaf combinations is non-additive). We find support for our first hypothesis that leaf species can affect competition, evidence that, in general, leaf combination alters competitive interactions, and no support that leaf combination impacts interspecific competition differently than intraspecific competition. We conclude that combinations of leaves increase mosquito production non-additively such that combinations of leaves act synergistically, in general, and result in higher total yield of adult mosquitoes in most cases, although certain leaf combinations for A. albopictus are antagonistic. We also conclude that leaf diversity does not have a different effect on interspecific competition between A. aegypti and A. albopictus, relative to intraspecific competition for each mosquito.
Plant traits and environment: floating leaf blade production and turnover of waterlilies
2017-01-01
Floating leaf blades of waterlilies fulfill several functions in wetland ecosystems by production, decomposition and turnover as well as exchange processes. Production and turnover rates of floating leaf blades of three waterlily species, Nuphar lutea (L.) Sm., Nymphaea alba L. and Nymphaea candida Presl, were studied in three freshwater bodies, differing in trophic status, pH and alkalinity. Length and percentages of leaf loss of marked leaf blades were measured weekly during the growing season. Area and biomass were calculated based on leaf length and were used to calculate the turnover rate of floating leaf blades. Seasonal changes in floating leaf production showed that values decreased in the order: Nymphaea alba, Nuphar lutea, Nymphaea candida. The highest production was reached for Nuphar lutea and Nymphaea alba in alkaline, eutrophic water bodies. The production per leaf was relatively high for both species in the acid water body. Nymphaea candida showed a very short vegetation period and low turnover rates. The ratio Total potential leaf biomass/Maximum potential leaf biomass (P/Bmax) of the three species ranged from 1.35–2.25. The ratio Vegetation period (Period with floating leaves)/Mean leaf life span ranged from 2.94–4.63, the ratio Growth period (Period with appearance of new floating leaves)/Vegetation period from 0.53–0.73. The clear differences between Nymphaea candida versus Nuphar lutea and Nymphaea alba, may be due to adaptations of Nymphaea candida to an Euro-Siberic climate with short-lasting summer conditions. PMID:28462025
Cell wall properties in Oryza sativa influence mesophyll CO2 conductance.
Ellsworth, Patrícia V; Ellsworth, Patrick Z; Koteyeva, Nuria K; Cousins, Asaph B
2018-04-20
Diffusion of CO 2 from the leaf intercellular air space to the site of carboxylation (g m ) is a potential trait for increasing net rates of CO 2 assimilation (A net ), photosynthetic efficiency, and crop productivity. Leaf anatomy plays a key role in this process; however, there are few investigations into how cell wall properties impact g m and A net . Online carbon isotope discrimination was used to determine g m and A net in Oryza sativa wild-type (WT) plants and mutants with disruptions in cell wall mixed-linkage glucan (MLG) production (CslF6 knockouts) under high- and low-light growth conditions. Cell wall thickness (T cw ), surface area of chloroplast exposed to intercellular air spaces (S c ), leaf dry mass per area (LMA), effective porosity, and other leaf anatomical traits were also analyzed. The g m of CslF6 mutants decreased by 83% relative to the WT, with c. 28% of the reduction in g m explained by S c . Although A net /LMA and A net /Chl partially explained differences in A net between genotypes, the change in cell wall properties influenced the diffusivity and availability of CO 2 . The data presented here indicate that the loss of MLG in CslF6 plants had an impact on g m and demonstrate the importance of cell wall effective porosity and liquid path length on g m . © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Zheng, Jian; Ma, Xiaohua; Zhang, Xule; Hu, Qingdi; Qian, Renjuan
2018-03-01
Salt stress is a critical factor that affects the growth and development of plants. Salicylic acid (SA) is an important signal molecule that mitigates the negative effects of salt stress on plants. To elucidate salt tolerance in large pink Dianthus superbus L. (Caryophyllaceae) and the regulatory mechanism of exogenous SA on D. superbus under different salt stresses, we conducted a pot experiment to evaluate leaf biomass, leaf anatomy, soluble protein and sugar content, and the relative expression of salt-induced genes in D. superbus under 0.3, 0.6, and 0.9% NaCl conditions with and without 0.5 mM SA. The result showed that exposure of D. superbus to salt stress lead to a decrease in leaf growth, soluble protein and sugar content, and mesophyll thickness, together with an increase in the expression of MYB and P5CS genes. Foliar application of SA effectively increased leaf biomass, soluble protein and sugar content, and upregulated the expression of MYB and P5CS in the D. superbus , which facilitated in the acclimation of D. superbus to moderate salt stress. However, when the plants were grown under severe salt stress (0.9% NaCl), no significant difference in plant physiological responses and relevant gene expression between plants with and without SA was observed. The findings of this study suggest that exogenous SA can effectively counteract the adverse effects of moderate salt stress on D. superbus growth and development.
Gold leaf: From gilding to the fabrication of disposable, wearable and low-cost electrodes.
