Insulation Resistance and Leakage Currents in Low-Voltage Ceramic Capacitors with Cracks
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander A.
2014-01-01
Measurement of insulation resistance (IR) in multilayer ceramic capacitors (MLCCs) is considered a screening technique that ensures the dielectric is defect-free. This work analyzes the effectiveness of this technique for revealing cracks in ceramic capacitors. It is shown that absorption currents prevail over the intrinsic leakage currents during standard IR measurements at room temperature. Absorption currents, and consequently IR, have a weak temperature dependence, increase linearly with voltage (before saturation), and are not sensitive to the presence of mechanical defects. In contrary, intrinsic leakage currents increase super-linearly with voltage and exponentially with temperature (activation energy is in the range from 0.6 eV to 1.1 eV). Leakage currents associated with the presence of cracks have a weaker dependence on temperature and voltage compared to the intrinsic leakage currents. For this reason, intrinsic leakage currents prevail at high temperatures and voltages, thus masking the presence of defects.
Insulation Resistance and Leakage Currents in Low-Voltage Ceramic Capacitors with Cracks
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander A.
2016-01-01
Measurement of insulation resistance (IR) in multilayer ceramic capacitors (MLCCs) is considered a screening technique that ensures the dielectric is defect-free. This work analyzes the effectiveness of this technique for revealing cracks in ceramic capacitors. It is shown that absorption currents prevail over the intrinsic leakage currents during standard IR measurements at room temperature. Absorption currents, and consequently IR, have a weak temperature dependence, increase linearly with voltage (before saturation), and are not sensitive to the presence of mechanical defects. In contrary, intrinsic leakage currents increase super-linearly with voltage and exponentially with temperature (activation energy is in the range from 0.6 eV to 1.1 eV). Leakage currents associated with the presence of cracks have a weaker dependence on temperature and voltage compared to the intrinsic leakage currents. For this reason, intrinsic leakage currents prevail at high temperatures and voltages, thus masking the presence of defects.
FELERION: a new approach for leakage power reduction
NASA Astrophysics Data System (ADS)
R, Anjana; Somkuwar, Ajay
2014-12-01
The circuit proposed in this paper simultaneously reduces the sub threshold leakage power and saves the state of art aspect of the logic circuits. Sleep transistors and PMOS-only logic are used to further reduce the leakage power. Sleep transistors are used as the keepers to reduce the sub threshold leakage current providing the low resistance path to the output. PMOS-only logic is used between the pull up and pull down devices to mitigate the leakage power further. Our proposed fast efficient leakage reduction circuit not only reduces the leakage current but also reduces the power dissipation. Power and delay are analyzed at the 32 nm BSIM4 model for a chain of four inverters, NAND, NOR and ISCAS-85 c17 benchmark circuits using DSCH3 and the Microwind tool. The simulation results reveal that our proposed approach mitigates leakage power by 90%-94% as compared to the conventional approach.
Wu, Kuo-Tsai; Hwang, Sheng-Jye; Lee, Huei-Huang
2017-05-02
Image sensors are the core components of computer, communication, and consumer electronic products. Complementary metal oxide semiconductor (CMOS) image sensors have become the mainstay of image-sensing developments, but are prone to leakage current. In this study, we simulate the CMOS image sensor (CIS) film stacking process by finite element analysis. To elucidate the relationship between the leakage current and stack architecture, we compare the simulated and measured leakage currents in the elements. Based on the analysis results, we further improve the performance by optimizing the architecture of the film stacks or changing the thin-film material. The material parameters are then corrected to improve the accuracy of the simulation results. The simulated and experimental results confirm a positive correlation between measured leakage current and stress. This trend is attributed to the structural defects induced by high stress, which generate leakage. Using this relationship, we can change the structure of the thin-film stack to reduce the leakage current and thereby improve the component life and reliability of the CIS components.
Wu, Kuo-Tsai; Hwang, Sheng-Jye; Lee, Huei-Huang
2017-01-01
Image sensors are the core components of computer, communication, and consumer electronic products. Complementary metal oxide semiconductor (CMOS) image sensors have become the mainstay of image-sensing developments, but are prone to leakage current. In this study, we simulate the CMOS image sensor (CIS) film stacking process by finite element analysis. To elucidate the relationship between the leakage current and stack architecture, we compare the simulated and measured leakage currents in the elements. Based on the analysis results, we further improve the performance by optimizing the architecture of the film stacks or changing the thin-film material. The material parameters are then corrected to improve the accuracy of the simulation results. The simulated and experimental results confirm a positive correlation between measured leakage current and stress. This trend is attributed to the structural defects induced by high stress, which generate leakage. Using this relationship, we can change the structure of the thin-film stack to reduce the leakage current and thereby improve the component life and reliability of the CIS components. PMID:28468324
NASA Astrophysics Data System (ADS)
Sutanto, E.; Chandra, F.; Dinata, R.
2017-05-01
Leakage current measurement which can follow IEC standard for medical device is one of many challenges to be answered. The IEC 60601-1 has defined that the limit for a leakage current for Medical Device can be as low as 10 µA and as high as 500 µA, depending on which type of contact (applied part) connected to the patient. Most people are using ELCB (Earth-leakage circuit breaker) for safety purpose as this is the most common and available safety device in market. One type of ELCB devices is RCD (Residual Current Device) and this RCD type can measure the leakage current directly. This work will show the possibility on how Helmholtz Coil Configuration can be made to be like the RCD. The possibility is explored by comparing the magnetic field formula from each device, then it proceeds with a simulation using software EJS (Easy Java Simulation). The simulation will make sure the concept of magnetic field current cancellation follows the RCD concept. Finally, the possibility of increasing the measurement’s sensitivity is also analyzed. The sensitivity is needed to see the possibility on reaching the minimum leakage current limit defined by IEC, 0.01mA.
Oh, S K; Song, C G; Jang, T; Kim, Kwang-Choong; Jo, Y J; Kwak, J S
2013-03-01
This study examined the effect of electron-beam (E-beam) irradiation on the AIGaN/GaN HEMTs for the reduction of gate leakage. After E-beam irradiation, the gate leakage current significantly decreased from 2.68 x 10(-8) A to 4.69 x 10(-9) A at a drain voltage of 10 V. The maximum drain current density of the AIGaN/GaN HEMTs with E-beam irradiation increased 14%, and the threshold voltage exhibited a negative shift, when compared to that of the AIGaN/GaN HEMTs before E-beam irradiation. These results strongly suggest that the reduction of gate leakage current resulted from neutralization nitrogen vacancies and removing of oxygen impurities.
Analysis and modeling of leakage current sensor under pulsating direct current
NASA Astrophysics Data System (ADS)
Li, Kui; Dai, Yihua; Wang, Yao; Niu, Feng; Chen, Zhao; Huang, Shaopo
2017-05-01
In this paper, the transformation characteristics of current sensor under pulsating DC leakage current is investigated. The mathematical model of current sensor is proposed to accurately describe the secondary side current and excitation current. The transformation process of current sensor is illustrated in details and the transformation error is analyzed from multi aspects. A simulation model is built and a sensor prototype is designed to conduct comparative evaluation, and both simulation and experimental results are presented to verify the correctness of theoretical analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grabovski, E. V.; Gribov, A. N.; Samokhin, A. A.
2016-08-15
Current leakages in the magnetically insulated transmission lines (MITL) impose restrictions on the transmission of electromagnetic pulses to the load in high-power electrophysical facilities. The multimodule Angara-5-1 facility with an output electric power of up to 6 TW is considered. In this work, the experimental and calculated profiles of leakage currents in two sections of the line are compared when the eight-module facility is loaded by a wire array. The azimuthal distribution of the current in the cylindrical section of the MITL is also considered.
Comparison of the Standard of Air Leakage in Current Metal Duct Systems in the World
NASA Astrophysics Data System (ADS)
Di, Yuhui; Wang, Jiqian; Feng, Lu; Li, Xingwu; Hu, Chunlin; Shi, Junshe; Xu, Qingsong; Qiao, Leilei
2018-01-01
Based on the requirements of air leakage of metal ducts in Chinese design standards, technical measures and construction standards, this paper compares the development history, the classification of air pressure levels and the air tightness levels of air leakage standards of current Chinese and international metal ducts, sums up the differences, finds shortage by investigating the design and construction status and access to information, and makes recommendations, hoping to help the majority of engineering and technical personnel.
NASA Astrophysics Data System (ADS)
Cappa, Paolo; Marinozzi, Franco; Sciuto, Salvatore Andrea
2000-07-01
The Leakage Current Sentinel (LCS) has been designed and implemented for the detection of hazardous situations caused by dangerous earth leakage current values in intensive care units and operating theaters. The device, designed and manufactured with full compliance of the high risk environment requirements, is able to monitor online the earth leakage current and detect ground wire faults. Operation utilizes a microammeter with an overall sensitivity of 2.5×104 V/A. In order to assure the reliability of the device in providing alarm signals, the simultaneous presence of absorbed power current is monitored by means of another ammeter with decreased sensitivity (3.0 V/A). The measured root mean square current values are compared with reference values in order to send signals to NAND and OR complementary metal-oxide-semiconductor gates to enable audible and visible alarms according to the possible hazardous cases examined in the article. The final LCS packaging was shaped as a wall socket adapter for common electromedical device power cord plugs, with particular attention to minimizing its dimensions and to provide analog voltage outputs for both measured leakage and power currents, in order to allow automatic data acquisition and computerized hazardous situation management. Finally, a personal computer based automatic measuring system has been configured to simultaneously monitor several LCSs installed in the same intensive care unit room and, as a consequence, to distinguish different hazardous scenarios and provide an adequate alert to the clinical personnel whose final decision is still required. The test results confirm the effectiveness and reliability of the LCS in giving an alert in case of leakage current anomalous values, either in case of a ground fault or in case of a dangerous leakage current.
NASA Astrophysics Data System (ADS)
Zheng, Xue-Feng; Fan, Shuang; Chen, Yong-He; Kang, Di; Zhang, Jian-Kun; Wang, Chong; Mo, Jiang-Hui; Li, Liang; Ma, Xiao-Hua; Zhang, Jin-Cheng; Hao, Yue
2015-02-01
The transport mechanism of reverse surface leakage current in the AlGaN/GaN high-electron mobility transistor (HEMT) becomes one of the most important reliability issues with the downscaling of feature size. In this paper, the research results show that the reverse surface leakage current in AlGaN/GaN HEMT with SiN passivation increases with the enhancement of temperature in the range from 298 K to 423 K. Three possible transport mechanisms are proposed and examined to explain the generation of reverse surface leakage current. By comparing the experimental data with the numerical transport models, it is found that neither Fowler-Nordheim tunneling nor Frenkel-Poole emission can describe the transport of reverse surface leakage current. However, good agreement is found between the experimental data and the two-dimensional variable range hopping (2D-VRH) model. Therefore, it is concluded that the reverse surface leakage current is dominated by the electron hopping through the surface states at the barrier layer. Moreover, the activation energy of surface leakage current is extracted, which is around 0.083 eV. Finally, the SiN passivated HEMT with a high Al composition and a thin AlGaN barrier layer is also studied. It is observed that 2D-VRH still dominates the reverse surface leakage current and the activation energy is around 0.10 eV, which demonstrates that the alteration of the AlGaN barrier layer does not affect the transport mechanism of reverse surface leakage current in this paper. Project supported by the National Natural Science Foundation of China (Grant Nos. 61334002, 61106106, and 61474091), the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory, China (Grant No. ZHD201206), the New Experiment Development Funds for Xidian University, China (Grant No. SY1213), the 111 Project, China (Grant No. B12026), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China, and the Fundamental Research Funds for the Central Universities, China (Grant No. K5051325002).
On Leakage Current Measured at High Cell Voltages in Lithium-Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vadivel, Nicole R.; Ha, Seungbum; He, Meinan
2017-01-01
In this study, parasitic side reactions in lithium-ion batteries were examined experimentally using a potentiostatic hold at high cell voltage. The experimental leakage current measured during the potentiostatic hold was compared to the Tafel expression and showed poor agreement with the expected transfer coefficient values, indicating that a more complicated expression could be needed to accurately capture the physics of this side reaction. Here we show that cross-talk between the electrodes is the primary contribution to the observed leakage current after the relaxation of concentration gradients has ceased. This cross-talk was confirmed with experiments using a lithium-ion conducting glass ceramicmore » (LICGC) separator, which has high conductance only for lithium cations. The cells with LICGC separators showed significantly less leakage current during the potentiostatic hold test compared to cells with standard microporous separators where cross-talk is present. In addition, direct-current pulse power tests show an impedance rise for cells held at high potentials and for cells held at high temperatures, which could be attributed to film formation from the parasitic side reaction. Based on the experimental findings, a phenomenological mechanism is proposed for the parasitic side reaction which accounts for cross-talk and mass transport of the decomposition products across the separator.« less
Analysis of Co-Tunneling Current in Fullerene Single-Electron Transistor
NASA Astrophysics Data System (ADS)
KhademHosseini, Vahideh; Dideban, Daryoosh; Ahmadi, MohammadTaghi; Ismail, Razali
2018-05-01
Single-electron transistors (SETs) are nano devices which can be used in low-power electronic systems. They operate based on coulomb blockade effect. This phenomenon controls single-electron tunneling and it switches the current in SET. On the other hand, co-tunneling process increases leakage current, so it reduces main current and reliability of SET. Due to co-tunneling phenomenon, main characteristics of fullerene SET with multiple islands are modelled in this research. Its performance is compared with silicon SET and consequently, research result reports that fullerene SET has lower leakage current and higher reliability than silicon counterpart. Based on the presented model, lower co-tunneling current is achieved by selection of fullerene as SET island material which leads to smaller value of the leakage current. Moreover, island length and the number of islands can affect on co-tunneling and then they tune the current flow in SET.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotani, Junji, E-mail: kotani.junji-01@jp.fujitsu.com; Yamada, Atsushi; Ishiguro, Tetsuro
2016-04-11
This paper reports on the electrical characterization of Ni/Au Schottky diodes fabricated on InAlN high-electron-mobility transistor (HEMT) structures grown on low dislocation density free-standing GaN substrates. InAlN HEMT structures were grown on sapphire and GaN substrates by metal-organic vapor phase epitaxy, and the effects of threading dislocation density on the leakage characteristics of Ni/Au Schottky diodes were investigated. Threading dislocation densities were determined to be 1.8 × 10{sup 4 }cm{sup −2} and 1.2 × 10{sup 9 }cm{sup −2} by the cathodoluminescence measurement for the HEMT structures grown on GaN and sapphire substrates, respectively. Leakage characteristics of Ni/Au Schottky diodes were compared between the two samples, andmore » a reduction of the leakage current of about three to four orders of magnitude was observed in the forward bias region. For the high reverse bias region, however, no significant improvement was confirmed. We believe that the leakage current in the low bias region is governed by a dislocation-related Frenkel–Poole emission, and the leakage current in the high reverse bias region originates from field emission due to the large internal electric field in the InAlN barrier layer. Our results demonstrated that the reduction of dislocation density is effective in reducing leakage current in the low bias region. At the same time, it was also revealed that another approach will be needed, for instance, band modulation by impurity doping and insertion of insulating layers beneath the gate electrodes for a substantial reduction of the gate leakage current.« less
Effect of Compressive Stresses on Leakage Currents in Microchip Tantalum Capacitors
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander
2012-01-01
Microchip tantalum capacitors are manufactured using new technologies that allow for production of small size capacitors (down to EIA case size 0402) with volumetric efficiency much greater than for regular chip capacitors. Due to a small size of the parts and leadless design they might be more sensitive to mechanical stresses that develop after soldering onto printed wiring boards (PWB) compared to standard chip capacitors. In this work, the effect of compressive stresses on leakage currents in capacitors has been investigated in the range of stresses up to 200 MPa. Significant, up to three orders of magnitude, variations of currents were observed after the stress exceeds a certain critical level that varied from 10 MPa to 180 MPa for capacitors used in this study. A stress-induced generation of electron traps in tantalum pentoxide dielectric is suggested to explain reversible variations of leakage currents in tantalum capacitors. Thermo-mechanical characteristics of microchip capacitors have been studied to estimate the level of stresses caused by assembly onto PWB and assess the risk of stress-related degradation and failures. Keywords: tantalum capacitors, leakage current, soldering, reliability, mechanical stress.
Universality of Non-Ohmic Shunt Leakage in Thin-Film Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dongaonkar, S.; Servaites, J.D.; Ford, G.M.
2010-01-01
We compare the dark current-voltage (IV) characteristics of three different thin-film solar cell types: hydrogenated amorphous silicon (a-Si:H) p-i-n cells, organic bulk heterojunction (BHJ) cells, and Cu(In,Ga)Se 2 (CIGS) cells. All three device types exhibit a significant shunt leakage current at low forward bias (V<~0.4) and reverse bias, which cannot be explained by the classical solar cell diode model. This parasitic shunt current exhibits non-Ohmic behavior, as opposed to the traditional constant shunt resistance model for photovoltaics. We show here that this shunt leakage (I sh) , across all three solar cell types considered, is characterized by the following commonmore » phenomenological features: (a) voltage symmetry about V=0 , (b) nonlinear (power law) voltage dependence, and (c) extremely weak temperature dependence. Based on this analysis, we provide a simple method of subtracting this shunt current component from the measured data and discuss its implications on dark IV parameter extraction. We propose a space charge limited (SCL) current model for capturing all these features of the shunt leakage in a consistent framework and discuss possible physical origin of the parasitic paths responsible for this shunt current mechanism.« less
a High-Level Technique for Estimation and Optimization of Leakage Power for Full Adder
NASA Astrophysics Data System (ADS)
Shrivas, Jayram; Akashe, Shyam; Tiwari, Nitesh
2013-06-01
Optimization of power is a very important issue in low-voltage and low-power application. In this paper, we have proposed power gating technique to reduce leakage current and leakage power of one-bit full adder. In this power gating technique, we use two sleep transistors i.e., PMOS and NMOS. PMOS sleep transistor is inserted between power supply and pull up network. And NMOS sleep transistor is inserted between pull down network and ground terminal. These sleep transistors (PMOS and NMOS) are turned on when the circuit is working in active mode. And sleep transistors (PMOS and NMOS) are turned off when circuit is working in standby mode. We have simulated one-bit full adder and compared with the power gating technique using cadence virtuoso tool in 45 nm technology at 0.7 V at 27°C. By applying this technique, we have reduced leakage current from 2.935 pA to 1.905 pA and leakage power from 25.04μw to 9.233μw. By using this technique, we have reduced leakage power up to 63.12%.
NASA Astrophysics Data System (ADS)
Zhou, Shengjun; Lv, Jiajiang; Wu, Yini; Zhang, Yuan; Zheng, Chenju; Liu, Sheng
2018-05-01
We investigated the reverse leakage current characteristics of InGaN/GaN multiple quantum well (MQW) near-ultraviolet (NUV)/blue/green light-emitting diodes (LEDs). Experimental results showed that the NUV LED has the smallest reverse leakage current whereas the green LED has the largest. The reason is that the number of defects increases with increasing nominal indium content in InGaN/GaN MQWs. The mechanism of the reverse leakage current was analyzed by temperature-dependent current–voltage measurement and capacitance–voltage measurement. The reverse leakage currents of NUV/blue/green LEDs show similar conduction mechanisms: at low temperatures, the reverse leakage current of these LEDs is attributed to variable-range hopping (VRH) conduction; at high temperatures, the reverse leakage current of these LEDs is attributed to nearest-neighbor hopping (NNH) conduction, which is enhanced by the Poole–Frenkel effect.
Design and simulation of nanoscale double-gate TFET/tunnel CNTFET
NASA Astrophysics Data System (ADS)
Bala, Shashi; Khosla, Mamta
2018-04-01
A double-gate tunnel field-effect transistor (DG tunnel FET) has been designed and investigated for various channel materials such as silicon (Si), gallium arsenide (GaAs), alminium gallium arsenide (Al x Ga1‑x As) and CNT using a nano ViDES Device and TCAD SILVACO ATLAS simulator. The proposed devices are compared on the basis of inverse subthreshold slope (SS), I ON/I OFF current ratio and leakage current. Using Si as the channel material limits the property to reduce leakage current with scaling of channel, whereas the Al x Ga1‑x As based DG tunnel FET provides a better I ON/I OFF current ratio (2.51 × 106) as compared to other devices keeping the leakage current within permissible limits. The performed silmulation of the CNT based channel in the double-gate tunnel field-effect transistor using the nano ViDES shows better performace for a sub-threshold slope of 29.4 mV/dec as the channel is scaled down. The proposed work shows the potential of the CNT channel based DG tunnel FET as a futuristic device for better switching and high retention time, which makes it suitable for memory based circuits.
Effect of Post-HALT Annealing on Leakage Currents in Solid Tantalum Capacitors
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander
2010-01-01
Degradation of leakage currents is often observed during life testing of tantalum capacitors and is sometimes attributed to the field-induced crystallization in amorphous anodic tantalum pentoxide dielectrics. However, degradation of leakage currents and the possibility of annealing of degraded capacitors have not been investigated yet. In this work the effect of annealing after highly accelerated life testing (HALT) on leakage currents in various types of solid tantalum capacitors was analyzed. Variations of leakage currents with time during annealing at temperatures from 125 oC to 180 oC, thermally stimulated depolarization (TSD) currents, and I-V characteristics were measured to understand the conduction mechanism and the reason for current degradation. Annealing resulted in a gradual decrease of leakage currents and restored their initial values. Repeat HALT after annealing resulted in reproducible degradation of leakage currents. The observed results are explained based on ionic charge instability (drift/diffusion of oxygen vacancies) in the tantalum pentoxide dielectrics using a modified Schottky conduction mechanism.
Leakage current conduction in metal gate junctionless nanowire transistors
NASA Astrophysics Data System (ADS)
Oproglidis, T. A.; Karatsori, T. A.; Barraud, S.; Ghibaudo, G.; Dimitriadis, C. A.
2017-05-01
In this paper, the experimental off-state drain leakage current behavior is systematically explored in n- and p-channel junctionless nanowire transistors with HfSiON/TiN/p+-polysilicon gate stack. The analysis of the drain leakage current is based on experimental data of the gate leakage current. It has been shown that the off-state drain leakage current in n-channel devices is negligible, whereas in p-channel devices it is significant and dramatically increases with drain voltage. The overall results indicate that the off-state drain leakage current in p-channel devices is mainly due to trap-assisted Fowler-Nordheim tunneling of electrons through the gate oxide of electrons from the metal gate to the silicon layer near the drain region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Yong; Yao, Manwen, E-mail: yaomw@tongji.edu.cn; Chen, Jianwen
The electrical characteristics of SrTiO{sub 3}/Al{sub 2}O{sub 3} (160 nm up/90 nm down) laminated film capacitors using the sol-gel process have been investigated. SrTiO{sub 3} is a promising and extensively studied high-K dielectric material, but its leakage current property is poor. SrTiO{sub 3}/Al{sub 2}O{sub 3} laminated films can effectively suppress the demerits of pure SrTiO{sub 3} films under low electric field, but the leakage current value reaches to 0.1 A/cm{sup 2} at higher electric field (>160 MV/m). In this study, a new approach was applied to reduce the leakage current and improve the dielectric strength of SrTiO{sub 3}/Al{sub 2}O{sub 3} laminated films. Compared tomore » laminated films with Au top electrodes, dielectric strength of laminated films with Al top electrodes improves from 205 MV/m to 322 MV/m, simultaneously the leakage current maintains the same order of magnitude (10{sup −4} A/cm{sup 2}) until the breakdown occurs. The above electrical characteristics are attributed to the anodic oxidation reaction in origin, which can repair the defects of laminated films at higher electric field. The anodic oxidation reactions have been confirmed by the corresponding XPS measurement and the cross sectional HRTEM analysis. This work provides a new approach to fabricate dielectrics with high dielectric strength and low leakage current.« less
Electron-beam irradiation-induced gate oxide degradation
NASA Astrophysics Data System (ADS)
Cho, Byung Jin; Chong, Pei Fen; Chor, Eng Fong; Joo, Moon Sig; Yeo, In Seok
2000-12-01
Gate oxide degradation induced by electron-beam irradiation has been studied. A large increase in the low-field excess leakage current was observed on irradiated oxides and this was very similar to electrical stress-induced leakage currents. Unlike conventional electrical stress-induced leakage currents, however, electron-beam induced leakage currents exhibit a power law relationship with fluency without any signs of saturation. It has also been found that the electron-beam neither accelerates nor initiates quasibreakdown of the ultrathin gate oxide. Therefore, the traps generated by electron-beam irradiation do not contribute to quasibreakdown, only to the leakage current.
Enhanced ground bounce noise reduction in a low-leakage CMOS multiplier
NASA Astrophysics Data System (ADS)
Verma, Bipin Kumar; Akashe, Shyam; Sharma, Sanjay
2015-09-01
In this paper, various parameters are used to reduce leakage power, leakage current and noise margin of circuits to enhance their performance. A multiplier is proposed with low-leakage current and low ground bounce noise for the microprocessor, digital signal processors (DSP) and graphics engines. The ground bounce noise problem appears when a conventional power-gating circuit transits from sleep-to-active mode. This paper discusses a reduction in leakage current in the stacking power-gating technique by three modes - sleep, active and sleep-to-active. The simulation results are performed on a 4 × 4 carry-save multiplier for leakage current, active power, leakage power and ground bounce noise, and comparison made for different nanoscales. Ground bounce noise is limited to 90%. The leakage current of the circuit is decimated up to 80% and the active power is reduced to 31%. We performed simulations using cadence virtuoso 180 and 45 nm at room temperature at various supply voltages.
49 CFR 236.735 - Current, leakage.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Current, leakage. 236.735 Section 236.735 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Current, leakage. A stray electric current of relatively small value which flows through or across the...
49 CFR 236.735 - Current, leakage.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Current, leakage. A stray electric current of relatively small value which flows through or across the... 49 Transportation 4 2011-10-01 2011-10-01 false Current, leakage. 236.735 Section 236.735 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION...
49 CFR 236.735 - Current, leakage.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Current, leakage. A stray electric current of relatively small value which flows through or across the... 49 Transportation 4 2014-10-01 2014-10-01 false Current, leakage. 236.735 Section 236.735 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION...
49 CFR 236.735 - Current, leakage.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Current, leakage. A stray electric current of relatively small value which flows through or across the... 49 Transportation 4 2013-10-01 2013-10-01 false Current, leakage. 236.735 Section 236.735 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION...
49 CFR 236.735 - Current, leakage.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Current, leakage. A stray electric current of relatively small value which flows through or across the... 49 Transportation 4 2012-10-01 2012-10-01 false Current, leakage. 236.735 Section 236.735 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION...
NASA Astrophysics Data System (ADS)
Sometani, Mitsuru; Okamoto, Dai; Harada, Shinsuke; Ishimori, Hitoshi; Takasu, Shinji; Hatakeyama, Tetsuo; Takei, Manabu; Yonezawa, Yoshiyuki; Fukuda, Kenji; Okumura, Hajime
2015-01-01
The conduction mechanism of the leakage current of a thermally grown oxide on 4H silicon carbide (4H-SiC) was investigated. The dominant carriers of the leakage current were found to be electrons by the carrier-separation current-voltage method. The current-voltage and capacitance-voltage characteristics, which were measured over a wide temperature range, revealed that the leakage current in SiO2/4H-SiC on the Si-face can be explained as the sum of the Fowler-Nordheim (FN) tunneling and Poole-Frenkel (PF) emission leakage currents. A rigorous FN analysis provided the true barrier height for the SiO2/4H-SiC interface. On the basis of Arrhenius plots of the PF current separated from the total leakage current, the existence of carbon-related defects and/or oxygen vacancy defects was suggested in thermally grown SiO2 films on the Si-face of 4H-SiC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sometani, Mitsuru; Takei, Manabu; Fuji Electric Co. Ltd., 1 Fuji-machi, Hino, 191-8502 Tokyo
The conduction mechanism of the leakage current of a thermally grown oxide on 4H silicon carbide (4H-SiC) was investigated. The dominant carriers of the leakage current were found to be electrons by the carrier-separation current-voltage method. The current-voltage and capacitance-voltage characteristics, which were measured over a wide temperature range, revealed that the leakage current in SiO{sub 2}/4H-SiC on the Si-face can be explained as the sum of the Fowler-Nordheim (FN) tunneling and Poole-Frenkel (PF) emission leakage currents. A rigorous FN analysis provided the true barrier height for the SiO{sub 2}/4H-SiC interface. On the basis of Arrhenius plots of the PFmore » current separated from the total leakage current, the existence of carbon-related defects and/or oxygen vacancy defects was suggested in thermally grown SiO{sub 2} films on the Si-face of 4H-SiC.« less
NASA Astrophysics Data System (ADS)
Lee, Jae-Hoon; Park, Hyun-Sang; Jeon, Jae-Hong; Han, Min-Koo
2008-03-01
We have proposed a new poly-Si TFT pixel, which can suppress TFT leakage current effect on active matrix organic diode (AMOLED) displays, by employing a new circular switching TFT and additional signal line for compensating the leakage current. When the leakage current of switching TFT is increased, the VGS of the current driving TFT in the proposed pixel is not altered by the variable data voltages due to the circular switching TFT. Our simulation results show that OLED current variation of the proposed pixel can be suppressed less than 3%, while that of conventional pixel exceeds 30%. The proposed pixel may be suitable to suppress the leakage current effect on AMOLED display.
Leakage current evaluation for pn junctions formed in DC and RF MeV ion implanted wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yanagisawa, Yasunobu; Honda, Mitsuharu; Ogasawara, Makota
1996-12-31
The leakage current of pn junctions formed in DC and RF MeV implanted wells have been evaluated. There is no substantial difference in the leakage current levels between the continuous and pulsive beam implantations. However, the leakage current, so called diffusion current, for RF implanted wells is slightly higher than that for DC implanted wells on some condition. This suggests a possibility that relatively higher density of residual defects remains in the case of RIF implant.
Application of Arrester Simulation Device in Training
NASA Astrophysics Data System (ADS)
Baoquan, Zhang; Ziqi, Chai; Genghua, Liu; Wei, Gao; Kaiyue, Wu
2017-12-01
Combining with the arrester simulation device put into use successfully, this paper introduces the application of arrester test in the insulation resistance measurement, counter test, Leakage current test under DC 1mA voltage and leakage current test under 0.75U1mA. By comparing with the existing training, this paper summarizes the arrester simulation device’s outstanding advantages including real time monitoring, multi-type fault data analysis and acousto-optic simulation. It effectively solves the contradiction between authenticity and safety in the existing test training, and provides a reference for further training.
Vertical GaN merged PiN Schottky diode with a breakdown voltage of 2 kV
NASA Astrophysics Data System (ADS)
Hayashida, Tetsuro; Nanjo, Takuma; Furukawa, Akihiko; Yamamuka, Mikio
2017-06-01
In this study, we successfully fabricated vertical GaN merged PiN Schottky (MPS) diodes and comparatively investigated the cyclic p-GaN width (W p) dependence of their electrical characteristics, including turn-on voltage and reverse leakage current. The MPS diodes with W p of more than 6 µm can turn on at around 3 V. Increasing W p can suppress the reverse leakage current. Moreover, the vertical GaN MPS diode with the breakdown voltage of 2 kV was realized for the first time.
Leakage current reduction of vertical GaN junction barrier Schottky diodes using dual-anode process
NASA Astrophysics Data System (ADS)
Hayashida, Tetsuro; Nanjo, Takuma; Furukawa, Akihiko; Watahiki, Tatsuro; Yamamuka, Mikio
2018-04-01
The origin of the leakage current of a trench-type vertical GaN diode was discussed. We found that the edge of p-GaN is the main leakage spot. To reduce the reverse leakage current at the edge of p-GaN, a dual-anode process was proposed. As a result, the reverse blocking voltage defined at the leakage current density of 1 mA/cm2 of a vertical GaN junction barrier Schottky (JBS) diode was improved from 780 to 1,190 V, which is the highest value ever reported for vertical GaN Schottky barrier diodes (SBDs).
Method for producing silicon thin-film transistors with enhanced forward current drive
Weiner, K.H.
1998-06-30
A method is disclosed for fabricating amorphous silicon thin film transistors (TFTs) with a polycrystalline silicon surface channel region for enhanced forward current drive. The method is particularly adapted for producing top-gate silicon TFTs which have the advantages of both amorphous and polycrystalline silicon TFTs, but without problem of leakage current of polycrystalline silicon TFTs. This is accomplished by selectively crystallizing a selected region of the amorphous silicon, using a pulsed excimer laser, to create a thin polycrystalline silicon layer at the silicon/gate-insulator surface. The thus created polysilicon layer has an increased mobility compared to the amorphous silicon during forward device operation so that increased drive currents are achieved. In reverse operation the polysilicon layer is relatively thin compared to the amorphous silicon, so that the transistor exhibits the low leakage currents inherent to amorphous silicon. A device made by this method can be used, for example, as a pixel switch in an active-matrix liquid crystal display to improve display refresh rates. 1 fig.
Method for producing silicon thin-film transistors with enhanced forward current drive
Weiner, Kurt H.
1998-01-01
A method for fabricating amorphous silicon thin film transistors (TFTs) with a polycrystalline silicon surface channel region for enhanced forward current drive. The method is particularly adapted for producing top-gate silicon TFTs which have the advantages of both amorphous and polycrystalline silicon TFTs, but without problem of leakage current of polycrystalline silicon TFTs. This is accomplished by selectively crystallizing a selected region of the amorphous silicon, using a pulsed excimer laser, to create a thin polycrystalline silicon layer at the silicon/gate-insulator surface. The thus created polysilicon layer has an increased mobility compared to the amorphous silicon during forward device operation so that increased drive currents are achieved. In reverse operation the polysilicon layer is relatively thin compared to the amorphous silicon, so that the transistor exhibits the low leakage currents inherent to amorphous silicon. A device made by this method can be used, for example, as a pixel switch in an active-matrix liquid crystal display to improve display refresh rates.
Analysis of reverse gate leakage mechanism of AlGaN/GaN HEMTs with N2 plasma surface treatment
NASA Astrophysics Data System (ADS)
Liu, Hui; Zhang, Zongjing; Luo, Weijun
2018-06-01
The mechanism of reverse gate leakage current of AlGaN/GaN HEMTs with two different surface treatment methods are studied by using C-V, temperature dependent I-V and theoretical analysis. At the lower reverse bias region (VR >- 3.5 V), the dominant leakage current mechanism of the device with N2 plasma surface treatment is the Poole-Frenkel emission current (PF), and Trap-Assisted Tunneling current (TAT) is the principal leakage current of the device which treated by HCl:H2O solution. At the higher reverse bias region (VR <- 3.5 V), both of the two samples show good agreement with the surface leakage mechanism. The leakage current of the device with N2 plasma surface treatment is one order of magnitude smaller than the device which treated by HCl:H2O solution. This is due to the recovery of Ga-N bond in N2 plasma surface treatment together with the reduction of the shallow traps in post-gate annealing (PGA) process. The measured results agree well with the theoretical calculations and demonstrate N2 plasma surface treatment can reduce the reverse leakage current of the AlGaN/GaN HEMTs.
Influence of thermal aging on AC leakage current in XLPE insulation
NASA Astrophysics Data System (ADS)
Geng, Pulong; Song, Jiancheng; Tian, Muqin; Lei, Zhipeng; Du, Yakun
2018-02-01
Cross-linked polyethylene (XLPE) has been widely used as cable insulation material because of its excellent dielectric properties, thermal stability and solvent resistance. To understand the influence of thermal aging on AC leakage current in XLPE insulation, all XLPE specimens were aged in oven in temperature range from 120 °C to 150 °C, and a series of tests were conducted on these XLPE specimens in different aging stages to measure the characteristic parameters, such as complex permittivity, leakage current and complex dielectric modulus. In the experiments, the effects of thermal aging, temperature and frequency on the AC leakage current in XLPE insulation were studied by analyzing complex dielectric constant and dielectric relaxation modulus spectrum, the change of relaxation peak and activation energy. It has been found that the active part of leakage current increases sharply with the increase of aging degree, and the test temperature and frequency have an influence on AC leakage current but the influence of test temperature is mainly reflected in the low frequency region. In addition, it has been shown by the experiments that the reactive part of leakage current exhibits a strong frequency dependent characteristic in the testing frequency range from 10-2 Hz to 105 Hz, but the influence of test temperature and thermal aging on it is relatively small.
NASA Astrophysics Data System (ADS)
Zubrzycka, W.; Kasinski, K.
2018-04-01
Leakage current flowing into the charge sensitive amplifier (CSA) is a common issue in many radiation detection systems as it can increase overall system noise, shift a DC baseline or even lead a recording channel to instability. The commonly known leakage current contributor is a detector, however other system components like wires or an input protection circuit may become a serious problem. Compensation of the leakage current resulting from the electrostatic discharge (ESD) protection circuit by properly sizing its components is possible only for a narrow temperature range. Moreover, the leakage current from external sources can be significantly larger. Many applications, especially High Energy Physics (HEP) experiments, require a fast baseline restoration for high input hit rates by applying either a low-value feedback resistor or a high feedback resistance combined with a pulsed reset circuit. Leakage current flowing in the feedback in conjunction with a large feedback resistance supplied with a pulsed reset results in a significant voltage offset between the CSA input and output which can cause problems (e.g. fake hits or instability). This paper shows an issue referred to the leakage current of the ESD protection circuit flowing into the input amplifier. The following analysis and proposed solution is a result of the time and energy readout ASIC project realization for the Compressed Baryonic Matter (CBM) experiment at FAIR (Facility for Antiproton and Ion Research) in Darmstadt, Germany. This chip is purposed to work with microstrip and gaseous detectors, with high average input pulses frequencies (250 kHit/s per channel) and the possibility to process input charge of both polarities. We present measurements of the test structure fabricated in UMC 180 nm technology and propose a solution addressing leakage current related issues. This work combines the leakage current compensation capabilities at the CSA level with high, controllable value of the amplifier feedback resistor independent of the leakage current level and polarity. The simulation results of the double, switchable, Krummenacher circuit-based feedback application in the CSA with a pulsed reset functionality are presented.
Low-energy BF2, BCl2, and BBr2 implants for ultrashallow P+-N junctions
NASA Astrophysics Data System (ADS)
Nandan, S. R.; Agarwal, Vikas; Banerjee, Sanjay K.
1997-08-01
We have examined low energy BCl2 and BBr2 implants as a means of fabricating ultra-shallow P+-N junctions. Five keV and 9 keV BCl2 implants and 18 keV BBr2 implants have been compared to 5 keV BF2 implants to study the benefits of using these species. BCl2 and BBr2, being heavier species, have a lower projected range and produce more damage. The greater damage restricts channeling, resulting in shallower as-implanted profiles. The increased damage amorphizes the substrate at low implant doses which results in reduced transient enhanced diffusion (TED) during the post-implant anneal. Post-anneal SIMS profiles indicate a junction depth reduction of over 10 nm (at 5 X 1017 cm-3 background doping) for 5 keV BCl2 implants as compared to 5 keV BF2 implants. Annealed junctions as shallow as 10 nm have been obtained from the 18 keV BBr2 implants. The increased damage degrades the electrical properties of these junctions by enhancing the leakage current densities. BCl2 implanted junctions have leakage current densities of approximately 1 (mu) A/cm2 as compared to 10 nA/cm2 for the BF2 implants. BBr2 implants have a lower leakage density of approximately 50 nA/cm2. Low energy BBr2 implants offer an exciting alternative for fabricating low leakage, ultra-shallow P+-N junctions.
Influence of Sample Size of Polymer Materials on Aging Characteristics in the Salt Fog Test
NASA Astrophysics Data System (ADS)
Otsubo, Masahisa; Anami, Naoya; Yamashita, Seiji; Honda, Chikahisa; Takenouchi, Osamu; Hashimoto, Yousuke
Polymer insulators have been used in worldwide because of some superior properties; light weight, high mechanical strength, good hydrophobicity etc., as compared with porcelain insulators. In this paper, effect of sample size on the aging characteristics in the salt fog test is examined. Leakage current was measured by using 100 MHz AD board or 100 MHz digital oscilloscope and separated three components as conductive current, corona discharge current and dry band arc discharge current by using FFT and the current differential method newly proposed. Each component cumulative charge was estimated automatically by a personal computer. As the results, when the sample size increased under the same average applied electric field, the peak values of leakage current and each component current increased. Especially, the cumulative charges and the arc discharge length of dry band arc discharge increased remarkably with the increase of gap length.
Zhao, Sheng-Xun; Liu, Xiao-Yong; Zhang, Lin-Qing; Huang, Hong-Fan; Shi, Jin-Shan; Wang, Peng-Fei
2016-12-01
Thermal atomic layer deposition (ALD)-grown AlN passivation layer is applied on AlGaN/GaN-on-Si HEMT, and the impacts on drive current and leakage current are investigated. The thermal ALD-grown 30-nm amorphous AlN results in a suppressed off-state leakage; however, its drive current is unchanged. It was also observed by nano-beam diffraction method that thermal ALD-amorphous AlN layer barely enhanced the polarization. On the other hand, the plasma-enhanced chemical vapor deposition (PECVD)-deposited SiN layer enhanced the polarization and resulted in an improved drive current. The capacitance-voltage (C-V) measurement also indicates that thermal ALD passivation results in a better interface quality compared with the SiN passivation.
Modeling and analysis of sub-surface leakage current in nano-MOSFET under cutoff regime
NASA Astrophysics Data System (ADS)
Swami, Yashu; Rai, Sanjeev
2017-02-01
The high leakage current in nano-meter regimes is becoming a significant portion of power dissipation in nano-MOSFET circuits as threshold voltage, channel length, and gate oxide thickness are scaled down to nano-meter range. Precise leakage current valuation and meticulous modeling of the same at nano-meter technology scale is an increasingly a critical work in designing the low power nano-MOSFET circuits. We present a specific compact model for sub-threshold regime leakage current in bulk driven nano-MOSFETs. The proposed logical model is instigated and executed into the latest updated PTM bulk nano-MOSFET model and is found to be in decent accord with technology-CAD simulation data. This paper also reviews various transistor intrinsic leakage mechanisms for nano-MOSFET exclusively in weak inversion, like drain-induced barricade lowering (DIBL), gate-induced drain leakage (GIDL), gate oxide tunneling (GOT) leakage etc. The root cause of the sub-surface leakage current is mainly due to the nano-scale short channel length causing source-drain coupling even in sub-threshold domain. Consequences leading to carriers triumphing the barricade between the source and drain. The enhanced model effectively considers the following parameter dependence in the account for better-quality value-added results like drain-to-source bias (VDS), gate-to-source bias (VGS), channel length (LG), source/drain junction depth (Xj), bulk doping concentration (NBULK), and operating temperature (Top).
NASA Astrophysics Data System (ADS)
Kim, Chang Su; Jo, Sung Jin; Kim, Jong Bok; Ryu, Seung Yoon; Noh, Joo Hyon; Baik, Hong Koo; Lee, Se Jong; Kim, Youn Sang
2007-12-01
This communication reports on the fabrication of low operating voltage pentacene thin-film transistors with high-k gate dielectrics by ion beam assisted deposition (IBAD). These densely packed dielectric layers by IBAD show a much lower level of leakage current than those created by e-beam evaporation. These results, from the fact that those thin films deposited with low adatom mobility, have an open structure, consisting of spherical grains with pores in between, that acts as a significant path for leakage current. By contrast, our results demonstrate the potential to limit this leakage. The field effect mobility, on/off current ratio, and subthreshold slope obtained from pentacene thin-film transistors (TFTs) were 1.14 cm2/V s, 105, and 0.41 V/dec, respectively. Thus, the high-k gate dielectrics obtained by IBAD show promise in realizing low leakage current, low voltage, and high mobility pentacene TFTs.
NASA Astrophysics Data System (ADS)
Doumoto, Takafumi; Akagi, Hirofumi
This paper deals with a leakage current flowing out of the heat sink of a voltage-source PWM inverter. The heat-sink leakage current is caused by a steep change in the common-mode voltage produced by the inverter. It flows through parasitic capacitors between the heat sink and power semiconductor devices when no EMI filter is connected. Experimental results reveal that the heat-sink leakage current flows not into the supply side, but into the motor side. These understandings succeed in describing an equivalent common-mode circuit taking the parasitic capacitors into account. The authors have proposed a passive EMI filter that is unique in access to the ungrounded motor neutral line. It is discussed from this equivalent circuit that the passive EMI filter is effective in preventing the leakage current from flowing. Moreover, installation of another small-sized common-mode inductor at the ac side of the diode rectifier prevents the leakage current from flowing into the supply side. Experimental results obtained from a 200-V, 3.7-kW laboratory system confirm the effectiveness and viability of the EMI filter.
Correlation between dislocations and leakage current of p-n diodes on a free-standing GaN substrate
NASA Astrophysics Data System (ADS)
Usami, Shigeyoshi; Ando, Yuto; Tanaka, Atsushi; Nagamatsu, Kentaro; Deki, Manato; Kushimoto, Maki; Nitta, Shugo; Honda, Yoshio; Amano, Hiroshi; Sugawara, Yoshihiro; Yao, Yong-Zhao; Ishikawa, Yukari
2018-04-01
Dislocations that cause a reverse leakage current in vertical p-n diodes on a GaN free-standing substrate were investigated. Under a high reverse bias, dot-like leakage spots were observed using an emission microscope. Subsequent cathodoluminescence (CL) observations revealed that the leakage spots coincided with part of the CL dark spots, indicating that some types of dislocation cause reverse leakage. When etch pits were formed on the dislocations by KOH etching, three sizes of etch pits were obtained (large, medium, and small). Among these etch pits, only the medium pits coincided with leakage spots. Additionally, transmission electron microscopy observations revealed that pure screw dislocations are present under the leakage spots. The results revealed that 1c pure screw dislocations are related to the reverse leakage in vertical p-n diodes.
Initial leakage current paths in the vertical-type GaN-on-GaN Schottky barrier diodes
NASA Astrophysics Data System (ADS)
Sang, Liwen; Ren, Bing; Sumiya, Masatomo; Liao, Meiyong; Koide, Yasuo; Tanaka, Atsushi; Cho, Yujin; Harada, Yoshitomo; Nabatame, Toshihide; Sekiguchi, Takashi; Usami, Shigeyoshi; Honda, Yoshio; Amano, Hiroshi
2017-09-01
Electrical characteristics of leakage current paths in vertical-type n-GaN Schottky barrier diodes (SBDs) on free-standing GaN substrates are investigated by using photon emission microscopy (PEM). The PEM mapping shows that the initial failure of the SBD devices at low voltages is due to the leakage current paths from polygonal pits in the GaN epilayers. It is observed that these polygonal pits originate from carbon impurity accumulation to the dislocations with a screw-type component by microstructure analysis. For the SBD without polygonal pits, no initial failure is observed and the first leakage appeals at the edge of electrodes as a result of electric field concentration. The mechanism of leakage at pits is explained in terms of trap assisted tunneling through fitting current-voltage characteristics.
Fabrication and Benchmarking of a Stratix V FPGA with Monolithic Integrated Microfluidic Cooling
2017-03-01
run. The output from all cores were monitored through the Altera Signaltap tool in order to detect glitches which occurred in the output...dependence on temperature, and static/ leakage power, which comes from several components, such as subthreshold leakage , gate leakage , and reverse bias 220...junction current. Subthreshold leakage current tends to be the most significant temperature dependent component of the power [6,7] and is given by
Kano, Shinya; Fujii, Minoru
2017-03-03
We study the conversion efficiency of an energy harvester based on resonant tunneling through quantum dots with heat leakage. Heat leakage current from a hot electrode to a cold electrode is taken into account in the analysis of the harvester operation. Modeling of electrical output indicates that a maximum heat leakage current is not negligible because it is larger than that of the heat current harvested into electrical power. A reduction of heat leakage is required in this energy harvester in order to obtain efficient heat-to-electrical conversion. Multiple energy levels of a quantum dot can increase the output power of the harvester. Heavily doped colloidal semiconductor quantum dots are a possible candidate for a quantum-dot monolayer in the energy harvester to reduce heat leakage, scaling down device size, and increasing electrical output via multiple discrete energy levels.
Kemp, Chandler E; Ravikumar, Arvind P; Brandt, Adam R
2016-04-19
We present a tool for modeling the performance of methane leak detection and repair programs that can be used to evaluate the effectiveness of detection technologies and proposed mitigation policies. The tool uses a two-state Markov model to simulate the evolution of methane leakage from an artificial natural gas field. Leaks are created stochastically, drawing from the current understanding of the frequency and size distributions at production facilities. Various leak detection and repair programs can be simulated to determine the rate at which each would identify and repair leaks. Integrating the methane leakage over time enables a meaningful comparison between technologies, using both economic and environmental metrics. We simulate four existing or proposed detection technologies: flame ionization detection, manual infrared camera, automated infrared drone, and distributed detectors. Comparing these four technologies, we found that over 80% of simulated leakage could be mitigated with a positive net present value, although the maximum benefit is realized by selectively targeting larger leaks. Our results show that low-cost leak detection programs can rely on high-cost technology, as long as it is applied in a way that allows for rapid detection of large leaks. Any strategy to reduce leakage should require a careful consideration of the differences between low-cost technologies and low-cost programs.
Investigation of mercury thruster isolators. [service life
NASA Technical Reports Server (NTRS)
Mantenieks, M. A.
1973-01-01
Mercury ion thruster isolator lifetime tests were performed using different isolator materials and geometries. Tests were performed with and without the flow of mercury through the isolators in an oil diffusion pumped vacuum facility and cryogenically pumped bell jar. The onset of leakage current in isolators tested occurred in time intervals ranging from a few hours to many hundreds of hours. In all cases, surface contamination was responsible for the onset of leakage current and subsequent isolator failure. Rate of increase of leakage current and the leakage current level increased approximately exponentially with isolator temperature. Careful attention to shielding techniques and the elimination of sources of metal oxides appear to have eliminated isolator failures as a thruster life limiting mechanism.
NASA Astrophysics Data System (ADS)
Li, Jeng-Ting; Tsai, Ho-Lin; Lai, Wei-Yao; Hwang, Weng-Sing; Chen, In-Gann; Chen, Jen-Sue
2018-04-01
This study addresses the variation in gate-leakage current due to the Fowler-Nordheim (FN) tunneling of electrons through a SiO2 dielectric layer in zinc-tin oxide (ZTO) thin film transistors. It is shown that the gate-leakage current is not related to the absolute area of the ZTO active layer, but it is reduced by reducing the ZTO/SiO2 area ratio. The ZTO/SiO2 area ratio modulates the ZTO-SiO2 interface dipole strength as well as the ZTO-SiO2 conduction band offset and subsequently affects the FN tunneling current through the SiO2 layer, which provides a route that modifies the gate-leakage current.
Design and Synthesis of Archaea-Inspired Tetraether Lipids
NASA Astrophysics Data System (ADS)
Koyanagi, Takaoki
Maintaining the correct ion homeostasis across membranes is a major challenge in both nature and artificial systems. Archaea, have evolved to solve membrane permeability problems to survive in extreme environments by incorporating unique structural features found in their lipid. Specifically, inclusion of phytanyl side chains, ether glycerol linkages, tethering of lipids, cycloalkanes, and different polar lipid headgroups into their lipid membrane are believed to contribute to membrane stability. We sought to gain a better understanding of the functional benefits attributed to these structural features to membrane stability to design a new class of synthetic Archaea inspired lipid membranes that can be used to overcome limitations (i.e. unstable in serum environment, high background leakage, and prone to hydrolysis) found in current lipid based technologies. Leakage experiments revealed liposomes made from GMGTPC (glycerol monoalkyl glycerol tetraether lipid with phosphatidylcholine headgroup) demonstrated a two order magnitude reduction in membrane leakage to small ions when compared with liposomes made from EggPC. Additionally, liposomes composed of GMGTPC-CH (cyclohexane integrated) lipid displayed an additional 40% decrease in membrane leakage to small ions when compared with liposomes made from GMGTPC lipids. Furthermore, leakage experiments revealed a higher degree of tolerance to headgroup modifications to membrane leakage for liposomes made from GMGT lipid analogs when compared with liposomes made from POPC. After designing an optimal tetraether lipid scaffold that incorporates key Archaeal structural features for membrane leakage, we explored to integrate strategies employed by eukaryotes to improve membrane properties (i.e. addition of cholesterol). Liposomes made from the hybrid lipid, GcGTPC-CH, displayed a five-fold decrease in membrane leakage when compared with liposomes made from GMGTPC-CH, while maintaining functional membrane properties similar to membranes made from diacyl lipids. Lastly, we engineered a thiol responsive hybrid lipid, GcGT(S-S)PC-CH, that demonstrated similar membrane stability in serum as GcGTPC-CH. Gratifyingly, doxorubicin loaded liposomes composed of GcGT(S-S)PC-CH liposomes displayed a 4 or 20-fold increase in toxicity to HeLa cells when compared with liposomes made from GcGTPC-CH or Doxil, respectively. This work represents a first step towards development of stimuli-responsive tetraether lipids that may offer advantages in membrane properties to be used in cancer therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ANDREWS,J.W.
1998-12-01
The house pressure test for air leakage in ducts calculates the signed difference between the supply and return leakage from the response of the air pressure in the house to operation of the system fan. The currently accepted version of this calculation was based on particular assumptions about how the house envelope leakage is distributed between the walls, ceiling, and floor. This report generalizes the equation to account for an arbitrary distribution of envelope leakage. It concludes that the currently accepted equation is usually accurate to within {+-}5%, but in a small proportion of cases the results may diverge bymore » 50% or more.« less
NASA Astrophysics Data System (ADS)
Packeer, F.; Mohamad Isa, M.; Mat Jubadi, W.; Ian, K. W.; Missous, M.
2013-07-01
This study focuses on the area of the epitaxial design, fabrication and characterization of a 1 µm gate-length InP-based pseudomorphic high electron mobility transistor (pHEMT) using InGaAs-InAlAs material systems. The advanced epitaxial layer design incorporates a highly strained aluminum-rich Schottky contact barrier, an indium-rich channel and a double delta-doped structure, which significantly improves upon the conventional low-noise pHEMT which suffers from high gate current leakage and low breakdown voltage. The outstanding achievements of the new design approach are 99% less gate current leakage and a 73% increase in breakdown voltage, compared with the conventional design. Furthermore, no degradation in RF performance is observed in terms of the cut-off frequency in this new highly tensile strained design. The remarkable performance of this advanced pHEMT design facilitates the implementation of outstanding low-noise devices.
NASA Astrophysics Data System (ADS)
Hanna, Mina J.; Zhao, Han; Lee, Jack C.
2012-10-01
We analyze the anomalous I-V behavior in SiN prepared by plasma enhanced chemical vapor deposition for use as a gate insulator in AlGaN/GaN metal insulator semiconductor heterostructure filed effect transistors (HFETs). We observe leakage current across the dielectric with opposite polarity with respect to the applied electric field once the voltage sweep reaches a level below a determined threshold. This is observed as the absolute minimum of the leakage current does not occur at minimum voltage level (0 V) but occurs earlier in the sweep interval. Curve-fitting analysis suggests that the charge-transport mechanism in this region is Poole-Frenkel current, followed by Schottky emission due to band bending. Despite the current anomaly, the sample devices have shown a notable reduction of leakage current of over 2 to 6 order of magnitudes compared to the standard Schottky HFET. We show that higher pressures and higher silane concentrations produce better films manifesting less trapping. This conforms to our results that we reported in earlier publications. We found that higher chamber pressure achieves higher sheet carrier concentration that was found to be strongly dependent on the trapped space charge at the SiN/GaN interface. This would suggest that a lower chamber pressure induces more trap states into the SiN/GaN interface.
Degradation of Leakage Currents in Solid Tantalum Capacitors Under Steady-State Bias Conditions
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander A.
2010-01-01
Degradation of leakage currents in various types of solid tantalum capacitors under steady-state bias conditions was investigated at temperatures from 105 oC to 170 oC and voltages up to two times the rated voltage. Variations of leakage currents with time under highly accelerated life testing (HALT) and annealing, thermally stimulated depolarization currents, and I-V characteristics were measured to understand the conduction mechanism and the reason for current degradation. During HALT the currents increase gradually up to three orders of magnitude in some cases, and then stabilize with time. This degradation is reversible and annealing can restore the initial levels of leakage currents. The results are attributed to migration of positively charged oxygen vacancies in tantalum pentoxide films that diminish the Schottky barrier at the MnO2/Ta2O5 interface and increase electron injection. A simple model allows for estimation of concentration and mobility of oxygen vacancies based on the level of current degradation.
NASA Astrophysics Data System (ADS)
Zhang, Yu; Jin, Lei; Jiang, Dandan; Zou, Xingqi; Zhao, Zhiguo; Gao, Jing; Zeng, Ming; Zhou, Wenbin; Tang, Zhaoyun; Huo, Zongliang
2018-03-01
In order to optimize program disturbance characteristics effectively, a characterization approach that measures top select transistor (TSG) leakage from bit-line is proposed to quantify TSG leakage under program inhibit condition in 3D NAND flash memory. Based on this approach, the effect of Vth modulation of two-cell TSG on leakage is evaluated. By checking the dependence of leakage and corresponding program disturbance on upper and lower TSG Vth, this approach is validated. The optimal Vth pattern with high upper TSG Vth and low lower TSG Vth has been suggested for low leakage current and high boosted channel potential. It is found that upper TSG plays dominant role in preventing drain induced barrier lowering (DIBL) leakage from boosted channel to bit-line, while lower TSG assists to further suppress TSG leakage by providing smooth potential drop from dummy WL to edge of TSG, consequently suppressing trap assisted band-to-band tunneling current (BTBT) between dummy WL and TSG.
Li, Yong; Busoy, Joanna Marie; Zaman, Ben Alfyan Achirn; Tan, Queenie Shu Woon; Tan, Gavin Siew Wei; Barathi, Veluchamy Amutha; Cheung, Ning; Wei, Jay Ji-Ye; Hunziker, Walter; Hong, Wanjin; Wong, Tien Yin; Cheung, Chui Ming Gemmy
2018-05-28
Anti-vascular endothelial growth factor (VEGF) therapies lead to a major breakthrough in treatment of neovascular retinal diseases such as age-related macular degeneration or diabetic retinopathy. Current management of these conditions require regular and frequent intravitreal injections to prevent disease recurrence once the effect of the injected drug wears off. This has led to a pressing clinical need of developing sustained release formulations or therapies with longer duration. A major drawback in developing such therapies is that the currently available animal models show spontaneous regression of vascular leakage. They therefore not only fail to recapitulate retinal vascular disease in humans, but also prevent to discern if regression is due to prolonged therapeutic effect or simply reflects spontaneous healing. Here, we described the development of a novel rabbit model of persistent retinal neovascularization (PRNV). Retinal Müller glial are essential for maintaining the integrity of the blood-retinal barrier. Intravitreal injection of DL-alpha-aminoadipic acid (DL-AAA), a selective retinal glial (Müller) cell toxin, results in persistent vascular leakage for up to 48 weeks. We demonstrated that VEGF concentrations were significantly increased in vitreous suggesting VEGF plays a significant role in mediating the leakage observed. Intravitreal administration of anti-VEGF drugs (e.g. bevacizumab, ranibizumab and aflibercept) suppresses vascular leakage for 8-10 weeks, before recurrence of leakage to pre-treatment levels. All three anti-VEGF drugs are very effective in re-ducing angiographic leakage in PRNV model, and aflibercept demonstrated a longer duration of action compared with the others, reminiscent of what is observed with these drugs in human in the clinical setting. Therefore, this model provides a unique tool to evaluate novel anti-VEGF formulations and therapies with respect to their duration of action in comparison to the currently used drugs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wide bandwidth transimpedance amplifier for extremely high sensitivity continuous measurements.
Ferrari, Giorgio; Sampietro, Marco
2007-09-01
This article presents a wide bandwidth transimpedance amplifier based on the series of an integrator and a differentiator stage, having an additional feedback loop to discharge the standing current from the device under test (DUT) to ensure an unlimited measuring time opportunity when compared to switched discharge configurations while maintaining a large signal amplification over the full bandwidth. The amplifier shows a flat response from 0.6 Hz to 1.4 MHz, the capability to operate with leakage currents from the DUT as high as tens of nanoamperes, and rail-to-rail dynamic range for sinusoidal current signals independent of the DUT leakage current. Also available is a monitor output of the stationary current to track experimental slow drifts. The circuit is ideal for noise spectral and impedance measurements of nanodevices and biomolecules when in the presence of a physiological medium and in all cases where high sensitivity current measurements are requested such as in scanning probe microscopy systems.
NASA Astrophysics Data System (ADS)
Jung, Tae-Uk; Kim, Myung-Hwan; Yoo, Jin-Hyung
2018-05-01
Current fed dual active bridge converters for photovoltaic generation may typically require a given leakage or extra inductance in order to provide proper control of the currents. Therefore, the many researches have been focused on the leakage inductance control of high frequency transformer to integrate an extra inductor. In this paper, an asymmetric winding arrangement to get the controlled leakage inductance for the high frequency transformer is proposed to improve the efficiency of the current fed dual active bridge converter. In order to accurate analysis, a coupled electromagnetic analysis model of transformer connected with high frequency switching circuit is used. A design optimization procedure for high efficiency is also presented using design analysis model, and it is verified by the experimental result.
NASA Astrophysics Data System (ADS)
Kojima, Eiji; Chokawa, Kenta; Shirakawa, Hiroki; Araidai, Masaaki; Hosoi, Takuji; Watanabe, Heiji; Shiraishi, Kenji
2018-06-01
We performed first-principle calculations to investigate the effect of incorporation of N atoms into Al2O3 gate dielectrics. Our calculations show that the defect levels generated by VO in Al2O3 are the origin of the stress-induced gate leakage current and that VOVAl complexes in Al2O3 cause negative fixed charge. We revealed that the incorporation of N atoms into Al2O3 eliminates the VO defect levels, reducing the stress-induced gate leakage current. Moreover, this suppresses the formation of negatively charged VOVAl complexes. Therefore, AlON can reduce both stress-induced gate leakage current and negative fixed charge in wide-bandgap-semiconductor MOSFETs.
Hot-Electron-Induced Device Degradation during Gate-Induced Drain Leakage Stress
NASA Astrophysics Data System (ADS)
Kim, Kwang-Soo; Han, Chang-Hoon; Lee, Jun-Ki; Kim, Dong-Soo; Kim, Hyong-Joon; Shin, Joong-Shik; Lee, Hea-Beoum; Choi, Byoung-Deog
2012-11-01
We studied the interface state generation and electron trapping by hot electrons under gate-induced drain leakage (GIDL) stress in p-type metal oxide semiconductor field-effect transistors (P-MOSFETs), which are used as the high-voltage core circuit of flash memory devices. When negative voltage was applied to a drain in the off-state, a GIDL current was generated, but when high voltage was applied to the drain, electrons had a high energy. The hot electrons produced the interface state and electron trapping. As a result, the threshold voltage shifted and the off-state leakage current (trap-assisted drain junction leakage current) increased. On the other hand, electron trapping mitigated the energy band bending near the drain and thus suppressed the GIDL current generation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stern, M.B.; Brody, E.; Sowell, B.
1987-12-15
Direct measurements of homojunction and heterojunction carrier leakage currents in InGaAsP/InP buried heterostructure lasers have been made by monitoring the electroluminescence (EL) at 0.96 ..mu..m in the InP confinement layers. These EL measurements show directly, for the first time, a correlation between homojunction leakage currents and the sublinearity in the 1.3-..mu..m light output-current characteristic. The observed decrease in the 0.96-..mu..m intensity with increasing p-dopant concentration is a direct confirmation that heterojunction leakage is reduced when the doping level in the p-InP confinement layer is increased.
Non-Ideal Properties of Gallium Nitride Based Light-Emitting Diodes
NASA Astrophysics Data System (ADS)
Shan, Qifeng
The spectacular development of gallium nitride (GaN) based light-emitting diodes (LEDs) in recent years foreshadows a new era for lighting. There are still several non-ideal properties of GaN based LEDs that hinder their widespread applications. This dissertation studies these non-ideal properties including the large reverse leakage current, large subthreshold forward leakage current, an undesired parasitic cyan luminescence and high-concentration deep levels in GaInN blue LEDs. This dissertation also studies the thermal properties of GaInN LEDs.
Stroh, Christine; Köckerling, Ferdinand; Volker, Lange; Frank, Benedix; Stefanie, Wolff; Christian, Knoll; Christiane, Bruns; Thomas, Manger
2016-05-01
Laparoscopic sleeve gastrectomy (SG) is an upcoming procedure in bariatric surgery and is currently performed worldwide. Staple line leakage, as the most frequent and most feared complication, is still a major concern. Since 2005 data from patients undergoing bariatric procedures in Germany have been prospectively registered in an online database and analyzed. All patients who had undergone primary SG within a 7-year period were considered for analysis. Using the German Bariatric Surgery Registry, data from more than 11,800 SGs were collected between January 1, 2005, and December 31, 2013. Staple line leak rate decreased from 6.5% to 1.4%. Male sex, higher body mass index, concomitant sleep apnea, conversion to laparotomy, longer operation time, a combination of buttresses and oversewing, and the occurrence of intraoperative complications were associated with a significantly higher leakage rate compared with when using either buttresses or oversewing alone. On multivariable analysis, operation time and year of procedure only had a significant impact on staple line leakage rate. Owing to the growing experience a constant decrease in the leakage rate after SG has been observed. Staple line disruption may still lead to sepsis, multiorgan dysfunction, and increased mortality. The results of the current study demonstrated that there are factors that increase the risk of leakage and which would enable surgeons to define risk groups, select patients more carefully, and offer closer follow-up during the postoperative course with early recognition and adequate treatment.
Determination of the Steady State Leakage Current in Structures with Ferroelectric Ceramic Films
NASA Astrophysics Data System (ADS)
Podgornyi, Yu. V.; Vorotilov, K. A.; Sigov, A. S.
2018-03-01
Steady state leakage currents have been investigated in capacitor structures with ferroelectric solgel films of lead zirconate titanate (PZT) formed on silicon substrates with a lower Pt electrode. It is established that Pt/PZT/Hg structures, regardless of the PZT film thickness, are characterized by the presence of a rectifying contact similar to p-n junction. The steady state leakage current in the forward direction increases with a decrease in the film thickness and is determined by the ferroelectric bulk conductivity.
Improving off-state leakage characteristics for high voltage AlGaN/GaN-HFETs on Si substrates
NASA Astrophysics Data System (ADS)
Moon, Sung-Woon; Twynam, John; Lee, Jongsub; Seo, Deokwon; Jung, Sungdal; Choi, Hong Goo; Shim, Heejae; Yim, Jeong Soon; Roh, Sungwon D.
2014-06-01
We present a reliable process and design technique for realizing high voltage AlGaN/GaN hetero-junction field effect transistors (HFETs) on Si substrates with very low and stable off-state leakage current characteristics. In this work, we have investigated the effects of the surface passivation layer, prepared by low pressure chemical vapor deposition (LPCVD) of silicon nitride (SiNx), and gate bus isolation design on the off-state leakage characteristics of metal-oxide-semiconductor (MOS) gate structure-based GaN HFETs. The surface passivated devices with gate bus isolation fully surrounding the source and drain regions showed extremely low off-state leakage currents of less than 20 nA/mm at 600 V, with very small variation. These techniques were successfully applied to high-current devices with 80-mm gate width, yielding excellent off-state leakage characteristics within a drain voltage range 0-700 V.
21 CFR 870.2640 - Portable leakage current alarm.
Code of Federal Regulations, 2014 CFR
2014-04-01
... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2640 Portable... the electrical leakage current between any two points of an electrical system and to sound an alarm if...
21 CFR 870.2640 - Portable leakage current alarm.
Code of Federal Regulations, 2013 CFR
2013-04-01
... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2640 Portable... the electrical leakage current between any two points of an electrical system and to sound an alarm if...
21 CFR 870.2640 - Portable leakage current alarm.
Code of Federal Regulations, 2012 CFR
2012-04-01
... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2640 Portable... the electrical leakage current between any two points of an electrical system and to sound an alarm if...
The role of ITO resistivity on current spreading and leakage in InGaN/GaN light emitting diodes
NASA Astrophysics Data System (ADS)
Sheremet, V.; Genç, M.; Elçi, M.; Sheremet, N.; Aydınlı, A.; Altuntaş, I.; Ding, K.; Avrutin, V.; Özgür, Ü.; Morkoç, H.
2017-11-01
The effect of a transparent ITO current spreading layer on electrical and light output properties of blue InGaN/GaN light emitting diodes (LEDs) is discussed. When finite conductivity of ITO is taken into account, unlike in previous models, the topology of LED die and contacts are shown to significantly affect current spreading and light output characteristics in top emitting devices. We propose an approach for calculating the current transfer length describing current spreading. We show that an inter-digitated electrode configuration with distance between the contact pad and the edge of p-n junction equal to transfer length in the current spreading ITO layer allows one to increase the optical area of LED chip, as compared to the physical area of the die, light output power, and therefore, the LED efficiency for a given current density. A detailed study of unpassivated LEDs also shows that current transfer lengths longer than the distance between the contact pad and the edge of p-n junction leads to increasing surface leakage that can only be remedied with proper passivation.
Hoffbauer, Mark A.; Prettyman, Thomas H.
2001-01-01
Reduction of surface leakage current by surface passivation of Cd.sub.1-x Zn.sub.x Te and other materials using hyperthermal oxygen atoms. Surface effects are important in the performance of CdZnTe room-temperature radiation detectors used as spectrometers since the dark current is often dominated by surface leakage. A process using high-kinetic-energy, neutral oxygen atoms (.about.3 eV) to treat the surface of CdZnTe detectors at or near ambient temperatures is described. Improvements in detector performance include significantly reduced leakage current which results in lower detector noise and greater energy resolution for radiation measurements of gamma- and X-rays, thereby increasing the accuracy and sensitivity of measurements of radionuclides having complex gamma-ray spectra, including special nuclear materials.
NASA Technical Reports Server (NTRS)
Adell, Phillipe C.; Barnaby, H. J.; Schrimpf, R. D.; Vermeire, B.
2007-01-01
We propose a model, validated with simulations, describing how band-to-band tunneling (BBT) affects the leakage current degradation in some irradiated fully-depleted SOI devices. The dependence of drain current on gate voltage, including the apparent transition to a high current regime is explained.
Leakage Currents and Gas Generation in Advanced Wet Tantalum Capacitors
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander
2015-01-01
Currently, military grade, established reliability wet tantalum capacitors are among the most reliable parts used for space applications. This has been achieved over the years by extensive testing and improvements in design and materials. However, a rapid insertion of new types of advanced, high volumetric efficiency capacitors in space systems without proper testing and analysis of degradation mechanisms might increase risks of failures. The specifics of leakage currents in wet electrolytic capacitors is that the conduction process is associated with electrolysis of electrolyte and gas generation resulting in building up of internal gas pressure in the parts. The risk associated with excessive leakage currents and increased pressure is greater for high value advanced wet tantalum capacitors, but it has not been properly evaluated yet. In this work, in Part I, leakages currents in various types of tantalum capacitors have been analyzed in a wide range of voltages, temperatures, and time under bias. Gas generation and the level of internal pressure have been calculated in Part II for different case sizes and different hermeticity leak rates to assess maximal allowable leakage currents. Effects related to electrolyte penetration to the glass seal area have been studied and the possibility of failures analyzed in Part III. Recommendations for screening and qualification to reduce risks of failures have been suggested.
NASA Astrophysics Data System (ADS)
Sheremet, V.; Genç, M.; Gheshlaghi, N.; Elçi, M.; Sheremet, N.; Aydınlı, A.; Altuntaş, I.; Ding, K.; Avrutin, V.; Özgür, Ü.; Morkoç, H.
2018-01-01
Enhancement of InGaN/GaN based light emitting diode performance with step graded electron injectors through a two-step passivation is reported. Perimeter passivation of LED dies with SiO2 immediately following ICP mesa etch in addition to conventional Si3N4 dielectric surface passivation leads to decrease in the reverse bias leakage current by a factor of two as well as a decrease in the shunt current under forward bias by an order of magnitude. Mitigation of the leakage currents owing to the two-step passivation leads to significant increase in the radiant intensity of LEDs by more than a factor of two compared to the conventional single step surface passivation. Further, micro-dome patterned surface of Si3N4 passivation layer allow enhanced light extraction from LEDs.
NASA Astrophysics Data System (ADS)
Luo, B.; Mehandru, R.; Kim, Jihyun; Ren, F.; Gila, B. P.; Onstine, A. H.; Abernathy, C. R.; Pearton, S. J.; Gotthold, D.; Birkhahn, R.; Peres, B.; Fitch, R. C.; Moser, N.; Gillespie, J. K.; Jessen, G. H.; Jenkins, T. J.; Yannuzi, M. J.; Via, G. D.; Crespo, A.
2003-10-01
The dc and power characteristics of AlGaN/GaN MOS-HEMTs with Sc 2O 3 gate dielectrics were compared with that of conventional metal-gate HEMTs fabricated on the same material. The MOS-HEMT shows higher saturated drain-source current (˜0.75 A/mm) and significantly better power-added efficiency (PAE, 27%) relative to the HEMT (˜0.6 A/mm and ˜5%). The Sc 2O 3 also provides effective surface passivation, with higher drain current, lower leakage currents and higher three-terminal breakdown voltage in passivated devices relative to unpassivated devices. The PAE also increases (from ˜5% to 12%) on the surface passivated HEMTs, showing that Sc 2O 3 is an attractive option for reducing gate and surface leakage in AlGaN/GaN heterostructure transistors.
