Sample records for lean control rats

  1. Relationship between lipogenesis, ketogenesis, and malonyl-CoA content in isolated hepatocytes from the obese Zucker rat adapted to a high-fat diet.

    PubMed

    Malewiak, M I; Griglio, S; Le Liepvre, X

    1985-07-01

    The relationship between lipogenesis and ketogenesis and the concentration of malonyl coenzyme A (CoA) was investigated in hepatocytes from adult obese Zucker rats and their lean littermates fed either a control low-fat diet or a high-fat diet (30% lard in weight). With the control diet, lipogenesis--although strongly inhibited in the presence of either 1 mmol/L oleate, 10(-6) mol/L glucagon or 0.1 mmol/L TOFA (a hypolipidemic drug)--remained about fifteen-fold higher in the obese rats than in the lean rats. In contrast, ketogenesis under some conditions (oleate + TOFA) was not significantly lower (30%) as compared with the lean rats. After adaptation to the high-fat diet, lipogenesis was depressed fourfold in the lean rats and ninefold in the obese ones; however its magnitude remained significantly higher in the latter, namely at a value close to that measured in control-fed lean rats. Ketogenesis was comparable in lean and obese rats and much higher in the presence of 1 mmol/L oleate than of 0.3 mmol/L oleate, whereas lipogenesis did not vary with increasing oleate concentration in the medium. Acetyl-CoA carboxylase activity measured in liver homogenates was higher in the obese group, but was stepwise inhibited by increasing concentrations of oleyl-CoA regardless of the diet for both lean and obese rats, thus showing no abnormality of in vitro responsiveness to this inhibitor. With the control diet, hepatocyte malonyl-CoA levels were significantly higher in the obese rats, both in the basal state and after inhibition of lipogenesis by oleate and TOFA.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Estrogen has opposing effects on vascular reactivity in obese, insulin-resistant male Zucker rats

    NASA Technical Reports Server (NTRS)

    Brooks-Asplund, Esther M.; Shoukas, Artin A.; Kim, Soon-Yul; Burke, Sean A.; Berkowitz, Dan E.

    2002-01-01

    We hypothesized that estradiol treatment would improve vascular dysfunction commonly associated with obesity, hyperlipidemia, and insulin resistance. A sham operation or 17beta-estradiol pellet implantation was performed in male lean and obese Zucker rats. Maximal vasoconstriction (VC) to phenylephrine (PE) and potassium chloride was exaggerated in control obese rats compared with lean rats, but estradiol significantly attenuated VC in the obese rats. Estradiol reduced the PE EC50 in all groups. This effect was cyclooxygenase independent, because preincubation with indomethacin reduced VC response to PE similarly in a subset of control and estrogen-treated lean rats. Endothelium-independent vasodilation (VD) to sodium nitroprusside was similar among groups, but endothelium-dependent VD to ACh was significantly impaired in obese compared with lean rats. Estradiol improved VD in lean and obese rats by decreasing EC50 but impaired function by decreasing maximal VD. The shift in EC50 corresponded to an upregulation in nitric oxide synthase III protein expression in the aorta of the estrogen-treated obese rats. In summary, estrogen treatment improves vascular function in male insulin-resistant, obese rats, partially via an upregulation of nitric oxide synthase III protein expression. These effects are counteracted by adverse factors, such as hyperlipidemia and, potentially, a release of an endothelium-derived contractile agent.

  3. Circadian rhythms of temperature and activity in obese and lean Zucker rats

    NASA Technical Reports Server (NTRS)

    Murakami, D. M.; Horwitz, B. A.; Fuller, C. A.

    1995-01-01

    The circadian timing system is important in the regulation of feeding and metabolism, both of which are aberrant in the obese Zucker rat. This study tested the hypothesis that these abnormalities involve a deficit in circadian regulation by examining the circadian rhythms of body temperature and activity in lean and obese Zucker rats exposed to normal light-dark cycles, constant light, and constant dark. Significant deficits in both daily mean and circadian amplitude of temperature and activity were found in obese Zucker female rats relative to lean controls in all lighting conditions. However, the circadian period of obese Zucker rats did not exhibit differences relative to lean controls in either of the constant lighting conditions. These results indicate that although the circadian regulation of temperature and activity in obese Zucker female rats is in fact depressed, obese rats do exhibit normal entrainment and pacemaker functions in the circadian timing system. The results suggest a deficit in the process that generates the amplitude of the circadian rhythm.

  4. High-fat diet-induced obesity leads to increased NO sensitivity of rat coronary arterioles: role of soluble guanylate cyclase activation.

    PubMed

    Jebelovszki, Eva; Kiraly, Csaba; Erdei, Nora; Feher, Attila; Pasztor, Eniko T; Rutkai, Ibolya; Forster, Tamas; Edes, Istvan; Koller, Akos; Bagi, Zsolt

    2008-06-01

    The impact of obesity on nitric oxide (NO)-mediated coronary microvascular responses is poorly understood. Thus NO-mediated vasomotor responses were investigated in pressurized coronary arterioles ( approximately 100 microm) isolated from lean (on normal diet) and obese (fed with 60% of saturated fat) rats. We found that dilations to acetylcholine (ACh) were not significantly different in obese and lean rats (lean, 83 +/- 4%; and obese, 85 +/- 3% at 1 microM), yet the inhibition of NO synthesis with N(omega)-nitro-l-arginine methyl ester reduced ACh-induced dilations only in vessels of lean controls. The presence of the soluble guanylate cyclase (sGC) inhibitor oxadiazolo-quinoxaline (ODQ) elicited a similar reduction in ACh-induced dilations in the two groups of vessels (lean, 60 +/- 11%; and obese, 57 +/- 3%). Dilations to NO donors, sodium nitroprusside (SNP), and diethylenetriamine (DETA)-NONOate were enhanced in coronary arterioles of obese compared with lean control rats (lean, 63 +/- 6% and 51 +/- 5%; and obese, 78 +/- 5% and 70 +/- 5%, respectively, at 1 microM), whereas dilations to 8-bromo-cGMP were not different in the two groups. In the presence of ODQ, both SNP and DETA-NONOate-induced dilations were reduced to a similar level in lean and obese rats. Moreover, SNP-stimulated cGMP immunoreactivity in coronary arterioles and also cGMP levels in carotid arteries were enhanced in obese rats, whereas the protein expression of endothelial NOS and the sGC beta1-subunit were not different in the two groups. Collectively, these findings suggest that in coronary arterioles of obese rats, the increased activity of sGC leads to an enhanced sensitivity to NO, which may contribute to the maintenance of NO-mediated dilations and coronary perfusion in obesity.

  5. Effects of Momordica charantia (Bitter Melon) on Ischemic Diabetic Myocardium.

    PubMed

    Czompa, Attila; Gyongyosi, Alexandra; Szoke, Kitti; Bak, Istvan; Csepanyi, Evelin; Haines, David D; Tosaki, Arpad; Lekli, Istvan

    2017-03-20

    Objective : A rat model is here used to test a hypothesis that Momordica charantia (Bitter melon (BM)) extract favorably alters processes in cardiovascular tissue and is systemically relevant to the pathophysiology of type 2 diabetes (T2DM) and related cardiovascular disease. Methods : Male Lean and Zucker Obese (ZO) rats were gavage-treated for six weeks with 400 mg/kg body weight bitter melon (BM) extract suspended in mucin-water vehicle, or with vehicle (Control). Animals were segregated into four treatment groups, 10 animals in each group, according to strain (Lean or ZO) and treatment (Control or BM). Following six-week treatment periods, peripheral blood was collected from selected animals, followed by sacrifice, thoracotomy and mounting of isolated working heart setup. Results : Body mass of both Lean and ZO rats was unaffected by treatment, likewise, peripheral blood fasting glucose levels showed no significant treatment-related effects. However, some BM treatment-related improvement was noted in postischemic cardiac functions when Lean, BM-treated animals were compared to vehicle treated Lean control rats. Treatment of Lean, but not ZO, rats significantly reduced the magnitude of infarcted zone in isolated hearts subjected to 30 min of ischemia followed by 2 h of working mode reperfusion. Immunohistochemical demonstration of caspase-3 expression by isolated heart tissues subjected to 30 min of ischemia followed by 2 h of reperfusion, revealed significant correlation between BM treatment and reduced expression of this enzyme in hearts obtained from both Lean and ZO animals. The hierarchy and order of caspase-3 expression from highest to lowest was as follows: ZO rats receiving vehicle > ZO rats receiving BM extract > Lean rats treated receiving vehicle > Lean rats administered BM extract. Outcomes of analyses of peripheral blood content of cardiac-related analytics: with particular relevance to clinical application was a significant elevation in blood of ZO and ZO BM-treated, versus Lean rats of total cholesterol (high density lipoprotein HDL-c + low density lipoprotein LDL-c), with an inferred increase in HDL-c/LDL-c ratio-an outcome associated with decreased risk of atherosclerotic disease. Conclusions : BM extract failed to positively affect T2DM- and cardiovascular-related outcomes at a level suggesting use as a standalone treatment. Nevertheless, the encouraging effects of BM in enhancement of cardiac function, suppression of post-ischemic/reperfused infarct size extent and capacity to modulate serum cholesterol, will likely make it useful as an adjuvant therapy for the management of T2DM and related cardiovascular diseases.

  6. Exercise training prevents the attenuation of anesthetic pre-conditioning-mediated cardioprotection in diet-induced obese rats.

    PubMed

    Li, L; Meng, F; Li, N; Zhang, L; Wang, J; Wang, H; Li, D; Zhang, X; Dong, P; Chen, Y

    2015-01-01

    Obesity abolishes anesthetic pre-conditioning-induced cardioprotection due to impaired reactive oxygen species (ROS)-mediated adenosine monophosphate-activated protein kinase (AMPK) pathway, a consequence of increased basal myocardial oxidative stress. Exercise training has been shown to attenuate obesity-related oxidative stress. This study tests whether exercise training could normalize ROS-mediated AMPK pathway and prevent the attenuation of anesthetic pre-conditioning-induced cardioprotection in obesity. Male Sprague-Dawley rats were divided into lean rats fed with control diet and obese rats fed with high-fat diet. After 4 weeks of feeding, lean and obese rats were assigned to sedentary conditions or treadmill exercise for 8 weeks. There was no difference in infarct size between lean sedentary and obese sedentary rats after 25 min of myocardial ischemia followed by 120 min reperfusion. In lean rats, sevoflurane equally reduced infarct size in lean sedentary and lean exercise-trained rats. Molecular studies revealed that AMPK activity, endothelial nitric oxide synthase, and superoxide production measured at the end of ischemia in lean rats were increased in response to sevoflurane. In obese rats, sevoflurane increased the above molecular parameters and reduced infarct size in obese exercise-trained rats but not in obese sedentary rats. Additional study showed that obese exercise-trained rats had decreased basal oxidative stress than obese sedentary rats. The results indicate that exercise training can prevent the attenuation of anesthetic cardioprotection in obesity. Preventing the attenuation of this strategy may be associated with reduced basal oxidative stress and normalized ROS-mediated AMPK pathway, but the causal relationship remains to be determined. © 2014 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  7. Cereal based diets modulate some markers of oxidative stress and inflammation in lean and obese Zucker rats

    PubMed Central

    2011-01-01

    Background The potential of cereals with high antioxidant capacity for reducing oxidative stress and inflammation in obesity is unknown. This study investigated the impact of wheat bran, barley or a control diet (α-cellulose) on the development of oxidative stress and inflammation in lean and obese Zucker rats. Methods Seven wk old, lean and obese male Zucker rats (n = 8/group) were fed diets that contained wheat bran, barley or α-cellulose (control). After 3 months on these diets, systolic blood pressure was measured and plasma was analysed for glucose, insulin, lipids, oxygen radical absorbance capacity (ORAC), malondialdehyde, glutathione peroxidase and adipokine concentration (leptin, adiponectin, interleukin (IL)-1β, IL-6, TNFα, plasminogen activator inhibitor (PAI)-1, monocyte chemotactic protein (MCP)-1). Adipokine secretion rates from visceral and subcutaneous adipose tissue explants were also determined. Results Obese rats had higher body weight, systolic blood pressure and fasting blood lipids, glucose, insulin, leptin and IL-1β in comparison to lean rats, and these measures were not reduced by consumption of wheat bran or barley based diets. Serum ORAC tended to be higher in obese rats fed wheat bran and barley in comparison to control (p = 0.06). Obese rats had higher plasma malondialdehyde (p < 0.01) and lower plasma glutathione peroxidase concentration (p < 0.01) but these levels were not affected by diet type. PAI-1 was elevated in the plasma of obese rats, and the wheat bran diet in comparison to the control group reduced PAI-1 to levels seen in the lean rats (p < 0.05). These changes in circulating PAI-1 levels could not be explained by PAI-1 secretion rates from visceral or subcutaneous adipose tissue. Conclusions A 3-month dietary intervention was sufficient for Zucker obese rats to develop oxidative stress and systemic inflammation. Cereal-based diets with moderate and high antioxidant capacity elicited modest improvements in indices of oxidative stress and inflammation. PMID:21535898

  8. Obese and Lean Zucker Rats Demonstrate Differential Sensitivity to Rates of Food Reinforcement in a Choice Procedure

    PubMed Central

    Buckley, Jessica L.; Rasmussen, Erin B.