Santos, Mauro Sérgio Ferreira; Ameku, Wilson Akira; Gutz, Ivano Gebhardt Rolf; Paixão, Thiago Regis Longo Cesar
2018-03-01
Gold is among the most used materials in electrocatalysis. Despite this, this noble metal is still too expensive to be used in the fabrication of low cost and disposable devices. In the present work, gold-leaf sheets, usually employed in decorative crafts and wedding candies, is introduced as an inexpensive source of gold. Planar-disc and nanoband gold electrodes were simply and easily manufactured by combining gold leaf and polyimide tape. The planar disc electrode exhibited electrochemical behavior similar to that of a commercial gold electrode in 0.2molL -1 H 2 SO 4 ; cyclic voltammetry of a 1mmolL -1 solution of potassium ferricyanide (K 3 [Fe(CN) 6 ]) in 0.2molL -1 KNO 3 , using this novel electrode, displayed an 80mV difference between the oxidation and reduction peak potentials. The electrode also delivers promising prospects for the development of wearable devices. When submitted to severe mechanical deformation, this electrode exhibited neither loss of electrical contact nor significant variation in electrode response, even after fifteen bending and/or folding cycles. The thickness of the gold-leaf sheet facilitates the production of nanoband electrodes with behavior similar to that of ultramicroelectrodes. The electrode surface is easily renewed by cutting a thin slice off its end with a razor blade; this process led to limiting currents that were reproducible, presenting a relative standard deviation (RSD) of 3.8% (n = 5). Copyright © 2017 Elsevier B.V. All rights reserved.
Acclimation of Swedish and Italian ecotypes of Arabidopsis thaliana to light intensity.
Stewart, Jared J; Polutchko, Stephanie K; Adams, William W; Demmig-Adams, Barbara
2017-11-01
This study addressed whether ecotypes of Arabidopsis thaliana from Sweden and Italy exhibited differences in foliar acclimation to high versus low growth light intensity, and compared CO 2 uptake under growth conditions with light- and CO 2 -saturated intrinsic photosynthetic capacity and leaf morphological and vascular features. Differential responses between ecotypes occurred mainly at the scale of leaf architecture, with thicker leaves with higher intrinsic photosynthetic capacities and chlorophyll contents per leaf area, but no difference in photosynthetic capacity on a chlorophyll basis, in high light-grown leaves of the Swedish versus the Italian ecotype. Greater intrinsic photosynthetic capacity per leaf area in the Swedish ecotype was accompanied by a greater capacity of vascular infrastructure for sugar and water transport, but this was not associated with greater CO 2 uptake rates under growth conditions. The Swedish ecotype with its thick leaves is thus constructed for high intrinsic photosynthetic and vascular flux capacity even under growth chamber conditions that may not permit full utilization of this potential. Conversely, the Swedish ecotype was less tolerant of low growth light intensity than the Italian ecotype, with smaller rosette areas and lesser aboveground biomass accumulation in low light-grown plants. Foliar vein density and stomatal density were both enhanced by high growth light intensity with no significant difference between ecotypes, and the ratio of water to sugar conduits was also similar between the two ecotypes during light acclimation. These findings add to the understanding of the foliar vasculature's role in plant photosynthetic acclimation and adaptation.
Diurnal leaf gas exchange survey, Feb2016-May2016, PA-SLZ, PA-PNM: Panama
Rogers, Alistair [Brookhaven National Lab; Serbin, Shawn [Brookhaven National Lab; Ely, Kim [Brookhaven National Lab; Wu, Jin [BNL; Wolfe, Brett [Smithsonian; Dickman, Turin [Los Alamos National Lab; Collins, Adam [Los Alamos National Lab; Detto, Matteo [Princeton; Grossiord, Charlotte [Los Alamos National Lab; McDowell, Nate [Los Alamos National Lab; Michaletz, Sean
2017-01-01
Diurnal leaf gas exchange survey measured on sunlit canopy trees on a monthly basis from Feb to May 2016 at SLZ and PNM. This data was collected as part of the 2016 ENSO campaign. See related datasets (existing and future) for further sample details, leaf water potential, LMA, leaf spectra, other gas exchange and leaf chemistry.
Tianxiang Luo; Ji Luo; Yude Pan
2005-01-01
Knowledge of how leaf characteristics might be used to deduce information on ecosystem functioning and how this scaling task could be done is limited. In this study, we present field data for leaf lifespan, specific leaf area (SLA) and mass and area-based leaf nitrogen concentrations (Nmass, Narea) of dominant tree species...
USDA-ARS?s Scientific Manuscript database
Baby leaf lettuce cultivars with resistance to bacterial leaf spot (BLS) caused by Xanthomonas campestris pv. vitians (Xcv) are needed to reduce crop losses. The objectives of this research were to assess the genetic diversity for BLS resistance in baby leaf lettuce cultivars and to select early gen...
Leaf mass area, Feb2016-May2016, PA-SLZ, PA-PNM, PA-BCI: Panama
Ely, Kim [Brookhaven National Lab; Rogers, Alistair [Brookhaven National Lab; Serbin, Shawn [Brookhaven National Lab; Wu, Jin [BNL; Wolfe, Brett [Smithsonian; Dickman, Turin [Los Alamos National Lab; Collins, Adam [Los Alamos National Lab; Detto, Matteo [Princeton; Grossiord, Charlotte [Los Alamos National Lab; McDowell, Nate [Los Alamos National Lab; Michaletz, Sean
2017-01-01
Leaf mass per unit area measured on a monthly basis from Feb to April 2016 at SLZ and PNM. Data from BCI only available for March. This data was collected as part of the 2016 ENSO campaign. See related datasets (existing and future) for further sample details, leaf water potential, leaf spectra, gas exchange and leaf chemistry.