Current transport mechanisms in mercury cadmium telluride diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopal, Vishnu, E-mail: vishnu-46@yahoo.com, E-mail: wdhu@mail.sitp.ac.cn; Li, Qing; He, Jiale
This paper reports the results of modelling of the current-voltage characteristics (I-V) of a planar mid-wave Mercury Cadmium Telluride photodiode in a gate controlled diode experiment. It is reported that the diode exhibits nearly ideal I-V characteristics under the optimum surface potential leading to the minimal surface leakage current. Deviations from the optimum surface potential lead to non ideal I–V characteristics, indicating a strong relationship between the ideality factor of the diode with its surface leakage current. Diode's I–V characteristics have been modelled over a range of gate voltages from −9 V to −2 V. This range of gate voltages includes accumulation,more » flat band, and depletion and inversion conditions below the gate structure of the diode. It is shown that the I–V characteristics of the diode can be very well described by (i) thermal diffusion current, (ii) ohmic shunt current, (iii) photo-current due to background illumination, and (iv) excess current that grows by the process of avalanche multiplication in the gate voltage range from −3 V to −5 V that corresponds to the optimum surface potential. Outside the optimum gate voltage range, the origin of the excess current of the diode is associated with its high surface leakage currents. It is reported that the ohmic shunt current model applies to small surface leakage currents. The higher surface leakage currents exhibit a nonlinear shunt behaviour. It is also shown that the observed zero-bias dynamic resistance of the diode over the entire gate voltage range is the sum of ohmic shunt resistance and estimated zero-bias dynamic resistance of the diode from its thermal saturation current.« less
Pinhole mediated electrical transport across LaTiO3/SrTiO3 and LaAlO3/SrTiO3 oxide hetero-structures
NASA Astrophysics Data System (ADS)
Kumar, Pramod; Dogra, Anjana; Toutam, Vijaykumar
2013-11-01
Metal-insulator-metal configuration of LaTiO3/SrTiO3 and LaAlO3/SrTiO3 hetero-structures between two dimensional electron gas formed at the interface and different area top electrodes is employed for Conductive Atomic force microscopy (CAFM) imaging, Current-Voltage (I-V), and Capacitance-Voltage (C-V) spectroscopy. Electrode area dependent I-V characteristics are observed for these oxide hetero-structures. With small area electrodes, rectifying I-V characteristics are observed, compared to, both tunneling and leakage current characteristics for large area electrodes. CAFM mapping confirmed the presence of pinholes on both surfaces. Resultant I-V characteristics have a contribution from both tunneling and leakage due to pinholes.
Water permeation and electrical properties of pottants, backings, and pottant/backing composites
NASA Technical Reports Server (NTRS)
Orehotsky, J.
1986-01-01
It is reported that the interface between plastic film back covers and ethylene vinyl acetates (EVA) or polyvinyl butyral (PVB) in photovoltaic modules can influence water permeation, and electrial properties of the composites such as leakage current and dielectric constant. The interface can either be one of two dissimilar materials in physical contact with no intermixing, or the interface can constitute a thin zone which is an interphase of the two materials having a gradient composition from one material to the other. The former condition is described as a discrete interface. A discrete interface model was developed to predict water permeation, dielectric strength, and leakage current for EVA, ethylene methyl acrylate (EMA), and PVB coupled to Tedlar and mylar films. Experimental data was compared with predicted data.
Surface Conduction in III-V Semiconductor Infrared Detector Materials
NASA Astrophysics Data System (ADS)
Sidor, Daniel Evan
III-V semiconductors are increasingly used to produce high performance infrared photodetectors; however a significant challenge inherent to working with these materials is presented by unintended electrical conduction pathways that form along their surfaces. Resulting leakage currents contribute to system noise and are ineffectively mitigated by device cooling, and therefore limit ultimate performance. When the mechanism of surface conduction is understood, the unipolar barrier device architecture offers a potential solution. III-V bulk unipolar barrier detectors that effectively suppress surface leakage have approached the performance of the best II-VI pn-based structures. This thesis begins with a review of empirically determined Schottky barrier heights and uses this information to present a simple model of semiconductor surface conductivity. The model is validated through measurements of degenerate n-type surface conductivity on InAs pn junctions, and non-degenerate surface conductivity on GaSb pn junctions. It is then extended, along with design principles inspired by the InAs-based nBn detector, to create a flat-band pn-based unipolar barrier detector possessing a conductive surface but free of detrimental surface leakage current. Consideration is then given to the relative success of these and related bulk detectors in suppressing surface leakage when compared to analogous superlattice-based designs, and general limitations of unipolar barriers in suppressing surface leakage are proposed. Finally, refinements to the molecular beam epitaxy crystal growth techniques used to produce InAs-based unipolar barrier heterostructure devices are discussed. Improvements leading to III-V device performance well within an order of magnitude of the state-of-the-art are demonstrated.
Ultra-Widefield Fluorescein Angiography in Intermediate Uveitis.
Laovirojjanakul, Wipada; Acharya, Nisha; Gonzales, John A
2017-10-17
To examine associations between pattern of vascular leakage on ultrawide-field fluorescein angiography (UWFFA) and visual acuity, cystoid macular edema (CME), and inflammatory activity in intermediate uveitis. Single center cross-sectional, retrospective review of medical records, spectral domain optical coherence tomography (SD-OCT) and angiographic images of intermediate uveitis patients who underwent UWFFA over a 12-month period. Forty-one eyes from 24 patients were included. Twelve eyes (29%) exhibited peripheral leakage, 26 eyes (64%) had diffuse leakage and three eyes (7%) had no leakage. Diffuse leakage was associated with 0.2 logMAR worse visual acuity than peripheral leakage (p = 0.02). There was no statistically significant difference in the odds of having CME when diffuse leakage was compared to peripheral leakage. UWFFA identifies retinal vascular pathology in intermediate uveitis not present on clinical examination. Diffuse retinal vascular leakage was associated with worse visual acuity when compared to peripheral and no leakage patterns.
Conductive paths through polycrystalline BaTiO{sub 3}: Scanning probe microscopy study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayvazian, Talin; Bersuker, Gennadi; Lingley, Zachary R.
2016-08-15
The microstructural features determining the leakage current through polycrystalline BaTiO{sub 3} films are investigated using Conductive Atomic Force Microscopy. Grain boundaries are found to be the dominant conductive paths compared to the conduction through the grains. Grain boundary currents are observed to reversibly rise with the increase of the applied DC voltages, indicating that the current is controlled by a field-activated charge transport process.
NASA Astrophysics Data System (ADS)
Zhang, Zhili; Song, Liang; Li, Weiyi; Fu, Kai; Yu, Guohao; Zhang, Xiaodong; Fan, Yaming; Deng, Xuguang; Li, Shuiming; Sun, Shichuang; Li, Xiajun; Yuan, Jie; Sun, Qian; Dong, Zhihua; Cai, Yong; Zhang, Baoshun
2017-08-01
In this paper, we systematically investigated the leakage mechanism of the ion-implantation isolated AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors (MIS-HEMTs) on Si substrate. By means of combined DC tests at different temperatures and electric field dependence, we demonstrated the following original results: (1) It is proved that gate leakage is the main contribution to OFF-state leakage of ion-implantation isolated AlGaN/GaN MIS-HEMTs, and the gate leakage path is a series connection of the gate dielectric Si3N4 and Si3N4-GaN interface. (2) The dominant mechanisms of the leakage current through LPCVD-Si3N4 gate dielectric and Si3N4-GaN interface are identified to be Frenkel-Poole emission and two-dimensional variable range hopping (2D-VRH), respectively. (3) A certain temperature annealing could reduce the density of the interface state that produced by ion implantation, and consequently suppress the interface leakage transport, which results in a decrease in OFF-state leakage current of ion-implantation isolated AlGaN/GaN MIS-HEMTs.
Modeling of Dual Gate Material Hetero-dielectric Strained PNPN TFET for Improved ON Current
NASA Astrophysics Data System (ADS)
Kumari, Tripty; Saha, Priyanka; Dash, Dinesh Kumar; Sarkar, Subir Kumar
2018-01-01
The tunnel field effect transistor (TFET) is considered to be a promising alternative device for future low-power VLSI circuits due to its steep subthreshold slope, low leakage current and its efficient performance at low supply voltage. However, the main challenging issue associated with realizing TFET for wide scale applications is its low ON current. To overcome this, a dual gate material with the concept of dielectric engineering has been incorporated into conventional TFET structure to tune the tunneling width at source-channel interface allowing significant flow of carriers. In addition to this, N+ pocket is implanted at source-channel junction of the proposed structure and the effect of strain is added for exploring the performance of the model in nanoscale regime. All these added features upgrade the device characteristics leading to higher ON current, low leakage and low threshold voltage. The present work derives the surface potential, electric field expression and drain current by solving 2D Poisson's equation at different boundary conditions. A comparative analysis of proposed model with conventional TFET has been done to establish the superiority of the proposed structure. All analytical results have been compared with the results obtained in SILVACO ATLAS device simulator to establish the accuracy of the derived analytical model.
NASA Astrophysics Data System (ADS)
Cho, Doohyung; Sim, Seulgi; Park, Kunsik; Won, Jongil; Kim, Sanggi; Kim, Kwangsoo
2015-12-01
In this paper, a 4H-SiC trench MOS barrier Schottky (TMBS) rectifier with an enhanced sidewall layer (ESL) is proposed. The proposed structure has a high doping concentration at the trench sidewall. This high doping concentration improves both the reverse blocking and forward characteristics of the structure. The ESL-TMBS rectifier has a 7.4% lower forward voltage drop and a 24% higher breakdown voltage. However, this structure has a reverse leakage current that is approximately three times higher than that of a conventional TMBS rectifier owing to the reduction in energy barrier height. This problem is solved when ESL is used partially, since its use provides a reverse leakage current that is comparable to that of a conventional TMBS rectifier. Thus, the forward voltage drop and breakdown voltage improve without any loss in static and dynamic characteristics in the ESL-TMBS rectifier compared with the performance of a conventional TMBS rectifier.
NASA Astrophysics Data System (ADS)
Ramanan, Narayanan; Lee, Bongmook; Misra, Veena
2016-03-01
Many passivation dielectrics are pursued for suppressing current collapse due to trapping/detrapping of access-region surface traps in AlGaN/GaN based metal oxide semiconductor heterojuction field effect transistors (MOS-HFETs). The suppression of current collapse can potentially be achieved either by reducing the interaction of surface traps with the gate via surface leakage current reduction, or by eliminating surface traps that can interact with the gate. But, the latter is undesirable since a high density of surface donor traps is required to sustain a high 2D electron gas density at the AlGaN/GaN heterointerface and provide a low ON-resistance. This presents a practical trade-off wherein a passivation dielectric with the optimal surface trap characteristics and minimal surface leakage is to be chosen. In this work, we compare MOS-HFETs fabricated with popular ALD gate/passivation dielectrics like SiO2, Al2O3, HfO2 and HfAlO along with an additional thick plasma-enhanced chemical vapor deposition SiO2 passivation. It is found that after annealing in N2 at 700 °C, the stack containing ALD HfAlO provides a combination of low surface leakage and a high density of shallow donor traps. Physics-based TCAD simulations confirm that this combination of properties helps quick de-trapping and minimal current collapse along with a low ON resistance.
NASA Technical Reports Server (NTRS)
Neudeck, P. G.; Carpenter, M. S.; Melloch, Michael R.; Cooper, James A., Jr.
1991-01-01
Ammonium-sulfide (NH4)2S treated gates have been employed in the fabrication of GaAs MESFETs that exhibit a remarkable reduction in subthreshold leakage current. A greater than 100-fold reduction in drain current minimum is observed due to a decrease in Schottky gate leakage. The electrical characteristics have remained stable for over a year during undesiccated storage at room temperature, despite the absence of passivation layers.
NASA Astrophysics Data System (ADS)
Hejazi, M. M.; Safari, A.
2011-11-01
This paper discusses the electrical conduction mechanisms in a 0.88 Bi0.5Na0.5TiO3-0.08 Bi0.5K0.5TiO3-0.04 BaTiO3 thin film in the temperature range of 200-350 K. The film was deposited on a SrRuO3/SrTiO3 substrate by pulsed laser deposition technique. At all measurement temperatures, the leakage current behavior of the film matched well with the Lampert's triangle bounded by three straight lines of different slopes. The relative location of the triangle sides varied with temperature due to its effect on the density of charge carriers and un-filled traps. At low electric fields, the ohmic conduction governed the leakage mechanism. The calculated activation energy of the trap is 0.19 eV implying the presence of shallow traps in the film. With increasing the applied field, an abrupt increase in the leakage current was observed. This was attributed to a trap-filling process by the injected carriers. At sufficiently high electric fields, the leakage current obeyed the Child's trap-free square law suggesting the space charge limited current was the dominant mechanism.
Apparatus for detecting leakage of liquid sodium
Himeno, Yoshiaki
1978-01-01
An apparatus for detecting the leakage of liquid sodium includes a cable-like sensor adapted to be secured to a wall of piping or other equipment having sodium on the opposite side of the wall, and the sensor includes a core wire electrically connected to the wall through a leak current detector and a power source. An accidental leakage of the liquid sodium causes the corrosion of a metallic layer and an insulative layer of the sensor by products resulted from a reaction of sodium with water or oxygen in the atmospheric air so as to decrease the resistance between the core wire and the wall. Thus, the leakage is detected as an increase in the leaking electrical current. The apparatus is especially adapted for use in detecting the leakage of liquid sodium from sodium-conveying pipes or equipment in a fast breeder reactor.
Highly conducting leakage-free electrolyte for SrCoOx-based non-volatile memory device
NASA Astrophysics Data System (ADS)
Katase, Takayoshi; Suzuki, Yuki; Ohta, Hiromichi
2017-10-01
The electrochemical switching of SrCoOx-based non-volatile memory with a thin-film-transistor structure was examined by using liquid-leakage-free electrolytes with different conductivities (σ) as the gate insulator. We first examined leakage-free water, which is incorporated in the amorphous (a-) 12CaO.7Al2O3 film with a nanoporous structure (Calcium Aluminate with Nanopore), but the electrochemical oxidation/reduction of the SrCoOx layer required the application of a high gate voltage (Vg) up to 20 V for a very long current-flowing-time (t) ˜40 min, primarily due to the low σ [2.0 × 10-8 S cm-1 at room temperature (RT)] of leakage-free water. We then controlled the σ of the leakage-free electrolyte, infiltrated in the a-NaxTaO3 film with a nanopillar array structure, from 8.0 × 10-8 S cm-1 to 2.5 × 10-6 S cm-1 at RT by changing the x = 0.01-1.0. As the result, the t, required for the metallization of the SrCoOx layer under small Vg = -3 V, becomes two orders of magnitude shorter with increase of the σ of the a-NaxTaO3 leakage-free electrolyte. These results indicate that the ion migration in the leakage-free electrolyte is the rate-determining step for the electrochemical switching, compared to the other electrochemical process, and the high σ of the leakage-free electrolyte is the key factor for the development of the non-volatile SrCoOx-based electro-magnetic phase switching device.
NASA Astrophysics Data System (ADS)
Rice, A. K.; McCray, J. E.; Singha, K.
2016-12-01
The development of directional drilling and stimulation of reservoirs by hydraulic fracturing has transformed the energy landscape in the U.S. by making recovery of hydrocarbons from shale formations not only possible but economically viable. Activities associated with hydraulic fracturing present a set of water-quality challenges, including the potential for impaired groundwater quality. In this project, we use a three-dimensional, multiphase, multicomponent numerical model to investigate hydrogeologic conditions that could lead to groundwater contamination from natural gas wellbore leakage. This work explores the fate of methane that enters a well annulus, possibly from an intermediate formation or from the production zone via a flawed cement seal, and leaves the annulus at one of two depths: at the elevation of groundwater or below a freshwater aquifer. The latter leakage scenario is largely ignored in the current scientific literature, where focus has been on leakage directly into freshwater aquifers, despite modern regulations requiring steel casings and cement sheaths at these depths. We perform a three-stage sensitivity analysis, examining (1) hydrogeologic parameters of media surrounding a methane leakage source zone, (2) geostatistical variations in intrinsic permeability, and (3) methane source zone pressurization. Results indicate that in all cases methane reaches groundwater within the first year of leakage. To our knowledge, this is the first study to consider natural gas wellbore leakage in the context of multiphase flow through heterogeneous permeable media; advantages of multiphase modeling include more realistic analysis of methane vapor-phase relative permeability as compared to single-phase models. These results can be used to inform assessment of aquifer vulnerability to hydrocarbon wellbore leakage at varying depths.
Fischer, Avi; Klehn, Russell
2013-08-01
The insulation of St. Jude Medical Riata® leads contains a polytetrafluoroethylene (PTFE) liner, silicone tubing, and ethylenetetrafluoroethylene (ETFE) coating on individual cable conductors. ETFE has sufficient dielectric strength to assure electrical function. This investigation intended to analyze performance of leads with and without externalized conductors and with intact and breached ETFE. Testing was performed on ETFE-coated conductors to determine their ability to deliver high-voltage therapy. Tests were performed on samples under different conditions and current leakage was measured. A high-voltage test and a cyclic pulse test were performed, and the effect of lead modifications on the potential gradient from a high-voltage shock was used to determine functionality. Measurements from modified Riata® leads were compared with a control lead with all insulation and conducting elements intact. Current leakage for all conditions tested, was within the acceptance criteria for the high-voltage test and the cyclic pulse test. In conductors that underwent cyclic testing, the highest value of current leakage was within the limit of acceptability for both phases of the test. Testing of leads with externalized conductors and breached ETFE showed similar potential gradients compared with a control lead. Testing of ETFE-coated conductors following multiple preconditioning steps showed that ETFE serves as a redundant layer of insulation. In the event that the ETFE coating is breached, the potential gradient seen resulting from a high-voltage defibrillation shock was similar to a lead with no breach to the ETFE, even after 100 shocks.
III-V Ultra-Thin-Body InGaAs/InAs MOSFETs for Low Standby Power Logic Applications
NASA Astrophysics Data System (ADS)
Huang, Cheng-Ying
As device scaling continues to sub-10-nm regime, III-V InGaAs/InAs metal- oxide-semiconductor ?eld-e?ect transistors (MOSFETs) are promising candidates for replacing Si-based MOSFETs for future very-large-scale integration (VLSI) logic applications. III-V InGaAs materials have low electron effective mass and high electron velocity, allowing higher on-state current at lower VDD and reducing the switching power consumption. However, III-V InGaAs materials have a narrower band gap and higher permittivity, leading to large band-to-band tunneling (BTBT) leakage or gate-induced drain leakage (GIDL) at the drain end of the channel, and large subthreshold leakage due to worse electrostatic integrity. To utilize III-V MOSFETs in future logic circuits, III-V MOSFETs must have high on-state performance over Si MOSFETs as well as very low leakage current and low standby power consumption. In this dissertation, we will report InGaAs/InAs ultra-thin-body MOSFETs. Three techniques for reducing the leakage currents in InGaAs/InAs MOSFETs are reported as described below. 1) Wide band-gap barriers: We developed AlAs0.44Sb0.56 barriers lattice-match to InP by molecular beam epitaxy (MBE), and studied the electron transport in In0.53Ga0.47As/AlAs 0.44Sb0.56 heterostructures. The InGaAs channel MOSFETs using AlAs0.44Sb0.56 bottom barriers or p-doped In0.52 Al0.48As barriers were demonstrated, showing significant suppression on the back barrier leakage. 2) Ultra-thin channels: We investigated the electron transport in InGaAs and InAs ultra-thin quantum wells and ultra-thin body MOSFETs (t ch ~ 2-4 nm). For high performance logic, InAs channels enable higher on-state current, while for low power logic, InGaAs channels allow lower BTBT leakage current. 3) Source/Drain engineering: We developed raised InGaAs and recessed InP source/drain spacers. The raised InGaAs source/drain spacers improve electrostatics, reducing subthreshold leakage, and smooth the electric field near drain, reducing BTBT leakage. With further replacement of raised InGaAs spacers by recessed, doping-graded InP spacers at high field regions, BTBT leakage can be reduced ~100:1. Using the above-mentioned techniques, record high performance InAs MOSFETs with a 2.7 nm InAs channel and a ZrO2 gate dielectric were demonstrated with Ion = 500 microA/microm at Ioff = 100 nA/microm and VDS =0.5 V, showing the highest on-state performance among all the III-V MOSFETs and comparable performance to 22 nm Si FinFETs. Record low leakage InGaAs MOSFETs with recessed InP source/drain spacers were also demonstrated with minimum I off = 60 pA/microm at 30 nm-Lg , and Ion = 150 microA/microm at I off = 1 nA/microm and VDS =0.5 V. This recessed InP source/drain spacer technique improves device scalability and enables III-V MOSFETs for low standby power logic applications. Furthermore, ultra-thin InAs channel MOSFETs were fabricated on Si substrates, exhibiting high yield and high transconductance gm ~2.0 mS/microm at 20 nm- Lg and VDS =0.5 V. With further scaling of gate lengths, a 12 nm-Lg III-V MOSFET has shown maximum Ion/Ioff ratio ~8.3x105 , confirming that III-V MOSFETs are scalable to sub-10-nm technology nodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soerqvist, T.; Vlastos, A.E.
1996-12-31
The hydrophobicity of polymeric insulators is crucial for their performance. This paper reports the hydrophobicity and the peak leakage current statistics of one porcelain, two ethylene-propylene-diene monomer (EPDM) and four silicone rubber (SIR) commercially available insulators. The insulators have been energized with 130 kV rms phase-to-ground AC voltage under identical outdoor conditions for more than seven years. The results presented show that under wet and polluted conditions the hydrophilic EPDM rubber insulators develop high leakage currents and substantial arcing. During a typical salt-storm the arcing amplitude of the EPDM rubber insulators is at least twice as high as that ofmore » the porcelain insulator. The SIR insulators, on the other hand, preserve a high degree of hydrophobicity after more than seven years in service and maintain very low leakage currents. However, the results show that during heavy salt contaminated conditions a highly stressed SIR insulator can temporarily lose its hydrophobicity and thereby develop considerable surface arcing.« less
Ball, Lyndsay B.; Kress, Wade H.; Steele, Gregory V.; Cannia, James C.; Andersen, Michael J.
2006-01-01
In the North Platte River Basin, a ground-water model is being developed to evaluate the effectiveness of using water leakage from selected irrigation canal systems to enhance ground-water recharge. The U.S. Geological Survey, in cooperation with the North Platte Natural Resources District, used land-based capacitively coupled and water-borne direct-current continuous resistivity profiling techniques to map the lithology of the upper 8 meters and to interpret the relative canal leakage potential of 110 kilometers of the Interstate and Tri-State Canals in western Nebraska and eastern Wyoming. Lithologic descriptions from 25 test holes were used to evaluate the effectiveness of both techniques for indicating relative grain size. An interpretive color scale was developed that symbolizes contrasting resistivity features indicative of different grain-size categories. The color scale was applied to the vertically averaged resistivity and used to classify areas of the canals as having either high, moderate, or low canal leakage potential. When results were compared with the lithologic descriptions, both land-based and water-borne continuous resistivity profiling techniques were determined to be effective at differentiating coarse-grained from fine-grained sediment. Both techniques were useful for producing independent, similar interpretations of canal leakage potential.
Sidewall passivation for InGaN/GaN nanopillar light emitting diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Won Hyuck; Abraham, Michael; Yu, Shih-Ying
2014-07-07
We studied the effect of sidewall passivation on InGaN/GaN multiquantum well-based nanopillar light emitting diode (LED) performance. In this research, the effects of varying etch rate, KOH treatment, and sulfur passivation were studied for reducing nanopillar sidewall damage and improving device efficiency. Nanopillars prepared under optimal etching conditions showed higher photoluminescence intensity compared with starting planar epilayers. Furthermore, nanopillar LEDs with and without sulfur passivation were compared through electrical and optical characterization. Suppressed leakage current under reverse bias and four times higher electroluminescence (EL) intensity were observed for passivated nanopillar LEDs compared with unpassivated nanopillar LEDs. The suppressed leakage currentmore » and EL intensity enhancement reflect the reduction of non-radiative recombination at the nanopillar sidewalls. In addition, the effect of sulfur passivation was found to be very stable, and further insight into its mechanism was gained through transmission electron microscopy.« less
21 CFR 870.2640 - Portable leakage current alarm.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Portable leakage current alarm. 870.2640 Section 870.2640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2640 Portable...
21 CFR 870.2640 - Portable leakage current alarm.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Portable leakage current alarm. 870.2640 Section 870.2640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2640 Portable...
Geochemical monitoring for detection of CO_{2} leakage from subsea storage sites
NASA Astrophysics Data System (ADS)
García-Ibáñez, Maribel I.; Omar, Abdirahman M.; Johannessen, Truls
2017-04-01
Carbon Capture and Storage (CCS) in subsea geological formations is a promising large-scale technology for mitigating the increases of carbon dioxide (CO2) in the atmosphere. However, detection and quantification of potential leakage of the stored CO2 remains as one of the main challenges of this technology. Geochemical monitoring of the water column is specially demanding because the leakage CO2 once in the seawater may be rapidly dispersed by dissolution, dilution and currents. In situ sensors capture CO2 leakage signal if they are deployed very close to the leakage point. For regions with vigorous mixing and/or deep water column, and for areas far away from the leakage point, a highly sensitive carbon tracer (Cseep tracer) was developed based on the back-calculation techniques used to estimate anthropogenic CO2 in the water column. Originally, the Cseep tracer was computed using accurate discrete measurements of total dissolved inorganic carbon (DIC) and total alkalinity (AT) in the Norwegian Sea to isolate the effect of natural submarine vents in the water column. In this work we assess the effect of measurement variables on the performance of the method by computing the Cseep tracer twice: first using DIC and AT, and second using partial pressure of CO2 (pCO2) and pH. The assessment was performed through the calculation of the signal to noise ratios (STNR). We found that the use of the Cseep tracer increases the STNR ten times compared to the raw measurement data, regardless of the variables used. Thus, while traditionally the pH-pCO2 pair generates the greatest uncertainties in the oceanic CO2 system, it seems that the Cseep technique is insensitive to that issue. On the contrary, the use of the pCO2-pH pair has the highest CO2 leakage detection and localization potential due to the fact that both pCO2 and pH can currently be measured at high frequency and in an autonomous mode.
van Rossum, Peter S N; Haverkamp, Leonie; Carvello, Michele; Ruurda, Jelle P; van Hillegersberg, Richard
2017-01-01
The aim of this study was to evaluate management strategies and related outcomes for cervical versus intrathoracic manifestation of cervical anastomotic leakage after transthoracic esophagectomy for cancer with gastric conduit reconstruction. Patients with esophageal cancer undergoing transthoracic esophagectomy with cervical anastomosis from October 2003 to December 2014 were identified from a prospectively acquired database. Management strategies and related outcomes among patients with anastomotic leakage confined to the neck were compared to patients with intrathoracic manifestation of anastomotic leakage. From a total of 286 patients, leakage of the cervical anastomosis occurred in 60 patients (21%) at a median time of 7 days after esophagectomy. Leakage was confined to the neck in 23 of 60 patients (38%), whereas 37 of 60 patients (62%) presented with intrathoracic spread. Leakages with intrathoracic manifestation were more frequently accompanied by a positive SIRS score compared to leakages confined to the neck (73% vs. 35%, respectively; P = 0.004). Drainage of the anastomotic leakage through the neck wound was effective in all of 23 patients (100%) with cervical manifestation. In patients with intrathoracic manifestation, mediastinal drainage through the neck was successful in 15 of 37 patients (41%), whereas 22 patients (59%) required an intervention through the thoracic cavity. Compared to patients with leakage confined to the neck, patients with intrathoracic manifestation showed prolonged intensive care unit (ICU) stay (median 6 vs. 2 days, respectively; P = 0.001), hospital stay (median 34 vs. 19 days, respectively; P < 0.001), and time to oral intake (32 vs. 23 days, respectively; P = 0.018). Intrathoracic manifestation of cervical anastomotic leakage occurs in more than half of patients with anastomotic leakage after transthoracic esophagectomy for cancer. A SIRS reaction should raise the suspicion of intrathoracic spread of leakage. Intrathoracic manifestation can be managed effectively by mediastinal drainage through the neck in 41% of patients, but a reintervention through the thoracic cavity is required in 59%. Intrathoracic manifestation of leakage results in prolonged ICU/hospital stay and delays time to oral intake compared with leakage confined to the neck. © 2016 International Society for Diseases of the Esophagus.
NASA Astrophysics Data System (ADS)
Conseil-Gudla, Hélène; Jellesen, Morten S.; Ambat, Rajan
2017-02-01
Corrosion reliability is a serious issue today for electronic devices, components, and printed circuit boards (PCBs) due to factors such as miniaturization, globalized manufacturing practices which can lead to process-related residues, and global usage effects such as bias voltage and unpredictable user environments. The investigation reported in this paper focuses on understanding the synergistic effect of such parameters, namely contamination, humidity, PCB surface finish, pitch distance, and potential bias on leakage current under different humidity levels, and electrochemical migration probability under condensing conditions. Leakage currents were measured on interdigitated comb test patterns with three different types of surface finish typically used in the electronics industry, namely gold, copper, and tin. Susceptibility to electrochemical migration was studied under droplet conditions. The level of base leakage current (BLC) was similar for the different surface finishes and NaCl contamination levels up to relative humidity (RH) of 65%. A significant increase in leakage current was found for comb patterns contaminated with NaCl above 70% to 75% RH, close to the deliquescent RH of NaCl. Droplet tests on Cu comb patterns with varying pitch size showed that the initial BLC before dendrite formation increased with increasing NaCl contamination level, whereas electrochemical migration and the frequency of dendrite formation increased with bias voltage. The effect of different surface finishes on leakage current under humid conditions was not very prominent.
The Random Telegraph Signal Behavior of Intermittently Stuck Bits in SDRAMs
NASA Astrophysics Data System (ADS)
Chugg, Andrew Michael; Burnell, Andrew J.; Duncan, Peter H.; Parker, Sarah; Ward, Jonathan J.
2009-12-01
This paper reports behavior analogous to the Random Telegraph Signal (RTS) seen in the leakage currents from radiation induced hot pixels in Charge Coupled Devices (CCDs), but in the context of stuck bits in Synchronous Dynamic Random Access Memories (SDRAMs). Our analysis suggests that pseudo-random sticking and unsticking of the SDRAM bits is due to thermally induced fluctuations in leakage current through displacement damage complexes in depletion regions that were created by high-energy neutron and proton interactions. It is shown that the number of observed stuck bits increases exponentially with temperature, due to the general increase in the leakage currents through the damage centers with temperature. Nevertheless, some stuck bits are seen to pseudo-randomly stick and unstick in the context of a continuously rising trend of temperature, thus demonstrating that their damage centers can exist in multiple widely spaced, discrete levels of leakage current, which is highly consistent with RTS. This implies that these intermittently stuck bits (ISBs) are a displacement damage phenomenon and are unrelated to microdose issues, which is confirmed by the observation that they also occur in unbiased irradiation. Finally, we note that observed variations in the periodicity of the sticking and unsticking behavior on several timescales is most readily explained by multiple leakage current pathways through displacement damage complexes spontaneously and independently opening and closing under the influence of thermal vibrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirch, J. D.; Chang, C.-C.; Boyle, C.
2015-04-13
By stepwise tapering, both the barrier heights and quantum-well depths in the active regions of 8.7–8.8 μm-emitting quantum-cascade-laser (QCL) structures, virtually complete carrier-leakage suppression is achieved. Such step-taper active-region-type QCLs possess, for 3 mm-long devices with high-reflectivity-coated back facets, threshold-current characteristic temperature coefficients, T{sub 0}, as high as 283 K and slope-efficiency characteristic temperature coefficients, T{sub 1}, as high as 561 K, over the 20–60 °C heatsink-temperature range. These high T{sub 0} and T{sub 1} values reflect at least a factor of four reduction in carrier-leakage current compared to conventional 8–9 μm-emitting QCLs. Room temperature, pulsed, threshold-current densities are 1.58 kA/cm{sup 2}; values comparable to those formore » 35-period conventional QCLs of similar injector-region doping level. Superlinear behavior of the light-current curves is shown to be the result of the onset of resonant extraction from the lower laser level at a drive level of ∼1.3× threshold. Maximum room-temperature slope efficiencies are 1.23 W/A; that is, slope efficiency per period values of 35 mW/A, which are 37%–40% higher than for same-geometry conventional 8–9 μm-emitting QCLs. Since the waveguide-loss coefficients are very similar, we estimate that the internal differential efficiency is at least 30% higher than in conventional QCLs. Such high internal differential efficiency values reflect the combined effect of nearly complete carrier-leakage suppression and high differential efficiency of the laser transition (∼90%), due to resonant extraction from the lower laser level.« less
NASA Astrophysics Data System (ADS)
Yoon, Seonno; Lee, Seungmin; Kim, Hyun-Seop; Cha, Ho-Young; Lee, Hi-Deok; Oh, Jungwoo
2018-01-01
Radio frequency (RF)-sputtered ZnO gate dielectrics for AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors (MOS-HEMTs) were investigated with varying O2/Ar ratios. The ZnO deposited with a low oxygen content of 4.5% showed a high dielectric constant and low interface trap density due to the compensation of oxygen vacancies during the sputtering process. The good capacitance-voltage characteristics of ZnO-on-AlGaN/GaN capacitors resulted from the high crystallinity of oxide at the interface, as investigated by x-ray diffraction and high-resolution transmission electron microscopy. The MOS-HEMTs demonstrated comparable output electrical characteristics with conventional Ni/Au HEMTs but a lower gate leakage current. At a gate voltage of -20 V, the typical gate leakage current for a MOS-HEMT with a gate length of 6 μm and width of 100 μm was found to be as low as 8.2 × 10-7 mA mm-1, which was three orders lower than that of the Ni/Au Schottky gate HEMT. The reduction of the gate leakage current improved the on/off current ratio by three orders of magnitude. These results indicate that RF-sputtered ZnO with a low O2/Ar ratio is a good gate dielectric for high-performance AlGaN/GaN MOS-HEMTs.
Kim, Seung Hyun; Joo, So Yeong; Jin, Hyun Soo; Kim, Woo-Byoung; Park, Tae Joo
2016-08-17
Ultrathin ZnS and ZnO films grown by atomic layer deposition (ALD) were employed as interfacial passivation layers (IPLs) for HfO2 films on InP substrates. The interfacial layer growth during the ALD of the HfO2 film was effectively suppressed by the IPLs, resulting in the decrease of electrical thickness, hysteresis, and interface state density. Compared with the ZnO IPL, the ZnS IPL was more effective in reducing the interface state density near the valence band edge. The leakage current density through the film was considerably lowered by the IPLs because the film crystallization was suppressed. Especially for the film with the ZnS IPL, the leakage current density in the low-voltage region was significantly lower than that observed for the film with the ZnO IPL, because the direct tunneling current was suppressed by the higher conduction band offset of ZnS with the InP substrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaidi, Z. H., E-mail: zaffar.zaidi@sheffield.ac.uk; Lee, K. B.; Qian, H.
2014-12-28
In this work, we have compared SiN{sub x} passivation, hydrogen peroxide, and sulfuric acid treatment on AlGaN/GaN HEMTs surface after full device fabrication on Si substrate. Both the chemical treatments resulted in the suppression of device pinch-off gate leakage current below 1 μA/mm, which is much lower than that for SiN{sub x} passivation. The greatest suppression over the range of devices is observed with the sulfuric acid treatment. The device on/off current ratio is improved (from 10{sup 4}–10{sup 5} to 10{sup 7}) and a reduction in the device sub-threshold (S.S.) slope (from ∼215 to 90 mV/decade) is achieved. The sulfuric acid ismore » believed to work by oxidizing the surface which has a strong passivating effect on the gate leakage current. The interface trap charge density (D{sub it}) is reduced (from 4.86 to 0.90 × 10{sup 12 }cm{sup −2} eV{sup −1}), calculated from the change in the device S.S. The gate surface leakage current mechanism is explained by combined Mott hopping conduction and Poole Frenkel models for both untreated and sulfuric acid treated devices. Combining the sulfuric acid treatment underneath the gate with the SiN{sub x} passivation after full device fabrication results in the reduction of D{sub it} and improves the surface related current collapse.« less
Module Hipot and ground continuity test results
NASA Technical Reports Server (NTRS)
Griffith, J. S.
1984-01-01
Hipot (high voltage potential) and module frame continuity tests of solar energy conversion modules intended for deployment into large arrays are discussed. The purpose of the tests is to reveal potentially hazardous voltage conditions in installed modules, and leakage currents that may result in loss of power or cause ground fault system problems, i.e., current leakage potential and leakage voltage distribution. The tests show a combined failure rate of 36% (69% when environmental testing is included). These failure rates are believed easily corrected by greater care in fabrication.
Gate length scaling optimization of FinFETs
NASA Astrophysics Data System (ADS)
Chen, Shoumian; Shang, Enming; Hu, Shaojian
2018-06-01
This paper introduces a device performance optimization approach for the FinFET through optimization of the gate length. As a result of reducing the gate length, the leakage current (Ioff) increases, and consequently, the stress along the channel enhances which leads to an increase in the drive current (Isat) of the PMOS. In order to sustain Ioff, work function is adjusted to offset the effect of the increased stress. Changing the gate length of the transistor yields different drive currents when the leakage current is fixed by adjusting the work function. For a given device, an optimal gate length is found to provide the highest drive current. As an example, for a standard performance device with Ioff = 1 nA/um, the best performance Isat = 856 uA/um is at L = 34 nm for 14 nm FinFET and Isat = 1130 uA/um at L = 21 nm for 7 nm FinFET. A 7 nm FinFET will exhibit performance boost of 32% comparing with 14 nm FinFET. However, applying the same method to a 5 nm FinFET, the performance boosting is out of expectance comparing to the 7 nm FinFET, which is due to the severe short-channel-effect and the exhausted channel stress in the FinFET.
Interface trap of p-type gate integrated AlGaN/GaN heterostructure field effect transistors
NASA Astrophysics Data System (ADS)
Kim, Kyu Sang
2017-09-01
In this work, the impact of trap states at the p-(Al)GaN/AlGaN interface has been investigated for the normally-off mode p-(Al)GaN/AlGaN/GaN heterostructure field-effect transistors (HFETs) by means of frequency dependent conductance. From the current-voltage (I-V) measurement, it was found that the p-AlGaN gate integrated device has higher drain current and lower gate leakage current compared to the p-GaN gate integrated device. We obtained the interface trap density and the characteristic time constant for the p-type gate integrated HFETs under the forward gate voltage of up to 6 V. As a result, the interface trap density (characteristic time constant) of the p-GaN gate device was lower (longer) than that of the p-AlGaN. Furthermore, it was analyzed that the trap state energy level of the p-GaN gate device was located at the shallow level relative to the p-AlGaN gate device, which accounts for different gate leakage current of each devices.
Bile leakage test in liver resection: A systematic review and meta-analysis
Wang, Hai-Qing; Yang, Jian; Yang, Jia-Yin; Yan, Lu-Nan
2013-01-01
AIM: To assess systematically the safety and efficacy of bile leakage test in liver resection. METHODS : Randomized controlled trials and controlled clinical trials involving the bile leakage test were included in a systematic literature search. Two authors independently assessed the studies for inclusion and extracted the data. A meta-analysis was conducted to estimate postoperative bile leakage, intraoperative positive bile leakage, and complications. We used either the fixed-effects or random-effects model. RESULTS: Eight studies involving a total of 1253 patients were included and they all involved the bile leakage test in liver resection. The bile leakage test group was associated with a significant reduction in bile leakage compared with the non-bile leakage test group (RR = 0.39, 95%CI: 0.23-0.67; I2 = 3%). The white test had superiority for detection of intraoperative bile leakage compared with the saline solution test (RR = 2.38, 95%CI: 1.24-4.56, P = 0.009). No significant intergroup differences were observed in total number of complications, ileus, liver failure, intraperitoneal hemorrhage, pulmonary disorder, abdominal infection, and wound infection. CONCLUSION: The bile leakage test reduced postoperative bile leakage and did not increase incidence of complications. Fat emulsion is the best choice of solution for the test. PMID:24363535
Bile leakage test in liver resection: a systematic review and meta-analysis.
Wang, Hai-Qing; Yang, Jian; Yang, Jia-Yin; Yan, Lu-Nan
2013-12-07
To assess systematically the safety and efficacy of bile leakage test in liver resection. Randomized controlled trials and controlled clinical trials involving the bile leakage test were included in a systematic literature search. Two authors independently assessed the studies for inclusion and extracted the data. A meta-analysis was conducted to estimate postoperative bile leakage, intraoperative positive bile leakage, and complications. We used either the fixed-effects or random-effects model. Eight studies involving a total of 1253 patients were included and they all involved the bile leakage test in liver resection. The bile leakage test group was associated with a significant reduction in bile leakage compared with the non-bile leakage test group (RR = 0.39, 95%CI: 0.23-0.67; I (2) = 3%). The white test had superiority for detection of intraoperative bile leakage compared with the saline solution test (RR = 2.38, 95%CI: 1.24-4.56, P = 0.009). No significant intergroup differences were observed in total number of complications, ileus, liver failure, intraperitoneal hemorrhage, pulmonary disorder, abdominal infection, and wound infection. The bile leakage test reduced postoperative bile leakage and did not increase incidence of complications. Fat emulsion is the best choice of solution for the test. © 2013 Baishideng Publishing Group Co., Limited. All rights reserved.
Recovery Characteristics of Anomalous Stress-Induced Leakage Current of 5.6 nm Oxide Films
NASA Astrophysics Data System (ADS)
Inatsuka, Takuya; Kumagai, Yuki; Kuroda, Rihito; Teramoto, Akinobu; Sugawa, Shigetoshi; Ohmi, Tadahiro
2012-04-01
Anomalous stress-induced leakage current (SILC), which has a much larger current density than average SILC, causes severe bit error in flash memories. To suppress anomalous SILC, detailed evaluations are strongly required. We evaluate the characteristics of anomalous SILC of 5.6 nm oxide films using a fabricated array test pattern, and recovery characteristics are observed. Some characteristics of typical anomalous cells in the time domain are measured, and the recovery characteristics of average and anomalous SILCs are examined. Some of the anomalous cells have random telegraph signals (RTSs) of gate leakage current, which are characterized as discrete and random switching phenomena. The dependence of RTSs on the applied electric field is investigated, and the recovery tendency of anomalous SILC with and without RTSs are also discussed.
Effect of Mechanical Stresses on Characteristics of Chip Tantalum Capacitors
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander A.
2007-01-01
The effect of compressive mechanical stresses on chip solid tantalum capacitors is investigated by monitoring characteristics of different part types under axial and hydrostatic stresses. Depending on part types, an exponential increase of leakage currents was observed when stresses exceeded 10 MPa to 40 MPa. For the first time, reversible variations of leakage currents (up to two orders of magnitude) with stress have been demonstrated. Mechanical stresses did not cause significant changes of AC characteristics of the capacitors, whereas breakdown voltages measured during the surge current testing decreased substantially indicating an increased probability of failures of stressed capacitors in low impedance applications. Variations of leakage currents are explained by a combination of two mechanisms: stress-induced scintillations and stress-induced generation of electron traps in the tantalum pentoxide dielectric.
Reduction of leakage current at the gate edge of SDB SOI NMOS transistor
NASA Astrophysics Data System (ADS)
Kang, Sung-Weon; Lyu, Jong-Son; Kang, Jin-Young; Kang, Sang-Won; Lee, Jin-Hyo
1995-06-01
Leakage current through the parasitic channel formed at the sidewall of the SOI active region has been investigated by measuring the subthreshold I-V characteristics. Partially depleted (PD, approximately 2500 Angstrom) and fully depleted (FD, approximately 800 Angstrom) SOI NMOS transistors of enhancement mode have been fabricated using the silicon direct bonding (SDB) technology. Isolation processes for the SOI devices were LOCOS, LOCOS with channel stop ion implantation or fully recessed trench (FRT). The electron concentration of the parasitic channel is calculated by the PISCES Ilb simulation. As a result, leakage current of the FD mode SOI device with FRT isolation at the front and back gate biases of 0 V was reduced to approximately pA and no hump was seen on the drain current curve.
NASA Astrophysics Data System (ADS)
Ahn, C. W.; Y Lee, S.; Lee, H. J.; Ullah, A.; Bae, J. S.; Jeong, E. D.; Choi, J. S.; Park, B. H.; Kim, I. W.
2009-11-01
We have fabricated K0.5Na0.5NbO3 (KNN) thin films on Pt substrates by a chemical solution deposition method and investigated the effect of K and Na excess (0-30 mol%) on ferroelectric and piezoelectric properties of KNN thin film. It was found that with increasing K and Na excess in a precursor solution from 0 to 30 mol%, the leakage current and ferroelectric properties were strongly affected. KNN thin film synthesized by using 20 mol% K and Na excess precursor solution exhibited a low leakage current density and well saturated ferroelectric P-E hysteresis loops. Moreover, the optimized KNN thin film had good fatigue resistance and a piezoelectric constant of 40 pm V-1, which is comparable to that of polycrystalline PZT thin films.
A comparison of lightning and nuclear electromagnetic pulse response of tactical shelters
NASA Technical Reports Server (NTRS)
Perala, R. A.; Rudolph, T. H.; Mckenna, P. M.
1984-01-01
The internal response (electromagnetic fields and cable responses) of tactical shelters is addressed. Tactical shelters are usually well-shielded systems. Apart from penetrations by signal and power lines, the main leakage paths to the interior are via seams and the environment control unit (ECU) honeycomb filter. The time domain in three-dimensional finite-difference technique is employed to determine the external and internal coupling to a shelter excited by nuclear electromagnetic pulses (NEMP) and attached lightning. The responses of interest are the internal electromagnetic fields and the voltage, current, power, and energy coupled to internal cables. Leakage through the seams and ECU filter is accomplished by their transfer impedances which relate internal electric fields to external current densities. Transfer impedances which were experimentally measured are used in the analysis. The internal numerical results are favorably compared to actual shelter test data under simulated NEMP illumination.
Zirconium doped TiO{sub 2} thin films: A promising dielectric layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Arvind; Mondal, Sandip, E-mail: sandipmondal@physics.iisc.ernet.in; Rao, K. S. R. Koteswara
2016-05-06
In the present work, we have fabricated the zirconium doped TiO{sub 2} thin (ZTO) films from a facile spin – coating method. The addition of Zirconium in TiO{sub 2} offers conduction band offset to Si and consequently decreased the leakage current density by approximately two orders as compared to pure TiO{sub 2} thin (TO) films. The ZTO thin film shows a high dielectric constant 27 with a very low leakage current density ∼10{sup −8} A/cm{sup 2}. The oxide capacitate, flat band voltage and change in flat band voltage are 172 pF, -1.19 V and 54 mV. The AFM analysis confirmed the compactmore » and pore free flat surface. The RMS surface roughness is found to be 1.5 Å. The ellipsometry analysis also verified the fact with a high refractive index 2.21.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, A. L.; Li, G., E-mail: liguang1971@ahu.edu.cn, E-mail: xschen@mail.sitp.ac.cn; He, G.
2013-11-07
We have performed the study on the dependence of laser beam induced current (LBIC) spectra on the temperature for the vacancy-doped molecular beam epitaxy grown Hg{sub 1−x}Cd{sub x}Te (x = 0.31) photodiodes by both experiment and numerical simulations. It is found that the measured LBIC signal has different distributions for different temperature extents. The LBIC profile tends to be more asymmetric with increasing temperature below 170 K. But the LBIC profile becomes more symmetric with increasing temperature above 170 K. Based on a localized leakage model, it is indicated that the localized junction leakage can lead to asymmetric LBIC signal, in good agreement withmore » the experimental data. The reason is that the trap-assisted tunneling current is the dominant leakage current at the cryogenic temperature below 170 K while the diffusion current component becomes dominant above the temperature of 170 K. The results are helpful for us to better clarify the mechanism of the dependence of LBIC spectra on temperature for the applications of HgCdTe infrared photodiodes.« less
Chen, Ying-Chieh; Tsai, Che-Yao; Lee, Chi-Young; Lin, I-Nan
2014-05-01
Thin ultrananocrystalline diamond (UNCD) films were evaluated for use as hermetic and bioinert encapsulating coatings for implantable microchips, where the reaction to UNCD in vitro and in vivo tissue was investigated. Leakage current tests showed that depositing UNCD coatings, which were conformally grown in (1% H2) Ar/CH4 plasma, on microchips rendered the surface electrochemically inactive, i.e. with a very low leakage current density (2.8×10(-5)Acm(-2) at -1V and 1.9×10(-3)Acm(-2) at ±5V) ex vivo. The impact of UNCD with different surface modifications on the growth and activation of macrophages was compared to that of standard-grade polystyrene. Macrophages attached to oxygen-terminated UNCD films down-regulated their production of cytokines and chemokines. Moreover, with UNCD-coated microchips, which were implanted subcutaneously into BALB/c mice for up to 3months, the tissue reaction and capsule formation was significantly decreased compared to the medical-grade titanium alloy Ti-6Al-4V and bare silicon. Additionally, the leakage current density, elicited by electrochemical activity, on silicon chips encapsulated in oxygen-terminated UNCD coatings remained at the low level of 2.5×10(-3)Acm(-2) at 5V for up to 3months in vivo, which is half the level of those encapsulated in hydrogen-terminated UNCD coatings. Thus, controlling the surface properties of UNCDs makes it possible to manipulate the in vivo functionality and stability of implantable devices so as to reduce the host inflammatory response following implantation. These observations suggest that oxygen-terminated UNCDs are promising candidates for use as encapsulating coatings for implantable microelectronic devices. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Preparation and properties of sol-gel derived PZT thin films for decoupling capacitor applications
NASA Astrophysics Data System (ADS)
Schwartz, R. W.; Dimos, D.; Lockwood, S. J.; Torres, V. M.
The use of ceramic thin films as decoupling capacitors offers the possibility of capacitor integration within the integrated circuit (IC) package and, potentially, directly onto the IC itself. Since these configurations minimize series inductance, higher operational speeds are possible. In the present study, the authors have investigated the dielectric and leakage characteristics of sol-gel PZT films. For compositions near the morphotropic phase boundary, dielectric constants of 1000, and loss tangents of about 0.02, are observed. The current-voltage behavior of the capacitors is characterized by a non-linear response, and significant asymmetry in both the leakage and breakdown characteristics as a function of bias sign is observed. Breakdown fields for PZT 53/47 thin films are typically approximately 800 kV/cm at 25 C. The authors have also studied the effects of La and Nb dopant additions and alternate firing strategies on film leakage characteristics. Donor doping at 2 - 5 mol % lowers leakage currents by a factor of 10(exp 3). For films prepared by a multilayering approach, firing each layer to crystallization results in leakage currents that are a factor of 10(exp 2) lower than films prepared by the standard process.
Bacterial leakage through temporary fillings in core buildup composite material - an in vitro study.
Rechenberg, Dan-Krister; Schriber, Martina; Attin, Thomas
2012-08-01
To evaluate the ability of the provisional filling material Cavit-W alone or in combination with different restorative materials to prevent bacterial leakage through simulated access cavities in a resin buildup material. LuxaCore resin cylinders were subdivided into 4 experimental groups (n = 30), plus a positive (n = 5) and a negative (n = 30) control group. One bore hole was drilled through each cylinder, except those in the negative control group (G1). The holes were filled with Cavit-W (G2), Cavit-W and Ketac-Molar (glassionomer cement, G3), Cavit-W and LuxaCore bonded with LuxaBond (G4), Cavit-W and LuxaCore (G5), or left empty (G6). Specimens were mounted in a two-chamber leakage setup. The upper chamber was inoculated with E. faecalis. An enterococci-selective broth was used in the lower chamber. Leakage was assessed for 60 days and compared using Fisher's exact test (α < 0.05) corrected for multiple testing. Bacteria penetrated specimens in the positive control group within 24 h. All specimens in the negative control group resisted bacterial leakage for 60 days. Twenty-seven specimens in G2, 26 in G3, and 16 specimens in G5 showed bacterial leakage by the end of the experiment. G4 prevented bacterial penetration completely. The statistical comparison revealed significant differences between G4 and all other experimental groups. Under the current conditions, Cavit-W alone or combined with a glass-ionomer cement did not prevent bacterial leakage through a resin buildup material for two months. In contrast, covering Cavit-W with a bonded resin material resulted in a bacteria-tight seal for two months.
A precision analogue integrator system for heavy current measurement in MFDC resistance spot welding
NASA Astrophysics Data System (ADS)
Xia, Yu-Jun; Zhang, Zhong-Dian; Xia, Zhen-Xin; Zhu, Shi-Liang; Zhang, Rui
2016-02-01
In order to control and monitor the quality of middle frequency direct current (MFDC) resistance spot welding (RSW), precision measurement of the welding current up to 100 kA is required, for which Rogowski coils are the only viable current transducers at present. Thus, a highly accurate analogue integrator is the key to restoring the converted signals collected from the Rogowski coils. Previous studies emphasised that the integration drift is a major factor that influences the performance of analogue integrators, but capacitive leakage error also has a significant impact on the result, especially in long-time pulse integration. In this article, new methods of measuring and compensating capacitive leakage error are proposed to fabricate a precision analogue integrator system for MFDC RSW. A voltage holding test is carried out to measure the integration error caused by capacitive leakage, and an original integrator with a feedback adder is designed to compensate capacitive leakage error in real time. The experimental results and statistical analysis show that the new analogue integrator system could constrain both drift and capacitive leakage error, of which the effect is robust to different voltage levels of output signals. The total integration error is limited within ±0.09 mV s-1 0.005% s-1 or full scale at a 95% confidence level, which makes it possible to achieve the precision measurement of the welding current of MFDC RSW with Rogowski coils of 0.1% accuracy class.
Lu, Yu Yu; Wang, Hsin Yi; Lin, Ying; Lin, Wan Yu
2012-09-01
Radionuclide Cisternography (RNC) is of potential value in pointing out the sites of cerebrospinal fluid (CSF) leakage in patients with spontaneous intracranial hypotension (SIH). In the current report, we present two patients who underwent RNC for suspected CSF leakage. Both patients underwent magnetic resonance imaging (MRI) and RNC for evaluation. We describe a simple method to increase the detection ability of RNC for CSF leakage in patients with SIH.
NASA Astrophysics Data System (ADS)
Pearson, B.; Franzese, A. M.
2017-12-01
The Agulhas Current, the strongest western boundary current in the southern hemisphere, is uniquely characterized by its strong retroflection. The current carries water southward from the Indian Ocean toward the cape of South Africa, before turning back on itself. At this point of retroflection, some of the current's flow escapes into the southern Atlantic Ocean. This transfer of water from the Indian Ocean to Atlantic Ocean makes up the Agulhas Leakage. The Leakage occurs in a series of eddies and rings located in the Cape Basin south of the African continent. Scientific literature demonstrates that relatively buoyant leakage water has been a determining factor varying strength of the Atlantic Meridional Ocean Current (AMOC), during glacial-interglacial cycles. It has been demonstrated that radiogenic isotope, major, and trace element concentrations serve as a proxy for terrigenous sediment provenance in the Agulhas region. Current understanding is that terrigenous sediment provenance is older during warmer periods of deposition. This corresponds to more input from southeastern African end members, and thus a stronger Agulhas Current, during warming periods in the paleoclimate record. Conversely, younger terrigenous sediment deposited during colder periods, such as the Last Glacial Maximum, suggests a weaker Agulhas Current, and less Agulhas Leakage. In 2016, on the International Ocean Discovery Program Expedition 361, sediment cores were drilled at 6 sites in the Greater Agulhas region. A major goal of the expedition was to expand knowledge of the relation between changes in the Agulhas System and changes in paleoclimate, southern African climate, and AMOC. We analyzed sediment from Expedition 361 Site U1479 (35°03.53'S; 17°24.06'E; 2615 mbsl) located where the Agulhas Leakage occurs. We measured Argon, strontium isotope ratios, ɛNd, trace and major element concentrations on the <2 micron clay fraction. Preliminary results foretell promising findings. For instance, for the Early Pleistocene ( 1.3 - 1.5 Ma), K-Ar model ages correlate with shipboard measurements of natural gamma radiation, which show approximate 41 kyr periodicity.
Evaluation of the White Test for the Intraoperative Detection of Bile Leakage
Leelawat, Kawin; Chaiyabutr, Kittipong; Subwongcharoen, Somboon; Treepongkaruna, Sa-ad
2012-01-01
We assess whether the White test is better than the conventional bile leakage test for the intraoperative detection of bile leakage in hepatectomized patients. This study included 30 patients who received elective liver resection. Both the conventional bile leakage test (injecting an isotonic sodium chloride solution through the cystic duct) and the White test (injecting a fat emulsion solution through the cystic duct) were carried out in the same patients. The detection of bile leakage was compared between the conventional method and the White test. A bile leak was demonstrated in 8 patients (26.7%) by the conventional method and in 19 patients (63.3%) by the White test. In addition, the White test detected a significantly higher number of bile leakage sites compared with the conventional method (Wilcoxon signed-rank test; P < 0.001). The White test is better than the conventional test for the intraoperative detection of bile leakage. Based on our study, we recommend that surgeons investigating bile leakage sites during liver resections should use the White test instead of the conventional bile leakage test. PMID:22547901
Evaluation of the white test for the intraoperative detection of bile leakage.
Leelawat, Kawin; Chaiyabutr, Kittipong; Subwongcharoen, Somboon; Treepongkaruna, Sa-Ad
2012-01-01
We assess whether the White test is better than the conventional bile leakage test for the intraoperative detection of bile leakage in hepatectomized patients. This study included 30 patients who received elective liver resection. Both the conventional bile leakage test (injecting an isotonic sodium chloride solution through the cystic duct) and the White test (injecting a fat emulsion solution through the cystic duct) were carried out in the same patients. The detection of bile leakage was compared between the conventional method and the White test. A bile leak was demonstrated in 8 patients (26.7%) by the conventional method and in 19 patients (63.3%) by the White test. In addition, the White test detected a significantly higher number of bile leakage sites compared with the conventional method (Wilcoxon signed-rank test; P < 0.001). The White test is better than the conventional test for the intraoperative detection of bile leakage. Based on our study, we recommend that surgeons investigating bile leakage sites during liver resections should use the White test instead of the conventional bile leakage test.
Temperature-Dependent Short-Circuit Capability of Silicon Carbide Power MOSFETs
Wang, Zhiqiang; Shi, Xiaojie; Tolbert, Leon M.; ...
2016-02-01
Our paper presents a comprehensive short-circuit ruggedness evaluation and numerical investigation of up-to-date commercial silicon carbide (SiC) MOSFETs. The short-circuit capability of three types of commercial 1200-V SiC MOSFETs is tested under various conditions, with case temperatures from 25 to 200 degrees C and dc bus voltages from 400 to 750 V. It is found that the commercial SiC MOSFETs can withstand short-circuit current for only several microseconds with a dc bus voltage of 750 V and case temperature of 200 degrees C. Moreover, the experimental short-circuit behaviors are compared, and analyzed through numerical thermal dynamic simulation. Specifically, an electrothermalmore » model is built to estimate the device internal temperature distribution, considering the temperature-dependent thermal properties of SiC material. Based on the temperature information, a leakage current model is derived to calculate the main leakage current components (i.e., thermal, diffusion, and avalanche generation currents). Finally, numerical results show that the short-circuit failure mechanisms of SiC MOSFETs can be thermal generation current induced thermal runaway or high-temperature-related gate oxide damage.« less
NASA Astrophysics Data System (ADS)
Chen, Te-Chih; Kuo, Yue; Chang, Ting-Chang; Chen, Min-Chen; Chen, Hua-Mao
2017-10-01
Device characteristics changes in an a-IGZO thin film transistor under light illumination and at raised temperature have been investigated. Light exposure causes a large leakage current, which is more obvious with an increase in the illumination energy, power and the temperature. The increase in the leakage current is due to the trap assisted photon excitation process that generates electron-hole pairs and the mechanism is enhanced with the additional thermal energy. The leakage current comes from the source side because holes generated in the process drift to the source side and therefore lower the barrier height. The above mechanism has been further verified with experiments of drain bias induced shifts in the threshold voltage and the subthreshold slope.
The effect of guard ring on leakage current and spectroscopic performance of TlBr planar detectors
NASA Astrophysics Data System (ADS)
Kargar, Alireza; Kim, Hadong; Cirignano, Leonard; Shah, Kanai
2014-09-01
Four thallium bromide planar detectors were fabricated from materials grown at RMD Inc. The TlBr samples were prepared to investigate the effect of guard ring on device gamma-ray spectroscopy performance, and to investigate the leakage current through surface and bulk. The devices' active area in planar configuration were 4.4 × 4.4 × 1.0 mm3. In this report, the detector fabrication process is described and the resulting energy spectra are discussed. It is shown that the guard ring improves device spectroscopic performance by shielding the sensing electrode from the surface leakage current, and by making the electric filed more uniform in the active region of the device.
NASA Astrophysics Data System (ADS)
Chae, Hee Jae; Seok, Ki Hwan; Lee, Sol Kyu; Joo, Seung Ki
2018-04-01
A novel inverted staggered metal-induced laterally crystallized (MILC) polycrystalline-silicon (poly-Si) thin-film transistors (TFTs) with a combination of a planarized gate and an overlap/off-set at the source-gate/drain-gate structure were fabricated and characterized. While the MILC process is advantageous for fabricating inverted staggered poly-Si TFTs, MILC TFTs reveal higher leakage current than TFTs crystallized by other processes due to their high trap density of Ni contamination. Due to this drawback, the planarized gate and overlap/off-set structure were applied to inverted staggered MILC TFTs. The proposed device shows drastic suppression of leakage current and pinning phenomenon by reducing the lateral electric field and the space-charge limited current from the gate to the drain.
Systematic review of methods to predict and detect anastomotic leakage in colorectal surgery.
Hirst, N A; Tiernan, J P; Millner, P A; Jayne, D G
2014-02-01
Anastomotic leakage is a serious complication of gastrointestinal surgery resulting in increased morbidity and mortality, poor function and predisposing to cancer recurrence. Earlier diagnosis and intervention can minimize systemic complications but is hindered by current diagnostic methods that are non-specific and often uninformative. The purpose of this paper is to review current developments in the field and to identify strategies for early detection and treatment of anastomotic leakage. A systematic literature search was performed using the MEDLINE, Embase, PubMed and Cochrane Library databases. Search terms included 'anastomosis' and 'leak' and 'diagnosis' or 'detection' and 'gastrointestinal' or 'colorectal'. Papers concentrating on the diagnosis of gastrointestinal anastomotic leak were identified and further searches were performed by cross-referencing. Computerized tomography CT scanning and water-soluble contrast studies are the current preferred techniques for diagnosing anastomotic leakage but suffer from variable sensitivity and specificity, have logistical constraints and may delay timely intervention. Intra-operative endoscopy and imaging may offer certain advantages, but the ability to predict anastomotic leakage is unproven. Newer techniques involve measurement of biomarkers for anastomotic leakage and have the potential advantage of providing cheap real-time monitoring for postoperative complications. Current diagnostic tests often fail to diagnose anastomotic leak at an early stage that enables timely intervention and minimizes serious morbidity and mortality. Emerging technologies, based on detection of local biomarkers, have achieved proof of concept status but require further evaluation to determine whether they translate into improved patient outcomes. Further research is needed to address this important, yet relatively unrecognized, area of unmet clinical need. Colorectal Disease © 2013 The Association of Coloproctology of Great Britain and Ireland.
NASA Technical Reports Server (NTRS)
Fragomeni, James M.
1998-01-01
As a consequence of preparations concerning the International Space Welding Experiment (ISWE), studies were performed to better understand the effect of molten metal contact and electron beam impingement with various fabrics for space suit applications. The question arose as to what would occur if the electron beam from the Ukrainian Universal Hand Tool (UHT) designed for welding in space were to impinge upon a piece of Nextel AF-62 ceramic cloth designed to withstand temperatures up to 1427 C. The expectation was that the electron beam would lay down a static charge pattern with no damage to the ceramic fabric. The electron beam is capable of spraying the fabric with enough negative charge to repel further electrons from the fabric before significant heating occurs. The static charge pattern would deflect any further charge accumulation except for a small initial amount of leakage to the grounded surface of the welder. However, when studies were made of the effect of the electron beam on the insulating ceramic fabric it was surprisingly found that the electron beam did indeed burn through the ceramic fabric. It was also found that the shorter electron beam standoff distances had longer burnthrough times than did some greater electron beam standoff distances. A possible explanation for the longer burnthrough times for the small electron beam standoff distance would be outgassing of the fabric which caused the electron beam hand-tool to cycle on and off to provide some protection for the cathodes. The electron beam hand tool was observed to cycle off at the short standoff distance of two inches likely due to vapors being outgassed. During the electron beam welding process there is an electron leakage, or current leakage, flow from the fabric. A static charge pattern is initially laid down by the electron beam current flow. The static charge makes up the current leakage flow which initially slightly heats up the fabric. The initially laid down surface charge leaks a small amount of current. The rate at which the current charge leaks from the fabric controls how fast the fabric heats up. As the ceramic fabric is heated it begins to outgass primarily from contamination/impurities atoms or molecules on and below the fabric surface. The contaminant gases ionize to create extra charge carriers and multiply a current of electrons. The emitted gas which ionized in the electron leakage flow promotes further leakage. Thus, the small leakage of charge from the fabric surface is enhanced by outgassing. When the electron beam current makes up the lost current, the incoming electrons heat the fabric and further enhance the outgassing. The additional leakage promotes additional heating up of the ceramic fabric. The electrons bound to the ceramic fabric surface leak off more and more as the surface gets hotter promoting even greater leakage. The additional electrons that result also gain energy in the field and produce further electrons. Eventually the process becomes unstable and accelerates to the point where a hole is burned through the fabric.
Yanagi, Itaru; Akahori, Rena; Aoki, Mayu; Harada, Kunio; Takeda, Ken-Ichi
2016-08-16
Integration of solid-state nanopores and multichannel detection of signals from each nanopore are effective measures for realizing high-throughput nanopore sensors. In the present study, we demonstrated fabrication of Si3N4 membrane arrays and the simultaneous measurement of ionic currents through two nanopores formed in two adjacent membranes. Membranes with thicknesses as low as 6.4 nm and small nanopores with diameters of less than 2 nm could be fabricated using the poly-Si sacrificial-layer process and multilevel pulse-voltage injection. Using the fabricated nanopore membranes, we successfully achieved simultaneous detection of clear ionic-current blockades when single-stranded short homopolymers (poly(dA)60) passed through two nanopores. In addition, we investigated the signal crosstalk and leakage current among separated chambers. When two nanopores were isolated on the front surface of the membrane, there was no signal crosstalk or leakage current between the chambers. However, when two nanopores were isolated on the backside of the Si substrate, signal crosstalk and leakage current were observed owing to high-capacitance coupling between the chambers and electrolysis of water on the surface of the Si substrate. The signal crosstalk and leakage current could be suppressed by oxidizing the exposed Si surface in the membrane chip. Finally, the observed ionic-current blockade when poly(dA)60 passed through the nanopore in the oxidized chip was approximately half of that observed in the non-oxidized chip.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillinger, M.; Schneider, M.; Bittner, A.
2015-02-14
Aluminium nitride (AlN) is a promising material for challenging sensor applications such as process monitoring in harsh environments (e.g., turbine exhaust), due to its piezoelectric properties, its high temperature stability and good thermal match to silicon. Basically, the operational temperature of piezoelectric materials is limited by the increase of the leakage current as well as by enhanced diffusion effects in the material at elevated temperatures. This work focuses on the characterization of aluminum nitride thin films after post deposition annealings up to temperatures of 1000 °C in harsh environments. For this purpose, thin film samples were temperature loaded for 2 hmore » in pure nitrogen and oxygen gas atmospheres and characterized with respect to the film stress and the leakage current behaviour. The X-ray diffraction results show that AlN thin films are chemically stable in oxygen atmospheres for 2 h at annealing temperatures of up to 900 °C. At 1000 °C, a 100 nm thick AlN layer oxidizes completely. For nitrogen, the layer is stable up to 1000 °C. The activation energy of the samples was determined from leakage current measurements at different sample temperatures, in the range between 25 and 300 °C. Up to an annealing temperature of 700 °C, the leakage current in the thin film is dominated by Poole-Frenkel behavior, while at higher annealing temperatures, a mixture of different leakage current mechanisms is observed.« less
Oosterhof, Janine J H; van der Mei, Henny C; Busscher, Henk J; Free, Rolien H; Kaper, Hans J; van Weissenbruch, Ranny; Albers, Frans W J
2005-04-01
Although leakage through a tracheoesophageal shunt prosthesis is the main cause of prosthesis failure in a laryngectomy patient, this has never been the subject of in vitro evaluation. The aim of this study was to compare three commercially available voice prostheses by comparison of their in vitro leakage patterns, in absence or presence of a biofilm. To compare in vitro leakage patterns, a model comprised of an artificial throat equipped with a single prosthesis coupled to a water reservoir was developed. By varying the height of the water reservoir, different pressures on the voice prosthesis can be obtained. Both in absence and presence of a biofilm, the Blom Singer voice prosthesis demonstrated the lowest leakage, followed by Groningen Low Resistance. The Provox2 showed significantly the most leakage, however, in presence of a biofilm the leakage of the Provox2 significantly decreased. Regular airflow during biofilm formation significantly increased leakage through the Provox2. Out of 746 clinical replacements, Provox2 showed 76% and Groningen Low Resistance 57% replacements due to leakage. The model used in this study showed significant differences in leakage of the three types of voice prostheses used. Leakage occurred more readily through Provox2 than through Groningen Low Resistance and Blom Singer prostheses, which is in line with clinical observations and enforces the model. (c) 2005 Wiley Periodicals, Inc.
[Detection of marginal leakage of Class V restorations in vitro by micro-CT].
Gu, Lin-juan; Zhao, Xin-yi; Li, Shi-bao
2012-09-01
To evaluate the reliability and superiority of micro-CT in marginal leakage assessment of Class V restorations. Class V preparations with gingival margins in dentin and occlusal in enamel were made in sixteen extracted non-carious human molars and restored with dental bonding agents and composite resin. All teeth were then immersed in 50% ammonia-silver nitrate solution for 12 hours, followed by developing solution for 8 hours. Each restoration was scanned by a micro-CT and silver leakage was measured and three-dimensional image of the silver leakage alone cavity wall were reconstructed. Afterward, all restorations were sectioned and examined for leakage depth using a microscope. The silver leakage depth of each restoration obtained by micro-CT and microscope were compared for equivalency. The silver leakage depths in gingival wall obtained with micro-CT (0.78 mm) and microscope (0.74 mm) showed no significant difference (P > 0.05), while the judgment of leakage depths in occlusal wall in micro-CT image (0.40 mm) was affected by adjacent enamel structure, giving less leakage depths compared to microscope (0.72 mm)(P < 0.01). The three-dimensional shapes of the microleakages displayed clearly by micro-CT alone wall of Class V restorations were multiform and some leakages showed channels on their way to spreading. Micro-CT can detect precisely the silver leakage in the dentin wall of a restoration and display its three-dimensional shape fully. Enamel structure affects the detection of the silver leakage next to it.
Defect-Enabled Electrical Current Leakage in Ultraviolet Light-Emitting Diodes
Moseley, Michael William; Allerman, Andrew A.; Crawford, Mary H.; ...
2015-04-13
The AlGaN materials system offers a tunable, ultra-wide bandgap that is exceptionally useful for high-power electronics and deep ultraviolet optoelectronics. Moseley et al. (pp. 723–726) investigate a structural defect known as an open-core threading dislocation or ''nanopipe'' that is particularly detrimental to devices that employ these materials. Furthermore, an AlGaN thin film was synthesized using metal-organic chemical-vapor deposition. Electrical current leakage is detected at a discrete point using a conductive atomic-force microscope (CAFM). However, no physical feature or abnormality at this location was visible by an optical microscope. The AlGaN thin film was then etched in hot phosphoric acid, andmore » the same location that was previously analyzed was revisited with the CAFM. The point that previously exhibited electrical current leakage had been decorated with a 1.1 μm wide hexagonal pit, which identified the site of electrical current leakage as a nanopipe and allows these defects to be easily observed by optical microscopy. Moreover, with this nanopipe identification and quantification strategy, the authors were able to correlate decreasing ultraviolet light-emitting diode optical output power with increasing nanopipe density.« less
NASA Astrophysics Data System (ADS)
Tevi, Tete; Yaghoubi, Houman; Wang, Jing; Takshi, Arash
2013-11-01
Supercapacitors are electrochemical energy storage devices with high power density. However, application of supercapacitors is limited mainly due to their high leakage current. In this work, application of an ultra-thin layer of electrodeposited poly (p-phenylene oxide) (PPO) has been investigated as a blocking layer to reduce the leakage current. The polymer was first deposited on a glassy carbon electrode. The morphology of the film was studied by atomic force microscopy (AFM), and the film thickness was estimated to be ˜1.5 nm by using the electrochemical impedance spectroscopy (EIS) technique. The same deposition method was applied to coat the surface of the activated carbon electrodes of a supercapacitor with PPO. The specific capacitance, the leakage current, and the series resistance were measured in two devices with and without the blocking layer. The results demonstrate that the application of the PPO layer reduced the leakage current by ˜78%. However, the specific capacitance was decreased by ˜56%, when the blocking layer was applied. Due to the lower rate of self-discharge, the suggested approach can be applied to fabricate devices with longer charge storage time.