    2012-01-01

    The obese Zucker rat carries two recessive fa alleles that result in the expression of an obese phenotype. Obese Zuckers have higher food intake than lean controls in free-feed studies in which rats have ready access to a large amount of one type of food. The present study examined differences in obese and lean Zucker rats using concurrent schedules of reinforcement, which more ecologically models food selection using two food choices that have limited, but generally predictable, availability. Lever-pressing of ten lean (Fa/Fa or Fa/fa) and ten obese (fa/fa) Zucker rats was placed under three concurrent variable interval variable interval (conc VI VI) schedules of sucrose and carrot reinforcement, in which the reinforcer ratios for 45-mg food pellets were 5:1, 1:1, and 1:5. Allocation of responses to the two food alternatives was characterized using the generalized matching equation, which allows sensitivity to reinforcer rates (a) and bias toward one alternative (log k) to be quantified. All rats showed a bias to sucrose, though there were no differences between lean and obese Zucker rats. In addition, obese Zucker rats exhibited higher sensitivity to reinforcement rates than lean rats. This efficient pattern of responding was related to overall higher deliveries of food pellets. Effective matching for food, then, may be another behavioral pattern that contributes to an obese phenotype. PMID:23046726

  9. Cardiovascular and metabolic responses to fasting and thermoneutrality are conserved in obese Zucker rats.

    PubMed

    Overton, J M; Williams, T D; Chambers, J B; Rashotte, M E

    2001-04-01

    The primary purpose of the study was to test the hypothesis that reduced leptin signaling is necessary to elicit the cardiovascular and metabolic responses to fasting. Lean (Fa/?; normal leptin receptor; n = 7) and obese (fa/fa; mutated leptin receptor; n = 8) Zucker rats were instrumented with telemetry transmitters and housed in metabolic chambers at 23 degrees C (12:12-h light-dark cycle) for continuous (24 h) measurement of metabolic and cardiovascular variables. Before fasting, mean arterial pressure (MAP) was higher (MAP: obese = 103 +/- 3; lean = 94 +/- 1 mmHg), whereas oxygen consumption (VO(2): obese = 16.5 +/- 0.3; lean = 18.6 +/- 0.2 ml. min(-1). kg(-0.75)) was lower in obese Zucker rats compared with their lean controls. Two days of fasting had no effect on MAP in either lean or obese Zucker rats, whereas VO(2) (obese = -3.1 +/- 0.3; lean = -2.9 +/- 0.1 ml. min(-1). kg(-0.75)) and heart rate (HR: obese = -56 +/- 4; lean = -42 +/- 4 beats/min) were decreased markedly in both groups. Fasting increased HR variability both in lean (+1.8 +/- 0.4 ms) and obese (+2.6 +/- 0.3 ms) Zucker rats. After a 6-day period of ad libitum refeeding, when all parameters had returned to near baseline levels, the cardiovascular and metabolic responses to 2 days of thermoneutrality (ambient temperature 29 degrees C) were determined. Thermoneutrality reduced VO(2) (obese = -2.4 +/- 0.2; lean = -3.3 +/- 0.2 ml. min(-1). kg(-0.75)), HR (obese = -46 +/- 5; lean = -55 +/- 4 beats/min), and MAP (obese = -13 +/- 6; lean = -10 +/- 1 mmHg) similarly in lean and obese Zucker rats. The results indicate that the cardiovascular and metabolic responses to fasting and thermoneutrality are conserved in Zucker rats and suggest that intact leptin signaling may not be requisite for the metabolic and cardiovascular responses to reduced energy intake.

  10. Cannabis exposure associated with weight reduction and β-cell protection in an obese rat model.

    PubMed

    Levendal, R-A; Schumann, D; Donath, M; Frost, C L

    2012-05-15

    The aim of this study was to investigate the effect of an organic cannabis extract on β-cell secretory function in an in vivo diet-induced obese rat model and determine the associated molecular changes within pancreatic tissue. Diet-induced obese Wistar rats and rats fed on standard pellets were subcutaneously injected with an organic cannabis extract or the vehicle over a 28-day period. The effect of diet and treatment was evaluated using the intraperitoneal glucose tolerance tests (IPGTTs) and qPCR analysis on rat pancreata harvested upon termination of the experiment. The cafeteria diet induced an average weight difference of 32g and an overall increase in body weight in the experimental groups occurred at a significantly slower rate than the control groups, irrespective of diet. Area under the curve for glucose (AUC(g)) in the obese group was significantly lower compared to the lean group (p<0.001), with cannabis treatment significantly reducing the AUC(g) in the lean group (p<0.05), and remained unchanged in the obese group, relative to the obese control group. qPCR analysis showed that the cafeteria diet induced down-regulation of the following genes in the obese control group, relative to lean controls: UCP2, c-MYC and FLIP. Cannabis treatment in the obese group resulted in up-regulation of CB1, GLUT2, UCP2 and PKB, relative to the obese control group, while c-MYC levels were down-regulated, relative to the lean control group. Treatment did not significantly change gene expression in the lean group. These results suggest that the cannabis extract protects pancreatic islets against the negative effects of obesity. Copyright © 2012 Elsevier GmbH. All rights reserved.

  11. Effects of 2-AG on the reinforcing properties of wheel activity in obese and lean Zucker rats.

    PubMed

    Smith, Shilo L; Rasmussen, Erin B

    2010-07-01

    The endocannabinoid system plays a role in obesity, primarily by its role in food reward. Activity, also involved in obesity, seems to be at least partially controlled by the endocannabinoid system, but the relevant behavioral and neurochemical mechanisms have not been well established. This study represents an attempt to begin elucidating these mechanisms by examining the effects of an endogenous cannabinoid ligand, 2-arachidonoylglycerol (2-AG), on the reinforcing properties of exercise reinforcement in lean and obese Zucker rats. Ten obese and 10 lean Zucker rats pressed a locked door under a progressive ratio schedule of reinforcement that, when unlocked, provided access to a running wheel for 2-min periods. After baseline breakpoints were established, doses of 2-AG (0.3-3 mg/kg) were administered before experimental sessions. Obese rats exhibited lower breakpoints for wheel activity, lower response rates, and fewer revolutions compared with lean rats. 2-AG decreased breakpoints, response rates, and revolutions for obese rats, and revolutions only for lean rats. These data suggest that 2-AG may reduce the reinforcing properties of activity, and that obese Zuckers may show a greater sensitivity to 2-AG. The data also suggest that endocannabinoids may play a role in the reinforcing properties of exercise.

  12. Sibutramine reduces feeding, body fat and improves insulin resistance in dietary-obese male Wistar rats independently of hypothalamic neuropeptide Y

    PubMed Central

    Brown, Michael; Bing, Chen; King, Peter; Pickavance, Lucy; Heal, David; Wilding, John

    2001-01-01

    We studied the effects of the novel noradrenaline and serotonin (5-HT) reuptake inhibitor sibutramine on feeding and body weight in a rat model of dietary obesity, and whether it interacts with hypothalamic neuropeptide Y (NPY) neurones.Chow-fed and dietary-obese (DIO) male Wistar rats were given sibutramine (3 mg kg−1 day−1 p.o.) or deionized water for 21 days.Sibutramine decreased food intake throughout the treatment period in both dietary-obese rats (P<0.0001) and lean rats (P<0.0001). Weight gain was reduced so that final body weight was 10% lower in dietary-obese (P<0.005) and 8% lower in lean (P<0.05) rats versus their untreated controls. Plasma leptin concentration was lower in sibutramine-treated dietary-obese rats (P<0.05), and in treated lean rats (P<0.05). Using the homeostasis model assessment (HOMA) as a measure of insulin resistance, untreated DIO rats were significantly more insulin resistant than controls (P<0.005), and this was corrected by sibutramine treatment (P<0.05). Neither hypothalamic NPY mRNA nor NPY peptide levels in a number of hypothalamic nuclei were significantly altered by sibutramine compared to untreated controls.The hypophagic and anti-obesity effects of sibutramine in dietary-obese Wistar rats appear not to be mediated by inhibition of ARC NPY neurones. PMID:11309262

  13. Tesaglitazar, a dual PPAR{alpha}/{gamma} agonist, ameliorates glucose and lipid intolerance in obese Zucker rats.

    PubMed

    Oakes, Nicholas D; Thalén, Pia; Hultstrand, Therese; Jacinto, Severina; Camejo, Germán; Wallin, Boel; Ljung, Bengt

    2005-10-01

    Insulin resistance, impaired glucose tolerance, high circulating levels of free fatty acids (FFA), and postprandial hyperlipidemia are associated with the metabolic syndrome, which has been linked to increased risk of cardiovascular disease. We studied the metabolic responses to an oral glucose/triglyceride (TG) (1.7/2.0 g/kg lean body mass) load in three groups of conscious 7-h fasted Zucker rats: lean healthy controls, obese insulin-resistant/dyslipidemic controls, and obese rats treated with the dual peroxisome proliferator-activated receptor alpha/gamma agonist, tesaglitazar, 3 mumol.kg(-1).day(-1) for 4 wk. Untreated obese Zucker rats displayed marked insulin resistance, as well as glucose and lipid intolerance in response to the glucose/TG load. The 2-h postload area under the curve values were greater for glucose (+19%), insulin (+849%), FFA (+53%), and TG (+413%) compared with untreated lean controls. Treatment with tesaglitazar lowered fasting plasma glucose, improved glucose tolerance, substantially reduced fasting and postload insulin levels, and markedly lowered fasting TG and improved lipid tolerance. Fasting FFA were not affected, but postprandial FFA suppression was restored to levels seen in lean controls. Mechanisms of tesaglitazar-induced lowering of plasma TG were studied separately using the Triton WR1339 method. In anesthetized, 5-h fasted, obese Zucker rats, tesaglitazar reduced hepatic TG secretion by 47%, increased plasma TG clearance by 490%, and reduced very low-density lipoprotein (VLDL) apolipoprotein CIII content by 86%, compared with obese controls. In conclusion, the glucose/lipid tolerance test in obese Zucker rats appears to be a useful model of the metabolic syndrome that can be used to evaluate therapeutic effects on impaired postprandial glucose and lipid metabolism. The present work demonstrates that tesaglitazar ameliorates these abnormalities and enhances insulin sensitivity in this animal model.

  14. Carnitine supplementation to obese Zucker rats prevents obesity-induced type II to type I muscle fiber transition and favors an oxidative phenotype of skeletal muscle

    PubMed Central

    2013-01-01

    Background In the present study, we tested the hypothesis that carnitine supplementation counteracts obesity-induced muscle fiber transition from type I to type II. Methods 24 obese Zucker rats were randomly divided into two groups of 12 rats each (obese control, obese carnitine) and 12 lean Zucker rats were selected for lean control group. A control diet was given to both control groups and a carnitine supplemented diet (3 g/kg diet) was given to obese carnitine group for 4 wk. Components of the muscle fiber transformation in skeletal muscle were examined. Results The plasma level of carnitine were lower in the obese control group compared to the lean control group and higher in the obese carnitine group than in the other groups (P < 0.05). Plasma concentrations of triglycerides and non-esterified fatty acids were increased in obese animals compared to lean animals and the obese carnitine group had lower level compared to the obese control group (P < 0.05). The obese carnitine group had an increased number of type I muscle fibers and higher mRNA levels of type I fiber-specific myosin heavy chain, regulators of muscle fiber transition and of genes involved in carnitine uptake, fatty acid transport, β-oxidation, angiogenesis, tricarboxylic acid cycle and thermo genesis in M. rectus femoris compared to the other groups (P < 0.05). Conclusion The results demonstrate that carnitine supplementation to obese Zucker a rat counteracts the obesity-induced muscle fiber transition and restores the muscle oxidative metabolic phenotype. Carnitine supplementation is supposed to be beneficial for the treatment of elevated levels of plasma lipids during obesity or diabetes. PMID:23842456

  15. Effect of lateral hypothalamic lesion on brown adipose tissue of Zucker lean and obese rats.

    PubMed

    Holt, S J; York, D A

    1988-01-01

    Acute (10-day) lateral hypothalamic (LH) lesion induced a reduction of food intake in both lean and obese Zucker rats which averaged about 50% over the course of the first 10 days. The aphagia associated with a fall in body weight in both genotypes which was greater than their respective pair-fed controls, indicating a change in energetic efficiency. The reduced level of BAT protein, mitochondria and GDP binding observed in the obese rat was restored after LH lesion, suggesting the reestablishment of a normal sympathetic drive to the tissue. The markedly lower plasma insulin concentration in the LH lesioned obese rat is consistent with a reduction in parasympathetic activity in these animals. Food restriction in the sham lean rat reduced BAT protein content and mitochondrial GDP binding, whereas no such changes were observed in the food restricted obese rat. This demonstrates the insensitivity of the obese rat to dietary signals and may imply that LH lesion restores diet-induced BAT thermogenesis in the obese rat.

  16. Excess intake of fat and sugar potentiates epinephrine-induced hyperglycemia in male rats.

    PubMed

    Ross, Amy P; Darling, Jenna N; Parent, Marise B

    2015-04-01

    Over the past five decades, per capita caloric intake has increased significantly, and diet- and stress-related diseases are more prevalent. The stress hormone epinephrine stimulates hepatic glucose release during a stress response. The present experiment tested the hypothesis that excess caloric intake alters this ability of epinephrine to increase blood glucose. Sprague-Dawley rats were fed a high-energy cafeteria-style diet (HED). Weight gain during the first 5 days on the diet was used to divide the rats into an HED-lean group and HED-obese group. After 9 weeks, the rats were injected with epinephrine, and blood glucose was measured. HED-obese rats gained body and fat mass, and developed insulin resistance (IR) and hepatic steatosis. HED-lean and control rats did not differ. Epinephrine produced larger increases in blood glucose in the HED-obese rats than in the HED-lean and control rats. Removing the high-energy components of the diet for 4 weeks reversed the potentiated effects of epinephrine on glucose and corrected the IR but not the steatosis or obesity. Consumption of a high-energy cafeteria diet potentiates epinephrine-induced hyperglycemia. This effect is associated with insulin resistance but not adiposity or steatosis and is reversed by 4 weeks of standard chow. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Endothelin antagonism improves hepatic insulin sensitivity associated with insulin signaling in Zucker fatty rats.

    PubMed

    Berthiaume, Nathalie; Carlson, Christian J; Rondinone, Cristina M; Zinker, Bradley A

    2005-11-01

    In the present study, we investigated the effects of long-term treatment with the endothelin (ET) antagonist atrasentan, an ET(A)-selective antagonist, on whole body glucose metabolism and insulin signaling in a commonly used model of insulin resistance, the Zucker fatty rat. Zucker lean and fatty rats were maintained for 6 weeks on either control or atrasentan-treated water. Euglycemic-hyperinsulinemic clamps (4 mU/kg per minute) were performed at the end of the 6-week treatment on a subset of rats (n=10/treatment). In another subset (n=5/treatment), an insulin tolerance test was performed; liver and muscle tissues were harvested 10 minutes following the challenge for further analysis. Results of the clamps demonstrated that long-term atrasentan treatment significantly increased whole body glucose metabolism in fatty rats compared with vehicle control subjects. Insulin-induced insulin receptor substrate 1 tyrosine and protein kinase B serine phosphorylation were significantly reduced in the liver and muscle of fatty animals compared with their lean littermates. This reduction was overcome with atrasentan treatment in the liver but not in the muscle. There was no difference between lean and fatty animals, however, in insulin receptor substrate 1 and protein kinase B protein expression in the liver and muscle and no effect by atrasentan. In contrast, expression of the regulatory subunit of PI-3 kinase (p85alpha) was significantly increased in the liver but not in the muscle of fatty animals compared with their lean littermates and this was normalized to levels of lean animals with atrasentan treatment. These findings indicate that long-standing ET antagonism improves whole body glucose metabolism in Zucker fatty rats through improvements in insulin signaling in the liver. These results indicate that therapeutic ET antagonism may assist in correcting the insulin-resistant state.

