Sample records for leaf transcriptome reveals

  1. Transcriptomic Analysis of Leaf in Tree Peony Reveals Differentially Expressed Pigments Genes.

    PubMed

    Luo, Jianrang; Shi, Qianqian; Niu, Lixin; Zhang, Yanlong

    2017-02-20

    Tree peony (Paeonia suffruticosa Andrews) is an important traditional flower in China. Besides its beautiful flower, the leaf of tree peony has also good ornamental value owing to its leaf color change in spring. So far, the molecular mechanism of leaf color change in tree peony is unclear. In this study, the pigment level and transcriptome of three different color stages of tree peony leaf were analyzed. The purplish red leaf was rich in anthocyanin, while yellowish green leaf was rich in chlorophyll and carotenoid. Transcriptome analysis revealed that 4302 differentially expressed genes (DEGs) were upregulated, and 4225 were downregulated in the purplish red leaf vs. yellowish green leaf. Among these DEGs, eight genes were predicted to participate in anthocyanin biosynthesis, eight genes were predicted involved in porphyrin and chlorophyll metabolism, and 10 genes were predicted to participate in carotenoid metabolism. In addition, 27 MYBs, 20 bHLHs, 36 WD40 genes were also identified from DEGs. Anthocyanidin synthase (ANS) is the key gene that controls the anthocyanin level in tree peony leaf. Protochlorophyllide oxido-reductase (POR) is the key gene which regulated the chlorophyll content in tree peony leaf.

  2. Subtractive transcriptome analysis of leaf and rhizome reveals differentially expressed transcripts in Panax sokpayensis.

    PubMed

    Gurung, Bhusan; Bhardwaj, Pardeep K; Talukdar, Narayan C

    2016-11-01

    In the present study, suppression subtractive hybridization (SSH) strategy was used to identify rare and differentially expressed transcripts in leaf and rhizome tissues of Panax sokpayensis. Out of 1102 randomly picked clones, 513 and 374 high quality expressed sequenced tags (ESTs) were generated from leaf and rhizome subtractive libraries, respectively. Out of them, 64.92 % ESTs from leaf and 69.26 % ESTs from rhizome SSH libraries were assembled into different functional categories, while others were of unknown function. In particular, ESTs encoding galactinol synthase 2, ribosomal RNA processing Brix domain protein, and cell division cycle protein 20.1, which are involved in plant growth and development, were most abundant in the leaf SSH library. Other ESTs encoding protein KIAA0664 homologue, ubiquitin-activating enzyme e11, and major latex protein, which are involved in plant immunity and defense response, were most abundant in the rhizome SSH library. Subtractive ESTs also showed similarity with genes involved in ginsenoside biosynthetic pathway, namely farnesyl pyrophosphate synthase, squalene synthase, and dammarenediol synthase. Expression profiles of selected ESTs validated the quality of libraries and confirmed their differential expression in the leaf, stem, and rhizome tissues. In silico comparative analyses revealed that around 13.75 % of unigenes from the leaf SSH library were not represented in the available leaf transcriptome of Panax ginseng. Similarly, around 18.12, 23.75, 25, and 6.25 % of unigenes from the rhizome SSH library were not represented in available root/rhizome transcriptomes of P. ginseng, Panax notoginseng, Panax quinquefolius, and Panax vietnamensis, respectively, indicating a major fraction of novel ESTs. Therefore, these subtractive transcriptomes provide valuable resources for gene discovery in P. sokpayensis and would complement the available transcriptomes from other Panax species.

  3. Transcriptomics reveals multiple resistance mechanisms against cotton leaf curl disease in a naturally immune cotton species, Gossypium arboreum

    USDA-ARS?s Scientific Manuscript database

    Cotton is an economically important crop affected by a number of abiotic and biotic stresses. Cotton leaf curl disease (CLCuD) is caused by virus in the genus Begomovirus (family Geminiviridae), collectively called cotton leaf curl viruses (CLCuVs). It is one of the most devastating virual diseases ...

  4. Identification and comparative expression profiles of chemoreception genes revealed from major chemoreception organs of the rice leaf folder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae)

    USDA-ARS?s Scientific Manuscript database

    To better understand the olfactory mechanism in the rice leaf folder, Cnaphalocrocis medinalis (Guenée), one of the most serious insect pests of rice in Asia, we have established six partial transcriptomes from antennae, tarsus, and reproductive organs of male and female adults. A total of 102 genes...

  5. Development and Characterization of Genic SSR Markers from Indian Mulberry Transcriptome and Their Transferability to Related Species of Moraceae

    PubMed Central

    Biradar, Jyoti; Madhuri, T.; N. Nataraja, Karaba; Sreeman, Sheshshayee M.

    2016-01-01

    Improving mulberry leaf production with enhanced leaf quality holds the key to sustain the ever increasing demand for silk. Adoption of modern genomic approaches for crop improvement is severely constrained by the lack of sufficient molecular markers in mulberry. Here, we report development and validation of 206 EST derived SSR markers using transcriptome data generated from leaf tissue of a drought tolerant mulberry genotype, Dudia white. Analysis of transcriptome data containing 10169 EST sequences, revealed 1469 sequences with microsatellite repeat motifs. We designed a total of 264 primers to the most appropriate repeat regions, of which 206 were locus specific. These markers were validated with 25 diverse mulberry accessions and their transferability to closely related species belonging to family Moraceae was examined. Of these markers, 189 revealed polymorphism with up to 8 allelic forms across mulberry species, genotypes and varieties with a mean of 3.5 alleles per locus. The markers also revealed higher polymorphic information content of 0.824 among the accessions. These markers effectively segregated the species and genotypes and hence, can be used for both diversity analysis and in breeding applications. Around 40% of these markers were transferable to other closely related species. Along with the other genic and genomic markers, we report a set of over 750 co-dominant markers. Using these markers we constructed the first genetic linkage map of mulberry exclusively with co-dominant markers. PMID:27669004

  6. Differential Gene Expression between Leaf and Rhizome in Atractylodes lancea: A Comparative Transcriptome Analysis

    PubMed Central

    Huang, Qianqian; Huang, Xiao; Deng, Juan; Liu, Hegang; Liu, Yanwen; Yu, Kun; Huang, Bisheng

    2016-01-01

    The rhizome of Atractylodes lancea is extensively used in the practice of Traditional Chinese Medicine because of its broad pharmacological activities. This study was designed to characterize the transcriptome profiling of the rhizome and leaf of Atractylodes lancea in an attempt to uncover the molecular mechanisms regulating rhizome formation and growth. Over 270 million clean reads were assembled into 92,366 unigenes, 58% of which are homologous with sequences in public protein databases (NR, Swiss-Prot, GO, and KEGG). Analysis of expression levels showed that genes involved in photosynthesis, stress response, and translation were the most abundant transcripts in the leaf, while transcripts involved in stress response, transcription regulation, translation, and metabolism were dominant in the rhizome. Tissue-specific gene analysis identified distinct gene families active in the leaf and rhizome. Differential gene expression analysis revealed a clear difference in gene expression pattern, identifying 1518 up-regulated genes and 3464 down-regulated genes in the rhizome compared with the leaf, including a series of genes related to signal transduction, primary and secondary metabolism. Transcription factor (TF) analysis identified 42 TF families, with 67 and 60 TFs up-regulated in the rhizome and leaf, respectively. A total of 104 unigenes were identified as candidates for regulating rhizome formation and development. These data offer an overview of the gene expression pattern of the rhizome and leaf and provide essential information for future studies on the molecular mechanisms of controlling rhizome formation and growth. The extensive transcriptome data generated in this study will be a valuable resource for further functional genomics studies of A. lancea. PMID:27066021

  7. Integrated analyses using RNA-Seq data reveal viral genomes, single nucleotide variations, the phylogenetic relationship, and recombination for Apple stem grooving virus.

    PubMed

    Jo, Yeonhwa; Choi, Hoseong; Kim, Sang-Min; Kim, Sun-Lim; Lee, Bong Choon; Cho, Won Kyong

    2016-08-09

    Next-generation sequencing (NGS) provides many possibilities for plant virology research. In this study, we performed integrated analyses using plant transcriptome data for plant virus identification using Apple stem grooving virus (ASGV) as an exemplar virus. We used 15 publicly available transcriptome libraries from three different studies, two mRNA-Seq studies and a small RNA-Seq study. We de novo assembled nearly complete genomes of ASGV isolates Fuji and Cuiguan from apple and pear transcriptomes, respectively, and identified single nucleotide variations (SNVs) of ASGV within the transcriptomes. We demonstrated the application of NGS raw data to confirm viral infections in the plant transcriptomes. In addition, we compared the usability of two de novo assemblers, Trinity and Velvet, for virus identification and genome assembly. A phylogenetic tree revealed that ASGV and Citrus tatter leaf virus (CTLV) are the same virus, which was divided into two clades. Recombination analyses identified six recombination events from 21 viral genomes. Taken together, our in silico analyses using NGS data provide a successful application of plant transcriptomes to reveal extensive information associated with viral genome assembly, SNVs, phylogenetic relationships, and genetic recombination.

  8. De novo Assembly of Leaf Transcriptome in the Medicinal Plant Andrographis paniculata

    PubMed Central

    Cherukupalli, Neeraja; Divate, Mayur; Mittapelli, Suresh R.; Khareedu, Venkateswara R.; Vudem, Dashavantha R.

    2016-01-01

    Andrographis paniculata is an important medicinal plant containing various bioactive terpenoids and flavonoids. Despite its importance in herbal medicine, no ready-to-use transcript sequence information of this plant is made available in the public data base, this study mainly deals with the sequencing of RNA from A. paniculata leaf using Illumina HiSeq™ 2000 platform followed by the de novo transcriptome assembly. A total of 189.22 million high quality paired reads were generated and 1,70,724 transcripts were predicted in the primary assembly. Secondary assembly generated a transcriptome size of ~88 Mb with 83,800 clustered transcripts. Based on the similarity searches against plant non-redundant protein database, gene ontology, and eukaryotic orthologous groups, 49,363 transcripts were annotated constituting upto 58.91% of the identified unigenes. Annotation of transcripts—using kyoto encyclopedia of genes and genomes database—revealed 5606 transcripts plausibly involved in 140 pathways including biosynthesis of terpenoids and other secondary metabolites. Transcription factor analysis showed 6767 unique transcripts belonging to 97 different transcription factor families. A total number of 124 CYP450 transcripts belonging to seven divergent clans have been identified. Transcriptome revealed 146 different transcripts coding for enzymes involved in the biosynthesis of terpenoids of which 35 contained terpene synthase motifs. This study also revealed 32,341 simple sequence repeats (SSRs) in 23,168 transcripts. Assembled sequences of transcriptome of A. paniculata generated in this study are made available, for the first time, in the TSA database, which provides useful information for functional and comparative genomic analysis besides identification of key enzymes involved in the various pathways of secondary metabolism. PMID:27582746

  9. Transcriptomic Analysis of Phenotypic Changes in Birch (Betula platyphylla) Autotetraploids

    PubMed Central

    Mu, Huai-Zhi; Liu, Zi-Jia; Lin, Lin; Li, Hui-Yu; Jiang, Jing; Liu, Gui-Feng

    2012-01-01

    Plant breeders have focused much attention on polyploid trees because of their importance to forestry. To evaluate the impact of intraspecies genome duplication on the transcriptome, a series of Betula platyphylla autotetraploids and diploids were generated from four full-sib families. The phenotypes and transcriptomes of these autotetraploid individuals were compared with those of diploid trees. Autotetraploids were generally superior in breast-height diameter, volume, leaf, fruit and stoma and were generally inferior in height compared to diploids. Transcriptome data revealed numerous changes in gene expression attributable to autotetraploidization, which resulted in the upregulation of 7052 unigenes and the downregulation of 3658 unigenes. Pathway analysis revealed that the biosynthesis and signal transduction of indoleacetate (IAA) and ethylene were altered after genome duplication, which may have contributed to phenotypic changes. These results shed light on variations in birch autotetraploidization and help identify important genes for the genetic engineering of birch trees. PMID:23202935

  10. Transcriptome profiling of anthocyanin-related genes reveals effects of light intensity on anthocyanin biosynthesis in red leaf lettuce.

    PubMed

    Zhang, Yanzhao; Xu, Shuzhen; Cheng, Yanwei; Peng, Zhengfeng; Han, Jianming

    2018-01-01

    Red leaf lettuce ( Lactuca sativa L.) is popular due to its high anthocyanin content, but poor leaf coloring often occurs under low light intensity. In order to reveal the mechanisms of anthocyanins affected by light intensity, we compared the transcriptome of L. sativa L. var. capitata under light intensities of 40 and 100 μmol m -2 s -1 . A total of 62,111 unigenes were de novo assembled with an N50 of 1,681 bp, and 48,435 unigenes were functionally annotated in public databases. A total of 3,899 differentially expressed genes (DEGs) were detected, of which 1,377 unigenes were up-regulated and 2,552 unigenes were down-regulated in the high light samples. By Kyoto Encyclopedia of Genes and Genomes enrichment analysis, the DEGs were significantly enriched in 14 pathways. Using gene annotation and phylogenetic analysis, we identified seven anthocyanin structural genes, including CHS , CHI , F3H , F3'H , DFR , ANS , and 3GT , and two anthocyanin transport genes, GST and MATE . In terms of anthocyanin regulatory genes, five MYBs and one bHLH gene were identified. An HY5 gene was discovered, which may respond to light-signaling and regulate anthocyanin structural genes. These genes showed a log2FC of 2.7-9.0 under high irradiance, and were validated using quantitative real-time-PCR. In conclusion, our results indicated transcriptome variance in red leaf lettuce under low and high light intensity, and observed a anthocyanin biosynthesis and regulation pattern. The data should further help to unravel the molecular mechanisms of anthocyanins influenced by light intensity.

  11. Biochemical and transcriptomic analyses reveal different metabolite biosynthesis profiles among three color and developmental stages in 'Anji Baicha' (Camellia sinensis).

    PubMed

    Li, Chun-Fang; Xu, Yan-Xia; Ma, Jian-Qiang; Jin, Ji-Qiang; Huang, Dan-Juan; Yao, Ming-Zhe; Ma, Chun-Lei; Chen, Liang

    2016-09-08

    The new shoots of the albino tea cultivar 'Anji Baicha' are yellow or white at low temperatures and turn green as the environmental temperatures increase during the early spring. 'Anji Baicha' metabolite profiles exhibit considerable variability over three color and developmental stages, especially regarding the carotenoid, chlorophyll, and theanine concentrations. Previous studies focused on physiological characteristics, gene expression differences, and variations in metabolite abundances in albino tea plant leaves at specific growth stages. However, the molecular mechanisms regulating metabolite biosynthesis in various color and developmental stages in albino tea leaves have not been fully characterized. We used RNA-sequencing to analyze 'Anji Baicha' leaves at the yellow-green, albescent, and re-greening stages. The leaf transcriptomes differed considerably among the three stages. Functional classifications based on Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that differentially expressed unigenes were mainly related to metabolic pathways, biosynthesis of secondary metabolites, phenylpropanoid biosynthesis, and carbon fixation in photosynthetic organisms. Chemical analyses revealed higher β-carotene and theanine levels, but lower chlorophyll a levels, in the albescent stage than in the green stage. Furthermore, unigenes involved in carotenoid, chlorophyll, and theanine biosyntheses were identified, and the expression patterns of the differentially expressed unigenes in these biosynthesis pathways were characterized. Through co-expression analyses, we identified the key genes in these pathways. These genes may be responsible for the metabolite biosynthesis differences among the different leaf color and developmental stages of 'Anji Baicha' tea plants. Our study presents the results of transcriptomic and biochemical analyses of 'Anji Baicha' tea plants at various stages. The distinct transcriptome profiles for each color and developmental stage enabled us to identify changes to biosynthesis pathways and revealed the contributions of such variations to the albino phenotype of tea plants. Furthermore, comparisons of the transcriptomes and related metabolites helped clarify the molecular regulatory mechanisms underlying the secondary metabolic pathways in different stages.

  12. Transcriptome Analysis of a Premature Leaf Senescence Mutant of Common Wheat (Triticum aestivum L.)

    PubMed Central

    Xia, Chuan; Zhang, Lichao; Dong, Chunhao; Liu, Xu; Kong, Xiuying

    2018-01-01

    Leaf senescence is an important agronomic trait that affects both crop yield and quality. In this study, we characterized a premature leaf senescence mutant of wheat (Triticum aestivum L.) obtained by ethylmethane sulfonate (EMS) mutagenesis, named m68. Genetic analysis showed that the leaf senescence phenotype of m68 is controlled by a single recessive nuclear gene. We compared the transcriptome of wheat leaves between the wild type (WT) and the m68 mutant at four time points. Differentially expressed gene (DEG) analysis revealed many genes that were closely related to senescence genes. Gene Ontology (GO) enrichment analysis suggested that transcription factors and protein transport genes might function in the beginning of leaf senescence, while genes that were associated with chlorophyll and carbon metabolism might function in the later stage. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the genes that are involved in plant hormone signal transduction were significantly enriched. Through expression pattern clustering of DEGs, we identified 1012 genes that were induced during senescence, and we found that the WRKY family and zinc finger transcription factors might be more important than other transcription factors in the early stage of leaf senescence. These results will not only support further gene cloning and functional analysis of m68, but also facilitate the study of leaf senescence in wheat. PMID:29534430

  13. Genetical genomics of Populus leaf shape variation

    DOE PAGES

    Drost, Derek R.; Puranik, Swati; Novaes, Evandro; ...

    2015-06-30

    Leaf morphology varies extensively among plant species and is under strong genetic control. Mutagenic screens in model systems have identified genes and established molecular mechanisms regulating leaf initiation, development, and shape. However, it is not known whether this diversity across plant species is related to naturally occurring variation at these genes. Quantitative trait locus (QTL) analysis has revealed a polygenic control for leaf shape variation in different species suggesting that loci discovered by mutagenesis may only explain part of the naturally occurring variation in leaf shape. Here we undertook a genetical genomics study in a poplar intersectional pseudo-backcross pedigree tomore » identify genetic factors controlling leaf shape. Here, the approach combined QTL discovery in a genetic linkage map anchored to the Populus trichocarpa reference genome sequence and transcriptome analysis.« less

  14. Global Transcriptional Analysis Reveals the Complex Relationship between Tea Quality, Leaf Senescence and the Responses to Cold-Drought Combined Stress in Camellia sinensis

    PubMed Central

    Zheng, Chao; Wang, Yu; Ding, Zhaotang; Zhao, Lei

    2016-01-01

    In field conditions, especially in arid and semi-arid areas, tea plants are often simultaneously exposed to various abiotic stresses such as cold and drought, which have profound effects on leaf senescence process and tea quality. However, most studies of gene expression in stress responses focus on a single inciting agent, and the confounding effect of multiple stresses on crop quality and leaf senescence remain unearthed. Here, global transcriptome profiles of tea leaves under separately cold and drought stress were compared with their combination using RNA-Seq technology. This revealed that tea plants shared a large overlap in unigenes displayed “similar” (26%) expression pattern and avoid antagonistic responses (lowest level of “prioritized” mode: 0%) to exhibit very congruent responses to co-occurring cold and drought stress; 31.5% differential expressed genes and 38% of the transcriptome changes in response to combined stresses were unpredictable from cold or drought single-case studies. We also identified 319 candidate genes for enhancing plant resistance to combined stress. We then investigated the combined effect of cold and drought on tea quality and leaf senescence. Our results showed that drought-induced leaf senescence were severely delayed by (i) modulation of a number of senescence-associated genes and cold responsive genes, (ii) enhancement of antioxidant capacity, (iii) attenuation of lipid degradation, (iv) maintenance of cell wall and photosynthetic system, (v) alteration of senescence-induced sugar effect/sensitivity, as well as (vi) regulation of secondary metabolism pathways that significantly influence the quality of tea during combined stress. Therefore, care should be taken when utilizing a set of stresses to try and maximize leaf longevity and tea quality. PMID:28018394

  15. Probing the Reproducibility of Leaf Growth and Molecular Phenotypes: A Comparison of Three Arabidopsis Accessions Cultivated in Ten Laboratories1[W

    PubMed Central

    Massonnet, Catherine; Vile, Denis; Fabre, Juliette; Hannah, Matthew A.; Caldana, Camila; Lisec, Jan; Beemster, Gerrit T.S.; Meyer, Rhonda C.; Messerli, Gaëlle; Gronlund, Jesper T.; Perkovic, Josip; Wigmore, Emma; May, Sean; Bevan, Michael W.; Meyer, Christian; Rubio-Díaz, Silvia; Weigel, Detlef; Micol, José Luis; Buchanan-Wollaston, Vicky; Fiorani, Fabio; Walsh, Sean; Rinn, Bernd; Gruissem, Wilhelm; Hilson, Pierre; Hennig, Lars; Willmitzer, Lothar; Granier, Christine

    2010-01-01

    A major goal of the life sciences is to understand how molecular processes control phenotypes. Because understanding biological systems relies on the work of multiple laboratories, biologists implicitly assume that organisms with the same genotype will display similar phenotypes when grown in comparable conditions. We investigated to what extent this holds true for leaf growth variables and metabolite and transcriptome profiles of three Arabidopsis (Arabidopsis thaliana) genotypes grown in 10 laboratories using a standardized and detailed protocol. A core group of four laboratories generated similar leaf growth phenotypes, demonstrating that standardization is possible. But some laboratories presented significant differences in some leaf growth variables, sometimes changing the genotype ranking. Metabolite profiles derived from the same leaf displayed a strong genotype × environment (laboratory) component. Genotypes could be separated on the basis of their metabolic signature, but only when the analysis was limited to samples derived from one laboratory. Transcriptome data revealed considerable plant-to-plant variation, but the standardization ensured that interlaboratory variation was not considerably larger than intralaboratory variation. The different impacts of the standardization on phenotypes and molecular profiles could result from differences of temporal scale between processes involved at these organizational levels. Our findings underscore the challenge of describing, monitoring, and precisely controlling environmental conditions but also demonstrate that dedicated efforts can result in reproducible data across multiple laboratories. Finally, our comparative analysis revealed that small variations in growing conditions (light quality principally) and handling of plants can account for significant differences in phenotypes and molecular profiles obtained in independent laboratories. PMID:20200072

  16. Gene expression profile analysis of Ligon lintless-1 (Li1) mutant reveals important genes and pathways in cotton leaf and fiber development.

    PubMed

    Ding, Mingquan; Jiang, Yurong; Cao, Yuefen; Lin, Lifeng; He, Shae; Zhou, Wei; Rong, Junkang

    2014-02-10

    Ligon lintless-1 (Li1) is a monogenic dominant mutant of Gossypium hirsutum (upland cotton) with a phenotype of impaired vegetative growth and short lint fibers. Despite years of research involving genetic mapping and gene expression profile analysis of Li1 mutant ovule tissues, the gene remains uncloned and the underlying pathway of cotton fiber elongation is still unclear. In this study, we report the whole genome-level deep-sequencing analysis of leaf tissues of the Li1 mutant. Differentially expressed genes in leaf tissues of mutant versus wild-type (WT) plants are identified, and the underlying pathways and potential genes that control leaf and fiber development are inferred. The results show that transcription factors AS2, YABBY5, and KANDI-like are significantly differentially expressed in mutant tissues compared with WT ones. Interestingly, several fiber development-related genes are found in the downregulated gene list of the mutant leaf transcriptome. These genes include heat shock protein family, cytoskeleton arrangement, cell wall synthesis, energy, H2O2 metabolism-related genes, and WRKY transcription factors. This finding suggests that the genes are involved in leaf morphology determination and fiber elongation. The expression data are also compared with the previously published microarray data of Li1 ovule tissues. Comparative analysis of the ovule transcriptomes of Li1 and WT reveals that a number of pathways important for fiber elongation are enriched in the downregulated gene list at different fiber development stages (0, 6, 9, 12, 15, 18dpa). Differentially expressed genes identified in both leaf and fiber samples are aligned with cotton whole genome sequences and combined with the genetic fine mapping results to identify a list of candidate genes for Li1. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Combined Large-Scale Phenotyping and Transcriptomics in Maize Reveals a Robust Growth Regulatory Network1[OPEN

    PubMed Central

    Herman, Dorota; Slabbinck, Bram; Pè, Mario Enrico

    2016-01-01

    Leaves are vital organs for biomass and seed production because of their role in the generation of metabolic energy and organic compounds. A better understanding of the molecular networks underlying leaf development is crucial to sustain global requirements for food and renewable energy. Here, we combined transcriptome profiling of proliferative leaf tissue with in-depth phenotyping of the fourth leaf at later stages of development in 197 recombinant inbred lines of two different maize (Zea mays) populations. Previously, correlation analysis in a classical biparental mapping population identified 1,740 genes correlated with at least one of 14 traits. Here, we extended these results with data from a multiparent advanced generation intercross population. As expected, the phenotypic variability was found to be larger in the latter population than in the biparental population, although general conclusions on the correlations among the traits are comparable. Data integration from the two diverse populations allowed us to identify a set of 226 genes that are robustly associated with diverse leaf traits. This set of genes is enriched for transcriptional regulators and genes involved in protein synthesis and cell wall metabolism. In order to investigate the molecular network context of the candidate gene set, we integrated our data with publicly available functional genomics data and identified a growth regulatory network of 185 genes. Our results illustrate the power of combining in-depth phenotyping with transcriptomics in mapping populations to dissect the genetic control of complex traits and present a set of candidate genes for use in biomass improvement. PMID:26754667

  18. Combined Large-Scale Phenotyping and Transcriptomics in Maize Reveals a Robust Growth Regulatory Network.

    PubMed

    Baute, Joke; Herman, Dorota; Coppens, Frederik; De Block, Jolien; Slabbinck, Bram; Dell'Acqua, Matteo; Pè, Mario Enrico; Maere, Steven; Nelissen, Hilde; Inzé, Dirk

    2016-03-01

    Leaves are vital organs for biomass and seed production because of their role in the generation of metabolic energy and organic compounds. A better understanding of the molecular networks underlying leaf development is crucial to sustain global requirements for food and renewable energy. Here, we combined transcriptome profiling of proliferative leaf tissue with in-depth phenotyping of the fourth leaf at later stages of development in 197 recombinant inbred lines of two different maize (Zea mays) populations. Previously, correlation analysis in a classical biparental mapping population identified 1,740 genes correlated with at least one of 14 traits. Here, we extended these results with data from a multiparent advanced generation intercross population. As expected, the phenotypic variability was found to be larger in the latter population than in the biparental population, although general conclusions on the correlations among the traits are comparable. Data integration from the two diverse populations allowed us to identify a set of 226 genes that are robustly associated with diverse leaf traits. This set of genes is enriched for transcriptional regulators and genes involved in protein synthesis and cell wall metabolism. In order to investigate the molecular network context of the candidate gene set, we integrated our data with publicly available functional genomics data and identified a growth regulatory network of 185 genes. Our results illustrate the power of combining in-depth phenotyping with transcriptomics in mapping populations to dissect the genetic control of complex traits and present a set of candidate genes for use in biomass improvement. © 2016 American Society of Plant Biologists. All Rights Reserved.

  19. A Rice PECTATE LYASE-LIKE Gene Is Required for Plant Growth and Leaf Senescence1[OPEN

    PubMed Central

    Leng, Yujia; Yang, Yaolong; Ren, Deyong; Dai, Liping; Wang, Yuqiong; Chen, Long; Tu, Zhengjun; Gao, Yihong; Zhu, Li; Hu, Jiang; Gao, Zhenyu; Guo, Longbiao; Lin, Yongjun

    2017-01-01

    To better understand the molecular mechanisms behind plant growth and leaf senescence in monocot plants, we identified a mutant exhibiting dwarfism and an early-senescence leaf phenotype, termed dwarf and early-senescence leaf1 (del1). Histological analysis showed that the abnormal growth was caused by a reduction in cell number. Further investigation revealed that the decline in cell number in del1 was affected by the cell cycle. Physiological analysis, transmission electron microscopy, and TUNEL assays showed that leaf senescence was triggered by the accumulation of reactive oxygen species. The DEL1 gene was cloned using a map-based approach. It was shown to encode a pectate lyase (PEL) precursor that contains a PelC domain. DEL1 contains all the conserved residues of PEL and has strong similarity with plant PelC. DEL1 is expressed in all tissues but predominantly in elongating tissues. Functional analysis revealed that mutation of DEL1 decreased the total PEL enzymatic activity, increased the degree of methylesterified homogalacturonan, and altered the cell wall composition and structure. In addition, transcriptome assay revealed that a set of cell wall function- and senescence-related gene expression was altered in del1 plants. Our research indicates that DEL1 is involved in both the maintenance of normal cell division and the induction of leaf senescence. These findings reveal a new molecular mechanism for plant growth and leaf senescence mediated by PECTATE LYASE-LIKE genes. PMID:28455404

  20. A Rice PECTATE LYASE-LIKE Gene Is Required for Plant Growth and Leaf Senescence.

    PubMed

    Leng, Yujia; Yang, Yaolong; Ren, Deyong; Huang, Lichao; Dai, Liping; Wang, Yuqiong; Chen, Long; Tu, Zhengjun; Gao, Yihong; Li, Xueyong; Zhu, Li; Hu, Jiang; Zhang, Guangheng; Gao, Zhenyu; Guo, Longbiao; Kong, Zhaosheng; Lin, Yongjun; Qian, Qian; Zeng, Dali

    2017-06-01

    To better understand the molecular mechanisms behind plant growth and leaf senescence in monocot plants, we identified a mutant exhibiting dwarfism and an early-senescence leaf phenotype, termed dwarf and early-senescence leaf1 ( del1 ). Histological analysis showed that the abnormal growth was caused by a reduction in cell number. Further investigation revealed that the decline in cell number in del1 was affected by the cell cycle. Physiological analysis, transmission electron microscopy, and TUNEL assays showed that leaf senescence was triggered by the accumulation of reactive oxygen species. The DEL1 gene was cloned using a map-based approach. It was shown to encode a pectate lyase (PEL) precursor that contains a PelC domain. DEL1 contains all the conserved residues of PEL and has strong similarity with plant PelC. DEL1 is expressed in all tissues but predominantly in elongating tissues. Functional analysis revealed that mutation of DEL1 decreased the total PEL enzymatic activity, increased the degree of methylesterified homogalacturonan, and altered the cell wall composition and structure. In addition, transcriptome assay revealed that a set of cell wall function- and senescence-related gene expression was altered in del1 plants. Our research indicates that DEL1 is involved in both the maintenance of normal cell division and the induction of leaf senescence. These findings reveal a new molecular mechanism for plant growth and leaf senescence mediated by PECTATE LYASE-LIKE genes. © 2017 American Society of Plant Biologists. All Rights Reserved.

  1. Identification and comparative analysis of differential gene expression in soybean leaf tissue under drought and flooding stress revealed by RNA-Seq

    USDA-ARS?s Scientific Manuscript database

    Soybean is the second largest crop in the US. Its yield directly impacts US agricultural economics. Drought and flooding are two major causes for soybean yield loss. To better understand their underlying molecular regulatory mechanisms, we sequenced the transcriptomes of soybean grown in drought a...

  2. Analysis of soybean leaf metabolism and seed coat transcriptome reveal sink strength is maintained under abiotic stress conditions

    USDA-ARS?s Scientific Manuscript database

    The seed coat is a vital tissue for directing the flow of photosynthate from source leaves to the embryo and cotyledons during seed development. By forming a sucrose gradient, the seed coat promotes transport of sugars from source leaves to seeds, thereby establishing sink strength. Understanding th...

  3. Systems analysis of a maize leaf developmental gradient redefines the current C4 model and provides candidates for regulation.

    PubMed

    Pick, Thea R; Bräutigam, Andrea; Schlüter, Urte; Denton, Alisandra K; Colmsee, Christian; Scholz, Uwe; Fahnenstich, Holger; Pieruschka, Roland; Rascher, Uwe; Sonnewald, Uwe; Weber, Andreas P M

    2011-12-01

    We systematically analyzed a developmental gradient of the third maize (Zea mays) leaf from the point of emergence into the light to the tip in 10 continuous leaf slices to study organ development and physiological and biochemical functions. Transcriptome analysis, oxygen sensitivity of photosynthesis, and photosynthetic rate measurements showed that the maize leaf undergoes a sink-to-source transition without an intermediate phase of C(3) photosynthesis or operation of a photorespiratory carbon pump. Metabolome and transcriptome analysis, chlorophyll and protein measurements, as well as dry weight determination, showed continuous gradients for all analyzed items. The absence of binary on-off switches and regulons pointed to a morphogradient along the leaf as the determining factor of developmental stage. Analysis of transcription factors for differential expression along the leaf gradient defined a list of putative regulators orchestrating the sink-to-source transition and establishment of C(4) photosynthesis. Finally, transcriptome and metabolome analysis, as well as enzyme activity measurements, and absolute quantification of selected metabolites revised the current model of maize C(4) photosynthesis. All data sets are included within the publication to serve as a resource for maize leaf systems biology.

  4. Systems Analysis of a Maize Leaf Developmental Gradient Redefines the Current C4 Model and Provides Candidates for Regulation[W][OA

    PubMed Central

    Pick, Thea R.; Bräutigam, Andrea; Schlüter, Urte; Denton, Alisandra K.; Colmsee, Christian; Scholz, Uwe; Fahnenstich, Holger; Pieruschka, Roland; Rascher, Uwe; Sonnewald, Uwe; Weber, Andreas P.M.

    2011-01-01

    We systematically analyzed a developmental gradient of the third maize (Zea mays) leaf from the point of emergence into the light to the tip in 10 continuous leaf slices to study organ development and physiological and biochemical functions. Transcriptome analysis, oxygen sensitivity of photosynthesis, and photosynthetic rate measurements showed that the maize leaf undergoes a sink-to-source transition without an intermediate phase of C3 photosynthesis or operation of a photorespiratory carbon pump. Metabolome and transcriptome analysis, chlorophyll and protein measurements, as well as dry weight determination, showed continuous gradients for all analyzed items. The absence of binary on–off switches and regulons pointed to a morphogradient along the leaf as the determining factor of developmental stage. Analysis of transcription factors for differential expression along the leaf gradient defined a list of putative regulators orchestrating the sink-to-source transition and establishment of C4 photosynthesis. Finally, transcriptome and metabolome analysis, as well as enzyme activity measurements, and absolute quantification of selected metabolites revised the current model of maize C4 photosynthesis. All data sets are included within the publication to serve as a resource for maize leaf systems biology. PMID:22186372

  5. Comparative transcriptome analysis reveals networks of genes activated in the whitefly, Bemisia tabaci when fed on tomato plants infected with Tomato yellow leaf curl virus

    USDA-ARS?s Scientific Manuscript database

    The whitefly Bemisia tabaci can transmit hundreds of viruses to numerous agricultural crops in the world. Five genera of viruses, including Begomovirus and Crinivirus, are transmitted by B. tabaci. There is little knowledge about the genes involved in virus acquisition and transmission by whiteflies...

  6. Analysis of the Citrullus colocynthis Transcriptome during Water Deficit Stress

    PubMed Central

    Wang, Zhuoyu; Hu, Hongtao; Goertzen, Leslie R.; McElroy, J. Scott; Dane, Fenny

    2014-01-01

    Citrullus colocynthis is a very drought tolerant species, closely related to watermelon (C. lanatus var. lanatus), an economically important cucurbit crop. Drought is a threat to plant growth and development, and the discovery of drought inducible genes with various functions is of great importance. We used high throughput mRNA Illumina sequencing technology and bioinformatic strategies to analyze the C. colocynthis leaf transcriptome under drought treatment. Leaf samples at four different time points (0, 24, 36, or 48 hours of withholding water) were used for RNA extraction and Illumina sequencing. qRT-PCR of several drought responsive genes was performed to confirm the accuracy of RNA sequencing. Leaf transcriptome analysis provided the first glimpse of the drought responsive transcriptome of this unique cucurbit species. A total of 5038 full-length cDNAs were detected, with 2545 genes showing significant changes during drought stress. Principle component analysis indicated that drought was the major contributing factor regulating transcriptome changes. Up regulation of many transcription factors, stress signaling factors, detoxification genes, and genes involved in phytohormone signaling and citrulline metabolism occurred under the water deficit conditions. The C. colocynthis transcriptome data highlight the activation of a large set of drought related genes in this species, thus providing a valuable resource for future functional analysis of candidate genes in defense of drought stress. PMID:25118696

  7. Sequencing and De Novo Assembly of the Toxicodendron radicans (Poison Ivy) Transcriptome

    PubMed Central

    Kim, Gunjune

    2017-01-01

    Contact with poison ivy plants is widely dreaded because they produce a natural product called urushiol that is responsible for allergenic contact delayed-dermatitis symptoms lasting for weeks. For this reason, the catchphrase most associated with poison ivy is “leaves of three, let it be”, which serves the purpose of both identification and an appeal for avoidance. Ironically, despite this notoriety, there is a dearth of specific knowledge about nearly all other aspects of poison ivy physiology and ecology. As a means of gaining a more molecular-oriented understanding of poison ivy physiology and ecology, Next Generation DNA sequencing technology was used to develop poison ivy root and leaf RNA-seq transcriptome resources. De novo assembled transcriptomes were analyzed to generate a core set of high quality expressed transcripts present in poison ivy tissue. The predicted protein sequences were evaluated for similarity to SwissProt homologs and InterProScan domains, as well as assigned both GO terms and KEGG annotations. Over 23,000 simple sequence repeats were identified in the transcriptome, and corresponding oligo nucleotide primer pairs were designed. A pan-transcriptome analysis of existing Anacardiaceae transcriptomes revealed conserved and unique transcripts among these species. PMID:29125533

  8. Sequencing and De Novo Assembly of the Toxicodendron radicans (Poison Ivy) Transcriptome.

    PubMed

    Weisberg, Alexandra J; Kim, Gunjune; Westwood, James H; Jelesko, John G

    2017-11-10

    Contact with poison ivy plants is widely dreaded because they produce a natural product called urushiol that is responsible for allergenic contact delayed-dermatitis symptoms lasting for weeks. For this reason, the catchphrase most associated with poison ivy is "leaves of three, let it be", which serves the purpose of both identification and an appeal for avoidance. Ironically, despite this notoriety, there is a dearth of specific knowledge about nearly all other aspects of poison ivy physiology and ecology. As a means of gaining a more molecular-oriented understanding of poison ivy physiology and ecology, Next Generation DNA sequencing technology was used to develop poison ivy root and leaf RNA-seq transcriptome resources. De novo assembled transcriptomes were analyzed to generate a core set of high quality expressed transcripts present in poison ivy tissue. The predicted protein sequences were evaluated for similarity to SwissProt homologs and InterProScan domains, as well as assigned both GO terms and KEGG annotations. Over 23,000 simple sequence repeats were identified in the transcriptome, and corresponding oligo nucleotide primer pairs were designed. A pan-transcriptome analysis of existing Anacardiaceae transcriptomes revealed conserved and unique transcripts among these species.

  9. Leaf transcriptome of two highly divergent genotypes of Urochloa humidicola (Poaceae), a tropical polyploid forage grass adapted to acidic soils and temporary flooding areas.

    PubMed

    Vigna, Bianca Baccili Zanotto; de Oliveira, Fernanda Ancelmo; de Toledo-Silva, Guilherme; da Silva, Carla Cristina; do Valle, Cacilda Borges; de Souza, Anete Pereira

    2016-11-11

    Urochloa humidicola (Koronivia grass) is a polyploid (6x to 9x) species that is used as forage in the tropics. Facultative apospory apomixis is present in most of the genotypes of this species, although one individual has been described as sexual. Molecular studies have been restricted to molecular marker approaches for genetic diversity estimations and linkage map construction. The objectives of the present study were to describe and compare the leaf transcriptome of two important genotypes that are highly divergent in terms of their phenotypes and reproduction modes: the sexual BH031 and the aposporous apomictic cultivar BRS Tupi. We sequenced the leaf transcriptome of Koronivia grass using an Illumina GAIIx system, which produced 13.09 Gb of data that consisted of 163,575,526 paired-end reads between the two libraries. We de novo-assembled 76,196 transcripts with an average length of 1,152 bp and filtered 35,093 non-redundant unigenes. A similarity search against the non-redundant National Center of Biotechnology Information (NCBI) protein database returned 65 % hits. We annotated 24,133 unigenes in the Phytozome database and 14,082 unigenes in the UniProtKB/Swiss-Prot database, assigned 108,334 gene ontology terms to 17,255 unigenes and identified 5,324 unigenes in 327 known metabolic pathways. Comparisons with other grasses via a reciprocal BLAST search revealed a larger number of orthologous genes for the Panicum species. The unigenes were involved in C4 photosynthesis, lignocellulose biosynthesis and flooding stress responses. A search for functional molecular markers revealed 4,489 microsatellites and 560,298 single nucleotide polymorphisms (SNPs). A quantitative real-time PCR analysis validated the RNA-seq expression analysis and allowed for the identification of transcriptomic differences between the two evaluated genotypes. Moreover, 192 unannotated sequences were classified as containing complete open reading frames, suggesting that the new, potentially exclusive genes should be further investigated. The present study represents the first whole-transcriptome sequencing of U. humidicola leaves, providing an important public information source of transcripts and functional molecular markers. The qPCR analysis indicated that the expression of certain transcripts confirmed the differential expression observed in silico, which demonstrated that RNA-seq is useful for identifying differentially expressed and unique genes. These results corroborate the findings from previous studies and suggest a hybrid origin for BH031.

  10. De novo Transcriptome Analysis of Miscanthus lutarioriparius Identifies Candidate Genes in Rhizome Development

    PubMed Central

    Hu, Ruibo; Yu, Changjiang; Wang, Xiaoyu; Jia, Chunlin; Pei, Shengqiang; He, Kang; He, Guo; Kong, Yingzhen; Zhou, Gongke

    2017-01-01

    HIGHLIGHT De novo transcriptome profiling of five tissues reveals candidate genes putatively involved in rhizome development in M. lutarioriparius. Miscanthus lutarioriparius is a promising lignocellulosic feedstock for second-generation bioethanol production. However, the genomic resource for this species is relatively limited thus hampers our understanding of the molecular mechanisms underlying many important biological processes. In this study, we performed the first de novo transcriptome analysis of five tissues (leaf, stem, root, lateral bud and rhizome bud) of M. lutarioriparius with an emphasis to identify putative genes involved in rhizome development. Approximately 66 gigabase (GB) paired-end clean reads were obtained and assembled into 169,064 unigenes with an average length of 759 bp. Among these unigenes, 103,899 (61.5%) were annotated in seven public protein databases. Differential gene expression profiling analysis revealed that 4,609, 3,188, 1,679, 1,218, and 1,077 genes were predominantly expressed in root, leaf, stem, lateral bud, and rhizome bud, respectively. Their expression patterns were further classified into 12 distinct clusters. Pathway enrichment analysis revealed that genes predominantly expressed in rhizome bud were mainly involved in primary metabolism and hormone signaling and transduction pathways. Noteworthy, 19 transcription factors (TFs) and 16 hormone signaling pathway-related genes were identified to be predominantly expressed in rhizome bud compared with the other tissues, suggesting putative roles in rhizome formation and development. In addition, a predictive regulatory network was constructed between four TFs and six auxin and abscisic acid (ABA) -related genes. Furthermore, the expression of 24 rhizome-specific genes was further validated by quantitative real-time RT-PCR (qRT-PCR) analysis. Taken together, this study provide a global portrait of gene expression across five different tissues and reveal preliminary insights into rhizome growth and development. The data presented will contribute to our understanding of the molecular mechanisms underlying rhizome development in M. lutarioriparius and remarkably enrich the genomic resources of Miscanthus. PMID:28446913

  11. Transcriptome analysis of the Dickeya dadantii PecS regulon during the early stages of interaction with Arabidopsis thaliana.

    PubMed

    Pédron, Jacques; Chapelle, Emilie; Alunni, Benoît; Van Gijsegem, Frédérique

    2018-03-01

    PecS is one of the major global regulators controlling the virulence of Dickeya dadantii, a broad-host-range phytopathogenic bacterium causing soft rot on several plant families. To define the PecS regulon during plant colonization, we analysed the global transcriptome profiles in wild-type and pecS mutant strains during the early colonization of the leaf surfaces and in leaf tissue just before the onset of symptoms, and found that the PecS regulon consists of more than 600 genes. About one-half of these genes are down-regulated in the pecS mutant; therefore, PecS has both positive and negative regulatory roles that may be direct or indirect. Indeed, PecS also controls the regulation of a few dozen regulatory genes, demonstrating that this global regulator is at or near the top of a major regulatory cascade governing adaptation to growth in planta. Notably, PecS acts mainly at the very beginning of infection, not only to prevent virulence gene induction, but also playing an active role in the adaptation of the bacterium to the epiphytic habitat. Comparison of the patterns of gene expression inside leaf tissues and during early colonization of leaf surfaces in the wild-type bacterium revealed 637 genes modulated between these two environments. More than 40% of these modulated genes are part of the PecS regulon, emphasizing the prominent role of PecS during plant colonization. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  12. Transcriptome Profiling of Buffalograss Challenged with the Leaf Spot Pathogen Curvularia inaequalis.

    PubMed

    Amaradasa, Bimal S; Amundsen, Keenan

    2016-01-01

    Buffalograss (Bouteloua dactyloides) is a low maintenance U. S. native turfgrass species with exceptional drought, heat, and cold tolerance. Leaf spot caused by Curvularia inaequalis negatively impacts buffalograss visual quality. Two leaf spot susceptible and two resistant buffalograss lines were challenged with C. inaequalis. Samples were collected from treated and untreated leaves when susceptible lines showed symptoms. Transcriptome sequencing was done and differentially expressed genes were identified. Approximately 27 million raw sequencing reads were produced per sample. More than 86% of the sequencing reads mapped to an existing buffalograss reference transcriptome. De novo assembly of unmapped reads was merged with the existing reference to produce a more complete transcriptome. There were 461 differentially expressed transcripts between the resistant and susceptible lines when challenged with the pathogen and 1552 in its absence. Previously characterized defense-related genes were identified among the differentially expressed transcripts. Twenty one resistant line transcripts were similar to genes regulating pattern triggered immunity and 20 transcripts were similar to genes regulating effector triggered immunity. There were also nine up-regulated transcripts in resistance lines which showed potential to initiate systemic acquired resistance (SAR) and three transcripts encoding pathogenesis-related proteins which are downstream products of SAR. This is the first study characterizing changes in the buffalograss transcriptome when challenged with C. inaequalis.

  13. Transcriptome and proteome analysis of Eucalyptus infected with Calonectria pseudoreteaudii.

    PubMed

    Chen, Quanzhu; Guo, Wenshuo; Feng, Lizhen; Ye, Xiaozhen; Xie, Wanfeng; Huang, Xiuping; Liu, Jinyan

    2015-02-06

    Cylindrocladium leaf blight is one of the most severe diseases in Eucalyptus plantations and nurseries. There are Eucalyptus cultivars with resistance to the disease. However, little is known about the defense mechanism of resistant cultivars. Here, we investigated the transcriptome and proteome of Eucalyptus leaves (E. urophylla×E. tereticornis M1), infected or not with Calonectria pseudoreteaudii. A total of 8585 differentially expressed genes (|log2 ratio| ≥1, FDR ≤0.001) at 12 and 24hours post-inoculation were detected using RNA-seq. Transcriptional changes for five genes were further confirmed by qRT-PCR. A total of 3680 proteins at the two time points were identified using iTRAQ technique.The combined transcriptome and proteome analysis revealed that the shikimate/phenylpropanoid pathway, terpenoid biosynthesis, signalling pathway (jasmonic acid and sugar) were activated. The data also showed that some proteins (WRKY33 and PR proteins) which have been reported to involve in plant defense response were up-regulated. However, photosynthesis, nucleic acid metabolism and protein metabolism were impaired by the infection of C. pseudoreteaudii. This work will facilitate the identification of defense related genes and provide insights into Eucalyptus defense responses to Cylindrocladium leaf blight. In this study, a total of 130 proteins and genes involved in the shikimate/phenylpropanoid pathway, terpenoid biosynthesis, signalling pathway, cell transport, carbohydrate and energy metabolism, nucleic acid metabolism and protein metabolism in Eucalyptus leaves after infected with C. pseudoreteaudii were identified. This is the first report of a comprehensive transcriptomic and proteomic analysis of Eucalyptus in response to Calonectria sp. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Integrating Omics and Alternative Splicing Reveals Insights into Grape Response to High Temperature1[OPEN

    PubMed Central

    Jiang, Jianfu; Liu, Xinna; Liu, Guotian; Li, Shaohua

    2017-01-01

    Heat stress is one of the primary abiotic stresses that limit crop production. Grape (Vitis vinifera) is a cultivated fruit with high economic value throughout the world, with its growth and development often influenced by high temperature. Alternative splicing (AS) is a widespread phenomenon increasing transcriptome and proteome diversity. We conducted high-temperature treatments (35°C, 40°C, and 45°C) on grapevines and assessed transcriptomic (especially AS) and proteomic changes in leaves. We found that nearly 70% of the genes were alternatively spliced under high temperature. Intron retention (IR), exon skipping, and alternative donor/acceptor sites were markedly induced under different high temperatures. Among all differential AS events, IR was the most abundant up- and down-regulated event. Moreover, the occurrence frequency of IR events at 40°C and 45°C was far higher than at 35°C. These results indicated that AS, especially IR, is an important posttranscriptional regulatory event during grape leaf responses to high temperature. Proteomic analysis showed that protein levels of the RNA-binding proteins SR45, SR30, and SR34 and the nuclear ribonucleic protein U1A gradually rose as ambient temperature increased, which revealed a reason why AS events occurred more frequently under high temperature. After integrating transcriptomic and proteomic data, we found that heat shock proteins and some important transcription factors such as MULTIPROTEIN BRIDGING FACTOR1c and HEAT SHOCK TRANSCRIPTION FACTOR A2 were involved mainly in heat tolerance in grape through up-regulating transcriptional (especially modulated by AS) and translational levels. To our knowledge, these results provide the first evidence for grape leaf responses to high temperature at simultaneous transcriptional, posttranscriptional, and translational levels. PMID:28049741

  15. Integrating Omics and Alternative Splicing Reveals Insights into Grape Response to High Temperature.

    PubMed

    Jiang, Jianfu; Liu, Xinna; Liu, Chonghuai; Liu, Guotian; Li, Shaohua; Wang, Lijun

    2017-02-01

    Heat stress is one of the primary abiotic stresses that limit crop production. Grape (Vitis vinifera) is a cultivated fruit with high economic value throughout the world, with its growth and development often influenced by high temperature. Alternative splicing (AS) is a widespread phenomenon increasing transcriptome and proteome diversity. We conducted high-temperature treatments (35°C, 40°C, and 45°C) on grapevines and assessed transcriptomic (especially AS) and proteomic changes in leaves. We found that nearly 70% of the genes were alternatively spliced under high temperature. Intron retention (IR), exon skipping, and alternative donor/acceptor sites were markedly induced under different high temperatures. Among all differential AS events, IR was the most abundant up- and down-regulated event. Moreover, the occurrence frequency of IR events at 40°C and 45°C was far higher than at 35°C. These results indicated that AS, especially IR, is an important posttranscriptional regulatory event during grape leaf responses to high temperature. Proteomic analysis showed that protein levels of the RNA-binding proteins SR45, SR30, and SR34 and the nuclear ribonucleic protein U1A gradually rose as ambient temperature increased, which revealed a reason why AS events occurred more frequently under high temperature. After integrating transcriptomic and proteomic data, we found that heat shock proteins and some important transcription factors such as MULTIPROTEIN BRIDGING FACTOR1c and HEAT SHOCK TRANSCRIPTION FACTOR A2 were involved mainly in heat tolerance in grape through up-regulating transcriptional (especially modulated by AS) and translational levels. To our knowledge, these results provide the first evidence for grape leaf responses to high temperature at simultaneous transcriptional, posttranscriptional, and translational levels. © 2017 American Society of Plant Biologists. All Rights Reserved.

  16. Characterization of Withania somnifera Leaf Transcriptome and Expression Analysis of Pathogenesis – Related Genes during Salicylic Acid Signaling

    PubMed Central

    Ghosh Dasgupta, Modhumita; George, Blessan Santhosh; Bhatia, Anil; Sidhu, Om Prakash

    2014-01-01

    Withania somnifera (L.) Dunal is a valued medicinal plant with pharmaceutical applications. The present study was undertaken to analyze the salicylic acid induced leaf transcriptome of W. somnifera. A total of 45.6 million reads were generated and the de novo assembly yielded 73,523 transcript contig with average transcript contig length of 1620 bp. A total of 71,062 transcripts were annotated and 53,424 of them were assigned GO terms. Mapping of transcript contigs to biological pathways revealed presence of 182 pathways. Seventeen genes representing 12 pathogenesis-related (PR) families were mined from the transcriptome data and their pattern of expression post 17 and 36 hours of salicylic acid treatment was documented. The analysis revealed significant up-regulation of all families of PR genes by 36 hours post treatment except WsPR10. The relative fold expression of transcripts ranged from 1 fold to 6,532 fold. The two families of peroxidases including the lignin-forming anionic peroxidase (WsL-PRX) and suberization-associated anionic peroxidase (WsS-PRX) recorded maximum expression of 377 fold and 6532 fold respectively, while the expression of WsPR10 was down-regulated by 14 fold. Additionally, the most stable reference gene for normalization of qRT-PCR data was also identified. The effect of SA on the accumulation of major secondary metabolites of W. somnifera including withanoside V, withaferin A and withanolide A was also analyzed and an increase in content of all the three metabolites were detected. This is the first report on expression patterns of PR genes during salicylic acid signaling in W. somnifera. PMID:24739900

  17. Time-evolving genetic networks reveal a NAC troika that negatively regulates leaf senescence in Arabidopsis.

    PubMed

    Kim, Hyo Jung; Park, Ji-Hwan; Kim, Jingil; Kim, Jung Ju; Hong, Sunghyun; Kim, Jeongsik; Kim, Jin Hee; Woo, Hye Ryun; Hyeon, Changbong; Lim, Pyung Ok; Nam, Hong Gil; Hwang, Daehee

    2018-05-22

    Senescence is controlled by time-evolving networks that describe the temporal transition of interactions among senescence regulators. Here, we present time-evolving networks for NAM/ATAF/CUC (NAC) transcription factors in Arabidopsis during leaf aging. The most evident characteristic of these time-dependent networks was a shift from positive to negative regulation among NACs at a presenescent stage. ANAC017, ANAC082, and ANAC090, referred to as a "NAC troika," govern the positive-to-negative regulatory shift. Knockout of the NAC troika accelerated senescence and the induction of other NAC s, whereas overexpression of the NAC troika had the opposite effects. Transcriptome and molecular analyses revealed shared suppression of senescence-promoting processes by the NAC troika, including salicylic acid (SA) and reactive oxygen species (ROS) responses, but with predominant regulation of SA and ROS responses by ANAC090 and ANAC017, respectively. Our time-evolving networks provide a unique regulatory module of presenescent repressors that direct the timely induction of senescence-promoting processes at the presenescent stage of leaf aging. Copyright © 2018 the Author(s). Published by PNAS.

  18. Time-evolving genetic networks reveal a NAC troika that negatively regulates leaf senescence in Arabidopsis

    PubMed Central

    Kim, Hyo Jung; Park, Ji-Hwan; Kim, Jingil; Kim, Jung Ju; Hong, Sunghyun; Kim, Jin Hee; Woo, Hye Ryun; Lim, Pyung Ok; Nam, Hong Gil; Hwang, Daehee

    2018-01-01

    Senescence is controlled by time-evolving networks that describe the temporal transition of interactions among senescence regulators. Here, we present time-evolving networks for NAM/ATAF/CUC (NAC) transcription factors in Arabidopsis during leaf aging. The most evident characteristic of these time-dependent networks was a shift from positive to negative regulation among NACs at a presenescent stage. ANAC017, ANAC082, and ANAC090, referred to as a “NAC troika,” govern the positive-to-negative regulatory shift. Knockout of the NAC troika accelerated senescence and the induction of other NACs, whereas overexpression of the NAC troika had the opposite effects. Transcriptome and molecular analyses revealed shared suppression of senescence-promoting processes by the NAC troika, including salicylic acid (SA) and reactive oxygen species (ROS) responses, but with predominant regulation of SA and ROS responses by ANAC090 and ANAC017, respectively. Our time-evolving networks provide a unique regulatory module of presenescent repressors that direct the timely induction of senescence-promoting processes at the presenescent stage of leaf aging. PMID:29735710

  19. De novo assembly and analysis of the Artemisia argyi transcriptome and identification of genes involved in terpenoid biosynthesis.

    PubMed

    Liu, Miaomiao; Zhu, Jinhang; Wu, Shengbing; Wang, Chenkai; Guo, Xingyi; Wu, Jiawen; Zhou, Meiqi

    2018-04-11

    Artemisia argyi Lev. et Vant. (A. argyi) is widely utilized for moxibustion in Chinese medicine, and the mechanism underlying terpenoid biosynthesis in its leaves is suggested to play an important role in its medicinal use. However, the A. argyi transcriptome has not been sequenced. Herein, we performed RNA sequencing for A. argyi leaf, root and stem tissues to identify as many as possible of the transcribed genes. In total, 99,807 unigenes were assembled by analysing the expression profiles generated from the three tissue types, and 67,446 of those unigenes were annotated in public databases. We further performed differential gene expression analysis to compare leaf tissue with the other two tissue types and identified numerous genes that were specifically expressed or up-regulated in leaf tissue. Specifically, we identified multiple genes encoding significant enzymes or transcription factors related to terpenoid synthesis. This study serves as a valuable resource for transcriptome information, as many transcribed genes related to terpenoid biosynthesis were identified in the A. argyi transcriptome, providing a functional genomic basis for additional studies on molecular mechanisms underlying the medicinal use of A. argyi.

  20. Comparative Transcriptomics Unravel Biochemical Specialization of Leaf Tissues of Stevia for Diterpenoid Production1

    PubMed Central

    Kim, Mi Jung; Jin, Jingjing; Zheng, Junshi

    2015-01-01

    Stevia (Stevia rebaudiana) produces not only a group of diterpenoid glycosides known as steviol glycosides (SGs), but also other labdane-type diterpenoids that may be spatially separated from SGs. However, their biosynthetic routes and spatial distribution in leaf tissues have not yet been elucidated. Here, we integrate metabolome and transcriptome analyses of Stevia to explore the biosynthetic capacity of leaf tissues for diterpenoid metabolism. Tissue-specific chemical analyses confirmed that SGs were accumulated in leaf cells but not in trichomes. On the other hand, Stevia leaf trichomes stored other labdane-type diterpenoids such as oxomanoyl oxide and agatholic acid. RNA sequencing analyses from two different tissues of Stevia provided a comprehensive overview of dynamic metabolic activities in trichomes and leaf without trichomes. These metabolite-guided transcriptomics and phylogenetic and gene expression analyses clearly identified specific gene members encoding enzymes involved in the 2-C-methyl-d-erythritol 4-phosphate pathway and the biosynthesis of steviol or other labdane-type diterpenoids. Additionally, our RNA sequencing analysis uncovered copalyl diphosphate synthase (SrCPS) and kaurene synthase1 (SrKS1) homologs, SrCPS2 and KS-like (SrKSL), which were specifically expressed in trichomes. In vitro and in planta assays showed that unlike SrCPS and SrKS1, SrCPS2 synthesized labda-13-en-8-ol diphosphate and successively catalyzed the formation of manoyl oxide and epi-manoyl oxide in combination with SrKSL. Our findings suggest that Stevia may have evolved to use distinct metabolic pathways to avoid metabolic interferences in leaf tissues for efficient production of diverse secondary metabolites. PMID:26438788

  1. Characterization of mango (Mangifera indica L.) transcriptome and chloroplast genome.

    PubMed

    Azim, M Kamran; Khan, Ishtaiq A; Zhang, Yong

    2014-05-01

    We characterized mango leaf transcriptome and chloroplast genome using next generation DNA sequencing. The RNA-seq output of mango transcriptome generated >12 million reads (total nucleotides sequenced >1 Gb). De novo transcriptome assembly generated 30,509 unigenes with lengths in the range of 300 to ≥3,000 nt and 67× depth of coverage. Blast searching against nonredundant nucleotide databases and several Viridiplantae genomic datasets annotated 24,593 mango unigenes (80% of total) and identified Citrus sinensis as closest neighbor of mango with 9,141 (37%) matched sequences. The annotation with gene ontology and Clusters of Orthologous Group terms categorized unigene sequences into 57 and 25 classes, respectively. More than 13,500 unigenes were assigned to 293 KEGG pathways. Besides major plant biology related pathways, KEGG based gene annotation pointed out active presence of an array of biochemical pathways involved in (a) biosynthesis of bioactive flavonoids, flavones and flavonols, (b) biosynthesis of terpenoids and lignins and (c) plant hormone signal transduction. The mango transcriptome sequences revealed 235 proteases belonging to five catalytic classes of proteolytic enzymes. The draft genome of mango chloroplast (cp) was obtained by a combination of Sanger and next generation sequencing. The draft mango cp genome size is 151,173 bp with a pair of inverted repeats of 27,093 bp separated by small and large single copy regions, respectively. Out of 139 genes in mango cp genome, 91 found to be protein coding. Sequence analysis revealed cp genome of C. sinensis as closest neighbor of mango. We found 51 short repeats in mango cp genome supposed to be associated with extensive rearrangements. This is the first report of transcriptome and chloroplast genome analysis of any Anacardiaceae family member.

  2. Phenotypic and Transcriptomic Analyses of Autotetraploid and Diploid Mulberry (Morus alba L.).

    PubMed

    Dai, Fanwei; Wang, Zhenjiang; Luo, Guoqing; Tang, Cuiming

    2015-09-22

    Autopolyploid plants and their organs are often larger than their diploid counterparts, which makes them attractive to plant breeders. Mulberry (Morus alba L.) is an important commercial woody plant in many tropical and subtropical areas. In this study, we obtained a series of autotetraploid mulberry plants resulting from a colchicine treatment. To evaluate the effects of genome duplications in mulberry, we compared the phenotypes and transcriptomes of autotetraploid and diploid mulberry trees. In the autotetraploids, the height, breast-height diameter, leaf size, and fruit size were larger than those of diploids. Transcriptome data revealed that of 21,229 expressed genes only 609 (2.87%) were differentially expressed between diploids and autotetraploids. Among them, 30 genes were associated with the biosynthesis and signal transduction of plant hormones, including cytokinin, gibberellins, ethylene, and auxin. In addition, 41 differentially expressed genes were involved in photosynthesis. These results enhance our understanding of the variations that occur in mulberry autotetraploids and will benefit future breeding work.

  3. Phenotypic and Transcriptomic Analyses of Autotetraploid and Diploid Mulberry (Morus alba L.)

    PubMed Central

    Dai, Fanwei; Wang, Zhenjiang; Luo, Guoqing; Tang, Cuiming

    2015-01-01

    Autopolyploid plants and their organs are often larger than their diploid counterparts, which makes them attractive to plant breeders. Mulberry (Morus alba L.) is an important commercial woody plant in many tropical and subtropical areas. In this study, we obtained a series of autotetraploid mulberry plants resulting from a colchicine treatment. To evaluate the effects of genome duplications in mulberry, we compared the phenotypes and transcriptomes of autotetraploid and diploid mulberry trees. In the autotetraploids, the height, breast-height diameter, leaf size, and fruit size were larger than those of diploids. Transcriptome data revealed that of 21,229 expressed genes only 609 (2.87%) were differentially expressed between diploids and autotetraploids. Among them, 30 genes were associated with the biosynthesis and signal transduction of plant hormones, including cytokinin, gibberellins, ethylene, and auxin. In addition, 41 differentially expressed genes were involved in photosynthesis. These results enhance our understanding of the variations that occur in mulberry autotetraploids and will benefit future breeding work. PMID:26402678

  4. Genome wide transcriptome profiling reveals differential gene expression in secondary metabolite pathway of Cymbopogon winterianus.

    PubMed

    Devi, Kamalakshi; Mishra, Surajit K; Sahu, Jagajjit; Panda, Debashis; Modi, Mahendra K; Sen, Priyabrata

    2016-02-15

    Advances in transcriptome sequencing provide fast, cost-effective and reliable approach to generate large expression datasets especially suitable for non-model species to identify putative genes, key pathway and regulatory mechanism. Citronella (Cymbopogon winterianus) is an aromatic medicinal grass used for anti-tumoral, antibacterial, anti-fungal, antiviral, detoxifying and natural insect repellent properties. Despite of having number of utilities, the genes involved in terpenes biosynthetic pathway is not yet clearly elucidated. The present study is a pioneering attempt to generate an exhaustive molecular information of secondary metabolite pathway and to increase genomic resources in Citronella. Using high-throughput RNA-Seq technology, root and leaf transcriptome was analysed at an unprecedented depth (11.7 Gb). Targeted searches identified majority of the genes associated with metabolic pathway and other natural product pathway viz. antibiotics synthesis along with many novel genes. Terpenoid biosynthesis genes comparative expression results were validated for 15 unigenes by RT-PCR and qRT-PCR. Thus the coverage of these transcriptome is comprehensive enough to discover all known genes of major metabolic pathways. This transcriptome dataset can serve as important public information for gene expression, genomics and function genomics studies in Citronella and shall act as a benchmark for future improvement of the crop.

  5. Transcriptome and metabolite analysis identifies nitrogen utilization genes in tea plant (Camellia sinensis).

    PubMed

    Li, Wei; Xiang, Fen; Zhong, Micai; Zhou, Lingyun; Liu, Hongyan; Li, Saijun; Wang, Xuewen

    2017-05-10

    Applied nitrogen (N) fertilizer significantly increases the leaf yield. However, most N is not utilized by the plant, negatively impacting the environment. To date, little is known regarding N utilization genes and mechanisms in the leaf production. To understand this, we investigated transcriptomes using RNA-seq and amino acid levels with N treatment in tea (Camellia sinensis), the most popular beverage crop. We identified 196 and 29 common differentially expressed genes in roots and leaves, respectively, in response to ammonium in two tea varieties. Among those genes, AMT, NRT and AQP for N uptake and GOGAT and GS for N assimilation were the key genes, validated by RT-qPCR, which expressed in a network manner with tissue specificity. Importantly, only AQP and three novel DEGs associated with stress, manganese binding, and gibberellin-regulated transcription factor were common in N responses across all tissues and varieties. A hypothesized gene regulatory network for N was proposed. A strong statistical correlation between key genes' expression and amino acid content was revealed. The key genes and regulatory network improve our understanding of the molecular mechanism of N usage and offer gene targets for plant improvement.

  6. De novo transcriptome sequencing of two cultivated jute species under salinity stress.

    PubMed

    Yang, Zemao; Yan, An; Lu, Ruike; Dai, Zhigang; Tang, Qing; Cheng, Chaohua; Xu, Ying; Su, Jianguang

    2017-01-01

    Soil salinity, a major environmental stress, reduces agricultural productivity by restricting plant development and growth. Jute (Corchorus spp.), a commercially important bast fiber crop, includes two commercially cultivated species, Corchorus capsularis and Corchorus olitorius. We conducted high-throughput transcriptome sequencing of 24 C. capsularis and C. olitorius samples under salt stress and found 127 common differentially expressed genes (DEGs); additionally, 4489 and 492 common DEGs were identified in the root and leaf tissues, respectively, of both Corchorus species. Further, 32, 196, and 11 common differentially expressed transcription factors (DTFs) were detected in the leaf, root, or both tissues, respectively. Several Gene Ontology (GO) terms were enriched in NY and YY. A Kyoto Encyclopedia of Genes and Genomes analysis revealed numerous DEGs in both species. Abscisic acid and cytokinin signal pathways enriched respectively about 20 DEGs in leaves and roots of both NY and YY. The Ca2+, mitogen-activated protein kinase signaling and oxidative phosphorylation pathways were also found to be related to the plant response to salt stress, as evidenced by the DEGs in the roots of both species. These results provide insight into salt stress response mechanisms in plants as well as a basis for future breeding of salt-tolerant cultivars.

  7. Comparative Transcriptomics Unravel Biochemical Specialization of Leaf Tissues of Stevia for Diterpenoid Production.

    PubMed

    Kim, Mi Jung; Jin, Jingjing; Zheng, Junshi; Wong, Limsoon; Chua, Nam-Hai; Jang, In-Cheol

    2015-12-01

    Stevia (Stevia rebaudiana) produces not only a group of diterpenoid glycosides known as steviol glycosides (SGs), but also other labdane-type diterpenoids that may be spatially separated from SGs. However, their biosynthetic routes and spatial distribution in leaf tissues have not yet been elucidated. Here, we integrate metabolome and transcriptome analyses of Stevia to explore the biosynthetic capacity of leaf tissues for diterpenoid metabolism. Tissue-specific chemical analyses confirmed that SGs were accumulated in leaf cells but not in trichomes. On the other hand, Stevia leaf trichomes stored other labdane-type diterpenoids such as oxomanoyl oxide and agatholic acid. RNA sequencing analyses from two different tissues of Stevia provided a comprehensive overview of dynamic metabolic activities in trichomes and leaf without trichomes. These metabolite-guided transcriptomics and phylogenetic and gene expression analyses clearly identified specific gene members encoding enzymes involved in the 2-C-methyl-d-erythritol 4-phosphate pathway and the biosynthesis of steviol or other labdane-type diterpenoids. Additionally, our RNA sequencing analysis uncovered copalyl diphosphate synthase (SrCPS) and kaurene synthase1 (SrKS1) homologs, SrCPS2 and KS-like (SrKSL), which were specifically expressed in trichomes. In vitro and in planta assays showed that unlike SrCPS and SrKS1, SrCPS2 synthesized labda-13-en-8-ol diphosphate and successively catalyzed the formation of manoyl oxide and epi-manoyl oxide in combination with SrKSL. Our findings suggest that Stevia may have evolved to use distinct metabolic pathways to avoid metabolic interferences in leaf tissues for efficient production of diverse secondary metabolites. © 2015 American Society of Plant Biologists. All Rights Reserved.

  8. Metabolic Flux Redirection and Transcriptomic Reprogramming in the Albino Tea Cultivar ‘Yu-Jin-Xiang’ with an Emphasis on Catechin Production

    PubMed Central

    Liu, Guo-Feng; Han, Zhuo-Xiao; Feng, Lin; Gao, Li-Ping; Gao, Ming-Jun; Gruber, Margaret Y.; Zhang, Zhao-Liang; Xia, Tao; Wan, Xiao-Chun; Wei, Shu

    2017-01-01

    In this study, shade-induced conversion from a young pale/yellow leaf phenotype to a green leaf phenotype was studied using metabolic and transcriptomic profiling and the albino cultivar ‘Yu-Jin-Xiang’ (‘YJX’) of Camellia sinensis for a better understanding of mechanisms underlying the phenotype shift and the altered catechin and theanine production. Shaded leaf greening resulted from an increase in leaf chlorophyll and carotenoid abundance and chloroplast development. A total of 1,196 differentially expressed genes (DEGs) were identified between the ‘YJX’ pale and shaded green leaves, and these DEGs affected ‘chloroplast organization’ and ‘response to high light’ besides many other biological processes and pathways. Metabolic flux redirection and transcriptomic reprogramming were found in flavonoid and carotenoid pathways of the ‘YJX’ pale leaves and shaded green leaves to different extents compared to the green cultivar ‘Shu-Cha-Zao’. Enhanced production of the antioxidant quercetin rather than catechin biosynthesis was correlated positively with the enhanced transcription of FLAVONOL SYNTHASE and FLAVANONE/FLAVONOL HYDROXYLASES leading to quercetin accumulation and negatively correlated to suppressed LEUCOANTHOCYANIDIN REDUCTASE, ANTHOCYANIDIN REDUCTASE and SYNTHASE leading to catechin biosynthesis. The altered levels of quercetin and catechins in ‘YJX’ will impact on its tea flavor and health benefits. PMID:28332598

  9. Network and biosignature analysis for the integration of transcriptomic and metabolomic data to characterize leaf senescence process in sunflower.

    PubMed

    Moschen, Sebastián; Higgins, Janet; Di Rienzo, Julio A; Heinz, Ruth A; Paniego, Norma; Fernandez, Paula

    2016-06-06

    In recent years, high throughput technologies have led to an increase of datasets from omics disciplines allowing the understanding of the complex regulatory networks associated with biological processes. Leaf senescence is a complex mechanism controlled by multiple genetic and environmental variables, which has a strong impact on crop yield. Transcription factors (TFs) are key proteins in the regulation of gene expression, regulating different signaling pathways; their function is crucial for triggering and/or regulating different aspects of the leaf senescence process. The study of TF interactions and their integration with metabolic profiles under different developmental conditions, especially for a non-model organism such as sunflower, will open new insights into the details of gene regulation of leaf senescence. Weighted Gene Correlation Network Analysis (WGCNA) and BioSignature Discoverer (BioSD, Gnosis Data Analysis, Heraklion, Greece) were used to integrate transcriptomic and metabolomic data. WGCNA allowed the detection of 10 metabolites and 13 TFs whereas BioSD allowed the detection of 1 metabolite and 6 TFs as potential biomarkers. The comparative analysis demonstrated that three transcription factors were detected through both methodologies, highlighting them as potentially robust biomarkers associated with leaf senescence in sunflower. The complementary use of network and BioSignature Discoverer analysis of transcriptomic and metabolomic data provided a useful tool for identifying candidate genes and metabolites which may have a role during the triggering and development of the leaf senescence process. The WGCNA tool allowed us to design and test a hypothetical network in order to infer relationships across selected transcription factor and metabolite candidate biomarkers involved in leaf senescence, whereas BioSignature Discoverer selected transcripts and metabolites which discriminate between different ages of sunflower plants. The methodology presented here would help to elucidate and predict novel networks and potential biomarkers of leaf senescence in sunflower.

  10. Leaf primordium size specifies leaf width and vein number among row-type classes in barley.

    PubMed

    Thirulogachandar, Venkatasubbu; Alqudah, Ahmad M; Koppolu, Ravi; Rutten, Twan; Graner, Andreas; Hensel, Goetz; Kumlehn, Jochen; Bräutigam, Andrea; Sreenivasulu, Nese; Schnurbusch, Thorsten; Kuhlmann, Markus

    2017-08-01

    Exploring genes with impact on yield-related phenotypes is the preceding step to accomplishing crop improvements while facing a growing world population. A genome-wide association scan on leaf blade area (LA) in a worldwide spring barley collection (Hordeum vulgare L.), including 125 two- and 93 six-rowed accessions, identified a gene encoding the homeobox transcription factor, Six-rowed spike 1 (VRS1). VRS1 was previously described as a key domestication gene affecting spike development. Its mutation converts two-rowed (wild-type VRS1, only central fertile spikelets) into six-rowed spikes (mutant vrs1, fully developed fertile central and lateral spikelets). Phenotypic analyses of mutant and wild-type leaves revealed that mutants had an increased leaf width with more longitudinal veins. The observed significant increase of LA and leaf nitrogen (%) during pre-anthesis development in vrs1 mutants also implies a link between wider leaf and grain number, which was validated from the association of vrs1 locus with wider leaf and grain number. Histological and gene expression analyses indicated that VRS1 might influence the size of leaf primordia by affecting cell proliferation of leaf primordial cells. This finding was supported by the transcriptome analysis of mutant and wild-type leaf primordia where in the mutant transcriptional activation of genes related to cell proliferation was detectable. Here we show that VRS1 has an independent role on barley leaf development which might influence the grain number. © 2017 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  11. Transcriptome characterization for genome annotation and functional genomics in Theobroma cacao

    USDA-ARS?s Scientific Manuscript database

    Evidence from leaf transcriptome sequencing using two technology platforms, in combination with protein homology and trained ab initio predictions, previously enabled us to build 35,000 gene models in T. cacao (www.cacaogenomedb.org). Here we review the contribution of each data type to cacao gene a...

  12. Increasing the source/sink ratio in Vitis vinifera (cv Sangiovese) induces extensive transcriptome reprogramming and modifies berry ripening

    PubMed Central

    2011-01-01

    Background Cluster thinning is an agronomic practice in which a proportion of berry clusters are removed from the vine to increase the source/sink ratio and improve the quality of the remaining berries. Until now no transcriptomic data have been reported describing the mechanisms that underlie the agronomic and biochemical effects of thinning. Results We profiled the transcriptome of Vitis vinifera cv. Sangiovese berries before and after thinning at veraison using a genome-wide microarray representing all grapevine genes listed in the latest V1 gene prediction. Thinning increased the source/sink ratio from 0.6 to 1.2 m2 leaf area per kg of berries and boosted the sugar and anthocyanin content at harvest. Extensive transcriptome remodeling was observed in thinned vines 2 weeks after thinning and at ripening. This included the enhanced modulation of genes that are normally regulated during berry development and the induction of a large set of genes that are not usually expressed. Conclusion Cluster thinning has a profound effect on several important cellular processes and metabolic pathways including carbohydrate metabolism and the synthesis and transport of secondary products. The integrated agronomic, biochemical and transcriptomic data revealed that the positive impact of cluster thinning on final berry composition reflects a much more complex outcome than simply enhancing the normal ripening process. PMID:22192855

  13. Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum—Phytophthora capsici Phytopathosystem

    PubMed Central

    Mahadevan, Chidambareswaren; Krishnan, Anu; Saraswathy, Gayathri G.; Surendran, Arun; Jaleel, Abdul; Sakuntala, Manjula

    2016-01-01

    Black pepper (Piper nigrum L.), a tropical spice crop of global acclaim, is susceptible to Phytophthora capsici, an oomycete pathogen which causes the highly destructive foot rot disease. A systematic understanding of this phytopathosystem has not been possible owing to lack of genome or proteome information. In this study, we explain an integrated transcriptome-assisted label-free quantitative proteomics pipeline to study the basal immune components of black pepper when challenged with P. capsici. We report a global identification of 532 novel leaf proteins from black pepper, of which 518 proteins were functionally annotated using BLAST2GO tool. A label-free quantitation of the protein datasets revealed 194 proteins common to diseased and control protein datasets of which 22 proteins showed significant up-regulation and 134 showed significant down-regulation. Ninety-three proteins were identified exclusively on P. capsici infected leaf tissues and 245 were expressed only in mock (control) infected samples. In-depth analysis of our data gives novel insights into the regulatory pathways of black pepper which are compromised during the infection. Differential down-regulation was observed in a number of critical pathways like carbon fixation in photosynthetic organism, cyano-amino acid metabolism, fructose, and mannose metabolism, glutathione metabolism, and phenylpropanoid biosynthesis. The proteomics results were validated with real-time qRT-PCR analysis. We were also able to identify the complete coding sequences for all the proteins of which few selected genes were cloned and sequence characterized for further confirmation. Our study is the first report of a quantitative proteomics dataset in black pepper which provides convincing evidence on the effectiveness of a transcriptome-based label-free proteomics approach for elucidating the host response to biotic stress in a non-model spice crop like P. nigrum, for which genome information is unavailable. Our dataset will serve as a useful resource for future studies in this plant. Data are available via ProteomeXchange with identifier PXD003887. PMID:27379110

  14. Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum-Phytophthora capsici Phytopathosystem.

    PubMed

    Mahadevan, Chidambareswaren; Krishnan, Anu; Saraswathy, Gayathri G; Surendran, Arun; Jaleel, Abdul; Sakuntala, Manjula

    2016-01-01

    Black pepper (Piper nigrum L.), a tropical spice crop of global acclaim, is susceptible to Phytophthora capsici, an oomycete pathogen which causes the highly destructive foot rot disease. A systematic understanding of this phytopathosystem has not been possible owing to lack of genome or proteome information. In this study, we explain an integrated transcriptome-assisted label-free quantitative proteomics pipeline to study the basal immune components of black pepper when challenged with P. capsici. We report a global identification of 532 novel leaf proteins from black pepper, of which 518 proteins were functionally annotated using BLAST2GO tool. A label-free quantitation of the protein datasets revealed 194 proteins common to diseased and control protein datasets of which 22 proteins showed significant up-regulation and 134 showed significant down-regulation. Ninety-three proteins were identified exclusively on P. capsici infected leaf tissues and 245 were expressed only in mock (control) infected samples. In-depth analysis of our data gives novel insights into the regulatory pathways of black pepper which are compromised during the infection. Differential down-regulation was observed in a number of critical pathways like carbon fixation in photosynthetic organism, cyano-amino acid metabolism, fructose, and mannose metabolism, glutathione metabolism, and phenylpropanoid biosynthesis. The proteomics results were validated with real-time qRT-PCR analysis. We were also able to identify the complete coding sequences for all the proteins of which few selected genes were cloned and sequence characterized for further confirmation. Our study is the first report of a quantitative proteomics dataset in black pepper which provides convincing evidence on the effectiveness of a transcriptome-based label-free proteomics approach for elucidating the host response to biotic stress in a non-model spice crop like P. nigrum, for which genome information is unavailable. Our dataset will serve as a useful resource for future studies in this plant. Data are available via ProteomeXchange with identifier PXD003887.

  15. SNP Design from 454 Sequencing of Podosphaera plantaginis Transcriptome Reveals a Genetically Diverse Pathogen Metapopulation with High Levels of Mixed-Genotype Infection

    PubMed Central

    Tollenaere, Charlotte; Susi, Hanna; Nokso-Koivisto, Jussi; Koskinen, Patrik; Tack, Ayco; Auvinen, Petri; Paulin, Lars; Frilander, Mikko J.; Lehtonen, Rainer; Laine, Anna-Liisa

    2012-01-01

    Background Molecular tools may greatly improve our understanding of pathogen evolution and epidemiology but technical constraints have hindered the development of genetic resources for parasites compared to free-living organisms. This study aims at developing molecular tools for Podosphaera plantaginis, an obligate fungal pathogen of Plantago lanceolata. This interaction has been intensively studied in the Åland archipelago of Finland with epidemiological data collected from over 4,000 host populations annually since year 2001. Principal Findings A cDNA library of a pooled sample of fungal conidia was sequenced on the 454 GS-FLX platform. Over 549,411 reads were obtained and annotated into 45,245 contigs. Annotation data was acquired for 65.2% of the assembled sequences. The transcriptome assembly was screened for SNP loci, as well as for functionally important genes (mating-type genes and potential effector proteins). A genotyping assay of 27 SNP loci was designed and tested on 380 infected leaf samples from 80 populations within the Åland archipelago. With this panel we identified 85 multilocus genotypes (MLG) with uneven frequencies across the pathogen metapopulation. Approximately half of the sampled populations contain polymorphism. Our genotyping protocol revealed mixed-genotype infection within a single host leaf to be common. Mixed infection has been proposed as one of the main drivers of pathogen evolution, and hence may be an important process in this pathosystem. Significance The developed SNP panel offers exciting research perspectives for future studies in this well-characterized pathosystem. Also, the transcriptome provides an invaluable novel genomic resource for powdery mildews, which cause significant yield losses on commercially important crops annually. Furthermore, the features that render genetic studies in this system a challenge are shared with the majority of obligate parasitic species, and hence our results provide methodological insights from SNP calling to field sampling protocols for a wide range of biological systems. PMID:23300684

  16. De novo assembly and characterization of the leaf, bud, and fruit transcriptome from the vulnerable tree Juglans mandshurica for the development of 20 new microsatellite markers using Illumina sequencing

    Treesearch

    Zhuang Hu; Tian Zhang; Xiao-Xiao Gao; Yang Wang; Qiang Zhang; Hui-Juan Zhou; Gui-Fang Zhao; Ma-Li Wang; Keith E. Woeste; Peng Zhao

    2016-01-01

    Manchurian walnut (Juglans mandshurica Maxim.) is a vulnerable, temperate deciduous tree valued for its wood and nut, but transcriptomic and genomic data for the species are very limited. Next generation sequencing (NGS) has made it possible to develop molecular markers for this species rapidly and efficiently. Our goal is to use transcriptome...

  17. A local maximum in gibberellin levels regulates maize leaf growth by spatial control of cell division.

    PubMed

    Nelissen, Hilde; Rymen, Bart; Jikumaru, Yusuke; Demuynck, Kirin; Van Lijsebettens, Mieke; Kamiya, Yuji; Inzé, Dirk; Beemster, Gerrit T S

    2012-07-10

    Plant growth rate is largely determined by the transition between the successive phases of cell division and expansion. A key role for hormone signaling in determining this transition was inferred from genetic approaches and transcriptome analysis in the Arabidopsis root tip. We used the developmental gradient at the maize leaf base as a model to study this transition, because it allows a direct comparison between endogenous hormone concentrations and the transitions between dividing, expanding, and mature tissue. Concentrations of auxin and cytokinins are highest in dividing tissues, whereas bioactive gibberellins (GAs) show a peak at the transition zone between the division and expansion zone. Combined metabolic and transcriptomic profiling revealed that this GA maximum is established by GA biosynthesis in the division zone (DZ) and active GA catabolism at the onset of the expansion zone. Mutants defective in GA synthesis and signaling, and transgenic plants overproducing GAs, demonstrate that altering GA levels specifically affects the size of the DZ, resulting in proportional changes in organ growth rates. This work thereby provides a novel molecular mechanism for the regulation of the transition from cell division to expansion that controls organ growth and size. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. De novo transcriptome sequencing of two cultivated jute species under salinity stress

    PubMed Central

    Dai, Zhigang; Tang, Qing; Cheng, Chaohua; Xu, Ying

    2017-01-01

    Soil salinity, a major environmental stress, reduces agricultural productivity by restricting plant development and growth. Jute (Corchorus spp.), a commercially important bast fiber crop, includes two commercially cultivated species, Corchorus capsularis and Corchorus olitorius. We conducted high-throughput transcriptome sequencing of 24 C. capsularis and C. olitorius samples under salt stress and found 127 common differentially expressed genes (DEGs); additionally, 4489 and 492 common DEGs were identified in the root and leaf tissues, respectively, of both Corchorus species. Further, 32, 196, and 11 common differentially expressed transcription factors (DTFs) were detected in the leaf, root, or both tissues, respectively. Several Gene Ontology (GO) terms were enriched in NY and YY. A Kyoto Encyclopedia of Genes and Genomes analysis revealed numerous DEGs in both species. Abscisic acid and cytokinin signal pathways enriched respectively about 20 DEGs in leaves and roots of both NY and YY. The Ca2+, mitogen-activated protein kinase signaling and oxidative phosphorylation pathways were also found to be related to the plant response to salt stress, as evidenced by the DEGs in the roots of both species. These results provide insight into salt stress response mechanisms in plants as well as a basis for future breeding of salt-tolerant cultivars. PMID:29059212

  19. DNA sequences of Pima (Gossypium barbadense L.) cotton leaf for examining transcriptome diversity and SNP biomarker discovery

    USDA-ARS?s Scientific Manuscript database

    As an initial step to explore the transcriptome genetic diversity and to discover single nucleotide polymorphic (SNP)-biomarkers for marker assisted breeding within Pima (Gossypium barbadense L.) cotton, leaves from 25 day plants of three diverse genotypes were used to develop cDNA libraries. Using ...

  20. Transcriptome sequencing of different narrow-leafed lupin tissue types provides a comprehensive uni-gene assembly and extensive gene-based molecular markers

    PubMed Central

    Kamphuis, Lars G; Hane, James K; Nelson, Matthew N; Gao, Lingling; Atkins, Craig A; Singh, Karam B

    2015-01-01

    Narrow-leafed lupin (NLL; Lupinus angustifolius L.) is an important grain legume crop that is valuable for sustainable farming and is becoming recognized as a human health food. NLL breeding is directed at improving grain production, disease resistance, drought tolerance and health benefits. However, genetic and genomic studies have been hindered by a lack of extensive genomic resources for the species. Here, the generation, de novo assembly and annotation of transcriptome datasets derived from five different NLL tissue types of the reference accession cv. Tanjil are described. The Tanjil transcriptome was compared to transcriptomes of an early domesticated cv. Unicrop, a wild accession P27255, as well as accession 83A:476, together being the founding parents of two recombinant inbred line (RIL) populations. In silico predictions for transcriptome-derived gene-based length and SNP polymorphic markers were conducted and corroborated using a survey assembly sequence for NLL cv. Tanjil. This yielded extensive indel and SNP polymorphic markers for the two RIL populations. A total of 335 transcriptome-derived markers and 66 BAC-end sequence-derived markers were evaluated, and 275 polymorphic markers were selected to genotype the reference NLL 83A:476 × P27255 RIL population. This significantly improved the completeness, marker density and quality of the reference NLL genetic map. PMID:25060816

  1. Transcriptome Analysis of Salt Tolerant Common Bean (Phaseolus vulgaris L.) under Saline Conditions

    PubMed Central

    Hiz, Mahmut Can; Canher, Balkan; Niron, Harun; Turet, Muge

    2014-01-01

    Salinity is one of the important abiotic stress factors that limit crop production. Common bean, Phaseolus vulgaris L., a major protein source in developing countries, is highly affected by soil salinity and the information on genes that play a role in salt tolerance is scarce. We aimed to identify differentially expressed genes (DEGs) and related pathways by comprehensive analysis of transcriptomes of both root and leaf tissues of the tolerant genotype grown under saline and control conditions in hydroponic system. We have generated a total of 158 million high-quality reads which were assembled into 83,774 all-unigenes with a mean length of 813 bp and N50 of 1,449 bp. Among the all-unigenes, 58,171 were assigned with Nr annotations after homology analyses. It was revealed that 6,422 and 4,555 all-unigenes were differentially expressed upon salt stress in leaf and root tissues respectively. Validation of the RNA-seq quantifications (RPKM values) was performed by qRT-PCR (Quantitative Reverse Transcription PCR) analyses. Enrichment analyses of DEGs based on GO and KEGG databases have shown that both leaf and root tissues regulate energy metabolism, transmembrane transport activity, and secondary metabolites to cope with salinity. A total of 2,678 putative common bean transcription factors were identified and classified under 59 transcription factor families; among them 441 were salt responsive. The data generated in this study will help in understanding the fundamentals of salt tolerance in common bean and will provide resources for functional genomic studies. PMID:24651267

  2. De novo characterization of fall dormant and nondormant alfalfa (Medicago sativa L.) leaf transcriptome and identification of candidate genes related to fall dormancy.

    PubMed

    Zhang, Senhao; Shi, Yinghua; Cheng, Ningning; Du, Hongqi; Fan, Wenna; Wang, Chengzhang

    2015-01-01

    Alfalfa (Medicago sativa L.) is one of the most widely cultivated perennial forage legumes worldwide. Fall dormancy is an adaptive character related to the biomass production and winter survival in alfalfa. The physiological, biochemical and molecular mechanisms causing fall dormancy and the related genes have not been well studied. In this study, we sequenced two standard varieties of alfalfa (dormant and non-dormant) at two time points and generated approximately 160 million high quality paired-end sequence reads using sequencing by synthesis (SBS) technology. The de novo transcriptome assembly generated a set of 192,875 transcripts with an average length of 856 bp representing about 165.1 Mb of the alfalfa leaf transcriptome. After assembly, 111,062 (57.6%) transcripts were annotated against the NCBI non-redundant database. A total of 30,165 (15.6%) transcripts were mapped to 323 Kyoto Encyclopedia of Genes and Genomes pathways. We also identified 41,973 simple sequence repeats, which can be used to generate markers for alfalfa, and 1,541 transcription factors were identified across 1,350 transcripts. Gene expression between dormant and non-dormant alfalfa at different time points were performed, and we identified several differentially expressed genes potentially related to fall dormancy. The Gene Ontology and pathways information were also identified. We sequenced and assembled the leaf transcriptome of alfalfa related to fall dormancy, and also identified some genes of interest involved in the fall dormancy mechanism. Thus, our research focused on studying fall dormancy in alfalfa through transcriptome sequencing. The sequencing and gene expression data generated in this study may be used further to elucidate the complete mechanisms governing fall dormancy in alfalfa.

  3. De Novo Characterization of Fall Dormant and Nondormant Alfalfa (Medicago sativa L.) Leaf Transcriptome and Identification of Candidate Genes Related to Fall Dormancy

    PubMed Central

    Cheng, Ningning; Du, Hongqi; Fan, Wenna; Wang, Chengzhang

    2015-01-01

    Alfalfa (Medicago sativa L.) is one of the most widely cultivated perennial forage legumes worldwide. Fall dormancy is an adaptive character related to the biomass production and winter survival in alfalfa. The physiological, biochemical and molecular mechanisms causing fall dormancy and the related genes have not been well studied. In this study, we sequenced two standard varieties of alfalfa (dormant and non-dormant) at two time points and generated approximately 160 million high quality paired-end sequence reads using sequencing by synthesis (SBS) technology. The de novo transcriptome assembly generated a set of 192,875 transcripts with an average length of 856 bp representing about 165.1 Mb of the alfalfa leaf transcriptome. After assembly, 111,062 (57.6%) transcripts were annotated against the NCBI non-redundant database. A total of 30,165 (15.6%) transcripts were mapped to 323 Kyoto Encyclopedia of Genes and Genomes pathways. We also identified 41,973 simple sequence repeats, which can be used to generate markers for alfalfa, and 1,541 transcription factors were identified across 1,350 transcripts. Gene expression between dormant and non-dormant alfalfa at different time points were performed, and we identified several differentially expressed genes potentially related to fall dormancy. The Gene Ontology and pathways information were also identified. We sequenced and assembled the leaf transcriptome of alfalfa related to fall dormancy, and also identified some genes of interest involved in the fall dormancy mechanism. Thus, our research focused on studying fall dormancy in alfalfa through transcriptome sequencing. The sequencing and gene expression data generated in this study may be used further to elucidate the complete mechanisms governing fall dormancy in alfalfa. PMID:25799491

  4. Histological and Transcriptomic Analysis during Bulbil Formation in Lilium lancifolium

    PubMed Central

    Yang, Panpan; Xu, Leifeng; Xu, Hua; Tang, Yuchao; He, Guoren; Cao, Yuwei; Feng, Yayan; Yuan, Suxia; Ming, Jun

    2017-01-01

    Aerial bulbils are an important propagative organ, playing an important role in population expansion. However, the detailed gene regulatory patterns and molecular mechanism underlying bulbil formation remain unclear. Triploid Lilium lancifolium, which develops many aerial bulbils on the leaf axils of middle-upper stem, is a useful species for investigating bulbil formation. To investigate the mechanism of bulbil formation in triploid L. lancifolium, we performed histological and transcriptomic analyses using samples of leaf axils located in the upper and lower stem of triploid L. lancifolium during bulbil formation. Histological results indicated that the bulbils of triploid L. lancifolium are derived from axillary meristems that initiate de novo from cells on the adaxial side of the petiole base. Transcriptomic analysis generated ~650 million high-quality reads and 11,871 differentially expressed genes (DEGs). Functional analysis showed that the DEGs were significantly enriched in starch and sucrose metabolism and plant hormone signal transduction. Starch synthesis and accumulation likely promoted the initiation of upper bulbils in triploid L. lancifolium. Hormone-associated pathways exhibited distinct patterns of change in each sample. Auxin likely promoted the initiation of bulbils and then inhibited further bulbil formation. High biosynthesis and low degradation of cytokinin might have led to bulbil formation in the upper leaf axil. The present study achieved a global transcriptomic analysis focused on gene expression changes and pathways' enrichment during upper bulbil formation in triploid L. lancifolium, laying a solid foundation for future molecular studies on bulbil formation. PMID:28912794

  5. De novo transcriptome assembly of drought tolerant CAM plants, Agave deserti and Agave tequilana.

    PubMed

    Gross, Stephen M; Martin, Jeffrey A; Simpson, June; Abraham-Juarez, María Jazmín; Wang, Zhong; Visel, Axel

    2013-08-19

    Agaves are succulent monocotyledonous plants native to xeric environments of North America. Because of their adaptations to their environment, including crassulacean acid metabolism (CAM, a water-efficient form of photosynthesis), and existing technologies for ethanol production, agaves have gained attention both as potential lignocellulosic bioenergy feedstocks and models for exploring plant responses to abiotic stress. However, the lack of comprehensive Agave sequence datasets limits the scope of investigations into the molecular-genetic basis of Agave traits. Here, we present comprehensive, high quality de novo transcriptome assemblies of two Agave species, A. tequilana and A. deserti, built from short-read RNA-seq data. Our analyses support completeness and accuracy of the de novo transcriptome assemblies, with each species having a minimum of approximately 35,000 protein-coding genes. Comparison of agave proteomes to those of additional plant species identifies biological functions of gene families displaying sequence divergence in agave species. Additionally, a focus on the transcriptomics of the A. deserti juvenile leaf confirms evolutionary conservation of monocotyledonous leaf physiology and development along the proximal-distal axis. Our work presents a comprehensive transcriptome resource for two Agave species and provides insight into their biology and physiology. These resources are a foundation for further investigation of agave biology and their improvement for bioenergy development.

  6. De novo transcriptome assembly of drought tolerant CAM plants, Agave deserti and Agave tequilana

    PubMed Central

    2013-01-01

    Background Agaves are succulent monocotyledonous plants native to xeric environments of North America. Because of their adaptations to their environment, including crassulacean acid metabolism (CAM, a water-efficient form of photosynthesis), and existing technologies for ethanol production, agaves have gained attention both as potential lignocellulosic bioenergy feedstocks and models for exploring plant responses to abiotic stress. However, the lack of comprehensive Agave sequence datasets limits the scope of investigations into the molecular-genetic basis of Agave traits. Results Here, we present comprehensive, high quality de novo transcriptome assemblies of two Agave species, A. tequilana and A. deserti, built from short-read RNA-seq data. Our analyses support completeness and accuracy of the de novo transcriptome assemblies, with each species having a minimum of approximately 35,000 protein-coding genes. Comparison of agave proteomes to those of additional plant species identifies biological functions of gene families displaying sequence divergence in agave species. Additionally, a focus on the transcriptomics of the A. deserti juvenile leaf confirms evolutionary conservation of monocotyledonous leaf physiology and development along the proximal-distal axis. Conclusions Our work presents a comprehensive transcriptome resource for two Agave species and provides insight into their biology and physiology. These resources are a foundation for further investigation of agave biology and their improvement for bioenergy development. PMID:23957668

  7. Physiological Characterization and Comparative Transcriptome Analysis of White and Green Leaves of Ananas comosus var. bracteatus

    PubMed Central

    Li, Xia; Kanakala, Surapathrudu; He, Yehua; Zhong, Xiaolan; Yu, Sanmiao; Li, Ruixue; Sun, Lingxia; Ma, Jun

    2017-01-01

    Leaf coloration is one of the most important and attractive characteristics of Ananas comosus var. bracteatus. The chimeric character is not stable during the in vitro tissue culturing. Many regenerated plants lost economic values for the loss of the chimeric character of leaves. In order to reveal the molecular mechanisms involved in the albino phenotype of the leaf cells, the physiological and transcriptional differences between complete white (CWh) and green (CGr) leaf cells of A. comosus var. bracteatus were analyzed. A total of 1,431 differentially expressed unigenes (DEGs) in CGr and CWh leaves were identified using RNA-seq. A comparison to the COG, GO and KEGG annotations revealed DEGs involved in chlorophyll biosynthesis, chloroplast development and photosynthesis. Furthermore, the measurement of main precursors of chlorophyll in the CWh leaves confirmed that the rate-limiting step in chlorophyll biosynthesis, and thus the cause of the albino phenotype of the white cells, was the conversion of pyrrole porphobilinogen (PBG) to uroporphyrinogen III (Uro III). The enzyme activity of porphobilinogen deaminase (PBGD) and uroporporphyrinogn III synthase (UROS), which catalyze the transition of PBG to Uro III, was significantly decreased in the CWh leaves. Our data showed the transcriptional differences between the CWh and CGr plants and characterized key steps in chlorophyll biosynthesis of the CWh leaves. These results contribute to our understanding of the mechanisms and regulation of pigment biosynthesis in the CWh leaf cells of A. comosus var. bracteatus. PMID:28095462

  8. Physiological Characterization and Comparative Transcriptome Analysis of White and Green Leaves of Ananas comosus var. bracteatus.

    PubMed

    Li, Xia; Kanakala, Surapathrudu; He, Yehua; Zhong, Xiaolan; Yu, Sanmiao; Li, Ruixue; Sun, Lingxia; Ma, Jun

    2017-01-01

    Leaf coloration is one of the most important and attractive characteristics of Ananas comosus var. bracteatus. The chimeric character is not stable during the in vitro tissue culturing. Many regenerated plants lost economic values for the loss of the chimeric character of leaves. In order to reveal the molecular mechanisms involved in the albino phenotype of the leaf cells, the physiological and transcriptional differences between complete white (CWh) and green (CGr) leaf cells of A. comosus var. bracteatus were analyzed. A total of 1,431 differentially expressed unigenes (DEGs) in CGr and CWh leaves were identified using RNA-seq. A comparison to the COG, GO and KEGG annotations revealed DEGs involved in chlorophyll biosynthesis, chloroplast development and photosynthesis. Furthermore, the measurement of main precursors of chlorophyll in the CWh leaves confirmed that the rate-limiting step in chlorophyll biosynthesis, and thus the cause of the albino phenotype of the white cells, was the conversion of pyrrole porphobilinogen (PBG) to uroporphyrinogen III (Uro III). The enzyme activity of porphobilinogen deaminase (PBGD) and uroporporphyrinogn III synthase (UROS), which catalyze the transition of PBG to Uro III, was significantly decreased in the CWh leaves. Our data showed the transcriptional differences between the CWh and CGr plants and characterized key steps in chlorophyll biosynthesis of the CWh leaves. These results contribute to our understanding of the mechanisms and regulation of pigment biosynthesis in the CWh leaf cells of A. comosus var. bracteatus.