Pan, Yu-Ning; Tang, Yi-Fan; Zhang, Jie; Wang, Guo-Yao; Huang, Qiu-Li
2017-01-01
The present study aims to investigate and compare the diagnostic and prognostic value of cavernosography with 320-row dynamic volume computed tomography (DVCT) versus conventional cavernosography in men with erectile dysfunction (ED) caused by venous leakage. A total of 174 patients diagnosed with ED were enrolled and received cavernosography with 320-row DVCT (DVCT group) and conventional cavernosography scans (control group) respectively. The diagnosis, complications, and prognosis of patients were evaluated. The DVCT group provided high-resolution images with less processing and testing time, as well as lowered radiological agent and contrast agent compared with the control group. In the DVCT group, 89 patients who were diagnosed with venous ED had six various venous leakage, namely superficial venous leakage, profundus venous leakage, the mixed type, cavernosal venous leakage, crural venous leakage, and also venous leakage between the penis and urethra cavernosum (9, 21, 32, 6, 18, and 3 cases respectively). Similarly, 74 patients out of the 81 who suffered from venous ED were classified to have superficial venous leakage (11), profundus venous leakage (14), the mixed type venous leakage (26), and middle venous leakage (23). Six out of 25 patients in the DVCT group, had improvements in ED while the remaining 19 achieved full erectile function recovery with no penile fibrosis and erectile pain. Cavernosography with 320-row DVCT is a reliable system that can be used to diagnose ED caused by venous leakage. This is especially useful in accurately determining the type of venous and allows for a better prognosis and direction of treatment. PMID:28424371
Microdose Induced Drain Leakage Effects in Power Trench MOSFETs: Experiment and Modeling
NASA Astrophysics Data System (ADS)
Zebrev, Gennady I.; Vatuev, Alexander S.; Useinov, Rustem G.; Emeliyanov, Vladimir V.; Anashin, Vasily S.; Gorbunov, Maxim S.; Turin, Valentin O.; Yesenkov, Kirill A.
2014-08-01
We study experimentally and theoretically the micro-dose induced drain-source leakage current in the trench power MOSFETs under irradiation with high-LET heavy ions. We found experimentally that cumulative increase of leakage current occurs by means of stochastic spikes corresponding to a strike of single heavy ion into the MOSFET gate oxide. We simulate this effect with the proposed analytic model allowing to describe (including Monte Carlo methods) both the deterministic (cumulative dose) and stochastic (single event) aspects of the problem. Based on this model the survival probability assessment in space heavy ion environment with high LETs was proposed.
A compact model of the reverse gate-leakage current in GaN-based HEMTs
NASA Astrophysics Data System (ADS)
Ma, Xiaoyu; Huang, Junkai; Fang, Jielin; Deng, Wanling
2016-12-01
The gate-leakage behavior in GaN-based high electron mobility transistors (HEMTs) is studied as a function of applied bias and temperature. A model to calculate this current is given, which shows that trap-assisted tunneling, trap-assisted Frenkel-Poole (FP) emission, and direct Fowler-Nordheim (FN) tunneling have their main contributions at different electric field regions. In addition, the proposed model clearly illustrates the effect of traps and their assistance to the gate leakage. We have demonstrated the validity of the model by comparisons between model simulation results and measured experimental data of HEMTs, and a good agreement is obtained.
Advanced Wet Tantalum Capacitors: Design, Specifications and Performance
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander
2016-01-01
Insertion of new types of commercial, high volumetric efficiency wet tantalum capacitors in space systems requires reassessment of the existing quality assurance approaches that have been developed for capacitors manufactured to MIL-PRF-39006 requirements. The specifics of wet electrolytic capacitors is that leakage currents flowing through electrolyte can cause gas generation resulting in building up of internal gas pressure and rupture of the case. The risk associated with excessive leakage currents and increased pressure is greater for high value advanced wet tantalum capacitors, but it has not been properly evaluated yet. This presentation gives a review of specifics of the design, performance, and potential reliability risks associated with advanced wet tantalum capacitors. Problems related to setting adequate requirements for DPA, leakage currents, hermeticity, stability at low and high temperatures, ripple currents for parts operating in vacuum, and random vibration testing are discussed. Recommendations for screening and qualification to reduce risks of failures have been suggested.
Advanced Wet Tantalum Capacitors: Design, Specifications and Performance
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander
2017-01-01
Insertion of new types of commercial, high volumetric efficiency wet tantalum capacitors in space systems requires reassessment of the existing quality assurance approaches that have been developed for capacitors manufactured to MIL-PRF-39006 requirements. The specifics of wet electrolytic capacitors is that leakage currents flowing through electrolyte can cause gas generation resulting in building up of internal gas pressure and rupture of the case. The risk associated with excessive leakage currents and increased pressure is greater for high value advanced wet tantalum capacitors, but it has not been properly evaluated yet. This presentation gives a review of specifics of the design, performance, and potential reliability risks associated with advanced wet tantalum capacitors. Problems related to setting adequate requirements for DPA, leakage currents, hermeticity, stability at low and high temperatures, ripple currents for parts operating in vacuum, and random vibration testing are discussed. Recommendations for screening and qualification to reduce risks of failures have been suggested.
Detection and modeling of leakage current in AlGaN-based deep ultraviolet light-emitting diodes
Moseley, Michael William; Allerman, Andrew A.; Crawford, Mary H.; ...
2015-03-01
Current-voltage (IV) characteristics of two AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) with differing densities of open-core threading dislocations (nanopipes) are analyzed. A three-diode circuit is simulated to emulate the IV characteristics of the DUV-LEDs, but is only able to accurately model the lower leakage current, lower nanopipe density DUV-LED. It was found that current leakage through the nanopipes in these structures is rectifying, despite nanopipes being previously established as inherently n-type. Using defect-sensitive etching, the nanopipes are revealed to terminate within the p-type GaN capping layer of the DUV-LEDs. The circuit model is modified to account for another p-nmore » junction between the n-type nanopipes and the p-type GaN, and an excellent fit to the IV characteristics of the leaky DUV-LED is achieved.« less
Leakage Currents in Low-Voltage PME and BME Ceramic Capacitors
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander
2015-01-01
Introduction of BME capacitors to high-reliability electronics as a replacement for PME capacitors requires better understanding of changes in performance and reliability of MLCCs to set justified screening and qualification requirements. In this work, absorption and leakage currents in various lots of commercial and military grade X7R MLCCs rated to 100V and less have been measured to reveal difference in behavior of PME and BME capacitors in a wide range of voltages and temperatures. Degradation of leakage currents and failures in virgin capacitors and capacitors with introduced cracks has been studied at different voltages and temperatures during step stress highly accelerated life testing. Mechanisms of charge absorption, conduction and degradation have been discussed and a failure model in capacitors with defects suggested.
Simulation of cryogenic turbopump annular seals
NASA Astrophysics Data System (ADS)
Palazzolo, Alan B.
1992-12-01
The goal of the current work is to develop software that can accurately predict the dynamic coefficients, forces, leakage and horsepower loss for annular seals which have a potential for affecting the rotordynamic behavior of the pumps. The fruit of last year's research was the computer code SEALPAL which included capabilities for linear tapered geometry, Moody friction factor and inlet pre-swirl. This code produced results which in most cases compared very well with check cases presented in the literature. TAMUSEAL Icode, which was written to improve SEALPAL by correcting a bug and by adding more accurate integration algorithms and additional capabilities, was then used to predict dynamic coefficients and leakage for the NASA/Pratt and Whitney Alternate Turbopump Development (ATD) LOX Pump's seal.
2017 NEPP Tasks Update for Ceramic and Tantalum Capacitors
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander A.
2017-01-01
This presentation gives an overview of current NEPP tasks on ceramic and tantalum capacitors and plans for the future. It includes tasks on leakage currents, gas generation and case deformation in wet tantalum capacitors; ESR degradation and acceleration factors in MnO2 and polymer cathode capacitors. Preliminary results on the effect of moisture on degradation of reverse currents in MnO2 tantalum capacitors are discussed. Latest results on mechanical characteristics of MLCCs and modeling of degradation of leakage currents in BME capacitors with defects are also presented.
Qiu, Chenguang; Zhang, Zhiyong; Zhong, Donglai; Si, Jia; Yang, Yingjun; Peng, Lian-Mao
2015-01-27
Field-effect transistors (FETs) based on moderate or large diameter carbon nanotubes (CNTs) usually suffer from ambipolar behavior, large off-state current and small current on/off ratio, which are highly undesirable for digital electronics. To overcome these problems, a feedback-gate (FBG) FET structure is designed and tested. This FBG FET differs from normal top-gate FET by an extra feedback-gate, which is connected directly to the drain electrode of the FET. It is demonstrated that a FBG FET based on a semiconducting CNT with a diameter of 1.5 nm may exhibit low off-state current of about 1 × 10(-13) A, high current on/off ratio of larger than 1 × 10(8), negligible drain-induced off-state leakage current, and good subthreshold swing of 75 mV/DEC even at large source-drain bias and room temperature. The FBG structure is promising for CNT FETs to meet the standard for low-static-power logic electronics applications, and could also be utilized for building FETs using other small band gap semiconductors to suppress leakage current.
Feng, Xing-Yao; Liu, Hong-Xia; Wang, Xing; Zhao, Lu; Fei, Chen-Xi; Liu, He-Lei
2017-12-01
The capacitance and leakage current properties of multilayer La 2 O 3 /Al 2 O 3 dielectric stacks and LaAlO 3 dielectric film are investigated in this paper. A clear promotion of capacitance properties is observed for multilayer La 2 O 3 /Al 2 O 3 stacks after post-deposition annealing (PDA) at 800 °C compared with PDA at 600 °C, which indicated the recombination of defects and dangling bonds performs better at the high-k/Si substrate interface for a higher annealing temperature. For LaAlO 3 dielectric film, compared with multilayer La 2 O 3 /Al 2 O 3 dielectric stacks, a clear promotion of trapped charges density (N ot ) and a degradation of interface trap density (D it ) can be obtained simultaneously. In addition, a significant improvement about leakage current property is observed for LaAlO 3 dielectric film compared with multilayer La 2 O 3 /Al 2 O 3 stacks at the same annealing condition. We also noticed that a better breakdown behavior for multilayer La 2 O 3 /Al 2 O 3 stack is achieved after annealing at a higher temperature for its less defects.
NASA Astrophysics Data System (ADS)
Alvarez, J.; Boutchich, M.; Kleider, J. P.; Teraji, T.; Koide, Y.
2014-09-01
The origin of the high leakage current measured in several vertical-type diamond Schottky devices is conjointly investigated by conducting probe atomic force microscopy and confocal micro-Raman/photoluminescence imaging analysis. Local areas characterized by a strong decrease of the local resistance (5-6 orders of magnitude drop) with respect to their close surrounding have been identified in several different regions of the sample surface. The same local areas, also referenced as electrical hot-spots, reveal a slightly constrained diamond lattice and three dominant Raman bands in the low-wavenumber region (590, 914 and 1040 cm-1). These latter bands are usually assigned to the vibrational modes involving boron impurities and its possible complexes that can electrically act as traps for charge carriers. Local current-voltage measurements performed at the hot-spots point out a trap-filled-limited current as the main conduction mechanism favouring the leakage current in the Schottky devices.
Assessing the greenhouse impact of natural gas
NASA Astrophysics Data System (ADS)
Cathles, L. M.
2012-06-01
The global warming impact of substituting natural gas for coal and oil is currently in debate. We address this question here by comparing the reduction of greenhouse warming that would result from substituting gas for coal and some oil to the reduction which could be achieved by instead substituting zero carbon energy sources. We show that substitution of natural gas reduces global warming by 40% of that which could be attained by the substitution of zero carbon energy sources. At methane leakage rates that are ˜1% of production, which is similar to today's probable leakage rate of ˜1.5% of production, the 40% benefit is realized as gas substitution occurs. For short transitions the leakage rate must be more than 10 to 15% of production for gas substitution not to reduce warming, and for longer transitions the leakage must be much greater. But even if the leakage was so high that the substitution was not of immediate benefit, the 40%-of-zero-carbon benefit would be realized shortly after methane emissions ceased because methane is removed quickly from the atmosphere whereas CO2 is not. The benefits of substitution are unaffected by heat exchange to the ocean. CO2 emissions are the key to anthropogenic climate change, and substituting gas reduces them by 40% of that possible by conversion to zero carbon energy sources. Gas substitution also reduces the rate at which zero carbon energy sources must eventually be introduced.
Design Study of Wafer Seals for Future Hypersonic Vehicles
NASA Technical Reports Server (NTRS)
Dunlap, Patrick H.; Finkbeiner, Joshua R.; Steinetz, Bruce M.; DeMange, Jeffrey J.
2005-01-01
Future hypersonic vehicles require high temperature, dynamic seals in advanced hypersonic engines and on the vehicle airframe to seal the perimeters of movable panels, flaps, and doors. Current seals do not meet the demanding requirements of these applications, so NASA Glenn Research Center is developing improved designs to overcome these shortfalls. An advanced ceramic wafer seal design has shown promise in meeting these needs. Results from a design of experiments study performed on this seal revealed that several installation variables played a role in determining the amount of leakage past the seals. Lower leakage rates were achieved by using a tighter groove width around the seals, a higher seal preload, a tighter wafer height tolerance, and a looser groove length. During flow testing, a seal activating pressure acting behind the wafers combined with simulated vibrations to seat the seals more effectively against the sealing surface and produce lower leakage rates. A seal geometry study revealed comparable leakage for full-scale wafers with 0.125 and 0.25 in. thicknesses. For applications in which lower part counts are desired, fewer 0.25-in.-thick wafers may be able to be used in place of 0.125-in.-thick wafers while achieving similar performance. Tests performed on wafers with a rounded edge (0.5 in. radius) in contact with the sealing surface resulted in flow rates twice as high as those for wafers with a flat edge. Half-size wafers had leakage rates approximately three times higher than those for full-size wafers.
Pisarska, Magdalena; Gajewska, Natalia; Małczak, Piotr; Wysocki, Michał; Witowski, Jan; Torbicz, Grzegorz; Major, Piotr; Mizera, Magdalena; Dembiński, Marcin; Migaczewski, Marcin; Budzyński, Andrzej; Pędziwiatr, Michał
2018-04-17
The role of a defunctioning ileostomy in every anterior rectal resection with total mesorectal excision (TME) is still controversial. In this study, we aimed to review the current literature to determine the impact of ileostomy creation on postoperative outcomes in patients undergoing anterior rectal resection with TME. MEDLINE, Embase and Cochrane Library were searched for eligible studies. We analyzed data up to October 2017. Eligible studies had to compare patients with vs. without a defunctioning ileostomy in rectal cancer surgery and comprise data on anastomotic leakage in both groups. The primary outcome was anastomotic leakage. Secondary outcomes included the complication rate, mortality, reoperation rate, length of hospital stay and 30-day readmission. Initial search yielded 1,966 articles. Thorough evaluation resulted in 13 eligible articles which were analyzed. Leakage rate (RR = 0.43, 95% CI 0.28-0.67) and the number of reoperations (RR = 0.62, 95% CI 0.40-0.94) were significantly lower in the defunctioning stoma group. Morbidity was significantly higher in the stoma group (RR = 1.32, 95% CI 1.05-1.65). Analysis of mortality, length of hospital stay and readmission rate did not show any significant differences. A defunctioning ileostomy may decrease the anastomotic leakage rate, additionally significantly reducing the risk of reoperations but it may also increase the overall complication rate. The presence of the protective stoma has no effect on mortality, length of hospital stay and readmission rate.
An assessment of the Space Station Freedom program's leakage current requirement
NASA Technical Reports Server (NTRS)
Nagy, Michael
1991-01-01
The Space Station Freedom Program requires leakage currents to be limited to less than human perception level, which NASA presently defines as 5 mA for dc. The origin of this value is traced, and the literature for other dc perception threshold standards is surveyed. It is shown that while many varying standards exist, very little experimental data is available to support them.
Investigation of defect-induced abnormal body current in fin field-effect-transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Kuan-Ju; Tsai, Jyun-Yu; Lu, Ying-Hsin
2015-08-24
This letter investigates the mechanism of abnormal body current at the linear region in n-channel high-k/metal gate stack fin field effect transistors. Unlike body current, which is generated by impact ionization at high drain voltages, abnormal body current was found to increase with decreasing drain voltages. Notably, the unusual body leakage only occurs in three-dimensional structure devices. Based on measurements under different operation conditions, the abnormal body current can be attributed to fin surface defect-induced leakage current, and the mechanism is electron tunneling to the fin via the defects, resulting in holes left at the body terminal.
Dry etching, surface passivation and capping processes for antimonide based photodetectors
NASA Astrophysics Data System (ADS)
Dutta, Partha; Langer, Jeffery; Bhagwat, Vinay; Juneja, Jasbir
2005-05-01
III-V antimonide based devices suffer from leakage currents. Surface passivation and subsequent capping of the surfaces are absolutely essential for any practical applicability of antimonide based devices. The quest for a suitable surface passivation technology is still on. In this paper, we will present some of the promising recent developments in this area based on dry etching of GaSb based homojunction photodiodes structures followed by various passivation and capping schemes. We have developed a damage-free, universal dry etching recipe based on unique ratios of Cl2/BCl3/CH4/Ar/H2 in ECR plasma. This novel dry plasma process etches all III-V compounds at different rates with minimal damage to the side walls. In GaSb based photodiodes, an order of magnitude lower leakage current, improved ideality factor and higher responsivity has been demonstrated using this recipe compared to widely used Cl2/Ar and wet chemical etch recipes. The dynamic zero bias resistance-area product of the Cl2/BCl3/CH4/Ar/H2 etched diodes (830 Ω cm2) is higher than the Cl2/Ar (300 Ω cm2) and wet etched (330 Ω cm2) diodes. Ammonium sulfide has been known to passivate surfaces of III-V compounds. In GaSb photodiodes, the leakage current density reduces by a factor of 3 upon sulfur passivation using ammonium sulfide. However, device performance degrades over a period of time in the absence of any capping or protective layer. Silicon Nitride has been used as a cap layer by various researchers. We have found that by using silicon nitride caps, the devices exhibit higher leakage than unpassivated devices probably due to plasma damage during SiNx deposition. We have experimented with various polymers for capping material. It has been observed that ammonium sulfide passivation when combined with parylene capping layer (150 Å), devices retain their improved performance for over 4 months.
Nonstoichiometric Solution-Processed BaTiO₃ Film for Gate Insulator Applications.
Lau, Joyce; Kim, Sangsub; Kim, Hyunki; Koo, Kwangjun; Lee, Jaeseob; Kim, Sangsoo; Choi, Byoungdeog
2018-09-01
Solution processed barium titanate (BTO) was used to fabricate an Al/BaTiO3/p-Si metal-insulator-semiconductor (MIS) structure, which was used as a gate insulator. Changes in the electrical characteristics of the film were investigated as a function of the film thickness and post deposition annealing conditions. Our results showed that a thickness of 5 layers and an annealing temperature of 650 °C produced the highest electrical performance. BaxTi1-xO3 was altered at x = 0.10, 0.30, 0.50, 0.70, 0.90, and 1.0 to investigate changes in the electrical properties as a function of composition. The highest dielectric constant of 87 was obtained for x = 0.10, while the leakage current density was suppressed as Ba content increased. The lowest leakage current density was 1.34×10-10 A/cm2, which was observed at x = 0.90. The leakage current was related to the resistivity of the film, the interface states, and grain densification. Space charge limited current (SCLC) was the dominant leakage mechanism in BTO films based on leakage current analysis. Although a Ba content of x = 0.90 had the highest trap density, the traps were mainly composed of Ti-vacancies, which acted as strong electron traps and affected the film resistivity. A secondary phase, Ba2TiO4, which was observed in cases of excess Ba, acted as a grain refiner and provided faster densification of the film during the thermal process. The absence of a secondary phase in BaO (x = 1.0) led to the formation of many interface states and degradation in the electrical properties. Overall, the insulator properties of BTO were improved when the composition ratio was x = 0.90.
Electrical characteristics of TMAH-surface treated Ni/Au/Al2O3/GaN MIS Schottky structures
NASA Astrophysics Data System (ADS)
Reddy, M. Siva Pratap; Lee, Jung-Hee; Jang, Ja-Soon
2014-03-01
The electrical characteristics and reverse leakage mechanisms of tetramethylammonium hydroxide (TMAH) surface-treated Ni/Au/Al2O3/GaN metal-insulator-semiconductor (MIS) diodes were investigated by using the current-voltage ( I-V) and capacitance-voltage ( C-V) characteristics. The MIS diode was formed on n-GaN after etching the AlGaN in the AlGaN/GaN heterostructures. The TMAH-treated MIS diode showed better Schottky characteristics with a lower ideality factor, higher barrier height and lower reverse leakage current compared to the TMAH-free MIS diode. In addition, the TMAH-free MIS diodes exhibited a transition from Poole-Frenkel emission at low voltages to Schottky emission at high voltages, whereas the TMAH-treated MIS diodes showed Schottky emission over the entire voltage range. Reasonable mechanisms for the improved device-performance characteristics in the TMAH-treated MIS diode are discussed in terms of the decreased interface state density or traps associated with an oxide material and the reduced tunneling probability.
NASA Astrophysics Data System (ADS)
Bai, Zhiyuan; Du, Jiangfeng; Xin, Qi; Li, Ruonan; Yu, Qi
2018-02-01
We conducted a numerical analysis on high-K dielectric passivated AlGaN/GaN Schottky barrier diodes (HPG-SBDs) with a gated edge termination (GET). The reverse blocking characteristics were significantly enhanced without the stimulation of any parasitic effect by varying the dielectric thickness dge under the GET, thickness TP, and dielectric constant εr of the high-K passivation layer. The leakage current was reduced by increasing εr and decreasing dge. The breakdown voltage of the device was enhanced by increasing εr and TP. The highest breakdown voltage of 970 V and the lowest leakage current of 0.5 nA/mm were achieved under the conditions of εr = 80, TP = 800 nm, and dge = 10 nm. C-V simulation revealed that the HPG-SBDs induced no parasitic capacitance by comparing the integrated charges of the devices with different high-K dielectrics and different dge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luke, P. N.; Amman, M.; Lee J. S.
2000-10-10
Noise in CdZnTe devices with different electrode configurations was investigated. Measurements on devices with guard-ring electrode structures showed that surface leakage current does not produce any significant noise. The parallel white noise component of the devices appeared to be generated by the bulk current alone, even though the surface current was substantially higher. This implies that reducing the surface leakage current of a CdZnTe detector may not necessarily result in a significant improvement in noise performance. The noise generated by the bulk current is also observed to be below full shot noise. This partial suppression of shot noise may bemore » the result of Coulomb interaction between carriers or carrier trapping. Devices with coplanar strip electrodes were observed to produce a 1/f noise term at the preamplifier output. Higher levels of this 1/f noise were observed with decreasing gap widths between electrodes. The level of this 1/f noise appeared to be independent of bias voltage and leakage current but was substantially reduced after certain surface treatments.« less
Conduction mechanism of leakage current due to the traps in ZrO2 thin film
NASA Astrophysics Data System (ADS)
Seo, Yohan; Lee, Sangyouk; An, Ilsin; Song, Chulgi; Jeong, Heejun
2009-11-01
In this work, a metal-oxide-semiconductor capacitor with zirconium oxide (ZrO2) gate dielectric was fabricated by an atomic layer deposition (ALD) technique and the leakage current characteristics under negative bias were studied. From the result of current-voltage curves there are two possible conduction mechanisms to explain the leakage current in the ZrO2 thin film. The dominant mechanism is the space charge limited conduction in the high-electric field region (1.5-5.0 MV cm-1) while the trap-assisted tunneling due to the existence of traps is prevailed in the low-electric field region (0.8-1.5 MV cm-1). Conduction caused by the trap-assisted tunneling is found from the experimental results of a weak temperature dependence of current, and the trap barrier height is obtained. The space charge limited conduction is evidenced, for different temperatures, by Child's law dependence of current density versus voltage. Child's law dependence can be explained by considering a single discrete trapping level and we can obtain the activation energy of 0.22 eV.
Surface leakage current in 12.5 μm long-wavelength HgCdTe infrared photodiode arrays.
Qiu, Weicheng; Hu, Weida; Lin, Chun; Chen, Xiaoshuang; Lu, Wei
2016-02-15
Long-wavelength (especially >12 μm) focal plane array (FPA) infrared detection is the cutting edge technique for third-generation infrared remote sensing. However, dark currents, which are very sensitive to the growth of small Cd composition HgCdTe, strongly limits the performance of long wavelength HgCdTe photodiode arrays in FPAs. In this Letter, 12.5 μm long-wavelength Hg1-xCdxTe (x≈0.219) infrared photodiode arrays are reported. The variable-area and variable-temperature electrical characteristics of the long-wavelength infrared photodiodes are measured. The characteristics of the extracted zero-bias resistance-area product (l/R0A) varying with the perimeter-to-area (P/A) ratio clearly show that surface leakage current mechanisms severely limit the overall device performance. A sophisticated model has been developed for investigating the leakage current mechanism in the photodiodes. Modeling of temperature-dependent I-V characteristic indicates that the trap-assisted tunneling effect dominates the dark current at 50 K resulting in nonuniformities in the arrays. The extracted trap density, approximately 1013-1014 cm-3, with an ionized energy of 30 meV is determined by simulation. The work described in this Letter provides the basic mechanisms for a better understanding of the leakage current mechanism for long-wavelength (>12 μm) HgCdTe infrared photodiode arrays.
NASA Astrophysics Data System (ADS)
Jegert, Gunther; Kersch, Alfred; Weinreich, Wenke; Lugli, Paolo
2011-01-01
In this paper, we investigate the influence of electrode roughness on the leakage current in TiN/high-κ ZrO2/TiN (TZT) thin-film capacitors which are used in dynamic random access memory cells. Based on a microscopic transport model, which is expanded to incorporate electrode roughness, we assess the ultimate scaling potential of TZT capacitors in terms of equivalent oxide thickness, film smoothness, thickness fluctuations, defect density and distribution, and conduction band offset (CBO). The model is based on three-dimensional, fully self-consistent, kinetic Monte Carlo transport simulations. Tunneling transport in the bandgap of the dielectric is treated, which includes defect-assisted transport mechanisms. Electrode roughness is described in the framework of fractal geometry. While the short-range roughness of the electrodes is found not to influence significantly the leakage current, thickness fluctuations of the dielectric have a major impact. For thinner dielectric films they cause a transformation of the dominant transport mechanism from Poole-Frenkel conduction to trap-assisted tunneling. Consequently, the sensitivity of the leakage current on electrode roughness drastically increases on downscaling. Based on the simulations, optimization of the CBO is suggested as the most viable strategy to extend the scalability of TZT capacitors over the next chip generations.
Detection of marginal leakage of Class V restorations in vitro by micro-computed tomography.
Zhao, X Y; Li, S B; Gu, L J; Li, Y
2014-01-01
This in vitro study evaluated the efficacy of micro-computed tomography (CT) in marginal leakage detection of Class V restorations. Standardized Class V preparations with cervical margins in dentin and occlusal margins in enamel were made in 20 extracted human molars and restored with dental bonding agents and resin composite. All teeth were then immersed in 50% ammoniacal silver nitrate solution for 12 hours, followed by a developing solution for eight hours. Each restoration was scanned by micro-CT, the depth of marginal silver leakage in the central scanning section was measured, and the three-dimensional images of the silver leakage around each restoration were reconstructed. Afterward, all restorations were cut through the center and examined for leakage depth using a microscope. The silver leakage depth of each restoration obtained by the micro-CT and the microscope were compared for equivalency. The silver leakage depth in cervical walls observed by micro-CT and microscope showed no significant difference; however, in certain cases the judgment of leakage depth in the occlusal wall in micro-CT image was affected by adjacent enamel structure, providing less leakage depth than was observed with the microscope (p<0.01). Micro-CT displayed the three-dimensional image of the leakage around the Class V restorations with clear borders only in the dentin region. It can be concluded that micro-CT can detect nondestructively the leakage around a resin composite restoration in two and three dimensions, with accuracy comparable to that of the conventional microscope method in the dentin region but with inferior accuracy in the enamel region.
NASA Astrophysics Data System (ADS)
Kotani, Junji; Yamada, Atsushi; Ishiguro, Tetsuro; Yamaguchi, Hideshi; Nakamura, Norikazu
2017-03-01
This paper investigates the gate leakage characteristics of in-situ AlN capped InAlN/AlN/GaN heterostructures grown by metal-organic vapor phase epitaxy. It was revealed that the leakage characteristics of AlN capped InAlN/AlN/GaN heterostructures are strongly dependent on the growth temperature of the AlN cap. For an AlN capped structure with an AlN growth temperature of 740 °C, the leakage current even increased although there exists a large bandgap material on InAlN/AlN/GaN heterostructures. On the other hand, a large reduction of the gate leakage current by 4-5 orders of magnitudes was achieved with a very low AlN growth temperature of 430 °C. X-ray diffraction analysis of the AlN cap grown at 740 °C indicated that the AlN layer is tensile-strained. In contrast to this result, the amorphous structure was confirmed for the AlN cap grown at 430 °C by transmission electron microscopy. Furthermore, theoretical analysis based on one-dimensional band simulation was carried out, and the large increase in two-dimensional electron gas (2DEG) observed in Hall measurements was well reproduced by taking into account the spontaneous and piezo-electric polarization in the AlN layer grown at 740 °C. For the AlN capped structure grown at 430 °C, it is believed that the reduced polarization field in the AlN cap suppressed the penetration of 2DEG into the InAlN barrier layer, resulting in a small impact on 2DEG mobility and density. We believe that an in-situ grown AlN cap with a very low growth temperature of 430 °C is a promising candidate for high-frequency/high-power GaN-based devices with low gate leakage current.
Optimal Dynamic Sub-Threshold Technique for Extreme Low Power Consumption for VLSI
NASA Technical Reports Server (NTRS)
Duong, Tuan A.
2012-01-01
For miniaturization of electronics systems, power consumption plays a key role in the realm of constraints. Considering the very large scale integration (VLSI) design aspect, as transistor feature size is decreased to 50 nm and below, there is sizable increase in the number of transistors as more functional building blocks are embedded in the same chip. However, the consequent increase in power consumption (dynamic and leakage) will serve as a key constraint to inhibit the advantages of transistor feature size reduction. Power consumption can be reduced by minimizing the voltage supply (for dynamic power consumption) and/or increasing threshold voltage (V(sub th), for reducing leakage power). When the feature size of the transistor is reduced, supply voltage (V(sub dd)) and threshold voltage (V(sub th)) are also reduced accordingly; then, the leakage current becomes a bigger factor of the total power consumption. To maintain low power consumption, operation of electronics at sub-threshold levels can be a potentially strong contender; however, there are two obstacles to be faced: more leakage current per transistor will cause more leakage power consumption, and slow response time when the transistor is operated in weak inversion region. To enable low power consumption and yet obtain high performance, the CMOS (complementary metal oxide semiconductor) transistor as a basic element is viewed and controlled as a four-terminal device: source, drain, gate, and body, as differentiated from the traditional approach with three terminals: i.e., source and body, drain, and gate. This technique features multiple voltage sources to supply the dynamic control, and uses dynamic control to enable low-threshold voltage when the channel (N or P) is active, for speed response enhancement and high threshold voltage, and when the transistor channel (N or P) is inactive, to reduce the leakage current for low-leakage power consumption.
NASA Astrophysics Data System (ADS)
Du, X.; Savich, G. R.; Marozas, B. T.; Wicks, G. W.
2018-02-01
Surface leakage and lateral diffusion currents in InAs-based nBn photodetectors have been investigated. Devices fabricated using a shallow etch processing scheme that etches through the top contact and stops at the barrier exhibited large lateral diffusion current but undetectably low surface leakage. Such large lateral diffusion current significantly increased the dark current, especially in small devices, and causes pixel-to-pixel crosstalk in detector arrays. To eliminate the lateral diffusion current, two different approaches were examined. The conventional solution utilized a deep etch process, which etches through the top contact, barrier, and absorber. This deep etch processing scheme eliminated lateral diffusion, but introduced high surface current along the device mesa sidewalls, increasing the dark current. High device failure rate was also observed in deep-etched nBn structures. An alternative approach to limit lateral diffusion used an inverted nBn structure that has its absorber grown above the barrier. Like the shallow etch process on conventional nBn structures, the inverted nBn devices were fabricated with a processing scheme that only etches the top layer (the absorber, in this case) but avoids etching through the barrier. The results show that inverted nBn devices have the advantage of eliminating the lateral diffusion current without introducing elevated surface current.
NASA Technical Reports Server (NTRS)
Nicks, C. O.; Childs, D. W.
1984-01-01
The importance of seal behavior in rotordynamics is discussed and current annular seal theory is reviewed. A Nelson's analytical-computational method for determining rotordynamic coefficients for this type of compressible-flow seal is outlined. Various means for the experimental identification of the dynamic coefficients are given, and the method employed at the Texas A and M University (TAMU) test facility is explained. The TAMU test apparatus is described, and the test procedures are discussed. Experimental results, including leakage, entrance-loss coefficients, pressure distributions, and rotordynamic coefficients for a smooth and a honeycomb constant-clearance seal are presented and compared to theoretical results from Nelson's analysis. The results for both seals show little sensitivity to the running speed over the test range. Agreement between test results and theory for leakage through the seal is satisfactory. Test results for direct stiffness show a greater sensitivity to fluid pre-rotation than predicted. Results also indicate that the deliberately roughened surface of the honeycomb seal provides improved stability versus the smooth seal.
NASA Astrophysics Data System (ADS)
Gupta, Neha; Parihar, Priyanka; Neema, Vaibhav
2018-04-01
Researchers have proposed many circuit techniques to reduce leakage power dissipation in memory cells. If we want to reduce the overall power in the memory system, we have to work on the input circuitry of memory architecture i.e. row and column decoder. In this research work, low leakage power with a high speed row and column decoder for memory array application is designed and four new techniques are proposed. In this work, the comparison of cluster DECODER, body bias DECODER, source bias DECODER, and source coupling DECODER are designed and analyzed for memory array application. Simulation is performed for the comparative analysis of different DECODER design parameters at 180 nm GPDK technology file using the CADENCE tool. Simulation results show that the proposed source bias DECODER circuit technique decreases the leakage current by 99.92% and static energy by 99.92% at a supply voltage of 1.2 V. The proposed circuit also improves dynamic power dissipation by 5.69%, dynamic PDP/EDP 65.03% and delay 57.25% at 1.2 V supply voltage.
A new fabrication technique for back-to-back varactor diodes
NASA Technical Reports Server (NTRS)
Smith, R. Peter; Choudhury, Debabani; Martin, Suzanne; Frerking, Margaret A.; Liu, John K.; Grunthaner, Frank A.
1992-01-01
A new varactor diode process has been developed in which much of the processing is done from the back of an extremely thin semiconductor wafer laminated to a low-dielectric substrate. Back-to-back BNN diodes were fabricated with this technique; excellent DC and low-frequency capacitance measurements were obtained. Advantages of the new technique relative to other techniques include greatly reduced frontside wafer damage from exposure to process chemicals, improved capability to integrate devices (e.g. for antenna patterns, transmission lines, or wafer-scale grids), and higher line yield. BNN diodes fabricated with this technique exhibit approximately the expected capacitance-voltage characteristics while showing leakage currents under 10 mA at voltages three times that needed to deplete the varactor. This leakage is many orders of magnitude better than comparable Schottky diodes.
Leakage current transport mechanism under reverse bias in Au/Ni/GaN Schottky barrier diode
NASA Astrophysics Data System (ADS)
Peta, Koteswara Rao; Kim, Moon Deock
2018-01-01
The leakage current transport mechanism under reverse bias of Au/Ni/GaN Schottky diode is studied using temperature dependent current-voltage (I-V-T) and capacitance-voltage (C-V) characteristics. I-V measurement in this study is in the range of 140 K-420 K in steps of 10 K. A reduction in voltage dependent barrier height and a strong internal electric field in depletion region under reverse bias suggested electric field enhanced thermionic emission in carrier transport via defect states in Au/Ni/GaN SBD. A detailed analysis of reverse leakage current revealed two different predominant transport mechanisms namely variable-range hopping (VRH) and Poole-Frenkel (PF) emission conduction at low (<260 K) and high (>260 K) temperatures respectively. The estimated thermal activation energies (0.20-0.39 eV) from Arrhenius plot indicates a trap assisted tunneling of thermally activated electrons from a deep trap state into a continuum of states associated with each conductive threading dislocation.
NASA Technical Reports Server (NTRS)
Doerbeck, F. H.; Yuan, H. T.; Mclevige, W. V.
1981-01-01
Ion implantation techniques that permit the reproducible fabrication of bipolar GaAs integrated circuits are studied. A 15 stage ring oscillator and discrete transistor were characterized between 25 and 400 C. The current gain of the transistor was found to increase slightly with temperature. The diode leakage currents increase with an activation energy of approximately 1 eV and dominate the transistor leakage current 1 sub CEO above 200 C. Present devices fail catastrophically at about 400 C because of Au-metallization.
Sealing ability of MTA, CPM, and MBPc as root-end filling materials: a bacterial leakage study.
Medeiros, Paulo Leal; Bernardineli, Norberti; Cavenago, Bruno Cavalini; Torres, Sérgio Aparecido; Duarte, Marco Antonio Hungaro; Bramante, Clovis Monteiro; Marciano, Marina Angélica
2016-04-01
Objectives To evaluate the sealing ability of three root-end filling materials (white MTA, CPM, and MBPc) using an Enterococcus faecalis leakage model. Material and Methods Seventy single-root extracted human teeth were instrumented and root-ends were resected to prepare 3 mm depth cavities. Root-end preparations were filled with white MTA, CPM, and MBPc cements. Enterococcus faecalis was coronally introduced and the apical portion was immersed in BHI culture medium with phenol red indicator. The bacterial leakage was monitored every 24 h for 4 weeks. The statistical analysis was performed using the Wilcoxon-Gehan test (p<0.05). Results All cements showed bacterial leakage after 24 hours, except for the negative control group. The MBPc showed significantly less bacterial leakage compared with the MTA group (p<0.05). No significant differences were found between the CPM and the other groups. Conclusions The epoxy resin-based cement MBPc had lower bacterial leakage compared with the calcium silicate-based cements MTA and CPM.
NASA Astrophysics Data System (ADS)
Racko, Juraj; Benko, Peter; Mikolášek, Miroslav; Granzner, Ralf; Kittler, Mario; Schwierz, Frank; Harmatha, Ladislav; Breza, Juraj
2017-02-01
The contribution employs electrical simulation to assess the effect of the distribution of aluminium in the metal/GaN/AlGaN heterostructure on the leakage current. The heterostructure is characterized by a high density of traps causing an increase of the leakage current consisting of the thermionic emission component and of a non-negligible contribution of trap-assisted tunnelling. The leakage current is highly sensitive to the bending of the potential barrier Ec in the subsurface region of the GaN/AlGaN structure. The band bending is strongly affected by the sheet bound charge at the first GaN/AlGaN/GaN interface due to spontaneous and piezoelectric polarization. The overall charge depends on the concentration of Al, the distribution of Al at the first heterointerface having a strong effect on the formation of the potential barrier.
TID Simulation of Advanced CMOS Devices for Space Applications
NASA Astrophysics Data System (ADS)
Sajid, Muhammad
2016-07-01
This paper focuses on Total Ionizing Dose (TID) effects caused by accumulation of charges at silicon dioxide, substrate/silicon dioxide interface, Shallow Trench Isolation (STI) for scaled CMOS bulk devices as well as at Buried Oxide (BOX) layer in devices based on Silicon-On-Insulator (SOI) technology to be operated in space radiation environment. The radiation induced leakage current and corresponding density/concentration electrons in leakage current path was presented/depicted for 180nm, 130nm and 65nm NMOS, PMOS transistors based on CMOS bulk as well as SOI process technologies on-board LEO and GEO satellites. On the basis of simulation results, the TID robustness analysis for advanced deep sub-micron technologies was accomplished up to 500 Krad. The correlation between the impact of technology scaling and magnitude of leakage current with corresponding total dose was established utilizing Visual TCAD Genius program.
Integrated circuit electrometer and sweep circuitry for an atmospheric probe
NASA Technical Reports Server (NTRS)
Zimmerman, L. E.
1971-01-01
The design of electrometer circuitry using an integrated circuit operational amplifier with a MOSFET input is described. Input protection against static voltages is provided by a dual ultra low leakage diode or a neon lamp. Factors affecting frequency response leakage resistance, and current stability are discussed, and methods are suggested for increasing response speed and for eliminating leakage resistance and current instabilities. Based on the above, two practical circuits, one having a linear response and the other a logarithmic response, were designed and evaluated experimentally. The design of a sweep circuit to implement mobility measurements using atmospheric probes is presented. A triangular voltage waveform is generated and shaped to contain a step in voltage from zero volts in both positive and negative directions.
Study of the dose rate effect of 180 nm nMOSFETs
NASA Astrophysics Data System (ADS)
He, Bao-Ping; Yao, Zhi-Bin; Sheng, Jiang-Kun; Wang, Zu-Jun; Huang, Shao-Yan; Liu, Min-Bo; Xiao, Zhi-Gang
2015-01-01
Radiation induced offstate leakage in the shallow trench isolation regions of SIMC 0.18 μm nMOSFETs is studied as a function of dose rate. A “true” dose rate effect (TDRE) is observed. Increased damage is observed at low dose rate (LDR) than at high dose rate (HDR) when annealing is taken into account. A new method of simulating radiation induced degradation in shallow trench isolation (STI) is presented. A comparison of radiation induced offstate leakage current in test nMOSFETs between total dose irradiation experiments and simulation results exhibits excellent agreement. The investigation results imply that the enhancement of the leakage current may be worse for the dose rate encountered in the environment of space.
[Reflection on the present study of anastomotic leakage after colorectal surgery].
Wu, Zhouqiao; Shi, Jinyao; Li, Ziyu; Ji, Jiafu
Anastomotic leakage is one of the most serious complications of colorectal surgery. Despite progress in available surgical techniques, the morbidity associated with anastomotic leakage remains high. In this review, we summarize the current clinical status of this complication, the problems it causes, and relevant research achievements. To date, a lack of consensus regarding the diagnosis of anastomotic leakage has resulted in varying rates of diagnosis across countries and regions worldwide. Accurately predicting the occurrence of anastomotic leakage using the established risk factors and preoperative scoring systems remains difficult. Many of the described preventive measures, including defunctioning stoma creation, positive air leak testing, and use of effective tissue adhesives, remain controversial; more evidence-based medical information is urgently needed. Delayed diagnoses of anastomotic leakage also remain common in clinical practice. To prevent catastrophic outcomes, such as reoperations or deaths, early diagnosis is critically important. Parameters local to the area of the anastomosis may facilitate early detection of leakage, but their effectiveness is subject to clinical validation. Lastly, the pathological etiology of anastomotic leakage remains to be determined, and its elucidation may inspire innovative interventions that solve this critical surgical complication.
Comparison of Wide-Field Fluorescein Angiography and Nine-Field Montage Angiography in Uveitis
Nicholson, Benjamin P.; Nigam, Divya; Miller, Darby; Agrón, Elvira; Dalal, Monica; Jacobs-El, Naima; Lima, Breno da Rocha; Cunningham, Denise; Nussenblatt, Robert; Sen, H. Nida
2014-01-01
Purpose To qualitatively and quantitatively compare Optos© fundus camera fluorescein angiographic images of retinal vascular leakage with 9-field montage Topcon© fluorescein angiography (FA) images in patients with uveitis. We hypothesized that Optos images reveal more leakage in uveitis patients. Design Retrospective, observational case series. Methods Images of all uveitis patients imaged with same-sitting Optos FA and 9-field montage FA during a 9 month period at a single institution (52 eyes of 31 patients) were graded for the total area of retinal vascular leakage. The main outcome measure was area of fluorescein leakage. Results The area of apparent FA leakage was greater in Optos images than in 9-field montage images (median 22.5 mm2 vs. 4.8 mm2, P<0.0001). Twenty-two of 49 (45%) eyes with gradable photos had at least 25% more leakage on the Optos image than on the montage image. Two (4.1%) had at least 25% less leakage on Optos, and 25 (51%) were similar between the two modalities. Two eyes had no apparent retinal vascular leakage on 9-field montage but were found to have apparent leakage on Optos images. Twenty-three of the 49 eyes had posterior pole leakage, and of these 17 (73.9%) showed more posterior pole leakage on the Optos image. A single 200 degree Optos FA image captured a mean 1.50x the area captured by montage photography. Conclusion More retinal vascular pathology, both in the periphery and the posterior pole, is seen with Optos FA in uveitis patients when compared with 9-field montage. The clinical implications of Optos FA findings have yet to be determined. PMID:24321475
Current transient spectroscopy for trapping analysis on Au-free AlGaN/GaN Schottky barrier diode
NASA Astrophysics Data System (ADS)
Hu, J.; Stoffels, S.; Lenci, S.; Bakeroot, B.; Venegas, R.; Groeseneken, G.; Decoutere, S.
2015-02-01
This paper presents a combined technique of high voltage off-state stress and current transient measurements to investigate the trapping/de-trapping characteristics of Au-free AlGaN/GaN Schottky barrier diodes. The device features a symmetric three-terminal structure with a central anode contact surrounded by two separate cathodes. Under the diode off-state stress conditions, the two separate cathodes were electrically shorted. The de-trapping dynamics was studied by monitoring the recovery of the two-dimensional electron gas (2DEG) current at different temperatures by applying 0.5 V at cathode 2 while grounding cathode 1. During the recovery, the anode contact acts as a sensor of changes in diode leakage current. This leakage variation was found to be mainly due to the barrier height variation. With this method, the energy level and capture cross section of different traps in the AlGaN/GaN Schottky barrier diode can be extracted. Furthermore, the physical location of different trapping phenomena is indicated by studying the variation of the diode leakage current during the recovery. We have identified two distinct trapping mechanisms: (i) electron trapping at the AlGaN surface in the vicinity of the Schottky contact which results in the leakage reduction (barrier height ϕB increase) together with RON degradation; (ii) the electron trapping in the GaN channel layer which partially depletes the 2DEG. The physical origin of the two different traps is discussed in the text.
NASA Astrophysics Data System (ADS)
Shi, Li-Bin; Li, Ming-Biao; Xiu, Xiao-Ming; Liu, Xu-Yang; Zhang, Kai-Cheng; Li, Chun-Ran; Dong, Hai-Kuan
2017-04-01
La2O3 is a potential dielectric material with high permittivity (high-κ) for metal-oxide-semiconductor (MOS) devices. However, band offsets and oxide defects should still be concerned. Smaller band offsets and carrier traps increase leakage current, and degenerate performance of the devices. In this paper, the interface behaviors of La2O3/GaAs under biaxial strain and hydrostatic pressure are investigated, which is performed by first principles calculations based on density functional theory (DFT). Strain engineering is attempted to improve performance of the metal/La2O3/GaAs devices. First of all, we creatively realize band alignment of La2O3/GaAs interface under biaxial strain and hydrostatic pressure. The proper biaxial tensile strain can effectively increase valence band offsets (VBO) and conduction band offsets (CBO), which can be used to suppress leakage current. However, the VBO will decrease with the increase of hydrostatic pressure, indicating that performance of the devices is degenerated. Then, a direct tunneling leakage current model is used to investigate current and voltage characteristics of the metal/La2O3/GaAs. The impact of biaxial strain and hydrostatic pressure on leakage current is discussed. At last, formation energies and transition levels of oxygen interstitial (Oi) and oxygen vacancy (VO) in La2O3 are assessed. We investigate how they will affect performance of the devices.
Simulation Study of Single-Event Burnout in Power Trench ACCUFETs
NASA Astrophysics Data System (ADS)
Yu, Cheng-Hao; Wang, Ying; Fei, Xin-Xing; Cao, Fei
2016-10-01
This paper presents 2-D numerical simulation results of single-event burnout (SEB) in power trench accumulation mode field effect transistor (ACCUFET) for the first time. In this device, a p+ base region is used to deplete the n- base region to achieve a low leakage current density, and the blocking voltage is supported by the n- drift region. We find that the depth of the p+ base region determines both the leakage current density and SEB performance, as a result, there is a tradeoff relationship between the two characteristics. The 60 V hardened power ACCUFET shown in this paper could demonstrate much better SEB performance without sacrificing the current handling capability compared with the standard UMOSFET. The hardened structure mentioned in this paper indicates that an n buffer layer is added between the epitaxial layer and substrate layer based on a basic power device. As a result, the safe operating area (SOA) of the 60 V, 80 V and 100 V hardened ACCUFET discussed in this paper could reach the value of breakdown voltage when the buffer layer is over a certain value, that can realize safety operation throughout entire LET range.
NASA Astrophysics Data System (ADS)
Matsuda, Shinpei; Kikuchi, Erumu; Yamane, Yasumasa; Okazaki, Yutaka; Yamazaki, Shunpei
2015-04-01
Field-effect transistors (FETs) with c-axis-aligned crystalline In-Ga-Zn-O (CAAC-IGZO) active layers have extremely low off-state leakage current. Exploiting this feature, we investigated the application of CAAC-IGZO FETs to LSI memories. A high on-state current is required for the high-speed operation of these LSI memories. The field-effect mobility μFE of a CAAC-IGZO FET is relatively low compared with the electron mobility of single-crystal Si (sc-Si). In this study, we measured and calculated the channel length L dependence of μFE for CAAC-IGZO and sc-Si FETs. For CAAC-IGZO FETs, μFE remains almost constant, particularly when L is longer than 0.3 µm, whereas that of sc-Si FETs decreases markedly as L shortens. Thus, the μFE difference between both FET types is reduced by miniaturization. This difference in μFE behavior is attributed to the different susceptibilities of electrons to phonon scattering. On the basis of this result and the extremely low off-state leakage current of CAAC-IGZO FETs, we expect high-speed LSI memories with low power consumption.
An “ohmic-first” self-terminating gate-recess technique for normally-off Al2O3/GaN MOSFET
NASA Astrophysics Data System (ADS)
Wang, Hongyue; Wang, Jinyan; Li, Mengjun; He, Yandong; Wang, Maojun; Yu, Min; Wu, Wengang; Zhou, Yang; Dai, Gang
2018-04-01
In this article, an ohmic-first AlGaN/GaN self-terminating gate-recess etching technique was demonstrated where ohmic contact formation is ahead of gate-recess-etching/gate-dielectric-deposition (GRE/GDD) process. The ohmic contact exhibits few degradations after the self-terminating gate-recess process. Besides, when comparing with that using the conventional fabrication process, the fabricated device using the ohmic-first fabrication process shows a better gate dielectric quality in terms of more than 3 orders lower forward gate leakage current, more than twice higher reverse breakdown voltage as well as better stability. Based on this proposed technique, the normally-off Al2O3/GaN MOSFET exhibits a threshold voltage (V th) of ˜1.8 V, a maximum drain current of ˜328 mA/mm, a forward gate leakage current of ˜10-6 A/mm and an off-state breakdown voltage of 218 V at room temperature. Meanwhile, high temperature characteristics of the device was also evaluated and small variations (˜7.6%) of the threshold voltage was confirmed up to 300 °C.
NASA Astrophysics Data System (ADS)
Ostermaier, Clemens; Pozzovivo, Gianmauro; Basnar, Bernhard; Schrenk, Werner; Carlin, Jean-François; Gonschorek, Marcus; Grandjean, Nicolas; Vincze, Andrej; Tóth, Lajos; Pécz, Bela; Strasser, Gottfried; Pogany, Dionyz; Kuzmik, Jan
2010-11-01
We have investigated an inductively coupled plasma etching recipe using SiCl4 and SF6 with a resulting selectivity >10 for GaN in respect to InAlN. The formation of an etch-resistant layer of AlF3 on InAlN required about 1 min and was noticed by a 4-times-higher initial etch rate on bare InAlN barrier high electron mobility transistors (HEMTs). Comparing devices with and without plasma-treatment below the gate showed no degradation in drain current and gate leakage current for plasma exposure durations shorter than 30 s, indicating no plasma-induced damage of the InAlN barrier. Devices etched longer than the required time for the formation of the etch-resistant barrier exhibited a slight decrease in drain current and an increase in gate leakage current which saturated for longer etching-time durations. Finally, we could prove the quality of the recipe by recessing the highly doped 6 nm GaN cap layer of a GaN/InAlN/AlN/GaN heterostructure down to the 2 nm thin InAlN/AlN barrier layer.
Zhao, Yitian; J. C. MacCormick, Ian; G. Parry, David; Leach, Sophie; A. V. Beare, Nicholas; P. Harding, Simon; Zheng, Yalin
2015-01-01
The detection and assessment of leakage in retinal fluorescein angiogram images is important for the management of a wide range of retinal diseases. We have developed a framework that can automatically detect three types of leakage (large focal, punctate focal, and vessel segment leakage) and validated it on images from patients with malarial retinopathy. This framework comprises three steps: vessel segmentation, saliency feature generation and leakage detection. We tested the effectiveness of this framework by applying it to images from 20 patients with large focal leak, 10 patients with punctate focal leak, and 5,846 vessel segments from 10 patients with vessel leakage. The sensitivity in detecting large focal, punctate focal and vessel segment leakage are 95%, 82% and 81%, respectively, when compared to manual annotation by expert human observers. Our framework has the potential to become a powerful new tool for studying malarial retinopathy, and other conditions involving retinal leakage. PMID:26030010
Zhao, Yitian; MacCormick, Ian J C; Parry, David G; Leach, Sophie; Beare, Nicholas A V; Harding, Simon P; Zheng, Yalin
2015-06-01
The detection and assessment of leakage in retinal fluorescein angiogram images is important for the management of a wide range of retinal diseases. We have developed a framework that can automatically detect three types of leakage (large focal, punctate focal, and vessel segment leakage) and validated it on images from patients with malarial retinopathy. This framework comprises three steps: vessel segmentation, saliency feature generation and leakage detection. We tested the effectiveness of this framework by applying it to images from 20 patients with large focal leak, 10 patients with punctate focal leak, and 5,846 vessel segments from 10 patients with vessel leakage. The sensitivity in detecting large focal, punctate focal and vessel segment leakage are 95%, 82% and 81%, respectively, when compared to manual annotation by expert human observers. Our framework has the potential to become a powerful new tool for studying malarial retinopathy, and other conditions involving retinal leakage.
NASA Astrophysics Data System (ADS)
Tonomura, Osamu; Miki, Hiroshi; Takeda, Ken-ichi
2011-10-01
An Al2O3/SiO buffer layer was incorporated in a metal-insulator-semiconductor (MIS) Ta2O5 capacitor for dynamic random access memory (DRAM) application. Al2O3 was chosen for the buffer layer owing to its high band offset against silicon and oxidation resistance against increase in effective oxide thickness (EOT). It was clarified that post-deposition annealing in nitrogen at 800 °C for 600 s increased the band offset between Al2O3 and the lower electrode and decreased leakage current by two orders of magnitude at 1 V. Furthermore, we predicted and experimentally confirmed that there was an optimized value of y in (Si3N4)y(SiO2)(1-y), which is 0.58, for minimizing the leakage current and EOT of SiON. To clarify the oxidation resistance and appropriate thickness of Al2O3, a TiN/Ta2O5/Al2O3/SiON/polycrystalline-silicon capacitor was fabricated. It was confirmed that the lower electrode was not oxidized during the crystallization annealing of Ta2O5. By setting the Al2O3 thickness to 3.4 nm, the leakage current is lowered below the required value with an EOT of 3.6 nm.
NASA Astrophysics Data System (ADS)
Abazari, M.; Safari, A.
2009-05-01
We report the effects of Ba, Ti, and Mn dopants on ferroelectric polarization and leakage current of (K0.44Na0.52Li0.04)(Nb0.84Ta0.1Sb0.06)O3 (KNN-LT-LS) thin films deposited by pulsed laser deposition. It is shown that donor dopants such as Ba2+, which increased the resistivity in bulk KNN-LT-LS, had an opposite effect in the thin film. Ti4+ as an acceptor B-site dopant reduces the leakage current by an order of magnitude, while the polarization values showed a slight degradation. Mn4+, however, was found to effectively suppress the leakage current by over two orders of magnitude while enhancing the polarization, with 15 and 23 μC/cm2 remanent and saturated polarization, whose values are ˜70% and 82% of the reported values for bulk composition. This phenomenon has been associated with the dual effect of Mn4+ in KNN-LT-LS thin film, by substituting both A- and B-site cations. A detailed description on how each dopant affects the concentrations of vacancies in the lattice is presented. Mn-doped KNN-LT-LS thin films are shown to be a promising candidate for lead-free thin films and applications.
Leakage current phenomena in Mn-doped Bi(Na,K)TiO{sub 3}-based ferroelectric thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walenza-Slabe, J.; Gibbons, B. J., E-mail: brady.gibbons@oregonstate.edu
2016-08-28
Mn-doped 80(Bi{sub 0.5}Na{sub 0.5})TiO{sub 3}-20(Bi{sub 0.5}K{sub 0.5})TiO{sub 3} thin films were fabricated by chemical solution deposition on Pt/TiO{sub 2}/SiO{sub 2}/Si substrates. Steady state and time-dependent leakage current were investigated from room temperature to 180 °C. Undoped and low-doped films showed space-charge-limited current (SCLC) at high temperatures. The electric field marking the transition from Ohmic to trap-filling-limited current increased monotonically with Mn-doping. With 2 mol. % Mn, the current was Ohmic up to 430 kV/cm, even at 180 °C. Modeling of the SCLC showed that all films exhibited shallow trap levels and high trap concentrations. In the regime of steady state leakage, theremore » were also observations of negative differential resistivity and positive temperature coefficient of resistivity near room temperature. Both of these phenomena were confined to relatively low temperatures (below ∼60 °C). Transient currents were observed in the time-dependent leakage data, which was measured out to several hundred seconds. In the undoped films, these were found to be a consequence of oxygen vacancy migration modulating the electronic conductivity. The mobility and thermal activation energy for oxygen vacancies was extracted as μ{sub ion} ≈ 1.7 × 10{sup −12} cm{sup 2} V{sup −1} s{sup −1} and E{sub A,ion} ≈ 0.92 eV, respectively. The transient current displayed different characteristics in the 1 mol. % Mn-doped films which were not readily explained by oxygen vacancy migration.« less
Rarity of late anastomotic leakage after low anterior resection of the rectum.
Maeda, Hiromichi; Okamoto, Ken; Namikawa, Tsutomu; Akimori, Toyokazu; Kamioka, Norihito; Shiga, Mai; Dabanaka, Ken; Hanazaki, Kazuhiro; Kobayashi, Michiya
2015-06-01
Late anastomotic leakage is reported to account for half of all anastomotic leakages after low anterior resection of the rectum. An important clinical question is whether late and early anastomotic leakages are different entities. We retrospectively reviewed the medical records of patients who experienced anastomotic leakage after low anterior resection in two Japanese hospitals. The clinical characteristics were extracted and analyzed. During the study period, 179 patients underwent low anterior resection. A pelvic drainage tube was routinely utilized in all cases and was generally removed 4 to 6 days after the operation. Twenty-six patients had anastomotic leakage; the diagnosis was based on fecal contamination of the drainage in 24 cases. The median interval between operation and detection of anastomotic leakage was 3.5 days. Anastomotic leakage was diagnosed within 7 days of the operation in 25 cases and on postoperative day 20 (after hospital discharge) in one case. There was no instance of anastomotic leakage diagnosed more than 30 days after the operation. There was no relationship between clinical variables and days of leakage diagnosis. The rarity of late anastomotic leakage in our study, compared with previous studies, may relate to the relatively extended period of pelvic drainage tube usage in our institutes, which likely shortens the interval before leakage diagnosis. Our results suggest that late anastomotic leakage is a delayed symptom of subtle early anastomotic leakage rather than a separate entity.
A novel method to determine air leakage in heat pump clothes dryers
Bansal, Pradeep; Mohabir, Amar; Miller, William
2016-01-06
A heat pump clothes dryer offers the potential to save a significant amount of energy as compared with conventional vented electric dryers. Although heat pump clothes dryers (HPCD) offer higher energy efficiency; it has been observed that they are prone to air leakages, which inhibits the HPCD's gain in efficiency. This study serves to develop a novel method of quantifying leakage, and to determine specific leakage locations in the dryer drum and air circulation system. The basis of this method is the American Society of Testing and Materials (ASTM) standard E779 10, which is used to determine air leakage areamore » in a household ventilation system through fan pressurization. This ASTM method is adapted to the dryer system, and the leakage area is determined by an analysis of the leakage volumetric flow - pressure relationship. Easily accessible leakage points were quantified: the front and back crease (in the dryer drum), the leakage in the dryer duct, the air filter, and the remaining leakage in the drum. The procedure allows investigators to determine major components contributing to leakage in HPCDs, thus improving component design features that result in more efficient HPCD systems.« less
A novel method to determine air leakage in heat pump clothes dryers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bansal, Pradeep; Mohabir, Amar; Miller, William
A heat pump clothes dryer offers the potential to save a significant amount of energy as compared with conventional vented electric dryers. Although heat pump clothes dryers (HPCD) offer higher energy efficiency; it has been observed that they are prone to air leakages, which inhibits the HPCD's gain in efficiency. This study serves to develop a novel method of quantifying leakage, and to determine specific leakage locations in the dryer drum and air circulation system. The basis of this method is the American Society of Testing and Materials (ASTM) standard E779 10, which is used to determine air leakage areamore » in a household ventilation system through fan pressurization. This ASTM method is adapted to the dryer system, and the leakage area is determined by an analysis of the leakage volumetric flow - pressure relationship. Easily accessible leakage points were quantified: the front and back crease (in the dryer drum), the leakage in the dryer duct, the air filter, and the remaining leakage in the drum. The procedure allows investigators to determine major components contributing to leakage in HPCDs, thus improving component design features that result in more efficient HPCD systems.« less
NASA Astrophysics Data System (ADS)
Solve, S.; Chayramy, R.; Maruyama, M.; Urano, C.; Kaneko, N.-H.; Rüfenacht, A.
2018-04-01
BIPM’s new transportable programmable Josephson voltage standard (PJVS) has been used for an on-site comparison at the National Metrology Institute of Japan (NMIJ) and the National Institute of Advanced Industrial Science and Technology (AIST) (NMIJ/AIST, hereafter called just NMIJ unless otherwise noted). This is the first time that an array of niobium-based Josephson junctions with amorphous niobium silicon Nb x Si1-x barriers, developed by the National Institute of Standards and Technology4 (NIST), has been directly compared to an array of niobium nitride (NbN)-based junctions (developed by the NMIJ in collaboration with the Nanoelectronics Research Institute (NeRI), AIST). Nominally identical voltages produced by both systems agreed within 5 parts in 1012 (0.05 nV at 10 V) with a combined relative uncertainty of 7.9 × 10-11 (0.79 nV). The low side of the NMIJ apparatus is, by design, referred to the ground potential. An analysis of the systematic errors due to the leakage current to ground was conducted for this ground configuration. The influence of a multi-stage low-pass filter installed at the output measurement leads of the NMIJ primary standard was also investigated. The number of capacitances in parallel in the filter and their insulation resistance have a direct impact on the amplitude of the systematic voltage error introduced by the leakage current, even if the current does not necessarily return to ground. The filtering of the output of the PJVS voltage leads has the positive consequence of protecting the array from external sources of noise. Current noise, when coupled to the array, reduces the width or current range of the quantized voltage steps. The voltage error induced by the leakage current in the filter is an order of magnitude larger than the voltage error in the absence of all filtering, even though the current range of steps is significantly decreased without filtering.
Heavy Ion Induced Degradation in SiC Schottky Diodes: Bias and Energy Deposition Dependence
NASA Technical Reports Server (NTRS)
Javanainen, Arto; Galloway, Kenneth F.; Nicklaw, Christopher; Bosser, Alexandre L.; Ferlet-Cavrois, Veronique; Lauenstein, Jean-Marie; Pintacuda, Francesco; Reed, Robert A.; Schrimpf, Ronald D.; Weller, Robert A.;
2016-01-01
Experimental results on ion-induced leakage current increase in 4H-SiC Schottky power diodes are presented. Monte Carlo and TCAD simulations show that degradation is due to the synergy between applied bias and ion energy deposition. This degradation is possibly related to thermal spot annealing at the metal semiconductor interface. This thermal annealing leads to an inhomogeneity of the Schottky barrier that could be responsible for the increase leakage current as a function of fluence.
Shigeta, Kohei; Okabayashi, Koji; Baba, Hideo; Hasegawa, Hirotoshi; Tsuruta, Masashi; Yamafuji, Kazuo; Kubochi, Kiyoshi; Kitagawa, Yuko
2016-02-01
The safety and efficacy of transanal drainage tube (TDT) placement to decrease the risk of postoperative anastomotic leakage after rectal cancer surgery has not been validated. The objective of this meta-analysis was to evaluate the usefulness of a TDT for the prevention of anastomotic leakage after an anterior resection for rectal cancer. The PubMed and Cochrane Library databases were searched for studies comparing TDT and non-TDT. The endpoint utilized in this study was defined as the rates of anastomotic leakage and re-operation. The relative effects of these variables were synthesized using Review Manager 5.1 software. Four trials including 909 participants (401 TDT cases and 508 non-TDT cases) met our inclusion criteria. The weighted mean anastomotic leakage rate was 4% [95% confidence interval (CI) 1-6%], and a significantly lower risk of anastomotic leakage was identified in the TDT group compared with the non-TDT group [odds ratio (OR) 0.30; 95% CI 0.16-0.55; p = 0.0001]. Furthermore, there were significant differences between the TDT and non-TDT groups in terms of the re-operation rate (OR 0.18; 95% CI 0.07-0.44; p = 0.0002). No significant covariates related to anastomotic leakage or re-operation were identified in meta-regression analysis. Both the anastomotic leakage and re-operation rates for all studies lay inside the 95% confidence interval boundaries. No visible publication bias was found by visual assessment of the funnel plot (Egger's test; anastomotic leakage: p = 0.056, re-operation: p = 0.681). Placement of a TDT is an effective and safe procedure that can decrease the rate of anastomotic leakage and re-operation after an anterior resection.
Low leakage current Ni/CdZnTe/In diodes for X/ γ-ray detectors
NASA Astrophysics Data System (ADS)
Sklyarchuk, V. M.; Gnatyuk, V. A.; Pecharapa, W.
2018-01-01
The electrical characteristics of the Ni/Cd1-xZnxTe/In structures with a metal-semiconductor rectifying contact are investigated. The diodes, fabricated on the base of In-doped n-type Cd1-xZnxTe (CZT) crystals with resistivity of ∼1010 Ω ṡ cm, have low leakage current and can be used as X/ γ-ray detectors. The rectifying contact was obtained by vacuum deposition of Ni on the semiconductor surface pretreated with argon plasma. The high barrier rectifying contact allowed us to increase applied reverse bias voltage up to 2500 V at the CZT crystal thickness of 1 mm. Dark (leakage) currents of the diodes with the rectifying contact area of 4 mm2 did not exceed 3-5 nA at bias voltage of 2000 V and room temperature. The charge transport mechanisms in the Ni/CZT/In structures have been interpreted as generation-recombination in the space charge region within the range of reverse bias of 5-100 V and as currents limited by space charge at both forward and reverse bias at V >100 V.
Vail, W.B. III.
1991-08-27
Methods and apparatus are provided for measuring the acoustically modulated electronic properties of geological formations and cement layers adjacent to cased boreholes. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. Voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the leakage current conducted into formation in the vicinity of those electrodes. Simultaneously subjecting the casing and formation to an acoustic source acoustically modulates the leakage current measured thereby providing a measure of the acoustically modulated electronic properties of the adjacent formation. Similarly, methods and apparatus are also described which measure the leakage current into formation while simultaneously subjecting the casing to an applied magnetic field which therefore allows measurement of the magnetically modulated electronic properties of the casing and the adjacent formation. 9 figures.
Vail, III, William B.
1991-01-01
Methods and apparatus are provided for measuring the acoustically modulated electronic properties of geological formations and cement layers adjacent to cased boreholes. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. Voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the leakage current conducted into formation in the vicinity of those electrodes. Simultaneously subjecting the casing and formation to an acoustic source acoustically modulates the leakage current measured thereby providing a measure of the acoustically modulated electronic properties of the adjacent formation. Similarly, methods and apparatus are also described which measure the leakage current into formation while simultaneously subjecting the casing to an applied magnetic field which therefore allows measurement of the magnetically modulated electronic properties of the casing and the adjacent formation.
2-D Modeling of Nanoscale MOSFETs: Non-Equilibrium Green's Function Approach
NASA Technical Reports Server (NTRS)
Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan
2001-01-01
We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions and oxide tunneling are treated on an equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. Electron-electron interaction is treated within Hartree approximation by solving NEGF and Poisson equations self-consistently. For the calculations presented here, parallelization is performed by distributing the solution of NEGF equations to various processors, energy wise. We present simulation of the "benchmark" MIT 25nm and 90nm MOSFETs and compare our results to those from the drift-diffusion simulator and the quantum-corrected results available. In the 25nm MOSFET, the channel length is less than ten times the electron wavelength, and the electron scattering time is comparable to its transit time. Our main results are: (1) Simulated drain subthreshold current characteristics are shown, where the potential profiles are calculated self-consistently by the corresponding simulation methods. The current predicted by our quantum simulation has smaller subthreshold slope of the Vg dependence which results in higher threshold voltage. (2) When gate oxide thickness is less than 2 nm, gate oxide leakage is a primary factor which determines off-current of a MOSFET (3) Using our 2-D NEGF simulator, we found several ways to drastically decrease oxide leakage current without compromising drive current. (4) Quantum mechanically calculated electron density is much smaller than the background doping density in the poly silicon gate region near oxide interface. This creates an additional effective gate voltage. Different ways to. include this effect approximately will be discussed.
NASA Astrophysics Data System (ADS)
Du, X.; Savich, G. R.; Marozas, B. T.; Wicks, G. W.
2017-02-01
The conventional processing of the III-V nBn photodetectors defines mesa devices by etching the contact n-layer and stopping immediately above the barrier, i.e., a shallow etch. This processing enables great suppression of surface leakage currents without having to explore surface passivation techniques. However, devices that are made with this processing scheme are subject to lateral diffusion currents. To address the lateral diffusion current, we compare the effects of different processing approaches and epitaxial structures of nBn detectors. The conventional solution for eliminating lateral diffusion current, a deep etch through the barrier and the absorber, creates increased dark currents and an increased device failure rate. To avoid deep etch processing, a new device structure is proposed, the inverted-nBn structure. By comparing with the conventional nBn structure, the results show that the lateral diffusion current is effectively eliminated in the inverted-nBn structure without elevating the dark currents.
Measurement and Modeling of Blocking Contacts for Cadmium Telluride Gamma Ray Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, Patrick R.
2010-01-07
Gamma ray detectors are important in national security applications, medicine, and astronomy. Semiconductor materials with high density and atomic number, such as Cadmium Telluride (CdTe), offer a small device footprint, but their performance is limited by noise at room temperature; however, improved device design can decrease detector noise by reducing leakage current. This thesis characterizes and models two unique Schottky devices: one with an argon ion sputter etch before Schottky contact deposition and one without. Analysis of current versus voltage characteristics shows that thermionic emission alone does not describe these devices. This analysis points to reverse bias generation current ormore » leakage through an inhomogeneous barrier. Modeling the devices in reverse bias with thermionic field emission and a leaky Schottky barrier yields good agreement with measurements. Also numerical modeling with a finite-element physics-based simulator suggests that reverse bias current is a combination of thermionic emission and generation. This thesis proposes further experiments to determine the correct model for reverse bias conduction. Understanding conduction mechanisms in these devices will help develop more reproducible contacts, reduce leakage current, and ultimately improve detector performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musolino, M.; Treeck, D. van, E-mail: treeck@pdi-berlin.de; Tahraoui, A.
2016-01-28
We investigated the origin of the high reverse leakage current in light emitting diodes (LEDs) based on (In,Ga)N/GaN nanowire (NW) ensembles grown by molecular beam epitaxy on Si substrates. To this end, capacitance deep level transient spectroscopy (DLTS) and temperature-dependent current-voltage (I-V) measurements were performed on a fully processed NW-LED. The DLTS measurements reveal the presence of two distinct electron traps with high concentrations in the depletion region of the p-i-n junction. These band gap states are located at energies of 570 ± 20 and 840 ± 30 meV below the conduction band minimum. The physical origin of these deep level states is discussed. Themore » temperature-dependent I-V characteristics, acquired between 83 and 403 K, show that different conduction mechanisms cause the observed leakage current. On the basis of all these results, we developed a quantitative physical model for charge transport in the reverse bias regime. By taking into account the mutual interaction of variable range hopping and electron emission from Coulombic trap states, with the latter being described by phonon-assisted tunnelling and the Poole-Frenkel effect, we can model the experimental I-V curves in the entire range of temperatures with a consistent set of parameters. Our model should be applicable to planar GaN-based LEDs as well. Furthermore, possible approaches to decrease the leakage current in NW-LEDs are proposed.« less
Development of advanced seals for space propulsion turbomachinery
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Liang, A. D.; Childs, D. W.; Proctor, M. P.
1992-01-01
Current activities in seals for space propulsion turbomachinery that the NASA Lewis Research Center sponsors are surveyed. The overall objective is to provide the designer and researcher with the concepts and the data to control seal dynamics and leakage. Included in the program are low-leakage seals, such as the brush seal, the 'ceramic rope' seal, low-leakage seals for liquid oxygen turbopumps, face seals for two phase flow, and swirl brakes for stability. Two major efforts are summarized: a seal dynamics in rotating machinery and an effort in seal code development.