  18. Metabolic profiling of muscle contraction in lean compared with obese rodents.

    PubMed

    Thyfault, John P; Cree, Melanie G; Tapscott, Edward B; Bell, Jill A; Koves, Timothy R; Ilkayeva, Olga; Wolfe, Robert R; Dohm, G Lynis; Muoio, Deborah M

    2010-09-01

    Interest in the pathophysiological relevance of intramuscular triacylglycerol (IMTG) accumulation has grown from numerous studies reporting that abnormally high glycerolipid levels in tissues of obese and diabetic subjects correlate negatively with glucose tolerance. Here, we used a hindlimb perfusion model to examine the impact of obesity and elevated IMTG levels on contraction-induced changes in skeletal muscle fuel metabolism. Comprehensive lipid profiling was performed on gastrocnemius muscles harvested from lean and obese Zucker rats immediately and 25 min after 15 min of one-legged electrically stimulated contraction compared with the contralateral control (rested) limbs. Predictably, IMTG content was grossly elevated in control muscles from obese rats compared with their lean counterparts. In muscles of obese (but not lean) rats, contraction resulted in marked hydrolysis of IMTG, which was then restored to near resting levels during 25 min of recovery. Despite dramatic phenotypical differences in contraction-induced IMTG turnover, muscle levels of diacylglycerol (DAG) and long-chain acyl-CoAs (LCACoA) were surprisingly similar between groups. Tissue profiles of acylcarnitine metabolites suggested that the surfeit of IMTG in obese rats fueled higher rates of fat oxidation relative to the lean group. Muscles of the obese rats had reduced lactate levels immediately following contraction and higher glycogen resynthesis during recovery, consistent with a lipid-associated glucose-sparing effect. Together, these findings suggest that contraction-induced mobilization of local lipid reserves in obese muscles promotes beta-oxidation, while discouraging glucose utilization. Further studies are necessary to determine whether persistent oxidation of IMTG-derived fatty acids contributes to systemic glucose intolerance in other physiological settings.

  19. Alterations in activity and energy expenditure contribute to lean phenotype in Fischer 344 rats lacking the cholecystokinin-1 receptor gene.

    PubMed

    Blevins, James E; Moralejo, Daniel H; Wolden-Hanson, Tami H; Thatcher, Brendan S; Ho, Jacqueline M; Kaiyala, Karl J; Matsumoto, Kozo

    2012-12-15

    CCK is hypothesized to inhibit meal size by acting at CCK1 receptors (CCK1R) on vagal afferent neurons that innervate the gastrointestinal tract and project to the hindbrain. Earlier studies have shown that obese Otsuka Long-Evans Tokushima Fatty (OLETF) rats, which carry a spontaneous null mutation of the CCK1R, are hyperphagic and obese. Recent findings show that rats with CCK1R-null gene on a Fischer 344 background (Cck1r(-/-)) are lean and normophagic. In this study, the metabolic phenotype of this rat strain was further characterized. As expected, the CCK1R antagonist, devazepide, failed to stimulate food intake in the Cck1r(-/-) rats. Both Cck1r(+/+) and Cck1r(-/-) rats became diet-induced obese (DIO) when maintained on a high-fat diet relative to chow-fed controls. Cck1r(-/-) rats consumed larger meals than controls during the dark cycle and smaller meals during the light cycle. These effects were accompanied by increased food intake, total spontaneous activity, and energy expenditure during the dark cycle and an apparent reduction in respiratory quotient during the light cycle. To assess whether enhanced responsiveness to anorexigenic factors may contribute to the lean phenotype, we examined the effects of melanotan II (MTII) on food intake and body weight. We found an enhanced effect of MTII in Cck1r(-/-) rats to suppress food intake and body weight following both central and peripheral administration. These results suggest that the lean phenotype is potentially driven by increases in total spontaneous activity and energy expenditure.

  20. Alterations in activity and energy expenditure contribute to lean phenotype in Fischer 344 rats lacking the cholecystokinin-1 receptor gene

    PubMed Central

    Blevins, James E.; Wolden-Hanson, Tami H.; Thatcher, Brendan S.; Ho, Jacqueline M.; Kaiyala, Karl J.; Matsumoto, Kozo

    2012-01-01

    CCK is hypothesized to inhibit meal size by acting at CCK1 receptors (CCK1R) on vagal afferent neurons that innervate the gastrointestinal tract and project to the hindbrain. Earlier studies have shown that obese Otsuka Long-Evans Tokushima Fatty (OLETF) rats, which carry a spontaneous null mutation of the CCK1R, are hyperphagic and obese. Recent findings show that rats with CCK1R-null gene on a Fischer 344 background (Cck1r−/−) are lean and normophagic. In this study, the metabolic phenotype of this rat strain was further characterized. As expected, the CCK1R antagonist, devazepide, failed to stimulate food intake in the Cck1r−/− rats. Both Cck1r+/+ and Cck1r−/− rats became diet-induced obese (DIO) when maintained on a high-fat diet relative to chow-fed controls. Cck1r−/− rats consumed larger meals than controls during the dark cycle and smaller meals during the light cycle. These effects were accompanied by increased food intake, total spontaneous activity, and energy expenditure during the dark cycle and an apparent reduction in respiratory quotient during the light cycle. To assess whether enhanced responsiveness to anorexigenic factors may contribute to the lean phenotype, we examined the effects of melanotan II (MTII) on food intake and body weight. We found an enhanced effect of MTII in Cck1r−/− rats to suppress food intake and body weight following both central and peripheral administration. These results suggest that the lean phenotype is potentially driven by increases in total spontaneous activity and energy expenditure. PMID:23115121

  1. Calorie restriction attenuates cardiac remodeling and diastolic dysfunction in a rat model of metabolic syndrome.

    PubMed

    Takatsu, Miwa; Nakashima, Chieko; Takahashi, Keiji; Murase, Tamayo; Hattori, Takuya; Ito, Hiromi; Murohara, Toyoaki; Nagata, Kohzo

    2013-11-01

    Calorie restriction (CR) can modulate the features of obesity-related metabolic and cardiovascular diseases. We have recently characterized DahlS.Z-Lepr(fa)/Lepr(fa) (DS/obese) rats, derived from a cross between Dahl salt-sensitive and Zucker rats, as a new animal model of metabolic syndrome. DS/obese rats develop hypertension and manifest left ventricular remodeling and diastolic dysfunction, as well as increased cardiac oxidative stress and inflammation. We have now investigated the effects of CR on cardiac pathophysiology in DS/obese rats. DS/obese rats were fed either normal laboratory chow ad libitum or a calorie-restricted diet (65% of the average food intake for ad libitum) from 9 to 13 weeks. Age-matched homozygous lean (DahlS.Z-Lepr(+)/Lepr(+) or DS/lean) littermates served as controls. CR reduced body weight in both DS/obese and DS/lean rats, as well as attenuated the development of hypertension in DS/obese rats without affecting blood pressure in DS/lean rats. CR also reduced body fat content, ameliorated left ventricular hypertrophy, fibrosis, and diastolic dysfunction, and attenuated cardiac oxidative stress and inflammation in DS/obese rats. In addition, it increased serum adiponectin concentration, as well as downregulated the expression of angiotensin-converting enzyme and angiotensin II type 1A receptor genes in the heart of DS/obese rats. Our results thus show that CR attenuated obesity and hypertension, as well as left ventricular remodeling and diastolic dysfunction in DS/obese rats, with these latter effects being associated with reduced cardiac oxidative stress and inflammation.

  2. Mechanisms of lower maintenance dose of tacrolimus in obese patients.

    PubMed

    Sawamoto, Kazuki; Huong, Tran T; Sugimoto, Natsumi; Mizutani, Yuka; Sai, Yoshimichi; Miyamoto, Ken-ichi

    2014-01-01

    A retrospective analysis suggested that blood tacrolimus concentrations were consistent among patients with a body mass index (BMI) that was lean (<18.5), normal (≥ 18.5 and <25) or overweight/obese (≥ 25). The average maintenance dose of tacrolimus in patients with BMI ≥ 25 was significantly lower compared with that in patients with a BMI of less than 25. Lean and obese Zucker rats fed a normal diet were given tacrolimus intravenously or orally. The blood concentrations of tacrolimus in obese rats were significantly higher than those in lean rats after administration via both routes. The moment analysis has suggested that CLtot and Vdss of tacrolimus were not significantly different between lean and obese rats. The bioavailability was higher in obese rats, compared with that in lean rats. The protein expression of Cyp3a2 in the liver was significantly decreased in obese rats, compared with lean rats, while P-gp in the small intestine was also significantly decreased in obese rats. These results suggested that the steady-state trough concentration of tacrolimus in obese patients was well maintained by a relatively low dose compared with that in normal and lean patients, presumably due to increased bioavailability.

  3. Body fluid volumes in rats with mestranol-induced hypertension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, W.L. Jr.; Johnson, J.A.; Kurz, K.D.

    Because estrogens have been reported to produce sodium retention, this study investigated the possibility that hypertension in rats resulting from the ingestion of an estrogen used as an oral contraceptive could be due to increases in body fluid volumes. Female rats were given feed containing mestranol for 1, 3, and 6 mo; control rats were given the feed without mestranol. The mestranol-treated rats had higher arterial pressures than the controls only after 6 mo of treatment. Plasma volume, extracellular fluid volume, and total body water were measured in each rat by the distribution volumes of radioiodinated serum albumin, /sup 32/SO/submore » 4/, and tritiated water, respectively. The body fluid volumes, expressed per 100 g of body weight, were not different between the mestranol-treated rats and their controls at any of the three treatment times. Due to differences in body weight and lean body mass between the mestranol-treated and the control rats, these volumes also were expressed per 100 g of lean body mass. Again, no differences were observed between the mestranol-treated rats and the control rats for any of these body fluid compartments at any of the treatment times. These studies, therefore, were unable to provide evidence that increases in body fluid volumes contributed to the elevated arterial pressure in this rat model of oral contraceptive hypertension.« less

  4. Down-regulation of hypothalamic pro-opiomelanocortin (POMC) expression after weaning is associated with hyperphagia-induced obesity in JCR rats overexpressing neuropeptide Y.

    PubMed

    Diané, Abdoulaye; Pierce, W David; Russell, James C; Heth, C Donald; Vine, Donna F; Richard, Denis; Proctor, Spencer D

    2014-03-14

    We hypothesised that hypothalamic feeding-related neuropeptides are differentially expressed in obese-prone and lean-prone rats and trigger overeating-induced obesity. To test this hypothesis, in the present study, we measured energy balance and hypothalamic neuropeptide Y (NPY) and pro-opiomelanocortin (POMC) mRNA expressions in male JCR:LA-cp rats. We compared, in independent cohorts, free-feeding obese-prone (Obese-FF) and lean-prone (Lean-FF) rats at pre-weaning (10 d old), weaning (21-25 d old) and early adulthood (8-12 weeks). A group of Obese-pair-feeding (PF) rats pair-fed to the Lean-FF rats was included in the adult cohort. The body weights of 10-d-old Obese-FF and Lean-FF pups were not significantly different. However, when the pups were shifted from dams' milk to solid food (weaning), the obese-prone rats exhibited more energy intake over the days than the lean-prone rats and higher body and fat pad weights and fasting plasma glucose, leptin, insulin and lipid levels. These differences were consistent with higher energy consumption and lower energy expenditure. In the young adult cohort, the differences between the Obese-FF and Lean-FF rats became more pronounced, yielding significant age effects on most of the parameters of the metabolic syndrome, which were reduced in the Obese-PF rats. The obese-prone rats displayed higher NPY expression than the lean-prone rats at pre-weaning and weaning, and the expression levels did not differ by age. In contrast, POMC expression exhibited significant age-by-genotype differences. At pre-weaning, there was no genotype difference in POMC expression, but in the weanling cohort, obese-prone pups exhibited lower POMC expression than the lean-prone rats. This genotype difference became more pronounced at adulthood. Overall, the development of hyperphagia-induced obesity in obese-prone JCR rats is related to POMC expression down-regulation in the presence of established NPY overexpression.

  5. Effects of antiglucocorticoid RU 486 on development of obesity in obese fa/fa Zucker rats.

    PubMed

    Langley, S C; York, D A

    1990-09-01

    The effects of RU 486 (mitepristone), an antagonist of type II glucocorticoid receptors (GR), on the development of obesity in young 5-wk-old obese fa/fa rats has been investigated. After 15 days of treatment, body composition of obese RU 486-treated rats was similar to that of lean-vehicle rats. Analysis of body composition changes showed that RU 486 effectively reversed the obesity. It stopped fat deposition in obese rats but increased protein deposition to the level of lean-vehicle rats. RU 486 prevented the development of hyperphagia and reduced gross energetic efficiency in the obese rats but had little effect on lean rats. Brown adipose tissue mitochondrial GDP binding was increased in obese rats but was reduced in lean rats by RU 486 treatment. RU 486 also reduced the elevated activity of hippocampal glycerophosphate dehydrogenase, a glucocorticoid-responsive enzyme, of obese rats to the level of lean rats. The evidence suggests that abnormal activity of glucocorticoid GR receptors or abnormal cellular responsiveness to corticosterone receptor complexes may be important in the development of obesity in the fa/fa rat.