Jacquelyn M. Rowe; William B. Perry; Sue A. Perry
1996-01-01
Climate change has the potential to alter detrital processing in headwater streams, which receive the majority of their nutrient input as terrestrial leaf litter. Early placement of experimental leaf packs in streams, one month prior to most abscission, was used as an experimental manipulation to increase stream temperature during leaf pack breakdown. We studied leaf...
Diffuse and specular characteristics of leaf reflectance
NASA Technical Reports Server (NTRS)
Grant, Lois
1987-01-01
In this paper, the evolution of current understanding of the mechanisms of leaf reflectance is reviewed. The use of measurements of polarized reflectance to separate leaf reflectance into diffuse and specular components is discussed. A section on the factors influencing leaf reflectance - leaf structure and physiological disturbances - is included along with discussion on the manner in which these influences are manifested.
Choi, Soo-Youn; Hwang, Joon-Ho; Park, Soo-Young; Jin, Yeong-Jun; Ko, Hee-Chul; Moon, Sang-Wook; Kim, Se-Jae
2008-08-01
The goal of this study was to elucidate the antiinflammatory activities of Psidium guajava L. (guava) leaf. To improve the functionality of guava leaf, it was fermented with Phellinus linteus mycelia, Lactobacillus plantarum and Saccharomyces cerevisiae. The ethanol extract from fermented guava leaf inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin E(2) (PGE(2)) production. Western blot analysis showed that fermented guava leaf extract decreased LPS-induced inducible nitric oxide synthase (iNOS) and the cyclooxygenase-2 (COX-2) protein level in RAW 264.7 cells. To investigate the mechanism involved, the study examined the effect of fermented guava leaf extract on LPS-induced nuclear factor-kappaB (NF-kappaB) activation. Fermented guava leaf extract significantly inhibited LPS-induced NF-kappaB transcriptional activity. Immunochemical analysis revealed that fermented guava leaf extract suppressed LPS-induced degradation of I-kappaBalpha. Taken together, the data indicate that fermented guava leaf extract is involved in the inhibition of iNOS and COX-2 via the down-regulation of NF-kappaB pathway, revealing a partial molecular basis for the antiinflammatory properties of fermented guava leaf extract.
Hofman, Jelle; Wuyts, Karen; Van Wittenberghe, Shari; Samson, Roeland
2014-09-15
Understanding the accumulation behaviour of atmospheric particles inside tree leaves is of great importance for the interpretation of biomagnetic monitoring results. In this study, we evaluated the temporal variation of the saturation isothermal remanent magnetisation (SIRM) of leaves of a roadside urban Platanus × acerifolia Willd. tree in Antwerp, Belgium. We hereby examined the seasonal development of the total leaf SIRM signal as well as the leaf-encapsulated fraction of the deposited dust, by washing the leaves before biomagnetic analysis. On average 38% of the leaf SIRM signal was exhibited by the leaf-encapsulated particles. Significant correlations were found between the SIRM and the cumulative daily average atmospheric PM10 and PM2.5 measurements. Moreover, a steady increase of the SIRM throughout the in-leaf season was observed endorsing the applicability of biomagnetic monitoring as a proxy for the time-integrated PM exposure of urban tree leaves. Strongest correlations were obtained for the SIRM of the leaf-encapsulated particles which confirms the dynamic nature of the leaf surface-accumulated particles. Copyright © 2014 Elsevier B.V. All rights reserved.
Determining past leaf-out times of New England's deciduous forests from herbarium specimens.
Everill, Peter H; Primack, Richard B; Ellwood, Elizabeth R; Melaas, Eli K
2014-08-01
• There is great interest in studying leaf-out times of temperate forests because of the importance of leaf-out in controlling ecosystem processes, especially in the face of a changing climate. Remote sensing and modeling, combined with weather records and field observations, are increasing our knowledge of factors affecting variation in leaf-out times. Herbarium specimens represent a potential new source of information to determine whether the variation in leaf-out times observed in recent decades is comparable to longer time frames over past centuries.• Here we introduce the use of herbarium specimens as a method for studying long-term changes in leaf-out times of deciduous trees. We collected historical leaf-out data for the years 1834-2008 from common deciduous trees in New England using 1599 dated herbarium specimens with young leaves.• We found that leaf-out dates are strongly affected by spring temperature, with trees leafing out 2.70 d earlier for each degree C increase in mean April temperature. For each degree C increase in local temperature, trees leafed out 2.06 d earlier. Additionally, the mean response of leaf-out dates across all species and sites over time was 0.4 d earlier per decade. Our results are of comparable magnitude to results from studies using remote sensing and direct field observations.• Across New England, mean leaf-out dates varied geographically in close correspondence with those observed in studies using satellite data. This study demonstrates that herbarium specimens can be a valuable source of data on past leaf-out times of deciduous trees. © 2014 Botanical Society of America, Inc.
Global patterns in leaf 13C discrimination and implications for studies of past and future climate
Diefendorf, Aaron F.; Mueller, Kevin E.; Wing, Scott. L.; Koch, Paul L.; Freeman, Katherine H.