First-principles study on leakage current caused by oxygen vacancies at HfO2/SiO2/Si interface
NASA Astrophysics Data System (ADS)
Takagi, Kensuke; Ono, Tomoya
2018-06-01
The relationship between the position of oxygen vacancies in HfO2/SiO2/Si gate stacks and the leakage current is studied by first-principles electronic-structure and electron-conduction calculations. We find that the increase in the leakage current due to the creation of oxygen vacancies in the HfO2 layer is much larger than that in the SiO2 interlayer. According to previous first-principles total energy calculations, the formation energy of oxygen vacancies is smaller in the SiO2 interlayer than that in the HfO2 layer under the same conditions. Therefore, oxygen vacancies will be attracted from the SiO2 interlayer to minimize the energy, thermodynamically justifying the scavenging technique. Thus, the scavenging process efficiently improves the dielectric constant of HfO2-based gate stacks without increasing the number of oxygen vacancies, which cause the dielectric breakdown.
A Comparison of Analytical and Experimental Data for a Magnetic Actuator
NASA Technical Reports Server (NTRS)
Groom, Nelson J.; Bloodgood, V. Dale, Jr.
2000-01-01
Theoretical and experimental force-displacement and force-current data are compared for two configurations of a simple horseshoe, or bipolar, magnetic actuator. One configuration utilizes permanent magnet wafers to provide a bias flux and the other configuration has no source of bias flux. The theoretical data are obtained from two analytical models of each configuration. One is an ideal analytical model which is developed under the following assumptions: (1) zero fringing and leakage flux, (2) zero actuator coil mmf loss, and (3) infinite permeability of the actuator core and suspended element flux return path. The other analytical model, called the extended model, is developed by adding loss and leakage factors to the ideal model. The values of the loss and leakage factors are calculated from experimental data. The experimental data are obtained from a magnetic actuator test fixture, which is described in detail. Results indicate that the ideal models for both configurations do not match the experimental data very well. However, except for the range around zero force, the extended models produce a good match. The best match is produced by the extended model of the configuration with permanent magnet flux bias.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goggin, L; Kilby, W; Noll, M
2015-06-15
Purpose: A technique using a scintillator-mirror-camera system to measure MLC leakage was developed to provide an efficient alternative to film dosimetry while maintaining high spatial resolution. This work describes the technique together with measurement uncertainties. Methods: Leakage measurements were made for the InCise™ MLC using the Logos XRV-2020A device. For each measurement approximately 170 leakage and background images were acquired using optimized camera settings. Average background was subtracted from each leakage frame before filtering the integrated leakage image to replace anomalous pixels. Pixel value to dose conversion was performed using a calibration image. Mean leakage was calculated within an ROImore » corresponding to the primary beam, and maximum leakage was determined by binning the image into overlapping 1mm x 1mm ROIs. 48 measurements were performed using 3 cameras and multiple MLC-linac combinations in varying beam orientations, with each compared to film dosimetry. Optical and environmental influences were also investigated. Results: Measurement time with the XRV-2020A was 8 minutes vs. 50 minutes using radiochromic film, and results were available immediately. Camera radiation exposure degraded measurement accuracy. With a relatively undamaged camera, mean leakage agreed with film measurement to ≤0.02% in 92% cases, ≤0.03% in 100% (for maximum leakage the values were 88% and 96%) relative to reference open field dose. The estimated camera lifetime over which this agreement is maintained is at least 150 measurements, and can be monitored using reference field exposures. A dependency on camera temperature was identified and a reduction in sensitivity with distance from image center due to optical distortion was characterized. Conclusion: With periodic monitoring of the degree of camera radiation damage, the XRV-2020A system can be used to measure MLC leakage. This represents a significant time saving when compared to the traditional film-based approach without any substantial reduction in accuracy.« less
Rojas, Eduardo; Taylor, Robert E.; Atwater, Illani; Bezanilla, Francisco
1969-01-01
Isolated axons from the squid, Dosidicus gigas, were internally perfused with potassium fluoride solutions. Membrane currents were measured following step changes of membrane potential in a voltage-clamp arrangement with external isosmotic solution changes in the order: potassium-free artificial seawater; potassium chloride; potassium chloride containing 10, 25, 40 or 50, mM calcium or magnesium; and potassium-free artificial seawater. The following results suggest that the currents measured under voltage clamp with potassium outside and inside can be separated into two components and that one of them, the predominant one, is carried through the potassium system. (a) Outward currents in isosmotic potassium were strongly and reversibly reduced by tetraethylammonium chloride. (b) Without calcium or magnesium a progressive increase in the nontime-dependent component of the currents (leakage) occurred. (c) The restoration of calcium or magnesium within 15–30 min decreases this leakage. (d) With 50 mM divalent ions the steady-state current-voltage curve was nonlinear with negative resistance as observed in intact axons in isosmotic potassium. (e) The time-dependent components of the membrane currents were not clearly affected by calcium or magnesium. These results show a strong dependence of the leakage currents on external calcium or magnesium concentration but provide no support for the involvement of calcium or magnesium in the kinetics of the potassium system. PMID:5823216
Rojas, E; Taylor, R E; Atwater, I; Bezanilla, F
1969-10-01
Isolated axons from the squid, Dosidicus gigas, were internally perfused with potassium fluoride solutions. Membrane currents were measured following step changes of membrane potential in a voltage-clamp arrangement with external isosmotic solution changes in the order: potassium-free artificial seawater; potassium chloride; potassium chloride containing 10, 25, 40 or 50, mM calcium or magnesium; and potassium-free artificial seawater. The following results suggest that the currents measured under voltage clamp with potassium outside and inside can be separated into two components and that one of them, the predominant one, is carried through the potassium system. (a) Outward currents in isosmotic potassium were strongly and reversibly reduced by tetraethylammonium chloride. (b) Without calcium or magnesium a progressive increase in the nontime-dependent component of the currents (leakage) occurred. (c) The restoration of calcium or magnesium within 15-30 min decreases this leakage. (d) With 50 mM divalent ions the steady-state current-voltage curve was nonlinear with negative resistance as observed in intact axons in isosmotic potassium. (e) The time-dependent components of the membrane currents were not clearly affected by calcium or magnesium. These results show a strong dependence of the leakage currents on external calcium or magnesium concentration but provide no support for the involvement of calcium or magnesium in the kinetics of the potassium system.
Lu, Qifeng; Mu, Yifei; Roberts, Joseph W.; Althobaiti, Mohammed; Dhanak, Vinod R.; Wu, Jingjin; Zhao, Chun; Zhao, Ce Zhou; Zhang, Qian; Yang, Li; Mitrovic, Ivona Z.; Taylor, Stephen; Chalker, Paul R.
2015-01-01
In this research, the hafnium titanate oxide thin films, TixHf1–xO2, with titanium contents of x = 0, 0.25, 0.9, and 1 were deposited on germanium substrates by atomic layer deposition (ALD) at 300 °C. The approximate deposition rates of 0.2 Å and 0.17 Å per cycle were obtained for titanium oxide and hafnium oxide, respectively. X-ray Photoelectron Spectroscopy (XPS) indicates the formation of GeOx and germanate at the interface. X-ray diffraction (XRD) indicates that all the thin films remain amorphous for this deposition condition. The surface roughness was analyzed using an atomic force microscope (AFM) for each sample. The electrical characterization shows very low hysteresis between ramp up and ramp down of the Capacitance-Voltage (CV) and the curves are indicative of low trap densities. A relatively large leakage current is observed and the lowest leakage current among the four samples is about 1 mA/cm2 at a bias of 0.5 V for a Ti0.9Hf0.1O2 sample. The large leakage current is partially attributed to the deterioration of the interface between Ge and TixHf1–xO2 caused by the oxidation source from HfO2. Consideration of the energy band diagrams for the different materials systems also provides a possible explanation for the observed leakage current behavior. PMID:28793705
An objective comparison of leakage between commonly used earplugs.
Alt, Jeremiah A; Collins, William O
2012-01-01
We sought to determine the efficacy of commonly used earplugs using an anatomically correct ear model. The total volume and rate of water that leaked past the earplug and subsequent defect in the tympanic membrane over separately measured 30, 60, 120, and 180-second intervals were recorded. Scenarios tested included a control with no earplug, custom molded earplug (Precision Laboratories, Orlando, FL), Mack's plug (Warren, MI), Doc's plug (Santa Cruz, CA), and cotton balls coated with petroleum jelly. All plugs tested resulted in less leakage at all time points when compared with no plug (P < .05). At 30 seconds, the custom molded, Mack's and Doc's plugs all showed significantly less leakage when compared with the cotton ball coated with petroleum jelly (P < .05). At 60, 120, and 180 seconds, Mack's, Doc's, and the cotton plugs all showed significantly less leakage compared with the customized plug (P < .05). At 120 and 180 seconds, Mack's plugs had significant less leakage than the cotton plug (P < .05). Among the types of plugs, the molded variety (Mack's) showed the least volume and lowest leakage rate (f(4,45) = 94 [P < .001]). In addition, Doc's and cotton balls coated with petroleum jelly were more effective than the customized earplugs. If the clinician feels that middle ear and external canal water exposure should be minimized, then use of earplugs, particularly the moldable variety, merits further consideration. Copyright © 2012 Elsevier Inc. All rights reserved.
Morrison, L M; McCrae, A F; Foo, I; Scott, D B; Wildsmith, J A
1996-01-01
The study was designed to evaluate the influence of needle size and design on the rate of leakage following dural puncture. An in vitro model and fresh human lumbar dura were used to examine the rate of fluid leakage after puncture with Sprotte (24-gauge and 26-gauge), Atraucan (24-gauge and 26-gauge), Quincke (26-gauge and 29-gauge), and Whitacre (22-gauge and 25-gauge) needles. The study confirmed that finer-gauge needles tend to produce less leakage and that traditional Quincke pattern bevels result in greater leakage than pencil-point designs of the same diameter. The comparably low leakage rate produced by the Atraucan, a new needle with a terminal opening, suggests that this needle is worthy of further clinical evaluation.
What electrical measurements can say about changes in fault systems.
Madden, T R; Mackie, R L
1996-01-01
Earthquake zones in the upper crust are usually more conductive than the surrounding rocks, and electrical geophysical measurements can be used to map these zones. Magnetotelluric (MT) measurements across fault zones that are parallel to the coast and not too far away can also give some important information about the lower crustal zone. This is because the long-period electric currents coming from the ocean gradually leak into the mantle, but the lower crust is usually very resistive and very little leakage takes place. If a lower crustal zone is less resistive it will be a leakage zone, and this can be seen because the MT phase will change as the ocean currents leave the upper crust. The San Andreas Fault is parallel to the ocean boundary and close enough to have a lot of extra ocean currents crossing the zone. The Loma Prieta zone, after the earthquake, showed a lot of ocean electric current leakage, suggesting that the lower crust under the fault zone was much more conductive than normal. It is hard to believe that water, which is responsible for the conductivity, had time to get into the lower crustal zone, so it was probably always there, but not well connected. If this is true, then the poorly connected water would be at a pressure close to the rock pressure, and it may play a role in modifying the fluid pressure in the upper crust fault zone. We also have telluric measurements across the San Andreas Fault near Palmdale from 1979 to 1990, and beginning in 1985 we saw changes in the telluric signals on the fault zone and east of the fault zone compared with the signals west of the fault zone. These measurements were probably seeing a better connection of the lower crust fluids taking place, and this may result in a fluid flow from the lower crust to the upper crust. This could be a factor in changing the strength of the upper crust fault zone. PMID:11607664
Arora, Sheen Juneja; Arora, Aman; Upadhyaya, Viram; Jain, Shilpi
2016-01-01
As, the longevity of provisional restorations is related to, a perfect adaptation and a strong, long-term union between restoration and teeth structures, therefore, evaluation of marginal leakage of provisional restorative materials luted with cements using the standardized procedures is essential. To compare the marginal leakage of the provisional crowns fabricated from Autopolymerizing acrylic resin crowns and bisphenol A-glycidyl dimethacrylate (BIS-GMA) resin crowns. To compare the marginal leakage of the provisional crowns fabricated from autopolymerizing acrylic resin crowns and BIS-GMA resin crowns cemented with different temporary luting cements. To compare the marginal leakage of the provisional crowns fabricated from autopolymerizing acrylic resin (SC-10) crowns cemented with different temporary luting cements. To compare the marginal leakage of the provisional crowns fabricated from BIS-GMA resin crowns (Protemp 4) cemented with different temporary luting cements. Freshly extracted 60 maxillary premolars of approximately similar dimensions were mounted in dental plaster. Tooth reduction with shoulder margin was planned to use a customized handpiece-holding jig. Provisional crowns were prepared using the wax pattern fabricated from computer aided designing/computer aided manufacturing milling machine following the tooth preparation. Sixty provisional crowns were made, thirty each of SC-10 and Protemp 4 and were then cemented with three different luting cements. Specimens were thermocycled, submerged in a 2% methylene blue solution, then sectioned and observed under a stereomicroscope for the evaluation of marginal microleakage. A five-level scale was used to score dye penetration in the tooth/cement interface and the results of this study was analyzed using the Chi-square test, Mann-Whitney U-test, Kruskal-Wallis H-test and the results were statistically significant P < 0.05 the power of study - 80%. Marginal leakage was significant in both provisional crowns cemented with three different luting cements along the axial walls of teeth (P < 0.05) confidence interval - 95%. The temporary cements with eugenol showed more microleakage than those without eugenol. SC-10 crowns showed more microleakage compared to Protemp 4 crowns. SC-10 crowns cemented with Kalzinol showed maximum microleakage and Protemp 4 crowns cemented with HY bond showed least microleakage.
High tie versus low tie of the inferior mesenteric artery in colorectal cancer: A meta-analysis.
Yang, Yafan; Wang, Guiying; He, Jingli; Zhang, Jianfeng; Xi, Jinchuan; Wang, Feifei
2018-04-01
Colorectal cancer surgery includes "high tie" and "low tie"of the inferior mesenteric artery(IMA). However, different ligation level is closely related to the blood supply of anastomosis, which may increase the leakage rate, and it is unclear which technique confers a lower anastomotic leakage rate(AL) and survival advantage. To compare the effectiveness and impact of inferior mesenteric artery (IMA) high ligation versus IMA low ligation on anastomotic leakage, lymph nodes yield rates and 5-year survival. A list of these studies, published in English from 1990 to 2017, was obtained independently by two reviewers from databases such as PubMed, Medline, ScienceDirect and Web of Science. Anastomotic leakage rate, the yield of lymph nodes and 5-year survival were compared using Review Manager 5.3. There was no significant difference in anastomotic leakage, number of lymph nodes retrieved and 5-year survival rate for both techniques. Neither the high tie nor the low tie strategy has an evidence in terms of anastomotic leakage rate, harvested lymph nodes, and the 5-year survival rate. Further RCT is needed. Copyright © 2018 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.
Ma, Jun-Yong; Li, Xi-Feng; Yan, Zhen-Lin; Hasan, Mohammad Mahboob; Wang, Kui; Wang, Yu; Wang, Wen-Chao; Yan, Qiang; Shen, Feng; Shi, Le-Hua; Zhang, Xiao-Feng
2017-01-01
To explore the possibility and feasibility of hepatic portal reocclusion for detecting bile leakage during hepatectomy. Data were prospectively collected from 200 patients who underwent hepatectomy alone for removal of various benign or malignant tumors between March 2014 and November 2014. The surgical procedure used a conventional method for all patients, and one additional step (hepatic portal reocclusion) was included in group B. The postoperative outcomes of the patients in group A (subjected to the traditional procedure) and group B (subjected to hepatic portal reocclusion) were compared during the same period, and the incidence rates of postoperative bile leakage and other complications in the 2 groups were also analyzed. The incidence of postoperative bile leakage in group B was significantly lower than that in group A (1.0 vs. 9.2%, p = 0.009), although no significant differences in postoperative indicators of liver dysfunction and other complications were observed between the 2 groups (p > 0.05). Hepatic portal reocclusion effectively reduced the incidence of bile leakage compared to the traditional procedure, without significantly affecting liver function. Therefore, this method might be an alternative to other tests for bile leakage. © 2016 S. Karger AG, Basel.
All-ion-implanted planar-gate current aperture vertical Ga2O3 MOSFETs with Mg-doped blocking layer
NASA Astrophysics Data System (ADS)
Wong, Man Hoi; Goto, Ken; Morikawa, Yoji; Kuramata, Akito; Yamakoshi, Shigenobu; Murakami, Hisashi; Kumagai, Yoshinao; Higashiwaki, Masataka
2018-06-01
A vertical β-Ga2O3 metal–oxide–semiconductor field-effect transistor featuring a planar-gate architecture is presented. The device was fabricated by an all-ion-implanted process without requiring trench etching or epitaxial regrowth. A Mg-ion-implanted current blocking layer (CBL) provided electrical isolation between the source and the drain except at an aperture opening through which drain current was conducted. Successful transistor action was realized by gating a Si-ion-implanted channel above the CBL. Thermal diffusion of Mg induced a large source–drain leakage current through the CBL, which resulted in compromised off-state device characteristics as well as a reduced peak extrinsic transconductance compared with the results of simulations.
High temperature NASP engine seals: A technology review
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Dellacorte, Christopher; Tong, Mike
1991-01-01
Progress in developing advanced high temperature engine seal concepts and related sealing technologies for advanced hypersonic engines are reviewed. Design attributes and issues requiring further development for both the ceramic wafer seal and the braided ceramic rope seal are examined. Leakage data are presented for these seals for engine simulated pressure and temperature conditions and compared to a target leakage limit. Basic elements of leakage flow models to predict leakage rates for each of these seals over the wide range of pressure and temperature conditions anticipated in the engine are also presented.
Calculating ground water transit time of horizontal flow through leaky aquifers.
Braunsfurth, Angelika C; Schneider, Wilfried
2008-01-01
The calculation of ground water transit times is one important factor in ground water protection. In this paper, we present an analytical solution for the transit time for a Dupuit-type flow system applicable to saturated flow through a horizontal leaky aquifer discharging to a downgradient fixed-head boundary under steady-state conditions. We investigate the influence of leakage when comparing the resulting travel times of our model based on head-dependent leakage with the commonly used model with no leakage and a simplified model with constant leakage. The results show significant differences in the position of the water divide and transit time, suggesting that leakage cannot be ignored.
Electrical leakage detection circuit
Wild, Arthur
2006-09-05
A method is provided for detecting electrical leakage between a power supply and a frame of a vehicle or machine. The disclosed method includes coupling a first capacitor between a frame and a first terminal of a power supply for a predetermined period of time. The current flowing between the frame and the first capacitor is limited to a predetermined current limit. It is determined whether the voltage across the first capacitor exceeds a threshold voltage. A first output signal is provided when the voltage across the capacitor exceeds the threshold voltage.
NASA Astrophysics Data System (ADS)
Wang, Xiao; Zhang, Tian-Bao; Yang, Wen; Zhu, Hao; Chen, Lin; Sun, Qing-Qing; Zhang, David Wei
2017-01-01
The effective and high-quality integration of high-k dielectrics on two-dimensional (2D) crystals is essential to the device structure engineering and performance improvement of field-effect transistor (FET) based on the 2D semiconductors. We report a 2D MoS2 transistor with ultra-thin Al2O3 top-gate dielectric (6.1 nm) and extremely low leakage current. Remote forming gas plasma pretreatment was carried out prior to the atomic layer deposition, providing nucleation sites with the physically adsorbed ions on the MoS2 surface. The top gate MoS2 FET exhibited excellent electrical performance, including high on/off current ratio over 109, subthreshold swing of 85 mV/decade and field-effect mobility of 45.03 cm2/V s. Top gate leakage current less than 0.08 pA/μm2 at 4 MV/cm has been obtained, which is the smallest compared with the reported top-gated MoS2 transistors. Such an optimized integration of high-k dielectric in 2D semiconductor FET with enhanced performance is very attractive, and it paves the way towards the realization of more advanced 2D nanoelectronic devices and integrated circuits.
Investigation of low leakage current radiation detectors on n-type 4H-SiC epitaxial layers
NASA Astrophysics Data System (ADS)
Nguyen, Khai V.; Chaudhuri, Sandeep K.; Mandal, Krishna C.
2014-09-01
The surface leakage current of high-resolution 4H-SiC epitaxial layer Schottky barrier detectors has been improved significantly after surface passivations of 4H-SiC epitaxial layers. Thin (nanometer range) layers of silicon dioxide (SiO2) and silicon nitride (Si3N4) were deposited on 4H-SiC epitaxial layers using plasma enhanced chemical vapor deposition (PECVD) on 20 μm thick n-type 4H-SiC epitaxial layers followed by the fabrication of large area (~12 mm2) Schottky barrier radiation detectors. The fabricated detectors have been characterized through current-voltage (I-V), capacitance-voltage (C-V), and alpha pulse height spectroscopy measurements; the results were compared with that of detectors fabricated without surface passivations. Improved energy resolution of ~ 0.4% for 5486 keV alpha particles was observed after passivation, and it was found that the performance of these detectors were limited by the presence of macroscopic and microscopic crystal defects affecting the charge transport properties adversely. Capacitance mode deep level transient studies (DLTS) revealed the presence of a titanium impurity related shallow level defects (Ec-0.19 eV), and two deep level defects identified as Z1/2 and Ci1 located at Ec-0.62 and ~ Ec-1.40 eV respectively.
NASA Astrophysics Data System (ADS)
Samanta, Piyas
2017-10-01
The conduction mechanism of gate leakage current through thermally grown silicon dioxide (SiO2) films on (100) p-type silicon has been investigated in detail under negative bias on the degenerately doped n-type polysilicon (n+-polySi) gate. The analysis utilizes the measured gate current density J G at high oxide fields E ox in 5.4 to 12 nm thick SiO2 films between 25 and 300 °C. The leakage current measured up to 300 °C was due to Fowler-Nordheim (FN) tunneling of electrons from the accumulated n +-polySi gate in conjunction with Poole Frenkel (PF) emission of trapped-electrons from the electron traps located at energy levels ranging from 0.6 to 1.12 eV (depending on the oxide thickness) below the SiO2 conduction band (CB). It was observed that PF emission current I PF dominates FN electron tunneling current I FN at oxide electric fields E ox between 6 and 10 MV/cm and throughout the temperature range studied here. Understanding of the mechanism of leakage current conduction through SiO2 films plays a crucial role in simulation of time-dependent dielectric breakdown (TDDB) of metaloxide-semiconductor (MOS) devices and to precisely predict the normal operating field or applied gate voltage for lifetime projection of the MOS integrated circuits.
Oberg, K.A.; Schmidt, A.R.
1994-01-01
A total of 213 measurements of leakage were made at three control structures near Chicago, Ill.--the Chicago River Controlling Works (CRCW), Thomas J. O'Brien Lock and Dam (O'Brien), and Wilmette Pumping Station (Wilmette)--using acoustic Doppler current profilers (ADCP's) and dye-dilution techniques. The CRCW consists of the Chicago Lock and two sets of sluice gates connected by a network of harbor walls. Leakage measurements were made in April, May, July, September, and October 1993 using an ADCP. The mean and standard deviation of leakage measured by the ADCP for the Chicago Lock river gate were 133 and 39 cubic feet per second, respectively. The mean and standard deviation of the leakage measurements at CRCW were 204 and 70 cubic feet per second, respectively. The mean and standard deviation of leakage measurements at O'Brien on September 17, 1993, were 21 and 10 cubic feet per second, respectively. The mean and standard deviation leakage measured at Wilmette using the ADCP were 59 and 8 cubic feet per second, respectively, in April 1993. After the pump bays at Wilmette were sealed in July 1993, the leakage dropped to less than 15 cubic feet per second in September 1993. Discharge estimated by dye-dilution at the Chicago Lock on July 15, 1993, was 160 cubic feet per second, or within 8 percent of the discharge measured with the ADCP. (USGS)
The influence of stripe width on the threshold current of double-heterojunction lasers
NASA Technical Reports Server (NTRS)
Ladany, I.
1977-01-01
Experimental measurements of the threshold current of oxide-isolated stripe laser as a function of stripe width and p-layer resistivity are presented. A calculation of the influence of carrier outdiffusion has been made, including the effect of current leakage beyond the stripe edges. The calculated threshold increase is in substantial agreement with experiment for stripe widths down to about 10 microns. The data also yield an effective diffusion length of about 7 microns for the lasers studied. Deviations between experimental and calculated thresholds occurring at stripe widths of 4-6 microns are represented by an empirical curve which is compared with previously published calculations of threshold gain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lingyan, E-mail: l.y.wang@mail.xjtu.edu.cn, E-mail: wren@mail.xjtu.edu.cn; Ren, Wei, E-mail: l.y.wang@mail.xjtu.edu.cn, E-mail: wren@mail.xjtu.edu.cn; Shi, Peng
Lead-free ferroelectric un-doped and doped K{sub 0.5}Na{sub 0.5}NbO{sub 3} (KNN) films with different amounts of manganese (Mn) were prepared by a chemical solution deposition method. The thicknesses of all films are about 1.6 μm. Their phase, microstructure, leakage current behavior, and electrical properties were investigated. With increasing the amounts of Mn, the crystallinity became worse. Fortunately, the electrical properties were improved due to the decreased leakage current density after Mn-doping. The study on leakage behaviors shows that the dominant conduction mechanism at low electric field in the un-doped KNN film is ohmic mode and that at high electric field is space-charge-limitedmore » and Pool-Frenkel emission. After Mn doping, the dominant conduction mechanism at high electric field of KNN films changed single space-charge-limited. However, the introduction of higher amount of Mn into the KNN film would lead to a changed conduction mechanism from space-charge-limited to ohmic mode. Consequently, there exists an optimal amount of Mn doping of 2.0 mol. %. The 2.0 mol. % Mn doped KNN film shows the lowest leakage current density and the best electrical properties. With the secondary ion mass spectroscopies and x-ray photoelectron spectroscopy analyses, the homogeneous distribution in the KNN films and entrance of Mn element in the lattice of KNN perovskite structure were also confirmed.« less
Performance and Reliability of Solid Tantalum Capacitors at Cryogenic Conditions
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander
2006-01-01
Performance of different types of solid tantalum capacitors was evaluated at room and low temperatures, down to 15 K. The effect of temperature on frequency dependencies of capacitance, effective series resistances (ESR), leakage currents, and breakdown voltages has been investigated and analyzed. To assess thermo-mechanical robustness of the parts, several groups of loose capacitors and those soldered on FR4 boards were subjected to multiple (up to 500) temperature cycles between room temperature and 77 K. Experiments and mathematical modeling have shown that degradation in tantalum capacitors at low temperatures is mostly due to increasing resistance of the manganese cathode layer, resulting in substantial decrease of the roll-off frequency. Absorption currents follow a power law, I approximately t(sup -m), with the exponent m varying from 0.8 to 1.1. These currents do not change significantly at cryogenic conditions and the value of the exponent remains the same down to 15 K. Variations of leakage currents with voltage can be described by Pool-Frenkel and Schottky mechanisms of conductivity, with the Schottky mechanism prevailing at cryogenic conditions. Breakdown voltages of tantalum capacitors increase and the probability of scintillations decreases at cryogenic temperatures. However, breakdown voltages measured during surge current testing decrease at liquid nitrogen (LN) compared to room-temperature conditions. Results of temperature cycling suggest that tantalum capacitors are capable of withstanding multiple exposures to cryogenic conditions, but the probability of failures varies for different part types.
Leakage effects in n-GaAs MESFET with n-GaAs buffer layer
NASA Technical Reports Server (NTRS)
Wang, Y. C.; Bahrami, M.
1983-01-01
Whereas improvement of the interface between the active layer and the buffer layer has been demonstrated, the leakage effects can be important if the buffer layer resistivity is not sufficiently high and/or the buffer layer thickness is not sufficiently small. It was found that two buffer leakage currents exist from the channel under the gate to the source and from drain to the channel in addition to the buffer leakage resistance between drain and source. It is shown that for a 1 micron gate-length n-GaAs MESFET, if the buffer layer resistivity is 12 OHM-CM and the buffer layer thickness h is 2 microns, the performance of the device degrades drastically. It is suggested that h should be below 2 microns.
Impact of leakage delay on bifurcation in high-order fractional BAM neural networks.
Huang, Chengdai; Cao, Jinde
2018-02-01
The effects of leakage delay on the dynamics of neural networks with integer-order have lately been received considerable attention. It has been confirmed that fractional neural networks more appropriately uncover the dynamical properties of neural networks, but the results of fractional neural networks with leakage delay are relatively few. This paper primarily concentrates on the issue of bifurcation for high-order fractional bidirectional associative memory(BAM) neural networks involving leakage delay. The first attempt is made to tackle the stability and bifurcation of high-order fractional BAM neural networks with time delay in leakage terms in this paper. The conditions for the appearance of bifurcation for the proposed systems with leakage delay are firstly established by adopting time delay as a bifurcation parameter. Then, the bifurcation criteria of such system without leakage delay are successfully acquired. Comparative analysis wondrously detects that the stability performance of the proposed high-order fractional neural networks is critically weakened by leakage delay, they cannot be overlooked. Numerical examples are ultimately exhibited to attest the efficiency of the theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cho, Ji Young; Chan, Chee Keong; Lee, Sang-Ho; Choi, Won-Chul; Maeng, Dae Hyeon; Lee, Ho-Yeon
2012-06-01
Retrospective review To determine the efficacy of management of cerebrospinal fluid (CSF) leakage after the anterior thoracic approach. CSF leakage after incidental durotomy commonly occurs after anterior thoracic ossification of posterior longitudinal ligament (OPLL) surgery. Pseudomeningocele will invariably form under such circumstances. Among them, uncontrolled CSF leakage with a fistulous condition is problematic. As a solution, we have managed these durotomies with chest drains alone without any CSF drainage by the concept of a "volume-controlled pseudomeningocele." Between 2001 and 2009, CSF leakage occurred in 26 patients (37.7%) of the total 69 patients who underwent anterior decompression for thoracic OPLL. In the initial 11 cases, subarachnoid drainage was utilized as an augmentive measure in combination with chest tube drainage in the postoperative period (group A). In the subsequent 15 cases, the durotomy was managed in a similar manner but in the absence of any subarachnoid drainage (group B). Various parameters such as the duration of postoperative hospital stay, clinical outcome score, drainage output, resolution of CSF leakage, complications, and additional surgery performed were analyzed and compared between the 2 groups. A resolution of the CSF leakage grading system was also proposed for the residual pseudomeningocele that formed in each group. There were statistically no significant differences in the outcome parameters between the 2 groups and also in patients with grade I or grade II residual pseudomeningocele of the new grading system. Two complications occurred in group A. No reexploration for persistent CSF leakage was required in both groups. CSF leakage managed with controlled chest tube drainage can produce a comparable result with those with additional subarachnoid drainage when watertight dural repair is impossible. The concept of controlled pseudomeningocele may be a useful and practical technique for the treatment of CSF leakage after anterior thoracic OPLL surgery.
Proton irradiation of CVD diamond detectors for high-luminosity experiments at the LHC
NASA Astrophysics Data System (ADS)
Meier, D.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Foulon, F.; Friedl, M.; Jany, C.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Knöpfle, K. T.; Krammer, M.; Manfredi, P. F.; Marshall, R. D.; Mishina, M.; Le Normand, F.; Pan, L. S.; Palmieri, V. G.; Pernegger, H.; Pernicka, M.; Peitz, A.; Pirollo, S.; Pretzl, K.; Re, V.; Riester, J. L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R. J.; Tesarek, R.; Thomson, G. B.; Trawick, M.; Trischuk, W.; Turchetta, R.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; Ziock, H.; Zoeller, M.; RD42 Collaboration
1999-04-01
CVD diamond shows promising properties for use as a position-sensitive detector for experiments in the highest radiation areas at the Large Hadron Collider. In order to study the radiation hardness of diamond we exposed CVD diamond detector samples to 24 Gev/ c and 500 Mev protons up to a fluence of 5×10 15 p/cm 2. We measured the charge collection distance, the average distance electron-hole pairs move apart in an external electric field, and leakage currents before, during, and after irradiation. The charge collection distance remains unchanged up to 1×10 15 p/cm 2 and decreases by ≈40% at 5×10 15 p/cm 2. Leakage currents of diamond samples were below 1 pA before and after irradiation. The particle-induced currents during irradiation correlate well with the proton flux. In contrast to diamond, a silicon diode, which was irradiated for comparison, shows the known large increase in leakage current. We conclude that CVD diamond detectors are radiation hard to 24 GeV/ c and 500 MeV protons up to at least 1×10 15p/cm 2 without signal loss.
Martin, Douglas J; Rad, Arash Ehteshami; Kallmes, David F
2012-06-01
Reported incidence of extravertebral cement leakage after vertebroplasty varies widely across studies. To retrospectively compare the relative detection rates of extravertebral leakage noted under intra-procedural fluoroscopic surveillance, postprocedure plain radiographs, and postprocedure computed tomography (CT) in a cohort of patients undergoing vertebroplasty. With IRB approval, we retrospectively identified 181 patients with 277 levels treated with percutaneous vertebroplasty among a total of 1255 patients undergoing vertebroplasty between 1999 and 2010 who had subsequently undergone a CT examination that included the treated level(s). Categories of leakage were paravertebral, end plate, epidural, and prevertebral venous leakage. CT-detected leak rates were then compared to those noted on the vertebroplasty procedure reports and the archived fluoroscopic images for this same cohort using Pearson's χ(2) test. One hundred and forty-nine (82%, 95% CI 76-87%) of 181 patients demonstrated evidence of some type of leakage on CT at one or more treated levels. Sixty-two (34%, 95% CI 28-42%) and seventy-seven (50%, 95% CI 43-57%) of 149 CT-detected leaks were reported in the procedural dictation or detected on plain radiography (P = 0.01 and 0.006, respectively). The most common type of leakage noted on CT was end plate (n = 81, 45%, 95% CI 38-52%), followed by paravertebral (n = 64, 35%, 95% CI 29-43%), epidural (n = 36, 20%, 95% CI 15-26%), and prevertebral venous (n = 32, 18%, 95% CI 13-24%). Cement leakage after vertebroplasty is common and is often not reported by operators in procedural dictations. CT detects substantially more leaks than plain radiography.
Efficacy and safety of fibrin sealant patch in the treatment of air leakage in thoracic surgery.
Lopez, C; Facciolo, F; Lequaglie, C; Rendina, E A; Saita, S; Dell'Amore, D; Sollitto, F; Urciuoli, G; Loizzi, M; Cisternino, M L; Granone, P; Angelelli, A; Cardillo, G; Mucilli, F; Di Rienzo, G
2013-12-01
Air leakage represents a major problem in lung surgery. Absorbable fibrin sealant patch (AFSP), a collagen sponge coated with human fibrinogen and thrombin, can be used as an adjunct to primary stapling or suturing. This study compared the efficacy of AFSP with manual suturing after primary stapling. This was a prospective, multicenter, randomized study. Patients undergoing lobectomy, bilobectomy, anatomical segmentectomy for lung cancer or wedge resection for pulmonary metastasis with air leakage grade 1 or 2 according to Macchiarini scale after stapler suture were randomized to receive AFSP or standard surgical treatment (ST). The primary endpoint was the reduction of intraoperative air leakage intensity. Duration of postoperative air leakage and number of days until removal of last chest drain were secondary endpoints. Safety was recorded for all patients. A total of 346 patients were enrolled in 14 centres, 179 of whom received AFSP and 167 ST. Intraoperative air leak intensity was reduced in 90.5% of AFSP patients and 82% of ST patients (P=0.03). A significant reduction in postoperative air leakage duration was observed in the AFSP group (P=0.0437). The median number of days until removal of last drainage was 6 (3-37) in the AFSP group and 7 (2-27) in the ST (P=0.38). Occurrence of adverse events was comparable in both groups. AFSP was more efficacious than standard ST as an adjunct to primary stapling in reducing intraoperative air leakage intensity and duration of postoperative air leakage in patients undergoing pulmonary surgery. AFSP was well tolerated.
NASA Astrophysics Data System (ADS)
Dogmus, Ezgi; Zegaoui, Malek; Medjdoub, Farid
2018-03-01
We report on extremely low off-state leakage current in AlGaN/GaN-on-silicon metal–insulator–semiconductor high-electron-mobility transistors (MISHEMTs) up to a high blocking voltage. Remarkably low off-state gate and drain leakage currents below 1 µA/mm up to 3 kV have been achieved owing to the use of a thick in situ SiN gate dielectric under the gate, and a local Si substrate removal technique combined with a cost effective 15-µm-thick AlN dielectric layer followed by a Cu deposition. This result establishes a manufacturable state-of-the-art high-voltage GaN-on-silicon power transistors while maintaining a low specific on-resistance of approximately 10 mΩ·cm2.
Leakage and field emission in side-gate graphene field effect transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Bartolomeo, A., E-mail: dibant@sa.infn.it; Iemmo, L.; Romeo, F.
We fabricate planar graphene field-effect transistors with self-aligned side-gate at 100 nm from the 500 nm wide graphene conductive channel, using a single lithographic step. We demonstrate side-gating below 1 V with conductance modulation of 35% and transconductance up to 0.5 mS/mm at 10 mV drain bias. We measure the planar leakage along the SiO{sub 2}/vacuum gate dielectric over a wide voltage range, reporting rapidly growing current above 15 V. We unveil the microscopic mechanisms driving the leakage, as Frenkel-Poole transport through SiO{sub 2} up to the activation of Fowler-Nordheim tunneling in vacuum, which becomes dominant at higher voltages. We report a field-emission current densitymore » as high as 1 μA/μm between graphene flakes. These findings are important for the miniaturization of atomically thin devices.« less
NASA Astrophysics Data System (ADS)
Kiyota, Yuji; Itaka, Kenji; Iwashita, Yuta; Adachi, Tetsuya; Chikyow, Toyohiro; Ogura, Atsushi
2011-06-01
We investigated zirconia (ZrO2)-based material libraries in search of new dielectric materials for dynamic random-access memory (DRAM) by combinatorial-pulsed laser deposition (combi-PLD). We found that the substitution of yttrium (Y) to Zr sites in the ZrO2 system suppressed the leakage current effectively. The metal-insulator-metal (MIM) capacitor property of this system showed a leakage current density of less than 5×10-7 A/cm2 and the dielectric constant was 20. Moreover, the addition of titanium (Ti) or tantalum (Ta) to this system caused the dielectric constant to increase to ˜25 within the allowed leakage level of 5×10-7 A/cm2. Therefore, Zr-Y-Ti-O and Zr-Y-Ta-O systems have good potentials for use as new materials with high dielectric constants of DRAM capacitors instead of silicon dioxides (SiO2).
NASA Astrophysics Data System (ADS)
Meng, Xiao; Wang, Lai; Hao, Zhibiao; Luo, Yi; Sun, Changzheng; Han, Yanjun; Xiong, Bing; Wang, Jian; Li, Hongtao
2016-01-01
Efficiency droop is currently one of the most popular research problems for GaN-based light-emitting diodes (LEDs). In this work, a differential carrier lifetime measurement system is optimized to accurately determine carrier lifetimes (τ) of blue and green LEDs under different injection current (I). By fitting the τ-I curves and the efficiency droop curves of the LEDs according to the ABC carrier rate equation model, the impact of Auger recombination and carrier leakage on efficiency droop can be characterized simultaneously. For the samples used in this work, it is found that the experimental τ-I curves cannot be described by Auger recombination alone. Instead, satisfactory fitting results are obtained by taking both carrier leakage and carriers delocalization into account, which implies carrier leakage plays a more significant role in efficiency droop at high injection level.
Leakage current behavior in lead-free ferroelectric (K,Na)NbO3-LiTaO3-LiSbO3 thin films
NASA Astrophysics Data System (ADS)
Abazari, M.; Safari, A.
2010-12-01
Conduction mechanisms in epitaxial (001)-oriented pure and 1 mol % Mn-doped (K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.1,Sb0.06)O3 (KNN-LT-LS) thin films on SrTiO3 substrate were investigated. Temperature dependence of leakage current density was measured as a function of applied electric field in the range of 200-380 K. It was shown that the different transport mechanisms dominate in pure and Mn-doped thin films. In pure (KNN-LT-LS) thin films, Poole-Frenkel emission was found to be responsible for the leakage, while Schottky emission was the dominant mechanism in Mn-doped thin films at higher electric fields. This is a remarkable yet clear indication of effect of 1 mol % Mn on the resistive behavior of such thin films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popovici, M., E-mail: Mihaela.Ioana.Popovici@imec.be; Swerts, J.; Redolfi, A.
2014-02-24
Improved metal-insulator-metal capacitor (MIMCAP) stacks with strontium titanate (STO) as dielectric sandwiched between Ru as top and bottom electrode are shown. The Ru/STO/Ru stack demonstrates clearly its potential to reach sub-20 nm technology nodes for dynamic random access memory. Downscaling of the equivalent oxide thickness, leakage current density (J{sub g}) of the MIMCAPs, and physical thickness of the STO have been realized by control of the Sr/Ti ratio and grain size using a heterogeneous TiO{sub 2}/STO based nanolaminate stack deposition and a two-step crystallization anneal. Replacement of TiN with Ru as both top and bottom electrodes reduces the amount of electricallymore » active defects and is essential to achieve a low leakage current in the MIM capacitor.« less
Ehlers, Justis P.; Wang, Kevin; Vasanji, Amit; Hu, Ming; Srivastava, Sunil K.
2017-01-01
Summary Ultra-widefield fluorescein angiography (UWFA) is an emerging imaging modality used to characterize pathology in the retinal vasculature such as microaneurysms (MA) and vascular leakage. Despites its potential value for diagnosis and disease surveillance, objective quantitative assessment of retinal pathology by UWFA is currently limited because it requires laborious manual segmentation by trained human graders. In this report, we describe a novel fully automated software platform, which segments MAs and leakage areas in native and dewarped UWFA images with retinal vascular disease. Comparison of the algorithm to human grader generated gold standards demonstrated significant strong correlations for MA and leakage areas (ICC=0.78-0.87 and ICC=0.70-0.86, respectively, p=2.1×10-7 to 3.5×10-10 and p=7.8×10-6 to 1.3×10-9, respectively). These results suggest the algorithm performs similarly to human graders in MA and leakage segmentation and may be of significant utility in clinical and research settings. PMID:28432113
King, M. P.; Wu, X.; Eller, Manfred; ...
2016-12-07
Here, total ionizing dose results are provided, showing the effects of different threshold adjust implant processes and irradiation bias conditions of 14-nm FinFETs. Minimal radiation-induced threshold voltage shift across a variety of transistor types is observed. Off-state leakage current of nMOSFET transistors exhibits a strong gate bias dependence, indicating electrostatic gate control of the sub-fin region and the corresponding parasitic conduction path are the largest concern for radiation hardness in FinFET technology. The high-Vth transistors exhibit the best irradiation performance across all bias conditions, showing a reasonably small change in off-state leakage current and Vth, while the low-Vth transistors exhibitmore » a larger change in off-state leakage current. The “worst-case” bias condition during irradiation for both pull-down and pass-gate nMOSFETs in static random access memory is determined to be the on-state (Vgs = Vdd). We find the nMOSFET pull-down and pass-gate transistors of the SRAM bit-cell show less radiation-induced degradation due to transistor geometry and channel doping differences than the low-Vth transistor. Near-threshold operation is presented as a methodology for reducing radiation-induced increases in off-state device leakage current. In a 14-nm FinFET technology, the modeling indicates devices with high channel stop doping show the most robust response to TID allowing stable operation of ring oscillators and the SRAM bit-cell with minimal shift in critical operating characteristics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, M. P.; Wu, X.; Eller, Manfred
Here, total ionizing dose results are provided, showing the effects of different threshold adjust implant processes and irradiation bias conditions of 14-nm FinFETs. Minimal radiation-induced threshold voltage shift across a variety of transistor types is observed. Off-state leakage current of nMOSFET transistors exhibits a strong gate bias dependence, indicating electrostatic gate control of the sub-fin region and the corresponding parasitic conduction path are the largest concern for radiation hardness in FinFET technology. The high-Vth transistors exhibit the best irradiation performance across all bias conditions, showing a reasonably small change in off-state leakage current and Vth, while the low-Vth transistors exhibitmore » a larger change in off-state leakage current. The “worst-case” bias condition during irradiation for both pull-down and pass-gate nMOSFETs in static random access memory is determined to be the on-state (Vgs = Vdd). We find the nMOSFET pull-down and pass-gate transistors of the SRAM bit-cell show less radiation-induced degradation due to transistor geometry and channel doping differences than the low-Vth transistor. Near-threshold operation is presented as a methodology for reducing radiation-induced increases in off-state device leakage current. In a 14-nm FinFET technology, the modeling indicates devices with high channel stop doping show the most robust response to TID allowing stable operation of ring oscillators and the SRAM bit-cell with minimal shift in critical operating characteristics.« less
Measurements and sensitivities of LWR in poly spacers
NASA Astrophysics Data System (ADS)
Ayal, Guy; Shauly, Eitan; Levi, Shimon; Siany, Amit; Adan, Ofer; Shacham-Diamand, Yosi
2010-03-01
LER and LWR have long been considered a primary issue in process development and monitoring. Development of a low power process flavors emphasizes the effect of LER, LWR on different aspects of the device. Gate level performance, particularly leakage current at the front end of line, resistance and reliability in the back-end layers. Traditionally as can be seen in many publications, for the front end of line the focus is mainly on Poly and Active area layers. Poly spacers contribution to the gate leakage, for example, is rarely discussed. Following our research done on sources of gate leakage, we found leakage current (Ioff) in some processes to be highly sensitive to changes in the width of the Poly spacers - even more strongly to the actual Poly gate CDs. Therefore we decided to measure Poly spacers LWR, its correlation to the LWR in the poly, and its sensitivity to changes in layout and OPC. In our last year publication, we defined the terms LLER (Local Line Edge Roughness) and LLWR (Local Line Width Roughness). The local roughness is measured as the 3-sigma value of the line edge/width in a 5-nm segment around the measurement point. We will use these terms in this paper to evaluate the Poly roughness impact on Poly spacer's roughness. A dedicated test chip was designed for the experiments, having various transistors layout configurations with different densities to cover the all range of process design rules. Applied Materials LER and LWR innovative algorithms were used to measure and characterize the spacer roughness relative to the distance from the active edges and from other spaces. To accurately measure all structures in a reasonable time, the recipes were automatically generated from CAD. On silicon, after poly spacers generation, the transistors no longer resemble the Poly layer CAD layout, their morphology is different compared with Photo/Etch traditional structures , and dimensions vary significantly. In this paper we present metrology and characterization of poly spacer LLWR and LLER compared to that of the poly gate in various transistor shapes, showing that the relation between them depends on the transistor architecture (final layout, including OPC). We will show how the spacer deposition may reduce, keep or even enlarge the roughness measured on Poly, depending on transistor layout , but surprisingly, not dependent on proximity effects.
Indoor-Outdoor Air Leakage of Apartments and Commercial Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, P.N.; Shehabi, A.; Chan, R.W.
We compiled and analyzed available data concerning indoor-outdoor air leakage rates and building leakiness parameters for commercial buildings and apartments. We analyzed the data, and reviewed the related literature, to determine the current state of knowledge of the statistical distribution of air exchange rates and related parameters for California buildings, and to identify significant gaps in the current knowledge and data. Very few data were found from California buildings, so we compiled data from other states and some other countries. Even when data from other developed countries were included, data were sparse and few conclusive statements were possible. Little systematicmore » variation in building leakage with construction type, building activity type, height, size, or location within the u.s. was observed. Commercial buildings and apartments seem to be about twice as leaky as single-family houses, per unit of building envelope area. Although further work collecting and analyzing leakage data might be useful, we suggest that a more important issue may be the transport of pollutants between units in apartments and mixed-use buildings, an under-studied phenomenon that may expose occupants to high levels of pollutants such as tobacco smoke or dry cleaning fumes.« less
Pan, Bai Cao; Tang, Wen Xuan; Qi, Mei Qing; Ma, Hui Feng; Tao, Zui; Cui, Tie Jun
2016-07-22
Mutual coupling inside antenna array is usually caused by two routes: signal leakage via conducting currents on the metallic background or surface wave along substrates; radio leakage received from space between antenna elements. The former one can be depressed by changing the distribution of surface currents, as reported in literatures. But when it comes to the latter one, the radiation-leakage-caused coupling, traditional approaches using circuit manipulation may be inefficient. In this article, we propose and design a new type of decoupling module, which is composed of coupled metamaterial (MTM) slabs. Two classes of MTM particles, the interdigital structure (IS) and the split-ring resonators (SRRs), are adopted to provide the first and second modulations of signal. We validate its function to reduce the radiation leakage between two dual-polarized patch antennas. A prototype is fabricated in a volume with subwavelength scale (0.6λ × 0.3λ × 0.053λ) to provide 7dB improvement for both co-polarization and cross-polarization isolations from 1.95 to 2.2 GHz. The design has good potential for wireless communication and radar systems.
Pan, Bai Cao; Tang, Wen Xuan; Qi, Mei Qing; Ma, Hui Feng; Tao, Zui; Cui, Tie Jun
2016-01-01
Mutual coupling inside antenna array is usually caused by two routes: signal leakage via conducting currents on the metallic background or surface wave along substrates; radio leakage received from space between antenna elements. The former one can be depressed by changing the distribution of surface currents, as reported in literatures. But when it comes to the latter one, the radiation-leakage-caused coupling, traditional approaches using circuit manipulation may be inefficient. In this article, we propose and design a new type of decoupling module, which is composed of coupled metamaterial (MTM) slabs. Two classes of MTM particles, the interdigital structure (IS) and the split-ring resonators (SRRs), are adopted to provide the first and second modulations of signal. We validate its function to reduce the radiation leakage between two dual-polarized patch antennas. A prototype is fabricated in a volume with subwavelength scale (0.6λ × 0.3λ × 0.053λ) to provide 7dB improvement for both co-polarization and cross-polarization isolations from 1.95 to 2.2 GHz. The design has good potential for wireless communication and radar systems. PMID:27444147
Magnon cotunneling through a quantum dot
NASA Astrophysics Data System (ADS)
Karwacki, Łukasz
2017-11-01
I consider a single-level quantum dot coupled to two reservoirs of spin waves (magnons). Such systems have been studied recently from the point of view of possible coupling between electronic and magnonic spin currents. However, usually weakly coupled systems were investigated. When coupling between the dot and reservoirs is not weak, then higher order processes play a role and have to be included. Here I consider cotunneling of magnons through a spin-occupied quantum dot, which can be understood as a magnon (spin) leakage current in analogy to leakage currents in charge-based electronics. Particular emphasis has been put on investigating the effect of magnetic field and temperature difference between the magnonic reservoirs.
Space-charge limited current in CdTe thin film solar cell
NASA Astrophysics Data System (ADS)
Li, Qiang; Shen, Kai; Li, Xun; Yang, Ruilong; Deng, Yi; Wang, Deliang
2018-04-01
In this study, we demonstrate that space-charge limited current (SCLC) is an intrinsic current shunting leakage in CdTe thin film solar cells. The SCLC leakage channel, which is formed by contact between the front electrode, CdTe, and the back electrode, acts as a metal-semiconductor-metal (MSM) like transport path. The presence of SCLC leaking microchannels in CdTe leads to a band bending at the MSM structure, which enhances minority carrier recombination and thus decreases the minority carrier lifetime in CdTe thin film solar cells. SCLC was found to be a limiting factor both for the fill factor and the open-circuit voltage of CdTe thin film solar cells.
Effect of tracheal tube cuff shape on fluid leakage across the cuff: an in vitro study.
Dave, M H; Frotzler, A; Spielmann, N; Madjdpour, C; Weiss, M
2010-10-01
This study compared the fluid leakage in the new 'tapered' shaped against the classic 'cylindrical' shaped tracheal tube cuffs when placed in different sized tracheas. The 7.5 mm internal diameter (ID) tracheal tube cuffs-Tapered Seal Guard (TSG), Standard Seal Guard (SSG), Hi-Lo, Microcuff, Ruesch, and Portex Profile-were compared in an in vitro apparatus. Vertical artificial tracheas with 16, 20, and 22 mm ID were intubated, 5 ml clear water was applied above the unlubricated tube cuffs, and fluid leakage was measured up to 60 min. Data of tapered vs non-tapered tube cuffs (16 observations) were compared for each tracheal diameter using the Mann-Whitney test. Median (range) fluid leakage (ml) at 60 min was 2.14 (0.05-4.88), 1.14 (0.00-4.84), and 0.13 (0.00-1.32), respectively, for 16, 20, and 22 mm tracheas in the TSG tube studies when compared with 4.58 (0.44-4.88), 2.21 (0.00-4.81), and 0.00 (0.00-4.81) in the SSG tube and 4.54 (1.54-4.82), 0.90 (0.00-4.49), and 4.85 (4.40-4.99) in the Microcuff tube studies. Leakage in all polyvinylchloride (PVC) tube cuffs was almost complete (5 ml) within 5 min (P<0.001). The tapered PU tube cuff was as effective as the cylindrical PU cuffs in smaller tracheal diameters and was more efficient than the cylindrical Microcuff PU tube cuff in larger tracheal diameter in preventing subglottic fluid leakage across the tube cuff tested in this in vitro study. PVC tube cuffs leaked much more and faster than PU cuffs.
NASA Astrophysics Data System (ADS)
Kim, Joo-Hyung; Ignatova, Velislava A.; Heitmann, Johannes; Oberbeck, Lars
2008-09-01
The electrical characteristics, i.e. leakage current and capacitance, of ZrO2 based metal-insulator-metal structures, grown at 225, 250 and 275 °C by atomic layer deposition, were studied. The lowest leakage current was obtained at 250 °C deposition temperature, while the highest dielectric constant (k ~ 43) was measured for the samples grown at 275 °C, most probably due to the formation of tetragonal/cubic phases in the ZrO2 layer. We have shown that the main leakage current of these ZrO2 capacitors is governed by the Poole-Frenkel conduction mechanism. It was observed by x-ray photoelectron spectroscopy depth profiling that at 275 °C deposition temperature the oxygen content at and beyond the ZrO2/TiN interface is higher than at lower deposition temperatures, most probably due to oxygen inter-diffusion towards the electrode layer, forming a mixed TiN-TiOxNy interface layer. At and above 275 °C the ZrO2 layer changes its structure and becomes crystalline as proven by XRD analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhi, Ting; Tao, Tao; Liu, Bin, E-mail: bliu@nju.edu.cn, E-mail: rzhang@nju.edu.cn
Through investigating the temperature dependent current-voltage (T-I-V) properties of GaN based blue and green LEDs in this study, we propose an asymmetric tunneling model to understand the leakage current below turn-on voltage (V < 3.2 V): At the forward bias within 1.5 V ∼ 2.1 V (region 1), the leakage current is main attributed to electrons tunneling from the conduction band of n-type GaN layer to the valence band of p-type GaN layer via defect states in space-charge region (SCR); While, at the forward bias within 2 V ∼ 2.4 V (region 2), heavy holes tunneling gradually becomes dominant atmore » low temperature (T < 200K) as long as they can overcome the energy barrier height. The tunneling barrier for heavy holes is estimated to be lower than that for electrons, indicating the heavy holes might only tunnel to the defect states. This asymmetric tunneling model shows a novel carrier transport process, which provides better understanding of the leakage characteristics and is vital for future device improvements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, J.; School of Sciences, Anhui University of Science and Technology, Huainan 232001; He, G., E-mail: hegang@ahu.edu.cn
2015-10-15
Highlights: • ALD-derived HfO{sub 2} gate dielectrics have been deposited on Si substrates. • The leakage current mechanism for different deposition temperature was discussed. • Different emission at different field region has been determined precisely. - Abstract: The effect of deposition temperature on the growth rate, band gap energy and electrical properties of HfO{sub 2} thin film deposited by atomic layer deposition (ALD) has been investigated. By means of characterization of spectroscopy ellipsometry and ultraviolet–visible spectroscopy, the growth rate and optical constant of ALD-derived HfO{sub 2} gate dielectrics are determined precisely. The deposition temperature dependent electrical properties of HfO{sub 2}more » films were determined by capacitance–voltage (C–V) and leakage current density–voltage (J–V) measurements. The leakage current mechanism for different deposition temperature has been discussed systematically. As a result, the optimized deposition temperature has been obtained to achieve HfO{sub 2} thin film with high quality.« less
Effect of La substitution on structural and electrical properties of BiFeO3 thin film
NASA Astrophysics Data System (ADS)
Das, S. R.; Bhattacharya, P.; Choudhary, R. N. P.; Katiyar, R. S.
2006-03-01
The effect of La substitution on the structural and electrical properties of multiferroic BiFeO3 thin films grown on Pt/TiO2/SiO2/Si substrates by pulsed laser deposition has been reported. X-ray diffraction data confirmed the substitutions of La into the Bi site with the elimination of all of the secondary phases. The dielectric constant of the films was systematically increased from 165 to ~350 and the films showed excellent dielectric loss behavior. We observed a gradual increase in the remnant polarization (2Pr) with lanthanum substitution obtaining a maximum value of ~42 μC/cm2 at 20 mol % La incorporation. The leakage current behavior at room temperature of the films was studied and it was found that the leakage current decreased from 10-4 to 10-7 A/cm2 for La-substituted films at a field strength of 50 kV/cm. The reduction of dc leakage current of La-substituted films is explained on the basis of relative phase stability and improved microstructure of the material.
NASA Astrophysics Data System (ADS)
Chen, Hone-Zern; Kao, Ming-Cheng; Young, San-Lin; Hwang, Jun-Dar; Chiang, Jung-Lung; Chen, Po-Yen
2015-05-01
Bi0.9Gd0.1FeO3 (BGFO) thin films were fabricated on Pt(111)/Ti/SiO2/Si(100) substrates by using the sol-gel technology. The effects of annealing temperature (400-700 °C) on microstructure and multiferroic properties of thin films were investigated. The X-ray diffraction analysis showed that the BGFO thin films had an orthorhombic structure. The thin films showed ferroelectric and ferromagnetic properties with remanent polarization (2Pr) of 10 μC/cm2, remnant magnetization (2Mr) of 2.4 emu/g and saturation magnetization (Ms) of 5.3 emu/g. A small leakage current density (J) was 4.64×10-8 A/cm2 under applied field 100 kV/cm. It was found that more than one conduction mechanism is involved in the electric field range used in these experiments. The leakage current mechanisms were controlled by Poole-Frenkel emission in the low electric field region and by Schottky emission from the Pt electrode in the high field region.
NASA Technical Reports Server (NTRS)
Currie, D. G.
1982-01-01
Research toward practical implementation of the Intensified Charge Coupled Device (ICCD) as a photon-counting array detector for astronomy is reported. The first area of concentration was to determine the rate and extent of the lifetime limiting damage to the CCD caused by the impact of high energy electrons, and to find whether various methods of annealing the damage were productive. The second effort was to determine the performance of the ICCD in a photon-counting mode to produce extended dynamic range measurements. There are two main effects that appear as the practical results of the electron damage to the CCD. One is an increase in the leakage current, i.e., the normal thermal generation of charge carriers in the silicon that provides a background dark signal that adds to the light produced image. In an undamaged CCD, the leakage current is usually fairly uniform across the photosensitive area of the silicon chip, with the exception of various bright pixels which have an anomalous leakage current well above the overall level.
NASA Technical Reports Server (NTRS)
Hah, Chunill
2016-01-01
Effects of a large rotor tip gap on the performance of a one and half stage axial compressor are investigated in detail with a numerical simulation based on LES and available PIV data. The current paper studies the main flow physics, including why and how the loss generation is increased with the large rotor tip gap. The present study reveals that when the tip gap becomes large, tip clearance fluid goes over the tip clearance core vortex and enters into the next blade's tip gap, which is called double-leakage tip clearance flow. As the tip clearance flow enters into the adjacent blade's tip gap, a vortex rope with a lower pressure core is generated. This vortex rope breaks up the tip clearance core vortex of the adjacent blade, resulting in a large additional mixing. This double-leakage tip clearance flow occurs at all operating conditions, from design flow to near stall condition, with the large tip gap for the current compressor stage. The double-leakage tip clearance flow, its interaction with the tip clearance core vortex of the adjacent blade, and the resulting large mixing loss are the main flow mechanism of the large rotor tip gap in the compressor. When the tip clearance is smaller, flow near the end wall follows more closely with the main passage flow and this double-leakage tip clearance flow does not happen near the design flow condition for the current compressor stage. When the compressor with a large tip gap operates at near stall operation, a strong vortex rope is generated near the leading edge due to the double-leakage flow. Part of this vortex separates from the path of the tip clearance core vortex and travels from the suction side of the blade toward the pressure side of the blade. This vortex is generated periodically at near stall operation with a large tip gap. As the vortex travels from the suction side to the pressure side of the blade, a large fluctuation of local pressure forces blade vibration. Nonsynchronous blade vibration occurs due to this vortex as the frequency of this vortex generation is not the same as the rotor. The present investigation confirms that this vortex is a part of separated tip clearance vortex, which is caused by the double-leakage tip clearance flow.
Dark current reduction of Ge photodetector by GeO₂ surface passivation and gas-phase doping.
Takenaka, Mitsuru; Morii, Kiyohito; Sugiyama, Masakazu; Nakano, Yoshiaki; Takagi, Shinichi
2012-04-09
We have investigated the dark current of a germanium (Ge) photodetector (PD) with a GeO₂ surface passivation layer and a gas-phase-doped n+/p junction. The gas-phase-doped PN diodes exhibited a dark current of approximately two orders of magnitude lower than that of the diodes formed by a conventional ion implantation process, indicating that gas-phase doping is suitable for low-damage PN junction formation. The bulk leakage (Jbulk) and surface leakage (Jsurf) components of the dark current were also investigated. We have found that GeO₂ surface passivation can effectively suppress the dark current of a Ge PD in conjunction with gas-phase doping, and we have obtained extremely low values of Jbulk of 0.032 mA/cm² and Jsurf of 0.27 μA/cm.
2016-03-31
Abstract: With the decrease of transistor feature sizes into the ultra-deep submicron range, leakage power becomes an important design challenge for...MTNCL design showed substantial improvements in terms of active energy and leakage power compared to the equivalent synchronous design. Keywords...switching could use a large portion of power. Additionally, leakage power has come to dominate power consumption as process sizes shrink. Adaptive
Continued Investigation of Leakage and Power Loss Test Results for Competing Turbine Engine Seals
NASA Technical Reports Server (NTRS)
Delgado, Irebert R.; Proctor, Margaret P.
2006-01-01
Secondary seal leakage in jet engine applications results in power losses to the engine cycle. Likewise, seal power loss in jet engines not only result in efficiency loss but also increase the heat input into the engine resulting in reduced component lives. Experimental work on labyrinth and annular seals was performed at NASA Glenn Research Center to quantify seal leakage and power loss at various temperatures, seal pressure differentials, and surface speeds. Data from annular and labyrinth seals are compared with previous brush and finger seal test results. Data are also compared to literature. Annular and labyrinth seal leakage rates are 2 to 3 times greater than brush and finger seal rates. Seal leakage decreases with increasing speed but increases with increasing test temperature due to thermal expansion mismatch. Also seal power loss increases with surface speed, seal pressure differential, mass flow rate, and radial clearance. Annular and labyrinth seal power losses were higher than those of brush or finger seal data. The brush seal power loss was 15 to 30 percent lower than annular and labyrinth seal power loss.
Wahby, M; Salama, A F; Elezaby, A F; Belgrami, F; Abd Ellatif, M E; El-Kaffas, H F; Al-Katary, M
2013-11-01
The current standard of care is to perform a postoperative gastrografin study following laparoscopic sleeve gastrectomy (LSG) to detect leakage or obstruction. This study evaluated the usefulness of this routine procedure. A retrospective chart review was performed in December 2012. All patients had routine intraoperative methylene blue testing to check for possible leakage from the staple line, and any leaking points were oversewn. We also performed postoperative contrast study (gastrografin) routinely in the first 24-48 h for all patients. From June 2007 to December 2012, 712 cases underwent LSG during the study period. Patients included in this study were 556 women (78.1%) and 156 men (21.9%). The mean age was 35 years. The mean BMI was 48 kg/m2. The operative time was 107 ± 29 min, and there were no conversions to open surgery. Intraoperative methylene blue test detected leakage in 28 cases (3.93%). Postoperative contrast study (gastrografin) was negative for leakage in all cases. Computed tomography (CT) scan with oral contrast study detected leakage in 1.4% (ten cases); none of these cases were detected by regular contrast study. Our study showed that intraoperative methylene blue test for leakage is a very sensitive and effective method for detecting leakage during sleeve gastrectomy and should be done routinely in all cases. Routine postoperative contrast study is not needed to detect leakage unless clinically indicated in selected cases, and in such cases contrast-enhanced CT scans are the modality of choice.
Stokes, Ashley M.; Semmineh, Natenael; Quarles, C. Chad
2015-01-01
Purpose A combined biophysical- and pharmacokinetic-based method is proposed to separate, quantify, and correct for both T1 and T2* leakage effects using dual-echo DSC acquisitions to provide more accurate hemodynamic measures, as validated by a reference intravascular contrast agent (CA). Methods Dual-echo DSC-MRI data were acquired in two rodent glioma models. The T1 leakage effects were removed and also quantified in order to subsequently correct for the remaining T2* leakage effects. Pharmacokinetic, biophysical, and combined biophysical and pharmacokinetic models were used to obtain corrected cerebral blood volume (CBV) and cerebral blood flow (CBF), and these were compared with CBV and CBF from an intravascular CA. Results T1-corrected CBV was significantly overestimated compared to MION CBV, while T1+T2*-correction yielded CBV values closer to the reference values. The pharmacokinetic and simplified biophysical methods showed similar results and underestimated CBV in tumors exhibiting strong T2* leakage effects. The combined method was effective for correcting T1 and T2* leakage effects across tumor types. Conclusions Correcting for both T1 and T2* leakage effects yielded more accurate measures of CBV. The combined correction method yields more reliable CBV measures than either correction method alone, but for certain brain tumor types (e.g., gliomas) the simplified biophysical method may provide a robust and computationally efficient alternative. PMID:26362714
NASA Astrophysics Data System (ADS)
Lee, Sung-Yun; Kim, Hui Eun; Jo, William; Kim, Young-Hwan; Yoo, Sang-Im
2015-11-01
We report the greatly improved dielectric properties of CaCu3Ti4O12 (CCTO) films with a 60 nm-thick CaTiO3 (CTO) interlayer on Pt/TiO2/SiO2/Si substrates. Both CCTO films and CTO interlayers were prepared by pulsed laser deposition (PLD). With increasing the thickness of CCTO from 200 nm to 1.3 μm, the dielectric constants ( ɛ r ) at 10 kHz in both CCTO single-layered and CCTO/CTO double-layered films increased from ˜260 to ˜6000 and from ˜630 to ˜3700, respectively. Compared with CCTO single-layered films, CCTO/CTO double-layered films irrespective of CCTO film thickness exhibited a remarkable decrease in their dielectric losses ( tanδ) (<0.1 at the frequency region of 1 - 100 kHz) and highly reduced leakage current density at room temperature. The reduced leakage currents in CCTO/CTO double-layered films are attributable to relatively higher trap ionization energies in the Poole-Frenkel conduction model. [Figure not available: see fulltext.
Dielectric property study of poly(4-vinylphenol)-graphene oxide nanocomposite thin film
NASA Astrophysics Data System (ADS)
Roy, Dhrubojyoti
2018-05-01
Thin film capacitor device having a sandwich structure of indium tin oxide (ITO)-coated glass/polymer or polymer nanocomposite /silver has been fabricated and their dielectric and leakage current properties has been studied. The dielectric properties of the capacitors were characterized for frequencies ranging from 1 KHz to 1 MHz. 5 wt% Poly(4-vinylphenol)(PVPh)-Graphene (GO) nanocomposite exhibited an increase in dielectric constant to 5.6 and small rise in dielectric loss to around˜0.05 at 10 KHz w.r.t polymer. The DC conductivity measurements reveal rise of leakage current in nanocomposite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majzoobi, A.; Joshi, R. P., E-mail: ravi.joshi@ttu.edu; Neuber, A. A.
Particle-in-cell simulations are performed to analyze the efficiency, output power and leakage currents in a 12-Cavity, 12-Cathode rising-sun magnetron with diffraction output (MDO). The central goal is to conduct a parameter study of a rising-sun magnetron that comprehensively incorporates performance enhancing features such as transparent cathodes, axial extraction, the use of endcaps, and cathode extensions. Our optimum results demonstrate peak output power of about 2.1 GW, with efficiencies of ∼70% and low leakage currents at a magnetic field of 0.45 Tesla, a 400 kV bias with a single endcap, for a range of cathode extensions between 3 and 6 centimeters.
Eccentricity and misalignment effects on the performance of high-pressure annular seals
NASA Technical Reports Server (NTRS)
Chen, W. C.; Jackson, E. D.
1985-01-01
Annular pressure seals act as powerful hydrostatic bearings and influence the dynamic characteristics of rotating machinery. This work, using the existing concentric seal theories, provides a simple approximate method for calculation of both seal leakage and the dynamic coefficients for short seals with large eccentricity and/or misalignment of the shaft. Rotation and surface roughness effects are included for leakage and dynamic force calculation. The leakage calculations for both laminar and turbulent flow are compared with experimental results. The dynamic coefficients are compared with analytical results. Excellent agreement between the present work and published results have been observed up to the eccentricitiy ratio of 0.8.
Dosimetry of typical transcranial magnetic stimulation devices
NASA Astrophysics Data System (ADS)
Lu, Mai; Ueno, Shoogo
2010-05-01
The therapeutic staff using transcranial magnetic stimulation (TMS) devices could be exposed to magnetic pulses. In this paper, dependence of induced currents in real human man model on different coil shapes, distance between the coil and man model as well as the rotation of the coil in space have been investigated by employing impedance method. It was found that the figure-of-eight coil has less leakage magnetic field and low current density induced in the body compared with the round coil. The TMS power supply cables play an important role in the induced current density in human body. The induced current density in TMS operator decreased as the coil rotates from parallel position to perpendicular position. Our present study shows that TMS operator should stand at least 110 cm apart from the coil.
Stein, Keith E; Manfra Marretta, Sandra; Siegel, Arthur; Vitoux, Jeanne
2004-09-01
An in vitro study compared two gutta-percha obturation techniques of the mandibular first molar in dogs. The mandibular first molars were instrumented and obturated using either K-files and the SuccessFil vertical compaction technique or rotary instruments and the Simplifill/guttapercha master cone technique. Instrumentation and obturation times were recorded for each tooth. Radiographs were used for evaluation of overall appearance of the final fill. A modified apical dye leakage technique was used to evaluate the ability of each method to provide an adequate barrier to apical leakage. The endodontic technique utilizing rotary instruments and Simplifill/gutta-percha master cone required less time and provided a better radiographic appearance to the endodontic fill. In addition, there was no apical dye leakage associated with this technique compared with a 44% leakage incidence in teeth treated with K-file instrumentation and SuccessFil.
Measurement and Analysis of Neutron Leakage Spectra from Pb and LBE Cylinders with D-T Neutrons
NASA Astrophysics Data System (ADS)
Chen, Size; Gan, Leting; Li, Taosheng; Han, Yuncheng; Liu, Chao; Jiang, Jieqiong; Wu, Yican
2017-09-01
For validating the current evaluated neutron data libraries, neutron leakage spectra from lead and lead bismuth eutectic (LBE) cylinders have been measured using an intense D-T pulsed neutron source with time-of-flight (TOF) method by Institute of Nuclear Energy Safety Technology (INEST), Chinese Academy of Sciences (CAS). The measured leakage spectra have been compared with the calculated ones using Super Monte Carlo Simulation Program for Nuclear and Radiation Process (SuperMC) with the evaluated pointwise data of lead and bismuth processed from ENDF/B-VII.1, JEFF-3.1 and JENDL-4.0 libraries. This work shows that calculations of the three libraries are all generally consistent with the lead experimental result. For LBE experiment, the JEFF-3.1 and JENDL-4.0 calculations both agree well with the measurement. However, the result of ENDF/B-VII.1 fails to fit with the measured data, especially in the energy range of 5.5 and 7 MeV with difference more than 80%. Through sensitivity analysis with partial cross sections of 209Bi in ENDF/B-VII.1 and JEFF, the difference between the measurement and the ENDF/B-VII.1 calculation in LBE experiment is found due to the neutron data of 209Bi.
Arora, Sheen Juneja; Arora, Aman; Upadhyaya, Viram; Jain, Shilpi
2016-01-01
Background or Statement of Problem: As, the longevity of provisional restorations is related to, a perfect adaptation and a strong, long-term union between restoration and teeth structures, therefore, evaluation of marginal leakage of provisional restorative materials luted with cements using the standardized procedures is essential. Aims and Objectives: To compare the marginal leakage of the provisional crowns fabricated from Autopolymerizing acrylic resin crowns and bisphenol A-glycidyl dimethacrylate (BIS-GMA) resin crowns. To compare the marginal leakage of the provisional crowns fabricated from autopolymerizing acrylic resin crowns and BIS-GMA resin crowns cemented with different temporary luting cements. To compare the marginal leakage of the provisional crowns fabricated from autopolymerizing acrylic resin (SC-10) crowns cemented with different temporary luting cements. To compare the marginal leakage of the provisional crowns fabricated from BIS-GMA resin crowns (Protemp 4) cemented with different temporary luting cements. Methodology: Freshly extracted 60 maxillary premolars of approximately similar dimensions were mounted in dental plaster. Tooth reduction with shoulder margin was planned to use a customized handpiece-holding jig. Provisional crowns were prepared using the wax pattern fabricated from computer aided designing/computer aided manufacturing milling machine following the tooth preparation. Sixty provisional crowns were made, thirty each of SC-10 and Protemp 4 and were then cemented with three different luting cements. Specimens were thermocycled, submerged in a 2% methylene blue solution, then sectioned and observed under a stereomicroscope for the evaluation of marginal microleakage. A five-level scale was used to score dye penetration in the tooth/cement interface and the results of this study was analyzed using the Chi-square test, Mann–Whitney U-test, Kruskal–Wallis H-test and the results were statistically significant P < 0.05 the power of study - 80%. Results: Marginal leakage was significant in both provisional crowns cemented with three different luting cements along the axial walls of teeth (P < 0.05) confidence interval - 95%. Conclusion: The temporary cements with eugenol showed more microleakage than those without eugenol. SC-10 crowns showed more microleakage compared to Protemp 4 crowns. SC-10 crowns cemented with Kalzinol showed maximum microleakage and Protemp 4 crowns cemented with HY bond showed least microleakage. PMID:27134427
In vitro and ex vivo microbial leakage assessment in endodontics: A literature review.