  6. Eszopiclone and Dexmedetomidine Depress Ventilation in Obese Rats with Features of Metabolic Syndrome

    PubMed Central

    Filbey, William A.; Sanford, David T.; Baghdoyan, Helen A.; Koch, Lauren G.; Britton, Steven L.; Lydic, Ralph

    2014-01-01

    Study Objectives: Obesity alters the therapeutic window of sedative/hypnotic drugs and increases the probability of respiratory complications. The current experiments used an established rodent model of obesity to test the hypothesis that the sedative/hypnotic drugs eszopiclone and dexmedetomidine alter ventilation differentially in obese rats compared with lean/fit rats. Design: This study used a within-groups/between-groups experimental design. Setting: University of Michigan. Participants: Experiments were conducted using lean/fit rats (n = 21) and obese rats (n = 21) that have features of metabolic syndrome. Interventions: Breathing was measured with whole-body plethysmography after systemic administration of vehicle (control), the nonbenzodiazepine, benzodiazepine site agonist eszopiclone, or the alpha-2 adrenergic receptor agonist dexmedetomidine. Measurements and Results: Data were analyzed using two-way analysis of variance and appropriate post hoc comparisons. At baseline, the obese/metabolic syndrome rats had increased respiratory rates (21.6%), lower tidal volumes/body weight (-24.1%), and no differences in minute ventilation compared to lean/fit rats. In the obese rats, respiratory rate was decreased by dexmedetomidine (-29%), but not eszopiclone. In the lean and the obese rats, eszopiclone decreased tidal volume (-12%). Both sedative/hypnotic drugs caused a greater decrease in minute ventilation in the obese (-26.3%) than lean (-18%) rats. Inspiratory flow rate (VT / TI) of the obese rats was decreased by dexmedetomidine (-10.6%) and eszopiclone (-18%). Duty cycle (TI / TTOT) in both rat lines was decreased by dexmedetomidine (-16.5%) but not by eszopiclone. Conclusions: Dexmedetomidine, in contrast to eszopiclone, decreased minute ventilation in the obese/metabolic syndrome rats by depressing both duty cycle and inspiratory flow rate. The results show for the first time that the obese phenotype differentially modulates the respiratory effects of eszopiclone and dexmedetomidine. These differences in breathing are consistent with previously documented differences in sleep between lean/fit and obese rats. These findings also encourage future studies of obese/metabolic syndrome rats that quantify the effect of sedative/hypnotic drugs on respiratory mechanics as well as hypoxic and hypercapnic ventilatory responses. Continued findings of favorable homology between obese humans and rodents will support the interpretation that these obese rats offer a unique animal model for mechanistic studies. Citation: Filbey WA, Sanford DT, Baghdoyan HA, Koch LG, Britton SL, Lydic R. Eszopiclone and dexmedetomidine depress ventilation in obese rats with features of metabolic syndrome. SLEEP 2014;37(5):871-880. PMID:24790265

  7. Insulin binding and glucose uptake of adipocytes in rats adapted to hypergravitational force

    NASA Technical Reports Server (NTRS)

    Kobayashi, M.; Mondon, C. E.; Oyama, J.

    1980-01-01

    Rats were exposed to 4.15 g for 1 yr and weight and age matched, and lean noncentrifuged rats were used as control groups. Rats exposed to chronic hypergravity (hypergravic rats) were found to show lower ambient insulin levels, greater food intake with smaller body weight gain, and decreased size of isolated adipocytes. The ability of adipocytes from the hypergravic rats to bind insulin was increased. With Scatchard analysis, both number and affinity of receptors were increased. In contrast to the increased binding, glucose transport was found to be decreased in adipocytes from these animals. However, when the data were expressed as a percentage of maximal effect, the half maximal insulin effect for both the hypergravic and lean control groups was produced at an insulin concentration of 0.23 + or - 0.02 ng/ml, which was lower than the insulin concentration of 0.31 + or - 0.02 ng/ml for the weight-matched control group (P less than 0.05). This increased insulin sensitivity in the hypergravic group was accounted for by an increased number of receptors.

  8. Prior caloric restriction increases survival of prepubertal obese- and PCOS-prone rats exposed to a challenge of time-limited feeding and physical activity.

    PubMed

    Diane, Abdoulaye; Vine, Donna F; Heth, C Donald; Russell, James C; Proctor, Spencer D; Pierce, W David

    2013-05-01

    We hypothesized that a polycystic ovary syndrome (PCOS) background associated with obese-prone genotype, coupled with preconditioning by caloric restriction, would confer a survival benefit in genetically prepubertal obese/PCOS (O/PCOS)-prone rats faced with an unpredictable challenge of food shortage. Female, juvenile JCR:LA-cp rats, O/PCOS- and lean-prone, were exposed to 1.5 h of daily meals and 22.5 h of voluntary wheel-running, a procedure that leads to activity anorexia (AA). One week before the AA challenge (AAC), O/PCOS-prone rats were freely fed (O/PCOS-FF) or pair fed (O/PCOS-FR) to lean-prone, free-feeding animals (Lean-FF). O/PCOS-FR and lean-prone, food-restricted (Lean-FR) groups were matched on relative average caloric intake. Animals were removed from protocol at 75% of initial body weight (starvation criterion) or after 14 days (survival criterion). The AAC induced weight loss in all rats, but there were significant effects of both genotype and feeding history on weight loss (lean-prone rats exhibited a higher rate of weight loss than O/PCOS-prone; P < 0.001), and rats with prior caloric restriction retained more weight than those free fed previously (90.68 ± 0.59% vs. 85.47 ± 0.46%; P < 0.001). The daily rate of running was higher in lean-prone rats compared with O/PCOS-prone. This difference in running rate correlated with differences in mean days of survival. All O/PCOS-FR rats survived at day 14. O/PCOS-FF rats survived longer (10.00 ± 0.97 days) than Lean-FR (6.17 ± 1.58 days) and Lean-FF (4.33 ± 0.42 days) rats (P < 0.05). Thus preconditioning by caloric restriction induces a substantial survival advantage, beyond genotype alone, in prepubertal O/PCOS-prone rats.

  9. Botulinum neurotoxin effects on masseter muscle fibre in WNIN obese rats-Scanning electron microscope analysis.

    PubMed

    Nemani, Shivaram; Putchha, Uday K; Periketi, Madhusudhanachary; Pothana, Sailaja; Nappanveettil, Giridharan; Nemani, Harishankar

    2016-09-01

    WNIN/Ob obese mutant rats are unique in comparison to similar rodent models of obesity established in the West. The present study is aimed to evaluate the masticatory function and histological changes in masseter muscle fibres treated with botulinum toxin type A (BoNT/A) in WNIN/Ob rats. Twelve WNIN/Ob obese rats and 12 lean rats at 35 days of age were taken and divided into four groups (6 rats in each group): Group-I (WNIN/Ob) and Group-II (lean) rats were injected with BoNT/A (1 unit) into right side of masseter muscle. For control left masseter of both phenotypes was injected with saline. Group-III (WNIN/Ob) and Group-IV (lean) rats were without any treatment. Growth and food intake was monitored daily for 45 days. Rats were euthanized and gross necropsy was carried out to check any abnormalities. Masseter muscles were dissected and mean muscle mass was recorded. Small portion of muscle was stored in 10% formalin for hematoxylin-eosin (H&E) staining and remaining tissue stored in gluteraldehyde for scanning electron microscopy (SEM). There is a significant decrease in the body weights and food intake of BoNT/A treated obese rats. The H&E staining of the masseter muscle in both groups showed normal morphology and orientation. The SEM analysis showed that, fibre size in BoNT/A treated masseter muscle of obese rats increased more than the saline treated side and in control rats. The increase in the muscle fibre size and transition of muscle fibre subtypes may be due to the reduced masticatory function of the masseter muscle. SCANNING 38:396-402, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  10. Effects of 2 G on adiposity, leptin, lipoprotein lipase, and uncoupling protein-1 in lean and obese Zucker rats

    NASA Technical Reports Server (NTRS)

    Warren, L. E.; Horwitz, B. A.; Hamilton, J. S.; Fuller, C. A.

    2001-01-01

    Male Zucker rats were exposed to 2 G for 8 wk to test the hypothesis that the leptin regulatory pathway contributes to recovery from effects of 2 G on feeding, growth, and nutrient partitioning. After initial hypophagia, body mass-independent food intake of the lean rats exposed to 2 G surpassed that of the lean rats maintained at 1 G, but food intake of the obese rats exposed to 2 G remained low. After 8 wk at 2 G, body mass and carcass fat were less in both genotypes. Leptin and percent fat were lower in lean rats exposed to 2 G vs. 1 G but did not differ in obese rats exposed to 2 G vs. 1 G. Although exposure to 2 G did not alter uncoupling protein-1 levels, it did elicit white fat pad-specific changes in lipoprotein lipase activity in obese but not lean rats. We conclude that 2 G affects both genotypes but that the lean Zucker rats recover their food intake and growth rate and retain "normal" lipoprotein lipase activity to a greater degree than do the obese rats, emphasizing the importance of a functional leptin regulatory pathway in this acclimation.

  11. Influence of benzodiazepines on body weight and food intake in obese and lean Zucker rats.

    PubMed

    Blasi, C

    2000-05-01

    1. The gamma-aminobutyric acid (GABA)-ergic system, which is functionally altered in obese (fa/fa) Zucker rats, plays an important role in controlling energy balance within the central nervous system. 2. GABA receptors seem to be involved in the dysfunction of the hypothalamic energy homeostasis-controlling mechanisms in these animals due to a genetically-induced defect of the leptin-neuropeptide Y system. 3. To shed further light on the possible role played by the GABA system in the pathogenesis of this rat model, two benzodiazepine (BDZ) receptor agonists (diazepam and clonazepam) and one BDZ antagonist (flumazenil) were administered intraperitoneally in obese and lean Zucker rats. 4. Body weight gain was reduced by the BDZ agonists in both phenotypes, and one receptor-agonist (diazepam) lowered insulin concentration in obese rats. In GABA-antagonist-treated obese rats, the daily amount of body weight gain and food intake acquired an oscillatory rhythm similar to that of normal rodents. 5. By demonstrating the role of BDZ receptors, these findings may help clarify the pathophysiology of obesity and insulin resistance in fatty Zucker rats.

  12. Comparative studies on fatty acid synthesis, glycogen metabolism, and gluconeogenesis by hepatocytes isolated from lean and obese Zucker rats.

    PubMed

    McCune, S A; Durant, P J; Jenkins, P A; Harris, R A

    1981-12-01

    Hepatocytes isolated from genetically obese female Zucker rats and lean female Zucker rats were compared. Hepatocytes from fed obese rats exhibited greater rates of fatty acid synthesis, more extensive accumulation of lactate and pyruvate from their glycogen stores, increased rates of net glucose utilization but produced less ketone bodies from exogenous fatty acids and had lower citrate levels than hepatocytes from lean rats. Lipogenesis was not as sensitive to dibutyryl cyclic AMP (DBcAMP) inhibition in hepatocytes from obese rats but glycogenolysis was stimulated to the same extent by this nucleotide in both preparations. Ketogenesis was less sensitive to stimulation by DBcAMP in hepatocytes from obese rats. A difference in sensitivity of lipogenesis to DBcAMP was not found when lactate plus pyruvate was added to the incubation medium, suggesting that a greater rate of glycolysis by hepatocytes from obese rats accounts for their relative insensitivity to DBcAMP. Citrate levels were elevated by DBcAMP to a greater extent in hepatocytes from obese rats. Hepatocytes prepared from lean rats starved for 48 hr were glycogen depleted and lacked significant capacity for lipogenesis and glycogen synthesis. In contrast, hepatocytes isolated from starved obese rats retained considerable amounts of liver glycogen and exhibited detectable rates of lipogenesis and glycogen synthesis. Hepatocytes prepared from starved lean rats gave faster apparent rates of lactate gluconeogenesis than hepatocytes prepared from starved obese rats. Thus, hepatocytes prepared from obese Zucker rats are more glycogenic, glycolytic, and lipogenic but less ketogenic and glucogenic than hepatocytes prepared from lean rats.

  13. Novel Lean Type 2 Diabetic Rat Model Using Gestational Low Protein Programming

    PubMed Central

    BLESSON, Chellakkan S.; SCHUTT, Amy K.; BALAKRISHNAN, Meena P.; PAUTLER, Robia G.; PEDERSEN, Steen E.; SARKAR, Poonam; GONZALES, Daniel; ZHU, Gang; MARINI, Juan C.; CHACKO, Shaji K.; YALLAMPALLI, Uma; YALLAMPALLI, Chandra

    2016-01-01

    Background Type 2 diabetes in lean individuals is not well studied and up to 26% of diabetes occurs in these individuals. Although the cause is not well understood, it has been primarily attributed to nutritional issues during early development. Objective Our objective was to develop a lean type 2 diabetes model using gestational low protein programming. Study Design Pregnant rats were fed control (20% protein) or isocaloric low protein (6%) diet from gestational day 4 until delivery. Standard diet was given to dams after delivery and to pups after weaning. Glucose tolerance test was done at 2, 4 and 6 months of age. Magnetic resonance imaging of body fat for the females was done at 4 months. Rats were sacrificed at 4 months and 8 months of age and their peri-gonadal, peri-renal, inguinal and brown fat were weighed and expressed relative to their body weight. Euglycemic-hyperinsulinemic clamp was done around 6 months of age. Results Male and female offspring exposed to a low protein diet during gestation developed glucose intolerance and insulin resistance. Further, glucose intolerance progressed with increasing age and occurred earlier and was more severe in females when compared to males. Euglycemic hyperinsulinemic clamp showed whole body insulin resistance in both sexes, with females demonstrating increased insulin resistance compared to males. Low protein females showed a 4.5-fold increase in insulin resistance while males showed a 2.5-fold increase when compared to their respective controls. Data from magnetic resonance imaging on female offspring showed no difference in the subcutaneous, inguinal and visceral fat content. We were able to validate this observation by sacrificing the rats at 4 and 8 months and measuring total body fat content. This showed no differences in body fat content between control and LP offspring in both males and females. Additionally, diabetic rats had a similar body mass index to that of the controls. Conclusion LP gestational programming produces a progressively worsening type 2 diabetes model in rats with a lean phenotype without obesity. PMID:26874300

  14. Adiposity profile in the dwarf rat: an unusually lean model of profound growth hormone deficiency.

    PubMed

    Davies, Jeffrey S; Gevers, Evelien F; Stevenson, Amy E; Coschigano, Karen T; El-Kasti, Muna M; Bull, Melanie J; Elford, Carole; Evans, Bronwen A J; Kopchick, John J; Wells, Timothy

    2007-05-01

    This study describes the previously uncharacterized ontogeny and regulation of truncal adipose reserves in the profoundly GH-deficient dwarf (dw/dw) rat. We show that, despite normal proportionate food intake, dw/dw rats develop abdominal leanness and hypoleptinemia (circulating leptin halved in dw/dw males, P < 0.05) during puberty. This contrasts with the hyperleptinemia seen in moderately GH-deficient Tgr rats (circulating leptin doubled at 6 wk of age, P < 0.05) and in GH receptor-binding protein (GHR/BP)-null mice (circulating leptin doubled; P < 0.05). This lean/hypoleptinemic phenotype was not completely normalized by GH treatment, but dw/dw rats developed abdominal obesity in response to neonatal MSG treatment or maintenance on a high-fat diet. Unlike Tgr rats, dw/dw rats did not become obese with age; plasma leptin levels and fat pad weights became similar to those in wild-type rats. In contrast with truncal leanness, tibial marrow adiposity was normal in male and doubled in female dwarves (P < 0.01), this increase being attributable to increased adipocyte number (P < 0.01). Neonatal MSG treatment and high-fat feeding elevated marrow adiposity in dw/dw rats by inducing adipocyte enlargement (P < 0.05). These results demonstrate that, despite lipolytic influence of GH, severe GH deficiency in dw/dw rats is accompanied by a paradoxical leanness. This lean/hypoleptinemic phenotype is not solely attributable to reduced GH signaling and does not appear to result from a reduction in nutrient intake or the ability of dw/dw adipocytes to accumulate lipid. Disruption of preadipocyte differentiation or adipocyte proliferation in the dw/dw rat may lead to the development of this unusually lean/hypoleptinemic phenotype.