  9. Transcriptomic Analysis of Calonectria pseudoreteaudii during Various Stages of Eucalyptus Infection

    PubMed Central

    Ye, Xiaozhen; Liu, Hongyi; Jin, Yajie; Guo, Mengmeng; Huang, Aizhen; Chen, Quanzhu; Guo, Wenshuo; Zhang, Feiping; Feng, Lizhen

    2017-01-01

    Eucalyptus leaf blight caused by Calonectria spp. is a serious disease in Eucalyptus seedling and plantations. However, the molecular mechanisms of the infection process and pathogenesis of Calonectria to Eucalyptus is not well-studied. In this study, we analyzed the transcriptomes of C. pseudoreteaudii at three stages of Eucalyptus leaf infection, and in mycelium grown in potato dextrose broth using Illumina RNA-Seq technology. We identified 161 differentially expressed genes between C. pseudoreteaudii from leaf and mycelium grown in potato dextrose broth. GO and KEGG enrichment analyses of these genes suggested that they were mainly involved in oxidoreductase activity, hydrolase activity, and transmembrane transporter activity. Most of the differentially expressed genes at the early infection stage were upregulated. These upregulated genes were mainly involved in cell wall hydrolysis and toxin synthesis, suggesting a role for toxin and cell wall hydrolases in the establishment of Calonectria leaf blight. Genes related to detoxification of phytoalexins were continually upregulated during infection. The candidate effectors and putative pathogenicity determinants identified in this study will help in the functional analysis of C. pseudoreteaudii virulence and pathogenicity. PMID:28072879

  10. Transcriptomic Analysis of Calonectria pseudoreteaudii during Various Stages of Eucalyptus Infection.

    PubMed

    Ye, Xiaozhen; Liu, Hongyi; Jin, Yajie; Guo, Mengmeng; Huang, Aizhen; Chen, Quanzhu; Guo, Wenshuo; Zhang, Feiping; Feng, Lizhen

    2017-01-01

    Eucalyptus leaf blight caused by Calonectria spp. is a serious disease in Eucalyptus seedling and plantations. However, the molecular mechanisms of the infection process and pathogenesis of Calonectria to Eucalyptus is not well-studied. In this study, we analyzed the transcriptomes of C. pseudoreteaudii at three stages of Eucalyptus leaf infection, and in mycelium grown in potato dextrose broth using Illumina RNA-Seq technology. We identified 161 differentially expressed genes between C. pseudoreteaudii from leaf and mycelium grown in potato dextrose broth. GO and KEGG enrichment analyses of these genes suggested that they were mainly involved in oxidoreductase activity, hydrolase activity, and transmembrane transporter activity. Most of the differentially expressed genes at the early infection stage were upregulated. These upregulated genes were mainly involved in cell wall hydrolysis and toxin synthesis, suggesting a role for toxin and cell wall hydrolases in the establishment of Calonectria leaf blight. Genes related to detoxification of phytoalexins were continually upregulated during infection. The candidate effectors and putative pathogenicity determinants identified in this study will help in the functional analysis of C. pseudoreteaudii virulence and pathogenicity.

  11. De novo transcriptome assembly and characterization of nine tissues of Lonicera japonica to identify potential candidate genes involved in chlorogenic acid, luteolosides, and secoiridoid biosynthesis pathways.

    PubMed

    Rai, Amit; Kamochi, Hidetaka; Suzuki, Hideyuki; Nakamura, Michimi; Takahashi, Hiroki; Hatada, Tomoki; Saito, Kazuki; Yamazaki, Mami

    2017-01-01

    Lonicera japonica is one of the most important medicinal plants with applications in traditional Chinese and Japanese medicine for thousands of years. Extensive studies on the constituents of L. japonica extracts have revealed an accumulation of pharmaceutically active metabolite classes, such as chlorogenic acid, luteolin and other flavonoids, and secoiridoids, which impart characteristic medicinal properties. Despite being a rich source of pharmaceutically active metabolites, little is known about the biosynthetic enzymes involved, and their expression profile across different tissues of L. japonica. In this study, we performed de novo transcriptome assembly for L. japonica, representing transcripts from nine different tissues. A total of 22 Gbps clean RNA-seq reads from nine tissues of L. japonica were used, resulting in 243,185 unigenes, with 99,938 unigenes annotated based on a homology search using blastx against the NCBI-nr protein database. Unsupervised principal component analysis and correlation studies using transcript expression data from all nine tissues of L. japonica showed relationships between tissues, explaining their association at different developmental stages. Homologs for all genes associated with chlorogenic acid, luteolin, and secoiridoid biosynthesis pathways were identified in the L. japonica transcriptome assembly. Expression of unigenes associated with chlorogenic acid was enriched in stems and leaf-2, unigenes from luteolin were enriched in stems and flowers, while unigenes from secoiridoid metabolic pathways were enriched in leaf-1 and shoot apex. Our results showed that different tissues of L. japonica are enriched with sets of unigenes associated with specific pharmaceutically important metabolic pathways and, therefore, possess unique medicinal properties. The present study will serve as a resource for future attempts for functional characterization of enzyme coding genes within key metabolic processes.

  12. Transcriptome and proteomic analyses reveal multiple differences associated with chloroplast development in the spaceflight-induced wheat albino mutant mta.

    PubMed

    Shi, Kui; Gu, Jiayu; Guo, Huijun; Zhao, Linshu; Xie, Yongdun; Xiong, Hongchun; Li, Junhui; Zhao, Shirong; Song, Xiyun; Liu, Luxiang

    2017-01-01

    Chloroplast development is an integral part of plant survival and growth, and occurs in parallel with chlorophyll biosynthesis. However, little is known about the mechanisms underlying chloroplast development in hexaploid wheat. Here, we obtained a spaceflight-induced wheat albino mutant mta. Chloroplast ultra-structural observation showed that chloroplasts of mta exhibit abnormal morphology and distribution compared to wild type. Photosynthetic pigments content was also significantly decreased in mta. Transcriptome and chloroplast proteome profiling of mta and wild type were done to identify differentially expressed genes (DEGs) and proteins (DEPs), respectively. In total 4,588 DEGs including 1,980 up- and 2,608 down-regulated, and 48 chloroplast DEPs including 15 up- and 33 down-regulated were identified in mta. Classification of DEGs revealed that most were involved in chloroplast development, chlorophyll biosynthesis, or photosynthesis. Besides, transcription factors such as PIF3, GLK and MYB which might participate in those pathways were also identified. The correlation analysis between DEGs and DEPs revealed that the transcript-to-protein in abundance was functioned into photosynthesis and chloroplast relevant groups. Real time qPCR analysis validated that the expression level of genes encoding photosynthetic proteins was significantly decreased in mta. Together, our results suggest that the molecular mechanism for albino leaf color formation in mta is a thoroughly regulated and complicated process. The combined analysis of transcriptome and proteome afford comprehensive information for further research on chloroplast development mechanism in wheat. And spaceflight provides a potential means for mutagenesis in crop breeding.

  13. Sequencing of transcriptomes from two Miscanthus species reveals functional specificity in rhizomes, and clarifies evolutionary relationships

    PubMed Central

    2014-01-01

    Background Miscanthus is a promising biomass crop for temperate regions. Despite the increasing interest in this plant, limited sequence information has constrained research into its biology, physiology, and breeding. The whole genome transcriptomes of M. sinensis and M. sacchariflorus presented in this study may provide good resources to understand functional compositions of two important Miscanthus genomes and their evolutionary relationships. Results For M. sinensis, a total of 457,891 and 512,950 expressed sequence tags (ESTs) were produced from leaf and rhizome tissues, respectively, which were assembled into 12,166 contigs and 89,648 singletons for leaf, and 13,170 contigs and 112,138 singletons for rhizome. For M. sacchariflorus, a total of 288,806 and 267,952 ESTs from leaf and rhizome tissues, respectively, were assembled into 8,732 contigs and 66,881 singletons for leaf, and 8,104 contigs and 63,212 singletons for rhizome. Based on the distributions of synonymous nucleotide substitution (Ks), sorghum and Miscanthus diverged about 6.2 million years ago (MYA), Saccharum and Miscanthus diverged 4.6 MYA, and M. sinensis and M. sacchariflorus diverged 1.5 MYA. The pairwise alignment of predicted protein sequences from sorghum-Miscanthus and two Miscanthus species found a total of 43,770 and 35,818 nsSNPs, respectively. The impacts of striking mutations found by nsSNPs were much lower between sorghum and Miscanthus than those between the two Miscanthus species, perhaps as a consequence of the much higher level of gene duplication in Miscanthus and resulting ability to buffer essential functions against disturbance. Conclusions The ESTs generated in the present study represent a significant addition to Miscanthus functional genomics resources, permitting us to discover some candidate genes associated with enhanced biomass production. Ks distributions based on orthologous ESTs may serve as a guideline for future research into the evolution of Miscanthus species as well as its close relatives sorghum and Saccharum. PMID:24884969

  14. Sequencing of transcriptomes from two Miscanthus species reveals functional specificity in rhizomes, and clarifies evolutionary relationships.

    PubMed

    Kim, Changsoo; Lee, Tae-Ho; Guo, Hui; Chung, Sung Jin; Paterson, Andrew H; Kim, Do-Soon; Lee, Geung-Joo

    2014-05-18

    Miscanthus is a promising biomass crop for temperate regions. Despite the increasing interest in this plant, limited sequence information has constrained research into its biology, physiology, and breeding. The whole genome transcriptomes of M. sinensis and M. sacchariflorus presented in this study may provide good resources to understand functional compositions of two important Miscanthus genomes and their evolutionary relationships. For M. sinensis, a total of 457,891 and 512,950 expressed sequence tags (ESTs) were produced from leaf and rhizome tissues, respectively, which were assembled into 12,166 contigs and 89,648 singletons for leaf, and 13,170 contigs and 112,138 singletons for rhizome. For M. sacchariflorus, a total of 288,806 and 267,952 ESTs from leaf and rhizome tissues, respectively, were assembled into 8,732 contigs and 66,881 singletons for leaf, and 8,104 contigs and 63,212 singletons for rhizome. Based on the distributions of synonymous nucleotide substitution (Ks), sorghum and Miscanthus diverged about 6.2 million years ago (MYA), Saccharum and Miscanthus diverged 4.6 MYA, and M. sinensis and M. sacchariflorus diverged 1.5 MYA. The pairwise alignment of predicted protein sequences from sorghum-Miscanthus and two Miscanthus species found a total of 43,770 and 35,818 nsSNPs, respectively. The impacts of striking mutations found by nsSNPs were much lower between sorghum and Miscanthus than those between the two Miscanthus species, perhaps as a consequence of the much higher level of gene duplication in Miscanthus and resulting ability to buffer essential functions against disturbance. The ESTs generated in the present study represent a significant addition to Miscanthus functional genomics resources, permitting us to discover some candidate genes associated with enhanced biomass production. Ks distributions based on orthologous ESTs may serve as a guideline for future research into the evolution of Miscanthus species as well as its close relatives sorghum and Saccharum.

  15. De Novo Assembly and Characterization of the Transcriptome of the Chinese Medicinal Herb, Gentiana rigescens

    PubMed Central

    Zhang, Xiaodong; Allan, Andrew C.; Li, Caixia; Wang, Yuanzhong; Yao, Qiuyang

    2015-01-01

    Gentiana rigescens is an important medicinal herb in China. The main validated medicinal component gentiopicroside is synthesized in shoots, but is mainly found in the plant’s roots. The gentiopicroside biosynthetic pathway and its regulatory control remain to be elucidated. Genome resources of gentian are limited. Next-generation sequencing (NGS) technologies can aid in supplying global gene expression profiles. In this study we present sequence and transcript abundance data for the root and leaf transcriptome of G. rigescens, obtained using the Illumina Hiseq2000. Over fifty million clean reads were obtained from leaf and root libraries. This yields 76,717 unigenes with an average length of 753 bp. Among these, 33,855 unigenes were identified as putative homologs of annotated sequences in public protein and nucleotide databases. Digital abundance analysis identified 3306 unigenes differentially enriched between leaf and root. Unigenes found in both tissues were categorized according to their putative functional categories. Of the differentially expressed genes, over 130 were annotated as related to terpenoid biosynthesis. This work is the first study of global transcriptome analyses in gentian. These sequences and putative functional data comprise a resource for future investigation of terpenoid biosynthesis in Gentianaceae species and annotation of the gentiopicroside biosynthetic pathway and its regulatory mechanisms. PMID:26006235

  16. Effects of Drought on Gene Expression in Maize Reproductive and Leaf Meristem Tissue Revealed by RNA-Seq1[W][OA

    PubMed Central

    Kakumanu, Akshay; Ambavaram, Madana M.R.; Klumas, Curtis; Krishnan, Arjun; Batlang, Utlwang; Myers, Elijah; Grene, Ruth; Pereira, Andy

    2012-01-01

    Drought stress affects cereals especially during the reproductive stage. The maize (Zea mays) drought transcriptome was studied using RNA-Seq analysis to compare drought-treated and well-watered fertilized ovary and basal leaf meristem tissue. More drought-responsive genes responded in the ovary compared with the leaf meristem. Gene Ontology enrichment analysis revealed a massive decrease in transcript abundance of cell division and cell cycle genes in the drought-stressed ovary only. Among Gene Ontology categories related to carbohydrate metabolism, changes in starch and Suc metabolism-related genes occurred in the ovary, consistent with a decrease in starch levels, and in Suc transporter function, with no comparable changes occurring in the leaf meristem. Abscisic acid (ABA)-related processes responded positively, but only in the ovaries. Related responses suggested the operation of low glucose sensing in drought-stressed ovaries. The data are discussed in the context of the susceptibility of maize kernel to drought stress leading to embryo abortion and the relative robustness of dividing vegetative tissue taken at the same time from the same plant subjected to the same conditions. Our working hypothesis involves signaling events associated with increased ABA levels, decreased glucose levels, disruption of ABA/sugar signaling, activation of programmed cell death/senescence through repression of a phospholipase C-mediated signaling pathway, and arrest of the cell cycle in the stressed ovary at 1 d after pollination. Increased invertase levels in the stressed leaf meristem, on the other hand, resulted in that tissue maintaining hexose levels at an “unstressed” level, and at lower ABA levels, which was correlated with successful resistance to drought stress. PMID:22837360

  17. The Huperzia selago Shoot Tip Transcriptome Sheds New Light on the Evolution of Leaves

    PubMed Central

    Evkaikina, Anastasiia I.; Berke, Lidija; Romanova, Marina A.; Proux-Wéra, Estelle; Ivanova, Alexandra N.; Rydin, Catarina; Voitsekhovskaja, Olga V.

    2017-01-01

    Abstract Lycopodiophyta—consisting of three orders, Lycopodiales, Isoetales and Selaginellales, with different types of shoot apical meristems (SAMs)—form the earliest branch among the extant vascular plants. They represent a sister group to all other vascular plants, from which they differ in that their leaves are microphylls—that is, leaves with a single, unbranched vein, emerging from the protostele without a leaf gap—not megaphylls. All leaves represent determinate organs originating on the flanks of indeterminate SAMs. Thus, leaf formation requires the suppression of indeterminacy, that is, of KNOX transcription factors. In seed plants, this is mediated by different groups of transcription factors including ARP and YABBY. We generated a shoot tip transcriptome of Huperzia selago (Lycopodiales) to examine the genes involved in leaf formation. Our H. selago transcriptome does not contain any ARP homolog, although transcriptomes of Selaginella spp. do. Surprisingly, we discovered a YABBY homolog, although these transcription factors were assumed to have evolved only in seed plants. The existence of a YABBY homolog in H. selago suggests that YABBY evolved already in the common ancestor of the vascular plants, and subsequently was lost in some lineages like Selaginellales, whereas ARP may have been lost in Lycopodiales. The presence of YABBY in the common ancestor of vascular plants would also support the hypothesis that this common ancestor had a simplex SAM. Furthermore, a comparison of the expression patterns of ARP in shoot tips of Selaginella kraussiana (Harrison CJ, etal. 2005. Independent recruitment of a conserved developmental mechanism during leaf evolution. Nature 434(7032):509–514.) and YABBY in shoot tips of H. selago implies that the development of microphylls, unlike megaphylls, does not seem to depend on the combined activities of ARP and YABBY. Altogether, our data show that Lycopodiophyta are a diverse group; so, in order to understand the role of Lycopodiophyta in evolution, representatives of Lycopodiales, Selaginellales, as well as of Isoetales, have to be examined. PMID:28957460

  18. Global transcriptome analysis of the maize (Zea mays L.) inbred line 08LF during leaf senescence initiated by pollination-prevention.

    PubMed

    Wu, Liancheng; Li, Mingna; Tian, Lei; Wang, Shunxi; Wu, Liuji; Ku, Lixia; Zhang, Jun; Song, Xiaoheng; Liu, Haiping; Chen, Yanhui

    2017-01-01

    In maize (Zea mays), leaf senescence acts as a nutrient recycling process involved in proteins, lipids, and nucleic acids degradation and transport to the developing sink. However, the molecular mechanisms of pre-maturation associated with pollination-prevention remain unclear in maize. To explore global gene expression changes during the onset and progression of senescence in maize, the inbred line 08LF, with severe early senescence caused by pollination prevention, was selected. Phenotypic observation showed that the onset of leaf senescence of 08LF plants occurred approximately 14 days after silking (DAS) by pollination prevention. Transcriptional profiling analysis of the leaf at six developmental stages during induced senescence revealed that a total of 5,432 differentially expressed genes (DEGs) were identified, including 2314 up-regulated genes and 1925 down-regulated genes. Functional annotation showed that the up-regulated genes were mainly enriched in multi-organism process and nitrogen compound transport, whereas down-regulated genes were involved in photosynthesis. Expression patterns and pathway enrichment analyses of early-senescence related genes indicated that these DEGs are involved in complex regulatory networks, especially in the jasmonic acid pathway. In addition, transcription factors from several families were detected, particularly the CO-like, NAC, ERF, GRAS, WRKY and ZF-HD families, suggesting that these transcription factors might play important roles in driving leaf senescence in maize as a result of pollination-prevention.

  19. Guava Leaf Extract Inhibits Quorum-Sensing and Chromobacterium violaceum Induced Lysis of Human Hepatoma Cells: Whole Transcriptome Analysis Reveals Differential Gene Expression

    PubMed Central

    Tiwary, Bipransh Kumar; Kumar, Anoop

    2014-01-01

    Quorum sensing (QS) is a process mediated via small molecules termed autoinducers (AI) that allow bacteria to respond and adjust according to the cell population density by altering the expression of multitudinous genes. Since QS governs numerous bioprocesses in bacteria, including virulence, its inhibition promises to be an ideal target for the development of novel therapeutics. We found that the aqueous leaf extract of Psidium guajava (GLE) exhibited anti-QS properties as evidenced by inhibition of violacein production in Chromobacterium violaceum and swarming motility of Pseudomonas aeruginosa. The gram-negative bacterium, C. violaceum is a rare pathogen with high mortality rate. In this study, perhaps for the first time, we identified the target genes of GLE in C. violaceum MTCC 2656 by whole transcriptome analysis on Ion Torrent. Our data revealed that GLE significantly down-regulated 816 genes at least three fold, with p value≤0.01, which comprises 19% of the C. violaceum MTCC 2656 genome. These genes were distributed throughout the genome and were associated with virulence, motility and other cellular processes, many of which have been described as quorum regulated in C. violaceum and other gram negative bacteria. Interestingly, GLE did not affect the growth of the bacteria. However, consistent with the gene expression pattern, GLE treated C. violaceum cells were restrained from causing lysis of human hepatoma cell line, HepG2, indicating a positive relationship between the QS-regulated genes and pathogenicity. Overall, our study proposes GLE as a QS inhibitor (QSI) with the ability to attenuate virulence without affecting growth. To the best of our knowledge, this is the first report which provides with a plausible set of candidate genes regulated by the QS system in the neglected pathogen C. violaceum. PMID:25229331

  20. Guava leaf extract inhibits quorum-sensing and Chromobacterium violaceum induced lysis of human hepatoma cells: whole transcriptome analysis reveals differential gene expression.

    PubMed

    Ghosh, Runu; Tiwary, Bipransh Kumar; Kumar, Anoop; Chakraborty, Ranadhir

    2014-01-01

    Quorum sensing (QS) is a process mediated via small molecules termed autoinducers (AI) that allow bacteria to respond and adjust according to the cell population density by altering the expression of multitudinous genes. Since QS governs numerous bioprocesses in bacteria, including virulence, its inhibition promises to be an ideal target for the development of novel therapeutics. We found that the aqueous leaf extract of Psidium guajava (GLE) exhibited anti-QS properties as evidenced by inhibition of violacein production in Chromobacterium violaceum and swarming motility of Pseudomonas aeruginosa. The gram-negative bacterium, C. violaceum is a rare pathogen with high mortality rate. In this study, perhaps for the first time, we identified the target genes of GLE in C. violaceum MTCC 2656 by whole transcriptome analysis on Ion Torrent. Our data revealed that GLE significantly down-regulated 816 genes at least three fold, with p value ≤ 0.01, which comprises 19% of the C. violaceum MTCC 2656 genome. These genes were distributed throughout the genome and were associated with virulence, motility and other cellular processes, many of which have been described as quorum regulated in C. violaceum and other gram negative bacteria. Interestingly, GLE did not affect the growth of the bacteria. However, consistent with the gene expression pattern, GLE treated C. violaceum cells were restrained from causing lysis of human hepatoma cell line, HepG2, indicating a positive relationship between the QS-regulated genes and pathogenicity. Overall, our study proposes GLE as a QS inhibitor (QSI) with the ability to attenuate virulence without affecting growth. To the best of our knowledge, this is the first report which provides with a plausible set of candidate genes regulated by the QS system in the neglected pathogen C. violaceum.

  1. De novo transcriptome sequencing and customized abscission zone-specific microarray as a new molecular tool for analysis of tomato organ abscission

    USDA-ARS?s Scientific Manuscript database

    Abscission, which is the process of organ separation, is a highly regulated process occurring as a final stage of organ development. In the tomato (Solanum lycopersicum) system, flower and leaf abscission was induced by flower removal or leaf deblading, leading to auxin depletion which results in in...

  2. Chemopreventive glucosinolate accumulation in various broccoli and collard tissues: Microfluidic-based targeted transcriptomics for by-product valorization

    PubMed Central

    Becker, Talon M.; Juvik, John A.

    2017-01-01

    Floret, leaf, and root tissues were harvested from broccoli and collard cultivars and extracted to determine their glucosinolate and hydrolysis product profiles using high performance liquid chromatography and gas chromotography. Quinone reductase inducing bioactivity, an estimate of anti-cancer chemopreventive potential, of the extracts was measured using a hepa1c1c7 murine cell line. Extracts from root tissues were significantly different from other tissues and contained high levels of gluconasturtiin and glucoerucin. Targeted gene expression analysis on glucosinolate biosynthesis revealed that broccoli root tissue has elevated gene expression of AOP2 and low expression of FMOGS-OX homologs, essentially the opposite of what was observed in broccoli florets, which accumulated high levels of glucoraphanin. Broccoli floret tissue has significantly higher nitrile formation (%) and epithionitrile specifier protein gene expression than other tissues. This study provides basic information of the glucosinolate metabolome and transcriptome for various tissues of Brassica oleracea that maybe utilized as potential byproducts for the nutraceutical market. PMID:28945821

  3. Chemopreventive glucosinolate accumulation in various broccoli and collard tissues: Microfluidic-based targeted transcriptomics for by-product valorization.

    PubMed

    Lee, Young-Sang; Ku, Kang-Mo; Becker, Talon M; Juvik, John A

    2017-01-01

    Floret, leaf, and root tissues were harvested from broccoli and collard cultivars and extracted to determine their glucosinolate and hydrolysis product profiles using high performance liquid chromatography and gas chromotography. Quinone reductase inducing bioactivity, an estimate of anti-cancer chemopreventive potential, of the extracts was measured using a hepa1c1c7 murine cell line. Extracts from root tissues were significantly different from other tissues and contained high levels of gluconasturtiin and glucoerucin. Targeted gene expression analysis on glucosinolate biosynthesis revealed that broccoli root tissue has elevated gene expression of AOP2 and low expression of FMOGS-OX homologs, essentially the opposite of what was observed in broccoli florets, which accumulated high levels of glucoraphanin. Broccoli floret tissue has significantly higher nitrile formation (%) and epithionitrile specifier protein gene expression than other tissues. This study provides basic information of the glucosinolate metabolome and transcriptome for various tissues of Brassica oleracea that maybe utilized as potential byproducts for the nutraceutical market.

  4. Transcriptome analysis of intraspecific competition in Arabidopsis thaliana reveals organ-specific signatures related to nutrient acquisition and general stress response pathways

    PubMed Central

    2012-01-01

    Background Plants are sessile and therefore have to perceive and adjust to changes in their environment. The presence of neighbours leads to a competitive situation where resources and space will be limited. Complex adaptive responses to such situation are poorly understood at the molecular level. Results Using microarrays, we analysed whole-genome expression changes in Arabidopsis thaliana plants subjected to intraspecific competition. The leaf and root transcriptome was strongly altered by competition. Differentially expressed genes were enriched in genes involved in nutrient deficiency (mainly N, P, K), perception of light quality, and responses to abiotic and biotic stresses. Interestingly, performance of the generalist insect Spodoptera littoralis on densely grown plants was significantly reduced, suggesting that plants under competition display enhanced resistance to herbivory. Conclusions This study provides a comprehensive list of genes whose expression is affected by intraspecific competition in Arabidopsis. The outcome is a unique response that involves genes related to light, nutrient deficiency, abiotic stress, and defence responses. PMID:23194435

  5. JAZ7 negatively regulates dark-induced leaf senescence in Arabidopsis

    PubMed Central

    Yu, Juan; Zhang, Yixiang; Di, Chao; Zhang, Qunlian; Zhang, Kang; Wang, Chunchao; You, Qi; Yan, Hong; Dai, Susie Y.; Yuan, Joshua S; Xu, Wenying; Su, Zhen

    2016-01-01

    JASMONATE ZIM-domain (JAZ) proteins play important roles in plant defence and growth by regulating jasmonate signalling. Through data mining, we discovered that the JAZ7 gene was up-regulated in darkness. In the dark, the jaz7 mutant displayed more severe leaf yellowing, quicker chlorophyll degradation, and higher hydrogen peroxide accumulation compared with wild-type (WT) plants. The mutant phenotype of dark-induced leaf senescence could be rescued in the JAZ7-complemented and -overexpression lines. Moreover, the double mutants of jaz7 myc2 and jaz7 coi1 exhibited delayed leaf senescence. We further employed GeneChip analysis to study the molecular mechanism. Some key genes down-regulated in the triple mutant myc2 myc3 myc4 were up-regulated in the jaz7 mutant under darkness. The Gene Ontology terms ‘leaf senescence’ and ‘cell death’ were significantly enriched in the differentially expressed genes. Combining the genetic and transcriptomic analyses together, we proposed a model whereby darkness can induce JAZ7, which might further block MYC2 to suppress dark-induced leaf senescence. In darkness, the mutation of JAZ7 might partially liberate MYC2/MYC3/MYC4 from suppression, leading the MYC proteins to bind to the G-box/G-box-like motifs in the promoters, resulting in the up-regulation of the downstream genes related to indole-glucosinolate biosynthesis, sulphate metabolism, callose deposition, and JA-mediated signalling pathways. In summary, our genetic and transcriptomic studies established the JAZ7 protein as an important regulator in dark-induced leaf senescence. PMID:26547795

  6. Genome resequencing and transcriptome profiling reveal structural diversity and expression patterns of constitutive disease resistance genes in Huanglongbing-tolerant Poncirus trifoliata and its hybrids

    PubMed Central

    Rawat, Nidhi; Kumar, Brajendra; Albrecht, Ute; Du, Dongliang; Huang, Ming; Yu, Qibin; Zhang, Yi; Duan, Yong-Ping; Bowman, Kim D; Gmitter, Fred G; Deng, Zhanao

    2017-01-01

    Huanglongbing (HLB) is the most destructive bacterial disease of citrus worldwide. While most citrus varieties are susceptible to HLB, Poncirus trifoliata, a close relative of Citrus, and some of its hybrids with Citrus are tolerant to HLB. No specific HLB tolerance genes have been identified in P. trifoliata but recent studies have shown that constitutive disease resistance (CDR) genes were expressed at much higher levels in HLB-tolerant Poncirus hybrids and the expression of CDR genes was modulated by Candidatus Liberibacter asiaticus (CLas), the pathogen of HLB. The current study was undertaken to mine and characterize the CDR gene family in Citrus and Poncirus and to understand its association with HLB tolerance in Poncirus. We identified 17 CDR genes in two citrus genomes, deduced their structures, and investigated their phylogenetic relationships. We revealed that the expansion of the CDR family in Citrus seems to be due to segmental and tandem duplication events. Through genome resequencing and transcriptome sequencing, we identified eight CDR genes in the Poncirus genome (PtCDR1-PtCDR8). The number of SNPs was the highest in PtCDR2 and the lowest in PtCDR7. Most of the deletion and insertion events were observed in the UTR regions of Citrus and Poncirus CDR genes. PtCDR2 and PtCDR8 were in abundance in the leaf transcriptomes of two HLB-tolerant Poncirus genotypes and were also upregulated in HLB-tolerant, Poncirus hybrids as revealed by real-time PCR analysis. These two CDR genes seem to be good candidate genes for future studies of their role in citrus-CLas interactions. PMID:29152310

  7. Genome of the pitcher plant Cephalotus reveals genetic changes associated with carnivory.

    PubMed

    Fukushima, Kenji; Fang, Xiaodong; Alvarez-Ponce, David; Cai, Huimin; Carretero-Paulet, Lorenzo; Chen, Cui; Chang, Tien-Hao; Farr, Kimberly M; Fujita, Tomomichi; Hiwatashi, Yuji; Hoshi, Yoshikazu; Imai, Takamasa; Kasahara, Masahiro; Librado, Pablo; Mao, Likai; Mori, Hitoshi; Nishiyama, Tomoaki; Nozawa, Masafumi; Pálfalvi, Gergő; Pollard, Stephen T; Rozas, Julio; Sánchez-Gracia, Alejandro; Sankoff, David; Shibata, Tomoko F; Shigenobu, Shuji; Sumikawa, Naomi; Uzawa, Taketoshi; Xie, Meiying; Zheng, Chunfang; Pollock, David D; Albert, Victor A; Li, Shuaicheng; Hasebe, Mitsuyasu

    2017-02-06

    Carnivorous plants exploit animals as a nutritional source and have inspired long-standing questions about the origin and evolution of carnivory-related traits. To investigate the molecular bases of carnivory, we sequenced the genome of the heterophyllous pitcher plant Cephalotus follicularis, in which we succeeded in regulating the developmental switch between carnivorous and non-carnivorous leaves. Transcriptome comparison of the two leaf types and gene repertoire analysis identified genetic changes associated with prey attraction, capture, digestion and nutrient absorption. Analysis of digestive fluid proteins from C. follicularis and three other carnivorous plants with independent carnivorous origins revealed repeated co-options of stress-responsive protein lineages coupled with convergent amino acid substitutions to acquire digestive physiology. These results imply constraints on the available routes to evolve plant carnivory.

  8. Global transcriptome analysis of the maize (Zea mays L.) inbred line 08LF during leaf senescence initiated by pollination-prevention

    PubMed Central

    Wang, Shunxi; Wu, Liuji; Ku, Lixia; Zhang, Jun; Song, Xiaoheng; Liu, Haiping

    2017-01-01

    In maize (Zea mays), leaf senescence acts as a nutrient recycling process involved in proteins, lipids, and nucleic acids degradation and transport to the developing sink. However, the molecular mechanisms of pre-maturation associated with pollination-prevention remain unclear in maize. To explore global gene expression changes during the onset and progression of senescence in maize, the inbred line 08LF, with severe early senescence caused by pollination prevention, was selected. Phenotypic observation showed that the onset of leaf senescence of 08LF plants occurred approximately 14 days after silking (DAS) by pollination prevention. Transcriptional profiling analysis of the leaf at six developmental stages during induced senescence revealed that a total of 5,432 differentially expressed genes (DEGs) were identified, including 2314 up-regulated genes and 1925 down-regulated genes. Functional annotation showed that the up-regulated genes were mainly enriched in multi-organism process and nitrogen compound transport, whereas down-regulated genes were involved in photosynthesis. Expression patterns and pathway enrichment analyses of early-senescence related genes indicated that these DEGs are involved in complex regulatory networks, especially in the jasmonic acid pathway. In addition, transcription factors from several families were detected, particularly the CO-like, NAC, ERF, GRAS, WRKY and ZF-HD families, suggesting that these transcription factors might play important roles in driving leaf senescence in maize as a result of pollination-prevention. PMID:28973044

  9. Probing the transcriptome of Aconitum carmichaelii reveals the candidate genes associated with the biosynthesis of the toxic aconitine-type C19-diterpenoid alkaloids.

    PubMed

    Zhao, Dake; Shen, Yong; Shi, Yana; Shi, Xingqiao; Qiao, Qin; Zi, Shuhui; Zhao, Erqiang; Yu, Diqiu; Kennelly, Edward J

    2018-05-11

    Aconitum carmichaelii has long been used as a traditional Chinese medicine, and its processed lateral roots are known commonly as fuzi. Aconitine-type C 19 -diterpenoid alkaloids accumulating in the lateral roots are some of the main toxicants of this species, yet their biosynthesis remains largely unresolved. As a first step towards understanding the biosynthesis of aconitine-type C 19 -diterpenoid alkaloids, we performed de novo transcriptome assembly and analysis of rootstocks and leaf tissues of Aconitum carmichaelii by next-generation sequencing. A total of 525 unigene candidates were identified as involved in the formation of C 19 -diterpenoid alkaloids, including those encoding enzymes in the early steps of diterpenoid alkaloids scaffold biosynthetic pathway, such as ent-copalyl diphosphate synthases, ent-kaurene synthases, kaurene oxidases, cyclases, and key aminotransferases. Furthermore, candidates responsible for decorating of diterpenoid alkaloid skeletons were discovered from transcriptome sequencing of fuzi, such as monooxygenases, methyltransferase, and BAHD acyltransferases. In addition, 645 differentially expressed genes encoding transcription factors potentially related to diterpenoid alkaloids accumulation underground were documented. Subsequent modular domain structure phylogenetics and differential expression analysis led to the identification of BAHD acyltransferases possibly involved in the formation of acetyl and benzoyl esters of diterpenoid alkaloids, associated with the acute toxicity of fuzi. The transcriptome data provide the foundation for future research into the molecular basis for aconitine-type C 19 -diterpenoid alkaloids biosynthesis in A. carmichaelii. Copyright © 2018. Published by Elsevier Ltd.

  10. Transcriptome Analysis of Leaves, Flowers and Fruits Perisperm of Coffea arabica L. Reveals the Differential Expression of Genes Involved in Raffinose Biosynthesis

    PubMed Central

    dos Santos, Tiago Benedito; de Oliveira, Fernanda Freitas; Pot, David; Leroy, Thierry; Vieira, Luiz Gonzaga Esteves; Carazzolle, Marcelo Falsarella; Pereira, Gonçalo Amarante Guimarães

    2017-01-01

    Coffea arabica L. is an important crop in several developing countries. Despite its economic importance, minimal transcriptome data are available for fruit tissues, especially during fruit development where several compounds related to coffee quality are produced. To understand the molecular aspects related to coffee fruit and grain development, we report a large-scale transcriptome analysis of leaf, flower and perisperm fruit tissue development. Illumina sequencing yielded 41,881,572 high-quality filtered reads. De novo assembly generated 65,364 unigenes with an average length of 1,264 bp. A total of 24,548 unigenes were annotated as protein coding genes, including 12,560 full-length sequences. In the annotation process, we identified nine candidate genes related to the biosynthesis of raffinose family oligossacarides (RFOs). These sugars confer osmoprotection and are accumulated during initial fruit development. Four genes from this pathway had their transcriptional pattern validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Furthermore, we identified ~24,000 putative target sites for microRNAs (miRNAs) and 134 putative transcriptionally active transposable elements (TE) sequences in our dataset. This C. arabica transcriptomic atlas provides an important step for identifying candidate genes related to several coffee metabolic pathways, especially those related to fruit chemical composition and therefore beverage quality. Our results are the starting point for enhancing our knowledge about the coffee genes that are transcribed during the flowering and initial fruit development stages. PMID:28068432

  11. Transcriptome Analysis of Leaves, Flowers and Fruits Perisperm of Coffea arabica L. Reveals the Differential Expression of Genes Involved in Raffinose Biosynthesis.

    PubMed

    Ivamoto, Suzana Tiemi; Reis, Osvaldo; Domingues, Douglas Silva; Dos Santos, Tiago Benedito; de Oliveira, Fernanda Freitas; Pot, David; Leroy, Thierry; Vieira, Luiz Gonzaga Esteves; Carazzolle, Marcelo Falsarella; Pereira, Gonçalo Amarante Guimarães; Pereira, Luiz Filipe Protasio

    2017-01-01

    Coffea arabica L. is an important crop in several developing countries. Despite its economic importance, minimal transcriptome data are available for fruit tissues, especially during fruit development where several compounds related to coffee quality are produced. To understand the molecular aspects related to coffee fruit and grain development, we report a large-scale transcriptome analysis of leaf, flower and perisperm fruit tissue development. Illumina sequencing yielded 41,881,572 high-quality filtered reads. De novo assembly generated 65,364 unigenes with an average length of 1,264 bp. A total of 24,548 unigenes were annotated as protein coding genes, including 12,560 full-length sequences. In the annotation process, we identified nine candidate genes related to the biosynthesis of raffinose family oligossacarides (RFOs). These sugars confer osmoprotection and are accumulated during initial fruit development. Four genes from this pathway had their transcriptional pattern validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Furthermore, we identified ~24,000 putative target sites for microRNAs (miRNAs) and 134 putative transcriptionally active transposable elements (TE) sequences in our dataset. This C. arabica transcriptomic atlas provides an important step for identifying candidate genes related to several coffee metabolic pathways, especially those related to fruit chemical composition and therefore beverage quality. Our results are the starting point for enhancing our knowledge about the coffee genes that are transcribed during the flowering and initial fruit development stages.

  12. Marker-Assisted Molecular Profiling, Deletion Mutant Analysis, and RNA-Seq Reveal a Disease Resistance Cluster Associated with Uromyces appendiculatus Infection in Common Bean Phaseolus vulgaris L.

    PubMed

    Todd, Antonette R; Donofrio, Nicole; Sripathi, Venkateswara R; McClean, Phillip E; Lee, Rian K; Pastor-Corrales, Marcial; Kalavacharla, Venu Kal

    2017-05-23

    Common bean ( Phaseolus vulgaris L.) is an important legume, useful for its high protein and dietary fiber. The fungal pathogen Uromyces appendiculatus (Pers.) Unger can cause major loss in susceptible varieties of the common bean. The Ur-3 locus provides race specific resistance to virulent strains or races of the bean rust pathogen along with Crg , (Complements resistance gene), which is required for Ur-3 -mediated rust resistance. In this study, we inoculated two common bean genotypes (resistant "Sierra" and susceptible crg) with rust race 53 of U. appendiculatus , isolated leaf RNA at specific time points, and sequenced their transcriptomes. First, molecular markers were used to locate and identify a 250 kb deletion on chromosome 10 in mutant crg (which carries a deletion at the Crg locus). Next, we identified differential expression of several disease resistance genes between Mock Inoculated (MI) and Inoculated (I) samples of "Sierra" leaf RNA within the 250 kb delineated region. Both marker assisted molecular profiling and RNA-seq were used to identify possible transcriptomic locations of interest regarding the resistance in the common bean to race 53. Identification of differential expression among samples in disease resistance clusters in the bean genome may elucidate significant genes underlying rust resistance. Along with preserving favorable traits in the crop, the current research may also aid in global sustainability of food stocks necessary for many populations.

  13. Marker-Assisted Molecular Profiling, Deletion Mutant Analysis, and RNA-Seq Reveal a Disease Resistance Cluster Associated with Uromyces appendiculatus Infection in Common Bean Phaseolus vulgaris L.

    PubMed Central

    Todd, Antonette R.; Donofrio, Nicole; Sripathi, Venkateswara R.; McClean, Phillip E.; Lee, Rian K.; Pastor-Corrales, Marcial; Kalavacharla, Venu (Kal)

    2017-01-01

    Common bean (Phaseolus vulgaris L.) is an important legume, useful for its high protein and dietary fiber. The fungal pathogen Uromyces appendiculatus (Pers.) Unger can cause major loss in susceptible varieties of the common bean. The Ur-3 locus provides race specific resistance to virulent strains or races of the bean rust pathogen along with Crg, (Complements resistance gene), which is required for Ur-3-mediated rust resistance. In this study, we inoculated two common bean genotypes (resistant “Sierra” and susceptible crg) with rust race 53 of U. appendiculatus, isolated leaf RNA at specific time points, and sequenced their transcriptomes. First, molecular markers were used to locate and identify a 250 kb deletion on chromosome 10 in mutant crg (which carries a deletion at the Crg locus). Next, we identified differential expression of several disease resistance genes between Mock Inoculated (MI) and Inoculated (I) samples of “Sierra” leaf RNA within the 250 kb delineated region. Both marker assisted molecular profiling and RNA-seq were used to identify possible transcriptomic locations of interest regarding the resistance in the common bean to race 53. Identification of differential expression among samples in disease resistance clusters in the bean genome may elucidate significant genes underlying rust resistance. Along with preserving favorable traits in the crop, the current research may also aid in global sustainability of food stocks necessary for many populations. PMID:28545258

  14. Transcriptome responses to temperature, water availability and photoperiod are conserved among mature trees of two divergent Douglas-fir provenances from a coastal and an interior habitat.

    PubMed

    Hess, Moritz; Wildhagen, Henning; Junker, Laura Verena; Ensminger, Ingo

    2016-08-26

    Local adaptation and phenotypic plasticity are important components of plant responses to variations in environmental conditions. While local adaptation has been widely studied in trees, little is known about plasticity of gene expression in adult trees in response to ever changing environmental conditions in natural habitats. Here we investigate plasticity of gene expression in needle tissue between two Douglas-fir provenances represented by 25 adult trees using deep RNA sequencing (RNA-Seq). Using linear mixed models we investigated the effect of temperature, soil water availability and photoperiod on the abundance of 59189 detected transcripts. Expression of more than 80 % of all identified transcripts revealed a response to variations in environmental conditions in the field. GO term overrepresentation analysis revealed gene expression responses to temperature, soil water availability and photoperiod that are highly conserved among many plant taxa. However, expression differences between the two Douglas-fir provenances were rather small compared to the expression differences observed between individual trees. Although the effect of environment on global transcript expression was high, the observed genotype by environment (GxE) interaction of gene expression was surprisingly low, since only 21 of all detected transcripts showed a GxE interaction. The majority of the transcriptome responses in plant leaf tissue is driven by variations in environmental conditions. The small variation between individuals and populations suggests strong conservation of this response within Douglas-fir. Therefore we conclude that plastic transcriptome responses to variations in environmental conditions are only weakly affected by local adaptation in Douglas-fir.

  15. An RNA-Seq-based reference transcriptome for Citrus.

    PubMed

    Terol, Javier; Tadeo, Francisco; Ventimilla, Daniel; Talon, Manuel

    2016-03-01

    Previous RNA-Seq studies in citrus have been focused on physiological processes relevant to fruit quality and productivity of the major species, especially sweet orange. Less attention has been paid to vegetative or reproductive tissues, while most Citrus species have never been analysed. In this work, we characterized the transcriptome of vegetative and reproductive tissues from 12 Citrus species from all main phylogenetic groups. Our aims were to acquire a complete view of the citrus transcriptome landscape, to improve previous functional annotations and to obtain genetic markers associated with genes of agronomic interest. 28 samples were used for RNA-Seq analysis, obtained from 12 Citrus species: C. medica, C. aurantifolia, C. limon, C. bergamia, C. clementina, C. deliciosa, C. reshni, C. maxima, C. paradisi, C. aurantium, C. sinensis and Poncirus trifoliata. Four different organs were analysed: root, phloem, leaf and flower. A total of 3421 million Illumina reads were produced and mapped against the reference C. clementina genome sequence. Transcript discovery pipeline revealed 3326 new genes, the number of genes with alternative splicing was increased to 19,739, and a total of 73,797 transcripts were identified. Differential expression studies between the four tissues showed that gene expression is overall related to the physiological function of the specific organs above any other variable. Variants discovery analysis revealed the presence of indels and SNPs in genes associated with fruit quality and productivity. Pivotal pathways in citrus such as those of flavonoids, flavonols, ethylene and auxin were also analysed in detail. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  16. De Novo Transcriptome Sequence Assembly from Coconut Leaves and Seeds with a Focus on Factors Involved in RNA-Directed DNA Methylation

    PubMed Central

    Huang, Ya-Yi; Lee, Chueh-Pai; Fu, Jason L.; Chang, Bill Chia-Han; Matzke, Antonius J. M.; Matzke, Marjori

    2014-01-01

    Coconut palm (Cocos nucifera) is a symbol of the tropics and a source of numerous edible and nonedible products of economic value. Despite its nutritional and industrial significance, coconut remains under-represented in public repositories for genomic and transcriptomic data. We report de novo transcript assembly from RNA-seq data and analysis of gene expression in seed tissues (embryo and endosperm) and leaves of a dwarf coconut variety. Assembly of 10 GB sequencing data for each tissue resulted in 58,211 total unigenes in embryo, 61,152 in endosperm, and 33,446 in leaf. Within each unigene pool, 24,857 could be annotated in embryo, 29,731 could be annotated in endosperm, and 26,064 could be annotated in leaf. A KEGG analysis identified 138, 138, and 139 pathways, respectively, in transcriptomes of embryo, endosperm, and leaf tissues. Given the extraordinarily large size of coconut seeds and the importance of small RNA-mediated epigenetic regulation during seed development in model plants, we used homology searches to identify putative homologs of factors required for RNA-directed DNA methylation in coconut. The findings suggest that RNA-directed DNA methylation is important during coconut seed development, particularly in maturing endosperm. This dataset will expand the genomics resources available for coconut and provide a foundation for more detailed analyses that may assist molecular breeding strategies aimed at improving this major tropical crop. PMID:25193496

  17. De novo transcriptome sequence assembly from coconut leaves and seeds with a focus on factors involved in RNA-directed DNA methylation.

    PubMed

    Huang, Ya-Yi; Lee, Chueh-Pai; Fu, Jason L; Chang, Bill Chia-Han; Matzke, Antonius J M; Matzke, Marjori

    2014-09-04

    Coconut palm (Cocos nucifera) is a symbol of the tropics and a source of numerous edible and nonedible products of economic value. Despite its nutritional and industrial significance, coconut remains under-represented in public repositories for genomic and transcriptomic data. We report de novo transcript assembly from RNA-seq data and analysis of gene expression in seed tissues (embryo and endosperm) and leaves of a dwarf coconut variety. Assembly of 10 GB sequencing data for each tissue resulted in 58,211 total unigenes in embryo, 61,152 in endosperm, and 33,446 in leaf. Within each unigene pool, 24,857 could be annotated in embryo, 29,731 could be annotated in endosperm, and 26,064 could be annotated in leaf. A KEGG analysis identified 138, 138, and 139 pathways, respectively, in transcriptomes of embryo, endosperm, and leaf tissues. Given the extraordinarily large size of coconut seeds and the importance of small RNA-mediated epigenetic regulation during seed development in model plants, we used homology searches to identify putative homologs of factors required for RNA-directed DNA methylation in coconut. The findings suggest that RNA-directed DNA methylation is important during coconut seed development, particularly in maturing endosperm. This dataset will expand the genomics resources available for coconut and provide a foundation for more detailed analyses that may assist molecular breeding strategies aimed at improving this major tropical crop. Copyright © 2014 Huang et al.

  18. The redox-sensitive module of cyclophilin 20-3, 2-cysteine peroxiredoxin and cysteine synthase integrates sulfur metabolism and oxylipin signaling in the high light acclimation response.

    PubMed

    Müller, Sara M; Wang, Shanshan; Telman, Wilena; Liebthal, Michael; Schnitzer, Helena; Viehhauser, Andrea; Sticht, Carsten; Delatorre, Carolina; Wirtz, Markus; Hell, Rüdiger; Dietz, Karl-Josef

    2017-09-01

    The integration of redox- and reactive oxygen species-dependent signaling and metabolic activities is fundamental to plant acclimation to biotic and abiotic stresses. Previous data suggest the existence of a dynamically interacting module in the chloroplast stroma consisting of cyclophilin 20-3 (Cyp20-3), O-acetylserine(thiol)lyase B (OASTL-B), 2-cysteine peroxiredoxins A/B (2-CysPrx) and serine acetyltransferase 2;1 (SERAT2;1). The functionality of this COPS module is influenced by redox stimuli and oxophytodienoic acid (OPDA), which is the precursor for jasmonic acid. The concept of an integrating function of these proteins in stress signaling was challenged by combining transcriptome and biochemical analyses in Arabidopsis mutants devoid of oastlB, serat2;1, cyp20-3 and 2-cysprxA/B, and wild-type (WT). Leaf transcriptomes were analyzed 6 h after transfer to light intensity 10-fold in excess of growth light or under growth light. The survey of KEGG-based gene ontology groups showed common upregulation of translation- and protein homeostasis-associated transcripts under control conditions in all mutants compared with WT. The results revealed that the interference of the module was accompanied with disturbance of carbohydrate, sulfur and nitrogen metabolism, and also citric acid cycle intermediates. Apart from common regulation, specific responses at the transcriptome and metabolite level linked Cyp20-3 to cell wall-bound carbohydrates and oxylipin signaling, and 2-CysPrx to photosynthesis, sugar and amino acid metabolism. Deletion of either OASTL-B or SERAT2;1 frequently induced antagonistic changes in biochemical or molecular features. Enhanced sensitivity of mutant seedlings to OPDA and leaf discs to NaHS-administration confirmed the presumed functional interference of the COPS module in redox and oxylipin signaling. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  19. Physiology and transcriptomics of water-deficit stress responses in wheat cultivars TAM 111 and TAM 112.

    PubMed

    Reddy, Srirama Krishna; Liu, Shuyu; Rudd, Jackie C; Xue, Qingwu; Payton, Paxton; Finlayson, Scott A; Mahan, James; Akhunova, Alina; Holalu, Srinidhi V; Lu, Nanyan

    2014-09-01

    Hard red winter wheat crops on the U.S. Southern Great Plains often experience moderate to severe drought stress, especially during the grain filling stage, resulting in significant yield losses. Cultivars TAM 111 and TAM 112 are widely cultivated in the region, share parentage and showed superior but distinct adaption mechanisms under water-deficit (WD) conditions. Nevertheless, the physiological and molecular basis of their adaptation remains unknown. A greenhouse study was conducted to understand the differences in the physiological and transcriptomic responses of TAM 111 and TAM 112 to WD stress. Whole-plant data indicated that TAM 112 used more water, produced more biomass and grain yield under WD compared to TAM 111. Leaf-level data at the grain filling stage indicated that TAM 112 had elevated abscisic acid (ABA) content and reduced stomatal conductance and photosynthesis as compared to TAM 111. Sustained WD during the grain filling stage also resulted in greater flag leaf transcriptome changes in TAM 112 than TAM 111. Transcripts associated with photosynthesis, carbohydrate metabolism, phytohormone metabolism, and other dehydration responses were uniquely regulated between cultivars. These results suggested a differential role for ABA in regulating physiological and transcriptomic changes associated with WD stress and potential involvement in the superior adaptation and yield of TAM 112. Copyright © 2014 Elsevier GmbH. All rights reserved.

  20. The WRKY transcription factor family and senescence in switchgrass.

    PubMed

    Rinerson, Charles I; Scully, Erin D; Palmer, Nathan A; Donze-Reiner, Teresa; Rabara, Roel C; Tripathi, Prateek; Shen, Qingxi J; Sattler, Scott E; Rohila, Jai S; Sarath, Gautam; Rushton, Paul J

    2015-11-09

    Early aerial senescence in switchgrass (Panicum virgatum) can significantly limit biomass yields. WRKY transcription factors that can regulate senescence could be used to reprogram senescence and enhance biomass yields. All potential WRKY genes present in the version 1.0 of the switchgrass genome were identified and curated using manual and bioinformatic methods. Expression profiles of WRKY genes in switchgrass flag leaf RNA-Seq datasets were analyzed using clustering and network analyses tools to identify both WRKY and WRKY-associated gene co-expression networks during leaf development and senescence onset. We identified 240 switchgrass WRKY genes including members of the RW5 and RW6 families of resistance proteins. Weighted gene co-expression network analysis of the flag leaf transcriptomes across development readily separated clusters of co-expressed genes into thirteen modules. A visualization highlighted separation of modules associated with the early and senescence-onset phases of flag leaf growth. The senescence-associated module contained 3000 genes including 23 WRKYs. Putative promoter regions of senescence-associated WRKY genes contained several cis-element-like sequences suggestive of responsiveness to both senescence and stress signaling pathways. A phylogenetic comparison of senescence-associated WRKY genes from switchgrass flag leaf with senescence-associated WRKY genes from other plants revealed notable hotspots in Group I, IIb, and IIe of the phylogenetic tree. We have identified and named 240 WRKY genes in the switchgrass genome. Twenty three of these genes show elevated mRNA levels during the onset of flag leaf senescence. Eleven of the WRKY genes were found in hotspots of related senescence-associated genes from multiple species and thus represent promising targets for future switchgrass genetic improvement. Overall, individual WRKY gene expression profiles could be readily linked to developmental stages of flag leaves.

  1. Integrated transcriptomics and metabolomics decipher differences in the resistance of pedunculate oak to the herbivore Tortrix viridana L.

    PubMed Central

    2013-01-01

    Background The interaction between insect pests and their host plants is a never-ending race of evolutionary adaption. Plants have developed an armament against insect herbivore attacks, and attackers continuously learn how to address it. Using a combined transcriptomic and metabolomic approach, we investigated the molecular and biochemical differences between Quercus robur L. trees that resisted (defined as resistant oak type) or were susceptible (defined as susceptible oak type) to infestation by the major oak pest, Tortrix viridana L. Results Next generation RNA sequencing revealed hundreds of genes that exhibited constitutive and/or inducible differential expression in the resistant oak compared to the susceptible oak. Distinct differences were found in the transcript levels and the metabolic content with regard to tannins, flavonoids, and terpenoids, which are compounds involved in the defence against insect pests. The results of our transcriptomic and metabolomic analyses are in agreement with those of a previous study in which we showed that female moths prefer susceptible oaks due to their specific profile of herbivore-induced volatiles. These data therefore define two oak genotypes that clearly differ on the transcriptomic and metabolomic levels, as reflected by their specific defensive compound profiles. Conclusions We conclude that the resistant oak type seem to prefer a strategy of constitutive defence responses in contrast to more induced defence responses of the susceptible oaks triggered by feeding. These results pave the way for the development of biomarkers for an early determination of potentially green oak leaf roller-resistant genotypes in natural pedunculate oak populations in Europe. PMID:24160444

  2. A Mutation in the bHLH Domain of the SPCH Transcription Factor Uncovers a BR-Dependent Mechanism for Stomatal Development.

    PubMed

    de Marcos, Alberto; Houbaert, Anaxi; Triviño, Magdalena; Delgado, Dolores; Martín-Trillo, Mar; Russinova, Eugenia; Fenoll, Carmen; Mena, Montaña

    2017-06-01

    The asymmetric cell divisions necessary for stomatal lineage initiation and progression in Arabidopsis ( Arabidopsis thaliana ) require the function of the basic helix-loop-helix (bHLH) transcription factor SPEECHLESS ( SPCH ). Mutants lacking SPCH do not produce stomata or lineages. Here, we isolated a new spch-5 allele carrying a point mutation in the bHLH domain that displayed normal growth, but had an extremely low number of sometimes clustered stomata in the leaves, whereas the hypocotyls did not have any stomata. In vivo tracking of leaf epidermal cell divisions, combined with marker lines and genetic analysis, showed that the spch-5 leaf phenotype is dosage dependent and results from the decreased ability to initiate and amplify lineages, defects in asymmetric cell fate allocation, and misorientation of asymmetric division planes. Notably, application of brassinosteroids (BRs) partly rescued the stomatal leaf phenotype of spch-5 Transcriptomic analysis combining spch-5 with BR treatments revealed that the expression of a set of SPCH target genes was restored by BRs. Our results also show that BR-dependent stomata formation and expression of some, but not all, SPCH target genes require the integrity of the bHLH domain of SPCH. © 2017 American Society of Plant Biologists. All Rights Reserved.

  3. A Mutation in the bHLH Domain of the SPCH Transcription Factor Uncovers a BR-Dependent Mechanism for Stomatal Development1

    PubMed Central

    Triviño, Magdalena; Delgado, Dolores; Martín-Trillo, Mar

    2017-01-01

    The asymmetric cell divisions necessary for stomatal lineage initiation and progression in Arabidopsis (Arabidopsis thaliana) require the function of the basic helix-loop-helix (bHLH) transcription factor SPEECHLESS (SPCH). Mutants lacking SPCH do not produce stomata or lineages. Here, we isolated a new spch-5 allele carrying a point mutation in the bHLH domain that displayed normal growth, but had an extremely low number of sometimes clustered stomata in the leaves, whereas the hypocotyls did not have any stomata. In vivo tracking of leaf epidermal cell divisions, combined with marker lines and genetic analysis, showed that the spch-5 leaf phenotype is dosage dependent and results from the decreased ability to initiate and amplify lineages, defects in asymmetric cell fate allocation, and misorientation of asymmetric division planes. Notably, application of brassinosteroids (BRs) partly rescued the stomatal leaf phenotype of spch-5. Transcriptomic analysis combining spch-5 with BR treatments revealed that the expression of a set of SPCH target genes was restored by BRs. Our results also show that BR-dependent stomata formation and expression of some, but not all, SPCH target genes require the integrity of the bHLH domain of SPCH. PMID:28507175

  4. Comparison of Leaf Sheath Transcriptome Profiles with Physiological Traits of Bread Wheat Cultivars under Salinity Stress

    PubMed Central

    Trittermann, Christine; Berger, Bettina; Roy, Stuart J.; Seki, Motoaki; Shinozaki, Kazuo; Tester, Mark

    2015-01-01

    Salinity stress has significant negative effects on plant biomass production and crop yield. Salinity tolerance is controlled by complex systems of gene expression and ion transport. The relationship between specific features of mild salinity stress adaptation and gene expression was analyzed using four commercial varieties of bread wheat (Triticum aestivum) that have different levels of salinity tolerance. The high-throughput phenotyping system in The Plant Accelerator at the Australian Plant Phenomics Facility revealed variation in shoot relative growth rate and salinity tolerance among the four cultivars. Comparative analysis of gene expression in the leaf sheaths identified genes whose functions are potentially linked to shoot biomass development and salinity tolerance. Early responses to mild salinity stress through changes in gene expression have an influence on the acquisition of stress tolerance and improvement in biomass accumulation during the early “osmotic” phase of salinity stress. In addition, results revealed transcript profiles for the wheat cultivars that were different from those of usual stress-inducible genes, but were related to those of plant growth. These findings suggest that, in the process of breeding, selection of specific traits with various salinity stress-inducible genes in commercial bread wheat has led to adaptation to mild salinity conditions. PMID:26244554

  5. De Novo Assembly, Functional Annotation and Comparative Analysis of Withania somnifera Leaf and Root Transcriptomes to Identify Putative Genes Involved in the Withanolides Biosynthesis

    PubMed Central

    Gupta, Parul; Goel, Ridhi; Pathak, Sumya; Srivastava, Apeksha; Singh, Surya Pratap; Sangwan, Rajender Singh; Asif, Mehar Hasan; Trivedi, Prabodh Kumar

    2013-01-01

    Withania somnifera is one of the most valuable medicinal plants used in Ayurvedic and other indigenous medicine systems due to bioactive molecules known as withanolides. As genomic information regarding this plant is very limited, little information is available about biosynthesis of withanolides. To facilitate the basic understanding about the withanolide biosynthesis pathways, we performed transcriptome sequencing for Withania leaf (101L) and root (101R) which specifically synthesize withaferin A and withanolide A, respectively. Pyrosequencing yielded 8,34,068 and 7,21,755 reads which got assembled into 89,548 and 1,14,814 unique sequences from 101L and 101R, respectively. A total of 47,885 (101L) and 54,123 (101R) could be annotated using TAIR10, NR, tomato and potato databases. Gene Ontology and KEGG analyses provided a detailed view of all the enzymes involved in withanolide backbone synthesis. Our analysis identified members of cytochrome P450, glycosyltransferase and methyltransferase gene families with unique presence or differential expression in leaf and root and might be involved in synthesis of tissue-specific withanolides. We also detected simple sequence repeats (SSRs) in transcriptome data for use in future genetic studies. Comprehensive sequence resource developed for Withania, in this study, will help to elucidate biosynthetic pathway for tissue-specific synthesis of secondary plant products in non-model plant organisms as well as will be helpful in developing strategies for enhanced biosynthesis of withanolides through biotechnological approaches. PMID:23667511

  6. Leaf transcriptome analysis of a subtropical evergreen broadleaf plant, wild oil-tea camellia (Camellia oleifera), revealing candidate genes for cold acclimation.

    PubMed

    Chen, Jiaming; Yang, Xiaoqiang; Huang, Xiaomao; Duan, Shihua; Long, Chuan; Chen, Jiakuan; Rong, Jun

    2017-02-28

    Cold tolerance is a key determinant of the geographical distribution range of a plant species and crop production. Cold acclimation can enhance freezing-tolerance of plant species through a period of exposure to low nonfreezing temperatures. As a subtropical evergreen broadleaf plant, oil-tea camellia demonstrates a relatively strong tolerance to freezing temperatures. Moreover, wild oil-tea camellia is an essential genetic resource for the breeding of cultivated oil-tea camellia, one of the four major woody oil crops in the world. The aims of our study are to identify variations in transcriptomes of wild oil-tea camellia from different latitudes and elevations, and discover candidate genes for cold acclimation. Leaf transcriptomes were obtained of wild oil-tea camellia from different elevations in Lu and Jinggang Mountains, China. Huge amounts of simple sequence repeats (SSRs), single-nucleotide polymorphisms (SNPs) and insertion/deletions (InDels) were identified. Based on SNPs, phylogenetic analysis was performed to detect genetic structure. Wild oil-tea camellia samples were genetically differentiated mainly between latitudes (between Lu and Jinggang Mountains) and then among elevations (within Lu or Jinggang Mountain). Gene expression patterns of wild oil-tea camellia samples were compared among different air temperatures, and differentially expressed genes (DEGs) were discovered. When air temperatures were below 10 °C, gene expression patterns changed dramatically and majority of the DEGs were up-regulated at low temperatures. More DEGs concerned with cold acclimation were detected at 2 °C than at 5 °C, and a putative C-repeat binding factor (CBF) gene was significantly up-regulated only at 2 °C, suggesting a stronger cold stress at 2 °C. We developed a new method for identifying significant functional groups of DEGs. Among the DEGs, transmembrane transporter genes were found to be predominant and many of them encoded transmembrane sugar transporters. Our study provides one of the largest transcriptome dataset in the genus Camellia. Wild oil-tea camellia populations were genetically differentiated between latitudes. It may undergo cold acclimation when air temperatures are below 10 °C. Candidate genes for cold acclimation may be predominantly involved in transmembrane transporter activities.

  7. Genome-wide transcriptome and expression profile analysis of Phalaenopsis during explant browning.

    PubMed

    Xu, Chuanjun; Zeng, Biyu; Huang, Junmei; Huang, Wen; Liu, Yumei

    2015-01-01

    Explant browning presents a major problem for in vitro culture, and can lead to the death of the explant and failure of regeneration. Considerable work has examined the physiological mechanisms underlying Phalaenopsis leaf explant browning, but the molecular mechanisms of browning remain elusive. In this study, we used whole genome RNA sequencing to examine Phalaenopsis leaf explant browning at genome-wide level. We first used Illumina high-throughput technology to sequence the transcriptome of Phalaenopsis and then performed de novo transcriptome assembly. We assembled 79,434,350 clean reads into 31,708 isogenes and generated 26,565 annotated unigenes. We assigned Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations, and potential Pfam domains to each transcript. Using the transcriptome data as a reference, we next analyzed the differential gene expression of explants cultured for 0, 3, and 6 d, respectively. We then identified differentially expressed genes (DEGs) before and after Phalaenopsis explant browning. We also performed GO, KEGG functional enrichment and Pfam analysis of all DEGs. Finally, we selected 11 genes for quantitative real-time PCR (qPCR) analysis to confirm the expression profile analysis. Here, we report the first comprehensive analysis of transcriptome and expression profiles during Phalaenopsis explant browning. Our results suggest that Phalaenopsis explant browning may be due in part to gene expression changes that affect the secondary metabolism, such as: phenylpropanoid pathway and flavonoid biosynthesis. Genes involved in photosynthesis and ATPase activity have been found to be changed at transcription level; these changes may perturb energy metabolism and thus lead to the decay of plant cells and tissues. This study provides comprehensive gene expression data for Phalaenopsis browning. Our data constitute an important resource for further functional studies to prevent explant browning.

  8. Genome-Wide Transcriptome and Expression Profile Analysis of Phalaenopsis during Explant Browning

    PubMed Central

    Xu, Chuanjun; Zeng, Biyu; Huang, Junmei; Huang, Wen; Liu, Yumei

    2015-01-01

    Background Explant browning presents a major problem for in vitro culture, and can lead to the death of the explant and failure of regeneration. Considerable work has examined the physiological mechanisms underlying Phalaenopsis leaf explant browning, but the molecular mechanisms of browning remain elusive. In this study, we used whole genome RNA sequencing to examine Phalaenopsis leaf explant browning at genome-wide level. Methodology/Principal Findings We first used Illumina high-throughput technology to sequence the transcriptome of Phalaenopsis and then performed de novo transcriptome assembly. We assembled 79,434,350 clean reads into 31,708 isogenes and generated 26,565 annotated unigenes. We assigned Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations, and potential Pfam domains to each transcript. Using the transcriptome data as a reference, we next analyzed the differential gene expression of explants cultured for 0, 3, and 6 d, respectively. We then identified differentially expressed genes (DEGs) before and after Phalaenopsis explant browning. We also performed GO, KEGG functional enrichment and Pfam analysis of all DEGs. Finally, we selected 11 genes for quantitative real-time PCR (qPCR) analysis to confirm the expression profile analysis. Conclusions/Significance Here, we report the first comprehensive analysis of transcriptome and expression profiles during Phalaenopsis explant browning. Our results suggest that Phalaenopsis explant browning may be due in part to gene expression changes that affect the secondary metabolism, such as: phenylpropanoid pathway and flavonoid biosynthesis. Genes involved in photosynthesis and ATPase activity have been found to be changed at transcription level; these changes may perturb energy metabolism and thus lead to the decay of plant cells and tissues. This study provides comprehensive gene expression data for Phalaenopsis browning. Our data constitute an important resource for further functional studies to prevent explant browning. PMID:25874455

  9. Abiotic Stresses Modulate Landscape of Poplar Transcriptome via Alternative Splicing, Differential Intron Retention, and Isoform Ratio Switching

    PubMed Central

    Filichkin, Sergei A.; Hamilton, Michael; Dharmawardhana, Palitha D.; Singh, Sunil K.; Sullivan, Christopher; Ben-Hur, Asa; Reddy, Anireddy S. N.; Jaiswal, Pankaj

    2018-01-01

    Abiotic stresses affect plant physiology, development, growth, and alter pre-mRNA splicing. Western poplar is a model woody tree and a potential bioenergy feedstock. To investigate the extent of stress-regulated alternative splicing (AS), we conducted an in-depth survey of leaf, root, and stem xylem transcriptomes under drought, salt, or temperature stress. Analysis of approximately one billion of genome-aligned RNA-Seq reads from tissue- or stress-specific libraries revealed over fifteen millions of novel splice junctions. Transcript models supported by both RNA-Seq and single molecule isoform sequencing (Iso-Seq) data revealed a broad array of novel stress- and/or tissue-specific isoforms. Analysis of Iso-Seq data also resulted in the discovery of 15,087 novel transcribed regions of which 164 show AS. Our findings demonstrate that abiotic stresses profoundly perturb transcript isoform profiles and trigger widespread intron retention (IR) events. Stress treatments often increased or decreased retention of specific introns – a phenomenon described here as differential intron retention (DIR). Many differentially retained introns were regulated in a stress- and/or tissue-specific manner. A subset of transcripts harboring super stress-responsive DIR events showed persisting fluctuations in the degree of IR across all treatments and tissue types. To investigate coordinated dynamics of intron-containing transcripts in the study we quantified absolute copy number of isoforms of two conserved transcription factors (TFs) using Droplet Digital PCR. This case study suggests that stress treatments can be associated with coordinated switches in relative ratios between fully spliced and intron-retaining isoforms and may play a role in adjusting transcriptome to abiotic stresses. PMID:29483921

  10. Genome-wide transcriptome profiling of black poplar (Populus nigra L.) under boron toxicity revealed candidate genes responsible in boron uptake, transport and detoxification.

    PubMed

    Yıldırım, Kubilay; Uylaş, Senem

    2016-12-01

    Boron (B) is an essential nutrient for normal growth of plants. Despite its low abundance in soils, it could be highly toxic to plants in especially arid and semi-arid environments. Poplars are known to be tolerant species to B toxicity and accumulation. However, physiological and gene regulation responses of these trees to B toxicity have not been investigated yet. Here, B accumulation and tolerance level of black poplar clones were firstly tested in the current study. Rooted cutting of these clones were treated with elevated B toxicity to select the most B accumulator and tolerant genotype. Then we carried out a microarray based transcriptome experiment on the leaves and roots of this genotype to find out transcriptional networks, genes and molecular mechanisms behind B toxicity tolerance. The results of the study indicated that black poplar is quite suitable for phytoremediation of B pollution. It could resist 15 ppm soil B content and >1500 ppm B accumulation in leaves, which are highly toxic concentrations for almost all agricultural plants. Transcriptomics results of study revealed totally 1625 and 1419 altered probe sets under 15 ppm B toxicity in leaf and root tissues, respectively. The highest induction were recorded for the probes sets annotated to tyrosine aminotransferase, ATP binding cassette transporters, glutathione S transferases and metallochaperone proteins. Strong up regulation of these genes attributed to internal excretion of B into the cell vacuole and existence of B detoxification processes in black poplar. Many other candidate genes functional in signalling, gene regulation, antioxidation, B uptake and transport processes were also identified in this hyper B accumulator plant for the first time with the current study. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Complete genome sequence of an isolate of Potato virus X (PVX) infecting Cape gooseberry (Physalis peruviana) in Colombia.

    PubMed

    Gutiérrez, Pablo A; Alzate, Juan F; Montoya, Mauricio Marín

    2015-06-01

    Transcriptome analysis of a Cape gooseberry (Physalis peruviana) plant with leaf symptoms of a mild yellow mosaic typical of a viral disease revealed an infection with Potato virus X (PVX). The genome sequence of the PVX-Physalis isolate comprises 6435 nt and exhibits higher sequence similarity to members of the Eurasian group of PVX (~95 %) than to the American group (~77 %). Genome organization is similar to other PVX isolates with five open reading frames coding for proteins RdRp, TGBp1, TGBp2, TGBp3, and CP. 5' and 3' untranslated regions revealed all regulatory motifs typically found in PVX isolates. The PVX-Physalis genome is the only complete sequence available for a Potexvirus in Colombia and is a new addition to the restricted number of available sequences of PVX isolates infecting plant species different to potato.

  12. Transcriptional profiling unravels potential metabolic activities of the olive leaf non-glandular trichome

    PubMed Central

    Koudounas, Konstantinos; Manioudaki, Maria E.; Kourti, Anna; Banilas, Georgios; Hatzopoulos, Polydefkis

    2015-01-01

    The olive leaf trichomes are multicellular peltate hairs densely distributed mainly at the lower leaf epidermis. Although, non-glandular, they have gained much attention since they significantly contribute to abiotic and biotic stress tolerance of olive leaves. The exact mechanisms by which olive trichomes achieve these goals are not fully understood. They could act as mechanical barrier but they also accumulate high amounts of flavonoids among other secondary metabolites. However, little is currently known about the exact compounds they produce and the respective metabolic pathways. Here we present the first EST analysis from olive leaf trichomes by using 454-pyrosequencing. A total of 5368 unigenes were identified out of 7258 high quality reads with an average length of 262 bp. Blast search revealed that 27.5% of them had high homologies to known proteins. By using Blast2GO, 1079 unigenes (20.1%) were assigned at least one Gene Ontology (GO) term. Most of the genes were involved in cellular and metabolic processes and in binding functions followed by catalytic activity. A total of 521 transcripts were mapped to 67 KEGG pathways. Olive trichomes represent a tissue of highly unique transcriptome as per the genes involved in developmental processes and the secondary metabolism. The results indicate that mature olive trichomes are trancriptionally active, mainly through the potential production of enzymes that contribute to phenolic compounds with important roles in biotic and abiotic stress responses. PMID:26322070

  13. Comparative transcriptome analyses of three medicinal Forsythia species and prediction of candidate genes involved in secondary metabolisms.

    PubMed

    Sun, Luchao; Rai, Amit; Rai, Megha; Nakamura, Michimi; Kawano, Noriaki; Yoshimatsu, Kayo; Suzuki, Hideyuki; Kawahara, Nobuo; Saito, Kazuki; Yamazaki, Mami

    2018-05-07

    The three Forsythia species, F. suspensa, F. viridissima and F. koreana, have been used as herbal medicines in China, Japan and Korea for centuries and they are known to be rich sources of numerous pharmaceutical metabolites, forsythin, forsythoside A, arctigenin, rutin and other phenolic compounds. In this study, de novo transcriptome sequencing and assembly was performed on these species. Using leaf and flower tissues of F. suspensa, F. viridissima and F. koreana, 1.28-2.45-Gbp sequences of Illumina based pair-end reads were obtained and assembled into 81,913, 88,491 and 69,458 unigenes, respectively. Classification of the annotated unigenes in gene ontology terms and KEGG pathways was used to compare the transcriptome of three Forsythia species. The expression analysis of orthologous genes across all three species showed the expression in leaf tissues being highly correlated. The candidate genes presumably involved in the biosynthetic pathway of lignans and phenylethanoid glycosides were screened as co-expressed genes. They express highly in the leaves of F. viridissima and F. koreana. Furthermore, the three unigenes annotated as acyltransferase were predicted to be associated with the biosynthesis of acteoside and forsythoside A from the expression pattern and phylogenetic analysis. This study is the first report on comparative transcriptome analyses of medicinally important Forsythia genus and will serve as an important resource to facilitate further studies on biosynthesis and regulation of therapeutic compounds in Forsythia species.

  14. Next Generation Sequencing and Transcriptome Analysis Predicts Biosynthetic Pathway of Sennosides from Senna (Cassia angustifolia Vahl.), a Non-Model Plant with Potent Laxative Properties.

    PubMed

    Rama Reddy, Nagaraja Reddy; Mehta, Rucha Harishbhai; Soni, Palak Harendrabhai; Makasana, Jayanti; Gajbhiye, Narendra Athamaram; Ponnuchamy, Manivel; Kumar, Jitendra

    2015-01-01

    Senna (Cassia angustifolia Vahl.) is a world's natural laxative medicinal plant. Laxative properties are due to sennosides (anthraquinone glycosides) natural products. However, little genetic information is available for this species, especially concerning the biosynthetic pathways of sennosides. We present here the transcriptome sequencing of young and mature leaf tissue of Cassia angustifolia using Illumina MiSeq platform that resulted in a total of 6.34 Gb of raw nucleotide sequence. The sequence assembly resulted in 42230 and 37174 transcripts with an average length of 1119 bp and 1467 bp for young and mature leaf, respectively. The transcripts were annotated using NCBI BLAST with 'green plant database (txid 33090)', Swiss Prot, Kyoto Encylcopedia of Genes & Genomes (KEGG), Cluster of Orthologous Gene (COG) and Gene Ontology (GO). Out of the total transcripts, 40138 (95.0%) and 36349 (97.7%) from young and mature leaf, respectively, were annotated by BLASTX against green plant database of NCBI. We used InterProscan to see protein similarity at domain level, a total of 34031 (young leaf) and 32077 (mature leaf) transcripts were annotated against the Pfam domains. All transcripts from young and mature leaf were assigned to 191 KEGG pathways. There were 166 and 159 CDS, respectively, from young and mature leaf involved in metabolism of terpenoids and polyketides. Many CDS encoding enzymes leading to biosynthesis of sennosides were identified. A total of 10,763 CDS differentially expressing in both young and mature leaf libraries of which 2,343 (21.7%) CDS were up-regulated in young compared to mature leaf. Several differentially expressed genes found functionally associated with sennoside biosynthesis. CDS encoding for many CYPs and TF families were identified having probable roles in metabolism of primary as well as secondary metabolites. We developed SSR markers for molecular breeding of senna. We have identified a set of putative genes involved in various secondary metabolite pathways, especially those related to the synthesis of sennosides which will serve as an important platform for public information about gene expression, genomics, and functional genomics in senna.

  15. Next Generation Sequencing and Transcriptome Analysis Predicts Biosynthetic Pathway of Sennosides from Senna (Cassia angustifolia Vahl.), a Non-Model Plant with Potent Laxative Properties

    PubMed Central

    Rama Reddy, Nagaraja Reddy; Mehta, Rucha Harishbhai; Soni, Palak Harendrabhai; Makasana, Jayanti; Gajbhiye, Narendra Athamaram; Ponnuchamy, Manivel; Kumar, Jitendra

    2015-01-01

    Senna (Cassia angustifolia Vahl.) is a world’s natural laxative medicinal plant. Laxative properties are due to sennosides (anthraquinone glycosides) natural products. However, little genetic information is available for this species, especially concerning the biosynthetic pathways of sennosides. We present here the transcriptome sequencing of young and mature leaf tissue of Cassia angustifolia using Illumina MiSeq platform that resulted in a total of 6.34 Gb of raw nucleotide sequence. The sequence assembly resulted in 42230 and 37174 transcripts with an average length of 1119 bp and 1467 bp for young and mature leaf, respectively. The transcripts were annotated using NCBI BLAST with ‘green plant database (txid 33090)’, Swiss Prot, Kyoto Encylcopedia of Genes & Genomes (KEGG), Cluster of Orthologous Gene (COG) and Gene Ontology (GO). Out of the total transcripts, 40138 (95.0%) and 36349 (97.7%) from young and mature leaf, respectively, were annotated by BLASTX against green plant database of NCBI. We used InterProscan to see protein similarity at domain level, a total of 34031 (young leaf) and 32077 (mature leaf) transcripts were annotated against the Pfam domains. All transcripts from young and mature leaf were assigned to 191 KEGG pathways. There were 166 and 159 CDS, respectively, from young and mature leaf involved in metabolism of terpenoids and polyketides. Many CDS encoding enzymes leading to biosynthesis of sennosides were identified. A total of 10,763 CDS differentially expressing in both young and mature leaf libraries of which 2,343 (21.7%) CDS were up-regulated in young compared to mature leaf. Several differentially expressed genes found functionally associated with sennoside biosynthesis. CDS encoding for many CYPs and TF families were identified having probable roles in metabolism of primary as well as secondary metabolites. We developed SSR markers for molecular breeding of senna. We have identified a set of putative genes involved in various secondary metabolite pathways, especially those related to the synthesis of sennosides which will serve as an important platform for public information about gene expression, genomics, and functional genomics in senna. PMID:26098898

  16. Transcriptome Characterization of Cymbidium sinense 'Dharma' Using 454 Pyrosequencing and Its Application in the Identification of Genes Associated with Leaf Color Variation.

    PubMed

    Zhu, Genfa; Yang, Fengxi; Shi, Shanshan; Li, Dongmei; Wang, Zhen; Liu, Hailin; Huang, Dan; Wang, Caiyun

    2015-01-01

    The highly variable leaf color of Cymbidium sinense significantly improves its horticultural and economic value, and makes it highly desirable in the flower markets in China and Southeast Asia. However, little is understood about the molecular mechanism underlying leaf-color variations. In this study, we found the content of photosynthetic pigments, especially chlorophyll degradation metabolite in the leaf-color mutants is distinguished significantly from that in the wild type of Cymbidium sinense 'Dharma'. To further determine the candidate genes controlling leaf-color variations, we first sequenced the global transcriptome using 454 pyrosequencing. More than 0.7 million expressed sequence tags (ESTs) with an average read length of 445.9 bp were generated and assembled into 103,295 isotigs representing 68,460 genes. Of these isotigs, 43,433 were significantly aligned to known proteins in the public database, of which 29,299 could be categorized into 42 functional groups in the gene ontology system, 10,079 classified into 23 functional classifications in the clusters of orthologous groups system, and 23,092 assigned to 139 clusters of specific metabolic pathways in the Kyoto Encyclopedia of Genes and Genomes. Among these annotations, 95 isotigs were designated as involved in chlorophyll metabolism. On this basis, we identified 16 key enzyme-encoding genes in the chlorophyll metabolism pathway, the full length cDNAs and expressions of which were further confirmed. Expression pattern indicated that the key enzyme-encoding genes for chlorophyll degradation were more highly expressed in the leaf color mutants, as was consistent with their lower chlorophyll contents. This study is the first to supply an informative 454 EST dataset for Cymbidium sinense 'Dharma' and to identify original leaf color-associated genes, which provide important resources to facilitate gene discovery for molecular breeding, marketable trait discovery, and investigating various biological process in this species.

  17. Transcriptome Characterization of Cymbidium sinense 'Dharma' Using 454 Pyrosequencing and Its Application in the Identification of Genes Associated with Leaf Color Variation

    PubMed Central

    Shi, Shanshan; Li, Dongmei; Wang, Zhen; Liu, Hailin; Huang, Dan; Wang, Caiyun

    2015-01-01

    The highly variable leaf color of Cymbidium sinense significantly improves its horticultural and economic value, and makes it highly desirable in the flower markets in China and Southeast Asia. However, little is understood about the molecular mechanism underlying leaf-color variations. In this study, we found the content of photosynthetic pigments, especially chlorophyll degradation metabolite in the leaf-color mutants is distinguished significantly from that in the wild type of Cymbidium sinense 'Dharma'. To further determine the candidate genes controlling leaf-color variations, we first sequenced the global transcriptome using 454 pyrosequencing. More than 0.7 million expressed sequence tags (ESTs) with an average read length of 445.9 bp were generated and assembled into 103,295 isotigs representing 68,460 genes. Of these isotigs, 43,433 were significantly aligned to known proteins in the public database, of which 29,299 could be categorized into 42 functional groups in the gene ontology system, 10,079 classified into 23 functional classifications in the clusters of orthologous groups system, and 23,092 assigned to 139 clusters of specific metabolic pathways in the Kyoto Encyclopedia of Genes and Genomes. Among these annotations, 95 isotigs were designated as involved in chlorophyll metabolism. On this basis, we identified 16 key enzyme-encoding genes in the chlorophyll metabolism pathway, the full length cDNAs and expressions of which were further confirmed. Expression pattern indicated that the key enzyme-encoding genes for chlorophyll degradation were more highly expressed in the leaf color mutants, as was consistent with their lower chlorophyll contents. This study is the first to supply an informative 454 EST dataset for Cymbidium sinense 'Dharma' and to identify original leaf color-associated genes, which provide important resources to facilitate gene discovery for molecular breeding, marketable trait discovery, and investigating various biological process in this species. PMID:26042676

  18. Validation of reference genes for quantitative real-time PCR during leaf and flower development in Petunia hybrida

    PubMed Central

    2010-01-01

    Background Identification of genes with invariant levels of gene expression is a prerequisite for validating transcriptomic changes accompanying development. Ideally expression of these genes should be independent of the morphogenetic process or environmental condition tested as well as the methods used for RNA purification and analysis. Results In an effort to identify endogenous genes meeting these criteria nine reference genes (RG) were tested in two Petunia lines (Mitchell and V30). Growth conditions differed in Mitchell and V30, and different methods were used for RNA isolation and analysis. Four different software tools were employed to analyze the data. We merged the four outputs by means of a non-weighted unsupervised rank aggregation method. The genes identified as optimal for transcriptomic analysis of Mitchell and V30 were EF1α in Mitchell and CYP in V30, whereas the least suitable gene was GAPDH in both lines. Conclusions The least adequate gene turned out to be GAPDH indicating that it should be rejected as reference gene in Petunia. The absence of correspondence of the best-suited genes suggests that assessing reference gene stability is needed when performing normalization of data from transcriptomic analysis of flower and leaf development. PMID:20056000

  19. De Novo Transcriptome Sequencing Reveals Important Molecular Networks and Metabolic Pathways of the Plant, Chlorophytum borivilianum

    PubMed Central

    Kalra, Shikha; Puniya, Bhanwar Lal; Kulshreshtha, Deepika; Kumar, Sunil; Kaur, Jagdeep; Ramachandran, Srinivasan; Singh, Kashmir

    2013-01-01

    Chlorophytum borivilianum, an endangered medicinal plant species is highly recognized for its aphrodisiac properties provided by saponins present in the plant. The transcriptome information of this species is limited and only few hundred expressed sequence tags (ESTs) are available in the public databases. To gain molecular insight of this plant, high throughput transcriptome sequencing of leaf RNA was carried out using Illumina's HiSeq 2000 sequencing platform. A total of 22,161,444 single end reads were retrieved after quality filtering. Available (e.g., De-Bruijn/Eulerian graph) and in-house developed bioinformatics tools were used for assembly and annotation of transcriptome. A total of 101,141 assembled transcripts were obtained, with coverage size of 22.42 Mb and average length of 221 bp. Guanine-cytosine (GC) content was found to be 44%. Bioinformatics analysis, using non-redundant proteins, gene ontology (GO), enzyme commission (EC) and kyoto encyclopedia of genes and genomes (KEGG) databases, extracted all the known enzymes involved in saponin and flavonoid biosynthesis. Few genes of the alkaloid biosynthesis, along with anticancer and plant defense genes, were also discovered. Additionally, several cytochrome P450 (CYP450) and glycosyltransferase unique sequences were also found. We identified simple sequence repeat motifs in transcripts with an abundance of di-nucleotide simple sequence repeat (SSR; 43.1%) markers. Large scale expression profiling through Reads per Kilobase per Million mapped reads (RPKM) showed major genes involved in different metabolic pathways of the plant. Genes, expressed sequence tags (ESTs) and unique sequences from this study provide an important resource for the scientific community, interested in the molecular genetics and functional genomics of C. borivilianum. PMID:24376689

  20. Genome-wide transcriptomic analysis of response to low temperature reveals candidate genes determining divergent cold-sensitivity of maize inbred lines.

    PubMed

    Sobkowiak, Alicja; Jończyk, Maciej; Jarochowska, Emilia; Biecek, Przemysław; Trzcinska-Danielewicz, Joanna; Leipner, Jörg; Fronk, Jan; Sowiński, Paweł

    2014-06-01

    Maize, despite being thermophyllic due to its tropical origin, demonstrates high intraspecific diversity in cold-tolerance. To search for molecular mechanisms of this diversity, transcriptomic response to cold was studied in two inbred lines of contrasting cold-tolerance. Microarray analysis was followed by extensive statistical elaboration of data, literature data mining, and gene ontology-based classification. The lines used had been bred earlier specifically for determination of QTLs for cold-performance of photosynthesis. This allowed direct comparison of present transcriptomic data with the earlier QTL mapping results. Cold-treated (14 h at 8/6 °C) maize seedlings of cold-tolerant ETH-DH7 and cold-sensitive ETH-DL3 lines at V3 stage showed strong, consistent response of the third leaf transcriptome: several thousand probes showed similar, statistically significant change in both lines, while only tens responded differently in the two lines. The most striking difference between the responses of the two lines to cold was the induction of expression of ca. twenty genes encoding membrane/cell wall proteins exclusively in the cold-tolerant ETH-DH7 line. The common response comprised mainly repression of numerous genes related to photosynthesis and induction of genes related to basic biological activity: transcription, regulation of gene expression, protein phosphorylation, cell wall organization. Among the genes showing differential response, several were close to the QTL regions identified in earlier studies with the same inbred lines and associated with biometrical, physiological or biochemical parameters. These transcripts, including two apparently non-protein-coding ones, are particularly attractive candidates for future studies on mechanisms determining divergent cold-tolerance of inbred maize lines.

  1. Transcriptomics-based analysis using RNA-Seq of the coconut (Cocos nucifera) leaf in response to yellow decline phytoplasma infection.

    PubMed

    Nejat, Naghmeh; Cahill, David M; Vadamalai, Ganesan; Ziemann, Mark; Rookes, James; Naderali, Neda

    2015-10-01

    Invasive phytoplasmas wreak havoc on coconut palms worldwide, leading to high loss of income, food insecurity and extreme poverty of farmers in producing countries. Phytoplasmas as strictly biotrophic insect-transmitted bacterial pathogens instigate distinct changes in developmental processes and defence responses of the infected plants and manipulate plants to their own advantage; however, little is known about the cellular and molecular mechanisms underlying host-phytoplasma interactions. Further, phytoplasma-mediated transcriptional alterations in coconut palm genes have not yet been identified. This study evaluated the whole transcriptome profiles of naturally infected leaves of Cocos nucifera ecotype Malayan Red Dwarf in response to yellow decline phytoplasma from group 16SrXIV, using RNA-Seq technique. Transcriptomics-based analysis reported here identified genes involved in coconut innate immunity. The number of down-regulated genes in response to phytoplasma infection exceeded the number of genes up-regulated. Of the 39,873 differentially expressed unigenes, 21,860 unigenes were suppressed and 18,013 were induced following infection. Comparative analysis revealed that genes associated with defence signalling against biotic stimuli were significantly overexpressed in phytoplasma-infected leaves versus healthy coconut leaves. Genes involving cell rescue and defence, cellular transport, oxidative stress, hormone stimulus and metabolism, photosynthesis reduction, transcription and biosynthesis of secondary metabolites were differentially represented. Our transcriptome analysis unveiled a core set of genes associated with defence of coconut in response to phytoplasma attack, although several novel defence response candidate genes with unknown function have also been identified. This study constitutes valuable sequence resource for uncovering the resistance genes and/or susceptibility genes which can be used as genetic tools in disease resistance breeding.

  2. De Novo transcriptome sequencing reveals important molecular networks and metabolic pathways of the plant, Chlorophytum borivilianum.

    PubMed

    Kalra, Shikha; Puniya, Bhanwar Lal; Kulshreshtha, Deepika; Kumar, Sunil; Kaur, Jagdeep; Ramachandran, Srinivasan; Singh, Kashmir

    2013-01-01

    Chlorophytum borivilianum, an endangered medicinal plant species is highly recognized for its aphrodisiac properties provided by saponins present in the plant. The transcriptome information of this species is limited and only few hundred expressed sequence tags (ESTs) are available in the public databases. To gain molecular insight of this plant, high throughput transcriptome sequencing of leaf RNA was carried out using Illumina's HiSeq 2000 sequencing platform. A total of 22,161,444 single end reads were retrieved after quality filtering. Available (e.g., De-Bruijn/Eulerian graph) and in-house developed bioinformatics tools were used for assembly and annotation of transcriptome. A total of 101,141 assembled transcripts were obtained, with coverage size of 22.42 Mb and average length of 221 bp. Guanine-cytosine (GC) content was found to be 44%. Bioinformatics analysis, using non-redundant proteins, gene ontology (GO), enzyme commission (EC) and kyoto encyclopedia of genes and genomes (KEGG) databases, extracted all the known enzymes involved in saponin and flavonoid biosynthesis. Few genes of the alkaloid biosynthesis, along with anticancer and plant defense genes, were also discovered. Additionally, several cytochrome P450 (CYP450) and glycosyltransferase unique sequences were also found. We identified simple sequence repeat motifs in transcripts with an abundance of di-nucleotide simple sequence repeat (SSR; 43.1%) markers. Large scale expression profiling through Reads per Kilobase per Million mapped reads (RPKM) showed major genes involved in different metabolic pathways of the plant. Genes, expressed sequence tags (ESTs) and unique sequences from this study provide an important resource for the scientific community, interested in the molecular genetics and functional genomics of C. borivilianum.

  3. RNA-Seq transcriptomic analysis of the Morus alba L. leaves exposed to high-level UVB with or without dark treatment.

    PubMed

    Guan, Qijie; Yu, Jiaojiao; Zhu, Wei; Yang, Bingxian; Li, Yaohan; Zhang, Lin; Tian, Jingkui

    2018-03-01

    Ultraviolet-B (UVB) irradiation induces oxidative stress in plant cells due to the generation of excessive reactive oxygen species. Morus alba L. (M. abla) is an important medicinal plant used for the treatment of human diseases. Also, its leaves are widely used as food for silkworms. In our previous research, we found that a high level of UVB irradiation with dark incubation led to the accumulation of secondary metabolites in M. abla leaf. The aim of the present study was to describe and compare M. alba leaf transcriptomics with different treatments (control, UVB, UVB+dark). Leaf transcripts from M. alba were sequenced using an Illumina Hiseq 2000 system, which produced 14.27Gb of data including 153,204,462 paired-end reads among the three libraries. We de novo assembled 133,002 transcripts with an average length of 1270bp and filtered 69,728 non-redundant unigenes. A similarity search was performed against the non-redundant National Center of Biotechnology Information (NCBI) protein database, which returned 41.08% hits. Among the 20,040 unigenes annotated in UniProtKB/SwissProt database, 16,683 unigenes were assigned 102,232 gene ontology terms and 6667 unigenes were identified in 287 known metabolic pathways. Results of differential gene expression analysis together with real-time quantitative PCR tests indicated that UVB irradiation with dark incubation enhanced the flavonoid biosynthesis in M. alba leaf. Our findings provided a valuable proof for a better understanding of the metabolic mechanism under abiotic stresses in M. alba leaf. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Cell type-specific responses to salinity - the epidermal bladder cell transcriptome of Mesembryanthemum crystallinum.

    PubMed

    Oh, Dong-Ha; Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar; Lee, Sang-Yeol; Bohnert, Hans J; Dassanayake, Maheshi

    2015-08-01

    Mesembryanthemum crystallinum (ice plant) exhibits extreme tolerance to salt. Epidermal bladder cells (EBCs), developing on the surface of aerial tissues and specialized in sodium sequestration and other protective functions, are critical for the plant's stress adaptation. We present the first transcriptome analysis of EBCs isolated from intact plants, to investigate cell type-specific responses during plant salt adaptation. We developed a de novo assembled, nonredundant EBC reference transcriptome. Using RNAseq, we compared the expression patterns of the EBC-specific transcriptome between control and salt-treated plants. The EBC reference transcriptome consists of 37 341 transcript-contigs, of which 7% showed significantly different expression between salt-treated and control samples. We identified significant changes in ion transport, metabolism related to energy generation and osmolyte accumulation, stress signalling, and organelle functions, as well as a number of lineage-specific genes of unknown function, in response to salt treatment. The salinity-induced EBC transcriptome includes active transcript clusters, refuting the view of EBCs as passive storage compartments in the whole-plant stress response. EBC transcriptomes, differing from those of whole plants or leaf tissue, exemplify the importance of cell type-specific resolution in understanding stress adaptive mechanisms. No claim to original US government works. New Phytologist © 2015 New Phytologist Trust.

  5. Alterations in Grapevine Leaf Metabolism Occur Prior to Esca Apoplexy Appearance.

    PubMed

    Magnin-Robert, Maryline; Adrian, Marielle; Trouvelot, Sophie; Spagnolo, Alessandro; Jacquens, Lucile; Letousey, Patricia; Rabenoelina, Fanja; Harir, Mourad; Roullier-Gall, Chloé; Clément, Christophe; Schmitt-Kopplin, Philippe; Vallat, Armelle; Abou-Mansour, Eliane; Fontaine, Florence

    2017-12-01

    Esca disease is one of the major grapevine trunk diseases in Europe and the etiology is complex, since several inhabiting fungi are identified to be associated with this disease. Among the foliar symptom expressions, the apoplectic form may be distinguished and characterized by sudden dieback of shoots, leaf drop, and shriveling of grape clusters in a few days that can ultimately induce the plant death. To further understand this drastic event, we conducted transcriptomic and metabolomic analyses to characterize responses of leaves during the period preceding symptom appearance (20 and 7 days before foliar symptom expression) and at the day of apoplexy expression. Transcriptomic and metabolomic analyses provide signatures for the apoplectic leaves and most changes concerning the metabolism of carbohydrates, amino acids, and phenylpropanoids. In deciphering glutathione-S-transferase (GST), its preferential location in phloem, correlated with the upregulation of GST genes and a decrease of the glutathione level, offers further support to the putative role of glutathione during apoplexy expression.

  6. High-throughput transcriptome analysis of barley (Hordeum vulgare) exposed to excessive boron.

    PubMed

    Tombuloglu, Guzin; Tombuloglu, Huseyin; Sakcali, M Serdal; Unver, Turgay

    2015-02-15

    Boron (B) is an essential micronutrient for optimum plant growth. However, above certain threshold B is toxic and causes yield loss in agricultural lands. While a number of studies were conducted to understand B tolerance mechanism, a transcriptome-wide approach for B tolerant barley is performed here for the first time. A high-throughput RNA-Seq (cDNA) sequencing technology (Illumina) was used with barley (Hordeum vulgare), yielding 208 million clean reads. In total, 256,874 unigenes were generated and assigned to known peptide databases: Gene Ontology (GO) (99,043), Swiss-Prot (38,266), Clusters of Orthologous Groups (COG) (26,250), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) (36,860), as determined by BLASTx search. According to the digital gene expression (DGE) analyses, 16% and 17% of the transcripts were found to be differentially regulated in root and leaf tissues, respectively. Most of them were involved in cell wall, stress response, membrane, protein kinase and transporter mechanisms. Some of the genes detected as highly expressed in root tissue are phospholipases, predicted divalent heavy-metal cation transporters, formin-like proteins and calmodulin/Ca(2+)-binding proteins. In addition, chitin-binding lectin precursor, ubiquitin carboxyl-terminal hydrolase, and serine/threonine-protein kinase AFC2 genes were indicated to be highly regulated in leaf tissue upon excess B treatment. Some pathways, such as the Ca(2+)-calmodulin system, are activated in response to B toxicity. The differential regulation of 10 transcripts was confirmed by qRT-PCR, revealing the tissue-specific responses against B toxicity and their putative function in B-tolerance mechanisms. Copyright © 2014. Published by Elsevier B.V.

  7. Comparative transcriptome analysis of different chemotypes elucidates withanolide biosynthesis pathway from medicinal plant Withania somnifera

    PubMed Central

    Gupta, Parul; Goel, Ridhi; Agarwal, Aditya Vikram; Asif, Mehar Hasan; Sangwan, Neelam Singh; Sangwan, Rajender Singh; Trivedi, Prabodh Kumar

    2015-01-01

    Withania somnifera is one of the most valuable medicinal plants synthesizing secondary metabolites known as withanolides. Despite pharmaceutical importance, limited information is available about the biosynthesis of withanolides. Chemo-profiling of leaf and root tissues of Withania suggest differences in the content and/or nature of withanolides in different chemotypes. To identify genes involved in chemotype and/or tissue-specific withanolide biosynthesis, we established transcriptomes of leaf and root tissues of distinct chemotypes. Genes encoding enzymes for intermediate steps of terpenoid backbone biosynthesis with their alternatively spliced forms and paralogous have been identified. Analysis suggests differential expression of large number genes among leaf and root tissues of different chemotypes. Study also identified differentially expressing transcripts encoding cytochrome P450s, glycosyltransferases, methyltransferases and transcription factors which might be involved in chemodiversity in Withania. Virus induced gene silencing of the sterol ∆7-reductase (WsDWF5) involved in the synthesis of 24-methylene cholesterol, withanolide backbone, suggests role of this enzyme in biosynthesis of withanolides. Information generated, in this study, provides a rich resource for functional analysis of withanolide-specific genes to elucidate chemotype- as well as tissue-specific withanolide biosynthesis. This genomic resource will also help in development of new tools for functional genomics and breeding in Withania. PMID:26688389

  8. Leaf Transcriptome Sequencing for Identifying Genic-SSR Markers and SNP Heterozygosity in Crossbred Mango Variety 'Amrapali' (Mangifera indica L.).