Savadkouhi, Sohrab Tour; Bakhtiar, Hengameh; Ardestani, Safoura Emami
2016-01-01
The aim of this study was to perform a literature review of published in-vitro and ex-vivo studies, which evaluated microbial leakage in endodontics in the past 10 years. A comprehensive electronic literature search was carried out in PubMed database for English articles published from 2005 to 2016 using the keywords "endodontics," " in vitro ," " ex vivo ," "microbial leakage," "microbial penetration," "saliva," " Enterococcus faecalis ," " E. faecalis ," "endodontic sealers," "temporary filling material," "apical plug," "mineral trioxide aggregate," and "MTA." The keywords were combined using Boolean operators AND/OR. Based on our search strategy, 33 relevant articles were included in the study. There are three main methods for assessment of bacterial microleakage, namely, (A) the dual-chamber leakage model, (B) detection of bacteria using a scanning electron microscope (SEM), and (C) polymerase chain reaction. All bacterial leakage models have some limitations and may yield different results compared to other microleakage evaluation techniques (i.e., dye penetration, fluid filtration, or electrochemical tests). The results of SEM correlated with those of microbial leakage test in most studies. Microbial leakage test using saliva better simulates the clinical setting for assessment of the leakage of single or mixed bacterial species.
Hoshino, Hiromitsu; Higuchi, Tetsuya; Achmad, Arifudin; Taketomi-Takahashi, Ayako; Fujimaki, Hiroya; Tsushima, Yoshito
2016-01-01
We developed a new quantitative interpretation technique of radioisotope cisternography (RIC) for the diagnosis of spontaneous cerebrospinal fluid hypovolemia (SCH). RIC studies performed for suspected SCH were evaluated. (111)In-DTPA RIC images were taken at 0, 1, 3, 6, and 24-h after radioisotope injection following the current protocol. Regions of interest (ROI) were selected on 3-h images to include brain, spine, bladder or the whole body. The accumulative radioactivity counts were calculated for quantitative analysis. Final diagnoses of SCH were established based on the diagnostic criteria recently proposed by Schievink and colleagues. Thirty-five patients were focused on. Twenty-one (60.0%) patients were diagnosed as having SCH according to the Schievink criteria. On the 3-h images, direct cerebrospinal fluid leakage sign was detected in nine of 21 SCH patients (42.9%), as well as three patients with suspected iatrogenic leakage. Compared to non-SCH patients, SCH patients showed higher bladder accumulation at 3-h images (P = 0.0002), and higher brain clearance between the 6- and 24-h images (P < 0.0001). In particular, the 24-h brain clearance was more conclusive for the diagnosis than 24-h whole cistern clearance. The combination of direct sign and 24-h brain accumulation resulted in 100% of accuracy in the 32 patients in whom iatrogenic leakage was not observed. 1- and 6-h images did not provide any additional information in any patients. A new simple ROI setting method, in which only the 3-h whole body and 24-h brain images were necessary, was sufficient to diagnose SCH.
Effects of microstructural defects on the performance of base-metal multilayer ceramic capacitors
NASA Astrophysics Data System (ADS)
Samantaray, Malay M.
Multilayer ceramic capacitors (MLCCs), owing to their processing conditions, can exhibit microstructure defects such as electrode porosity and roughness. The effect of such extrinsic defects on the electrical performance of these devices needs to be understood in order to achieve successful miniaturization into the submicron dielectric layer thickness regime. Specifically, the presence of non-planar and discontinuous electrodes can lead to local field enhancements while the relative morphologies of two adjacent electrodes determine variations in the local dielectric thickness. To study the effects of electrode morphologies, an analytical approach is taken to calculate the electric field enhancement and leakage current with respect to an ideal parallel-plate capacitor. Idealized electrode defects are used to simulate the electric field distribution. It is shown that the electrode roughness causes both the electric field and the leakage current to increase with respect to that of the ideal flat parallel-plate capacitor. Moreover, finite element methods are used to predict electric field enhancements by as high as 100% within capacitor structures containing rough interfaces and porosity. To understand the influence of microstructural defects on field distributions and leakage current, the real three-dimensional microstructure of local regions in MLCCs are reconstructed using a serial-sectioning technique in the focused ion beam. These microstructures are then converted into a finite element model in order to simulate the perturbations in electric field due to the presence of electrode defects. The electric field is three times the average value, and this leads to increase in current density of these devices. It is also shown that increasing sintering rates of MLCCs leads to improved electrode morphology with smoother more continuous electrodes, which in turn leads to a decrease in electric field enhancement and calculated leakage current density. To simulate scaling effects, the dielectric layer thickness is reduced from 2.0mum to 0.5mum in the three-dimensional microstructure keeping the same electrode morphology. It is seen that the effect of microstructure defects is more pronounced as one approaches thinner layers, leading to higher local electric field concentrations and a concomitant drop in insulation resistance. It is also seen that the electric field values are as high as 3.8 times the average field in termination regions due the disintegrated structure of the electrodes. In order to assess the effect of microstructure on MLCC performance, two sets of multilayer capacitors subjected to two vastly different sintering rates of 150ºC/hr and 3000ºC/hr are compared for their electrical properties. Capacitors with higher electrode continuity exhibit proportionally higher capacitance, provided the grain size distributions are similar. From the leakage current measurements, it is found that the Schottky barrier at the electrode-dielectric interface controls the conduction mechanism. This barrier height is calculated to be 1.06 eV for slow-fired MLCCs and was 1.15 for fast-fired MLCCs. This shows that high concentration of electrode defects cause field perturbations and subsequent drop in the net Schottky barrier height. These results are further supported by frequency-dependent impedance measurements. With temperature dependence behavior of current-voltage trends we note that below temperatures of 135°C, the conduction is controlled by interfacial effects, whereas at higher temperatures it is consistent with bulk-controlled space charge limited current for the samples that are highly reoxidized. The final part of this work studies the various aspects of the initial stages of degradation of MLCCs. MLCCs subjected to unipolar and bipolar degradation are studied for changes in microstructure and electrical properties. With bipolar degradation studies new insights into degradation are gained. First, the ionic accumulation with oxygen vacancies at cathodes is only partially reversible. This has implications on the controlling interface with electronic conduction. Also, it is shown that oxygen vacancy accumulation near the cathodes leads to a drop in insulation resistance. The capacitance also increases with progressive steps of degradation due to the effective thinning of dielectric layer. The reduction in interfacial resistance is also confirmed by impedance analysis. Finally, it is observed that on degradation, the dominant leakage current mechanism changes from being controlled by cathodic injection of electrons to being controlled by their anodic extraction. (Abstract shortened by UMI.)
Yu, Young-Dong; Kim, Dong-Sik; Jung, Sung-Won; Han, Jae-Hyun; Suh, Sung-Ock
2016-07-01
Anti-adhesive agents are increasingly used to reduce the incidence of postoperative adhesions following abdominal surgery. Bile leakage after liver resection remains a major cause of postoperative morbidity. The aim of this study was to examine the effect of anti-adhesive agent on bile leakage after liver resection. 77 patients were enrolled to receive an anti-adhesive agent (study group) during liver resection between May 2012 and August 2013. The study group was compared to a match-paired control group. Clinical data were collected including bilirubin concentration in serum and drain fluid and bile leakage rate. In addition, a separate analysis was performed between patients with and without postoperative bile leakage. There was no difference in bile leakage rate or hospital stay between the study group (n = 77) and control group (n = 77). Of the total number of patients (n = 154), there were 29 patients with postoperative bile leak and 125 patients without bile leak. On univariate analysis, patients without history of hepatitis were significantly associated with bile leakage. In addition, liver resection with broader cut surface area was associated with bile leakage. Application of anti-adhesive agent was not associated with bile leakage. On multivariate analysis, resection with broader cut surface area (OR = 2.788, p = 0.026) and patients without history of hepatitis (OR = 5.153, p = 0.039) were significantly associated with bile leakage. Larger area of cut-surface and patients without history of hepatitis were significant risk factors for bile leakage. The use of anti-adhesive agent was not associated with increased risk of bile leakage. Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.
Chen, Cheng-Che; Yang, Cheng-Kuang; Hung, Siu-Wan; Wang, John; Ou, Yen-Chuan
2015-10-01
The use of a da Vinci robotic system may improve the outcome of urological surgery. This study reports 6 years of experience with vesicourethral anastomosis (VUA) following robot-assisted laparoscopic radical prostatectomy (RALP) performed in Taichung Veterans General Hospital, Taichung, Taiwan. A total of 350 patients who underwent RALP by a single surgeon were reviewed. We followed Dr Patel's RALP procedure with minor modifications. VUA was checked with 120 mL and 200 mL saline in sequence. The urinary bladder was then pressed with endoscopic instruments. If a VUA leak was detected, it was sutured immediately. An 18-French silicon Foley's catheter was inserted and removed 7-14 days after RALP. Preoperative characteristics and perioperative complications were assessed. Overall, 332 (94.85%) patients were without any leakage in the first step of the challenge, eight of whom had leakage in the second step. After repair, all were free from leakage. The other 18 patients had leakage in the first step of the challenge (5.14%). After repair, 12 patients were without leakage in the second step. However, one patient had urine leakage postoperatively. The other six patients had leakage in the second step. After repair, two patients were free from leakage, but the remaining four suffered from persistent minor urine leakage postoperatively. The urine leakage rate after RALP was 1.43% (5/350). The potential urine leakage after bladder challenge and endoscopic instruments pressing could be minimized to 0.29% (1/346). VUA leakage after RALP is rare. Intraoperative VUA challenge is simple and feasible compared to postoperative retrograde cystography. Copyright © 2014. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Haas, J. E.; Kofskey, M. G.; Hotz, G. M.; Futral, S. M., Jr.
1978-01-01
Performance data were obtained experimentally for a 0.4 linear scale version of the LF460 lift fan turbine for a range of scroll inlet total to diffuser exit static pressure ratios at design equivalent speed with simulated fan leakage air. Tests were conducted for full and partial admission operation with three separate combinations of rotor inlet and rotor exit leakage air. Data were compared to the results obtained from previous investigations in which no leakage air was present. Results are presented in terms of mass flow, torque, and efficiency.
Hovakeemian, Sara G.; Liu, Runhui; Gellman, Samuel H.; Heerklotz, Heiko
2015-01-01
Most antimicrobial peptides act upon target microorganisms by permeabilizing their membranes. The mode of action is often assessed by vesicle leakage experiments that use model membranes, with the assumption that biological activity arises from permeabilization of the lipid bilayer. The current work aims to extend the interpretation of vesicle leakage results and examine the correlation between vesicle leakage and antimicrobial activity. To this end, we used a lifetime-based leakage assay with calcein-loaded vesicles to study the membrane permeabilizing properties of a novel antifungal polymer poly-NM, two of its analogs, and a series of detergents. In conjunction, the biological activities of these compounds against Candida albicans were assessed and correlated with data from vesicle leakage. Poly-NM induces all-or-none leakage in polar yeast lipid vesicles at the polymer’s MIC, 3 μg/mL. At this and higher concentrations, complete leakage after an initial lag time was observed. Concerted activity tests imply that this polymer acts independently of the detergent octyl glucoside (OG) for both vesicle leakage and activity against C. albicans spheroplasts. In addition, Poly-NM was found to have negligible activity against zwitterionic vesicles and red blood cells. Our results provide a consistent, detailed picture of the mode of action of Poly-NM: this polymer induces membrane leakage by electrostatic lipid clustering. In contrast, Poly-MM:CO, a nylon-3 polymer comprised of both cationic and hydrophobic segments, seems to act by a different mechanism that involves membrane asymmetry stress. Vesicle leakage for this polymer is transient (limited to <100%) and graded, non-specific among zwitterionic and polar yeast lipid vesicles, additive with detergent action, and correlates poorly with biological activity. Based on these results, we conclude that comprehensive leakage experiments can provide a detailed description of the mode of action of membrane permeabilizing compounds. Without this thorough approach, it would have been logical to assume that the two nylon-3 polymers we examined act via similar mechanisms; it is surprising that their mechanisms are so distinct. Some, but not all mechanisms of vesicle permeabilization allow for antimicrobial activity. PMID:26234884
Hovakeemian, Sara G; Liu, Runhui; Gellman, Samuel H; Heerklotz, Heiko
2015-09-14
Most antimicrobial peptides act upon target microorganisms by permeabilizing their membranes. The mode of action is often assessed by vesicle leakage experiments that use model membranes, with the assumption that biological activity correlates with the permeabilization of the lipid bilayer. The current work aims to extend the interpretation of vesicle leakage results and examine the correlation between vesicle leakage and antimicrobial activity. To this end, we used a lifetime-based leakage assay with calcein-loaded vesicles to study the membrane permeabilizing properties of a novel antifungal polymer poly-NM, two of its analogs, and a series of detergents. In conjunction, the biological activities of these compounds against Candida albicans were assessed and correlated with data from vesicle leakage. Poly-NM induces all-or-none leakage in polar yeast lipid vesicles at the polymer's MIC, 3 μg mL(-1). At this and higher concentrations, complete leakage after an initial lag time was observed. Concerted activity tests imply that this polymer acts independently of the detergent octyl glucoside (OG) for both vesicle leakage and activity against C. albicans spheroplasts. In addition, poly-NM was found to have negligible activity against zwitterionic vesicles and red blood cells. Our results provide a consistent, detailed picture of the mode of action of poly-NM: this polymer induces membrane leakage by electrostatic lipid clustering. In contrast, poly-MM:CO, a nylon-3 polymer comprised of both cationic and hydrophobic segments, seems to act by a different mechanism that involves membrane asymmetry stress. Vesicle leakage for this polymer is transient (limited to <100%) and graded, non-specific among zwitterionic and polar yeast lipid vesicles, additive with detergent action, and correlates poorly with biological activity. Based on these results, we conclude that comprehensive leakage experiments can provide a detailed description of the mode of action of membrane permeabilizing compounds. Without this thorough approach, it would have been logical to assume that the two nylon-3 polymers we examined act via similar mechanisms; it is surprising that their mechanisms are so distinct. Some, but not all mechanisms of vesicle permeabilization allow for antimicrobial activity.
A 3D CZT high resolution detector for x- and gamma-ray astronomy
NASA Astrophysics Data System (ADS)
Kuvvetli, I.; Budtz-Jørgensen, C.; Zappettini, A.; Zambelli, N.; Benassi, G.; Kalemci, E.; Caroli, E.; Stephen, J. B.; Auricchio, N.
2014-07-01
At DTU Space we have developed a high resolution three dimensional (3D) position sensitive CZT detector for high energy astronomy. The design of the 3D CZT detector is based on the CZT Drift Strip detector principle. The position determination perpendicular to the anode strips is performed using a novel interpolating technique based on the drift strip signals. The position determination in the detector depth direction, is made using the DOI technique based the detector cathode and anode signals. The position determination along the anode strips is made with the help of 10 cathode strips orthogonal to the anode strips. The position resolutions are at low energies dominated by the electronic noise and improve therefore with increased signal to noise ratio as the energy increases. The achievable position resolution at higher energies will however be dominated by the extended spatial distribution of the photon produced ionization charge. The main sources of noise contribution of the drift signals are the leakage current between the strips and the strip capacitance. For the leakage current, we used a metallization process that reduces the leakage current by means of a high resistive thin layer between the drift strip electrodes and CZT detector material. This method was applied to all the proto type detectors and was a very effective method to reduce the surface leakage current between the strips. The proto type detector was recently investigated at the European Synchrotron Radiation Facility, Grenoble which provided a fine 50 × 50 μm2 collimated X-ray beam covering an energy band up to 600 keV. The Beam positions are resolved very well with a ~ 0.2 mm position resolution (FWHM ) at 400 keV in all directions.
NASA Astrophysics Data System (ADS)
Hourdakis, E.; Koutsoureli, M.; Papaioannou, G.; Nassiopoulou, A. G.
2018-06-01
Barrier-type anodic alumina thin films are interesting for use in high capacitance density metal-insulator-metal capacitors due to their excellent dielectric properties at small thickness. This thickness is easily controlled by the anodization voltage. In previous papers we studied the main parameters of interest of the Al/barrier-type anodic alumina/Al structure for use in RF applications and showed the great potential of barrier-type anodic alumina in this respect. In this paper, we investigated in detail charging/discharging processes and leakage current of the above dielectric material. Two different sets of metal-insulator-metal capacitors were studied, namely, with the top Al electrode being either e-gun deposited or sputtered. The dielectric constant of the barrier-type anodic alumina was found at 9.3. Low leakage current was observed in all samples studied. Furthermore, depending on the film thickness, field emission following the Fowler-Nordheim mechanism was observed above an applied electric field. Charging of the anodic dielectric was observed, occurring in the bulk of the anodic layer. The stored charge was of the order of few μC/cm2 and the calculated trap density ˜2 × 1018 states/cm3, the most probable origin of charge traps being, in our opinion, positive electrolyte ions trapped in the dielectric during anodization. We do not think that oxygen vacancies play an important role, since their existence would have a more important impact on the leakage current characteristics, such as resistive memory effects or significant changes during annealing, which were not observed. Finally, discharging characteristic times as high as 5 × 109 s were measured.
P-type doping of GaN(000\\bar{1}) by magnesium ion implantation
NASA Astrophysics Data System (ADS)
Narita, Tetsuo; Kachi, Tetsu; Kataoka, Keita; Uesugi, Tsutomu
2017-01-01
Magnesium ion implantation has been performed on a GaN(000\\bar{1}) substrate, whose surface has a high thermal stability, thus allowing postimplantation annealing without the use of a protective layer. The current-voltage characteristics of p-n diodes fabricated on GaN(000\\bar{1}) showed distinct rectification at a turn-on voltage of about 3 V, although the leakage current varied widely among the diodes. Coimplantation with magnesium and hydrogen ions effectively suppressed the leakage currents and device-to-device variations. In addition, an electroluminescence band was observed at wavelengths shorter than 450 nm for these diodes. These results provide strong evidence that implanted magnesium ions create acceptors in GaN(000\\bar{1}).
Surface Passivation of CdZnTe Detector by Hydrogen Peroxide Solution Etching
NASA Technical Reports Server (NTRS)
Hayes, M.; Chen, H.; Chattopadhyay, K.; Burger, A.; James, R. B.
1998-01-01
The spectral resolution of room temperature nuclear radiation detectors such as CdZnTe is usually limited by the presence of conducting surface species that increase the surface leakage current. Studies have shown that the leakage current can be reduced by proper surface preparation. In this study, we try to optimize the performance of CdZnTe detector by etching the detector with hydrogen peroxide solution as function of concentration and etching time. The passivation effect that hydrogen peroxide introduces have been investigated by current-voltage (I-V) measurement on both parallel strips and metal-semiconductor-metal configurations. The improvements on the spectral response of Fe-55 and 241Am due to hydrogen peroxide treatment are presented and discussed.
Estimation of steady-state leakage current in polycrystalline PZT thin films
NASA Astrophysics Data System (ADS)
Podgorny, Yury; Vorotilov, Konstantin; Sigov, Alexander
2016-09-01
Estimation of the steady state (or "true") leakage current Js in polycrystalline ferroelectric PZT films with the use of the voltage-step technique is discussed. Curie-von Schweidler (CvS) and sum of exponents (Σ exp ) models are studied for current-time J (t) data fitting. Σ exp model (sum of three or two exponents) gives better fitting characteristics and provides good accuracy of Js estimation at reduced measurement time thus making possible to avoid film degradation, whereas CvS model is very sensitive to both start and finish time points and give in many cases incorrect results. The results give rise to suggest an existence of low-frequency relaxation processes in PZT films with characteristic duration of tens and hundreds of seconds.
Buried structure for increasing fabrication performance of micromaterial by electromigration
NASA Astrophysics Data System (ADS)
Kimura, Yasuhiro; Saka, Masumi
2016-06-01
The electromigration (EM) technique is a physical synthetic growth method for micro/nanomaterials. EM causes atomic diffusion in a metal line by high-density electron flows. The intentional control of accumulation and relaxation of atoms by EM can lead to the fabrication of a micro/nanomaterial. TiN passivation has been utilized as a component of sample in the EM technique. Although TiN passivation can simplify the cumbersome processes for preparing the sample, the leakage of current naturally occurs because of the conductivity of TiN as a side effect and decreases the performance of micro/nanomaterial fabrication. In the present work, we propose a buried structure, which contributes to significantly decreasing the current for fabricating an Al micromaterial by confining the current flow in the EM technique. The fabrication performance was evaluated based on the threshold current for fabricating an Al micromaterial using the buried structure and the previous structure with the leakage of current.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Euihan; Hwang, Gwangseok; Chung, Jaehun
2015-01-26
Performance degradation resulting from efficiency droop during high-power operation is a critical problem in the development of high-efficiency light-emitting diodes (LEDs). In order to resolve the efficiency droop and increase the external quantum efficiency of LEDs, the droop's origin should be identified first. To experimentally investigate the cause of efficiency droop, we used null-point scanning thermal microscopy to quantitatively profile the temperature distribution on the cross section of the epi-layers of an operating GaN-based vertical LED with nanoscale spatial resolution at four different current densities. The movement of temperature peak towards the p-GaN side as the current density increases suggestsmore » that more heat is generated by leakage current than by Auger recombination. We therefore suspect that at higher current densities, current leakage becomes the dominant cause of the droop problem.« less
Lee, Ke-Jing; Chang, Yu-Chi; Lee, Cheng-Jung; Wang, Li-Wen; Wang, Yeong-Her
2017-12-09
A one-transistor and one-resistor (1T1R) architecture with a resistive random access memory (RRAM) cell connected to an organic thin-film transistor (OTFT) device is successfully demonstrated to avoid the cross-talk issues of only one RRAM cell. The OTFT device, which uses barium zirconate nickelate (BZN) as a dielectric layer, exhibits favorable electrical properties, such as a high field-effect mobility of 5 cm²/Vs, low threshold voltage of -1.1 V, and low leakage current of 10 -12 A, for a driver in the 1T1R operation scheme. The 1T1R architecture with a TiO₂-based RRAM cell connected with a BZN OTFT device indicates a low operation current (10 μA) and reliable data retention (over ten years). This favorable performance of the 1T1R device can be attributed to the additional barrier heights introduced by using Ni (II) acetylacetone as a substitute for acetylacetone, and the relatively low leakage current of a BZN dielectric layer. The proposed 1T1R device with low leakage current OTFT and excellent uniform resistance distribution of RRAM exhibits a good potential for use in practical low-power electronic applications.
NASA Astrophysics Data System (ADS)
Nolde, J. A.; Jackson, E. M.; Bennett, M. F.; Affouda, C. A.; Cleveland, E. R.; Canedy, C. L.; Vurgaftman, I.; Jernigan, G. G.; Meyer, J. R.; Aifer, E. H.
2017-07-01
Longwave infrared detectors using p-type absorbers composed of InAs-rich type-II superlattices (T2SLs) nearly always suffer from high surface currents due to carrier inversion on the etched sidewalls. Here, we demonstrate reticulated shallow etch mesa isolation (RSEMI): a structural method of reducing surface currents in longwave single-band and midwave/longwave dual-band detectors with p-type T2SL absorbers. By introducing a lateral shoulder to increase the separation between the n+ cathode and the inverted absorber surface, a substantial barrier to surface electron flow is formed. We demonstrate experimentally that the RSEMI process results in lower surface current, lower net dark current, much weaker dependence of the current on bias, and higher uniformity compared to mesas processed with a single deep etch. For the structure used, a shoulder width of 2 μm is sufficient to block surface currents.
NASA Astrophysics Data System (ADS)
Asad, K. M. B.; Koopmans, L. V. E.; Jelić, V.; Ghosh, A.; Abdalla, F. B.; Brentjens, M. A.; de Bruyn, A. G.; Ciardi, B.; Gehlot, B. K.; Iliev, I. T.; Mevius, M.; Pandey, V. N.; Yatawatta, S.; Zaroubi, S.
2016-11-01
Leakage of diffuse polarized emission into Stokes I caused by the polarized primary beam of the instrument might mimic the spectral structure of the 21-cm signal coming from the epoch of reionization (EoR) making their separation difficult. Therefore, understanding polarimetric performance of the antenna is crucial for a successful detection of the EoR signal. Here, we have calculated the accuracy of the nominal model beam of Low Frequency ARray (LOFAR) in predicting the leakage from Stokes I to Q, U by comparing them with the corresponding leakage of compact sources actually observed in the 3C 295 field. We have found that the model beam has errors of ≤10 per cent on the predicted levels of leakage of ˜1 per cent within the field of view, I.e. if the leakage is taken out perfectly using this model the leakage will reduce to 10-3 of the Stokes I flux. If similar levels of accuracy can be obtained in removing leakage from Stokes Q, U to I, we can say, based on the results of our previous paper, that the removal of this leakage using this beam model would ensure that the leakage is well below the expected EoR signal in almost the whole instrumental k-space of the cylindrical power spectrum. We have also shown here that direction-dependent calibration can remove instrumentally polarized compact sources, given an unpolarized sky model, very close to the local noise level.
Evaluation of Case Size 0603 BME Ceramic Capacitors
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander A.
2015-01-01
High volumetric efficiency of commercial base metal electrode (BME) ceramic capacitors allows for a substantial reduction of weight and sizes of the parts compared to currently used military grade precious metal electrode (PME) capacitors. Insertion of BME capacitors in space applications requires a thorough analysis of their performance and reliability. In this work, six types of cases size 0603 BME capacitors from three vendors have been evaluated. Three types of multilayer ceramic capacitors (MLCCs) were designed for automotive industry and three types for general purposes. Leakage currents in the capacitors have been measured in a wide range of voltages and temperatures, and measurements of breakdown voltages (VBR) have been used to assess the proportion and severity of defects in the parts. The effect of soldering-related thermal shock stresses was evaluated by analysis of distributions of VBR for parts in 'as is' condition and after terminal solder dip testing at 350 C. Highly Accelerated Life Testing (HALT) at different temperatures was used to assess the activation energy of degradation of leakage currents and predict behavior of the parts at life test and normal operating conditions. To address issues related to rework and manual soldering, capacitors were soldered onto different substrates at different soldering conditions. The results show that contrary to a common assumption that large-size capacitors are mostly vulnerable to soldering stresses, cracking in small size capacitors does happen unless special measures are taken during assembly processes.
NASA Astrophysics Data System (ADS)
Joseph, Abhilash J.; Kumar, Binay
2018-03-01
The conventionally reported value of remanent polarization (Pr) contains contribution from non-remanent components which are not usable for memory device applications. This report presents techniques which extract the true-remanent (intrinsic) component of polarization after eliminating the non-remanent component in ferroelectric ceramics. For this, "remanent hysteresis task" and "positive-up-negative-down technique" were performed which utilized the switchable properties of polarizations to nullify the contributions from the non-remanent (non-switchable) components. The report also addresses the time-dependent leakage behavior of the ceramics focusing on the presence of resistive leakage (a time-dependent parameter) present in the ceramics. The techniques presented here are especially useful for polycrystalline ceramics where leakage current leads to an erroneous estimation of Pr.
Evaluation of 10V Chip Polymer Tantalum Capacitors for Space Applications
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander A.
2016-01-01
Due to low ESR and safe failure mode, new technology chip polymer tantalum capacitors (CPTC) have gained popularity in the electronics design community, first in commercial applications, and now in hi-rel and space systems. The major drawbacks of these parts are high leakage currents, degradation under environmental stresses, and a relatively narrow temperature range of operating and storage conditions. Several studies have shown that a certain amount of moisture in polymer cathodes is necessary for a normal operation of the parts. This might limit applications of CPTCs in space systems and requires analysis of long-term exposure to deep vacuum conditions on their performance and reliability. High leakage currents and limited maximum operational temperature complicate accelerated testing that is necessary to assess long-term reliability and require new screening and qualification procedures for quality assurance. A better understanding of behavior of CPTCs as compared to traditional, MnO2, capacitors is necessary to develop adequate approaches for QA system for space applications. A specific of CPTCs is that different materials and processes might be used for low-voltage (10 V and less) and high-voltage (above 10 V) capacitors, so performance and degradation processes in these groups require separate analysis. In this work, that is a part of the NASA Electronic Parts and Packaging (NEPP) program, degradation of AC and DC characteristics under environmental stresses at different temperatures and voltages have been studied in nine lots of commercial and automotive grade capacitors rated to 10 V. Results of analysis of leakage currents, high temperature storage (HTS) up to 5000 hrs in vacuum and air at different temperatures, and Highly Accelerated Life Testing (HALT) in the range from 85 C to 145 C are presented. Temperature and voltage acceleration factors were calculated based on approximation of distributions of degradation rates with a general log-linear Weibull model. Mechanisms of degradation and failures, and requirements for screening and qualification testing are discussed.
Effects of chemo-mechanical polishing on CdZnTe X-ray and gamma-ray detectors
Egarievwe, Stephen E.; Hossain, Anwar; Okwechime, Ifechukwude O.; ...
2015-06-23
Here, mechanically polishing cadmium zinc telluride (CdZnTe) wafers for x-ray and gamma-ray detectors often is inadequate in removing surface defects caused by cutting them from the ingots. Fabrication-induced defects, such as surface roughness, dangling bonds, and nonstoichiometric surfaces, often are reduced through polishing and etching the surface. In our earlier studies of mechanical polishing with alumina powder, etching with hydrogen bromide in hydrogen peroxide solution, and chemomechanical polishing with bromine–methanol–ethylene glycol solution, we found that the chemomechanical polishing process produced the least surface leakage current. In this research, we focused on using two chemicals to chemomechanically polish CdZnTe wafers aftermore » mechanical polishing, viz. bromine–methanol–ethylene glycol (BME) solution, and hydrogen bromide (HBr) in a hydrogen peroxide and ethylene–glycol solution. We used x-ray photoelectron spectroscopy (XPS), current–voltage (I–V) measurements, and Am-241 spectral response measurements to characterize and compare the effects of each solution. The results show that the HBr-based solution produced lower leakage current than the BME solution. Results from using the same chemomechanical polishing solution on two samples confirmed that the surface treatment affects the measured bulk current (a combination of bulk and surface currents). XPS results indicate that the tellurium oxide to tellurium peak ratios for the mechanical polishing process were reduced significantly by chemomechanical polishing using the BME solution (78.9% for Te 3d 5/2O 2 and 76.7% for Te 3d 3/2O 2) compared with the HBr-based solution (27.6% for Te 3d 5/2O 2 and 35.8% for Te 3d 3/2O 2). Spectral response measurements showed that the 59.5-keV peak of Am-241 remained under the same channel number for all three CdZnTe samples. While the BME-based solution gave a better performance of 7.15% full-width at half-maximum (FWHM) compared with 7.59% FWHM for the HBr-based solution, the latter showed a smaller variation in performance of 0.39% FWHM over 7 days compared with 0.69% for the BME-based solution.« less
Chen, Shih-Chieh; Huang, Shin-Yin; Lu, Chi-Yu; Hsu, Ya-Hung; Wang, Dean-Chuan
2014-09-01
The mechanisms underlying cardiovascular disease induced by arsenic exposure are not completely understood. The objectives of this study were to investigate whether arsenic-fed mice have an increased vascular leakage response to vasoactive agents and whether enhanced type-2 protein phosphatase (PP2A) activity is involved in mustard oil-induced leakage. ICR mice were fed water or sodium arsenite (20 mg/kg) for 4 or 8 weeks. The leakage response to vasoactive agents was quantified using the Evans blue (EB) technique or vascular labeling with carbon particles. Increased EB leakage and high density of carbon-labeled microvessels were detected in arsenic-fed mice treated with mustard oil. Histamine induced significantly higher vascular leakage in arsenic-fed mice than in water-fed mice. Pretreatment with the PP2A inhibitor okadaic acid or the neurokinin 1 receptor (NK1R) blocker RP67580 significantly reduced mustard oil-induced vascular leakage in arsenic-fed mice. The protein levels of PP2Ac and NK1R were similar in both groups. PP2A activity was significantly higher in the arsenic-fed mice compared with the control group. These findings indicate that microvessels generally respond to vasoactive agents, and that the increased PP2A activity is involved in mustard oil-induced vascular leakage in arsenic-fed mice. Arsenic may initiate endothelial dysfunction, resulting in vascular leakage in response to vasoactive agents.
Wet-chemical fabrication of a single leakage-channel grating coupler
NASA Astrophysics Data System (ADS)
Weisenbach, Lori; Zelinski, Brian J. J.; Roncone, Ronald L.; Burke, James J.
1995-04-01
We demonstrate the fabrication of a unique optical device, the single leakage-channel grating coupler, using sol-gel techniques. Design specifications are outlined to establish the material criteria for the sol-gel compositions. Material choice and preparation are described. We evaluate the characteristics and performance of the single leakage-channel grating coupler by comparing the predicted and the measured branching ratios. The branching ratio of the solution-derived device is within 3% of the theoretically predicted value.
Li, Yi-Wei; Lian, Peng; Huang, Ben; Zheng, Hong-Tu; Wang, Ming-He; Gu, Wei-Lie; Li, Xin-Xiang; Xu, Ye; Cai, San-Jun
2017-01-01
Early anastomotic leakage (AL), usually defined as leakage within 30 post-operative days, represents a severe entity. However, mounting evidence has indicated that majorities of leakage occur within one week after surgery, making late AL rarity. Here we analyzed 101 consecutive colorectal AL, all of which occurred within 30 post-operative days, during Jan 2013 and Dec 2015 in cancer hospital of Fudan University. AL occurring within 5 post-operative days was defined as very early AL (vE-AL). We evaluated risk factors of vE-AL compared with non-vEAL and correlated with post-leakage peritonitis and need of relaparatomy. We found that AL occurred at median time of 7 days after surgery. 23 cases were vE-AL. Reconstruction of post-peritoneum for mid-low rectal carcinoma significantly reduced incidence of vE-AL compared with non-vE-AL (p = 0.042). Patients with vE-AL was associated with presence of peritonitis (p = 0.031), the latter significantly correlated with increased re-operation rate (p = 6.8E-13). Besides, patients with vE-AL trended to correlate with increased re-operation rate after leakage (p = 0.088). In concludsion, vE-AL occurring within 5 post-operative days represents a severe subtype associated with general peritonitis and need of relaparatomy. PMID:28084305
Vail, III, William B.
1993-01-01
A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.
Carrier Transport of Silver Nanowire Contact to p-GaN and its Influence on Leakage Current of LEDs
NASA Astrophysics Data System (ADS)
Oh, Munsik; Kang, Jae-Wook; Kim, Hyunsoo
2018-03-01
The authors investigated the silver nanowires (AgNWs) contact formed on p-GaN. Transmission line model applied to the AgNWs contact to p-GaN produced near ohmic contact with a specific contact resistance (ρ sc) of 10-1˜10-4 Ω·cm2. Noticeably, the contact resistance had a strong bias-voltage (or current-density) dependence associated with a local joule heating effect. Current-voltage-temperature (I-V-T) measurement revealed a strong temperature dependence with respect to ρ sc, indicating that the temperature played a key role of an enhanced carrier transport. The local joule heating at AgNW/GaN interface, however, resulted in a generation of leakage current of light-emitting diodes (LEDs) caused by degradation of AgNW contact.
Vail, W.B. III.
1993-02-16
A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.
NASA Astrophysics Data System (ADS)
Kim, Heesang; Oh, Byoungchan; Kim, Kyungdo; Cha, Seon-Yong; Jeong, Jae-Goan; Hong, Sung-Joo; Lee, Jong-Ho; Park, Byung-Gook; Shin, Hyungcheol
2010-09-01
We generated traps inside gate oxide in gate-drain overlap region of recess channel type dynamic random access memory (DRAM) cell transistor through Fowler-Nordheim (FN) stress, and observed gate induced drain leakage (GIDL) current both in time domain and in frequency domain. It was found that the trap inside gate oxide could generate random telegraph signal (RTS)-like fluctuation in GIDL current. The characteristics of that fluctuation were similar to those of RTS-like fluctuation in GIDL current observed in the non-stressed device. This result shows the possibility that the trap causing variable retention time (VRT) in DRAM data retention time can be located inside gate oxide like channel RTS of metal-oxide-semiconductor field-effect transistors (MOSFETs).
Relating Agulhas Leakage to the Agulhas Current Retroflection Location
2009-11-03
branch return flow of the Atlantic meridional overturning circulation (Gordon, 1986; Weijer et al., 1999; Peeters et al., 2004; Biastoch et al., 2008a...demonstrated that the mesoscale dynamics reflected in the decadal variability of the Atlantic meridional overturning circulation (Biastoch et al...Lutjeharms, J. R. E.: Agulhas leakage dynamics affects decadal variability in Atlantic overturn - ing circulation , Nature, 456, 489–492, 2008a. Biastoch, A
Design and fabrication of piezoresistive p-SOI Wheatstone bridges for high-temperature applications
NASA Astrophysics Data System (ADS)
Kähler, Julian; Döring, Lutz; Merzsch, Stephan; Stranz, Andrej; Waag, Andreas; Peiner, Erwin
2011-06-01
For future measurements while depth drilling, commercial sensors are required for a temperature range from -40 up to 300 °C. Conventional piezoresistive silicon sensors cannot be used at higher temperatures due to an exponential increase of leakage currents which results in a drop of the bridge voltage. A well-known procedure to expand the temperature range of silicon sensors and to reduce leakage currents is to employ Silicon-On-Insulator (SOI) instead of standard wafer material. Diffused resistors can be operated up to 200 °C, but show the same problems beyond due to leakage of the p-njunction. Our approach is to use p-SOI where resistors as well as interconnects are defined by etching down to the oxide layer. Leakage is suppressed and the temperature dependence of the bridges is very low (TCR = (2.6 +/- 0.1) μV/K@1 mA up to 400 °C). The design and process flow will be presented in detail. The characteristics of Wheatstone bridges made of silicon, n- SOI, and p-SOI will be shown for temperatures up to 300 °C. Besides, thermal FEM-simulations will be described revealing the effect of stress between silicon and the silicon-oxide layer during temperature cycling.
Aerodynamic tip desensitization in axial flow turbines
NASA Astrophysics Data System (ADS)
Dey, Debashis
The leakage flow near the tip of unshrouded rotor blades in axial turbines imposes significant thermal loads on the blade. It is also responsible for up to a third of aerodynamic losses in a turbine stage. The leakage flow, mainly induced by the pressure differential across the rotor tip section, usually rolls into a stream-wise vertical structure near the suction side part of the blade tip. The current study uses several concepts to reduce the severity of losses introduced by the leakage vortex. Three tip desensitization techniques, both active and passive, are examined. Coolant flow from a tip trench is used to counter the momentum of the leakage jet. Next, a very short winglet obtained by slightly extending the tip platform in the tangential direction is investigated. Lastly, the widely used concept of squealer tip is studied. The current investigation is performed in the Axial Flow Turbine Research Facility (AFTRF) of the Pennsylvania State University. Rotating frame five hole probe measurements as well as stationary frame phase averaged total pressure measurements downstream of a single stage turbine facility were taken. The study enables one to draw conclusions about the nature of the flowfield in the rotor tip region. It also shows that significant efficiency gains could be obtained by using some of these techniques.
Optimizing Monitoring Designs under Alternative Objectives
Gastelum, Jason A.; USA, Richland Washington; Porter, Ellen A.; ...
2014-12-31
This paper describes an approach to identify monitoring designs that optimize detection of CO2 leakage from a carbon capture and sequestration (CCS) reservoir and compares the results generated under two alternative objective functions. The first objective function minimizes the expected time to first detection of CO2 leakage, the second more conservative objective function minimizes the maximum time to leakage detection across the set of realizations. The approach applies a simulated annealing algorithm that searches the solution space by iteratively mutating the incumbent monitoring design. The approach takes into account uncertainty by evaluating the performance of potential monitoring designs across amore » set of simulated leakage realizations. The approach relies on a flexible two-tiered signature to infer that CO2 leakage has occurred. This research is part of the National Risk Assessment Partnership, a U.S. Department of Energy (DOE) project tasked with conducting risk and uncertainty analysis in the areas of reservoir performance, natural leakage pathways, wellbore integrity, groundwater protection, monitoring, and systems level modeling.« less
H, Farhadpour; F, Sharafeddin; Sc, Akbarian; B, Azarian
2016-01-01
Statement of Problem: Hemostatic agents may affect the micro-leakage of different adhesive systems. Also, chlorhexidine has shown positive effects on micro-leakage. However, their interaction effect has not been reported yet. Objectives: To evaluate the effect of contamination with a hemostatic agent on micro-leakage of total- and self-etching adhesive systems and the effect of chlorhexidine application after the removal of the hemostatic agent. Materials and Methods: Standardized Class V cavity was prepared on each of the sixty caries free premolars at the cemento-enamel junction, with the occlusal margin located in enamel and the gingival margin in dentin. Then, the specimens were randomly divided into 6 groups (n = 10) according to hemostatic agent (H) contamination, chlorhexidine (CHX) application, and the type of adhesive systems (Adper Single Bond and Clearfil SE Bond) used. After filling the cavities with resin composite, the root apices were sealed with utility wax. Furthermore, all the surfaces, except for the restorations and 1mm from the margins, were covered with two layers of nail varnish. The teeth were immersed in a 0.5% basic fuschin dye for 24 hours, rinsed, blot-dried and sectioned longitudinally through the center of the restorations bucco- lingualy. The sections were examined using a stereomicroscope and the extension of dye penetration was analyzed according to a non-parametric scale from 0 to 3. Statistical analysis was performed using Kruskal-Wallis test and Mann-Whitney U-test. Results: While ASB group showed no micro-leakage in enamel, none of the groups showed complete elimination of micro-leakage from the dentin. Regarding micro-leakage at enamel, and dentin margins, there was no significant difference between groups 1 and 2, 1 and 3, and 2 and 3 (p > 0.05). A significantly lower micro-leakage at the enamel and dentin margins was observed in group 3, compared to group 6. No significant difference was observed between groups 4 and 5 in enamel (p = 0.35) and dentin (p = 0.34). Group 6 showed significantly higher micro-leakage, compared to group 4 and 5 (p < 0.05). Conclusions: Hemostatic agent contamination had no significant effect on micro-leakage of total- and self-etching adhesive systems. Application of chlorhexidine after the removal of hemostatic agent increased micro-leakage in self-etching adhesives but did not affect when total-etching was used. PMID:28959756
Silicon Carbide Diodes Performance Characterization at High Temperatures
NASA Technical Reports Server (NTRS)
Lebron-Velilla, Ramon C.; Schwarze, Gene E.; Gardner, Brent G.; Adams, Jerry
2004-01-01
NASA Glenn Research center's Electrical Systems Development branch is working to demonstrate and test the advantages of Silicon Carbide (SiC) devices in actual power electronics applications. The first step in this pursuit is to obtain commercially available SiC Schottky diodes and to individually test them under both static and dynamic conditions, and then compare them with current state of the art silicon Schottky and ultra fast p-n diodes of similar voltage and current ratings. This presentation covers the results of electrical tests performed at NASA Glenn. Steady state forward and reverse current-volt (I-V) curves were generated for each device to compare performance and to measure their forward voltage drop at rated current, as well as the reverse leakage current at rated voltage. In addition, the devices were individually connected as freewheeling diodes in a Buck (step down) DC to DC converter to test their reverse recovery characteristics and compare their transient performance in a typical converter application. Both static and transient characterization tests were performed at temperatures ranging from 25 C to 300 C, in order to test and demonstrate the advantages of SiC over Silicon at high temperatures.
NASA Astrophysics Data System (ADS)
Chae, Sang Hoon; Yu, Woo Jong; Bae, Jung Jun; Duong, Dinh Loc; Perello, David; Jeong, Hye Yun; Ta, Quang Huy; Ly, Thuc Hue; Vu, Quoc An; Yun, Minhee; Duan, Xiangfeng; Lee, Young Hee
2013-05-01
Despite recent progress in producing transparent and bendable thin-film transistors using graphene and carbon nanotubes, the development of stretchable devices remains limited either by fragile inorganic oxides or polymer dielectrics with high leakage current. Here we report the fabrication of highly stretchable and transparent field-effect transistors combining graphene/single-walled carbon nanotube (SWCNT) electrodes and a SWCNT-network channel with a geometrically wrinkled inorganic dielectric layer. The wrinkled Al2O3 layer contained effective built-in air gaps with a small gate leakage current of 10-13 A. The resulting devices exhibited an excellent on/off ratio of ~105, a high mobility of ~40 cm2 V-1 s-1 and a low operating voltage of less than 1 V. Importantly, because of the wrinkled dielectric layer, the transistors retained performance under strains as high as 20% without appreciable leakage current increases or physical degradation. No significant performance loss was observed after stretching and releasing the devices for over 1,000 times. The sustainability and performance advances demonstrated here are promising for the adoption of stretchable electronics in a wide variety of future applications.
Electrical safety Q&A. A reference guide for the clinical engineer.
2005-02-01
This guide, which ECRI developed to answer the electrical safety questions most frequently asked by member hospitals, features practical advice for addressing electrical safety concerns in the healthcare environment. Questions addressed include: STANDARDS AND APPROVALS: What electrical safety standards apply? How do NFPA 99 and IEC 60601-1 differ? What organizations approve medical devices? LEAKAGE CURRENT LIMITS AND TESTING: How are leakage current limits established? What limits apply to equipment used in the hospital? And how should the limits be applied in special cases, such as the use of PCs in the patient care area or equipment used in the clinical laboratory? ISOLATED POWER: What are its advantages and disadvantages, and is isolated power needed in the operating room? Other topics addressed include double insulation, ground-fault circuit interrupters (GFCIs), and requirements for medical devices used in the home. Supplementary articles discuss acceptable alternatives to UL listing, the use of Hospital Grade plugs, the limitations of leakage current testing of devices connected to isolated power systems, and the debate about whether to designate ORs as wet locations. Experienced clinical engineers should find this guide to be a handy reference, while those new to the field should find it to be a helpful educational resource.
NASA Astrophysics Data System (ADS)
Wu, Chi-Chang; Hsiao, Yu-Ping; You, Hsin-Chiang; Lin, Guan-Wei; Kao, Min-Fang; Manga, Yankuba B.; Yang, Wen-Luh
2018-02-01
We have developed an organic-based resistive random access memory (ReRAM) by using spin-coated polyimide (PI) as the resistive layer. In this study, the chain distance and number of chain stacks of PI molecules are investigated. We employed different solid contents of polyamic acid (PAA) to synthesize various PI films, which served as the resistive layer of ReRAM, the electrical performance of which was evaluated. By tuning the PAA solid content, the intermolecular interaction energy of the PI films is changed without altering the molecular structure. Our results show that the leakage current in the high-resistance state and the memory window of the PI-based ReRAM can be substantially improved using this technique. The superior properties of the PI-based ReRAM are ascribed to fewer molecular chain stacks in the PI films when the PAA solid content is decreased, hence suppressing the leakage current. In addition, a device retention time of more than 107 s can be achieved using this technique. Finally, the conduction mechanism in the PI-based ReRAM was analyzed using hopping and conduction models.
Threshold-voltage modulated phase change heterojunction for application of high density memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Baihan; Tong, Hao, E-mail: tonghao@hust.edu.cn; Qian, Hang
2015-09-28
Phase change random access memory is one of the most important candidates for the next generation non-volatile memory technology. However, the ability to reduce its memory size is compromised by the fundamental limitations inherent in the CMOS technology. While 0T1R configuration without any additional access transistor shows great advantages in improving the storage density, the leakage current and small operation window limit its application in large-scale arrays. In this work, phase change heterojunction based on GeTe and n-Si is fabricated to address those problems. The relationship between threshold voltage and doping concentration is investigated, and energy band diagrams and X-raymore » photoelectron spectroscopy measurements are provided to explain the results. The threshold voltage is modulated to provide a large operational window based on this relationship. The switching performance of the heterojunction is also tested, showing a good reverse characteristic, which could effectively decrease the leakage current. Furthermore, a reliable read-write-erase function is achieved during the tests. Phase change heterojunction is proposed for high-density memory, showing some notable advantages, such as modulated threshold voltage, large operational window, and low leakage current.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cinson, Anthony D.; Crawford, Susan L.; MacFarlan, Paul J.
2012-09-24
Non-destructive and destructive testing methods were employed to evaluate a documented boric acid leakage path through an Alloy 600 control rod drive mechanism (CRDM) penetration from the North Anna Unit 2 reactor pressure vessel head that was removed from service in 2002. A previous ultrasonic in-service-inspection (ISI) conducted by industry prior to the head removal, identified a probable leakage path in Nozzle 63 located in the interference fit between the penetration tube and the vessel head. In this current examination, Nozzle 63 was examined using phased array (PA) ultrasonic testing with a 5.0-MHz, eight-element annular array; immersion data were acquiredmore » from the nozzle inner diameter (ID) surface. A variety of focal laws were employed to evaluate the signal responses from the interference fit region. These responses were compared to responses obtained from a mockup specimen that was used to determine detection limits and characterization capabilities for wastage and boric acid presence in the interference fit region. Nozzle 63 was destructively examined after the completion of the ultrasonic nondestructive evaluation (NDE) to visually assess the leak paths. These destructive and nondestructive results compared favorably« less
Zhao, Wen-Tao; Hu, Feng-Liang; Li, Yu-Ying; Li, Hong-Jie; Luo, Wei-Ming; Sun, Feng
2013-01-01
The aim of the present study was to investigate the usefulness of the transanal drainage tube for prevention of anastomotic leakage and bleeding after anterior resection for rectal cancer. Between January 2007 and May 2011 a nonrandomized prospective study of patients undergoing anterior resection for rectal cancer was done. The patients were divided into the transanal drainage tube (TDT) and non-transanal drainage tube (NTDT) groups according to whether the transanal drainage tube was used in the operation. Clinical characteristics and postoperative complications were compared between the TDT and NTDT groups. The study included 81 patients in the TDT group and 77 patients in the NTDT group. In the TDT group, anastomotic leakage occurred in 2 patients and no anastomotic bleeding occurred. In the NTDT group, anastomotic leakage occurred in 7 patients and anastomotic bleeding occurred in 2 patients. The TDT group had significantly fewer anastomotic complications compared with the NTDT group (2.5 vs 11.7 %; P = 0.029). Furthermore, the TDT group showed an obvious reduction in the rate of anastomotic leakage and anastomotic bleeding compared with the NTDT group (2.5 vs 7.8 % and 0.0 vs 2.6 %), but because the number of cases is relatively small, the difference did not reach statistical significance (P = 0.160 and P = 0.236). The use of a transanal drainage tube in anterior resection for rectal cancer may be a simple, safe, and effective means of preventing or reducing the occurrence of anastomotic leakage and bleeding. A larger-scale single or multi-center prospective randomized study or a meta-analysis including similar studies is necessary for further elucidation of this issue.
NASA Technical Reports Server (NTRS)
Elrod, D. A.; Childs, D. W.
1986-01-01
A brief review of current annular seal theory and a discussion of the predicted effect on stiffness of tapering the seal stator are presented. An outline of Nelson's analytical-computational method for determining rotordynamic coefficients for annular compressible-flow seals is included. Modifications to increase the maximum rotor speed of an existing air-seal test apparatus at Texas A&M University are described. Experimental results, including leakage, entrance-loss coefficients, pressure distributions, and normalized rotordynamic coefficients, are presented for four convergent-tapered, smooth-rotor, smooth-stator seals. A comparison of the test results shows that an inlet-to-exit clearance ratio of 1.5 to 2.0 provides the maximum direct stiffness, a clearance ratio of 2.5 provides the greatest stability, and a clearance ratio of 1.0 provides the least stability. The experimental results are compared to theoretical results from Nelson's analysis with good agreement. Test results for cross-coupled stiffness show less sensitivity of fluid prerotation than predicted.
Cyclohexane Rings Reduce Membrane Permeability to Small Ions in Archaea-Inspired Tetraether Lipids.
Koyanagi, Takaoki; Leriche, Geoffray; Onofrei, David; Holland, Gregory P; Mayer, Michael; Yang, Jerry
2016-01-26
Extremophile archaeal organisms overcome problems of membrane permeability by producing lipids with structural elements that putatively improve membrane integrity compared to lipids from other life forms. Herein, we describe a series of lipids that mimic some key structural features of archaeal lipids, such as: 1) single tethering of lipid tails to create fully transmembrane tetraether lipids and 2) the incorporation of small rings into these tethered segments. We found that membranes formed from pure tetraether lipids leaked small ions at a rate that was about two orders of magnitude slower than common bilayer-forming lipids. Incorporation of cyclopentane rings into the tetraether lipids did not affect membrane leakage, whereas a cyclohexane ring reduced leakage by an additional 40 %. These results show that mimicking certain structural features of natural archaeal lipids results in improved membrane integrity, which may help overcome limitations of many current lipid-based technologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Eslick, Enid M; Keall, Paul J
2015-10-01
Rapid technological improvements in radiotherapy delivery results in improved outcomes to patients, yet current commercial systems with these technologies on board are costly. The aim of this study was to develop a state-of-the-art cancer radiotherapy system that is economical and space efficient fitting with current world demands. The Nano-X system is a compact design that is light weight combining a patient rotation system with a vertical 6 MV fixed beam. In this paper, we present the Nano-X system design configuration, an estimate of the system dimensions and its potential impact on shielding cost reductions. We provide an assessment of implementing such a radiotherapy system clinically, its advantages and disadvantages compared to a compact conventional gantry rotating linac. The Nano-X system has several differentiating features from current radiotherapy systems, it is [1] compact and therefore can fit into small vaults, [2] light weight, and [3] engineering efficient, i.e., it rotates a relatively light component and the main treatment delivery components are not under rotation (e.g., DMLCs). All these features can have an impact on reducing the costs of the system. In terms of shielding requirements, leakage radiation was found to be the dominant contributor to the Nano-X vault and as such no primary shielding was necessary. For a low leakage design, the Nano-X vault footprint and concrete volume required is 17 m2 and 35 m3 respectively, compared to 54 m2 and 102 m3 for a conventional compact linac vault, resulting in decreased costs in shielding. Key issues to be investigated in future work are the possible patient comfort concerns associated with the patient rotation system, as well as the magnitude of deformation and subsequent adaptation requirements. © The Author(s) 2014.
Durable Airtightness in Single-Family Dwellings - Field Measurementsand Analysis
Chan, Wanyu R.; Walker, Iain S.; Sherman, Max H.
2015-06-01
Here, durability of the building envelope is important to new homes that are increasingly built with improved levels of airtightness. It is also important to weatherized homes such that energy savings from retrofit measures, such as air sealing, are persistent. This paper presents a comparison of air leakage measurements collected in November 2013 through March 2014, with two sets of prior data collected between 2001-2003 from 17 new homes located near Atlanta, GA, and 17 homes near Boise, ID that were weatherized in 2007- 2008. The purpose of the comparison is to determine if there are changes to the airtightnessmore » of building envelopes over time. The air leakage increased in all but one of the new homes, with a mean increase of about 25%. The weatherized homes also showed an increase in the mean air leakage (12%). A regression analysis was performed to describe the relationship between prior and current measurements in terms of normalized leakage (NL). The best estimate of the ageing factor predicts a 15% increase in NL over ten years. Further analysis using ResDB data (LBNL’s Residential Diagnostic Database) showed the expected changes in air leakage if ageing were modelled. These results imply the need to examine the causes of increased leakage and methods to avoid them. This increase in leakage with time should be accounted for in long-term population-wide energy savings estimates, such as those used in ratings or energy savings programs.« less
Geologic Carbon Sequestration Leakage Detection: A Physics-Guided Machine Learning Approach
NASA Astrophysics Data System (ADS)
Lin, Y.; Harp, D. R.; Chen, B.; Pawar, R.
2017-12-01
One of the risks of large-scale geologic carbon sequestration is the potential migration of fluids out of the storage formations. Accurate and fast detection of this fluids migration is not only important but also challenging, due to the large subsurface uncertainty and complex governing physics. Traditional leakage detection and monitoring techniques rely on geophysical observations including pressure. However, the resulting accuracy of these methods is limited because of indirect information they provide requiring expert interpretation, therefore yielding in-accurate estimates of leakage rates and locations. In this work, we develop a novel machine-learning technique based on support vector regression to effectively and efficiently predict the leakage locations and leakage rates based on limited number of pressure observations. Compared to the conventional data-driven approaches, which can be usually seem as a "black box" procedure, we develop a physics-guided machine learning method to incorporate the governing physics into the learning procedure. To validate the performance of our proposed leakage detection method, we employ our method to both 2D and 3D synthetic subsurface models. Our novel CO2 leakage detection method has shown high detection accuracy in the example problems.
Alkahtani, Ahmed; Al-Subait, Sara; Anil, Sukumaran
2013-01-01
The study was done to assess the sealing ability and adaptation of RealSeal 1, and to compare it with Thermafil. 65 single-rooted extracted teeth were selected and root canal treatment was performed. Root canals were obturated with RealSeal 1 or Thermafil. A double chamber bacterial leakage model using E. faecalis was developed to assess the sealing ability. Samples were monitored daily for 60 days. After the bacterial leakage test, samples were embedded in resin and sectioned horizontally at 2 and 4 mm from the apical foramen. Specimens were examined under scanning electron microscope and digitally photographed. AutoCAD software was used to measure the gap between the canal surface and obturation material. Results were statistically analyzed using nonparametric Kaplan-Meier survival analysis for the bacterial leakage and t-test to compare the means of gap in RealSeal 1 and Thermafil at 2 and 4 mm. There was no significant difference between the RealSeal 1 and Thermafil with respect to leakage over time. At 2 mm and 4 mm, RealSeal 1 had significantly more gaps than Thermafil. From the observations it can be concluded that RealSeal 1 and Thermafil have comparable performance in terms of adaptation and sealing ability.
Alkahtani, Ahmed; Al-Subait, Sara; Anil, Sukumaran
2013-01-01
The study was done to assess the sealing ability and adaptation of RealSeal 1, and to compare it with Thermafil. 65 single-rooted extracted teeth were selected and root canal treatment was performed. Root canals were obturated with RealSeal 1 or Thermafil. A double chamber bacterial leakage model using E. faecalis was developed to assess the sealing ability. Samples were monitored daily for 60 days. After the bacterial leakage test, samples were embedded in resin and sectioned horizontally at 2 and 4 mm from the apical foramen. Specimens were examined under scanning electron microscope and digitally photographed. AutoCAD software was used to measure the gap between the canal surface and obturation material. Results were statistically analyzed using nonparametric Kaplan-Meier survival analysis for the bacterial leakage and t-test to compare the means of gap in RealSeal 1 and Thermafil at 2 and 4 mm. There was no significant difference between the RealSeal 1 and Thermafil with respect to leakage over time. At 2 mm and 4 mm, RealSeal 1 had significantly more gaps than Thermafil. From the observations it can be concluded that RealSeal 1 and Thermafil have comparable performance in terms of adaptation and sealing ability. PMID:23710141
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veselov, D. A., E-mail: dmitriy90@list.ru; Shashkin, I. S.; Bakhvalov, K. V.
Semiconductor lasers based on MOCVD-grown AlGaInAs/InP separate-confinement heterostructures are studied. It is shown that raising only the energy-gap width of AlGaInAs-waveguides without the introduction of additional barriers results in more pronounced current leakage into the cladding layers. It is found that the introduction of additional barrier layers at the waveguide–cladding-layer interface blocks current leakage into the cladding layers, but results in an increase in the internal optical loss with increasing pump current. It is experimentally demonstrated that the introduction of blocking layers makes it possible to obtain maximum values of the internal quantum efficiency of stimulated emission (92%) and continuouswavemore » output optical power (3.2 W) in semiconductor lasers in the eye-safe wavelength range (1400–1600 nm).« less
Fabrication of self-aligned, nanoscale, complex oxide varactors
NASA Astrophysics Data System (ADS)
Fu, Richard X.; Toonen, Ryan C.; Hirsch, Samuel G.; Ivill, Mathew P.; Cole, Melanie W.; Strawhecker, Kenneth E.
2015-01-01
Applications in ferroelectric random access memory and superparaelectric devices require the fabrication of ferroelectric capacitors at the nanoscale that exhibit extremely small leakage currents. To systematically study the material-size dependence of ferroelectric varactor performance, arrays of parallel-plate structures have been fabricated with nanoscale dielectric diameters. Electron beam lithography and inductively coupled plasma dry etching have been used to fabricate arrays of ferroelectric varactors using top electrodes as a self-aligned etch mask. Parallel-plate test structures using RF-sputtered Ba0.6Sr0.4TiO3 thin-films were used to optimize the fabrication process. Varactors with diameters down to 20 nm were successfully fabricated. Current-voltage (I-V) characteristics were measured to evaluate the significance of etch-damage and fabrication quality by ensuring low leakage currents through the structures.
Atomic layer deposited high-k nanolaminate capacitors
NASA Astrophysics Data System (ADS)
Smith, S. W.; McAuliffe, K. G.; Conley, J. F., Jr.
2010-10-01
Al 2O 3-Ta 2O 5 nanolaminate films were prepared via atomic layer deposition (ALD) on silicon with a single overall composition and thickness, but with a varying number of Al 2O 3/Ta 2O 5 bilayers. The composition of the films was roughly 57% Al 2O 3 and 43% Ta 2O 5 and the total film thickness was held at ˜58 nm, while the number of bilayers was varied from 3 to 192 by changing the target bilayer thickness from ˜19.2 nm to ˜0.3 nm. Varying the number of bilayers was found to impact electrical properties. Although, almost all laminate films exhibited leakage, breakdown, hysteresis, and overall dielectric constant intermediate between pure Al 2O 3 and Ta 2O 5 films, laminates with few bilayers exhibited leakage current density lower than Al 2O 3 over the range of ˜3.5-4.5 MV/cm. Select samples annealed at temperatures from 400 to 900 °C were compared with as-deposited laminates. Annealing the laminate films at low temperatures improved leakage and breakdown while higher temperature anneals degraded both leakage and breakdown but improved the effective dielectric constant. A figure of merit was used to evaluate the overall ability of the various films to store charge. It was found that the few bilayer laminates were ranked higher than the many bilayer laminates as well as above both the pure Ta 2O 5 and pure Al 2O 3 films. These results indicate that even for a fixed overall composition, the electrical properties of a nanolaminate can be adjusted by varying the number of bilayers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hyewon, E-mail: hyewon@ldeo.columbia.edu; Kim, Yong Hoon, E-mail: Yong.Kim@rpsgroup.com; Kang, Seong-Gil, E-mail: kangsg@kriso.re.kr
Offshore geologic storage of carbon dioxide (CO{sub 2}), known as offshore carbon capture and sequestration (CCS), has been under active investigation as a safe, effective mitigation option for reducing CO{sub 2} levels from anthropogenic fossil fuel burning and climate change. Along with increasing trends in implementation plans and related logistics on offshore CCS, thorough risk assessment (i.e. environmental impact monitoring) needs to be conducted to evaluate potential risks, such as CO{sub 2} gas leakage at injection sites. Gas leaks from offshore CCS may affect the physiology of marine organisms and disrupt certain ecosystem functions, thereby posing an environmental risk. Here,more » we synthesize current knowledge on environmental impact monitoring of offshore CCS with an emphasis on biological aspects and provide suggestions for better practice. Based on our critical review of preexisting literatures, this paper: 1) discusses key variables sensitive to or indicative of gas leakage by summarizing physico-chemical and ecological variables measured from previous monitoring cruises on offshore CCS; 2) lists ecosystem and organism responses to a similar environmental condition to CO{sub 2} leakage and associated impacts, such as ocean acidification and hypercapnia, to predict how they serve as responsive indicators of short- and long-term gas exposure, and 3) discusses the designs of the artificial gas release experiments in fields and the best model simulation to produce realistic leakage scenarios in marine ecosystems. Based on our analysis, we suggest that proper incorporation of biological aspects will provide successful and robust long-term monitoring strategies with earlier detection of gas leakage, thus reducing the risks associated with offshore CCS. - Highlights: • This paper synthesizes the current knowledge on environmental impact monitoring of offshore Carbon Capture and Sequestration (CCS). • Impacts of CO{sub 2} leakage (ocean acidification, hypercapnia) on marine organisms and ecosystems are discussed. • Insights and recommendations on EIA monitoring for CCS operations are proposed specifically in marine ecosystem perspective.« less
Principles of a multistack electrochemical wastewater treatment design
NASA Astrophysics Data System (ADS)
Elsahwi, Essam S.; Dawson, Francis P.; Ruda, Harry E.
2018-02-01
Electrolyzer stacks in a bipolar architecture (cells connected in series) are desirable since power provided to a stack can be transferred at high voltages and low currents and thus the losses in the power bus can be reduced. The anode electrodes (active electrodes) considered as part of this study are single sided but there are manufacturing cost advantages to implementing double side anodes in the future. One of the main concerns with a bipolar stack implementation is the existence of leakage currents (bypass currents). The leakage current is associated with current paths that are not between adjacent anode and cathode pairs. This leads to non uniform current density distributions which compromise the electrochemical conversion efficiency of the stack and can also lead to unwanted side reactions. The objective of this paper is to develop modelling tools for a bipolar architecture consisting of two single sided cells that use single sided anodes. It is assumed that chemical reactions are single electron transfer rate limited and that diffusion and convection effects can be ignored. The design process consists of the flowing two steps: development of a large signal model for the stack, and then the extraction of a small signal model from the large signal model. The small signal model facilitates the design of a controller that satisfies current or voltage regulation requirements. A model has been developed for a single cell and two cells in series but can be generalized to more than two cells in series and to incorporate double sided anode configurations in the future. The developed model is able to determine the leakage current and thus provide a quantitative assessment on the performance of the cell.
NASA Astrophysics Data System (ADS)
Park, Hyeonwoo; Teramoto, Akinobu; Kuroda, Rihito; Suwa, Tomoyuki; Sugawa, Shigetoshi
2018-04-01
Localized stress-induced leakage current (SILC) has become a major problem in the reliability of flash memories. To reduce it, clarifying the SILC mechanism is important, and statistical measurement and analysis have to be carried out. In this study, we applied an array test circuit that can measure the SILC distribution of more than 80,000 nMOSFETs with various gate areas at a high speed (within 80 s) and a high accuracy (on the 10-17 A current order). The results clarified that the distributions of localized SILC in different gate areas follow a universal distribution assuming the same SILC defect density distribution per unit area, and the current of localized SILC defects does not scale down with the gate area. Moreover, the distribution of SILC defect density and its dependence on the oxide field for measurement (E OX-Measure) were experimentally determined for fabricated devices.
Schoeppler, Gita M; Buchner, Alexander; Zaak, Dirk; Khoder, Wael; Staehler, Michael; Stief, Christian G; Reiser, Maximilian F; Clevert, Dirk-Andre
2010-12-01
To prospectively evaluate the accuracy of transvesical contrast-enhanced ultrasound (CEUS) as an alternative method for the detection of anastomotic leakage after radical retropubic prostatectomy (RRP) in comparison with the current standard method of conventional retrograde cystography (CG). Forty-three patients underwent RRP for histologically proven localized prostate cancer. The vesico-urethral anastomosis was evaluated 8 days after RRP by CG and CEUS. Any peri-anastomotic leakage was assessed and determined in CG and CEUS as follows: no extravasation (EV), small leakage (≤0.5 cm), moderate leakage (>0.5 cm to ≤2 cm), large leakage (>2 cm diameter of EV seen). In total, 21 (49%) patients showed a watertight anastomosis. Ten (23%), two (4.7%) and ten (23%) patients showed a small, intermediate and large EV, respectively. In 31 cases (72%) there was 100% agreement of CG and CEUS for detection of no, moderate and large EV, respectively. In nine cases a small and in two cases a moderate EV was categorized as watertight anastomosis by CEUS. Only in one case did CG detect a small EV where a large EV was detected in CEUS. The agreement between both methods was 95% for detecting absence or large leakages. CEUS is a promising imaging modality that seems to be equivalent to CG for detecting the presence of a large anastomotic leakage that is clinically relevant for postoperative persistence of the indwelling catheter. CEUS could be a cheap and time-saving alternative to the CG without exposure of the patient to radiation. © 2010 THE AUTHORS. JOURNAL COMPILATION © 2010 BJU INTERNATIONAL.
Moortgat, Joachim; Schwartz, Franklin W; Darrah, Thomas H
2018-03-01
Horizontal drilling and hydraulic fracturing have enabled hydrocarbon recovery from unconventional reservoirs, but led to natural gas contamination of shallow groundwaters. We describe and apply numerical models of gas-phase migration associated with leaking natural gas wells. Three leakage scenarios are simulated: (1) high-pressure natural gas pulse released into a fractured aquifer; (2) continuous slow leakage into a tilted fractured formation; and (3) continuous slow leakage into an unfractured aquifer with fluvial channels, to facilitate a generalized evaluation of natural gas transport from faulty natural gas wells. High-pressure pulses of gas leakage into sparsely fractured media are needed to produce the extensive and rapid lateral spreading of free gas previously observed in field studies. Transport in fractures explains how methane can travel vastly different distances and directions laterally away from a leaking well, which leads to variable levels of methane contamination in nearby groundwater wells. Lower rates of methane leakage (≤1 Mcf/day) produce shorter length scales of gas transport than determined by the high-pressure scenario or field studies, unless aquifers have low vertical permeabilities (≤1 millidarcy) and fractures and bedding planes have sufficient tilt (∼10°) to allow a lateral buoyancy component. Similarly, in fractured rock aquifers or where permeability is controlled by channelized fluvial deposits, lateral flow is not sufficiently developed to explain fast-developing gas contamination (0-3 months) or large length scales (∼1 km) documented in field studies. Thus, current efforts to evaluate the frequency, mechanism, and impacts of natural gas leakage from faulty natural gas wells likely underestimate contributions from small-volume, low-pressure leakage events. © 2018, National Ground Water Association.
Test results for rotordynamic coefficients of anti-swirl self-injection seals
NASA Technical Reports Server (NTRS)
Kim, C. H.; Lee, Y. B.
1994-01-01
Test results are presented for rotordynamic coefficients and leakage for three annular seals which use anti-swirl self-injection concept to yield significant improvement in whirl frequency ratios as compared to smooth and damper seals. A new anti-swirl self-inection mechanism is achieved by deliberately machining self-injection holes inside the seal stator mechanism which is used to achieve effective reduction of the tangential flow which is considered as a prime cause of rotor instability in high performance turbomachinery. Test results show that the self-injection mechanism significantly improves whirl frequency ratios; however, the leakage performance degrades due to the introduction of the self-injection mechanism. Through a series of the test program, an optimum anti-swirl self-injection seal which uses a labyrinth stator surface with anti-axial flow injections is selected to obtain a significant improvement in the whirl frequency ratio as compared to a damper seal, while showing moderate leakage performance. Best whirl frequency ratio is achieved by an anti-swirl self-injection seal of 12 holes anti-swirl and 6 degree anti-leakage injection with a labyrinth surface configuration. When compared to a damper seal, the optimum configuration outperforms the whirl frequency ratio by a factor of 2.
Application of an Integrated Assessment Model to the Kevin Dome site, Montana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Minh; Zhang, Ye; Carey, James William
The objectives of the Integrated Assessment Model is to enable the Fault Swarm algorithm in the National Risk Assessment Partnership, ensure faults are working in the NRAP-IAM tool, calculate hypothetical fault leakage in NRAP-IAM, and compare leakage rates to Eclipse simulations.
Vrabel, Joseph; Teeple, Andrew; Kress, Wade H.
2009-01-01
With increasing demands for reliable water supplies and availability estimates, groundwater flow models often are developed to enhance understanding of surface-water and groundwater systems. Specific hydraulic variables must be known or calibrated for the groundwater-flow model to accurately simulate current or future conditions. Surface geophysical surveys, along with selected test-hole information, can provide an integrated framework for quantifying hydrogeologic conditions within a defined area. In 2004, the U.S. Geological Survey, in cooperation with the North Platte Natural Resources District, performed a surface geophysical survey using a capacitively coupled resistivity technique to map the lithology within the top 8 meters of the near-surface for 110 kilometers of the Interstate and Tri-State Canals in western Nebraska and eastern Wyoming. Assuming that leakage between the surface-water and groundwater systems is affected primarily by the sediment directly underlying the canal bed, leakage potential was estimated from the simple vertical mean of inverse-model resistivity values for depth levels with geometrically increasing layer thickness with depth which resulted in mean-resistivity values biased towards the surface. This method generally produced reliable results, but an improved analysis method was needed to account for situations where confining units, composed of less permeable material, underlie units with greater permeability. In this report, prepared by the U.S. Geological Survey in cooperation with the North Platte Natural Resources District, the authors use geostatistical analysis to develop the minimum-unadjusted method to compute a relative leakage potential based on the minimum resistivity value in a vertical column of the resistivity model. The minimum-unadjusted method considers the effects of homogeneous confining units. The minimum-adjusted method also is developed to incorporate the effect of local lithologic heterogeneity on water transmission. Seven sites with differing geologic contexts were selected following review of the capacitively coupled resistivity data collected in 2004. A reevaluation of these sites using the mean, minimum-unadjusted, and minimum-adjusted methods was performed to compare the different approaches for estimating leakage potential. Five of the seven sites contained underlying confining units, for which the minimum-unadjusted and minimum-adjusted methods accounted for the confining-unit effect. Estimates of overall leakage potential were lower for the minimum-unadjusted and minimum-adjusted methods than those estimated by the mean method. For most sites, the local heterogeneity adjustment procedure of the minimum-adjusted method resulted in slightly larger overall leakage-potential estimates. In contrast to the mean method, the two minimum-based methods allowed the least permeable areas to control the overall vertical permeability of the subsurface. The minimum-adjusted method refined leakage-potential estimation by additionally including local lithologic heterogeneity effects.