  15. Age-related decrease in sensitivity to glucagon and dibutyryl cyclic AMP inhibition of fatty acid synthesis in hepatocytes isolated from obese female Zucker rats.

    PubMed

    McCune, S A; Durant, P J; Harris, R A

    1984-02-01

    Hepatocytes were isolated from 3 and 5 month old female genetically obese Zucker rats and their lean littermate controls. An age-dependent loss in sensitivity of fatty acid synthesis to inhibition by both glucagon and dibutyryl cyclic AMP was observed with hepatocytes from the obese rats. Hepatocytes from lean animals were much more sensitive to these agents, regardless of age. Low concentrations of glucagon and dibutyryl cyclic AMP actually produced some stimulation of fatty acid synthesis with hepatocytes prepared from the older obese rats. 5-Tetradecyloxy-2-furoic acid, a compound which inhibits fatty acid synthesis, was a very effective inhibitor of fatty acid synthesis by hepatocytes isolated from all rats used in the study. An inhibition of lactate plus pyruvate accumulation and a strong stimulation of glycogenolysis occurred in response to both glucagon and dibutyryl cyclic AMP with hepatocytes from both age groups of lean and obese rats. The results suggest that with aging of the obese female Zucker rat some step of hepatic fatty acid synthesis becomes progressively less sensitive to inhibition by glucagon and dibutyryl cyclic AMP. This may play an important role in maintenance of obesity in these animals.

  16. Caloric Restriction in Lean and Obese Strains of Laboratory Rat: Effects on Body Composition, Metabolism, Growth, and Overall Health

    EPA Science Inventory

    NEW FINDINGS: What is the central question of this study? How do lean and obese rats respond physiologically to caloric restriction? What is the main finding and its importance? Obese rats show marked benefits compared with lean animals. Reduced body fat is associated with improv...

  17. Changes in UCP expression in tissues of Zucker rats fed diets with different protein content.

    PubMed

    Masanés, R M; Yubero, P; Rafecas, I; Remesar, X

    2002-09-01

    The effect of dietary protein content on the uncoupling proteins (UCP) 1, 2 and 3 expression in a number of tissues of Zucker lean and obese rats was studied. Thirty-day-old male Zucker lean (Fa/?) and obese (fa/fa) rats were fed on hyperproteic (HP, 30% protein), standard (RD, 17% protein) or hypoproteic (LP, 9% protein) diets ad libitum for 30 days. Although dietary protein intake affected the weights of individual muscles in lean and obese animals, these weights were similar. In contrast, huge differences were observed in brown adipose tissue (BAT) and liver weights. Lean rats fed on the LP diet generally increased UCP expression, whereas the HP group had lower values. Obese animals, HP and LP groups showed higher UCP expression in muscles, with slight differences in BAT and lower values for UCP3 in subcutaneous adipose tissue. The mean values of UCP expression in BAT of obese rats were lower than in their lean counterpart, whereas the expression in skeletal muscle was increased. Thus, expression of UCPs can be modified by dietary protein content, in lean and obese rats. A possible thermogenic function of UCP3 in muscle and WAT in obese rats must be taken into account.

  18. Type 2 Diabetes and Metformin Influence on Fracture Healing in an Experimental Rat Model.

    PubMed

    La Fontaine, Javier; Chen, Chris; Hunt, Nathan; Jude, Edward; Lavery, Lawrence

    2016-01-01

    Persons with diabetes have a greater incidence of fractures compared with persons without diabetes. However, very little published information is available concerning the deleterious effect of late-stage diabetes on osseous structure and bone healing. The purpose of the present study was to evaluate the role of diabetes on fracture healing in a rat femur repair model. Thirty-six lean and diabetic Zucker rats were subdivided into 3 groups: (1) 12 lean rats as the control group; (2) 12 diabetic rats without blood glucose control (DM group); and (3) 12 diabetic rats treated with 300 mg/kg metformin to reduce the blood glucose levels (DM + Met group). Radiographs were taken every week to determine the incidence of bone repair and delayed union. All the rats were killed at 6 weeks after surgery. In both the sham-operated and the fractured and repaired femurs, significant decreases in the fracture-load/weight and marginal decreases in the fracture-load between the lean and DM groups were found. Metformin treatment significantly reduced the blood glucose and body weight 12 days postoperatively. Furthermore, a decrease in the fracture-load and fracture-load/weight in the repaired femurs was found in the DM + Met group. Diabetes impairs bone fracture healing. Metformin treatment reduces the blood glucose and body weight but had an adverse effect on fracture repair in diabetic rats. Further investigations are needed to reveal the mechanisms responsible for the effects of type 2 diabetes mellitus on bone and bone quality and the effect of medications such as metformin might have in diabetic bone in the presence of neuropathy and vascular disease. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  19. Alterations of local cerebral glucose utilization in lean and obese fa/fa rats after acute adrenalectomy.

    PubMed

    Doyle, P; Rohner-Jeanrenaud, F; Jeanrenaud, B

    1994-08-29

    An animal model often used to investigate the aetiology of obesity is the genetically obese fa/fa rat. It has many abnormalities, including hyperphagia, hyper-insulinemia, insulin resistance, low cerebral glucose utilization and an overactive hypothalamo-pituitary adrenal (HPA) axis with resulting hypercorticism. Due to the latter consideration, the aim of this work was to study the impact of acute adrenalectomy (ADX) on the local cerebral glucose utilization (LCGU) of lean and obese fa/fa rats. ADX resulted in discrete increases in LCGU of regions common to both lean and obese rats. These common regions were found to belong to be related to the limbic system. Within this system, the LCGU of the brain of obese rats was either normalized to lean sham operated values or increased by ADX to a similar degree in both groups on a percentage basis. It was concluded that the LCGU of both lean and obese animals appears to be negatively regulated, albeit to different extents, by glucocorticoids. Such negative regulation is particularly salient within the limbic system of the lean rat and even more so in the fa/fa rat. It is suggested that the long-term hypercorticism of obese fa/fa rats due to abnormal regulation of the HPA axis may result in a decreased LCGU in limbic and related regions of the brain of fa/fa rats and contribute to the expression of the obese phenotype.

  20. Brown Norway and Zucker Lean Rats Demonstrate Circadian Variation in Ventilation and Sleep Apnea

    PubMed Central

    Fink, Anne M.; Topchiy, Irina; Ragozzino, Michael; Amodeo, Dionisio A.; Waxman, Jonathan A.; Radulovacki, Miodrag G.; Carley, David W.

    2014-01-01

    Study Objectives: Circadian rhythms influence many biological systems, but there is limited information about circadian and diurnal variation in sleep related breathing disorder. We examined circadian and diurnal patterns in sleep apnea and ventilatory patterns in two rat strains, one with high sleep apnea propensity (Brown Norway [BN]) and the other with low sleep apnea propensity (Zucker Lean [ZL]). Design/Setting: Chronically instrumented rats were randomized to breathe room air (control) or 100% oxygen (hyperoxia), and we performed 20-h polysomnography beginning at Zeitgeber time 4 (ZT 4; ZT 0 = lights on, ZT12 = lights off). We examined the effect of strain and inspired gas (twoway analysis of variance) and analyzed circadian and diurnal variability. Measurements and Results: Strain and inspired gas-dependent differences in apnea index (AI; apneas/h) were particularly prominent during the light phase. AI in BN rats (control, 16.9 ± 0.9; hyperoxia, 34.0 ± 5.8) was greater than in ZL rats (control, 8.5 ± 1.0; hyperoxia, 15.4 ± 1.1, [strain effect, P < 0.001; gas effect, P = 0.001]). Hyperoxia reduced respiratory frequency in both strains, and all respiratory pattern variables demonstrated circadian variability. BN rats exposed to hyperoxia demonstrated the largest circadian fluctuation in AI (amplitude = 17.9 ± 3.7 apneas/h [strain effect, P = 0.01; gas effect, P < 0.001; interaction, P = 0.02]; acrophase = 13.9 ± 0.7 h; r2 = 0.8 ± 1.4). Conclusions: Inherited, environmental, and circadian factors all are important elements of underlying sleep related breathing disorder. Our method to examine sleep related breathing disorder phenotypes in rats may have implications for understanding vulnerability for sleep related breathing disorder in humans. Citation: Fink AM; Topchiy I; Ragozzino M; Amodeo DA; Waxman JA; Radulovacki MG; Carley DW. Brown Norway and Zucker Lean rats demonstrate circadian variation in ventilation and sleep apnea. SLEEP 2014;37(4):715-721. PMID:24899760

  1. Caloric restriction in lean and obese strains of laboratory rat: effects on body composition, metabolism, growth and overall health.

    PubMed

    Aydin, C; Jarema, K A; Phillips, P M; Gordon, C J

    2015-11-01

    What is the central question of this study? How do lean and obese rats respond physiologically to caloric restriction? What is the main finding and its importance? Obese rats show marked benefits compared with lean animals. Reduced body fat is associated with improved longevity with caloric restriction (CR) in rodents. Little is known regarding effects of CR in genetically lean versus obese strains. Long-Evans (LE) and Brown Norway (BN) rats make an ideal comparison for a CR study because the percentage body fat of young adult LE rats is double that of BN rats. Male LE and BN rats were either fed ad libitum (AL) or were calorically restricted to 80 or 90% of their AL weight. The percentages of fat, lean and fluid mass were measured non-invasively at 2- to 4-week intervals. Metabolic rate and respiratory quotient were measured after 3, 6, 9 and 12 months of CR. Overall health was scored monthly. The percentage of fat of the LE strain decreased with CR, whereas the percentage of fat of the BN strain remained above the AL group for several months. The percentage of lean mass increased above the AL for both strains subjected to CR. The percentage of fluid was unaffected by CR. The average metabolic rate over 22 h of the BN rats subjected to CR was reduced, whereas that of LE rats was increased slightly above the AL group. The respiratory quotient of BN rats was decreased with CR. Overall health of the CR LE group was significantly improved compared with that of the AL group, whereas health of the CR BN rats was impaired compared with the AL group. Overall, the lean BN and obese LE strains differ markedly in fat utilization and metabolic response to prolonged CR. There appears to be little benefit of CR in the lean strain. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  2. Caloric Restriction in Lean and Obese Strains of Laboratory ...

    EPA Pesticide Factsheets

    NEW FINDINGS: What is the central question of this study? How do lean and obese rats respond physiologically to caloric restriction? What is the main finding and its importance? Obese rats show marked benefits compared with lean animals. Reduced body fat is associated with improved longevity with caloric restriction (CR) in rodents. Little is known regarding effects of CR in genetically lean versus obese strains. Long-Evans (LE) and Brown Norway (BN) rats make an ideal comparison for a CR study because the percentage body fat of young adult LE rats is double that of BN rats. Male LE and BN rats were either fed ad libitum (AL) or were caloricallyrestricted to 80 or 90% of their AL weight. The percentages of fat, lean and fluid mass were measured non-invasively at 2- to 4-week intervals. Metabolic rate and respiratory quotient were measured after 3, 6, 9 and 12 months of CR. Overall health was scored monthly. The percentage of fat of the LE strain decreased with CR, whereas the percentage of fat of the BN strain remained above the AL group for several months. The percentage of lean mass increased above the AL for both strains subjected to CR. The percentage offluid was unaffected by CR. The average metabolic rate over 22 h of the BN rats subjected to CR was reduced, whereas that of LE rats was increased slightly above the AL group. The respiratory quotient of BN rats wasdecreased with CR. Overall health of the CR LE group was significantly improved compared with t

  3. Obesity-induced hepatic hypoperfusion primes for hepatic dysfunction after resuscitated hemorrhagic shock.

    PubMed

    Matheson, Paul J; Hurt, Ryan T; Franklin, Glen A; McClain, Craig J; Garrison, R Neal

    2009-10-01

    Obese patients (BMI>35) after blunt trauma are at increased risk compared to non-obese for organ dysfunction, prolonged hospital stay, infection, prolonged mechanical ventilation, and mortality. Obesity and non-alcoholic fatty liver disease (NAFLD) produce a low grade systemic inflammatory response syndrome (SIRS) with compromised hepatic blood flow, which increases with body mass index. We hypothesized that obesity further aggravates liver dysfunction by reduced hepatic perfusion following resuscitated hemorrhagic shock (HEM). Age-matched Zucker rats (Obese, 314-519 g & Lean, 211-280 g) were randomly assigned to 4 groups (n = 10-12/group): (1) Lean-Sham; (2) Lean, HEM, and resuscitation (HEM/RES); (3) Obese-Sham; and (4) Obese-HEM/RES. HEM was 40% of mean arterial pressure (MAP) for 60 min; RES was return of shed blood/5 min and 2 volumes of saline/25 min. Hepatic blood flow (HBF) using galactose clearance, liver enzymes and complete metabolic panel were measured over 4 h after completion of RES. Obese rats had increased MAP, heart rate, and fasting blood glucose and BUN concentrations compared to lean controls, required less blood withdrawal (mL/g) to maintain 40% MAP, and RES did not restore BL MAP. Obese rats had decreased HBF at BL and during HEM/RES, which persisted 4 h post RES. ALT and BUN were increased compared to Lean-HEM/RES at 4 h post-RES. These data suggest that obesity significantly contributes to trauma outcomes through compromised vascular control or through fat-induced sinusoidal compression to impair hepatic blood flow after HEM/RES resulting in a greater hepatic injury. The pro-inflammatory state of NAFLD seen in obesity appears to prime the liver for hepatic ischemia after resuscitated hemorrhagic shock, perhaps intensified by insidious and ongoing hepatic hypoperfusion established prior to the traumatic injury or shock.