2010-01-01
Fractionation of carbon isotopes by plants during CO2 uptake and fixation (Δleaf) varies with environmental conditions, but quantitative patterns of Δleaf across environmental gradients at the global scale are lacking. This impedes interpretation of variability in ancient terrestrial organic matter, which encodes climatic and ecological signals. To address this problem, we converted 3,310 published leaf δ13C values into mean Δleaf values for 334 woody plant species at 105 locations (yielding 570 species-site combinations) representing a wide range of environmental conditions. Our analyses reveal a strong positive correlation between Δleaf and mean annual precipitation (MAP; R2 = 0.55), mirroring global trends in gross primary production and indicating stomatal constraints on leaf gas-exchange, mediated by water supply, are the dominant control of Δleaf at large spatial scales. Independent of MAP, we show a lesser, negative effect of altitude on Δleaf and minor effects of temperature and latitude. After accounting for these factors, mean Δleaf of evergreen gymnosperms is lower (by 1–2.7‰) than for other woody plant functional types (PFT), likely due to greater leaf-level water-use efficiency. Together, environmental and PFT effects contribute to differences in mean Δleaf of up to 6‰ between biomes. Coupling geologic indicators of ancient precipitation and PFT (or biome) with modern Δleaf patterns has potential to yield more robust reconstructions of atmospheric δ13C values, leading to better constraints on past greenhouse-gas perturbations. Accordingly, we estimate a 4.6‰ decline in the δ13C of atmospheric CO2 at the onset of the Paleocene-Eocene Thermal Maximum, an abrupt global warming event ∼55.8 Ma. PMID:20231481
Photosynthetic thermotolerance of woody savanna species in China is correlated with leaf life span
Zhang, Jiao-Lin; Poorter, L.; Hao, Guang-You; Cao, Kun-Fang
2012-01-01
Background and Aims Photosynthetic thermotolerance (PT) is important for plant survival in tropical and sub-tropical savannas. However, little is known about thermotolerance of tropical and sub-tropical wild plants and its association with leaf phenology and persistence. Longer-lived leaves of savanna plants may experience a higher risk of heat stress. Foliar Ca is related to cell integrity of leaves under stresses. In this study it is hypothesized that (1) species with leaf flushing in the hot-dry season have greater PT than those with leaf flushing in the rainy season; and (2) PT correlates positively with leaf life span, leaf mass per unit area (LMA) and foliar Ca concentration ([Ca]) across woody savanna species. Methods The temperature-dependent increase in minimum fluorescence was measured to assess PT, together with leaf dynamics, LMA and [Ca] for a total of 24 woody species differing in leaf flushing time in a valley-type savanna in south-west China. Key Results The PT of the woody savanna species with leaf flushing in the hot-dry season was greater than that of those with leaf flushing in the rainy season. Thermotolerance was positively associated with leaf life span and [Ca] for all species irrespective of the time of flushing. The associations of PT with leaf life span and [Ca] were evolutionarily correlated. Thermotolerance was, however, independent of LMA. Conclusions Chinese savanna woody species are adapted to hot-dry habitats. However, the current maximum leaf temperature during extreme heat stress (44·3 °C) is close to the critical temperature of photosystem II (45·2 °C); future global warming may increase the risk of heat damage to the photosynthetic apparatus of Chinese savanna species. PMID:22875810
Baaziz, Khaoula Ben; Lopez, David; Rabot, Amelie; Combes, Didier; Gousset, Aurelie; Bouzid, Sadok; Cochard, Herve; Sakr, Soulaiman; Venisse, Jean-Stephane
2012-04-01
Understanding the response of leaf hydraulic conductance (K(leaf)) to light is a challenge in elucidating plant-water relationships. Recent data have shown that the effect of light on K(leaf) is not systematically related to aquaporin regulation, leading to conflicting conclusions. Here we investigated the relationship between light, K(leaf), and aquaporin transcript levels in five tree species (Juglans regia L., Fagus sylvatica L., Quercus robur L., Salix alba L. and Populus tremula L.) grown in the same environmental conditions, but differing in their K(leaf) responses to light. Moreover, the K(leaf) was measured by two independent methods (high-pressure flow metre (HPFM) and evaporative flux method (EFM)) in the most (J. regia) and least (S. alba) responsive species and the transcript levels of aquaporins were analyzed in perfused and unperfused leaves. Here, we found that the light-induced K(leaf) value was closely related to stronger expression of both the PIP1 and PIP2 aquaporin genes in walnut (J. regia), but to stimulation of PIP1 aquaporins alone in F. sylvatica and Q. robur. In walnut, all newly identified aquaporins were found to be upregulated in the light and downregulated in the dark, further supporting the relationship between the light-mediated induction of K(leaf) and aquaporin expression in walnut. We also demonstrated that the K(leaf) response to light was quality-dependent, K(leaf) being 60% lower in the absence of blue light. This decrease in K(leaf) was correlated with strong downregulation of three PIP2 aquaporins and of all the PIP1 aquaporins tested. These data support a relationship between light-mediated K(leaf) regulation and the abundance of aquaporin transcripts in the walnut tree.