    PubMed

    Mahato, Ajay Kumar; Sharma, Nimisha; Singh, Akshay; Srivastav, Manish; Jaiprakash; Singh, Sanjay Kumar; Singh, Anand Kumar; Sharma, Tilak Raj; Singh, Nagendra Kumar

    2016-01-01

    Mango (Mangifera indica L.) is called "king of fruits" due to its sweetness, richness of taste, diversity, large production volume and a variety of end usage. Despite its huge economic importance genomic resources in mango are scarce and genetics of useful horticultural traits are poorly understood. Here we generated deep coverage leaf RNA sequence data for mango parental varieties 'Neelam', 'Dashehari' and their hybrid 'Amrapali' using next generation sequencing technologies. De-novo sequence assembly generated 27,528, 20,771 and 35,182 transcripts for the three genotypes, respectively. The transcripts were further assembled into a non-redundant set of 70,057 unigenes that were used for SSR and SNP identification and annotation. Total 5,465 SSR loci were identified in 4,912 unigenes with 288 type I SSR (n ≥ 20 bp). One hundred type I SSR markers were randomly selected of which 43 yielded PCR amplicons of expected size in the first round of validation and were designated as validated genic-SSR markers. Further, 22,306 SNPs were identified by aligning high quality sequence reads of the three mango varieties to the reference unigene set, revealing significantly enhanced SNP heterozygosity in the hybrid Amrapali. The present study on leaf RNA sequencing of mango varieties and their hybrid provides useful genomic resource for genetic improvement of mango.

  9. Leaf Transcriptome Sequencing for Identifying Genic-SSR Markers and SNP Heterozygosity in Crossbred Mango Variety ‘Amrapali’ (Mangifera indica L.)

    PubMed Central

    Mahato, Ajay Kumar; Sharma, Nimisha; Singh, Akshay; Srivastav, Manish; Jaiprakash; Singh, Sanjay Kumar; Singh, Anand Kumar; Sharma, Tilak Raj; Singh, Nagendra Kumar

    2016-01-01

    Mango (Mangifera indica L.) is called “king of fruits” due to its sweetness, richness of taste, diversity, large production volume and a variety of end usage. Despite its huge economic importance genomic resources in mango are scarce and genetics of useful horticultural traits are poorly understood. Here we generated deep coverage leaf RNA sequence data for mango parental varieties ‘Neelam’, ‘Dashehari’ and their hybrid ‘Amrapali’ using next generation sequencing technologies. De-novo sequence assembly generated 27,528, 20,771 and 35,182 transcripts for the three genotypes, respectively. The transcripts were further assembled into a non-redundant set of 70,057 unigenes that were used for SSR and SNP identification and annotation. Total 5,465 SSR loci were identified in 4,912 unigenes with 288 type I SSR (n ≥ 20 bp). One hundred type I SSR markers were randomly selected of which 43 yielded PCR amplicons of expected size in the first round of validation and were designated as validated genic-SSR markers. Further, 22,306 SNPs were identified by aligning high quality sequence reads of the three mango varieties to the reference unigene set, revealing significantly enhanced SNP heterozygosity in the hybrid Amrapali. The present study on leaf RNA sequencing of mango varieties and their hybrid provides useful genomic resource for genetic improvement of mango. PMID:27736892

  10. Metabolic Reprogramming in Leaf Lettuce Grown Under Different Light Quality and Intensity Conditions Using Narrow-Band LEDs.

    PubMed

    Kitazaki, Kazuyoshi; Fukushima, Atsushi; Nakabayashi, Ryo; Okazaki, Yozo; Kobayashi, Makoto; Mori, Tetsuya; Nishizawa, Tomoko; Reyes-Chin-Wo, Sebastian; Michelmore, Richard W; Saito, Kazuki; Shoji, Kazuhiro; Kusano, Miyako

    2018-05-21

    Light-emitting diodes (LEDs) are an artificial light source used in closed-type plant factories and provide a promising solution for a year-round supply of green leafy vegetables, such as lettuce (Lactuca sativa L.). Obtaining high-quality seedlings using controlled irradiation from LEDs is critical, as the seedling health affects the growth and yield of leaf lettuce after transplantation. Because key molecular pathways underlying plant responses to a specific light quality and intensity remain poorly characterised, we used a multi-omics-based approach to evaluate the metabolic and transcriptional reprogramming of leaf lettuce seedlings grown under narrow-band LED lighting. Four types of monochromatic LEDs (one blue, two green and one red) and white fluorescent light (control) were used at low and high intensities (100 and 300 μmol·m -2 ·s -1 , respectively). Multi-platform mass spectrometry-based metabolomics and RNA-Seq were used to determine changes in the metabolome and transcriptome of lettuce plants in response to different light qualities and intensities. Metabolic pathway analysis revealed distinct regulatory mechanisms involved in flavonoid and phenylpropanoid biosynthetic pathways under blue and green wavelengths. Taken together, these data suggest that the energy transmitted by green light is effective in creating a balance between biomass production and the production of secondary metabolites involved in plant defence.

  11. Phosphorylation Affects DNA-Binding of the Senescence-Regulating bZIP Transcription Factor GBF1

    PubMed Central

    Smykowski, Anja; Fischer, Stefan M.; Zentgraf, Ulrike

    2015-01-01

    Massive changes in the transcriptome of Arabidopsis thaliana during onset and progression of leaf senescence imply a central role for transcription factors. While many transcription factors are themselves up- or down-regulated during senescence, the bZIP transcription factor G-box-binding factor 1 (GBF1/bZIP41) is constitutively expressed in Arabidopsis leaf tissue but at the same time triggers the onset of leaf senescence, suggesting posttranscriptional mechanisms for senescence-specific GBF1 activation. Here we show that GBF1 is phosphorylated by the threonine/serine CASEIN KINASE II (CKII) in vitro and that CKII phosphorylation had a negative effect on GBF1 DNA-binding to G-boxes of two direct target genes, CATALASE2 and RBSCS1a. Phosphorylation mimicry at three serine positions in the basic region of GBF1 also had a negative effect on DNA-binding. Kinase assays revealed that CKII phosphorylates at least one serine in the basic domain but has additional phosphorylation sites outside this domain. Two different ckII α subunit1 and one α subunit2 T-DNA insertion lines showed no visible senescence phenotype, but in all lines the expression of the senescence marker gene SAG12 was remarkably diminished. A model is presented suggesting that senescence-specific GBF1 activation might be achieved by lowering the phosphorylation of GBF1 by CKII. PMID:27135347

  12. An Approach to Function Annotation for Proteins of Unknown Function (PUFs) in the Transcriptome of Indian Mulberry.

    PubMed

    Dhanyalakshmi, K H; Naika, Mahantesha B N; Sajeevan, R S; Mathew, Oommen K; Shafi, K Mohamed; Sowdhamini, Ramanathan; N Nataraja, Karaba

    2016-01-01

    The modern sequencing technologies are generating large volumes of information at the transcriptome and genome level. Translation of this information into a biological meaning is far behind the race due to which a significant portion of proteins discovered remain as proteins of unknown function (PUFs). Attempts to uncover the functional significance of PUFs are limited due to lack of easy and high throughput functional annotation tools. Here, we report an approach to assign putative functions to PUFs, identified in the transcriptome of mulberry, a perennial tree commonly cultivated as host of silkworm. We utilized the mulberry PUFs generated from leaf tissues exposed to drought stress at whole plant level. A sequence and structure based computational analysis predicted the probable function of the PUFs. For rapid and easy annotation of PUFs, we developed an automated pipeline by integrating diverse bioinformatics tools, designated as PUFs Annotation Server (PUFAS), which also provides a web service API (Application Programming Interface) for a large-scale analysis up to a genome. The expression analysis of three selected PUFs annotated by the pipeline revealed abiotic stress responsiveness of the genes, and hence their potential role in stress acclimation pathways. The automated pipeline developed here could be extended to assign functions to PUFs from any organism in general. PUFAS web server is available at http://caps.ncbs.res.in/pufas/ and the web service is accessible at http://capservices.ncbs.res.in/help/pufas.

  13. Transcriptome analysis reveals the same 17 S-locus F-box genes in two haplotypes of the self-incompatibility locus of Petunia inflata.

    PubMed

    Williams, Justin S; Der, Joshua P; dePamphilis, Claude W; Kao, Teh-Hui

    2014-07-01

    Petunia possesses self-incompatibility, by which pistils reject self-pollen but accept non-self-pollen for fertilization. Self-/non-self-recognition between pollen and pistil is regulated by the pistil-specific S-RNase gene and by multiple pollen-specific S-locus F-box (SLF) genes. To date, 10 SLF genes have been identified by various methods, and seven have been shown to be involved in pollen specificity. For a given S-haplotype, each SLF interacts with a subset of its non-self S-RNases, and an as yet unknown number of SLFs are thought to collectively mediate ubiquitination and degradation of all non-self S-RNases to allow cross-compatible pollination. To identify a complete suite of SLF genes of P. inflata, we used a de novo RNA-seq approach to analyze the pollen transcriptomes of S2-haplotype and S3-haplotype, as well as the leaf transcriptome of the S3S3 genotype. We searched for genes that fit several criteria established from the properties of the known SLF genes and identified the same seven new SLF genes in S2-haplotype and S3-haplotype, suggesting that a total of 17 SLF genes constitute pollen specificity in each S-haplotype. This finding lays the foundation for understanding how multiple SLF genes evolved and the biochemical basis for differential interactions between SLF proteins and S-RNases. © 2014 American Society of Plant Biologists. All rights reserved.

  14. Diurnal Cycling Transcription Factors of Pineapple Revealed by Genome-Wide Annotation and Global Transcriptomic Analysis

    PubMed Central

    Sharma, Anupma; Wai, Ching Man; Ming, Ray

    2017-01-01

    Abstract Circadian clock provides fitness advantage by coordinating internal metabolic and physiological processes to external cyclic environments. Core clock components exhibit daily rhythmic changes in gene expression, and the majority of them are transcription factors (TFs) and transcription coregulators (TCs). We annotated 1,398 TFs from 67 TF families and 80 TCs from 20 TC families in pineapple, and analyzed their tissue-specific and diurnal expression patterns. Approximately 42% of TFs and 45% of TCs displayed diel rhythmic expression, including 177 TF/TCs cycling only in the nonphotosynthetic leaf tissue, 247 cycling only in the photosynthetic leaf tissue, and 201 cycling in both. We identified 68 TF/TCs whose cycling expression was tightly coupled between the photosynthetic and nonphotosynthetic leaf tissues. These TF/TCs likely coordinate key biological processes in pineapple as we demonstrated that this group is enriched in homologous genes that form the core circadian clock in Arabidopsis and includes a STOP1 homolog. Two lines of evidence support the important role of the STOP1 homolog in regulating CAM photosynthesis in pineapple. First, STOP1 responds to acidic pH and regulates a malate channel in multiple plant species. Second, the cycling expression pattern of the pineapple STOP1 and the diurnal pattern of malate accumulation in pineapple leaf are correlated. We further examined duplicate-gene retention and loss in major known circadian genes and refined their evolutionary relationships between pineapple and other plants. Significant variations in duplicate-gene retention and loss were observed for most clock genes in both monocots and dicots. PMID:28922793

  15. Transcriptional Regulation and Transport of Terpenoid Indole Alkaloid in Catharanthus roseus: Exploration of New Research Directions

    PubMed Central

    Liu, Jiaqi; Cai, Junjun; Wang, Rui; Yang, Shihai

    2016-01-01

    As one of the model medicinal plants for exploration of biochemical pathways and molecular biological questions on complex metabolic pathways, Catharanthus roseus synthesizes more than 100 terpenoid indole alkaloids (TIAs) used for clinical treatment of various diseases and for new drug discovery. Given that extensive studies have revealed the major metabolic pathways and the spatial-temporal biosynthesis of TIA in C. roseus plant, little is known about subcellular and inter-cellular trafficking or long-distance transport of TIA end products or intermediates, as well as their regulation. While these transport processes are indispensable for multi-organelle, -tissue and -cell biosynthesis, storage and their functions, great efforts have been made to explore these dynamic cellular processes. Progress has been made in past decades on transcriptional regulation of TIA biosynthesis by transcription factors as either activators or repressors; recent studies also revealed several transporters involved in subcellular and inter-cellular TIA trafficking. However, many details and the regulatory network for controlling the tissue-or cell-specific biosynthesis, transport and storage of serpentine and ajmalicine in root, catharanthine in leaf and root, vindoline specifically in leaf and vinblastine and vincristine only in green leaf and their biosynthetic intermediates remain to be determined. This review is to summarize the progress made in biosynthesis, transcriptional regulation and transport of TIAs. Based on analysis of organelle, tissue and cell-type specific biosynthesis and progresses in transport and trafficking of similar natural products, the transporters that might be involved in transport of TIAs and their synthetic intermediates are discussed; according to transcriptome analysis and bioinformatic approaches, the transcription factors that might be involved in TIA biosynthesis are analyzed. Further discussion is made on a broad context of transcriptional and transport regulation in order to guide our future research. PMID:28036025

  16. Uncovering leaf rust responsive miRNAs in wheat (Triticum aestivum L.) using high-throughput sequencing and prediction of their targets through degradome analysis.

    PubMed

    Kumar, Dhananjay; Dutta, Summi; Singh, Dharmendra; Prabhu, Kumble Vinod; Kumar, Manish; Mukhopadhyay, Kunal

    2017-01-01

    Deep sequencing identified 497 conserved and 559 novel miRNAs in wheat, while degradome analysis revealed 701 targets genes. QRT-PCR demonstrated differential expression of miRNAs during stages of leaf rust progression. Bread wheat (Triticum aestivum L.) is an important cereal food crop feeding 30 % of the world population. Major threat to wheat production is the rust epidemics. This study was targeted towards identification and functional characterizations of micro(mi)RNAs and their target genes in wheat in response to leaf rust ingression. High-throughput sequencing was used for transcriptome-wide identification of miRNAs and their expression profiling in retort to leaf rust using mock and pathogen-inoculated resistant and susceptible near-isogenic wheat plants. A total of 1056 mature miRNAs were identified, of which 497 miRNAs were conserved and 559 miRNAs were novel. The pathogen-inoculated resistant plants manifested more miRNAs compared with the pathogen infected susceptible plants. The miRNA counts increased in susceptible isoline due to leaf rust, conversely, the counts decreased in the resistant isoline in response to pathogenesis illustrating precise spatial tuning of miRNAs during compatible and incompatible interaction. Stem-loop quantitative real-time PCR was used to profile 10 highly differentially expressed miRNAs obtained from high-throughput sequencing data. The spatio-temporal profiling validated the differential expression of miRNAs between the isolines as well as in retort to pathogen infection. Degradome analysis provided 701 predicted target genes associated with defense response, signal transduction, development, metabolism, and transcriptional regulation. The obtained results indicate that wheat isolines employ diverse arrays of miRNAs that modulate their target genes during compatible and incompatible interaction. Our findings contribute to increase knowledge on roles of microRNA in wheat-leaf rust interactions and could help in rust resistance breeding programs.

  17. Transcriptome-wide analysis of WRKY transcription factors in wheat and their leaf rust responsive expression profiling.

    PubMed

    Satapathy, Lopamudra; Singh, Dharmendra; Ranjan, Prashant; Kumar, Dhananjay; Kumar, Manish; Prabhu, Kumble Vinod; Mukhopadhyay, Kunal

    2014-12-01

    WRKY, a plant-specific transcription factor family, has important roles in pathogen defense, abiotic cues and phytohormone signaling, yet little is known about their roles and molecular mechanism of function in response to rust diseases in wheat. We identified 100 TaWRKY sequences using wheat Expressed Sequence Tag database of which 22 WRKY sequences were novel. Identified proteins were characterized based on their zinc finger motifs and phylogenetic analysis clustered them into six clades consisting of class IIc and class III WRKY proteins. Functional annotation revealed major functions in metabolic and cellular processes in control plants; whereas response to stimuli, signaling and defense in pathogen inoculated plants, their major molecular function being binding to DNA. Tag-based expression analysis of the identified genes revealed differential expression between mock and Puccinia triticina inoculated wheat near isogenic lines. Gene expression was also performed with six rust-related microarray experiments at Gene Expression Omnibus database. TaWRKY10, 15, 17 and 56 were common in both tag-based and microarray-based differential expression analysis and could be representing rust specific WRKY genes. The obtained results will bestow insight into the functional characterization of WRKY transcription factors responsive to leaf rust pathogenesis that can be used as candidate genes in molecular breeding programs to improve biotic stress tolerance in wheat.

  18. A transcriptome analysis of two grapevine populations segregating for tendril phyllotaxy

    USDA-ARS?s Scientific Manuscript database

    The shoot structure of cultivated grapevine Vitis vinifera L. typically exhibits a 3-node modular repetitive pattern, two sequential leaf-opposed tendrils followed by a tendril-free node. In this study, we investigated the molecular basis of this pattern by characterizing differentially expressed ge...

  19. Andrographis paniculata transcriptome provides molecular insights into tissue-specific accumulation of medicinal diterpenes.

    PubMed

    Garg, Anchal; Agrawal, Lalit; Misra, Rajesh Chandra; Sharma, Shubha; Ghosh, Sumit

    2015-09-02

    Kalmegh (Andrographis paniculata) has been widely exploited in traditional medicine for the treatment of infectious diseases and health disorders. Ent-labdane-related diterpene (ent-LRD) specialized (i.e., secondary) metabolites of kalmegh such as andrographolide, neoandrographolide and 14-deoxy-11,12-didehydroandrographolide, are known for variety of pharmacological activities. However, due to the lack of genomic and transcriptomic information, underlying molecular basis of ent-LRDs biosynthesis has remained largely unknown. To identify candidate genes of the ent-LRD biosynthetic pathway, we performed comparative transcriptome analysis using leaf and root tissues that differentially accumulate ent-LRDs. De novo assembly of Illumina HiSeq2000 platform-generated paired-end sequencing reads resulted into 69,011 leaf and 64,244 root transcripts which were assembled into a total of 84,628 unique transcripts. Annotation of these transcripts to the Uniprot, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Carbohydrate-Active Enzymes (CAZy) databases identified candidate transcripts of the ent-LRD biosynthetic pathway. These included transcripts that encode enzymes of the plastidial 2C-methyl-D-erythritol-4-phosphate pathway which provides C5 isoprenoid precursors for the ent-LRDs biosynthesis, geranylgeranyl diphosphate synthase, class II diterpene synthase (diTPS), cytochrome P450 monooxygenase and glycosyltransferase. Three class II diTPSs (ApCPS1, ApCPS2 and ApCPS3) that showed distinct tissue-specific expression profiles and are phylogenetically related to the dicotyledon ent-copalyl diphosphate synthases, are identified. ApCPS1, ApCPS2 and ApCPS3 encode for 832-, 817- and 797- amino acids proteins of 55-63 % identity, respectively. Spatio-temporal patterns of transcripts and ent-LRDs accumulation are consistent with the involvement of ApCPS1 in general (i.e., primary) metabolism for the biosynthesis of phytohormone gibberellin, ApCPS2 in leaf specialized ent-LRDs biosynthesis and ApCPS3 in root diterpene biosynthesis. Moreover, simple sequence repeats (SSRs) that might assist in genotyping and developing specific chemotypes were identified in transcripts of the specialized metabolic pathways, including ent-LRDs. Comparative analysis of root and leaf transcriptomes disclosed novel genes of the ent-LRD biosynthetic pathway, including three class II diTPSs that showed discrete spatio-temporal expression patterns; thus, suggesting their participation into distinct diterpene metabolic pathways of kalmegh. Overall, these results will be useful in understanding molecular basis of the medicinal ent-LRDs biosynthesis and developing breeding strategies for improving their yields.

  20. Quantifying whole transcriptome size, a prerequisite for understanding transcriptome evolution across species: an example from a plant allopolyploid.

    PubMed

    Coate, Jeremy E; Doyle, Jeff J

    2010-01-01

    Evolutionary biologists are increasingly comparing gene expression patterns across species. Due to the way in which expression assays are normalized, such studies provide no direct information about expression per gene copy (dosage responses) or per cell and can give a misleading picture of genes that are differentially expressed. We describe an assay for estimating relative expression per cell. When used in conjunction with transcript profiling data, it is possible to compare the sizes of whole transcriptomes, which in turn makes it possible to compare expression per cell for each gene in the transcript profiling data set. We applied this approach, using quantitative reverse transcriptase-polymerase chain reaction and high throughput RNA sequencing, to a recently formed allopolyploid and showed that its leaf transcriptome was approximately 1.4-fold larger than either progenitor transcriptome (70% of the sum of the progenitor transcriptomes). In contrast, the allopolyploid genome is 94.3% as large as the sum of its progenitor genomes and retains > or =93.5% of the sum of its progenitor gene complements. Thus, "transcriptome downsizing" is greater than genome downsizing. Using this transcriptome size estimate, we inferred dosage responses for several thousand genes and showed that the majority exhibit partial dosage compensation. Homoeologue silencing is nonrandomly distributed across dosage responses, with genes showing extreme responses in either direction significantly more likely to have a silent homoeologue. This experimental approach will add value to transcript profiling experiments involving interspecies and interploidy comparisons by converting expression per transcriptome to expression per genome, eliminating the need for assumptions about transcriptome size.

  1. Transcriptome and Gene Expression Analysis of the Rice Leaf Folder, Cnaphalocrosis medinalis

    PubMed Central

    Li, Shang-Wei; Yang, Hong; Liu, Yue-Feng; Liao, Qi-Rong; Du, Juan; Jin, Dao-Chao

    2012-01-01

    Background The rice leaf folder (RLF), Cnaphalocrocis medinalis (Guenee) (Lepidoptera: Pyralidae), is one of the most destructive pests affecting rice in Asia. Although several studies have been performed on the ecological and physiological aspects of this species, the molecular mechanisms underlying its developmental regulation, behavior, and insecticide resistance remain largely unknown. Presently, there is a lack of genomic information for RLF; therefore, studies aimed at profiling the RLF transcriptome expression would provide a better understanding of its biological function at the molecular level. Principal Findings De novo assembly of the RLF transcriptome was performed via the short read sequencing technology (Illumina). In a single run, we produced more than 23 million sequencing reads that were assembled into 44,941 unigenes (mean size = 474 bp) by Trinity. Through a similarity search, 25,281 (56.82%) unigenes matched known proteins in the NCBI Nr protein database. The transcriptome sequences were annotated with gene ontology (GO), cluster of orthologous groups of proteins (COG), and KEGG orthology (KO). Additionally, we profiled gene expression during RLF development using a tag-based digital gene expression (DGE) system. Five DGE libraries were constructed, and variations in gene expression were compared between collected samples: eggs vs. 3rd instar larvae, 3rd instar larvae vs. pupae, pupae vs. adults. The results demonstrated that thousands of genes were significantly differentially expressed during various developmental stages. A number of the differentially expressed genes were confirmed by quantitative real-time PCR (qRT-PCR). Conclusions The RLF transcriptome and DGE data provide a comprehensive and global gene expression profile that would further promote our understanding of the molecular mechanisms underlying various biological characteristics, including development, elevated fecundity, flight, sex differentiation, olfactory behavior, and insecticide resistance in RLF. Therefore, these findings could help elucidate the intrinsic factors involved in the RLF-mediated destruction of rice and offer sustainable insect pest management. PMID:23185238

  2. De novo transcriptome analysis of rose-scented geranium provides insights into the metabolic specificity of terpene and tartaric acid biosynthesis.

    PubMed

    Narnoliya, Lokesh K; Kaushal, Girija; Singh, Sudhir P; Sangwan, Rajender S

    2017-01-13

    Rose-scented geranium (Pelargonium sp.) is a perennial herb that produces a high value essential oil of fragrant significance due to the characteristic compositional blend of rose-oxide and acyclic monoterpenoids in foliage. Recently, the plant has also been shown to produce tartaric acid in leaf tissues. Rose-scented geranium represents top-tier cash crop in terms of economic returns and significance of the plant and plant products. However, there has hardly been any study on its metabolism and functional genomics, nor any genomic expression dataset resource is available in public domain. Therefore, to begin the gains in molecular understanding of specialized metabolic pathways of the plant, de novo sequencing of rose-scented geranium leaf transcriptome, transcript assembly, annotation, expression profiling as well as their validation were carried out. De novo transcriptome analysis resulted a total of 78,943 unique contigs (average length: 623 bp, and N50 length: 752 bp) from 15.44 million high quality raw reads. In silico functional annotation led to the identification of several putative genes representing terpene, ascorbic acid and tartaric acid biosynthetic pathways, hormone metabolism, and transcription factors. Additionally, a total of 6,040 simple sequence repeat (SSR) motifs were identified in 6.8% of the expressed transcripts. The highest frequency of SSR was of tri-nucleotides (50%). Further, transcriptome assembly was validated for randomly selected putative genes by standard PCR-based approach. In silico expression profile of assembled contigs were validated by real-time PCR analysis of selected transcripts. Being the first report on transcriptome analysis of rose-scented geranium the data sets and the leads and directions reflected in this investigation will serve as a foundation for pursuing and understanding molecular aspects of its biology, and specialized metabolic pathways, metabolic engineering, genetic diversity as well as molecular breeding.

  3. Gibberellin-regulated gene in the basal region of rice leaf sheath encodes basic helix-loop-helix transcription factor.

    PubMed

    Komatsu, Setsuko; Takasaki, Hironori

    2009-07-01

    Genes regulated by gibberellin (GA) during leaf sheath elongation in rice seedlings were identified using the transcriptome approach. mRNA from the basal regions of leaf sheaths treated with GA3 was analyzed by high-coverage gene expression profiling. 33,004 peaks were detected, and 30 transcripts showed significant changes in the presence of GA3. Among these, basic helix-loop-helix transcription factor (AK073385) was significantly upregulated. Quantitative PCR analysis confirmed that expression of AK073385 was controlled by GA3 in a time- and dose-dependent manner. Basic helix-loop-helix transcription factor (AK073385) is therefore involved in the regulation of gene expression by GA3.

  4. Tissue-specific transcriptomic profiling provides new insights into the reproductive ecology and biology of the iconic seagrass species Posidonia oceanica.

    PubMed

    Entrambasaguas, Laura; Jahnke, Marlene; Biffali, Elio; Borra, Marco; Sanges, Remo; Marín-Guirao, Lázaro; Procaccini, Gabriele

    2017-10-01

    Seagrasses form extensive meadows in shallow coastal waters and are among the world's most productive ecosystems. Seagrasses can produce both clonally and sexually, and flowering has long been considered infrequent, but important for maintaining genetically diverse stands. Here we investigate the molecular mechanisms involved in flowering of the seagrass Posidonia oceanica, an iconic species endemic to the Mediterranean. We generated a de novo transcriptome of this non-model species for leaf, male and female flower tissue of three individuals, and present molecular evidence for genes that may be involved in the flowering process and on the reproductive biology of the species. We present evidence that suggests that P. oceanica exhibits a strategy of protogyny, where the female part of the hermaphroditic flower develops before the male part, in order to avoid self-fertilization. We found photosynthetic genes to be up-regulated in the female flower tissues, indicating that this may be capable of photosynthesis. Finally, we detected a number of interesting genes, previously known to be involved in flowering pathways responding to light and temperature cues and in pathways involved in anthocyanin and exine synthesis. This first comparative transcriptomic approach of leaf, male and female tissue provides a basis for functional genomics research on flower development in P. oceanica and other seagrass species. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The Interplay between Carbon Availability and Growth in Different Zones of the Growing Maize Leaf1[OPEN

    PubMed Central

    Arrivault, Stéphanie; Lohse, Marc A.; Feil, Regina; Krohn, Nicole; Encke, Beatrice; Nunes-Nesi, Adriano; Fernie, Alisdair R.; Stitt, Mark

    2016-01-01

    Plants assimilate carbon in their photosynthetic tissues in the light. However, carbon is required during the night and in nonphotosynthetic organs. It is therefore essential that plants manage their carbon resources spatially and temporally and coordinate growth with carbon availability. In growing maize (Zea mays) leaf blades, a defined developmental gradient facilitates analyses in the cell division, elongation, and mature zones. We investigated the responses of the metabolome and transcriptome and polysome loading, as a qualitative proxy for protein synthesis, at dusk, dawn, and 6, 14, and 24 h into an extended night, and tracked whole-leaf elongation over this time course. Starch and sugars are depleted by dawn in the mature zone, but only after an extension of the night in the elongation and division zones. Sucrose (Suc) recovers partially between 14 and 24 h into the extended night in the growth zones, but not the mature zone. The global metabolome and transcriptome track these zone-specific changes in Suc. Leaf elongation and polysome loading in the growth zones also remain high at dawn, decrease between 6 and 14 h into the extended night, and then partially recover, indicating that growth processes are determined by local carbon status. The level of Suc-signaling metabolite trehalose-6-phosphate, and the trehalose-6-phosphate:Suc ratio are much higher in growth than mature zones at dusk and dawn but fall in the extended night. Candidate genes were identified by searching for transcripts that show characteristic temporal response patterns or contrasting responses to carbon starvation in growth and mature zones. PMID:27582314

  6. Evolution of herbivore-induced early defense signaling was shaped by genome-wide duplications in Nicotiana

    PubMed Central

    Zhou, Wenwu; Brockmöller, Thomas; Ling, Zhihao; Omdahl, Ashton; Baldwin, Ian T; Xu, Shuqing

    2016-01-01

    Herbivore-induced defenses are widespread, rapidly evolving and relevant for plant fitness. Such induced defenses are often mediated by early defense signaling (EDS) rapidly activated by the perception of herbivore associated elicitors (HAE) that includes transient accumulations of jasmonic acid (JA). Analyzing 60 HAE-induced leaf transcriptomes from closely-related Nicotiana species revealed a key gene co-expression network (M4 module) which is co-activated with the HAE-induced JA accumulations but is elicited independently of JA, as revealed in plants silenced in JA signaling. Functional annotations of the M4 module were consistent with roles in EDS and a newly identified hub gene of the M4 module (NaLRRK1) mediates a negative feedback loop with JA signaling. Phylogenomic analysis revealed preferential gene retention after genome-wide duplications shaped the evolution of HAE-induced EDS in Nicotiana. These results highlight the importance of genome-wide duplications in the evolution of adaptive traits in plants. DOI: http://dx.doi.org/10.7554/eLife.19531.001 PMID:27813478

  7. BIG LEAF is a regulator of organ size and adventitious root formation in poplar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena

    Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stagesmore » of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. Additionally, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. Here, we conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.« less

  8. BIG LEAF is a regulator of organ size and adventitious root formation in poplar

    PubMed Central

    Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena; Meilan, Richard; Strauss, Steven H.; Busov, Victor B.

    2017-01-01

    Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stages of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. In addition, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. We conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting. PMID:28686626

  9. BIG LEAF is a regulator of organ size and adventitious root formation in poplar

    DOE PAGES

    Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena; ...

    2017-07-07

    Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stagesmore » of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. Additionally, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. Here, we conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.« less

  10. BIG LEAF is a regulator of organ size and adventitious root formation in poplar.

    PubMed

    Yordanov, Yordan S; Ma, Cathleen; Yordanova, Elena; Meilan, Richard; Strauss, Steven H; Busov, Victor B

    2017-01-01

    Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stages of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. In addition, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. We conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.

  11. De Novo Assembled Wheat Transcriptomes Delineate Differentially Expressed Host Genes in Response to Leaf Rust Infection.

    PubMed

    Chandra, Saket; Singh, Dharmendra; Pathak, Jyoti; Kumari, Supriya; Kumar, Manish; Poddar, Raju; Balyan, Harindra Singh; Gupta, Puspendra Kumar; Prabhu, Kumble Vinod; Mukhopadhyay, Kunal

    2016-01-01

    Pathogens like Puccinia triticina, the causal organism for leaf rust, extensively damages wheat production. The interaction at molecular level between wheat and the pathogen is complex and less explored. The pathogen induced response was characterized using mock- or pathogen inoculated near-isogenic wheat lines (with or without seedling leaf rust resistance gene Lr28). Four Serial Analysis of Gene Expression libraries were prepared from mock- and pathogen inoculated plants and were subjected to Sequencing by Oligonucleotide Ligation and Detection, which generated a total of 165,767,777 reads, each 35 bases long. The reads were processed and multiple k-mers were attempted for de novo transcript assembly; 22 k-mers showed the best results. Altogether 21,345 contigs were generated and functionally characterized by gene ontology annotation, mining for transcription factors and resistance genes. Expression analysis among the four libraries showed extensive alterations in the transcriptome in response to pathogen infection, reflecting reorganizations in major biological processes and metabolic pathways. Role of auxin in determining pathogenesis in susceptible and resistant lines were imperative. The qPCR expression study of four LRR-RLK (Leucine-rich repeat receptor-like protein kinases) genes showed higher expression at 24 hrs after inoculation with pathogen. In summary, the conceptual model of induced resistance in wheat contributes insights on defense responses and imparts knowledge of Puccinia triticina-induced defense transcripts in wheat plants.

  12. De Novo Assembled Wheat Transcriptomes Delineate Differentially Expressed Host Genes in Response to Leaf Rust Infection

    PubMed Central

    Pathak, Jyoti; Kumari, Supriya; Kumar, Manish; Poddar, Raju; Balyan, Harindra Singh; Gupta, Puspendra Kumar; Prabhu, Kumble Vinod; Mukhopadhyay, Kunal

    2016-01-01

    Pathogens like Puccinia triticina, the causal organism for leaf rust, extensively damages wheat production. The interaction at molecular level between wheat and the pathogen is complex and less explored. The pathogen induced response was characterized using mock- or pathogen inoculated near-isogenic wheat lines (with or without seedling leaf rust resistance gene Lr28). Four Serial Analysis of Gene Expression libraries were prepared from mock- and pathogen inoculated plants and were subjected to Sequencing by Oligonucleotide Ligation and Detection, which generated a total of 165,767,777 reads, each 35 bases long. The reads were processed and multiple k-mers were attempted for de novo transcript assembly; 22 k-mers showed the best results. Altogether 21,345 contigs were generated and functionally characterized by gene ontology annotation, mining for transcription factors and resistance genes. Expression analysis among the four libraries showed extensive alterations in the transcriptome in response to pathogen infection, reflecting reorganizations in major biological processes and metabolic pathways. Role of auxin in determining pathogenesis in susceptible and resistant lines were imperative. The qPCR expression study of four LRR-RLK (Leucine-rich repeat receptor-like protein kinases) genes showed higher expression at 24 hrs after inoculation with pathogen. In summary, the conceptual model of induced resistance in wheat contributes insights on defense responses and imparts knowledge of Puccinia triticina-induced defense transcripts in wheat plants. PMID:26840746

  13. De novo leaf and root transcriptome analysis to identify putative genes involved in triterpenoid saponins biosynthesis in Hedera helix L.

    PubMed Central

    Li, Fang; Xu, Zijian; Sun, Mengli; Cong, Hanqing; Qiao, Fei; Zhong, Xiaohong

    2017-01-01

    Hedera helix L. is an important traditional medicinal plant in Europe. The main active components are triterpenoid saponins, but none of the potential enzymes involved in triterpenoid saponins biosynthesis have been discovered and annotated. Here is reported the first study of global transcriptome analyses using the Illumina HiSeq™ 2500 platform for H. helix. In total, over 24 million clean reads were produced and 96,333 unigenes were assembled, with an average length of 1385 nt; more than 79,085 unigenes had at least one significant match to an existing gene model. Differentially Expressed Gene analysis identified 6,222 and 7,012 unigenes which were expressed either higher or lower in leaf samples when compared with roots. After functional annotation and classification, two pathways and 410 unigenes related to triterpenoid saponins biosynthesis were discovered. The accuracy of these de novo sequences was validated by RT-qPCR analysis and a RACE clone. These data will enrich our knowledge of triterpenoid saponin biosynthesis and provide a theoretical foundation for molecular research on H. helix. PMID:28771546

  14. Diurnal Cycling Transcription Factors of Pineapple Revealed by Genome-Wide Annotation and Global Transcriptomic Analysis.

    PubMed

    Sharma, Anupma; Wai, Ching Man; Ming, Ray; Yu, Qingyi

    2017-09-01

    Circadian clock provides fitness advantage by coordinating internal metabolic and physiological processes to external cyclic environments. Core clock components exhibit daily rhythmic changes in gene expression, and the majority of them are transcription factors (TFs) and transcription coregulators (TCs). We annotated 1,398 TFs from 67 TF families and 80 TCs from 20 TC families in pineapple, and analyzed their tissue-specific and diurnal expression patterns. Approximately 42% of TFs and 45% of TCs displayed diel rhythmic expression, including 177 TF/TCs cycling only in the nonphotosynthetic leaf tissue, 247 cycling only in the photosynthetic leaf tissue, and 201 cycling in both. We identified 68 TF/TCs whose cycling expression was tightly coupled between the photosynthetic and nonphotosynthetic leaf tissues. These TF/TCs likely coordinate key biological processes in pineapple as we demonstrated that this group is enriched in homologous genes that form the core circadian clock in Arabidopsis and includes a STOP1 homolog. Two lines of evidence support the important role of the STOP1 homolog in regulating CAM photosynthesis in pineapple. First, STOP1 responds to acidic pH and regulates a malate channel in multiple plant species. Second, the cycling expression pattern of the pineapple STOP1 and the diurnal pattern of malate accumulation in pineapple leaf are correlated. We further examined duplicate-gene retention and loss in major known circadian genes and refined their evolutionary relationships between pineapple and other plants. Significant variations in duplicate-gene retention and loss were observed for most clock genes in both monocots and dicots. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. Transcriptomic and proteomic analyses of a pale-green durum wheat mutant shows variations in photosystem components and metabolic deficiencies under drought stress

    PubMed Central

    2014-01-01

    Background Leaf pigment content is an important trait involved in environmental interactions. In order to determine its impact on drought tolerance in wheat, we characterized a pale-green durum wheat mutant (Triticum turgidum L. var. durum) under contrasting water availability conditions. Results The pale-green mutant was investigated by comparing pigment content and gene/protein expression profiles to wild-type plants at anthesis. Under well-watered (control) conditions the mutant had lower levels of chlorophylls and carotenoids, but higher levels of xanthophyll de-epoxidation compared to wild-type. Transcriptomic analysis under control conditions showed that defense genes (encoding e.g. pathogenesis-related proteins, peroxidases and chitinases) were upregulated in the mutant, suggesting the presence of mild oxidative stress that was compensated without altering the net rate of photosynthesis. Transcriptomic analysis under terminal water stress conditions, revealed the modulation of antioxidant enzymes, photosystem components, and enzymes representing carbohydrate metabolism and the tricarboxylic acid cycle, indicating that the mutant was exposed to greater oxidative stress than the wild-type plants, but had a limited capacity to respond. We also compared the two genotypes under irrigated and rain-fed field conditions over three years, finding that the greater oxidative stress and corresponding molecular changes in the pale-green mutant were associated to a yield reduction. Conclusions This study provides insight on the effect of pigment content in the molecular response to drought. Identified genes differentially expressed under terminal water stress may be valuable for further studies addressing drought resistance in wheat. PMID:24521234

  16. Novel dermaseptin, adenoregulin and caerin homologs from the Central American red-eyed leaf frog, Agalychnis callidryas, revealed by functional peptidomics of defensive skin secretion.

    PubMed

    Wang, Lei; Zhou, Mei; McClelland, Ann; Reilly, Aislinn; Chen, Tianbao; Gagliardo, Ron; Walker, Brian; Shaw, Chris

    2008-10-01

    By integrating systematic peptidome and transcriptome studies of the defensive skin secretion of the Central American red-eyed leaf frog, Agalychnis callidryas, we have identified novel members of three previously described antimicrobial peptide families, a 27-mer dermaseptin-related peptide (designated DRP-AC4), a 33-mer adenoregulin-related peptide (designated ARP-AC1) and most unusually, a 27-mer caerin-related peptide (designated CRP-AC1). While dermaseptin and adenoregulin were originally isolated from phyllomedusine leaf frogs, the caerins, until now, had only been described in Australian frogs of the genus, Litoria. Both the dermaseptin and adenoregulin were C-terminally amidated and lacked the C-terminal tripeptide of the biosynthetic precursor sequence. In contrast, the caerin-related peptide, unlike the majority of Litoria analogs, was not C-terminally amidated. The present data emphasize the need for structural characterization of mature peptides to ensure that unexpected precursor cleavages and/or post-translational modifications do not produce mature peptides that differ in structure to those predicted from cloned biosynthetic precursor cDNA. Additionally, systematic study of the secretory peptidome can produce unexpected results such as the CRP described here that may have phylogenetic implications. It is thus of the utmost importance in the functional evaluation of novel peptides that the primary structure of the mature peptide is unequivocally established -- something that is often facilitated by cloning biosynthetic precursor cDNAs but obviously not reliable using such data alone.

  17. Adaptive mechanisms and genomic plasticity for drought tolerance identified in European black poplar (Populus nigra L.)

    PubMed Central

    Viger, Maud; Smith, Hazel K.; Cohen, David; Dewoody, Jennifer; Trewin, Harriet; Steenackers, Marijke; Bastien, Catherine; Taylor, Gail

    2016-01-01

    Summer droughts are likely to increase in frequency and intensity across Europe, yet long-lived trees may have a limited ability to tolerate drought. It is therefore critical that we improve our understanding of phenotypic plasticity to drought in natural populations for ecologically and economically important trees such as Populus nigra L. A common garden experiment was conducted using ∼500 wild P. nigra trees, collected from 11 river populations across Europe. Phenotypic variation was found across the collection, with southern genotypes from Spain and France characterized by small leaves and limited biomass production. To examine the relationship between phenotypic variation and drought tolerance, six genotypes with contrasting leaf morphologies were subjected to a water deficit experiment. ‘North eastern’ genotypes were collected at wet sites and responded to water deficit with reduced biomass growth, slow stomatal closure and reduced water use efficiency (WUE) assessed by Δ13C. In contrast, ‘southern’ genotypes originating from arid sites showed rapid stomatal closure, improved WUE and limited leaf loss. Transcriptome analyses of a genotype from Spain (Sp2, originating from an arid site) and another from northern Italy (Ita, originating from a wet site) revealed dramatic differences in gene expression response to water deficit. Transcripts controlling leaf development and stomatal patterning, including SPCH, ANT, ER, AS1, AS2, PHB, CLV1, ERL1–3 and TMM, were down-regulated in Ita but not in Sp2 in response to drought. PMID:27174702

  18. De novo sequencing and analysis of the transcriptome of Panax ginseng in the leaf-expansion period.

    PubMed

    Liu, Shichao; Wang, Siming; Liu, Meichen; Yang, Fei; Zhang, Hui; Liu, Shiyang; Wang, Qun; Zhao, Yu

    2016-08-01

    Panax ginseng, a traditional Chinese medicine, is used worldwide for its variety of health benefits and its treatment efficacy. However, it is difficult to cultivate due to its vulnerability to environmental stresses. The present study provided the first report, to the best of our knowledge, of transcriptome analysis of ginseng at the leaf‑expansion stage. Using the Illumina sequencing platform, >40,000,000 high‑quality paired‑end reads were obtained and assembled into 100,533 unique sequences. When the sequences were searched against the publicly available National Center for Biotechnology Information protein database using The Basic Local Alignment Search Tool, 61,599 sequences exhibited similarity to known proteins. Functional annotation and classification, including use of the Gene Ontology, Clusters of Orthologous Groups, and Kyoto Encyclopedia of Genes and Genomes databases, revealed that the activated genes in ginseng were predominantly ribonuclease‑like storage genes, environmental stress genes, pathogenesis-related genes and other antioxidant genes. A number of candidate genes in environmental stress‑associated pathways were also identified. These novel data provide useful information on the growth and development stages of ginseng, and serve as an important public information platform for further understanding of the molecular mechanisms and functional genomics of ginseng.

  19. De novo sequencing and comparative analysis of leaf transcriptomes of diverse condensed tannin-containing lines of underutilized Psophocarpus tetragonolobus (L.) DC

    PubMed Central

    Singh, Vinayak; Goel, Ridhi; Pande, Veena; Asif, Mehar Hasan; Mohanty, Chandra Sekhar

    2017-01-01

    Condensed tannin (CT) or proanthocyanidin (PA) is a unique group of phenolic metabolite with high molecular weight with specific structure. It is reported that, the presence of high-CT in the legumes adversely affect the nutrients in the plant and impairs the digestibility upon consumption by animals. Winged bean (Psophocarpus tetragonolobus (L.) DC.) is one of the promising underutilized legume with high protein and oil-content. One of the reasons for its underutilization is due to the presence of CT. Transcriptome sequencing of leaves of two diverse CT-containing lines of P. tetragonolobus was carried out on Illumina Nextseq 500 sequencer to identify the underlying genes and contigs responsible for CT-biosynthesis. RNA-Seq data generated 102586 and 88433 contigs for high (HCTW) and low CT (LCTW) lines of P. tetragonolobus, respectively. Based on the similarity searches against gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) database revealed 5210 contigs involved in 229 different pathways. A total of 1235 contigs were detected to differentially express between HCTW and LCTW lines. This study along with its findings will be helpful in providing information for functional and comparative genomic analysis of condensed tannin biosynthesis in this plant in specific and legumes in general. PMID:28322296

  20. De novo transcriptome analysis in Dendrobium and identification of critical genes associated with flowering.

    PubMed

    Chen, Yue; Shen, Qi; Lin, Renan; Zhao, Zhuangliu; Shen, Chenjia; Sun, Chongbo

    2017-10-01

    Artificial control of flowering time is pivotal for the ornamental value of orchids including the genus Dendrobium. Although various flowering pathways have been revealed in model plants, little information is available on the genetic regualtion of flowering in Dendrobium. To identify the critical genes associated with flowering, transcriptomes from four organs (leaf, root, stem and flower) of D. officinale were analyzed in our study. In total, 2645 flower-specific transcripts were identified. Functional annotation and classification suggested that several metabolic pathways, including four sugar-related pathways and two fatty acid-related pathways, were enriched. A total of 24 flowering-related transcripts were identified in D. officinale according to the similarities to their homologous genes from Arabidopsis, suggesting that most classical flowering pathways existed in D. officinale. Furthermore, phylogenetic analysis suggested that the FLOWERING LOCUS T homologs in orchids are highly conserved during evolution process. In addition, expression changes in nine randomly-selected critical flowering-related transcripts between the vegetative stage and reproductive stage were quantified by qRT-PCR analysis. Our study provided a number of candidate genes and sequence resources for investigating the mechanisms underlying the flowering process of the Dendrobium genus. Copyright © 2017. Published by Elsevier Masson SAS.

  1. The Interplay between Carbon Availability and Growth in Different Zones of the Growing Maize Leaf.

    PubMed

    Czedik-Eysenberg, Angelika; Arrivault, Stéphanie; Lohse, Marc A; Feil, Regina; Krohn, Nicole; Encke, Beatrice; Nunes-Nesi, Adriano; Fernie, Alisdair R; Lunn, John E; Sulpice, Ronan; Stitt, Mark

    2016-10-01

    Plants assimilate carbon in their photosynthetic tissues in the light. However, carbon is required during the night and in nonphotosynthetic organs. It is therefore essential that plants manage their carbon resources spatially and temporally and coordinate growth with carbon availability. In growing maize (Zea mays) leaf blades, a defined developmental gradient facilitates analyses in the cell division, elongation, and mature zones. We investigated the responses of the metabolome and transcriptome and polysome loading, as a qualitative proxy for protein synthesis, at dusk, dawn, and 6, 14, and 24 h into an extended night, and tracked whole-leaf elongation over this time course. Starch and sugars are depleted by dawn in the mature zone, but only after an extension of the night in the elongation and division zones. Sucrose (Suc) recovers partially between 14 and 24 h into the extended night in the growth zones, but not the mature zone. The global metabolome and transcriptome track these zone-specific changes in Suc. Leaf elongation and polysome loading in the growth zones also remain high at dawn, decrease between 6 and 14 h into the extended night, and then partially recover, indicating that growth processes are determined by local carbon status. The level of Suc-signaling metabolite trehalose-6-phosphate, and the trehalose-6-phosphate:Suc ratio are much higher in growth than mature zones at dusk and dawn but fall in the extended night. Candidate genes were identified by searching for transcripts that show characteristic temporal response patterns or contrasting responses to carbon starvation in growth and mature zones. © 2016 American Society of Plant Biologists. All Rights Reserved.

  2. De novo transcriptome sequencing reveals a considerable bias in the incidence of simple sequence repeats towards the downstream of 'Pre-miRNAs' of black pepper.

    PubMed

    Joy, Nisha; Asha, Srinivasan; Mallika, Vijayan; Soniya, Eppurathu Vasudevan

    2013-01-01

    Next generation sequencing has an advantageon transformational development of species with limited available sequence data as it helps to decode the genome and transcriptome. We carried out the de novo sequencing using illuminaHiSeq™ 2000 to generate the first leaf transcriptome of black pepper (Piper nigrum L.), an important spice variety native to South India and also grown in other tropical regions. Despite the economic and biochemical importance of pepper, a scientifically rigorous study at the molecular level is far from complete due to lack of sufficient sequence information and cytological complexity of its genome. The 55 million raw reads obtained, when assembled using Trinity program generated 2,23,386 contigs and 1,28,157 unigenes. Reports suggest that the repeat-rich genomic regions give rise to small non-coding functional RNAs. MicroRNAs (miRNAs) are the most abundant type of non-coding regulatory RNAs. In spite of the widespread research on miRNAs, little is known about the hair-pin precursors of miRNAs bearing Simple Sequence Repeats (SSRs). We used the array of transcripts generated, for the in silico prediction and detection of '43 pre-miRNA candidates bearing different types of SSR motifs'. The analysis identified 3913 different types of SSR motifs with an average of one SSR per 3.04 MB of thetranscriptome. About 0.033% of the transcriptome constituted 'pre-miRNA candidates bearing SSRs'. The abundance, type and distribution of SSR motifs studied across the hair-pin miRNA precursors, showed a significant bias in the position of SSRs towards the downstream of predicted 'pre-miRNA candidates'. The catalogue of transcripts identified, together with the demonstration of reliable existence of SSRs in the miRNA precursors, permits future opportunities for understanding the genetic mechanism of black pepper and likely functions of 'tandem repeats' in miRNAs.

  3. De novo Transcriptome Sequencing Reveals a Considerable Bias in the Incidence of Simple Sequence Repeats towards the Downstream of ‘Pre-miRNAs’ of Black Pepper

    PubMed Central

    Joy, Nisha; Asha, Srinivasan; Mallika, Vijayan; Soniya, Eppurathu Vasudevan

    2013-01-01

    Next generation sequencing has an advantageon transformational development of species with limited available sequence data as it helps to decode the genome and transcriptome. We carried out the de novo sequencing using illuminaHiSeq™ 2000 to generate the first leaf transcriptome of black pepper (Piper nigrum L.), an important spice variety native to South India and also grown in other tropical regions. Despite the economic and biochemical importance of pepper, a scientifically rigorous study at the molecular level is far from complete due to lack of sufficient sequence information and cytological complexity of its genome. The 55 million raw reads obtained, when assembled using Trinity program generated 2,23,386 contigs and 1,28,157 unigenes. Reports suggest that the repeat-rich genomic regions give rise to small non-coding functional RNAs. MicroRNAs (miRNAs) are the most abundant type of non-coding regulatory RNAs. In spite of the widespread research on miRNAs, little is known about the hair-pin precursors of miRNAs bearing Simple Sequence Repeats (SSRs). We used the array of transcripts generated, for the in silico prediction and detection of ‘43 pre-miRNA candidates bearing different types of SSR motifs’. The analysis identified 3913 different types of SSR motifs with an average of one SSR per 3.04 MB of thetranscriptome. About 0.033% of the transcriptome constituted ‘pre-miRNA candidates bearing SSRs’. The abundance, type and distribution of SSR motifs studied across the hair-pin miRNA precursors, showed a significant bias in the position of SSRs towards the downstream of predicted ‘pre-miRNA candidates’. The catalogue of transcripts identified, together with the demonstration of reliable existence of SSRs in the miRNA precursors, permits future opportunities for understanding the genetic mechanism of black pepper and likely functions of ‘tandem repeats’ in miRNAs. PMID:23469176

  4. Leaf Responses to Mild Drought Stress in Natural Variants of Arabidopsis1[OPEN

    PubMed Central

    Clauw, Pieter; Coppens, Frederik; De Beuf, Kristof; Dhondt, Stijn; Van Daele, Twiggy; Maleux, Katrien; Storme, Veronique; Clement, Lieven; Gonzalez, Nathalie; Inzé, Dirk

    2015-01-01

    Although the response of plants exposed to severe drought stress has been studied extensively, little is known about how plants adapt their growth under mild drought stress conditions. Here, we analyzed the leaf and rosette growth response of six Arabidopsis (Arabidopsis thaliana) accessions originating from different geographic regions when exposed to mild drought stress. The automated phenotyping platform WIWAM was used to impose stress early during leaf development, when the third leaf emerges from the shoot apical meristem. Analysis of growth-related phenotypes showed differences in leaf development between the accessions. In all six accessions, mild drought stress reduced both leaf pavement cell area and number without affecting the stomatal index. Genome-wide transcriptome analysis (using RNA sequencing) of early developing leaf tissue identified 354 genes differentially expressed under mild drought stress in the six accessions. Our results indicate the existence of a robust response over different genetic backgrounds to mild drought stress in developing leaves. The processes involved in the overall mild drought stress response comprised abscisic acid signaling, proline metabolism, and cell wall adjustments. In addition to these known severe drought-related responses, 87 genes were found to be specific for the response of young developing leaves to mild drought stress. PMID:25604532

  5. Transcriptome analysis of Bemisia tabaci during tomato yellow leaf curl virus acquisition and ribonucleic acid interference to manage whitefly-transmitted viruses

    USDA-ARS?s Scientific Manuscript database

    Over 300 viruses are transmitted by the whitefly, Bemisia tabaci, with 90% of them belonging to the genus, Begomovirus. Begomoviruses are obligately transmitted by whiteflies to a wide range of agriculture crops, resulting in billions of dollars lost annually, while jeopardizing food security worldw...

  6. Genome assembly of the fungus Cochliobolus miyabeanus, and transcriptome analysis during early stages of infection on American wild rice (Zizania palustris L.)

    USDA-ARS?s Scientific Manuscript database

    Cochliobolus miyabeanus causes a severe, yield-reducing leaf spot disease on rice (Oryza sativa) and two North American specialty crops, American wildrice (Zizania palustris) and switchgrass (Panicum virgatum). Despite the importance of the pathogen in wildrice, little is known about mechanisms of p...

  7. Neighbor detection at the leaf tip adaptively regulates upward leaf movement through spatial auxin dynamics

    PubMed Central

    Reinen, Emilie; Anten, Niels P. R.

    2017-01-01

    Vegetation stands have a heterogeneous distribution of light quality, including the red/far-red light ratio (R/FR) that informs plants about proximity of neighbors. Adequate responses to changes in R/FR are important for competitive success. How the detection and response to R/FR are spatially linked and how this spatial coordination between detection and response affects plant performance remains unresolved. We show in Arabidopsis thaliana and Brassica nigra that localized FR enrichment at the lamina tip induces upward leaf movement (hyponasty) from the petiole base. Using a combination of organ-level transcriptome analysis, molecular reporters, and physiology, we show that PIF-dependent spatial auxin dynamics are key to this remote response to localized FR enrichment. Using computational 3D modeling, we show that remote signaling of R/FR for hyponasty has an adaptive advantage over local signaling in the petiole, because it optimizes the timing of leaf movement in response to neighbors and prevents hyponasty caused by self-shading. PMID:28652357

  8. Symbiotic adaptations in the fungal cultivar of leaf-cutting ants.

    PubMed

    De Fine Licht, Henrik H; Boomsma, Jacobus J; Tunlid, Anders

    2014-12-01

    Centuries of artificial selection have dramatically improved the yield of human agriculture; however, strong directional selection also occurs in natural symbiotic interactions. Fungus-growing attine ants cultivate basidiomycete fungi for food. One cultivar lineage has evolved inflated hyphal tips (gongylidia) that grow in bundles called staphylae, to specifically feed the ants. Here we show extensive regulation and molecular signals of adaptive evolution in gene trancripts associated with gongylidia biosynthesis, morphogenesis and enzymatic plant cell wall degradation in the leaf-cutting ant cultivar Leucoagaricus gongylophorus. Comparative analysis of staphylae growth morphology and transcriptome-wide expressional and nucleotide divergence indicate that gongylidia provide leaf-cutting ants with essential amino acids and plant-degrading enzymes, and that they may have done so for 20-25 million years without much evolutionary change. These molecular traits and signatures of selection imply that staphylae are highly advanced coevolutionary organs that play pivotal roles in the mutualism between leaf-cutting ants and their fungal cultivars.

  9. Transcriptome Analysis of an Anthracnose-Resistant Tea Plant Cultivar Reveals Genes Associated with Resistance to Colletotrichum camelliae

    PubMed Central

    Wang, Lu; Wang, Yuchun; Cao, Hongli; Hao, Xinyuan; Zeng, Jianming; Yang, Yajun; Wang, Xinchao

    2016-01-01

    Tea plant breeding is a topic of great economic importance. However, disease remains a major cause of yield and quality losses. In this study, an anthracnose-resistant cultivar, ZC108, was developed. An infection assay revealed different responses to Colletotrichum sp. infection between ZC108 and its parent cultivar LJ43. ZC108 had greater resistance than LJ43 to Colletotrichum camelliae. Additionally, ZC108 exhibited earlier sprouting in the spring, as well as different leaf shape and plant architecture. Microarray data revealed that the genes that are differentially expressed between LJ43 and ZC108 mapped to secondary metabolism-related pathways, including phenylpropanoid biosynthesis, phenylalanine metabolism, and flavonoid biosynthesis pathways. In addition, genes involved in plant hormone biosynthesis and signaling as well as plant-pathogen interaction pathways were also changed. Quantitative real-time PCR was used to examine the expression of 27 selected genes in infected and uninfected tea plant leaves. Genes encoding a MADS-box transcription factor, NBS-LRR disease-resistance protein, and phenylpropanoid metabolism pathway components (CAD, CCR, POD, beta-glucosidase, ALDH and PAL) were among those differentially expressed in ZC108. PMID:26849553

  10. Genome-wide analysis of starch metabolism genes in potato (Solanum tuberosum L.).

    PubMed

    Van Harsselaar, Jessica K; Lorenz, Julia; Senning, Melanie; Sonnewald, Uwe; Sonnewald, Sophia

    2017-01-05

    Starch is the principle constituent of potato tubers and is of considerable importance for food and non-food applications. Its metabolism has been subject of extensive research over the past decades. Despite its importance, a description of the complete inventory of genes involved in starch metabolism and their genome organization in potato plants is still missing. Moreover, mechanisms regulating the expression of starch genes in leaves and tubers remain elusive with regard to differences between transitory and storage starch metabolism, respectively. This study aimed at identifying and mapping the complete set of potato starch genes, and to study their expression pattern in leaves and tubers using different sets of transcriptome data. Moreover, we wanted to uncover transcription factors co-regulated with starch accumulation in tubers in order to get insight into the regulation of starch metabolism. We identified 77 genomic loci encoding enzymes involved in starch metabolism. Novel isoforms of many enzymes were found. Their analysis will help to elucidate mechanisms of starch biosynthesis and degradation. Expression analysis of starch genes led to the identification of tissue-specific isoenzymes suggesting differences in the transcriptional regulation of starch metabolism between potato leaf and tuber tissues. Selection of genes predominantly expressed in developing potato tubers and exhibiting an expression pattern indicative for a role in starch biosynthesis enabled the identification of possible transcriptional regulators of tuber starch biosynthesis by co-expression analysis. This study provides the annotation of the complete set of starch metabolic genes in potato plants and their genomic localizations. Novel, so far undescribed, enzyme isoforms were revealed. Comparative transcriptome analysis enabled the identification of tuber- and leaf-specific isoforms of starch genes. This finding suggests distinct regulatory mechanisms in transitory and storage starch metabolism. Putative regulatory proteins of starch biosynthesis in potato tubers have been identified by co-expression and their expression was verified by quantitative RT-PCR.

  11. Transcriptome reprogramming of resistant and susceptible peach genotypes during Xanthomonas arboricola pv. pruni early leaf infection

    PubMed Central

    Gervasi, Fabio; Ferrante, Patrizia; Dettori, Maria Teresa; Scortichini, Marco

    2018-01-01

    Bacterial spot caused by Xanthomonas arboricola pv. pruni (Xap) is a major threat to Prunus species worldwide. The molecular mechanisms of peach resistance to Xap during early leaf infection were investigated by RNA-Seq analysis of two Prunus persica cultivars, ‘Redkist’ (resistant), and ‘JH Hale’ (susceptible) at 30 minutes, 1 and 3 hours-post-infection (hpi). Both cultivars exhibited extensive modulation of gene expression at 30 mpi, which reduced significantly at 1 hpi, increasing again at 3 hpi. Overall, 714 differentially expressed genes (DEGs) were detected in ‘Redkist’ (12% at 30 mpi and 1 hpi and 88% at 3 hpi). In ‘JH Hale’, 821 DEGs were identified (47% at 30 mpi and 1 hpi and 53% at 3 hpi). Highly up-regulated genes (fold change > 100) at 3 hpi exhibited higher fold change values in ‘Redkist’ than in ‘JH Hale’. RNA-Seq bioinformatics analyses were validated by RT-qPCR. In both cultivars, DEGs included genes with putative roles in perception, signal transduction, secondary metabolism, and transcription regulation, and there were defense responses in both cultivars, with enrichment for the gene ontology terms, ‘immune system process’, ‘defense response’, and ‘cell death’. There were particular differences between the cultivars in the intensity and kinetics of modulation of expression of genes with putative roles in transcriptional activity, secondary metabolism, photosynthesis, and receptor and signaling processes. Analysis of differential exon usage (DEU) revealed that both cultivars initiated remodeling their transcriptomes at 30 mpi; however, ‘Redkist’ exhibited alternative exon usage for a greater number of genes at every time point compared with ‘JH Hale’. Candidate resistance genes (WRKY-like, CRK-like, Copper amine oxidase-like, and TIR-NBS-LRR-like) are of interest for further functional characterization with the aim of elucidating their role in Prunus spp. resistance to Xap. PMID:29698473

  12. Transcriptome reprogramming of resistant and susceptible peach genotypes during Xanthomonas arboricola pv. pruni early leaf infection.

    PubMed

    Gervasi, Fabio; Ferrante, Patrizia; Dettori, Maria Teresa; Scortichini, Marco; Verde, Ignazio

    2018-01-01

    Bacterial spot caused by Xanthomonas arboricola pv. pruni (Xap) is a major threat to Prunus species worldwide. The molecular mechanisms of peach resistance to Xap during early leaf infection were investigated by RNA-Seq analysis of two Prunus persica cultivars, 'Redkist' (resistant), and 'JH Hale' (susceptible) at 30 minutes, 1 and 3 hours-post-infection (hpi). Both cultivars exhibited extensive modulation of gene expression at 30 mpi, which reduced significantly at 1 hpi, increasing again at 3 hpi. Overall, 714 differentially expressed genes (DEGs) were detected in 'Redkist' (12% at 30 mpi and 1 hpi and 88% at 3 hpi). In 'JH Hale', 821 DEGs were identified (47% at 30 mpi and 1 hpi and 53% at 3 hpi). Highly up-regulated genes (fold change > 100) at 3 hpi exhibited higher fold change values in 'Redkist' than in 'JH Hale'. RNA-Seq bioinformatics analyses were validated by RT-qPCR. In both cultivars, DEGs included genes with putative roles in perception, signal transduction, secondary metabolism, and transcription regulation, and there were defense responses in both cultivars, with enrichment for the gene ontology terms, 'immune system process', 'defense response', and 'cell death'. There were particular differences between the cultivars in the intensity and kinetics of modulation of expression of genes with putative roles in transcriptional activity, secondary metabolism, photosynthesis, and receptor and signaling processes. Analysis of differential exon usage (DEU) revealed that both cultivars initiated remodeling their transcriptomes at 30 mpi; however, 'Redkist' exhibited alternative exon usage for a greater number of genes at every time point compared with 'JH Hale'. Candidate resistance genes (WRKY-like, CRK-like, Copper amine oxidase-like, and TIR-NBS-LRR-like) are of interest for further functional characterization with the aim of elucidating their role in Prunus spp. resistance to Xap.

  13. Distinct gene networks modulate floral induction of autonomous maize and photoperiod-dependent teosinte.

    PubMed

    Minow, Mark A A; Ávila, Luis M; Turner, Katie; Ponzoni, Elena; Mascheretti, Iride; Dussault, Forest M; Lukens, Lewis; Rossi, Vincenzo; Colasanti, Joseph

    2018-05-25

    Temperate maize was domesticated from its tropical ancestor, teosinte. Whereas temperate maize is an autonomous day-neutral plant, teosinte is an obligate short-day plant that requires uninterrupted long nights to induce flowering. Leaf-derived florigenic signals trigger reproductive growth in both teosinte and temperate maize. To study the genetic mechanisms underlying floral inductive pathways in maize and teosinte, mRNA and small RNA genome-wide expression analyses were conducted on leaf tissue from plants that were induced or not induced to flower. Transcriptome profiles reveal common differentially expressed genes during floral induction, but a comparison of candidate flowering time genes indicates that photoperiod and autonomous pathways act independently. Expression differences in teosinte are consistent with the current paradigm for photoperiod-induced flowering, where changes in circadian clock output trigger florigen production. Conversely, differentially expressed genes in temperate maize link carbon partitioning and flowering, but also show altered expression of circadian clock genes that are distinct from those altered upon photoperiodic induction in teosinte. Altered miRNA399 levels in both teosinte and maize suggest a novel common connection between flowering and phosphorus perception. These findings provide insights into the molecular mechanisms underlying a strengthened autonomous pathway that enabled maize growth throughout temperate regions.

  14. Identification and Comparative Expression Profiles of Chemoreception Genes Revealed from Major Chemoreception Organs of the Rice Leaf Folder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae)

    PubMed Central

    Zeng, Fang-Fang; Zhao, Zhen-Fei; Yan, Miao-Jun; Zhou, Wen; Zhang, Zan; Zhang, Aijun; Lu, Zhong-Xian; Wang, Man-Qun

    2015-01-01

    To better understand the olfactory mechanisms in the rice leaf folder, Cnaphalocrocis medinalis (Guenée), a serious pest of rice in Asia, we established six partial transcriptomes from antennae, protarsus, and reproductive organs of male and female adults. A total of 102 transcripts were identified, including 29 odorant receptors (ORs), 15 ionotropic receptors (IRs), 30 odorant-binding proteins (OBPs), 26 chemosensory proteins (CSPs), and 2 sensory neuron membrane proteins (SNMPs). The expression patterns of these genes were calculated by fragments per kilobase of exon per million fragments mapped (FPKM) and validated by real-time quantitative PCR (RT-qPCR). Some transcripts were exclusively expressed in specific organs, such as female protarsus, whereas others were universally expressed, this varied expression profile may provide insights into the specific functions mediated by chemoreception proteins in insects. To the best of our knowledge, among the 102 identified transcripts, 81 are novel and have never been reported before. In addition, it also is the first time that ORs and IRs are identified in C. medinalis. Our findings significantly enhance the currently limited understanding olfactory mechanisms of the olfactory mechanisms underlying the chemoreception system in C. medinalis. PMID:26657286

  15. Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae.

    PubMed

    Islam, M Tofazzal; Croll, Daniel; Gladieux, Pierre; Soanes, Darren M; Persoons, Antoine; Bhattacharjee, Pallab; Hossain, Md Shaid; Gupta, Dipali Rani; Rahman, Md Mahbubur; Mahboob, M Golam; Cook, Nicola; Salam, Moin U; Surovy, Musrat Zahan; Sancho, Vanessa Bueno; Maciel, João Leodato Nunes; NhaniJúnior, Antonio; Castroagudín, Vanina Lilián; Reges, Juliana T de Assis; Ceresini, Paulo Cezar; Ravel, Sebastien; Kellner, Ronny; Fournier, Elisabeth; Tharreau, Didier; Lebrun, Marc-Henri; McDonald, Bruce A; Stitt, Timothy; Swan, Daniel; Talbot, Nicholas J; Saunders, Diane G O; Win, Joe; Kamoun, Sophien

    2016-10-03

    In February 2016, a new fungal disease was spotted in wheat fields across eight districts in Bangladesh. The epidemic spread to an estimated 15,000 hectares, about 16 % of the cultivated wheat area in Bangladesh, with yield losses reaching up to 100 %. Within weeks of the onset of the epidemic, we performed transcriptome sequencing of symptomatic leaf samples collected directly from Bangladeshi fields. Reinoculation of seedlings with strains isolated from infected wheat grains showed wheat blast symptoms on leaves of wheat but not rice. Our phylogenomic and population genomic analyses revealed that the wheat blast outbreak in Bangladesh was most likely caused by a wheat-infecting South American lineage of the blast fungus Magnaporthe oryzae. Our findings suggest that genomic surveillance can be rapidly applied to monitor plant disease outbreaks and provide valuable information regarding the identity and origin of the infectious agent.

  16. Comparative genomics reveals conservative evolution of the xylem transcriptome in vascular plants.

    PubMed

    Li, Xinguo; Wu, Harry X; Southerton, Simon G

    2010-06-21

    Wood is a valuable natural resource and a major carbon sink. Wood formation is an important developmental process in vascular plants which played a crucial role in plant evolution. Although genes involved in xylem formation have been investigated, the molecular mechanisms of xylem evolution are not well understood. We use comparative genomics to examine evolution of the xylem transcriptome to gain insights into xylem evolution. The xylem transcriptome is highly conserved in conifers, but considerably divergent in angiosperms. The functional domains of genes in the xylem transcriptome are moderately to highly conserved in vascular plants, suggesting the existence of a common ancestral xylem transcriptome. Compared to the total transcriptome derived from a range of tissues, the xylem transcriptome is relatively conserved in vascular plants. Of the xylem transcriptome, cell wall genes, ancestral xylem genes, known proteins and transcription factors are relatively more conserved in vascular plants. A total of 527 putative xylem orthologs were identified, which are unevenly distributed across the Arabidopsis chromosomes with eight hot spots observed. Phylogenetic analysis revealed that evolution of the xylem transcriptome has paralleled plant evolution. We also identified 274 conifer-specific xylem unigenes, all of which are of unknown function. These xylem orthologs and conifer-specific unigenes are likely to have played a crucial role in xylem evolution. Conifers have highly conserved xylem transcriptomes, while angiosperm xylem transcriptomes are relatively diversified. Vascular plants share a common ancestral xylem transcriptome. The xylem transcriptomes of vascular plants are more conserved than the total transcriptomes. Evolution of the xylem transcriptome has largely followed the trend of plant evolution.

  17. Comparative genomics reveals conservative evolution of the xylem transcriptome in vascular plants

    PubMed Central

    2010-01-01

    Background Wood is a valuable natural resource and a major carbon sink. Wood formation is an important developmental process in vascular plants which played a crucial role in plant evolution. Although genes involved in xylem formation have been investigated, the molecular mechanisms of xylem evolution are not well understood. We use comparative genomics to examine evolution of the xylem transcriptome to gain insights into xylem evolution. Results The xylem transcriptome is highly conserved in conifers, but considerably divergent in angiosperms. The functional domains of genes in the xylem transcriptome are moderately to highly conserved in vascular plants, suggesting the existence of a common ancestral xylem transcriptome. Compared to the total transcriptome derived from a range of tissues, the xylem transcriptome is relatively conserved in vascular plants. Of the xylem transcriptome, cell wall genes, ancestral xylem genes, known proteins and transcription factors are relatively more conserved in vascular plants. A total of 527 putative xylem orthologs were identified, which are unevenly distributed across the Arabidopsis chromosomes with eight hot spots observed. Phylogenetic analysis revealed that evolution of the xylem transcriptome has paralleled plant evolution. We also identified 274 conifer-specific xylem unigenes, all of which are of unknown function. These xylem orthologs and conifer-specific unigenes are likely to have played a crucial role in xylem evolution. Conclusions Conifers have highly conserved xylem transcriptomes, while angiosperm xylem transcriptomes are relatively diversified. Vascular plants share a common ancestral xylem transcriptome. The xylem transcriptomes of vascular plants are more conserved than the total transcriptomes. Evolution of the xylem transcriptome has largely followed the trend of plant evolution. PMID:20565927

  18. De Novo assembly of expressed transcripts and global transcriptomic analysis from seedlings of the paper mulberry (Broussonetia kazinoki x Broussonetia papyifera).

    PubMed

    Xianjun, Peng; Linhong, Teng; Xiaoman, Wang; Yucheng, Wang; Shihua, Shen

    2014-01-01

    The paper mulberry is one of the multifunctional tree species in agroforestry systems and is also commonly utilized in traditional medicine in China and other Asian countries. However, little is known about its molecular genetics, which hinders research on and exploitation of this valuable resource. To discern the correlation between gene expression and the essential properties of the paper mulberry, we performed a transcriptomics analysis, assembling a total of 37,725 unigenes from 54,638,676 reads generated by RNA-seq. Among these, 22,692 unigenes showed greater than 60% similarity with genes from other species. The lengths of 13,566 annotated unigenes were longer than 1,000 bp. Functional clustering analysis with COG (Cluster of Orthologous Groups) revealed that 17,184 unigenes are primarily involved in transcription, translation, signal transduction, carbohydrate metabolism, secondary metabolism, and energy metabolism. GO (Gene Ontology) annotation suggests enrichment of genes encoding antioxidant activity, transporter activity, biosynthesis, metabolism and stress response, with a total of 30,659 unigenes falling in these categories. KEGG (Kyoto Encyclopedia of Genes and Genomes) metabolic pathway analysis showed that 7,199 unigenes are associated with 119 metabolic pathways. In addition to the basic metabolism, these genes are enriched for plant pathogen interaction, flavonoid metabolism and other secondary metabolic processes. Furthermore, differences in the transcriptomes of leaf, stem and root tissues were analyzed and 7,233 specifically expressed unigenes were identified. This global expression analysis provided novel insights about the molecular mechanisms of the biosynthesis of flavonoid, lignin and cellulose, as well as on the response to biotic and abiotic stresses including the remediation of contaminated soil by the paper mulberry.

  19. Common Motifs in the Response of Cereal Primary Metabolism to Fungal Pathogens are not Based on Similar Transcriptional Reprogramming

    PubMed Central

    Voll, Lars Matthias; Horst, Robin Jonathan; Voitsik, Anna-Maria; Zajic, Doreen; Samans, Birgit; Pons-Kühnemann, Jörn; Doehlemann, Gunther; Münch, Steffen; Wahl, Ramon; Molitor, Alexandra; Hofmann, Jörg; Schmiedl, Alfred; Waller, Frank; Deising, Holger Bruno; Kahmann, Regine; Kämper, Jörg; Kogel, Karl-Heinz; Sonnewald, Uwe

    2011-01-01

    During compatible interactions with their host plants, biotrophic plant–pathogens subvert host metabolism to ensure the sustained provision of nutrient assimilates by the colonized host cells. To investigate, whether common motifs can be revealed in the response of primary carbon and nitrogen metabolism toward colonization with biotrophic fungi in cereal leaves, we have conducted a combined metabolome and transcriptome study of three quite divergent pathosystems, the barley powdery mildew fungus (Blumeria graminis f.sp. hordei), the corn smut fungus Ustilago maydis, and the maize anthracnose fungus Colletotrichum graminicola, the latter being a hemibiotroph that only exhibits an initial biotrophic phase during its establishment. Based on the analysis of 42 water-soluble metabolites, we were able to separate early biotrophic from late biotrophic interactions by hierarchical cluster analysis and principal component analysis, irrespective of the plant host. Interestingly, the corresponding transcriptome dataset could not discriminate between these stages of biotrophy, irrespective, of whether transcript data for genes of central metabolism or the entire transcriptome dataset was used. Strong differences in the transcriptional regulation of photosynthesis, glycolysis, the TCA cycle, lipid biosynthesis, and cell wall metabolism were observed between the pathosystems. However, increased contents of Gln, Asn, and glucose as well as diminished contents of PEP and 3-PGA were common to early post-penetration stages of all interactions. On the transcriptional level, genes of the TCA cycle, nucleotide energy metabolism and amino acid biosynthesis exhibited consistent trends among the compared biotrophic interactions, identifying the requirement for metabolic energy and the rearrangement of amino acid pools as common transcriptional motifs during early biotrophy. Both metabolome and transcript data were employed to generate models of leaf primary metabolism during early biotrophy for the three investigated interactions. PMID:22645534

  20. Expression of OsMYB55 in maize activates stress-responsive genes and enhances heat and drought tolerance.

    PubMed

    Casaretto, José A; El-Kereamy, Ashraf; Zeng, Bin; Stiegelmeyer, Suzy M; Chen, Xi; Bi, Yong-Mei; Rothstein, Steven J

    2016-04-29

    Plant response mechanisms to heat and drought stresses have been considered in strategies for generating stress tolerant genotypes, but with limited success. Here, we analyzed the transcriptome and improved tolerance to heat stress and drought of maize plants over-expressing the OsMYB55 gene. Over-expression of OsMYB55 in maize decreased the negative effects of high temperature and drought resulting in improved plant growth and performance under these conditions. This was evidenced by the higher plant biomass and reduced leaf damage exhibited by the transgenic lines compared to wild type when plants were subjected to individual or combined stresses and during or after recovery from stress. A global transcriptomic analysis using RNA sequencing revealed that several genes induced by heat stress in wild type plants are constitutively up-regulated in OsMYB55 transgenic maize. In addition, a significant number of genes up-regulated in OsMYB55 transgenic maize under control or heat treatments have been associated with responses to abiotic stresses including high temperature, dehydration and oxidative stress. The latter is a common and major consequence of imposed heat and drought conditions, suggesting that this altered gene expression may be associated with the improved stress tolerance in these transgenic lines. Functional annotation and enrichment analysis of the transcriptome also pinpoint the relevance of specific biological processes for stress responses. Our results show that expression of OsMYB55 can improve tolerance to heat stress and drought in maize plants. Enhanced expression of stress-associated genes may be involved in OsMYB55-mediated stress tolerance. Possible implications for the improved tolerance to heat stress and drought of OsMYB55 transgenic maize are discussed.

  1. Comparative transcriptome analysis in Bemisia tabaci in response to tomato yellow leaf curl virus and development of ribonucleic acid interference to manage whitefly-transmitted viruses

    USDA-ARS?s Scientific Manuscript database

    The whitefly, Bemisia tabaci transmits over 300 plant viruses, with the majority of them belonging to the Begomovirus genus. Begomoviruses are obligately transmitted to a wide range of agriculture crops, resulting in the loss of billions of dollars annually, while jeopardizing food security worldwid...

  2. Gene regulation network behind drought escape, avoidance and tolerance strategies in black poplar (Populus nigra L.).

    PubMed

    Yıldırım, Kubilay; Kaya, Zeki

    2017-06-01

    Drought is the major environmental problem limiting the productivity and survival of plant species. Here, previously identified three black poplar genotypes having contrasting response to drought were subjected to gradual soil water depletion in a pot trial to identify their physiological, morphological and antioxidation related adaptations. We also performed a microarray based transcriptome analyses on the leaves of genotypes by using Affymetrix poplar Genome Array containing 56,000 transcripts. Phenotypic analyses of each genotype confirmed their differential adaptations to drought that could be classified as drought escape, avoidance and tolerance. Comparative transcriptomic analysis indicated highly divergent gene expression patterns among the genotypes in response to drought and post drought re-watering (PDR). We identified 10641, 3824 and 9411 transcripts exclusively regulated in drought escape, avoidance and tolerant genotypes, respectively. The key genes involved in metabolic pathways, such as carbohydrate metabolism, photosynthesis, lipid metabolism, generation of precursor metabolites/energy, protein folding, redox homeostasis, secondary metabolic process and cell wall component biogenesis, were affected by drought stresses in the leaves of these genotypes. Transcript isoforms showed increased expression specificity in the genes coding for bark storage proteins and small heat shock proteins in drought tolerant genotype. On the other hand, drought-avoiding genotype specifically induced the transcripts annotated to the genes functional in secondary metabolite production that linked to enhanced leaf water content and growth performance under drought stress. Transcriptome profiling of drought escape genotype indicated specific regulation of the genes functional in programmed cell death and leaf senescence. Specific upregulation of GTP cyclohydrolase II and transcription factors (WRKY and ERFs) in only this genotype were associated to ROS dependent signalling pathways and gene regulation network responsible in induction of many degrading enzymes acting on cell wall carbohydrates, fatty acids and proteins under drought stress. Our findings provide new insights into the transcriptome dynamics and components of regulatory network associated with drought adaptation strategies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Comparative Temporal Transcriptome Profiling of Wheat near Isogenic Line Carrying Lr57 under Compatible and Incompatible Interactions

    PubMed Central

    Yadav, Inderjit S.; Sharma, Amandeep; Kaur, Satinder; Nahar, Natasha; Bhardwaj, Subhash C.; Sharma, Tilak R.; Chhuneja, Parveen

    2016-01-01

    Leaf rust caused by Puccinia triticina (Pt) is one of the most important diseases of bread wheat globally. Recent advances in sequencing technologies have provided opportunities to analyse the complete transcriptomes of the host as well as pathogen for studying differential gene expression during infection. Pathogen induced differential gene expression was characterized in a near isogenic line carrying leaf rust resistance gene Lr57 and susceptible recipient genotype WL711. RNA samples were collected at five different time points 0, 12, 24, 48, and 72 h post inoculation (HPI) with Pt 77-5. A total of 3020 transcripts were differentially expressed with 1458 and 2692 transcripts in WL711 and WL711+Lr57, respectively. The highest number of differentially expressed transcripts was detected at 12 HPI. Functional categorization using Blast2GO classified the genes into biological processes, molecular function and cellular components. WL711+Lr57 showed much higher number of differentially expressed nucleotide binding and leucine rich repeat genes and expressed more protein kinases and pathogenesis related proteins such as chitinases, glucanases and other PR proteins as compared to susceptible genotype. Pathway annotation with KEGG categorized genes into 13 major classes with carbohydrate metabolism being the most prominent followed by amino acid, secondary metabolites, and nucleotide metabolism. Gene co-expression network analysis identified four and eight clusters of highly correlated genes in WL711 and WL711+Lr57, respectively. Comparative analysis of the differentially expressed transcripts led to the identification of some transcripts which were specifically expressed only in WL711+Lr57. It was apparent from the whole transcriptome sequencing that the resistance gene Lr57 directed the expression of different genes involved in building the resistance response in the host to combat invading pathogen. The RNAseq data and differentially expressed transcripts identified in present study is a genomic resource which can be used for further studying the host pathogen interaction for Lr57 and wheat transcriptome in general. PMID:28066494

  4. Genetic Architecture and Molecular Networks Underlying Leaf Thickness in Desert-Adapted Tomato Solanum pennellii1[OPEN

    PubMed Central

    Frank, Margaret H.; Balaguer, Maria A. de Luis; Li, Mao

    2017-01-01

    Thicker leaves allow plants to grow in water-limited conditions. However, our understanding of the genetic underpinnings of this highly functional leaf shape trait is poor. We used a custom-built confocal profilometer to directly measure leaf thickness in a set of introgression lines (ILs) derived from the desert tomato Solanum pennellii and identified quantitative trait loci. We report evidence of a complex genetic architecture of this trait and roles for both genetic and environmental factors. Several ILs with thick leaves have dramatically elongated palisade mesophyll cells and, in some cases, increased leaf ploidy. We characterized the thick IL2-5 and IL4-3 in detail and found increased mesophyll cell size and leaf ploidy levels, suggesting that endoreduplication underpins leaf thickness in tomato. Next, we queried the transcriptomes and inferred dynamic Bayesian networks of gene expression across early leaf ontogeny in these lines to compare the molecular networks that pattern leaf thickness. We show that thick ILs share S. pennellii-like expression profiles for putative regulators of cell shape and meristem determinacy as well as a general signature of cell cycle-related gene expression. However, our network data suggest that leaf thickness in these two lines is patterned at least partially by distinct mechanisms. Consistent with this hypothesis, double homozygote lines combining introgression segments from these two ILs show additive phenotypes, including thick leaves, higher ploidy levels, and larger palisade mesophyll cells. Collectively, these data establish a framework of genetic, anatomical, and molecular mechanisms that pattern leaf thickness in desert-adapted tomato. PMID:28794258

  5. Global transcriptome analysis reveals extensive gene remodeling, alternative splicing and differential transcription profiles in non-seed vascular plant Selaginella moellendorffii.

    PubMed

    Zhu, Yan; Chen, Longxian; Zhang, Chengjun; Hao, Pei; Jing, Xinyun; Li, Xuan

    2017-01-25

    Selaginella moellendorffii, a lycophyte, is a model plant to study the early evolution and development of vascular plants. As the first and only sequenced lycophyte to date, the genome of S. moellendorffii revealed many conserved genes and pathways, as well as specialized genes different from flowering plants. Despite the progress made, little is known about long noncoding RNAs (lncRNA) and the alternative splicing (AS) of coding genes in S. moellendorffii. Its coding gene models have not been fully validated with transcriptome data. Furthermore, it remains important to understand whether the regulatory mechanisms similar to flowering plants are used, and how they operate in a non-seed primitive vascular plant. RNA-sequencing (RNA-seq) was performed for three S. moellendorffii tissues, root, stem, and leaf, by constructing strand-specific RNA-seq libraries from RNA purified using RiboMinus isolation protocol. A total of 176 million reads (44 Gbp) were obtained from three tissue types, and were mapped to S. moellendorffii genome. By comparing with 22,285 existing gene models of S. moellendorffii, we identified 7930 high-confidence novel coding genes (a 35.6% increase), and for the first time reported 4422 lncRNAs in a lycophyte. Further, we refined 2461 (11.0%) of existing gene models, and identified 11,030 AS events (for 5957 coding genes) revealed for the first time for lycophytes. Tissue-specific gene expression with functional implication was analyzed, and 1031, 554, and 269 coding genes, and 174, 39, and 17 lncRNAs were identified in root, stem, and leaf tissues, respectively. The expression of critical genes for vascular development stages, i.e. formation of provascular cells, xylem specification and differentiation, and phloem specification and differentiation, was compared in S. moellendorffii tissues, indicating a less complex regulatory mechanism in lycophytes than in flowering plants. The results were further strengthened by the evolutionary trend of seven transcription factor families related to vascular development, which was observed among four representative species of seed and non-seed vascular plants, and nonvascular land and aquatic plants. The deep RNA-seq study of S. moellendorffii discovered extensive new gene contents, including novel coding genes, lncRNAs, AS events, and refined gene models. Compared to flowering vascular plants, S. moellendorffii displayed a less complexity in both gene structure, alternative splicing, and regulatory elements of vascular development. The study offered important insight into the evolution of vascular plants, and the regulation mechanism of vascular development in a non-seed plant.

  6. The chrysanthemum leaf and root transcript profiling in response to salinity stress.

    PubMed

    Cheng, Peilei; Gao, Jiaojiao; Feng, Yitong; Zhang, Zixin; Liu, Yanan; Fang, Weimin; Chen, Sumei; Chen, Fadi; Jiang, Jiafu

    2018-06-23

    RNA-Seq was applied to capture the transcriptome of the leaf and root of non-treated and salinity-treated chrysanthemum cv. 'Jinba' plants. A total of 206,868 unigenes of mean length 849 nt and of N50 length 1363 nt was identified; of these about 64% (>132,000) could be functionally assigned. Depending on the severity of the salinity stress, differential transcription was observed for genes encoding proteins involved in osmotic adjustment, in ion transport, in reactive oxygen species scavenging and in the regulation of abscisic acid (ABA) signaling. The root stress response was dominated by the up-regulation of genes involved in ion transport and homeostasis, while that of the leaf reflected the plant's effort to make osmotic adjustments and to regulate ABA signaling. An array of known transcription factors (WRKY, AP2/ERF, MYB, bHLH and NAC) were differentially transcribed. Copyright © 2018. Published by Elsevier B.V.

  7. Modifications to a LATE MERISTEM IDENTITY1 gene are responsible for the major leaf shapes of Upland cotton (Gossypium hirsutum L.).

    PubMed

    Andres, Ryan J; Coneva, Viktoriya; Frank, Margaret H; Tuttle, John R; Samayoa, Luis Fernando; Han, Sang-Won; Kaur, Baljinder; Zhu, Linglong; Fang, Hui; Bowman, Daryl T; Rojas-Pierce, Marcela; Haigler, Candace H; Jones, Don C; Holland, James B; Chitwood, Daniel H; Kuraparthy, Vasu

    2017-01-03

    Leaf shape varies spectacularly among plants. Leaves are the primary source of photoassimilate in crop plants, and understanding the genetic basis of variation in leaf morphology is critical to improving agricultural productivity. Leaf shape played a unique role in cotton improvement, as breeders have selected for entire and lobed leaf morphs resulting from a single locus, okra (l-D 1 ), which is responsible for the major leaf shapes in cotton. The l-D 1 locus is not only of agricultural importance in cotton, but through pioneering chimeric and morphometric studies, it has contributed to fundamental knowledge about leaf development. Here we show that an HD-Zip transcription factor homologous to the LATE MERISTEM IDENTITY1 (LMI1) gene of Arabidopsis is the causal gene underlying the l-D 1 locus. The classical okra leaf shape allele has a 133-bp tandem duplication in the promoter, correlated with elevated expression, whereas an 8-bp deletion in the third exon of the presumed wild-type normal allele causes a frame-shifted and truncated coding sequence. Our results indicate that subokra is the ancestral leaf shape of tetraploid cotton that gave rise to the okra allele and that normal is a derived mutant allele that came to predominate and define the leaf shape of cultivated cotton. Virus-induced gene silencing (VIGS) of the LMI1-like gene in an okra variety was sufficient to induce normal leaf formation. The developmental changes in leaves conferred by this gene are associated with a photosynthetic transcriptomic signature, substantiating its use by breeders to produce a superior cotton ideotype.

  8. Modifications to a LATE MERISTEM IDENTITY1 gene are responsible for the major leaf shapes of Upland cotton (Gossypium hirsutum L.)

    PubMed Central

    Andres, Ryan J.; Coneva, Viktoriya; Frank, Margaret H.; Tuttle, John R.; Samayoa, Luis Fernando; Han, Sang-Won; Kaur, Baljinder; Zhu, Linglong; Fang, Hui; Bowman, Daryl T.; Rojas-Pierce, Marcela; Haigler, Candace H.; Jones, Don C.; Holland, James B.; Chitwood, Daniel H.; Kuraparthy, Vasu

    2017-01-01

    Leaf shape varies spectacularly among plants. Leaves are the primary source of photoassimilate in crop plants, and understanding the genetic basis of variation in leaf morphology is critical to improving agricultural productivity. Leaf shape played a unique role in cotton improvement, as breeders have selected for entire and lobed leaf morphs resulting from a single locus, okra (l-D1), which is responsible for the major leaf shapes in cotton. The l-D1 locus is not only of agricultural importance in cotton, but through pioneering chimeric and morphometric studies, it has contributed to fundamental knowledge about leaf development. Here we show that an HD-Zip transcription factor homologous to the LATE MERISTEM IDENTITY1 (LMI1) gene of Arabidopsis is the causal gene underlying the l-D1 locus. The classical okra leaf shape allele has a 133-bp tandem duplication in the promoter, correlated with elevated expression, whereas an 8-bp deletion in the third exon of the presumed wild-type normal allele causes a frame-shifted and truncated coding sequence. Our results indicate that subokra is the ancestral leaf shape of tetraploid cotton that gave rise to the okra allele and that normal is a derived mutant allele that came to predominate and define the leaf shape of cultivated cotton. Virus-induced gene silencing (VIGS) of the LMI1-like gene in an okra variety was sufficient to induce normal leaf formation. The developmental changes in leaves conferred by this gene are associated with a photosynthetic transcriptomic signature, substantiating its use by breeders to produce a superior cotton ideotype. PMID:27999177

  9. Analysis of the tomato leaf transcriptome during successive hemibiotrophic stages of a compatible interaction with the oomycete pathogen Phytophthora infestans.

    PubMed

    Zuluaga, Andrea P; Vega-Arreguín, Julio C; Fei, Zhangjun; Matas, Antonio J; Patev, Sean; Fry, William E; Rose, Jocelyn K C

    2016-01-01

    The infection of plants by hemibiotrophic pathogens involves a complex and highly regulated transition from an initial biotrophic, asymptomatic stage to a later necrotrophic state, characterized by cell death. Little is known about how this transition is regulated, and there are conflicting views regarding the significance of the plant hormones jasmonic acid (JA) and salicylic acid (SA) in the different phases of infection. To provide a broad view of the hemibiotrophic infection process from the plant perspective, we surveyed the transcriptome of tomato (Solanum lycopersicum) during a compatible interaction with the hemibiotrophic oomycete Phytophthora infestans during three infection stages: biotrophic, the transition from biotrophy to necrotrophy, and the necrotrophic phase. Nearly 10 000 genes corresponding to proteins in approximately 400 biochemical pathways showed differential transcript abundance during the three infection stages, revealing a major reorganization of plant metabolism, including major changes in source-sink relations, as well as secondary metabolites. In addition, more than 100 putative resistance genes and pattern recognition receptor genes were induced, and both JA and SA levels and associated signalling pathways showed dynamic changes during the infection time course. The biotrophic phase was characterized by the induction of many defence systems, which were either insufficient, evaded or suppressed by the pathogen. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  10. De Novo Transcriptome Analysis for Kentucky Bluegrass Dwarf Mutants Induced by Space Mutation

    PubMed Central

    Gan, Lu; Di, Rong; Chao, Yuehui; Han, Liebao; Chen, Xingwu; Wu, Chao; Yin, Shuxia

    2016-01-01

    Kentucky bluegrass (Poa pratensis L.) is a major cool-season turfgrass requiring frequent mowing. Utilization of cultivars with slow growth is a promising method to decrease mowing frequency. In this study, two dwarf mutant selections of Kentucky bluegrass (A12 and A16) induced by space mutation were analyzed for the differentially expressed genes compared with the wild type (WT) by the high-throughput RNA-Seq technology. 253,909 unigenes were obtained by de novo assembly. 24.20% of the unigenes had a significant level of amino acid sequence identity to Brachypodium distachyon proteins, followed by Hordeum vulgare with 18.72% among the non-redundant (NR) Blastx top hits. Assembled unigenes were associated with 32 pathways using KEGG orthology terms and their respective KEGG maps. Between WT and A16 libraries, 4,203 differentially expressed genes (DEGs) were identified, whereas there were 883 DEGs between WT and A12 libraries. Further investigation revealed that the DEG pathways were mainly involved in terpenoid biosynthesis and plant hormone metabolism, which might account for the differences of plant height and leaf blade color between dwarf mutant and WT plants. Our study presents the first comprehensive transcriptomic data and gene function analysis of Poa pratensis L., providing a valuable resource for future studies in plant dwarfing breeding and comparative genome analysis for Pooideae plants. PMID:27010560

  11. De novo assembly and characterization of leaf transcriptome for the development of functional molecular markers of the extremophile multipurpose tree species Prosopis alba

    PubMed Central

    2013-01-01

    Background Prosopis alba (Fabaceae) is an important native tree adapted to arid and semiarid regions of north-western Argentina which is of great value as multipurpose species. Despite its importance, the genomic resources currently available for the entire Prosopis genus are still limited. Here we describe the development of a leaf transcriptome and the identification of new molecular markers that could support functional genetic studies in natural and domesticated populations of this genus. Results Next generation DNA pyrosequencing technology applied to P. alba transcripts produced a total of 1,103,231 raw reads with an average length of 421 bp. De novo assembling generated a set of 15,814 isotigs and 71,101 non-assembled sequences (singletons) with an average of 991 bp and 288 bp respectively. A total of 39,000 unique singletons were identified after clustering natural and artificial duplicates from pyrosequencing reads. Regarding the non-redundant sequences or unigenes, 22,095 out of 54,814 were successfully annotated with Gene Ontology terms. Moreover, simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs) were searched, resulting in 5,992 and 6,236 markers, respectively, throughout the genome. For the validation of the the predicted SSR markers, a subset of 87 SSRs selected through functional annotation evidence was successfully amplified from six DNA samples of seedlings. From this analysis, 11 of these 87 SSRs were identified as polymorphic. Additionally, another set of 123 nuclear polymorphic SSRs were determined in silico, of which 50% have the probability of being effectively polymorphic. Conclusions This study generated a successful global analysis of the P. alba leaf transcriptome after bioinformatic and wet laboratory validations of RNA-Seq data. The limited set of molecular markers currently available will be significantly increased with the thousands of new markers that were identified in this study. This information will strongly contribute to genomics resources for P. alba functional analysis and genetics. Finally, it will also potentially contribute to the development of population-based genome studies in the genera. PMID:24125525

  12. A Picrinine N-Methyltransferase Belongs to a New Family of γ-Tocopherol-Like Methyltransferases Found in Medicinal Plants That Make Biologically Active Monoterpenoid Indole Alkaloids1[OPEN

    PubMed Central

    Levac, Dylan; Cázares, Paulo; Yu, Fang

    2016-01-01

    Members of the Apocynaceae plant family produce a large number of monoterpenoid indole alkaloids (MIAs) with different substitution patterns that are responsible for their various biological activities. A novel N-methyltransferase involved in the vindoline pathway in Catharanthus roseus showing distinct similarity to γ-tocopherol C-methyltransferases was used in a bioinformatic screen of transcriptomes from Vinca minor, Rauvolfia serpentina, and C. roseus to identify 10 γ-tocopherol-like N-methyltransferases from a large annotated transcriptome database of different MIA-producing plant species (www.phytometasyn.ca). The biochemical function of two members of this group cloned from V. minor (VmPiNMT) and R. serpentina (RsPiNMT) have been characterized by screening their biochemical activities against potential MIA substrates harvested from the leaf surfaces of MIA-accumulating plants. The approach was validated by identifying the MIA picrinine from leaf surfaces of Amsonia hubrichtii as a substrate of VmPiNMT and RsPiNMT. Recombinant proteins were shown to have high substrate specificity and affinity for picrinine, converting it to N-methylpicrinine (ervincine). Developmental studies with V. minor and R. serpentina showed that RsPiNMT and VmPiNMT gene expression and biochemical activities were highest in younger leaf tissues. The assembly of at least 150 known N-methylated MIAs within members of the Apocynaceae family may have occurred as a result of the evolution of the γ-tocopherol-like N-methyltransferase family from γ-tocopherol methyltransferases. PMID:26848097

  13. Step changes in leaf oil accumulation via iterative metabolic engineering.

    PubMed

    Vanhercke, Thomas; Divi, Uday K; El Tahchy, Anna; Liu, Qing; Mitchell, Madeline; Taylor, Matthew C; Eastmond, Peter J; Bryant, Fiona; Mechanicos, Anna; Blundell, Cheryl; Zhi, Yao; Belide, Srinivas; Shrestha, Pushkar; Zhou, Xue-Rong; Ral, Jean-Philippe; White, Rosemary G; Green, Allan; Singh, Surinder P; Petrie, James R

    2017-01-01

    Synthesis and accumulation of plant oils in the entire vegetative biomass offers the potential to deliver yields surpassing those of oilseed crops. However, current levels still fall well short of those typically found in oilseeds. Here we show how transcriptome and biochemical analyses pointed to a futile cycle in a previously established Nicotiana tabacum line, accumulating up to 15% (dry weight) of the storage lipid triacylglycerol in leaf tissue. To overcome this metabolic bottleneck, we either silenced the SDP1 lipase or overexpressed the Arabidopsis thaliana LEC2 transcription factor in this transgenic background. Both strategies independently resulted in the accumulation of 30-33% triacylglycerol in leaf tissues. Our results demonstrate that the combined optimization of de novo fatty acid biosynthesis, storage lipid assembly and lipid turnover in leaf tissue results in a major overhaul of the plant central carbon allocation and lipid metabolism. The resulting further step changes in oil accumulation in the entire plant biomass offers the possibility of delivering yields that outperform current oilseed crops. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Cell-type- and tissue-specific transcriptomes of the white spruce (Picea glauca) bark unmask fine-scale spatial patterns of constitutive and induced conifer defense.