  4. Deposition of dietary fatty acids in young Zucker rats fed a cafeteria diet.

    PubMed

    Rafecas, I; Esteve, M; Fernández-López, J A; Remesar, X; Alemany, M

    1992-10-01

    The content and accretion of fatty acids in 30, 45 and 60-day-old Zucker lean Fa/? and obese fa/fa rats fed either reference chow or a cafeteria diet has been studied, together with their actual fatty acid intake during each period. Diet had little overall effect on the pattern of deposition of fatty acids, but quantitatively the deposition of fat was much higher in cafeteria-fed rats. The fat-rich cafeteria diet allowed the direct incorporation of most fatty acids into the rat lipids, whilst chow feeding activated lipogenesis and the deposition of a shorter chain and more saturated pattern of fatty acids. Genetic, obesity induced a significant expansion of net lipogenesis when compared with lean controls. Cafeteria-fed obese rats accrued a high proportion of fatty acids, which was close to that ingested, but nevertheless showed a net de novo synthesis of fatty acids. It is postulated that the combined effects of genetic obesity and a fat-rich diet result in high rates of fat accretion with limited net lipogenesis. Lean Zucker rats show a progressive impairment of their delta 5-desaturase system, a situation also observed in obese rats fed a reference diet. In Zucker obese rats, cafeteria feeding resulted in an alteration of the conversion of C18:2 into C20:3. The cafeteria diet fully compensated for these drawbacks by supplying very high amounts of polyunsaturated fatty acids.

  5. Peroxisomal palmitoyl-CoA oxidation in the Zucker rat.

    PubMed Central

    Brady, P S; Hoppel, C L

    1983-01-01

    The effects of 3 or 6 days of starvation on hepatic peroxisomal palmitoyl-CoA oxidation were examined in adult lean and obese Zucker rats. When expressed either per mg of DNA or per total liver, obese rats had almost 2-fold higher oxidation rates than the lean rats. Within 6 days of starvation rates fell by 50% among both phenotypes. When data were expressed per 100 g body wt., lean and obese rats had similar rates, falling from a mean of 0.57 to 0.28 mumol/min per 100 g body wt. within 6 days of starvation. Peroxisomal oxidative changes paralleled mitochondrial beta-oxidative changes. PMID:6882399

  6. Mangiferin protects against adverse skeletal muscle changes and enhances muscle oxidative capacity in obese rats

    PubMed Central

    Acevedo, Luz M.; Raya, Ana I.; Martínez-Moreno, Julio M.

    2017-01-01

    Obesity-related skeletal muscle changes include muscle atrophy, slow-to-fast fiber-type transformation, and impaired mitochondrial oxidative capacity. These changes relate with increased risk of insulin resistance. Mangiferin, the major component of the plant Mangifera indica, is a well-known anti-inflammatory, anti-diabetic, and antihyperlipidemic agent. This study tested the hypothesis that mangiferin treatment counteracts obesity-induced fiber atrophy and slow-to-fast fiber transition, and favors an oxidative phenotype in skeletal muscle of obese rats. Obese Zucker rats were fed gelatin pellets with (15 mg/kg BW/day) or without (placebo group) mangiferin for 8 weeks. Lean Zucker rats received the same gelatin pellets without mangiferin and served as non-obese and non-diabetic controls. Lesser diameter, fiber composition, and histochemical succinic dehydrogenase activity (an oxidative marker) of myosin-based fiber-types were assessed in soleus and tibialis cranialis muscles. A multivariate discriminant analysis encompassing all fiber-type features indicated that obese rats treated with mangiferin displayed skeletal muscle phenotypes significantly different compared with both lean and obese control rats. Mangiferin significantly decreased inflammatory cytokines, preserved skeletal muscle mass, fiber cross-sectional size, and fiber-type composition, and enhanced muscle fiber oxidative capacity. These data demonstrate that mangiferin attenuated adverse skeletal muscle changes in obese rats. PMID:28253314

  7. Mangiferin protects against adverse skeletal muscle changes and enhances muscle oxidative capacity in obese rats.

    PubMed

    Acevedo, Luz M; Raya, Ana I; Martínez-Moreno, Julio M; Aguilera-Tejero, Escolástico; Rivero, José-Luis L

    2017-01-01

    Obesity-related skeletal muscle changes include muscle atrophy, slow-to-fast fiber-type transformation, and impaired mitochondrial oxidative capacity. These changes relate with increased risk of insulin resistance. Mangiferin, the major component of the plant Mangifera indica, is a well-known anti-inflammatory, anti-diabetic, and antihyperlipidemic agent. This study tested the hypothesis that mangiferin treatment counteracts obesity-induced fiber atrophy and slow-to-fast fiber transition, and favors an oxidative phenotype in skeletal muscle of obese rats. Obese Zucker rats were fed gelatin pellets with (15 mg/kg BW/day) or without (placebo group) mangiferin for 8 weeks. Lean Zucker rats received the same gelatin pellets without mangiferin and served as non-obese and non-diabetic controls. Lesser diameter, fiber composition, and histochemical succinic dehydrogenase activity (an oxidative marker) of myosin-based fiber-types were assessed in soleus and tibialis cranialis muscles. A multivariate discriminant analysis encompassing all fiber-type features indicated that obese rats treated with mangiferin displayed skeletal muscle phenotypes significantly different compared with both lean and obese control rats. Mangiferin significantly decreased inflammatory cytokines, preserved skeletal muscle mass, fiber cross-sectional size, and fiber-type composition, and enhanced muscle fiber oxidative capacity. These data demonstrate that mangiferin attenuated adverse skeletal muscle changes in obese rats.

  8. Increased risk of cataract development in WNIN-obese rats due to accumulation of intralenticular sorbitol.

    PubMed

    Reddy, Paduru Yadagiri; Giridharan, Nappan Veettil; Balakrishna, Nagalla; Validandi, Vakdevi; Pullakhandam, Raghu; Reddy, Geereddy Bhanuprakash

    2013-05-01

    Epidemiological studies have reported an association between obesity and increased incidence of ocular complications including cataract, yet the underlying biochemical and molecular mechanisms remained unclear. Previously we had demonstrated accumulation of sorbitol in the lens of obese rats (WNIN/Ob) and more so in a related strain with impaired glucose tolerance (WNIN/GR-Ob). However, only a few (15-20%) WNIN/Ob and WNIN/GR-Ob rats develop cataracts spontaneously with age. To gain further insights, we investigated the susceptibility of eye lens proteins of these obese rat strains to heat- and UV-induced aggregation in vitro, lens opacification upon glucose-mediated sorbitol accumulation ex vivo, and onset and progression of cataract was followed by galactose feeding and streptozotocin (STZ) injection. The results indicated increased susceptibility toward heat- or UV-induced aggregation of lens proteins in obese animals compared to their littermate lean controls. Further, in organ culture studies glucose-induced sorbitol accumulation was found to be higher and thus the lens opacification was faster in obese animals compared to their lean littermates. Also, the onset and progression of galactose- or STZ-induced cataractogenesis was faster in obese animals compared to lean control. These results together with our previous observations suggest that obesity status could lead to hyperaccumulation of sorbitol in eye lens, predisposing them to cataract, primarily by increasing their susceptibility to environmental and/or physiological factors. Further, intralenticular sorbitol accumulation beyond a threshold level could lead to cataract in WNIN/Ob and WNIN/GR-Ob rats. Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  9. WNIN/GR-Ob - an insulin-resistant obese rat model from inbred WNIN strain.

    PubMed

    Harishankar, N; Vajreswari, A; Giridharan, N V

    2011-09-01

    WNIN/GR-Ob is a mutant obese rat strain with impaired glucose tolerance (IGT) developed at the National Institute of Nutrition (NIN), Hyderabad, India, from the existing 80 year old Wistar rat (WNIN) stock colony. The data presented here pertain to its obese nature along with IGT trait as evidenced by physical, physiological and biochemical parameters. The study also explains its existence, in three phenotypes: homozygous lean (+/+), heterozygous carrier (+/-) and homozygous obese (-/-). Thirty animals (15 males and 15 females) from each phenotype (+/+, +/-, -/-) and 24 lean and obese (6 males and 6 females) rats were taken for growth and food intake studies respectively. Twelve adult rats from each phenotype were taken for body composition measurement by total body electrical conductivity (TOBEC); 12 rats of both genders from each phenotype at different ages were taken for clinical chemistry parameters. Physiological indices of insulin resistance were calculated according to the homeostasis model assessment for insulin resistance (HOMA-IR) and also by studying U¹⁴C 2-deoxy glucose uptake (2DG). WNINGR-Ob mutants had high growth, hyperphagia, polydipsia, polyurea, glycosuria, and significantly lower lean body mass, higher fat mass as compared with carrier and lean rats. These mutants, at 50 days of age displayed abnormal response to glucose load (IGT), hyperinsulinaemia, hypertriglyceridaemia, hypercholesterolaemia and hyperleptinaemia. Basal and insulin-stimulated glucose uptakes by diaphragm were significantly decreased in obese rats as compared with lean rats. Obese rats of the designated WNIN/GR-Ob strain showed obesity with IGT, as adjudged by physical, physiological and biochemical indices. These indices varied among the three phenotypes, being lowest in lean, highest in obese and intermediate in carrier phenotypes thereby suggesting that obesity is inherited as autosomal incomplete dominant trait in this strain. This mutant obese rat model is easy to propagate, and can easily be transformed to frank diabetes model by dietary manipulation and thus can be used for screening anti-diabetic drugs.

  10. The influence of sleep deprivation and obesity on DNA damage in female Zucker rats.

    PubMed

    Tenorio, Neuli M; Ribeiro, Daniel A; Alvarenga, Tathiana A; Fracalossi, Ana Carolina C; Carlin, Viviane; Hirotsu, Camila; Tufik, Sergio; Andersen, Monica L

    2013-01-01

    The aim of this study was to evaluate overall genetic damage induced by total sleep deprivation in obese, female Zucker rats of differing ages. Lean and obese Zucker rats at 3, 6, and 15 months old were randomly distributed into two groups for each age group: home-cage control and sleep-deprived (N = 5/group). The sleep-deprived groups were deprived sleep by gentle handling for 6 hours, whereas the home-cage control group was allowed to remain undisturbed in their home-cage. At the end of the sleep deprivation period, or after an equivalent amount of time for the home-cage control groups, the rats were brought to an adjacent room and decapitated. The blood, brain, and liver tissue were collected and stored individually to evaluate DNA damage. Significant genetic damage was observed only in 15-month-old rats. Genetic damage was present in the liver cells from sleep-deprived obese rats compared with lean rats in the same condition. Sleep deprivation was associated with genetic damage in brain cells regardless of obesity status. DNA damage was observed in the peripheral blood cells regardless of sleep condition or obesity status. Taken together, these results suggest that obesity was associated with genetic damage in liver cells, whereas sleep deprivation was associated with DNA damage in brain cells. These results also indicate that there is no synergistic effect of these noxious conditions on the overall level of genetic damage. In addition, the level of DNA damage was significantly higher in 15-month-old rats compared to younger rats.

  11. Incretin response to a standard test meal in a rat model of sleeve gastrectomy with diet-induced obesity.

    PubMed

    Al-Sabah, Suleiman; Alasfar, Fahad; Al-Khaledi, Ghanim; Dinesh, Reshma; Al-Saleh, Mervat; Abul, Habib

    2014-01-01

    Currently, the most effective treatment for obesity is bariatric surgery. Gastroduodenal bypass surgery produces sustained weight loss and improves glycemic control and insulin sensitivity. Previous studies have shown that sleeve gastrectomy (SG) produces similar results and implicate changes in incretin hormone release in these effects. Male Sprague-Dawley rats were divided into four groups; lean control (lean), diet-induced obesity (DIO), DIO animals that had undergone SG (SG), and DIO animals that had undergone a sham operation (sham). After a 2-week recovery period, the incretin response to a standard test meal was measured. Blood sampling was performed in free-moving rats at various time points using chronic vascular access to the right jugular vein. There was a significant increase in the bodyweight of DIO animals fed a high-fat/high-sugar diet compared with the lean animals, which was reversed by SG. DIO caused an impairment of the GLP-1 response to a standard test meal, but not the GIP response. SG resulted in a dramatic increase in the GLP-1 response to a standard test meal but had no effect on the GIP response. A rapid rise in blood sugar was observed in the SG group following a standard test meal that was followed by reactive hypoglycemia. SG dramatically increases the GLP-1 response to a standard test meal but has no effect on GIP in a rat model of DIO.

  12. Massage therapy during early postnatal life promotes greater lean mass and bone growth, mineralization, and strength in juvenile and young adult rats.

    PubMed

    Chen, H; Miller, S; Shaw, J; Moyer-Mileur, L

    2009-01-01

    The objects of this study were to investigate the effects of massage therapy during early life on postnatal growth, body composition, and skeletal development in juvenile and young adult rats. Massage therapy was performed for 10 minutes daily from D6 to D10 of postnatal life in rat pups (MT, n=24). Body composition, bone area, mineral content, and bone mineral density were measured by dual energy X-ray absorptiometry (DXA); bone strength and intrinsic stiffness on femur shaft were tested by three-point bending; cortical and cancellous bone histomorphometric measurements were performed at D21 and D60. Results were compared to age- and gender-matched controls (C, n=24). D21 body weight, body length, lean mass, and bone area were significantly greater in the MT cohort. Greater bone mineral content was found in male MT rats; bone strength and intrinsic stiffness were greater in D60 MT groups. At D60 MT treatment promoted bone mineralization by increasing trabecular mineral apposition rate in male and endosteal mineral surface in females, and also improved micro-architecture by greater trabeculae width in males and decreasing trabecular separation in females. In summary, massage therapy during early life elicited immediate and prolonged anabolic effects on postnatal growth, lean mass and skeletal developmental in a gender-specific manner in juvenile and young adult rats.