Meng, Fengqun; Cao, Rui; Yang, Dongmei; Niklas, Karl J; Sun, Shucun
2014-01-01
Species in high-rainfall regions have two major alternative approaches to quickly drain off water, i.e., increasing leaf inclination angles relative to the horizontal plane, or developing long leaf drip tips. We hypothesized that shade-adapted species will have more pronounced leaf drip tips but not greater inclination angles (which can reduce the ability to intercept light) compared to sun-adapted species and that length of leaf drip tips will be negatively correlated with photosynthetic capacity [characterized by light-saturated net photosynthetic rates (Amax), associated light compensation points (LCP), and light saturation points (LSP)]. We tested this hypothesis by measuring morphological and physiological traits that are associated with light-interception and water shedding for seven shade-adapted shrub species, ten sun-adapted understory shrub species, and 15 sun-adapted tree species in a subtropical Chinese rainforest, where mean annual precipitation is around 1,600 mm. Shade-adapted understory species had lower LMA, Amax, LSP, and LCP compared to understory or canopy sun-adapted species; their leaf and twig inclination angles were significantly smaller and leaf drip tips were significantly longer than those in sun-adapted species. This suggests that shade-adapted understory species tend to develop pronounced leaf drip tips but not large leaf inclination angles to shed water. The length of leaf drip tips was negatively correlated with leaf inclination angles and photosynthetic capacity. These relationships were consistent between ordinary regression and phylogenetic generalized least squares analyses. Our study illustrates the trade-offs between light interception and leaf water shedding and indicates that length of leaf drip tips can be used as an indicator of adaptation to shady conditions and overall photosynthetic performance of shrub species in subtropical rainforests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Purpose: To evaluate the effects of leaf with or without interdigitation in multiple brain metastasis volumetric modulated arc therapy (VMAT) plans. Methods: Twenty patients with 2 to 6 brain metastases of our hospital were retrospectively studied to be planned with dual arc VMAT using Monaco 3.3 TPS on the Elekta Synergy linear accelerator. The prescription dose of PTV was 60Gy/30 fractions. Two plans with or without leaf interdigitation were designed. The homogeneity index (HI), conformity index (CI), dose volume histograms (DVHs), monitor unit (MU), treatment time (T), the segments, the dose coverage of the target, were all evaluated. Results: Themore » plans with leaf interdigitation could achieve better CI (p<0.05) than without leaf interdigitation, while no significant difference were found in HI (p> 0.05) and the dose coverage of the target (p> 0.05).The MU,T, and the segments of the plan with leaf interdigitation were more than the plan without leaf interdigitation (p<0.05). There was no significant difference found in radiation dose of spinal cord, lenses and parotids, while the maximum dose of brain stem of leaf without interdigitation was higher than leaf with interdigitation (p< 0.05). It was worth noting that the areas of low dose regions with leaf interdigitation plan were much less than the without leaf interdigitation plan in the doublication planes (p< 0.05). Conclusion: This study shows that leaf with interdigitation has some advantages than leaf without interdigitation in multiple brain metastasis VMAT plans although the clinical relevance remains to be proven.« less
Use of Herbal Supplements in Chronic Kidney Disease
... build up in your body. The herbal supplement market is a multi-million dollar business. You may ... Ginseng Bai Zhi (root) Bitter Melon (fruit, leaf) Black Mustard (leaf) Blessed Thistle Chervit (leaf) Chicory (leaf) ...
High-density, fail-in-place switches for computer and data networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coteus, Paul W.; Doany, Fuad E.; Hall, Shawn A.
A structure for a network switch. The network switch may include a plurality of spine chips arranged on a plurality of spine cards, where one or more spine chips are located on each spine card; and a plurality of leaf chips arranged on a plurality of leaf cards, wherein one or more leaf chips are located on each leaf card, where each spine card is connected to every leaf chip and the plurality of spine chips are surrounded on at least two sides by leaf cards.
Automated Leaf Tracking using Multi-view Image Sequences of Maize Plants for Leaf-growth Monitoring
NASA Astrophysics Data System (ADS)
Das Choudhury, S.; Awada, T.; Samal, A.; Stoerger, V.; Bashyam, S.
2017-12-01
Extraction of phenotypes with botanical importance by analyzing plant image sequences has the desirable advantages of non-destructive temporal phenotypic measurements of a large number of plants with little or no manual intervention in a relatively short period of time. The health of a plant is best interpreted by the emergence timing and temporal growth of individual leaves. For automated leaf growth monitoring, it is essential to track each leaf throughout the life cycle of the plant. Plants are constantly changing organisms with increasing complexity in architecture due to variations in self-occlusions and phyllotaxy, i.e., arrangements of leaves around the stem. The leaf cross-overs pose challenges to accurately track each leaf using single view image sequence. Thus, we introduce a novel automated leaf tracking algorithm using a graph theoretic approach by multi-view image sequence analysis based on the determination of leaf-tips and leaf-junctions in the 3D space. The basis of the leaf tracking algorithm is: the leaves emerge using bottom-up approach in the case of a maize plant, and the direction of leaf emergence strictly alternates in terms of direction. The algorithm involves labeling of the individual parts of a plant, i.e., leaves and stem, following graphical representation of the plant skeleton, i.e., one-pixel wide connected line obtained from the binary image. The length of the leaf is measured by the number of pixels in the leaf skeleton. To evaluate the performance of the algorithm, a benchmark dataset is indispensable. Thus, we publicly release University of Nebraska-Lincoln Component Plant Phenotyping dataset-2 (UNL-CPPD-2) consisting of images of the 20 maize plants captured by visible light camera of the Lemnatec Scanalyzer 3D high throughout plant phenotyping facility once daily for 60 days from 10 different views. The dataset is aimed to facilitate the development and evaluation of leaf tracking algorithms and their uniform comparisons.