    PubMed

    Celedon, Jose M; Yuen, Macaire M S; Chiang, Angela; Henderson, Hannah; Reid, Karen E; Bohlmann, Jörg

    2017-11-01

    Plant defenses often involve specialized cells and tissues. In conifers, specialized cells of the bark are important for defense against insects and pathogens. Using laser microdissection, we characterized the transcriptomes of cortical resin duct cells, phenolic cells and phloem of white spruce (Picea glauca) bark under constitutive and methyl jasmonate (MeJa)-induced conditions, and we compared these transcriptomes with the transcriptome of the bark tissue complex. Overall, ~3700 bark transcripts were differentially expressed in response to MeJa. Approximately 25% of transcripts were expressed in only one cell type, revealing cell specialization at the transcriptome level. MeJa caused cell-type-specific transcriptome responses and changed the overall patterns of cell-type-specific transcript accumulation. Comparison of transcriptomes of the conifer bark tissue complex and specialized cells resolved a masking effect inherent to transcriptome analysis of complex tissues, and showed the actual cell-type-specific transcriptome signatures. Characterization of cell-type-specific transcriptomes is critical to reveal the dynamic patterns of spatial and temporal display of constitutive and induced defense systems in a complex plant tissue or organ. This was demonstrated with the improved resolution of spatially restricted expression of sets of genes of secondary metabolism in the specialized cell types. © 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  15. Genome and transcriptome sequencing characterises the gene space of Macadamia integrifolia (Proteaceae).

    PubMed

    Nock, Catherine J; Baten, Abdul; Barkla, Bronwyn J; Furtado, Agnelo; Henry, Robert J; King, Graham J

    2016-11-17

    The large Gondwanan plant family Proteaceae is an early-diverging eudicot lineage renowned for its morphological, taxonomic and ecological diversity. Macadamia is the most economically important Proteaceae crop and represents an ancient rainforest-restricted lineage. The family is a focus for studies of adaptive radiation due to remarkable species diversification in Mediterranean-climate biodiversity hotspots, and numerous evolutionary transitions between biomes. Despite a long history of research, comparative analyses in the Proteaceae and macadamia breeding programs are restricted by a paucity of genetic information. To address this, we sequenced the genome and transcriptome of the widely grown Macadamia integrifolia cultivar 741. Over 95 gigabases of DNA and RNA-seq sequence data were de novo assembled and annotated. The draft assembly has a total length of 518 Mb and spans approximately 79% of the estimated genome size. Following annotation, 35,337 protein-coding genes were predicted of which over 90% were expressed in at least one of the leaf, shoot or flower tissues examined. Gene family comparisons with five other eudicot species revealed 13,689 clusters containing macadamia genes and 1005 macadamia-specific clusters, and provides evidence for linage-specific expansion of gene families involved in pathogen recognition, plant defense and monoterpene synthesis. Cyanogenesis is an important defense strategy in the Proteaceae, and a detailed analysis of macadamia gene homologues potentially involved in cyanogenic glycoside biosynthesis revealed several highly expressed candidate genes. The gene space of macadamia provides a foundation for comparative genomics, gene discovery and the acceleration of molecular-assisted breeding. This study presents the first available genomic resources for the large basal eudicot family Proteaceae, access to most macadamia genes and opportunities to uncover the genetic basis of traits of importance for adaptation and crop improvement.

  16. Leaf-mining by Phyllonorycter blancardella reprograms the host-leaf transcriptome to modulate phytohormones associated with nutrient mobilization and plant defense.

    PubMed

    Zhang, Hui; Dugé de Bernonville, Thomas; Body, Mélanie; Glevarec, Gaëlle; Reichelt, Michael; Unsicker, Sybille; Bruneau, Maryline; Renou, Jean-Pierre; Huguet, Elisabeth; Dubreuil, Géraldine; Giron, David

    2016-01-01

    Phytohormones have long been hypothesized to play a key role in the interactions between plant-manipulating organisms and their host-plants such as insect-plant interactions that lead to gall or 'green-islands' induction. However, mechanistic understanding of how phytohormones operate in these plant reconfigurations is lacking due to limited information on the molecular and biochemical phytohormonal modulation following attack by plant-manipulating insects. In an attempt to fill this gap, the present study provides an extensive characterization of how the leaf-miner Phyllonorycter blancardella modulates the major phytohormones and the transcriptional activity of plant cells in leaves of Malus domestica. We show here, that cytokinins strongly accumulate in mined tissues despite a weak expression of plant cytokinin-related genes. Leaf-mining is also associated with enhanced biosynthesis of jasmonic acid precursors but not the active form, a weak alteration of the salicylic acid pathway and a clear inhibition of the abscisic acid pathway. Our study consolidates previous results suggesting that insects may produce and deliver cytokinins to the plant as a strategy to manipulate the physiology of the leaf to create a favorable nutritional environment. We also demonstrate that leaf-mining by P. blancardella leads to a strong reprogramming of the plant phytohormonal balance associated with increased nutrient mobilization, inhibition of leaf senescence and mitigation of plant direct and indirect defense. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Combined Chlorophyll Fluorescence and Transcriptomic Analysis Identifies the P3/P4 Transition as a Key Stage in Rice Leaf Photosynthetic Development1[OPEN

    PubMed Central

    Yaapar, Muhammad N.; Wanchana, Samart; Thakur, Vivek; Quick, W. Paul

    2016-01-01

    Leaves are derived from heterotrophic meristem tissue that, at some point, must make the transition to autotrophy via the initiation of photosynthesis. However, the timing and spatial coordination of the molecular and cellular processes underpinning this switch are poorly characterized. Here, we report on the identification of a specific stage in rice (Oryza sativa) leaf development (P3/P4 transition) when photosynthetic competence is first established. Using a combined physiological and molecular approach, we show that elements of stomatal and vascular differentiation are coordinated with the onset of measurable light absorption for photosynthesis. Moreover, by exploring the response of the system to environmental perturbation, we show that the earliest stages of rice leaf development have significant plasticity with respect to elements of cellular differentiation of relevance for mature leaf photosynthetic performance. Finally, by performing an RNA sequencing analysis targeted at the early stages of rice leaf development, we uncover a palette of genes whose expression likely underpins the acquisition of photosynthetic capability. Our results identify the P3/P4 transition as a highly dynamic stage in rice leaf development when several processes for the initiation of photosynthetic competence are coordinated. As well as identifying gene targets for future manipulation of rice leaf structure/function, our data highlight a developmental window during which such manipulations are likely to be most effective. PMID:26813793

  18. Combined Chlorophyll Fluorescence and Transcriptomic Analysis Identifies the P3/P4 Transition as a Key Stage in Rice Leaf Photosynthetic Development.

    PubMed

    van Campen, Julia C; Yaapar, Muhammad N; Narawatthana, Supatthra; Lehmeier, Christoph; Wanchana, Samart; Thakur, Vivek; Chater, Caspar; Kelly, Steve; Rolfe, Stephen A; Quick, W Paul; Fleming, Andrew J

    2016-03-01

    Leaves are derived from heterotrophic meristem tissue that, at some point, must make the transition to autotrophy via the initiation of photosynthesis. However, the timing and spatial coordination of the molecular and cellular processes underpinning this switch are poorly characterized. Here, we report on the identification of a specific stage in rice (Oryza sativa) leaf development (P3/P4 transition) when photosynthetic competence is first established. Using a combined physiological and molecular approach, we show that elements of stomatal and vascular differentiation are coordinated with the onset of measurable light absorption for photosynthesis. Moreover, by exploring the response of the system to environmental perturbation, we show that the earliest stages of rice leaf development have significant plasticity with respect to elements of cellular differentiation of relevance for mature leaf photosynthetic performance. Finally, by performing an RNA sequencing analysis targeted at the early stages of rice leaf development, we uncover a palette of genes whose expression likely underpins the acquisition of photosynthetic capability. Our results identify the P3/P4 transition as a highly dynamic stage in rice leaf development when several processes for the initiation of photosynthetic competence are coordinated. As well as identifying gene targets for future manipulation of rice leaf structure/function, our data highlight a developmental window during which such manipulations are likely to be most effective. © 2016 American Society of Plant Biologists. All Rights Reserved.

  19. Improved evidence-based genome-scale metabolic models for maize leaf, embryo, and endosperm

    PubMed Central

    Seaver, Samuel M. D.; Bradbury, Louis M. T.; Frelin, Océane; Zarecki, Raphy; Ruppin, Eytan; Hanson, Andrew D.; Henry, Christopher S.

    2015-01-01

    There is a growing demand for genome-scale metabolic reconstructions for plants, fueled by the need to understand the metabolic basis of crop yield and by progress in genome and transcriptome sequencing. Methods are also required to enable the interpretation of plant transcriptome data to study how cellular metabolic activity varies under different growth conditions or even within different organs, tissues, and developmental stages. Such methods depend extensively on the accuracy with which genes have been mapped to the biochemical reactions in the plant metabolic pathways. Errors in these mappings lead to metabolic reconstructions with an inflated number of reactions and possible generation of unreliable metabolic phenotype predictions. Here we introduce a new evidence-based genome-scale metabolic reconstruction of maize, with significant improvements in the quality of the gene-reaction associations included within our model. We also present a new approach for applying our model to predict active metabolic genes based on transcriptome data. This method includes a minimal set of reactions associated with low expression genes to enable activity of a maximum number of reactions associated with high expression genes. We apply this method to construct an organ-specific model for the maize leaf, and tissue specific models for maize embryo and endosperm cells. We validate our models using fluxomics data for the endosperm and embryo, demonstrating an improved capacity of our models to fit the available fluxomics data. All models are publicly available via the DOE Systems Biology Knowledgebase and PlantSEED, and our new method is generally applicable for analysis transcript profiles from any plant, paving the way for further in silico studies with a wide variety of plant genomes. PMID:25806041

  20. Improved evidence-based genome-scale metabolic models for maize leaf, embryo, and endosperm

    DOE PAGES

    Seaver, Samuel M.D.; Bradbury, Louis M.T.; Frelin, Océane; ...

    2015-03-10

    There is a growing demand for genome-scale metabolic reconstructions for plants, fueled by the need to understand the metabolic basis of crop yield and by progress in genome and transcriptome sequencing. Methods are also required to enable the interpretation of plant transcriptome data to study how cellular metabolic activity varies under different growth conditions or even within different organs, tissues, and developmental stages. Such methods depend extensively on the accuracy with which genes have been mapped to the biochemical reactions in the plant metabolic pathways. Errors in these mappings lead to metabolic reconstructions with an inflated number of reactions andmore » possible generation of unreliable metabolic phenotype predictions. Here we introduce a new evidence-based genome-scale metabolic reconstruction of maize, with significant improvements in the quality of the gene-reaction associations included within our model. We also present a new approach for applying our model to predict active metabolic genes based on transcriptome data. This method includes a minimal set of reactions associated with low expression genes to enable activity of a maximum number of reactions associated with high expression genes. We apply this method to construct an organ-specific model for the maize leaf, and tissue specific models for maize embryo and endosperm cells. We validate our models using fluxomics data for the endosperm and embryo, demonstrating an improved capacity of our models to fit the available fluxomics data. All models are publicly available via the DOE Systems Biology Knowledgebase and PlantSEED, and our new method is generally applicable for analysis transcript profiles from any plant, paving the way for further in silico studies with a wide variety of plant genomes.« less

  1. Gene expression patterns of two dominant tallgrass prairie species differ in response to warming and altered precipitation

    DOE PAGES

    Smith, Melinda D.; Hoffman, Ava M.; Avolio, Meghan L.

    2016-05-13

    To better understand the mechanisms underlying plant species responses to climate change, we compared transcriptional profiles of the co-dominant C 4 grasses, Andropogon gerardii Vitman and Sorghastrum nutans (L.) Nash, in response to increased temperatures and more variable precipitation regimes in a long-term field experiment in native tallgrass prairie. We used microarray probing of a closely related model species ( Zea mays) to assess correlations in leaf temperature (T leaf) and leaf water potential (LWP) and abundance changes of ~10,000 transcripts in leaf tissue collected from individuals of both species. A greater number of transcripts were found to significantly changemore » in abundance levels with T leaf and LWP in S. nutans than in A. gerardii. S. nutans also was more responsive to short-term drought recovery than A. gerardii. Water flow regulating transcripts associated with stress avoidance (e.g., aquaporins), as well as those involved in the prevention and repair of damage (e.g., antioxidant enzymes, HSPs), were uniquely more abundant in response to increasing T leaf in S. nutans. Furthermore, the differential transcriptomic responses of the co-dominant C 4 grasses suggest that these species may cope with and respond to temperature and water stress at the molecular level in distinct ways, with implications for tallgrass prairie ecosystem function.« less

  2. Transcriptomic analysis suggests a key role for SQUAMOSA PROMOTER BINDING PROTEIN LIKE, NAC and YUCCA genes in the heteroblastic development of the temperate rainforest tree Gevuina avellana (Proteaceae).

    PubMed

    Ostria-Gallardo, Enrique; Ranjan, Aashish; Chitwood, Daniel H; Kumar, Ravi; Townsley, Brad T; Ichihashi, Yasunori; Corcuera, Luis J; Sinha, Neelima R

    2016-04-01

    Heteroblasty, the temporal development of the meristem, can produce diverse leaf shapes within a plant. Gevuina avellana, a tree from the South American temperate rainforest shows strong heteroblasty affecting leaf shape, transitioning from juvenile simple leaves to highly pinnate adult leaves. Light availability within the forest canopy also modulates its leaf size and complexity. Here we studied how the interaction between the light environment and the heteroblastic progression of leaves is coordinated in this species. We used RNA-seq on the Illumina platform to compare the range of transcriptional responses in leaf primordia of G. avellana at different heteroblastic stages and growing under different light environments. We found a steady up-regulation of SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL), NAC, YUCCA and AGAMOUS-LIKE genes associated with increases in age, leaf complexity, and light availability. In contrast, expression of TCP, TPR and KNOTTED1 homeobox genes showed a sustained down-regulation. Additionally, genes involved in auxin synthesis/transport and jasmonate activity were differentially expressed, indicating an active regulation of processes controlled by these hormones. Our large-scale transcriptional analysis of the leaf primordia of G. avellana sheds light on the integration of internal and external cues during heteroblastic development in this species. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  3. Temporal and spatial transcriptomic and microRNA dynamics of CAM photosynthesis in pineapple.

    PubMed

    Wai, Ching M; VanBuren, Robert; Zhang, Jisen; Huang, Lixian; Miao, Wenjing; Edger, Patrick P; Yim, Won C; Priest, Henry D; Meyers, Blake C; Mockler, Todd; Smith, J Andrew C; Cushman, John C; Ming, Ray

    2017-10-01

    The altered carbon assimilation pathway of crassulacean acid metabolism (CAM) photosynthesis results in an up to 80% higher water-use efficiency than C 3 photosynthesis in plants making it a potentially useful pathway for engineering crop plants with improved drought tolerance. Here we surveyed detailed temporal (diel time course) and spatial (across a leaf gradient) gene and microRNA (miRNA) expression patterns in the obligate CAM plant pineapple [Ananas comosus (L.) Merr.]. The high-resolution transcriptome atlas allowed us to distinguish between CAM-related and non-CAM gene copies. A differential gene co-expression network across green and white leaf diel datasets identified genes with circadian oscillation, CAM-related functions, and source-sink relations. Gene co-expression clusters containing CAM pathway genes are enriched with clock-associated cis-elements, suggesting circadian regulation of CAM. About 20% of pineapple microRNAs have diel expression patterns, with several that target key CAM-related genes. Expression and physiology data provide a model for CAM-specific carbohydrate flux and long-distance hexose transport. Together these resources provide a list of candidate genes for targeted engineering of CAM into C 3 photosynthesis crop species. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  4. Transcriptomic Changes Drive Physiological Responses to Progressive Drought Stress and Rehydration in Tomato

    PubMed Central

    Iovieno, Paolo; Punzo, Paola; Guida, Gianpiero; Mistretta, Carmela; Van Oosten, Michael J.; Nurcato, Roberta; Bostan, Hamed; Colantuono, Chiara; Costa, Antonello; Bagnaresi, Paolo; Chiusano, Maria L.; Albrizio, Rossella; Giorio, Pasquale; Batelli, Giorgia; Grillo, Stefania

    2016-01-01

    Tomato is a major crop in the Mediterranean basin, where the cultivation in the open field is often vulnerable to drought. In order to adapt and survive to naturally occurring cycles of drought stress and recovery, plants employ a coordinated array of physiological, biochemical, and molecular responses. Transcriptomic studies on tomato responses to drought and subsequent recovery are few in number. As the search for novel traits to improve the genetic tolerance to drought increases, a better understanding of these responses is required. To address this need we designed a study in which we induced two cycles of prolonged drought stress and a single recovery by rewatering in tomato. In order to dissect the complexity of plant responses to drought, we analyzed the physiological responses (stomatal conductance, CO2 assimilation, and chlorophyll fluorescence), abscisic acid (ABA), and proline contents. In addition to the physiological and metabolite assays, we generated transcriptomes for multiple points during the stress and recovery cycles. Cluster analysis of differentially expressed genes (DEGs) between the conditions has revealed potential novel components in stress response. The observed reduction in leaf gas exchanges and efficiency of the photosystem PSII was concomitant with a general down-regulation of genes belonging to the photosynthesis, light harvesting, and photosystem I and II category induced by drought stress. Gene ontology (GO) categories such as cell proliferation and cell cycle were also significantly enriched in the down-regulated fraction of genes upon drought stress, which may contribute to explain the observed growth reduction. Several histone variants were also repressed during drought stress, indicating that chromatin associated processes are also affected by drought. As expected, ABA accumulated after prolonged water deficit, driving the observed enrichment of stress related GOs in the up-regulated gene fractions, which included transcripts putatively involved in stomatal movements. This transcriptomic study has yielded promising candidate genes that merit further functional studies to confirm their involvement in drought tolerance and recovery. Together, our results contribute to a better understanding of the coordinated responses taking place under drought stress and recovery in adult plants of tomato. PMID:27066027

  5. Regulation, overexpression, and target gene identification of Potato Homeobox 15 (POTH15) – a class-I KNOX gene in potato

    PubMed Central

    Mahajan, Ameya S.; Kondhare, Kirtikumar R.; Rajabhoj, Mohit P.; Kumar, Amit; Ghate, Tejashree; Ravindran, Nevedha; Habib, Farhat; Siddappa, Sundaresha; Banerjee, Anjan K.

    2016-01-01

    Potato Homeobox 15 (POTH15) is a KNOX-I (Knotted1-like homeobox) family gene in potato that is orthologous to Shoot Meristemless (STM) in Arabidopsis. Despite numerous reports on KNOX genes from different species, studies in potato are limited. Here, we describe photoperiodic regulation of POTH15, its overexpression phenotype, and identification of its potential targets in potato (Solanum tuberosum ssp. andigena). qRT-PCR analysis showed a higher abundance of POTH15 mRNA in shoot tips and stolons under tuber-inducing short-day conditions. POTH15 promoter activity was detected in apical and axillary meristems, stolon tips, tuber eyes, and meristems of tuber sprouts, indicating its role in meristem maintenance and leaf development. POTH15 overexpression altered multiple morphological traits including leaf and stem development, leaflet number, and number of nodes and branches. In particular, the rachis of the leaf was completely reduced and leaves appeared as a bouquet of leaflets. Comparative transcriptomic analysis of 35S::GUS and two POTH15 overexpression lines identified more than 6000 differentially expressed genes, including 2014 common genes between the two overexpression lines. Functional analysis of these genes revealed their involvement in responses to hormones, biotic/abiotic stresses, transcription regulation, and signal transduction. qRT-PCR of selected candidate target genes validated their differential expression in both overexpression lines. Out of 200 randomly chosen POTH15 targets, 173 were found to have at least one tandem TGAC core motif, characteristic of KNOX interaction, within 3.0kb in the upstream sequence of the transcription start site. Overall, this study provides insights to the role of POTH15 in controlling diverse developmental processes in potato. PMID:27217546

  6. The Whitefly Bemisia tabaci Knottin-1 Gene Is Implicated in Regulating the Quantity of Tomato Yellow Leaf Curl Virus Ingested and Transmitted by the Insect

    PubMed Central

    Hariton Shalev, Aliza; Sobol, Iris; Ghanim, Murad; Liu, Shu-Sheng; Czosnek, Henryk

    2016-01-01

    The whitefly Bemisia tabaci is a major pest to agricultural crops. It transmits begomoviruses, such as Tomato yellow leaf curl virus (TYLCV), in a circular, persistent fashion. Transcriptome analyses revealed that B. tabaci knottin genes were responsive to various stresses. Upon ingestion of tomato begomoviruses, two of the four knottin genes were upregulated, knot-1 (with the highest expression) and knot-3. In this study, we examined the involvement of B. tabaci knottin genes in relation to TYLCV circulative transmission. Knottins were silenced by feeding whiteflies with knottin dsRNA via detached tomato leaves. Large amounts of knot-1 transcripts were present in the abdomen of whiteflies, an obligatory transit site of begomoviruses in their circulative transmission pathway; knot-1 silencing significantly depleted the abdomen from knot-1 transcripts. Knot-1 silencing led to an increase in the amounts of TYLCV ingested by the insects and transmitted to tomato test plants by several orders of magnitude. This effect was not observed following knot-3 silencing. Hence, knot-1 plays a role in restricting the quantity of virions an insect may acquire and transmit. We suggest that knot-1 protects B. tabaci against deleterious effects caused by TYLCV by limiting the amount of virus associated with the whitefly vector. PMID:27455309

  7. Transcriptome of interstitial cells of Cajal reveals unique and selective gene signatures

    PubMed Central

    Park, Paul J.; Fuchs, Robert; Wei, Lai; Jorgensen, Brian G.; Redelman, Doug; Ward, Sean M.; Sanders, Kenton M.

    2017-01-01

    Transcriptome-scale data can reveal essential clues into understanding the underlying molecular mechanisms behind specific cellular functions and biological processes. Transcriptomics is a continually growing field of research utilized in biomarker discovery. The transcriptomic profile of interstitial cells of Cajal (ICC), which serve as slow-wave electrical pacemakers for gastrointestinal (GI) smooth muscle, has yet to be uncovered. Using copGFP-labeled ICC mice and flow cytometry, we isolated ICC populations from the murine small intestine and colon and obtained their transcriptomes. In analyzing the transcriptome, we identified a unique set of ICC-restricted markers including transcription factors, epigenetic enzymes/regulators, growth factors, receptors, protein kinases/phosphatases, and ion channels/transporters. This analysis provides new and unique insights into the cellular and biological functions of ICC in GI physiology. Additionally, we constructed an interactive ICC genome browser (http://med.unr.edu/physio/transcriptome) based on the UCSC genome database. To our knowledge, this is the first online resource that provides a comprehensive library of all known genetic transcripts expressed in primary ICC. Our genome browser offers a new perspective into the alternative expression of genes in ICC and provides a valuable reference for future functional studies. PMID:28426719

  8. Validation of reference genes aiming accurate normalization of qRT-PCR data in Dendrocalamus latiflorus Munro.

    PubMed

    Liu, Mingying; Jiang, Jing; Han, Xiaojiao; Qiao, Guirong; Zhuo, Renying

    2014-01-01

    Dendrocalamus latiflorus Munro distributes widely in subtropical areas and plays vital roles as valuable natural resources. The transcriptome sequencing for D. latiflorus Munro has been performed and numerous genes especially those predicted to be unique to D. latiflorus Munro were revealed. qRT-PCR has become a feasible approach to uncover gene expression profiling, and the accuracy and reliability of the results obtained depends upon the proper selection of stable reference genes for accurate normalization. Therefore, a set of suitable internal controls should be validated for D. latiflorus Munro. In this report, twelve candidate reference genes were selected and the assessment of gene expression stability was performed in ten tissue samples and four leaf samples from seedlings and anther-regenerated plants of different ploidy. The PCR amplification efficiency was estimated, and the candidate genes were ranked according to their expression stability using three software packages: geNorm, NormFinder and Bestkeeper. GAPDH and EF1α were characterized to be the most stable genes among different tissues or in all the sample pools, while CYP showed low expression stability. RPL3 had the optimal performance among four leaf samples. The application of verified reference genes was illustrated by analyzing ferritin and laccase expression profiles among different experimental sets. The analysis revealed the biological variation in ferritin and laccase transcript expression among the tissues studied and the individual plants. geNorm, NormFinder, and BestKeeper analyses recommended different suitable reference gene(s) for normalization according to the experimental sets. GAPDH and EF1α had the highest expression stability across different tissues and RPL3 for the other sample set. This study emphasizes the importance of validating superior reference genes for qRT-PCR analysis to accurately normalize gene expression of D. latiflorus Munro.

  9. ReprOlive: a database with linked data for the olive tree (Olea europaea L.) reproductive transcriptome

    PubMed Central

    Carmona, Rosario; Zafra, Adoración; Seoane, Pedro; Castro, Antonio J.; Guerrero-Fernández, Darío; Castillo-Castillo, Trinidad; Medina-García, Ana; Cánovas, Francisco M.; Aldana-Montes, José F.; Navas-Delgado, Ismael; Alché, Juan de Dios; Claros, M. Gonzalo

    2015-01-01

    Plant reproductive transcriptomes have been analyzed in different species due to the agronomical and biotechnological importance of plant reproduction. Here we presented an olive tree reproductive transcriptome database with samples from pollen and pistil at different developmental stages, and leaf and root as control vegetative tissues http://reprolive.eez.csic.es). It was developed from 2,077,309 raw reads to 1,549 Sanger sequences. Using a pre-defined workflow based on open-source tools, sequences were pre-processed, assembled, mapped, and annotated with expression data, descriptions, GO terms, InterPro signatures, EC numbers, KEGG pathways, ORFs, and SSRs. Tentative transcripts (TTs) were also annotated with the corresponding orthologs in Arabidopsis thaliana from TAIR and RefSeq databases to enable Linked Data integration. It results in a reproductive transcriptome comprising 72,846 contigs with average length of 686 bp, of which 63,965 (87.8%) included at least one functional annotation, and 55,356 (75.9%) had an ortholog. A minimum of 23,568 different TTs was identified and 5,835 of them contain a complete ORF. The representative reproductive transcriptome can be reduced to 28,972 TTs for further gene expression studies. Partial transcriptomes from pollen, pistil, and vegetative tissues as control were also constructed. ReprOlive provides free access and download capability to these results. Retrieval mechanisms for sequences and transcript annotations are provided. Graphical localization of annotated enzymes into KEGG pathways is also possible. Finally, ReprOlive has included a semantic conceptualisation by means of a Resource Description Framework (RDF) allowing a Linked Data search for extracting the most updated information related to enzymes, interactions, allergens, structures, and reactive oxygen species. PMID:26322066

  10. The hot pepper (Capsicum annuum) microRNA transcriptome reveals novel and conserved targets: a foundation for understanding MicroRNA functional roles in hot pepper.

    PubMed

    Hwang, Dong-Gyu; Park, June Hyun; Lim, Jae Yun; Kim, Donghyun; Choi, Yourim; Kim, Soyoung; Reeves, Gregory; Yeom, Seon-In; Lee, Jeong-Soo; Park, Minkyu; Kim, Seungill; Choi, Ik-Young; Choi, Doil; Shin, Chanseok

    2013-01-01

    MicroRNAs (miRNAs) are a class of non-coding RNAs approximately 21 nt in length which play important roles in regulating gene expression in plants. Although many miRNA studies have focused on a few model plants, miRNAs and their target genes remain largely unknown in hot pepper (Capsicum annuum), one of the most important crops cultivated worldwide. Here, we employed high-throughput sequencing technology to identify miRNAs in pepper extensively from 10 different libraries, including leaf, stem, root, flower, and six developmental stage fruits. Based on a bioinformatics pipeline, we successfully identified 29 and 35 families of conserved and novel miRNAs, respectively. Northern blot analysis was used to validate further the expression of representative miRNAs and to analyze their tissue-specific or developmental stage-specific expression patterns. Moreover, we computationally predicted miRNA targets, many of which were experimentally confirmed using 5' rapid amplification of cDNA ends analysis. One of the validated novel targets of miR-396 was a domain rearranged methyltransferase, the major de novo methylation enzyme, involved in RNA-directed DNA methylation in plants. This work provides the first reliable draft of the pepper miRNA transcriptome. It offers an expanded picture of pepper miRNAs in relation to other plants, providing a basis for understanding the functional roles of miRNAs in pepper.

  11. Transcriptome analysis of WRKY gene family in Oryza officinalis Wall ex Watt and WRKY genes involved in responses to Xanthomonas oryzae pv. oryzae stress

    PubMed Central

    Jiang, Chunmiao; Shen, Qingxi J.; Wang, Bo; He, Bin; Xiao, Suqin; Chen, Ling; Yu, Tengqiong; Ke, Xue; Zhong, Qiaofang; Fu, Jian; Chen, Yue; Wang, Lingxian; Yin, Fuyou; Zhang, Dunyu; Ghidan, Walid; Huang, Xingqi; Cheng, Zaiquan

    2017-01-01

    Oryza officinalis Wall ex Watt, a very important and special wild rice species, shows abundant genetic diversity and disease resistance features, especially high resistance to bacterial blight. The molecular mechanisms of bacterial blight resistance in O. officinalis have not yet been elucidated. The WRKY transcription factor family is one of the largest gene families involved in plant growth, development and stress response. However, little is known about the numbers, structure, molecular phylogenetics, and expression of the WRKY genes under Xanthomonas oryzae pv. oryzae (Xoo) stress in O. officinalis due to lacking of O. officinalis genome. Therefore, based on the RNA-sequencing data of O. officinalis, we performed a comprehensive study of WRKY genes in O. officinalis and identified 89 OoWRKY genes. Then 89 OoWRKY genes were classified into three groups based on the WRKY domains and zinc finger motifs. Phylogenetic analysis strongly supported that the evolution of OoWRKY genes were consistent with previous studies of WRKYs, and subgroup IIc OoWRKY genes were the original ancestors of some group II and group III OoWRKYs. Among the 89 OoWRKY genes, eight OoWRKYs displayed significantly different expression (>2-fold, p<0.01) in the O. officinalis transcriptome under Xoo strains PXO99 and C5 stress 48 h, suggesting these genes might play important role in PXO99 and C5 stress responses in O. officinalis. QRT-PCR analysis and confirmation of eight OoWRKYs expression patterns revealed that they responded strongly to PXO99 and C5 stress 24 h, 48 h, and 72 h, and the trends of these genes displaying marked changes were consistent with the 48 h RNA-sequencing data, demonstrated these genes played important roles in response to biotic stress and might even involved in the bacterial blight resistance. Tissue expression profiles of eight OoWRKY genes revealed that they were highly expressed in root, stem, leaf, and flower, especially in leaf (except OoWRKY71), suggesting these genes might be also important for plant growth and organ development. In this study, we analyzed the WRKY family of transcription factors in O.officinalis. Insight was gained into the classification, evolution, and function of the OoWRKY genes, revealing the putative roles of eight significantly different expression OoWRKYs in Xoo strains PXO99 and C5 stress responses in O.officinalis. This study provided a better understanding of the evolution and functions of O. officinalis WRKY genes, and suggested that manipulating eight significantly different expression OoWRKYs would enhance resistance to bacterial blight. PMID:29190793

  12. Transcriptome analysis of WRKY gene family in Oryza officinalis Wall ex Watt and WRKY genes involved in responses to Xanthomonas oryzae pv. oryzae stress.

    PubMed

    Jiang, Chunmiao; Shen, Qingxi J; Wang, Bo; He, Bin; Xiao, Suqin; Chen, Ling; Yu, Tengqiong; Ke, Xue; Zhong, Qiaofang; Fu, Jian; Chen, Yue; Wang, Lingxian; Yin, Fuyou; Zhang, Dunyu; Ghidan, Walid; Huang, Xingqi; Cheng, Zaiquan

    2017-01-01

    Oryza officinalis Wall ex Watt, a very important and special wild rice species, shows abundant genetic diversity and disease resistance features, especially high resistance to bacterial blight. The molecular mechanisms of bacterial blight resistance in O. officinalis have not yet been elucidated. The WRKY transcription factor family is one of the largest gene families involved in plant growth, development and stress response. However, little is known about the numbers, structure, molecular phylogenetics, and expression of the WRKY genes under Xanthomonas oryzae pv. oryzae (Xoo) stress in O. officinalis due to lacking of O. officinalis genome. Therefore, based on the RNA-sequencing data of O. officinalis, we performed a comprehensive study of WRKY genes in O. officinalis and identified 89 OoWRKY genes. Then 89 OoWRKY genes were classified into three groups based on the WRKY domains and zinc finger motifs. Phylogenetic analysis strongly supported that the evolution of OoWRKY genes were consistent with previous studies of WRKYs, and subgroup IIc OoWRKY genes were the original ancestors of some group II and group III OoWRKYs. Among the 89 OoWRKY genes, eight OoWRKYs displayed significantly different expression (>2-fold, p<0.01) in the O. officinalis transcriptome under Xoo strains PXO99 and C5 stress 48 h, suggesting these genes might play important role in PXO99 and C5 stress responses in O. officinalis. QRT-PCR analysis and confirmation of eight OoWRKYs expression patterns revealed that they responded strongly to PXO99 and C5 stress 24 h, 48 h, and 72 h, and the trends of these genes displaying marked changes were consistent with the 48 h RNA-sequencing data, demonstrated these genes played important roles in response to biotic stress and might even involved in the bacterial blight resistance. Tissue expression profiles of eight OoWRKY genes revealed that they were highly expressed in root, stem, leaf, and flower, especially in leaf (except OoWRKY71), suggesting these genes might be also important for plant growth and organ development. In this study, we analyzed the WRKY family of transcription factors in O.officinalis. Insight was gained into the classification, evolution, and function of the OoWRKY genes, revealing the putative roles of eight significantly different expression OoWRKYs in Xoo strains PXO99 and C5 stress responses in O.officinalis. This study provided a better understanding of the evolution and functions of O. officinalis WRKY genes, and suggested that manipulating eight significantly different expression OoWRKYs would enhance resistance to bacterial blight.

  13. Establishing Substantial Equivalence: Transcriptomics

    NASA Astrophysics Data System (ADS)

    Baudo, María Marcela; Powers, Stephen J.; Mitchell, Rowan A. C.; Shewry, Peter R.

    Regulatory authorities in Western Europe require transgenic crops to be substantially equivalent to conventionally bred forms if they are to be approved for commercial production. One way to establish substantial equivalence is to compare the transcript profiles of developing grain and other tissues of transgenic and conventionally bred lines, in order to identify any unintended effects of the transformation process. We present detailed protocols for transcriptomic comparisons of developing wheat grain and leaf material, and illustrate their use by reference to our own studies of lines transformed to express additional gluten protein genes controlled by their own endosperm-specific promoters. The results show that the transgenes present in these lines (which included those encoding marker genes) did not have any significant unpredicted effects on the expression of endogenous genes and that the transgenic plants were therefore substantially equivalent to the corresponding parental lines.

  14. Intracellular Ca(2+) and K(+) concentration in Brassica oleracea leaf induces differential expression of transporter and stress-related genes.

    PubMed

    Lee, Jeongyeo; Kim, Jungeun; Choi, Jae-Pil; Lee, MiYe; Kim, Min Keun; Lee, Young Han; Hur, Yoonkang; Nou, Ill-Sup; Park, Sang Un; Min, Sung Ran; Kim, HyeRan

    2016-03-09

    One of the most important members of the genus Brassica, cabbage, requires a relatively high level of calcium for normal growth (Plant Cell Environ 7: 397-405, 1984; Plant Physiol 60: 854-856, 1977). Localized Ca(2+) deficiency in cabbage leaves causes tip-burn, bringing about serious economic losses (Euphytica 9:203-208, 1960; Ann Bot 43:363-372, 1979; Sci Hortic 14:131-138, 1981). Although it has been known that the occurrence of tip-burn is related to Ca(2+) deficiency, there is limited information on the underlying mechanisms of tip-burn or the relationship between Ca(2+) and tip-burn incidence. To obtain more information on the genetic control of tip-burn symptoms, we focused on the identification of genes differentially expressed in response to increasing intracellular Ca(2+) and K(+) concentrations in B. oleracea lines derived from tip-burn susceptible, tip-burn resistant cabbages (B. oleracea var. capitata), and kale (B. oleracea var. acephala). We compared the levels of major macronutrient cations, including Ca(2+) and K(+), in three leaf segments, the leaf apex (LA), middle of leaf (LM), and leaf base (LB), of tip-burn susceptible, tip-burn resistant cabbages, and kale. Ca(2+) and K(+) concentrations were highest in kale, followed by tip-burn resistant and then tip-burn susceptible cabbages. These cations generally accumulated to a greater extent in the LB than in the LA. Transcriptome analysis identified 58,096 loci as putative non-redundant genes in the three leaf segments of the three B. oleracea lines and showed significant changes in expression of 27,876 loci based on Ca(2+) and K(+) levels. Among these, 1844 loci were identified as tip-burn related phenotype-specific genes. Tip-burn resistant cabbage and kale-specific genes were largely related to stress and transport activity based on GO annotation. Tip-burn resistant cabbage and kale plants showed phenotypes clearly indicative of heat-shock, freezing, and drought stress tolerance compared to tip-burn susceptible cabbages, demonstrating a correlation between intracellular Ca(2+) and K(+) concentrations and tolerance of abiotic stress with differential gene expression. We selected 165 genes that were up- or down-regulated in response to increasing Ca(2+) and K(+) concentrations in the three leaf segments of the three plant lines. Gene ontology enrichment analysis indicated that these genes participated in regulatory metabolic processes or stress responses. Our results indicate that the genes involved in regulatory metabolic processes or stress responses were differentially expressed in response to increasing Ca(2+) and K(+) concentrations in the B. oleracea leaf. Our transcriptome data and the genes identified may serve as a starting point for understanding the mechanisms underlying essential macronutrient deficiencies in plants, as well as the features of tip-burn in cabbage and other Brassica species.

  15. De novo transcriptome assembly analysis of weed Apera spica-venti from seven tissues and growth stages.

    PubMed

    Babineau, Marielle; Mahmood, Khalid; Mathiassen, Solvejg K; Kudsk, Per; Kristensen, Michael

    2017-02-06

    Loose silky bentgrass (Apera spica-venti) is an important weed in Europe with a recent increase in herbicide resistance cases. The lack of genetic information about this noxious weed limits its biological understanding such as growth, reproduction, genetic variation, molecular ecology and metabolic herbicide resistance. This study produced a reference transcriptome for A. spica-venti from different tissues (leaf, root, stem) and various growth stages (seed at phenological stages 05, 07, 08, 09). The de novo assembly was performed on individual and combined dataset followed by functional annotations. Individual transcripts and gene families involved in metabolic based herbicide resistance were identified. Eight separate transcriptome assemblies were performed and compared. The combined transcriptome assembly consists of 83,349 contigs with an N50 and average contig length of 762 and 658 bp, respectively. This dataset contains 74,724 transcripts consisting of total 54,846,111 bp. Among them 94% had a homologue to UniProtKB, 73% retrieved a GO mapping, and 50% were functionally annotated. Compared with other grass species, A. spica-venti has 26% proteins in common to Brachypodium distachyon, and 41% to Lolium spp. Glycosyltransferases had the highest number of transcripts in each tissue followed by the cytochrome P450s. The GSTF1 and CYP89A2 transcripts were recovered from the majority of tissues and aligned at a maximum of 66 and 30% to proven herbicide resistant allele from Alopecurus myosuroides and Lolium rigidum, respectively. De novo transcriptome assembly enabled the generation of the first reference transcriptome of A. spica-venti. This can serve as stepping stone for understanding the metabolic herbicide resistance as well as the general biology of this problematic weed. Furthermore, this large-scale sequence data is a valuable scientific resource for comparative transcriptome analysis for Poaceae grasses.

  16. The vagal ganglia transcriptome identifies candidate therapeutics for airway hyperreactivity.

    PubMed

    Reznikov, Leah R; Meyerholz, David K; Abou Alaiwa, Mahmoud H; Kuan, Shin-Ping; Liao, Yan-Shin J; Bormann, Nicholas L; Bair, Thomas B; Price, Margaret; Stoltz, David A; Welsh, Michael J

    2018-04-05

    Mainstay therapeutics are ineffective in some people with asthma, suggesting a need for additional agents. In the current study, we used vagal ganglia transcriptome profiling and connectivity mapping to identify compounds beneficial for alleviating airway hyperreactivity. As a comparison, we also utilized previously published transcriptome data from sensitized mouse lungs and human asthmatic endobronchial biopsies. All transcriptomes revealed agents beneficial for mitigating airway hyperreactivity; however, only the vagal ganglia transcriptome identified agents used clinically to treat asthma (flunisolide, isoetarine). We also tested one compound identified by vagal ganglia transcriptome profiling that had not previously been linked to asthma and found that it had bronchodilator effects in both mouse and pig airways. These data suggest that transcriptome profiling of the vagal ganglia might be a novel strategy to identify potential asthma therapeutics.

  17. Analysis of the leaf transcriptome of Musa acuminata during interaction with Mycosphaerella musicola: gene assembly, annotation and marker development

    PubMed Central

    2013-01-01

    Background Although banana (Musa sp.) is an important edible crop, contributing towards poverty alleviation and food security, limited transcriptome datasets are available for use in accelerated molecular-based breeding in this genus. 454 GS-FLX Titanium technology was employed to determine the sequence of gene transcripts in genotypes of Musa acuminata ssp. burmannicoides Calcutta 4 and M. acuminata subgroup Cavendish cv. Grande Naine, contrasting in resistance to the fungal pathogen Mycosphaerella musicola, causal organism of Sigatoka leaf spot disease. To enrich for transcripts under biotic stress responses, full length-enriched cDNA libraries were prepared from whole plant leaf materials, both uninfected and artificially challenged with pathogen conidiospores. Results The study generated 846,762 high quality sequence reads, with an average length of 334 bp and totalling 283 Mbp. De novo assembly generated 36,384 and 35,269 unigene sequences for M. acuminata Calcutta 4 and Cavendish Grande Naine, respectively. A total of 64.4% of the unigenes were annotated through Basic Local Alignment Search Tool (BLAST) similarity analyses against public databases. Assembled sequences were functionally mapped to Gene Ontology (GO) terms, with unigene functions covering a diverse range of molecular functions, biological processes and cellular components. Genes from a number of defense-related pathways were observed in transcripts from each cDNA library. Over 99% of contig unigenes mapped to exon regions in the reference M. acuminata DH Pahang whole genome sequence. A total of 4068 genic-SSR loci were identified in Calcutta 4 and 4095 in Cavendish Grande Naine. A subset of 95 potential defense-related gene-derived simple sequence repeat (SSR) loci were validated for specific amplification and polymorphism across M. acuminata accessions. Fourteen loci were polymorphic, with alleles per polymorphic locus ranging from 3 to 8 and polymorphism information content ranging from 0.34 to 0.82. Conclusions A large set of unigenes were characterized in this study for both M. acuminata Calcutta 4 and Cavendish Grande Naine, increasing the number of public domain Musa ESTs. This transcriptome is an invaluable resource for furthering our understanding of biological processes elicited during biotic stresses in Musa. Gene-based markers will facilitate molecular breeding strategies, forming the basis of genetic linkage mapping and analysis of quantitative trait loci. PMID:23379821

  18. Transcriptome complexity in cardiac development and diseases--an expanding universe between genome and phenome.

    PubMed

    Gao, Chen; Wang, Yibin

    2014-01-01

    With the advancement of transcriptome profiling by micro-arrays and high-throughput RNA-sequencing, transcriptome complexity and its dynamics are revealed at different levels in cardiovascular development and diseases. In this review, we will highlight the recent progress in our knowledge of cardiovascular transcriptome complexity contributed by RNA splicing, RNA editing and noncoding RNAs. The emerging importance of many of these previously under-explored aspects of gene regulation in cardiovascular development and pathology will be discussed.

  19. Studying the organization of genes encoding plant cell wall degrading enzymes in Chrysomela tremula provides insights into a leaf beetle genome.

    PubMed

    Pauchet, Y; Saski, C A; Feltus, F A; Luyten, I; Quesneville, H; Heckel, D G

    2014-06-01

    The ability of herbivorous beetles from the superfamilies Chrysomeloidea and Curculionoidea to degrade plant cell wall polysaccharides has only recently begun to be appreciated. The presence of plant cell wall degrading enzymes (PCWDEs) in the beetle's digestive tract makes this degradation possible. Sequences encoding these beetle-derived PCWDEs were originally identified from transcriptomes and strikingly resemble those of saprophytic and phytopathogenic microorganisms, raising questions about their origin; e.g. are they insect- or microorganism-derived? To demonstrate unambiguously that the genes encoding PCWDEs found in beetle transcriptomes are indeed of insect origin, we generated a bacterial artificial chromosome library from the genome of the leaf beetle Chrysomela tremula, containing 18 432 clones with an average size of 143 kb. After hybridizing this library with probes derived from 12 C. tremula PCWDE-encoding genes and sequencing the positive clones, we demonstrated that the latter genes are encoded by the insect's genome and are surrounded by genes possessing orthologues in the genome of Tribolium castaneum as well as in three other beetle genomes. Our analyses showed that although the level of overall synteny between C. tremula and T. castaneum seems high, the degree of microsynteny between both species is relatively low, in contrast to the more closely related Colorado potato beetle. © 2014 The Royal Entomological Society.

  20. Comparative interrogation of the developing xylem transcriptomes of two wood-forming species: Populus trichocarpa and Eucalyptus grandis.

    PubMed

    Hefer, Charles A; Mizrachi, Eshchar; Myburg, Alexander A; Douglas, Carl J; Mansfield, Shawn D

    2015-06-01

    Wood formation is a complex developmental process governed by genetic and environmental stimuli. Populus and Eucalyptus are fast-growing, high-yielding tree genera that represent ecologically and economically important species suitable for generating significant lignocellulosic biomass. Comparative analysis of the developing xylem and leaf transcriptomes of Populus trichocarpa and Eucalyptus grandis together with phylogenetic analyses identified clusters of homologous genes preferentially expressed during xylem formation in both species. A conserved set of 336 single gene pairs showed highly similar xylem preferential expression patterns, as well as evidence of high functional constraint. Individual members of multi-gene orthologous clusters known to be involved in secondary cell wall biosynthesis also showed conserved xylem expression profiles. However, species-specific expression as well as opposite (xylem versus leaf) expression patterns observed for a subset of genes suggest subtle differences in the transcriptional regulation important for xylem development in each species. Using sequence similarity and gene expression status, we identified functional homologs likely to be involved in xylem developmental and biosynthetic processes in Populus and Eucalyptus. Our study suggests that, while genes involved in secondary cell wall biosynthesis show high levels of gene expression conservation, differential regulation of some xylem development genes may give rise to unique xylem properties. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  1. Assessing the Metabolic Impact of Nitrogen Availability Using a Compartmentalized Maize Leaf Genome-Scale Model1[C][W][OPEN

    PubMed Central

    Simons, Margaret; Saha, Rajib; Amiour, Nardjis; Kumar, Akhil; Guillard, Lenaïg; Clément, Gilles; Miquel, Martine; Li, Zhenni; Mouille, Gregory; Lea, Peter J.; Hirel, Bertrand; Maranas, Costas D.

    2014-01-01

    Maize (Zea mays) is an important C4 plant due to its widespread use as a cereal and energy crop. A second-generation genome-scale metabolic model for the maize leaf was created to capture C4 carbon fixation and investigate nitrogen (N) assimilation by modeling the interactions between the bundle sheath and mesophyll cells. The model contains gene-protein-reaction relationships, elemental and charge-balanced reactions, and incorporates experimental evidence pertaining to the biomass composition, compartmentalization, and flux constraints. Condition-specific biomass descriptions were introduced that account for amino acids, fatty acids, soluble sugars, proteins, chlorophyll, lignocellulose, and nucleic acids as experimentally measured biomass constituents. Compartmentalization of the model is based on proteomic/transcriptomic data and literature evidence. With the incorporation of information from the MetaCrop and MaizeCyc databases, this updated model spans 5,824 genes, 8,525 reactions, and 9,153 metabolites, an increase of approximately 4 times the size of the earlier iRS1563 model. Transcriptomic and proteomic data have also been used to introduce regulatory constraints in the model to simulate an N-limited condition and mutants deficient in glutamine synthetase, gln1-3 and gln1-4. Model-predicted results achieved 90% accuracy when comparing the wild type grown under an N-complete condition with the wild type grown under an N-deficient condition. PMID:25248718

  2. Transcriptomic Profiling of the Maize (Zea mays L.) Leaf Response to Abiotic Stresses at the Seedling Stage.

    PubMed

    Li, Pengcheng; Cao, Wei; Fang, Huimin; Xu, Shuhui; Yin, Shuangyi; Zhang, Yingying; Lin, Dezhou; Wang, Jianan; Chen, Yufei; Xu, Chenwu; Yang, Zefeng

    2017-01-01

    Abiotic stresses, including drought, salinity, heat, and cold, negatively affect maize ( Zea mays L.) development and productivity. To elucidate the molecular mechanisms of resistance to abiotic stresses in maize, RNA-seq was used for global transcriptome profiling of B73 seedling leaves exposed to drought, salinity, heat, and cold stress. A total of 5,330 differentially expressed genes (DEGs) were detected in differential comparisons between the control and each stressed sample, with 1,661, 2,019, 2,346, and 1,841 DEGs being identified in comparisons of the control with salinity, drought, heat, and cold stress, respectively. Functional annotations of DEGs suggested that the stress response was mediated by pathways involving hormone metabolism and signaling, transcription factors (TFs), very-long-chain fatty acid biosynthesis and lipid signaling, among others. Of the obtained DEGs (5,330), 167 genes are common to these four abiotic stresses, including 10 up-regulated TFs (five ERFs, two NACs, one ARF, one MYB, and one HD-ZIP) and two down-regulated TFs (one b-ZIP and one MYB-related), which suggested that common mechanisms may be initiated in response to different abiotic stresses in maize. This study contributes to a better understanding of the molecular mechanisms of maize leaf responses to abiotic stresses and could be useful for developing maize cultivars resistant to abiotic stresses.

  3. De Novo Transcriptome Assembly and Characterization of Lithospermum officinale to Discover Putative Genes Involved in Specialized Metabolites Biosynthesis.

    PubMed

    Rai, Amit; Nakaya, Taiki; Shimizu, Yohei; Rai, Megha; Nakamura, Michimi; Suzuki, Hideyuki; Saito, Kazuki; Yamazaki, Mami

    2018-05-29

    Lithospermum officinale is a valuable source of bioactive metabolites with medicinal and industrial values. However, little is known about genes involved in the biosynthesis of these metabolites, primarily due to the lack of genome or transcriptome resources. This study presents the first effort to establish and characterize de novo transcriptome assembly resource for L. officinale and expression analysis for three of its tissues, namely leaf, stem, and root. Using over 4Gbps of RNA-sequencing datasets, we obtained de novo transcriptome assembly of L. officinale , consisting of 77,047 unigenes with assembly N50 value as 1524 bps. Based on transcriptome annotation and functional classification, 52,766 unigenes were assigned with putative genes functions, gene ontology terms, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. KEGG pathway and gene ontology enrichment analysis using highly expressed unigenes across three tissues and targeted metabolome analysis showed active secondary metabolic processes enriched specifically in the root of L. officinale . Using co-expression analysis, we also identified 20 and 48 unigenes representing different enzymes of lithospermic/chlorogenic acid and shikonin biosynthesis pathways, respectively. We further identified 15 candidate unigenes annotated as cytochrome P450 with the highest expression in the root of L. officinale as novel genes with a role in key biochemical reactions toward shikonin biosynthesis. Thus, through this study, we not only generated a high-quality genomic resource for L. officinale but also propose candidate genes to be involved in shikonin biosynthesis pathways for further functional characterization. Georg Thieme Verlag KG Stuttgart · New York.

  4. De Novo Assembly and Comparative Transcriptome Analyses of Red and Green Morphs of Sweet Basil Grown in Full Sunlight.

    PubMed

    Torre, Sara; Tattini, Massimiliano; Brunetti, Cecilia; Guidi, Lucia; Gori, Antonella; Marzano, Cristina; Landi, Marco; Sebastiani, Federico

    2016-01-01

    Sweet basil (Ocimum basilicum), one of the most popular cultivated herbs worldwide, displays a number of varieties differing in several characteristics, such as the color of the leaves. The development of a reference transcriptome for sweet basil, and the analysis of differentially expressed genes in acyanic and cyanic cultivars exposed to natural sunlight irradiance, has interest from horticultural and biological point of views. There is still great uncertainty about the significance of anthocyanins in photoprotection, and how green and red morphs may perform when exposed to photo-inhibitory light, a condition plants face on daily and seasonal basis. We sequenced the leaf transcriptome of the green-leaved Tigullio (TIG) and the purple-leaved Red Rubin (RR) exposed to full sunlight over a four-week experimental period. We assembled and annotated 111,007 transcripts. A total of 5,468 and 5,969 potential SSRs were identified in TIG and RR, respectively, out of which 66 were polymorphic in silico. Comparative analysis of the two transcriptomes showed 2,372 differentially expressed genes (DEGs) clustered in 222 enriched Gene ontology terms. Green and red basil mostly differed for transcripts abundance of genes involved in secondary metabolism. While the biosynthesis of waxes was up-regulated in red basil, the biosynthesis of flavonols and carotenoids was up-regulated in green basil. Data from our study provides a comprehensive transcriptome survey, gene sequence resources and microsatellites that can be used for further investigations in sweet basil. The analysis of DEGs and their functional classification also offers new insights on the functional role of anthocyanins in photoprotection.

  5. Transcriptome Analysis of Spartina pectinata in Response to Freezing Stress

    PubMed Central

    Nah, Gyoungju; Lee, Moonsub; Kim, Do-Soon; Rayburn, A. Lane; Voigt, Thomas; Lee, D. K.

    2016-01-01

    Prairie cordgrass (Spartina pectinata), a perennial C4 grass native to the North American prairie, has several distinctive characteristics that potentially make it a model crop for production in stressful environments. However, little is known about the transcriptome dynamics of prairie cordgrass despite its unique freezing stress tolerance. Therefore, the purpose of this work was to explore the transcriptome dynamics of prairie cordgrass in response to freezing stress at -5°C for 5 min and 30 min. We used a RNA-sequencing method to assemble the S. pectinata leaf transcriptome and performed gene-expression profiling of the transcripts under freezing treatment. Six differentially expressed gene (DEG) groups were categorized from the profiling. In addition, two major consecutive orders of gene expression were observed in response to freezing; the first being the acute up-regulation of genes involved in plasma membrane modification, calcium-mediated signaling, proteasome-related proteins, and transcription regulators (e.g., MYB and WRKY). The follow-up and second response was of genes involved in encoding the putative anti-freezing protein and the previously known DNA and cell-damage-repair proteins. Moreover, we identified the genes involved in epigenetic regulation and circadian-clock expression. Our results indicate that freezing response in S. pectinata reflects dynamic changes in rapid-time duration, as well as in metabolic, transcriptional, post-translational, and epigenetic regulation. PMID:27032112

  6. Global transcriptome analysis of Huperzia serrata and identification of critical genes involved in the biosynthesis of huperzine A.

    PubMed

    Yang, Mengquan; You, Wenjing; Wu, Shiwen; Fan, Zhen; Xu, Baofu; Zhu, Mulan; Li, Xuan; Xiao, Youli

    2017-03-22

    Huperzia serrata (H. serrata) is an economically important traditional Chinese herb with the notably medicinal value. As a representative member of the Lycopodiaceae family, the H. serrata produces various types of effectively bioactive lycopodium alkaloids, especially the huperzine A (HupA) which is a promising drug for Alzheimer's disease. Despite their medicinal importance, the public genomic and transcriptomic resources are very limited and the biosynthesis of HupA is largely unknown. Previous studies on comparison of 454-ESTs from H. serrata and Phlegmariurus carinatus predicted putative genes involved in lycopodium alkaloid biosynthesis, such as lysine decarboxylase like (LDC-like) protein and some CYP450s. However, these gene annotations were not carried out with further biochemical characterizations. To understand the biosynthesis of HupA and its regulation in H. serrata, a global transcriptome analysis on H. Serrata tissues was performed. In this study, we used the Illumina Highseq4000 platform to generate a substantial RNA sequencing dataset of H. serrata. A total of 40.1 Gb clean data was generated from four different tissues: root, stem, leaf, and sporangia and assembled into 181,141 unigenes. The total length, average length, N50 and GC content of unigenes were 219,520,611 bp, 1,211 bp, 2,488 bp and 42.51%, respectively. Among them, 105,516 unigenes (58.25%) were annotated by seven public databases (NR, NT, Swiss-Prot, KEGG, COG, Interpro, GO), and 54 GO terms and 3,391 transcription factors (TFs) were functionally classified, respectively. KEGG pathway analysis revealed that 72,230 unigenes were classified into 21 functional pathways. Three types of candidate enzymes, LDC, CAO and PKS, responsible for the biosynthesis of precursors of HupA were all identified in the transcripts. Four hundred and fifty-seven CYP450 genes in H. serrata were also analyzed and compared with tissue-specific gene expression. Moreover, two key classes of CYP450 genes BBE and SLS, with 23 members in total, for modification of the lycopodium alkaloid scaffold in the late two stages of biosynthesis of HupA were further evaluated. This study is the first report of global transcriptome analysis on all tissues of H. serrata, and critical genes involved in the biosynthesis of precursors and scaffold modifications of HupA were discovered and predicted. The transcriptome data from this work not only could provide an important resource for further investigating on metabolic pathways in H. serrata, but also shed light on synthetic biology study of HupA.

  7. Modular organization of the white spruce (Picea glauca) transcriptome reveals functional organization and evolutionary signatures.

    PubMed

    Raherison, Elie S M; Giguère, Isabelle; Caron, Sébastien; Lamara, Mebarek; MacKay, John J

    2015-07-01

    Transcript profiling has shown the molecular bases of several biological processes in plants but few studies have developed an understanding of overall transcriptome variation. We investigated transcriptome structure in white spruce (Picea glauca), aiming to delineate its modular organization and associated functional and evolutionary attributes. Microarray analyses were used to: identify and functionally characterize groups of co-expressed genes; investigate expressional and functional diversity of vascular tissue preferential genes which were conserved among Picea species, and identify expression networks underlying wood formation. We classified 22 857 genes as variable (79%; 22 coexpression groups) or invariant (21%) by profiling across several vegetative tissues. Modular organization and complex transcriptome restructuring among vascular tissue preferential genes was revealed by their assignment to coexpression groups with partially overlapping profiles and partially distinct functions. Integrated analyses of tissue-based and temporally variable profiles identified secondary xylem gene networks, showed their remodelling over a growing season and identified PgNAC-7 (no apical meristerm (NAM), Arabidopsis transcription activation factor (ATAF) and cup-shaped cotyledon (CUC) transcription factor 007 in Picea glauca) as a major hub gene specific to earlywood formation. Reference profiling identified comprehensive, statistically robust coexpressed groups, revealing that modular organization underpins the evolutionary conservation of the transcriptome structure. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  8. Transcriptome analysis of woodland strawberry (Fragaria vesca) response to the infection by Strawberry vein banding virus (SVBV).

    PubMed

    Chen, Jing; Zhang, Hanping; Feng, Mingfeng; Zuo, Dengpan; Hu, Yahui; Jiang, Tong

    2016-07-13

    Woodland strawberry (Fragaria vesca) infected with Strawberry vein banding virus (SVBV) exhibits chlorotic symptoms along the leaf veins. However, little is known about the molecular mechanism of strawberry disease caused by SVBV. We performed the next-generation sequencing (RNA-Seq) study to identify gene expression changes induced by SVBV in woodland strawberry using mock-inoculated plants as a control. Using RNA-Seq, we have identified 36,850 unigenes, of which 517 were differentially expressed in the virus-infected plants (DEGs). The unigenes were annotated and classified with Gene Ontology (GO), Clusters of Orthologous Group (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The KEGG pathway analysis of these genes suggested that strawberry disease caused by SVBV may affect multiple processes including pigment metabolism, photosynthesis and plant-pathogen interactions. Our research provides comprehensive transcriptome information regarding SVBV infection in strawberry.

  9. Unravelling molecular mechanisms from floral initiation to lipid biosynthesis in a promising biofuel tree species, Pongamia pinnata using transcriptome analysis

    PubMed Central

    Sreeharsha, Rachapudi V.; Mudalkar, Shalini; Singha, Kambam T.; Reddy, Attipalli R.

    2016-01-01

    Pongamia pinnata (L.) (Fabaceae) is a promising biofuel tree species which is underexploited in the areas of both fundamental and applied research, due to the lack of information either on transcriptome or genomic data. To investigate the possible metabolic pathways, we performed whole transcriptome analysis of Pongamia through Illumina NextSeq platform and generated 2.8 GB of paired end sequence reads. The de novo assembly of raw reads generated 40,000 contigs and 35,000 transcripts, representing leaf, flower and seed unigenes. Spatial and temporal expression profiles of photoperiod and floral homeotic genes in Pongamia, identified GIGANTEA (GI) - CONSTANS (CO) - FLOWERING LOCUS T (FT) as active signal cascade for floral initiation. Four prominent stages of seed development were selected in a high yielding Pongamia accession (TOIL 1) to follow the temporal expression patterns of key fatty acid biosynthetic genes involved in lipid biosynthesis and accumulation. Our results provide insights into an array of molecular events from flowering to seed maturity in Pongamia which will provide substantial basis for modulation of fatty acid composition and enhancing oil yields which should serve as a potential feedstock for biofuel production. PMID:27677333

  10. Divergent N Deficiency-Dependent Senescence and Transcriptome Response in Developmentally Old and Young Brassica napus Leaves

    PubMed Central

    Safavi-Rizi, Vajiheh; Franzaring, Jürgen; Fangmeier, Andreas; Kunze, Reinhard

    2018-01-01

    In the spring oilseed rape (OSR) cultivar ‘Mozart’ grown under optimal N supply (NO) or mild N deficiency (NL) the transcriptome changes associated with progressing age until early senescence in developmentally old lower canopy leaves (leaf #4) and younger higher canopy leaves (leaf #8) were investigated. Twelve weeks old NO and NL plants appeared phenotypically and transcriptomically identical, but thereafter distinct nutrition-dependent differences in gene expression patterns in lower and upper canopy leaves emerged. In NO leaves #4 of 14-week-old compared to 13-week-old plants, ∼600 genes were up- or downregulated, whereas in NL leaves #4 ∼3000 genes were up- or downregulated. In contrast, in 15-week-old compared to 13-week-old upper canopy leaves #8 more genes were up- or downregulated in optimally N-supplied plants (∼2000 genes) than in N-depleted plants (∼750 genes). This opposing effect of N depletion on gene regulation was even more prominent among photosynthesis-related genes (PSGs). Between week 13 and 14 in leaves #4, 99 of 110 PSGs were downregulated in NL plants, but none in NO plants. In contrast, from weeks 13 to 16 in leaves #8 of NL plants only 11 PSGs were downregulated in comparison to 66 PSGs in NO plants. Different effects of N depletion in lower versus upper canopy leaves were also apparent in upregulation of autophagy genes and NAC transcription factors. More than half of the regulated NAC and WRKY transcription factor, autophagy and protease genes were specifically regulated in NL leaves #4 or NO leaves #8 and thus may contribute to differences in senescence and nutrient mobilization in these leaves. We suggest that in N-deficient plants the upper leaves retain their N resources longer than in amply fertilized plants and remobilize them only after shedding of the lower leaves. PMID:29449851

  11. Assessing Global Transcriptome Changes in Response to South African Cassava Mosaic Virus [ZA-99] Infection in Susceptible Arabidopsis thaliana.

    PubMed

    Pierce, Erica J; Rey, M E Chrissie

    2013-01-01

    In susceptible plant hosts, co-evolution has favoured viral strategies to evade host defenses and utilize resources to their own benefit. The degree of manipulation of host gene expression is dependent on host-virus specificity and certain abiotic factors. In order to gain insight into global transcriptome changes for a geminivirus pathosystem, South African cassava mosaic virus [ZA:99] and Arabidopsis thaliana, 4×44K Agilent microarrays were adopted. After normalization, a log2 fold change filtering of data (p<0.05) identified 1,743 differentially expressed genes in apical leaf tissue. A significant increase in differential gene expression over time correlated with an increase in SACMV accumulation, as virus copies were 5-fold higher at 24 dpi and 6-fold higher at 36 dpi than at 14 dpi. Many altered transcripts were primarily involved in stress and defense responses, phytohormone signalling pathways, cellular transport, cell-cycle regulation, transcription, oxidation-reduction, and other metabolic processes. Only forty-one genes (2.3%) were shown to be continuously expressed across the infection period, indicating that the majority of genes were transient and unique to a particular time point during infection. A significant number of pathogen-responsive genes were suppressed during the late stages of pathogenesis, while during active systemic infection (14 to 24 dpi), there was an increase in up-regulated genes in several GO functional categories. An adaptive response was initiated to divert energy from growth-related processes to defense, leading to disruption of normal biological host processes. Similarities in cell-cycle regulation correlated between SACMV and Cabbage leaf curl virus (CaLCuV), but differences were also evident. Differences in gene expression between the two geminiviruses clearly demonstrated that, while some global transcriptome responses are generally common in plant virus infections, temporal host-specific interactions are required for successful geminivirus infection. To our knowledge this is the first geminivirus microarray study identifying global differentially expressed transcripts at 3 time points.

  12. Assessing Global Transcriptome Changes in Response to South African Cassava Mosaic Virus [ZA-99] Infection in Susceptible Arabidopsis thaliana

    PubMed Central

    Pierce, Erica J.; Rey, M. E. Chrissie

    2013-01-01

    In susceptible plant hosts, co-evolution has favoured viral strategies to evade host defenses and utilize resources to their own benefit. The degree of manipulation of host gene expression is dependent on host-virus specificity and certain abiotic factors. In order to gain insight into global transcriptome changes for a geminivirus pathosystem, South African cassava mosaic virus [ZA:99] and Arabidopsis thaliana, 4×44K Agilent microarrays were adopted. After normalization, a log2 fold change filtering of data (p<0.05) identified 1,743 differentially expressed genes in apical leaf tissue. A significant increase in differential gene expression over time correlated with an increase in SACMV accumulation, as virus copies were 5-fold higher at 24 dpi and 6-fold higher at 36 dpi than at 14 dpi. Many altered transcripts were primarily involved in stress and defense responses, phytohormone signalling pathways, cellular transport, cell-cycle regulation, transcription, oxidation-reduction, and other metabolic processes. Only forty-one genes (2.3%) were shown to be continuously expressed across the infection period, indicating that the majority of genes were transient and unique to a particular time point during infection. A significant number of pathogen-responsive genes were suppressed during the late stages of pathogenesis, while during active systemic infection (14 to 24 dpi), there was an increase in up-regulated genes in several GO functional categories. An adaptive response was initiated to divert energy from growth-related processes to defense, leading to disruption of normal biological host processes. Similarities in cell-cycle regulation correlated between SACMV and Cabbage leaf curl virus (CaLCuV), but differences were also evident. Differences in gene expression between the two geminiviruses clearly demonstrated that, while some global transcriptome responses are generally common in plant virus infections, temporal host-specific interactions are required for successful geminivirus infection. To our knowledge this is the first geminivirus microarray study identifying global differentially expressed transcripts at 3 time points. PMID:23826319

  13. Comparison of the Nodule vs. Root Transcriptome of the Actinorhizal Plant Datisca glomerata: Actinorhizal Nodules Contain a Specific Class of Defensins

    PubMed Central

    Santos, Patricia; Plaszczyca, Marian; Pawlowski, Katharina

    2013-01-01

    Actinorhizal root nodule symbioses are very diverse, and the symbiosis of Datisca glomerata has previously been shown to have many unusual aspects. In order to gain molecular information on the infection mechanism, nodule development and nodule metabolism, we compared the transcriptomes of D. glomerata roots and nodules. Root and nodule libraries representing the 3′-ends of cDNAs were subjected to high-throughput parallel 454 sequencing. To identify the corresponding genes and to improve the assembly, Illumina sequencing of the nodule transcriptome was performed as well. The evaluation revealed 406 differentially regulated genes, 295 of which (72.7%) could be assigned a function based on homology. Analysis of the nodule transcriptome showed that genes encoding components of the common symbiosis signaling pathway were present in nodules of D. glomerata, which in combination with the previously established function of SymRK in D. glomerata nodulation suggests that this pathway is also active in actinorhizal Cucurbitales. Furthermore, comparison of the D. glomerata nodule transcriptome with nodule transcriptomes from actinorhizal Fagales revealed a new subgroup of nodule-specific defensins that might play a role specific to actinorhizal symbioses. The D. glomerata members of this defensin subgroup contain an acidic C-terminal domain that was never found in plant defensins before. PMID:24009681

  14. Transcriptome profiling using Illumina- and SMRT-based RNA-seq of hot pepper for in-depth understanding of genes involved in CMV infection.

    PubMed

    Zhu, Chunhui; Li, Xuefeng; Zheng, Jingyuan

    2018-05-03

    Hot pepper (Capsicum annuum L.), which is a member of the Solanaceae family, is becoming an increasingly important vegetable crop worldwide. Cucumber mosaic virus (CMV) is a destructive virus that can cause leaf distortion and fruit lesions, affecting pepper production. However, studies on the responses to CMV infection in pepper at the transcriptional level are limited. In this study, the transcript profiles of pepper leaves after CMV infection were investigated using Illumina and single-molecule real-time (SMRT) RNA-sequencing (RNA-seq). A total of 2143 differentially expressed genes (DEGs) were identified at five different stages. Gene ontology (GO) and KEGG analysis revealed that these DEGs were involved in the response to stress, defense response and plant-pathogen interaction pathways. Among these DEGs, several key genes that consistently appeared in studies of plant-pathogen interactions had increased transcript abundance after inoculation, including chitinase, pathogenesis-related (PR) protein, TMV resistance protein, WRKY transcription factor and jasmonate ZIM-domain protein. Nine of these DEGs were further validated by quantitative real-time-PCR (qRT-PCR). Furthermore, a total of 73, 597 alternate splicing (AS) events were identified in the pepper leaves after CMV infection, distributed in 12, 615 genes. The intron retention of WRKY33 (Capana09g001251) might be involved in the regulation of CMV infection. Taken together, our study provides a transcriptome-wide insight into the molecular basis of resistance to CMV infection in pepper leaves and potential candidate genes for improving resistance cultivars. Copyright © 2017. Published by Elsevier B.V.

  15. Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea

    PubMed Central

    2014-01-01

    Background Brassica oleracea is a valuable vegetable species that has contributed to human health and nutrition for hundreds of years and comprises multiple distinct cultivar groups with diverse morphological and phytochemical attributes. In addition to this phenotypic wealth, B. oleracea offers unique insights into polyploid evolution, as it results from multiple ancestral polyploidy events and a final Brassiceae-specific triplication event. Further, B. oleracea represents one of the diploid genomes that formed the economically important allopolyploid oilseed, Brassica napus. A deeper understanding of B. oleracea genome architecture provides a foundation for crop improvement strategies throughout the Brassica genus. Results We generate an assembly representing 75% of the predicted B. oleracea genome using a hybrid Illumina/Roche 454 approach. Two dense genetic maps are generated to anchor almost 92% of the assembled scaffolds to nine pseudo-chromosomes. Over 50,000 genes are annotated and 40% of the genome predicted to be repetitive, thus contributing to the increased genome size of B. oleracea compared to its close relative B. rapa. A snapshot of both the leaf transcriptome and methylome allows comparisons to be made across the triplicated sub-genomes, which resulted from the most recent Brassiceae-specific polyploidy event. Conclusions Differential expression of the triplicated syntelogs and cytosine methylation levels across the sub-genomes suggest residual marks of the genome dominance that led to the current genome architecture. Although cytosine methylation does not correlate with individual gene dominance, the independent methylation patterns of triplicated copies suggest epigenetic mechanisms play a role in the functional diversification of duplicate genes. PMID:24916971

  16. Whole-transcriptome RNA-seq, gene set enrichment pathway analysis, and exon coverage analysis of two plastid RNA editing mutants.

    PubMed

    Hackett, Justin B; Lu, Yan

    2017-05-04

    In land plants, plastid and mitochondrial RNAs are subject to post-transcriptional C-to-U RNA editing. T-DNA insertions in the ORGANELLE RNA RECOGNITION MOTIF PROTEIN6 gene resulted in reduced photosystem II (PSII) activity and smaller plant and leaf sizes. Exon coverage analysis of the ORRM6 gene showed that orrm6-1 and orrm6-2 are loss-of-function mutants. Compared to other ORRM proteins, ORRM6 affects a relative small number of RNA editing sites. Sanger sequencing of reverse transcription-PCR products of plastid transcripts revealed 2 plastid RNA editing sites that are substantially affected in the orrm6 mutants: psbF-C77 and accD-C794. The psbF gene encodes the β subunit of cytochrome b 559 , an essential component of PSII. The accD gene encodes the β subunit of acetyl-CoA carboxylase, a protein required in plastid fatty acid biosynthesis. Whole-transcriptome RNA-seq demonstrated that editing at psbF-C77 is nearly absent and the editing extent at accD-C794 was significantly reduced. Gene set enrichment pathway analysis showed that expression of multiple gene sets involved in photosynthesis, especially photosynthetic electron transport, is significantly upregulated in both orrm6 mutants. The upregulation could be a mechanism to compensate for the reduced PSII electron transport rate in the orrm6 mutants. These results further demonstrated that Organelle RNA Recognition Motif protein ORRM6 is required in editing of specific RNAs in the Arabidopsis (Arabidopsis thaliana) plastid.

  17. Unravelling the complexity of microRNA-mediated gene regulation in black pepper (Piper nigrum L.) using high-throughput small RNA profiling.

    PubMed

    Asha, Srinivasan; Sreekumar, Sweda; Soniya, E V

    2016-01-01

    Analysis of high-throughput small RNA deep sequencing data, in combination with black pepper transcriptome sequences revealed microRNA-mediated gene regulation in black pepper ( Piper nigrum L.). Black pepper is an important spice crop and its berries are used worldwide as a natural food additive that contributes unique flavour to foods. In the present study to characterize microRNAs from black pepper, we generated a small RNA library from black pepper leaf and sequenced it by Illumina high-throughput sequencing technology. MicroRNAs belonging to a total of 303 conserved miRNA families were identified from the sRNAome data. Subsequent analysis from recently sequenced black pepper transcriptome confirmed precursor sequences of 50 conserved miRNAs and four potential novel miRNA candidates. Stem-loop qRT-PCR experiments demonstrated differential expression of eight conserved miRNAs in black pepper. Computational analysis of targets of the miRNAs showed 223 potential black pepper unigene targets that encode diverse transcription factors and enzymes involved in plant development, disease resistance, metabolic and signalling pathways. RLM-RACE experiments further mapped miRNA-mediated cleavage at five of the mRNA targets. In addition, miRNA isoforms corresponding to 18 miRNA families were also identified from black pepper. This study presents the first large-scale identification of microRNAs from black pepper and provides the foundation for the future studies of miRNA-mediated gene regulation of stress responses and diverse metabolic processes in black pepper.

  18. Transcriptome Profiling of Rust Resistance in Switchgrass Using RNA-Seq Analysis

    DOE PAGES

    Serba, Desalegn D.; Uppalapati, Srinivasa Rao; Mukherjee, Shreyartha; ...

    2015-03-16

    Switchgrass rust caused by Puccinia emaculata is a major limiting factor for switchgrass (Panicum virgatum L.) production, especially in monoculture. Natural populations of switchgrass displayed diverse reactions to P. emaculata when evaluated in an Ardmore, OK, field. In order to identify the differentially expressed genes during the rust infection process and the mechanisms of switchgrass rust resistance, transcriptome analysis using RNA-Seq was conducted in two pseudo-F 1 parents ('PV281' and 'NFGA472'), and three moderately resistant and three susceptible progenies selected from a three-generation, four-founder switchgrass population (K5 x A4) x (AP13 x VS16). On average, 23.5 million reads per samplemore » (leaf tissue was collected at 0, 24, and 60 h post-inoculation (hpi)) were obtained from paired-end (2 x 100 bp) sequencing on the Illumina HiSeq2000 platform. Furthermore, mapping of the RNA-Seq reads to the switchgrass reference genome (AP13 ver. 1.1 assembly) constructed a total of 84,209 transcripts from 98,007 gene loci among all of the samples. Further analysis revealed that host defense- related genes, including the nucleotide binding site-leucinerich repeat domain containing disease resistance gene analogs, play an important role in resistance to rust infection. Rust-induced gene (RIG) transcripts inherited across generations were identified. The rust-resistant gene transcripts can be a valuable resource for developing molecular markers for rust resistance. Finally we identified the rust-resistant genotypes and gene transcripts which can expedite rust-resistant cultivar development in switchgrass.« less

  19. Transcriptome analysis of salinity responsiveness in contrasting genotypes of finger millet (Eleusine coracana L.) through RNA-sequencing.

    PubMed

    Rahman, Hifzur; Jagadeeshselvam, N; Valarmathi, R; Sachin, B; Sasikala, R; Senthil, N; Sudhakar, D; Robin, S; Muthurajan, Raveendran

    2014-07-01

    Finger millet (Eleusine coracana L.) is a hardy cereal known for its superior level of tolerance against drought, salinity, diseases and its nutritional properties. In this study, attempts were made to unravel the physiological and molecular basis of salinity tolerance in two contrasting finger millet genotypes viz., CO 12 and Trichy 1. Physiological studies revealed that the tolerant genotype Trichy 1 had lower Na(+) to K(+) ratio in leaves and shoots, higher growth rate (osmotic tolerance) and ability to accumulate higher amount of total soluble sugar in leaves under salinity stress. We sequenced the salinity responsive leaf transcriptome of contrasting finger millet genotypes using IonProton platform and generated 27.91 million reads. Mapping and annotation of finger millet transcripts against rice gene models led to the identification of salinity responsive genes and genotype specific responses. Several functional groups of genes like transporters, transcription factors, genes involved in cell signaling, osmotic homeostasis and biosynthesis of compatible solutes were found to be highly up-regulated in the tolerant Trichy 1. Salinity stress inhibited photosynthetic capacity and photosynthesis related genes in the susceptible genotype CO 12. Several genes involved in cell growth and differentiation were found to be up-regulated in both the genotypes but more specifically in tolerant genotype. Genes involved in flavonoid biosynthesis were found to be down-regulated specifically in the salinity tolerant Trichy 1. This study provides a genome-wide transcriptional analysis of two finger millet genotypes differing in their level of salinity tolerance during a gradually progressing salinity stress under greenhouse conditions.

  20. Transcriptome Profiling of Rust Resistance in Switchgrass Using RNA-Seq Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serba, Desalegn D.; Uppalapati, Srinivasa Rao; Mukherjee, Shreyartha

    Switchgrass rust caused by Puccinia emaculata is a major limiting factor for switchgrass (Panicum virgatum L.) production, especially in monoculture. Natural populations of switchgrass displayed diverse reactions to P. emaculata when evaluated in an Ardmore, OK, field. In order to identify the differentially expressed genes during the rust infection process and the mechanisms of switchgrass rust resistance, transcriptome analysis using RNA-Seq was conducted in two pseudo-F 1 parents ('PV281' and 'NFGA472'), and three moderately resistant and three susceptible progenies selected from a three-generation, four-founder switchgrass population (K5 x A4) x (AP13 x VS16). On average, 23.5 million reads per samplemore » (leaf tissue was collected at 0, 24, and 60 h post-inoculation (hpi)) were obtained from paired-end (2 x 100 bp) sequencing on the Illumina HiSeq2000 platform. Furthermore, mapping of the RNA-Seq reads to the switchgrass reference genome (AP13 ver. 1.1 assembly) constructed a total of 84,209 transcripts from 98,007 gene loci among all of the samples. Further analysis revealed that host defense- related genes, including the nucleotide binding site-leucinerich repeat domain containing disease resistance gene analogs, play an important role in resistance to rust infection. Rust-induced gene (RIG) transcripts inherited across generations were identified. The rust-resistant gene transcripts can be a valuable resource for developing molecular markers for rust resistance. Finally we identified the rust-resistant genotypes and gene transcripts which can expedite rust-resistant cultivar development in switchgrass.« less

  1. De novo assembly and characterization of the leaf, bud, and fruit transcriptome from the vulnerable tree Juglans mandshurica for the development of 20 new microsatellite markers using Illumina sequencing.

    PubMed

    Hu, Zhuang; Zhang, Tian; Gao, Xiao-Xiao; Wang, Yang; Zhang, Qiang; Zhou, Hui-Juan; Zhao, Gui-Fang; Wang, Ma-Li; Woeste, Keith E; Zhao, Peng

    2016-04-01

    Manchurian walnut (Juglans mandshurica Maxim.) is a vulnerable, temperate deciduous tree valued for its wood and nut, but transcriptomic and genomic data for the species are very limited. Next generation sequencing (NGS) has made it possible to develop molecular markers for this species rapidly and efficiently. Our goal is to use transcriptome information from RNA-Seq to understand development in J. mandshurica and develop polymorphic simple sequence repeats (SSRs, microsatellites) to understand the species' population genetics. In this study, more than 47.7 million clean reads were generated using Illumina sequencing technology. De novo assembly yielded 99,869 unigenes with an average length of 747 bp. Based on sequence similarity search with known proteins, a total of 39,708 (42.32 %) genes were identified. Searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG) identified 15,903 (16.9 %) unigenes. Further, we identified and characterized 63 new transcriptome-derived microsatellite markers. By testing the markers on 4 to 14 individuals from four populations, we found that 20 were polymorphic and easily amplified. The number of alleles per locus ranged from 2 to 8. The observed and expected heterozygosity per locus ranged from 0.209 to 0.813 and 0.335 to 0.842, respectively. These twenty microsatellite markers will be useful for studies of population genetics, diversity, and genetic structure, and they will undoubtedly benefit future breeding studies of this walnut species. Moreover, the information uncovered in this research will also serve as a useful genetic resource for understanding the transcriptome and development of J. mandshurica and other Juglans species.

  2. Transcriptomic analysis of Petunia hybrida in response to salt stress using high throughput RNA sequencing.

    PubMed

    Villarino, Gonzalo H; Bombarely, Aureliano; Giovannoni, James J; Scanlon, Michael J; Mattson, Neil S

    2014-01-01

    Salinity and drought stress are the primary cause of crop losses worldwide. In sodic saline soils sodium chloride (NaCl) disrupts normal plant growth and development. The complex interactions of plant systems with abiotic stress have made RNA sequencing a more holistic and appealing approach to study transcriptome level responses in a single cell and/or tissue. In this work, we determined the Petunia transcriptome response to NaCl stress by sequencing leaf samples and assembling 196 million Illumina reads with Trinity software. Using our reference transcriptome we identified more than 7,000 genes that were differentially expressed within 24 h of acute NaCl stress. The proposed transcriptome can also be used as an excellent tool for biological and bioinformatics in the absence of an available Petunia genome and it is available at the SOL Genomics Network (SGN) http://solgenomics.net. Genes related to regulation of reactive oxygen species, transport, and signal transductions as well as novel and undescribed transcripts were among those differentially expressed in response to salt stress. The candidate genes identified in this study can be applied as markers for breeding or to genetically engineer plants to enhance salt tolerance. Gene Ontology analyses indicated that most of the NaCl damage happened at 24 h inducing genotoxicity, affecting transport and organelles due to the high concentration of Na+ ions. Finally, we report a modification to the library preparation protocol whereby cDNA samples were bar-coded with non-HPLC purified primers, without affecting the quality and quantity of the RNA-seq data. The methodological improvement presented here could substantially reduce the cost of sample preparation for future high-throughput RNA sequencing experiments.

  3. Transcriptomic Analysis of Petunia hybrida in Response to Salt Stress Using High Throughput RNA Sequencing

    PubMed Central

    Villarino, Gonzalo H.; Bombarely, Aureliano; Giovannoni, James J.; Scanlon, Michael J.; Mattson, Neil S.

    2014-01-01

    Salinity and drought stress are the primary cause of crop losses worldwide. In sodic saline soils sodium chloride (NaCl) disrupts normal plant growth and development. The complex interactions of plant systems with abiotic stress have made RNA sequencing a more holistic and appealing approach to study transcriptome level responses in a single cell and/or tissue. In this work, we determined the Petunia transcriptome response to NaCl stress by sequencing leaf samples and assembling 196 million Illumina reads with Trinity software. Using our reference transcriptome we identified more than 7,000 genes that were differentially expressed within 24 h of acute NaCl stress. The proposed transcriptome can also be used as an excellent tool for biological and bioinformatics in the absence of an available Petunia genome and it is available at the SOL Genomics Network (SGN) http://solgenomics.net. Genes related to regulation of reactive oxygen species, transport, and signal transductions as well as novel and undescribed transcripts were among those differentially expressed in response to salt stress. The candidate genes identified in this study can be applied as markers for breeding or to genetically engineer plants to enhance salt tolerance. Gene Ontology analyses indicated that most of the NaCl damage happened at 24 h inducing genotoxicity, affecting transport and organelles due to the high concentration of Na+ ions. Finally, we report a modification to the library preparation protocol whereby cDNA samples were bar-coded with non-HPLC purified primers, without affecting the quality and quantity of the RNA-seq data. The methodological improvement presented here could substantially reduce the cost of sample preparation for future high-throughput RNA sequencing experiments. PMID:24722556

  4. De Novo Assembly and Comparative Transcriptome Analyses of Red and Green Morphs of Sweet Basil Grown in Full Sunlight

    PubMed Central

    Torre, Sara; Tattini, Massimiliano; Brunetti, Cecilia; Guidi, Lucia; Gori, Antonella; Marzano, Cristina; Landi, Marco; Sebastiani, Federico

    2016-01-01

    Sweet basil (Ocimum basilicum), one of the most popular cultivated herbs worldwide, displays a number of varieties differing in several characteristics, such as the color of the leaves. The development of a reference transcriptome for sweet basil, and the analysis of differentially expressed genes in acyanic and cyanic cultivars exposed to natural sunlight irradiance, has interest from horticultural and biological point of views. There is still great uncertainty about the significance of anthocyanins in photoprotection, and how green and red morphs may perform when exposed to photo-inhibitory light, a condition plants face on daily and seasonal basis. We sequenced the leaf transcriptome of the green-leaved Tigullio (TIG) and the purple-leaved Red Rubin (RR) exposed to full sunlight over a four-week experimental period. We assembled and annotated 111,007 transcripts. A total of 5,468 and 5,969 potential SSRs were identified in TIG and RR, respectively, out of which 66 were polymorphic in silico. Comparative analysis of the two transcriptomes showed 2,372 differentially expressed genes (DEGs) clustered in 222 enriched Gene ontology terms. Green and red basil mostly differed for transcripts abundance of genes involved in secondary metabolism. While the biosynthesis of waxes was up-regulated in red basil, the biosynthesis of flavonols and carotenoids was up-regulated in green basil. Data from our study provides a comprehensive transcriptome survey, gene sequence resources and microsatellites that can be used for further investigations in sweet basil. The analysis of DEGs and their functional classification also offers new insights on the functional role of anthocyanins in photoprotection. PMID:27483170

  5. The Physalis peruviana leaf transcriptome: assembly, annotation and gene model prediction

    PubMed Central

    2012-01-01

    Background Physalis peruviana commonly known as Cape gooseberry is a member of the Solanaceae family that has an increasing popularity due to its nutritional and medicinal values. A broad range of genomic tools is available for other Solanaceae, including tomato and potato. However, limited genomic resources are currently available for Cape gooseberry. Results We report the generation of a total of 652,614 P. peruviana Expressed Sequence Tags (ESTs), using 454 GS FLX Titanium technology. ESTs, with an average length of 371 bp, were obtained from a normalized leaf cDNA library prepared using a Colombian commercial variety. De novo assembling was performed to generate a collection of 24,014 isotigs and 110,921 singletons, with an average length of 1,638 bp and 354 bp, respectively. Functional annotation was performed using NCBI’s BLAST tools and Blast2GO, which identified putative functions for 21,191 assembled sequences, including gene families involved in all the major biological processes and molecular functions as well as defense response and amino acid metabolism pathways. Gene model predictions in P. peruviana were obtained by using the genomes of Solanum lycopersicum (tomato) and Solanum tuberosum (potato). We predict 9,436 P. peruviana sequences with multiple-exon models and conserved intron positions with respect to the potato and tomato genomes. Additionally, to study species diversity we developed 5,971 SSR markers from assembled ESTs. Conclusions We present the first comprehensive analysis of the Physalis peruviana leaf transcriptome, which will provide valuable resources for development of genetic tools in the species. Assembled transcripts with gene models could serve as potential candidates for marker discovery with a variety of applications including: functional diversity, conservation and improvement to increase productivity and fruit quality. P. peruviana was estimated to be phylogenetically branched out before the divergence of five other Solanaceae family members, S. lycopersicum, S. tuberosum, Capsicum spp, S. melongena and Petunia spp. PMID:22533342

  6. The Physalis peruviana leaf transcriptome: assembly, annotation and gene model prediction.

    PubMed

    Garzón-Martínez, Gina A; Zhu, Z Iris; Landsman, David; Barrero, Luz S; Mariño-Ramírez, Leonardo

    2012-04-25

    Physalis peruviana commonly known as Cape gooseberry is a member of the Solanaceae family that has an increasing popularity due to its nutritional and medicinal values. A broad range of genomic tools is available for other Solanaceae, including tomato and potato. However, limited genomic resources are currently available for Cape gooseberry. We report the generation of a total of 652,614 P. peruviana Expressed Sequence Tags (ESTs), using 454 GS FLX Titanium technology. ESTs, with an average length of 371 bp, were obtained from a normalized leaf cDNA library prepared using a Colombian commercial variety. De novo assembling was performed to generate a collection of 24,014 isotigs and 110,921 singletons, with an average length of 1,638 bp and 354 bp, respectively. Functional annotation was performed using NCBI's BLAST tools and Blast2GO, which identified putative functions for 21,191 assembled sequences, including gene families involved in all the major biological processes and molecular functions as well as defense response and amino acid metabolism pathways. Gene model predictions in P. peruviana were obtained by using the genomes of Solanum lycopersicum (tomato) and Solanum tuberosum (potato). We predict 9,436 P. peruviana sequences with multiple-exon models and conserved intron positions with respect to the potato and tomato genomes. Additionally, to study species diversity we developed 5,971 SSR markers from assembled ESTs. We present the first comprehensive analysis of the Physalis peruviana leaf transcriptome, which will provide valuable resources for development of genetic tools in the species. Assembled transcripts with gene models could serve as potential candidates for marker discovery with a variety of applications including: functional diversity, conservation and improvement to increase productivity and fruit quality. P. peruviana was estimated to be phylogenetically branched out before the divergence of five other Solanaceae family members, S. lycopersicum, S. tuberosum, Capsicum spp, S. melongena and Petunia spp.

  7. Transcriptomic Analysis of Grapevine (cv. Summer Black) Leaf, Using the Illumina Platform

    PubMed Central

    Pervaiz, Tariq; Haifeng, Jia; Salman Haider, Muhammad; Cheng, Zhang; Cui, Mengjie; Wang, Mengqi; Cui, Liwen; Wang, Xicheng; Fang, Jinggui

    2016-01-01

    Proceeding to illumina sequencing, determining RNA integrity numbers for poly RNA were separated from each of the four developmental stages of cv. Summer Black leaves by using Illumina HiSeq™ 2000. The sums of 272,941,656 reads were generated from vitis vinifera leaf at four different developmental stages, with more than 27 billion nucleotides of the sequence data. At each growth stage, RNA samples were indexed through unique nucleic acid identifiers and sequenced. KEGG annotation results depicted that the highest number of transcripts in 2,963 (2Avs4A) followed by 1Avs4A (2,920), and 3Avs4A (2,294) out of 15,614 (71%) transcripts were recorded. In comparison, a total of 1,532 transcripts were annotated in GOs, including Cellular component, with the highest number in “Cell part” 251 out of 353 transcripts (71.1%), followed by intracellular organelle 163 out of 353 transcripts (46.2%), while in molecular function and metabolic process 375 out of 525 (71.4%) transcripts, multicellular organism process 40 out of 525 (7.6%) transcripts in biological process were most common in 1Avs2A. While in case of 1Avs3A, cell part 476 out of 662 transcripts (71.9%), and membrane-bounded organelle 263 out of 662 transcripts (39.7%) were recorded in Cellular component. In the grapevine transcriptome, during the initial stages of leaf development 1Avs2A showed single transcript was down-regulated and none of them were up-regulated. While in comparison of 1A to 3A showed one up-regulated (photosystem II reaction center protein C) and one down regulated (conserved gene of unknown function) transcripts, during the hormone regulating pathway namely SAUR-like auxin-responsive protein family having 2 up-regulated and 7 down-regulated transcripts, phytochrome-associated protein showed 1 up-regulated and 9 down-regulated transcripts, whereas genes associated with the Leucine-rich repeat protein kinase family protein showed 7 up-regulated and 1 down-regulated transcript, meanwhile Auxin Resistant 2 has single up-regulated transcript in second developmental stage, although 3 were down-regulated at lateral growth stages (3A and 4A). In the present study, 489 secondary metabolic pathways related genes were identified during leaf growth, which mainly includes alkaloid (40), anthocyanins (21), Diterpenoid (144), Monoterpenoid (90) and Flavonoids (93). Quantitative real-time PCR was applied to validate 10 differentially expressed transcripts patterns from flower, leaf and fruit metabolic pathways at different growth stages. PMID:26824474

  8. Salt-Stress Response Mechanisms Using de Novo Transcriptome Sequencing of Salt-Tolerant and Sensitive Corchorus spp. Genotypes

    PubMed Central

    Yang, Zemao; Lu, Ruike; Dai, Zhigang; Yan, An; Tang, Qing; Cheng, Chaohua; Xu, Ying; Yang, Wenting; Su, Jianguang

    2017-01-01

    High salinity is a major environmental stressor for crops. To understand the regulatory mechanisms underlying salt tolerance, we conducted a comparative transcriptome analysis between salt-tolerant and salt-sensitive jute (Corchorus spp.) genotypes in leaf and root tissues under salt stress and control conditions. In total, 68,961 unigenes were identified. Additionally, 11,100 unigenes (including 385 transcription factors (TFs)) exhibited significant differential expression in salt-tolerant or salt-sensitive genotypes. Numerous common and unique differentially expressed unigenes (DEGs) between the two genotypes were discovered. Fewer DEGs were observed in salt-tolerant jute genotypes whether in root or leaf tissues. These DEGs were involved in various pathways, such as ABA signaling, amino acid metabolism, etc. Among the enriched pathways, plant hormone signal transduction (ko04075) and cysteine/methionine metabolism (ko00270) were the most notable. Eight common DEGs across both tissues and genotypes with similar expression profiles were part of the PYL-ABA-PP2C (pyrabactin resistant-like/regulatory components of ABA receptors-abscisic acid-protein phosphatase 2C). The methionine metabolism pathway was only enriched in salt-tolerant jute root tissue. Twenty-three DEGs were involved in methionine metabolism. Overall, numerous common and unique salt-stress response DEGs and pathways between salt-tolerant and salt-sensitive jute have been discovered, which will provide valuable information regarding salt-stress response mechanisms and help improve salt-resistance molecular breeding in jute. PMID:28927022

  9. Genetic regulation of cold-induced albinism in the maize inbred line A661

    PubMed Central

    Rodríguez, Víctor M.; Velasco, Pablo; Garrido, José L.; Revilla, Pedro; Ordás, Amando; Butrón, Ana

    2013-01-01

    In spite of multiple studies elucidating the regulatory pathways controlling chlorophyll biosynthesis and photosynthetic activity, little is known about the molecular mechanism regulating cold-induced chlorosis in higher plants. Herein the characterization of the maize inbred line A661 which shows a cold-induced albino phenotype is reported. The data show that exposure of seedlings to low temperatures during early leaf biogenesis led to chlorophyll losses in this inbred. A661 shows a high plasticity, recovering resting levels of photosynthesis activity when exposed to optimal temperatures. Biochemical and transcriptome data indicate that at suboptimal temperatures chlorophyll could not be fully accommodated in the photosynthetic antenna in A661, remaining free in the chloroplast. The accumulation of free chlorophyll activates the expression of an early light inducible protein (elip) gene which binds chlorophyll to avoid cross-reactions that could lead to the generation of harmful reactive oxygen species. Higher levels of the elip transcript were observed in plants showing a cold-induced albino phenotype. Forward genetic analysis reveals that a gene located on the short arm of chromosome 2 regulates this protective mechanism. PMID:23881393

  10. The function of the Mediator complex in plant immunity.

    PubMed

    An, Chuanfu; Mou, Zhonglin

    2013-03-01

    Upon pathogen infection, plants undergo dramatic transcriptome reprogramming to shift from normal growth and development to immune response. During this rapid process, the multiprotein Mediator complex has been recognized as an important player to fine-tune gene-specific and pathway-specific transcriptional reprogramming by acting as an adaptor/coregulator between sequence-specific transcription factor and RNA polymerase II (RNAPII). Here, we review current understanding of the role of five functionally characterized Mediator subunits (MED8, MED15, MED16, MED21 and MED25) in plant immunity. All these Mediator subunits positively regulate resistance against leaf-infecting biotrophic bacteria or necrotrophic fungi. While MED21 appears to regulate defense against fungal pathogens via relaying signals from upstream regulators and chromatin modification to RNAPII, the other four Mediator subunits locate at different positions of the defense network to convey phytohormone signal(s). Fully understanding the role of Mediator in plant immunity needs to characterize more Mediator subunits in both Arabidopsis and other plant species. Identification of interacting proteins of Mediator subunits will further help to reveal their specific regulatory mechanisms in plant immunity.

  11. Transcriptome profiling reveals regulatory mechanisms underlying Corolla Senescence in Petunia

    USDA-ARS?s Scientific Manuscript database

    Genetic regulatory mechanisms that govern petal natural senescence in petunia is complicated and unclear. To identify key genes and pathways that regulate the process, we initiated a transcriptome analysis in petunia petals at four developmental time points, including petal opening without anthesis ...

  12. Placental transcriptome co-expression analysis reveals conserved regulatory program across gestation

    USDA-ARS?s Scientific Manuscript database

    Mammalian development in utero is absolutely dependent on proper placental development, which is ultimately regulated by the placental genome. The regulation of the placental genome can be directly studied by exploring the underlying organization of the placental transcriptome through a systematic a...

  13. Revisiting venom of the sea anemone Stichodactyla haddoni: Omics techniques reveal the complete toxin arsenal of a well-studied sea anemone genus.

    PubMed

    Madio, Bruno; Undheim, Eivind A B; King, Glenn F

    2017-08-23

    More than a century of research on sea anemone venoms has shown that they contain a diversity of biologically active proteins and peptides. However, recent omics studies have revealed that much of the venom proteome remains unexplored. We used, for the first time, a combination of proteomic and transcriptomic techniques to obtain a holistic overview of the venom arsenal of the well-studied sea anemone Stichodactyla haddoni. A purely search-based approach to identify putative toxins in a transcriptome from tentacles regenerating after venom extraction identified 508 unique toxin-like transcripts grouped into 63 families. However, proteomic analysis of venom revealed that 52 of these toxin families are likely false positives. In contrast, the combination of transcriptomic and proteomic data enabled positive identification of 23 families of putative toxins, 12 of which have no homology known proteins or peptides. Our data highlight the importance of using proteomics of milked venom to correctly identify venom proteins/peptides, both known and novel, while minimizing false positive identifications from non-toxin homologues identified in transcriptomes of venom-producing tissues. This work lays the foundation for uncovering the role of individual toxins in sea anemone venom and how they contribute to the envenomation of prey, predators, and competitors. Proteomic analysis of milked venom combined with analysis of a tentacle transcriptome revealed the full extent of the venom arsenal of the sea anemone Stichodactyla haddoni. This combined approach led to the discovery of 12 entirely new families of disulfide-rich peptides and proteins in a genus of anemones that have been studied for over a century. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Lipid Biosynthesis and Protein Concentration Respond Uniquely to Phosphate Supply during Leaf Development in Highly Phosphorus-Efficient Hakea prostrata1[W][OPEN

    PubMed Central

    Kuppusamy, Thirumurugen; Giavalisco, Patrick; Arvidsson, Samuel; Stitt, Mark; Finnegan, Patrick M.; Scheible, Wolf-Rüdiger

    2014-01-01

    Hakea prostrata (Proteaceae) is adapted to severely phosphorus-impoverished soils and extensively replaces phospholipids during leaf development. We investigated how polar lipid profiles change during leaf development and in response to external phosphate supply. Leaf size was unaffected by a moderate increase in phosphate supply. However, leaf protein concentration increased by more than 2-fold in young and mature leaves, indicating that phosphate stimulates protein synthesis. Orthologs of known lipid-remodeling genes in Arabidopsis (Arabidopsis thaliana) were identified in the H. prostrata transcriptome. Their transcript profiles in young and mature leaves were analyzed in response to phosphate supply alongside changes in polar lipid fractions. In young leaves of phosphate-limited plants, phosphatidylcholine/phosphatidylethanolamine and associated transcript levels were higher, while phosphatidylglycerol and sulfolipid levels were lower than in mature leaves, consistent with low photosynthetic rates and delayed chloroplast development. Phosphate reduced galactolipid and increased phospholipid concentrations in mature leaves, with concomitant changes in the expression of only four H. prostrata genes, GLYCEROPHOSPHODIESTER PHOSPHODIESTERASE1, N-METHYLTRANSFERASE2, NONSPECIFIC PHOSPHOLIPASE C4, and MONOGALACTOSYLDIACYLGLYCEROL3. Remarkably, phosphatidylglycerol levels decreased with increasing phosphate supply and were associated with lower photosynthetic rates. Levels of polar lipids with highly unsaturated 32:x (x = number of double bonds in hydrocarbon chain) and 34:x acyl chains increased. We conclude that a regulatory network with a small number of central hubs underpins extensive phospholipid replacement during leaf development in H. prostrata. This hard-wired regulatory framework allows increased photosynthetic phosphorus use efficiency and growth in a low-phosphate environment. This may have rendered H. prostrata lipid metabolism unable to adjust to higher internal phosphate concentrations. PMID:25315604

  15. Lipid biosynthesis and protein concentration respond uniquely to phosphate supply during leaf development in highly phosphorus-efficient Hakea prostrata.