  13. Altered susceptibility of an obese rat model to 13-week subchronic toxicity induced by 3-monochloropropane-1,2-diol.

    PubMed

    Toyoda, Takeshi; Cho, Young-Man; Akagi, Jun-Ichi; Mizuta, Yasuko; Matsushita, Kohei; Nishikawa, Akiyoshi; Imaida, Katsumi; Ogawa, Kumiko

    2017-01-01

    3-Monochloropropane-1,2-diol (3-MCPD) is a heat-induced food contaminant that has been shown to be a nongenotoxic renal carcinogen. Although the toxicity of 3-MCPD has been widely investigated for decades, there is a further concern that 3-MCPD might exert more potent toxicity in high-risk population with underlying diseases such as hyperlipidemia associated with obesity. In the present study, we performed a 13-week subchronic toxicity study for 3-MCPD using an obesity rat model to investigate the differences in susceptibility between obese and normal individuals. Male F344 and obese Zucker (lean and fatty) rats were administered 0, 9, 28.5, 90, 285, or 900 ppm 3-MCPD in drinking water for 13 weeks. 3-MCPD treatment decreased body weight gain, increased relative kidney weights, induced anemia, and induced epithelial cell necrosis in epididymal ducts in all 3 strains. The degrees of epididymal damage were higher in F344 and lean rats than in fatty rats, while renal toxicity was most potent in F344 rats and comparable in lean and fatty rats. In contrast, the hematology data indicated that anemia was worse in fatty rats than in F344 and lean rats, and a significant decrease in hematopoietic cells in the bone marrow was observed only in fatty rats. The no-observed-adverse-effect level was estimated to be 28.5 ppm in all 3 strains for 3-MCPD. These results suggested that obese Zucker rats may be more susceptible to 3-MCPD-dependent toxicity in the hematopoietic tissues than their lean counterparts.

  14. Effect of obese and lean Zucker rat sera on human and rat prostate cancer cells: implications in obesity-related prostate tumor biology.

    PubMed

    Lamarre, Neil S; Ruggieri, Michael R; Braverman, Alan S; Gerstein, Matthew I; Mydlo, Jack H

    2007-01-01

    Several reports have demonstrated the effects of obesity on prostate cancer. Also several reports have linked expression of vascular endothelial cell growth factor (VEGF) and basic fibroblast growth factor (FGF-2) to prostate cancer aggressiveness. The objective of this study was to determine whether a difference exists between lean and obese Zucker rat sera on proliferation prostate cancer cell lines, as well as to examine the differences in FGF-2 and VEGF concentrations. Ten-week-old female obese and lean Zucker rat sera were subjected to charcoal stripping and tested for the proliferation of human LNCaP and rat AT3B-1 prostate cancer cells. An acetonitrile extract of the charcoal used to strip the sera was also tested for mitogenicity. VEGF and FGF-2 concentrations were determined by enzyme-linked immunosorbent assay. Both unstripped and charcoal-stripped obese rat sera had a greater mitogenic effect than did the lean sera on the LNCaP cell line. Charcoal stripping of both obese and lean sera reduced the mitogenic effect on the AT3B-1 cell line. The acetonitrile extract of the charcoal used to strip the sera was unable to recover this proliferative effect. The concentration of VEGF was greater in the obese serum than in the lean serum, and charcoal stripping reduced the concentrations of both FGF-2 and VEGF. The finding of greater VEGF in obese rat sera, as well as greater mitogenic responses on human prostate cancer cells in vitro, suggests this as one of the many possible mechanisms involved in obesity-related prostate cancer biology.

  15. Chromium picolinate enhances skeletal muscle cellular insulin signaling in vivo in obese, insulin-resistant JCR:LA-cp rats.

    PubMed

    Wang, Zhong Q; Zhang, Xian H; Russell, James C; Hulver, Matthew; Cefalu, William T

    2006-02-01

    Chromium is one of the few trace minerals for which a specific cellular mechanism of action has not been identified. Recent in vitro studies suggest that chromium supplementation may improve insulin sensitivity by enhancing insulin receptor signaling, but this has not been demonstrated in vivo. We investigated the effect of chromium supplementation on insulin receptor signaling in an insulin-resistant rat model, the JCR:LA-corpulent rat. Male JCR:LA-cp rats (4 mo of age) were randomly assigned to receive chromium picolinate (CrPic) (obese n=6, lean n=5) or vehicle (obese n=5, lean n=5) for 3 mo. The CrPic was provided in the water, and based on calculated water intake, rats randomized to CrPic received 80 microg/(kg.d). At the end of the study, skeletal muscle (vastus lateralis) biopsies were obtained at baseline and at 5, 15, and 30 min postinsulin stimulation to assess insulin signaling. Obese rats treated with CrPic had significantly improved glucose disposal rates and demonstrated a significant increase in insulin-stimulated phosphorylation of insulin receptor substrate (IRS)-1 and phosphatidylinositol (PI)-3 kinase activity in skeletal muscle compared with obese controls. The increase in cellular signaling was not associated with increased protein levels of the IRS proteins, PI-3 kinase or Akt. However, protein tyrosine phosphatase 1B (PTP1B) levels were significantly lower in obese rats administered CrPic than obese controls. When corrected for protein content, PTP1B activity was also significantly lower in obese rats administered CrPic than obese controls. Our data suggest that chromium supplementation of obese, insulin-resistant rats may improve insulin action by enhancing intracellular signaling.

  16. Development of insulin resistance and endothelin-1 levels in the Zucker fatty rat.

    PubMed

    Berthiaume, Nathalie; Mika, Amanda K; Zinker, Bradley A

    2003-07-01

    In order to determine the effects of increasing insulin resistance on endothelin-1 (ET-1) levels, Zucker lean and fatty rats were studied at basal and during a complete nutrient meal tolerance test (MTT) at 7, 12, and 15 weeks of age. The fatty rats were mildly hyperglycemic, severely hyperinsulinemic and glucose-intolerant at all ages versus lean animals and this progressed with age within groups, as previously published. Basal ET-1 levels, at 7 weeks, were significantly increased in fatty versus lean rats (3.2+/-0.5 v 2.0+/-0.3 pg/mL, respectively; P<.05); however, we did not observe any significant basal difference at 12 or 15 weeks. At 7 weeks, ET-1 levels between fatty and lean rats were not different during the MTT (15 minutes: 2.9+/-0.4 v 2.7+/-0.7; 120 minutes: 6.5+/-0.8 v 6.6+/-0.5 pg/mL, fatty v lean, respectively). At 12 weeks, though there was no difference in basal levels, fatty rats had higher ET-1 levels during the MTT compared to lean animals (15 minutes: 6.9+/-1.4 v 1.8+/-0.4; 120 minutes: 9.4+/-1.7 v 3.2+/-0.5 pg/mL, respectively; P<.01). At 15 weeks, ET-1 levels during the MTT receded to levels similar to those observed at 7 weeks, which were significantly higher in fatty versus lean rats 15 minutes following the challenge (3.4+/-0.4 v 2.4+/-0.2 pg/mL, respectively; P<.05). In conclusion, ET-1 levels in the Zucker fatty rat: (1) were increased in the early stages of the progression of insulin resistance at 7 weeks, but were unchanged under basal conditions with age thereafter, and (2) were increased under nutrient challenge conditions with advanced insulin resistance up to 12 weeks, and were still significantly but to a lesser degree increased at 15 weeks of age. The explanation for these results and their relationship to the observed insulin resistance is unclear and will require further investigation.

  17. Carbenoxolone Treatment Ameliorated Metabolic Syndrome in WNIN/Ob Obese Rats, but Induced Severe Fat Loss and Glucose Intolerance in Lean Rats

    PubMed Central

    Prasad Sakamuri, Siva Sankara Vara; Sukapaka, Mahesh; Prathipati, Vijay Kumar; Nemani, Harishankar; Putcha, Uday Kumar; Pothana, Shailaja; Koppala, Swarupa Rani; Ponday, Lakshmi Raj Kumar; Acharya, Vani; Veetill, Giridharan Nappan; Ayyalasomayajula, Vajreswari

    2012-01-01

    Background 11beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) regulates local glucocorticoid action in tissues by catalysing conversion of inactive glucocorticoids to active glucocorticoids. 11β-HSD1 inhibition ameliorates obesity and associated co-morbidities. Here, we tested the effect of 11β-HSD inhibitor, carbenoxolone (CBX) on obesity and associated comorbidities in obese rats of WNIN/Ob strain, a new animal model for genetic obesity. Methodology/Principal Findings Subcutaneous injection of CBX (50 mg/kg body weight) or volume-matched vehicle was given once daily for four weeks to three month-old WNIN/Ob lean and obese rats (n = 6 for each phenotype and for each treatment). Body composition, plasma lipids and hormones were assayed. Hepatic steatosis, adipose tissue morphology, inflammation and fibrosis were also studied. Insulin resistance and glucose intolerance were determined along with tissue glycogen content. Gene expressions were determined in liver and adipose tissue. CBX significantly inhibited 11β-HSD1 activity in liver and adipose tissue of WNIN/Ob lean and obese rats. CBX significantly decreased body fat percentage, hypertriglyceridemia, hypercholesterolemia, insulin resistance in obese rats. CBX ameliorated hepatic steatosis, adipocyte hypertrophy, adipose tissue inflammation and fibrosis in obese rats. Tissue glycogen content was significantly decreased by CBX in liver and adipose tissue of obese rats. Severe fat loss and glucose- intolerance were observed in lean rats after CBX treatment. Conclusions/Significance We conclude that 11β-HSD1 inhibition by CBX decreases obesity and associated co-morbidities in WNIN/Ob obese rats. Our study supports the hypothesis that inhibition of 11β-HSD1 is a key strategy to treat metabolic syndrome. Severe fat loss and glucose -intolerance by CBX treatment in lean rats suggest that chronic 11β-HSD1 inhibition may lead to insulin resistance in normal conditions. PMID:23284633

  18. A High-Protein Diet Reduces Weight Gain, Decreases Food Intake, Decreases Liver Fat Deposition, and Improves Markers of Muscle Metabolism in Obese Zucker Rats

    PubMed Central

    French, William W.; Dridi, Sami; Shouse, Stephanie A.; Wu, Hexirui; Hawley, Aubree; Lee, Sun-Ok; Gu, Xuan; Baum, Jamie I.

    2017-01-01

    A primary factor in controlling and preventing obesity is through dietary manipulation. Diets higher in protein have been shown to improve body composition and metabolic health during weight loss. The objective of this study was to examine the effects of a high-protein diet versus a moderate-protein diet on muscle, liver and fat metabolism and glucose regulation using the obese Zucker rat. Twelve-week old, male, Zucker (fa/fa) and lean control (Fa/fa) rats were randomly assigned to either a high-protein (40% energy) or moderate-protein (20% energy) diet for 12 weeks, with a total of four groups: lean 20% protein (L20; n = 8), lean 40% protein (L40; n = 10), obese 20% protein (O20; n = 8), and obese 40% protein (O40; n = 10). At the end of 12 weeks, animals were fasted and euthanized. There was no difference in food intake between L20 and L40. O40 rats gained less weight and had lower food intake (p < 0.05) compared to O20. O40 rats had lower liver weight (p < 0.05) compared to O20. However, O40 rats had higher orexin (p < 0.05) levels compared to L20, L40 and O20. Rats in the L40 and O40 groups had less liver and muscle lipid deposition compared to L20 and L40 diet rats, respectively. O40 had decreased skeletal muscle mechanistic target of rapamycin complex 1 (mTORC1) phosphorylation and peroxisome proliferator-activated receptor gamma (PPARγ) mRNA expression compared to O20 (p < 0.05), with no difference in 5′ AMP-activated protein kinase (AMPK), eukaryotic translation initiation factor 4E binding protein 1 (4EBP1), protein kinase B (Akt) or p70 ribosomal S6 kinase (p70S6K) phosphorylation. The data suggest that high-protein diets have the potential to reduce weight gain and alter metabolism, possibly through regulation of an mTORC1-dependent pathway in skeletal muscle. PMID:28594375

  19. A High-Protein Diet Reduces Weight Gain, Decreases Food Intake, Decreases Liver Fat Deposition, and Improves Markers of Muscle Metabolism in Obese Zucker Rats.

    PubMed

    French, William W; Dridi, Sami; Shouse, Stephanie A; Wu, Hexirui; Hawley, Aubree; Lee, Sun-Ok; Gu, Xuan; Baum, Jamie I

    2017-06-08

    A primary factor in controlling and preventing obesity is through dietary manipulation. Diets higher in protein have been shown to improve body composition and metabolic health during weight loss. The objective of this study was to examine the effects of a high-protein diet versus a moderate-protein diet on muscle, liver and fat metabolism and glucose regulation using the obese Zucker rat. Twelve-week old, male, Zucker (fa/fa) and lean control (Fa/fa) rats were randomly assigned to either a high-protein (40% energy) or moderate-protein (20% energy) diet for 12 weeks, with a total of four groups: lean 20% protein (L20; n = 8), lean 40% protein (L40; n = 10), obese 20% protein (O20; n = 8), and obese 40% protein (O40; n = 10). At the end of 12 weeks, animals were fasted and euthanized. There was no difference in food intake between L20 and L40. O40 rats gained less weight and had lower food intake ( p < 0.05) compared to O20. O40 rats had lower liver weight ( p < 0.05) compared to O20. However, O40 rats had higher orexin ( p < 0.05) levels compared to L20, L40 and O20. Rats in the L40 and O40 groups had less liver and muscle lipid deposition compared to L20 and L40 diet rats, respectively. O40 had decreased skeletal muscle mechanistic target of rapamycin complex 1 (mTORC1) phosphorylation and peroxisome proliferator-activated receptor gamma (PPARγ) mRNA expression compared to O20 ( p < 0.05), with no difference in 5' AMP-activated protein kinase (AMPK), eukaryotic translation initiation factor 4E binding protein 1 (4EBP1), protein kinase B (Akt) or p70 ribosomal S6 kinase (p70S6K) phosphorylation. The data suggest that high-protein diets have the potential to reduce weight gain and alter metabolism, possibly through regulation of an mTORC1-dependent pathway in skeletal muscle.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, R.A.; Rajatanavin, R.; Moring, A.F.