Cornelissen, J H C; Quested, H M; van Logtestijn, R S P; Pérez-Harguindeguy, N; Gwynn-Jones, D; Díaz, S; Callaghan, T V; Press, M C; Aerts, R
2006-03-01
Plant traits have become popular as predictors of interspecific variation in important ecosystem properties and processes. Here we introduce foliar pH as a possible new plant trait, and tested whether (1) green leaf pH or leaf litter pH correlates with biochemical and structural foliar traits that are linked to biogeochemical cycling; (2) there is consistent variation in green leaf pH or leaf litter pH among plant types as defined by nutrient uptake mode and higher taxonomy; (3) green leaf pH can predict a significant proportion of variation in leaf digestibility among plant species and types; (4) leaf litter pH can predict a significant proportion of variation in leaf litter decomposability among plant species and types. We found some evidence in support of all four hypotheses for a wide range of species in a subarctic flora, although cryptogams (fern allies and a moss) tended to weaken the patterns by showing relatively poor leaf digestibility or litter decomposability at a given pH. Among seed plant species, green leaf pH itself explained only up to a third of the interspecific variation in leaf digestibility and leaf litter up to a quarter of the interspecific variation in leaf litter decomposability. However, foliar pH substantially improved the power of foliar lignin and/or cellulose concentrations as predictors of these processes when added to regression models as a second variable. When species were aggregated into plant types as defined by higher taxonomy and nutrient uptake mode, green-specific leaf area was a more powerful predictor of digestibility or decomposability than any of the biochemical traits including pH. The usefulness of foliar pH as a new predictive trait, whether or not in combination with other traits, remains to be tested across more plant species, types and biomes, and also in relation to other plant or ecosystem traits and processes.
Filiault, Daniele L.; Kumar, Ravi; Jiménez-Gómez, José M.; Schrager, Amanda V.; Park, Daniel S.; Peng, Jie; Sinha, Neelima R.; Maloof, Julin N.
2012-01-01
The laminae of leaves optimize photosynthetic rates by serving as a platform for both light capture and gas exchange, while minimizing water losses associated with thermoregulation and transpiration. Many have speculated that plants maximize photosynthetic output and minimize associated costs through leaf size, complexity, and shape, but a unifying theory linking the plethora of observed leaf forms with the environment remains elusive. Additionally, the leaf itself is a plastic structure, responsive to its surroundings, further complicating the relationship. Despite extensive knowledge of the genetic mechanisms underlying angiosperm leaf development, little is known about how phenotypic plasticity and selective pressures converge to create the diversity of leaf shapes and sizes across lineages. Here, we use wild tomato accessions, collected from locales with diverse levels of foliar shade, temperature, and precipitation, as a model to assay the extent of shade avoidance in leaf traits and the degree to which these leaf traits correlate with environmental factors. We find that leaf size is correlated with measures of foliar shade across the wild tomato species sampled and that leaf size and serration correlate in a species-dependent fashion with temperature and precipitation. We use far-red induced changes in leaf length as a proxy measure of the shade avoidance response, and find that shade avoidance in leaves negatively correlates with the level of foliar shade recorded at the point of origin of an accession. The direction and magnitude of these correlations varies across the leaf series, suggesting that heterochronic and/or ontogenic programs are a mechanism by which selective pressures can alter leaf size and form. This study highlights the value of wild tomato accessions for studies of both morphological and light-regulated development of compound leaves, and promises to be useful in the future identification of genes regulating potentially adaptive plastic leaf traits. PMID:22253737
NASA Astrophysics Data System (ADS)
Chavana-Bryant, C.; Malhi, Y.; Gerard, F.
2015-12-01
Leaf aging is a fundamental driver of changes in leaf traits, thereby, regulating ecosystem processes and remotely-sensed canopy dynamics. Leaf age is particularly important for carbon-rich tropical evergreen forests, as leaf demography (leaf age distribution) has been proposed as a major driver of seasonal productivity in these forests. We explore leaf reflectance as a tool to monitor leaf age and develop a novel spectra-based (PLSR) model to predict age using data from a phenological study of 1,072 leaves from 12 lowland Amazonian canopy tree species in southern Peru. Our results demonstrate monotonic decreases in LWC and Pmass and increase in LMA with age across species; Nmass and Cmassshowed monotonic but species-specific age responses. Spectrally, we observed large age-related variation across species, with the most age-sensitive spectral domains found to be: green peak (550nm), red edge (680-750 nm), NIR (700-850 nm), and around the main water absorption features (~1450 and ~1940 nm). A spectra-based model was more accurate in predicting leaf age (R2= 0.86; %RMSE= 33) compared to trait-based models using single (R2=0.07 to 0.73; %RMSE=7 to 38) and multiple predictors (step-wise analysis; R2=0.76; %RMSE=28). Spectral and trait-based models established a physiochemical basis for the spectral age model. The relative importance of the traits modifying the leaf spectra of aging leaves was: LWC>LMA>Nmass>Pmass,&Cmass. Vegetation indices (VIs), including NDVI, EVI2, NDWI and PRI were all age-dependent. This study highlights the importance of leaf age as a mediator of leaf traits, provides evidence of age-related leaf reflectance changes that have important impacts on VIs used to monitor canopy dynamics and productivity, and proposes a new approach to predicting and monitoring leaf age with important implications for remote sensing.