    PubMed

    Kuppusamy, Thirumurugen; Giavalisco, Patrick; Arvidsson, Samuel; Sulpice, Ronan; Stitt, Mark; Finnegan, Patrick M; Scheible, Wolf-Rüdiger; Lambers, Hans; Jost, Ricarda

    2014-12-01

    Hakea prostrata (Proteaceae) is adapted to severely phosphorus-impoverished soils and extensively replaces phospholipids during leaf development. We investigated how polar lipid profiles change during leaf development and in response to external phosphate supply. Leaf size was unaffected by a moderate increase in phosphate supply. However, leaf protein concentration increased by more than 2-fold in young and mature leaves, indicating that phosphate stimulates protein synthesis. Orthologs of known lipid-remodeling genes in Arabidopsis (Arabidopsis thaliana) were identified in the H. prostrata transcriptome. Their transcript profiles in young and mature leaves were analyzed in response to phosphate supply alongside changes in polar lipid fractions. In young leaves of phosphate-limited plants, phosphatidylcholine/phosphatidylethanolamine and associated transcript levels were higher, while phosphatidylglycerol and sulfolipid levels were lower than in mature leaves, consistent with low photosynthetic rates and delayed chloroplast development. Phosphate reduced galactolipid and increased phospholipid concentrations in mature leaves, with concomitant changes in the expression of only four H. prostrata genes, GLYCEROPHOSPHODIESTER PHOSPHODIESTERASE1, N-METHYLTRANSFERASE2, NONSPECIFIC PHOSPHOLIPASE C4, and MONOGALACTOSYLDIACYLGLYCEROL3. Remarkably, phosphatidylglycerol levels decreased with increasing phosphate supply and were associated with lower photosynthetic rates. Levels of polar lipids with highly unsaturated 32:x (x = number of double bonds in hydrocarbon chain) and 34:x acyl chains increased. We conclude that a regulatory network with a small number of central hubs underpins extensive phospholipid replacement during leaf development in H. prostrata. This hard-wired regulatory framework allows increased photosynthetic phosphorus use efficiency and growth in a low-phosphate environment. This may have rendered H. prostrata lipid metabolism unable to adjust to higher internal phosphate concentrations. © 2014 American Society of Plant Biologists. All Rights Reserved.

  16. Transcriptome Analysis of Differentially Expressed Genes Induced by Low and High Potassium Levels Provides Insight into Fruit Sugar Metabolism of Pear

    PubMed Central

    Shen, Changwei; Wang, Jie; Shi, Xiaoqian; Kang, Yalong; Xie, Changyan; Peng, Lirun; Dong, Caixia; Shen, Qirong; Xu, Yangchun

    2017-01-01

    Potassium (K) deficiency is a common abiotic stress that can inhibit the growth of fruit and thus reduce crop yields. Little research has been conducted on pear transcriptional changes under low and high K conditions. Here, we performed an experiment with 7-year-old pot-grown “Huangguan” pear trees treated with low, Control or high K levels (0, 0.4, or 0.8 g·K2O/kg soil, respectively) during fruit enlargement and mature stages. We identified 36,444 transcripts from leaves and fruit using transcriptome sequencing technology. From 105 days after full blooming (DAB) to 129 DAB, the number of differentially expressed genes (DEGs) in leaves and fruit in response to low K increased, while in response to high K, the number of DEGs in leaves and fruit decreased. We selected 17 of these DEGs for qRT-PCR analysis to confirm the RNA sequencing results. Based on GO enrichment and KEGG pathway analysis, we found that low-K treatment significantly reduced K nutrient and carbohydrate metabolism of the leaves and fruit compared with the Control treatment. During the fruit development stages, AKT1 (gene39320) played an important role on K+ transport of the leaves and fruit response to K stress. At maturity, sucrose and acid metabolic pathways were inhibited by low K. The up-regulation of the expression of three SDH and two S6PDH genes involved in sorbitol metabolism was induced by low K, promoting the fructose accumulation. Simultaneously, higher expression was found for genes encoding amylase under low K, promoting the decomposition of the starch and leading the glucose accumulation. High K could enhance leaf photosynthesis, and improve the distribution of the nutrient and carbohydrate from leaf to fruit. Sugar components of the leaves and fruit under low K were regulated by the expression of genes encoding 8 types of hormone signals and reactive oxygen species (ROS). Our data revealed the gene expression patterns of leaves and fruit in response to different K levels during the middle and late stages of fruit development as well as the molecular mechanism of improvement of fruit sugar levels by K and provided a scientific basis for improving fruit quality with supplemental K fertilizers. PMID:28620410

  17. Genome-Wide Analysis of Corynespora cassiicola Leaf Fall Disease Putative Effectors

    PubMed Central

    Lopez, David; Ribeiro, Sébastien; Label, Philippe; Fumanal, Boris; Venisse, Jean-Stéphane; Kohler, Annegret; de Oliveira, Ricardo R.; Labutti, Kurt; Lipzen, Anna; Lail, Kathleen; Bauer, Diane; Ohm, Robin A.; Barry, Kerrie W.; Spatafora, Joseph; Grigoriev, Igor V.; Martin, Francis M.; Pujade-Renaud, Valérie

    2018-01-01

    Corynespora cassiicola is an Ascomycetes fungus with a broad host range and diverse life styles. Mostly known as a necrotrophic plant pathogen, it has also been associated with rare cases of human infection. In the rubber tree, this fungus causes the Corynespora leaf fall (CLF) disease, which increasingly affects natural rubber production in Asia and Africa. It has also been found as an endophyte in South American rubber plantations where no CLF outbreak has yet occurred. The C. cassiicola species is genetically highly diverse, but no clear relationship has been evidenced between phylogenetic lineage and pathogenicity. Cassiicolin, a small glycosylated secreted protein effector, is thought to be involved in the necrotrophic interaction with the rubber tree but some virulent C. cassiicola isolates do not have a cassiicolin gene. This study set out to identify other putative effectors involved in CLF. The genome of a highly virulent C. cassiicola isolate from the rubber tree (CCP) was sequenced and assembled. In silico prediction revealed 2870 putative effectors, comprising CAZymes, lipases, peptidases, secreted proteins and enzymes associated with secondary metabolism. Comparison with the genomes of 44 other fungal species, focusing on effector content, revealed a striking proximity with phylogenetically unrelated species (Colletotrichum acutatum, Colletotrichum gloesporioides, Fusarium oxysporum, nectria hematococca, and Botrosphaeria dothidea) sharing life style plasticity and broad host range. Candidate effectors involved in the compatible interaction with the rubber tree were identified by transcriptomic analysis. Differentially expressed genes included 92 putative effectors, among which cassiicolin and two other secreted singleton proteins. Finally, the genomes of 35 C. cassiicola isolates representing the genetic diversity of the species were sequenced and assembled, and putative effectors identified. At the intraspecific level, effector-based classification was found to be highly consistent with the phylogenomic trees. Identification of lineage-specific effectors is a key step toward understanding C. cassiicola virulence and host specialization mechanisms. PMID:29551995

  18. Genome-Wide Analysis of Corynespora cassiicola Leaf Fall Disease Putative Effectors.

    PubMed

    Lopez, David; Ribeiro, Sébastien; Label, Philippe; Fumanal, Boris; Venisse, Jean-Stéphane; Kohler, Annegret; de Oliveira, Ricardo R; Labutti, Kurt; Lipzen, Anna; Lail, Kathleen; Bauer, Diane; Ohm, Robin A; Barry, Kerrie W; Spatafora, Joseph; Grigoriev, Igor V; Martin, Francis M; Pujade-Renaud, Valérie

    2018-01-01

    Corynespora cassiicola is an Ascomycetes fungus with a broad host range and diverse life styles. Mostly known as a necrotrophic plant pathogen, it has also been associated with rare cases of human infection. In the rubber tree, this fungus causes the Corynespora leaf fall (CLF) disease, which increasingly affects natural rubber production in Asia and Africa. It has also been found as an endophyte in South American rubber plantations where no CLF outbreak has yet occurred. The C. cassiicola species is genetically highly diverse, but no clear relationship has been evidenced between phylogenetic lineage and pathogenicity. Cassiicolin, a small glycosylated secreted protein effector, is thought to be involved in the necrotrophic interaction with the rubber tree but some virulent C. cassiicola isolates do not have a cassiicolin gene. This study set out to identify other putative effectors involved in CLF. The genome of a highly virulent C. cassiicola isolate from the rubber tree (CCP) was sequenced and assembled. In silico prediction revealed 2870 putative effectors, comprising CAZymes, lipases, peptidases, secreted proteins and enzymes associated with secondary metabolism. Comparison with the genomes of 44 other fungal species, focusing on effector content, revealed a striking proximity with phylogenetically unrelated species ( Colletotrichum acutatum, Colletotrichum gloesporioides, Fusarium oxysporum, nectria hematococca , and Botrosphaeria dothidea ) sharing life style plasticity and broad host range. Candidate effectors involved in the compatible interaction with the rubber tree were identified by transcriptomic analysis. Differentially expressed genes included 92 putative effectors, among which cassiicolin and two other secreted singleton proteins. Finally, the genomes of 35 C. cassiicola isolates representing the genetic diversity of the species were sequenced and assembled, and putative effectors identified. At the intraspecific level, effector-based classification was found to be highly consistent with the phylogenomic trees. Identification of lineage-specific effectors is a key step toward understanding C. cassiicola virulence and host specialization mechanisms.

  19. ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) affects development, photosynthesis, and hormonal homeostasis in hybrid aspen (Populus tremula L. × P. tremuloides).

    PubMed

    Bernacki, Maciej Jerzy; Czarnocka, Weronika; Witoń, Damian; Rusaczonek, Anna; Szechyńska-Hebda, Magdalena; Ślesak, Ireneusz; Dąbrowska-Bronk, Joanna; Karpiński, Stanisław

    2018-04-25

    ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) was first described as a protein involved in salicylic acid (SA)-, ethylene-, and reactive oxygen species (ROS)-dependent defense and acclimation responses. It is a molecular regulator of biotic and abiotic stress-induced programmed cell death. Its role is relatively well known in annual plants, such as Arabidopsis thaliana or Nicotiana benthamiana. However, little is known about its functions in woody plants. Therefore, in this study, we aimed to characterize the function of EDS1 in the Populus tremula L. × P. tremuloides hybrid grown for several seasons in the natural environment. We used two transgenic lines, eds1-7 and eds1-12, with decreased EDS1 expression levels in this study. The observed changes in physiological and biochemical parameters corresponded with the EDS1 silencing level. Both transgenic lines produced more lateral shoots in comparison to the wild-type (WT) plants, which resulted in the modification of tree morphology. Photosynthetic parameters, such as quantum yield of photosystem II (ϕPSII), photochemical and non-photochemical quenching (qP and NPQ, respectively), as well as chlorophyll content were found to be increased in both transgenic lines, which resulted in changes in photosynthetic efficiency. Our data also revealed lower foliar concentrations of SA and ROS, the latter resulting most probably from more efficient antioxidant system in both transgenic lines. In addition, our data indicated significantly decreased rate of leaf senescence during several autumn seasons. Transcriptomic analysis revealed deregulation of 2215 and 376 genes in eds1-12 and eds1-7, respectively, and also revealed 207 genes that were commonly deregulated in both transgenic lines. The deregulation was primarily observed in the genes involved in photosynthesis, signaling, hormonal metabolism, and development, which was found to agree with the results of biochemical and physiological tests. In general, our data proved that poplar EDS1 affects tree morphology, photosynthetic efficiency, ROS and SA metabolism, as well as leaf senescence. Copyright © 2018. Published by Elsevier GmbH.

  20. Transcriptomes of Eight Arabidopsis thaliana Accessions Reveal Core Conserved, Genotype- and Organ-Specific Responses to Flooding Stress1[OPEN

    PubMed Central

    van Veen, Hans; Vashisht, Divya; Akman, Melis; Girke, Thomas; Mustroph, Angelika; Reinen, Emilie; Kooiker, Maarten; van Tienderen, Peter; Voesenek, Laurentius A.C.J.

    2016-01-01

    Climate change has increased the frequency and severity of flooding events, with significant negative impact on agricultural productivity. These events often submerge plant aerial organs and roots, limiting growth and survival due to a severe reduction in light reactions and gas exchange necessary for photosynthesis and respiration, respectively. To distinguish molecular responses to the compound stress imposed by submergence, we investigated transcriptomic adjustments to darkness in air and under submerged conditions using eight Arabidopsis (Arabidopsis thaliana) accessions differing significantly in sensitivity to submergence. Evaluation of root and rosette transcriptomes revealed an early transcriptional and posttranscriptional response signature that was conserved primarily across genotypes, although flooding susceptibility-associated and genotype-specific responses also were uncovered. Posttranscriptional regulation encompassed darkness- and submergence-induced alternative splicing of transcripts from pathways involved in the alternative mobilization of energy reserves. The organ-specific transcriptome adjustments reflected the distinct physiological status of roots and shoots. Root-specific transcriptome changes included marked up-regulation of chloroplast-encoded photosynthesis and redox-related genes, whereas those of the rosette were related to the regulation of development and growth processes. We identified a novel set of tolerance genes, recognized mainly by quantitative differences. These included a transcriptome signature of more pronounced gluconeogenesis in tolerant accessions, a response that included stress-induced alternative splicing. This study provides organ-specific molecular resolution of genetic variation in submergence responses involving interactions between darkness and low-oxygen constraints of flooding stress and demonstrates that early transcriptome plasticity, including alternative splicing, is associated with the ability to cope with a compound environmental stress. PMID:27208254

  1. AaEIN3 Mediates the Downregulation of Artemisinin Biosynthesis by Ethylene Signaling Through Promoting Leaf Senescence in Artemisia annua.

    PubMed

    Tang, Yueli; Li, Ling; Yan, Tingxiang; Fu, Xueqing; Shi, Pu; Shen, Qian; Sun, Xiaofen; Tang, Kexuan

    2018-01-01

    Artemisinin is an important drug for malaria treatment, which is exclusively produced in Artemisia annua . It's important to dissect the regulatory mechanism of artemisinin biosynthesis by diverse plant hormones and transcription factors. Our study shows ethylene, a plant hormone which accelerates flower and leaf senescence and fruit ripening, suppressed the expression of genes encoding three key enzymes ADS, DBR2, CYP71AV1, and a positive regulator AaORA involved in artemisinin biosynthesis. Then we isolated the gene encoding ETHYLENE-INSENSITIVE3 (EIN3), a key transcription factor in ethylene signaling pathway, by screening the transcriptome and genome database from Artemisia annua , named AaEIN3 . Overexpressing AaEIN3 suppressed artemisinin biosynthesis, while repressing its expression with RNAi enhanced artemisinin biosynthesis in Artemisia annua , indicating AaEIN3 negatively regulates artemisinin biosynthesis. Further study showed the downregulation of artemisinin biosynthesis by ethylene required the mediation of AaEIN3. AaEIN3 could accelerate leaf senescence, and leaf senescence attenuated the expression of ADS, DBR2, CYP71AV1 , and AaORA that are involved in artemisinin biosynthesis. Collectively, our study demonstrated a negative correlation between ethylene signaling and artemisinin biosynthesis, which is ascribed to AaEIN3-induced senescence process of leaves. Our work provided novel knowledge on the regulatory network of plant hormones for artemisinin metabolic pathway.

  2. AaEIN3 Mediates the Downregulation of Artemisinin Biosynthesis by Ethylene Signaling Through Promoting Leaf Senescence in Artemisia annua

    PubMed Central

    Tang, Yueli; Li, Ling; Yan, Tingxiang; Fu, Xueqing; Shi, Pu; Shen, Qian; Sun, Xiaofen; Tang, Kexuan

    2018-01-01

    Artemisinin is an important drug for malaria treatment, which is exclusively produced in Artemisia annua. It’s important to dissect the regulatory mechanism of artemisinin biosynthesis by diverse plant hormones and transcription factors. Our study shows ethylene, a plant hormone which accelerates flower and leaf senescence and fruit ripening, suppressed the expression of genes encoding three key enzymes ADS, DBR2, CYP71AV1, and a positive regulator AaORA involved in artemisinin biosynthesis. Then we isolated the gene encoding ETHYLENE-INSENSITIVE3 (EIN3), a key transcription factor in ethylene signaling pathway, by screening the transcriptome and genome database from Artemisia annua, named AaEIN3. Overexpressing AaEIN3 suppressed artemisinin biosynthesis, while repressing its expression with RNAi enhanced artemisinin biosynthesis in Artemisia annua, indicating AaEIN3 negatively regulates artemisinin biosynthesis. Further study showed the downregulation of artemisinin biosynthesis by ethylene required the mediation of AaEIN3. AaEIN3 could accelerate leaf senescence, and leaf senescence attenuated the expression of ADS, DBR2, CYP71AV1, and AaORA that are involved in artemisinin biosynthesis. Collectively, our study demonstrated a negative correlation between ethylene signaling and artemisinin biosynthesis, which is ascribed to AaEIN3-induced senescence process of leaves. Our work provided novel knowledge on the regulatory network of plant hormones for artemisinin metabolic pathway. PMID:29675029

  3. Redefining metamorphosis in spiny lobsters: molecular analysis of the phyllosoma to puerulus transition in Sagmariasus verreauxi

    PubMed Central

    Ventura, Tomer; Fitzgibbon, Quinn P.; Battaglene, Stephen C.; Elizur, Abigail

    2015-01-01

    The molecular understanding of crustacean metamorphosis is hindered by small sized individuals and inability to accurately define molt stages. We used the spiny lobster Sagmariasus verreauxi where the large, transparent larvae enable accurate tracing of the transition from a leaf-shaped phyllosoma to an intermediate larval-juvenile phase (puerulus). Transcriptomic analysis of larvae at well-defined stages prior to, during, and following this transition show that the phyllosoma-puerulus metamorphic transition is accompanied by vast transcriptomic changes exceeding 25% of the transcriptome. Notably, genes previously identified as regulating metamorphosis in other crustaceans do not fluctuate during this transition but in the later, morphologically-subtle puerulus-juvenile transition, indicating that the dramatic phyllosoma-puerulus morphological shift relies on a different, yet to be identified metamorphic mechanism. We examined the change in expression of domains and gene families, with focus on several key genes. Our research implies that the separation in molecular triggering systems between the phyllosoma-puerulus and puerulus-juvenile transitions might have enabled the extension of the oceanic phase in spiny lobsters. Study of similar transitions, where metamorphosis is uncoupled from the transition into the benthic juvenile form, in other commercially important crustacean groups might show common features to point on the evolutionary advantage of this two staged regulation. PMID:26311524

  4. Redefining metamorphosis in spiny lobsters: molecular analysis of the phyllosoma to puerulus transition in Sagmariasus verreauxi.

    PubMed

    Ventura, Tomer; Fitzgibbon, Quinn P; Battaglene, Stephen C; Elizur, Abigail

    2015-08-27

    The molecular understanding of crustacean metamorphosis is hindered by small sized individuals and inability to accurately define molt stages. We used the spiny lobster Sagmariasus verreauxi where the large, transparent larvae enable accurate tracing of the transition from a leaf-shaped phyllosoma to an intermediate larval-juvenile phase (puerulus). Transcriptomic analysis of larvae at well-defined stages prior to, during, and following this transition show that the phyllosoma-puerulus metamorphic transition is accompanied by vast transcriptomic changes exceeding 25% of the transcriptome. Notably, genes previously identified as regulating metamorphosis in other crustaceans do not fluctuate during this transition but in the later, morphologically-subtle puerulus-juvenile transition, indicating that the dramatic phyllosoma-puerulus morphological shift relies on a different, yet to be identified metamorphic mechanism. We examined the change in expression of domains and gene families, with focus on several key genes. Our research implies that the separation in molecular triggering systems between the phyllosoma-puerulus and puerulus-juvenile transitions might have enabled the extension of the oceanic phase in spiny lobsters. Study of similar transitions, where metamorphosis is uncoupled from the transition into the benthic juvenile form, in other commercially important crustacean groups might show common features to point on the evolutionary advantage of this two staged regulation.

  5. Time of day determines Arabidopsis transcriptome and growth dynamics under mild drought.

    PubMed

    Dubois, Marieke; Claeys, Hannes; Van den Broeck, Lisa; Inzé, Dirk

    2017-02-01

    Drought stress is a major problem for agriculture worldwide, causing significant yield losses. Plants have developed highly flexible mechanisms to deal with drought, including organ- and developmental stage-specific responses. In young leaves, growth is repressed as an active mechanism to save water and energy, increasing the chances of survival but decreasing yield. Despite its importance, the molecular basis for this growth inhibition is largely unknown. Here, we present a novel approach to explore early molecular mechanisms controlling Arabidopsis leaf growth inhibition following mild drought. We found that growth and transcriptome responses to drought are highly dynamic. Growth was only repressed by drought during the day, and our evidence suggests that this may be due to gating by the circadian clock. Similarly, time of day strongly affected the extent, specificity, and in certain cases even direction of drought-induced changes in gene expression. These findings underscore the importance of taking into account diurnal patterns to understand stress responses, as only a small core of drought-responsive genes are affected by drought at all times of the day. Finally, we leveraged our high-resolution data to demonstrate that phenotypic and transcriptome responses can be matched to identify putative novel regulators of growth under mild drought. © 2016 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  6. A method for obtaining RNA from Hemileia vastatrix appressoria produced in planta, suitable for transcriptomic analyses.

    PubMed

    Loureiro, Andreia; Azinheira, Helena Gil; Silva, Maria do Céu; Talhinhas, Pedro

    2015-11-01

    Appressoria are the first infection structures developed by rust fungi and require specific topographic signals from the host for their differentiation. The ease in obtaining appressoria in vitro for these biotrophic fungi led to studies concerning gene expression and gene discovery at appressorial level, avoiding the need to distinguish plant and fungal transcripts. However, in some pathosystems, it was observed that gene expression in appressoria seems to be influenced by host-derived signals, suggesting that transcriptomic analyses performed from in planta differentiated appressoria would be potentially more informative than those from in vitro differentiated appressoria. Nevertheless analysing appressorial RNA obtained from in planta samples is often hampered by an excessive dilution of fungal RNA within plant RNA, besides uncertainty regarding the fungal or plant origin of RNA from highly conserved genes. To circumvent these difficulties, we have recovered Hemileia vastatrix appressoria from Arabica coffee leaf surface using a film of nitrocellulose dissolved in butyl and ethyl acetates (nail polish), and extracted fungal RNA from the polish peel. RNA thus obtained is of good quality and usable for cDNA synthesis and transcriptomic (quantitative PCR) studies. This method could provide the means to investigate specific host-induced appressoria-related fungal pathogenicity factors. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  7. Fermented guava leaf extract inhibits LPS-induced COX-2 and iNOS expression in Mouse macrophage cells by inhibition of transcription factor NF-kappaB.

    PubMed

    Choi, Soo-Youn; Hwang, Joon-Ho; Park, Soo-Young; Jin, Yeong-Jun; Ko, Hee-Chul; Moon, Sang-Wook; Kim, Se-Jae

    2008-08-01

    The goal of this study was to elucidate the antiinflammatory activities of Psidium guajava L. (guava) leaf. To improve the functionality of guava leaf, it was fermented with Phellinus linteus mycelia, Lactobacillus plantarum and Saccharomyces cerevisiae. The ethanol extract from fermented guava leaf inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin E(2) (PGE(2)) production. Western blot analysis showed that fermented guava leaf extract decreased LPS-induced inducible nitric oxide synthase (iNOS) and the cyclooxygenase-2 (COX-2) protein level in RAW 264.7 cells. To investigate the mechanism involved, the study examined the effect of fermented guava leaf extract on LPS-induced nuclear factor-kappaB (NF-kappaB) activation. Fermented guava leaf extract significantly inhibited LPS-induced NF-kappaB transcriptional activity. Immunochemical analysis revealed that fermented guava leaf extract suppressed LPS-induced degradation of I-kappaBalpha. Taken together, the data indicate that fermented guava leaf extract is involved in the inhibition of iNOS and COX-2 via the down-regulation of NF-kappaB pathway, revealing a partial molecular basis for the antiinflammatory properties of fermented guava leaf extract.

  8. Transcriptomic analysis of Aegilops tauschii during long-term salinity stress.

    PubMed

    Mansouri, Mehdi; Naghavi, Mohammad Reza; Alizadeh, Hoshang; Mohammadi-Nejad, Ghasem; Mousavi, Seyed Ahmad; Salekdeh, Ghasem Hosseini; Tada, Yuichi

    2018-06-21

    Aegilops tauschii is the diploid progenitor of the bread wheat D-genome. It originated from Iran and is a source of abiotic stress tolerance genes. However, little is known about the molecular events of salinity tolerance in Ae. tauschii. This study investigates the leaf transcriptional changes associated with long-term salt stress. Total RNA extracted from leaf tissues of control and salt-treated samples was sequenced using the Illumina technology, and more than 98 million high-quality reads were assembled into 255,446 unigenes with an average length of 1398 bp and an N50 of 2269 bp. Functional annotation of the unigenes showed that 93,742 (36.69%) had at least a significant BLAST hit in the SwissProt database, while 174,079 (68.14%) showed significant similarity to proteins in the NCBI nr database. Differential expression analysis identified 4506 salt stress-responsive unigenes. Bioinformatic analysis of the differentially expressed unigenes (DEUs) revealed a number of biological processes and pathways involved in the establishment of ion homeostasis, signaling processes, carbohydrate metabolism, and post-translational modifications. Fine regulation of starch and sucrose content may be important features involved in salt tolerance in Ae. tauschii. Moreover, 82% of DEUs mapped to the D-subgenome, including known QTL for salt tolerance, and these DEUs showed similar salt stress responses in other accessions of Ae. tauschii. These results could provide fundamental insight into the regulatory process underlying salt tolerance in Ae. tauschii and wheat and facilitate identification of genes involved in their salt tolerance mechanisms.

  9. Transcriptome sequencing of diverse peanut (arachis) wild species and the cultivated species reveals a wealth of untapped genetic variability

    USDA-ARS?s Scientific Manuscript database

    Next generation sequencing technologies and improved bioinformatics methods have provided opportunities to study sequence variability in complex polyploid transcriptomes. In this study, we used a diverse panel of twenty-two Arachis accessions representing seven Arachis hypogaea market classes, A-, B...

  10. Genomic, transcriptomic and phenomic variation reveals the complex adaptation to stress response of modern maize breeding

    USDA-ARS?s Scientific Manuscript database

    Early maize adaptation to different agricultural environments was an important process associated with the creation of a stable food supply that allowed the evolution of human civilization in the Americas. To explore the mechanisms of maize adaptation, genomic, transcriptomic and phenomic data were ...

  11. Comprehensive analysis of RNA-seq data reveals the complexity of the transcriptome in Brassica rapa.

    PubMed

    Tong, Chaobo; Wang, Xiaowu; Yu, Jingyin; Wu, Jian; Li, Wanshun; Huang, Junyan; Dong, Caihua; Hua, Wei; Liu, Shengyi

    2013-10-07

    The species Brassica rapa (2n=20, AA) is an important vegetable and oilseed crop, and serves as an excellent model for genomic and evolutionary research in Brassica species. With the availability of whole genome sequence of B. rapa, it is essential to further determine the activity of all functional elements of the B. rapa genome and explore the transcriptome on a genome-wide scale. Here, RNA-seq data was employed to provide a genome-wide transcriptional landscape and characterization of the annotated and novel transcripts and alternative splicing events across tissues. RNA-seq reads were generated using the Illumina platform from six different tissues (root, stem, leaf, flower, silique and callus) of the B. rapa accession Chiifu-401-42, the same line used for whole genome sequencing. First, these data detected the widespread transcription of the B. rapa genome, leading to the identification of numerous novel transcripts and definition of 5'/3' UTRs of known genes. Second, 78.8% of the total annotated genes were detected as expressed and 45.8% were constitutively expressed across all tissues. We further defined several groups of genes: housekeeping genes, tissue-specific expressed genes and co-expressed genes across tissues, which will serve as a valuable repository for future crop functional genomics research. Third, alternative splicing (AS) is estimated to occur in more than 29.4% of intron-containing B. rapa genes, and 65% of them were commonly detected in more than two tissues. Interestingly, genes with high rate of AS were over-represented in GO categories relating to transcriptional regulation and signal transduction, suggesting potential importance of AS for playing regulatory role in these genes. Further, we observed that intron retention (IR) is predominant in the AS events and seems to preferentially occurred in genes with short introns. The high-resolution RNA-seq analysis provides a global transcriptional landscape as a complement to the B. rapa genome sequence, which will advance our understanding of the dynamics and complexity of the B. rapa transcriptome. The atlas of gene expression in different tissues will be useful for accelerating research on functional genomics and genome evolution in Brassica species.

  12. Comparative transcriptome analysis of soybean response to bean pyralid larvae.

    PubMed

    Zeng, Weiying; Sun, Zudong; Cai, Zhaoyan; Chen, Huaizhu; Lai, Zhenguang; Yang, Shouzhen; Tang, Xiangmin

    2017-11-13

    Soybean is one of most important oilseed crop worldwide, however, its production is often limited by many insect pests. Bean pyralid is one of the major soybean leaf-feeding insects in China. To explore the defense mechanisms of soybean resistance to bean pyralid, the comparative transcriptome sequencing was completed between the leaves infested with bean pyralid larvae and no worm of soybean (Gantai-2-2 and Wan82-178) on the Illumina HiSeq™ 2000 platform. In total, we identified 1744 differentially expressed genes (DEGs) in the leaves of Gantai-2-2 (1064) and Wan82-178 (680) fed by bean pyralid for 48 h, compared to 0 h. Interestingly, 315 DEGs were shared by Gantai-2-2 and Wan82-178, while 749 and 365 DEGs specifically identified in Gantai-2-2 and Wan82-178, respectively. When comparing Gantai-2-2 with Wan82-178, 605 DEGs were identified at 0 h feeding, and 468 DEGs were identified at 48 h feeding. Gene Ontology (GO) annotation analysis revealed that the DEGs were mainly involved in the metabolic process, single-organism process, cellular process, responses to stimulus, catalytic activities and binding. Pathway analysis showed that most of the DEGs were associated with the plant-pathogen interaction, phenylpropanoid biosynthesis, phenylalanine metabolism, flavonoid biosynthesis, peroxisome, plant hormone signal transduction, terpenoid backbone biosynthesis, and so on. Finally, we used qRT-PCR to validate the expression patterns of several genes and the results showed an excellent agreement with deep sequencing. According to the comparative transcriptome analysis results and related literature reports, we concluded that the response to bean pyralid feeding might be related to the disturbed functions and metabolism pathways of some key DEGs, such as DEGs involved in the ROS removal system, plant hormone metabolism, intracellular signal transduction pathways, secondary metabolism, transcription factors, biotic and abiotic stresses. We speculated that these genes may have played an important role in synthesizing substances to resist insect attacks in soybean. Our results provide a valuable resource of soybean defense genes that will benefit other studies in this field.

  13. Differential gene expression profiling through transcriptome approach of Saccharum spontaneum L. under low temperature stress reveals genes potentially involved in cold acclimation.

    PubMed

    Selvarajan, Dharshini; Mohan, Chakravarthi; Dhandapani, Vignesh; Nerkar, Gauri; Jayanarayanan, Ashwin Narayan; Vadakkancherry Mohanan, Manoj; Murugan, Naveenarani; Kaur, Lovejot; Chennappa, Mahadevaiah; Kumar, Ravinder; Meena, Minturam; Ram, Bakshi; Chinnaswamy, Appunu

    2018-04-01

    Sugarcane ( Saccharum sp.) is predominantly grown in both tropics and subtropics in India, and the subtropics alone contribute more than half of sugarcane production. Sugarcane active growth period in subtropics is restricted to 8-9 months mainly due to winter's low temperature stress prevailing during November to February every year. Being a commercial crop, tolerance to low temperature is important in sugarcane improvement programs. Development of cold tolerant sugarcane varieties require a deep knowledge on molecular mechanism naturally adapted by cold tolerant genotypes during low temperature stress. To understand gene regulation under low temperature stress, control and stressed (10 °C, 24 h) leaf samples of cold tolerant S. spontaneum IND 00-1037 collected from high altitude region in Arunachal Pradesh were used for transcriptome analysis using the Illumina NextSeq 500 platform with paired-end sequencing method. Raw reads of 5.1 GB (control) and 5.3 GB (stressed) obtained were assembled using trinity and annotated with UNIPROT, KEGG, GO, COG and SUCEST databases, and transcriptome was validated using qRT-PCR. The differential gene expression (DGE) analysis showed that 2583 genes were upregulated and 3302 genes were down-regulated upon low temperature stress. A total of 170 cold responsive transcriptional factors belonging to 30 families were differentially regulated. CBF6 (C-binding factor), a DNA binding transcriptional activation protein associated with cold acclimation and freezing tolerance was differentially upregulated. Many low temperature responsive genes involved in various metabolic pathways, viz. cold sensing through membrane fluidity, calcium and lipid signaling genes, MAP kinases, phytohormone signaling and biosynthetic genes, antioxidative enzymes, membrane and cellular stabilizing genes, genes involved in biosynthesis of polyunsaturated fatty acids, chaperones, LEA proteins, soluble sugars, osmoprotectants, lignin and pectin biosynthetic genes were also differentially upregulated. Potential cold responsive genes and transcriptional factors involved in cold tolerance mechanism in cold tolerant S. spontaneum IND 00-1037 were identified. Together, this study provides insights into the cold tolerance to low temperature stress in S. spontaneum , thus opening applications in the genetic improvement of cold stress tolerance in sugarcane.

  14. The low-abundance transcriptome reveals novel biomarkers, specific intracellular pathways and targetable genes associated with advanced gastric cancer.

    PubMed

    Bizama, Carolina; Benavente, Felipe; Salvatierra, Edgardo; Gutiérrez-Moraga, Ana; Espinoza, Jaime A; Fernández, Elmer A; Roa, Iván; Mazzolini, Guillermo; Sagredo, Eduardo A; Gidekel, Manuel; Podhajcer, Osvaldo L

    2014-02-15

    Studies on the low-abundance transcriptome are of paramount importance for identifying the intimate mechanisms of tumor progression that can lead to novel therapies. The aim of the present study was to identify novel markers and targetable genes and pathways in advanced human gastric cancer through analyses of the low-abundance transcriptome. The procedure involved an initial subtractive hybridization step, followed by global gene expression analysis using microarrays. We observed profound differences, both at the single gene and gene ontology levels, between the low-abundance transcriptome and the whole transcriptome. Analysis of the low-abundance transcriptome led to the identification and validation by tissue microarrays of novel biomarkers, such as LAMA3 and TTN; moreover, we identified cancer type-specific intracellular pathways and targetable genes, such as IRS2, IL17, IFNγ, VEGF-C, WISP1, FZD5 and CTBP1 that were not detectable by whole transcriptome analyses. We also demonstrated that knocking down the expression of CTBP1 sensitized gastric cancer cells to mainstay chemotherapeutic drugs. We conclude that the analysis of the low-abundance transcriptome provides useful insights into the molecular basis and treatment of cancer. © 2013 UICC.

  15. Combined venomics, antivenomics and venom gland transcriptome analysis of the monocoled cobra (Naja kaouthia) from China.

    PubMed

    Xu, Ning; Zhao, Hong-Yan; Yin, Yin; Shen, Shan-Shan; Shan, Lin-Lin; Chen, Chuan-Xi; Zhang, Yan-Xia; Gao, Jian-Fang; Ji, Xiang

    2017-04-21

    We conducted an omics-analysis of the venom of Naja kaouthia from China. Proteomics analysis revealed six protein families [three-finger toxins (3-FTx), phospholipase A 2 (PLA 2 ), nerve growth factor, snake venom metalloproteinase (SVMP), cysteine-rich secretory protein and ohanin], and venom-gland transcriptomics analysis revealed 28 protein families from 79 unigenes. 3-FTx (56.5% in proteome/82.0% in transcriptome) and PLA 2 (26.9%/13.6%) were identified as the most abundant families in venom proteome and venom-gland transcriptome. Furthermore, N. kaouthia venom expressed strong lethality (i.p. LD 50 : 0.79μg/g) and myotoxicity (CK: 5939U/l) in mice, and showed notable activity in PLA 2 but weak activity in SVMP, l-amino acid oxidase or 5' nucleotidase. Antivenomic assessment revealed that several venom components (nearly 17.5% of total venom) from N. kaouthia could not be thoroughly immunocaptured by commercial Naja atra antivenom. ELISA analysis revealed that there was no difference in the cross-reaction between N. kaouthia and N. atra venoms against the N. atra antivenom. The use of commercial N. atra antivenom in treatment of snakebites caused by N. kaouthia is reasonable, but design of novel antivenom with the attention on enhancing the immune response of non-immunocaptured components should be encouraged. The venomics, antivenomics and venom-gland transcriptome of the monocoled cobra (Naja kaouthia) from China have been elucidated. Quantitative and qualitative differences are evident when venom proteomic and venom-gland transcriptomic profiles are compared. Two protein families (3-FTx and PLA 2 ) are found to be the predominated components in N. kaouthia venom, and considered as the major players in functional role of venom. Other protein families with relatively low abundance appear to be minor in the functional significance. Antivenomics and ELISA evaluation reveal that the N. kaouthia venom can be effectively immunorecognized by commercial N. atra antivenom, but still a small number of venom components could not be thoroughly immunocaptured. The findings indicate that exploring the precise composition of snake venom should be executed by an integrated omics-approach, and elucidating the venom composition is helpful in understanding composition-function relationships and will facilitate the clinical application of antivenoms. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Tissue and cell-type co-expression networks of transcription factors and wood component genes in Populus trichocarpa.

    PubMed

    Shi, Rui; Wang, Jack P; Lin, Ying-Chung; Li, Quanzi; Sun, Ying-Hsuan; Chen, Hao; Sederoff, Ronald R; Chiang, Vincent L

    2017-05-01

    Co-expression networks based on transcriptomes of Populus trichocarpa major tissues and specific cell types suggest redundant control of cell wall component biosynthetic genes by transcription factors in wood formation. We analyzed the transcriptomes of five tissues (xylem, phloem, shoot, leaf, and root) and two wood forming cell types (fiber and vessel) of Populus trichocarpa to assemble gene co-expression subnetworks associated with wood formation. We identified 165 transcription factors (TFs) that showed xylem-, fiber-, and vessel-specific expression. Of these 165 TFs, 101 co-expressed (correlation coefficient, r > 0.7) with the 45 secondary cell wall cellulose, hemicellulose, and lignin biosynthetic genes. Each cell wall component gene co-expressed on average with 34 TFs, suggesting redundant control of the cell wall component gene expression. Co-expression analysis showed that the 101 TFs and the 45 cell wall component genes each has two distinct groups (groups 1 and 2), based on their co-expression patterns. The group 1 TFs (44 members) are predominantly xylem and fiber specific, and are all highly positively co-expressed with the group 1 cell wall component genes (30 members), suggesting their roles as major wood formation regulators. Group 1 TFs include a lateral organ boundary domain gene (LBD) that has the highest number of positively correlated cell wall component genes (36) and TFs (47). The group 2 TFs have 57 members, including 14 vessel-specific TFs, and are generally less correlated with the cell wall component genes. An exception is a vessel-specific basic helix-loop-helix (bHLH) gene that negatively correlates with 20 cell wall component genes, and may function as a key transcriptional suppressor. The co-expression networks revealed here suggest a well-structured transcriptional homeostasis for cell wall component biosynthesis during wood formation.

  17. Physiological and transcriptomic responses in the seed coat of field-grown soybean (Glycine max L. Merr.) to abiotic stress.

    PubMed

    Leisner, Courtney P; Yendrek, Craig R; Ainsworth, Elizabeth A

    2017-12-12

    Understanding how intensification of abiotic stress due to global climate change affects crop yields is important for continued agricultural productivity. Coupling genomic technologies with physiological crop responses in a dynamic field environment is an effective approach to dissect the mechanisms underpinning crop responses to abiotic stress. Soybean (Glycine max L. Merr. cv. Pioneer 93B15) was grown in natural production environments with projected changes to environmental conditions predicted for the end of the century, including decreased precipitation, increased tropospheric ozone concentrations ([O 3 ]), or increased temperature. All three environmental stresses significantly decreased leaf-level photosynthesis and stomatal conductance, leading to significant losses in seed yield. This was driven by a significant decrease in the number of pods per node for all abiotic stress treatments. To understand the underlying transcriptomic response involved in the yield response to environmental stress, RNA-Sequencing analysis was performed on the soybean seed coat, a tissue that plays an essential role in regulating carbon and nitrogen transport to developing seeds. Gene expression analysis revealed 49, 148 and 1,576 differentially expressed genes in the soybean seed coat in response to drought, elevated [O 3 ] and elevated temperature, respectively. Elevated [O 3 ] and drought did not elicit substantive transcriptional changes in the soybean seed coat. However, this may be due to the timing of sampling and does not preclude impacts of those stresses on different tissues or different stages in seed coat development. Expression of genes involved in DNA replication and metabolic processes were enriched in the seed coat under high temperate stress, suggesting that the timing of events that are important for cell division and proper seed development were altered in a stressful growth environment.

  18. Deep sequencing of the Mexican avocado transcriptome, an ancient angiosperm with a high content of fatty acids.

    PubMed

    Ibarra-Laclette, Enrique; Méndez-Bravo, Alfonso; Pérez-Torres, Claudia Anahí; Albert, Victor A; Mockaitis, Keithanne; Kilaru, Aruna; López-Gómez, Rodolfo; Cervantes-Luevano, Jacob Israel; Herrera-Estrella, Luis

    2015-08-13

    Avocado (Persea americana) is an economically important tropical fruit considered to be a good source of fatty acids. Despite its importance, the molecular and cellular characterization of biochemical and developmental processes in avocado is limited due to the lack of transcriptome and genomic information. The transcriptomes of seeds, roots, stems, leaves, aerial buds and flowers were determined using different sequencing platforms. Additionally, the transcriptomes of three different stages of fruit ripening (pre-climacteric, climacteric and post-climacteric) were also analyzed. The analysis of the RNAseqatlas presented here reveals strong differences in gene expression patterns between different organs, especially between root and flower, but also reveals similarities among the gene expression patterns in other organs, such as stem, leaves and aerial buds (vegetative organs) or seed and fruit (storage organs). Important regulators, functional categories, and differentially expressed genes involved in avocado fruit ripening were identified. Additionally, to demonstrate the utility of the avocado gene expression atlas, we investigated the expression patterns of genes implicated in fatty acid metabolism and fruit ripening. A description of transcriptomic changes occurring during fruit ripening was obtained in Mexican avocado, contributing to a dynamic view of the expression patterns of genes involved in fatty acid biosynthesis and the fruit ripening process.

  19. Deep sequencing reveals cell-type-specific patterns of single-cell transcriptome variation.

    PubMed

    Dueck, Hannah; Khaladkar, Mugdha; Kim, Tae Kyung; Spaethling, Jennifer M; Francis, Chantal; Suresh, Sangita; Fisher, Stephen A; Seale, Patrick; Beck, Sheryl G; Bartfai, Tamas; Kuhn, Bernhard; Eberwine, James; Kim, Junhyong

    2015-06-09

    Differentiation of metazoan cells requires execution of different gene expression programs but recent single-cell transcriptome profiling has revealed considerable variation within cells of seeming identical phenotype. This brings into question the relationship between transcriptome states and cell phenotypes. Additionally, single-cell transcriptomics presents unique analysis challenges that need to be addressed to answer this question. We present high quality deep read-depth single-cell RNA sequencing for 91 cells from five mouse tissues and 18 cells from two rat tissues, along with 30 control samples of bulk RNA diluted to single-cell levels. We find that transcriptomes differ globally across tissues with regard to the number of genes expressed, the average expression patterns, and within-cell-type variation patterns. We develop methods to filter genes for reliable quantification and to calibrate biological variation. All cell types include genes with high variability in expression, in a tissue-specific manner. We also find evidence that single-cell variability of neuronal genes in mice is correlated with that in rats consistent with the hypothesis that levels of variation may be conserved. Single-cell RNA-sequencing data provide a unique view of transcriptome function; however, careful analysis is required in order to use single-cell RNA-sequencing measurements for this purpose. Technical variation must be considered in single-cell RNA-sequencing studies of expression variation. For a subset of genes, biological variability within each cell type appears to be regulated in order to perform dynamic functions, rather than solely molecular noise.

  20. Global transcriptome analysis profiles metabolic pathways in traditional herb Astragalus membranaceus Bge. var. mongolicus (Bge.) Hsiao

    PubMed Central

    2015-01-01

    Background Astragalus membranaceus Bge. var. mongolicus (Bge.) Hsiao (A. mongolicus, family Leguminosae) is one of the most important traditional Chinese herbs. Among many secondary metabolites it produces, the effective bioactive constituents include isoflavonoids and triterpene saponins. The genomic resources regarding the biosynthesis of these metabolites in A. mongolicus are limited. Although roots are the primary material harvested for medical use, the biosynthesis of the bioactive compounds and its regulation in A. mongolicus are not well understood. Therefore, a global transcriptome analysis on A. mongolicus tissues was performed to identify the genes essential for the metabolism and to profile their expression patterns in greater details. Results RNA-sequencing was performed for three different A. mongolicus tissues: leaf, stem, and root, using the Illumina Hiseq2000 platform. A total of 159.5 million raw sequence reads were generated, and assembled into 186,324 unigenes with an N50 of 1,524bp. Among them, 129,966 unigenes (~69.7%) were annotated using four public databases (Swiss-Prot, TrEMBL, CDD, Pfam), and 90,202, 63,946, and 78,326 unigenes were found to express in leaves, roots, and stems, respectively. A total of 8,025 transcription factors (TFs) were identified, in which the four largest families, bHLH, MYB, C3H, and WRKY, were implicated in regulation of tissue development, metabolisms, stress response, etc. Unigenes associated with secondary metabolism, especially those with isolavonoids and triterpene saponins biosynthesis were characterized and profiled. Most genes involved in the isoflavonoids biosynthesis had the lowest expression in the leaves, and the highest in the stems. For triterpene saponin biosynthesis, we found the genes in MVA and non-MVA pathways were differentially expressed among three examined tissues, indicating the parallel but compartmentally separated biosynthesis pathways of IPP and DMAPP in A. mongolicus. The first committed enzyme in triterpene saponin biosynthesis from A. mongolicus, cycloartenol synthase (AmCAS), which belongs to the oxidosqualene cyclase family, was cloned by us to study the astragalosides biosynthesis. Further co-expression analysis indicated the candidate CYP450s and glycosyltransferases (GTs) in the cascade of triterpene saponins biosynthesis. The presence of the large CYP450 families in A. mongolicus was further compared with those from Medicago truncatula and Arabidopsis thaliana, and the diversity and phylegenetic relationships of the CYP450 families were established. Conclusion A transcriptome study was performed for A. mongolicus tissues to construct and profile their metabolic pathways, especially for the important bioactive molecules. The results revealed a comprehensive profile for metabolic activities among tissues, pointing to the equal importance of leaf, stem, and root in A. mongolicus for the production of bioactive compounds. This work provides valuable resources for bioengineering and in vitro synthesis of the natural compounds for medical research and for potential drug development. PMID:26099797

  1. Litter Breakdown and Microbial Succession on Two Submerged Leaf Species in a Small Forested Stream

    PubMed Central

    Newman, Molli M.; Liles, Mark R.; Feminella, Jack W.

    2015-01-01

    Microbial succession during leaf breakdown was investigated in a small forested stream in west-central Georgia, USA, using multiple culture-independent techniques. Red maple (Acer rubrum) and water oak (Quercus nigra) leaf litter were incubated in situ for 128 days, and litter breakdown was quantified by ash-free dry mass (AFDM) method and microbial assemblage composition using phospholipid fatty acid analysis (PLFA), ribosomal intergenic spacer analysis (RISA), denaturing gradient gel electrophoresis (DGGE), and bar-coded next-generation sequencing of 16S rRNA gene amplicons. Leaf breakdown was faster for red maple than water oak. PLFA revealed a significant time effect on microbial lipid profiles for both leaf species. Microbial assemblages on maple contained a higher relative abundance of bacterial lipids than oak, and oak microbial assemblages contained higher relative abundance of fungal lipids than maple. RISA showed that incubation time was more important in structuring bacterial assemblages than leaf physicochemistry. DGGE profiles revealed high variability in bacterial assemblages over time, and sequencing of DGGE-resolved amplicons indicated several taxa present on degrading litter. Next-generation sequencing revealed temporal shifts in dominant taxa within the phylum Proteobacteria, whereas γ-Proteobacteria dominated pre-immersion and α- and β-Proteobacteria dominated after 1 month of instream incubation; the latter groups contain taxa that are predicted to be capable of using organic material to fuel further breakdown. Our results suggest that incubation time is more important than leaf species physicochemistry in influencing leaf litter microbial assemblage composition, and indicate the need for investigation into seasonal and temporal dynamics of leaf litter microbial assemblage succession. PMID:26098687

  2. A survey of the sorghum transcriptome using single-molecule long reads

    DOE PAGES

    Abdel-Ghany, Salah E.; Hamilton, Michael; Jacobi, Jennifer L.; ...

    2016-06-24

    Alternative splicing and alternative polyadenylation (APA) of pre-mRNAs greatly contribute to transcriptome diversity, coding capacity of a genome and gene regulatory mechanisms in eukaryotes. Second-generation sequencing technologies have been extensively used to analyse transcriptomes. However, a major limitation of short-read data is that it is difficult to accurately predict full-length splice isoforms. Here we sequenced the sorghum transcriptome using Pacific Biosciences single-molecule real-time long-read isoform sequencing and developed a pipeline called TAPIS (Transcriptome Analysis Pipeline for Isoform Sequencing) to identify full-length splice isoforms and APA sites. Our analysis reveals transcriptome-wide full-length isoforms at an unprecedented scale with over 11,000 novelmore » splice isoforms. Additionally, we uncover APA ofB11,000 expressed genes and more than 2,100 novel genes. Lastly, these results greatly enhance sorghum gene annotations and aid in studying gene regulation in this important bioenergy crop. The TAPIS pipeline will serve as a useful tool to analyse Iso-Seq data from any organism.« less

  3. A survey of the sorghum transcriptome using single-molecule long reads

    PubMed Central

    Abdel-Ghany, Salah E.; Hamilton, Michael; Jacobi, Jennifer L.; Ngam, Peter; Devitt, Nicholas; Schilkey, Faye; Ben-Hur, Asa; Reddy, Anireddy S. N.

    2016-01-01

    Alternative splicing and alternative polyadenylation (APA) of pre-mRNAs greatly contribute to transcriptome diversity, coding capacity of a genome and gene regulatory mechanisms in eukaryotes. Second-generation sequencing technologies have been extensively used to analyse transcriptomes. However, a major limitation of short-read data is that it is difficult to accurately predict full-length splice isoforms. Here we sequenced the sorghum transcriptome using Pacific Biosciences single-molecule real-time long-read isoform sequencing and developed a pipeline called TAPIS (Transcriptome Analysis Pipeline for Isoform Sequencing) to identify full-length splice isoforms and APA sites. Our analysis reveals transcriptome-wide full-length isoforms at an unprecedented scale with over 11,000 novel splice isoforms. Additionally, we uncover APA of ∼11,000 expressed genes and more than 2,100 novel genes. These results greatly enhance sorghum gene annotations and aid in studying gene regulation in this important bioenergy crop. The TAPIS pipeline will serve as a useful tool to analyse Iso-Seq data from any organism. PMID:27339290

  4. Transcriptome analysis reveals a comprehensive insect resistance response mechanism in cotton to infestation by the phloem feeding insect Bemisia tabaci (whitefly)

    USDA-ARS?s Scientific Manuscript database

    The whitefly (Bemisia tabaci) causes tremendous damage to cotton production worldwide. However, very limited information is available about how plants perceive and defend themselves from this destructive pest. In this study, the transcriptomics differences between two cotton cultivars that exhibit e...

  5. Transcriptomic analysis reveals numerous diverse protein kinases and transcription factors involved in desiccation tolerance in the resurrection plant Myrothamnus flabellifolia

    USDA-ARS?s Scientific Manuscript database

    The woody resurrection plant Myrothamnus flabellifolia has remarkable tolerance to desiccation. Pyro-sequencing technology permitted us to analyze the transcriptome of M. flabellifolia during both dehydration and rehydration. We identified a total of 8287 and 8542 differentially transcribed genes du...

  6. Comprehensive transcriptome profiling reveals long noncoding RNA expression and alternative splicing regulation during fruit development and ripening in kiwifruit (Actinidia chinensis)

    USDA-ARS?s Scientific Manuscript database

    Genomic and transcriptomic data on kiwifruit (Actinidia chinensis) in public databases are very limited despite its nutritional and economic value. Previously, we have constructed and sequenced nine fruit RNA-Seq libraries of A. chinensis cv. 'Hongyang' at immature, mature, and postharvest ripening...

  7. Information Theoretical Analysis of a Bovine Gene Atlas Reveals Chromosomal Regions with Tissue Specific Gene Expression.

    USDA-ARS?s Scientific Manuscript database

    An essential step to understanding the genomic biology of any organism is to comprehensively survey its transcriptome. We present the Bovine Gene Atlas (BGA) a compendium of over 7.2 million unique 20 base Illumina DGE tags representing 100 tissue transcriptomes collected primarily from L1 Dominette...

  8. A transcriptomic study reveals differentially expressed genes and pathways respond to simulated acid rain in Arabidopsis thaliana.

    PubMed

    Liu, Ting-Wu; Niu, Li; Fu, Bin; Chen, Juan; Wu, Fei-Hua; Chen, Juan; Wang, Wen-Hua; Hu, Wen-Jun; He, Jun-Xian; Zheng, Hai-Lei

    2013-01-01

    Acid rain, as a worldwide environmental issue, can cause serious damage to plants. In this study, we provided the first case study on the systematic responses of arabidopsis (Arabidopsis thaliana (L.) Heynh.) to simulated acid rain (SiAR) by transcriptome approach. Transcriptomic analysis revealed that the expression of a set of genes related to primary metabolisms, including nitrogen, sulfur, amino acid, photosynthesis, and reactive oxygen species metabolism, were altered under SiAR. In addition, transport and signal transduction related pathways, especially calcium-related signaling pathways, were found to play important roles in the response of arabidopsis to SiAR stress. Further, we compared our data set with previously published data sets on arabidopsis transcriptome subjected to various stresses, including wound, salt, light, heavy metal, karrikin, temperature, osmosis, etc. The results showed that many genes were overlapped in several stresses, suggesting that plant response to SiAR is a complex process, which may require the participation of multiple defense-signaling pathways. The results of this study will help us gain further insights into the response mechanisms of plants to acid rain stress.

  9. Comparative transcriptome analysis by RNAseq of necrotic enteritis Clostridium perfringens during in vivo colonization and in vitro conditions.

    PubMed

    Parreira, Valeria R; Russell, Kay; Athanasiadou, Spiridoula; Prescott, John F

    2016-08-12

    Necrotic enteritis (NE) caused by netB-positive type A Clostridium perfringens is an important bacterial disease of poultry. Through its complex regulatory system, C. perfringens orchestrates the expression of a collection of toxins and extracellular enzymes that are crucial for the development of the disease; environmental conditions play an important role in their regulation. In this study, and for the first time, global transcriptomic analysis was performed on ligated intestinal loops in chickens colonized with a netB-positive C. perfringens strain, as well as the same strain propagated in vitro under various nutritional and environmental conditions. Analysis of the respective pathogen transcriptomes revealed up to 673 genes that were significantly expressed in vivo. Gene expression profiles in vivo were most similar to those of C. perfringens grown in nutritionally-deprived conditions. Taken together, our results suggest a bacterial transcriptome responses to the early stages of adaptation, and colonization of, the chicken intestine. Our work also reveals how netB-positive C. perfringens reacts to different environmental conditions including those in the chicken intestine.

  10. Comparative transcriptomics with self-organizing map reveals cryptic photosynthetic differences between two accessions of North American Lake cress.

    PubMed

    Nakayama, Hokuto; Sakamoto, Tomoaki; Okegawa, Yuki; Kaminoyama, Kaori; Fujie, Manabu; Ichihashi, Yasunori; Kurata, Tetsuya; Motohashi, Ken; Al-Shehbaz, Ihsan; Sinha, Neelima; Kimura, Seisuke

    2018-02-19

    Because natural variation in wild species is likely the result of local adaptation, it provides a valuable resource for understanding plant-environmental interactions. Rorippa aquatica (Brassicaceae) is a semi-aquatic North American plant with morphological differences between several accessions, but little information available on any physiological differences. Here, we surveyed the transcriptomes of two R. aquatica accessions and identified cryptic physiological differences between them. We first reconstructed a Rorippa phylogeny to confirm relationships between the accessions. We performed large-scale RNA-seq and de novo assembly; the resulting 87,754 unigenes were then annotated via comparisons to different databases. Between-accession physiological variation was identified with transcriptomes from both accessions. Transcriptome data were analyzed with principal component analysis and self-organizing map. Results of analyses suggested that photosynthetic capability differs between the accessions. Indeed, physiological experiments revealed between-accession variation in electron transport rate and the redox state of the plastoquinone pool. These results indicated that one accession may have adapted to differences in temperature or length of the growing season.

  11. A transcriptome atlas of rabbit revealed by PacBio single-molecule long-read sequencing.

    PubMed

    Chen, Shi-Yi; Deng, Feilong; Jia, Xianbo; Li, Cao; Lai, Song-Jia

    2017-08-09

    It is widely acknowledged that transcriptional diversity largely contributes to biological regulation in eukaryotes. Since the advent of second-generation sequencing technologies, a large number of RNA sequencing studies have considerably improved our understanding of transcriptome complexity. However, it still remains a huge challenge for obtaining full-length transcripts because of difficulties in the short read-based assembly. In the present study we employ PacBio single-molecule long-read sequencing technology for whole-transcriptome profiling in rabbit (Oryctolagus cuniculus). We totally obtain 36,186 high-confidence transcripts from 14,474 genic loci, among which more than 23% of genic loci and 66% of isoforms have not been annotated yet within the current reference genome. Furthermore, about 17% of transcripts are computationally revealed to be non-coding RNAs. Up to 24,797 alternative splicing (AS) and 11,184 alternative polyadenylation (APA) events are detected within this de novo constructed transcriptome, respectively. The results provide a comprehensive set of reference transcripts and hence contribute to the improved annotation of rabbit genome.

  12. Ethephon induced oxidative stress in the olive leaf abscission zone enables development of a selective abscission compound.

    PubMed

    Goldental-Cohen, S; Burstein, C; Biton, I; Ben Sasson, S; Sadeh, A; Many, Y; Doron-Faigenboim, A; Zemach, H; Mugira, Y; Schneider, D; Birger, R; Meir, S; Philosoph-Hadas, S; Irihomovitch, V; Lavee, S; Avidan, B; Ben-Ari, G

    2017-05-16

    Table olives (Olea europaea L.), despite their widespread production, are still harvested manually. The low efficiency of manual harvesting and the rising costs of labor have reduced the profitability of this crop. A selective abscission treatment, inducing abscission of fruits but not leaves, is crucial for the adoption of mechanical harvesting of table olives. In the present work we studied the anatomical and molecular differences between the three abscission zones (AZs) of olive fruits and leaves. The fruit abscission zone 3 (FAZ3), located between the fruit and the pedicel, was found to be the active AZ in mature fruits and is sensitive to ethephon, whereas FAZ2, between the pedicel and the rachis, is the flower active AZ as well as functioning as the most ethephon induced fruit AZ. We found anatomical differences between the leaf AZ (LAZ) and the two FAZs. Unlike the FAZs, the LAZ is characterized by small cells with less pectin compared to neighboring cells. In an attempt to differentiate between the fruit and leaf AZs, we examined the effect of treating olive-bearing trees with ethephon, an ethylene-releasing compound, with or without antioxidants, on the detachment force (DF) of fruits and leaves 5 days after the treatment. Ethephon treatment enhanced pectinase activity and reduced DF in all the three olive AZs. A transcriptomic analysis of the three olive AZs after ethephon treatment revealed induction of several genes encoding for hormones (ethylene, auxin and ABA), as well as for several cell wall degrading enzymes. However, up-regulation of cellulase genes was found only in the LAZ. Many genes involved in oxidative stress were induced by the ethephon treatment in the LAZ alone. In addition, we found that reactive oxygen species (ROS) mediated abscission in response to ethephon only in leaves. Thus, adding antioxidants such as ascorbic acid or butyric acid to the ethephon inhibited leaf abscission but enhanced fruit abscission. Our findings suggest that treating olive-bearing trees with a combination of ethephon and antioxidants reduces the detachment force (DF) of fruit without weakening that of the leaves. Hence, this selective abscission treatment may be used in turn to promote mechanized harvest of olives.

  13. An elm EST database for identifying leaf beetle egg-induced defense genes

    PubMed Central

    2012-01-01

    Background Plants can defend themselves against herbivorous insects prior to the onset of larval feeding by responding to the eggs laid on their leaves. In the European field elm (Ulmus minor), egg laying by the elm leaf beetle ( Xanthogaleruca luteola) activates the emission of volatiles that attract specialised egg parasitoids, which in turn kill the eggs. Little is known about the transcriptional changes that insect eggs trigger in plants and how such indirect defense mechanisms are orchestrated in the context of other biological processes. Results Here we present the first large scale study of egg-induced changes in the transcriptional profile of a tree. Five cDNA libraries were generated from leaves of (i) untreated control elms, and elms treated with (ii) egg laying and feeding by elm leaf beetles, (iii) feeding, (iv) artificial transfer of egg clutches, and (v) methyl jasmonate. A total of 361,196 ESTs expressed sequence tags (ESTs) were identified which clustered into 52,823 unique transcripts (Unitrans) and were stored in a database with a public web interface. Among the analyzed Unitrans, 73% could be annotated by homology to known genes in the UniProt (Plant) database, particularly to those from Vitis, Ricinus, Populus and Arabidopsis. Comparative in silico analysis among the different treatments revealed differences in Gene Ontology term abundances. Defense- and stress-related gene transcripts were present in high abundance in leaves after herbivore egg laying, but transcripts involved in photosynthesis showed decreased abundance. Many pathogen-related genes and genes involved in phytohormone signaling were expressed, indicative of jasmonic acid biosynthesis and activation of jasmonic acid responsive genes. Cross-comparisons between different libraries based on expression profiles allowed the identification of genes with a potential relevance in egg-induced defenses, as well as other biological processes, including signal transduction, transport and primary metabolism. Conclusion Here we present a dataset for a large-scale study of the mechanisms of plant defense against insect eggs in a co-evolved, natural ecological plant–insect system. The EST database analysis provided here is a first step in elucidating the transcriptional responses of elm to elm leaf beetle infestation, and adds further to our knowledge on insect egg-induced transcriptomic changes in plants. The sequences identified in our comparative analysis give many hints about novel defense mechanisms directed towards eggs. PMID:22702658

  14. An elm EST database for identifying leaf beetle egg-induced defense genes.

    PubMed

    Büchel, Kerstin; McDowell, Eric; Nelson, Will; Descour, Anne; Gershenzon, Jonathan; Hilker, Monika; Soderlund, Carol; Gang, David R; Fenning, Trevor; Meiners, Torsten

    2012-06-15

    Plants can defend themselves against herbivorous insects prior to the onset of larval feeding by responding to the eggs laid on their leaves. In the European field elm (Ulmus minor), egg laying by the elm leaf beetle ( Xanthogaleruca luteola) activates the emission of volatiles that attract specialised egg parasitoids, which in turn kill the eggs. Little is known about the transcriptional changes that insect eggs trigger in plants and how such indirect defense mechanisms are orchestrated in the context of other biological processes. Here we present the first large scale study of egg-induced changes in the transcriptional profile of a tree. Five cDNA libraries were generated from leaves of (i) untreated control elms, and elms treated with (ii) egg laying and feeding by elm leaf beetles, (iii) feeding, (iv) artificial transfer of egg clutches, and (v) methyl jasmonate. A total of 361,196 ESTs expressed sequence tags (ESTs) were identified which clustered into 52,823 unique transcripts (Unitrans) and were stored in a database with a public web interface. Among the analyzed Unitrans, 73% could be annotated by homology to known genes in the UniProt (Plant) database, particularly to those from Vitis, Ricinus, Populus and Arabidopsis. Comparative in silico analysis among the different treatments revealed differences in Gene Ontology term abundances. Defense- and stress-related gene transcripts were present in high abundance in leaves after herbivore egg laying, but transcripts involved in photosynthesis showed decreased abundance. Many pathogen-related genes and genes involved in phytohormone signaling were expressed, indicative of jasmonic acid biosynthesis and activation of jasmonic acid responsive genes. Cross-comparisons between different libraries based on expression profiles allowed the identification of genes with a potential relevance in egg-induced defenses, as well as other biological processes, including signal transduction, transport and primary metabolism. Here we present a dataset for a large-scale study of the mechanisms of plant defense against insect eggs in a co-evolved, natural ecological plant-insect system. The EST database analysis provided here is a first step in elucidating the transcriptional responses of elm to elm leaf beetle infestation, and adds further to our knowledge on insect egg-induced transcriptomic changes in plants. The sequences identified in our comparative analysis give many hints about novel defense mechanisms directed towards eggs.

  15. The Transcriptional Responses and Metabolic Consequences of Acclimation to Elevated Light Exposure in Grapevine Berries

    PubMed Central

    du Plessis, Kari; Young, Philip R.; Eyéghé-Bickong, Hans A.; Vivier, Melané A.

    2017-01-01

    An increasing number of field studies that focus on grapevine berry development and ripening implement systems biology approaches; the results are highlighting not only the intricacies of the developmental programming/reprogramming that occurs, but also the complexity of how profoundly the microclimate influences the metabolism of the berry throughout the different stages of development. In a previous study we confirmed that a leaf removal treatment to Sauvignon Blanc grapes, grown in a highly characterized vineyard, primarily affected the level of light exposure to the berries throughout their development. A full transcriptomic analysis of berries from this model vineyard details the underlying molecular responses of the berries in reaction to the exposure and show how the berries acclimated to the imposing light stress. Gene expression involved in the protection of the photosynthetic machinery through rapid protein-turnover and the expression of photoprotective flavonoid compounds were most significantly affected in green berries. Overall, the transcriptome analysis showed that the berries implemented multiple stress-mitigation strategies in parallel and metabolite analysis was used to support the main findings. Combining the transcriptome data and amino acid profiling provided evidence that amino acid catabolism probably contributed to the mitigation of a likely energetic deficit created by the upregulation of (energetically) costly stress defense mechanisms. Furthermore, the rapid turnover of essential proteins involved in the maintenance of primary metabolism and growth in the photosynthetically active grapes appeared to provide precursors for the production of protective secondary metabolites such as apocarotenoids and flavonols in the ripening stages of the berries. Taken together, these results confirmed that the green grape berries responded to light stress much like other vegetative organs and were able to acclimate to the increased exposure, managing their metabolism and energy requirements to sustain the developmental cycle toward ripening. The typical metabolic consequences of leaf removal on grape berries can therefore now be linked to increased light exposure through mechanisms of photoprotection in green berries that leads toward acclimation responses that remain intact until ripening. PMID:28775728

  16. The Transcriptional Responses and Metabolic Consequences of Acclimation to Elevated Light Exposure in Grapevine Berries.

    PubMed

    du Plessis, Kari; Young, Philip R; Eyéghé-Bickong, Hans A; Vivier, Melané A

    2017-01-01

    An increasing number of field studies that focus on grapevine berry development and ripening implement systems biology approaches; the results are highlighting not only the intricacies of the developmental programming/reprogramming that occurs, but also the complexity of how profoundly the microclimate influences the metabolism of the berry throughout the different stages of development. In a previous study we confirmed that a leaf removal treatment to Sauvignon Blanc grapes, grown in a highly characterized vineyard, primarily affected the level of light exposure to the berries throughout their development. A full transcriptomic analysis of berries from this model vineyard details the underlying molecular responses of the berries in reaction to the exposure and show how the berries acclimated to the imposing light stress. Gene expression involved in the protection of the photosynthetic machinery through rapid protein-turnover and the expression of photoprotective flavonoid compounds were most significantly affected in green berries. Overall, the transcriptome analysis showed that the berries implemented multiple stress-mitigation strategies in parallel and metabolite analysis was used to support the main findings. Combining the transcriptome data and amino acid profiling provided evidence that amino acid catabolism probably contributed to the mitigation of a likely energetic deficit created by the upregulation of (energetically) costly stress defense mechanisms. Furthermore, the rapid turnover of essential proteins involved in the maintenance of primary metabolism and growth in the photosynthetically active grapes appeared to provide precursors for the production of protective secondary metabolites such as apocarotenoids and flavonols in the ripening stages of the berries. Taken together, these results confirmed that the green grape berries responded to light stress much like other vegetative organs and were able to acclimate to the increased exposure, managing their metabolism and energy requirements to sustain the developmental cycle toward ripening. The typical metabolic consequences of leaf removal on grape berries can therefore now be linked to increased light exposure through mechanisms of photoprotection in green berries that leads toward acclimation responses that remain intact until ripening.

  17. Diurnal depression in leaf hydraulic conductance at ambient and elevated [CO2] and reveals anisohydric water management in field-grown soybean

    USDA-ARS?s Scientific Manuscript database

    Diurnal cycles of photosynthesis and water use in field-grown soybean (Glycine max) are tied to light intensity and vapor pressure deficit (VPD). At high mid-day VPD, transpiration rates can lead to a decline in leaf water potential ('leaf) if leaf hydraulic conductance (Kleaf) is insufficient to su...

  18. Differentially phased leaf growth and movements in Arabidopsis depend on coordinated circadian and light regulation.

    PubMed

    Dornbusch, Tino; Michaud, Olivier; Xenarios, Ioannis; Fankhauser, Christian

    2014-10-01

    In contrast to vastly studied hypocotyl growth, little is known about diel regulation of leaf growth and its coordination with movements such as changes in leaf elevation angle (hyponasty). We developed a 3D live-leaf growth analysis system enabling simultaneous monitoring of growth and movements. Leaf growth is maximal several hours after dawn, requires light, and is regulated by daylength, suggesting coupling between growth and metabolism. We identify both blade and petiole positioning as important components of leaf movements in Arabidopsis thaliana and reveal a temporal delay between growth and movements. In hypocotyls, the combination of circadian expression of PHYTOCHROME INTERACTING FACTOR4 (PIF4) and PIF5 and their light-regulated protein stability drives rhythmic hypocotyl elongation with peak growth at dawn. We find that PIF4 and PIF5 are not essential to sustain rhythmic leaf growth but influence their amplitude. Furthermore, EARLY FLOWERING3, a member of the evening complex (EC), is required to maintain the correct phase between growth and movement. Our study shows that the mechanisms underlying rhythmic hypocotyl and leaf growth differ. Moreover, we reveal the temporal relationship between leaf elongation and movements and demonstrate the importance of the EC for the coordination of these phenotypic traits. © 2014 American Society of Plant Biologists. All rights reserved.

  19. Modeling development and quantitative trait mapping reveal independent genetic modules for leaf size and shape.

    PubMed

    Baker, Robert L; Leong, Wen Fung; Brock, Marcus T; Markelz, R J Cody; Covington, Michael F; Devisetty, Upendra K; Edwards, Christine E; Maloof, Julin; Welch, Stephen; Weinig, Cynthia

    2015-10-01

    Improved predictions of fitness and yield may be obtained by characterizing the genetic controls and environmental dependencies of organismal ontogeny. Elucidating the shape of growth curves may reveal novel genetic controls that single-time-point (STP) analyses do not because, in theory, infinite numbers of growth curves can result in the same final measurement. We measured leaf lengths and widths in Brassica rapa recombinant inbred lines (RILs) throughout ontogeny. We modeled leaf growth and allometry as function valued traits (FVT), and examined genetic correlations between these traits and aspects of phenology, physiology, circadian rhythms and fitness. We used RNA-seq to construct a SNP linkage map and mapped trait quantitative trait loci (QTL). We found genetic trade-offs between leaf size and growth rate FVT and uncovered differences in genotypic and QTL correlations involving FVT vs STPs. We identified leaf shape (allometry) as a genetic module independent of length and width and identified selection on FVT parameters of development. Leaf shape is associated with venation features that affect desiccation resistance. The genetic independence of leaf shape from other leaf traits may therefore enable crop optimization in leaf shape without negative effects on traits such as size, growth rate, duration or gas exchange. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  20. Immunome differences between porcine ileal and jejunal Peyer's patches revealed by global transcriptome sequencing of gut-associated lymphoid tissues.

    PubMed

    Maroilley, T; Berri, M; Lemonnier, G; Esquerré, D; Chevaleyre, C; Mélo, S; Meurens, F; Coville, J L; Leplat, J J; Rau, A; Bed'hom, B; Vincent-Naulleau, S; Mercat, M J; Billon, Y; Lepage, P; Rogel-Gaillard, C; Estellé, J

    2018-06-13

    The epithelium of the intestinal mucosa and the gut-associated lymphoid tissues (GALT) constitute an essential physical and immunological barrier against pathogens. In order to study the specificities of the GALT transcriptome in pigs, we compared the transcriptome profiles of jejunal and ileal Peyer's patches (PPs), mesenteric lymph nodes (MLNs) and peripheral blood (PB) of four male piglets by RNA-Seq. We identified 1,103 differentially expressed (DE) genes between ileal PPs (IPPs) and jejunal PPs (JPPs), and six times more DE genes between PPs and MLNs. The master regulator genes FOXP3, GATA3, STAT4, TBX21 and RORC were less expressed in IPPs compared to JPPs, whereas the transcription factor BCL6 was found more expressed in IPPs. In comparison between IPPs and JPPs, our analyses revealed predominant differential expression related to the differentiation of T cells into Th1, Th2, Th17 and iTreg in JPPs. Our results were consistent with previous reports regarding a higher T/B cells ratio in JPPs compared to IPPs. We found antisense transcription for respectively 24%, 22% and 14% of the transcripts detected in MLNs, PPs and PB, and significant positive correlations between PB and GALT transcriptomes. Allele-specific expression analyses revealed both shared and tissue-specific cis-genetic control of gene expression.

  1. Germination Potential of Dormant and Nondormant Arabidopsis Seeds Is Driven by Distinct Recruitment of Messenger RNAs to Polysomes

    PubMed Central

    Basbouss-Serhal, Isabelle; Soubigou-Taconnat, Ludivine; Bailly, Christophe; Leymarie, Juliette

    2015-01-01

    Dormancy is a complex evolutionary trait that temporally prevents seed germination, thus allowing seedling growth at a favorable season. High-throughput analyses of transcriptomes have led to significant progress in understanding the molecular regulation of this process, but the role of posttranscriptional mechanisms has received little attention. In this work, we have studied the dynamics of messenger RNA association with polysomes and compared the transcriptome with the translatome in dormant and nondormant seeds of Arabidopsis (Arabidopsis thaliana) during their imbibition at 25°C in darkness, a temperature preventing germination of dormant seeds only. DNA microarray analysis revealed that 4,670 and 7,028 transcripts were differentially abundant in dormant and nondormant seeds in the transcriptome and the translatome, respectively. We show that there is no correlation between transcriptome and translatome and that germination regulation is also largely translational, implying a selective and dynamic recruitment of messenger RNAs to polysomes in both dormant and nondormant seeds. The study of 5′ untranslated region features revealed that GC content and the number of upstream open reading frames could play a role in selective translation occurring during germination. Gene Ontology clustering showed that the functions of polysome-associated transcripts differed between dormant and nondormant seeds and revealed actors in seed dormancy and germination. In conclusion, our results demonstrate the essential role of selective polysome loading in this biological process. PMID:26019300

  2. Time-Series Analyses of Transcriptomes and Proteomes Reveal Molecular Networks Underlying Oil Accumulation in Canola.

    PubMed

    Wan, Huafang; Cui, Yixin; Ding, Yijuan; Mei, Jiaqin; Dong, Hongli; Zhang, Wenxin; Wu, Shiqi; Liang, Ying; Zhang, Chunyu; Li, Jiana; Xiong, Qing; Qian, Wei

    2016-01-01

    Understanding the regulation of lipid metabolism is vital for genetic engineering of canola ( Brassica napus L.) to increase oil yield or modify oil composition. We conducted time-series analyses of transcriptomes and proteomes to uncover the molecular networks associated with oil accumulation and dynamic changes in these networks in canola. The expression levels of genes and proteins were measured at 2, 4, 6, and 8 weeks after pollination (WAP). Our results show that the biosynthesis of fatty acids is a dominant cellular process from 2 to 6 WAP, while the degradation mainly happens after 6 WAP. We found that genes in almost every node of fatty acid synthesis pathway were significantly up-regulated during oil accumulation. Moreover, significant expression changes of two genes, acetyl-CoA carboxylase and acyl-ACP desaturase, were detected on both transcriptomic and proteomic levels. We confirmed the temporal expression patterns revealed by the transcriptomic analyses using quantitative real-time PCR experiments. The gene set association analysis show that the biosynthesis of fatty acids and unsaturated fatty acids are the most significant biological processes from 2-4 WAP and 4-6 WAP, respectively, which is consistent with the results of time-series analyses. These results not only provide insight into the mechanisms underlying lipid metabolism, but also reveal novel candidate genes that are worth further investigation for their values in the genetic engineering of canola.

  3. De-novo assembly and characterization of the transcriptome of Metschnikowia fructicola reveals differences in gene expression following interaction with Penicillium digitatum and grapefruit peel

    USDA-ARS?s Scientific Manuscript database

    The yeast, Metschnikowia fructicola, is an antagonist with biological control activity against postharvest diseases of several fruits. We performed a transcriptome analysis, using RNA-Seq technology, to examine the response of M. fructicola with citrus fruit and with the postharvest pathogen, Penic...

  4. SIDR: simultaneous isolation and parallel sequencing of genomic DNA and total RNA from single cells.

    PubMed

    Han, Kyung Yeon; Kim, Kyu-Tae; Joung, Je-Gun; Son, Dae-Soon; Kim, Yeon Jeong; Jo, Areum; Jeon, Hyo-Jeong; Moon, Hui-Sung; Yoo, Chang Eun; Chung, Woosung; Eum, Hye Hyeon; Kim, Sangmin; Kim, Hong Kwan; Lee, Jeong Eon; Ahn, Myung-Ju; Lee, Hae-Ock; Park, Donghyun; Park, Woong-Yang

    2018-01-01

    Simultaneous sequencing of the genome and transcriptome at the single-cell level is a powerful tool for characterizing genomic and transcriptomic variation and revealing correlative relationships. However, it remains technically challenging to analyze both the genome and transcriptome in the same cell. Here, we report a novel method for simultaneous isolation of genomic DNA and total RNA (SIDR) from single cells, achieving high recovery rates with minimal cross-contamination, as is crucial for accurate description and integration of the single-cell genome and transcriptome. For reliable and efficient separation of genomic DNA and total RNA from single cells, the method uses hypotonic lysis to preserve nuclear lamina integrity and subsequently captures the cell lysate using antibody-conjugated magnetic microbeads. Evaluating the performance of this method using real-time PCR demonstrated that it efficiently recovered genomic DNA and total RNA. Thorough data quality assessments showed that DNA and RNA simultaneously fractionated by the SIDR method were suitable for genome and transcriptome sequencing analysis at the single-cell level. The integration of single-cell genome and transcriptome sequencing by SIDR (SIDR-seq) showed that genetic alterations, such as copy-number and single-nucleotide variations, were more accurately captured by single-cell SIDR-seq compared with conventional single-cell RNA-seq, although copy-number variations positively correlated with the corresponding gene expression levels. These results suggest that SIDR-seq is potentially a powerful tool to reveal genetic heterogeneity and phenotypic information inferred from gene expression patterns at the single-cell level. © 2018 Han et al.; Published by Cold Spring Harbor Laboratory Press.

  5. SIDR: simultaneous isolation and parallel sequencing of genomic DNA and total RNA from single cells

    PubMed Central

    Han, Kyung Yeon; Kim, Kyu-Tae; Joung, Je-Gun; Son, Dae-Soon; Kim, Yeon Jeong; Jo, Areum; Jeon, Hyo-Jeong; Moon, Hui-Sung; Yoo, Chang Eun; Chung, Woosung; Eum, Hye Hyeon; Kim, Sangmin; Kim, Hong Kwan; Lee, Jeong Eon; Ahn, Myung-Ju; Lee, Hae-Ock; Park, Donghyun; Park, Woong-Yang

    2018-01-01

    Simultaneous sequencing of the genome and transcriptome at the single-cell level is a powerful tool for characterizing genomic and transcriptomic variation and revealing correlative relationships. However, it remains technically challenging to analyze both the genome and transcriptome in the same cell. Here, we report a novel method for simultaneous isolation of genomic DNA and total RNA (SIDR) from single cells, achieving high recovery rates with minimal cross-contamination, as is crucial for accurate description and integration of the single-cell genome and transcriptome. For reliable and efficient separation of genomic DNA and total RNA from single cells, the method uses hypotonic lysis to preserve nuclear lamina integrity and subsequently captures the cell lysate using antibody-conjugated magnetic microbeads. Evaluating the performance of this method using real-time PCR demonstrated that it efficiently recovered genomic DNA and total RNA. Thorough data quality assessments showed that DNA and RNA simultaneously fractionated by the SIDR method were suitable for genome and transcriptome sequencing analysis at the single-cell level. The integration of single-cell genome and transcriptome sequencing by SIDR (SIDR-seq) showed that genetic alterations, such as copy-number and single-nucleotide variations, were more accurately captured by single-cell SIDR-seq compared with conventional single-cell RNA-seq, although copy-number variations positively correlated with the corresponding gene expression levels. These results suggest that SIDR-seq is potentially a powerful tool to reveal genetic heterogeneity and phenotypic information inferred from gene expression patterns at the single-cell level. PMID:29208629

  6. Characterization and analysis of a transcriptome from the boreal spider crab Hyas araneus.

    PubMed

    Harms, Lars; Frickenhaus, Stephan; Schiffer, Melanie; Mark, Felix C; Storch, Daniela; Pörtner, Hans-Otto; Held, Christoph; Lucassen, Magnus

    2013-12-01

    Research investigating the genetic basis of physiological responses has significantly broadened our understanding of the mechanisms underlying organismic response to environmental change. However, genomic data are currently available for few taxa only, thus excluding physiological model species from this approach. In this study we report the transcriptome of the model organism Hyas araneus from Spitsbergen (Arctic). We generated 20,479 transcripts, using the 454 GS FLX sequencing technology in combination with an Illumina HiSeq sequencing approach. Annotation by Blastx revealed 7159 blast hits in the NCBI non-redundant protein database. The comparison between the spider crab H. araneus transcriptome and EST libraries of the European lobster Homarus americanus and the porcelain crab Petrolisthes cinctipes yielded 3229/2581 sequences with a significant hit, respectively. The clustering by the Markov Clustering Algorithm (MCL) revealed a common core of 1710 clusters present in all three species and 5903 unique clusters for H. araneus. The combined sequencing approaches generated transcripts that will greatly expand the limited genomic data available for crustaceans. We introduce the MCL clustering for transcriptome comparisons as a simple approach to estimate similarities between transcriptomic libraries of different size and quality and to analyze homologies within the selected group of species. In particular, we identified a large variety of reverse transcriptase (RT) sequences not only in the H. araneus transcriptome and other decapod crustaceans, but also sea urchin, supporting the hypothesis of a heritable, anti-viral immunity and the proposed viral fragment integration by host-derived RTs in marine invertebrates. © 2013.

  7. Transcriptome landscape of Lactococcus lactis reveals many novel RNAs including a small regulatory RNA involved in carbon uptake and metabolism.

    PubMed

    van der Meulen, Sjoerd B; de Jong, Anne; Kok, Jan

    2016-01-01

    RNA sequencing has revolutionized genome-wide transcriptome analyses, and the identification of non-coding regulatory RNAs in bacteria has thus increased concurrently. Here we reveal the transcriptome map of the lactic acid bacterial paradigm Lactococcus lactis MG1363 by employing differential RNA sequencing (dRNA-seq) and a combination of manual and automated transcriptome mining. This resulted in a high-resolution genome annotation of L. lactis and the identification of 60 cis-encoded antisense RNAs (asRNAs), 186 trans-encoded putative regulatory RNAs (sRNAs) and 134 novel small ORFs. Based on the putative targets of asRNAs, a novel classification is proposed. Several transcription factor DNA binding motifs were identified in the promoter sequences of (a)sRNAs, providing insight in the interplay between lactococcal regulatory RNAs and transcription factors. The presence and lengths of 14 putative sRNAs were experimentally confirmed by differential Northern hybridization, including the abundant RNA 6S that is differentially expressed depending on the available carbon source. For another sRNA, LLMGnc_147, functional analysis revealed that it is involved in carbon uptake and metabolism. L. lactis contains 13% leaderless mRNAs (lmRNAs) that, from an analysis of overrepresentation in GO classes, seem predominantly involved in nucleotide metabolism and DNA/RNA binding. Moreover, an A-rich sequence motif immediately following the start codon was uncovered, which could provide novel insight in the translation of lmRNAs. Altogether, this first experimental genome-wide assessment of the transcriptome landscape of L. lactis and subsequent sRNA studies provide an extensive basis for the investigation of regulatory RNAs in L. lactis and related lactococcal species.

  8. Analysis of the Salivary Gland Transcriptome of Frankliniella occidentalis

    PubMed Central

    Stafford-Banks, Candice A.; Rotenberg, Dorith; Johnson, Brian R.; Whitfield, Anna E.; Ullman, Diane E.

    2014-01-01

    Saliva is known to play a crucial role in insect feeding behavior and virus transmission. Currently, little is known about the salivary glands and saliva of thrips, despite the fact that Frankliniella occidentalis (Pergande) (the western flower thrips) is a serious pest due to its destructive feeding, wide host range, and transmission of tospoviruses. As a first step towards characterizing thrips salivary gland functions, we sequenced the transcriptome of the primary salivary glands of F. occidentalis using short read sequencing (Illumina) technology. A de novo-assembled transcriptome revealed 31,392 high quality contigs with an average size of 605 bp. A total of 12,166 contigs had significant BLASTx or tBLASTx hits (E≤1.0E−6) to known proteins, whereas a high percentage (61.24%) of contigs had no apparent protein or nucleotide hits. Comparison of the F. occidentalis salivary gland transcriptome (sialotranscriptome) against a published F. occidentalis full body transcriptome assembled from Roche-454 reads revealed several contigs with putative annotations associated with salivary gland functions. KEGG pathway analysis of the sialotranscriptome revealed that the majority (18 out of the top 20 predicted KEGG pathways) of the salivary gland contig sequences match proteins involved in metabolism. We identified several genes likely to be involved in detoxification and inhibition of plant defense responses including aldehyde dehydrogenase, metalloprotease, glucose oxidase, glucose dehydrogenase, and regucalcin. We also identified several genes that may play a role in the extra-oral digestion of plant structural tissues including β-glucosidase and pectin lyase; and the extra-oral digestion of sugars, including α-amylase, maltase, sucrase, and α-glucosidase. This is the first analysis of a sialotranscriptome for any Thysanopteran species and it provides a foundational tool to further our understanding of how thrips interact with their plant hosts and the viruses they transmit. PMID:24736614

  9. Analysis of the salivary gland transcriptome of Frankliniella occidentalis.

    PubMed

    Stafford-Banks, Candice A; Rotenberg, Dorith; Johnson, Brian R; Whitfield, Anna E; Ullman, Diane E

    2014-01-01

    Saliva is known to play a crucial role in insect feeding behavior and virus transmission. Currently, little is known about the salivary glands and saliva of thrips, despite the fact that Frankliniella occidentalis (Pergande) (the western flower thrips) is a serious pest due to its destructive feeding, wide host range, and transmission of tospoviruses. As a first step towards characterizing thrips salivary gland functions, we sequenced the transcriptome of the primary salivary glands of F. occidentalis using short read sequencing (Illumina) technology. A de novo-assembled transcriptome revealed 31,392 high quality contigs with an average size of 605 bp. A total of 12,166 contigs had significant BLASTx or tBLASTx hits (E≤1.0E-6) to known proteins, whereas a high percentage (61.24%) of contigs had no apparent protein or nucleotide hits. Comparison of the F. occidentalis salivary gland transcriptome (sialotranscriptome) against a published F. occidentalis full body transcriptome assembled from Roche-454 reads revealed several contigs with putative annotations associated with salivary gland functions. KEGG pathway analysis of the sialotranscriptome revealed that the majority (18 out of the top 20 predicted KEGG pathways) of the salivary gland contig sequences match proteins involved in metabolism. We identified several genes likely to be involved in detoxification and inhibition of plant defense responses including aldehyde dehydrogenase, metalloprotease, glucose oxidase, glucose dehydrogenase, and regucalcin. We also identified several genes that may play a role in the extra-oral digestion of plant structural tissues including β-glucosidase and pectin lyase; and the extra-oral digestion of sugars, including α-amylase, maltase, sucrase, and α-glucosidase. This is the first analysis of a sialotranscriptome for any Thysanopteran species and it provides a foundational tool to further our understanding of how thrips interact with their plant hosts and the viruses they transmit.

  10. Spatial Control of Gene Expression by miR319-Regulated TCP Transcription Factors in Leaf Development.

    PubMed

    Bresso, Edgardo G; Chorostecki, Uciel; Rodriguez, Ramiro E; Palatnik, Javier F; Schommer, Carla

    2018-02-01

    The characteristic leaf shapes we see in all plants are in good part the outcome of the combined action of several transcription factor networks that translate into cell division activity during the early development of the organ. We show here that wild-type leaves have distinct transcriptomic profiles in center and marginal regions. Certain transcripts are enriched in margins, including those of CINCINNATA -like TCPs ( TEOSINTE BRANCHED, CYCLOIDEA and PCF1/2 ) and members of the NGATHA and STYLISH gene families. We study in detail the contribution of microRNA319 (miR319)-regulated TCP transcription factors to the development of the center and marginal regions of Arabidopsis ( Arabidopsis thaliana ) leaves. We compare in molecular analyses the wild type, the tcp2 tcp4 mutant that has enlarged flat leaves, and the tcp2 tcp3 tcp4 tcp10 mutant with strongly crinkled leaves. The different leaf domains of the tcp mutants show changed expression patterns for many photosynthesis-related genes, indicating delayed differentiation, especially in the marginal parts of the organ. At the same time, we found an up-regulation of cyclin genes and other genes that are known to participate in cell division, specifically in the marginal regions of tcp2 tcp3 tcp4 tcp10 Using GUS reporter constructs, we confirmed extended mitotic activity in the tcp2 tcp3 tcp4 tcp10 leaf, which persisted in small defined foci in the margins when the mitotic activity had already ceased in wild-type leaves. Our results describe the role of miR319-regulated TCP transcription factors in the coordination of activities in different leaf domains during organ development. © 2018 American Society of Plant Biologists. All Rights Reserved.

  11. Hormone Distribution and Transcriptome Profiles in Bamboo Shoots Provide Insights on Bamboo Stem Emergence and Growth.

    PubMed

    Gamuyao, Rico; Nagai, Keisuke; Ayano, Madoka; Mori, Yoshinao; Minami, Anzu; Kojima, Mikiko; Suzuki, Takamasa; Sakakibara, Hitoshi; Higashiyama, Tetsuya; Ashikari, Motoyuki; Reuscher, Stefan

    2017-04-01

    Growth and development are tightly co-ordinated events in the lifetime of living organisms. In temperate bamboo plants, spring is the season when environmental conditions are suitable for the emergence of new shoots. Previous studies demonstrated that bamboo plants undergo an energy-consuming 'fast stem growth' phase. However, the events during the initiation of stem elongation in bamboo are poorly understood. To understand the onset of bamboo stem growth, we performed hormone and transcriptome profiling of tissue regions in newly elongating shoots of the Moso bamboo Phyllostachys edulis. The growth hormones auxins, cytokinins and gibberellins accumulated in the shoot apex, while the stress hormones ABA, salicylic acid (SA) and jasmonic acid (JA) are predominantly found in the lower part of the stem. The mature basal part of the stem showed enrichment of transcripts associated with cell wall metabolism and biosynthesis of phenylpropanoid metabolites, such as lignin. In the young upper stem region, expression of cell formation- and DNA synthesis-related genes was enriched. Moreover, the apical region showed enhanced expression of genes involved in meristem maintenance, leaf differentiation and development, abaxial/adaxial polarity and flowering. Our findings integrate the spatial regulation of hormones and transcriptome programs during the initiation of bamboo stem growth. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Next-generation sequencing (NGS) transcriptomes reveal association of multiple genes and pathways contributing to secondary metabolites accumulation in tuberous roots of Aconitum heterophyllum Wall.

    PubMed

    Pal, Tarun; Malhotra, Nikhil; Chanumolu, Sree Krishna; Chauhan, Rajinder Singh

    2015-07-01

    The transcriptomes of Aconitum heterophyllum were assembled and characterized for the first time to decipher molecular components contributing to biosynthesis and accumulation of metabolites in tuberous roots. Aconitum heterophyllum Wall., popularly known as Atis, is a high-value medicinal herb of North-Western Himalayas. No information exists as of today on genetic factors contributing to the biosynthesis of secondary metabolites accumulating in tuberous roots, thereby, limiting genetic interventions towards genetic improvement of A. heterophyllum. Illumina paired-end sequencing followed by de novo assembly yielded 75,548 transcripts for root transcriptome and 39,100 transcripts for shoot transcriptome with minimum length of 200 bp. Biological role analysis of root versus shoot transcriptomes assigned 27,596 and 16,604 root transcripts; 12,340 and 9398 shoot transcripts into gene ontology and clusters of orthologous group, respectively. KEGG pathway mapping assigned 37 and 31 transcripts onto starch-sucrose metabolism while 329 and 341 KEGG orthologies associated with transcripts were found to be involved in biosynthesis of various secondary metabolites for root and shoot transcriptomes, respectively. In silico expression profiling of the mevalonate/2-C-methyl-D-erythritol 4-phosphate (non-mevalonate) pathway genes for aconites biosynthesis revealed 4 genes HMGR (3-hydroxy-3-methylglutaryl-CoA reductase), MVK (mevalonate kinase), MVDD (mevalonate diphosphate decarboxylase) and HDS (1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase) with higher expression in root transcriptome compared to shoot transcriptome suggesting their key role in biosynthesis of aconite alkaloids. Five genes, GMPase (geranyl diphosphate mannose pyrophosphorylase), SHAGGY, RBX1 (RING-box protein 1), SRF receptor kinases and β-amylase, implicated in tuberous root formation in other plant species showed higher levels of expression in tuberous roots compared to shoots. A total of 15,487 transcription factors belonging to bHLH, MYB, bZIP families and 399 ABC transporters which regulate biosynthesis and accumulation of bioactive compounds were identified in root and shoot transcriptomes. The expression of 5 ABC transporters involved in tuberous root development was validated by quantitative PCR analysis. Network connectivity diagrams were drawn for starch-sucrose metabolism and isoquinoline alkaloid biosynthesis associated with tuberous root growth and secondary metabolism, respectively, in root transcriptome of A. heterophyllum. The current endeavor will be of practical importance in planning a suitable genetic intervention strategy for the improvement of A. heterophyllum.

  13. De Novo Assembly and Comparative Transcriptome Analysis Provide Insight into Lysine Biosynthesis in Toona sinensis Roem.

    PubMed

    Zhang, Xia; Song, Zhenqiao; Liu, Tian; Guo, Linlin; Li, Xingfeng

    2016-01-01

    Toona sinensis Roem is a popular leafy vegetable in Chinese cuisine and is also used as a traditional Chinese medicine. In this study, leaf samples were collected from the same plant on two development stages and then used for high-throughput Illumina RNA-sequencing (RNA-Seq). 125,884 transcripts and 54,628 unigenes were obtained through de novo assembly. A total of 25,570 could be annotated with known biological functions, which indicated that the T. sinensis leaves and shoots were undergoing multiple developmental processes especially for active metabolic processes. Analysis of differentially expressed unigenes between the two libraries showed that the lysine biosynthesis was an enriched KEGG pathway, and candidate genes involved in the lysine biosynthesis pathway in T. sinensis leaves and shoots were identified. Our results provide a primary analysis of the gene expression files of T. sinensis leaf and shoot on different development stages and afford a valuable resource for genetic and genomic research on plant lysine biosynthesis.

  14. The Powdering Process with a Set of Ceramic Mills for Green Tea Promoted Catechin Extraction and the ROS Inhibition Effect.

    PubMed

    Fujioka, Kouki; Iwamoto, Takeo; Shima, Hidekazu; Tomaru, Keiko; Saito, Hideki; Ohtsuka, Masaki; Yoshidome, Akihiro; Kawamura, Yuri; Manome, Yoshinobu

    2016-04-11

    For serving green tea, there are two prominent methods: steeping the leaf or the powdered leaf (matcha style) in hot water. The purpose of the present study was to reveal chemical and functional differences before and after the powdering process of green tea leaf, since powdered green tea may contribute to expanding the functionality because of the different ingesting style. In this study, we revealed that the powdering process with a ceramic mill and stirring in hot water increased the average extracted concentration of epigallocatechin gallate (EGCG) by more than three times compared with that in leaf tea using high-performance liquid chromatography (HPLC) and liquid chromatography-tandem mass Spectrometry (LC-MS/MS) analyses. Moreover, powdered green tea has a higher inhibition effect of reactive oxygen species (ROS) production in vitro compared with the same amount of leaf tea. Our data suggest that powdered green tea might have a different function from leaf tea due to the higher catechin contents and particles.

  15. The First Chameleon Transcriptome: Comparative Genomic Analysis of the OXPHOS System Reveals Loss of COX8 in Iguanian Lizards

    PubMed Central

    Bar-Yaacov, Dan; Bouskila, Amos; Mishmar, Dan

    2013-01-01

    Recently, we found dramatic mitochondrial DNA divergence of Israeli Chamaeleo chamaeleon populations into two geographically distinct groups. We aimed to examine whether the same pattern of divergence could be found in nuclear genes. However, no genomic resource is available for any chameleon species. Here we present the first chameleon transcriptome, obtained using deep sequencing (SOLiD). Our analysis identified 164,000 sequence contigs of which 19,000 yielded unique BlastX hits. To test the efficacy of our sequencing effort, we examined whether the chameleon and other available reptilian transcriptomes harbored complete sets of genes comprising known biochemical pathways, focusing on the nDNA-encoded oxidative phosphorylation (OXPHOS) genes as a model. As a reference for the screen, we used the human 86 (including isoforms) known structural nDNA-encoded OXPHOS subunits. Analysis of 34 publicly available vertebrate transcriptomes revealed orthologs for most human OXPHOS genes. However, OXPHOS subunit COX8 (Cytochrome C oxidase subunit 8), including all its known isoforms, was consistently absent in transcriptomes of iguanian lizards, implying loss of this subunit during the radiation of this suborder. The lack of COX8 in the suborder Iguania is intriguing, since it is important for cellular respiration and ATP production. Our sequencing effort added a new resource for comparative genomic studies, and shed new light on the evolutionary dynamics of the OXPHOS system. PMID:24009133

  16. The first Chameleon transcriptome: comparative genomic analysis of the OXPHOS system reveals loss of COX8 in Iguanian lizards.

    PubMed

    Bar-Yaacov, Dan; Bouskila, Amos; Mishmar, Dan

    2013-01-01

    Recently, we found dramatic mitochondrial DNA divergence of Israeli Chamaeleo chamaeleon populations into two geographically distinct groups. We aimed to examine whether the same pattern of divergence could be found in nuclear genes. However, no genomic resource is available for any chameleon species. Here we present the first chameleon transcriptome, obtained using deep sequencing (SOLiD). Our analysis identified 164,000 sequence contigs of which 19,000 yielded unique BlastX hits. To test the efficacy of our sequencing effort, we examined whether the chameleon and other available reptilian transcriptomes harbored complete sets of genes comprising known biochemical pathways, focusing on the nDNA-encoded oxidative phosphorylation (OXPHOS) genes as a model. As a reference for the screen, we used the human 86 (including isoforms) known structural nDNA-encoded OXPHOS subunits. Analysis of 34 publicly available vertebrate transcriptomes revealed orthologs for most human OXPHOS genes. However, OXPHOS subunit COX8 (Cytochrome C oxidase subunit 8), including all its known isoforms, was consistently absent in transcriptomes of iguanian lizards, implying loss of this subunit during the radiation of this suborder. The lack of COX8 in the suborder Iguania is intriguing, since it is important for cellular respiration and ATP production. Our sequencing effort added a new resource for comparative genomic studies, and shed new light on the evolutionary dynamics of the OXPHOS system.