Garrana, Rhoodie; Mohangi, Govindrau; Malo, Paulo; Nobre, Miguel
2016-01-01
Background . Endotoxin initiates osteoclastic activity resulting in bone loss. Endotoxin leakage through implant abutment connections negatively influences peri-implant bone levels. Objectives . (i) To determine if endotoxin can traverse different implant-abutment connection (IAC) designs; (ii) to quantify the amount of endotoxins traversing the IAC; (iii) to compare the in vitro comportments of different IACs. Materials and Methods . Twenty-seven IACs were inoculated with E. coli endotoxin. Six of the twenty-seven IACs were external connections from one system (Southern Implants) and the remaining twenty-one IACs were made up of seven internal IAC types from four different implant companies (Straumann, Ankylos, and Neodent, Southern Implants). Results . Of the 27 IACs tested, all 6 external IACs leaked measurable amounts of endotoxin. Of the remaining 21 internal IACs, 9 IACs did not show measurable leakage whilst the remaining 12 IACs leaked varying amounts. The mean log endotoxin level was significantly higher for the external compared to internal types ( p = 0.015). Conclusion . Within the parameters of this study, we can conclude that endotoxin leakage is dependent on the design of the IAC. Straumann Synocta, Straumann Cross-fit, and Ankylos displayed the best performances of all IACs tested with undetectable leakage after 7 days. Each of these IACs incorporated a morse-like component in their design. Speculation still exists over the impact of IAC endotoxin leakage on peri-implant tissues in vivo; hence, further investigations are required to further explore this.
[Bile leakage after liver resection: A retrospective cohort study].
Menclová, K; Bělina, F; Pudil, J; Langer, D; Ryska, M
2015-12-01
Many previous reports have focused on bile leakage after liver resection. Despite the improvements in surgical techniques and perioperative care the incidence of this complication rather keeps increasing. A number of predictive factors have been analyzed. There is still no consensus regarding their influence on the formation of bile leakage. The objective of our analysis was to evaluate the incidence of bile leakage, its impact on mortality and duration of hospitalization at our department. At the same time, we conducted an analysis of known predictive factors. The authors present a retrospective review of the set of 146 patients who underwent liver resection at the Department of Surgery of the 2nd Faculty of Medicine of the Charles University and Central Military Hospital Prague, performed between 20102013. We used the current ISGLS (International Study Group of Liver Surgery) classification to evaluate the bile leakage. The severity of this complication was determined according to the Clavien-Dindo classification system. Statistical significance of the predictive factors was determined using Fishers exact test and Students t-test. The incidence of bile leakage was 21%. According to ISGLS classification the A, B, and C rates were 6.5%, 61.2%, and 32.3%, respectively. The severity of bile leakage according to the Clavien-Dindo classification system - I-II, IIIa, IIIb, IV and V rates were 19.3%, 42%, 9.7%, 9.7%, and 19.3%, respectively. We determined the following predictive factors as statistically significant: surgery for malignancy (p<0.001), major hepatic resection (p=0.001), operative time (p<0.001), high intraoperative blood loss (p=0.02), construction of HJA (p=0.005), portal venous embolization/two-stage surgery (p=0.009) and ASA score (p=0.02). Bile leakage significantly prolonged hospitalization time (p<0.001). In the group of patients with bile leakage the perioperative mortality was 23 times higher (p<0.001) than in the group with no leakage. Bile leakage is one of the most serious complications of liver surgery. Most of the risk factors are not easily controllable and there is no clear consensus on their influence. Intraoperative leak tests could probably reduce the incidence of bile leakage. In the future, further studies will be required to improve the perioperative management and techniques to prevent such serious complications. Multidisciplinary approach is essential in the treatment.
Parekh, Bandish; Irani, Rukshin S; Sathe, Sucheta; Hegde, Vivek
2014-05-01
Microbial contamination of the pulp space is one of the major factors associated with endodontic failure. Thus, in addition to a three dimentional apical filling a coronal seal for root canal fillings has been recommended. The present study was conducted to evaluate and compare the intra-orifice sealing ability of three experimental materials after obturation of the root canal system. Fourty single rooted mandibular premolars were decoronated, cleaned, shaped and obturated. Gutta-percha was removed to the depth of 3.5 mm from the orifice with a heated plugger. Ten specimens each were sealed with Light Cure Glass Ionomer Cement (LCGIC), Flowable Composite (Tetric N-Flow), and Light Cure Glass Ionomer Cement with Flowable Composite in Sandwich Technique along with a positive control respectively and roots submerged in Rhodamine-B dye in vacuum for one week. Specimens were longitudinally sectioned and leakage measured using a 10X stereomicroscope and graded for depth of leakage. According to the results of the present study LC GIC + Tetric N Flow demonstrated significantly better seal (P < 0.01) than LC GIC. However there was no statistically significant difference in leakage (P > 0.01) between Tetric N-Flow and LCGIC+Tetric N-Flow groups. In the current study LCGIC+Tetric N-Flow was found to be superior over other experimental materials as intra-orifice barriers.
Seiberlich, Laura E; Keay, Vanessa; Kallos, Stephane; Junghans, Tiffany; Lang, Eddy; McRae, Andrew D
2016-03-01
The performance of a new safety peripheral intravenous catheter (PIVC) that contains a blood control feature in the hub (blood control) was compared against the current hospital standard without blood control (standard). In this prospective, non-blinded trial, patients were randomized 1:1 to receive either device. Insertions were performed and rated by emergency room nurses. Primary endpoints included clinical acceptability, incidence of blood leakage, and risk of blood exposure. Secondary endpoints were digital compression, insertion success, and usability. 15 clinicians performed 152 PIVC insertions (73 blood control, 79 standard). Clinical acceptability of the blood control device (100%) was non-inferior to the standard (98.7%) (p < 0.0001). The blood control device had a lower incidence of blood leakage (14.1% vs 68.4%), was superior in eliminating the risk of blood exposure (93.9% vs 19.1%) and the need for digital compression (95.3% vs 19.1%), while maintaining non-inferior insertion success rates (95.9% vs 93.7%) and usability ratings (p < 0.0001). In comparison with the hospital-standard, the new safety PIVC with integrated blood control valve had similar clinical acceptability ratings yet demonstrated superior advantages to both clinicians and patients to decrease blood leakage and the clinician's risk of blood exposure, during the insertion process. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Lohmüller, Theobald; Müller, Ulrich; Breisch, Stefanie; Nisch, Wilfried; Rudorf, Ralf; Schuhmann, Wolfgang; Neugebauer, Sebastian; Kaczor, Markus; Linke, Stephan; Lechner, Sebastian; Spatz, Joachim; Stelzle, Martin
2008-11-01
A porous metal-insulator-metal sensor system was developed with the ultimate goal of enhancing the sensitivity of electrochemical sensors by taking advantage of redox cycling of electro active molecules between closely spaced electrodes. The novel fabrication technology is based on thin film deposition in combination with colloidal self-assembly and reactive ion etching to create micro- or nanopores. This cost effective approach is advantageous compared to common interdigitated electrode arrays (IDA) since it does not require high definition lithography technology. Spin-coating and random particle deposition, combined with a new sublimation process are discussed as competing strategies to generate monolayers of colloidal spheres. Metal-insulator-metal layer systems with low leakage currents < 10 pA and an insulator thickness as low as 100 nm were obtained at high yield (typically > 90%). We also discuss possible causes of sensor failure with respect to critical fabrication processes. Short circuits which could occur during or as a result of the pore etching process were investigated in detail. Infrared microscopy in combination with focused ion beam etching/SEM were used to reveal a defect mechanism creating interconnects and increased leakage current between the top and bottom electrodes. Redox cycling provides for amplification factors of >100. A general applicability for electrochemical diagnostic assays is therefore anticipated.
Improved dielectric properties of BaTiO3-added CaCu3Ti4O12 polycrystalline ceramics
NASA Astrophysics Data System (ADS)
Kim, Hui Eun; Choi, Soon-Mi; Lee, Sung-Yun; Hong, Youn-Woo; Yoo, Sang-Im
2013-05-01
The effects of the BaTiO3 (BTO) additive on the electrical properties of CaCu3Ti4O12 (CCTO) polycrystalline ceramics were systematically investigated. Various amounts of BTO powder up to 15 mol. % were added to CCTO powder. Each batch was ball-milled, pressed into pellets, and finally sintered at 1060°C for 12 h in air. Compared with pure CCTO sample ( ɛ r ˜ 52,000 and tan δ ˜ 0.38 at 100 kHz), BTO-added CCTO samples commonly showed significantly reduced dielectric losses although their dielectric constants were decreased approximately by one order of magnitude (for instance, ɛ r ˜ 4,075 and tan δ ˜ 0.02 at 100 kHz for 5 mol. % BTO-added CCTO sample). In addition, the breakdown voltages of BTO-added CCTO samples were much higher than that of pure CCTO sample, and thus the leakage currents were greatly reduced at the applied voltage above ˜ 10 V. A large reduction in the dielectric losses and leakage currents is attributed to the secondary phases segregated at the CCTO grain boundary which are composed of CaTiO3, Ba4Ti12O27, and unreacted BTO.
Electrorheological Fluids with High Shear Stress Based on Wrinkly Tin Titanyl Oxalate.
Wu, Jinghua; Zhang, Lei; Xin, Xing; Zhang, Yang; Wang, Hui; Sun, Aihua; Cheng, Yuchuan; Chen, Xinde; Xu, Gaojie
2018-02-21
Electrorheological (ER) fluids are considered as a type of smart fluids because their rheological characteristics can be altered through an electric field. The discovery of giant ER effect revived the researchers' interest in the ER technological area. However, the poor stability including the insufficient dynamic shear stress, the large leakage current density, and the sedimentation tendency still hinders their practical applications. Herein, we report a facile and scalable coprecipitation method for synthesizing surfactant-free tin titanyl oxalate (TTO) particles with tremella-like wrinkly microstructure (W-TTO). The W-TTO-based ER fluids exhibit enhanced ER activity compared to that of the pristine TTO because of the improved wettability between W-TTO and the silicone oil. In addition, the static yield stress and leakage current of W-TTO ER fluids also show a fine time stability during the 30 day tests. More importantly, the dynamic shear stress of W-TTO ER fluids can remain stable throughout the shear rate range, which is valuable for their use in engineering applications. The results in this work provided a promising strategy to solving the long-standing problem of ER fluid stability. Moreover, this convenient route of synthesis may be considered a green approach for the mass production of giant ER materials.
NASA Astrophysics Data System (ADS)
Itoh, Eiji; Goto, Yoshinori; Fukuda, Katsutoshi
2014-02-01
The contributions of ultrathin titania nanosheet (TN) crystallites were studied in both an inverted bulk-heterojunction (BHJ) cell in an indium-tin oxide (ITO)/titania nanosheet (TN)/poly(3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methylester (PCBM) active layer/MoOx/Ag multilayered photovoltaic device and a conventional BHJ cell in ITO/MoOx/P3HT:PCBM active layer/TN/Al multilayered photovoltaic device. The insertion of only one or two layers of poly(diallyldimethylammonium chloride) (PDDA) and TN multilayered film prepared by the layer-by-layer deposition technique effectively decreased the leakage current and increased the open circuit voltage (VOC), fill factor (FF), and power conversion efficiency (η). The conventional cell sandwiched between a solution-processed, partially crystallized molybdenum oxide hole-extracting buffer layer and a TN electron extracting buffer layer showed comparable cell performance to a device sandwiched between vacuum-deposited molybdenum oxide and TN layers, whereas the inverted cell with solution-processed molybdenum oxide showed a poorer performance probably owing to the increment in the leakage current across the film. The abnormal S-shaped curves observed in the inverted BHJ cell above VOC disappeared with the use of a polyfluorene-based cationic semiconducting polymer as a substitute for an insulating PDDA film, resulting in the improved cell performance.
Multilayer Piezoelectric Stack Actuator Characterization
NASA Technical Reports Server (NTRS)
Sherrit, Stewart; Jones, Christopher M.; Aldrich, Jack B.; Blodget, Chad; Bao, Xioaqi; Badescu, Mircea; Bar-Cohen, Yoseph
2008-01-01
Future NASA missions are increasingly seeking to use actuators for precision positioning to accuracies of the order of fractions of a nanometer. For this purpose, multilayer piezoelectric stacks are being considered as actuators for driving these precision mechanisms. In this study, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and extreme temperatures and voltages. AC signal testing included impedance, capacitance and dielectric loss factor of each actuator as a function of the small-signal driving sinusoidal frequency, and the ambient temperature. DC signal testing includes leakage current and displacement as a function of the applied DC voltage. The applied DC voltage was increased to over eight times the manufacturers' specifications to investigate the correlation between leakage current and breakdown voltage. Resonance characterization as a function of temperature was done over a temperature range of -180C to +200C which generally exceeded the manufacturers' specifications. In order to study the lifetime performance of these stacks, five actuators from one manufacturer were driven by a 60volt, 2 kHz sine-wave for ten billion cycles. The tests were performed using a Lab-View controlled automated data acquisition system that monitored the waveform of the stack electrical current and voltage. The measurements included the displacement, impedance, capacitance and leakage current and the analysis of the experimental results will be presented.
Lee, Ke-Jing; Chang, Yu-Chi; Lee, Cheng-Jung; Wang, Li-Wen; Wang, Yeong-Her
2017-01-01
A one-transistor and one-resistor (1T1R) architecture with a resistive random access memory (RRAM) cell connected to an organic thin-film transistor (OTFT) device is successfully demonstrated to avoid the cross-talk issues of only one RRAM cell. The OTFT device, which uses barium zirconate nickelate (BZN) as a dielectric layer, exhibits favorable electrical properties, such as a high field-effect mobility of 2.5 cm2/Vs, low threshold voltage of −2.8 V, and low leakage current of 10−12 A, for a driver in the 1T1R operation scheme. The 1T1R architecture with a TiO2-based RRAM cell connected with a BZN OTFT device indicates a low operation current (10 μA) and reliable data retention (over ten years). This favorable performance of the 1T1R device can be attributed to the additional barrier heights introduced by using Ni (II) acetylacetone as a substitute for acetylacetone, and the relatively low leakage current of a BZN dielectric layer. The proposed 1T1R device with low leakage current OTFT and excellent uniform resistance distribution of RRAM exhibits a good potential for use in practical low-power electronic applications. PMID:29232828
Sugawara, Taku; Itoh, Yasunobu; Hirano, Yoshitaka; Higashiyama, Naoki; Shimada, Yoichi; Kinouchi, Hiroyuki; Mizoi, Kazuo
2005-10-01
Extradural or subcutaneous cerebrospinal fluid (CSF) leakage is a common complication after spinal surgery and is associated with the risks of poor wound healing, meningitis, and pseudomeningocele. Numerous methods to prevent postoperative CSF leakage are available, but pressure-tight dural closure remains difficult, especially with synthetic surgical membranes. The efficacy of a novel dural closure technique was assessed by detecting extradural or subcutaneous CSF leakage on magnetic resonance imaging. The novel dural closure technique using absorbable polyglactin acid sheet and fibrin glue and the conventional procedure using only fibrin glue were evaluated retrospectively by identifying extradural or subcutaneous CSF leakage on magnetic resonance imaging scans in the acute (2-7 d) and chronic (3-6 mo) postoperative stages after spinal intradural surgery in 53 patients. The incidence of extradural and subcutaneous CSF leakage was significantly lower (P < 0.05) in the acute (20%) and chronic (0%) stages using polyglactin acid sheet and fibrin glue in 15 patients compared with that in the acute (81%) and chronic (24%) stages using only fibrin glue in 38 patients. One patient in the fibrin glue-only group required repair surgery for cutaneous CSF leakage. The combination of polyglactin acid sheet and fibrin glue can achieve water-tight closure after spinal intradural surgery and can minimize the risk of intractable postoperative CSF leakage. This simple, economical technique is recommended for dural closure after spinal intradural surgery.
Leakage and sweet spots in triple-quantum-dot spin qubits: A molecular-orbital study
NASA Astrophysics Data System (ADS)
Zhang, Chengxian; Yang, Xu-Chen; Wang, Xin
2018-04-01
A triple-quantum-dot system can be operated as either an exchange-only qubit or a resonant-exchange qubit. While it is generally believed that the decisive advantage of the resonant-exchange qubit is the suppression of charge noise because it is operated at a sweet spot, we show that the leakage is also an important factor. Through molecular-orbital-theoretic calculations, we show that when the system is operated in the exchange-only scheme, the leakage to states with double electron occupancy in quantum dots is severe when rotations around the axis 120∘ from z ̂ is performed. While this leakage can be reduced by either shrinking the dots or separating them further, the exchange interactions are also suppressed at the same time, making the gate operations unfavorably slow. When the system is operated as a resonant-exchange qubit, the leakage is three to five orders of magnitude smaller. We have also calculated the optimal detuning point which minimizes the leakage for the resonant-exchange qubit, and have found that although it does not coincide with the double sweet spot for the charge noise, they are rather close. Our results suggest that the resonant-exchange qubit has another advantage, that leakage can be greatly suppressed compared to the exchange-only qubit, and operating at the double sweet spot point should be optimal both for reducing charge noise and suppressing leakage.
NASA Technical Reports Server (NTRS)
Campola, Michael; Wyrwas, Edward
2017-01-01
The purpose of this test was to characterize the Micron MT29F128G08AJAAAs parameter degradation for total dose response and to evaluate and compare lot date codes for sensitivity. In the test, the device was exposed to both low dose and high dose rate (HDR) irradiations using gamma radiation. Device parameters such as leakage currents, quantity of upset bits and overall chip and die health were investigated to determine which lot is more robust.
Visual Inspection of Water Leakage from Ground Penetrating Radar Radargram
NASA Astrophysics Data System (ADS)
Halimshah, N. N.; Yusup, A.; Mat Amin, Z.; Ghazalli, M. D.
2015-10-01
Water loss in town and suburban is currently a significant issue which reflect the performance of water supply management in Malaysia. Consequently, water supply distribution system has to be maintained in order to prevent shortage of water supply in an area. Various techniques for detecting a mains water leaks are available but mostly are time-consuming, disruptive and expensive. In this paper, the potential of Ground Penetrating Radar (GPR) as a non-destructive method to correctly and efficiently detect mains water leaks has been examined. Several experiments were designed and conducted to prove that GPR can be used as tool for water leakage detection. These include instrument validation test and soil compaction test to clarify the maximum dry density (MDD) of soil and simulation studies on water leakage at a test bed consisting of PVC pipe burying in sand to a depth of 40 cm. Data from GPR detection are processed using the Reflex 2D software. Identification of water leakage was visually inspected from the anomalies in the radargram based on GPR reflection coefficients. The results have ascertained the capability and effectiveness of the GPR in detecting water leakage which could help avoiding difficulties with other leak detection methods.
Effects of Post-Deposition Annealing on ZrO2/n-GaN MOS Capacitors with H2O and O3 as the Oxidizers
NASA Astrophysics Data System (ADS)
Zheng, Meijuan; Zhang, Guozhen; Wang, Xiao; Wan, Jiaxian; Wu, Hao; Liu, Chang
2017-04-01
GaN-based metal-oxide-semiconductor capacitors with ZrO2 as the dielectric layer have been prepared by atomic layer deposition. The accumulation and depletion regions can be clearly distinguished when the voltage was swept from -4 to 4 V. Post-annealing results suggested that the capacitance in accumulation region went up gradually as the annealing temperature increased from 300 to 500 °C. A minimum leakage current density of 3 × 10-9 A/cm2 at 1 V was obtained when O3 was used for the growth of ZrO2. Leakage analysis revealed that Schottky emission and Fowler-Nordheim tunneling were the main leakage mechanisms.
Experimental evaluation of clinical colon anastomotic leakage.
Pommergaard, Hans-Christian
2014-03-01
Colorectal anastomotic leakage remains a frequent and serious complication in gastrointestinal surgery. Patient and procedure related risk factors for anastomotic leakage have been identified. However, the responsible pathophysiological mechanisms are still unknown. Among these, ischemia and insufficient surgical technique have been suggested to play a central role. Animal models are valuable means to evaluate pathophysiological mechanisms and may be used to test preventive measures aiming at reducing the risk of anastomotic leakage, such as external anastomotic coating. The aim of this thesis was to: Clarify the best suited animal to model clinical anastomotic leakage in humans; Create animal models mimicking anastomotic leakage in humans induced by insufficient surgical technique and tissue ischemia; Determine the best suited coating materials to prevent anastomotic leakage. This study is a systematic review using the databases MEDLINE and Rex. MEDLINE was searched up to October 2010 to identify studies on experimental animal models of clinical colon anastomotic leakage. From the Rex database, textbooks on surgical aspects as well as gastrointestinal physiology and anatomy of experimental animals were identified. The results indicated that the mouse and the pig are the best suited animals to evaluate clinical anastomotic leakage. However, the pig model is less validated and more costly to use compared with the mouse. Most frequently, rats are used as models. However, extreme interventions are needed to create clinical leakage in these animals. The knowledge from this study formed the basis for selecting the animal species most suited for the models in the next studies. STUDY 2: In this experimental study, technically insufficient colonic anastomoses were performed in 110 C57BL/6 mice. The number of sutures in the intervention group was reduced to produce a suitable leakage rate. Moreover, the analgesia and suture material were changed in order to optimize the model. In the final experiment, the four-suture anastomoses resulted in a 40% leakage rate in the intervention groups, whereas the eight-suture control anastomoses had a 0% leakage rate. Furthermore, the use of absorbable suture together with voluntarily ingested Temgesic in chocolate spread as analgesic regimen were feasible. This model may be used to test the leakage reducing potential of coating materials. STUDY 3: This experimental study used 53 C57BL/6 mice, in which sufficient eight-suture anastomoses were created. By using bipolar electro-cautery, blood supply was reduced in a stepwise manner to create anastomotic leakage as a result of ischemia. The study showed that reduced blood supply led to large bowel obstruction instead of clinical leakage. However, anastomotic breaking strength was reduced in the ischemic anastomoses. STUDY 4: In this systematic review MEDLINE, Embase and Cinahl were searched up to September 2011 to identify studies evaluating external coating of colonic anastomoses. Most studies were experimental, in which designs were not comparable and many results were contradictory. In a clinical study, a non-significant benefit of fibrin sealant was found. Based on the available clinical and experimental data it was concluded that the fibrin-based sealants, such as Tisseel and Tachosil, and polyethylene glycols may be beneficial. However, further experimental and clinical studies are needed before routine clinical use can be recommended. The studies in this thesis may be valuable for the experimental research field of clinical anastomotic leakage. The model of technical insufficiency has been improved and is now thoroughly validated. If used by researchers worldwide, comparison of results is possible. Pure ischemia/anoxia may be too simple an approach to create a clinical leakage model. Thus, future models could focus on multiple risk factors. Conclusively, large-scale clinical multicenter studies are needed to definitively evaluate whether coating of colorectal anastomoses may reduce the leakage rate.
Nett, Michael; Avelar, Rui; Sheehan, Michael; Cushner, Fred
2011-03-01
Standard medial parapatellar arthrotomies of 10 cadaveric knees were closed with either conventional interrupted absorbable sutures (control group, mean of 19.4 sutures) or a single running knotless bidirectional barbed absorbable suture (experimental group). Water-tightness of the arthrotomy closure was compared by simulating a tense hemarthrosis and measuring arthrotomy leakage over 3 minutes. Mean total leakage was 356 mL and 89 mL in the control and experimental groups, respectively (p = 0.027). Using 8 of the 10 knees (4 closed with control sutures, 4 closed with an experimental suture), a tense hemarthrosis was again created, and iatrogenic suture rupture was performed: a proximal suture was cut at 1 minute; a distal suture was cut at 2 minutes. The impact of suture rupture was compared by measuring total arthrotomy leakage over 3 minutes. Mean total leakage was 601 mL and 174 mL in the control and experimental groups, respectively (p = 0.3). In summary, using a cadaveric model, arthrotomies closed with a single bidirectional barbed running suture were statistically significantly more water-tight than those closed using a standard interrupted technique. The sample size was insufficient to determine whether the two closure techniques differed in leakage volume after suture rupture.
Undesirable leakage to overlying formations with horizontal and vertical injection wells
NASA Astrophysics Data System (ADS)
Mosaheb, M.; Zeidouni, M.
2017-12-01
Deep saline aquifers are considered for underground storage of carbon dioxide. Undesirable leakage of injected CO2 to adjacent layers would disturb the storage process and can pollute shallower fresh water resources as well as atmosphere. Leaky caprocks, faults, and abandoned wells are examples of leaky pathways. In addition, the overpressure can reactivate a sealing fault or damage the caprock layer. Pressure management is applicable during the storage operation to avoid these consequences and to reduce undesirable leakage.The fluids can be injected through horizontal wells with a wider interval than vertical wells. Horizontal well injection would make less overpressure by delocalizing induced pressure especially in thin formations. In this work, numerical and analytical approaches are applied to model different leaky pathways with horizontal and vertical injection wells. we compare leakage rate and overpressure for horizontal and vertical injection wells in different leaky pathway systems. Results show that the horizontal well technology would allow high injection rates with lower leakage rate for leaky well, leaky fault, and leaky caprock cases. The overpressure would reduce considerably by horizontal well comparing to vertical well injection especially in leaky fault system. The horizontal well injection is an effective method to avoid reaching to threshold pressure of fault reactivation and prevent the consequent induced seismicity.
2D Quantum Transport Modeling in Nanoscale MOSFETs
NASA Technical Reports Server (NTRS)
Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan
2001-01-01
With the onset of quantum confinement in the inversion layer in nanoscale MOSFETs, behavior of the resonant level inevitably determines all device characteristics. While most classical device simulators take quantization into account in some simplified manner, the important details of electrostatics are missing. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL, and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density- gradient and quantum-corrected MEDICI). We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions, oxide tunneling and phase-breaking scattering are treated on equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. Quantum simulations are focused on MIT 25, 50 and 90 nm "well- tempered" MOSFETs and compared to classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. These results are quantitatively consistent with I D Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and sub-threshold current has been studied. The shorter gate length device has an order of magnitude smaller current at zero gate bias than the longer gate length device without a significant trade-off in on-current. This should be a device design consideration.
Lai, Fang-I; Yang, Jui-Fu; Chen, Wei-Chun; Kuo, Shou-Yi
2017-11-22
In this study, we proposed a new method for the synthesis of the target material used in a two stage process for preparation of a high quality CZTSe thin film. The target material consisting of a mixture of Cu x Se and Zn x Sn 1-x alloy was synthesized, providing a quality CZTSe precursor layer for highly efficient CZTSe thin film solar cells. The CZTSe thin film can be obtained by annealing the precursor layers through a 30 min selenization process under a selenium atmosphere at 550 °C. The CZTSe thin films prepared by using the new precursor thin film were investigated and characterized using X-ray diffraction, Raman scattering, and photoluminescence spectroscopy. It was found that diffusion of Sn occurred and formed the CTSe phase and Cu x Se phase in the resultant CZTSe thin film. By selective area electron diffraction transmission electron microscopy images, the crystallinity of the CZTSe thin film was verified to be single crystal. By secondary ion mass spectroscopy measurements, it was confirmed that a double-gradient band gap profile across the CZTSe absorber layer was successfully achieved. The CZTSe solar cell with the CZTSe absorber layer consisting of the precursor stack exhibited a high efficiency of 5.46%, high short circuit current (J SC ) of 37.47 mA/cm 2 , open circuit voltage (V OC ) of 0.31 V, and fill factor (F.F.) of 47%, at a device area of 0.28 cm 2 . No crossover of the light and dark current-voltage (I-V) curves of the CZTSe solar cell was observed, and also, no red kink was observed under red light illumination, indicating a low defect concentration in the CZTSe absorber layer. Shunt leakage current with a characteristic metal/CZTSe/metal leakage current model was observed by temperature-dependent I-V curves, which led to the discovery of metal incursion through the CdS buffer layer on the CZTSe absorber layer. This leakage current, also known as space charge-limited current, grew larger as the measurement temperature increased and completely overwhelmed the diode current at a measurement temperature of 200 °C. This is due to interlayer diffusion of metal that increases the shunt leakage current and decreases the efficiency of the CZTSe thin film solar cells.
TiO2-Based Indium Phosphide Metal-Oxide-Semiconductor Capacitor with High Capacitance Density.
Cheng, Chun-Hu; Hsu, Hsiao-Hsuan; Chou, Kun-i
2015-04-01
We report a low-temperature InP p-MOS with a high capacitance density of 2.7 µF/cm2, low leakage current of 0.77 A/cm2 at 1 V and tight current distribution. The high-density and low-leakage InP MOS was achieved by using high-κ TiLaO dielectric and ultra-thin SiO2 buffer layer with a thickness of less than 0.5 nm. The obtained EOT can be aggressively scaled down to < 1 nm through the use of stacked TiLaO/SiO2 dielectric, which has the potential for the future application of high mobility III-V CMOS devices.
Azzolina, Nicholas A; Small, Mitchell J; Nakles, David V; Glazewski, Kyle A; Peck, Wesley D; Gorecki, Charles D; Bromhal, Grant S; Dilmore, Robert M
2015-01-20
This work uses probabilistic methods to simulate a hypothetical geologic CO2 storage site in a depleted oil and gas field, where the large number of legacy wells would make it cost-prohibitive to sample all wells for all measurements as part of the postinjection site care. Deep well leakage potential scores were assigned to the wells using a random subsample of 100 wells from a detailed study of 826 legacy wells that penetrate the basal Cambrian formation on the U.S. side of the U.S./Canadian border. Analytical solutions and Monte Carlo simulations were used to quantify the statistical power of selecting a leaking well. Power curves were developed as a function of (1) the number of leaking wells within the Area of Review; (2) the sampling design (random or judgmental, choosing first the wells with the highest deep leakage potential scores); (3) the number of wells included in the monitoring sampling plan; and (4) the relationship between a well’s leakage potential score and its relative probability of leakage. Cases where the deep well leakage potential scores are fully or partially informative of the relative leakage probability are compared to a noninformative base case in which leakage is equiprobable across all wells in the Area of Review. The results show that accurate prior knowledge about the probability of well leakage adds measurable value to the ability to detect a leaking well during the monitoring program, and that the loss in detection ability due to imperfect knowledge of the leakage probability can be quantified. This work underscores the importance of a data-driven, risk-based monitoring program that incorporates uncertainty quantification into long-term monitoring sampling plans at geologic CO2 storage sites.
Preliminary skyshine calculations for the Poloidal Diverter Tokamak Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigg, D.W.; Wheeler, F.J.
1981-01-01
The Poloidal Diverter Experiment (PDX) facility at Princeton University is the first operating tokamak to require substantial radiation shielding. A calculational model has been developed to estimate the radiation dose in the PDX control room and at the site boundary due to the skyshine effect. An efficient one-dimensional method is used to compute the neutron and capture gamma leakage currents at the top surface of the PDX roof shield. This method employs an S /SUB n/ calculation in slab geometry and, for the PDX, is superior to spherical models found in the literature. If certain conditions are met, the slabmore » model provides the exact probability of leakage out the top surface of the roof for fusion source neutrons and for capture gamma rays produced in the PDX floor and roof shield. The model also provides the correct neutron and capture gamma leakage current spectra and angular distributions, averaged over the top roof shield surface. For the PDX, this method is nearly as accurate as multidimensional techniques for computing the roof leakage and is much less costly. The actual neutron skyshine dose is computed using a Monte Carlo model with the neutron source at the roof surface obtained from the slab S /SUB n/ calculation. The capture gamma dose is computed using a simple point-kernel single-scatter method.« less
A line- and load-regulated constant-current ac shock generator has been designed for animal behavior experiments. The self-contained unit has four operating modes, amplitude adjustment, and a leakage current detection circuit. A unique feature of this generator is that the good l...
Safety and Efficacy of Alginate Adhesion Barrier Gel in Compromised Intestinal Anastomosis.
Chaturvedi, Ankit A; Yauw, Simon T K; Lomme, Roger M L M; Hendriks, Thijs; van Goor, Harry
For any anti-adhesive barrier developed for abdominal surgery, the use under conditions in which anastomotic healing is compromised needs to be investigated. The current study evaluates the effect of a new ultrapure alginate gel on early healing of high-risk anastomoses in the ileum and compares this with the gold standard used in clinical practice. In 75 adult male Wistar rats, a 5 mm ileal segment was resected and continuity was restored by construction of an inverted anastomosis. Rats were divided randomly into a control group and groups receiving either alginate gel or a sodium hyaluronate carboxymethylcellulose (HA/CMC) film around the anastomosis (n = 25 each). Carprofen, given in a daily dose of 1.25 mg/kg, was used to compromise anastomotic healing. At day three, animals were killed and scored for signs of anastomotic leakage and the presence of adhesions. The incidence of adhesion formation was 95% in the HA/CMC film group, which was significantly higher than in the controls (64%, p = 0.010) and the alginate gel group (52%, p = 0.004). The adhesion score was nearly 40% lower in the alginate gel group compared with the HA/CMC film group. The incidence of ileal leakage in the HA/CMC film group (92%) was significantly higher than in the controls (68%, p = 0.016). Leakage rate did not differ between the alginate gel and control groups. There was no significant difference between groups in either incision bursting pressure or incision breaking strength. Ultrapure alginate gel does not interfere with repair of ileal anastomoses constructed under conditions in which chances of anastomotic dehiscence are high. The alginate gel performs better than the HA/CMC film.
Experimental investigation of leak detection using mobile distributed monitoring system
NASA Astrophysics Data System (ADS)
Chen, Jiang; Zheng, Junli; Xiong, Feng; Ge, Qi; Yan, Qixiang; Cheng, Fei
2018-01-01
The leak detection of rockfill dams is currently hindered by spatial and temporal randomness and wide monitoring range. The spatial resolution of fiber Bragg grating (FBG) temperature sensing technology is related to the distance between measuring points. As a result, the number of measuring points should be increased to ensure that the precise location of the leak is detected. However, this leads to a higher monitoring cost. Consequently, it is difficult to promote and apply this technology to effectively monitor rockfill dam leakage. In this paper, a practical mobile distributed monitoring system with dual-tubes is used by combining the FBG sensing system and hydrothermal cycling system. This dual-tube structure is composed of an outer polyethylene of raised temperature resistance heating pipe, an inner polytetrafluoroethylene tube, and a FBG sensor string, among which, the FBG sensor string can be dragged freely in the internal tube to change the position of the measuring points and improve the spatial resolution. In order to test the effectiveness of the system, the large-scale model test of concentrated leakage in 13 working conditions is carried out by identifying the location, quantity, and leakage rate of leakage passage. Based on Newton’s law of cooling, the leakage state is identified using the seepage identification index ζ v that was confirmed according to the cooling curve. Results suggested that the monitoring system shows high sensitivity and can improve the spatial resolution with limited measuring points, and thus better locate the leakage area. In addition, the seepage identification index ζ v correlated well with the leakage rate qualitatively.
Determination of secondhand smoke leakage from the smoking room of an Internet café.
Kim, Hyejin; Lee, Kiyoung; An, Jaehoon; Won, Sungho
2017-10-01
Although Internet cafes have been designated as nonsmoking areas in Korea, smoke-free legislation has allowed the installation of indoor smoking rooms. The purposes of this study were to determine secondhand smoke (SHS) leakage from an Internet café smoking room and to identify factors associated with SHS leakage. PM 2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm) mass concentrations were measured simultaneously both inside and outside the door to the smoking room. During each measurement, a field technician observed how long the smoking room door was opened and closed, the direction of door opening, and the number of smokers. A multivariate linear regression model was used to identify the causality of SHS leakage from the smoking room. A time series of PM 2.5 concentrations both inside and outside the door to the smoking room showed a similar trend. SHS leakage was significantly increased because of factors associated with the direction of the smoking room door being opened, the duration of how long the smoking room door was opened until it was closed, and the average PM 2.5 concentration inside the smoking room when the door was opened. SHS leakage from inside the smoking room to outside the smoking room was evident especially when the smoking room door was opened. Since the smoking room is not effective in preventing SHS exposure, the smoking room should be removed from the facilities to protect citizens from SHS exposure through revision of the current legislation, which permits installation of a smoking room. This paper concerns secondhand smoke (SHS) leakage from indoor smoking room. Unlike previous studies, the authors statistically analyzed the causality of PM 2.5 concentration leakage from a smoking room using time-series analysis. Since the authors selected the most common smoking room, the outcomes could be generalized. The study demonstrated that SHS leakage from smoking room and SHS leakage were clearly associated with door opening. The finding demonstrated ineffectiveness of smoking room to protect citizens and supports removal of indoor smoking room.
Tomoda, Y; Korogi, Y; Aoki, T; Morioka, T; Takahashi, H; Ohno, M; Takeshita, I
2008-03-01
The pathogenesis of cerebrospinal fluid (CSF) hypovolemia is supposed to be caused by CSF leakage through small dural defects. To compare source three-dimensional (3D) fast spin-echo (FSE) images of magnetic resonance (MR) myelography with radionuclide cisternography findings, and to evaluate the feasibility of MR myelography in the detection of CSF leakage. A total of 67 patients who were clinically suspected of CSF hypovolemia underwent indium-111 radionuclide cisternography, and 27 of those who had direct findings of CSF leakage were selected for evaluation. MR myelography with 3D FSE sequences (TR/TE 6000/203 ms) was performed at the lumbar spine for all patients. We evaluated source images and maximum intensity projection (MIP) images of MR myelography, and the findings were correlated with radionuclide cisternography findings. MR myelography of five healthy volunteers was used as a reference. The MR visibility of the CSF leakage was graded as definite (leakage clearly visible), possible (leakage poorly seen), or absent (not shown). CSF leakage was identified with source 3D FSE images in 22 (81.5%) of 27 patients. Of the 22 patients, 16 were graded as definite and six were graded as possible. For the definite cases, 3D FSE images clearly showed the extent of the leaked CSF in the paraspinal structures. In the remaining five patients with absent findings, radionuclide cisternography showed only slight radionuclide activity out of the arachnoid space. Source 3D FSE images of MR myelography seem useful in the detection of CSF leakage. Invasive radionuclide cisternography may be reserved for equivocal cases only.
Detecting the leakage source of a reservoir using isotopes.
Yi, Peng; Yang, Jing; Wang, Yongdong; Mugwanezal, Vincent de Paul; Chen, Li; Aldahan, Ala
2018-07-01
A good monitoring method is vital for understanding the sources of a water reservoir leakage and planning for effective restoring. Here we present a combination of several tracers ( 222 Rn, oxygen and hydrogen isotopes, anions and temperature) for identification of water leakage sources in the Pushihe pumped storage power station which is in the Liaoning province, China. The results show an average 222 Rn activity of 6843 Bq/m 3 in the leakage water, 3034 Bq/m 3 in the reservoir water, and 41,759 Bq/m 3 in the groundwater. Considering that 222 Rn activity in surface water is typically less than 5000 Bq/m 3 , the low level average 222 Rn activity in the leakage water suggests the reservoir water as the main source of water. Results of the oxygen and hydrogen isotopes show comparable ranges and values in the reservoir and the leakage water samples. However, important contribution of the groundwater (up to 36%) was present in some samples from the bottom and upper parts of the underground powerhouse, while the leakage water from some other parts indicate the reservoir water as the dominant source. The isotopic finding suggests that the reservoir water is the main source of the leakage water which is confirmed by the analysis of anions (nitrate, sulfate, and chloride) in the water samples. The combination of these tracer methods for studying dam water leakage improves the accuracy of identifying the source of leaks and provide a scientific reference for engineering solutions to ensure the dam safety. Copyright © 2018 Elsevier Ltd. All rights reserved.
Yang, Yun; Shu, Ye; Su, Fangyu; Xia, Lin; Duan, Baofeng; Wu, Xiaoting
2017-04-01
Transanal decompression tube (TDT), an alternative intervention believed to have potential equivalent efficacy in reducing anastomotic leakage after rectal cancer surgery and lower complication rates compared to protective stoma, was sporadically applied in some medical centers during recent decade. The objective of this meta-analysis was to evaluate the effect of the TDT in preventing the anastomotic leakage after low anterior resection for rectal cancer. The studies comparing TDT and non-TDT in rectal cancer were researched up to March 22, 2016 without language preference, in databases of PubMed, Web of Science, Cochrane library, International Clinical Trials Registry Platform, and National Clinical Trials Registry. The rates of anastomotic leakage, bleeding, and re-operation were separately calculated and compared between TDT and non-TDT groups using RevMan 5.3. Funnel plots, and Egger's tests were used to evaluate the publication biases of the studies. Two prospective randomized controlled trial studies and five observational cohort studies with 833 participants in TDT group and 939 participants in non-TDT group were finally included in this meta-analysis. The results indicated that the TDT group had lower anastomotic leakage rate than non-TDT group with significant RR (RR 0.44; 95 % CI 0.29-0.66; P < 0.0001) and heterogeneity (I 2 = 33 %; P = 0.18). So did the re-operation rate, with RR (RR 0.16; 95 % CI 0.07-0.37; P < 0.0001) and heterogeneity among the studies (I 2 = 0 %; P = 0.80). There was no significant difference in anastomotic bleeding rates (RR 1.48; 95 % CI 0.79-2.77; P = 0.22) (I 2 = 58 %; P = 0.09). No publication bias was found by Egger's test (anastomotic leakage rate, Pr > |z| = 0.224; re-operation rate, Pr > |z| = 0.425). TDT might be an efficient and economic intervention in preventing anastomotic leakage after rectal cancer surgery.
NASA Astrophysics Data System (ADS)
Lahgere, Avinash; Panchore, Meena; Singh, Jawar
2016-08-01
In this paper, we propose a novel tunnel field-effect transistor (TFET) based on charge plasma (CP) and negative capacitance (NC) for enhanced ON-current and steep subthreshold swing (SS). It is shown that the replacement of standard insulator for gate stack with ferroelectric (Fe) insulator yields NC and high electric field at the tunneling junction. Similarly, use of dopingless silicon nanowire with CP has a genuine advantage in process engineering. Therefore, combination of both technology boosters (CP and NC) in the proposed device enable low thermal budget, process variation immunity, and excellent electrical characteristics in contrast with its counterpart dopingless (DL) TFET (DL-TFET). An optimized device accomplishes an impressive 10× improvement in on-current, 100× reduced leakage current, 3× more transconductance (gm), and on-off current ratio of ∼1011 as compared to DL-TFET.
76 FR 64223 - Cardiovascular Devices; Reclassification of External Pacemaker Pulse Generator Devices
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-17
... arrhythmias; and 4. Micro/macro shocks--Uncontrolled leakage currents or patient auxiliary currents can cause...); Medtronic, Inc. v. Lohr, 518 U.S. 470 (1996); and Riegel v. Medtronic, Inc. 128 S. Ct. 999 (2008)). If this...
High Temperature Operation of Al 0.45Ga 0.55N/Al 0.30Ga 0.70 N High Electron Mobility Transistors
Baca, Albert G.; Armstrong, Andrew M.; Allerman, Andrew A.; ...
2017-08-01
AlGaN-channel high electron mobility transistors (HEMTs) are among a class of ultra wide-bandgap transistors that have a bandgap greater than ~3.4 eV, beyond that of GaN and SiC, and are promising candidates for RF and power applications. Long-channel Al xGa 1-xN HEMTs with x = 0.3 in the channel have been built and evaluated across the -50°C to +200°C temperature range. Room temperature drain current of 70 mA/mm, absent of gate leakage, and with a modest -1.3 V threshold voltage was measured. A very large I on/I off current ratio, greater than 10 8 was demonstrated over the entire temperaturemore » range, indicating that off-state leakage is below the measurement limit even at 200°C. Finally, combined with near ideal subthreshold slope factor that is just 1.3× higher than the theoretical limit across the temperature range, the excellent leakage properties are an attractive characteristic for high temperature operation.« less
Electric modulation of conduction in multiferroic Ni-doped GaFeO3 ceramics
NASA Astrophysics Data System (ADS)
Ghani, Awais; Yang, Sen; Rajput, S. S.; Ahmed, S.; Murtaza, Adil; Zhou, Chao; Yu, Zhonghai; Zhang, Yin; Song, Xiaoping; Ren, Xiaobing
2018-06-01
In this work, the effects of Ni substitution on the electrical leakage and multiferroic properties of GaFeO3 were examined. Structural analysis of grown ceramics using x-ray diffraction and Raman shows that all ceramics have pure phases with an orthorhombic structure and space group. Ni substitutions slightly modify lattice parameters and induce lattice distortion within the same crystalline structure. It is observed that with increasing Ni-content up to 0.10, the magnetic transition temperature () increases from 196 K to 407 K. Ni-doped samples showed better ferroelectric properties and a drastic reduction in leakage current (~three orders of magnitude) at room temperature. Enhanced characteristics behavior is observed for 10% Ni substitution (GaFe0.9Ni0.1O3) and higher substitution leads to deterioration of properties with a larger leakage current. It is proposed that the role of Ni substitution can reduce hopping between Fe+3 and Fe+2 as well as suppressing the oxygen vacancies. This work would open new possibilities for integrating polycrystalline GaFeO3 at room temperature for magnetoelectric applications.
Gamma Rhythm Simulations in Alzheimer's Disease
NASA Astrophysics Data System (ADS)
Montgomery, Samuel; Perez, Carlos; Ullah, Ghanim
The different neural rhythms that occur during the sleep-wake cycle regulate the brain's multiple functions. Memory acquisition occurs during fast gamma rhythms during consciousness, while slow oscillations mediate memory consolidation and erasure during sleep. At the neural network level, these rhythms are generated by the finely timed activity within excitatory and inhibitory neurons. In Alzheimer's Disease (AD) the function of inhibitory neurons is compromised due to an increase in amyloid beta (A β) leading to elevated sodium leakage from extracellular space in the hippocampus. Using a Hodgkin-Huxley formalism, heightened sodium leakage current into inhibitory neurons is observed to compromise functionality. Using a simple two neuron system it was observed that as the conductance of the sodium leakage current is increased in inhibitory neurons there is a significant decrease in spiking frequency regarding the membrane potential. This triggers a significant increase in excitatory spiking leading to aberrant network behavior similar to that seen in AD patients. The next step is to extend this model to a larger neuronal system with varying synaptic densities and conductance strengths as well as deterministic and stochastic drives.
High Temperature Operation of Al 0.45Ga 0.55N/Al 0.30Ga 0.70 N High Electron Mobility Transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baca, Albert G.; Armstrong, Andrew M.; Allerman, Andrew A.
AlGaN-channel high electron mobility transistors (HEMTs) are among a class of ultra wide-bandgap transistors that have a bandgap greater than ~3.4 eV, beyond that of GaN and SiC, and are promising candidates for RF and power applications. Long-channel Al xGa 1-xN HEMTs with x = 0.3 in the channel have been built and evaluated across the -50°C to +200°C temperature range. Room temperature drain current of 70 mA/mm, absent of gate leakage, and with a modest -1.3 V threshold voltage was measured. A very large I on/I off current ratio, greater than 10 8 was demonstrated over the entire temperaturemore » range, indicating that off-state leakage is below the measurement limit even at 200°C. Finally, combined with near ideal subthreshold slope factor that is just 1.3× higher than the theoretical limit across the temperature range, the excellent leakage properties are an attractive characteristic for high temperature operation.« less
Trommer, Jens; Heinzig, André; Mühle, Uwe; Löffler, Markus; Winzer, Annett; Jordan, Paul M; Beister, Jürgen; Baldauf, Tim; Geidel, Marion; Adolphi, Barbara; Zschech, Ehrenfried; Mikolajick, Thomas; Weber, Walter M
2017-02-28
Germanium is a promising material for future very large scale integration transistors, due to its superior hole mobility. However, germanium-based devices typically suffer from high reverse junction leakage due to the low band-gap energy of 0.66 eV and therefore are characterized by high static power dissipation. In this paper, we experimentally demonstrate a solution to suppress the off-state leakage in germanium nanowire Schottky barrier transistors. Thereto, a device layout with two independent gates is used to induce an additional energy barrier to the channel that blocks the undesired carrier type. In addition, the polarity of the same doping-free device can be dynamically switched between p- and n-type. The shown germanium nanowire approach is able to outperform previous polarity-controllable device concepts on other material systems in terms of threshold voltages and normalized on-currents. The dielectric and Schottky barrier interface properties of the device are analyzed in detail. Finite-element drift-diffusion simulations reveal that both leakage current suppression and polarity control can also be achieved at highly scaled geometries, providing solutions for future energy-efficient systems.
LaViolette, Peter S; Daun, Mitchell K; Paulson, Eric S; Schmainda, Kathleen M
2014-02-01
Abnormal brain tumor vasculature has recently been highlighted by a dynamic susceptibility contrast (DSC) MRI processing technique. The technique uses independent component analysis (ICA) to separate arterial and venous perfusion. The overlap of the two, i.e. arterio-venous overlap or AVOL, preferentially occurs in brain tumors and predicts response to anti-angiogenic therapy. The effects of contrast agent leakage on the AVOL biomarker have yet to be established. DSC was acquired during two separate contrast boluses in ten patients undergoing clinical imaging for brain tumor diagnosis. Three components were modeled with ICA, which included the arterial and venous components. The percentage of each component as well as a third component were determined within contrast enhancing tumor and compared. AVOL within enhancing tumor was also compared between doses. The percentage of enhancing tumor classified as not arterial or venous and instead into a third component with contrast agent leakage apparent in the time-series was significantly greater for the first contrast dose compared to the second. The amount of AVOL detected within enhancing tumor was also significantly greater with the second dose compared to the first. Contrast leakage results in large signal variance classified as a separate component by the ICA algorithm. The use of a second dose mitigates the effect and allows measurement of AVOL within enhancement.
Is hand sewing comparable with stapling for anastomotic leakage after esophagectomy? A meta-analysis
Liu, Quan-Xing; Min, Jia-Xin; Deng, Xu-Feng; Dai, Ji-Gang
2014-01-01
AIM: To compare the outcome of hand sewing and stapling for anastomotic leakage after esophagectomy. METHODS: A rigorous study protocol was established according to the recommendations of the Cochrane Collaboration. An electronic database search, hand search, and reference search were used to retrieve all randomized controlled trials that compared hand-sewn and mechanical esophagogastric anastomoses. RESULTS: This study included 15 randomized controlled trials with a total of 2337 patients. The results revealed that there was no significant difference in the incidence of anastomotic leakage between the methods [relative risk (RR) = 0.77, 95% confidence interval (CI): 0.57-1.04; P = 0.09], but a subgroup analysis yielded a significant difference for the sutured layer and year of publication (Ps < 0.05). There was also no significant difference in the incidence of postoperative mortality (RR = 1.52, 95%CI: 0.97-2.40; P = 0.07). However, the anastomotic strictures rate was increased in the stapler group compared with the hand-sewn group (RR = 1.45, 95%CI: 1.11-1.91; P < 0.01) in the end-to-side subgroup, while the incidence of anastomotic strictures was decreased (RR = 0.34, 95%CI: 0.16-0.76; P < 0.01) in the side-to-side subgroup. CONCLUSION: The stapler reduces the anastomotic leakage rate compared with hand sewing. End-to-side stapling increases the risk of anastomotic strictures, but side-to-side stapling decreases the risk. PMID:25493038
In Vitro Hydrodynamic Assessment of a New Transcatheter Heart Valve Concept (the TRISKELE).
Rahmani, Benyamin; Tzamtzis, Spyros; Sheridan, Rose; Mullen, Michael J; Yap, John; Seifalian, Alexander M; Burriesci, Gaetano
2017-04-01
This study presents the in vitro hydrodynamic assessment of the TRISKELE, a new system suitable for transcatheter aortic valve implantation (TAVI), aiming to mitigate the procedural challenges experienced with current technologies. The TRISKELE valve comprises three polymeric leaflet and an adaptive sealing cuff, supported by a novel fully retrievable self-expanding nitinol wire frame. Valve prototypes were manufactured in three sizes of 23, 26, and 29 mm by automated dip-coating of a biostable polymer, and tested in a hydrodynamic bench setup in mock aortic roots of 21, 23, 25, and 27 mm annulus, and compared to two reference valves suitable for equivalent implantation ranges: Edwards SAPIEN XT and Medtronic CoreValve. The TRISKELE valves demonstrated a global hydrodynamic performance comparable or superior to the controls with significant reduction in paravalvular leakage. The TRISKELE valve exhibits enhanced anchoring and improved sealing. The valve is currently under preclinical investigation.
NASA Astrophysics Data System (ADS)
Vielstädte, L.; Linke, P.; Schmidt, M.; Sommer, S.; Wallmann, K.; McGinnis, D. F.; Haeckel, M.
2013-12-01
Assessing the environmental impact of potential CO2 leakage from offshore carbon dioxide storage sites necessitates the investigation of the corresponding pH change in the water-column. Numerical models have been developed to simulate the buoyant rise and dissolution of CO2 bubbles in the water-column and the subsequent near-field dispersion of dissolved CO2 in seawater under ocean current and tidal forcing. In order to test and improve numerical models a gas release experiment has been conducted at 80 m water-depth within the Sleipner area (North Sea). CO2 and Kr (used as inert tracer gas) were released on top of a benthic lander at varying gas flows (<140 kg/day) and bubble sizes (de: 1-6 mm). pCO2 and pH were measured by in situ sensors to monitor the spread of the solute in different vertical heights and distances downstream of the artificial leak. The experiment and numerical analysis show that the impact of such leakage rates is limited to the near-field bottom waters, due to the rapid dissolution of CO2 bubbles in seawater (CO2 is being stripped within the first two to five meters of bubble rise). In particular, small bubbles, which will dissolve close to the seafloor, may cause a dangerous low-pH environment for the marine benthos. However, on the larger scale, the advective transport by e.g. tidal currents, dominates the CO2 dispersal in the North Sea and dilutes the CO2 peak quickly. The model results show that at the small scales (<100 m) of the CO2 plume the lateral eddy diffusion (~0.01 m2/s) has only a negligible effect. Overall, we can postulate that CO2 leakage at a rate of ~ 100 kg per day as in our experiment will only have a localized impact on the marine environment, thereby reducing pH substantially (by 0.4 units) within a diameter of less than 50 m around the release spot (depending on the duration of leakage and the current velocities). Strong currents and tidal cycles significantly reduce the spreading of low-pH water masses into the far-field by efficiently diluting the amount of CO2 in ambient seawater.
Protein-bounded uremic toxin p-cresylsulfate induces vascular permeability alternations.
Tang, Wei-Hua; Wang, Chao-Ping; Yu, Teng-Hung; Tai, Pei-Yang; Liang, Shih-Shin; Hung, Wei-Chin; Wu, Cheng-Ching; Huang, Sung-Hao; Lee, Yau-Jiunn; Chen, Shih-Chieh
2018-06-01
The goal of the present studies is to investigate that the impact of p-cresylsulfate (PCS) on the endothelial barrier integrity via in situ exposure and systemic exposure. Vascular permeability changes induced by local injection of PCS were evaluated by the techniques of both Evans blue (EB) and India ink tracer. Rats were intravenously injected with EB or India ink followed by intradermal injections of various doses of PCS (0, 0.4, 2, 10 and 50 µmol/site) on rat back skins. At different time points, skin EB was extracted and quantified. The administration of India ink was used to demonstrate leaky microvessels. Skin PCS levels were also determined by liquid chromatography-mass spectrometry. We also investigated whether the increased endothelial leakage occurred in the aortic endothelium in rats treated with 5/6 nephrectomy and intraperitoneal injection of PCS 50 mg/kg/day for 4 weeks. The aortic endothelial integrity was evaluated by increased immunoglobulin G (IgG) leakage. High doses of PCS, but not lower doses, significantly induced vascular leakage as compared to saline injection and EB leakage exhibited in time-dependent manner. A time-correlated increase in leaky microvessels was detected in the tissues examined. The injected PCS declined with time and displayed an inverse relationship with vascular leakage. Chronic kidney disease (CKD) rats administered with PCS, compared to control rats, had significantly higher serum levels of PCS and apparent IgG deposition in the aortic intima. Increased endothelial leakage induced by PCS in skin microvessels and the aorta of CKD rats suggests that the PCS-induced endothelial barrier dysfunction.
NASA Technical Reports Server (NTRS)
Bogart, D. D.; Shook, D. F.; Fieno, D.
1973-01-01
Integral tests of evaluated ENDF/B high-energy cross sections have been made by comparing measured and calculated neutron leakage flux spectra from spheres of various materials. An Am-Be (alpha,n) source was used to provide fast neutrons at the center of the test spheres of Be, CH2, Pb, Nb, Mo, Ta, and W. The absolute leakage flux spectra were measured in the energy range 0.5 to 12 MeV using a calibrated NE213 liquid scintillator neutron spectrometer. Absolute calculations of the spectra were made using version 3 ENDF/B cross sections and an S sub n discrete ordinates multigroup transport code. Generally excellent agreement was obtained for Be, CH2, Pb, and Mo, and good agreement was observed for Nb although discrepancies were observed for some energy ranges. Poor comparative results, obtained for Ta and W, are attributed to unsatisfactory nonelastic cross sections. The experimental sphere leakage flux spectra are tabulated and serve as possible benchmarks for these elements against which reevaluated cross sections may be tested.
NASA Astrophysics Data System (ADS)
Wu, Li-Fan; Zhang, Yu-Ming; Lv, Hong-Liang; Zhang, Yi-Men
2016-10-01
Al2O3 and HfO2 thin films are separately deposited on n-type InAlAs epitaxial layers by using atomic layer deposition (ALD). The interfacial properties are revealed by angle-resolved x-ray photoelectron spectroscopy (AR-XPS). It is demonstrated that the Al2O3 layer can reduce interfacial oxidation and trap charge formation. The gate leakage current densities are 1.37 × 10-6 A/cm2 and 3.22 × 10-6 A/cm2 at +1 V for the Al2O3/InAlAs and HfO2/InAlAs MOS capacitors respectively. Compared with the HfO2/InAlAs metal-oxide-semiconductor (MOS) capacitor, the Al2O3/InAlAs MOS capacitor exhibits good electrical properties in reducing gate leakage current, narrowing down the hysteresis loop, shrinking stretch-out of the C-V characteristics, and significantly reducing the oxide trapped charge (Q ot) value and the interface state density (D it). Project supported by the National Basic Research Program of China (Grant No. 2010CB327505), the Advanced Research Foundation of China (Grant No. 914xxx803-051xxx111), the National Defense Advance Research Project, China (Grant No. 513xxxxx306), the National Natural Science Foundation of China (Grant No. 51302215), the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 14JK1656), and the Science and Technology Project of Shaanxi Province, China (Grant No. 2016KRM029).
Greatly improved 3C-SiC p-n junction diodes grown by chemical vapor deposition
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Larkin, David J.; Starr, Jonathan E.; Powell, J. A.; Salupo, Carl S.; Matus, Lawrence G.
1993-01-01
This paper reports the fabrication and initial electrical characterization of greatly improved 3C-SiC (beta-SiC) p-n junction diodes. These diodes, which were grown on commercially available 6H-SiC substrates by chemical vapor deposition, demonstrate rectification to -200 V at room temperature, representing a fourfold improvement in reported 3C-SiC diode blocking voltage. The reverse leakage currents and saturation current densities measured on these diodes also show significant improvement compared to previously reported 3C-SiC p-n junction diodes. When placed under sufficient forward bias, the diodes emit significantly bright green-yellow light. These results should lead to substantial advancements in 3C-SiC transistor performance.
Validation Test Results for Orthogonal Probe Eddy Current Thruster Inspection System
NASA Technical Reports Server (NTRS)
Wincheski, Russell A.
2007-01-01
Recent nondestructive evaluation efforts within NASA have focused on an inspection system for the detection of intergranular cracking originating in the relief radius of Primary Reaction Control System (PCRS) Thrusters. Of particular concern is deep cracking in this area which could lead to combustion leakage in the event of through wall cracking from the relief radius into an acoustic cavity of the combustion chamber. In order to reliably detect such defects while ensuring minimal false positives during inspection, the Orthogonal Probe Eddy Current (OPEC) system has been developed and an extensive validation study performed. This report describes the validation procedure, sample set, and inspection results as well as comparing validation flaws with the response from naturally occuring damage.
NASA Astrophysics Data System (ADS)
Gomes, U. P.; Takhar, K.; Ranjan, K.; Rathi, S.; Biswas, D.
2015-02-01
In this work, by means physics based drift-diffusion simulations, three different narrow band gap semiconductors; InAs, InSb and In0.53Ga0.47As, and their associated heterostructures have been studied for future high speed and low power logic applications. It is observed that In0.53Ga0.47As has higher immunity towards short channel effects with low DIBL and sub-threshold slope than InSb and InAs. Also it is observed that for the same device geometry InSb has the highest drive current and lower intrinsic delay but its ION/IOFF figure of merit is deteriorated due to excess leakage current.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haddad, K; Alopoor, H
Purpose: Recently, the multileaf collimators (MLC) have become an important part of any LINAC collimation systems because they reduce the treatment planning time and improves the conformity. Important factors that affects the MLCs collimation performance are leaves material composition and their thickness. In this study, we investigate the main dosimetric parameters of 120-leaf Millennium MLC including dose in the buildup point, physical penumbra as well as average and end leaf leakages. Effects of the leaves geometry and density on these parameters are evaluated Methods: From EGSnrc Monte Carlo code, BEAMnrc and DOSXYZnrc modules are used to evaluate the dosimetric parametersmore » of a water phantom exposed to a Varian xi for 100cm SSD. Using IAEA phasespace data just above MLC (Z=46cm) and BEAMnrc, for the modified 120-leaf Millennium MLC a new phase space data at Z=52cm is produces. The MLC is modified both in leaf thickness and material composition. EGSgui code generates 521ICRU library for tungsten alloys. DOSXYZnrc with the new phase space evaluates the dose distribution in a water phantom of 60×60×20 cm3 with voxel size of 4×4×2 mm3. Using DOSXYZnrc dose distributions for open beam and closed beam as well as the leakages definition, end leakage, average leakage and physical penumbra are evaluated. Results: A new MLC with improved dosimetric parameters is proposed. The physical penumbra for proposed MLC is 4.7mm compared to 5.16 mm for Millennium. Average leakage in our design is reduced to 1.16% compared to 1.73% for Millennium, the end leaf leakage suggested design is also reduced to 4.86% compared to 7.26% of Millennium. Conclusion: The results show that the proposed MLC with enhanced dosimetric parameters could improve the conformity of treatment planning.« less
Toh, Cheng Hong; Wei, Kuo-Chen; Chang, Chen-Nen; Ng, Shu-Hang; Wong, Ho-Fai; Lin, Ching-Po
2014-01-01
To compare the diagnostic performance of dynamic susceptibility contrast-enhanced perfusion MRI before and after mathematic contrast leakage correction in differentiating pyogenic brain abscesses from glioblastomas and/or metastatic brain tumors. Cerebral blood volume (CBV), leakage-corrected CBV and leakage coefficient K2 were measured in enhancing rims, perifocal edema and contralateral normal appearing white matter (NAWM) of 17 abscesses, 19 glioblastomas and 20 metastases, respectively. The CBV and corrected CBV were normalized by dividing the values in the enhancing rims or edema to those of contralateral NAWM. For each study group, a paired t test was used to compare the K2 of the enhancing rims or edema with those of NAWM, as well as between CBV and corrected CBV of the enhancing rims or edema. ANOVA was used to compare CBV, corrected CBV and K2 among three lesion types. The diagnostic performance of CBV and corrected CBV was assessed with receiver operating characteristic (ROC) curve analysis. The CBV and correction CBV of enhancing rim were 1.45±1.17 and 1.97±1.01 for abscesses, 3.85±2.19 and 4.39±2.33 for glioblastomas, and 2.39±0.90 and 2.97±0.78 for metastases, respectively. The CBV and corrected CBV in the enhancing rim of abscesses were significantly lower than those of glioblastomas and metastases (P = 0.001 and P = 0.007, respectively). In differentiating abscesses from glioblastomas and metastases, the AUC values of corrected CBV (0.822) were slightly higher than those of CBV (0.792). Mathematic leakage correction slightly increases the diagnostic performance of CBV in differentiating pyogenic abscesses from necrotic glioblastomas and cystic metastases. Clinically, DSC perfusion MRI may not need mathematic leakage correction in differentiating abscesses from glioblastomas and/or metastases.
NASA Astrophysics Data System (ADS)
Batra, V.; Kotru, S.
2017-12-01
We report the effects of illumination on the ferroelectric and photovoltaic properties of the Pb0.95La0.05Zr0.54Ti0.46O3 (PLZT) thin film based asymmetric metal/ferroelectric/metal capacitor structure, using Au as a top electrode and Pt as a bottom electrode. Conductive-AFM (atomic force microscopy) measurements demonstrate the evolution of charge carriers in PLZT films on illumination. The capacitance-voltage, the polarization-electric field, and the leakage current-voltage characteristics of the asymmetric Au/PLZT/Pt capacitor are discussed under dark and illuminated conditions. The light generates charge carriers in the film, which increase the coercive field and net remnant polarization and decrease the capacitance. The leakage current of the capacitor increases by an order of magnitude upon illumination. The leakage current data analyzed to study the conduction mechanism shows that the capacitor structure follows the Schottky emission "1/4" law. The illuminated current density-voltage curve of the capacitor shows non-zero photovoltaic parameters. An open circuit voltage (Voc) of -0.19 V and a short circuit current density (Jsc) of 1.48 μA/cm2 were obtained in an unpoled film. However, after positive poling, the illuminated curve shifts towards a higher voltage value resulting in a Voc of -0.93 V. After negative poling, the curve shows no change in the Voc value. For both poling directions, the Jsc values decrease. The photocurrent in the capacitor shows a linear variation with the incident illumination intensity.
Effects of Post-Deposition Annealing on ZrO2/n-GaN MOS Capacitors with H2O and O3 as the Oxidizers.
Zheng, Meijuan; Zhang, Guozhen; Wang, Xiao; Wan, Jiaxian; Wu, Hao; Liu, Chang
2017-12-01
GaN-based metal-oxide-semiconductor capacitors with ZrO 2 as the dielectric layer have been prepared by atomic layer deposition. The accumulation and depletion regions can be clearly distinguished when the voltage was swept from -4 to 4 V. Post-annealing results suggested that the capacitance in accumulation region went up gradually as the annealing temperature increased from 300 to 500 °C. A minimum leakage current density of 3 × 10 -9 A/cm 2 at 1 V was obtained when O 3 was used for the growth of ZrO 2 . Leakage analysis revealed that Schottky emission and Fowler-Nordheim tunneling were the main leakage mechanisms.
A reliable ground bounce noise reduction technique for nanoscale CMOS circuits
NASA Astrophysics Data System (ADS)
Sharma, Vijay Kumar; Pattanaik, Manisha
2015-11-01
Power gating is the most effective method to reduce the standby leakage power by adding header/footer high-VTH sleep transistors between actual and virtual power/ground rails. When a power gating circuit transitions from sleep mode to active mode, a large instantaneous charge current flows through the sleep transistors. Ground bounce noise (GBN) is the high voltage fluctuation on real ground rail during sleep mode to active mode transitions of power gating circuits. GBN disturbs the logic states of internal nodes of circuits. A novel and reliable power gating structure is proposed in this article to reduce the problem of GBN. The proposed structure contains low-VTH transistors in place of high-VTH footer. The proposed power gating structure not only reduces the GBN but also improves other performance metrics. A large mitigation of leakage power in both modes eliminates the need of high-VTH transistors. A comprehensive and comparative evaluation of proposed technique is presented in this article for a chain of 5-CMOS inverters. The simulation results are compared to other well-known GBN reduction circuit techniques at 22 nm predictive technology model (PTM) bulk CMOS model using HSPICE tool. Robustness against process, voltage and temperature (PVT) variations is estimated through Monte-Carlo simulations.
Structural evaluation of a DTHR bundle divertor particle collector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prevenslik, T.V.
1980-09-01
The purpose of this report is to present a structural evaluation of the current bundle divertor particle collector BDPC design under a peak heat flux in relation to criteria that protect against coolant leakage into the plasma over replacement schedules planned during DTHR operation. In addition, an assessment of the BDPC structural integrity at higher heat fluxes is presented. Further, recommendations for modifications in the current BDPC design that would improve design reliability to be considered in future design studies are described. Finally, experimental test programs directed to establishing materials data necessary in providing greater confidence in subsequent structural evaluationsmore » of BDPC designs in relation to coolant leakage over planned replacement schedules are identified.« less
Gallium phosphide high temperature diodes
NASA Technical Reports Server (NTRS)
Chaffin, R. J.; Dawson, L. R.
1981-01-01
High temperature (300 C) diodes for geothermal and other energy applications were developed. A comparison of reverse leakage currents of Si, GaAs, and GaP was made. Diodes made from GaP should be usable to 500 C. A Liquid Phase Epitaxy (LPE) process for producing high quality, grown junction GaP diodes is described. This process uses low vapor pressure Mg as a dopant which allows multiple boat growth in the same LPE run. These LPE wafers were cut into die and metallized to make the diodes. These diodes produce leakage currents below ten to the -9th power A/sq cm at 400 C while exhibiting good high temperature rectification characteristics. High temperature life test data is presented which shows exceptional stability of the V-I characteristics.
NASA Astrophysics Data System (ADS)
Park, Eun Kil; Kim, Sungmin; Heo, Jaeyeong; Kim, Hyeong Joon
2016-05-01
By measuring leakage current density, we detected crack generation in silicon nitride (SiNx) and silicon oxynitride (SiOxNy) thin-film encapsulation layers, and correlated with the films' water vapor permeability characteristics. After repeated bending cycles, both the changes in water vapor transmission rate and leakage current density were directly proportional to the crack density. Thick SiNx films had better water vapor barrier characteristics in their pristine state, but cyclic loading led to fast failure. Varying the atomic concentration of the SiOxNy films affected their bending reliability. We attribute these differences to changes in the shape of the crack tip as the oxygen content varies.
Method for surface passivation and protection of cadmium zinc telluride crystals
Mescher, Mark J.; James, Ralph B.; Schlesinger, Tuviah E.; Hermon, Haim
2000-01-01
A method for reducing the leakage current in CZT crystals, particularly Cd.sub.1-x Zn.sub.x Te crystals (where x is greater than equal to zero and less than or equal to 0.5), and preferably Cd.sub.0.9 Zn.sub.0.1 Te crystals, thereby enhancing the ability of these crystal to spectrally resolve radiological emissions from a wide variety of radionuclides. Two processes are disclosed. The first method provides for depositing, via reactive sputtering, a silicon nitride hard-coat overlayer which provides significant reduction in surface leakage currents. The second method enhances the passivation by oxidizing the CZT surface with an oxygen plasma prior to silicon nitride deposition without breaking the vacuum state.
Koçak, Mustafa M; Darendeliler-Yaman, Sis
2012-07-01
The aim of this study was to evaluate the sealing ability of lateral compaction and tapered single cone gutta-percha techniques in root canals prepared with stainless steel and rotary nickel titanium root canal instruments by fluid filtration method. The root canals were prepared with stainless steel (SS) and nickel titanium (NiTi) instruments. The canals prepared with SS were obturated with lateral compaction technique using .02 tapered cones and the canals prepared with NiTi instruments were obturated with lateral compaction technique using .02 tapered cones or 06 tapered single cones. The amount of leakage was evaluated by fluid filtration model. The results were statistically analyzed with one-way ANOVA. The group prepared with NiTi instruments and filled with lateral compaction technique showed significantly less coronal leakage than the group prepared with SS instruments and filled with lateral compaction technique (p<0.05). There was no statistically difference between apical leakages of groups (p>0.05). Obturation with lateral compaction of gutta-percha provides a superior coronal seal whilst canal instrumentation with engine-driven NiTi files reduces the extent of microleakage in root canals when compared with stainless steel hand instruments. Tapered single cone technique was comparable with lateral compaction technique because of easier application. Key words:Apical leakage, coronal leakage, lateral compaction technique, single cone technique.