Hao, Guang-You; Hoffmann, William A; Scholz, Fabian G; Bucci, Sandra J; Meinzer, Frederick C; Franco, Augusto C; Cao, Kun-Fang; Goldstein, Guillermo
2008-03-01
Leaf and stem functional traits related to plant water relations were studied for six congeneric species pairs, each composed of one tree species typical of savanna habitats and another typical of adjacent forest habitats, to determine whether there were intrinsic differences in plant hydraulics between these two functional types. Only individuals growing in savanna habitats were studied. Most stem traits, including wood density, the xylem water potential at 50% loss of hydraulic conductivity, sapwood area specific conductivity, and leaf area specific conductivity did not differ significantly between savanna and forest species. However, maximum leaf hydraulic conductance (K (leaf)) and leaf capacitance tended to be higher in savanna species. Predawn leaf water potential and leaf mass per area were also higher in savanna species in all congeneric pairs. Hydraulic vulnerability curves of stems and leaves indicated that leaves were more vulnerable to drought-induced cavitation than terminal branches regardless of genus. The midday K (leaf) values estimated from leaf vulnerability curves were very low implying that daily embolism repair may occur in leaves. An electric circuit analog model predicted that, compared to forest species, savanna species took longer for their leaf water potentials to drop from predawn values to values corresponding to 50% loss of K (leaf) or to the turgor loss points, suggesting that savanna species were more buffered from changes in leaf water potential. The results of this study suggest that the relative success of savanna over forest species in savanna is related in part to their ability to cope with drought, which is determined more by leaf than by stem hydraulic traits. Variation among genera accounted for a large proportion of the total variance in most traits, which indicates that, despite different selective pressures in savanna and forest habitats, phylogeny has a stronger effect than habitat in determining most hydraulic traits.
Leaf anatomical traits determine the 18O enrichment of leaf water in coastal halophytes
NASA Astrophysics Data System (ADS)
Liang, J.; Lin, G., Sr.; Sternberg, L. O.
2017-12-01
Foliar anatomical adaptations to high-salinity environment in mangroves may be recorded by leaf water isotopes. Recent studies observed that a few mangrove species have lower 18O enrichment of leaf water (ΔL) relative to source water than the adjacent terrestrial trees, but what factors actually control this phenomenon is still disputable at present. To resolve this issue, we collected 15 species of true mangrove plants, 14 species of adjacent freshwater trees and 4 species of semi-mangrove plants at five study sites on the southeastern coast of China. Leaf stomatal density and pore size, water content, ΔL and other related leaf physiological traits were determined for the selected leaves of these plants. Our results confirmed that ΔL values of mangroves were generally 3 4 ‰ lower than those of the adjacent freshwater or semi-mangrove species. Higher leaf water per area (LWC) and lower leaf stomatal density (LS) of mangroves played co-dominant roles in lowering ΔL through elongating effective leaf mixing length by about 20%. The Péclet model incorporated by LWC and LS performed well in predicting ΔL. The demonstrated general law between leaf anatomy and ΔL in this paper based on a large pool of species bridges the gap between leaf functional traits and metabolic proxies derived ΔL, which will have considerable potential applications in vegetation succession and reconstruction of paleoclimate research.
Lou, Zaixiang; Li, Cheng; Kou, Xingran; Yu, Fuhao; Wang, Hongxin; Smith, Gary M; Zhu, Song
2016-08-01
First, the antibacterial, antibiofilm effect and chemical composition of burdock (Arctium lappa L.) leaf fractions were studied. Then, the efficiency of burdock leaf fractions in pork preservation was evaluated. The results showed that burdock leaf fraction significantly inhibited the growth and biofilm development of Escherichia coli and Salmonella Typhimurium. MICs of burdock leaf fractions on E. coli and Salmonella Typhimurium were both 2 mg/ml. At a concentration of 2.0 mg/ml, the inhibition rates of the fraction on growth and development of E. coli and Salmonella Typhimurium biofilms were 78.7 and 69.9%, respectively. During storage, the log CFU per gram of meat samples treated with burdock leaf fractions decreased 2.15, compared with the samples without treatment. The shelf life of pork treated with burdock leaf fractions was extended 6 days compared with the pork without treatment, and the sensory property was obviously improved. Compared with the control group, burdock leaf fraction treatment significantly decreased the total volatile basic nitrogen value and pH of the meat samples. Chemical composition analysis showed that the burdock leaf fraction consisted of chlorogenic acid, caffeic acid, p-coumaric acid, rutin, cynarin, crocin, luteolin, arctiin, and quercetin. As a vegetable with an abundant source, burdock leaf is safe, affordable, and efficient in meat preservation, indicating that burdock leaf fraction is a promising natural preservative for pork.
Jardine, Kolby J.; Chambers, Jeffrey Q.; Holm, Jennifer; Jardine, Angela B.; Fontes, Clarissa G.; Zorzanelli, Raquel F.; Meyers, Kimberly T.; de Souza, Vinicius Fernadez; Garcia, Sabrina; Gimenez, Bruno O.; de O. Piva, Luani R.; Higuchi, Niro; Artaxo, Paulo; Martin, Scot; Manzi, Antônio O.