  17. Comparative transcriptomics between Synechococcus PCC 7942 and Synechocystis PCC 6803 provide insights into mechanisms of adaptation to stress.

    DOE PAGES

    Konstantinos, Billis; Billini, Maria; Tripp, Harry J.; ...

    2014-09-23

    Background: Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803 are model cyanobacteria from which the metabolism and adaptive responses of other cyanobacteria are inferred. Here we report the gene expression response of these two strains to a variety of nutrient and environmental stresses of varying duration, using transcriptomics. Our data comprise both stranded and 5' enriched libraries in order to elucidate many aspects of the transcriptome. Results: Both organisms were exposed to stress conditions due to nutrient deficiency (inorganic carbon) or change of environmental conditions (salinity, temperature, pH, light) sampled at 1 and 24 hours after the application ofmore » stress. The transcriptome profile of each strain revealed similarities and differences in gene expression for photosynthetic and respiratory electron transport chains and carbon fixation. Transcriptome profiles also helped us improve the structural annotation of the genome and identify possible missed genes (including anti-sense) and determine transcriptional units (operons). Finally, we predicted association of proteins of unknown function biochemical pathways by associating them to well-characterized ones based on their transcript levels correlation. Conclusions: Overall, this study results an informative annotation of those species and the comparative analysis of the response of the two organisms revealed similarities but also significant changes in the way they respond to external stress and the duration of the response« less

  18. Comparative transcriptomics between Synechococcus PCC 7942 and Synechocystis PCC 6803 provide insights into mechanisms of adaptation to stress.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konstantinos, Billis; Billini, Maria; Tripp, Harry J.

    Background: Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803 are model cyanobacteria from which the metabolism and adaptive responses of other cyanobacteria are inferred. Here we report the gene expression response of these two strains to a variety of nutrient and environmental stresses of varying duration, using transcriptomics. Our data comprise both stranded and 5' enriched libraries in order to elucidate many aspects of the transcriptome. Results: Both organisms were exposed to stress conditions due to nutrient deficiency (inorganic carbon) or change of environmental conditions (salinity, temperature, pH, light) sampled at 1 and 24 hours after the application ofmore » stress. The transcriptome profile of each strain revealed similarities and differences in gene expression for photosynthetic and respiratory electron transport chains and carbon fixation. Transcriptome profiles also helped us improve the structural annotation of the genome and identify possible missed genes (including anti-sense) and determine transcriptional units (operons). Finally, we predicted association of proteins of unknown function biochemical pathways by associating them to well-characterized ones based on their transcript levels correlation. Conclusions: Overall, this study results an informative annotation of those species and the comparative analysis of the response of the two organisms revealed similarities but also significant changes in the way they respond to external stress and the duration of the response« less

  19. Cell wall accumulation of fluorescent proteins derived from a trans-Golgi cisternal membrane marker and paramural bodies in interdigitated Arabidopsis leaf epidermal cells.

    PubMed

    Akita, Kae; Kobayashi, Megumi; Sato, Mayuko; Kutsuna, Natsumaro; Ueda, Takashi; Toyooka, Kiminori; Nagata, Noriko; Hasezawa, Seiichiro; Higaki, Takumi

    2017-01-01

    In most dicotyledonous plants, leaf epidermal pavement cells develop jigsaw puzzle-like shapes during cell expansion. The rapid growth and complicated cell shape of pavement cells is suggested to be achieved by targeted exocytosis that is coordinated with cytoskeletal rearrangement to provide plasma membrane and/or cell wall materials for lobe development during their morphogenesis. Therefore, visualization of membrane trafficking in leaf pavement cells should contribute an understanding of the mechanism of plant cell morphogenesis. To reveal membrane trafficking in pavement cells, we observed monomeric red fluorescent protein-tagged rat sialyl transferases, which are markers of trans-Golgi cisternal membranes, in the leaf epidermis of Arabidopsis thaliana. Quantitative fluorescence imaging techniques and immunoelectron microscopic observations revealed that accumulation of the red fluorescent protein occurred mostly in the curved regions of pavement cell borders and guard cell ends during leaf expansion. Transmission electron microscopy observations revealed that apoplastic vesicular membrane structures called paramural bodies were more frequent beneath the curved cell wall regions of interdigitated pavement cells and guard cell ends in young leaf epidermis. In addition, pharmacological studies showed that perturbations in membrane trafficking resulted in simple cell shapes. These results suggested possible heterogeneity of the curved regions of plasma membranes, implying a relationship with pavement cell morphogenesis.

  20. Capitate glandular trichomes in Aldama discolor (Heliantheae - Asteraceae): morphology, metabolite profile and sesquiterpene biosynthesis.

    PubMed

    Bombo, A B; Appezzato-da-Glória, B; Aschenbrenner, A-K; Spring, O

    2016-05-01

    The capitate glandular trichome is the most common type described in Asteraceae species. It is known for its ability to produce various plant metabolites of ecological and economic importance, among which sesquiterpene lactones are predominant. In this paper, we applied microscopy, phytochemical and molecular genetics techniques to characterise the capitate glandular trichome in Aldama discolor, a native Brazilian species of Asteraceae, with pharmacological potential. It was found that formation of trichomes on leaf primordia of germinating seeds starts between 24 h and 48 h after radicle growth indicates germination. The start of metabolic activity of trichomes was indicated by separation of the cuticle from the cell wall of secretory cells at the trichome tip after 72 h. This coincided with the accumulation of budlein A, the major sesquiterpene lactone of A. discolor capitate glandular trichomes, in extracts of leaf primordia after 96 h. In the same timeframe of 72-96 h post-germination, gene expression studies showed up-regulation of the putative germacrene A synthase (pGAS2) and putative germacrene A oxidase (pGAO) of A. discolor in the transcriptome of these samples, indicating the start of sesquiterpene lactone biosynthesis. Sequencing of the two genes revealed high similarity to HaGAS and HaGAO from sunflower, which shows that key steps of this pathway are highly conserved. The processes of trichome differentiation, metabolic activity and genetic regulation in A. discolor and in sunflower appear to be typical for other species of the subtribe Helianthinae. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  1. Changes in the leaf proteome profile of Withania somnifera (L.) Dunal in response to Alternaria alternata infection

    PubMed Central

    Singh, Varinder; Singh, Baldev; Joshi, Robin; Jaju, Puneet

    2017-01-01

    Withania somnifera is a high value medicinal plant which is used against large number of ailments. The medicinal properties of the plant attributes to a wide array of important secondary metabolites. The plant is predominantly infected with leaf spot pathogen Alternaria alternata, which leads to substantial biodeterioration of pharmaceutically important metabolites. To develop an effective strategy to combat this disease, proteomics based approach could be useful. Hence, in the present study, three different protein extraction methods tris-buffer based, phenol based and trichloroacetic acid-acetone (TCA-acetone) based method were comparatively evaluated for two-dimensional electrophoresis (2-DE) analysis of W. somnifera. TCA-acetone method was found to be most effective and was further used to identify differentially expressed proteins in response to fungal infection. Thirty-eight differentially expressed proteins were identified by matrix assisted laser desorption/ionization time of flight-mass spectrometry (MALDI TOF/TOF MS/MS). The known proteins were categorized into eight different groups based on their function and maximum proteins belonged to energy and metabolism, cell structure, stress and defense and RNA/DNA categories. Differential expression of some key proteins were also crosschecked at transcriptomic level by using qRT-PCR and were found to be consistent with the 2-DE data. These outcomes enable us to evaluate modifications that take place at the proteomic level during a compatible host pathogen interaction. The comparative proteome analysis conducted in this paper revealed the involvement of many key proteins in the process of pathogenesis and further investigation of these identified proteins could assist in the discovery of new strategies for the development of pathogen resistance in the plant. PMID:28575108

  2. Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack.

    PubMed

    De Vos, Martin; Van Oosten, Vivian R; Van Poecke, Remco M P; Van Pelt, Johan A; Pozo, Maria J; Mueller, Martin J; Buchala, Antony J; Métraux, Jean-Pierre; Van Loon, L C; Dicke, Marcel; Pieterse, Corné M J

    2005-09-01

    Plant defenses against pathogens and insects are regulated differentially by cross-communicating signaling pathways in which salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) play key roles. To understand how plants integrate pathogen- and insect-induced signals into specific defense responses, we monitored the dynamics of SA, JA, and ET signaling in Arabidopsis after attack by a set of microbial pathogens and herbivorous insects with different modes of attack. Arabidopsis plants were exposed to a pathogenic leaf bacterium (Pseudomonas syringae pv. tomato), a pathogenic leaf fungus (Alternaria brassicicola), tissue-chewing caterpillars (Pieris rapae), cell-content-feeding thrips (Frankliniella occidentalis), or phloem-feeding aphids (Myzus persicae). Monitoring the signal signature in each plant-attacker combination showed that the kinetics of SA, JA, and ET production varies greatly in both quantity and timing. Analysis of global gene expression profiles demonstrated that the signal signature characteristic of each Arabidopsis-attacker combination is orchestrated into a surprisingly complex set of transcriptional alterations in which, in all cases, stress-related genes are overrepresented. Comparison of the transcript profiles revealed that consistent changes induced by pathogens and insects with very different modes of attack can show considerable overlap. Of all consistent changes induced by A. brassicicola, Pieris rapae, and E occidentalis, more than 50% also were induced consistently by P. syringae. Notably, although these four attackers all stimulated JA biosynthesis, the majority of the changes in JA-responsive gene expression were attacker specific. All together, our study shows that SA, JA, and ET play a primary role in the orchestration of the plant's defense response, but other regulatory mechanisms, such as pathway cross-talk or additional attacker-induced signals, eventually shape the highly complex attacker-specific defense response.

  3. Transcriptome Analysis of Escherichia coli O157:H7 Exposed to Lysates of Lettuce Leaves ▿

    PubMed Central

    Kyle, Jennifer L.; Parker, Craig T.; Goudeau, Danielle; Brandl, Maria T.

    2010-01-01

    Harvesting and processing of leafy greens inherently cause plant tissue damage, creating niches on leaves that human pathogens can exploit. We previously demonstrated that Escherichia coli O157:H7 (EcO157) multiplies more rapidly on shredded leaves than on intact leaves (M. T. Brandl, Appl. Environ. Microbiol. 74:5285-5289, 2008). To investigate how EcO157 cells adapt to physicochemical conditions in injured lettuce tissue, we used microarray-based whole-genome transcriptional profiling to characterize gene expression patterns in EcO157 after 15- and 30-min exposures to romaine lettuce lysates. Multiple carbohydrate transport systems that have a role in the utilization of substrates known to be prevalent in plant cells were activated in EcO157. This indicates the availability to the human pathogen of a variety of carbohydrates released from injured plant cells that may promote its extensive growth in leaf lysates and, thus, in wounded leaf tissue. In addition, microarray analysis revealed the upregulation of numerous genes associated with EcO157 attachment and virulence, with oxidative stress and antimicrobial resistance (including the OxyR and Mar regulons), with detoxification of noxious compounds, and with DNA repair. Upregulation of oxidative stress and antimicrobial resistance genes in EcO157 was confirmed on shredded lettuce by quantitative reverse transcription-PCR. We further demonstrate that this adaptation to stress conditions imparts the pathogen with increased resistance to hydrogen peroxide and calcium hypochlorite. This enhanced resistance to chlorinated sanitizers combined with increased expression of virulence determinants and multiplication at sites of injury on the leaves may help explain the association of processed leafy greens with outbreaks of EcO157. PMID:20061451

  4. Dynamic Maize Responses to Aphid Feeding Are Revealed by a Time Series of Transcriptomic and Metabolomic Assays1[OPEN

    PubMed Central

    Tzin, Vered; Fernandez-Pozo, Noe; Richter, Annett; Schmelz, Eric A.; Schoettner, Matthias; Schäfer, Martin; Ahern, Kevin R.; Meihls, Lisa N.; Kaur, Harleen; Huffaker, Alisa; Mori, Naoki; Degenhardt, Joerg; Mueller, Lukas A.; Jander, Georg

    2015-01-01

    As a response to insect attack, maize (Zea mays) has inducible defenses that involve large changes in gene expression and metabolism. Piercing/sucking insects such as corn leaf aphid (Rhopalosiphum maidis) cause direct damage by acquiring phloem nutrients as well as indirect damage through the transmission of plant viruses. To elucidate the metabolic processes and gene expression changes involved in maize responses to aphid attack, leaves of inbred line B73 were infested with corn leaf aphids for 2 to 96 h. Analysis of infested maize leaves showed two distinct response phases, with the most significant transcriptional and metabolic changes occurring in the first few hours after the initiation of aphid feeding. After 4 d, both gene expression and metabolite profiles of aphid-infested maize reverted to being more similar to those of control plants. Although there was a predominant effect of salicylic acid regulation, gene expression changes also indicated prolonged induction of oxylipins, although not necessarily jasmonic acid, in aphid-infested maize. The role of specific metabolic pathways was confirmed using Dissociator transposon insertions in maize inbred line W22. Mutations in three benzoxazinoid biosynthesis genes, Bx1, Bx2, and Bx6, increased aphid reproduction. In contrast, progeny production was greatly decreased by a transposon insertion in the single W22 homolog of the previously uncharacterized B73 terpene synthases TPS2 and TPS3. Together, these results show that maize leaves shift to implementation of physical and chemical defenses within hours after the initiation of aphid feeding and that the production of specific metabolites can have major effects in maize-aphid interactions. PMID:26378100

  5. Comparative Characterization of the Leaf Tissue of Physalis alkekengi and Physalis peruviana Using RNA-seq and Metabolite Profiling

    PubMed Central

    Fukushima, Atsushi; Nakamura, Michimi; Suzuki, Hideyuki; Yamazaki, Mami; Knoch, Eva; Mori, Tetsuya; Umemoto, Naoyuki; Morita, Masaki; Hirai, Go; Sodeoka, Mikiko; Saito, Kazuki

    2016-01-01

    The genus Physalis in the Solanaceae family contains several species of benefit to humans. Examples include P. alkekengi (Chinese-lantern plant, hôzuki in Japanese) used for medicinal and for decorative purposes, and P. peruviana, also known as Cape gooseberry, which bears an edible, vitamin-rich fruit. Members of the Physalis genus are a valuable resource for phytochemicals needed for the development of medicines and functional foods. To fully utilize the potential of these phytochemicals we need to understand their biosynthesis, and for this we need genomic data, especially comprehensive transcriptome datasets for gene discovery. We report the de novo assembly of the transcriptome from leaves of P. alkekengi and P. peruviana using Illumina RNA-seq technologies. We identified 75,221 unigenes in P. alkekengi and 54,513 in P. peruviana. All unigenes were annotated with gene ontology (GO), Enzyme Commission (EC) numbers, and pathway information from the Kyoto Encyclopedia of Genes and Genomes (KEGG). We classified unigenes encoding enzyme candidates putatively involved in the secondary metabolism and identified more than one unigenes for each step in terpenoid backbone- and steroid biosynthesis in P. alkekengi and P. peruviana. To measure the variability of the withanolides including physalins and provide insights into their chemical diversity in Physalis, we also analyzed the metabolite content in leaves of P. alkekengi and P. peruviana at five different developmental stages by liquid chromatography-mass spectrometry. We discuss that comprehensive transcriptome approaches within a family can yield a clue for gene discovery in Physalis and provide insights into their complex chemical diversity. The transcriptome information we submit here will serve as an important public resource for further studies of the specialized metabolism of Physalis species. PMID:28066454

  6. Comparative Characterization of the Leaf Tissue of Physalis alkekengi and Physalis peruviana Using RNA-seq and Metabolite Profiling.

    PubMed

    Fukushima, Atsushi; Nakamura, Michimi; Suzuki, Hideyuki; Yamazaki, Mami; Knoch, Eva; Mori, Tetsuya; Umemoto, Naoyuki; Morita, Masaki; Hirai, Go; Sodeoka, Mikiko; Saito, Kazuki

    2016-01-01

    The genus Physalis in the Solanaceae family contains several species of benefit to humans. Examples include P. alkekengi (Chinese-lantern plant, hôzuki in Japanese) used for medicinal and for decorative purposes, and P. peruviana , also known as Cape gooseberry, which bears an edible, vitamin-rich fruit. Members of the Physalis genus are a valuable resource for phytochemicals needed for the development of medicines and functional foods. To fully utilize the potential of these phytochemicals we need to understand their biosynthesis, and for this we need genomic data, especially comprehensive transcriptome datasets for gene discovery. We report the de novo assembly of the transcriptome from leaves of P. alkekengi and P. peruviana using Illumina RNA-seq technologies. We identified 75,221 unigenes in P. alkekengi and 54,513 in P. peruviana . All unigenes were annotated with gene ontology (GO), Enzyme Commission (EC) numbers, and pathway information from the Kyoto Encyclopedia of Genes and Genomes (KEGG). We classified unigenes encoding enzyme candidates putatively involved in the secondary metabolism and identified more than one unigenes for each step in terpenoid backbone- and steroid biosynthesis in P. alkekengi and P. peruviana . To measure the variability of the withanolides including physalins and provide insights into their chemical diversity in Physalis , we also analyzed the metabolite content in leaves of P. alkekengi and P. peruviana at five different developmental stages by liquid chromatography-mass spectrometry. We discuss that comprehensive transcriptome approaches within a family can yield a clue for gene discovery in Physalis and provide insights into their complex chemical diversity. The transcriptome information we submit here will serve as an important public resource for further studies of the specialized metabolism of Physalis species.

  7. Meristem maintenance, auxin, jasmonic and abscisic acid pathways as a mechanism for phenotypic plasticity in Antirrhinum majus

    NASA Astrophysics Data System (ADS)

    Weiss, Julia; Alcantud-Rodriguez, Raquel; Toksöz, Tugba; Egea-Cortines, Marcos

    2016-01-01

    Plants grow under climatic changing conditions that cause modifications in vegetative and reproductive development. The degree of changes in organ development i.e. its phenotypic plasticity seems to be determined by the organ identity and the type of environmental cue. We used intraspecific competition and found that Antirrhinum majus behaves as a decoupled species for lateral organ size and number. Crowding causes decreases in leaf size and increased leaf number whereas floral size is robust and floral number is reduced. Genes involved in shoot apical meristem maintenance like ROA and HIRZ, cell cycle (CYCD3a; CYCD3b, HISTONE H4) or organ polarity (GRAM) were not significantly downregulated under crowding conditions. A transcriptomic analysis of inflorescence meristems showed Gene Ontology enriched pathways upregulated including Jasmonic and Abscisic acid synthesis and or signalling. Genes involved in auxin synthesis such as AmTAR2 and signalling AmANT were not affected by crowding. In contrast, AmJAZ1, AmMYB21, AmOPCL1 and AmABA2 were significantly upregulated. Our work provides a mechanistic working hypothesis where a robust SAM and stable auxin signalling enables a homogeneous floral size while changes in JA and ABA signalling maybe responsible for the decreased leaf size and floral number.

  8. AtMYB12 expression in tomato leads to large scale differential modulation in transcriptome and flavonoid content in leaf and fruit tissues

    PubMed Central

    Pandey, Ashutosh; Misra, Prashant; Choudhary, Dharmendra; Yadav, Reena; Goel, Ridhi; Bhambhani, Sweta; Sanyal, Indraneel; Trivedi, Ritu; Kumar Trivedi, Prabodh

    2015-01-01

    Plants synthesize secondary metabolites, including flavonoids, which play important role during various stresses for their survival. These metabolites are also considered as health-protective components in functional foods. Flavonols, one of the important groups of flavonoids, apart from performing several roles in plants have been recognized as potent phytoceuticals for human health. Tomato fruits are deficient in this group of flavonoids and have been an important target for enhancing the accumulation of flavonols through genetic manipulations. In the present study, AtMYB12 transcription factor of the Arabidopsis has been expressed under constitutive promoter in tomato. Transgenic tomato lines exhibited enhanced accumulation of flavonols and chlorogenic acid (CGA) in leaf and fruit accompanied with elevated expression of phenylpropanoid pathway genes involved in flavonol biosynthesis. In addition, global gene expression analysis in leaf and fruit suggested that AtMYB12 modulates number of molecular processes including aromatic amino acid biosynthesis, phytohormone signaling and stress responses. Besides this, a differential modulation of the genes in fruits and leaves is reported in this study. Taken together, results demonstrate that modulation of primary carbon metabolism and other pathways by AtMYB12 in tomato may lead to sufficient substrate supply for enhanced content of phenolics in general and flavonols in particular. PMID:26206248

  9. Gene expression patterns of two dominant tallgrass prairie species differ in response to warming and altered precipitation

    NASA Astrophysics Data System (ADS)

    Smith, Melinda D.; Hoffman, Ava M.; Avolio, Meghan L.

    2016-05-01

    To better understand the mechanisms underlying plant species responses to climate change, we compared transcriptional profiles of the co-dominant C4 grasses, Andropogon gerardii Vitman and Sorghastrum nutans (L.) Nash, in response to increased temperatures and more variable precipitation regimes in a long-term field experiment in native tallgrass prairie. We used microarray probing of a closely related model species (Zea mays) to assess correlations in leaf temperature (Tleaf) and leaf water potential (LWP) and abundance changes of ~10,000 transcripts in leaf tissue collected from individuals of both species. A greater number of transcripts were found to significantly change in abundance levels with Tleaf and LWP in S. nutans than in A. gerardii. S. nutans also was more responsive to short-term drought recovery than A. gerardii. Water flow regulating transcripts associated with stress avoidance (e.g., aquaporins), as well as those involved in the prevention and repair of damage (e.g., antioxidant enzymes, HSPs), were uniquely more abundant in response to increasing Tleaf in S. nutans. The differential transcriptomic responses of the co-dominant C4 grasses suggest that these species may cope with and respond to temperature and water stress at the molecular level in distinct ways, with implications for tallgrass prairie ecosystem function.

  10. Deep sequencing and in silico analysis of small RNA library reveals novel miRNA from leaf Persicaria minor transcriptome.

    PubMed

    Samad, Abdul Fatah A; Nazaruddin, Nazaruddin; Murad, Abdul Munir Abdul; Jani, Jaeyres; Zainal, Zamri; Ismail, Ismanizan

    2018-03-01

    In current era, majority of microRNA (miRNA) are being discovered through computational approaches which are more confined towards model plants. Here, for the first time, we have described the identification and characterization of novel miRNA in a non-model plant, Persicaria minor ( P . minor ) using computational approach. Unannotated sequences from deep sequencing were analyzed based on previous well-established parameters. Around 24 putative novel miRNAs were identified from 6,417,780 reads of the unannotated sequence which represented 11 unique putative miRNA sequences. PsRobot target prediction tool was deployed to identify the target transcripts of putative novel miRNAs. Most of the predicted target transcripts (mRNAs) were known to be involved in plant development and stress responses. Gene ontology showed that majority of the putative novel miRNA targets involved in cellular component (69.07%), followed by molecular function (30.08%) and biological process (0.85%). Out of 11 unique putative miRNAs, 7 miRNAs were validated through semi-quantitative PCR. These novel miRNAs discoveries in P . minor may develop and update the current public miRNA database.

  11. Physiological genomics of response to soil drying in diverse Arabidopsis accessions.

    PubMed

    Des Marais, David L; McKay, John K; Richards, James H; Sen, Saunak; Wayne, Tierney; Juenger, Thomas E

    2012-03-01

    Arabidopsis thaliana, like many species, is characterized by abundant genetic variation. This variation is rapidly being cataloged at the sequence level, but careful dissection of genetic variation in whole-organism responses to stresses encountered in the natural environment are lacking; this functional variation can be exploited as a natural mutant screen to determine gene function. Here, we document physiological and transcriptomic response to soil drying in 17 natural accessions of Arabidopsis. By imposing ecologically realistic stress conditions, we found that acclimation in Arabidopsis involved a strong signature of increased investment in photosynthesis, carbohydrate turnover, and root growth. Our results extend previous work in the Columbia accession suggesting that abscisic acid signaling pathways play an important role in drought stress response. We also identified several mechanisms, including an increase in leaf nitrogen concentration and upregulation of two-component signaling relays, that were common to most natural accessions but had not been identified in studies using only the Columbia accession. Principal component analysis reveals strong correlations between suites of genes and specific physiological responses to stress. The functional variants we identified may represent adaptive mutations in natural habitats and useful variants for agronomic improvement of crop species.

  12. Virus surveys of Capsicum spp. in the Republic of Benin reveal the prevalence of pepper vein yellows virus and the identification of a previously uncharacterised polerovirus species.

    PubMed

    Afouda, Leonard; Kone, Daouda; Zinsou, Valerien; Dossou, Laurence; Kenyon, Lawrence; Winter, Stephan; Knierim, Dennis

    2017-06-01

    Surveys were conducted in 2014 and 2015 in Southern and Northern Benin, respectively, to identify the viruses infecting peppers (Capsicum spp.). The samples were screened by ELISA for cucumber mosaic virus (CMV), pepper veinal mottle virus (PVMV), potato virus Y (PVY) and tomato yellow leaf curl virus (TYLCV). A generic reverse transcription PCR (RT-PCR) was used to test for the presence of poleroviruses. ELISA tests confirmed the prevalence of all viruses, while the RT-PCR detected pepper vein yellows virus (PeVYV) which is reported for the first time in Benin. A further, divergent polerovirus isolate was detected from a single pepper sample originating from southern Benin. Screening of samples collected from solanaceous plants during virus surveys in Mali (conducted in 2009) also detected this divergent polerovirus isolate in two samples from African eggplants. The complete genome sequence was obtained from the Mali isolate using transcriptome sequencing and by conventional Sanger sequencing of overlapping RT-PCR products. Based on the sequence characteristics of this isolate we propose a new polerovirus species, African eggplant yellowing virus (AeYV).

  13. Agaricus bisporus genome sequence: a commentary.

    PubMed

    Kerrigan, Richard W; Challen, Michael P; Burton, Kerry S

    2013-06-01

    The genomes of two isolates of Agaricus bisporus have been sequenced recently. This soil-inhabiting fungus has a wide geographical distribution in nature and it is also cultivated in an industrialized indoor process ($4.7bn annual worldwide value) to produce edible mushrooms. Previously this lignocellulosic fungus has resisted precise econutritional classification, i.e. into white- or brown-rot decomposers. The generation of the genome sequence and transcriptomic analyses has revealed a new classification, 'humicolous', for species adapted to grow in humic-rich, partially decomposed leaf material. The Agaricus biporus genomes contain a collection of polysaccharide and lignin-degrading genes and more interestingly an expanded number of genes (relative to other lignocellulosic fungi) that enhance degradation of lignin derivatives, i.e. heme-thiolate peroxidases and β-etherases. A motif that is hypothesized to be a promoter element in the humicolous adaptation suite is present in a large number of genes specifically up-regulated when the mycelium is grown on humic-rich substrate. The genome sequence of A. bisporus offers a platform to explore fungal biology in carbon-rich soil environments and terrestrial cycling of carbon, nitrogen, phosphorus and potassium. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Physiological Genomics of Response to Soil Drying in Diverse Arabidopsis Accessions[W][OA

    PubMed Central

    Des Marais, David L.; McKay, John K.; Richards, James H.; Sen, Saunak; Wayne, Tierney; Juenger, Thomas E.

    2012-01-01

    Arabidopsis thaliana, like many species, is characterized by abundant genetic variation. This variation is rapidly being cataloged at the sequence level, but careful dissection of genetic variation in whole-organism responses to stresses encountered in the natural environment are lacking; this functional variation can be exploited as a natural mutant screen to determine gene function. Here, we document physiological and transcriptomic response to soil drying in 17 natural accessions of Arabidopsis. By imposing ecologically realistic stress conditions, we found that acclimation in Arabidopsis involved a strong signature of increased investment in photosynthesis, carbohydrate turnover, and root growth. Our results extend previous work in the Columbia accession suggesting that abscisic acid signaling pathways play an important role in drought stress response. We also identified several mechanisms, including an increase in leaf nitrogen concentration and upregulation of two-component signaling relays, that were common to most natural accessions but had not been identified in studies using only the Columbia accession. Principal component analysis reveals strong correlations between suites of genes and specific physiological responses to stress. The functional variants we identified may represent adaptive mutations in natural habitats and useful variants for agronomic improvement of crop species. PMID:22408074

  15. OLIGOCELLULA1/HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES15 Promotes Cell Proliferation With HISTONE DEACETYLASE9 and POWERDRESS During Leaf Development in Arabidopsis thaliana

    PubMed Central

    Suzuki, Marina; Shinozuka, Nanae; Hirakata, Tomohiro; Nakata, Miyuki T.; Demura, Taku; Tsukaya, Hirokazu; Horiguchi, Gorou

    2018-01-01

    Organ size regulation is dependent on the precise spatial and temporal regulation of cell proliferation and cell expansion. A number of transcription factors have been identified that play a key role in the determination of aerial lateral organ size, but their functional relationship to various chromatin modifiers has not been well understood. To understand how leaf size is regulated, we previously isolated the oligocellula1 (oli1) mutant of Arabidopsis thaliana that develops smaller first leaves than the wild type (WT) mainly due to a reduction in the cell number. In this study, we further characterized oli1 leaf phenotypes and identified the OLI1 gene as well as interaction partners of OLI1. Detailed characterizations of leaf development suggested that the cell proliferation rate in oli1 leaf primordia is lower than that in the WT. In addition, oli1 was associated with a slight delay of the progression from the juvenile to adult phases of leaf traits. A classical map-based approach demonstrated that OLI1 is identical to HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES15 (HOS15). HOS15/OLI1 encodes a homolog of human transducin β-like protein1 (TBL1). TBL1 forms a transcriptional repression complex with the histone deacetylase (HDAC) HDAC3 and either nuclear receptor co-repressor (N-CoR) or silencing mediator for retinoic acid and thyroid receptor (SMRT). We found that mutations in HISTONE DEACETYLASE9 (HDA9) and a switching-defective protein 3, adaptor 2, N-CoR, and transcription factor IIIB-domain protein gene, POWERDRESS (PWR), showed a small-leaf phenotype similar to oli1. In addition, hda9 and pwr did not further enhance the oli1 small-leaf phenotype, suggesting that these three genes act in the same pathway. Yeast two-hybrid assays suggested physical interactions, wherein PWR probably bridges HOS15/OLI1 and HDA9. Earlier studies suggested the roles of HOS15, HDA9, and PWR in transcriptional repression. Consistently, transcriptome analyses showed several genes commonly upregulated in the three mutants. From these findings, we propose a possibility that HOS15/OLI1, PWR, and HDA9 form an evolutionary conserved transcription repression complex that plays a positive role in the regulation of final leaf size. PMID:29774040

  16. Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas

    PubMed Central

    Hou, Yu; Guo, Huahu; Cao, Chen; Li, Xianlong; Hu, Boqiang; Zhu, Ping; Wu, Xinglong; Wen, Lu; Tang, Fuchou; Huang, Yanyi; Peng, Jirun

    2016-01-01

    Single-cell genome, DNA methylome, and transcriptome sequencing methods have been separately developed. However, to accurately analyze the mechanism by which transcriptome, genome and DNA methylome regulate each other, these omic methods need to be performed in the same single cell. Here we demonstrate a single-cell triple omics sequencing technique, scTrio-seq, that can be used to simultaneously analyze the genomic copy-number variations (CNVs), DNA methylome, and transcriptome of an individual mammalian cell. We show that large-scale CNVs cause proportional changes in RNA expression of genes within the gained or lost genomic regions, whereas these CNVs generally do not affect DNA methylation in these regions. Furthermore, we applied scTrio-seq to 25 single cancer cells derived from a human hepatocellular carcinoma tissue sample. We identified two subpopulations within these cells based on CNVs, DNA methylome, or transcriptome of individual cells. Our work offers a new avenue of dissecting the complex contribution of genomic and epigenomic heterogeneities to the transcriptomic heterogeneity within a population of cells. PMID:26902283

  17. FIT: statistical modeling tool for transcriptome dynamics under fluctuating field conditions

    PubMed Central

    Iwayama, Koji; Aisaka, Yuri; Kutsuna, Natsumaro

    2017-01-01

    Abstract Motivation: Considerable attention has been given to the quantification of environmental effects on organisms. In natural conditions, environmental factors are continuously changing in a complex manner. To reveal the effects of such environmental variations on organisms, transcriptome data in field environments have been collected and analyzed. Nagano et al. proposed a model that describes the relationship between transcriptomic variation and environmental conditions and demonstrated the capability to predict transcriptome variation in rice plants. However, the computational cost of parameter optimization has prevented its wide application. Results: We propose a new statistical model and efficient parameter optimization based on the previous study. We developed and released FIT, an R package that offers functions for parameter optimization and transcriptome prediction. The proposed method achieves comparable or better prediction performance within a shorter computational time than the previous method. The package will facilitate the study of the environmental effects on transcriptomic variation in field conditions. Availability and Implementation: Freely available from CRAN (https://cran.r-project.org/web/packages/FIT/). Contact: anagano@agr.ryukoku.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online PMID:28158396

  18. A transcriptome-wide study on the microRNA- and the Argonaute 1-enriched small RNA-mediated regulatory networks involved in plant leaf senescence.

    PubMed

    Qin, J; Ma, X; Yi, Z; Tang, Z; Meng, Y

    2016-03-01

    Leaf senescence is an important physiological process during the plant life cycle. However, systemic studies on the impact of microRNAs (miRNAs) on the expression of senescence-associated genes (SAGs) are lacking. Besides, whether other Argonaute 1 (AGO1)-enriched small RNAs (sRNAs) play regulatory roles in leaf senescence remains unclear. In this study, a total of 5,123 and 1,399 AGO1-enriched sRNAs, excluding miRNAs, were identified in Arabidopsis thaliana and rice (Oryza sativa), respectively. After retrieving SAGs from the Leaf Senescence Database, all of the AGO1-enriched sRNAs and the miRBase-registered miRNAs of these two plants were included for target identification. Supported by degradome signatures, 200 regulatory pairs involving 120 AGO1-enriched sRNAs and 40 SAGs, and 266 regulatory pairs involving 64 miRNAs and 42 SAGs were discovered in Arabidopsis. Moreover, 13 genes predicted to interact with some of the above-identified target genes at protein level were validated as regulated by 17 AGO1-enriched sRNAs and ten miRNAs in Arabidopsis. In rice, only one SAG was targeted by three AGO1-enriched sRNAs, and one SAG was targeted by miR395. However, five AGO1-enriched sRNAs were conserved between Arabidopsis and rice. Target genes conserved between the two plants were identified for three of the above five sRNAs, pointing to the conserved roles of these regulatory pairs in leaf senescence or other developmental procedures. Novel targets were discovered for three of the five AGO1-enriched sRNAs in rice, indicating species-specific functions of these sRNA-target pairs. These results could advance our understanding of the sRNA-involved molecular processes modulating leaf senescence. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  19. Transcriptome profiling of petal abscission zone and functional analysis of AUX/IAA family genes reveal that RhIAA16 is involved in petal shedding in rose

    USDA-ARS?s Scientific Manuscript database

    Rose is one of the most important cut flowers among ornamental plants. Rose flower longevity is largely dependent on the timing of petal shedding occurrence. To understand the molecular mechanism underlying petal abscission in rose, we performed transcriptome profiling of the petal abscission zone d...

  20. Transcriptome changes during fruit development and ripening of sweet orange (Citrus sinensis).

    PubMed

    Yu, Keqin; Xu, Qiang; Da, Xinlei; Guo, Fei; Ding, Yuduan; Deng, Xiuxin

    2012-01-10

    The transcriptome of the fruit pulp of the sweet orange variety Anliu (WT) and that of its red fleshed mutant Hong Anliu (MT) were compared to understand the dynamics and differential expression of genes expressed during fruit development and ripening. The transcriptomes of WT and MT were sampled at four developmental stages using an Illumina sequencing platform. A total of 19,440 and 18,829 genes were detected in MT and WT, respectively. Hierarchical clustering analysis revealed 24 expression patterns for the set of all genes detected, of which 20 were in common between MT and WT. Over 89% of the genes showed differential expression during fruit development and ripening in the WT. Functional categorization of the differentially expressed genes revealed that cell wall biosynthesis, carbohydrate and citric acid metabolism, carotenoid metabolism, and the response to stress were the most differentially regulated processes occurring during fruit development and ripening. A description of the transcriptomic changes occurring during fruit development and ripening was obtained in sweet orange, along with a dynamic view of the gene expression differences between the wild type and a red fleshed mutant. © 2012 Yu et al; licensee BioMed Central Ltd.

  1. Understanding cross-communication between aboveground and belowground tissues via transcriptome analysis of a sucking insect whitefly-infested pepper plants.

    PubMed

    Park, Yong-Soon; Ryu, Choong-Min

    2014-01-03

    Plants have developed defensive machinery to protect themselves against herbivore and pathogen attacks. We previously reported that aboveground whitefly (Bemisia tabaci Genn.) infestation elicited induced resistance in leaves and roots and influenced the modification of the rhizosphere microflora. In this study, to obtain molecular evidence supporting these plant fitness strategies against whitefly infestation, we performed a 300 K pepper microarray analysis using leaf and root tissues of pepper (Capsicum annuum L.) applied with whitefly, benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH), and the combination of BTH+whitefly. We defined differentially expressed genes (DEGs) as genes exhibiting more than 2-fold change (1.0 based on log2 values) in expression in leaves and roots in response to each treatment compared to the control. We identified a total of 16,188 DEGs in leaves and roots. Of these, 6685, 6752, and 4045 DEGs from leaf tissue and 6768, 7705, and 7667 DEGs from root tissue were identified in the BTH, BTH+whitefly, and whitefly treatment groups, respectively. The total number of DEGs was approximately two-times higher in roots than in whitefly-infested leaves subjected to whitefly infestation. Among DEGs, whitefly feeding induced salicylic acid and jasmonic acid/ethylene-dependent signaling pathways in leaves and roots. Several transporters and auxin-responsive genes were upregulated in roots, which can explain why biomass increase is facilitated. Using transcriptome analysis, our study provides new insights into the molecular basis of whitefly-mediated intercommunication between aboveground and belowground plant tissues and provides molecular evidence that may explain the alteration of rhizosphere microflora and root biomass by whitefly infestation. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Identification of the WRKY gene family and functional analysis of two genes in Caragana intermedia.

    PubMed

    Wan, Yongqing; Mao, Mingzhu; Wan, Dongli; Yang, Qi; Yang, Feiyun; Mandlaa; Li, Guojing; Wang, Ruigang

    2018-02-09

    WRKY transcription factors, one of the largest families of transcriptional regulators in plants, play important roles in plant development and various stress responses. The WRKYs of Caragana intermedia are still not well characterized, although many WRKYs have been identified in various plant species. We identified 53 CiWRKY genes from C. intermedia transcriptome data, 28 of which exhibited complete open reading frames (ORFs). These CiWRKYs were divided into three groups via phylogenetic analysis according to their WRKY domains and zinc finger motifs. Conserved domain analysis showed that the CiWRKY proteins contain a highly conserved WRKYGQK motif and two variant motifs (WRKYGKK and WKKYEEK). The subcellular localization of CiWRKY26 and CiWRKY28-1 indicated that these two proteins localized exclusively to nuclei, supporting their role as transcription factors. The expression patterns of the 28 CiWRKYs with complete ORFs were examined through quantitative real-time PCR (qRT-PCR) in various tissues and under different abiotic stresses (drought, cold, salt, high-pH and abscisic acid (ABA)). The results showed that each CiWRKY responded to at least one stress treatment. Furthermore, overexpression of CiWRKY75-1 and CiWRKY40-4 in Arabidopsis thaliana suppressed the drought stress tolerance of the plants and delayed leaf senescence, respectively. Fifty-three CiWRKY genes from the C. intermedia transcriptome were identified and divided into three groups via phylogenetic analysis. The expression patterns of the 28 CiWRKYs under different abiotic stresses suggested that each CiWRKY responded to at least one stress treatment. Overexpression of CiWRKY75-1 and CiWRKY40-4 suppressed the drought stress tolerance of Arabidopsis and delayed leaf senescence, respectively. These results provide a basis for the molecular mechanism through which CiWRKYs mediate stress tolerance.

  3. Distinct transcriptome responses to water limitation in isohydric and anisohydric grapevine cultivars.

    PubMed

    Dal Santo, Silvia; Palliotti, Alberto; Zenoni, Sara; Tornielli, Giovanni Battista; Fasoli, Marianna; Paci, Paola; Tombesi, Sergio; Frioni, Tommaso; Silvestroni, Oriana; Bellincontro, Andrea; d'Onofrio, Claudio; Matarese, Fabiola; Gatti, Matteo; Poni, Stefano; Pezzotti, Mario

    2016-10-20

    Grapevine (Vitis vinifera L.) is an economically important crop with a wide geographical distribution, reflecting its ability to grow successfully in a range of climates. However, many vineyards are located in regions with seasonal drought, and these are often predicted to be global climate change hotspots. Climate change affects the entire physiology of grapevine, with strong effects on yield, wine quality and typicity, making it difficult to produce berries of optimal enological quality and consistent stability over the forthcoming decades. Here we investigated the reactions of two grapevine cultivars to water stress, the isohydric variety Montepulciano and the anisohydric variety Sangiovese, by examining physiological and molecular perturbations in the leaf and berry. A multidisciplinary approach was used to characterize the distinct stomatal behavior of the two cultivars and its impact on leaf and berry gene expression. Positive associations were found among the photosynthetic, physiological and transcriptional modifications, and candidate genes encoding master regulators of the water stress response were identified using an integrated approach based on the analysis of topological co-expression network properties. In particular, the genome-wide transcriptional study indicated that the isohydric behavior relies upon the following responses: i) faster transcriptome response after stress imposition; ii) faster abscisic acid-related gene modulation; iii) more rapid expression of heat shock protein (HSP) genes and iv) reversion of gene-expression profile at rewatering. Conversely, that reactive oxygen species (ROS)-scavenging enzymes, molecular chaperones and abiotic stress-related genes were induced earlier and more strongly in the anisohydric cultivar. Overall, the present work found original evidence of a molecular basis for the proposed classification between isohydric and anisohydric grapevine genotypes.

  4. High Quality Unigenes and Microsatellite Markers from Tissue Specific Transcriptome and Development of a Database in Clusterbean (Cyamopsis tetragonoloba, L. Taub)

    PubMed Central

    Rawal, Hukam C.; Kumar, Shrawan; Mithra S.V., Amitha; Solanke, Amolkumar U.; Saxena, Swati; Tyagi, Anshika; V., Sureshkumar; Yadav, Neelam R.; Kalia, Pritam; Singh, Narendra Pratap; Singh, Nagendra Kumar; Sharma, Tilak Raj; Gaikwad, Kishor

    2017-01-01

    Clusterbean (Cyamopsis tetragonoloba L. Taub), is an important industrial, vegetable and forage crop. This crop owes its commercial importance to the presence of guar gum (galactomannans) in its endosperm which is used as a lubricant in a range of industries. Despite its relevance to agriculture and industry, genomic resources available in this crop are limited. Therefore, the present study was undertaken to generate RNA-Seq based transcriptome from leaf, shoot, and flower tissues. A total of 145 million high quality Illumina reads were assembled using Trinity into 127,706 transcripts and 48,007 non-redundant high quality (HQ) unigenes. We annotated 79% unigenes against Plant Genes from the National Center for Biotechnology Information (NCBI), Swiss-Prot, Pfam, gene ontology (GO) and KEGG databases. Among the annotated unigenes, 30,020 were assigned with 116,964 GO terms, 9984 with EC and 6111 with 137 KEGG pathways. At different fragments per kilobase of transcript per millions fragments sequenced (FPKM) levels, genes were found expressed higher in flower tissue followed by shoot and leaf. Additionally, we identified 8687 potential simple sequence repeats (SSRs) with an average frequency of one SSR per 8.75 kb. A total of 28 amplified SSRs in 21 clusterbean genotypes resulted in polymorphism in 13 markers with average polymorphic information content (PIC) of 0.21. We also constructed a database named ‘ClustergeneDB’ for easy retrieval of unigenes and the microsatellite markers. The tissue specific genes identified and the molecular marker resources developed in this study is expected to aid in genetic improvement of clusterbean for its end use. PMID:29120386

  5. Directional RNA-seq reveals highly complex condition-dependent transcriptomes in E. coli K12 through accurate full-length transcripts assembling.

    PubMed

    Li, Shan; Dong, Xia; Su, Zhengchang

    2013-07-30

    Although prokaryotic gene transcription has been studied over decades, many aspects of the process remain poorly understood. Particularly, recent studies have revealed that transcriptomes in many prokaryotes are far more complex than previously thought. Genes in an operon are often alternatively and dynamically transcribed under different conditions, and a large portion of genes and intergenic regions have antisense RNA (asRNA) and non-coding RNA (ncRNA) transcripts, respectively. Ironically, similar studies have not been conducted in the model bacterium E coli K12, thus it is unknown whether or not the bacterium possesses similar complex transcriptomes. Furthermore, although RNA-seq becomes the major method for analyzing the complexity of prokaryotic transcriptome, it is still a challenging task to accurately assemble full length transcripts using short RNA-seq reads. To fill these gaps, we have profiled the transcriptomes of E. coli K12 under different culture conditions and growth phases using a highly specific directional RNA-seq technique that can capture various types of transcripts in the bacterial cells, combined with a highly accurate and robust algorithm and tool TruHMM (http://bioinfolab.uncc.edu/TruHmm_package/) for assembling full length transcripts. We found that 46.9 ~ 63.4% of expressed operons were utilized in their putative alternative forms, 72.23 ~ 89.54% genes had putative asRNA transcripts and 51.37 ~ 72.74% intergenic regions had putative ncRNA transcripts under different culture conditions and growth phases. As has been demonstrated in many other prokaryotes, E. coli K12 also has a highly complex and dynamic transcriptomes under different culture conditions and growth phases. Such complex and dynamic transcriptomes might play important roles in the physiology of the bacterium. TruHMM is a highly accurate and robust algorithm for assembling full-length transcripts in prokaryotes using directional RNA-seq short reads.

  6. Directional RNA-seq reveals highly complex condition-dependent transcriptomes in E. coli K12 through accurate full-length transcripts assembling

    PubMed Central

    2013-01-01

    Background Although prokaryotic gene transcription has been studied over decades, many aspects of the process remain poorly understood. Particularly, recent studies have revealed that transcriptomes in many prokaryotes are far more complex than previously thought. Genes in an operon are often alternatively and dynamically transcribed under different conditions, and a large portion of genes and intergenic regions have antisense RNA (asRNA) and non-coding RNA (ncRNA) transcripts, respectively. Ironically, similar studies have not been conducted in the model bacterium E coli K12, thus it is unknown whether or not the bacterium possesses similar complex transcriptomes. Furthermore, although RNA-seq becomes the major method for analyzing the complexity of prokaryotic transcriptome, it is still a challenging task to accurately assemble full length transcripts using short RNA-seq reads. Results To fill these gaps, we have profiled the transcriptomes of E. coli K12 under different culture conditions and growth phases using a highly specific directional RNA-seq technique that can capture various types of transcripts in the bacterial cells, combined with a highly accurate and robust algorithm and tool TruHMM (http://bioinfolab.uncc.edu/TruHmm_package/) for assembling full length transcripts. We found that 46.9 ~ 63.4% of expressed operons were utilized in their putative alternative forms, 72.23 ~ 89.54% genes had putative asRNA transcripts and 51.37 ~ 72.74% intergenic regions had putative ncRNA transcripts under different culture conditions and growth phases. Conclusions As has been demonstrated in many other prokaryotes, E. coli K12 also has a highly complex and dynamic transcriptomes under different culture conditions and growth phases. Such complex and dynamic transcriptomes might play important roles in the physiology of the bacterium. TruHMM is a highly accurate and robust algorithm for assembling full-length transcripts in prokaryotes using directional RNA-seq short reads. PMID:23899370

  7. Genetic signatures of adaptation revealed from transcriptome sequencing of Arctic and red foxes.

    PubMed

    Kumar, Vikas; Kutschera, Verena E; Nilsson, Maria A; Janke, Axel

    2015-08-07

    The genus Vulpes (true foxes) comprises numerous species that inhabit a wide range of habitats and climatic conditions, including one species, the Arctic fox (Vulpes lagopus) which is adapted to the arctic region. A close relative to the Arctic fox, the red fox (Vulpes vulpes), occurs in subarctic to subtropical habitats. To study the genetic basis of their adaptations to different environments, transcriptome sequences from two Arctic foxes and one red fox individual were generated and analyzed for signatures of positive selection. In addition, the data allowed for a phylogenetic analysis and divergence time estimate between the two fox species. The de novo assembly of reads resulted in more than 160,000 contigs/transcripts per individual. Approximately 17,000 homologous genes were identified using human and the non-redundant databases. Positive selection analyses revealed several genes involved in various metabolic and molecular processes such as energy metabolism, cardiac gene regulation, apoptosis and blood coagulation to be under positive selection in foxes. Branch site tests identified four genes to be under positive selection in the Arctic fox transcriptome, two of which are fat metabolism genes. In the red fox transcriptome eight genes are under positive selection, including molecular process genes, notably genes involved in ATP metabolism. Analysis of the three transcriptomes and five Sanger re-sequenced genes in additional individuals identified a lower genetic variability within Arctic foxes compared to red foxes, which is consistent with distribution range differences and demographic responses to past climatic fluctuations. A phylogenomic analysis estimated that the Arctic and red fox lineages diverged about three million years ago. Transcriptome data are an economic way to generate genomic resources for evolutionary studies. Despite not representing an entire genome, this transcriptome analysis identified numerous genes that are relevant to arctic adaptation in foxes. Similar to polar bears, fat metabolism seems to play a central role in adaptation of Arctic foxes to the cold climate, as has been identified in the polar bear, another arctic specialist.

  8. Genetic mapping of the LOBED LEAF 1 (ClLL1) gene to a 127.6-kb region in watermelon (Citrullus lanatus L.)

    PubMed Central

    Wei, Chunhua; Chen, Xiner; Wang, Zhongyuan; Liu, Qiyan; Li, Hao; Zhang, Yong; Ma, Jianxiang; Yang, Jianqiang

    2017-01-01

    The lobed leaf character is a unique morphologic trait in crops, featuring many potential advantages for agricultural productivity. Although the majority of watermelon varieties feature lobed leaves, the genetic factors responsible for lobed leaf formation remain elusive. The F2:3 leaf shape segregating population offers the opportunity to study the underlying mechanism of lobed leaf formation in watermelon. Genetic analysis revealed that a single dominant allele (designated ClLL1) controlled the lobed leaf trait. A large-sized F3:4 population derived from F2:3 individuals was used to map ClLL1. A total of 5,966 reliable SNPs and indels were identified genome-wide via a combination of BSA and RNA-seq. Using the validated SNP and indel markers, the location of ClLL1 was narrowed down to a 127.6-kb region between markers W08314 and W07061, containing 23 putative ORFs. Expression analysis via qRT-PCR revealed differential expression patterns (fold-changes above 2-fold or below 0.5-fold) of three ORFs (ORF3, ORF11, and ORF18) between lobed and non-lobed leaf plants. Based on gene annotation and expression analysis, ORF18 (encoding an uncharacterized protein) and ORF22 (encoding a homeobox-leucine zipper-like protein) were considered as most likely candidate genes. Furthermore, sequence analysis revealed no polymorphisms in cDNA sequences of ORF18; however, two notable deletions were identified in ORF22. This study is the first report to map a leaf shape gene in watermelon and will facilitate cloning and functional characterization of ClLL1 in future studies. PMID:28704497

  9. Genetic mapping of the LOBED LEAF 1 (ClLL1) gene to a 127.6-kb region in watermelon (Citrullus lanatus L.).

    PubMed

    Wei, Chunhua; Chen, Xiner; Wang, Zhongyuan; Liu, Qiyan; Li, Hao; Zhang, Yong; Ma, Jianxiang; Yang, Jianqiang; Zhang, Xian

    2017-01-01

    The lobed leaf character is a unique morphologic trait in crops, featuring many potential advantages for agricultural productivity. Although the majority of watermelon varieties feature lobed leaves, the genetic factors responsible for lobed leaf formation remain elusive. The F2:3 leaf shape segregating population offers the opportunity to study the underlying mechanism of lobed leaf formation in watermelon. Genetic analysis revealed that a single dominant allele (designated ClLL1) controlled the lobed leaf trait. A large-sized F3:4 population derived from F2:3 individuals was used to map ClLL1. A total of 5,966 reliable SNPs and indels were identified genome-wide via a combination of BSA and RNA-seq. Using the validated SNP and indel markers, the location of ClLL1 was narrowed down to a 127.6-kb region between markers W08314 and W07061, containing 23 putative ORFs. Expression analysis via qRT-PCR revealed differential expression patterns (fold-changes above 2-fold or below 0.5-fold) of three ORFs (ORF3, ORF11, and ORF18) between lobed and non-lobed leaf plants. Based on gene annotation and expression analysis, ORF18 (encoding an uncharacterized protein) and ORF22 (encoding a homeobox-leucine zipper-like protein) were considered as most likely candidate genes. Furthermore, sequence analysis revealed no polymorphisms in cDNA sequences of ORF18; however, two notable deletions were identified in ORF22. This study is the first report to map a leaf shape gene in watermelon and will facilitate cloning and functional characterization of ClLL1 in future studies.

  10. Characterization of a Null Allelic Mutant of the Rice NAL1 Gene Reveals Its Role in Regulating Cell Division

    PubMed Central

    Jiang, Dan; Fang, Jingjing; Lou, Lamei; Zhao, Jinfeng; Yuan, Shoujiang; Yin, Liang; Sun, Wei; Peng, Lixiang; Guo, Baotai; Li, Xueyong

    2015-01-01

    Leaf morphology is closely associated with cell division. In rice, mutations in Narrow leaf 1 (NAL1) show narrow leaf phenotypes. Previous studies have shown that NAL1 plays a role in regulating vein patterning and increasing grain yield in indica cultivars, but its role in leaf growth and development remains unknown. In this report, we characterized two allelic mutants of NARROW LEAF1 (NAL1), nal1-2 and nal1-3, both of which showed a 50% reduction in leaf width and length, as well as a dwarf culm. Longitudinal and transverse histological analyses of leaves and internodes revealed that cell division was suppressed in the anticlinal orientation but enhanced in the periclinal orientation in the mutants, while cell size remained unaltered. In addition to defects in cell proliferation, the mutants showed abnormal midrib in leaves. Map-based cloning revealed that nal1-2 is a null allelic mutant of NAL1 since both the whole promoter and a 404-bp fragment in the first exon of NAL1 were deleted, and that a 6-bp fragment was deleted in the mutant nal1-3. We demonstrated that NAL1 functions in the regulation of cell division as early as during leaf primordia initiation. The altered transcript level of G1- and S-phase-specific genes suggested that NAL1 affects cell cycle regulation. Heterogenous expression of NAL1 in fission yeast (Schizosaccharomyces pombe) further supported that NAL1 affects cell division. These results suggest that NAL1 controls leaf width and plant height through its effects on cell division. PMID:25658704

  11. Comparative transcriptome resources of two Dysosma species (Berberidaceae) and molecular evolution of the CYP719A gene in Podophylloideae.

    PubMed

    Mao, Yunrui; Zhang, Yonghua; Xu, Chuan; Qiu, Yingxiong

    2016-01-01

    Dysosma species (Berberidaceae, Podophylloideae) are of great medicinal pharmacogenetic importance and used as model systems to study the drivers and mechanisms of species diversification of temperate plants in East Asia. Recently, we have sequenced the transcriptome of the low-elevation D. versipellis. In this study, we sequenced the transcriptome of the high-elevation D. aurantiocaulis and used comparative genomic approaches to investigate the transcriptome evolution of the two species. We retrieved 53,929 unigenes from D. aurantiocaulis by de novo transcriptome assemblies using the Illumina HiSeq 2000 platform. Comparing the transcriptomes of both species, we identified 4593 orthologs. Estimation of Ka/Ks ratios for 3126 orthologs revealed that none had a Ka/Ks significantly greater than 1, whereas 1273 (Ka/Ks < 0.5, P < 0.05) were inferred to be under purifying selection. A total of 51 primer pairs were successfully designed from 461 EST-SSRs contained in 4593 orthologs. Marker validation assay revealed that 26 (51%) and 41 (80.4%) produced clear fragments with the expected sizes in all Podophylloideae species. Specifically, 19 different sequences of CYP719A were identified from PCR-amplified genomic DNA of all 12 species of Podophylloideae using primers designed from the assembled transcripts. The data further indicated that CYP719A was likely subject to strong selective constraints maintaining only one copy per genome. In Dysosma, there was relaxed purifying selection or more positive selection for high-elevation species. Overall, this study has generated a wealth of molecular resources potentially useful for pharmacogenetic and evolutionary studies in Dysosma and allied taxa. © 2015 John Wiley & Sons Ltd.

  12. Transcriptome analysis and gene expression profiling of abortive and developing ovules during fruit development in hazelnut.

    PubMed

    Cheng, Yunqing; Liu, Jianfeng; Zhang, Huidi; Wang, Ju; Zhao, Yixin; Geng, Wanting

    2015-01-01

    A high ratio of blank fruit in hazelnut (Corylus heterophylla Fisch) is a very common phenomenon that causes serious yield losses in northeast China. The development of blank fruit in the Corylus genus is known to be associated with embryo abortion. However, little is known about the molecular mechanisms responsible for embryo abortion during the nut development stage. Genomic information for C. heterophylla Fisch is not available; therefore, data related to transcriptome and gene expression profiling of developing and abortive ovules are needed. In this study, de novo transcriptome sequencing and RNA-seq analysis were conducted using short-read sequencing technology (Illumina HiSeq 2000). The results of the transcriptome assembly analysis revealed genetic information that was associated with the fruit development stage. Two digital gene expression libraries were constructed, one for a full (normally developing) ovule and one for an empty (abortive) ovule. Transcriptome sequencing and assembly results revealed 55,353 unigenes, including 18,751 clusters and 36,602 singletons. These results were annotated using the public databases NR, NT, Swiss-Prot, KEGG, COG, and GO. Using digital gene expression profiling, gene expression differences in developing and abortive ovules were identified. A total of 1,637 and 715 unigenes were significantly upregulated and downregulated, respectively, in abortive ovules, compared with developing ovules. Quantitative real-time polymerase chain reaction analysis was used in order to verify the differential expression of some genes. The transcriptome and digital gene expression profiling data of normally developing and abortive ovules in hazelnut provide exhaustive information that will improve our understanding of the molecular mechanisms of abortive ovule formation in hazelnut.

  13. Genome-wide analysis on Chlamydomonas reinhardtii reveals the impact of hydrogen peroxide on protein stress responses and overlap with other stress transcriptomes

    DOE PAGES

    Blaby, Ian K.; Blaby-Haas, Crysten E.; Pérez-Pérez, María Esther; ...

    2015-12-07

    Reactive oxygen species (ROS) are produced by and have the potential to be damaging to all aerobic organisms. In photosynthetic organisms, they are an unavoidable byproduct of electron transfer in both the chloroplast and mitochondrion. Here, in this paper, we employ the reference unicellular green alga Chlamydomonas reinhardtii to identify the effect of H 2O 2 on gene expression by monitoring the changes in the transcriptome in a time-course experiment. Comparison of transcriptomes from cells sampled immediately prior to the addition of H 2O 2 and 0.5 and 1 h subsequently revealed 1278 differentially abundant transcripts. Of those transcripts thatmore » increase in abundance, many encode proteins involved in ROS detoxification, protein degradation and stress responses, whereas among those that decrease are transcripts encoding proteins involved in photosynthesis and central carbon metabolism. In addition to these transcriptomic adjustments, we observe that addition of H 2O 2 is followed by an accumulation and oxidation of the total intracellular glutathione pool, and a decrease in photosynthetic O 2 output. Additionally, we analyze our transcriptomes in the context of changes in transcript abundance in response to singlet O 2 (O 2 *), and relate our H 2O 2-induced transcripts to a diurnal transcriptome, where we demonstrate enrichments of H 2O 2-induced transcripts early in the light phase, late in the light phase and 2 h prior to light. In conclusion, on this basis several genes that are highlighted in this work may be involved in previously undiscovered stress remediation pathways or acclimation responses.« less

  14. Single-cell transcriptomes identify human islet cell signatures and reveal cell-type–specific expression changes in type 2 diabetes

    PubMed Central

    Bolisetty, Mohan; Kursawe, Romy; Sun, Lili; Sivakamasundari, V.; Kycia, Ina

    2017-01-01

    Blood glucose levels are tightly controlled by the coordinated action of at least four cell types constituting pancreatic islets. Changes in the proportion and/or function of these cells are associated with genetic and molecular pathophysiology of monogenic, type 1, and type 2 (T2D) diabetes. Cellular heterogeneity impedes precise understanding of the molecular components of each islet cell type that govern islet (dys)function, particularly the less abundant delta and gamma/pancreatic polypeptide (PP) cells. Here, we report single-cell transcriptomes for 638 cells from nondiabetic (ND) and T2D human islet samples. Analyses of ND single-cell transcriptomes identified distinct alpha, beta, delta, and PP/gamma cell-type signatures. Genes linked to rare and common forms of islet dysfunction and diabetes were expressed in the delta and PP/gamma cell types. Moreover, this study revealed that delta cells specifically express receptors that receive and coordinate systemic cues from the leptin, ghrelin, and dopamine signaling pathways implicating them as integrators of central and peripheral metabolic signals into the pancreatic islet. Finally, single-cell transcriptome profiling revealed genes differentially regulated between T2D and ND alpha, beta, and delta cells that were undetectable in paired whole islet analyses. This study thus identifies fundamental cell-type–specific features of pancreatic islet (dys)function and provides a critical resource for comprehensive understanding of islet biology and diabetes pathogenesis. PMID:27864352

  15. Root Type-Specific Reprogramming of Maize Pericycle Transcriptomes by Local High Nitrate Results in Disparate Lateral Root Branching Patterns1[OPEN

    PubMed Central

    Lithio, Andrew

    2016-01-01

    The adaptability of root system architecture to unevenly distributed mineral nutrients in soil is a key determinant of plant performance. The molecular mechanisms underlying nitrate dependent plasticity of lateral root branching across the different root types of maize are only poorly understood. In this study, detailed morphological and anatomical analyses together with cell type-specific transcriptome profiling experiments combining laser capture microdissection with RNA-seq were performed to unravel the molecular signatures of lateral root formation in primary, seminal, crown, and brace roots of maize (Zea mays) upon local high nitrate stimulation. The four maize root types displayed divergent branching patterns of lateral roots upon local high nitrate stimulation. In particular, brace roots displayed an exceptional architectural plasticity compared to other root types. Transcriptome profiling revealed root type-specific transcriptomic reprogramming of pericycle cells upon local high nitrate stimulation. The alteration of the transcriptomic landscape of brace root pericycle cells in response to local high nitrate stimulation was most significant. Root type-specific transcriptome diversity in response to local high nitrate highlighted differences in the functional adaptability and systemic shoot nitrogen starvation response during development. Integration of morphological, anatomical, and transcriptomic data resulted in a framework underscoring similarity and diversity among root types grown in heterogeneous nitrate environments. PMID:26811190

  16. A large-scale full-length cDNA analysis to explore the budding yeast transcriptome

    PubMed Central

    Miura, Fumihito; Kawaguchi, Noriko; Sese, Jun; Toyoda, Atsushi; Hattori, Masahira; Morishita, Shinichi; Ito, Takashi

    2006-01-01

    We performed a large-scale cDNA analysis to explore the transcriptome of the budding yeast Saccharomyces cerevisiae. We sequenced two cDNA libraries, one from the cells exponentially growing in a minimal medium and the other from meiotic cells. Both libraries were generated by using a vector-capping method that allows the accurate mapping of transcription start sites (TSSs). Consequently, we identified 11,575 TSSs associated with 3,638 annotated genomic features, including 3,599 ORFs, to suggest that most yeast genes have two or more TSSs. In addition, we identified 45 previously undescribed introns, including those affecting current ORF annotations and those spliced alternatively. Furthermore, the analysis revealed 667 transcription units in the intergenic regions and transcripts derived from antisense strands of 367 known features. We also found that 348 ORFs carry TSSs in their 3′-halves to generate sense transcripts starting from inside the ORFs. These results indicate that the budding yeast transcriptome is considerably more complex than previously thought, and it shares many recently revealed characteristics with the transcriptomes of mammals and other higher eukaryotes. Thus, the genome-wide active transcription that generates novel classes of transcripts appears to be an intrinsic feature of the eukaryotic cells. The budding yeast will serve as a versatile model for the studies on these aspects of transcriptome, and the full-length cDNA clones can function as an invaluable resource in such studies. PMID:17101987

  17. Ethylene-induced differential gene expression during abscission of citrus leaves

    PubMed Central

    Merelo, Paz; Cercós, Manuel; Tadeo, Francisco R.; Talón, Manuel

    2008-01-01

    The main objective of this work was to identify and classify genes involved in the process of leaf abscission in Clementina de Nules (Citrus clementina Hort. Ex Tan.). A 7 K unigene citrus cDNA microarray containing 12 K spots was used to characterize the transcriptome of the ethylene-induced abscission process in laminar abscission zone-enriched tissues and the petiole of debladed leaf explants. In these conditions, ethylene induced 100% leaf explant abscission in 72 h while, in air-treated samples, the abscission period started later and took 240 h. Gene expression monitored during the first 36 h of ethylene treatment showed that out of the 12 672 cDNA microarray probes, ethylene differentially induced 725 probes distributed as follows: 216 (29.8%) probes in the laminar abscission zone and 509 (70.2%) in the petiole. Functional MIPS classification and manual annotation of differentially expressed genes highlighted key processes regulating the activation and progress of the cell separation that brings about abscission. These included cell-wall modification, lipid transport, protein biosynthesis and degradation, and differential activation of signal transduction and transcription control pathways. Expression data associated with the petiole indicated the occurrence of a double defensive strategy mediated by the activation of a biochemical programme including scavenging ROS, defence and PR genes, and a physical response mostly based on lignin biosynthesis and deposition. This work identifies new genes probably involved in the onset and development of the leaf abscission process and suggests a different but co-ordinated and complementary role for the laminar abscission zone and the petiole during the process of abscission. PMID:18515267

  18. Making Epidermal Bladder Cells Bigger: Developmental- and Salinity-Induced Endopolyploidy in a Model Halophyte.

    PubMed

    Barkla, Bronwyn J; Rhodes, Timothy; Tran, Kieu-Nga T; Wijesinghege, Chathura; Larkin, John C; Dassanayake, Maheshi

    2018-06-01

    Endopolyploidy occurs when DNA replication takes place without subsequent mitotic nuclear division, resulting in cell-specific ploidy levels within tissues. In plants, endopolyploidy plays an important role in sustaining growth and development, but only a few studies have demonstrated a role in abiotic stress response. In this study, we investigated the function of ploidy level and nuclear and cell size in leaf expansion throughout development and tracked cell type-specific ploidy in the halophyte Mesembryanthemum crystallinum In addition to developmental endopolyploidy, we examined the effects of salinity stress on ploidy level. We focused specifically on epidermal bladder cells (EBC), which are modified balloon-like trichomes, due to their large size and role in salt accumulation. Our results demonstrate that ploidy increases as the leaves expand in a similar manner for each leaf type, and ploidy levels up to 512C were recorded for nuclei in EBC of leaves of adult plants. Salt treatment led to a significant increase in ploidy levels in the EBC, and these cells showed spatially related differences in their ploidy and nuclear and cell size depending on the positions on the leaf and stem surface. Transcriptome analysis highlighted salinity-induced changes in genes involved in DNA replication, cell cycle, endoreduplication, and trichome development in EBC. The increase in cell size and ploidy observed in M. crystallinum under salinity stress may contribute to salt tolerance by increasing the storage capacity for sodium sequestration brought about by higher metabolic activity driving rapid cell enlargement in the leaf tissue and EBC. © 2018 American Society of Plant Biologists. All rights reserved.

  19. Functional Characterization of Tea (Camellia sinensis) MYB4a Transcription Factor Using an Integrative Approach

    PubMed Central

    Li, Mingzhuo; Li, Yanzhi; Guo, Lili; Gong, Niandi; Pang, Yongzheng; Jiang, Wenbo; Liu, Yajun; Jiang, Xiaolan; Zhao, Lei; Wang, Yunsheng; Xie, De-Yu; Gao, Liping; Xia, Tao

    2017-01-01

    Green tea (Camellia sinensis, Cs) abundantly produces a diverse array of phenylpropanoid compounds benefiting human health. To date, the regulation of the phenylpropanoid biosynthesis in tea remains to be investigated. Here, we report a cDNA isolated from leaf tissues, which encodes a R2R3-MYB transcription factor. Amino acid sequence alignment and phylogenetic analysis indicate that it is a member of the MYB4-subgroup and named as CsMYB4a. Transcriptional and metabolic analyses show that the expression profile of CsMYB4a is negatively correlated to the accumulation of six flavan-3-ols and other phenolic acids. GFP fusion analysis shows CsMYB4a’s localization in the nucleus. Promoters of five tea phenylpropanoid pathway genes are isolated and characterized to contain four types of AC-elements, which are targets of MYB4 members. Interaction of CsMYB4a and five promoters shows that CsMYB4a decreases all five promoters’ activity. To further characterize its function, CsMYB4a is overexpressed in tobacco plants. The resulting transgenic plants show dwarf, shrinking and yellowish leaf, and early senescence phenotypes. A further genome-wide transcriptomic analysis reveals that the expression levels of 20 tobacco genes involved in the shikimate and the phenylpropanoid pathways are significantly downregulated in transgenic tobacco plants. UPLC-MS and HPLC based metabolic profiling reveals significant reduction of total lignin content, rutin, chlorogenic acid, and phenylalanine in CsMYB4a transgenic tobacco plants. Promoter sequence analysis of the 20 tobacco genes characterizes four types of AC-elements. Further CsMYB4a-AC element and CsMYB4a-promoter interaction analyses indicate that the negative regulation of CsMYB4a on the shikimate and phenylpropanoid pathways in tobacco is via reducing promoter activity. Taken together, all data indicate that CsMYB4a negatively regulates the phenylpropanoid and shikimate pathways. Highlight: A tea (Camellia sinensis) MYB4a is characterized to encode a R2R3-MYB transcription factor. It is shown to repressively control the phenylpropanoid and shikimate pathway. PMID:28659938

  20. Transcriptomes of Trypanosoma brucei rhodesiense from sleeping sickness patients, rodents and culture: Effects of strain, growth conditions and RNA preparation methods

    PubMed Central

    Mulindwa, Julius; Leiss, Kevin; Ibberson, David; Kamanyi Marucha, Kevin; Helbig, Claudia; Melo do Nascimento, Larissa; Silvester, Eleanor; Matthews, Keith; Matovu, Enock; Enyaru, John

    2018-01-01

    All of our current knowledge of African trypanosome metabolism is based on results from trypanosomes grown in culture or in rodents. Drugs against sleeping sickness must however treat trypanosomes in humans. We here compare the transcriptomes of Trypanosoma brucei rhodesiense from the blood and cerebrospinal fluid of human patients with those of trypanosomes from culture and rodents. The data were aligned and analysed using new user-friendly applications designed for Kinetoplastid RNA-Seq data. The transcriptomes of trypanosomes from human blood and cerebrospinal fluid did not predict major metabolic differences that might affect drug susceptibility. Usefully, there were relatively few differences between the transcriptomes of trypanosomes from patients and those of similar trypanosomes grown in rats. Transcriptomes of monomorphic laboratory-adapted parasites grown in in vitro culture closely resembled those of the human parasites, but some differences were seen. In poly(A)-selected mRNA transcriptomes, mRNAs encoding some protein kinases and RNA-binding proteins were under-represented relative to mRNA that had not been poly(A) selected; further investigation revealed that the selection tends to result in loss of longer mRNAs. PMID:29474390

  1. Transcriptomes of Trypanosoma brucei rhodesiense from sleeping sickness patients, rodents and culture: Effects of strain, growth conditions and RNA preparation methods.

    PubMed

    Mulindwa, Julius; Leiss, Kevin; Ibberson, David; Kamanyi Marucha, Kevin; Helbig, Claudia; Melo do Nascimento, Larissa; Silvester, Eleanor; Matthews, Keith; Matovu, Enock; Enyaru, John; Clayton, Christine

    2018-02-01

    All of our current knowledge of African trypanosome metabolism is based on results from trypanosomes grown in culture or in rodents. Drugs against sleeping sickness must however treat trypanosomes in humans. We here compare the transcriptomes of Trypanosoma brucei rhodesiense from the blood and cerebrospinal fluid of human patients with those of trypanosomes from culture and rodents. The data were aligned and analysed using new user-friendly applications designed for Kinetoplastid RNA-Seq data. The transcriptomes of trypanosomes from human blood and cerebrospinal fluid did not predict major metabolic differences that might affect drug susceptibility. Usefully, there were relatively few differences between the transcriptomes of trypanosomes from patients and those of similar trypanosomes grown in rats. Transcriptomes of monomorphic laboratory-adapted parasites grown in in vitro culture closely resembled those of the human parasites, but some differences were seen. In poly(A)-selected mRNA transcriptomes, mRNAs encoding some protein kinases and RNA-binding proteins were under-represented relative to mRNA that had not been poly(A) selected; further investigation revealed that the selection tends to result in loss of longer mRNAs.

  2. Transcriptome Analyses of Mosaic (MSC) Mitochondrial Mutants of Cucumber in a Highly Inbred Nuclear Background

    PubMed Central

    Mróz, Tomasz L.; Eves-van den Akker, Sebastian; Bernat, Agata; Skarzyńska, Agnieszka; Pryszcz, Leszek; Olberg, Madeline; Havey, Michael J.; Bartoszewski, Grzegorz

    2018-01-01

    Cucumber (Cucumis sativus L.) has a large, paternally transmitted mitochondrial genome. Cucumber plants regenerated from cell cultures occasionally show paternally transmitted mosaic (MSC) phenotypes, characterized by slower growth, chlorotic patterns on the leaves and fruit, lower fertility, and rearrangements in their mitochondrial DNAs (mtDNAs). MSC lines 3, 12, and 16 originated from different cell cultures all established using the highly inbred, wild-type line B. These MSC lines possess different rearrangements and under-represented regions in their mtDNAs. We completed RNA-seq on normalized and non-normalized cDNA libraries from MSC3, MSC12, and MSC16 to study their nuclear gene-expression profiles relative to inbred B. Results from both libraries indicated that gene expression in MSC12 and MSC16 were more similar to each other than MSC3. Forty-one differentially expressed genes (DEGs) were upregulated and one downregulated in the MSC lines relative to B. Gene functional classifications revealed that more than half of these DEGs are associated with stress-response pathways. Consistent with this observation, we detected elevated levels of hydrogen peroxide throughout leaf tissue in all MSC lines compared to wild-type line B. These results demonstrate that independently produced MSC lines with different mitochondrial polymorphisms show unique and shared nuclear responses. This study revealed genes associated with stress response that could become selection targets to develop cucumber cultivars with increased stress tolerance, and further support of cucumber as a model plant to study nuclear-mitochondrial interactions. PMID:29330162

  3. Transcriptome analysis of symptomatic and recovered leaves of geminivirus-infected pepper (Capsicum annuum)

    PubMed Central

    2012-01-01

    Background Geminiviruses are a large and important family of plant viruses that infect a wide range of crops throughout the world. The Begomovirus genus contains species that are transmitted by whiteflies and are distributed worldwide causing disease on an array of horticultural crops. Symptom remission, in which newly developed leaves of systemically infected plants exhibit a reduction in symptom severity (recovery), has been observed on pepper (Capsicum annuum) plants infected with Pepper golden mosaic virus (PepGMV). Previous studies have shown that transcriptional and post-transcriptional gene silencing mechanisms are involved in the reduction of viral nucleic acid concentration in recovered tissue. In this study, we employed deep transcriptome sequencing methods to assess transcriptional variation in healthy (mock), symptomatic, and recovered pepper leaves following PepGMV infection. Results Differential expression analyses of the pepper leaf transcriptome from symptomatic and recovered stages revealed a total of 309 differentially expressed genes between healthy (mock) and symptomatic or recovered tissues. Computational prediction of differential expression was validated using quantitative reverse-transcription PCR confirming the robustness of our bioinformatic methods. Within the set of differentially expressed genes associated with the recovery process were genes involved in defense responses including pathogenesis-related proteins, reactive oxygen species, systemic acquired resistance, jasmonic acid biosynthesis, and ethylene signaling. No major differences were found when compared the differentially expressed genes in symptomatic and recovered tissues. On the other hand, a set of genes with novel roles in defense responses was identified including genes involved in histone modification. This latter result suggested that post-transcriptional and transcriptional gene silencing may be one of the major mechanisms involved in the recovery process. Genes orthologous to the C. annuum proteins involved in the pepper-PepGMV recovery response were identified in both Solanum lycopersicum and Solanum tuberosum suggesting conservation of components of the viral recovery response in the Solanaceae. Conclusion These data provide a valuable source of information for improving our understanding of the underlying molecular mechanisms by which pepper leaves become symptomless following infection with geminiviruses. The identification of orthologs for the majority of genes differentially expressed in recovered tissues in two major solanaceous crop species provides the basis for future comparative analyses of the viral recovery process across related taxa. PMID:23185982

  4. Transcriptome analysis of symptomatic and recovered leaves of geminivirus-infected pepper (Capsicum annuum).

    PubMed

    Góngora-Castillo, Elsa; Ibarra-Laclette, Enrique; Trejo-Saavedra, Diana L; Rivera-Bustamante, Rafael F

    2012-11-27

    Geminiviruses are a large and important family of plant viruses that infect a wide range of crops throughout the world. The Begomovirus genus contains species that are transmitted by whiteflies and are distributed worldwide causing disease on an array of horticultural crops. Symptom remission, in which newly developed leaves of systemically infected plants exhibit a reduction in symptom severity (recovery), has been observed on pepper (Capsicum annuum) plants infected with Pepper golden mosaic virus (PepGMV). Previous studies have shown that transcriptional and post-transcriptional gene silencing mechanisms are involved in the reduction of viral nucleic acid concentration in recovered tissue. In this study, we employed deep transcriptome sequencing methods to assess transcriptional variation in healthy (mock), symptomatic, and recovered pepper leaves following PepGMV infection. Differential expression analyses of the pepper leaf transcriptome from symptomatic and recovered stages revealed a total of 309 differentially expressed genes between healthy (mock) and symptomatic or recovered tissues. Computational prediction of differential expression was validated using quantitative reverse-transcription PCR confirming the robustness of our bioinformatic methods. Within the set of differentially expressed genes associated with the recovery process were genes involved in defense responses including pathogenesis-related proteins, reactive oxygen species, systemic acquired resistance, jasmonic acid biosynthesis, and ethylene signaling. No major differences were found when compared the differentially expressed genes in symptomatic and recovered tissues. On the other hand, a set of genes with novel roles in defense responses was identified including genes involved in histone modification. This latter result suggested that post-transcriptional and transcriptional gene silencing may be one of the major mechanisms involved in the recovery process. Genes orthologous to the C. annuum proteins involved in the pepper-PepGMV recovery response were identified in both Solanum lycopersicum and Solanum tuberosum suggesting conservation of components of the viral recovery response in the Solanaceae. These data provide a valuable source of information for improving our understanding of the underlying molecular mechanisms by which pepper leaves become symptomless following infection with geminiviruses. The identification of orthologs for the majority of genes differentially expressed in recovered tissues in two major solanaceous crop species provides the basis for future comparative analyses of the viral recovery process across related taxa.

  5. Morphometric analysis of Passiflora leaves: the relationship between landmarks of the vasculature and elliptical Fourier descriptors of the blade

    PubMed Central

    2017-01-01

    Abstract Background: Leaf shape among Passiflora species is spectacularly diverse. Underlying this diversity in leaf shape are profound changes in the patterning of the primary vasculature and laminar outgrowth. Each of these aspects of leaf morphology—vasculature and blade—provides different insights into leaf patterning. Results: Here, we morphometrically analyze >3300 leaves from 40 different Passiflora species collected sequentially across the vine. Each leaf is measured in two different ways: using 1) 15 homologous Procrustes-adjusted landmarks of the vasculature, sinuses, and lobes; and 2) Elliptical Fourier Descriptors (EFDs), which quantify the outline of the leaf. The ability of landmarks, EFDs, and both datasets together are compared to determine their relative ability to predict species and node position within the vine. Pairwise correlation of x and y landmark coordinates and EFD harmonic coefficients reveals close associations between traits and insights into the relationship between vasculature and blade patterning. Conclusions: Landmarks, more reflective of the vasculature, and EFDs, more reflective of the blade contour, describe both similar and distinct features of leaf morphology. Landmarks and EFDs vary in ability to predict species identity and node position in the vine and exhibit a correlational structure (both within landmark or EFD traits and between the two data types) revealing constraints between vascular and blade patterning underlying natural variation in leaf morphology among Passiflora species. PMID:28369351

  6. Erratum to: Morphometric analysis of Passiflora leaves: the relationship between landmarks of the vasculature and elliptical Fourier descriptors of the blade.

    PubMed

    Chitwood, Daniel H; Otoni, Wagner C

    2017-10-01

    Leaf shape among Passiflora species is spectacularly diverse. Underlying this diversity in leaf shape are profound changes in the patterning of the primary vasculature and laminar outgrowth. Each of these aspects of leaf morphology-vasculature and blade-provides different insights into leaf patterning. Here, we morphometrically analyze >3300 leaves from 40 different Passiflora species collected sequentially across the vine. Each leaf is measured in two different ways: using 1) 15 homologous Procrustes-adjusted landmarks of the vasculature, sinuses, and lobes; and 2) Elliptical Fourier Descriptors (EFDs), which quantify the outline of the leaf. The ability of landmarks, EFDs, and both datasets together are compared to determine their relative ability to predict species and node position within the vine. Pairwise correlation of x and y landmark coordinates and EFD harmonic coefficients reveals close associations between traits and insights into the relationship between vasculature and blade patterning. Landmarks, more reflective of the vasculature, and EFDs, more reflective of the blade contour, describe both similar and distinct features of leaf morphology. Landmarks and EFDs vary in ability to predict species identity and node position in the vine and exhibit a correlational structure (both within landmark or EFD traits and between the two data types) revealing constraints between vascular and blade patterning underlying natural variation in leaf morphology among Passiflora species. © The Authors 2017. Published by Oxford University Press.

  7. Morphometric analysis of Passiflora leaves: the relationship between landmarks of the vasculature and elliptical Fourier descriptors of the blade.

    PubMed

    Chitwood, Daniel H; Otoni, Wagner C

    2017-01-01

    Leaf shape among Passiflora species is spectacularly diverse. Underlying this diversity in leaf shape are profound changes in the patterning of the primary vasculature and laminar outgrowth. Each of these aspects of leaf morphology-vasculature and blade-provides different insights into leaf patterning. Here, we morphometrically analyze >3300 leaves from 40 different Passiflora species collected sequentially across the vine. Each leaf is measured in two different ways: using 1) 15 homologous Procrustes-adjusted landmarks of the vasculature, sinuses, and lobes; and 2) Elliptical Fourier Descriptors (EFDs), which quantify the outline of the leaf. The ability of landmarks, EFDs, and both datasets together are compared to determine their relative ability to predict species and node position within the vine. Pairwise correlation of x and y landmark coordinates and EFD harmonic coefficients reveals close associations between traits and insights into the relationship between vasculature and blade patterning. Landmarks, more reflective of the vasculature, and EFDs, more reflective of the blade contour, describe both similar and distinct features of leaf morphology. Landmarks and EFDs vary in ability to predict species identity and node position in the vine and exhibit a correlational structure (both within landmark or EFD traits and between the two data types) revealing constraints between vascular and blade patterning underlying natural variation in leaf morphology among Passiflora species. © The Author 2017. Published by Oxford University Press.

  8. Transcriptome analysis and metabolic profiling of green and red kale (Brassica oleracea var. acephala) seedlings.

    PubMed

    Jeon, Jin; Kim, Jae Kwang; Kim, HyeRan; Kim, Yeon Jeong; Park, Yun Ji; Kim, Sun Ju; Kim, Changsoo; Park, Sang Un

    2018-02-15

    Kale (Brassica oleracea var. acephala) is a rich source of numerous health-benefiting compounds, including vitamins, glucosinolates, phenolic compounds, and carotenoids. However, the genetic resources for exploiting the phyto-nutritional traits of kales are limited. To acquire precise information on secondary metabolites in kales, we performed a comprehensive analysis of the transcriptome and metabolome of green and red kale seedlings. Kale transcriptome datasets revealed 37,149 annotated genes and several secondary metabolite biosynthetic genes. HPLC analysis revealed 14 glucosinolates, 20 anthocyanins, 3 phenylpropanoids, and 6 carotenoids in the kale seedlings that were examined. Red kale contained more glucosinolates, anthocyanins, and phenylpropanoids than green kale, whereas the carotenoid contents were much higher in green kale than in red kale. Ultimately, our data will be a valuable resource for future research on kale bio-engineering and will provide basic information to define gene-to-metabolite networks in kale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Genome-wide association mapping reveals novel QTL for seedling leaf rust resistance in a worldwide collection of winter wheat

    USDA-ARS?s Scientific Manuscript database

    Leaf rust is a major disease that causes significant wheat yield losses worldwide. Growing resistant cultivars is an effective approach to reduce disease losses. The short-lived nature of leaf rust resistance (Lr) genes necessitates a continuous search for novel sources of resistance. We performe...

  10. Screening of plant resources with anti-ice nucleation activity for frost damage prevention.

    PubMed

    Suzuki, Shingo; Fukuda, Satoshi; Fukushi, Yukiharu; Arakawa, Keita

    2017-11-01

    Previous studies have shown that some polyphenols have anti-ice nucleation activity (anti-INA) against ice-nucleating bacteria that contribute to frost damage. In the present study, leaf disk freezing assay, a test of in vitro application to plant leaves, was performed for the screening of anti-INA, which inhibits the ice nucleation activity of an ice-nucleating bacterium Erwinia ananas in water droplets on the leaf surfaces. The application of polyphenols with anti-INA, kaempferol 7-O-β-glucoside and (-)-epigallocatechin gallate, to the leaf disk freezing assay by cooling at -4--6 °C for 3 h, revealed that both the compounds showed anti-INAs against E. ananas in water droplets on the leaf surfaces. Further, this assay also revealed that the extracts of five plant leaves showed high anti-INA against E. ananas in water droplets on leaf surfaces, indicating that they are the candidate resources to protect crops from frost damage.

  11. Elucidating and mining the Tulipa and Lilium transcriptomes.

    PubMed

    Moreno-Pachon, Natalia M; Leeggangers, Hendrika A C F; Nijveen, Harm; Severing, Edouard; Hilhorst, Henk; Immink, Richard G H

    2016-10-01

    Genome sequencing remains a challenge for species with large and complex genomes containing extensive repetitive sequences, of which the bulbous and monocotyledonous plants tulip and lily are examples. In such a case, sequencing of only the active part of the genome, represented by the transcriptome, is a good alternative to obtain information about gene content. In this study we aimed to generate a high quality transcriptome of tulip and lily and to make this data available as an open-access resource via a user-friendly web-based interface. The Illumina HiSeq 2000 platform was applied and the transcribed RNA was sequenced from a collection of different lily and tulip tissues, respectively. In order to obtain good transcriptome coverage and to facilitate effective data mining, assembly was done using different filtering parameters for clearing out contamination and noise of the RNAseq datasets. This analysis revealed limitations of commonly applied methods and parameter settings used in de novo transcriptome assembly. The final created transcriptomes are publicly available via a user friendly Transcriptome browser ( http://www.bioinformatics.nl/bulbs/db/species/index ). The usefulness of this resource has been exemplified by a search for all potential transcription factors in lily and tulip, with special focus on the TCP transcription factor family. This analysis and other quality parameters point out the quality of the transcriptomes, which can serve as a basis for further genomics studies in lily, tulip, and bulbous plants in general.

  12. A Systems Biology Study in Tomato Fruit Reveals Correlations between the Ascorbate Pool and Genes Involved in Ribosome Biogenesis, Translation, and the Heat-Shock Response

    PubMed Central

    Stevens, Rebecca G.; Baldet, Pierre; Bouchet, Jean-Paul; Causse, Mathilde; Deborde, Catherine; Deschodt, Claire; Faurobert, Mireille; Garchery, Cécile; Garcia, Virginie; Gautier, Hélène; Gouble, Barbara; Maucourt, Mickaël; Moing, Annick; Page, David; Petit, Johann; Poëssel, Jean-Luc; Truffault, Vincent; Rothan, Christophe

    2018-01-01

    Changing the balance between ascorbate, monodehydroascorbate, and dehydroascorbate in plant cells by manipulating the activity of enzymes involved in ascorbate synthesis or recycling of oxidized and reduced forms leads to multiple phenotypes. A systems biology approach including network analysis of the transcriptome, proteome and metabolites of RNAi lines for ascorbate oxidase, monodehydroascorbate reductase and galactonolactone dehydrogenase has been carried out in orange fruit pericarp of tomato (Solanum lycopersicum). The transcriptome of the RNAi ascorbate oxidase lines is inversed compared to the monodehydroascorbate reductase and galactonolactone dehydrogenase lines. Differentially expressed genes are involved in ribosome biogenesis and translation. This transcriptome inversion is also seen in response to different stresses in Arabidopsis. The transcriptome response is not well correlated with the proteome which, with the metabolites, are correlated to the activity of the ascorbate redox enzymes—ascorbate oxidase and monodehydroascorbate reductase. Differentially accumulated proteins include metacaspase, protein disulphide isomerase, chaperone DnaK and carbonic anhydrase and the metabolites chlorogenic acid, dehydroascorbate and alanine. The hub genes identified from the network analysis are involved in signaling, the heat-shock response and ribosome biogenesis. The results from this study therefore reveal one or several putative signals from the ascorbate pool which modify the transcriptional response and elements downstream. PMID:29491875

  13. Integrated mRNA and microRNA transcriptome analyses reveal regulation of thermal acclimation in Gymnocypris przewalskii: A case study in Tibetan Schizothoracine fish

    PubMed Central

    Tian, Fei; Zhao, Kai

    2017-01-01

    Environmental acclimation is important episode in wildlife occupation of the high-altitude Tibetan Plateau (TP). Transcriptome-wide studies on thermal acclimation mechanism in fish species are rarely revealed in Tibetan Plateau fish at high altitude. Thus, we used mRNA and miRNA transcriptome sequencing to investigate regulation of thermal acclimation in larval Tibetan naked carp, Gymnocypris przewalskii. We first remodeled the regulation network of mRNA and miRNA in thermal acclimation, and then identified differential expression of miRNAs and target mRNAs enriched in metabolic and digestive pathways. Interestingly, we identified two candidate genes contributed to normal skeletal development. The altered expression of these gene groups could potentially be associated with the developmental issues of deformity and induced larval death. Our results have three important implications: first, these findings provide strong evidences to support our hypothesis that G. przewalskii possess ability to build heat-tolerance against the controversial issue. Second, this study shows that transcriptional and post-transcriptional regulations are extensively involved in thermal acclimation. Third, the integrated mRNA and microRNA transcriptome analyses provide a large number of valuable genetic resources for future studies on environmental stress response in G. przewalskii and as a case study in Tibetan Schizothoracine fish. PMID:29045433

  14. Transcriptome analyses reveal genotype- and developmental stage-specific molecular responses to drought and salinity stresses in chickpea

    PubMed Central

    Garg, Rohini; Shankar, Rama; Thakkar, Bijal; Kudapa, Himabindu; Krishnamurthy, Lakshmanan; Mantri, Nitin; Varshney, Rajeev K.; Bhatia, Sabhyata; Jain, Mukesh

    2016-01-01

    Drought and salinity are the major factors that limit chickpea production worldwide. We performed whole transcriptome analyses of chickpea genotypes to investigate the molecular basis of drought and salinity stress response/adaptation. Phenotypic analyses confirmed the contrasting responses of the chickpea genotypes to drought or salinity stress. RNA-seq of the roots of drought and salinity related genotypes was carried out under control and stress conditions at vegetative and/or reproductive stages. Comparative analysis of the transcriptomes revealed divergent gene expression in the chickpea genotypes at different developmental stages. We identified a total of 4954 and 5545 genes exclusively regulated in drought-tolerant and salinity-tolerant genotypes, respectively. A significant fraction (~47%) of the transcription factor encoding genes showed differential expression under stress. The key enzymes involved in metabolic pathways, such as carbohydrate metabolism, photosynthesis, lipid metabolism, generation of precursor metabolites/energy, protein modification, redox homeostasis and cell wall component biogenesis, were affected by drought and/or salinity stresses. Interestingly, transcript isoforms showed expression specificity across the chickpea genotypes and/or developmental stages as illustrated by the AP2-EREBP family members. Our findings provide insights into the transcriptome dynamics and components of regulatory network associated with drought and salinity stress responses in chickpea. PMID:26759178

  15. Revealing the transcriptomic complexity of switchgrass by PacBio long-read sequencing.

    PubMed

    Zuo, Chunman; Blow, Matthew; Sreedasyam, Avinash; Kuo, Rita C; Ramamoorthy, Govindarajan Kunde; Torres-Jerez, Ivone; Li, Guifen; Wang, Mei; Dilworth, David; Barry, Kerrie; Udvardi, Michael; Schmutz, Jeremy; Tang, Yuhong; Xu, Ying

    2018-01-01

    Switchgrass ( Panicum virgatum L.) is an important bioenergy crop widely used for lignocellulosic research. While extensive transcriptomic analyses have been conducted on this species using short read-based sequencing techniques, very little has been reliably derived regarding alternatively spliced (AS) transcripts. We present an analysis of transcriptomes of six switchgrass tissue types pooled together, sequenced using Pacific Biosciences (PacBio) single-molecular long-read technology. Our analysis identified 105,419 unique transcripts covering 43,570 known genes and 8795 previously unknown genes. 45,168 are novel transcripts of known genes. A total of 60,096 AS transcripts are identified, 45,628 being novel. We have also predicted 1549 transcripts of genes involved in cell wall construction and remodeling, 639 being novel transcripts of known cell wall genes. Most of the predicted transcripts are validated against Illumina-based short reads. Specifically, 96% of the splice junction sites in all the unique transcripts are validated by at least five Illumina reads. Comparisons between genes derived from our identified transcripts and the current genome annotation revealed that among the gene set predicted by both analyses, 16,640 have different exon-intron structures. Overall, substantial amount of new information is derived from the PacBio RNA data regarding both the transcriptome and the genome of switchgrass.

  16. Transcriptome sequencing of purple petal spot region in tree peony reveals differentially expressed anthocyanin structural genes.

    PubMed

    Zhang, Yanzhao; Cheng, Yanwei; Ya, Huiyuan; Xu, Shuzhen; Han, Jianming

    2015-01-01

    The pigmented cells in defined region of a petal constitute the petal spots. Petal spots attract pollinators and are found in many angiosperm families. Several cultivars of tree peony contain a single red or purple spot at the base of petal that makes the flower more attractive for the ornamental market. So far, the understanding of the molecular mechanism of spot formation is inadequate. In this study, we sequenced the transcriptome of the purple spot and the white non-spot of tree peony flower. We assembled and annotated 67,892 unigenes. Comparative analyses of the two transcriptomes showed 1,573 differentially expressed genes, among which 933 were up-regulated, and 640 were down-regulated in the purple spot. Subsequently, we examined four anthocyanin structural genes, including PsCHS, PsF3'H, PsDFR, and PsANS, which expressed at a significantly higher level in the purple spot than in the white non-spot. We further validated the digital expression data using quantitative real-time PCR. Our result uncovered transcriptome variance between the spot and non-spot of tree peony flower, and revealed that the co-expression of four anthocyanin structural genes was responsible for spot pigment in tree peony. The data will further help to unravel the genetic mechanism of peony flower spot formation.

  17. Effects of salinity on the transcriptome of growing maize leaf cells point at cell-age specificity in the involvement of the antioxidative response in cell growth restriction

    PubMed Central

    2013-01-01

    Background Salinity inhibits growth and development of most plants. The response to salinity is complex and varies between plant organs and stages of development. It involves challenges of ion toxicities and deficiencies as well as osmotic and oxidative stresses. The range of functions affected by the stress is reflected in elaborate changes to the transcriptome. The mechanisms involved in the developmental-stage specificity of the inhibitory responses are not fully understood. The present study took advantage of the well characterized developmental progression that exists along the maize leaf, for identification of salinity induced, developmentally-associated changes to the transcriptome. Differential subtraction screening was conducted for cells of two developmental stages: from the center of the growth zone where the expansion rate is highest, and from older cells at a more distal location of the growing zone where the expansion rate is lower and the salinity restrictive effects are more pronounced. Real-Time PCR analysis was used for validation of the expression of selected genes. Results The salinity-induced changes demonstrated an age-related response of the growing tissue, with elevation of salinity-damages with increased age. Growth reduction, similar to the elevation of percentage dry matter (%DM), and Na and Cl concentrations were more pronounced in the older cells. The differential subtraction screening identified genes encoding to proteins involved in antioxidant defense, electron transfer and energy, structural proteins, transcription factors and photosynthesis proteins. Of special interest is the higher induced expression of genes involved in antioxidant protection in the young compared to older cells, which was accompanied by suppressed levels of reactive oxygen species (H2O2 and O2-). This was coupled with heightened expression in the older cells of genes that enhance cell-wall rigidity, which points at reduced potential for cell expansion. Conclusions The results demonstrate a cell-age specificity in the salinity response of growing cells, and point at involvement of the antioxidative response in cell growth restriction. Processes involved in reactive oxygen species (ROS) scavenging are more pronounced in the young cells, while the higher growth sensitivity of older cells is suggested to involve effects on cell-wall rigidity and lower protein protection. PMID:23324477

  18. Transcriptome-wide N 6 -methyladenosine methylome profiling of porcine muscle and adipose tissues reveals a potential mechanism for transcriptional regulation and differential methylation pattern.

    PubMed

    Tao, Xuelian; Chen, Jianning; Jiang, Yanzhi; Wei, Yingying; Chen, Yan; Xu, Huaming; Zhu, Li; Tang, Guoqing; Li, Mingzhou; Jiang, Anan; Shuai, Surong; Bai, Lin; Liu, Haifeng; Ma, Jideng; Jin, Long; Wen, Anxiang; Wang, Qin; Zhu, Guangxiang; Xie, Meng; Wu, Jiayun; He, Tao; Huang, Chunyu; Gao, Xiang; Li, Xuewei

    2017-04-28

    N 6 -methyladenosine (m 6 A) is the most prevalent internal form of modification in messenger RNA in higher eukaryotes and potential regulatory functions of reversible m 6 A methylation on mRNA have been revealed by mapping of m 6 A methylomes in several species. m 6 A modification in active gene regulation manifests itself as altered methylation profiles in a tissue-specific manner or in response to changing cellular or species living environment. However, up to date, there has no data on m 6 A porcine transcriptome-wide map and its potential biological roles in adipose deposition and muscle growth. In this work, we used methylated RNA immunoprecipitation with next-generation sequencing (MeRIP-Seq) technique to acquire the first ever m 6 A porcine transcriptome-wide map. Transcriptomes of muscle and adipose tissues from three different pig breeds, the wild boar, Landrace, and Rongchang pig, were used to generate these maps. Our findings show that there were 5,872 and 2,826 m 6 A peaks respectively, in the porcine muscle and adipose tissue transcriptomes. Stop codons, 3'-untranslated regions, and coding regions were found to be mainly enriched for m 6 A peaks. Gene ontology analysis revealed that common m 6 A peaks in nuclear genes are associated with transcriptional factors, suggestive of a relationship between m 6 A mRNA methylation and nuclear genome transcription. Some genes showed tissue- and breed-differential methylation, and have novel biological functions. We also found a relationship between the m 6 A methylation extent and the transcript level, suggesting a regulatory role for m 6 A in gene expression. This comprehensive map provides a solid basis for the determination of potential functional roles for RNA m 6 A modification in adipose deposition and muscle growth.