Kang, Jeonghyun; Choi, Gyu-Seog; Oh, Jae Hwan; Kim, Nam Kyu; Park, Jun Seok; Kim, Min Jung; Lee, Kang Young; Baik, Seung Hyuk
2015-01-01
Abstract This study aims to validate the oncologic outcomes of anastomotic leakage (AL) after laparoscopic total mesorectal excision (TME) in a large multicenter cohort. The impact of AL after laparoscopic TME for rectal cancer surgery has not yet been clearly described. This was a multicenter retrospective study of 1083 patients who underwent laparoscopic TME for nonmetastatic rectal cancer (stage 0–III). AL was defined as an anastomotic complication within 30 days of surgery irrespective of requiring a reoperation or interventional radiology. Estimated local recurrence (LR), disease-free survival (DFS), and overall survival (OS) were compared between the leakage group and the no leakage group using the log-rank method. Multivariate Cox-regression analysis was used to adjust confounding for survival. The incidence of AL was 6.4%. Mortality within 30 days of surgery occurred in 1 patient (1.4%) in the leakage group and 2 patients (0.2%) in the no leakage group. The leakage group showed a higher LR rate (6.4% vs 1.8%, P = 0.011). Five-year DFS and OS were significantly lower in the leakage group than the no leakage group (DFS 71.7% vs 82.1%, P = 0.016, OS 81.8% vs 93.5%, P = 0.007). Multivariate analysis showed that AL was an independent poor prognostic factor for DFS and OS (hazard ratio [HR] = 1.6; 95% confidence intervals [CI]: 1.0–2.6; P = 0.042, HR = 2.1; 95% CI: 1.0–4.2; P = 0.028, respectively). AL after laparoscopic TME was significantly associated with an increased rate of LR, systemic recurrence and poor OS. PMID:26200636
T-drain reduces the incidence of biliary leakage after liver resection.
Eurich, Dennis; Henze, S; Boas-Knoop, S; Pratschke, J; Seehofer, D
2016-12-01
Biliary leakage is a serious complication after liver resection and represents the major cause of post-operative morbidity. In spite of already identified risk factors, little is known about the role of intra-biliary pressure following liver surgery in the development of biliary leakage. Biliary decompression may have a positive impact and reduce the incidence of biliary leakage at the parenchymal resection site. 397 patients undergoing liver resection without bilioenteric anastomosis were included in the retrospective analysis of the risk factors for the development of biliary leakage focusing on the intra-operative reduction of the biliary pressure by T-tube and liver histology. Among 397 analyzed patients after parenchymal resection, biliary leakage occurred in 39 cases (9.8 %). The extent of parenchymal resection was not associated with the total occurrence of biliary leak (p = 0.626). Lower incidence of biliary leakage from the resection surface was significantly associated with the use of T-tube (4.9 vs. 13.2 %; p = 0.006). In the subgroup analysis, insertion of a T-tube was not associated with a reduction of biliary leakage after anatomical hemihepatectomies (p = 0.103) and extraanatomical liver resection (p = 0.676). However, a high statistical significance could be detected in patients with extended hemihepatectomies (58.3 vs. 3.8 %; p < 0.001). Once biliary leak occurred without T-tube, median hospitalization duration significantly increased compared to patients with biliary decompression and without biliary leak (p < 0.001). The results of our retrospective data analysis suggest a significant beneficial impact of the T-tube on the development of biliary leakage in patients undergoing extended liver surgery.
Neutron spectrum from the little boy mock-up
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robba, A.A.
1986-01-01
Most of the human exposure data used for setting radiation protection guidelines have been obtained by following the survivors of the nuclear explosions at Hiroshima and Nagasaki. Proper evaluation of these data requires estimates of the radiation exposure received by those survivors. Until now neutron dose estimates have relied primarily on calculations as no measurements of the leakage neutron flux or neutron spectrum were available. We have measured the high-energy leakage neutron spectrum from a mock-up of the Little Boy device operating at delayed critical. The measurements are compared with Monte Carlo calculations of the leakage neutron spectrum.
Leakage and Power Loss Test Results for Competing Turbine Engine Seals
NASA Technical Reports Server (NTRS)
Proctor, Margaret P.; Delgado, Irebert R.
2004-01-01
Advanced brush and finger seal technologies offer reduced leakage rates over conventional labyrinth seals used in gas turbine engines. To address engine manufacturers concerns about the heat generation and power loss from these contacting seals, brush, finger, and labyrinth seals were tested in the NASA High Speed, High Temperature Turbine Seal Test Rig. Leakage and power loss test results are compared for these competing seals for operating conditions up to 922 K (1200 F) inlet air temperature, 517 KPa (75 psid) across the seal, and surface velocities up to 366 m/s (1200 ft/s).
Investigation of Turbulent Tip Leakage Vortex in an Axial Water Jet Pump with Large Eddy Simulation
NASA Technical Reports Server (NTRS)
Hah, Chunill; Katz, Joseph
2012-01-01
Detailed steady and unsteady numerical studies were performed to investigate tip clearance flow in an axial water jet pump. The primary objective is to understand physics of unsteady tip clearance flow, unsteady tip leakage vortex, and cavitation inception in an axial water jet pump. Steady pressure field and resulting steady tip leakage vortex from a steady flow analysis do not seem to explain measured cavitation inception correctly. The measured flow field near the tip is unsteady and measured cavitation inception is highly transient. Flow visualization with cavitation bubbles shows that the leakage vortex is oscillating significantly and many intermittent vortex ropes are present between the suction side of the blade and the tip leakage core vortex. Although the flow field is highly transient, the overall flow structure is stable and a characteristic frequency seems to exist. To capture relevant flow physics as much as possible, a Reynolds-averaged Navier-Stokes (RANS) calculation and a Large Eddy Simulation (LES) were applied for the current investigation. The present study reveals that several vortices from the tip leakage vortex system cross the tip gap of the adjacent blade periodically. Sudden changes in local pressure field inside tip gap due to these vortices create vortex ropes. The instantaneous pressure filed inside the tip gap is drastically different from that of the steady flow simulation. Unsteady flow simulation which can calculate unsteady vortex motion is necessary to calculate cavitation inception accurately even at design flow condition in such a water jet pump.
Differences in Ostomy Pouch Seal Leakage Occurrences Between North American and European Residents.
Fellows, Jane; Forest Lalande, Louise; Martins, Lina; Steen, Anne; Størling, Zenia M
The purpose of this study was to compare experiences and concerns about pouch seal leakage between persons with ostomies residing in North America (Canada and the United States) and Europe (United Kingdom, Netherlands, Sweden, Germany, Belgium, France, and Italy). Differences in reported pouch wear time and accessories used between the 2 groups were also examined. Secondary analysis of data from a cross-sectional study (Ostomy Life Study). Responses from persons residing in European countries (n = 1939) were compared with responses of 1387 individuals residing in North American countries. Persons with an ostomy completed a questionnaire that focused on 4 topics related to the daily use of an ostomy pouching system (pouch seal leakage, ballooning, appearance of pouching system such as color and size of the pouch and whether it is discrete under clothing, and coupling failure of 2-piece pouching systems). Pouch seal leakage was defined as stomal effluent seeping between the skin and the wafer of the ostomy pouching system. Statistical analysis was performed using a proportional odds model including various variable effects. Special attention was given to frequency of pouch seal leakage occurrences. All tests were 2-sided; P values ≤.05 were deemed statistically significant. Participants living in the North American countries indicated they were more likely to experience leakage from the ostomy (odds ratio = 2.610, 95% CI 2.187-3.115; P < .0001). Findings also indicated they were more likely to worry about pouch seal leakage than those in the European countries' data set (odds ratio = 2.722, 95% CI 2.283-3.246; P < .0001). Participants residing in the North American countries had significantly longer wear times than those participants in the European countries (P < .0001, χ test). The use of accessories was associated with a longer pouching system wear time. Study results suggest that participants from the North American countries indicated significantly more experience with and worries about leakage and longer wear time than the participants from the European population. Additional research is needed to determine the reasons for these differences.
Hypertonic Saline Reduces Vascular Leakage in a Mouse Model of Severe Dengue
Tan, Kar Wai; Angeli, Veronique; Moochhala, Shabbir; Ooi, Eng Eong; Alonso, Sylvie
2013-01-01
Dengue (DEN) is a mosquito-borne viral disease and represents a serious public health threat and an economical burden throughout the tropics. Dengue clinical manifestations range from mild acute febrile illness to severe DEN hemorrhagic fever/DEN shock syndrome (DHF/DSS). Currently, resuscitation with large volumes of isotonic fluid remains the gold standard of care for DEN patients who develop vascular leakage and shock. Here, we investigated the ability of small volume of hypertonic saline (HTS) suspensions to control vascular permeability in a mouse model of severe DEN associated with vascular leakage. Several HTS treatment regimens were considered and our results indicated that a single bolus of 7.5% NaCl at 4 mL per kg of body weight administered at the onset of detectable vascular leakage rapidly and significantly reduced vascular leak for several days after injection. This transient reduction of vascular leakage correlated with reduced intestine and liver damage with restoration of the hepatic functions, and resulted in delayed death of the infected animals. Mechanistically, we showed that HTS did not directly impact on the viral titers but resulted in lower immune cells counts and decreased systemic levels of soluble mediators involved in vascular permeability. In addition, we demonstrated that neutrophils do not play a critical role in DEN-associated vascular leakage and that the therapeutic effect of HTS is not mediated by its impact on the neutrophil counts. Together our data indicate that HTS treatment can transiently but rapidly reduce dengue-associated vascular leakage, and support the findings of a recent clinical trial which evaluated the efficacy of a hypertonic suspension to impact on vascular permeability in DSS children. PMID:23637867
Amaro, T; Bertocci, I; Queiros, A M; Rastelli, E; Borgersen, G; Brkljacic, M; Nunes, J; Sorensen, K; Danovaro, R; Widdicombe, S
2018-03-01
The continued rise in atmospheric carbon dioxide (CO 2 ) levels is driving climate change and temperature shifts at a global scale. CO 2 Capture and Storage (CCS) technologies have been suggested as a feasible option for reducing CO 2 emissions and mitigating their effects. However, before CCS can be employed at an industrial scale, any environmental risks associated with this activity should be identified and quantified. Significant leakage of CO 2 from CCS reservoirs and pipelines is considered to be unlikely, however direct and/or indirect effects of CO 2 leakage on marine life and ecosystem functioning must be assessed, with particular consideration given to spatial (e.g. distance from the source) and temporal (e.g. duration) scales at which leakage impacts could occur. In the current mesocosm experiment we tested the potential effects of CO 2 leakage on macrobenthic assemblages by exposing infaunal sediment communities to different levels of CO 2 concentration (400, 1000, 2000, 10,000 and 20,000 ppm CO 2 ), simulating a gradient of distance from a hypothetic leakage, over short-term (a few weeks) and medium-term (several months). A significant impact on community structure, abundance and species richness of macrofauna was observed in the short-term exposure. Individual taxa showed idiosyncratic responses to acidification. We conclude that the main impact of CO 2 leakage on macrofaunal assemblages occurs almost exclusively at the higher CO 2 concentration and over short time periods, tending to fade and disappear at increasing distance and exposure time. Although under the cautious perspective required by the possible context-dependency of the present findings, this study contributes to the cost-benefit analysis (environmental risk versus the achievement of the intended objectives) of CCS strategies. Copyright © 2018. Published by Elsevier Ltd.
Assessment of Stage 35 With APNASA
NASA Technical Reports Server (NTRS)
Celestina, Mark L.; Mulac, Richard
2009-01-01
An assessment of APNASA was conducted at NASA Glenn Research Center under the Fundamental Aeronautics Program to determine their predictive capabilities. The geometry selected for this study was Stage 35 which is a single stage transonic compressor. A speedline at 100% speed was generated and compared to experimental data at 100% speed for two turbulence models. Performance of the stage at 100% speed and profiles of several key aerodynamic parameters are compared to the survey data downstream of the stator in this report. In addition, hub leakage was modeled and compared to solutions without leakage and the available experimental data.
Routine Use of Contrast Swallow After Total Gastrectomy and Esophagectomy: Is it Justified?
El-Sourani, Nader; Bruns, Helge; Troja, Achim; Raab, Hans-Rudolf; Antolovic, Dalibor
2017-01-01
After gastrectomy or esophagectomy, esophagogastrostomy and esophagojejunostomy are commonly used for reconstruction. Water-soluble contrast swallow is often used as a routine screening to exclude anastomotic leakage during the first postoperative week. In this retrospective study, the sensitivity and specificity of oral water-soluble contrast swallow for the detection of anastomotic leakage and its clinical symptoms were analysed. Records of 104 consecutive total gastrectomies and distal esophagectomies were analysed. In all cases, upper gastrointestinal contrast swallow with the use of a water-soluble contrast agent was performed on the 5 th postoperative day. Extravasation of the contrast agent was defined as anastomotic leakage. When anastomotic insufficiency was suspected but no extravasation was present, a computed tomography (CT) scan and upper endoscopy were performed. Oral contrast swallow detected 7 anastomotic leaks. Based on CT-scans and upper endoscopy, the true number of anastomotic leakage was 15. The findings of the oral contrast swallow were falsely positive in 4 and falsely negative in 12 patients, respectively. The sensitivity and specificity of the oral contrast swallow was 20% and 96%, respectively. Routine radiological contrast swallow following total gastrectomy or distal esophagectomy cannot be recommended. When symptoms of anastomotic leakage are present, a CT-scan and endoscopy are currently the methods of choice.
Bellomo, Facundo J.; Rosales, Iván; del Castillo, Luis F.; Sánchez, Ricardo; Turon, Pau
2018-01-01
Endoluminal vacuum-assisted closure (E-VAC) is a promising therapy to treat anastomotic leakages of the oesophagus and bowel which are associated with high morbidity and mortality rates. An open-pore polyurethane foam is introduced into the leakage cavity and connected to a device that applies a suction pressure to accelerate the closure of the defect. Computational analysis of this healing process can advance our understanding of the biomechanical mechanisms at play. To this aim, we use a dual-stage finite-element analysis in which (i) the structural problem addresses the cavity reduction caused by the suction and (ii) a new constitutive formulation models tissue healing via permanent deformations coupled to a stiffness increase. The numerical implementation in an in-house code is described and a qualitative example illustrates the basic characteristics of the model. The computational model successfully reproduces the generic closure of an anastomotic leakage cavity, supporting the hypothesis that suction pressure promotes healing by means of the aforementioned mechanisms. However, the current framework needs to be enriched with empirical data to help advance device designs and treatment guidelines. Nonetheless, this conceptual study confirms that computational analysis can reproduce E-VAC of anastomotic leakages and establishes the bases for better understanding the mechanobiology of anastomotic defect healing. PMID:29515846
NASA Technical Reports Server (NTRS)
Bolton, Eric K.; Sayler, Gary S.; Nivens, David E.; Rochelle, James M.; Ripp, Steven; Simpson, Michael L.
2002-01-01
We report an integrated CMOS microluminometer optimized for the detection of low-level bioluminescence as part of the bioluminescent bioreporter integrated circuit (BBIC). This microluminometer improves on previous devices through careful management of the sub-femtoampere currents, both signal and leakage, that flow in the front-end processing circuitry. In particular, the photodiode is operated with a reverse bias of only a few mV, requiring special attention to the reset circuitry of the current-to-frequency converter (CFC) that forms the front-end circuit. We report a sub-femtoampere leakage current and a minimum detectable signal (MDS) of 0.15 fA (1510 s integration time) using a room temperature 1.47 mm2 CMOS photodiode. This microluminometer can detect luminescence from as few as 5000 fully induced Pseudomonas fluorescens 5RL bacterial cells. c2002 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, J.-Y.; Nielsen, M. C.; Rymaszewski, E. J.; Lu, T.-M.
2000-02-01
Room temperature deposition of tantalum oxide films on metallized silicon substrates was investigated by reactive pulsed magnetron sputtering of Ta in an Ar/O2 ambient. The dielectric constant of the tantalum oxide ranged from 19 to 31 depending on the oxygen percentage [P(%)=PO2/(PO2+PAr)] used during sputtering. The leakage current density was less than 10 nA/cm2 at 0.5 MV/cm electric field and the dielectric breakdown field was greater than 3.8 MV/cm for P=60%. A charge storage as high as 3.3 μF/cm2 was achieved for 70-Å-thick film. Pulse frequency variation (from 20 to 200 kHz) did not give a significant effect in the electrical properties (dielectric constant or leakage current density) of the Ta2O5 films.
NASA Astrophysics Data System (ADS)
Jain, Geetika; Dalal, Ranjeet; Bhardwaj, Ashutosh; Ranjan, Kirti; Dierlamm, Alexander; Hartmann, Frank; Eber, Robert; Demarteau, Marcel
2018-02-01
P-on-n silicon strip sensors having multiple guard-ring structures have been developed for High Energy Physics applications. The study constitutes the optimization of the sensor design, and fabrication of AC-coupled, poly-silicon biased sensors of strip width of 30 μm and strip pitch of 55 μm. The silicon wafers used for the fabrication are of 4 inch n-type, having an average resistivity of 2-5 k Ω cm, with a thickness of 300 μm. The electrical characterization of these detectors comprises of: (a) global measurements of total leakage current, and backplane capacitance; (b) strip and voltage scans of strip leakage current, poly-silicon resistance, interstrip capacitance, interstrip resistance, coupling capacitance, and dielectric current; and (c) charge collection measurements using ALiBaVa setup. The results of the same are reported here.
Fabrication of large area Si cylindric drift detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, W.; Kraner, H.W.; Li, Z.
1993-04-01
Advanced Si drift detector, a large area cylindrical drift detector (CDD), processing steps, with the exception of the ion implantation, were carried out in the BNL class 100 cleanroom. The double-side planer process technique was developed for the fabrication of CDD. Important improvements of the double-side planer process in this fabrication are the introduction of Al implantation protection mask and the remaining of a 1000 Angstroms oxide layer in the p-window during the implantation. Another important design of the CDD is the structure called ``river,`` which ,allows the current generated on Si-SiO{sub 2} interface to ``flow`` into the guard anode,more » and thus can minimize the leakage current at the signed anode. The test result showed that most of the signal anodes have the leakage current about 0.3 nA/cm{sup 2} for the best detector.« less
Carignan, Forest J.
1986-01-21
An electronic ignition system for a gas burner is battery operated. The battery voltage is applied through a DC-DC chopper to a step-up transformer to charge a capacitor which provides the ignition spark. The step-up transformer has a significant leakage reactance in order to limit current flow from the battery during initial charging of the capacitor. A tank circuit at the input of the transformer returns magnetizing current resulting from the leakage reactance to the primary in succeeding cycles. An SCR in the output circuit is gated through a voltage divider which senses current flow through a flame. Once the flame is sensed, further sparks are precluded. The same flame sensor enables a thermopile driven main valve actuating circuit. A safety valve in series with the main gas valve responds to a control pressure thermostatically applied through a diaphragm. The valve closes after a predetermined delay determined by a time delay orifice if the pilot gas is not ignited.
Comprehensive electrical analysis of metal/Al2O3/O-terminated diamond capacitance
NASA Astrophysics Data System (ADS)
Pham, T. T.; Maréchal, A.; Muret, P.; Eon, D.; Gheeraert, E.; Rouger, N.; Pernot, J.
2018-04-01
Metal oxide semiconductor capacitors were fabricated using p - type oxygen-terminated (001) diamond and Al2O3 deposited by atomic layer deposition at two different temperatures 250 °C and 380 °C. Current voltage I(V), capacitance voltage C(V), and capacitance frequency C(f) measurements were performed and analyzed for frequencies ranging from 1 Hz to 1 MHz and temperatures from 160 K to 360 K. A complete model for the Metal-Oxide-Semiconductor Capacitors electrostatics, leakage current mechanisms through the oxide into the semiconductor and small a.c. signal equivalent circuit of the device is proposed and discussed. Interface states densities are then evaluated in the range of 1012eV-1cm-2 . The strong Fermi level pinning is demonstrated to be induced by the combined effects of the leakage current through the oxide and the presence of diamond/oxide interface states.
Study of gain homogeneity and radiation effects of Low Gain Avalanche Pad Detectors
NASA Astrophysics Data System (ADS)
Gallrapp, C.; Fernández García, M.; Hidalgo, S.; Mateu, I.; Moll, M.; Otero Ugobono, S.; Pellegrini, G.
2017-12-01
Silicon detectors with intrinsic charge amplification implementing a n++-p+-p structure are considered as a sensor technology for future tracking and timing applications in high energy physics experiments. The performance of the intrinsic gain in Low Gain Avalanche Detectors (LGAD) after irradiation is crucial for the characterization of radiation hardness and timing properties in this technology. LGAD devices irradiated with reactor neutrons or 800 MeV protons reaching fluences of 2.3 × 1016 neq/cm2 were characterized using Transient Current Technique (TCT) measurements with red and infra-red laser pulses. Leakage current variations observed in different production lots and within wafers were investigated using Thermally Stimulated Current (TSC). Results showed that the intrinsic charge amplification is reduced with increasing fluence up to 1015 neq/cm2 which is related to an effective acceptor removal. Further relevant issues were charge collection homogeneity across the detector surface and leakage current performance before and after irradiation.
O’Mullan, Gregory; Dueker, M. Elias; Clauson, Kale; Yang, Qiang; Umemoto, Kelsey; Zakharova, Natalia; Matter, Juerg; Stute, Martin; Takahashi, Taro; Goldberg, David
2015-01-01
In addition to efforts aimed at reducing anthropogenic production of greenhouse gases, geological storage of CO2 is being explored as a strategy to reduce atmospheric greenhouse gas emission and mitigate climate change. Previous studies of the deep subsurface in North America have not fully considered the potential negative effects of CO2 leakage into shallow drinking water aquifers, especially from a microbiological perspective. A test well in the Newark Rift Basin was utilized in two field experiments to investigate patterns of microbial succession following injection of CO2-saturated water into an isolated aquifer interval, simulating a CO2 leakage scenario. A decrease in pH following injection of CO2 saturated aquifer water was accompanied by mobilization of trace elements (e.g. Fe and Mn), and increased bacterial cell concentrations in the recovered water. 16S ribosomal RNA gene sequence libraries from samples collected before and after the test well injection were compared to link variability in geochemistry to changes in aquifer microbiology. Significant changes in microbial composition, compared to background conditions, were found following the test well injections, including a decrease in Proteobacteria, and an increased presence of Firmicutes, Verrucomicrobia and microbial taxa often noted to be associated with iron and sulfate reduction. The concurrence of increased microbial cell concentrations and rapid microbial community succession indicate significant changes in aquifer microbial communities immediately following the experimental CO2 leakage event. Samples collected one year post-injection were similar in cell number to the original background condition and community composition, although not identical, began to revert toward the pre-injection condition, indicating microbial resilience following a leakage disturbance. This study provides a first glimpse into the in situ successional response of microbial communities to CO2 leakage after subsurface injection in the Newark Basin and the potential microbiological impact of CO2 leakage on drinking water resources. PMID:25635675
NASA Astrophysics Data System (ADS)
Patel, N. P.; Deconto, R. M.; Condron, A.
2013-12-01
The leakage of Agulhas Current water into the South Atlantic is now thought to be a major player in global climate change. The volume of Agulhas Leakage is linked to the strength and position of southern westerlies. Past changes in the westerly winds over the southern ocean have been noted on glacial-interglacial timescales, in response to both Northern Hemispheric conditions and more proximal changes in Antarctic ice volume. Over recent decades, a southward shift in the southern ocean westerlies has been observed and is expected to continue with projected climate warming. The resulting increase in Agulhas Leakage is thought to allow more warm, salty water from the Indian Ocean into the Atlantic, with the potential to impact the Atlantic Meridional Overturning circulation (AMOC). Some climate models have predicted global warming will result in a slowdown and weakening of the AMOC. A strengthening of the Agulhas Leakage therefore has the potential to counteract that slowdown. Much of the Agulhas leakage is carried in small eddies rotating off the main flow south of Cape Horn. High ocean model resolution (< 1/2°) is therefore required to simulate their response to the overlying wind field. However the majority of previous model studies have been too coarse in resolution to quantify the link between the Agulhas Leakage the AMOC. Here we run a series of global high-resolution ocean model (1/6°) experiments using the MITgcm to test the effect of a shift in the southern hemisphere westerlies on the Agulhas Leakage. A prescribed perturbation of the winds near South Africa shows a significant increase in Agulhas eddies into the Atlantic. Following this, we have conducted longer simulations with the winds over the Southern Ocean perturbed to reflect both past and possible future shifts in the wind field to quantify changes in North Atlantic Deep Water formation and the overall response of the AMOC to this perturbation.
Secretogranin III as a disease-associated ligand for antiangiogenic therapy of diabetic retinopathy
LeBlanc, Michelle E.; Wang, Weiwen; Chen, Xiuping; Caberoy, Nora B.; Guo, Feiye; Shen, Chen; Ji, Yanli; Tian, Hong; Wang, Hui; Chen, Rui
2017-01-01
Diabetic retinopathy (DR) is a leading cause of vision loss with retinal vascular leakage and/or neovascularization. Current antiangiogenic therapy against vascular endothelial growth factor (VEGF) has limited efficacy. In this study, we applied a new technology of comparative ligandomics to diabetic and control mice for the differential mapping of disease-related endothelial ligands. Secretogranin III (Scg3) was discovered as a novel disease-associated ligand with selective binding and angiogenic activity in diabetic but not healthy vessels. In contrast, VEGF bound to and induced angiogenesis in both diabetic and normal vasculature. Scg3 and VEGF signal through distinct receptor pathways. Importantly, Scg3-neutralizing antibodies alleviated retinal vascular leakage in diabetic mice with high efficacy. Furthermore, anti-Scg3 prevented retinal neovascularization in oxygen-induced retinopathy mice, a surrogate model for retinopathy of prematurity (ROP). ROP is the most common cause of vision impairment in children, with no approved drug therapy. These results suggest that Scg3 is a promising target for novel antiangiogenic therapy of DR and ROP. PMID:28330905
Greater focus needed on methane leakage from natural gas infrastructure.
Alvarez, Ramón A; Pacala, Stephen W; Winebrake, James J; Chameides, William L; Hamburg, Steven P
2012-04-24
Natural gas is seen by many as the future of American energy: a fuel that can provide energy independence and reduce greenhouse gas emissions in the process. However, there has also been confusion about the climate implications of increased use of natural gas for electric power and transportation. We propose and illustrate the use of technology warming potentials as a robust and transparent way to compare the cumulative radiative forcing created by alternative technologies fueled by natural gas and oil or coal by using the best available estimates of greenhouse gas emissions from each fuel cycle (i.e., production, transportation and use). We find that a shift to compressed natural gas vehicles from gasoline or diesel vehicles leads to greater radiative forcing of the climate for 80 or 280 yr, respectively, before beginning to produce benefits. Compressed natural gas vehicles could produce climate benefits on all time frames if the well-to-wheels CH(4) leakage were capped at a level 45-70% below current estimates. By contrast, using natural gas instead of coal for electric power plants can reduce radiative forcing immediately, and reducing CH(4) losses from the production and transportation of natural gas would produce even greater benefits. There is a need for the natural gas industry and science community to help obtain better emissions data and for increased efforts to reduce methane leakage in order to minimize the climate footprint of natural gas.
Greater focus needed on methane leakage from natural gas infrastructure
Alvarez, Ramón A.; Pacala, Stephen W.; Winebrake, James J.; Chameides, William L.; Hamburg, Steven P.
2012-01-01
Natural gas is seen by many as the future of American energy: a fuel that can provide energy independence and reduce greenhouse gas emissions in the process. However, there has also been confusion about the climate implications of increased use of natural gas for electric power and transportation. We propose and illustrate the use of technology warming potentials as a robust and transparent way to compare the cumulative radiative forcing created by alternative technologies fueled by natural gas and oil or coal by using the best available estimates of greenhouse gas emissions from each fuel cycle (i.e., production, transportation and use). We find that a shift to compressed natural gas vehicles from gasoline or diesel vehicles leads to greater radiative forcing of the climate for 80 or 280 yr, respectively, before beginning to produce benefits. Compressed natural gas vehicles could produce climate benefits on all time frames if the well-to-wheels CH4 leakage were capped at a level 45–70% below current estimates. By contrast, using natural gas instead of coal for electric power plants can reduce radiative forcing immediately, and reducing CH4 losses from the production and transportation of natural gas would produce even greater benefits. There is a need for the natural gas industry and science community to help obtain better emissions data and for increased efforts to reduce methane leakage in order to minimize the climate footprint of natural gas. PMID:22493226
Calculations of the conditions for bunch leakage in the Los Alamos proton storage ring
NASA Astrophysics Data System (ADS)
Neuffer, D.; Ohmori, C.
1994-04-01
Observations are consistent with the possibility of an "ep" instability in the Los Alamos Proton Storage Ring (PSR) with both bunched and unbunched beam. The instability requires electrons to be trapped within the beam, and calculations have shown that such trapping requires leakage of beam into the interbunch gap. Observationally, leakage of beam into the gap appears necessary for the onset of the instability. In this paper we present results of studies of the longitudinal beam dynamics at PSR parameters. The studies indicate that the combined effects of the rf buncher, longitudinal space charge, and injection mismatch are sufficient to cause the observed bunch leakage. Simulation results are presented and compared with PSR observations. Variations of PSR performance parameters are considered, and methods of improving bunch confinement are suggested and studied.
2D Quantum Mechanical Study of Nanoscale MOSFETs
NASA Technical Reports Server (NTRS)
Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, B.; Kwak, Dochan (Technical Monitor)
2000-01-01
With the onset of quantum confinement in the inversion layer in nanoscale MOSFETs, behavior of the resonant level inevitably determines all device characteristics. While most classical device simulators take quantization into account in some simplified manner, the important details of electrostatics are missing. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL, and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density-gradient and quantum-corrected MEDICI). We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions and oxide tunneling are treated on an equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. We present the results of our simulations of MIT 25, 50 and 90 nm "well-tempered" MOSFETs and compare them to those of classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. Surprisingly, the self-consistent potential profile shows lower injection barrier in the channel in quantum case. These results are qualitatively consistent with ID Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and subthreshold current has been studied. The shorter gate length device has an order of magnitude smaller current at zero gate bias than the longer gate length device without a significant trade-off in on-current. This should be a device design consideration.
Matthiessen, Peter; Strand, Ida; Jansson, Kjell; Törnquist, Cathrine; Andersson, Magnus; Rutegård, Jörgen; Norgren, Lars
2007-11-01
This prospective study assessed methods of detecting intraperitoneal ischemia and inflammatory response in patients with and without postoperative complications after anterior resection of the rectum. In 23 patients operated on with anterior resection of the rectum for rectal carcinoma, intraperitoneal lactate, pyruvate, and glucose levels were monitored postoperatively for six days by using microdialysis with catheters applied in two locations: intraperitoneally near the anastomosis, and in the central abdominal cavity. A reference catheter was placed subcutaneously in the pectoral region. Cytokines, interleukin (IL)-6, IL-10, and tumor necrosis factor (TNF)-alpha, were measured in intraperitoneal fluid by means of a pelvic drain for two postoperative days. The intraperitoneal lactate/pyruvate ratio near the anastomosis was higher on postoperative Day 5 (P = 0.029) and Day 6 (P = 0.009) in patients with clinical anastomotic leakage (n = 7) compared with patients without leakage (n = 16). The intraperitoneal levels of IL-6 (P = 0.002; P = 0.012, respectively) and IL-10 (P = 0.002; P = 0.041, respectively) were higher on postoperative Days 1 and 2 in the leakage group, and TNF-alpha was higher in the leakage group on Day 1 (P = 0.011). In-hospital clinical anastomotic leakage was diagnosed on median Day 6, and leakage after hospital discharge on median Day 20. The intraperitoneal lactate/pyruvate ratio and cytokines, IL-6, IL-10, and TNF-alpha, were increased in patients who developed symptomatic anastomotic leakage before clinical symptoms were evident.
Thrombogenic potential of transcatheter aortic valve implantation with trivial paravalvular leakage
Siegel, Rolland
2014-01-01
Background Significant paravalvular leakage after transcatheter aortic valve implantation (TAVI) correlates with increased morbidity and mortality, but adverse consequences of trivial paravalvular leakage have stimulated few investigations. Using a unique method distinctly different from other diagnostic approaches, we previously reported elevated backflow velocities of short duration (transients) in mechanical valve closure. In this study, similar transients were found in a transcatheter valve paravalvular leakage avatar. Methods Paravalvular leakage rate (zero to 58 mL/second) and aortic valve incompetence (volumetric back flow/forward flow; zero to 32%) were made adjustable using a mock transcatheter aortic valve device and tested in quasi-steady and pulsatile flow test systems. Projected dynamic valve area (PDVA) from the back illuminated mock transcatheter aortic valve device was measured and regional backflow velocities were derived by dividing volumetric flow rate by the PDVA over the open and closing valve phase and the total closed valve area derived from backflow leakage. Results Aortic incompetence from 1-32% generated negative backflow transients from 8 to 267 meters/second, a range not dissimilar to that measured in mechanical valves with zero paravalvular leakage. Optimal paravalvular leakage was identified; not too small generating high backflow transients, not too large considering volume overload and cardiac energy loss caused by defective valve behavior and fluid motion. Conclusions Thrombogenic potential of transcatheter aortic valves with trivial aortic incompetence and high magnitude regional backflow velocity transients was comparable to mechanical valves. This may have relevance to stroke rate, asymptomatic microembolic episodes and indications for anticoagulation therapy after transcatheter valve insertion. PMID:25333018
Schots, Judith P M; Luyer, Misha D P; Nieuwenhuijzen, Grard A P
2018-05-07
To investigate the value of daily measurement of drain amylase for detecting leakage in gastric cancer surgery. This was a retrospective analysis including all patients who underwent a gastrectomy for gastric cancer. From January 2013 until December 2015, an intra-abdominal drain was routinely placed. Drain amylase was measured daily. Receiver operator characteristic curves were created to assess the ability of amylase to predict leakage. Sensitivity, specificity, and negative and positive predictive value of amylase in drain fluid were determined. Leakage of the gastrojejunostomy or esophagojejunostomy, enteroenterostomy, duodenal stump, or pancreas was diagnosed by CT scan, endoscopy, or during re-operation. From January 2016 until April 2017, no drain was inserted. Surgical outcome and postoperative complications were compared between both groups. Median drain amylase concentrations were higher for each postoperative day in patients with leakage. The optimal cutoff value was 1000 IU/L (sensitivity 77.8%, specificity 98.2%, negative predictive value 96.6%). Sixty-seven consecutive procedures were performed with a drain and 40 procedures without. No differences in group characteristics were observed except for gender. Fourteen patients (13.1%) had a leakage. The incidence and severity of leakage were not different between the patients with and without a drain. There was no significant difference in time to diagnosis (1 vs. 0 days; p 0.34), mortality rate (7.5 vs. 2.5%; p 0.41), and median length of hospital stay (9 days in both groups; p 0.46). Daily amylase measurement in drain fluid does not influence the early recognition and management of leakage in gastric cancer surgery.
NASA Technical Reports Server (NTRS)
Johnson, R. L.; Young, Donald L. (Technical Monitor)
1967-01-01
This report contains the results of a fifteen month analytical and experimental study of the leakage rate of the pressurant gases (N2, He) and the propellant vapors (N2O4,N2H4) through bladder structures consisting of two layers of Teflon separated by a metallic foil diffusion barrier containing microscopic or larger holes. Results were obtained for the steady state leakage rate through circular holes and long rectangular openings in the barrier for arbitrary thicknesses of the two Teflon layers. The effect of hole shape and relative hole position on the leakage rate were studied. The transient problem was analyzed and it was shown that steady state calculations are adequate for estimating the leakage rate. A computer program entitled "Diffusion Analyzer Program" was developed to calculate the leakage rate, both transient and steady state. Finally, the analytical results were compared to experimentally determined values of the leakage rate through a model laminated bladder structure. The results of the analysis are in good agreement with experiment. The experimental effort (Part II of the Bladder Permeation Program) measured the solubility, diffusion coefficient and permeability of helium, nitrogen and nitrogen tetroxide vapor through Teflon TFE and FEP membranes. Data were obtained in the temperature range of 25 to 100 C at pressures ranging from near vacuum to about 20 atmospheres. Results of the experimental effort were compared with the limited data previously reported. As a verification to the applicability of results to actual bladder systems, counter diffusion tests were performed with a laminated sample containing aluminum foil with a selected group of holes.
Huang, Ping-Tzan; Jong, Tai-Lang; Li, Chien-Ming; Chen, Wei-Ling; Lin, Chia-Hung
2017-08-01
Blood leakage and blood loss are serious complications during hemodialysis. From the hemodialysis survey reports, these life-threatening events occur to attract nephrology nurses and patients themselves. When the venous needle and blood line are disconnected, it takes only a few minutes for an adult patient to lose over 40% of his / her blood, which is a sufficient amount of blood loss to cause the patient to die. Therefore, we propose integrating a flexible sensor and self-organizing algorithm to design a cloud computing-based warning device for blood leakage detection. The flexible sensor is fabricated via a screen-printing technique using metallic materials on a soft substrate in an array configuration. The self-organizing algorithm constructs a virtual direct current grid-based alarm unit in an embedded system. This warning device is employed to identify blood leakage levels via a wireless network and cloud computing. It has been validated experimentally, and the experimental results suggest specifications for its commercial designs. The proposed model can also be implemented in an embedded system.
Essentials for Successful and Widespread LED Lighting Adoption
NASA Astrophysics Data System (ADS)
Khan, Nisa
2011-03-01
Solid-state lighting (SSL), with light-emitting diodes (LEDs) as the light source, is a growing and essential field, particularly in regard to the heightened need for global energy efficiency. In recent years, SSL has experienced remarkable advances in efficiency, light output magnitude and quality. Thus such diverse applications as signage, message centers, displays, and special lighting are now adopting LEDs, taking 2010's market to 9.1 billion - 68% growth from the previous year! While this is promising, future growth in both display and lighting applications will rely upon unveiling deeper understanding and key innovations in LED lighting science and technologies. In this presentation, some LED lighting fundamentals, engineering challenges and novel solutions will be discussed to address reduction in efficiency (a.k.a. droop) at high currents, and to obtain uniform light distribution for overcoming LEDs' directional nature. The droop phenomenon has been a subject of much controversy in the industry and despite several studies and claims, a widely-accepted explanation still lacks because of counter arguments and experiments. Recently several research studies have identified that the droop behavior in nitride-based LEDs beyond certain current density ranges can only be comprehensively explained if the current leaking beyond the LED active region is included. Although such studies have identified a few useful current leakage mechanisms outside the active region, no one has included current leakage, due to non-ideal, 3-D device structures that create undesirable current distribution inside and outside the active region. This talk will address achieving desirable current distributions from optimized 3-D device structures that should reduce current leakage and hence the droop behavior. In addition to novel LED design solutions for droop reduction and uniform light distribution, the talk will address cost and yield concerns as they pertain to core material scarcity. Such solutions are expected to make LED lights more energy efficient, pleasant in appearance, longer-lasting, affordable, and thus suitable for green living.
Lu, Qifeng; Zhao, Chun; Mu, Yifei; Zhao, Ce Zhou; Taylor, Stephen; Chalker, Paul R
2015-07-29
A powerful characterization technique, pulse capacitance-voltage (CV) technique, was used to investigate oxide traps before and after annealing for lanthanide zirconium oxide thin films deposited on n-type Si (111) substrates at 300 °C by liquid injection Atomic Layer Deposition (ALD). The results indicated that: (1) more traps were observed compared to the conventional capacitance-voltage characterization method in LaZrO x ; (2) the time-dependent trapping/de-trapping was influenced by the edge time, width and peak-to-peak voltage of a gate voltage pulse. Post deposition annealing was performed at 700 °C, 800 °C and 900 °C in N₂ ambient for 15 s to the samples with 200 ALD cycles. The effect of the high temperature annealing on oxide traps and leakage current were subsequently explored. It showed that more traps were generated after annealing with the trap density increasing from 1.41 × 10 12 cm -2 for as-deposited sample to 4.55 × 10 12 cm -2 for the 800 °C annealed one. In addition, the leakage current density increase from about 10 - ⁶ A/cm² at V g = +0.5 V for the as-deposited sample to 10 -3 A/cm² at V g = +0.5 V for the 900 °C annealed one.
Development of a 32-detector CdTe matrix for the SVOM ECLAIRs X/Gamma camera: Preliminary results
NASA Astrophysics Data System (ADS)
Lacombe, K.; Nasser, G.; Amoros, C.; Atteia, J.-L.; Barret, D.; Billot, M.; Cordier, B.; Gevin, O.; Godet, O.; Gonzalez, F.; Houret, B.; Landé, J.; Lugiez, F.; Mandrou, P.; Martin, J.-A.; Marty, W.; Mercier, K.; Pons, R.; Rambaud, D.; Ramon, P.; Rouaix, G.; Waegebaert, V.
2013-12-01
ECLAIRs, a 2D coded-mask imaging telescope on the Sino-French SVOM space mission, will detect and locate gamma-ray bursts (GRBs) between 4 and 150 keV. The detector array is an assembly of 6400 Schottky CdTe detectors of size 4×4×1 mm3, biased from -100 V to -600 V and operated at -20 °C to minimize the leakage current and maximize the polarization time. The remarkable low-energy threshold is achieved through various steps: an extensive detectors selection, a low-noise 32 channels ASIC study, and the design of an innovative detection module called XRDPIX formed by a thick film ceramic holding 32 detectors, a high voltage grid and an HTCC substrate housing the ASIC within a hermetic cavity. In this paper, we describe the XRDPIX module and explain the results of first tests to measure the linearity and compare the sources of noise, such as leakage currents and the Equivalent Noise Charge (ENC) measured on ASIC Ceramics. We confront these values with the energy threshold and spectral resolution made with dedicated test benches. Finally, we present the superposition of 32 calibrated spectra of one XRDPIX module, showing the excellent homogeneity of the 32 detectors and the achievement of a detection threshold at 4 keV over the entire module.
NASA Astrophysics Data System (ADS)
Esakky, Papanasam; Kailath, Binsu J.
2017-08-01
HfO2 as a gate dielectric enables high electric field operation of SiC MIS structure and as gas sensor HfO2/SiC capacitors offer higher sensitivity than SiO2/SiC capacitors. The issue of higher density of oxygen vacancies and associated higher leakage current necessitates better passivation of HfO2/SiC interface. Effect of post deposition annealing in N2O plasma and post metallization annealing in forming gas on the structural and electrical characteristics of Pd/HfO2/SiC MIS capacitors are reported in this work. N2O plasma annealing suppresses crystallization during high temperature annealing thereby improving the thermal stability and plasma annealing followed by rapid thermal annealing in N2 result in formation of Hf silicate at the HfO2/SiC interface resulting in order of magnitude lower density of interface states and gate leakage current. Post metallization annealing in forming gas for 40 min reduces interface state density by two orders while gate leakage current density is reduced by thrice. Post deposition annealing in N2O plasma and post metallization annealing in forming gas are observed to be effective passivation techniques improving the electrical characteristics of HfO2/SiC capacitors.
Premaratna, R; Ragupathy, A; Miththinda, J K N D; de Silva, H J
2013-07-01
Fluid leakage remains the hallmark of dengue hemorrhagic fever (DHF). The applicability of currently recommended predictors of DHF for adults with dengue is questionable as these are based on studies conducted in children. One hundred and two adults with dengue were prospectively followed up to investigate whether home-based or hospital-based early phase fluid resuscitation has an impact on clinical and hematological parameters used for the diagnosis of early or critical phase fluid leakage. In the majority of subjects, third space fluid accumulation (TSFA) was detected on the fifth and sixth days of infection. The quantity and quality of fluids administered played no role in TSFA. A reduction in systolic blood pressure appeared to be more helpful than a reduction in pulse pressure in predicting fluid leakage. TSFA occurred with lower percentage rises in packed cell volume (PCV) than stated in the current recommendations. A rapid reduction in platelets, progressive reduction in white blood cells, percentage rises in Haemoglobin (Hb), and PCV, and rises in aspartate aminotransferase and alanine aminotransferase were observed in patients with TSFA and therefore with the development of severe illness. Clinicians should be aware of the limitations of currently recommended predictors of DHF in adult patients who are receiving fluid resuscitation. Copyright © 2013 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Li, Lee; Bao, Chaobing; Feng, Xibo; Liu, Yunlong; Fochan, Lin
2013-02-01
For a compact and reliable nanosecond-pulse high-voltage generator (NPHVG), the specification parameter selection and potential usage of fast controllable state-solid switches have an important bearing on the optimal design. The NPHVG with closed transformer core and fast switching thyristor (FST) was studied in this paper. According to the analysis of T-type circuit, the expressions for the voltages and currents of the primary and secondary windings on the transformer core of NPHVG were deduced, and the theoretical maximum analysis was performed. For NPHVG, the rise-rate of turn-on current (di/dt) across a FST may exceed its transient rating. Both mean and maximum values of di/dt were determined by the leakage inductances of the transformer, and the difference is 1.57 times. The optimum winding ratio is helpful to getting higher voltage output with lower specification FST, especially when the primary and secondary capacitances have been established. The oscillation period analysis can be effectively used to estimate the equivalent leakage inductance. When the core saturation effect was considered, the maximum di/dt estimated from the oscillating period of the primary current is more accurate than one from the oscillating period of the secondary voltage. Although increasing the leakage inductance of NPHVG can decrease di/dt across FST, it may reduce the output peak voltage of the NPHVG.
NASA Astrophysics Data System (ADS)
Alema, Fikadu; Reinholz, Aaron; Pokhodnya, Konstantin
2013-03-01
We report on the tunable dielectric properties of Mg and Nb co-doped Ba0.45Sr0.55TiO3 (BST) thin film prepared by the magnetron sputtering using BST target (pure and doped with BaMg0.33Nb0.67O3 (BMN)) on Pt/TiO2/SiO2/Al2O3 4'' wafers at 700 °C under oxygen atmosphere. The electrical measurements are conducted on 2432 metal-ferroelectric-metal capacitors using Pt as the top and bottom electrode. The crystalline structure, microstructure, and surface morphology of the films are analyzed and correlated to the films dielectric properties. The BMN doped and undoped BST films have shown tunabilities of 48% and 52%; and leakage current densities of 2.2x10-6 A/cm2 and 3.7x10-5 A/cm2, respectively at 0.5 MV/cm bias field. The results indicate that the BMN doped film exhibits a lower leakage current with no significant decrease in tunability. Due to similar electronegativity and ionic radii, it was suggested that both Mg2+ (accepter-type) and Nb5+ (donor-type) dopants substitutTi4+ ion in BST. The improvement in the film dielectric losses and leakage current with insignificant loss of tunability is attributed to the adversary effects of Mg2+ and Nb5+ in BST.
Ito, Kiyoshi; Aoyama, Tatsuro; Horiuchi, Tetsuyoshi; Hongo, Kazuhiro
2015-12-01
The nonpenetrating titanium clip has been successfully used in peripheral arterial bypass surgery. The purpose of this study was to evaluate the leakage pressures and patterns of nonpenetrating titanium clips using a simple model that mimicked spinal surgery. In addition, the authors describe their surgical experience with these clips and the follow-up results in 31 consecutive patients. The authors compared nonpenetrating titanium clips and expanded polytetrafluoroethylene (ePTFE) sutures in relation to the water pressure that could be tolerated by sutured ePTFE sheets, and the leakage pressure patterns were determined. The changes in leakage pressures at 5 minutes, 30 minutes, and 12 hours were examined when the clips and sutures were used in combination with the mesh-and-glue technique in an in vitro study. Thirty-one patients underwent spinal intradural procedures using nonpenetrating titanium clips to suture the dura maters using the meshand-glue technique, involving fibrin glue and polyglycolic acid-fibrin sheets. A significant difference was apparent between the ePTFE suture group and the nonpenetrating titanium clip group, with the latter showing a leakage pressure that could be sustained and was 1508% higher than that of the former (p = 0.001). In relation to leakage patterns, the nonpenetrating titanium clips did not make any suture holes in the ePTFE sheet and fluid leakage occurred between the clips, whereas fluid leakage was associated with the pressure elevation that occurred at the suture holes made by the ePTFE sutures. Of the 31 patients who underwent spinal intradural procedures using nonpenetrating titanium clips, 1 (3.2%) experienced cerebrospinal fluid (CSF) leakage postoperatively. No other complications-for example, allergic reactions, adhesions, or infections--were encountered. The interrupted placement of nonpenetrating titanium clips enables dural closure without creating any holes. These clips facilitate improvements in the initial leakage pressure and reduce postoperative CSF leakage following spinal surgery. The authors conclude that it is very beneficial to suture the spinal dura mater using nonpenetrating titanium clips given the anatomical characteristics of the spinal dura mater and the fact that the clips do not create suture holes.
NASA Astrophysics Data System (ADS)
Li, Qian; Li, Shilong; Yang, Dehua; Su, Wei; Wang, Yanchun; Zhou, Weiya; Liu, Huaping; Xie, Sishen
2017-10-01
The electrical characteristics of carbon nanotube (CNT) thin-film transistors (TFTs) strongly depend on the properties of the gate dielectric that is in direct contact with the semiconducting CNT channel materials. Here, we systematically investigated the dielectric effects on the electrical characteristics of fully printed semiconducting CNT-TFTs by introducing the organic dielectrics of poly(methyl methacrylate) (PMMA) and octadecyltrichlorosilane (OTS) to modify SiO2 dielectric. The results showed that the organic-modified SiO2 dielectric formed a favorable interface for the efficient charge transport in s-SWCNT-TFTs. Compared to single-layer SiO2 dielectric, the use of organic-inorganic hybrid bilayer dielectrics dramatically improved the performances of SWCNT-TFTs such as mobility, threshold voltage, hysteresis and on/off ratio due to the suppress of charge scattering, gate leakage current and charge trapping. The transport mechanism is related that the dielectric with few charge trapping provided efficient percolation pathways for charge carriers, while reduced the charge scattering. High density of charge traps which could directly act as physical transport barriers and significantly restrict the charge carrier transport and, thus, result in decreased mobile carriers and low device performance. Moreover, the gate leakage phenomenon is caused by conduction through charge traps. So, as a component of TFTs, the gate dielectric is of crucial importance to the manufacture of high quality TFTs from the aspects of affecting the gate leakage current and device operation voltage, as well as the charge carrier transport. Interestingly, the OTS-modified SiO2 allows to directly print horizontally aligned CNT film, and the corresponding devices exhibited a higher mobility than that of the devices with the hybrid PMMA/SiO2 dielectric although the thickness of OTS layer is only ˜2.5 nm. Our present result may provide key guidance for the further development of printed nanomaterial electronics.
EVA Suit Microbial Leakage Investigation Project
NASA Technical Reports Server (NTRS)
Falker, Jay; Baker, Christopher; Clayton, Ronald; Rucker, Michelle
2016-01-01
The objective of this project is to collect microbial samples from various EVA suits to determine how much microbial contamination is typically released during simulated planetary exploration activities. Data will be released to the planetary protection and science communities, and advanced EVA system designers. In the best case scenario, we will discover that very little microbial contamination leaks from our current or prototype suit designs, in the worst case scenario, we will identify leak paths, learn more about what affects leakage--and we'll have a new, flight-certified swab tool for our EVA toolbox.
NASA Astrophysics Data System (ADS)
Kuo, Meng-Wei
Semiconductor nanowires are important components in future nanoelectronic and optoelectronic device applications. These nanowires can be fabricated using either bottom-up or top-down methods. While bottom-up techniques can achieve higher aspect ratio at reduced dimension without having surface and sub-surface damage, uniform doping distributions with abrupt junction profiles are less challenging for top-down methods. In this dissertation, nanowires fabricated by both methods were systematically investigated to understand: (1) the in situ incorporation of boron (B) dopants in Si nanowires grown by the bottom-up vapor-liquid-solid (VLS) technique, and (2) the impact of plasma-induced etch damage on InGaAs p +-i-n+ nanowire junctions for tunnel field-effect transistors (TFETs) applications. In Chapter 2 and 3, the in situ incorporation of B in Si nanowires grown using silane (SiH4) or silicon tetrachloride (SiCl4) as the Si precursor and trimethylboron (TMB) as the p-type dopant source is investigated by I-V measurements of individual nanowires. The results from measurements using a global-back-gated test structure reveal nonuniform B doping profiles on nanowires grown from SiH4, which is due to simultaneous incorporation of B from nanowire surface and the catalyst during VLS growth. In contrast, a uniform B doping profile in both the axial and radial directions is achieved for TMBdoped Si nanowires grown using SiCl4 at high substrate temperatures. In Chapter 4, the I-V characteristics of wet- and dry-etched InGaAs p+-i-n+ junctions with different mesa geometries, orientations, and perimeter-to-area ratios are compared to evaluate the impact of the dry etch process on the junction leakage current properties. Different post-dry etch treatments, including wet etching and thermal annealing, are performed and the effectiveness of each is assessed by temperaturedependent I-V measurements. As compared to wet-etched control devices, dry-etched junctions have a significantly higher leakage current and a current kink in the reverse bias regime, which is likely due to additional trap states created by plasma-induced damage during the Cl2/Ar/H2 mesa isolation step. These states extend more than 60 nm from the mesa surface and can only be partially passivated after a thermal anneal at 350°C for 20 minutes. The evolution of the electrical properties with post-dry etch treatments indicates that the shallow and deep-level trap states resulting from ion-induced point defects, arsenic vacancies and hydrogen-dopant complexes are the primary cause of degradation in the electrical properties of the dry-etched junctions.
NASA Astrophysics Data System (ADS)
Dai, Xiu Hong; Zhao, Hong Dong; Zhang, Lei; Zhu, Hui Juan; Li, Xiao Hong; Zhao, Ya Jun; Guo, Jian Xin; Zhao, Qing Xun; Wang, Ying Long; Liu, Bao Ting; Ma, Lian Xi
2014-03-01
Polycrystalline Bi0.975La0.025Fe0.975Ni0.025O3 (BLFNO) film is fabricated on Pt/Ti/SiO2/Si(111) substrate by sol-gel method. It is found that the well-crystallized BLFNO film is polycrystalline, and the Pt/BLFNO/Pt capacitor possesses good ferroelectric properties with remnant polarization of 74 μC/cm2 at electric field of 833 kV/cm. Moreover, it is also found that the leakage current density of the Pt/BLFNO/Pt capacitor increases with the increase of measurement temperature ranging from 100 to 300 K. The leakage density of the Pt/BLFNO/Pt capacitor satisfies space-charge-limited conduction (SCLC) at higher electric field and shows little dependence on voltage polarity and temperature, but shows polarity and temperature dependence at lower applied electric field. With temperature increasing from 100 to 300 K at lower applied electric field, the most likely conduction mechanism is from Ohmic behavior to SCLC for positive biases, but no clear dominant mechanism for negative biases is shown.
NASA Astrophysics Data System (ADS)
Ben Elbahri, M.; Kahouli, A.; Mercey, B.; Lebedev, O.; Donner, W.; Lüders, U.
2018-02-01
Dielectrics based on amorphous sub-nanometric laminates of TiO2 and Al2O3 are subject to elevated dielectric losses and leakage currents, in large parts due to the extremely thin individual layer thickness chosen for the creation of the Maxwell-Wagner relaxation and therefore the high apparent dielectric constants. The optimization of performances of the laminate itself being strongly limited by this contradiction concerning its internal structure, we will show in this study that modifications of the dielectric stack of capacitors based on these sub-nanometric laminates can positively influence the dielectric losses and the leakage, as for example the nature of the electrodes, the introduction of thick insulating layers at the laminate/electrode interfaces and the modification of the total laminate thickness. The optimization of the dielectric stack leads to the demonstration of a capacitor with an apparent dielectric constant of 90, combined with low dielectric loss (tan δ) of 7 · 10-2 and with leakage currents smaller than 1 × 10-6 A cm-2 at 10 MV m-1.
Study of Sn and Mg doping effects on TiO2/Ge stack structure by combinatorial synthesis
NASA Astrophysics Data System (ADS)
Nagata, Takahiro; Suzuki, Yoshihisa; Yamashita, Yoshiyuki; Ogura, Atsushi; Chikyow, Toyohiro
2018-04-01
The effects of Sn and Mg doping of a TiO2 film on a Ge substrate were investigated to improve leakage current properties and Ge diffusion into the TiO2 film. For systematic analysis, dopant-composition-spread TiO2 samples with dopant concentrations of up to 20.0 at. % were fabricated by RF sputtering and a combinatorial method. X-ray photoelectron spectroscopy revealed that the instability of Mg doping of TiO2 at dopant concentrations above 10.5 at. %. Both Sn and Mg dopants reduced Ge diffusion into TiO2. Sn doping enhanced the crystallization of the rutile phase, which is a high-dielectric-constant phase, although the Mg-doped TiO2 film indicated an amorphous structure. Sn-doping indicated systematic leakage current reduction with increasing dopant concentration. Doping at Sn concentrations higher than 16.8 at. % improved the leakage properties (˜10-7 A/cm2 at -3.0 V) and capacitance-voltage properties of metal-insulator-semiconductor (MIS) operation. The Sn doping of TiO2 may be useful for interface control and as a dielectric material for Ge-based MIS capacitors.
Eccentricity effects on leakage of a brush seal at low speeds
NASA Technical Reports Server (NTRS)
Schlumberger, Julie A.; Proctor, Margaret P.; Hendricks, Robert C.
1991-01-01
The effects of eccentricity on brush seal leakage at low rotational speeds were investigated. Included are the leakage results for ambient temperature air and nearly saturated streams at three different rotor eccentricities at both 0 and 400 rpm. A brush seal with a nominal bore diameter of 13.647 cm. (5.3730 in.) was used. It had a radial concentric interference of 0.071 cm (0.0028 in.) and a fence height of 0.0927 cm (0.0365 in.). There were 1060 bristles per centimeter of circumference (2690 bristles per inch of circumference). Rotor eccentricities of 0.003, 0.010, 0.038, and 0.043 cm (0.001, 0.004, 0.015, and 0.017 in.) were achieved by using bushings with different offsets. The results were compared with an annular seal model (FLOWCAL) for air and to a standard labyrinth seal model for steam. The annular seal model was also compared with a bulk flow model of a concentric brush seal in air. Large eccentricities did not damage the brush seals or their Haynes 25 bristles. However, the 304 stainless steel rotor did not show wear, indicating a harder surface is needed. Only the stream data showed hysteresis and were affected by shaft rotation. The brush seal had lower leakage rates than those predicted for comparable annular and labyrinth seals (conventional) because of the large clearances those seals require to accommodate large shaft excursions.
NASA Astrophysics Data System (ADS)
Garg, Manjari; Naik, Tejas R.; Pathak, C. S.; Nagarajan, S.; Rao, V. Ramgopal; Singh, R.
2018-04-01
III-Nitride semiconductors face the issue of localized surface states, which causes fermi level pinning and large leakage current at the metal semiconductor interface, thereby degrading the device performance. In this work, we have demonstrated the use of a Self-Assembled Monolayer (SAM) of organic molecules to improve the electrical characteristics of Schottky barrier diodes (SBDs) on n-type Gallium Nitride (n-GaN) epitaxial films. The electrical characteristics of diodes were improved by adsorption of SAM of hydroxyl-phenyl metallated porphyrin organic molecules (Zn-TPPOH) onto the surface of n-GaN. SAM-semiconductor bonding via native oxide on the n-GaN surface was confirmed using X-ray photoelectron spectroscopy measurements. Surface morphology and surface electronic properties were characterized using atomic force microscopy and Kelvin probe force microscopy. Current-voltage characteristics of different metal (Cu, Ni) SBDs on bare n-GaN were compared with those of Cu/Zn-TPPOH/n-GaN and Ni/Zn-TPPOH/n-GaN SBDs. It was found that due to the molecular monolayer, the surface potential of n-GaN was decreased by ˜350 mV. This caused an increase in the Schottky barrier height of Cu and Ni SBDs from 1.13 eV to 1.38 eV and 1.07 eV to 1.22 eV, respectively. In addition to this, the reverse bias leakage current was reduced by 3-4 orders of magnitude for both Cu and Ni SBDs. Such a significant improvement in the electrical performance of the diodes can be very useful for better device functioning.
Comparing Zeeman qubits to hyperfine qubits in the context of the surface code: +174Yb and +171Yb
NASA Astrophysics Data System (ADS)
Brown, Natalie C.; Brown, Kenneth R.
2018-05-01
Many systems used for quantum computing possess additional states beyond those defining the qubit. Leakage out of the qubit subspace must be considered when designing quantum error correction codes. Here we consider trapped ion qubits manipulated by Raman transitions. Zeeman qubits do not suffer from leakage errors but are sensitive to magnetic fields to first order. Hyperfine qubits can be encoded in clock states that are insensitive to magnetic fields to first order, but spontaneous scattering during the Raman transition can lead to leakage. Here we compare a Zeeman qubit (+174Yb) to a hyperfine qubit (+171Yb) in the context of the surface code. We find that the number of physical qubits required to reach a specific logical qubit error can be reduced by using +174Yb if the magnetic field can be stabilized with fluctuations smaller than 10 μ G .
Charging and breakdown in amorphous dielectrics: Phenomenological modeling approach and applications
NASA Astrophysics Data System (ADS)
Palit, Sambit
Amorphous dielectrics of different thicknesses (nm to mm) are used in various applications. Low temperature processing/deposition of amorphous thin-film dielectrics often result in defect-states or electronic traps. These traps are responsible for increased leakage currents and bulk charge trapping in many associated applications. Additional defects may be generated during regular usage, leading to electrical breakdown. Increased leakage currents, charge trapping and defect generation/breakdown are important and pervasive reliability concerns in amorphous dielectrics. We first explore the issue of charge accumulation and leakage in amorphous dielectrics. Historically, charge transport in amorphous dielectrics has been presumed, depending on the dielectric thickness, to be either bulk dominated (Frenkel-Poole (FP) emission) or contact dominated (Fowler-Nordheim tunneling). We develop a comprehensive dielectric charging modeling framework which solves for the transient and steady state charge accumulation and leakage currents in an amorphous dielectric, and show that for intermediate thickness dielectrics, the conventional assumption of FP dominated current transport is incorrect, and may lead to false extraction of dielectric parameters. We propose an improved dielectric characterization methodology based on an analytical approximation of our model. Coupled with ab-initio computed defect levels, the dielectric charging model explains measured leakage currents more accurately with lesser empiricism. We study RF-MEMS capacitive switches as one of the target applications of intermediate thickness amorphous dielectrics. To achieve faster analysis and design of RF-MEMS switches in particular, and electro-mechanical actuators in general, we propose a set of fundamental scaling relationships which are independent of specific physical dimensions and material properties; the scaling relationships provide an intrinsic classification of all electro-mechanical actuators. However, RF-MEMS capacitive switches are plagued by the reliability issue of temporal shifts of actuation voltages due to dielectric charge accumulation, often resulting in failure due to membrane stiction. Using the dielectric charging model, we show that in spite of unpredictable roughness of deposited dielectrics, there are predictable shifts in actuation voltages due to dielectric charging in RF-MEMS switches. We also propose a novel non-obtrusive, non-contact, fully electronic resonance based technique to characterize charging driven actuation shifts in RF-MEMS switches which overcomes limitations in conventionally used methods. Finally, we look into the issue of defect generation and breakdown in thick polymer dielectrics. Polymer materials often face premature electrical breakdown due to high electric fields and frequencies, and exposure to ambient humidity conditions. Using a field-driven correlated defect generation model, coupled with a model for temperature rise due to dielectric heating at AC stresses, we explain measured trends in time-to-breakdown and breakdown electric fields in polymer materials. Using dielectric heating we are able to explain the observed lifetime and dielectric strength reduction with increasing dielectric thicknesses. Performing lifetime measurements after exposure to controlled humidity conditions, we find that moisture ingress into a polymer material reduces activation barriers for chain breakage and increases dielectric heating. Overall, this thesis develops a comprehensive framework of dielectric charging, leakage and degradation of insulators of different thicknesses that have broad applications in multiple technologies.
NASA Astrophysics Data System (ADS)
Hamachi, T.; Takeuchi, S.; Tohei, T.; Imanishi, M.; Imade, M.; Mori, Y.; Sakai, A.
2018-04-01
The mechanisms associated with electrical conduction through individual threading dislocations (TDs) in a Na-flux GaN crystal grown with a multipoint-seed-GaN technique were investigated by conductive atomic force microscopy (C-AFM). To focus on individual TDs, dislocation-related etch pits (DREPs) were formed on the Na-flux GaN surface by wet chemical etching, after which microscopic Pt electrodes were locally fabricated on the DREPs to form conformal contacts to the Na-flux GaN crystal, using electron beam assisted deposition. The C-AFM data clearly demonstrate that the leakage current flows through the individual TD sites. It is also evident that the leakage current and the electrical conduction mechanism vary significantly based on the area within the Na-flux GaN crystal where the TDs are formed. These regions include the c-growth sector (cGS) in which the GaN grows in the [0001 ] direction on top of the point-seed with a c-plane growth front, the facet-growth sector (FGS) in which the GaN grows with {10 1 ¯ 1 } facets on the side of the cGS, the boundary region between the cGS and FGS (BR), and the coalescence boundary region between FGSs (CBR). The local current-voltage (I-V) characteristics of the specimen demonstrate space charge limited current conduction and conduction related to band-like trap states associated with TDs in the FGS, BR, and CBR. A detailed analysis of the I-V data indicates that the electrical conduction through TDs in the cGS may proceed via the Poole-Frenkel emission mechanism.
Open-Gated pH Sensor Fabricated on an Undoped-AlGaN/GaN HEMT Structure
Abidin, Mastura Shafinaz Zainal; Hashim, Abdul Manaf; Sharifabad, Maneea Eizadi; Rahman, Shaharin Fadzli Abd; Sadoh, Taizoh
2011-01-01
The sensing responses in aqueous solution of an open-gated pH sensor fabricated on an AlGaN/GaN high-electron-mobility-transistor (HEMT) structure are investigated. Under air-exposed ambient conditions, the open-gated undoped AlGaN/GaN HEMT only shows the presence of a linear current region. This seems to show that very low Fermi level pinning by surface states exists in the undoped AlGaN/GaN sample. In aqueous solution, typical current-voltage (I-V) characteristics with reasonably good gate controllability are observed, showing that the potential of the AlGaN surface at the open-gated area is effectively controlled via aqueous solution by the Ag/AgCl gate electrode. The open-gated undoped AlGaN/GaN HEMT structure is capable of distinguishing pH level in aqueous electrolytes and exhibits linear sensitivity, where high sensitivity of 1.9 mA/pH or 3.88 mA/mm/pH at drain-source voltage, VDS = 5 V is obtained. Due to the large leakage current where it increases with the negative gate voltage, Nernstian like sensitivity cannot be determined as commonly reported in the literature. This large leakage current may be caused by the technical factors rather than any characteristics of the devices. Surprisingly, although there are some imperfections in the device preparation and measurement, the fabricated devices work very well in distinguishing the pH levels. Suppression of current leakage by improving the device preparation is likely needed to improve the device performance. The fabricated device is expected to be suitable for pH sensing applications. PMID:22163786
High breakdown single-crystal GaN p-n diodes by molecular beam epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Meng; Zhao, Yuning; Yan, Xiaodong
2015-12-07
Molecular beam epitaxy grown GaN p-n vertical diodes are demonstrated on single-crystal GaN substrates. A low leakage current <3 nA/cm{sup 2} is obtained with reverse bias voltage up to −20 V. With a 400 nm thick n-drift region, an on-resistance of 0.23 mΩ cm{sup 2} is achieved, with a breakdown voltage corresponding to a peak electric field of ∼3.1 MV/cm in GaN. Single-crystal GaN substrates with very low dislocation densities enable the low leakage current and the high breakdown field in the diodes, showing significant potential for MBE growth to attain near-intrinsic performance when the density of dislocations is low.
Evaluation of eddy current and magnetic techniques for inspecting rebars in bridge barrier rails
NASA Astrophysics Data System (ADS)
Lo, C. C. H.; Nakagawa, N.
2013-01-01
This paper reports on a feasibility study of using eddy current (EC) and magnetic flux leakage (MFL) methods to detect corrosion damage in rebars that anchor concrete barrier rails to the road deck of bridge structures. EC and MFL measurements were carried out on standalone rebars with and without artificial defects of 25% and 50% material loss, using a commercial EC-based rebar locator and a MFL system that was developed using giant magnetoresistance sensors to detect leakage fluxes from the defects. Both techniques can readily detect the defects at a distance of 2.5″ (63.5 mm). The amplitudes of the EC and MFL signals vary monotonically with the amount of material loss, indicating the potential of using the techniques to quantify material loss of standalone rebars.
Effect of threading defects on InGaN /GaN multiple quantum well light emitting diodes
NASA Astrophysics Data System (ADS)
Ferdous, M. S.; Wang, X.; Fairchild, M. N.; Hersee, S. D.
2007-12-01
Photoelectrochemical etching was used to measure the threading defect (TD) density in InGaN multiple quantum well light-emitting diodes (LEDs) fabricated from commercial quality epitaxial wafers. The TD density was measured in the LED active region and then correlated with the previously measured characteristics of these LEDs. It was found that the reverse leakage current increased exponentially with TD density. The temperature dependence of this dislocation-related leakage current was consistent with a hopping mechanism at low reverse-bias voltage and Poole-Frenkel emission at higher reverse-bias voltage. The peak intensity and spectral width of the LED electroluminescence were found to be only weakly dependent on TD density for the measured TD range of 1×107-2×108cm-2.
Schottky barrier diode and method thereof
NASA Technical Reports Server (NTRS)
Aslam, Shahid (Inventor); Franz, David (Inventor)
2008-01-01
Pt/n.sup.-GaN Schottky barrier diodes are disclosed that are particularly suited to serve as ultra-violet sensors operating at wavelengths below 200 nm. The Pt/n.sup.-GaN Schottky barrier diodes have very large active areas, up to 1 cm.sup.2, which exhibit extremely low leakage current at low reverse biases. Very large area Pt/n.sup.-GaN Schottky diodes of sizes 0.25 cm.sup.2 and 1 cm.sup.2 have been fabricated from n.sup.-/n.sup.+ GaN epitaxial layers grown by vapor phase epitaxy on single crystal c-plane sapphire, which showed leakage currents of 14 pA and 2.7 nA, respectively for the 0.25 cm.sup.2 and 1 cm.sup.2 diodes both configured at a 0.5V reverse bias.
NASA Technical Reports Server (NTRS)
Ponchak, George E.; Schwartz, Zachary D.; Alterovitz, Samuel A.; Downey, Alan N.
2004-01-01
Wireless sensors for high temperature applications such as oil drilling and mining, automobiles, and jet engine performance monitoring require circuits built on wide bandgap semiconductors. In this paper, the characteristics of microwave transmission lines on 4H-High Purity Semi-Insulating SiC and 6H, p-type SiC is presented as a function of temperature and frequency. It is shown that the attenuation of 6H, p-type substrates is too high for microwave circuits, large leakage current will flow through the substrate, and that unusual attenuation characteristics are due to trapping in the SiC. The 4H-HPSI SiC is shown to have low attenuation and leakage currents over the entire temperature range.
Brush seal leakage performance with gaseous working fluids at static and low rotor speed conditions
NASA Astrophysics Data System (ADS)
Carlile, Julie A.; Hendricks, Robert C.; Yoder, Dennis A.
1992-06-01
The leakage performance of a brush seal with gaseous working fluids at static and low rotor speed conditions was studied. The leakage results included for air, helium, and carbon dioxide at several bristle/rotor interferences. Also, the effects of packing a lubricant into the bristles and also of reversing the pressure drop across the seal were studied. Results were compared to that of an annular seal at similar operating conditions. In order to generalize the results, they were correlated using corresponding state theory. The brush seal tested had a bore diameter of 3.792 cm (1.4930 in.), a fence height of 0.0635 cm (0.025 in.), and 1800 bristles/cm circumference (4500 bristles/in. circumference). Various bristle/rotor radial interferences were achieved by using a tapered rotor. The brush seal reduced the leakage in comparison to the annular seal, up to 9.5 times. Reversing the pressure drop across the brush seal produced leakage rates approximately the same as that of the annular seal. Addition of a lubricant reduced the leakage by 2.5 times. The air and carbon dioxide data were successfully correlated using corresponding state theory. However, the helium data followed a different curve than the air and carbon dioxide data.
Flow Characteristics and Robustness of an Inclined Quad-vortex Range Hood
CHEN, Jia-Kun; HUANG, Rong Fung
2014-01-01
A novel design of range hood, which was termed the inclined quad-vortex (IQV) range hood, was examined for its flow and containment leakage characteristics under the influence of a plate sweeping across the hood face. A flow visualization technique was used to unveil the flow behavior. Three characteristic flow modes were observed: convex, straight, and concave modes. A tracer gas detection method using sulfur hexafluoride (SF6) was employed to measure the containment leakage levels. The results were compared with the test data reported previously in the literature for a conventional range hood and an inclined air curtain (IAC) range hood. The leakage SF6 concentration of the IQV range hood under the influence of the plate sweeping was 0.039 ppm at a suction flow rate of 9.4 m3/min. The leakage concentration of the conventional range hood was 0.768 ppm at a suction flow rate of 15.0 m3/min. For the IAC range hood, the leakage concentration was 0.326 ppm at a suction flow rate of 10.9 m3/min. The IQV range hood presented a significantly lower leakage level at a smaller suction flow rate than the conventional and IAC range hoods due to its aerodynamic design for flow behavior. PMID:24583513
Brush seal leakage performance with gaseous working fluids at static and low rotor speed conditions
NASA Technical Reports Server (NTRS)
Carlile, Julie A.; Hendricks, Robert C.; Yoder, Dennis A.
1992-01-01
The leakage performance of a brush seal with gaseous working fluids at static and low rotor speed conditions was studied. The leakage results included for air, helium, and carbon dioxide at several bristle/rotor interferences. Also, the effects of packing a lubricant into the bristles and also of reversing the pressure drop across the seal were studied. Results were compared to that of an annular seal at similar operating conditions. In order to generalize the results, they were correlated using corresponding state theory. The brush seal tested had a bore diameter of 3.792 cm (1.4930 in.), a fence height of 0.0635 cm (0.025 in.), and 1800 bristles/cm circumference (4500 bristles/in. circumference). Various bristle/rotor radial interferences were achieved by using a tapered rotor. The brush seal reduced the leakage in comparison to the annular seal, up to 9.5 times. Reversing the pressure drop across the brush seal produced leakage rates approximately the same as that of the annular seal. Addition of a lubricant reduced the leakage by 2.5 times. The air and carbon dioxide data were successfully correlated using corresponding state theory. However, the helium data followed a different curve than the air and carbon dioxide data.