2015-01-01
Prolonged drought stress combined with high leaf temperatures can induce programmed leaf senescence involving lipid peroxidation, and the loss of net carbon assimilation during early stages of tree mortality. Periodic droughts are known to induce widespread tree mortality in the Amazon rainforest, but little is known about the role of lipid peroxidation during drought-induced leaf senescence. In this study, we present observations of green leaf volatile (GLV) emissions during membrane peroxidation processes associated with the combined effects of high leaf temperatures and drought-induced leaf senescence from individual detached leaves and a rainforest ecosystem in the central Amazon. Temperature-dependent leaf emissions of volatile terpenoids were observed during the morning, and together with transpiration and net photosynthesis, showed a post-midday depression. This post-midday depression was associated with a stimulation of C5 and C6 GLV emissions, which continued to increase throughout the late afternoon in a temperature-independent fashion. During the 2010 drought in the Amazon Basin, which resulted in widespread tree mortality, green leaf volatile emissions (C6 GLVs) were observed to build up within the forest canopy atmosphere, likely associated with high leaf temperatures and enhanced drought-induced leaf senescence processes. The results suggest that observations of GLVs in the tropical boundary layer could be used as a chemical sensor of reduced ecosystem productivity associated with drought stress. PMID:27135346
Jardine, Kolby J; Chambers, Jeffrey Q; Holm, Jennifer; Jardine, Angela B; Fontes, Clarissa G; Zorzanelli, Raquel F; Meyers, Kimberly T; de Souza, Vinicius Fernadez; Garcia, Sabrina; Gimenez, Bruno O; Piva, Luani R de O; Higuchi, Niro; Artaxo, Paulo; Martin, Scot; Manzi, Antônio O
2015-09-15
Prolonged drought stress combined with high leaf temperatures can induce programmed leaf senescence involving lipid peroxidation, and the loss of net carbon assimilation during early stages of tree mortality. Periodic droughts are known to induce widespread tree mortality in the Amazon rainforest, but little is known about the role of lipid peroxidation during drought-induced leaf senescence. In this study, we present observations of green leaf volatile (GLV) emissions during membrane peroxidation processes associated with the combined effects of high leaf temperatures and drought-induced leaf senescence from individual detached leaves and a rainforest ecosystem in the central Amazon. Temperature-dependent leaf emissions of volatile terpenoids were observed during the morning, and together with transpiration and net photosynthesis, showed a post-midday depression. This post-midday depression was associated with a stimulation of C₅ and C₆ GLV emissions, which continued to increase throughout the late afternoon in a temperature-independent fashion. During the 2010 drought in the Amazon Basin, which resulted in widespread tree mortality, green leaf volatile emissions (C₆ GLVs) were observed to build up within the forest canopy atmosphere, likely associated with high leaf temperatures and enhanced drought-induced leaf senescence processes. The results suggest that observations of GLVs in the tropical boundary layer could be used as a chemical sensor of reduced ecosystem productivity associated with drought stress.
Sun, Jinwei; Wu, Jiabing; Guan, Dexin; Yao, Fuqi; Yuan, Fenghui; Wang, Anzhi; Jin, Changjie
2014-01-01
Leaf respiration is an important component of carbon exchange in terrestrial ecosystems, and estimates of leaf respiration directly affect the accuracy of ecosystem carbon budgets. Leaf respiration is inhibited by light; therefore, gross primary production (GPP) will be overestimated if the reduction in leaf respiration by light is ignored. However, few studies have quantified GPP overestimation with respect to the degree of light inhibition in forest ecosystems. To determine the effect of light inhibition of leaf respiration on GPP estimation, we assessed the variation in leaf respiration of seedlings of the dominant tree species in an old mixed temperate forest with different photosynthetically active radiation levels using the Laisk method. Canopy respiration was estimated by combining the effect of light inhibition on leaf respiration of these species with within-canopy radiation. Leaf respiration decreased exponentially with an increase in light intensity. Canopy respiration and GPP were overestimated by approximately 20.4% and 4.6%, respectively, when leaf respiration reduction in light was ignored compared with the values obtained when light inhibition of leaf respiration was considered. This study indicates that accurate estimates of daytime ecosystem respiration are needed for the accurate evaluation of carbon budgets in temperate forests. In addition, this study provides a valuable approach to accurately estimate GPP by considering leaf respiration reduction in light in other ecosystems. PMID:25419844
Bögelein, Rebekka; Thomas, Frank M; Kahmen, Ansgar
2017-07-01
Distinguishing meteorological and plant-mediated drivers of leaf water isotopic enrichment is prerequisite for ecological interpretations of stable hydrogen and oxygen isotopes in plant tissue. We measured input and leaf water δ 2 H and δ 18 O as well as micrometeorological and leaf morpho-physiological variables along a vertical gradient in a mature angiosperm (European beech) and gymnosperm (Douglas fir) tree. We used these variables and different enrichment models to quantify the influence of Péclet and non-steady state effects and of the biophysical drivers on leaf water enrichment. The two-pool model accurately described the diurnal variation of leaf water enrichment. The estimated unenriched water fraction was linked to leaf dry matter content across the canopy heights. Non-steady state effects and reduced stomatal conductance caused a higher enrichment of Douglas fir compared to beech leaf water. A dynamic effect analyses revealed that the light-induced vertical gradients of stomatal conductance and leaf temperature outbalanced each other in their effects on evaporative enrichment. We conclude that neither vertical canopy gradients nor the Péclet effect is important for estimates and interpretation of isotopic leaf water enrichment in hypostomatous trees. Contrarily, species-specific non-steady state effects and leaf temperatures as well as the water vapour isotope composition need careful consideration. © 2017 John Wiley & Sons Ltd.