  19. Influence of socioeconomic status on the whole blood transcriptome in African Americans.

    PubMed

    Gaye, Amadou; Gibbons, Gary H; Barry, Charles; Quarells, Rakale; Davis, Sharon K

    2017-01-01

    The correlation between low socioeconomic status (SES) and poor health outcome or higher risk of disease has been consistently reported by many epidemiological studies across various race/ancestry groups. However, the biological mechanisms linking low SES to disease and/or disease risk factors are not well understood and remain relatively under-studied. The analysis of the blood transcriptome is a promising window for elucidating how social and environmental factors influence the molecular networks governing health and disease. To further define the mechanistic pathways between social determinants and health, this study examined the impact of SES on the blood transcriptome in a sample of African-Americans. An integrative approach leveraging three complementary methods (Weighted Gene Co-expression Network Analysis, Random Forest and Differential Expression) was adopted to identify the most predictive and robust transcriptome pathways associated with SES. We analyzed the expression of 15079 genes (RNA-seq) from whole blood across 36 samples. The results revealed a cluster of 141 co-expressed genes over-expressed in the low SES group. Three pro-inflammatory pathways (IL-8 Signaling, NF-κB Signaling and Dendritic Cell Maturation) are activated in this module and over-expressed in low SES. Random Forest analysis revealed 55 of the 141 genes that, collectively, predict SES with an area under the curve of 0.85. One third of the 141 genes are significantly over-expressed in the low SES group. Lower SES has consistently been linked to many social and environmental conditions acting as stressors and known to be correlated with vulnerability to chronic illnesses (e.g. asthma, diabetes) associated with a chronic inflammatory state. Our unbiased analysis of the blood transcriptome in African-Americans revealed evidence of a robust molecular signature of increased inflammation associated with low SES. The results provide a plausible link between the social factors and chronic inflammation.

  20. Transcriptomic resources for the medicinal legume Mucuna pruriens: de novo transcriptome assembly, annotation, identification and validation of EST-SSR markers.

    PubMed

    Sathyanarayana, N; Pittala, Ranjith Kumar; Tripathi, Pankaj Kumar; Chopra, Ratan; Singh, Heikham Russiachand; Belamkar, Vikas; Bhardwaj, Pardeep Kumar; Doyle, Jeff J; Egan, Ashley N

    2017-05-25

    The medicinal legume Mucuna pruriens (L.) DC. has attracted attention worldwide as a source of the anti-Parkinson's drug L-Dopa. It is also a popular green manure cover crop that offers many agronomic benefits including high protein content, nitrogen fixation and soil nutrients. The plant currently lacks genomic resources and there is limited knowledge on gene expression, metabolic pathways, and genetics of secondary metabolite production. Here, we present transcriptomic resources for M. pruriens, including a de novo transcriptome assembly and annotation, as well as differential transcript expression analyses between root, leaf, and pod tissues. We also develop microsatellite markers and analyze genetic diversity and population structure within a set of Indian germplasm accessions. One-hundred ninety-one million two hundred thirty-three thousand two hundred forty-two bp cleaned reads were assembled into 67,561 transcripts with mean length of 626 bp and N50 of 987 bp. Assembled sequences were annotated using BLASTX against public databases with over 80% of transcripts annotated. We identified 7,493 simple sequence repeat (SSR) motifs, including 787 polymorphic repeats between the parents of a mapping population. 134 SSRs from expressed sequenced tags (ESTs) were screened against 23 M. pruriens accessions from India, with 52 EST-SSRs retained after quality control. Population structure analysis using a Bayesian framework implemented in fastSTRUCTURE showed nearly similar groupings as with distance-based (neighbor-joining) and principal component analyses, with most of the accessions clustering per geographical origins. Pair-wise comparison of transcript expression in leaves, roots and pods identified 4,387 differentially expressed transcripts with the highest number occurring between roots and leaves. Differentially expressed transcripts were enriched with transcription factors and transcripts annotated as belonging to secondary metabolite pathways. The M. pruriens transcriptomic resources generated in this study provide foundational resources for gene discovery and development of molecular markers. Polymorphic SSRs identified can be used for genetic diversity, marker-trait analyses, and development of functional markers for crop improvement. The results of differential expression studies can be used to investigate genes involved in L-Dopa synthesis and other key metabolic pathways in M. pruriens.

  1. Development of genic-SSR markers by deep transcriptome sequencing in pigeonpea [Cajanus cajan (L.) Millspaugh].

    PubMed

    Dutta, Sutapa; Kumawat, Giriraj; Singh, Bikram P; Gupta, Deepak K; Singh, Sangeeta; Dogra, Vivek; Gaikwad, Kishor; Sharma, Tilak R; Raje, Ranjeet S; Bandhopadhya, Tapas K; Datta, Subhojit; Singh, Mahendra N; Bashasab, Fakrudin; Kulwal, Pawan; Wanjari, K B; K Varshney, Rajeev; Cook, Douglas R; Singh, Nagendra K

    2011-01-20

    Pigeonpea [Cajanus cajan (L.) Millspaugh], one of the most important food legumes of semi-arid tropical and subtropical regions, has limited genomic resources, particularly expressed sequence based (genic) markers. We report a comprehensive set of validated genic simple sequence repeat (SSR) markers using deep transcriptome sequencing, and its application in genetic diversity analysis and mapping. In this study, 43,324 transcriptome shotgun assembly unigene contigs were assembled from 1.696 million 454 GS-FLX sequence reads of separate pooled cDNA libraries prepared from leaf, root, stem and immature seed of two pigeonpea varieties, Asha and UPAS 120. A total of 3,771 genic-SSR loci, excluding homopolymeric and compound repeats, were identified; of which 2,877 PCR primer pairs were designed for marker development. Dinucleotide was the most common repeat motif with a frequency of 60.41%, followed by tri- (34.52%), hexa- (2.62%), tetra- (1.67%) and pentanucleotide (0.76%) repeat motifs. Primers were synthesized and tested for 772 of these loci with repeat lengths of ≥ 18 bp. Of these, 550 markers were validated for consistent amplification in eight diverse pigeonpea varieties; 71 were found to be polymorphic on agarose gel electrophoresis. Genetic diversity analysis was done on 22 pigeonpea varieties and eight wild species using 20 highly polymorphic genic-SSR markers. The number of alleles at these loci ranged from 4-10 and the polymorphism information content values ranged from 0.46 to 0.72. Neighbor-joining dendrogram showed distinct separation of the different groups of pigeonpea cultivars and wild species. Deep transcriptome sequencing of the two parental lines helped in silico identification of polymorphic genic-SSR loci to facilitate the rapid development of an intra-species reference genetic map, a subset of which was validated for expected allelic segregation in the reference mapping population. We developed 550 validated genic-SSR markers in pigeonpea using deep transcriptome sequencing. From these, 20 highly polymorphic markers were used to evaluate the genetic relationship among species of the genus Cajanus. A comprehensive set of genic-SSR markers was developed as an important genomic resource for diversity analysis and genetic mapping in pigeonpea.

  2. Development of genic-SSR markers by deep transcriptome sequencing in pigeonpea [Cajanus cajan (L.) Millspaugh

    PubMed Central

    2011-01-01

    Background Pigeonpea [Cajanus cajan (L.) Millspaugh], one of the most important food legumes of semi-arid tropical and subtropical regions, has limited genomic resources, particularly expressed sequence based (genic) markers. We report a comprehensive set of validated genic simple sequence repeat (SSR) markers using deep transcriptome sequencing, and its application in genetic diversity analysis and mapping. Results In this study, 43,324 transcriptome shotgun assembly unigene contigs were assembled from 1.696 million 454 GS-FLX sequence reads of separate pooled cDNA libraries prepared from leaf, root, stem and immature seed of two pigeonpea varieties, Asha and UPAS 120. A total of 3,771 genic-SSR loci, excluding homopolymeric and compound repeats, were identified; of which 2,877 PCR primer pairs were designed for marker development. Dinucleotide was the most common repeat motif with a frequency of 60.41%, followed by tri- (34.52%), hexa- (2.62%), tetra- (1.67%) and pentanucleotide (0.76%) repeat motifs. Primers were synthesized and tested for 772 of these loci with repeat lengths of ≥18 bp. Of these, 550 markers were validated for consistent amplification in eight diverse pigeonpea varieties; 71 were found to be polymorphic on agarose gel electrophoresis. Genetic diversity analysis was done on 22 pigeonpea varieties and eight wild species using 20 highly polymorphic genic-SSR markers. The number of alleles at these loci ranged from 4-10 and the polymorphism information content values ranged from 0.46 to 0.72. Neighbor-joining dendrogram showed distinct separation of the different groups of pigeonpea cultivars and wild species. Deep transcriptome sequencing of the two parental lines helped in silico identification of polymorphic genic-SSR loci to facilitate the rapid development of an intra-species reference genetic map, a subset of which was validated for expected allelic segregation in the reference mapping population. Conclusion We developed 550 validated genic-SSR markers in pigeonpea using deep transcriptome sequencing. From these, 20 highly polymorphic markers were used to evaluate the genetic relationship among species of the genus Cajanus. A comprehensive set of genic-SSR markers was developed as an important genomic resource for diversity analysis and genetic mapping in pigeonpea. PMID:21251263

  3. Acetylation of cell wall is required for structural integrity of the leaf surface and exerts a global impact on plant stress responses

    DOE PAGES

    Nafisi, Majse; Stranne, Maria; Fimognari, Lorenzo; ...

    2015-07-22

    Here we report that the epidermis on leaves protects plants from pathogen invasion and provides a waterproof barrier. It consists of a layer of cells that is surrounded by thick cell walls, which are partially impregnated by highly hydrophobic cuticular components. We show that the Arabidopsis T-DNA insertion mutants of REDUCED WALL ACETYLATION 2 (rwa2), previously identified as having reduced O-acetylation of both pectins and hemicelluloses, exhibit pleiotrophic phenotype on the leaf surface. The cuticle layer appeared diffused and was significantly thicker and underneath cell wall layer was interspersed with electron-dense deposits. A large number of trichomes were collapsed andmore » surface permeability of the leaves was enhanced in rwa2 as compared to the wild type. A massive reprogramming of the transcriptome was observed in rwa2 as compared to the wild type, including a coordinated up-regulation of genes involved in responses to abiotic stress, particularly detoxification of reactive oxygen species and defense against microbial pathogens (e.g., lipid transfer proteins, peroxidases). In accordance, peroxidase activities were found to be elevated in rwa2 as compared to the wild type. These results indicate that cell wall acetylation is essential for maintaining the structural integrity of leaf epidermis, and that reduction of cell wall acetylation leads to global stress responses in Arabidopsis.« less

  4. Dissecting the Root Nodule Transcriptome of Chickpea (Cicer arietinum L.)

    PubMed Central

    Kant, Chandra; Pradhan, Seema; Bhatia, Sabhyata

    2016-01-01

    A hallmark trait of chickpea (Cicer arietinum L.), like other legumes, is the capability to convert atmospheric nitrogen (N2) into ammonia (NH3) in symbiotic association with Mesorhizobium ciceri. However, the complexity of molecular networks associated with the dynamics of nodule development in chickpea need to be analyzed in depth. Hence, in order to gain insights into the chickpea nodule development, the transcriptomes of nodules at early, middle and late stages of development were sequenced using the Roche 454 platform. This generated 490.84 Mb sequence data comprising 1,360,251 reads which were assembled into 83,405 unigenes. Transcripts were annotated using Gene Ontology (GO), Cluster of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways analysis. Differential expression analysis revealed that a total of 3760 transcripts were differentially expressed in at least one of three stages, whereas 935, 117 and 2707 transcripts were found to be differentially expressed in the early, middle and late stages of nodule development respectively. MapMan analysis revealed enrichment of metabolic pathways such as transport, protein synthesis, signaling and carbohydrate metabolism during root nodulation. Transcription factors were predicted and analyzed for their differential expression during nodule development. Putative nodule specific transcripts were identified and enriched for GO categories using BiNGO which revealed many categories to be enriched during nodule development, including transcription regulators and transporters. Further, the assembled transcriptome was also used to mine for genic SSR markers. In conclusion, this study will help in enriching the transcriptomic resources implicated in understanding of root nodulation events in chickpea. PMID:27348121

  5. A transcriptomic analysis of Yersinia enterocolitica biovar 1B infecting murine macrophages reveals new mechanisms of intracellular survival

    DOE PAGES

    Bent, Zachary W.; Poorey, Kunal; Brazel, David M.; ...

    2015-04-20

    Yersinia enterocolitica is typically considered an extracellular pathogen; however, during the course of an infection, a significant number of bacteria are stably maintained within host cell vacuoles. Little is known about this population and the role it plays during an infection. To address this question and to elucidate the spatially and temporally dynamic gene expression patterns of Y. enterocoliticabiovar 1B through the course of an in vitro infection, transcriptome sequencing and differential gene expression analysis of bacteria infecting murine macrophage cells were performed under four distinct conditions. Bacteria were first grown in a nutrient-rich medium at 26°C to establish amore » baseline of gene expression that is unrelated to infection. The transcriptomes of these bacteria were then compared to bacteria grown in a conditioned cell culture medium at 37°C to identify genes that were differentially expressed in response to the increased temperature and medium but not in response to host cells. Infections were then performed, and the transcriptomes of bacteria found on the extracellular surface and intracellular compartments were analyzed individually. The upregulated genes revealed potential roles for a variety of systems in promoting intracellular virulence, including the Ysa type III secretion system, the Yts2 type II secretion system, and the Tad pilus. It was further determined that mutants of each of these systems had decreased virulence while infecting macrophages. Overall, these results reveal the complete set of genes expressed by Y. enterocolitica in response to infection and provide the groundwork for future virulence studies.« less

  6. Transcriptomic alterations during ageing reflect the shift from cancer to degenerative diseases in the elderly.

    PubMed

    Aramillo Irizar, Peer; Schäuble, Sascha; Esser, Daniela; Groth, Marco; Frahm, Christiane; Priebe, Steffen; Baumgart, Mario; Hartmann, Nils; Marthandan, Shiva; Menzel, Uwe; Müller, Julia; Schmidt, Silvio; Ast, Volker; Caliebe, Amke; König, Rainer; Krawczak, Michael; Ristow, Michael; Schuster, Stefan; Cellerino, Alessandro; Diekmann, Stephan; Englert, Christoph; Hemmerich, Peter; Sühnel, Jürgen; Guthke, Reinhard; Witte, Otto W; Platzer, Matthias; Ruppin, Eytan; Kaleta, Christoph

    2018-01-30

    Disease epidemiology during ageing shows a transition from cancer to degenerative chronic disorders as dominant contributors to mortality in the old. Nevertheless, it has remained unclear to what extent molecular signatures of ageing reflect this phenomenon. Here we report on the identification of a conserved transcriptomic signature of ageing based on gene expression data from four vertebrate species across four tissues. We find that ageing-associated transcriptomic changes follow trajectories similar to the transcriptional alterations observed in degenerative ageing diseases but are in opposite direction to the transcriptomic alterations observed in cancer. We confirm the existence of a similar antagonism on the genomic level, where a majority of shared risk alleles which increase the risk of cancer decrease the risk of chronic degenerative disorders and vice versa. These results reveal a fundamental trade-off between cancer and degenerative ageing diseases that sheds light on the pronounced shift in their epidemiology during ageing.

  7. Diurnal depression in leaf hydraulic conductance at ambient and elevated [CO2] reveals anisohydric water management in field-grown soybean

    USDA-ARS?s Scientific Manuscript database

    Diurnal cycles of photosynthesis and water use in field-grown soybean (Glycine max) are tied to light intensity and vapor pressure deficit (VPD). At high mid-day VPD, transpiration rates can lead to a decline in leaf water potential if leaf hydraulic conductance is insufficient to supply water to in...

  8. Transcriptome analysis reveals intermittent fasting-induced genetic changes in ischemic stroke.

    PubMed

    Kim, Joonki; Kang, Sung-Wook; Mallilankaraman, Karthik; Baik, Sang-Ha; Lim, James C; Balaganapathy, Priyanka; She, David T; Lok, Ker-Zhing; Fann, David Y; Thambiayah, Uma; Tang, Sung-Chun; Stranahan, Alexis M; Dheen, S Thameem; Gelderblom, Mathias; Seet, Raymond C; Karamyan, Vardan T; Vemuganti, Raghu; Sobey, Christopher G; Mattson, Mark P; Jo, Dong-Gyu; Arumugam, Thiruma V

    2018-05-01

    Genetic changes due to dietary intervention in the form of either calorie restriction (CR) or intermittent fasting (IF) are not reported in detail until now. However, it is well established that both CR and IF extend the lifespan and protect against neurodegenerative diseases and stroke. The current research aims were first to describe the transcriptomic changes in brains of IF mice and, second, to determine whether IF induces extensive transcriptomic changes following ischemic stroke to protect the brain from injury. Mice were randomly assigned to ad libitum feeding (AL), 12 (IF12) or 16 (IF16) h daily fasting. Each diet group was then subjected to sham surgery or middle cerebral artery occlusion and consecutive reperfusion. Mid-coronal sections of ipsilateral cerebral tissue were harvested at the end of the 1 h ischemic period or at 3, 12, 24 or 72 h of reperfusion, and genome-wide mRNA expression was quantified by RNA sequencing. The cerebral transcriptome of mice in AL group exhibited robust, sustained up-regulation of detrimental genetic pathways under ischemic stroke, but activation of these pathways was suppressed in IF16 group. Interestingly, the cerebral transcriptome of AL mice was largely unchanged during the 1 h of ischemia, whereas mice in IF16 group exhibited extensive up-regulation of genetic pathways involved in neuroplasticity and down-regulation of protein synthesis. Our data provide a genetic molecular framework for understanding how IF protects brain cells against damage caused by ischemic stroke, and reveal cellular signaling and bioenergetic pathways to target in the development of clinical interventions.

  9. Long-read sequencing of the coffee bean transcriptome reveals the diversity of full-length transcripts

    PubMed Central

    Cheng, Bing; Furtado, Agnelo

    2017-01-01

    Abstract Polyploidization contributes to the complexity of gene expression, resulting in numerous related but different transcripts. This study explored the transcriptome diversity and complexity of the tetraploid Arabica coffee (Coffea arabica) bean. Long-read sequencing (LRS) by Pacbio Isoform sequencing (Iso-seq) was used to obtain full-length transcripts without the difficulty and uncertainty of assembly required for reads from short-read technologies. The tetraploid transcriptome was annotated and compared with data from the sub-genome progenitors. Caffeine and sucrose genes were targeted for case analysis. An isoform-level tetraploid coffee bean reference transcriptome with 95 995 distinct transcripts (average 3236 bp) was obtained. A total of 88 715 sequences (92.42%) were annotated with BLASTx against NCBI non-redundant plant proteins, including 34 719 high-quality annotations. Further BLASTn analysis against NCBI non-redundant nucleotide sequences, Coffea canephora coding sequences with UTR, C. arabica ESTs, and Rfam resulted in 1213 sequences without hits, were potential novel genes in coffee. Longer UTRs were captured, especially in the 5΄UTRs, facilitating the identification of upstream open reading frames. The LRS also revealed more and longer transcript variants in key caffeine and sucrose metabolism genes from this polyploid genome. Long sequences (>10 kilo base) were poorly annotated. LRS technology shows the limitation of previous studies. It provides an important tool to produce a reference transcriptome including more of the diversity of full-length transcripts to help understand the biology and support the genetic improvement of polyploid species such as coffee. PMID:29048540

  10. Time-resolved dual transcriptomics reveal early induced Nicotiana benthamiana root genes and conserved infection-promoting Phytophthora palmivora effectors.

    PubMed

    Evangelisti, Edouard; Gogleva, Anna; Hainaux, Thomas; Doumane, Mehdi; Tulin, Frej; Quan, Clément; Yunusov, Temur; Floch, Kévin; Schornack, Sebastian

    2017-05-11

    Plant-pathogenic oomycetes are responsible for economically important losses in crops worldwide. Phytophthora palmivora, a tropical relative of the potato late blight pathogen, causes rotting diseases in many tropical crops including papaya, cocoa, oil palm, black pepper, rubber, coconut, durian, mango, cassava and citrus. Transcriptomics have helped to identify repertoires of host-translocated microbial effector proteins which counteract defenses and reprogram the host in support of infection. As such, these studies have helped in understanding how pathogens cause diseases. Despite the importance of P. palmivora diseases, genetic resources to allow for disease resistance breeding and identification of microbial effectors are scarce. We employed the model plant Nicotiana benthamiana to study the P. palmivora root infections at the cellular and molecular levels. Time-resolved dual transcriptomics revealed different pathogen and host transcriptome dynamics. De novo assembly of P. palmivora transcriptome and semi-automated prediction and annotation of the secretome enabled robust identification of conserved infection-promoting effectors. We show that one of them, REX3, suppresses plant secretion processes. In a survey for early transcriptionally activated plant genes we identified a N. benthamiana gene specifically induced at infected root tips that encodes a peptide with danger-associated molecular features. These results constitute a major advance in our understanding of P. palmivora diseases and establish extensive resources for P. palmivora pathogenomics, effector-aided resistance breeding and the generation of induced resistance to Phytophthora root infections. Furthermore, our approach to find infection-relevant secreted genes is transferable to other pathogen-host interactions and not restricted to plants.

  11. Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morin, Emmanuelle; Kohler, Annegret; Baker, Adam R.

    Agaricus bisporus is the model fungus for the adaptation, persistence, and growth in the humic-rich leaf-litter environment. Aside from its ecological role, A. bisporus has been an important component of the human diet for over 200 y and worldwide cultivation of the button mushroom forms a multibillion dollar industry. We present two A. bisporus genomes, their gene repertoires and transcript profiles on compost and during mushroom formation. The genomes encode a full repertoire of polysaccharide-degrading enzymes similar to that of wood-decayers. Comparative transcriptomics of mycelium grown on defined medium, casing-soil, and compost revealed genes encoding enzymes involved in xylan, cellulose,more » pectin, and protein degradation are more highly expressed in compost. The striking expansion of heme-thiolate peroxidases and etherases is distinctive from Agaricomycotina wood-decayers and suggests a broad attack on decaying lignin and related metabolites found in humic acid-rich environment. Similarly, up-regulation of these genes together with a lignolytic manganese peroxidase, multiple copper radical oxidases, and cytochrome P450s is consistent with challenges posed by complex humic-rich substrates. The gene repertoire and expression of hydrolytic enzymes in A. bisporus is substantially different from the taxonomically related ectomycorrhizal symbiont Laccaria bicolor. A common promoter motif was also identified in genes very highly expressed in humic-rich substrates. These observations reveal genetic and enzymatic mechanisms governing adaptation to the humic-rich ecological niche formed during plant degradation, further defining the critical role such fungi contribute to soil structure and carbon sequestration in terrestrial ecosystems. Genome sequence will expedite mushroom breeding for improved agronomic characteristics.« less

  12. Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche

    PubMed Central

    Morin, Emmanuelle; Kohler, Annegret; Baker, Adam R.; Foulongne-Oriol, Marie; Lombard, Vincent; Nagye, Laszlo G.; Ohm, Robin A.; Patyshakuliyeva, Aleksandrina; Brun, Annick; Aerts, Andrea L.; Bailey, Andrew M.; Billette, Christophe; Coutinho, Pedro M.; Deakin, Greg; Doddapaneni, Harshavardhan; Floudas, Dimitrios; Grimwood, Jane; Hildén, Kristiina; Kües, Ursula; LaButti, Kurt M.; Lapidus, Alla; Lindquist, Erika A.; Lucas, Susan M.; Murat, Claude; Riley, Robert W.; Salamov, Asaf A.; Schmutz, Jeremy; Subramanian, Venkataramanan; Wösten, Han A. B.; Xu, Jianping; Eastwood, Daniel C.; Foster, Gary D.; Sonnenberg, Anton S. M.; Cullen, Dan; de Vries, Ronald P.; Lundell, Taina; Hibbett, David S.; Henrissat, Bernard; Burton, Kerry S.; Kerrigan, Richard W.; Challen, Michael P.; Grigoriev, Igor V.; Martin, Francis

    2012-01-01

    Agaricus bisporus is the model fungus for the adaptation, persistence, and growth in the humic-rich leaf-litter environment. Aside from its ecological role, A. bisporus has been an important component of the human diet for over 200 y and worldwide cultivation of the “button mushroom” forms a multibillion dollar industry. We present two A. bisporus genomes, their gene repertoires and transcript profiles on compost and during mushroom formation. The genomes encode a full repertoire of polysaccharide-degrading enzymes similar to that of wood-decayers. Comparative transcriptomics of mycelium grown on defined medium, casing-soil, and compost revealed genes encoding enzymes involved in xylan, cellulose, pectin, and protein degradation are more highly expressed in compost. The striking expansion of heme-thiolate peroxidases and β-etherases is distinctive from Agaricomycotina wood-decayers and suggests a broad attack on decaying lignin and related metabolites found in humic acid-rich environment. Similarly, up-regulation of these genes together with a lignolytic manganese peroxidase, multiple copper radical oxidases, and cytochrome P450s is consistent with challenges posed by complex humic-rich substrates. The gene repertoire and expression of hydrolytic enzymes in A. bisporus is substantially different from the taxonomically related ectomycorrhizal symbiont Laccaria bicolor. A common promoter motif was also identified in genes very highly expressed in humic-rich substrates. These observations reveal genetic and enzymatic mechanisms governing adaptation to the humic-rich ecological niche formed during plant degradation, further defining the critical role such fungi contribute to soil structure and carbon sequestration in terrestrial ecosystems. Genome sequence will expedite mushroom breeding for improved agronomic characteristics. PMID:23045686

  13. Pyrosequencing the Midgut Transcriptome of the Banana Weevil Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae) Reveals Multiple Protease-Like Transcripts.

    PubMed

    Valencia, Arnubio; Wang, Haichuan; Soto, Alberto; Aristizabal, Manuel; Arboleda, Jorge W; Eyun, Seong-Il; Noriega, Daniel D; Siegfried, Blair

    2016-01-01

    The banana weevil Cosmopolites sordidus is an important and serious insect pest in most banana and plantain-growing areas of the world. In spite of the economic importance of this insect pest very little genomic and transcriptomic information exists for this species. In the present study, we characterized the midgut transcriptome of C. sordidus using massive 454-pyrosequencing. We generated over 590,000 sequencing reads that assembled into 30,840 contigs with more than 400 bp, representing a significant expansion of existing sequences available for this insect pest. Among them, 16,427 contigs contained one or more GO terms. In addition, 15,263 contigs were assigned an EC number. In-depth transcriptome analysis identified genes potentially involved in insecticide resistance, peritrophic membrane biosynthesis, immunity-related function and defense against pathogens, and Bacillus thuringiensis toxins binding proteins as well as multiple enzymes involved with protein digestion. This transcriptome will provide a valuable resource for understanding larval physiology and for identifying novel target sites and management approaches for this important insect pest.

  14. Pyrosequencing the Midgut Transcriptome of the Banana Weevil Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae) Reveals Multiple Protease-Like Transcripts

    PubMed Central

    Valencia, Arnubio; Wang, Haichuan; Soto, Alberto; Aristizabal, Manuel; Arboleda, Jorge W.; Eyun, Seong-il; Noriega, Daniel D.; Siegfried, Blair

    2016-01-01

    The banana weevil Cosmopolites sordidus is an important and serious insect pest in most banana and plantain-growing areas of the world. In spite of the economic importance of this insect pest very little genomic and transcriptomic information exists for this species. In the present study, we characterized the midgut transcriptome of C. sordidus using massive 454-pyrosequencing. We generated over 590,000 sequencing reads that assembled into 30,840 contigs with more than 400 bp, representing a significant expansion of existing sequences available for this insect pest. Among them, 16,427 contigs contained one or more GO terms. In addition, 15,263 contigs were assigned an EC number. In-depth transcriptome analysis identified genes potentially involved in insecticide resistance, peritrophic membrane biosynthesis, immunity-related function and defense against pathogens, and Bacillus thuringiensis toxins binding proteins as well as multiple enzymes involved with protein digestion. This transcriptome will provide a valuable resource for understanding larval physiology and for identifying novel target sites and management approaches for this important insect pest. PMID:26949943

  15. Long-term impact of Ophiostoma novo-ulmi on leaf traits and transpiration of branches in the Dutch elm hybrid ‘Dodoens’

    PubMed Central

    Plichta, Roman; Urban, Josef; Gebauer, Roman; Dvořák, Miloň; Ďurkovič, Jaroslav

    2016-01-01

    To better understand the long-term impact of Ophiostoma novo-ulmi Brasier on leaf physiology in ‘Dodoens’, a Dutch elm disease-tolerant hybrid, measurements of leaf area, leaf dry mass, petiole anatomy, petiole hydraulic conductivity, leaf and branch water potential, and branch sap flow were performed 3 years following an initial artificial inoculation. Although fungal hyphae were detected in fully expanded leaves, neither anatomical nor morphological traits were affected, indicating that there was no impact from the fungal hyphae on the leaves during leaf expansion. In contrast, however, infected trees showed both a lower transpiration rate of branches and a lower sap flow density. The long-term persistence of fungal hyphae inside vessels decreased the xylem hydraulic conductivity, but stomatal regulation of transpiration appeared to be unaffected as the leaf water potential in both infected and non-infected trees was similarly driven by the transpirational demands. Regardless of the fungal infection, leaves with a higher leaf mass per area ratio tended to have a higher leaf area-specific conductivity. Smaller leaves had an increased number of conduits with smaller diameters and thicker cell walls. Such a pattern could increase tolerance towards hydraulic dysfunction. Measurements of water potential and theoretical xylem conductivity revealed that petiole anatomy could predict the maximal transpiration rate. Three years following fungal inoculation, phenotypic expressions for the majority of the examined traits revealed a constitutive nature for their possible role in Dutch elm disease tolerance of ‘Dodoens’ trees. PMID:26843210

  16. Integrated genomics of Mucorales reveals novel therapeutic targets

    USDA-ARS?s Scientific Manuscript database

    Mucormycosis is a life-threatening infection caused by Mucorales fungi. We sequenced 30 fungal genomes and performed transcriptomics with three representative Rhizopus and Mucor strains with human airway epithelial cells during fungal invasion to reveal key host and fungal determinants contributing ...

  17. Revealing catastrophic failure of leaf networks under stress

    PubMed Central

    Brodribb, Timothy J.; Bienaimé, Diane; Marmottant, Philippe

    2016-01-01

    The intricate patterns of veins that adorn the leaves of land plants are among the most important networks in biology. Water flows in these leaf irrigation networks under tension and is vulnerable to embolism-forming cavitations, which cut off water supply, ultimately causing leaf death. Understanding the ways in which plants structure their vein supply network to protect against embolism-induced failure has enormous ecological and evolutionary implications, but until now there has been no way of observing dynamic failure in natural leaf networks. Here we use a new optical method that allows the initiation and spread of embolism bubbles in the leaf network to be visualized. Examining embolism-induced failure of architecturally diverse leaf networks, we found that conservative rules described the progression of hydraulic failure within veins. The most fundamental rule was that within an individual venation network, susceptibility to embolism always increased proportionally with the size of veins, and initial nucleation always occurred in the largest vein. Beyond this general framework, considerable diversity in the pattern of network failure was found between species, related to differences in vein network topology. The highest-risk network was found in a fern species, where single events caused massive disruption to leaf water supply, whereas safer networks in angiosperm leaves contained veins with composite properties, allowing a staged failure of water supply. These results reveal how the size structure of leaf venation is a critical determinant of the spread of embolism damage to leaves during drought. PMID:27071104

  18. Revealing catastrophic failure of leaf networks under stress.

    PubMed

    Brodribb, Timothy J; Bienaimé, Diane; Marmottant, Philippe

    2016-04-26

    The intricate patterns of veins that adorn the leaves of land plants are among the most important networks in biology. Water flows in these leaf irrigation networks under tension and is vulnerable to embolism-forming cavitations, which cut off water supply, ultimately causing leaf death. Understanding the ways in which plants structure their vein supply network to protect against embolism-induced failure has enormous ecological and evolutionary implications, but until now there has been no way of observing dynamic failure in natural leaf networks. Here we use a new optical method that allows the initiation and spread of embolism bubbles in the leaf network to be visualized. Examining embolism-induced failure of architecturally diverse leaf networks, we found that conservative rules described the progression of hydraulic failure within veins. The most fundamental rule was that within an individual venation network, susceptibility to embolism always increased proportionally with the size of veins, and initial nucleation always occurred in the largest vein. Beyond this general framework, considerable diversity in the pattern of network failure was found between species, related to differences in vein network topology. The highest-risk network was found in a fern species, where single events caused massive disruption to leaf water supply, whereas safer networks in angiosperm leaves contained veins with composite properties, allowing a staged failure of water supply. These results reveal how the size structure of leaf venation is a critical determinant of the spread of embolism damage to leaves during drought.

  19. Analysis of a native whitefly transcriptome and its sequence divergence with two invasive whitefly species.

    PubMed

    Wang, Xiao-Wei; Zhao, Qiong-Yi; Luan, Jun-Bo; Wang, Yu-Jun; Yan, Gen-Hong; Liu, Shu-Sheng

    2012-10-04

    Genomic divergence between invasive and native species may provide insight into the molecular basis underlying specific characteristics that drive the invasion and displacement of closely related species. In this study, we sequenced the transcriptome of an indigenous species, Asia II 3, of the Bemisia tabaci complex and compared its genetic divergence with the transcriptomes of two invasive whiteflies species, Middle East Asia Minor 1 (MEAM1) and Mediterranean (MED), respectively. More than 16 million reads of 74 base pairs in length were obtained for the Asia II 3 species using the Illumina sequencing platform. These reads were assembled into 52,535 distinct sequences (mean size: 466 bp) and 16,596 sequences were annotated with an E-value above 10-5. Protein family comparisons revealed obvious diversification among the transcriptomes of these species suggesting species-specific adaptations during whitefly evolution. On the contrary, substantial conservation of the whitefly transcriptomes was also evident, despite their differences. The overall divergence of coding sequences between the orthologous gene pairs of Asia II 3 and MEAM1 is 1.73%, which is comparable to the average divergence of Asia II 3 and MED transcriptomes (1.84%) and much higher than that of MEAM1 and MED (0.83%). This is consistent with the previous phylogenetic analyses and crossing experiments suggesting these are distinct species. We also identified hundreds of highly diverged genes and compiled sequence identify data into gene functional groups and found the most divergent gene classes are Cytochrome P450, Glutathione metabolism and Oxidative phosphorylation. These results strongly suggest that the divergence of genes related to metabolism might be the driving force of the MEAM1 and Asia II 3 differentiation. We also analyzed single nucleotide polymorphisms within the orthologous gene pairs of indigenous and invasive whiteflies which are helpful for the investigation of association between allelic and phenotypes. Our data present the most comprehensive sequences for the indigenous whitefly species Asia II 3. The extensive comparisons of Asia II 3, MEAM1 and MED transcriptomes will serve as an invaluable resource for revealing the genetic basis of whitefly invasion and the molecular mechanisms underlying their biological differences.

  20. Analysis of a native whitefly transcriptome and its sequence divergence with two invasive whitefly species

    PubMed Central

    2012-01-01

    Background Genomic divergence between invasive and native species may provide insight into the molecular basis underlying specific characteristics that drive the invasion and displacement of closely related species. In this study, we sequenced the transcriptome of an indigenous species, Asia II 3, of the Bemisia tabaci complex and compared its genetic divergence with the transcriptomes of two invasive whiteflies species, Middle East Asia Minor 1 (MEAM1) and Mediterranean (MED), respectively. Results More than 16 million reads of 74 base pairs in length were obtained for the Asia II 3 species using the Illumina sequencing platform. These reads were assembled into 52,535 distinct sequences (mean size: 466 bp) and 16,596 sequences were annotated with an E-value above 10-5. Protein family comparisons revealed obvious diversification among the transcriptomes of these species suggesting species-specific adaptations during whitefly evolution. On the contrary, substantial conservation of the whitefly transcriptomes was also evident, despite their differences. The overall divergence of coding sequences between the orthologous gene pairs of Asia II 3 and MEAM1 is 1.73%, which is comparable to the average divergence of Asia II 3 and MED transcriptomes (1.84%) and much higher than that of MEAM1 and MED (0.83%). This is consistent with the previous phylogenetic analyses and crossing experiments suggesting these are distinct species. We also identified hundreds of highly diverged genes and compiled sequence identify data into gene functional groups and found the most divergent gene classes are Cytochrome P450, Glutathione metabolism and Oxidative phosphorylation. These results strongly suggest that the divergence of genes related to metabolism might be the driving force of the MEAM1 and Asia II 3 differentiation. We also analyzed single nucleotide polymorphisms within the orthologous gene pairs of indigenous and invasive whiteflies which are helpful for the investigation of association between allelic and phenotypes. Conclusions Our data present the most comprehensive sequences for the indigenous whitefly species Asia II 3. The extensive comparisons of Asia II 3, MEAM1 and MED transcriptomes will serve as an invaluable resource for revealing the genetic basis of whitefly invasion and the molecular mechanisms underlying their biological differences. PMID:23036081

  1. Transcriptomic analysis of Arabidopsis developing stems: a close-up on cell wall genes

    PubMed Central

    Minic, Zoran; Jamet, Elisabeth; San-Clemente, Hélène; Pelletier, Sandra; Renou, Jean-Pierre; Rihouey, Christophe; Okinyo, Denis PO; Proux, Caroline; Lerouge, Patrice; Jouanin, Lise

    2009-01-01

    Background Different strategies (genetics, biochemistry, and proteomics) can be used to study proteins involved in cell biogenesis. The availability of the complete sequences of several plant genomes allowed the development of transcriptomic studies. Although the expression patterns of some Arabidopsis thaliana genes involved in cell wall biogenesis were identified at different physiological stages, detailed microarray analysis of plant cell wall genes has not been performed on any plant tissues. Using transcriptomic and bioinformatic tools, we studied the regulation of cell wall genes in Arabidopsis stems, i.e. genes encoding proteins involved in cell wall biogenesis and genes encoding secreted proteins. Results Transcriptomic analyses of stems were performed at three different developmental stages, i.e., young stems, intermediate stage, and mature stems. Many genes involved in the synthesis of cell wall components such as polysaccharides and monolignols were identified. A total of 345 genes encoding predicted secreted proteins with moderate or high level of transcripts were analyzed in details. The encoded proteins were distributed into 8 classes, based on the presence of predicted functional domains. Proteins acting on carbohydrates and proteins of unknown function constituted the two most abundant classes. Other proteins were proteases, oxido-reductases, proteins with interacting domains, proteins involved in signalling, and structural proteins. Particularly high levels of expression were established for genes encoding pectin methylesterases, germin-like proteins, arabinogalactan proteins, fasciclin-like arabinogalactan proteins, and structural proteins. Finally, the results of this transcriptomic analyses were compared with those obtained through a cell wall proteomic analysis from the same material. Only a small proportion of genes identified by previous proteomic analyses were identified by transcriptomics. Conversely, only a few proteins encoded by genes having moderate or high level of transcripts were identified by proteomics. Conclusion Analysis of the genes predicted to encode cell wall proteins revealed that about 345 genes had moderate or high levels of transcripts. Among them, we identified many new genes possibly involved in cell wall biogenesis. The discrepancies observed between results of this transcriptomic study and a previous proteomic study on the same material revealed post-transcriptional mechanisms of regulation of expression of genes encoding cell wall proteins. PMID:19149885

  2. Dissecting Tissue-Specific Transcriptomic Responses from Leaf and Roots under Salt Stress in Petunia hybrida Mitchell

    PubMed Central

    Villarino, Gonzalo H.; Hu, Qiwen; Scanlon, Michael J.; Mueller, Lukas; Mattson, Neil S.

    2017-01-01

    One of the primary objectives of plant biotechnology is to increase resistance to abiotic stresses, such as salinity. Salinity is a major abiotic stress and increasing crop resistant to salt continues to the present day as a major challenge. Salt stress disturbs cellular environment leading to protein misfolding, affecting normal plant growth and causing agricultural losses worldwide. The advent of state-of-the-art technologies such as high throughput mRNA sequencing (RNA-seq) has revolutionized whole-transcriptome analysis by allowing, with high precision, to measure changes in gene expression. In this work, we used tissue-specific RNA-seq to gain insight into the Petunia hybrida transcriptional responses under NaCl stress using a controlled hydroponic system. Roots and leaves samples were taken from a continuum of 48 h of acute 150 mM NaCl. This analysis revealed a set of tissue and time point specific differentially expressed genes, such as genes related to transport, signal transduction, ion homeostasis as well as novel and undescribed genes, such as Peaxi162Scf00003g04130 and Peaxi162Scf00589g00323 expressed only in roots under salt stress. In this work, we identified early and late expressed genes in response to salt stress while providing a core of differentially express genes across all time points and tissues, including the trehalose-6-phosphate synthase 1 (TPS1), a glycosyltransferase reported in salt tolerance in other species. To test the function of the novel petunia TPS1 allele, we cloned and showed that TPS1 is a functional plant gene capable of complementing the trehalose biosynthesis pathway in a yeast tps1 mutant. The list of candidate genes to enhance salt tolerance provided in this work constitutes a major effort to better understand the detrimental effects of salinity in petunia with direct implications for other economically important Solanaceous species. PMID:28771200

  3. Transcriptomic analysis reveals the roles of gibberellin-regulated genes and transcription factors in regulating bolting in lettuce (Lactuca sativa L.).

    PubMed

    Liu, Xueying; Lv, Shanshan; Liu, Ran; Fan, Shuangxi; Liu, Chaojie; Liu, Renyi; Han, Yingyan

    2018-01-01

    A cool temperature is preferred for lettuce cultivation, as high temperatures cause premature bolting. Accordingly, exploring the mechanism of bolting and preventing premature bolting is important for agriculture. To explore this relationship in depth, morphological, physiological, and transcriptomic analyses of the bolting-sensitive line S39 at the five-leaf stage grown at 37°C were performed in the present study. Based on paraffin section results, we observed that S39 began bolting on the seventh day at 37°C. During bolting in the heat-treated plants, GA3 and GA4 levels in leaves and the indoleacetic acid (IAA) level in the stem reached a maximum on the sixth day, and these high contents were maintained. Additionally, bolting begins in the fifth day after GA3 treatment in S39 plants, GA3 and GA4 increased and then decreased, reaching a maximum on the fourth day in leaves. Similarly, IAA contents reached a maximum in the stem on the fifth day. No bolting was observed in the control group grown at 25°C, and significant changes were not observed in GA3 and GA4 levels in the controls during the observation period. RNA-sequencing data implicated transcription factors (TFs) in regulating bolting in lettuce, suggesting that the high GA contents in the leaves and IAA in the stem promote bolting. TFs possibly modulate the expression of related genes, such as those encoding hormones, potentially regulating bolting in lettuce. Compared to the control group, 258 TFs were identified in the stem of the treatment group, among which 98 and 156 were differentially up- and down-regulated, respectively; in leaves, 202 and 115 TFs were differentially up- and down-regulated, respectively. Significant changes in the treated group were observed for C2H2 zinc finger, AP2-EREBP, and WRKY families, indicating that these TFs may play important roles in regulating bolting.

  4. Transcriptome-based identification and characterization of genes commonly responding to five different insecticides in the diamondback moth, Plutella xylostella.

    PubMed

    Gao, Yue; Kim, Kyungmun; Kwon, Deok Ho; Jeong, In Hong; Clark, J Marshall; Lee, Si Hyeock

    2018-01-01

    When the 3rd instar larvae of the diamondback moth (DBM), Plutella xylostella, were pretreated with sublethal doses (LC 10 ) and then subsequently exposed to lethal doses (LC 50 ) of chlorantraniliprole, cypermethrin, dinotefuran, indoxacarb and spinosad via leaf dipping, their tolerance to insecticides was significantly enhanced. To identify genes that commonly respond to the treatment of different insecticides and are responsible for the tolerance enhancement, transcriptomic profiles of larvae treated with sublethal doses of the five insecticides were compared with that of untreated control. A total of 117,181 transcripts with a mean length of 662bp were generated by de novo assembly, of which 35,329 transcripts were annotated. Among them, 125, 143, 182, 215 and 149 transcripts were determined to be up-regulated whereas 67, 45, 60, 60 and 38 genes were down-regulated following treatments with chlorantraniliprole, cypermethrin, dinotefuran, indoxacarb and spinosad, respectively. Gene ontology (GO) analysis of differentially expressed genes (DEGs) revealed little differences in their GO profiles between treatments with different insecticides except for spinosad. Finally, the DEGs commonly responding to all insecticides were selected for further characterization, and some of their over-transcription levels were confirmed by quantitative PCR. The most notable examples of commonly responding over-transcribed genes were two cytochrome P450 genes (Cyp301a1 and Cyp9e2) and nine cuticular protein genes. In contrast, several genes composing the mitochondrial energy generation system were significantly down-regulated in all treated larvae. Considering the distinct structure and mode of action of the five insecticides tested, the differentially expressed genes identified in this study appear to be involved in general chemical defense at the initial stage of intoxication. Their possible roles in the tolerance/resistance development were discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. L-Theanine Content and Related Gene Expression: Novel Insights into Theanine Biosynthesis and Hydrolysis among Different Tea Plant (Camellia sinensis L.) Tissues and Cultivars

    PubMed Central

    Liu, Zhi-Wei; Wu, Zhi-Jun; Li, Hui; Wang, Yong-Xin; Zhuang, Jing

    2017-01-01

    L-Theanine content has tissues and cultivars specificity in tea plant (Camellia sinensis L.), the correlations of theanine metabolic related genes expression profiles with theanine contents were explored in this study. L-theanine contents in the bud and 1st leaf, 2nd leaf, 3rd leaf, old leaf, stem, and lateral root were determined by HPLC from three C. sinensis cultivars, namely ‘Huangjinya’, ‘Anjibaicha’, and ‘Yingshuang’, respectively. The theanine contents in leaves and root of ‘Huangjinya’ were the highest, followed by ‘Anjibaicha’, and ‘Yingshuang’. The theanine contents in the leaves reduced as the leaf mature gradually, and in stem were the least. Seventeen genes encoding enzymes involved in theanine metabolism were identified from GenBank and our tea transcriptome database, including CsTS1, CsTS2, CsGS1, CsGS2, CsGOGAT-Fe, CsGOGAT-NAD(P)H, CsGDH1, CsGDH2, CsALT, CsSAMDC, CsADC, CsCuAO, CsPAO, CsNiR, CsNR, CsGGT1, and CsGGT3. The transcript profiles of those seventeen genes in the different tissues of three tea plant cultivars were analyzed comparatively. Among the different cultivars, the transcript levels of most selected genes in ‘Huangjinya’ were significantly higher than that in the ‘Anjibaicha’ and ‘Yingshuang’. Among the different tissues, the transcript levels of CsTS2, CsGS1, and CsGDH2 almost showed positive correlation with the theanine contents, while the other genes showed negative correlation with the theanine contents in most cases. The theanine contents showed correlations with related genes expression levels among cultivars and tissues of tea plant, and were determined by the integrated effect of the metabolic related genes. PMID:28439281

  6. Pyrosequencing the Bemisia tabaci Transcriptome Reveals a Highly Diverse Bacterial Community and a Robust System for Insecticide Resistance

    PubMed Central

    Wu, Qing-jun; Wang, Shao-li; Yang, Xin; Yang, Ni-na; Li, Ru-mei; Jiao, Xiao-guo; Pan, Hui-peng; Liu, Bai-ming; Su, Qi; Xu, Bao-yun; Hu, Song-nian; Zhou, Xu-guo; Zhang, You-jun

    2012-01-01

    Background Bemisia tabaci (Gennadius) is a phloem-feeding insect poised to become one of the major insect pests in open field and greenhouse production systems throughout the world. The high level of resistance to insecticides is a main factor that hinders continued use of insecticides for suppression of B. tabaci. Despite its prevalence, little is known about B. tabaci at the genome level. To fill this gap, an invasive B. tabaci B biotype was subjected to pyrosequencing-based transcriptome analysis to identify genes and gene networks putatively involved in various physiological and toxicological processes. Methodology and Principal Findings Using Roche 454 pyrosequencing, 857,205 reads containing approximately 340 megabases were obtained from the B. tabaci transcriptome. De novo assembly generated 178,669 unigenes including 30,980 from insects, 17,881 from bacteria, and 129,808 from the nohit. A total of 50,835 (28.45%) unigenes showed similarity to the non-redundant database in GenBank with a cut-off E-value of 10–5. Among them, 40,611 unigenes were assigned to one or more GO terms and 6,917 unigenes were assigned to 288 known pathways. De novo metatranscriptome analysis revealed highly diverse bacterial symbionts in B. tabaci, and demonstrated the host-symbiont cooperation in amino acid production. In-depth transcriptome analysis indentified putative molecular markers, and genes potentially involved in insecticide resistance and nutrient digestion. The utility of this transcriptome was validated by a thiamethoxam resistance study, in which annotated cytochrome P450 genes were significantly overexpressed in the resistant B. tabaci in comparison to its susceptible counterparts. Conclusions This transcriptome/metatranscriptome analysis sheds light on the molecular understanding of symbiosis and insecticide resistance in an agriculturally important phloem-feeding insect pest, and lays the foundation for future functional genomics research of the B. tabaci complex. Moreover, current pyrosequencing effort greatly enriched the existing whitefly EST database, and makes RNAseq a viable option for future genomic analysis. PMID:22558125

  7. Proteomic Analysis Reveals the Leaf Color Regulation Mechanism in Chimera Hosta “Gold Standard” Leaves

    PubMed Central

    Yu, Juanjuan; Zhang, Jinzheng; Zhao, Qi; Liu, Yuelu; Chen, Sixue; Guo, Hongliang; Shi, Lei; Dai, Shaojun

    2016-01-01

    Leaf color change of variegated leaves from chimera species is regulated by fine-tuned molecular mechanisms. Hosta “Gold Standard” is a typical chimera Hosta species with golden-green variegated leaves, which is an ideal material to investigate the molecular mechanisms of leaf variegation. In this study, the margin and center regions of young and mature leaves from Hosta “Gold Standard”, as well as the leaves from plants after excess nitrogen fertilization were studied using physiological and comparative proteomic approaches. We identified 31 differentially expressed proteins in various regions and development stages of variegated leaves. Some of them may be related to the leaf color regulation in Hosta “Gold Standard”. For example, cytosolic glutamine synthetase (GS1), heat shock protein 70 (Hsp70), and chloroplastic elongation factor G (cpEF-G) were involved in pigment-related nitrogen synthesis as well as protein synthesis and processing. By integrating the proteomics data with physiological results, we revealed the metabolic patterns of nitrogen metabolism, photosynthesis, energy supply, as well as chloroplast protein synthesis, import and processing in various leaf regions at different development stages. Additionally, chloroplast-localized proteoforms involved in nitrogen metabolism, photosynthesis and protein processing implied that post-translational modifications were crucial for leaf color regulation. These results provide new clues toward understanding the mechanisms of leaf color regulation in variegated leaves. PMID:27005614

  8. Microscopic and Molecular Characterization of the Prehaustorial Resistance against Wheat Leaf Rust (Puccinia triticina) in Einkorn (Triticum monococcum)

    PubMed Central

    Serfling, Albrecht; Templer, Sven E.; Winter, Peter; Ordon, Frank

    2016-01-01

    Puccinia triticina f. sp. tritici (Eriks.), the causal agent of leaf rust, causes substantial yield losses in wheat production. In wheat many major leaf rust resistance genes have been overcome by virulent races. In contrast, the prehaustorial resistance (phr) against wheat leaf rust detected in the diploid wheat Einkorn (Triticum monoccocum var. monococcum) accession PI272560 confers race-independent resistance against isolates virulent on accessions harboring resistance genes located on the A-genome of Triticum aestivum. Phr in PI272560 leads to abortion of fungal development during the formation of haustorial mother cells and to increased hydrogen peroxide concentration in comparison to the susceptible accession 36554 (Triticum boeoticum ssp. thaoudar var. reuteri). Increased peroxidase and endochitinase activity was detected in PI272560 within 6 h after inoculation (hai). Comparative transcriptome profiling using Massive Analysis of cDNA Ends (MACE) in infected and non-infected leaves detected 14220 differentially expressed tags in PI272560 and 15472 in accession 36554. Of these 2908 and 3004, respectively, could be assigned to Gene Ontology (GO) categories of which 463 were detected in both accessions and 311 were differentially expressed between the accessions. In accordance with the concept of non-host resistance in PI272560, genes with similarity to peroxidases, chitinases, β-1,3-glucanases and other pathogenesis-related genes were up-regulated within the first 8 hai, whereas up-regulation of such genes was delayed in 36554. Moreover, a Phosphoribulokinase gene contributing to non-host resistance in rice against stripe rust was exclusively expressed in the resistant accession PI272560. Gene expression underpinned physiological and phenotypic observations at the site of infection and are in accordance with the concept of non-host resistance. PMID:27881987

  9. Double-filter identification of vascular-expressed genes using Arabidopsis plants with vascular hypertrophy and hypotrophy.

    PubMed

    Ckurshumova, Wenzislava; Scarpella, Enrico; Goldstein, Rochelle S; Berleth, Thomas

    2011-08-01

    Genes expressed in vascular tissues have been identified by several strategies, usually with a focus on mature vascular cells. In this study, we explored the possibility of using two opposite types of altered tissue compositions in combination with a double-filter selection to identify genes with a high probability of vascular expression in early organ primordia. Specifically, we generated full-transcriptome microarray profiles of plants with (a) genetically strongly reduced and (b) pharmacologically vastly increased vascular tissues and identified a reproducible cohort of 158 transcripts that fulfilled the dual requirement of being underrepresented in (a) and overrepresented in (b). In order to assess the predictive value of our identification scheme for vascular gene expression, we determined the expression patterns of genes in two unbiased subsamples. First, we assessed the expression patterns of all twenty annotated transcription factor genes from the cohort of 158 genes and found that seventeen of the twenty genes were preferentially expressed in leaf vascular cells. Remarkably, fifteen of these seventeen vascular genes were clearly expressed already very early in leaf vein development. Twelve genes with published leaf expression patterns served as a second subsample to monitor the representation of vascular genes in our cohort. Of those twelve genes, eleven were preferentially expressed in leaf vascular tissues. Based on these results we propose that our compendium of 158 genes represents a sample that is highly enriched for genes expressed in vascular tissues and that our approach is particularly suited to detect genes expressed in vascular cell lineages at early stages of their inception. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. A Hydraulic Model Is Compatible with Rapid Changes in Leaf Elongation under Fluctuating Evaporative Demand and Soil Water Status1[C][W][OPEN

    PubMed Central

    Caldeira, Cecilio F.; Bosio, Mickael; Parent, Boris; Jeanguenin, Linda; Chaumont, François; Tardieu, François

    2014-01-01

    Plants are constantly facing rapid changes in evaporative demand and soil water content, which affect their water status and growth. In apparent contradiction to a hydraulic hypothesis, leaf elongation rate (LER) declined in the morning and recovered upon soil rehydration considerably quicker than transpiration rate and leaf water potential (typical half-times of 30 min versus 1–2 h). The morning decline of LER began at very low light and transpiration and closely followed the stomatal opening of leaves receiving direct light, which represent a small fraction of leaf area. A simulation model in maize (Zea mays) suggests that these findings are still compatible with a hydraulic hypothesis. The small water flux linked to stomatal aperture would be sufficient to decrease water potentials of the xylem and growing tissues, thereby causing a rapid decline of simulated LER, while the simulated water potential of mature tissues declines more slowly due to a high hydraulic capacitance. The model also captured growth patterns in the evening or upon soil rehydration. Changes in plant hydraulic conductance partly counteracted those of transpiration. Root hydraulic conductivity increased continuously in the morning, consistent with the transcript abundance of Zea maize Plasma Membrane Intrinsic Protein aquaporins. Transgenic lines underproducing abscisic acid, with lower hydraulic conductivity and higher stomatal conductance, had a LER declining more rapidly than wild-type plants. Whole-genome transcriptome and phosphoproteome analyses suggested that the hydraulic processes proposed here might be associated with other rapidly occurring mechanisms. Overall, the mechanisms and model presented here may be an essential component of drought tolerance in naturally fluctuating evaporative demand and soil moisture. PMID:24420931

  11. Transcriptomic and Proteomic Analyses of Resistant Host Responses in Arachis diogoi Challenged with Late Leaf Spot Pathogen, Phaeoisariopsis personata

    PubMed Central

    Kumar, Dilip; Kirti, Pulugurtha Bharadwaja

    2015-01-01

    Late leaf spot is a serious disease of peanut caused by the imperfect fungus, Phaeoisariopsis personata. Wild diploid species, Arachis diogoi. is reported to be highly resistant to this disease and asymptomatic. The objective of this study is to investigate the molecular responses of the wild peanut challenged with the late leaf spot pathogen using cDNA-AFLP and 2D proteomic study. A total of 233 reliable, differentially expressed genes were identified in Arachis diogoi. About one third of the TDFs exhibit no significant similarity with the known sequences in the data bases. Expressed sequence tag data showed that the characterized genes are involved in conferring resistance in the wild peanut to the pathogen challenge. Several genes for proteins involved in cell wall strengthening, hypersensitive cell death and resistance related proteins have been identified. Genes identified for other proteins appear to function in metabolism, signal transduction and defence. Nineteen TDFs based on the homology analysis of genes associated with defence, signal transduction and metabolism were further validated by quantitative real time PCR (qRT-PCR) analyses in resistant wild species in comparison with a susceptible peanut genotype in time course experiments. The proteins corresponding to six TDFs were differentially expressed at protein level also. Differentially expressed TDFs and proteins in wild peanut indicate its defence mechanism upon pathogen challenge and provide initial breakthrough of genes possibly involved in recognition events and early signalling responses to combat the pathogen through subsequent development of resistivity. This is the first attempt to elucidate the molecular basis of the response of the resistant genotype to the late leaf spot pathogen, and its defence mechanism. PMID:25646800

  12. The Differences between NAD-ME and NADP-ME Subtypes of C4 Photosynthesis: More than Decarboxylating Enzymes.

    PubMed

    Rao, Xiaolan; Dixon, Richard A

    2016-01-01

    As an adaptation to changing climatic conditions that caused high rates of photorespiration, C 4 plants have evolved to display higher photosynthetic efficiency than C 3 plants under elevated temperature, high light intensities, and drought. The C 4 plants independently evolved more than 60 times in 19 families of angiosperms to establish similar but not uniform C 4 mechanisms to concentrate CO 2 around the carboxylating enzyme Rubisco (ribulose bisphosphate carboxylase oxygenase). C 4 photosynthesis is divided into at least two basic biochemical subtypes based on the primary decarboxylating enzymes, NAD-dependent malic enzyme (NAD-ME) and NADP-dependent malic enzyme (NADP-ME). The multiple polygenetic origins of these subtypes raise questions about the association of C 4 variation between biochemical subtypes and diverse lineages. This review addresses the differences in evolutionary scenario, leaf anatomy, and especially C 4 metabolic flow, C 4 transporters, and cell-specific function deduced from recently reported cell-specific transcriptomic, proteomic, and metabolic analyses of NAD-ME and NADP-ME subtypes. Current omic analysis has revealed the extent to which component abundances differ between the two biochemical subtypes, leading to a better understanding of C 4 photosynthetic mechanisms in NAD-ME and NADP-ME subtypes.

  13. The Differences between NAD-ME and NADP-ME Subtypes of C4 Photosynthesis: More than Decarboxylating Enzymes

    PubMed Central

    Rao, Xiaolan; Dixon, Richard A.

    2016-01-01

    As an adaptation to changing climatic conditions that caused high rates of photorespiration, C4 plants have evolved to display higher photosynthetic efficiency than C3 plants under elevated temperature, high light intensities, and drought. The C4 plants independently evolved more than 60 times in 19 families of angiosperms to establish similar but not uniform C4 mechanisms to concentrate CO2 around the carboxylating enzyme Rubisco (ribulose bisphosphate carboxylase oxygenase). C4 photosynthesis is divided into at least two basic biochemical subtypes based on the primary decarboxylating enzymes, NAD-dependent malic enzyme (NAD-ME) and NADP-dependent malic enzyme (NADP-ME). The multiple polygenetic origins of these subtypes raise questions about the association of C4 variation between biochemical subtypes and diverse lineages. This review addresses the differences in evolutionary scenario, leaf anatomy, and especially C4 metabolic flow, C4 transporters, and cell-specific function deduced from recently reported cell-specific transcriptomic, proteomic, and metabolic analyses of NAD-ME and NADP-ME subtypes. Current omic analysis has revealed the extent to which component abundances differ between the two biochemical subtypes, leading to a better understanding of C4 photosynthetic mechanisms in NAD-ME and NADP-ME subtypes. PMID:27790235

  14. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants.

    PubMed

    Wei, Wei; Li, Qing-Tian; Chu, Ya-Nan; Reiter, Russel J; Yu, Xiao-Min; Zhu, Dan-Hua; Zhang, Wan-Ke; Ma, Biao; Lin, Qing; Zhang, Jin-Song; Chen, Shou-Yi

    2015-02-01

    Melatonin is a well-known agent that plays multiple roles in animals. Its possible function in plants is less clear. In the present study, we tested the effect of melatonin (N-acetyl-5-methoxytryptamine) on soybean growth and development. Coating seeds with melatonin significantly promoted soybean growth as judged from leaf size and plant height. This enhancement was also observed in soybean production and their fatty acid content. Melatonin increased pod number and seed number, but not 100-seed weight. Melatonin also improved soybean tolerance to salt and drought stresses. Transcriptome analysis revealed that salt stress inhibited expressions of genes related to binding, oxidoreductase activity/process, and secondary metabolic processes. Melatonin up-regulated expressions of the genes inhibited by salt stress, and hence alleviated the inhibitory effects of salt stress on gene expressions. Further detailed analysis of the affected pathways documents that melatonin probably achieved its promotional roles in soybean through enhancement of genes involved in cell division, photosynthesis, carbohydrate metabolism, fatty acid biosynthesis, and ascorbate metabolism. Our results demonstrate that melatonin has significant potential for improvement of soybean growth and seed production. Further study should uncover more about the molecular mechanisms of melatonin's function in soybeans and other crops. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. The Core Subunit of A Chromatin-Remodeling Complex, ZmCHB101, Plays Essential Roles in Maize Growth and Development.

    PubMed

    Yu, Xiaoming; Jiang, Lili; Wu, Rui; Meng, Xinchao; Zhang, Ai; Li, Ning; Xia, Qiong; Qi, Xin; Pang, Jinsong; Xu, Zheng-Yi; Liu, Bao

    2016-12-05

    ATP-dependent chromatin remodeling complexes play essential roles in the regulation of diverse biological processes by formulating a DNA template that is accessible to the general transcription apparatus. Although the function of chromatin remodelers in plant development has been studied in A. thaliana, how it affects growth and development of major crops (e.g., maize) remains uninvestigated. Combining genetic, genomic and bioinformatic analyses, we show here that the maize core subunit of chromatin remodeling complex, ZmCHB101, plays essential roles in growth and development of maize at both vegetative and reproductive stages. Independent ZmCHB101 RNA interference plant lines displayed abaxially curling leaf phenotype due to increase of bulliform cell numbers, and showed impaired development of tassel and cob. RNA-seq-based transcriptome profiling revealed that ZmCHB101 dictated transcriptional reprogramming of a significant set of genes involved in plant development, photosynthesis, metabolic regulation, stress response and gene expressional regulation. Intriguingly, we found that ZmCHB101 was required for maintaining normal nucleosome density and 45 S rDNA compaction. Our findings suggest that the SWI3 protein, ZmCHB101, plays pivotal roles in maize normal growth and development via regulation of chromatin structure.

  16. Multi-Omics of Tomato Glandular Trichomes Reveals Distinct Features of Central Carbon Metabolism Supporting High Productivity of Specialized Metabolites[OPEN

    PubMed Central

    Bennewitz, Stefan; Bergau, Nick; Athmer, Benedikt; Henning, Anja; Majovsky, Petra; Jiménez-Gómez, José M.

    2017-01-01

    Glandular trichomes are metabolic cell factories with the capacity to produce large quantities of secondary metabolites. Little is known about the connection between central carbon metabolism and metabolic productivity for secondary metabolites in glandular trichomes. To address this gap in our knowledge, we performed comparative metabolomics, transcriptomics, proteomics, and 13C-labeling of type VI glandular trichomes and leaves from a cultivated (Solanum lycopersicum LA4024) and a wild (Solanum habrochaites LA1777) tomato accession. Specific features of glandular trichomes that drive the formation of secondary metabolites could be identified. Tomato type VI trichomes are photosynthetic but acquire their carbon essentially from leaf sucrose. The energy and reducing power from photosynthesis are used to support the biosynthesis of secondary metabolites, while the comparatively reduced Calvin-Benson-Bassham cycle activity may be involved in recycling metabolic CO2. Glandular trichomes cope with oxidative stress by producing high levels of polyunsaturated fatty acids, oxylipins, and glutathione. Finally, distinct mechanisms are present in glandular trichomes to increase the supply of precursors for the isoprenoid pathways. Particularly, the citrate-malate shuttle supplies cytosolic acetyl-CoA and plastidic glycolysis and malic enzyme support the formation of plastidic pyruvate. A model is proposed on how glandular trichomes achieve high metabolic productivity. PMID:28408661

  17. Comparative Genomics and Transcriptomics Analyses Reveal Divergent Lifestyle Features of Nematode Endoparasitic Fungus Hirsutella minnesotensis

    PubMed Central

    Lai, Yiling; Liu, Keke; Zhang, Xinyu; Zhang, Xiaoling; Li, Kuan; Wang, Niuniu; Shu, Chi; Wu, Yunpeng; Wang, Chengshu; Bushley, Kathryn E.; Xiang, Meichun; Liu, Xingzhong

    2014-01-01

    Hirsutella minnesotensis [Ophiocordycipitaceae (Hypocreales, Ascomycota)] is a dominant endoparasitic fungus by using conidia that adhere to and penetrate the secondary stage juveniles of soybean cyst nematode. Its genome was de novo sequenced and compared with five entomopathogenic fungi in the Hypocreales and three nematode-trapping fungi in the Orbiliales (Ascomycota). The genome of H. minnesotensis is 51.4 Mb and encodes 12,702 genes enriched with transposable elements up to 32%. Phylogenomic analysis revealed that H. minnesotensis was diverged from entomopathogenic fungi in Hypocreales. Genome of H. minnesotensis is similar to those of entomopathogenic fungi to have fewer genes encoding lectins for adhesion and glycoside hydrolases for cellulose degradation, but is different from those of nematode-trapping fungi to possess more genes for protein degradation, signal transduction, and secondary metabolism. Those results indicate that H. minnesotensis has evolved different mechanism for nematode endoparasitism compared with nematode-trapping fungi. Transcriptomics analyses for the time-scale parasitism revealed the upregulations of lectins, secreted proteases and the genes for biosynthesis of secondary metabolites that could be putatively involved in host surface adhesion, cuticle degradation, and host manipulation. Genome and transcriptome analyses provided comprehensive understanding of the evolution and lifestyle of nematode endoparasitism. PMID:25359922

  18. Deciphering life history transcriptomes in different environments

    PubMed Central

    Etges, William J.; Trotter, Meredith V.; de Oliveira, Cássia C.; Rajpurohit, Subhash; Gibbs, Allen G.; Tuljapurkar, Shripad

    2014-01-01

    We compared whole transcriptome variation in six preadult stages and seven adult female ages in two populations of cactophilic Drosophila mojavensis reared on two host plants in order to understand how differences in gene expression influence standing life history variation. We used Singular Value Decomposition (SVD) to identify dominant trajectories of life cycle gene expression variation, performed pair-wise comparisons of stage and age differences in gene expression across the life cycle, identified when genes exhibited maximum levels of life cycle gene expression, and assessed population and host cactus effects on gene expression. Life cycle SVD analysis returned four significant components of transcriptional variation, revealing functional enrichment of genes responsible for growth, metabolic function, sensory perception, neural function, translation and aging. Host cactus effects on female gene expression revealed population and stage specific differences, including significant host plant effects on larval metabolism and development, as well as adult neurotransmitter binding and courtship behavior gene expression levels. In 3 - 6 day old virgin females, significant up-regulation of genes associated with meiosis and oogenesis was accompanied by down-regulation of genes associated with somatic maintenance, evidence for a life history tradeoff. The transcriptome of D. mojavensis reared in natural environments throughout its life cycle revealed core developmental transitions and genome wide influences on life history variation in natural populations. PMID:25442828

  19. Dynamic Cytology and Transcriptional Regulation of Rice Lamina Joint Development1[OPEN

    PubMed Central

    2017-01-01

    Rice (Oryza sativa) leaf angle is determined by lamina joint and is an important agricultural trait determining leaf erectness and, hence, the photosynthesis efficiency and grain yield. Genetic studies reveal a complex regulatory network of lamina joint development; however, the morphological changes, cytological transitions, and underlying transcriptional programming remain to be elucidated. A systemic morphological and cytological study reveals a dynamic developmental process and suggests a common but distinct regulation of the lamina joint. Successive and sequential cell division and expansion, cell wall thickening, and programmed cell death at the adaxial or abaxial sides form the cytological basis of the lamina joint, and the increased leaf angle results from the asymmetric cell proliferation and elongation. Analysis of the gene expression profiles at four distinct developmental stages ranging from initiation to senescence showed that genes related to cell division and growth, hormone synthesis and signaling, transcription (transcription factors), and protein phosphorylation (protein kinases) exhibit distinct spatiotemporal patterns during lamina joint development. Phytohormones play crucial roles by promoting cell differentiation and growth at early stages or regulating the maturation and senescence at later stages, which is consistent with the quantitative analysis of hormones at different stages. Further comparison with the gene expression profile of leaf inclination1, a mutant with decreased auxin and increased leaf angle, indicates the coordinated effects of hormones in regulating lamina joint. These results reveal a dynamic cytology of rice lamina joint that is fine-regulated by multiple factors, providing informative clues for illustrating the regulatory mechanisms of leaf angle and plant architecture. PMID:28500269

  20. Dynamic Cytology and Transcriptional Regulation of Rice Lamina Joint Development.

    PubMed

    Zhou, Li-Juan; Xiao, Lang-Tao; Xue, Hong-Wei

    2017-07-01

    Rice ( Oryza sativa ) leaf angle is determined by lamina joint and is an important agricultural trait determining leaf erectness and, hence, the photosynthesis efficiency and grain yield. Genetic studies reveal a complex regulatory network of lamina joint development; however, the morphological changes, cytological transitions, and underlying transcriptional programming remain to be elucidated. A systemic morphological and cytological study reveals a dynamic developmental process and suggests a common but distinct regulation of the lamina joint. Successive and sequential cell division and expansion, cell wall thickening, and programmed cell death at the adaxial or abaxial sides form the cytological basis of the lamina joint, and the increased leaf angle results from the asymmetric cell proliferation and elongation. Analysis of the gene expression profiles at four distinct developmental stages ranging from initiation to senescence showed that genes related to cell division and growth, hormone synthesis and signaling, transcription (transcription factors), and protein phosphorylation (protein kinases) exhibit distinct spatiotemporal patterns during lamina joint development. Phytohormones play crucial roles by promoting cell differentiation and growth at early stages or regulating the maturation and senescence at later stages, which is consistent with the quantitative analysis of hormones at different stages. Further comparison with the gene expression profile of leaf inclination1 , a mutant with decreased auxin and increased leaf angle, indicates the coordinated effects of hormones in regulating lamina joint. These results reveal a dynamic cytology of rice lamina joint that is fine-regulated by multiple factors, providing informative clues for illustrating the regulatory mechanisms of leaf angle and plant architecture. © 2017 American Society of Plant Biologists. All Rights Reserved.

  1. Variation in Leaf Respiration Rates at Night Correlates with Carbohydrate and Amino Acid Supply1[OPEN

    PubMed Central

    Lee, Chun Pong; Cheng, Riyan

    2017-01-01

    Plant respiration can theoretically be fueled by and dependent upon an array of central metabolism components; however, which ones are responsible for the quantitative variation found in respiratory rates is unknown. Here, large-scale screens revealed 2-fold variation in nighttime leaf respiration rate (RN) among mature leaves from an Arabidopsis (Arabidopsis thaliana) natural accession collection grown under common favorable conditions. RN variation was mostly maintained in the absence of genetic variation, which emphasized the low heritability of RN and its plasticity toward relatively small environmental differences within the sampling regime. To pursue metabolic explanations for leaf RN variation, parallel metabolite level profiling and assays of total protein and starch were performed. Within an accession, RN correlated strongly with stored carbon substrates, including starch and dicarboxylic acids, as well as sucrose, major amino acids, shikimate, and salicylic acid. Among different accessions, metabolite-RN correlations were maintained with protein, sucrose, and major amino acids but not stored carbon substrates. A complementary screen of the effect of exogenous metabolites and effectors on leaf RN revealed that (1) RN is stimulated by the uncoupler FCCP and high levels of substrates, demonstrating that both adenylate turnover and substrate supply can limit leaf RN, and (2) inorganic nitrogen did not stimulate RN, consistent with limited nighttime nitrogen assimilation. Simultaneous measurements of RN and protein synthesis revealed that these processes were largely uncorrelated in mature leaves. These results indicate that differences in preceding daytime metabolic activities are the major source of variation in mature leaf RN under favorable controlled conditions. PMID:28615345

  2. The energetic and carbon economic origins of leaf thermoregulation.

    PubMed

    Michaletz, Sean T; Weiser, Michael D; McDowell, Nate G; Zhou, Jizhong; Kaspari, Michael; Helliker, Brent R; Enquist, Brian J

    2016-08-22

    Leaf thermoregulation has been documented in a handful of studies, but the generality and origins of this pattern are unclear. We suggest that leaf thermoregulation is widespread in both space and time, and originates from the optimization of leaf traits to maximize leaf carbon gain across and within variable environments. Here we use global data for leaf temperatures, traits and photosynthesis to evaluate predictions from a novel theory of thermoregulation that synthesizes energy budget and carbon economics theories. Our results reveal that variation in leaf temperatures and physiological performance are tightly linked to leaf traits and carbon economics. The theory, parameterized with global averaged leaf traits and microclimate, predicts a moderate level of leaf thermoregulation across a broad air temperature gradient. These predictions are supported by independent data for diverse taxa spanning a global air temperature range of ∼60 °C. Moreover, our theory predicts that net carbon assimilation can be maximized by means of a trade-off between leaf thermal stability and photosynthetic stability. This prediction is supported by globally distributed data for leaf thermal and photosynthetic traits. Our results demonstrate that the temperatures of plant tissues, and not just air, are vital to developing more accurate Earth system models.

  3. Physiological and Transcriptome Responses to Combinations of Elevated CO2 and Magnesium in Arabidopsis thaliana

    PubMed Central

    Niu, Yaofang; Ahammed, Golam Jalal; Tang, Caixian; Guo, Longbiao; Yu, Jingquan

    2016-01-01

    The unprecedented rise in atmospheric CO2 concentration and injudicious fertilization or heterogeneous distribution of Mg in the soil warrant further research to understand the synergistic and holistic mechanisms involved in the plant growth regulation. This study investigated the influence of elevated CO2 (800 μL L−1) on physiological and transcriptomic profiles in Arabidopsis cultured in hydroponic media treated with 1 μM (low), 1000 μM (normal) and 10000 μM (high) Mg2+. Following 7-d treatment, elevated CO2 increased the shoot growth and chlorophyll content under both low and normal Mg supply, whereas root growth was improved exclusively under normal Mg nutrition. Notably, the effect of elevated CO2 on mineral homeostasis in both shoots and roots was less than that of Mg supply. Irrespective of CO2 treatment, high Mg increased number of young leaf but decreased root growth and absorption of P, K, Ca, Fe and Mn whereas low Mg increased the concentration of P, K, Ca and Fe in leaves. Transcriptomics results showed that elevated CO2 decreased the expression of genes related to cell redox homeostasis, cadmium response, and lipid localization, but enhanced signal transduction, protein phosphorylation, NBS-LRR disease resistance proteins and subsequently programmed cell death in low-Mg shoots. By comparison, elevated CO2 enhanced the response of lipid localization (mainly LTP transfer protein/protease inhibitor), endomembrane system, heme binding and cell wall modification in high-Mg roots. Some of these transcriptomic results are substantially in accordance with our physiological and/or biochemical analysis. The present findings broaden our current understanding on the interactive effect of elevated CO2 and Mg levels in the Arabidopsis, which may help to design the novel metabolic engineering strategies to cope with Mg deficiency/excess in crops under elevated CO2. PMID:26881808

  4. De novo transcriptome assembly databases for the butterfly orchid Phalaenopsis equestris

    PubMed Central

    Niu, Shan-Ce; Xu, Qing; Zhang, Guo-Qiang; Zhang, Yong-Qiang; Tsai, Wen-Chieh; Hsu, Jui-Ling; Liang, Chieh-Kai; Luo, Yi-Bo; Liu, Zhong-Jian

    2016-01-01

    Orchids are renowned for their spectacular flowers and ecological adaptations. After the sequencing of the genome of the tropical epiphytic orchid Phalaenopsis equestris, we combined Illumina HiSeq2000 for RNA-Seq and Trinity for de novo assembly to characterize the transcriptomes for 11 diverse P. equestris tissues representing the root, stem, leaf, flower buds, column, lip, petal, sepal and three developmental stages of seeds. Our aims were to contribute to a better understanding of the molecular mechanisms driving the analysed tissue characteristics and to enrich the available data for P. equestris. Here, we present three databases. The first dataset is the RNA-Seq raw reads, which can be used to execute new experiments with different analysis approaches. The other two datasets allow different types of searches for candidate homologues. The second dataset includes the sets of assembled unigenes and predicted coding sequences and proteins, enabling a sequence-based search. The third dataset consists of the annotation results of the aligned unigenes versus the Nonredundant (Nr) protein database, Kyoto Encyclopaedia of Genes and Genomes (KEGG) and Clusters of Orthologous Groups (COG) databases with low e-values, enabling a name-based search. PMID:27673730

  5. Transcriptome analysis during ripening of table grape berry cv. Thompson Seedless

    PubMed Central

    Balic, Iván; Vizoso, Paula; Nilo-Poyanco, Ricardo; Sanhueza, Dayan; Olmedo, Patricio; Sepúlveda, Pablo; Arriagada, Cesar; Defilippi, Bruno G.; Meneses, Claudio

    2018-01-01

    Ripening is one of the key processes associated with the development of major organoleptic characteristics of the fruit. This process has been extensively characterized in climacteric fruit, in contrast with non-climacteric fruit such as grape, where the process is less understood. With the aim of studying changes in gene expression during ripening of non-climacteric fruit, an Illumina based RNA-Seq transcriptome analysis was performed on four developmental stages, between veraison and harvest, on table grapes berries cv Thompson Seedless. Functional analysis showed a transcriptional increase in genes related with degradation processes of chlorophyll, lipids, macromolecules recycling and nucleosomes organization; accompanied by a decrease in genes related with chloroplasts integrity and amino acid synthesis pathways. It was possible to identify several processes described during leaf senescence, particularly close to harvest. Before this point, the results suggest a high transcriptional activity associated with the regulation of gene expression, cytoskeletal organization and cell wall metabolism, which can be related to growth of berries and firmness loss characteristic to this stage of development. This high metabolic activity could be associated with an increase in the transcription of genes related with glycolysis and respiration, unexpected for a non-climacteric fruit ripening. PMID:29320527

  6. Transcriptome Analysis of Gelatin Seed Treatment as a Biostimulant of Cucumber Plant Growth

    PubMed Central

    Wilson, H. T.; Xu, K.; Taylor, A. G.

    2015-01-01

    The beneficial effects of gelatin capsule seed treatment on enhanced plant growth and tolerance to abiotic stress have been reported in a number of crops, but the molecular mechanisms underlying such effects are poorly understood. Using mRNA sequencing based approach, transcriptomes of one- and two-week-old cucumber plants from gelatin capsule treated and nontreated seeds were characterized. The gelatin treated plants had greater total leaf area, fresh weight, frozen weight, and nitrogen content. Pairwise comparisons of the RNA-seq data identified 620 differentially expressed genes between treated and control two-week-old plants, consistent with the timing when the growth related measurements also showed the largest differences. Using weighted gene coexpression network analysis, significant coexpression gene network module of 208 of the 620 differentially expressed genes was identified, which included 16 hub genes in the blue module, a NAC transcription factor, a MYB transcription factor, an amino acid transporter, an ammonium transporter, a xenobiotic detoxifier-glutathione S-transferase, and others. Based on the putative functions of these genes, the identification of the significant WGCNA module and the hub genes provided important insights into the molecular mechanisms of gelatin seed treatment as a biostimulant to enhance plant growth. PMID:26558288

  7. Transcriptome analysis during ripening of table grape berry cv. Thompson Seedless.

    PubMed

    Balic, Iván; Vizoso, Paula; Nilo-Poyanco, Ricardo; Sanhueza, Dayan; Olmedo, Patricio; Sepúlveda, Pablo; Arriagada, Cesar; Defilippi, Bruno G; Meneses, Claudio; Campos-Vargas, Reinaldo

    2018-01-01

    Ripening is one of the key processes associated with the development of major organoleptic characteristics of the fruit. This process has been extensively characterized in climacteric fruit, in contrast with non-climacteric fruit such as grape, where the process is less understood. With the aim of studying changes in gene expression during ripening of non-climacteric fruit, an Illumina based RNA-Seq transcriptome analysis was performed on four developmental stages, between veraison and harvest, on table grapes berries cv Thompson Seedless. Functional analysis showed a transcriptional increase in genes related with degradation processes of chlorophyll, lipids, macromolecules recycling and nucleosomes organization; accompanied by a decrease in genes related with chloroplasts integrity and amino acid synthesis pathways. It was possible to identify several processes described during leaf senescence, particularly close to harvest. Before this point, the results suggest a high transcriptional activity associated with the regulation of gene expression, cytoskeletal organization and cell wall metabolism, which can be related to growth of berries and firmness loss characteristic to this stage of development. This high metabolic activity could be associated with an increase in the transcription of genes related with glycolysis and respiration, unexpected for a non-climacteric fruit ripening.

  8. Small RNA Transcriptome of Hibiscus Syriacus Provides Insights into the Potential Influence of microRNAs in Flower Development and Terpene Synthesis.

    PubMed

    Kim, Taewook; Park, June Hyun; Lee, Sang-Gil; Kim, Soyoung; Kim, Jihyun; Lee, Jungho; Shin, Chanseok

    2017-08-01

    MicroRNAs (miRNAs) are essential small RNA molecules that regulate the expression of target mRNAs in plants and animals. Here, we aimed to identify miRNAs and their putative targets in Hibiscus syriacus , the national flower of South Korea. We employed high-throughput sequencing of small RNAs obtained from four different tissues ( i.e. , leaf, root, flower, and ovary) and identified 33 conserved and 30 novel miRNA families, many of which showed differential tissue-specific expressions. In addition, we computationally predicted novel targets of miRNAs and validated some of them using 5' rapid amplification of cDNA ends analysis. One of the validated novel targets of miR477 was a terpene synthase, the primary gene involved in the formation of disease-resistant terpene metabolites such as sterols and phytoalexins. In addition, a predicted target of conserved miRNAs, miR396, is SHORT VEGETATIVE PHASE , which is involved in flower initiation and is duplicated in H. syriacus . Collectively, this study provides the first reliable draft of the H. syriacus miRNA transcriptome that should constitute a basis for understanding the biological roles of miRNAs in H. syriacus.

  9. AtRD22 and AtUSPL1, Members of the Plant-Specific BURP Domain Family Involved in Arabidopsis thaliana Drought Tolerance

    PubMed Central

    Harshavardhan, Vokkaliga Thammegowda; Van Son, Le; Seiler, Christiane; Junker, Astrid; Weigelt-Fischer, Kathleen; Klukas, Christian; Altmann, Thomas; Sreenivasulu, Nese; Bäumlein, Helmut; Kuhlmann, Markus

    2014-01-01

    Crop plants are regularly challenged by a range of environmental stresses which typically retard their growth and ultimately compromise economic yield. The stress response involves the reprogramming of approximately 4% of the transcriptome. Here, the behavior of AtRD22 and AtUSPL1, both members of the Arabidopsis thaliana BURP (BNM2, USP, RD22 and polygalacturonase isozyme) domain-containing gene family, has been characterized. Both genes are up-regulated as part of the abscisic acid (ABA) mediated moisture stress response. While AtRD22 transcript was largely restricted to the leaf, that of AtUSPL1 was more prevalent in the root. As the loss of function of either gene increased the plant's moisture stress tolerance, the implication was that their products act to suppress the drought stress response. In addition to the known involvement of AtUSPL1 in seed development, a further role in stress tolerance was demonstrated. Based on transcriptomic data and phenotype we concluded that the enhanced moisture stress tolerance of the two loss-of-function mutants is a consequence of an enhanced basal defense response. PMID:25333723

  10. Simultaneous transcriptome analysis of Colletotrichum gloeosporioides and tomato fruit pathosystem reveals novel fungal pathogenicity and fruit defense strategies.

    PubMed

    Alkan, Noam; Friedlander, Gilgi; Ment, Dana; Prusky, Dov; Fluhr, Robert

    2015-01-01

    The fungus Colletotrichum gloeosporioides breaches the fruit cuticle but remains quiescent until fruit ripening signals a switch to necrotrophy, culminating in devastating anthracnose disease. There is a need to understand the distinct fungal arms strategy and the simultaneous fruit response. Transcriptome analysis of fungal-fruit interactions was carried out concurrently in the appressoria, quiescent and necrotrophic stages. Conidia germinating on unripe fruit cuticle showed stage-specific transcription that was accompanied by massive fruit defense responses. The subsequent quiescent stage showed the development of dendritic-like structures and swollen hyphae within the fruit epidermis. The quiescent fungal transcriptome was characterized by activation of chromatin remodeling genes and unsuspected environmental alkalization. Fruit response was portrayed by continued highly integrated massive up-regulation of defense genes. During cuticle infection of green or ripe fruit, fungi recapitulate the same developmental stages but with differing quiescent time spans. The necrotrophic stage showed a dramatic shift in fungal metabolism and up-regulation of pathogenicity factors. Fruit response to necrotrophy showed activation of the salicylic acid pathway, climaxing in cell death. Transcriptome analysis of C. gloeosporioides infection of fruit reveals its distinct stage-specific lifestyle and the concurrent changing fruit response, deepening our perception of the unfolding fungal-fruit arms and defenses race. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  11. Transcriptomic analysis of Portunus trituberculatus reveals a critical role for WNT4 and WNT signalling in limb regeneration.

    PubMed

    Liu, Lei; Fu, Yuanyuan; Zhu, Fang; Mu, Changkao; Li, Ronghua; Song, Weiwei; Shi, Ce; Ye, Yangfang; Wang, Chunlin

    2018-06-05

    The swimming crab (Portunus trituberculatus) is among the most economically important seawater crustacean species in Asia. Despite its commercial importance and being well-studied status, genomic and transcriptomic data are scarce for this crab species. In the present study, limb bud tissue was collected at different developmental stages post amputation for transcriptomic analysis. Illumina RNA-sequencing was applied to characterise the limb regeneration transcriptome and identify the most characteristic genes. A total of 289,018 transcripts were obtained by clustering and assembly of clean reads, producing 150,869 unigenes with an average length of 956 bp. Subsequent analysis revealed WNT signalling as the key pathway involved in limb regeneration, with WNT4 a key mediator. Overall, limb regeneration appears to be regulated by multiple signalling pathways, with numerous cell differentiation, muscle growth, moult, metabolism, and immune-related genes upregulated, including WNT4, LAMA, FIP2, FSTL5, TNC, HUS1, SWI5, NCGL, SLC22, PLA2, Tdc2, SMOX, GDH, and SMPD4. This is the first experimental study done on regenerating claws of P. trituberculatus. These findings expand existing sequence resources for crab species, and will likely accelerate research into regeneration and development in crustaceans, particularly functional studies on genes involved in limb regeneration. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Draft Assembly of Elite Inbred Line PH207 Provides Insights into Genomic and Transcriptome Diversity in Maize

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirsch, Candice N.; Hirsch, Cory D.; Brohammer, Alex B.

    Intense artificial selection over the last 100 years has produced elite maize (Zea mays) inbred lines that combine to produce high-yielding hybrids. To further our understanding of how genome and transcriptome variation contribute to the production of high-yielding hybrids, we generated a draft genome assembly of the inbred line PH207 to complement and compare with the existing B73 reference sequence. B73 is a founder of the Stiff Stalk germplasm pool, while PH207 is a founder of Iodent germplasm, both of which have contributed substantially to the production of temperate commercial maize and are combined to make heterotic hybrids. Comparison ofmore » these two assemblies revealed over 2500 genes present in only one of the two genotypes and 136 gene families that have undergone extensive expansion or contraction. Transcriptome profiling revealed extensive expression variation, with as many as 10,564 differentially expressed transcripts and 7128 transcripts expressed in only one of the two genotypes in a single tissue. Genotype-specific genes were more likely to have tissue/condition-specific expression and lower transcript abundance. The availability of a high-quality genome assembly for the elite maize inbred PH207 expands our knowledge of the breadth of natural genome and transcriptome variation in elite maize inbred lines across heterotic pools.« less

  13. Transcriptome sequencing of purple petal spot region in tree peony reveals differentially expressed anthocyanin structural genes

    PubMed Central

    Zhang, Yanzhao; Cheng, Yanwei; Ya, Huiyuan; Xu, Shuzhen; Han, Jianming

    2015-01-01

    The pigmented cells in defined region of a petal constitute the petal spots. Petal spots attract pollinators and are found in many angiosperm families. Several cultivars of tree peony contain a single red or purple spot at the base of petal that makes the flower more attractive for the ornamental market. So far, the understanding of the molecular mechanism of spot formation is inadequate. In this study, we sequenced the transcriptome of the purple spot and the white non-spot of tree peony flower. We assembled and annotated 67,892 unigenes. Comparative analyses of the two transcriptomes showed 1,573 differentially expressed genes, among which 933 were up-regulated, and 640 were down-regulated in the purple spot. Subsequently, we examined four anthocyanin structural genes, including PsCHS, PsF3′H, PsDFR, and PsANS, which expressed at a significantly higher level in the purple spot than in the white non-spot. We further validated the digital expression data using quantitative real-time PCR. Our result uncovered transcriptome variance between the spot and non-spot of tree peony flower, and revealed that the co-expression of four anthocyanin structural genes was responsible for spot pigment in tree peony. The data will further help to unravel the genetic mechanism of peony flower spot formation. PMID:26583029

  14. Draft Assembly of Elite Inbred Line PH207 Provides Insights into Genomic and Transcriptome Diversity in Maize

    DOE PAGES

    Hirsch, Candice N.; Hirsch, Cory D.; Brohammer, Alex B.; ...

    2016-11-01

    Intense artificial selection over the last 100 years has produced elite maize (Zea mays) inbred lines that combine to produce high-yielding hybrids. To further our understanding of how genome and transcriptome variation contribute to the production of high-yielding hybrids, we generated a draft genome assembly of the inbred line PH207 to complement and compare with the existing B73 reference sequence. B73 is a founder of the Stiff Stalk germplasm pool, while PH207 is a founder of Iodent germplasm, both of which have contributed substantially to the production of temperate commercial maize and are combined to make heterotic hybrids. Comparison ofmore » these two assemblies revealed over 2500 genes present in only one of the two genotypes and 136 gene families that have undergone extensive expansion or contraction. Transcriptome profiling revealed extensive expression variation, with as many as 10,564 differentially expressed transcripts and 7128 transcripts expressed in only one of the two genotypes in a single tissue. Genotype-specific genes were more likely to have tissue/condition-specific expression and lower transcript abundance. The availability of a high-quality genome assembly for the elite maize inbred PH207 expands our knowledge of the breadth of natural genome and transcriptome variation in elite maize inbred lines across heterotic pools.« less

  15. Draft Assembly of Elite Inbred Line PH207 Provides Insights into Genomic and Transcriptome Diversity in Maize[OPEN

    PubMed Central

    Soifer, Ilya; Barad, Omer; Shem-Tov, Doron; Baruch, Kobi; Lu, Fei; Hernandez, Alvaro G.; Wright, Chris L.; Koehler, Klaus; Buell, C. Robin; de Leon, Natalia

    2016-01-01

    Intense artificial selection over the last 100 years has produced elite maize (Zea mays) inbred lines that combine to produce high-yielding hybrids. To further our understanding of how genome and transcriptome variation contribute to the production of high-yielding hybrids, we generated a draft genome assembly of the inbred line PH207 to complement and compare with the existing B73 reference sequence. B73 is a founder of the Stiff Stalk germplasm pool, while PH207 is a founder of Iodent germplasm, both of which have contributed substantially to the production of temperate commercial maize and are combined to make heterotic hybrids. Comparison of these two assemblies revealed over 2500 genes present in only one of the two genotypes and 136 gene families that have undergone extensive expansion or contraction. Transcriptome profiling revealed extensive expression variation, with as many as 10,564 differentially expressed transcripts and 7128 transcripts expressed in only one of the two genotypes in a single tissue. Genotype-specific genes were more likely to have tissue/condition-specific expression and lower transcript abundance. The availability of a high-quality genome assembly for the elite maize inbred PH207 expands our knowledge of the breadth of natural genome and transcriptome variation in elite maize inbred lines across heterotic pools. PMID:27803309

  16. Combined Analysis of the Fruit Metabolome and Transcriptome Reveals Candidate Genes Involved in Flavonoid Biosynthesis in Actinidia arguta.

    PubMed

    Li, Yukuo; Fang, Jinbao; Qi, Xiujuan; Lin, Miaomiao; Zhong, Yunpeng; Sun, Leiming; Cui, Wen

    2018-05-15

    To assess the interrelation between the change of metabolites and the change of fruit color, we performed a combined metabolome and transcriptome analysis of the flesh in two different Actinidia arguta cultivars: "HB" ("Hongbaoshixing") and "YF" ("Yongfengyihao") at two different fruit developmental stages: 70d (days after full bloom) and 100d (days after full bloom). Metabolite and transcript profiling was obtained by ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometer and high-throughput RNA sequencing, respectively. The identification and quantification results of metabolites showed that a total of 28,837 metabolites had been obtained, of which 13,715 were annotated. In comparison of HB100 vs. HB70, 41 metabolites were identified as being flavonoids, 7 of which, with significant difference, were identified as bracteatin, luteolin, dihydromyricetin, cyanidin, pelargonidin, delphinidin and (-)-epigallocatechin. Association analysis between metabolome and transcriptome revealed that there were two metabolic pathways presenting significant differences during fruit development, one of which was flavonoid biosynthesis, in which 14 structural genes were selected to conduct expression analysis, as well as 5 transcription factor genes obtained by transcriptome analysis. RT-qPCR results and cluster analysis revealed that AaF3H , AaLDOX , AaUFGT , AaMYB , AabHLH , and AaHB2 showed the best possibility of being candidate genes. A regulatory network of flavonoid biosynthesis was established to illustrate differentially expressed candidate genes involved in accumulation of metabolites with significant differences, inducing red coloring during fruit development. Such a regulatory network linking genes and flavonoids revealed a system involved in the pigmentation of all-red-fleshed and all-green-fleshed A. arguta , suggesting this conjunct analysis approach is not only useful in understanding the relationship between genotype and phenotype, but is also a powerful tool for providing more valuable information for breeding.

  17. Artificial Surfaces in Phyllosphere Microbiology.

    PubMed

    Doan, Hung K; Leveau, Johan H J

    2015-08-01

    The study of microorganisms that reside on plant leaf surfaces, or phyllosphere microbiology, greatly benefits from the availability of artificial surfaces that mimic in one or more ways the complexity of foliage as a microbial habitat. These leaf surface proxies range from very simple, such as nutrient agars that can reveal the metabolic versatility or antagonistic properties of leaf-associated microorganisms, to the very complex, such as silicon-based casts that replicate leaf surface topography down to nanometer resolution. In this review, we summarize the various uses of artificial surfaces in experimental phyllosphere microbiology and discuss how these have advanced our understanding of the biology of leaf-associated microorganisms and the habitat they live in. We also provide an outlook into future uses of artificial leaf surfaces, foretelling a greater role for microfluidics to introduce biological and chemical gradients into artificial leaf environments, stressing the importance of artificial surfaces to generate quantitative data that support computational models of microbial life on real leaves, and rethinking the leaf surface ('phyllosphere') as a habitat that features two intimately connected but very different compartments, i.e., the leaf surface landscape ('phylloplane') and the leaf surface waterscape ('phyllotelma').

  18. Transcriptome analysis of starch and sucrose metabolism across bulb development in Sagittaria sagittifolia.

    PubMed

    Gao, Meiping; Zhang, Shangwen; Luo, Cong; He, Xinhua; Wei, Shaolong; Jiang, Wen; He, Fanglian; Lin, Zhicheng; Yan, Meixin; Dong, Weiqong

    2018-04-05

    Sagittaria sagittifolia L is an important bulb vegetable that has high nutritional and medical value. Bulb formation and development are crucial to Sagittaria sagittifolia; however, its sucrose metabolism is poorly understood and there are a lack of sufficient transcriptomic and genomic data available to fully understand the molecular mechanisms underlying bulb formation and development as well as the bulb transcriptome. Five cDNA libraries were constructed at different developmental stages and sequenced using high-throughput Illumina RNA sequencing. From approximately 63.53 Gb clean reads, a total of 60,884 unigenes, with an average length of 897.34 bp and N50 of 1.368 kb, were obtained. A total of 36,590 unigenes were successfully annotated using five public databases. Across different developmental stages, 4195, 827, 832, 851, and 1494 were differentially expressed in T02, T03, T04, T05, and T06 libraries, respectively. Gene ontology (GO) analysis revealed several differentially-expressed genes (DEGs) associated with catalytic activity, binding, and transporter activity. The Kyoto encyclopedia of genes and genomes (KEGG) revealed that these DEGs are involved in physiological and biochemical processes. RT-qPCR was used to profile the expression of these unigenes and revealed that the expression patterns of the DEGs were consistent with the transcriptome data. In this study, we conducted a comparative gene expression analysis at the transcriptional level using RNA-seq across the different developmental stages of Sagittaria sagittifolia. We identified a set of genes that might contribute to starch and sucrose metabolism, and the genetic mechanisms related to bulblet development were also explored. This study provides important data for future studies of the genetic and molecular mechanisms underlying bulb formation and development in Sagittaria sagittifolia. Copyright © 2018. Published by Elsevier B.V.

  19. Transcriptome-wide identification and characterization of CAD isoforms specific for podophyllotoxin biosynthesis from Podophyllum hexandrum.

    PubMed

    Bhattacharyya, Dipto; Hazra, Saptarshi; Banerjee, Anindyajit; Datta, Riddhi; Kumar, Deepak; Chakrabarti, Saikat; Chattopadhyay, Sharmila

    2016-09-01

    Podophyllotoxin (ptox) is a therapeutically important lignan derived from Podophyllum hexandrum and is used as a precursor for the synthesis of anticancer drugs etoposide, teniposide and etopophose. In spite of its enormous economic significance, genomic information on this endangered medicinal herb is scarce. We have performed de novo transcriptome analysis of methyl jasmonate (MeJA)-treated P. hexandrum cell cultures exhibiting enhanced ptox accumulation. The results revealed the maximum up-regulation of several isoforms of cinnamyl alcohol dehydrogenase (CAD). CAD catalyzes the synthesis of coniferyl alcohol and sinapyl alcohol from coniferaldehyde (CAld) and sinapaldehyde respectively. Coniferyl alcohol can produce both lignin and lignan while sinapyl alcohol produces only lignin. To isolate the CAD isoforms favoring ptox, we deduced full length cDNA sequences of four CAD isoforms: PhCAD1, PhCAD2, PhCAD3 and PhCAD4 from the contigs of the transcriptome data. In vitro enzyme assays indicated a higher affinity for CAld over sinapaldehyde for each isoform. In silico molecular docking analyses also suggested that PhCAD3 has a higher binding preference with CAld over sinapaldehyde, followed by PhCAD4, PhCAD2, and PhCAD1, respectively. The transgenic cell cultures overexpressing these isoforms independently revealed that PhCAD3 favored the maximum accumulation of ptox as compared to lignin followed by PhCAD4 and PhCAD2, whereas, PhCAD1 favored both equally. Together, our study reveals transcriptome-wide identification and characterization of ptox specific CAD isoforms from P. hexandrum. It provides a useful resource for future research not only on the ptox biosynthetic pathway but on overall P. hexandrum, an endangered medicinal herb with immense therapeutic importance.

  20. Long-term impact of Ophiostoma novo-ulmi on leaf traits and transpiration of branches in the Dutch elm hybrid 'Dodoens'.