Brush seal leakage performance with gaseous working fluids at static and low rotor speed conditions
NASA Technical Reports Server (NTRS)
Carlile, Julie A.; Hendricks, Robert C.; Yoder, Dennis A.
1992-01-01
The leakage performance of a brush seal with gaseous working fluids at static and low rotor speed conditions was studied. The leakage results are included for air, helium, and carbon dioxide at several bristle/rotor interferences. Also, the effects of packing a lubricant into the bristles and also of reversing the pressure drop across the seal were studied. Results were compared to that of an annular seal at similar operating conditions. In order to generalize the results, they were correlated using corresponding state theory. The brush seal tested had a bore diameter of 3.792 cm (1.4930 in), a fence height of 0.0635 cm (0.025 in), and 1800 bristles/cm circumference (4500 bristles/in circumference). Various bristle/rotor radial interferences were achieved by using a tapered rotor. The brush seal reduced the leakage in comparison to the annular seal, up to 9.5 times. Reversing the pressure drop across the brush seal produced leakage rates approx. the same as that of the annular seal. Addition of a lubricant reduced the leakage by 2.5 times. The air and carbon dioxide data were successfully correlated using corresponding state theory. However, the helium data followed a different curve than the air and carbon dioxide data.
Usefulness of a New Gelatin Glue Sealant System for Dural Closure in a Rat Durotomy Model
KAWAI, Hisashi; NAKAGAWA, Ichiro; NISHIMURA, Fumihiko; MOTOYAMA, Yasushi; PARK, Young-Su; NAKAMURA, Mitsutoshi; NAKASE, Hiroyuki; SUZUKI, Shuko; IKADA, Yoshito
2014-01-01
Watertight dural closure is imperative after neurosurgical procedures, because inadequately treated leakage of cerebrospinal fluid (CSF) can have serious consequences. We used a rat durotomy model to test the usefulness of a new gelatin glue as a dural sealant in a rat model of transdural CSF leakage. All rats were randomly divided into one of the following three treatment groups: no application (control group: N = 18), application of fibrin glue (fibrin glue group: N = 18), and application of the new gelatin glue (new gelatin glue group: N = 18). The craniotomy side was re-opened, and CSF leakage was checked and recorded at 1, 7, and 28 days postoperatively. The new gelatin glue was adequate for stopping CSF leakage; no leakage was observed at postoperative days 1 or 7, and leakage was observed in only one rat at postoperative day 28. This result was statistically significant when compared to the control group (P = 0.002, P = 0.015, P = 0.015, respectively). The pathologic score of the new gelatin group was not different from that of the control or fibrin glue groups. We conclude that our new gelatin glue provides effective watertight closure 1, 7, and 28 days after operation in the rat durotomy model. PMID:25070015
NASA Astrophysics Data System (ADS)
Kim, Hyung Yoon; Seok, Ki Hwan; Chae, Hee Jae; Lee, Sol Kyu; Lee, Yong Hee; Joo, Seung Ki
2017-06-01
Low-temperature polycrystalline-silicon (poly-Si) thin-film transistors (TFTs) fabricated via metal-induced crystallization (MIC) are attractive candidates for use in active-matrix flat-panel displays. However, these exhibit a large leakage current due to the nickel silicide being trapped at the grain boundaries of the poly-Si. We reduced the leakage current of the MIC poly-Si TFTs by developing a gettering method to remove the Ni impurities using a Si getter layer and natively-formed SiO2 as the etch stop interlayer. The Ni trap state density (Nt) in the MIC poly-Si film decreased after the Ni silicide gettering, and as a result, the leakage current of the MIC poly-Si TFTs decreased. Furthermore, the leakage current of MIC poly-Si TFTs gradually decreased with additional gettering. To explain the gettering effect on MIC poly-Si TFTs, we suggest an appropriate model. He received the B.S. degree in School of Advanced Materials Engineering from Kookmin University, Seoul, South Korea in 2012, and the M.S. degree in Department of Materials Science and Engineering from Seoul National University, Seoul, South Korea in 2014. He is currently pursuing the Ph.D. degree with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and top-gate polycrystalline-silicon thin-film transistors. He received the M.S. degree in innovation technology from Ecol Polytechnique, Palaiseau, France in 2013. He is currently pursuing the Ph.D. degree with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and bottom-gate polycrystalline-silicon thin-film transistors. He is currently pursuing the integrated M.S and Ph.D course with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and copper-gate polycrystalline-silicon thin-film transistors. He is currently pursuing the integrated M.S and Ph.D course with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and bottom-gate polycrystalline-silicon thin-film transistors. He is currently pursuing the integrated M.S and Ph.D course with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and bottom-gate polycrystalline-silicon thin-film transistors. He received the B.S. degree in metallurgical engineering from Seoul National University, Seoul, South Korea, in 1974, and the M.S. and Ph.D. degrees in material science and engineering from Stanford University, Stanford, CA, USA, in 1980 and 1983, respectively. He is currently a Professor with the Department of Materials Science and Engineering, Seoul National University, Seoul.
Microbial ingrowth around single- and multi-component adhesives studied in vitro.
Preussker, S; Klimm, W; Pöschmann, M; Koch, R
2003-01-01
The aim of this study was to compare the in vitro microbial leakage in 4 micro-hybrid composites in combination with 4 single-component dental adhesives (Scotchbond 1/Z100 MP = group 1; Syntac Single-Component/Tetric Flow = group 3; OptiBond Solo/XRV Herculite = group 5; Solobond M/Arabesk Top = group 7) and 4 multi-component dental adhesives (Scotchbond Multi-Purpose/Z100 MP = group 2; Syntac/Tetric Flow = group 4; OptiBond FL/XRV Herculite = group 6; Solobond Plus/Arabesk Top = group 8). Ninety-four mixed standardized Class V cavities of human caries-free extracted premolars were filled with eight different composite adhesive systems using a one-layer (groups 1-4) or a two-layer technique (groups 5-8). After thermocycling and incubation in a broth culture of Streptococcus mutans and Lactobacillus acidophilus, followed by decalcification and staining, the extent and the type of microbial leakage were measured histologically. The extent of microbial leakage in the composite restorations was very low in all groups and there were no significant differences between adhesives. Z100 MP in combination with single- and multi-component adhesives showed a significantly higher microbial leakage than Tetric Flow systems (U test: p=0.037). XRV Herculite adhesive systems showed significantly less extensive microbial leakage than Arabesk Top adhesive systems (U test: p<0.001). The single-component dental adhesives achieved a marginal adaptation of composites comparable to that of multi-component adhesives in vitro. Copyright 2003 S. Karger AG, Basel
New GRACE-Derived Storage Change Estimates Using Empirical Mode Extraction
NASA Astrophysics Data System (ADS)
Aierken, A.; Lee, H.; Yu, H.; Ate, P.; Hossain, F.; Basnayake, S. B.; Jayasinghe, S.; Saah, D. S.; Shum, C. K.
2017-12-01
Estimated mass change from GRACE spherical harmonic solutions have north/south stripes and east/west banded errors due to random noise and modeling errors. Low pass filters like decorrelation and Gaussian smoothing are typically applied to reduce noise and errors. However, these filters introduce leakage errors that need to be addressed. GRACE mascon estimates (JPL and CSR mascon solutions) do not need decorrelation or Gaussian smoothing and offer larger signal magnitudes compared to the GRACE spherical harmonics (SH) filtered results. However, a recent study [Chen et al., JGR, 2017] demonstrated that both JPL and CSR mascon solutions also have leakage errors. We developed a new postprocessing method based on empirical mode decomposition to estimate mass change from GRACE SH solutions without decorrelation and Gaussian smoothing, the two main sources of leakage errors. We found that, without any post processing, the noise and errors in spherical harmonic solutions introduced very clear high frequency components in the spatial domain. By removing these high frequency components and reserve the overall pattern of the signal, we obtained better mass estimates with minimum leakage errors. The new global mass change estimates captured all the signals observed by GRACE without the stripe errors. Results were compared with traditional methods over the Tonle Sap Basin in Cambodia, Northwestern India, Central Valley in California, and the Caspian Sea. Our results provide larger signal magnitudes which are in good agreement with the leakage corrected (forward modeled) SH results.
Michels, Meta; Japtok, Lukasz; Alisjahbana, Bachti; Wisaksana, Rudi; Sumardi, Uun; Puspita, Mita; Kleuser, Burkhard; de Mast, Quirijn; van der Ven, Andre J A M
2015-10-01
A transient endothelial hyperpermeability is a hallmark of severe dengue infections. Sphingosine-1-phosphate (S1P) maintains vascular integrity and protects against plasma leakage. We related plasma S1P levels to dengue-induced plasma leakage and studied mechanisms that may underlie the decrease in S1P levels in dengue. We determined circulating levels of S1P in 44 Indonesian adults with acute dengue and related levels to plasma leakage, as determined by daily ultrasonography, and to levels of its chaperone apolipoprotein M, other lipoproteins and platelets. Plasma S1P levels were decreased during dengue and patients with plasma leakage had lower median levels compared to those without (638 vs. 745 nM; p < 0.01). ApoM and other lipoprotein levels were also decreased during dengue, but did not correlate to S1P levels. Platelet counts correlated positively with S1P levels, but S1P levels were not higher in frozen-thawed platelet rich plasma, arguing against platelets as an important cellular source of S1P in dengue. Decreased plasma S1P levels during dengue are associated with plasma leakage. We speculate that decreased levels of ApoM underlies the lower S1P levels. Modulation of S1P levels and its receptors may be a novel therapeutic intervention to prevent plasma leakage in dengue. Copyright © 2015 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
Leu, Kevin; Boxerman, Jerrold L; Lai, Albert; Nghiemphu, Phioanh L; Pope, Whitney B; Cloughesy, Timothy F; Ellingson, Benjamin M
2016-11-01
To evaluate a leakage correction algorithm for T 1 and T2* artifacts arising from contrast agent extravasation in dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) that accounts for bidirectional contrast agent flux and compare relative cerebral blood volume (CBV) estimates and overall survival (OS) stratification from this model to those made with the unidirectional and uncorrected models in patients with recurrent glioblastoma (GBM). We determined median rCBV within contrast-enhancing tumor before and after bevacizumab treatment in patients (75 scans on 1.5T, 19 scans on 3.0T) with recurrent GBM without leakage correction and with application of the unidirectional and bidirectional leakage correction algorithms to determine whether rCBV stratifies OS. Decreased post-bevacizumab rCBV from baseline using the bidirectional leakage correction algorithm significantly correlated with longer OS (Cox, P = 0.01), whereas rCBV change using the unidirectional model (P = 0.43) or the uncorrected rCBV values (P = 0.28) did not. Estimates of rCBV computed with the two leakage correction algorithms differed on average by 14.9%. Accounting for T 1 and T2* leakage contamination in DSC-MRI using a two-compartment, bidirectional rather than unidirectional exchange model might improve post-bevacizumab survival stratification in patients with recurrent GBM. J. Magn. Reson. Imaging 2016;44:1229-1237. © 2016 International Society for Magnetic Resonance in Medicine.
Influence of the internal anatomy on the leakage of root canals filled with thermoplastic technique.
Al-Jadaa, Anas; Attin, T; Peltomäki, T; Heumann, C; Schmidlin, P R; Paquè, F
2018-04-01
The aim of this paper is to evaluate the influence of the internal anatomy on the leakage of root canals filled with the thermoplastic technique. The upper central incisors (UCI) and mesial roots of the lower molars (MRLM) (n = 12 each) were tested regarding leakage using the gas-enhanced permeation test (GEPT) after root filling. The quality of the root fillings was assessed using micro-computed tomography (μCT) by superimposing scans before and after treatment to calculate unfilled volume. The calculated void volume was compared between the groups and correlated to the measured leakage values. Data were analyzed using t test and Pearson's correlation tests (p < 0.05). The mean void volume did not differ between UCI and MRLM (13.7 ± 6.2% vs. 14.2 ± 6.8%, respectively). However, significantly more leakage was evident in the MRLM (p < 0.001). While the leakage correlated highly to the void volume in the MRLM group (R 2 = 0.981, p < 0.001), no correlation was found in UCI (R 2 = 0.467, p = 0.126). MRLM showed higher leakage values, which correlated to the void volume in the root canal fillings. Care should always be taken while doing root canal treatments, but attention to teeth with known/expected complex root canal anatomy should be considered.
Development of braided rope seals for hypersonic engine applications: Flow modeling
NASA Technical Reports Server (NTRS)
Mutharasan, Rajakkannu; Steinetz, Bruce M.; Tao, Xiaoming; Du, Guang-Wu; Ko, Frank
1992-01-01
A new type of engine seal is being developed to meet the needs of advanced hypersonic engines. A seal braided of emerging high temperature ceramic fibers comprised of a sheath-core construction was selected for study based on its low leakage rates. Flexible, low-leakage, high temperature seals are required to seal the movable engine panels of advanced ramjet-scramjet engines either preventing potentially dangerous leakage into backside engine cavities or limiting the purge coolant flow rates through the seals. To predict the leakage through these flexible, porous seal structures new analytical flow models are required. Two such models based on the Kozeny-Carman equations are developed herein and are compared to experimental leakage measurements for simulated pressure and seal gap conditions. The models developed allow prediction of the gas leakage rate as a function of fiber diameter, fiber packing density, gas properties, and pressure drop across the seal. The first model treats the seal as a homogeneous fiber bed. The second model divides the seal into two homogeneous fiber beds identified as the core and the sheath of the seal. Flow resistances of each of the main seal elements are combined to determine the total flow resistance. Comparisons between measured leakage rates and model predictions for seal structures covering a wide range of braid architectures show good agreement. Within the experimental range, the second model provides a prediction within 6 to 13 percent of the flow for many of the cases examined. Areas where future model refinements are required are identified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oldenburg, Curtis M.; Birkholzer, Jens T.
The Cap-and-Trade and Low Carbon Fuel Standard (LCFS) programs being administered by the California Air Resources Board (CARB) include Carbon Dioxide Capture and Storage (CCS) as a potential means to reduce greenhouse gas (GHG) emissions. However, there is currently no universal standard approach that quantifies GHG emissions reductions for CCS and that is suitable for the quantitative needs of the Cap-and-Trade and LCFS programs. CCS involves emissions related to the capture (e.g., arising from increased energy needed to separate carbon dioxide (CO 2) from a flue gas and compress it for transport), transport (e.g., by pipeline), and storage of COmore » 2 (e.g., due to leakage to the atmosphere from geologic CO 2 storage sites). In this project, we reviewed and compared monitoring, verification, and accounting (MVA) protocols for CCS from around the world by focusing on protocols specific to the geologic storage part of CCS. In addition to presenting the review of these protocols, we highlight in this report those storage-related MVA protocols that we believe are particularly appropriate for CCS in California. We find that none of the existing protocols is completely appropriate for California, but various elements of all of them could be adopted and/or augmented to develop a rigorous, defensible, and practical surface leakage MVA protocol for California. The key features of a suitable surface leakage MVA plan for California are that it: (1) informs and validates the leakage risk assessment, (2) specifies use of the most effective monitoring strategies while still being flexible enough to accommodate special or site-specific conditions, (3) quantifies stored CO 2, and (4) offers defensible estimates of uncertainty in monitored properties. California’s surface leakage MVA protocol needs to be applicable to the main CO 2 storage opportunities (in California and in other states with entities participating in California’s Cap-and-Trade or LCFS programs), specifically CO 2-enhanced oil recovery (CO 2-EOR), CO 2 injection into depleted gas reservoirs (with or without CO 2-enhanced gas recovery (CO 2-EGR)), as well as deep saline storage. Regarding the elements of an effective surface leakage MVA protocol, our recommendations for California are that: (1) both CO 2 and methane (CH 4) surface leakage should be monitored, especially for enhanced recovery scenarios, (2) emissions from all sources not directly related to injection and geologic storage (e.g., from capture, or pipeline transport) should be monitored and reported under a plan separate from the surface leakage MVA plan that is included as another component of the quantification methodology (QM), (3) the primary objective of the surface leakage MVA plan should be to quantify surface leakage of CO 2 and CH 4 and its uncertainty, with consideration of best-practices and state-of-the-art approaches to monitoring including attribution assessment, (4) effort should be made to monitor CO 2 storage and migration in the subsurface to anticipate future surface leakage monitoring needs, (5) detailed descriptions of specific monitoring technologies and approaches should be provided in the MVA plan, (6) the main purpose of the CO 2 injection project (CO 2-EOR, CO 2-EGR, or pure geologic carbon sequestration (GCS)) needs to be stated up front, (7) approaches to dealing with missing data and quantifying uncertainty need to be described, and (8) post-injection monitoring should go on for a period consistent with or longer than that prescribed by the U.S. EPA.« less
Effective detection of CO 2 leakage: a comparison of groundwater sampling and pressure monitoring
Keating, Elizabeth; Dai, Zhenxue; Dempsey, David; ...
2014-12-31
Shallow aquifer monitoring is likely to be a required aspect to any geologic CO 2 sequestration operation. Collecting groundwater samples and analyzing for geochemical parameters such as pH, alkalinity, total dissolved carbon, and trace metals has been suggested by a number of authors as a possible strategy to detect CO 2 leakage. The effectiveness of this approach, however, will depend on the hydrodynamics of the leak-induced CO 2 plume and the spatial distribution of the monitoring wells relative to the origin of the leak. To our knowledge, the expected effectiveness of groundwater sampling to detect CO 2 leakage has notmore » yet been quantitatively assessed. In this study we query hundreds of simulations developed for the National Risk Assessment Project (US DOE) to estimate risks to drinking water resources associated with CO 2 leaks. The ensemble of simulations represent transient, 3-D multi-phase reactive transport of CO 2 and brine leaked from a sequestration reservoir, via a leaky wellbore, into an unconfined aquifer. Key characteristics of the aquifer, including thickness, mean permeability, background hydraulic gradient, and geostatistical measures of aquifer heterogeneity, were all considered uncertain parameters. Complex temporally-varying CO 2 and brine leak rate scenarios were simulated using a heuristic scheme with ten uncertain parameters. The simulations collectively predict the spatial and temporal evolution of CO 2 and brine plumes over 200 years in a shallow aquifer under a wide range of leakage scenarios and aquifer characteristics. Using spatial data from an existing network of shallow drinking water wells in the Edwards Aquifer, TX, as one illustrative example, we calculated the likelihood of leakage detection by groundwater sampling. In this monitoring example, there are 128 wells available for sampling, with a density of about 2.6 wells per square kilometer. If the location of the leak is unknown a priori, a reasonable assumption in many cases, we found that the leak would be detected in at least one of the monitoring wells in less than 10% of the scenarios considered. This is because plume sizes are relatively small, and so the probability of detection decreases rapidly with distance from the leakage point. For example, 400m away from the leakage point there is less than 20% chance of detection. We then compared the effectiveness of groundwater quality sampling to shallow aquifer and/or reservoir pressure monitoring. For the Edwards Aquifer example, pressure monitoring in the same monitoring well network was found to be even less effective that groundwater quality monitoring. This is presumably due to the unconfined conditions and relatively high permeability, so pressure perturbations quickly dissipate. Although specific results may differ from site to site, this type of analysis should be useful to site operators and regulators when selecting leak detection strategies. Given the spatial characteristics of a proposed monitoring well network, probabilities of leakage detection can be rapidly calculated using this methodology. Although conditions such as these may not be favorable for leakage detection in shallow aquifers, leakage detection could be much more successful in the injection reservoir. We demonstrate proof-of-concept for this hypothesis, presenting a simulation where there is measurable pressure change at the injection well due to overpressurization, fault rupture, and consequent leakage up the fault into intermediate and shallow aquifers. The size of the detectible pressure change footprint is much larger in the reservoir than in either of the overlying aquifers. Further exploration of the range of conditions for which this technique would be successful is the topic of current study.« less
The 1.06 optical receiver. [avalanche photodiodes for laser range finders
NASA Technical Reports Server (NTRS)
Tomasetta, L. R.; Law, H. D.; Nakano, K.; Scholl, F. W.; Harris, J. S., Jr.
1978-01-01
High performance 1.06 micron m avalanche photodetectors (APDs), fabricated in the GaAlSb system, have high quantum efficiency (90 percent), high speed (risetime less than 60 ps) and low leakage currents (less than 50 na). The dark current represents more than an order of magnitude reduction compared to previously reported results. The high speed avalanche gain of these devices is between 20 and 50. The area uniformity is better than + or - 10 percent. GaAlAs APDs at 0.53 micron m have even faster speed, lower dark currents, and high speed gains of 100 to 200. Optical rangefinders based on measured APD performance parameters have far superior performance when compared to even ideal photomultiplier tubes in either a one color or two color rangefinder system. For a one color system, f factor of two lower time jitter can be achieved with identical transmitted power. The superiority of the APD based two color receiver is significant and exists in the entire range of desired time jitters (less than 100 ps) and received power levels.
Lyu, Zejian; Wu, Deqing; Cai, Guanfu; Luo, Yuwen; Yang, Zifeng; Zhai, Yanyun; Yao, Chuli; Hu, Weixian; Wang, Junjiang; Li, Yong
To investigate the value and feasibility of C reactive protein (CRP) in predicting postoperative anastomotic leakage in rectal cancer patients with enhanced recovery after surgery (ERAS) for safer implementation of this ERAS. A cohort study on serum CRP of 455 rectal cancer patients undergoing laparoscopic radical resection according to the ERAS procedure at Gastrointestinal Unit of General Surgery Department, Guangdong General Hospital from August 2014 to June 2017 was retrospectively carried out. The serum CRP level was measured before operation and at postoperative days 1-7, and the serum CRP level of the groups with and without anastomotic leakage was compared to analyze its prediction for anastomotic leakage. Diagnostic standard of anastomotic leakage was based on the definition of postoperative anastomotic leakage in rectal cancer from International Study Group of Rectal Cancer (ISREC): (1) Postoperative localized or diffuse peritonitis occurred, or fecal liquid was found from the abdominal drainage tube; (2) When anastomotic leakage was uncertain, peritoneal or pelvic computed tomography scan should be used to confirm. All the 455 patients underwent surgery successfully, and 41 patients (9.0%) had anastomotic leakage postoperatively. Patients with anastomotic leakage were diagnosed (4.0±2.0) days postoperatively, of whom 8 cases (19.5%) were diagnosed more than 5 days postoperatively. Serum CRP levels in patients with anastomotic leakage continued to increase within 1-4 days postoperatively [(50.04±27.98) mg/L to (122.75±52.98) mg/L] and decreased 5 days postoperatively [(92.02±58.26) mg/L], both were higher than those of non-anastomotic leakage group, and the difference was statistically significant (all P<0.05, except postoperative day 2). The serum CRP level of non-anastomotic leakage group reached the peak on the second postoperative day [(83.10±37.45) mg/L] and decreased 3 days postoperatively [(48.01±27.59) mg/L]. The ROC curve was drawn with the anastomotic leakage as the state variable, and the CRP level as the detection variable. The area under the curve (AUC) at postoperative 1, 2, 4, 5, 6 and 7 days was 0.74, 0.58, 0.83, 0.82, 0.65, and 0.70, respectively. The maximum was at postoperative day 3 [0.93(95%CI: 0.86-0.99)]. The Youden index was 0.72, and the threshold of CRP was 80.09 mg/L, as the cut-off point to predict anastomotic leakage, with sensitivity, specificity, and positive predictive value of 79.3%, 92.3%, and 74.2%, respectively. Monitoring the postoperative serum CRP level can help predict the occurrence of anastomotic leakage after laparoscopic surgery for rectal cancer. When the serum CRP level is >80.09 mg/L on the third postoperative day, the CRP level has the largest value in predicting postoperative anastomotic leakage, and the safety of ERAS has a certain clinical significance as well.
Kitamura, Taro; Munakata, Mitsutoshi; Haginoya, Kazuhiro; Tsuchiya, Shigeru; Iinuma, Kazuie
2008-08-01
beta-Phenylethylamine (beta-PEA), an endogenous amine synthesized in the brain, serves as a neuromodulator and is involved in the pathophysiology of various neurological disorders such as depression, schizophrenia, and attention-deficit hyperactivity disorder. beta-PEA fully exerts the physiological effects within the nanomolar concentration range via the trace amine receptors, but beta-PEA also causes convulsions at much higher concentrations via an as yet unknown mechanism. To investigate the electrophysiological mechanism by which beta-PEA induces convulsions, we examined the effect of beta-PEA on ionic currents passing through the cell membrane of dissociated rat cerebral cortical neurons, using a patch-clamp technique. The external application of beta-PEA suppressed ionic currents which continuously flowed when the membrane potential was held at -25 mV. The suppression was in a concentration-dependent manner and a half-maximal effective concentration was 540 muM. These currents suppressed by beta-PEA consisted of two K(+) currents: a time- and voltage-dependent K(+) current (M-current) and a leakage K(+) current. The suppression of the M-current reduces the efficacy of the current in limiting excessive neuronal firing, and the suppression of the leakage K(+) current can cause membrane depolarization and thus promote neuronal excitation. Reducing both of these currents in concert may produce neuronal seizing activity, which could conceivably underlie the convulsions induced by high-dose beta-PEA.
NASA Astrophysics Data System (ADS)
Samanta, Piyas
2017-09-01
We present a detailed investigation on temperature-dependent current conduction through thin tunnel oxides grown on degenerately doped n-type silicon (n+-Si) under positive bias ( VG ) on heavily doped n-type polycrystalline silicon (n+-polySi) gate in metal-oxide-semiconductor devices. The leakage current measured between 298 and 573 K and at oxide fields ranging from 6 to 10 MV/cm is primarily attributed to Poole-Frenkel (PF) emission of trapped electrons from the neutral electron traps located in the silicon dioxide (SiO2) band gap in addition to Fowler-Nordheim (FN) tunneling of electrons from n+-Si acting as the drain node in FLOating gate Tunnel OXide Electrically Erasable Programmable Read-Only Memory devices. Process-induced neutral electron traps are located at 0.18 eV and 0.9 eV below the SiO2 conduction band. Throughout the temperature range studied here, PF emission current IPF dominates FN electron tunneling current IFN at oxide electric fields Eox between 6 and 10 MV/cm. A physics based new analytical formula has been developed for FN tunneling of electrons from the accumulation layer of degenerate semiconductors at a wide range of temperatures incorporating the image force barrier rounding effect. FN tunneling has been formulated in the framework of Wentzel-Kramers-Brilloiun taking into account the correction factor due to abrupt variation of the energy barrier at the cathode/oxide interface. The effect of interfacial and near-interfacial trapped-oxide charges on FN tunneling has also been investigated in detail at positive VG . The mechanism of leakage current conduction through SiO2 films plays a crucial role in simulation of time-dependent dielectric breakdown of the memory devices and to precisely predict the normal operating field or applied floating gate (FG) voltage for lifetime projection of the devices. In addition, we present theoretical results showing the effect of drain doping concentration on the FG leakage current.
Mihailova, Gergana; Kocheva, Konstantina; Goltsev, Vasilij; Kalaji, Hazem M; Georgieva, Katya
2018-04-01
Haberlea rhodopensis is a chlorophyll-retaining resurrection plant, which can survive desiccation to air dry state under both low light and sunny environments. Maintaining the integrity of the membrane during dehydration of resurrection plants is extremely important. In the present study, the diffusion model was improved and used for a first time to evaluate the changes in ion leakage through different cellular compartments upon desiccation of H. rhodopensis and to clarify the reasons for significant increase of electrolyte leakage from dry leaves. The applied diffusion approach allowed us to distinguish the performance of plants subjected to dehydration and subsequent rehydration under different light intensities. Well-hydrated (control) shade plants had lower and slower electrolyte leakage compared to control sun plants as revealed by lower values of phase amplitudes, lower rate constants and ion concentration. In well-hydrated and moderately dehydrated plants (50% relative water content, RWC) ion efflux was mainly due to leakage from apoplast. The electrolyte leakage sharply increased in severely desiccated leaves (8% RWC) from both sun and shade plants mainly due to ion efflux from symplast. After 1 day of rehydration the electrolyte leakage was close to control values, indicating fast recovery of plants. We suggest that the enhanced leakage in air-dried leaves should not be considered as damage but rather as a survival mechanism based on a reversible modification in the structure of cell wall, plasma membrane and alterations in vacuolar system of the cells. However, further studies should be conducted to investigate the changes in cell wall/plasma membrane to support this conclusion. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Clinical impact of leak compensation during non-invasive ventilation.
Storre, Jan Hendrik; Bohm, Philipp; Dreher, Michael; Windisch, Wolfram
2009-10-01
This study aimed to assess the impact of leak compensation capabilities during pressure- and volume-limited non-invasive positive-pressure ventilation (NPPV) in COPD patients. Fourteen patients with stable hypercapnic COPD who were receiving long-term NPPV were included in the study. For both modes of NPPV, a full face mask and an artificial leak in the ventilatory circuit were used at three different settings, and applied during daytime NPPV, either without leakage (setting I), with leakage during inspiration only (setting II), and with leakage during inspiration and expiration (setting III). Ventilation pattern was pneumotachy-graphically recorded. NPPV was feasible with negligible leak volumes, indicating optimal mask fitting during the daytime (setting I). In the presence of leakage (settings II and III), the attempt to compensate for leak was only evident during pressure-limited NPPV, since inspiratory volumes delivered by the ventilator increased from 726+/-129 (setting I) to 1104+/-164 (setting II), and to 1257+/-166 (setting III) ml during pressure-limited NPPV, respectively (all p<0.001); however, they remained stable during volume-limited NPPV. Leak compensation resulted in a decrease in leakage-induced dyspnea. However, 83%/87% (setting II/III) of the additionally-delivered inspiratory volume during pressure-limited NPPV was also lost via leakage. Expiratory volume was higher in setting II compared to setting III (both p<0.001), indicating the presence of significant expiratory leakage. The attempt at leak compensation largely feeds the leakage itself and only results in a marginal increase of tidal volume. However, pressure-limited--but not volume-limited--NPPV results in a clinically-important leak compensation in vivo. www.uniklinik-freiburg.de/zks/live/uklregister/Oeffentlich.html Identifier: UKF001272.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markovic, M; Stathakis, S; Jurkovic, I
Purpose The aim for the study was to compare intrinsic characteristics of the nine detectors and evaluate their performance in non-equilibrium radiation dosimetry. Methods The intrinsic characteristics of the nine detectors that were evaluated are based on the composition and size of the active volume, operating voltage, initial recombination of the collected charge, temperature, the effective cross section of the detectors. The shortterm stability and collection efficiency has been investigated. The minimum radiation detection sensitivity and detectors leakage current has been measured. The sensitivity to changes in energy spectrum as well as change in incident beam angles were measured anmore » analyzed. Results The short-term stability of the measurements within every detector showed consistency in the measured values with the highest value of the standard deviation of the mean not exceeding 0.5%. Air ion chamber detectors showed minimum sensitivity to change in incident beam angles while diode detectors underestimated measurements up to 16%. Comparing the slope of the tangents for detector’s sensitivity curve, diode detectors illustrate more sensitivity to change in photon spectrum than ion chamber detectors. The change in radiation detection sensitivity with increase in dose delivered has been observed for semiconductor detectors with maximum deviation 0.01% for doses between 1 Gy and 10 Gy. Leakage current has been mainly influenced by bias voltage (ion chamber detectors) and room light intensity (diode detectors). With dose per pulse varying from 1.47E−4 to 5.1E−4 Gy/pulse the maximum change in collection efficiency was 1.4% for the air ion chambers up to 8% for liquid filled ion chamber. Conclusion Broad range of measurements performed showed all the detectors susceptible to some limitations and while they are suitable for use in broad scope of applications, careful selection has to be made for particular range of measurements.« less
Olthof, Pim B.; Coelen, Robert J.S.; Wiggers, Jimme K.; Besselink, Marc G.H.; Busch, Olivier R.C.; van Gulik, Thomas M.
2016-01-01
Background Preoperative biliary drainage is considered essential in perihilar cholangiocarcinoma (PHC) requiring major hepatectomy with biliary-enteric reconstruction. However, evidence for postoperative biliary drainage as to protect the anastomosis is currently lacking. This study investigated the impact of postoperative external biliary drainage on the development of post-hepatectomy biliary leakage and liver failure (PHLF). Methods All patients who underwent major liver resection for suspected PHC between 2000 and 2015 were retrospectively analyzed. Biliary leakage and PHLF was defined as grade B or higher according to the International Study Group of Liver Surgery (ISGLS) criteria. Results Eighty-nine out of 125 (71%) patients had postoperative external biliary drainage. PHLF was more prevalent in the drain group (29% versus 6%; P = 0.004). There was no difference in the incidence of biliary leakage (32% versus 36%). On multivariable analysis, postoperative external biliary drainage was identified as an independent risk factor for PHLF (Odds-ratio 10.3, 95% confidence interval 2.1–50.4; P = 0.004). Conclusions External biliary drainage following major hepatectomy for PHC was associated with an increased incidence of PHLF. It is therefore not recommended to routinely use postoperative external biliary drainage, especially as there is no evidence that this decreases the risk of biliary anastomotic leakage. PMID:27037204
Reducing leakage current in semiconductor devices
Lu, Bin; Matioli, Elison de Nazareth; Palacios, Tomas Apostol
2018-03-06
A semiconductor device includes a first region having a first semiconductor material and a second region having a second semiconductor material. The second region is formed over the first region. The semiconductor device also includes a current blocking structure formed in the first region between first and second terminals of the semiconductor device. The current blocking structure is configured to reduce current flow in the first region between the first and second terminals.
Brahana, J.V.; Broshears, R.E.
2001-01-01
On the basis of known hydrogeology of the Memphis and Fort Pillow aquifers in the Memphis area, a three-layer, finite-difference numerical model was constructed and calibrated as the primary tool to refine understanding of flow in the aquifers. The model was calibrated and tested for accuracy in simulating measured heads for nine periods of transient flow from 1886-1985. Testing and sensitivity analyses indicated that the model accurately simulated observed heads areally as well as through time. The study indicates that the flow system is currently dominated by the distribution of pumping in relation to the distribution of areally variable confining units. Current withdrawal of about 200 million gallons per day has altered the prepumping flow paths, and effectively captured most of the water flowing through the aquifers. Ground-water flow is controlled by the altitude and location of sources of recharge and discharge, and by the hydraulic characteristics of the hydrogeologic units. Leakage between the Fort Pillow aquifer and Memphis aquifer, and between the Memphis aquifer and the water-table aquifers (alluvium and fluvial deposits) is a major component of the hydrologic budget. The study indicates that more than 50 percent of the water withdrawn from the Memphis aquifer in 1980 is derived from vertical leakage across confining units, and the leakage from the shallow aquifer (potential source of contamination) is not uniformly distributed. Simulated leakage was concentrated along the upper reaches of the Wolf and Loosahatchie Rivers, along the upper reaches of Nonconnah Creek, and the surficial aquifer of the Mississippi River alluvial plain. These simulations are supported by the geologic and geophysical evidence suggesting relatively thin or sandy confining units in these general locations. Because water from surficial aquifers is inferior in quality and more susceptible to contamination than water in the deeper aquifers, high rates of leakage to the Memphis aquifer may be cause for concern. A significant component of flow (12 percent) discharging from the Fort Pillow aquifer was calculated as upward leakage to the Memphis aquifer. This upward leakage was generally limited to areas near major pumping centers in the Memphis aquifer, where heads in the Memphis aquifer have been drawn significantly below heads in the Fort Pillow aquifer. Although the Fort Pillow aquifer is not capable of producing as much water as the Memphis aquifer for similar conditions, it is nonetheless a valuable resource throughout the area.
Evaluation of Information Leakage from Cryptographic Hardware via Common-Mode Current
NASA Astrophysics Data System (ADS)
Hayashi, Yu-Ichi; Homma, Naofumi; Mizuki, Takaaki; Sugawara, Takeshi; Kayano, Yoshiki; Aoki, Takafumi; Minegishi, Shigeki; Satoh, Akashi; Sone, Hideaki; Inoue, Hiroshi
This paper presents a possibility of Electromagnetic (EM) analysis against cryptographic modules outside their security boundaries. The mechanism behind the information leakage is explained from the view point of Electromagnetic Compatibility: electric fluctuation released from cryptographic modules can conduct to peripheral circuits based on ground bounce, resulting in radiation. We demonstrate the consequence of the mechanism through experiments where the ISO/IEC standard block cipher AES (Advanced Encryption Standard) is implemented on an FPGA board and EM radiations from power and communication cables are measured. Correlation Electromagnetic Analysis (CEMA) is conducted in order to evaluate the information leakage. The experimental results show that secret keys are revealed even though there are various disturbing factors such as voltage regulators and AC/DC converters between the target module and the measurement points. We also discuss information-suppression techniques as electrical-level countermeasures against such CEMAs.
NASA Astrophysics Data System (ADS)
Ju, Byongsun
2005-11-01
As the microelectronic devices are aggressively scaled down to the 1999 International Technology Roadmap, the advanced complementary metal oxide semiconductor (CMOS) is required to increase packing density of ultra-large scale integrated circuits (ULSI). High-k alternative dielectrics can provide the required levels of EOT for device scaling at larger physical thickness, thereby providing a materials pathway for reducing the tunneling current. Zr silicates and its end members (SiO2 and ZrO2) and Zr-Si oxynitride films, (ZrO2)x(Si3N 4)y(SiO2)z, have been deposited using a remote plasma-enhanced chemical vapor deposition (RPECVD) system. After deposition of Zr silicate, the films were exposed to He/N2 plasma to incorporate nitrogen atoms into the surface of films. The amount of incorporated nitrogen atoms was measured by on-line Auger electron spectrometry (AES) as a function of silicate composition and showed its local minimum around the 30% silicate. The effect of nitrogen atoms on capacitance-voltage (C-V) and leakage-voltage (J-V) were also investigated by fabricating metal-oxide-semiconductor (MOS) capacitors. Results suggested that incorporating nitrogen into silicate decreased the leakage current in SiO2-rich silicate, whereas the leakage increased in the middle range of silicate. Zr-Si oxynitride was a pseudo-ternary alloy and no phase separation was detected by x-ray photoelectron spectroscopy (XPS) analysis up to 1100°C annealing. The leakage current of Zr-Si oxynitride films showed two different temperature dependent activation energies, 0.02 eV for low temperature and 0.3 eV for high temperature. Poole-Frenkel emission was the dominant leakage mechanism. Zr silicate alloys with no Si3N4 phase were chemically separated into the SiO2 and ZrO2 phase as annealed above 900°C. While chemical phase separation in Zr silicate films with Si 3N4 phase (Zr-Si oxynitride) were suppressed as increasing the amount of Si3N4 phase due to the narrow bonding network m Si3N4 phase. (3.4 bonds/atom for Si3 N4 network, 2.67 bonds/atom for SiO2 network).
Code of Federal Regulations, 2010 CFR
2010-07-01
... solid blocks of coal or rock so that any mixing of air currents between each is limited to leakage. AMS...-warning fire detection systems using newer technology that provides equal or greater protection, as...
Isayama, Tetsuya; Chai-Adisaksopha, Chatree; McDonald, Sarah D
2015-08-01
Controversy exists regarding which of the 2 major strategies currently used to prevent chronic lung disease (CLD) in preterm infants is optimal: noninvasive continuous positive airway pressure (NCPAP) or intubate-surfactant-extubate (INSURE). Preterm infants often require surfactant administration because of respiratory distress syndrome. To evaluate whether early INSURE or NCPAP alone is more effective in preventing CLD, death, or both. We searched the MEDLINE, EMBASE, Cochrane Controlled Trials Register, and Cumulative Index to Nursing and Allied Health Literature databases from their inception to January 2, 2015, along with conference proceedings and trial registrations. Randomized clinical trials that compared early INSURE with NCPAP alone in preterm infants who had never been intubated before the study entry were selected. Among 1761 initially identified articles, 9 trials (1551 infants) were included. Duplicate study selection and data extraction were performed. Meta-analysis was conducted using random-effects models with quality-of-evidence assessment according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system. Seven main outcomes were selected a priori to be assessed according to GRADE, including a composite outcome of CLD and/or death, CLD alone, death alone, air leakage, severe intraventricular hemorrhage, neurodevelopmental impairment, and a composite outcome of death and/or neurodevelopmental impairment. There were no statistically significant differences between early INSURE and NCPAP alone for all outcomes assessed. However, the relative risk (RR) estimates appeared to favor early INSURE over NCPAP alone, with a 12% RR reduction in CLD and/or death (RR, 0.88; 95% CI, 0.76-1.02; risk difference [RD], -0.04; 95% CI, -0.08 to 0.01; moderate quality of evidence), a 14% decrease in CLD (RR, 0.86; 95% CI, 0.71-1.03; RD, -0.03; 95% CI, -0.06 to 0.01; moderate quality of evidence), and a 50% decrease in air leakage (RR, 0.50; 95% CI, 0.24-1.07; RD, -0.03; 95% CI, -0.06 to 0.00; very low quality of evidence). The sample size was less than the optimal information size. Currently, no evidence suggests that either early INSURE or NCPAP alone is superior to the other. INSURE does not appear to increase CLD and/or death, CLD alone, and air leakage and may reduce these adverse outcomes compared with NCPAP alone. Further adequately powered trials are required.
NASA Astrophysics Data System (ADS)
Main, Laura
Dye sensitized solar cells (DSSCs) are currently being explored as a cheaper alternative to the more common silicon (Si) solar cell technology. In addition to the cost advantages, DSSCs show good performance in low light conditions and are not sensitive to varying angles of incident light like traditional Si cells. One of the major challenges facing DSSCs is loss of the liquid electrolyte, through evaporation or leakage, which lowers stability and leads to increased degradation. Current research with solid-state and quasi-solid DSSCs has shown success regarding a reduction of electrolyte loss, but at a cost of lower conversion efficiency output. The research work presented in this paper focuses on the effects of using nanoclay material as a gelator in the electrolyte of the DSSC. The data showed that the quasi-solid cells are more stable than their liquid electrolyte counterparts, and achieved equal or better I-V characteristics. The quasi-solid cells were fabricated with a gel electrolyte that was prepared by adding 7 wt% of Nanoclay, Nanomer® (1.31PS, montmorillonite clay surface modified with 15-35% octadecylamine and 0.5-5 wt% aminopropyltriethoxysilane, Aldrich) to the iodide/triiodide liquid electrolyte, (Iodolyte AN-50, Solaronix). Various gel concentrations were tested in order to find the optimal ratio of nanoclay to liquid. The gel electrolyte made with 7 wt% nanoclay was more viscous, but still thin enough to allow injection with a standard syringe. Batches of cells were fabricated with both liquid and gel electrolyte and were evaluated at STC conditions (25°C, 100 mW/cm2) over time. The gel cells achieved efficiencies as high as 9.18% compared to the 9.65% achieved by the liquid cells. After 10 days, the liquid cell decreased to 1.75%, less than 20% of its maximum efficiency. By contrast, the gel cell's efficiency increased for two weeks, and did not decrease to 20% of maximum efficiency until 45 days. After several measurements, the liquid cells showed visible signs of leakage through the sealant, whereas the gel cells did not. This resistance to leakage likely contributed to the improved performance of the quasi-solid cells over time, and is a significant advantage over liquid electrolyte DSSCs.
Current isolating epitaxial buffer layers for high voltage photodiode array
Morse, Jeffrey D.; Cooper, Gregory A.
2002-01-01
An array of photodiodes in series on a common semi-insulating substrate has a non-conductive buffer layer between the photodiodes and the semi-insulating substrate. The buffer layer reduces current injection leakage between the photodiodes of the array and allows optical energy to be converted to high voltage electrical energy.
Silicon device performance measurements to support temperature range enhancement
NASA Technical Reports Server (NTRS)
Bromstead, James; Weir, Bennett; Nelms, R. Mark; Johnson, R. Wayne; Askew, Ray
1994-01-01
Silicon based power devices can be used at 200 C. The device measurements made during this program show a predictable shift in device parameters with increasing temperature. No catastrophic or abrupt changes occurred in the parameters over the temperature range. As expected, the most dramatic change was the increase in leakage currents with increasing temperature. At 200 C the leakage current was in the milliAmp range but was still several orders of magnitude lower than the on-state current capabilities of the devices under test. This increase must be considered in the design of circuits using power transistors at elevated temperature. Three circuit topologies have been prototyped using MOSFET's and IGBT's. The circuits were designed using zero current or zero voltage switching techniques to eliminate or minimize hard switching of the power transistors. These circuits have functioned properly over the temperature range. One thousand hour life data have been collected for two power supplies with no failures and no significant change in operating efficiency. While additional reliability testing should be conducted, the feasibility of designing soft switched circuits for operation at 200 C has been successfully demonstrated.
Current-voltage characteristics of n-AlMgZnO/p-GaN junction diodes
NASA Astrophysics Data System (ADS)
Hsueh, Kuang-Po; Cheng, Po-Wei; Cheng, Yi-Chang; Sheu, Jinn-Kong; Yeh, Yu-Hsiang; Chiu, Hsien-Chin; Wang, Hsiang-Chun
2013-03-01
This study investigates the temperature dependence of the current-voltage (I-V) characteristics of Al-doped MgxZn1-xO/p-GaN junction diodes. Specifically, this study reports the deposition of n-type Al-doped MgxZn1-xO (AMZO) films on p-GaN using a radio-frequency (RF) magnetron sputtering system followed by annealing at 700, 800, 900, and 1000 °C in a nitrogen ambient for 60 seconds, respectively. The AMZO/GaN films were thereafter analyzed using Hall measurement and the x-ray diffraction (XRD) patterns. The XRD results show that the diffraction angles of the annealed AMZO films remain the same as that of GaN without shifting. The n-AMZO/p-GaN diode with 900 °C annealing had the lowest leakage current in forward and reverse bias. However, the leakage current of the diodes did not change significantly with an increase in annealing temperatures. These findings show that the n-AMZO/p-GaN junction diode is feasible for GaN-based heterojunction bipolar transistors (HBTs) and UV light-emitting diodes (LEDs).
NASA Astrophysics Data System (ADS)
Shougaijam, B.; Swain, R.; Ngangbam, C.; Lenka, T. R.
2017-06-01
The effect of annealing on vertically aligned TiO2 NWs deposited by glancing angle deposition (GLAD) method on Si substrate using pressed and sintered TiO2 pellets as source material is studied. The FE-SEM images reveal the retention of vertically aligned NWs on Si substrate after annealing process. The EDS analysis of TiO2 NWs sample annealed at 600 °C in air for 1 h shows the higher weight percentage ratio of ˜2.6 (i.e., 72.27% oxygen and 27.73% titanium). The XRD pattern reveals that the polycrystalline nature of anatase TiO2 dominates the annealed NWs sample. The electrical characteristics of Al/TiO2-NWs/TiO2-TF/p-Si (NW device) and Al/TiO2-TF/p-Si (TF device) based on annealed samples are compared. It is riveting to observe a lower leakage current of ˜1.32 × 10-7 A/cm2 at +1 V with interface trap density of ˜6.71 × 1011 eV-1 cm-2 in NW device compared to ˜2.23 × 10-7 A/cm2 in TF device. The dominant leakage mechanism is investigated to be generally Schottky emission; however Poole-Frenkel emission also takes place during high reverse bias beyond 4 V for NWs and 3 V for TF device.
Orsi, Fernanda Andrade; Angerami, Rodrigo Nogueira; Mazetto, Bruna Moraes; Quaino, Susan Kelly Picoli; De Paula, Erich Vinícius; Annichino-Bizzachi, Joyce Maria
2014-06-11
Bleeding complications in dengue may occur irrespective of the presence of plasma leakage. We compared plasma levels of modulators of the endothelial barrier among three dengue groups: bleedings without plasma leakage, dengue hemorrhagic fever, and non-complicated dengue. The aim was to evaluate whether the presence of subtle alterations in microvascular permeability could be detected in bleeding patients. Plasma levels of VEGF-A and its soluble receptors were not associated with the occurrence of bleeding in patients without plasma leakage. These results provide additional rationale for considering bleeding as a complication independent of endothelial barrier breakdown, as proposed by the 2009 WHO classification.
Evaluation of leakage flux out of a dental magnetic attachment.
Nishida, M; Tegawa, Y; Kinouchi, Y
2007-01-01
A dental magnetic attachment is a device to retain dental prostheses such as overdentures by magnetic attraction. As compared with mechanical attachments, the magnetic attachment has a superior retention properties due to less lateral pressure to its abutment tooth, and hence it has come to be widely used, particularly for retaining overdentures. Because the dental magnetic attachments are a device used in the mouth, the tissues in the mouth are exposed to the magnetic fields leaking out of the magnetic attachments for a long time. It may therefore be important to discuss biological effects of the leakage magnetic fields. It is required at first to evaluate the strength of the leakage magnetic fields.
A disposable adhesive patch for stress urinary incontinence.
North, B B
1998-04-01
Stress urinary incontinence (SUI) affects 5 million women in the United States. Current surgical and pharmacological management options are often unsuccessful, forcing many sufferers to rely on bulky and uncomfortable sanitary protection. This study evaluated the safety, efficacy, and acceptability of a small, disposable adhesive patch designed to seal the urethral opening and prevent urine leakage. Thirty-seven women with mild-to-moderate SUI were recruited from a suburban community. Each volunteer participated in a 21-week protocol that included a 1-week qualifying period, 4-week (pretest) control period, 12-week patch-use period, and 4-week (posttest) control period. Patch efficacy was evaluated with quantitative (leakage into sanitary napkin) and qualitative (voiding diary) measures of urine leakage. Symptom questionnaires were also completed. Overall leakage was reduced by 60%, from 1.1 +/- .3 standard error of the mean (SEM) to .44 +/- .11 (SEM) grams of urine per hour. Perception of dryness, measured by voiding diaries, improved 67%, from 13.3 +/- 1.9 (SEM) to 4.3 +/- 0.9 (SEM) leakage episodes per week. Safety evaluation included peri-urethral cytology, urinalysis and urine culture, and vaginal cultures. All measures were unaffected by 3 months of patch use. Acceptability was assessed with questionnaires that measured the impact of patch use on activities of daily living and overall quality of life. Women reported a significant improvement in both measures. All but one volunteer found that the patch was comfortable and were able to place it correctly between the inner labia with written instructions only. The disposable patch significantly reduced urine leakage resulting from SUI in community-based women. Dryness improved significantly, both by measurement of actual leakage and by the subject's perception of dryness. The maturation index of the vestibular tissues showed an increase in the number of superficial cells during patch use. Otherwise, there were no significant changes in vulvar tissues, urine composition, or microbial flora (in vaginal and urine samples). Volunteers reported that the patch improved their overall quality of life.
A new lifetime estimation model for a quicker LED reliability prediction
NASA Astrophysics Data System (ADS)
Hamon, B. H.; Mendizabal, L.; Feuillet, G.; Gasse, A.; Bataillou, B.
2014-09-01
LED reliability and lifetime prediction is a key point for Solid State Lighting adoption. For this purpose, one hundred and fifty LEDs have been aged for a reliability analysis. LEDs have been grouped following nine current-temperature stress conditions. Stress driving current was fixed between 350mA and 1A and ambient temperature between 85C and 120°C. Using integrating sphere and I(V) measurements, a cross study of the evolution of electrical and optical characteristics has been done. Results show two main failure mechanisms regarding lumen maintenance. The first one is the typically observed lumen depreciation and the second one is a much more quicker depreciation related to an increase of the leakage and non radiative currents. Models of the typical lumen depreciation and leakage resistance depreciation have been made using electrical and optical measurements during the aging tests. The combination of those models allows a new method toward a quicker LED lifetime prediction. These two models have been used for lifetime predictions for LEDs.
Moseley, Michael William; Allerman, Andrew A.; Crawford, Mary H.; ...
2014-08-04
Electrical current transport through leakage paths in AlGaN-based deep ultraviolet (DUV) lightemitting diodes (LEDs) and their effect on LED performance are investigated. Open-core threading dislocations, or nanopipes, are found to conduct current through nominally insulating Al0.7Ga0.3N layers and limit the performance of DUV-LEDs. A defect-sensitive phosphoric acid etch reveals these opencore threading dislocations in the form of large, micron-scale hexagonal etch pits visible with optical microscopy, while closed-core screw-, edge-, and mixed-type threading dislocations are represented by smaller and more numerous nanometer-scale pits visible by atomic-force microscopy. The electrical and optical performances of DUV-LEDs fabricated on similar Si-doped Al0.7Ga0.3N templatesmore » are found to have a strong correlation to the density of these nanopipes, despite their small fraction (<0.1% in this study) of the total density of threading dislocations.« less
Leakage current and capacitance characteristics of Si/SiO2/Si single-barrier varactor
NASA Astrophysics Data System (ADS)
Mamor, M.; Fu, Y.; Nur, O.; Willander, M.; Bengtsson, S.
We investigate, both experimentally and theoretically, current and capacitance (I-V/C-V) characteristics and the device performance of Si/SiO2/Si single-barrier varactor diodes (SBVs). Two diodes were fabricated with different SiO2 layer thicknesses using the state-of-the-art wafer bonding technique. The devices have very low leakage currents (about 5×10-2 and 1.8×10-2 mA/mm2) and intrinsic capacitance levels of typically 1.5 and 50 nF/mm2 for diodes with 5-nm and 20-nm oxide layers, respectively. With the present device physical parameters (25-mm2 device area, 760-μm modulation layer thickness and 1015-cm-3 doping level), the estimated cut-off frequency is about 5×107 Hz. With the physical parameters of the present existing III-V triplers, the cut-off frequency of our Si-based SBV can be as high as 0.5 THz.
Solar power generation system for reducing leakage current
NASA Astrophysics Data System (ADS)
Wu, Jinn-Chang; Jou, Hurng-Liahng; Hung, Chih-Yi
2018-04-01
This paper proposes a transformer-less multi-level solar power generation system. This solar power generation system is composed of a solar cell array, a boost power converter, an isolation switch set and a full-bridge inverter. A unipolar pulse-width modulation (PWM) strategy is used in the full-bridge inverter to attenuate the output ripple current. Circuit isolation is accomplished by integrating the isolation switch set between the solar cell array and the utility, to suppress the leakage current. The isolation switch set also determines the DC bus voltage for the full-bridge inverter connecting to the solar cell array or the output of the boost power converter. Accordingly, the proposed transformer-less multi-level solar power generation system generates a five-level voltage, and the partial power of the solar cell array is also converted to AC power using only the full-bridge inverter, so the power efficiency is increased. A prototype is developed to validate the performance of the proposed transformer-less multi-level solar power generation system.
Topics in electrochemical degradation of photovoltaic modules
NASA Technical Reports Server (NTRS)
Mon, G. R.
1984-01-01
Electrochemical degradation of photovoltaic modules was examined. It is found that the extent of electrochemical damage is dependent on the integrated leakage current. The PV electrochemical degradation mechanisms in the two polarities are different: (1) degradation rates in the two polarities are of the same order of magnitude; (2) center tapped grounded arrays are a preferred system configuration to minimize electrochemical degradation. The use of thicker pottant layers and polymer substrate films to reduce equilibrium leakage current values is suggested. A metallized substrate layer, if used, should be isolated from the pottant and the frame by polyester layers, and EVA modules appear to be consistent with 30 year life allocation levels for electrochemical damage. Temperature acceleration factors are well behaved and moderately well understood; humidity acceleration factors vary radically with module construction and materials and require additional research.
Sheath effects observed on a 10 meter high voltage panel in simulated low earth orbit plasma
NASA Technical Reports Server (NTRS)
Mccox, J. E.; Konradi, A.
1979-01-01
A large (1m x 10m) flat surface of conductive material was biased to high voltage (+ or - 3000 V) to simulate the behavior of a large solar array in low earth orbit. The model array was operated in a plasma environment of 1,000 to 1,000,000/cu cm, with sufficient free space around it for the resulting plasma sheaths to develop unimpeded for 5-10 meters into the surrounding plasma. Measurements of the resulting sheath thickness were obtained. The observed thickness varied approximately as V to the 3/4 power and N to the 1/2 power. This effect appears to limit total current leakage from the test array until sheath dimensions exceed about 1 meter. Total leakage current was also measured with the array.
NASA Astrophysics Data System (ADS)
Zheng, X. J.; He, L.; Zhou, Y. C.; Tang, M. H.
2006-12-01
The effects of europium (Eu) content on the microstructure, fatigue endurance, leakage current density, and remnant polarization (2Pr) of Bi4-xEuxTi3O12 (BET) thin films prepared by metal-organic decomposition method at 700°C annealing temperature were studied in detail. The results showed that 2Pr (82μC/cm2 under 300kV/cm), fatigue endurance (2% loss of 2Pr after 9.0×109 switching cycles), and leakage current density (1×10-8A/cm2 at 200kV/cm) of BET thin film with x =0.85 are better than those of thin films with other contents. Additionally, the mechanism concerning the dependence of ferroelectric properties on Eu content was discussed.
Relationship between Leakage Current and Pollution Deposits on the Surface of Polymeric Insulator
NASA Astrophysics Data System (ADS)
Miyake, Takuma; Seo, Yuya; Sakoda, Tatsuya; Otsubo, Masahisa
Application of polymeric materials used for housing insulators is considered. However, because polymeric insulator is organic matter, the aged deterioration is anxious. The lifetime of polymeric insulator is influenced by environmental conditions such as ultraviolet, acid rain, and polluted deposits. A change of the surface condition of polymeric material causes the dry band arc discharge and the discharge may lower the insulation strength. To investigate the relationship between insoluble pollution and occurrence of dry band arc discharge, we performed a salt-fog test with ethylene vinyl acetate (EVA) samples. The results showed that the heavy erosion caused by frequent dry band arc discharges occurred even in the case of a light polluted condition. Additionally, a very characteristic increase tendency in leakage current with a period of about 5 h was observed during the mist period.
Zhao, Yitian; Zheng, Yalin; Liu, Yonghuai; Yang, Jian; Zhao, Yifan; Chen, Duanduan; Wang, Yongtian
2017-01-01
Leakage in retinal angiography currently is a key feature for confirming the activities of lesions in the management of a wide range of retinal diseases, such as diabetic maculopathy and paediatric malarial retinopathy. This paper proposes a new saliency-based method for the detection of leakage in fluorescein angiography. A superpixel approach is firstly employed to divide the image into meaningful patches (or superpixels) at different levels. Two saliency cues, intensity and compactness, are then proposed for the estimation of the saliency map of each individual superpixel at each level. The saliency maps at different levels over the same cues are fused using an averaging operator. The two saliency maps over different cues are fused using a pixel-wise multiplication operator. Leaking regions are finally detected by thresholding the saliency map followed by a graph-cut segmentation. The proposed method has been validated using the only two publicly available datasets: one for malarial retinopathy and the other for diabetic retinopathy. The experimental results show that it outperforms one of the latest competitors and performs as well as a human expert for leakage detection and outperforms several state-of-the-art methods for saliency detection.
Seal Investigations of an Active Clearance Control System Concept
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Taylor, Shawn; Oswald, Jay; DeCastro, Jonathan A.
2006-01-01
In an effort to improve upon current thermal active clearance control methods, a first generation, fast-acting mechanically actuated, active clearance control system has been designed and installed into a non-rotating test rig. In order to harvest the benefit of tighter blade tip clearances, low-leakage seals are required for the actuated carrier segments of the seal shroud to prevent excessive leakage of compressor discharge (P3) cooling air. The test rig was designed and fabricated to facilitate the evaluation of these types of seals, identify seal leakage sources, and test other active clearance control system concepts. The objective of this paper is to present both experimental and analytical investigations into the nature of the face-seal to seal-carrier interface. Finite element analyses were used to examine face seal contact pressures and edge-loading under multiple loading conditions, varied E-seal positions and two new face seal heights. The analyses indicated that moving the E-seal inward radially and reducing face seal height would lead to more uniform contact conditions between the face seal and the carriers. Lab testing confirmed that moving the balance diameter inward radially caused a decrease in overall system leakage.
NASA Astrophysics Data System (ADS)
Gopal, Vishnu; Qiu, WeiCheng; Hu, Weida
2014-11-01
The current-voltage characteristics of long wavelength mercury cadmium telluride infrared detectors have been studied using a recently suggested method for modelling of illuminated photovoltaic detectors. Diodes fabricated on in-house grown arsenic and vacancy doped epitaxial layers were evaluated for their leakage currents. The thermal diffusion, generation-recombination (g-r), and ohmic currents were found as principal components of diode current besides a component of photocurrent due to illumination. In addition, both types of diodes exhibited an excess current component whose growth with the applied bias voltage did not match the expected growth of trap-assisted-tunnelling current. Instead, it was found to be the best described by an exponential function of the type, Iexcess = Ir0 + K1 exp (K2 V), where Ir0, K1, and K2 are fitting parameters and V is the applied bias voltage. A study of the temperature dependence of the diode current components and the excess current provided the useful clues about the source of origin of excess current. It was found that the excess current in diodes fabricated on arsenic doped epitaxial layers has its origin in the source of ohmic shunt currents. Whereas, the source of excess current in diodes fabricated on vacancy doped epitaxial layers appeared to be the avalanche multiplication of photocurrent. The difference in the behaviour of two types of diodes has been attributed to the difference in the quality of epitaxial layers.
Cifuentes-Araya, Nicolás; Astudillo-Castro, Carolina; Bazinet, Laurent
2014-07-15
Experiments revealed the fouling nature evolutions along different electrodialysis (ED) trials, and how it disappears when current pulsation acts repetitively on the interfaces of ion-exchange membranes (IEMs). Fouling was totally controlled on the diluate side of cation-exchange membrane (CEM) by the repetitive pulsation frequency of the higher on-duty ratios applied. They created steady water splitting proton-barriers that neutralized OH(-) leakage through the membrane, decreasing the interfacial pH, and fouling of the concentrate side. The anion-exchange membrane (AEM) on the diluate side was similarly protected, but it was fouled once water splitting OH(-) generation became either intense enough or excessively weak. Interestingly, amorphous magnesium hydroxide (AMH) stemmed on the CEM-diluate side from brucite under intense water splitting OH(-) generation, and/or strong OH(-) leakage electromigration through the membrane. Water dissociation and overlimiting current regimes triggered drastic water molecule removal from crystal lattices through an accelerated cascade water splitting reaction. Also, amorphous calcium carbonate (ACC) appeared on CEM under intense water splitting reaction, and disappeared once intense OH(-) leakage was allowed by the water splitting proton-barrier dissipation. Our findings have implications for membrane fouling control, as well as for the understanding of the growth behavior of CaCO3 and Mg(OH)2 species on electromembrane interfaces. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chang, P. K.; Hwu, J. G.
2018-02-01
Interface defects and oxide bulk traps conventionally play important roles in the electrical performance of SiC MOS device. Introducing the Al2O3 stack grown by repeated anodization of Al films can notably lower the leakage current in comparison to the SiO2 structure, and enhance the minority carrier response at low frequency when the number of Al2O3 layers increase. In addition, the interface quality is not deteriorated by the stacking of Al2O3 layers because the stacked Al2O3 structure grown by anodization possesses good uniformity. In this work, the capacitance equivalent thickness (CET) of stacking Al2O3 will be up to 19.5 nm and the oxidation process can be carried out at room temperature. For the Al2O3 gate stack with CET 19.5 nm on n-SiC substrate, the leakage current at 2 V is 2.76 × 10-10 A/cm2, the interface trap density at the flatband voltage is 3.01 × 1011 eV-1 cm-2, and the effective breakdown field is 11.8 MV/cm. Frequency dispersion and breakdown characteristics may thus be improved as a result of the reduction in trap density. The Al2O3 stacking layers are capable of maintaining the leakage current as low as possible even after constant voltage stress test, which will further ameliorate reliability characteristics.
Castillo Sierra, Rafael; Oviedo-Trespalacios, Oscar; Candelo, John E; Soto, Jose D
2015-07-01
Pollution on electrical insulators is one of the greatest causes of failure of substations subjected to high levels of salinity and environmental pollution. Considering leakage current as the main indicator of pollution on insulators, this paper focuses on establishing the effect of the environmental conditions on the risk of failure due to pollution on insulators and determining the significant change in the magnitude of the pollution on the insulators during dry and humid periods. Hierarchical segmentation analysis was used to establish the effect of environmental conditions on the risk of failure due to pollution on insulators. The Kruskal-Wallis test was utilized to determine the significant changes in the magnitude of the pollution due to climate periods. An important result was the discovery that leakage current was more common on insulators during dry periods than humid ones. There was also a higher risk of failure due to pollution during dry periods. During the humid period, various temperatures and wind directions produced a small change in the risk of failure. As a technical result, operators of electrical substations can now identify the cause of an increase in risk of failure due to pollution in the area. The research provides a contribution towards the behaviour of the leakage current under conditions similar to those of the Colombian Caribbean coast and how they affect the risk of failure of the substation due to pollution.
NASA Technical Reports Server (NTRS)
Childs, D. W.; Nelson, C. E.; Nicks, C.; Scharrer, J.; Elrod, D.
1985-01-01
A facility and apparatus are described for determining the rotordynamic coefficients and leakage characteristics of annular gas seals. The coefficients and leakage characteristics of annular gas seals. The apparatus has a current top speed of 8000 cpm with a nominal seal diameter of 15.24 cmn (6 in.). The air supply unit yields a seal pressure ratio of approximately 7. An external shaker is used to excite the test rotor. The capability to independently calculate all rotordynamic coefficients at a given operating condition with one excitation frequency are discussed.
NASA Astrophysics Data System (ADS)
Irish, M. C.; Schroeder, J.; Beyersdorf, A. J.; Blake, D. R.
2015-12-01
The poorly understood atmospheric budget and distribution of molecular hydrogen (H2) have invited further research since the discovery that emissions from a hydrogen-based economy could have negative impacts on the global climate system and stratospheric ozone. The burgeoning fuel cell electric vehicle industry in the South Coast Air Basin of California (SoCAB) presents an opportunity to observe and constrain urban anthropogenic H2 emissions. This work presents the first H2 emissions estimate for the SoCAB and calculates an upper limit for the current rate of leakage from production and distribution infrastructure within the region. A top-down method utilized whole air samples collected during the Student Airborne Research Program (SARP) onboard the NASA DC-8 research aircraft from 23-25 June 2015 to estimate H2 emissions from combustion and non-combustion sources. H2:carbon monoxide (CO) and H2:carbon dioxide ratios from airborne observations were compared with experimentally established ratios from pure combustion source ratios and scaled with the well-constrained CO emissions inventory to yield H2 emissions of 24.9 ± 3.6 Gg a-1 (1σ) from combustion engines and 8.2 ± 4.7 Gg a-1 from non-combustion sources. Total daily production of H2 in the SoCAB was compared with the top-down results to estimate an upper limit leakage rate (5%) where all emissions not accounted for by incomplete combustion in engines were assumed to be emitted from H2 infrastructure. For bottom-up validation, the NOAA Hybrid Single Particle Lagrangian Integrated Trajectory dispersion model was run iteratively with all known stationary sources in attempt to constrain emissions. While this investigation determined that H2 emissions from non-combustion sources in the SoCAB are likely significant, more in-depth analysis is required to better predict the atmospheric implications of a hydrogen economy.
Siow, Lee Fong; Rades, Thomas; Lim, Miang Hoong
2007-12-01
Freezing behaviors of egg yolk l-alpha-phosphatidylcholine (EPC) and 1,2-dipalmitoyl-rac-glycero-3-phosphocholine (DPPC) large unilamellar vesicles (LUV) were quantitatively characterized in relation to freezing temperatures, cooling rates, holding time, presence of sodium chloride and phospholipid phase transition temperature. Cooling of the EPC LUV showed an abrupt increase in leakage of the encapsulated carboxyfluorescein (CF) between -5 degrees C and -10 degrees C, which corresponded with the temperatures of the extraliposomal ice formation at around -7 degrees C. For the DPPC LUV, CF leakage started at -10 degrees C, close to the temperature of the extraliposomal ice formation; followed by a subsequent rapid increase in leakage between -10 degrees C and -25 degrees C. Scanning electron microscopy showed that both of these LUV were freeze-concentrated and aggregated at sub-freezing temperatures. We suggest that the formation of the extraliposomal ice and the decrease of the unfrozen fraction causes freeze-injury and leakage of the CF. The degree of leakage, however, differs between EPC LUV and DPPC LUV that inherently vary in their phospholipid phase transition temperatures. With increasing holding time, the EPC LUV were observed to have higher leakage when they were held at -15 degrees C compared to at -30 degrees C whilst leakage of the DPPC LUV was higher when holding at -40 degrees C than at -15 degrees C and -50 degrees C. At slow cooling rates, osmotic pressure across the bilayers may cause an additional stress to the EPC LUV. The present work elucidates freeze-injury mechanisms of the phospholipid bilayers through the liposomal model membranes.
Wang, Gang-cheng; Han, Guang-sen; Ren, Ying-kun
2012-08-01
To evaluate the therapeutic effects of trans-abdominal-mediastinal drainage tube on the prevention of esophagogastric or esophago-jejunal anastomotic leakage. A total of 79 patients underwent thoraco-abdominal radical resection for gastric cardia cancer, with high risk of leakage of the anatsomosis, from Aug. 2007 to Aug. 2011 were included in this study. They were assigned into 2 groups. Forty one patients had trans-abdominal-mediastinal drainage tube (improvement group) and 38 patients were without the mediastinal drainage tube (control group). The clinical data of all the 79 patients were reviewed and the therapeutic effects of the two treatment approaches were compared. There was anastomotic leakage in four patients of the improvement group. They were with stable vital signs and the median hospital stay was 29.3 days. There was anastomotic leakage in five cases of the contol group and all of them had high fever and chest tightness. One among those five patients had transdermal placement of thoracic drainage tube and was cured, and four among those five patients had second debridement operation, with 3 cured and one death case. Except the one death case, the median hospital stay of the control group was 53.4 days, significantly longer than that of the improvement group (P < 0.05). Although putting trans-abdominal-mediastinal drainage tube can not prevent the leakage of esophagogastric or esophago-jejunnal anastomosis, it can reduce the systemic inflammatory responses, death and painful suffering of the patients caused by anastomotic leakage.
CO2 leakage alters biogeochemical and ecological functions of submarine sands
Molari, Massimiliano; Guilini, Katja; Lott, Christian; Weber, Miriam; de Beer, Dirk; Meyer, Stefanie; Ramette, Alban; Wegener, Gunter; Wenzhöfer, Frank; Martin, Daniel; Cibic, Tamara; De Vittor, Cinzia; Vanreusel, Ann; Boetius, Antje
2018-01-01
Subseabed CO2 storage is considered a future climate change mitigation technology. We investigated the ecological consequences of CO2 leakage for a marine benthic ecosystem. For the first time with a multidisciplinary integrated study, we tested hypotheses derived from a meta-analysis of previous experimental and in situ high-CO2 impact studies. For this, we compared ecological functions of naturally CO2-vented seafloor off the Mediterranean island Panarea (Tyrrhenian Sea, Italy) to those of nonvented sands, with a focus on biogeochemical processes and microbial and faunal community composition. High CO2 fluxes (up to 4 to 7 mol CO2 m−2 hour−1) dissolved all sedimentary carbonate, and comigration of silicate and iron led to local increases of microphytobenthos productivity (+450%) and standing stocks (+300%). Despite the higher food availability, faunal biomass (−80%) and trophic diversity were substantially lower compared to those at the reference site. Bacterial communities were also structurally and functionally affected, most notably in the composition of heterotrophs and microbial sulfate reduction rates (−90%). The observed ecological effects of CO2 leakage on submarine sands were reproduced with medium-term transplant experiments. This study assesses indicators of environmental impact by CO2 leakage and finds that community compositions and important ecological functions are permanently altered under high CO2. PMID:29441359
CO2 leakage alters biogeochemical and ecological functions of submarine sands.
Molari, Massimiliano; Guilini, Katja; Lott, Christian; Weber, Miriam; de Beer, Dirk; Meyer, Stefanie; Ramette, Alban; Wegener, Gunter; Wenzhöfer, Frank; Martin, Daniel; Cibic, Tamara; De Vittor, Cinzia; Vanreusel, Ann; Boetius, Antje
2018-02-01
Subseabed CO 2 storage is considered a future climate change mitigation technology. We investigated the ecological consequences of CO 2 leakage for a marine benthic ecosystem. For the first time with a multidisciplinary integrated study, we tested hypotheses derived from a meta-analysis of previous experimental and in situ high-CO 2 impact studies. For this, we compared ecological functions of naturally CO 2 -vented seafloor off the Mediterranean island Panarea (Tyrrhenian Sea, Italy) to those of nonvented sands, with a focus on biogeochemical processes and microbial and faunal community composition. High CO 2 fluxes (up to 4 to 7 mol CO 2 m -2 hour -1 ) dissolved all sedimentary carbonate, and comigration of silicate and iron led to local increases of microphytobenthos productivity (+450%) and standing stocks (+300%). Despite the higher food availability, faunal biomass (-80%) and trophic diversity were substantially lower compared to those at the reference site. Bacterial communities were also structurally and functionally affected, most notably in the composition of heterotrophs and microbial sulfate reduction rates (-90%). The observed ecological effects of CO 2 leakage on submarine sands were reproduced with medium-term transplant experiments. This study assesses indicators of environmental impact by CO 2 leakage and finds that community compositions and important ecological functions are permanently altered under high CO 2 .