    PubMed

    Plichta, Roman; Urban, Josef; Gebauer, Roman; Dvořák, Miloň; Ďurkovič, Jaroslav

    2016-03-01

    To better understand the long-term impact of Ophiostoma novo-ulmi Brasier on leaf physiology in 'Dodoens', a Dutch elm disease-tolerant hybrid, measurements of leaf area, leaf dry mass, petiole anatomy, petiole hydraulic conductivity, leaf and branch water potential, and branch sap flow were performed 3 years following an initial artificial inoculation. Although fungal hyphae were detected in fully expanded leaves, neither anatomical nor morphological traits were affected, indicating that there was no impact from the fungal hyphae on the leaves during leaf expansion. In contrast, however, infected trees showed both a lower transpiration rate of branches and a lower sap flow density. The long-term persistence of fungal hyphae inside vessels decreased the xylem hydraulic conductivity, but stomatal regulation of transpiration appeared to be unaffected as the leaf water potential in both infected and non-infected trees was similarly driven by the transpirational demands. Regardless of the fungal infection, leaves with a higher leaf mass per area ratio tended to have a higher leaf area-specific conductivity. Smaller leaves had an increased number of conduits with smaller diameters and thicker cell walls. Such a pattern could increase tolerance towards hydraulic dysfunction. Measurements of water potential and theoretical xylem conductivity revealed that petiole anatomy could predict the maximal transpiration rate. Three years following fungal inoculation, phenotypic expressions for the majority of the examined traits revealed a constitutive nature for their possible role in Dutch elm disease tolerance of 'Dodoens' trees. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Human-specific features of spatial gene expression and regulation in eight brain regions.

    PubMed

    Xu, Chuan; Li, Qian; Efimova, Olga; He, Liu; Tatsumoto, Shoji; Stepanova, Vita; Oishi, Takao; Udono, Toshifumi; Yamaguchi, Katsushi; Shigenobu, Shuji; Kakita, Akiyoshi; Nawa, Hiroyuki; Khaitovich, Philipp; Go, Yasuhiro

    2018-06-13

    Molecular maps of the human brain alone do not inform us of the features unique to humans. Yet, the identification of these features is important for understanding both the evolution and nature of human cognition. Here, we approached this question by analyzing gene expression and H3K27ac chromatin modification data collected in eight brain regions of humans, chimpanzees, gorillas, a gibbon and macaques. An analysis of spatial transcriptome trajectories across eight brain regions in four primate species revealed 1,851 genes showing human-specific transcriptome differences in one or multiple brain regions, in contrast to 240 chimpanzee-specific ones. More than half of these human-specific differences represented elevated expression of genes enriched in neuronal and astrocytic markers in the human hippocampus, while the rest were enriched in microglial markers and displayed human-specific expression in several frontal cortical regions and the cerebellum. An analysis of the predicted regulatory interactions driving these differences revealed the role of transcription factors in species-specific transcriptome changes, while epigenetic modifications were linked to spatial expression differences conserved across species. Published by Cold Spring Harbor Laboratory Press.

  2. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP

    PubMed Central

    Hafner, Markus; Landthaler, Markus; Burger, Lukas; Khorshid, Mohsen; Hausser, Jean; Berninger, Philipp; Rothballer, Andrea; Ascano, Manuel; Jungkamp, Anna-Carina; Munschauer, Mathias; Ulrich, Alexander; Wardle, Greg S.; Dewell, Scott; Zavolan, Mihaela; Tuschl, Thomas

    2010-01-01

    Summary RNA transcripts are subject to post-transcriptional gene regulation involving hundreds of RNA-binding proteins (RBPs) and microRNA-containing ribonucleoprotein complexes (miRNPs) expressed in a cell-type dependent fashion. We developed a cell-based crosslinking approach to determine at high resolution and transcriptome-wide the binding sites of cellular RBPs and miRNPs. The crosslinked sites are revealed by thymidine to cytidine transitions in the cDNAs prepared from immunopurified RNPs of 4-thiouridine-treated cells. We determined the binding sites and regulatory consequences for several intensely studied RBPs and miRNPs, including PUM2, QKI, IGF2BP1-3, AGO/EIF2C1-4 and TNRC6A-C. Our study revealed that these factors bind thousands of sites containing defined sequence motifs and have distinct preferences for exonic versus intronic or coding versus untranslated transcript regions. The precise mapping of binding sites across the transcriptome will be critical to the interpretation of the rapidly emerging data on genetic variation between individuals and how these variations contribute to complex genetic diseases. PMID:20371350

  3. An integrative systems genetics approach reveals potential causal genes and pathways related to obesity.

    PubMed

    Kogelman, Lisette J A; Zhernakova, Daria V; Westra, Harm-Jan; Cirera, Susanna; Fredholm, Merete; Franke, Lude; Kadarmideen, Haja N

    2015-10-20

    Obesity is a multi-factorial health problem in which genetic factors play an important role. Limited results have been obtained in single-gene studies using either genomic or transcriptomic data. RNA sequencing technology has shown its potential in gaining accurate knowledge about the transcriptome, and may reveal novel genes affecting complex diseases. Integration of genomic and transcriptomic variation (expression quantitative trait loci [eQTL] mapping) has identified causal variants that affect complex diseases. We integrated transcriptomic data from adipose tissue and genomic data from a porcine model to investigate the mechanisms involved in obesity using a systems genetics approach. Using a selective gene expression profiling approach, we selected 36 animals based on a previously created genomic Obesity Index for RNA sequencing of subcutaneous adipose tissue. Differential expression analysis was performed using the Obesity Index as a continuous variable in a linear model. eQTL mapping was then performed to integrate 60 K porcine SNP chip data with the RNA sequencing data. Results were restricted based on genome-wide significant single nucleotide polymorphisms, detected differentially expressed genes, and previously detected co-expressed gene modules. Further data integration was performed by detecting co-expression patterns among eQTLs and integration with protein data. Differential expression analysis of RNA sequencing data revealed 458 differentially expressed genes. The eQTL mapping resulted in 987 cis-eQTLs and 73 trans-eQTLs (false discovery rate < 0.05), of which the cis-eQTLs were associated with metabolic pathways. We reduced the eQTL search space by focusing on differentially expressed and co-expressed genes and disease-associated single nucleotide polymorphisms to detect obesity-related genes and pathways. Building a co-expression network using eQTLs resulted in the detection of a module strongly associated with lipid pathways. Furthermore, we detected several obesity candidate genes, for example, ENPP1, CTSL, and ABHD12B. To our knowledge, this is the first study to perform an integrated genomics and transcriptomics (eQTL) study using, and modeling, genomic and subcutaneous adipose tissue RNA sequencing data on obesity in a porcine model. We detected several pathways and potential causal genes for obesity. Further validation and investigation may reveal their exact function and association with obesity.

  4. Genome-Wide Comparison of Magnaporthe Species Reveals a Host-Specific Pattern of Secretory Proteins and Transposable Elements

    PubMed Central

    Gowda, Malali

    2016-01-01

    Blast disease caused by the Magnaporthe species is a major factor affecting the productivity of rice, wheat and millets. This study was aimed at generating genomic information for rice and non-rice Magnaporthe isolates to understand the extent of genetic variation. We have sequenced the whole genome of the Magnaporthe isolates, infecting rice (leaf and neck), finger millet (leaf and neck), foxtail millet (leaf) and buffel grass (leaf). Rice and finger millet isolates infecting both leaf and neck tissues were sequenced, since the damage and yield loss caused due to neck blast is much higher as compared to leaf blast. The genome-wide comparison was carried out to study the variability in gene content, candidate effectors, repeat element distribution, genes involved in carbohydrate metabolism and SNPs. The analysis of repeat element footprints revealed some genes such as naringenin, 2-oxoglutarate 3-dioxygenase being targeted by Pot2 and Occan, in isolates from different host species. Some repeat insertions were host-specific while other insertions were randomly shared between isolates. The distributions of repeat elements, secretory proteins, CAZymes and SNPs showed significant variation across host-specific lineages of Magnaporthe indicating an independent genome evolution orchestrated by multiple genomic factors. PMID:27658241

  5. Integrated analysis of whole-exome sequencing and transcriptome profiling in males with autism spectrum disorders.

    PubMed

    Codina-Solà, Marta; Rodríguez-Santiago, Benjamín; Homs, Aïda; Santoyo, Javier; Rigau, Maria; Aznar-Laín, Gemma; Del Campo, Miguel; Gener, Blanca; Gabau, Elisabeth; Botella, María Pilar; Gutiérrez-Arumí, Armand; Antiñolo, Guillermo; Pérez-Jurado, Luis Alberto; Cuscó, Ivon

    2015-01-01

    Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders with high heritability. Recent findings support a highly heterogeneous and complex genetic etiology including rare de novo and inherited mutations or chromosomal rearrangements as well as double or multiple hits. We performed whole-exome sequencing (WES) and blood cell transcriptome by RNAseq in a subset of male patients with idiopathic ASD (n = 36) in order to identify causative genes, transcriptomic alterations, and susceptibility variants. We detected likely monogenic causes in seven cases: five de novo (SCN2A, MED13L, KCNV1, CUL3, and PTEN) and two inherited X-linked variants (MAOA and CDKL5). Transcriptomic analyses allowed the identification of intronic causative mutations missed by the usual filtering of WES and revealed functional consequences of some rare mutations. These included aberrant transcripts (PTEN, POLR3C), deregulated expression in 1.7% of mutated genes (that is, SEMA6B, MECP2, ANK3, CREBBP), allele-specific expression (FUS, MTOR, TAF1C), and non-sense-mediated decay (RIT1, ALG9). The analysis of rare inherited variants showed enrichment in relevant pathways such as the PI3K-Akt signaling and the axon guidance. Integrative analysis of WES and blood RNAseq data has proven to be an efficient strategy to identify likely monogenic forms of ASD (19% in our cohort), as well as additional rare inherited mutations that can contribute to ASD risk in a multifactorial manner. Blood transcriptomic data, besides validating 88% of expressed variants, allowed the identification of missed intronic mutations and revealed functional correlations of genetic variants, including changes in splicing, expression levels, and allelic expression.

  6. Transcriptome Profiling of a Multiple Recurrent Muscle-Invasive Urothelial Carcinoma of the Bladder by Deep Sequencing

    PubMed Central

    Zhang, Shufang; Liu, Yanxuan; Liu, Zhenxiang; Zhang, Chong; Cao, Hui; Ye, Yongqing; Wang, Shunlan; Zhang, Ying'ai; Xiao, Sifang; Yang, Peng; Li, Jindong; Bai, Zhiming

    2014-01-01

    Urothelial carcinoma of the bladder (UCB) is one of the commonly diagnosed cancers in the world. The UCB has the highest rate of recurrence of any malignancy. A genome-wide screening of transcriptome dysregulation between cancer and normal tissue would provide insight into the molecular basis of UCB recurrence and is a key step to discovering biomarkers for diagnosis and therapeutic targets. Compared with microarray technology, which is commonly used to identify expression level changes, the recently developed RNA-seq technique has the ability to detect other abnormal regulations in the cancer transcriptome, such as alternative splicing. In this study, we performed high-throughput transcriptome sequencing at ∼50× coverage on a recurrent muscle-invasive cisplatin-resistance UCB tissue and the adjacent non-tumor tissue. The results revealed cancer-specific differentially expressed genes between the tumor and non-tumor tissue enriched in the cell adhesion molecules, focal adhesion and ECM-receptor interaction pathway. Five dysregulated genes, including CDH1, VEGFA, PTPRF, CLDN7, and MMP2 were confirmed by Real time qPCR in the sequencing samples and the additional eleven samples. Our data revealed that more than three hundred genes showed differential splicing patterns between tumor tissue and non-tumor tissue. Among these genes, we filtered 24 cancer-associated alternative splicing genes with differential exon usage. The findings from RNA-Seq were validated by Real time qPCR for CD44, PDGFA, NUMB, and LPHN2. This study provides a comprehensive survey of the UCB transcriptome, which provides better insight into the complexity of regulatory changes during recurrence and metastasis. PMID:24622401

  7. Comparative Transcriptomic Approaches Exploring Contamination Stress Tolerance in Salix sp. Reveal the Importance for a Metaorganismal de Novo Assembly Approach for Nonmodel Plants1[OPEN

    PubMed Central

    Brereton, Nicholas J. B.; Marleau, Julie; Nissim, Werther Guidi; Labrecque, Michel; Joly, Simon; Pitre, Frederic E.

    2016-01-01

    Metatranscriptomic study of nonmodel organisms requires strategies that retain the highly resolved genetic information generated from model organisms while allowing for identification of the unexpected. A real-world biological application of phytoremediation, the field growth of 10 Salix cultivars on polluted soils, was used as an exemplar nonmodel and multifaceted crop response well-disposed to the study of gene expression. Sequence reads were assembled de novo to create 10 independent transcriptomes, a global transcriptome, and were mapped against the Salix purpurea 94006 reference genome. Annotation of assembled contigs was performed without a priori assumption of the originating organism. Global transcriptome construction from 3.03 billion paired-end reads revealed 606,880 unique contigs annotated from 1588 species, often common in all 10 cultivars. Comparisons between transcriptomic and metatranscriptomic methodologies provide clear evidence that nonnative RNA can mistakenly map to reference genomes, especially to conserved regions of common housekeeping genes, such as actin, α/β-tubulin, and elongation factor 1-α. In Salix, Rubisco activase transcripts were down-regulated in contaminated trees across all 10 cultivars, whereas thiamine thizole synthase and CP12, a Calvin Cycle master regulator, were uniformly up-regulated. De novo assembly approaches, with unconstrained annotation, can improve data quality; care should be taken when exploring such plant genetics to reduce de facto data exclusion by mapping to a single reference genome alone. Salix gene expression patterns strongly suggest cultivar-wide alteration of specific photosynthetic apparatus and protection of the antenna complexes from oxidation damage in contaminated trees, providing an insight into common stress tolerance strategies in a real-world phytoremediation system. PMID:27002060

  8. Lathyrus sativus transcriptome resistance response to Ascochyta lathyri investigated by deepSuperSAGE analysis

    PubMed Central

    Almeida, Nuno F.; Krezdorn, Nicolas; Rotter, Björn; Winter, Peter; Rubiales, Diego; Vaz Patto, Maria C.

    2015-01-01

    Lathyrus sativus (grass pea) is a temperate grain legume crop with a great potential for expansion in dry areas or zones that are becoming more drought-prone. It is also recognized as a potential source of resistance to several important diseases in legumes, such as ascochyta blight. Nevertheless, the lack of detailed genomic and/or transcriptomic information hampers further exploitation of grass pea resistance-related genes in precision breeding. To elucidate the pathways differentially regulated during ascochyta-grass pea interaction and to identify resistance candidate genes, we compared the early response of the leaf gene expression profile of a resistant L. sativus genotype to Ascochyta lathyri infection with a non-inoculated control sample from the same genotype employing deepSuperSAGE. This analysis generated 14.387 UniTags of which 95.7% mapped to a reference grass pea/rust interaction transcriptome. From the total mapped UniTags, 738 were significantly differentially expressed between control and inoculated leaves. The results indicate that several gene classes acting in different phases of the plant/pathogen interaction are involved in the L. sativus response to A. lathyri infection. Most notably a clear up-regulation of defense-related genes involved in and/or regulated by the ethylene pathway was observed. There was also evidence of alterations in cell wall metabolism indicated by overexpression of cellulose synthase and lignin biosynthesis genes. This first genome-wide overview of the gene expression profile of the L. sativus response to ascochyta infection delivered a valuable set of candidate resistance genes for future use in precision breeding. PMID:25852725

  9. Comparative Leaves Transcriptome Analysis Emphasizing on Accumulation of Anthocyanins in Brassica: Molecular Regulation and Potential Interaction with Photosynthesis

    PubMed Central

    Mushtaq, Muhammad A.; Pan, Qi; Chen, Daozong; Zhang, Qinghua; Ge, Xianhong; Li, Zaiyun

    2016-01-01

    The purple leaf pigmentation mainly associated with anthocyanins accumulation is common in Brassica but the mechanisms of its production and its potential physiological functions are poorly understood. Here, we performed the phenotypic, cytological, physiological, and comparative leaves transcriptome analyses of 11 different varieties belonging to five Brassica species with purple or green leaves. We observed that the anthocyanin was accumulated in most of vegetative tissues in all species and also in reproduction organs of B. carinata. Anthocyanin accumulated in different part of purple leaves including adaxial and abaxial epidermal cells as well as palisade and spongy mesophyll cells. Leave transcriptome analysis showed that almost all late biosynthetic genes (LBGs) of anthocyanin, especially Dihydroflavonol 4-Reductase (DFR), Anthocyanidin Synthase (ANS) and Transparent Testa 19 (TT19), were highly up-regulated in all purple leaves. However, only one of transcript factors in anthocyanin biosynthesis pathway, Transparent Testa 8 (TT8), was up regulated along with those genes in all purple leaves, indicating its pivotal role for anthocyanin production in Brassica. Interestingly, with the up-regulation of genes for anthocyanin synthesis, Cytosolic 6-phosphogluconolactonase (PLG5) which involved in the oxidative pentose-phosphate pathway was up-regulated in all purple leaves and three genes FTSH PROTEASE 8 (FTS8), GLYCOLATE OXIDASE 1 (GOX1), and GLUTAMINE SYNTHETASE 1;4 (GLN1;4) related to degradation of photo-damaged proteins in photosystem II and light respiration were down-regulated. These results highlighted the potential physiological functions of anthocyanin accumulation related to photosynthesis which might be of great worth in future. PMID:27047501

  10. Biological pattern and transcriptomic exploration and phylogenetic analysis in the odd floral architecture tree: Helwingia willd.

    PubMed

    Sun, Cheng; Yu, Guoliang; Bao, Manzhu; Zheng, Bo; Ning, Guogui

    2014-06-27

    Odd traits in few of plant species usually implicate potential biology significances in plant evolutions. The genus Helwingia Willd, a dioecious medical shrub in Aquifoliales order, has an odd floral architecture-epiphyllous inflorescence. The potential significances and possible evolutionary origin of this specie are not well understood due to poorly available data of biological and genetic studies. In addition, the advent of genomics-based technologies has widely revolutionized plant species with unknown genomic information. Morphological and biological pattern were detailed via anatomical and pollination analyses. An RNA sequencing based transcriptomic analysis were undertaken and a high-resolution phylogenetic analysis was conducted based on single-copy genes in more than 80 species of seed plants, including H. japonica. It is verified that a potential fusion of rachis to the leaf midvein facilitates insect pollination. RNA sequencing yielded a total of 111450 unigenes; half of them had significant similarity with proteins in the public database, and 20281 unigenes were mapped to 119 pathways. Deduced from the phylogenetic analysis based on single-copy genes, the group of Helwingia is closer with Euasterids II and rather than Euasterids, congruent with previous reports using plastid sequences. The odd flower architecture make H. Willd adapt to insect pollination by hosting those insects larger than the flower in size via leave, which has little common character that other insect pollination plants hold. Further the present transcriptome greatly riches genomics information of Helwingia species and nucleus genes based phylogenetic analysis also greatly improve the resolution and robustness of phylogenetic reconstruction in H. japonica.

  11. Do transgenesis and marker-assisted backcross breeding produce substantially equivalent plants? A comparative study of transgenic and backcross rice carrying bacterial blight resistant gene Xa21.

    PubMed

    Gao, Lifen; Cao, Yinghao; Xia, Zhihui; Jiang, Guanghuai; Liu, Guozhen; Zhang, Weixiong; Zhai, Wenxue

    2013-10-29

    The potential impact of genetically modified (GM) plants on human health has attracted much attention worldwide, and the issue remains controversial. This is in sharp contrast to the broad acceptance of plants produced by breeding through Marker Assisted Backcrossing (MAB). Focusing on transcriptome variation and perturbation to signaling pathways, we assessed the molecular and biological aspects of substantial equivalence, a general principle for food safety endorsed by the Food and Agricultural Organization and the World Health Organization, between a transgenic crop and a plant from MAB breeding. We compared a transgenic rice line (DXT) and a MAB rice line (DXB), both of which contain the gene Xa21 providing resistance to bacterial leaf blight. By using Next-Generation sequencing data of DXT, DXB and their parental line (D62B), we compared the transcriptome variation of DXT and DXB. Remarkably, DXT had 43% fewer differentially expressed genes (DEGs) than DXB. The genes exclusively expressed in DXT and in DXB have pathogen and stress defense functions. Functional categories of DEGs in DXT were comparable to that in DXB, and seven of the eleven pathways significantly affected by transgenesis were also perturbed by MAB breeding. These results indicated that the transgenic rice and rice from MAB breeding are substantial equivalent at the transcriptome level, and paved a way for further study of transgenic rice, e.g., understanding the chemical and nutritional properties of the DEGs identified in the current study.

  12. Do transgenesis and marker-assisted backcross breeding produce substantially equivalent plants? - A comparative study of transgenic and backcross rice carrying bacterial blight resistant gene Xa21

    PubMed Central

    2013-01-01

    Background The potential impact of genetically modified (GM) plants on human health has attracted much attention worldwide, and the issue remains controversial. This is in sharp contrast to the broad acceptance of plants produced by breeding through Marker Assisted Backcrossing (MAB). Results Focusing on transcriptome variation and perturbation to signaling pathways, we assessed the molecular and biological aspects of substantial equivalence, a general principle for food safety endorsed by the Food and Agricultural Organization and the World Health Organization, between a transgenic crop and a plant from MAB breeding. We compared a transgenic rice line (DXT) and a MAB rice line (DXB), both of which contain the gene Xa21 providing resistance to bacterial leaf blight. By using Next-Generation sequencing data of DXT, DXB and their parental line (D62B), we compared the transcriptome variation of DXT and DXB. Remarkably, DXT had 43% fewer differentially expressed genes (DEGs) than DXB. The genes exclusively expressed in DXT and in DXB have pathogen and stress defense functions. Functional categories of DEGs in DXT were comparable to that in DXB, and seven of the eleven pathways significantly affected by transgenesis were also perturbed by MAB breeding. Conclusions These results indicated that the transgenic rice and rice from MAB breeding are substantial equivalent at the transcriptome level, and paved a way for further study of transgenic rice, e.g., understanding the chemical and nutritional properties of the DEGs identified in the current study. PMID:24165682

  13. Resistance mechanisms in Pieris taxa (Ericaceae) to Stephanitis takeyai (Hemiptera: Tingidae).

    PubMed

    Nair, Shakunthala; Braman, S Kristine; Knauft, D A

    2012-10-01

    This study examines some of the potential mechanisms of resistance in selected Pieris (Ericaceae) taxa to the Andromeda lace bug, Stephanitis takeyai Drake and Maa, based on differences in resistance to lace bug feeding, and the possible role of leaf parameters such as leaf wax, toughness, nutrient composition, and stomatal characters in plant resistance. Experiments with extracts of leaf-surface lipids revealed that Pieris leaf wax did not have a role in resistance to lace bug feeding. Leaf wax extracts from a resistant species P. phillyreifolia (Hook.) DC. applied to leaves of a susceptible cultivar P. japonica (Thunb.) D.Don ex G.Don 'Temple Bells' did not affect feeding, oviposition, or survival of S. takeyai; and neither the extracts from Temple Bells induce susceptibility in P. phillyreifolia. Leaf penetrometer measurements indicated that significantly higher force was required to puncture P. phillyreifolia leaves, which also had higher fiber, lignin, and cellulose, and lower leaf moisture contents. Ultrastructural examination of leaves of Pieris taxa revealed significant differences in the number and size of stomata. P. phillyreifolia leaves had the highest number of stomata per unit area but these were the smallest in size, whereas P. japonica (Thunb.) D.Don ex G.Don Temple Bells leaves had the fewest and largest stomata. Resistance in Pieris taxa to S. takeyai may be attributed to a combination of different factors including leaf toughness, moisture, and stomatal characters. The type of resistance may be described as antixenosis combined with antibiosis, because reduced adult survival and reproduction were observed on the taxa resistant to lace bug feeding.

  14. A detailed analysis of the leaf rolling mutant sll2 reveals complex nature in regulation of bulliform cell development in rice (Oryza sativa L.).

    PubMed

    Zhang, J-J; Wu, S-Y; Jiang, L; Wang, J-L; Zhang, X; Guo, X-P; Wu, C-Y; Wan, J-M

    2015-03-01

    Bulliform cells are large, thin-walled and highly vacuolated cells, and play an important role in controlling leaf rolling in response to drought and high temperature. However, the molecular mechanisms regulating bulliform cell development have not been well documented. Here, we report isolation and characterisation of a rice leaf-rolling mutant, named shallot-like 2 (sll2). The sll2 plants exhibit adaxially rolled leaves, starting from the sixth leaf stage, accompanied by increased photosynthesis and reduced plant height and tiller number. Histological analyses showed shrinkage of bulliform cells, resulting in inward-curved leaves. The mutant is recessive and revertible at a rate of 9%. The leaf rolling is caused by a T-DNA insertion. Cloning of the insertion using TAIL-PCR revealed that the T-DNA was inserted in the promoter region of LOC_Os07 g38664. Unexpectedly, the enhanced expression of LOC_Os07 g38664 by the 35S enhancer in the T-DNA is not responsible for the leaf rolling phenotype. Further, the enhancer also exerted a long-distance effect, including up-regulation of several bulliform cell-related genes. sll2 suppressed the outward leaf rolling of oul1 in the sll2oul1 double mutant. We conclude that leaf rolling in sll2 could be a result of the combined effect of multi-genes, implying a complex network in regulation of bulliform cell development. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. De novo assembling and primary analysis of genome and transcriptome of gray whale Eschrichtius robustus.

    PubMed

    Moskalev, Alexey А; Kudryavtseva, Anna V; Graphodatsky, Alexander S; Beklemisheva, Violetta R; Serdyukova, Natalya A; Krutovsky, Konstantin V; Sharov, Vadim V; Kulakovskiy, Ivan V; Lando, Andrey S; Kasianov, Artem S; Kuzmin, Dmitry A; Putintseva, Yuliya A; Feranchuk, Sergey I; Shaposhnikov, Mikhail V; Fraifeld, Vadim E; Toren, Dmitri; Snezhkina, Anastasia V; Sitnik, Vasily V

    2017-12-28

    Gray whale, Eschrichtius robustus (E. robustus), is a single member of the family Eschrichtiidae, which is considered to be the most primitive in the class Cetacea. Gray whale is often described as a "living fossil". It is adapted to extreme marine conditions and has a high life expectancy (77 years). The assembly of a gray whale genome and transcriptome will allow to carry out further studies of whale evolution, longevity, and resistance to extreme environment. In this work, we report the first de novo assembly and primary analysis of the E. robustus genome and transcriptome based on kidney and liver samples. The presented draft genome assembly is complete by 55% in terms of a total genome length, but only by 24% in terms of the BUSCO complete gene groups, although 10,895 genes were identified. Transcriptome annotation and comparison with other whale species revealed robust expression of DNA repair and hypoxia-response genes, which is expected for whales. This preliminary study of the gray whale genome and transcriptome provides new data to better understand the whale evolution and the mechanisms of their adaptation to the hypoxic conditions.

  16. Optimized approach for Ion Proton RNA sequencing reveals details of RNA splicing and editing features of the transcriptome.

    PubMed

    Brown, Roger B; Madrid, Nathaniel J; Suzuki, Hideaki; Ness, Scott A

    2017-01-01

    RNA-sequencing (RNA-seq) has become the standard method for unbiased analysis of gene expression but also provides access to more complex transcriptome features, including alternative RNA splicing, RNA editing, and even detection of fusion transcripts formed through chromosomal translocations. However, differences in library methods can adversely affect the ability to recover these different types of transcriptome data. For example, some methods have bias for one end of transcripts or rely on low-efficiency steps that limit the complexity of the resulting library, making detection of rare transcripts less likely. We tested several commonly used methods of RNA-seq library preparation and found vast differences in the detection of advanced transcriptome features, such as alternatively spliced isoforms and RNA editing sites. By comparing several different protocols available for the Ion Proton sequencer and by utilizing detailed bioinformatics analysis tools, we were able to develop an optimized random primer based RNA-seq technique that is reliable at uncovering rare transcript isoforms and RNA editing features, as well as fusion reads from oncogenic chromosome rearrangements. The combination of optimized libraries and rapid Ion Proton sequencing provides a powerful platform for the transcriptome analysis of research and clinical samples.

  17. Assessment of pleiotropic transcriptome perturbations in Arabidopsis engineered for indirect insect defence.

    PubMed

    Houshyani, Benyamin; van der Krol, Alexander R; Bino, Raoul J; Bouwmeester, Harro J

    2014-06-19

    Molecular characterization is an essential step of risk/safety assessment of genetically modified (GM) crops. Holistic approaches for molecular characterization using omics platforms can be used to confirm the intended impact of the genetic engineering, but can also reveal the unintended changes at the omics level as a first assessment of potential risks. The potential of omics platforms for risk assessment of GM crops has rarely been used for this purpose because of the lack of a consensus reference and statistical methods to judge the significance or importance of the pleiotropic changes in GM plants. Here we propose a meta data analysis approach to the analysis of GM plants, by measuring the transcriptome distance to untransformed wild-types. In the statistical analysis of the transcriptome distance between GM and wild-type plants, values are compared with naturally occurring transcriptome distances in non-GM counterparts obtained from a database. Using this approach we show that the pleiotropic effect of genes involved in indirect insect defence traits is substantially equivalent to the variation in gene expression occurring naturally in Arabidopsis. Transcriptome distance is a useful screening method to obtain insight in the pleiotropic effects of genetic modification.

  18. Tentacle Transcriptome and Venom Proteome of the Pacific Sea Nettle, Chrysaora fuscescens (Cnidaria: Scyphozoa).

    PubMed

    Ponce, Dalia; Brinkman, Diane L; Potriquet, Jeremy; Mulvenna, Jason

    2016-04-05

    Jellyfish venoms are rich sources of toxins designed to capture prey or deter predators, but they can also elicit harmful effects in humans. In this study, an integrated transcriptomic and proteomic approach was used to identify putative toxins and their potential role in the venom of the scyphozoan jellyfish Chrysaora fuscescens. A de novo tentacle transcriptome, containing more than 23,000 contigs, was constructed and used in proteomic analysis of C. fuscescens venom to identify potential toxins. From a total of 163 proteins identified in the venom proteome, 27 were classified as putative toxins and grouped into six protein families: proteinases, venom allergens, C-type lectins, pore-forming toxins, glycoside hydrolases and enzyme inhibitors. Other putative toxins identified in the transcriptome, but not the proteome, included additional proteinases as well as lipases and deoxyribonucleases. Sequence analysis also revealed the presence of ShKT domains in two putative venom proteins from the proteome and an additional 15 from the transcriptome, suggesting potential ion channel blockade or modulatory activities. Comparison of these potential toxins to those from other cnidarians provided insight into their possible roles in C. fuscescens venom and an overview of the diversity of potential toxin families in cnidarian venoms.

  19. A Transcriptomic Analysis of Xylan Mutants Does Not Support the Existence of a Secondary Cell Wall Integrity System in Arabidopsis

    PubMed Central

    Faria-Blanc, Nuno; Mortimer, Jenny C.; Dupree, Paul

    2018-01-01

    Yeast have long been known to possess a cell wall integrity (CWI) system, and recently an analogous system has been described for the primary walls of plants (PCWI) that leads to changes in plant growth and cell wall composition. A similar system has been proposed to exist for secondary cell walls (SCWI). However, there is little data to support this. Here, we analyzed the stem transcriptome of a set of cell wall biosynthetic mutants in order to investigate whether cell wall damage, in this case caused by aberrant xylan synthesis, activates a signaling cascade or changes in cell wall synthesis gene expression. Our data revealed remarkably few changes to the transcriptome. We hypothesize that this is because cells undergoing secondary cell wall thickening have entered a committed programme leading to cell death, and therefore a SCWI system would have limited impact. The absence of transcriptomic responses to secondary cell wall alterations may facilitate engineering of the secondary cell wall of plants. PMID:29636762

  20. Ab initio reconstruction of transcriptomes of pluripotent and lineage committed cells reveals gene structures of thousands of lincRNAs

    PubMed Central

    Guttman, Mitchell; Garber, Manuel; Levin, Joshua Z.; Donaghey, Julie; Robinson, James; Adiconis, Xian; Fan, Lin; Koziol, Magdalena J.; Gnirke, Andreas; Nusbaum, Chad; Rinn, John L.; Lander, Eric S.; Regev, Aviv

    2010-01-01

    RNA-Seq provides an unbiased way to study a transcriptome, including both coding and non-coding genes. To date, most RNA-Seq studies have critically depended on existing annotations, and thus focused on expression levels and variation in known transcripts. Here, we present Scripture, a method to reconstruct the transcriptome of a mammalian cell using only RNA-Seq reads and the genome sequence. We apply it to mouse embryonic stem cells, neuronal precursor cells, and lung fibroblasts to accurately reconstruct the full-length gene structures for the vast majority of known expressed genes. We identify substantial variation in protein-coding genes, including thousands of novel 5′-start sites, 3′-ends, and internal coding exons. We then determine the gene structures of over a thousand lincRNA and antisense loci. Our results open the way to direct experimental manipulation of thousands of non-coding RNAs, and demonstrate the power of ab initio reconstruction to render a comprehensive picture of mammalian transcriptomes. PMID:20436462

  1. A Transcriptomic Analysis of Xylan Mutants Does Not Support the Existence of a Secondary Cell Wall Integrity System in Arabidopsis.

    PubMed

    Faria-Blanc, Nuno; Mortimer, Jenny C; Dupree, Paul

    2018-01-01

    Yeast have long been known to possess a cell wall integrity (CWI) system, and recently an analogous system has been described for the primary walls of plants (PCWI) that leads to changes in plant growth and cell wall composition. A similar system has been proposed to exist for secondary cell walls (SCWI). However, there is little data to support this. Here, we analyzed the stem transcriptome of a set of cell wall biosynthetic mutants in order to investigate whether cell wall damage, in this case caused by aberrant xylan synthesis, activates a signaling cascade or changes in cell wall synthesis gene expression. Our data revealed remarkably few changes to the transcriptome. We hypothesize that this is because cells undergoing secondary cell wall thickening have entered a committed programme leading to cell death, and therefore a SCWI system would have limited impact. The absence of transcriptomic responses to secondary cell wall alterations may facilitate engineering of the secondary cell wall of plants.

  2. Short communication: development and characterization of novel transcriptome-derived microsatellites for genetic analysis of persimmon.

    PubMed

    Luo, C; Zhang, Q L; Luo, Z R

    2014-04-16

    Oriental persimmon (Diospyros kaki Thunb.) (2n = 6x = 90) is a major commercial and deciduous fruit tree that is believed to have originated in China. However, rare transcriptomic and genomic information on persimmon is available. Using Roche 454 sequencing technology, the transcriptome from RNA of the flowers of D. kaki was analyzed. A total of 1,250,893 reads were generated and 83,898 unigenes were assembled. A total of 42,711 SSR loci were identified from 23,494 unigenes and 289 polymerase chain reaction primer pairs were designed. Of these 289 primers, 155 (53.6%) showed robust PCR amplification and 98 revealed polymorphism between 15 persimmon genotypes, indicating a polymorphic rate of 63.23% of the productive primers for characterization and genotyping of the genus Diospyros. Transcriptome sequence data generated from next-generation sequencing technology to identify microsatellite loci appears to be rapid and cost-efficient, particularly for species with no genomic sequence information available.

  3. Leaf miner-induced morphological, physiological and molecular changes in mangrove plant Avicennia marina (Forsk.) Vierh.

    PubMed

    Chen, Juan; Shen, Zhi-Jun; Lu, Wei-Zhi; Liu, Xiang; Wu, Fei-Hua; Gao, Gui-Feng; Liu, Yi-Ling; Wu, Chun-Sheng; Yan, Chong-Ling; Fan, Hang-Qing; Zhang, Yi-Hui; Zheng, Hai-Lei; Tsai, Chung-Jui

    2017-01-31

    Avicennia marina (Forsk.) Vierh is a widespread mangrove species along the southeast coasts of China. Recently, the outbreak of herbivorous insect, Phyllocnistis citrella Stainton, a leaf miner, have impacted on the growth of A. marina. Little is reported about the responses of A. marina to leaf miner infection at the biochemical, physiological and molecular levels. Here, we reported the responses of A. marina to leaf miner infection from the aspects of leaf structure, photosynthesis, and antioxidant system and miner responsive genes expression. A. marina leaves attacked by the leaf miner exhibited significant decreases in chlorophyll, carbon and nitrogen contents, as well as a decreased photosynthetic rate. Scanning and transmission electron microscopic observations revealed that the leaf miner only invaded the upper epidermis and destroyed the epidermal cell, which lead to the exposure of salt glands. In addition, the chloroplasts of mined leaves (ML) were swollen and the thylakoids degraded. The maximal net photosynthetic rate, stomatal conductance (Gs), carboxylation efficiency (CE), dark respiration (Rd), light respiration (Rp) and quantum yields (AQE) significantly decreased in the ML, whereas the light saturation point (Lsp), light compensation point (Lcp), water loss and CO2 compensation point (Г) increased in the ML. Moreover, chlorophyll fluorescence features also had been changed by leaf miner attacks. Interestingly, higher generation rate of O2ˉ· and lower antioxidant enzyme expression in the mined portion (MP) were found; on the contrary, higher H2O2 level and higher antioxidant enzyme expression in the non-mined portion (NMP) were revealed, implying that the NMP may be able to sense that the leaf miner attacks had happened in the MP of the A. marina leaf via H2O2 signaling. Besides, the protein expression of glutathione S-transferase (GST) and the glutathione (GSH) content were increased in the ML. In addition, insect resistance-related gene expression such as chitinase 3, RAR1, topless and PIF3 had significantly increased in the ML. Taken together, our data suggest that leaf miners could significantly affect leaf structure, photosynthesis, the antioxidant system and miner responsive gene expression in A. marina leaves.

  4. Carbohydrate active enzymes revealed in Coptotermes formosanus transcriptome

    USDA-ARS?s Scientific Manuscript database

    A normalized cDNA library of Coptotermes formosanus was constructed using mixed RNA isolated from workers, soldiers, nymphs and alates of both sexes. Sequencing of this library generated 131,637 EST and 25,939 unigenes were assembled. Carbohydrate active enzymes (CAZymes) revealed in this library we...

  5. The upside-down water collection system of Syntrichia caninervis.

    PubMed

    Pan, Zhao; Pitt, William G; Zhang, Yuanming; Wu, Nan; Tao, Ye; Truscott, Tadd T

    2016-06-06

    Desert plants possess highly evolved water conservation and transport systems, from the root structures that maximize absorption of scarce ground water(1-5), to the minimization of leaf surface area(6) to enhance water retention. Recent attention has focused on leaf structures that are adapted to collect water and promote nucleation from humid air(7-9). Syntrichia caninervis Mitt. (Pottiaceae) is one of the most abundant desert mosses in the world and thrives in an extreme environment with multiple but limited water resources (such as dew, fog, snow and rain), yet the mechanisms for water collection and transport have never been completely revealed. S. caninervis has a unique adaptation: it uses a tiny hair (awn) on the end of each leaf to collect water, in addition to that collected by the leaves themselves. Here we show that the unique multiscale structures of the hair are equipped to collect and transport water in four modes: nucleation of water droplets and films on the leaf hair from humid atmospheres; collection of fog droplets on leaf hairs; collection of splash water from raindrops; and transportation of the acquired water to the leaf itself. Fluid nucleation is accomplished in nanostructures, whereas fog droplets are gathered in areas where a high density of small barbs are present and then quickly transported to the leaf at the base of the hair. Our observations reveal nature's optimization of water collection by coupling relevant multiscale physical plant structures with multiscale sources of water.

  6. Transcriptional transitions in Nicotiana benthamiana leaves upon induction of oil synthesis by WRINKLED1 homologs from diverse species and tissues.

    PubMed

    Grimberg, Åsa; Carlsson, Anders S; Marttila, Salla; Bhalerao, Rishikesh; Hofvander, Per

    2015-08-08

    Carbon accumulation and remobilization are essential mechanisms in plants to ensure energy transfer between plant tissues with different functions or metabolic needs and to support new generations. Knowledge about the regulation of carbon allocation into oil (triacylglycerol) in plant storage tissue can be of great economic and environmental importance for developing new high-yielding oil crops. Here, the effect on global gene expression as well as on physiological changes in leaves transiently expressing five homologs of the transcription factor WRINKLED1 (WRI1) originating from diverse species and tissues; Arabidopsis thaliana and potato (Solanum tuberosum) seed embryo, poplar (Populus trichocarpa) stem cambium, oat (Avena sativa) grain endosperm, and nutsedge (Cyperus esculentus) tuber parenchyma, were studied by agroinfiltration in Nicotiana benthamiana. All WRI1 homologs induced oil accumulation when expressed in leaf tissue. Transcriptome sequencing revealed that all homologs induced the same general patterns with a drastic shift in gene expression profiles of leaves from that of a typical source tissue to a source-limited sink-like tissue: Transcripts encoding enzymes for plastid uptake and metabolism of phosphoenolpyruvate, fatty acid and oil biosynthesis were up-regulated, as were also transcripts encoding starch degradation. Transcripts encoding enzymes in photosynthesis and starch synthesis were instead down-regulated. Moreover, transcripts representing fatty acid degradation were up-regulated indicating that fatty acids might be degraded to feed the increased need to channel carbons into fatty acid synthesis creating a futile cycle. RT-qPCR analysis of leaves expressing Arabidopsis WRI1 showed the temporal trends of transcripts selected as 'markers' for key metabolic pathways one to five days after agroinfiltration. Chlorophyll fluorescence measurements of leaves expressing Arabidopsis WRI1 showed a significant decrease in photosynthesis, even though effect on starch content could not be observed. This data gives for the first time a general view on the transcriptional transitions in leaf tissue upon induction of oil synthesis by WRI1. This yields important information about what effects WRI1 may exert on global gene expression during seed and embryo development. The results suggest why high oil content in leaf tissue cannot be achieved by solely transcriptional activation by WRI1, which can be essential knowledge in the development of new high-yielding oil crops.

  7. Transcriptome Analysis of Polyhydroxybutyrate Cycle Mutants Reveals Discrete Loci Connecting Nitrogen Utilization and Carbon Storage in Sinorhizobium meliloti.

    PubMed

    D'Alessio, Maya; Nordeste, Ricardo; Doxey, Andrew C; Charles, Trevor C

    2017-01-01

    Polyhydroxybutyrate (PHB) and glycogen polymers are produced by bacteria as carbon storage compounds under unbalanced growth conditions. To gain insights into the transcriptional mechanisms controlling carbon storage in Sinorhizobium meliloti , we investigated the global transcriptomic response to the genetic disruption of key genes in PHB synthesis and degradation and in glycogen synthesis. Under both nitrogen-limited and balanced growth conditions, transcriptomic analysis was performed with genetic mutants deficient in PHB synthesis ( phbA , phbB , phbAB , and phbC ), PHB degradation ( bdhA , phaZ , and acsA2 ), and glycogen synthesis ( glgA1 ). Three distinct genomic regions of the pSymA megaplasmid exhibited altered expression in the wild type and the PHB cycle mutants that was not seen in the glycogen synthesis mutant. An Fnr family transcriptional motif was identified in the upstream regions of a cluster of genes showing similar transcriptional patterns across the mutants. This motif was found at the highest density in the genomic regions with the strongest transcriptional effect, and the presence of this motif upstream of genes in these regions was significantly correlated with decreased transcript abundance. Analysis of the genes in the pSymA regions revealed that they contain a genomic overrepresentation of Fnr family transcription factor-encoding genes. We hypothesize that these loci, containing mostly nitrogen utilization, denitrification, and nitrogen fixation genes, are regulated in response to the intracellular carbon/nitrogen balance. These results indicate a transcriptional regulatory association between intracellular carbon levels (mediated through the functionality of the PHB cycle) and the expression of nitrogen metabolism genes. IMPORTANCE The ability of bacteria to store carbon and energy as intracellular polymers uncouples cell growth and replication from nutrient uptake and provides flexibility in the use of resources as they are available to the cell. The impact of carbon storage on cellular metabolism would be reflected in global transcription patterns. By investigating the transcriptomic effects of genetically disrupting genes involved in the PHB carbon storage cycle, we revealed a relationship between intracellular carbon storage and nitrogen metabolism. This work demonstrates the utility of combining transcriptome sequencing with metabolic pathway mutations for identifying underlying gene regulatory mechanisms.

  8. Desiccation tolerance in bryophytes: The dehydration and rehydration transcriptomes in the desiccation-tolerant bryophyte Bryum argenteum.

    PubMed

    Gao, Bei; Li, Xiaoshuang; Zhang, Daoyuan; Liang, Yuqing; Yang, Honglan; Chen, Moxian; Zhang, Yuanming; Zhang, Jianhua; Wood, Andrew J

    2017-08-08

    The desiccation tolerant bryophyte Bryum argenteum is an important component of desert biological soil crusts (BSCs) and is emerging as a model system for studying vegetative desiccation tolerance. Here we present and analyze the hydration-dehydration-rehydration transcriptomes in B. argenteum to establish a desiccation-tolerance transcriptomic atlas. B. argenteum gametophores representing five different hydration stages (hydrated (H0), dehydrated for 2 h (D2), 24 h (D24), then rehydrated for 2 h (R2) and 48 h (R48)), were sampled for transcriptome analyses. Illumina high throughput RNA-Seq technology was employed and generated more than 488.46 million reads. An in-house de novo transcriptome assembly optimization pipeline based on Trinity assembler was developed to obtain a reference Hydration-Dehydration-Rehydration (H-D-R) transcriptome comprising of 76,206 transcripts, with an N50 of 2,016 bp and average length of 1,222 bp. Comprehensive transcription factor (TF) annotation discovered 978 TFs in 62 families, among which 404 TFs within 40 families were differentially expressed upon dehydration-rehydration. Pfam term enrichment analysis revealed 172 protein families/domains were significantly associated with the H-D-R cycle and confirmed early rehydration (i.e. the R2 stage) as exhibiting the maximum stress-induced changes in gene expression.

  9. Nutritive value and haemolytic properties (in vitro) of the leaves of Vernonia amygdalina on human erythrocyte.

    PubMed

    Oboh, G

    2006-01-01

    Vernonia amygdalina (Bitter leaf) is popularly consumed in many homes in Nigeria as a vegetable in soup preparation, while the infusion is used in folk medicine in the treatment of malaria fever. In this study, fresh leaves of Vernonia amygdalina were subjected to abrasion (to remove the bitter taste) as is normally done in soup preparation, subsequently the nutrient, anti-nutrient and zinc bioavailability of the processed and unprocessed leaf were determined. The heamolytic effect of the leaf infusion on human erythrocytes (Genotype-SS, AS, AA) was also determined. The study revealed that Vernonia amygdalina leaf has high protein (33.3%), fat (10.1%), crude fibre (29.2%), ash (11.7%), mineral (Na, K, Ca, Mg, Zn & Fe), phytate (1015.4mg/100g) and tannin (0.6%) content, while it contain low cyanide (1.1mg/kg). Abrasion of the leaf caused a significant decrease (P<0.05) in both the nutrient and antinutrient content of the leaf except in carbohydrate where there was a significant increase (P<0.05) and Mg where there was no significant change (P>0.05). The result of the calculated [Ca][phytate]/ [Zn] molar ratio (the best index for the prediction of Zn bioavailability) indicated that the phytate content of both the processed and unprocessed Vernonia amygdalina leaf will not reduce the Zn content to a critical level (0.5mol./kg). Further studies on the leaf revealed that the infusion induced the haemolysis of human erythrocyte (In vitro). Human genotype-SS (1024) were highly susceptible to haemolysis induced by Vernonia amygdalina infusion, genotype-AS moderately susceptible (512) while genotype-AA (256) is highly resistant to haemolysis induced by the same infusion. Bitter leaf has high nutrient and antinutrient content, however, abrasion will bring about a significant decrease (P<0.05) in both. The infusion of the Vernonia amygdalina leaf induces the haemolysis of mammalian erythrocyte in vitro, with Human-SS having the highest susceptibility.

  10. Metabolic and enzymatic changes associated with carbon mobilization, utilization and replenishment triggered in grain amaranth (Amaranthus cruentus) in response to partial defoliation by mechanical injury or insect herbivory

    PubMed Central

    2012-01-01

    Background Amaranthus cruentus and A. hypochondriacus are crop plants grown for grain production in subtropical countries. Recently, the generation of large-scale transcriptomic data opened the possibility to study representative genes of primary metabolism to gain a better understanding of the biochemical mechanisms underlying tolerance to defoliation in these species. A multi-level approach was followed involving gene expression analysis, enzyme activity and metabolite measurements. Results Defoliation by insect herbivory (HD) or mechanical damage (MD) led to a rapid and transient reduction of non-structural carbohydrates (NSC) in all tissues examined. This correlated with a short-term induction of foliar sucrolytic activity, differential gene expression of a vacuolar invertase and its inhibitor, and induction of a sucrose transporter gene. Leaf starch in defoliated plants correlated negatively with amylolytic activity and expression of a β-amylase-1 gene and positively with a soluble starch synthase gene. Fatty-acid accumulation in roots coincided with a high expression of a phosphoenolpyruvate/phosphate transporter gene. In all tissues there was a long-term replenishment of most metabolite pools, which allowed damaged plants to maintain unaltered growth and grain yield. Promoter analysis of ADP-glucose pyrophosphorylase and vacuolar invertase genes indicated the presence of cis-regulatory elements that supported their responsiveness to defoliation. HD and MD had differential effects on transcripts, enzyme activities and metabolites. However, the correlation between transcript abundance and enzymatic activities was very limited. A better correlation was found between enzymes, metabolite levels and growth and reproductive parameters. Conclusions It is concluded that a rapid reduction of NSC reserves in leaves, stems and roots followed by their long-term recovery underlies tolerance to defoliation in grain amaranth. This requires the coordinate action of genes/enzymes that are differentially affected by the way leaf damage is performed. Defoliation tolerance in grain is a complex process that can’t be fully explained at the transcriptomic level only. PMID:22966837

  11. Association of tomato leaf curl Gujarat virus and tomato leaf curl Bangladesh betasatellite on papaya showing typical leaf curl symptoms in North India.

    PubMed

    Varun, Priyanka; Saxena, Sangeeta

    2018-05-01

    Papaya leaf curl is an economically important disease occurring in papaya growing tropical and subtropical areas. Papaya leaf curl virus, a begomovirus, is the main causative agent for the disease, but many other begomoviruses as well as betasatellites have also been reported on papaya leaf curl disease. Rapidly evolving host range of begomoviruses is a major issue for developing successful resistance strategies against begomoviral infection considering their expanding host range and mixed infection. In our study, we have identified the presence of begomovirus and associated satellite molecule on papaya showing severe leaf curl symptoms in Lucknow, India. Analysis of complete DNA-A component of this isolate (MG757245) revealed the highest similarity (91%) with tomato leaf curl Gujarat virus (ToLCuGuV), while sequence data of betasatellite (MG478451) showed maximum (89%) identity with tomato leaf curl Bangladesh betasatellite (ToLCuBB). This is the first report on identification of ToLCuGuV and ToLCuBB coinfecting papaya plants in Lucknow, Uttar Pradesh (India).

  12. Leaf non-structural carbohydrate allocation and C:N:P stoichiometry in response to light acclimation in seedlings of two subtropical shade-tolerant tree species.

    PubMed

    Xie, Hongtao; Yu, Mukui; Cheng, Xiangrong

    2018-03-01

    Light availability greatly affects plant growth and development. In shaded environments, plants must respond to reduced light intensity to ensure a regular rate of photosynthesis to maintain the dynamic balance of nutrients, such as leaf non-structural carbohydrates (NSCs), carbon (C), nitrogen (N) and phosphorus (P). To improve our understanding of the nutrient utilization strategies of understory shade-tolerant plants, we compared the variations in leaf NSCs, C, N and P in response to heterogeneous controlled light conditions between two subtropical evergreen broadleaf shade-tolerant species, Elaeocarpus sylvestris (E. sylvestris) and Illicium henryi (I. henryi). Light intensity treatments were applied at five levels (100%, 52%, 33%, 15% and 6% full sunlight) for 30 weeks to identify the effects of reduced light intensity on leaf NSC allocation patterns and leaf C:N:P stoichiometry characteristics. We found that leaf soluble sugar, starch and NSC concentrations in E. sylvestris showed decreasing trends with reduced light intensity, whereas I. henryi presented slightly increasing trends from 100% to 15% full sunlight and then significant decreases at extremely low light intensity (6% full sunlight). The soluble sugar/starch ratio of E. sylvestris decreased with decreasing light intensity, whereas that of I. henryi remained stable. Moreover, both species exhibited increasing trends in leaf N and P concentrations but limited leaf N:P and C:P ratio fluctuations with decreasing light intensity, revealing their adaptive strategies for poor light environments and their growth strategies under ideal light environments. There were highly significant correlations between leaf NSC variables and C:N:P stoichiometric variables in both species, revealing a trade-off in photosynthesis production between leaf NSC and carbon allocation. Thus, shade-tolerant plants readjusted their allocation of leaf NSCs, C, N and P in response to light acclimation. Redundancy analysis showed that leaf morphological features of both E. sylvestris and I. henryi affected their corresponding leaf nutrient traits. These results improve our understanding of the dynamic balance between leaf NSCs and leaf C, N and P components in the nutritional metabolism of shade-tolerant plants. Two species of understory shade-tolerant plants responded differently to varying light intensities in terms of leaf non-structural carbohydrate allocation and the utilization of carbon, nitrogen and phosphorus to balance nutritional metabolism and adapt to environmental stress. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  13. Tobacco drought stress responses reveal new targets for Solanaceae crop improvement.

    PubMed

    Rabara, Roel C; Tripathi, Prateek; Reese, R Neil; Rushton, Deena L; Alexander, Danny; Timko, Michael P; Shen, Qingxi J; Rushton, Paul J

    2015-06-30

    The Solanaceae are an economically important family of plants that include tobacco (Nicotiana tabacum L.), tomato, and potato. Drought is a major cause of crop losses. We have identified major changes in physiology, metabolites, mRNA levels, and promoter activities during the tobacco response to drought. We have classified these as potential components of core responses that may be common to many plant species or responses that may be family/species-specific features of the drought stress response in tobacco or the Solanaceae. In tobacco the largest increase in any metabolite was a striking 70-fold increase in 4-hydroxy-2-oxoglutaric acid (KHG) in roots that appears to be tobacco/Solanaceae specific. KHG is poorly characterized in plants but is broken down to pyruvate and glyoxylate after the E. coli SOS response to facilitate the resumption of respiration. A similar process in tobacco would represent a mechanism to restart respiration upon water availability after drought. At the mRNA level, transcription factor gene induction by drought also showed both core and species/family specific responses. Many Group IX Subgroup 3 AP2/ERF transcription factors in tobacco appear to play roles in nicotine biosynthesis as a response to herbivory, whereas their counterparts in legume species appear to play roles in drought responses. We observed apparent Solanaceae-specific drought induction of several Group IId WRKY genes. One of these, NtWRKY69, showed ABA-independent drought stress-inducible promoter activity that moved into the leaf through the vascular tissue and then eventually into the surrounding leaf cells. We propose components of a core metabolic response to drought stress in plants and also show that some major responses to drought stress at the metabolome and transcriptome levels are family specific. We therefore propose that the observed family-specific changes in metabolism are regulated, at least in part, by family-specific changes in transcription factor activity. We also present a list of potential targets for the improvement of Solanaceae drought responses.

  14. Strain-Dependent Transcriptome Signatures for Robustness in Lactococcus lactis

    PubMed Central

    Dijkstra, Annereinou R.; Alkema, Wynand; Starrenburg, Marjo J. C.; van Hijum, Sacha A. F. T.; Bron, Peter A.

    2016-01-01

    Recently, we demonstrated that fermentation conditions have a strong impact on subsequent survival of Lactococcus lactis strain MG1363 during heat and oxidative stress, two important parameters during spray drying. Moreover, employment of a transcriptome-phenotype matching approach revealed groups of genes associated with robustness towards heat and/or oxidative stress. To investigate if other strains have similar or distinct transcriptome signatures for robustness, we applied an identical transcriptome-robustness phenotype matching approach on the L. lactis strains IL1403, KF147 and SK11, which have previously been demonstrated to display highly diverse robustness phenotypes. These strains were subjected to an identical fermentation regime as was performed earlier for strain MG1363 and consisted of twelve conditions, varying in the level of salt and/or oxygen, as well as fermentation temperature and pH. In the exponential phase of growth, cells were harvested for transcriptome analysis and assessment of heat and oxidative stress survival phenotypes. The variation in fermentation conditions resulted in differences in heat and oxidative stress survival of up to five 10-log units. Effects of the fermentation conditions on stress survival of the L. lactis strains were typically strain-dependent, although the fermentation conditions had mainly similar effects on the growth characteristics of the different strains. By association of the transcriptomes and robustness phenotypes highly strain-specific transcriptome signatures for robustness towards heat and oxidative stress were identified, indicating that multiple mechanisms exist to increase robustness and, as a consequence, robustness of each strain requires individual optimization. However, a relatively small overlap in the transcriptome responses of the strains was also identified and this generic transcriptome signature included genes previously associated with stress (ctsR and lplL) and novel genes, including nanE and genes encoding transport proteins. The transcript levels of these genes can function as indicators of robustness and could aid in selection of fermentation parameters, potentially resulting in more optimal robustness during spray drying. PMID:27973578

  15. Is there foul play in the leaf pocket? The metagenome of floating fern Azolla reveals endophytes that do not fix N2 but may denitrify.

    PubMed

    Dijkhuizen, Laura W; Brouwer, Paul; Bolhuis, Henk; Reichart, Gert-Jan; Koppers, Nils; Huettel, Bruno; Bolger, Anthony M; Li, Fay-Wei; Cheng, Shifeng; Liu, Xin; Wong, Gane Ka-Shu; Pryer, Kathleen; Weber, Andreas; Bräutigam, Andrea; Schluepmann, Henriette

    2018-01-01

    Dinitrogen fixation by Nostoc azollae residing in specialized leaf pockets supports prolific growth of the floating fern Azolla filiculoides. To evaluate contributions by further microorganisms, the A. filiculoides microbiome and nitrogen metabolism in bacteria persistently associated with Azolla ferns were characterized. A metagenomic approach was taken complemented by detection of N 2 O released and nitrogen isotope determinations of fern biomass. Ribosomal RNA genes in sequenced DNA of natural ferns, their enriched leaf pockets and water filtrate from the surrounding ditch established that bacteria of A. filiculoides differed entirely from surrounding water and revealed species of the order Rhizobiales. Analyses of seven cultivated Azolla species confirmed persistent association with Rhizobiales. Two distinct nearly full-length Rhizobiales genomes were identified in leaf-pocket-enriched samples from ditch grown A. filiculoides. Their annotation revealed genes for denitrification but not N 2 -fixation. 15 N 2 incorporation was active in ferns with N. azollae but not in ferns without. N 2 O was not detectably released from surface-sterilized ferns with the Rhizobiales. N 2 -fixing N. azollae, we conclude, dominated the microbiome of Azolla ferns. The persistent but less abundant heterotrophic Rhizobiales bacteria possibly contributed to lowering O 2 levels in leaf pockets but did not release detectable amounts of the strong greenhouse gas N 2 O. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  16. Linking Xylem Hydraulic Conductivity and Vulnerability to the Leaf Economics Spectrum—A Cross-Species Study of 39 Evergreen and Deciduous Broadleaved Subtropical Tree Species

    PubMed Central

    Kröber, Wenzel; Zhang, Shouren; Ehmig, Merten; Bruelheide, Helge

    2014-01-01

    While the fundamental trade-off in leaf traits related to carbon capture as described by the leaf economics spectrum is well-established among plant species, the relationship of the leaf economics spectrum to stem hydraulics is much less known. Since carbon capture and transpiration are coupled, a close connection between leaf traits and stem hydraulics should be expected. We thus asked whether xylem traits that describe drought tolerance and vulnerability to cavitation are linked to particular leaf traits. We assessed xylem vulnerability, using the pressure sleeve technique, and anatomical xylem characteristics in 39 subtropical tree species grown under common garden conditions in the BEF-China experiment and tested for correlations with traits related to the leaf economics spectrum as well as to stomatal control, including maximum stomatal conductance, vapor pressure deficit at maximum stomatal conductance and vapor pressure deficit at which stomatal conductance is down-regulated. Our results revealed that specific xylem hydraulic conductivity and cavitation resistance were closely linked to traits represented in the leaf economic spectrum, in particular to leaf nitrogen concentration, as well as to log leaf area and leaf carbon to nitrogen ratio but not to any parameter of stomatal conductance. The study highlights the potential use of well-known leaf traits from the leaf economics spectrum to predict plant species' drought resistance. PMID:25423316

  17. Linking xylem hydraulic conductivity and vulnerability to the leaf economics spectrum--a cross-species study of 39 evergreen and deciduous broadleaved subtropical tree species.

    PubMed

    Kröber, Wenzel; Zhang, Shouren; Ehmig, Merten; Bruelheide, Helge

    2014-01-01

    While the fundamental trade-off in leaf traits related to carbon capture as described by the leaf economics spectrum is well-established among plant species, the relationship of the leaf economics spectrum to stem hydraulics is much less known. Since carbon capture and transpiration are coupled, a close connection between leaf traits and stem hydraulics should be expected. We thus asked whether xylem traits that describe drought tolerance and vulnerability to cavitation are linked to particular leaf traits. We assessed xylem vulnerability, using the pressure sleeve technique, and anatomical xylem characteristics in 39 subtropical tree species grown under common garden conditions in the BEF-China experiment and tested for correlations with traits related to the leaf economics spectrum as well as to stomatal control, including maximum stomatal conductance, vapor pressure deficit at maximum stomatal conductance and vapor pressure deficit at which stomatal conductance is down-regulated. Our results revealed that specific xylem hydraulic conductivity and cavitation resistance were closely linked to traits represented in the leaf economic spectrum, in particular to leaf nitrogen concentration, as well as to log leaf area and leaf carbon to nitrogen ratio but not to any parameter of stomatal conductance. The study highlights the potential use of well-known leaf traits from the leaf economics spectrum to predict plant species' drought resistance.

  18. Assessing the hodgepodge of non-mapped reads in bacterial transcriptomes: real or artifactual RNA chimeras?

    PubMed

    Lloréns-Rico, Verónica; Serrano, Luis; Lluch-Senar, Maria

    2014-07-29

    RNA sequencing methods have already altered our view of the extent and complexity of bacterial and eukaryotic transcriptomes, revealing rare transcript isoforms (circular RNAs, RNA chimeras) that could play an important role in their biology. We performed an analysis of chimera formation by four different computational approaches, including a custom designed pipeline, to study the transcriptomes of M. pneumoniae and P. aeruginosa, as well as mixtures of both. We found that rare transcript isoforms detected by conventional pipelines of analysis could be artifacts of the experimental procedure used in the library preparation, and that they are protocol-dependent. By using a customized pipeline we show that optimal library preparation protocol and the pipeline to analyze the results are crucial to identify real chimeric RNAs.

  19. Sexual dimorphic floral development in dioecious plants revealed by transcriptome, phytohormone, and DNA methylation analysis in Populus tomentosa.

    PubMed

    Song, Yuepeng; Ma, Kaifeng; Ci, Dong; Chen, Qingqing; Tian, Jiaxing; Zhang, Deqiang

    2013-12-01

    Dioecious plants have evolved sex-specific floral development mechanisms. However, the precise gene expression patterns in dioecious plant flower development remain unclear. Here, we used andromonoecious poplar, an exceptional model system, to eliminate the confounding effects of genetic background of dioecious plants. Comparative transcriptome and physiological analysis allowed us to characterize sex-specific development of female and male flowers. Transcriptome analysis identified genes significantly differentially expressed between the sexes, including genes related to floral development, phytohormone synthesis and metabolism, and DNA methylation. Correlation analysis revealed a significant correlation between phytohormone signaling and gene expression, identifying specific phytohormone-responsive genes and their cis-regulatory elements. Two genes related to DNA methylation, METHYLTRANSFERASE1 (MET1) and DECREASED DNA METHYLATION 1 (DDM1), which are located in the sex determination region of Chromosome XIX, have differential expression between female and male flowers. A time-course analysis revealed that MET1 and DDM1 expression may produce different DNA methylation levels in female and male flowers. Understanding the interactions of phytohormone signaling, DNA methylation and target gene expression should lead to a better understanding of sexual differences in floral development. Thus, this study identifies a set of candidate genes for further studies of poplar sexual dimorphism and relates sex-specific floral development to physiological and epigenetic changes.

  20. Characterization of Heterobasidion occidentale transcriptomes reveals candidate genes and DNA polymorphisms for virulence variations.

    PubMed

    Liu, Jun-Jun; Shamoun, Simon Francis; Leal, Isabel; Kowbel, Robert; Sumampong, Grace; Zamany, Arezoo

    2018-05-01

    Characterization of genes involved in differentiation of pathogen species and isolates with variations of virulence traits provides valuable information to control tree diseases for meeting the challenges of sustainable forest health and phytosanitary trade issues. Lack of genetic knowledge and genomic resources hinders novel gene discovery, molecular mechanism studies and development of diagnostic tools in the management of forest pathogens. Here, we report on transcriptome profiling of Heterobasidion occidentale isolates with contrasting virulence levels. Comparative transcriptomic analysis identified orthologous groups exclusive to H. occidentale and its isolates, revealing biological processes involved in the differentiation of isolates. Further bioinformatics analyses identified an H. occidentale secretome, CYPome and other candidate effectors, from which genes with species- and isolate-specific expression were characterized. A large proportion of differentially expressed genes were revealed to have putative activities as cell wall modification enzymes and transcription factors, suggesting their potential roles in virulence and fungal pathogenesis. Next, large numbers of simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs) were detected, including more than 14 000 interisolate non-synonymous SNPs. These polymorphic loci and species/isolate-specific genes may contribute to virulence variations and provide ideal DNA markers for development of diagnostic tools and investigation of genetic diversity. © 2018 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  1. Transcriptome analysis of thermophilic methylotrophic Bacillus methanolicus MGA3 using RNA-sequencing provides detailed insights into its previously uncharted transcriptional landscape.

    PubMed

    Irla, Marta; Neshat, Armin; Brautaset, Trygve; Rückert, Christian; Kalinowski, Jörn; Wendisch, Volker F

    2015-02-14

    Bacillus methanolicus MGA3 is a thermophilic, facultative ribulose monophosphate (RuMP) cycle methylotroph. Together with its ability to produce high yields of amino acids, the relevance of this microorganism as a promising candidate for biotechnological applications is evident. The B. methanolicus MGA3 genome consists of a 3,337,035 nucleotides (nt) circular chromosome, the 19,174 nt plasmid pBM19 and the 68,999 nt plasmid pBM69. 3,218 protein-coding regions were annotated on the chromosome, 22 on pBM19 and 82 on pBM69. In the present study, the RNA-seq approach was used to comprehensively investigate the transcriptome of B. methanolicus MGA3 in order to improve the genome annotation, identify novel transcripts, analyze conserved sequence motifs involved in gene expression and reveal operon structures. For this aim, two different cDNA library preparation methods were applied: one which allows characterization of the whole transcriptome and another which includes enrichment of primary transcript 5'-ends. Analysis of the primary transcriptome data enabled the detection of 2,167 putative transcription start sites (TSSs) which were categorized into 1,642 TSSs located in the upstream region (5'-UTR) of known protein-coding genes and 525 TSSs of novel antisense, intragenic, or intergenic transcripts. Firstly, 14 wrongly annotated translation start sites (TLSs) were corrected based on primary transcriptome data. Further investigation of the identified 5'-UTRs resulted in the detailed characterization of their length distribution and the detection of 75 hitherto unknown cis-regulatory RNA elements. Moreover, the exact TSSs positions were utilized to define conserved sequence motifs for translation start sites, ribosome binding sites and promoters in B. methanolicus MGA3. Based on the whole transcriptome data set, novel transcripts, operon structures and mRNA abundances were determined. The analysis of the operon structures revealed that almost half of the genes are transcribed monocistronically (940), whereas 1,164 genes are organized in 381 operons. Several of the genes related to methylotrophy had highly abundant transcripts. The extensive insights into the transcriptional landscape of B. methanolicus MGA3, gained in this study, represent a valuable foundation for further comparative quantitative transcriptome analyses and possibly also for the development of molecular biology tools which at present are very limited for this organism.

  2. Relation of Lake-Floor Characteristics to the Distribution of Variable Leaf Water-Milfoil in Moultonborough Bay, Lake Winnipesaukee, New Hampshire, 2005

    USGS Publications Warehouse

    Argue, Denise M.; Kiah, Richard G.; Denny, Jane F.; Deacon, Jeffrey R.; Danforth, William W.; Johnston, Craig M.; Smagula, Amy P.

    2007-01-01

    Geophysical, water, and sediment surveys were done to characterize the effects of surficial geology, water and sediment chemistry, and surficial-sediment composition on the distribution of variable leaf water-milfoil in Moultonborough Bay, Lake Winnipesaukee, New Hampshire. Geophysical surveys were conducted in a 180-square-kilometer area, and water-quality and sediment samples were collected from 24 sites in the survey area during July 2005. Swath-bathymetric data revealed that Moultonborough Bay ranged in depth from less than 1 meter (m) to about 15 m and contained three embayments. Seismic-reflection profiles revealed erosion of the underlying bedrock and subsequent deposition of glaciolacustrine and Holocene lacustrine sediments within the survey area. Sediment thickness ranged from 5 m along the shoreward margins to more than 15 m in the embayments. Data from sidescan sonar, surficial-sediment samples, bottom photographs, and video revealed three distinct lake-floor environments: rocky nearshore, mixed nearshore, and muddy basin. Rocky nearshore environments were found in shallow water (less than 5 m deep) and contained sediments ranging from coarse silt to very coarse sand. Mixed nearshore environments also were found in shallow water and contained sediments ranging from silt to coarse sand with different densities of aquatic vegetation. Muddy basin environments contained the finest-grained sediments, ranging from fine to medium silt, and were in the deepest waters of the bay. Acoustic Ground Discrimination Systems (AGDS) survey data revealed that 86 percent of the littoral zone (the area along the margins of the bay and islands that extends from 0 to 4.3 m in water depth) contained submerged aquatic vegetation (SAV) in varying densities: approximately 36 percent contained SAV bottom cover of 25 percent or less, 43 percent contained SAV bottom cover of more than 25 and less than 75 percent, and approximately 7 percent contained SAV bottom cover of more than 75 percent. SAV included variable leaf water-milfoil, native milfoil, bassweed, pipewort, and other species, which were predominantly found near shoreward margins and at depths ranging from less than 1 to 4 m. AGDS data were used in a Geographic Information System to generate an interpolated map that distinguished variable leaf water-milfoil from other SAV. Furthermore, these data were used to isolate areas susceptible to variable leaf water-milfoil growth. Approximately 21 percent of the littoral zone contained dense beds (more than 59 percent bottom cover) of variable leaf water-milfoil, and an additional 44 percent was determined to be susceptible to variable leaf water-milfoil infestation. Depths differed significantly between sites with variable leaf water-milfoil and sites with other SAV (p = 0.04). Variable leaf water-milfoil was found at depths that ranged from 1 to 4 m, and other SAV had a depth range of 1 to 2 m. Although variable leaf water-milfoil was observed at greater depths than other SAV, it was not observed below the photic zone. Analysis of constituent concentrations from the water column, interstitial pore water, and sediment showed little correlation with the presence of variable leaf water-milfoil, with two exceptions. Iron concentrations were significantly lower at variable leaf water-milfoil sites than at other sampling sites (p = 0.04). Similarly, the percentage of total organic carbon also was significantly lower at the variable leaf water-milfoil sites than at other sampling sites (p = 0.04). Surficial-sediment-grain size had the greatest correlation to the presence of variable leaf water-milfoil. Variable leaf water-milfoil was predominantly growing in areas of coarse sand (median grain-size 0.62 millimeters). Surficial-sediment-grain size was also correlated with total ammonia plus organic nitrogen (Rho = 0.47; p = 0.02) and with total phosphorus (Rho = 0.44; p = 0.05) concentrations in interstitial pore-water samples.

  3. Differences between winter oilseed rape (Brassica napus L.) cultivars in nitrogen starvation-induced leaf senescence are governed by leaf-inherent rather than root-derived signals

    PubMed Central

    Koeslin-Findeklee, Fabian; Becker, Martin A.; van der Graaff, Eric; Roitsch, Thomas; Horst, Walter J.

    2015-01-01

    Nitrogen (N) efficiency of winter oilseed rape (Brassica napus L.) line-cultivars (cvs.), defined as high grain yield under N limitation, has been primarily attributed to maintained N uptake during reproductive growth (N uptake efficiency) in combination with delayed senescence of the older leaves accompanied with maintained photosynthetic capacity (functional stay-green). However, it is not clear whether genotypic variation in N starvation-induced leaf senescence is due to leaf-inherent factors and/or governed by root-mediated signals. Therefore, the N-efficient and stay-green cvs. NPZ-1 and Apex were reciprocally grafted with the N-inefficient and early-senescing cvs. NPZ-2 and Capitol, respectively and grown in hydroponics. The senescence status of older leaves after 12 days of N starvation assessed by SPAD, photosynthesis and the expression of the senescence-specific cysteine protease gene SAG12-1 revealed that the stay-green phenotype of the cvs. NPZ-1 and Apex under N starvation was primarily under the control of leaf-inherent factors. The same four cultivars were submitted to N starvation for up to 12 days in a time-course experiment. The specific leaf contents of biologically active and inactive cytokinins (CKs) and the expression of genes involved in CK homeostasis revealed that under N starvation leaves of early-senescing cultivars were characterized by inactivation of biologically active CKs, whereas in stay-green cultivars synthesis, activation, binding of and response to biologically active CKs were favoured. These results suggest that the homeostasis of biologically active CKs was the predominant leaf-inherent factor for cultivar differences in N starvation-induced leaf senescence and thus N efficiency. PMID:25944925

  4. The heterogeneity of human mesenchymal stem cell preparations--evidence from simultaneous analysis of proteomes and transcriptomes.

    PubMed

    Wagner, Wolfgang; Feldmann, Robert E; Seckinger, Anja; Maurer, Martin H; Wein, Frederik; Blake, Jonathon; Krause, Ulf; Kalenka, Armin; Bürgers, Heinrich F; Saffrich, Rainer; Wuchter, Patrick; Kuschinsky, Wolfgang; Ho, Anthony D

    2006-04-01

    Mesenchymal stem cells (MSC) raise high hopes in clinical applications. However, the lack of common standards and a precise definition of MSC preparations remains a major obstacle in research and application of MSC. Whereas surface antigen markers have failed to precisely define this population, a combination of proteomic data and microarray data provides a new dimension for the definition of MSC preparations. In our continuing effort to characterize MSC, we have analyzed the differential transcriptome and proteome expression profiles of MSC preparations isolated from human bone marrow under two different expansion media (BM-MSC-M1 and BM-MSC-M2). In proteomics, 136 protein spots were unambiguously identified by MALDI-TOF-MS and corresponding cDNA spots were selected on our "Human Transcriptome cDNA Microarray." Combination of datasets revealed a correlation in differential gene expression and protein expression of BM-MSC-M1 vs BM-MSC-M2. Genes involved in metabolism were more highly expressed in BM-MSC-M1, whereas genes involved in development, morphogenesis, extracellular matrix, and differentiation were more highly expressed in BM-MSC-M2. Interchanging culture conditions for 8 days revealed that differential expression was retained in several genes whereas it was altered in others. Our results have provided evidence that homogeneous BM-MSC preparations can reproducibly be isolated under standardized conditions, whereas culture conditions exert a prominent impact on transcriptome, proteome, and cellular organization of BM-MSC.

  5. Comparative Transcriptome Analysis Reveals Critical Function of Sucrose Metabolism Related-Enzymes in Starch Accumulation in the Storage Root of Sweet Potato

    PubMed Central

    Zhang, Kai; Wu, Zhengdan; Tang, Daobin; Luo, Kai; Lu, Huixiang; Liu, Yingying; Dong, Jie; Wang, Xin; Lv, Changwen; Wang, Jichun; Lu, Kun

    2017-01-01

    The starch properties of the storage root (SR) affect the quality of sweet potato (Ipomoea batatas (L.) Lam.). Although numerous studies have analyzed the accumulation and properties of starch in sweet potato SRs, the transcriptomic variation associated with starch properties in SR has not been quantified. In this study, we measured the starch and sugar contents and analyzed the transcriptome profiles of SRs harvested from sweet potatoes with high, medium, and extremely low starch contents, at five developmental stages [65, 80, 95, 110, and 125 days after transplanting (DAP)]. We found that differences in both water content and starch accumulation in the dry matter affect the starch content of SRs in different sweet potato genotypes. Based on transcriptome sequencing data, we assembled 112336 unigenes, and identified several differentially expressed genes (DEGs) involved in starch and sucrose metabolism, and revealed the transcriptional regulatory network controlling starch and sucrose metabolism in sweet potato SRs. Correlation analysis between expression patterns and starch and sugar contents suggested that the sugar–starch conversion steps catalyzed by sucrose synthase (SuSy) and UDP-glucose pyrophosphorylase (UGPase) may be essential for starch accumulation in the dry matter of SRs, and IbβFRUCT2, a vacuolar acid invertase, might also be a key regulator of starch content in the SRs. Our results provide valuable resources for future investigations aimed at deciphering the molecular mechanisms determining the starch properties of sweet potato SRs. PMID:28690616

  6. Tolerance to solar ultraviolet-B radiation in the citrus red mite, an upper surface user of host plant leaves.

    PubMed

    Fukaya, Midori; Uesugi, Ryuji; Ohashi, Hirokazu; Sakai, Yuta; Sudo, Masaaki; Kasai, Atsushi; Kishimoto, Hidenari; Osakabe, Masahiro

    2013-01-01

    Plant-dwelling mites are potentially exposed to solar ultraviolet-B (UVB) radiation that causes deleterious and often lethal effects, leading most mites to inhabit the lower (underside) leaf surfaces. However, in species of spider mite belonging to the Genus Panonychus, a substantial portion of individuals occur on upper leaf surfaces. We investigated whether the upper leaf surfaces of citrus trees are favorable for P. citri, and to what extent they are tolerant to UVB radiation. If eggs are not adequately protected from UVB damage, females may avoid ovipositing on the upper surfaces of sunny leaves. To test this, we conducted laboratory experiments using a UVB lamp, and semioutdoor manipulative experiments. As a result, P. citri eggs are tolerant to UVB. Field studies revealed that the ratio of eggs and adult females on upper leaf surfaces were larger for shaded than for sunny leaves. However, 64-89% of eggs hatched successfully even on sunny upper leaf surfaces. Nutritional evaluation revealed that whether on sunny or shaded leaves, in fecundity and juvenile development P. citri reaped the fitness benefits of upper leaf surfaces. Consequently, P. citri is tolerant to UVB damage, and inhabiting the upper surfaces of shaded leaves is advantageous to this mite. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  7. Transcriptome analysis of sweet orange trees infected with 'Candidatus Liberibacter asiaticus' and two strains of Citrus Tristeza Virus.

    PubMed

    Fu, Shimin; Shao, Jonathan; Zhou, Changyong; Hartung, John S

    2016-05-11

    Huanglongbing (HLB) and tristeza, are diseases of citrus caused by a member of the α-proteobacteria, 'Candidatus Liberibacter asiaticus' (CaLas), and Citrus tristeza virus (CTV) respectively. HLB is a devastating disease, but CTV strains vary from very severe to very mild. Both CaLas and CTV are phloem-restricted. The CaLas-B232 strain and CTV-B6 cause a wide range of severe and similar symptoms. The mild strain CTV-B2 doesn't induce significant symptoms or damage to plants. Transcriptome profiles obtained through RNA-seq revealed 611, 404 and 285 differentially expressed transcripts (DETs) after infection with CaLas-B232, CTV-B6 and CTV-B2. These DETs were components of a wide range of pathways involved in circadian rhythm, cell wall modification and cell organization, as well as transcription factors, transport, hormone response and secondary metabolism, signaling and stress response. The number of transcripts that responded to both CTV-B6 and CaLas-B232 was much larger than the number of transcripts that responded to both strains of CTV or to both CTV-B2 and CaLas-B232. A total of 38 genes were assayed by RT-qPCR and the correlation coefficients between Gfold and RT-qPCR were 0.82, 0.69, 0.81 for sweet orange plants infected with CTV-B2, CTV-B6 and CaLas-B232, respectively. The number and composition of DETs reflected the complexity of symptoms caused by the pathogens in established infections, although the leaf tissues sampled were asymptomatic. There were greater similarities between the sweet orange in response to CTV-B6 and CaLas-B232 than between the two CTV strains, reflecting the similar physiological changes caused by both CTV-B6 and CaLas-B232. The circadian rhythm system of plants was perturbed by all three pathogens, especially by CTV-B6, and the ion balance was also disrupted by all three pathogens, especially by CaLas-B232. Defense responses related to cell wall modification, transcriptional regulation, hormones, secondary metabolites, kinases and stress were activated by all three pathogens but with different patterns. The transcriptome profiles of Citrus sinensis identified host genes whose expression is affected by the presence of a pathogen in the phloem without producing symptoms (CTV-B2), and host genes whose expression leads to induction of symptoms in the plant (CTV-B6, CaLas-B232).

  8. Proteomics reveals novel components of the Anopheles gambiae eggshell

    PubMed Central

    Amenya, Dolphine A.; Chou, Wayne; Li, Jianyong; Yan, Guiyun; Gershon, Paul D.; James, Anthony A.; Marinotti, Osvaldo

    2010-01-01

    While genome and transcriptome sequencing has revealed a large number and diversity of Anopheles gambiae predicted proteins, identifying their functions and biosynthetic pathways remains challenging. Applied mass spectrometry based proteomics in conjunction with mosquito genome and transcriptome databases were used to identify 44 proteins as putative components of the eggshell. Among the identified molecules are two vitelline membrane proteins and a group of seven putative chorion proteins. Enzymes with peroxidase, laccase and phenoloxidase activities, likely involved in cross-linking reactions that stabilize the eggshell structure, also were identified. Seven odorant binding proteins were found in association with the mosquito eggshell, although their role has yet to be demonstrated. This analysis fills a considerable gap of knowledge about proteins that build the eggshell of anopheline mosquitoes. PMID:20433845

  9. Comparative transcriptome analysis of pepper (Capsicum annuum) revealed common regulons in multiple stress conditions and hormone treatments.

    PubMed

    Lee, Sanghyeob; Choi, Doil

    2013-09-01

    Global transcriptome analysis revealed common regulons for biotic/abiotic stresses, and some of these regulons encoding signaling components in both stresses were newly identified in this study. In this study, we aimed to identify plant responses to multiple stress conditions and discover the common regulons activated under a variety of stress conditions. Global transcriptome analysis revealed that salicylic acid (SA) may affect the activation of abiotic stress-responsive genes in pepper. Our data indicate that methyl jasmonate (MeJA) and ethylene (ET)-responsive genes were primarily activated by biotic stress, while abscisic acid (ABA)-responsive genes were activated under both types of stresses. We also identified differentially expressed gene (DEG) responses to specific stress conditions. Biotic stress induces more DEGs than those induced by abiotic and hormone applications. The clustering analysis using DEGs indicates that there are common regulons for biotic or abiotic stress conditions. Although SA and MeJA have an antagonistic effect on gene expression levels, SA and MeJA show a largely common regulation as compared to the regulation at the DEG expression level induced by other hormones. We also monitored the expression profiles of DEG encoding signaling components. Twenty-two percent of these were commonly expressed in both stress conditions. The importance of this study is that several genes commonly regulated by both stress conditions may have future applications for creating broadly stress-tolerant pepper plants. This study revealed that there are complex regulons in pepper plant to both biotic and abiotic stress conditions.

  10. RNA-seq analysis of broiler liver transcriptome reveals novel responses to high ambient temperature.

    PubMed

    Coble, Derrick J; Fleming, Damarius; Persia, Michael E; Ashwell, Chris M; Rothschild, Max F; Schmidt, Carl J; Lamont, Susan J

    2014-12-10

    In broilers, high ambient temperature can result in reduced feed consumption, digestive inefficiency, impaired metabolism, and even death. The broiler sector of the U.S. poultry industry incurs approximately $52 million in heat-related losses annually. The objective of this study is to characterize the effects of cyclic high ambient temperature on the transcriptome of a metabolically active organ, the liver. This study provides novel insight into the effects of high ambient temperature on metabolism in broilers, because it is the first reported RNA-seq study to characterize the effect of heat on the transcriptome of a metabolic-related tissue. This information provides a platform for future investigations to further elucidate physiologic responses to high ambient temperature and seek methods to ameliorate the negative impacts of heat. Transcriptome sequencing of the livers of 8 broiler males using Illumina HiSeq 2000 technology resulted in 138 million, 100-base pair single end reads, yielding a total of 13.8 gigabases of sequence. Forty genes were differentially expressed at a significance level of P-value < 0.05 and a fold-change ≥ 2 in response to a week of cyclic high ambient temperature with 27 down-regulated and 13 up-regulated genes. Two gene networks were created from the function-based Ingenuity Pathway Analysis (IPA) of the differentially expressed genes: "Cell Signaling" and "Endocrine System Development and Function". The gene expression differences in the liver transcriptome of the heat-exposed broilers reflected physiological responses to decrease internal temperature, reduce hyperthermia-induced apoptosis, and promote tissue repair. Additionally, the differential gene expression revealed a physiological response to regulate the perturbed cellular calcium levels that can result from high ambient temperature exposure. Exposure to cyclic high ambient temperature results in changes at the metabolic, physiologic, and cellular level that can be characterized through RNA-seq analysis of the liver transcriptome of broilers. The findings highlight specific physiologic mechanisms by which broilers reduce the effects of exposure to high ambient temperature. This information provides a foundation for future investigations into the gene networks involved in the broiler stress response and for development of strategies to ameliorate the negative impacts of heat on animal production and welfare.

  11. Relationships between drought, heat and air humidity responses revealed by transcriptome-metabolome co-analysis.

    PubMed

    Georgii, Elisabeth; Jin, Ming; Zhao, Jin; Kanawati, Basem; Schmitt-Kopplin, Philippe; Albert, Andreas; Winkler, J Barbro; Schäffner, Anton R

    2017-07-10

    Elevated temperature and reduced water availability are frequently linked abiotic stresses that may provoke distinct as well as interacting molecular responses. Based on non-targeted metabolomic and transcriptomic measurements from Arabidopsis rosettes, this study aims at a systematic elucidation of relevant components in different drought and heat scenarios as well as relationships between molecular players of stress response. In combined drought-heat stress, the majority of single stress responses are maintained. However, interaction effects between drought and heat can be discovered as well; these relate to protein folding, flavonoid biosynthesis and growth inhibition, which are enhanced, reduced or specifically induced in combined stress, respectively. Heat stress experiments with and without supplementation of air humidity for maintenance of vapor pressure deficit suggest that decreased relative air humidity due to elevated temperature is an important component of heat stress, specifically being responsible for hormone-related responses to water deprivation. Remarkably, this "dry air effect" is the primary trigger of the metabolomic response to heat. In contrast, the transcriptomic response has a substantial temperature component exceeding the dry air component and including up-regulation of many transcription factors and protein folding-related genes. Data level integration independent of prior knowledge on pathways and condition labels reveals shared drought and heat responses between transcriptome and metabolome, biomarker candidates and co-regulation between genes and metabolic compounds, suggesting novel players in abiotic stress response pathways. Drought and heat stress interact both at transcript and at metabolite response level. A comprehensive, non-targeted view of this interaction as well as non-interacting processes is important to be taken into account when improving tolerance to abiotic stresses in breeding programs. Transcriptome and metabolome may respond with different extent to individual stress components. Their contrasting behavior in response to temperature stress highlights that the protein folding machinery effectively shields the metabolism from stress. Disentangling the complex relationships between transcriptome and metabolome in response to stress is an enormous challenge. As demonstrated by case studies with supporting evidence from additional data, the large dataset provided in this study may assist in determining linked genetic and metabolic features as candidates for future mechanistic analyses.

  12. Transcriptomics of Desiccation Tolerance in the Streptophyte Green Alga Klebsormidium Reveal a Land Plant-Like Defense Reaction

    PubMed Central

    Holzinger, Andreas; Kaplan, Franziska; Blaas, Kathrin; Zechmann, Bernd; Komsic-Buchmann, Karin; Becker, Burkhard

    2014-01-01

    Background Water loss has significant effects on physiological performance and survival rates of algae. However, despite the prominent presence of aeroterrestrial algae in terrestrial habitats, hardly anything is known about the molecular events that allow aeroterrestrial algae to survive harsh environmental conditions. We analyzed the transcriptome and physiology of a strain of the alpine aeroterrestrial alga Klebsormidium crenulatum under control and strong desiccation-stress conditions. Principal Findings For comparison we first established a reference transcriptome. The high-coverage reference transcriptome includes about 24,183 sequences (1.5 million reads, 636 million bases). The reference transcriptome encodes for all major pathways (energy, carbohydrates, lipids, amino acids, sugars), nearly all deduced pathways are complete or missing only a few transcripts. Upon strong desiccation, more than 7000 transcripts showed changes in their expression levels. Most of the highest up-regulated transcripts do not show similarity to known viridiplant proteins, suggesting the existence of some genus- or species-specific responses to desiccation. In addition, we observed the up-regulation of many transcripts involved in desiccation tolerance in plants (e.g. proteins similar to those that are abundant in late embryogenesis (LEA), or proteins involved in early response to desiccation ERD), and enzymes involved in the biosynthesis of the raffinose family of oligosaccharides (RFO) known to act as osmolytes). Major physiological shifts are the up-regulation of transcripts for photosynthesis, energy production, and reactive oxygen species (ROS) metabolism, which is supported by elevated cellular glutathione content as revealed by immunoelectron microscopy as well as an increase in total antiradical power. However, the effective quantum yield of Photosystem II and CO2 fixation decreased sharply under the applied desiccation stress. In contrast, transcripts for cell integrative functions such as cell division, DNA replication, cofactor biosynthesis, and amino acid biosynthesis were down-regulated. Significance This is the first study investigating the desiccation transcriptome of a streptophyte green alga. Our results indicate that the cellular response is similar to embryophytes, suggesting that embryophytes inherited a basic cellular desiccation tolerance from their streptophyte predecessors. PMID:25340847

  13. Antidiabetic Effect of Young and Old Ethanolic Leaf Extracts of Vernonia amygdalina: A Comparative Study

    PubMed Central

    Asante, Du-Bois; Effah-Yeboah, Emmanuel; Barnes, Precious; Abban, Heckel Amoabeng; Ameyaw, Elvis Ofori; Boampong, Johnson Nyarko; Ofori, Eric Gyamerah; Dadzie, Joseph Budu

    2016-01-01

    The young leaves of Vernonia amygdalina are often utilized as vegetable and for medicinal purpose compared to the old leaves. This study was designed to evaluate and compare the antidiabetic effects between ethanolic leaf extracts of old and young V. amygdalina on streptozotocin (STZ) induced diabetic rat for four weeks. Preliminary screening of both young and old ethanolic extracts revealed the presence of the same phytochemicals except flavonoids which was only present in the old V. amygdalina. Difference in antioxidant power between the young and old leaf extracts was statistically significant (p < 0.05). Both leaf extracts produced a significant (p < 0.05) antihyperglycaemic effect. Also results from treated rats revealed increasing effect in some haematological parameters. Similarly, the higher dose (300 mg/kg) of both extracts significantly (p < 0.05) reduced serum ALT, AST, and ALP levels as compared to the diabetic control rats. Results also showed significant (p < 0.05) decrease in LDL-C and VLDL-C in the extract-treated rats with a corresponding increase in HDL-C, as compared to the diabetic control rats. Moreover histopathological analysis revealed ameliorative effect of pathological insults induced by the STZ in the pancreas, liver, and spleen, most significantly the regeneration of the beta cells of the islets of Langerhans in treated rats. PMID:27294153

  14. High-Throughput Phenotyping of Maize Leaf Physiological and Biochemical Traits Using Hyperspectral Reflectance1[OPEN

    PubMed Central

    Yendrek, Craig R.; Tomaz, Tiago; Montes, Christopher M.; Cao, Youyuan; Morse, Alison M.; Brown, Patrick J.; McIntyre, Lauren M.; Leakey, Andrew D.B.

    2017-01-01

    High-throughput, noninvasive field phenotyping has revealed genetic variation in crop morphological, developmental, and agronomic traits, but rapid measurements of the underlying physiological and biochemical traits are needed to fully understand genetic variation in plant-environment interactions. This study tested the application of leaf hyperspectral reflectance (λ = 500–2,400 nm) as a high-throughput phenotyping approach for rapid and accurate assessment of leaf photosynthetic and biochemical traits in maize (Zea mays). Leaf traits were measured with standard wet-laboratory and gas-exchange approaches alongside measurements of leaf reflectance. Partial least-squares regression was used to develop a measure of leaf chlorophyll content, nitrogen content, sucrose content, specific leaf area, maximum rate of phosphoenolpyruvate carboxylation, [CO2]-saturated rate of photosynthesis, and leaf oxygen radical absorbance capacity from leaf reflectance spectra. Partial least-squares regression models accurately predicted five out of seven traits and were more accurate than previously used simple spectral indices for leaf chlorophyll, nitrogen content, and specific leaf area. Correlations among leaf traits and statistical inferences about differences among genotypes and treatments were similar for measured and modeled data. The hyperspectral reflectance approach to phenotyping was dramatically faster than traditional measurements, enabling over 1,000 rows to be phenotyped during midday hours over just 2 to 4 d, and offers a nondestructive method to accurately assess physiological and biochemical trait responses to environmental stress. PMID:28049858

  15. Microscopic evaluation and physiochemical analysis of Dillenia indica leaf

    PubMed Central

    Kumar, S; Kumar, V; Prakash, Om

    2011-01-01

    Objective To study detail microscopic evaluation and physiochemical analysis of Dillenia indica (D. indica) leaf. Methods Fresh leaf sample and dried power of the leaf were studied macroscopically and microscopically. Preliminary phytochemical investigation of plant material was done. Other WHO recommended parameters for standardizations were also performed. Results The detail microscopy revealed the presence of anomocytic stomata, unicellular trichome, xylem fibres, calcium oxalate crystals, vascular bundles, etc. Leaf constants such as stomatal number, stomatal index, vein-islet number and veinlet termination numbers were also measured. Physiochemical parameters such as ash values, loss on drying, extractive values, percentage of foreign matters, swelling index, etc. were also determined. Preliminary phytochemical screening showed the presence of steroids, terpenoids, glycosides, fatty acids, flavonoids, phenolic compounds and carbohydrates. Conclusions The microscopic and physiochemical analysis of the D. indica leaf is useful in standardization for quality, purity and sample identification. PMID:23569789

  16. PHANTASTICA regulates leaf polarity and petiole identity in Medicago truncatula

    PubMed Central

    Ge, Liangfa; Chen, Rujin

    2014-01-01

    Establishment of proper polarities along the adaxial-abaxial, proximodistal, and medial-lateral axes is a critical step for the expansion of leaves from leaf primordia. It has been shown that the MYB domain protein, ASYMMETRIC LEAVES1/ROUGH SHEATH2/PHANTASTICA (collectively named ARP) plays an important role in this process. Loss of function of ARP leads to severe leaf polarity defects, such as abaxialized or needle-like leaves. In addition to its role in leaf polarity establishment, we have recently shown that the Medicago truncatula ARP gene, MtPHAN, also plays a role in leaf petiole identity regulation. We show that a mutation of MtPHAN results in petioles acquiring characteristics of the motor organ, pulvinus, including small epidermal cells with extensive cell surface modifications and altered vascular tissue development. Taken together, our results reveal a previously unidentified function of ARP in leaf development. PMID:24603499

  17. Transcriptome-wide targets of alternative splicing by RBM4 and possible role in cancer.

    PubMed

    Markus, M Andrea; Yang, Yee Hwa J; Morris, Brian J

    2016-04-01

    This study determined transcriptome-wide targets of the splicing factor RBM4 using Affymetrix GeneChip(®) Human Exon 1.0 ST Arrays and HeLa cells treated with RBM4-specific siRNA. This revealed 238 transcripts that were targeted for alternative splicing. Cross-linking and immunoprecipitation experiments identified 945 RBM4 targets in mouse HEK293 cells, 39% of which were ascribed to "alternative splicing" by in silico pathway analysis. Mouse embryonic stem cells transfected with Rbm4 siRNA hairpins exhibited reduced colony numbers and size consistent with involvement of RBM4 in cell proliferation. RBM4 cDNA probing of a cancer cDNA array involving 18 different tumor types from 13 different tissues and matching normal tissue found overexpression of RBM4 mRNA (p<0.01) in cervical, breast, lung, colon, ovarian and rectal cancers. Many RBM4 targets we identified have been implicated in these cancers. In conclusion, our findings reveal transcriptome-wide targets of RBM4 and point to potential cancer-related targets and mechanisms that may involve RBM4. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Comparative Transcriptomics Among Four White Pine Species

    PubMed Central

    Baker, Ethan A. G.; Wegrzyn, Jill L.; Sezen, Uzay U.; Falk, Taylor; Maloney, Patricia E.; Vogler, Detlev R.; Delfino-Mix, Annette; Jensen, Camille; Mitton, Jeffry; Wright, Jessica; Knaus, Brian; Rai, Hardeep; Cronn, Richard; Gonzalez-Ibeas, Daniel; Vasquez-Gross, Hans A.; Famula, Randi A.; Liu, Jun-Jun; Kueppers, Lara M.; Neale, David B.

    2018-01-01

    Conifers are the dominant plant species throughout the high latitude boreal forests as well as some lower latitude temperate forests of North America, Europe, and Asia. As such, they play an integral economic and ecological role across much of the world. This study focused on the characterization of needle transcriptomes from four ecologically important and understudied North American white pines within the Pinus subgenus Strobus. The populations of many Strobus species are challenged by native and introduced pathogens, native insects, and abiotic factors. RNA from the needles of western white pine (Pinus monticola), limber pine (Pinus flexilis), whitebark pine (Pinus albicaulis), and sugar pine (Pinus lambertiana) was sampled, Illumina short read sequenced, and de novo assembled. The assembled transcripts and their subsequent structural and functional annotations were processed through custom pipelines to contend with the challenges of non-model organism transcriptome validation. Orthologous gene family analysis of over 58,000 translated transcripts, implemented through Tribe-MCL, estimated the shared and unique gene space among the four species. This revealed 2025 conserved gene families, of which 408 were aligned to estimate levels of divergence and reveal patterns of selection. Specific candidate genes previously associated with drought tolerance and white pine blister rust resistance in conifers were investigated. PMID:29559535

  19. Transcription expression of immune-related genes from Caligus rogercresseyi evidences host-dependent patterns on Atlantic and coho salmon.

    PubMed

    Vera-Bizama, Fredy; Valenzuela-Muñoz, Valentina; Gonçalves, Ana Teresa; Marambio, Jorge Pino; Hawes, Christopher; Wadsworth, Simon; Gallardo-Escárate, Cristian

    2015-12-01

    The transcriptomic response of the sea louse Caligus rogercresseyi during the infestation on Atlantic salmon (Salmo salar) and coho salmon (Oncorhynchus kisutch) was evaluated using 27 genes related to immune response, antioxidant system and secretome. Results showed early responses of TLR/IMD signaling pathway in sea lice infesting Atlantic salmon. Overall, genes associated with oxidative stress responses were upregulated in both host species. This pattern suggests that reactive oxygen species emitted by the host as a response to the infestation, could modulate the sea louse antioxidant system. Secretome-related transcripts evidenced upregulation of trypsins and serpins, mainly associated to Atlantic salmon than coho salmon. Interestingly, cathepsins and trypsin2 were downregulated at 7 days post-infection (dpi) in coho salmon. The principal component analysis revealed an inverse time-dependent pattern based on the different responses of C. rogercresseyi infecting both salmon species. Here, Atlantic salmon strongly modulates the transcriptome responses at earlier infection stages; meanwhile coho salmon reveals a less marked modulation, increasing the transcription activity during the infection process. This study evidences transcriptome differences between two salmon host species and provides pivotal knowledge towards elaborating future control strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The transcriptome of the bowhead whale Balaena mysticetus reveals adaptations of the longest-lived mammal

    PubMed Central

    Seim, Inge; Ma, Siming; Zhou, Xuming; Gerashchenko, Maxim V.; Lee, Sang-Goo; Suydam, Robert; George, John C.; Bickham, John W.; Gladyshev, Vadim N.

    2014-01-01

    Mammals vary dramatically in lifespan, by at least two-orders of magnitude, but the molecular basis for this difference remains largely unknown. The bowhead whale Balaena mysticetus is the longest-lived mammal known, with an estimated maximal lifespan in excess of two hundred years. It is also one of the two largest animals and the most cold-adapted baleen whale species. Here, we report the first genome-wide gene expression analyses of the bowhead whale, based on the de novo assembly of its transcriptome. Bowhead whale or cetacean-specific changes in gene expression were identified in the liver, kidney and heart, and complemented with analyses of positively selected genes. Changes associated with altered insulin signaling and other gene expression patterns could help explain the remarkable longevity of bowhead whales as well as their adaptation to a lipid-rich diet. The data also reveal parallels in candidate longevity adaptations of the bowhead whale, naked mole rat and Brandt's bat. The bowhead whale transcriptome is a valuable resource for the study of this remarkable animal, including the evolution of longevity and its important correlates such as resistance to cancer and other diseases. PMID:25411232

Top