    Five-month-old lean and obese Zucker rats were fasted for up to 7 days (lean rats) or 28 days (obese rats), and serum total and free T4 and T3 concentrations, percent free T4 and T3 by equilibrium dialysis, and the binding of (/sup 125/I) T4 to serum proteins by gel electrophoresis were measured. In the lean rats, a 4- or 7-day fast resulted in significant decreases in serum total and free T4 and T3 concentrations. There was a decrease in the percent free T3 after 7 days of starvation. In contrast, a 4- or 7-day fast did not alter any ofmore » these variables in the obese rats. However, after 14 or more days of starvation, serum total T4 and T3 concentrations increased, and the percent free T4 and T3 decreased, resulting in no change in the serum free T4 or T3 concentrations in the obese rats. The percent of (/sup 125/I)T4 bound to serum thyronine-binding globulin increased and the percent bound to thyronine-binding prealbumin decreased with the duration of the fast in both the lean and obese rats. The increase in serum thyronine-binding globulin binding of T4 can explain the increase in serum total T4 and T3 concentrations, the decrease in percent free T4 and T3, and the normal free hormone concentration in the long term fasted obese rats. The findings in the lean rats appear to be due to a combination of the known central hypothyroidism that occurs during 4-7 days of fasting and the fasting-induced changes in T4 binding in serum. Changes in T4 and T3 binding in serum during fasting in the rat must be considered when the effects of fasting on serum concentrations of the thyroid hormones, thyroid hormone kinetics, and the peripheral action of the thyroid hormones are evaluated.« less

  1. Impulsive-choice patterns for food in genetically lean and obese Zucker rats

    PubMed Central

    Boomhower, Steven R.; Rasmussen, Erin B.; Doherty, Tiffany S.

    2012-01-01

    Behavioral-economic studies have shown that differences between lean and obese Zuckers in food consumption depend on the response requirement for food. Since a response requirement inherently increases the delay to reinforcement, differences in sensitivity to delay may also be a relevant mechanism of food consumption in the obese Zucker rat. Furthermore, the endocannabinoid neurotransmitter system has been implicated in impulsivity, but studies that attempt to characterize the effects of cannabinoid drugs (e.g., rimonabant) on impulsive choice may be limited by floor effects. The present study aimed to characterize impulsive-choice patterns for sucrose using an adjusting-delay procedure in genetically lean and obese Zuckers. Ten lean and ten obese Zucker rats chose between one lever that resulted in one pellet after a standard delay (either 1 s or 5 s) and a second lever that resulted in two or three pellets after an adjusting delay. After behavior stabilized under baseline, rimonabant (0–10 mg/kg) was administered prior to some choice sessions in the two-pellet condition. Under baseline, obese Zuckers made more impulsive choices than leans in three of the four standard-delay/pellet conditions. Additionally, in the 2-pellet condition, rimonabant increased impulsive choice in lean rats in the 1-s standard-delay condition; however, rimonabant decreased impulsive choice in obese rats in the 1-s and 5-s standard-delay conditions. These data suggest that genetic factors that influence impulsive choice are stronger in some choice conditions than others, and that the endocannabinoid system may be a relevant neuromechanism. PMID:23261877

  2. Impulsive-choice patterns for food in genetically lean and obese Zucker rats.

    PubMed

    Boomhower, Steven R; Rasmussen, Erin B; Doherty, Tiffany S

    2013-03-15

    Behavioral-economic studies have shown that differences between lean and obese Zuckers in food consumption depend on the response requirement for food. Since a response requirement inherently increases the delay to reinforcement, differences in sensitivity to delay may also be a relevant mechanism of food consumption in the obese Zucker rat. Furthermore, the endocannabinoid neurotransmitter system has been implicated in impulsivity, but studies that attempt to characterize the effects of cannabinoid drugs (e.g., rimonabant) on impulsive choice may be limited by floor effects. The present study aimed to characterize impulsive-choice patterns for sucrose using an adjusting-delay procedure in genetically lean and obese Zuckers. Ten lean and ten obese Zucker rats chose between one lever that resulted in one pellet after a standard delay (either 1 s or 5 s) and a second lever that resulted in two or three pellets after an adjusting delay. After behavior stabilized under baseline, rimonabant (0-10 mg/kg) was administered prior to some choice sessions in the two-pellet condition. Under baseline, obese Zuckers made more impulsive choices than leans in three of the four standard-delay/pellet conditions. Additionally, in the 2-pellet condition, rimonabant increased impulsive choice in lean rats in the 1-s standard-delay condition; however, rimonabant decreased impulsive choice in obese rats in the 1-s and 5-s standard-delay conditions. These data suggest that genetic factors that influence impulsive choice are stronger in some choice conditions than others, and that the endocannabinoid system may be a relevant neuromechanism. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Early deprivation increases high-leaning behavior, a novel anxiety-like behavior, in the open field test in rats.

    PubMed

    Kuniishi, Hiroshi; Ichisaka, Satoshi; Yamamoto, Miki; Ikubo, Natsuko; Matsuda, Sae; Futora, Eri; Harada, Riho; Ishihara, Kohei; Hata, Yoshio

    2017-10-01

    The open field test is one of the most popular ethological tests to assess anxiety-like behavior in rodents. In the present study, we examined the effect of early deprivation (ED), a model of early life stress, on anxiety-like behavior in rats. In ED animals, we failed to find significant changes in the time spent in the center or thigmotaxis area of the open field, the common indexes of anxiety-like behavior. However, we found a significant increase in high-leaning behavior in which animals lean against the wall standing on their hindlimbs while touching the wall with their forepaws at a high position. The high-leaning behavior was decreased by treatment with an anxiolytic, diazepam, and it was increased under intense illumination as observed in the center activity. In addition, we compared the high-leaning behavior and center activity under various illumination intensities and found that the high-leaning behavior is more sensitive to illumination intensity than the center activity in the particular illumination range. These results suggest that the high-leaning behavior is a novel anxiety-like behavior in the open field test that can complement the center activity to assess the anxiety state of rats. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  4. Obesity-stimulated aldosterone release is not related to an S1P-dependent mechanism.

    PubMed

    Werth, Stephan; Müller-Fielitz, Helge; Raasch, Walter

    2017-12-01

    Aldosterone has been identified as an important factor in obesity-associated hypertension. Here, we investigated whether sphingosine-1-phosphate (S1P), which has previously been linked to obesity, increases aldosterone release. S1P-induced aldosterone release was determined in NCI H295R cells in the presence of S1P receptor (S1PR) antagonists. In vivo release of S1P (100-300 µg/kg bw ) was investigated in pithed, lean Sprague Dawley (SD) rats, diet-obese spontaneous hypertensive rats (SHRs), as well as in lean or obese Zucker rats. Aldosterone secretion was increased in NCI H295R cells by S1P, the selective S1PR1 agonist SEW2871 and the selective S1PR2 antagonist JTE013. Treatment with the S1PR1 antagonist W146 or fingolimod and the S1PR1/3 antagonist VPbib2319 decreased baseline and/or S1P-stimulated aldosterone release. Compared to saline-treated SD rats, plasma aldosterone increased by ~50 pg/mL after infusing S1P. Baseline levels of S1P and aldosterone were higher in obese than in lean SHRs. Adrenal S1PR expression did not differ between chow- or CD-fed rats that had the highest S1PR1 and lowest S1PR4 levels. S1P induced a short-lasting increase in plasma aldosterone in obese, but not in lean SHRs. However, 2-ANOVA did not demonstrate any difference between lean and obese rats. S1P-induced aldosterone release was also similar between obese and lean Zucker rats. We conclude that S1P is a local regulator of aldosterone production. S1PR1 agonism induces an increase in aldosterone secretion, while stimulating adrenal S1PR2 receptor suppresses aldosterone production. A significant role of S1P in influencing aldosterone secretion in states of obesity seems unlikely. © 2017 Society for Endocrinology.

  5. Maternal obesity characterized by gestational diabetes increases the susceptibility of rat offspring to hepatic steatosis via a disrupted liver metabolome

    PubMed Central

    Pereira, Troy J; Fonseca, Mario A; Campbell, Kristyn E; Moyce, Brittany L; Cole, Laura K; Hatch, Grant M; Doucette, Christine A; Klein, Julianne; Aliani, Michel; Dolinsky, Vernon W

    2015-01-01

    Maternal obesity is associated with a high risk for gestational diabetes mellitus (GDM), which is a common complication of pregnancy. The influence of maternal obesity and GDM on the metabolic health of the offspring is poorly understood. We hypothesize that GDM associated with maternal obesity will cause obesity, insulin resistance and hepatic steatosis in the offspring. Female Sprague-Dawley rats were fed a high-fat (45%) and sucrose (HFS) diet to cause maternal obesity and GDM. Lean control pregnant rats received low-fat (LF; 10%) diets. To investigate the interaction between the prenatal environment and postnatal diets, rat offspring were assigned to LF or HFS diets for 12 weeks, and insulin sensitivity and hepatic steatosis were evaluated. Pregnant GDM dams exhibited excessive gestational weight gain, hyperinsulinaemia and hyperglycaemia. Offspring of GDM dams gained more weight than the offspring of lean dams due to excess adiposity. The offspring of GDM dams also developed hepatic steatosis and insulin resistance. The postnatal consumption of a LF diet did not protect offspring of GDM dams against these metabolic disorders. Analysis of the hepatic metabolome revealed increased diacylglycerol and reduced phosphatidylethanolamine in the offspring of GDM dams compared to offspring of lean dams. Consistent with altered lipid metabolism, the expression of CTP:phosphoethanolamine cytidylyltransferase, and peroxisomal proliferator activated receptor-α mRNA was reduced in the livers of GDM offspring. GDM exposure programs gene expression and hepatic metabolite levels and drives the development of hepatic steatosis and insulin resistance in young adult rat offspring. Key points Gestational diabetes mellitus is a common complication of pregnancy, but its effects on the offspring are poorly understood. We developed a rat model of diet-induced gestational diabetes mellitus that recapitulates many of the clinical features of the disease, including excessive gestational weight gain, glucose intolerance, hyperinsulinaemia and mild hyperglycaemia. Compared to the offspring of lean dams, exposure to gestational diabetes mellitus during the prenatal period resulted in obesity, hepatic steatosis and insulin resistance in young rat offspring that consumed a postnatal diet that was low in fat. The combination of maternal gestational diabetes mellitus and the postnatal consumption of a high-fat diet by the offspring caused a more severe metabolic phenotype. Metabolomic profiling of the liver tissues of the offspring of gestational diabetic dams revealed accumulation of lipotoxic lipids and reduced phosphatidylethanolamine levels compared to the offspring of lean dams. The results establish that gestational diabetes mellitus is a driver of hepatic steatosis and insulin resistance in the offspring. PMID:25922055

  6. Beneficial effects of exercise training in heart failure are lost in male diabetic rats.

    PubMed

    Boudia, Dalila; Domergue, Valérie; Mateo, Philippe; Fazal, Loubina; Prud'homme, Mathilde; Prigent, Héloïse; Delcayre, Claude; Cohen-Solal, Alain; Garnier, Anne; Ventura-Clapier, Renée; Samuel, Jane-Lise

    2017-12-01

    Exercise training has been demonstrated to have beneficial effects in patients with heart failure (HF) or diabetes. However, it is unknown whether diabetic patients with HF will benefit from exercise training. Male Wistar rats were fed either a standard (Sham, n = 53) or high-fat, high-sucrose diet ( n = 66) for 6 mo. After 2 mo of diet, the rats were already diabetic. Rats were then randomly subjected to either myocardial infarction by coronary artery ligation (MI) or sham operation. Two months later, heart failure was documented by echocardiography and animals were randomly subjected to exercise training with treadmill for an additional 8 wk or remained sedentary. At the end, rats were euthanized and tissues were assayed by RT-PCR, immunoblotting, spectrophotometry, and immunohistology. MI induced a similar decrease in ejection fraction in diabetic and lean animals but a higher premature mortality in the diabetic group. Exercise for 8 wk resulted in a higher working power developed by MI animals with diabetes and improved glycaemia but not ejection fraction or pathological phenotype. In contrast, exercise improved the ejection fraction and increased adaptive hypertrophy after MI in the lean group. Trained diabetic rats with MI were nevertheless able to develop cardiomyocyte hypertrophy but without angiogenic responses. Exercise improved stress markers and cardiac energy metabolism in lean but not diabetic-MI rats. Hence, following HF, the benefits of exercise training on cardiac function are blunted in diabetic animals. In conclusion, exercise training only improved the myocardial profile of infarcted lean rats fed the standard diet. NEW & NOTEWORTHY Exercise training is beneficial in patients with heart failure (HF) or diabetes. However, less is known of the possible benefit of exercise training for HF patients with diabetes. Using a rat model where both diabetes and MI had been induced, we showed that 2 mo after MI, 8 wk of exercise training failed to improve cardiac function and metabolism in diabetic animals in contrast to lean animals.

  7. Glucose Tolerance, Lipids, and GLP-1 Secretion in JCR:LA-cp Rats Fed a High Protein Fiber Diet

    PubMed Central

    Reimer, Raylene A.; Russell, James C.

    2013-01-01

    Background We have shown that individually, dietary fiber and protein increase secretion of the anorexigenic and insulinotropic hormone, glucagon-like peptide-1 (GLP-1). Objective Our objective was to combine, in one diet, high levels of fiber and protein to maximize GLP-1 secretion, improve glucose tolerance, and reduce weight gain. Methods and Procedures Lean (+/?) and obese (cp/cp) male James C Russell corpulent (JCR:LA-cp) rats lacking a functional leptin receptor were fed one of four experimental diets (control, high protein (HP), high fiber (HF, prebiotic fiber inulin), or combination (CB)) for 3 weeks. An oral glucose tolerance test (OGTT) was performed to evaluate plasma GLP-1, insulin and glucose. Plasma lipids and intestinal proglucagon mRNA expression were determined. Results Energy intake was lower with the HF diet in lean and obese rats. Weight gain did not differ between diets. Higher colonic proglucagon mRNA in lean rats fed a CB diet was associated with higher GLP-1 secretion during OGTT. The HP diet significantly reduced plasma glucose area under the curve (AUC) during OGTT in obese rats, which reflected both an increased GLP-1 AUC and higher fasting insulin. Diets containing inulin resulted in the lowest plasma triglyceride and total cholesterol levels. Discussion Overall, combining HP with HF in the diet increased GLP-1 secretion in response to oral glucose, but did not improve glucose tolerance or lipid profiles more than the HF diet alone did. We also suggest that glycemic and insulinemic response to prebiotics differ among rat models and future research work should examine their role in improving glucose tolerance in diet-induced vs. genetic obesity with overt hyperleptinemia. PMID:18223610

  8. Different natriuretic responses in obese and lean rats in response to nitric oxide reduction.

    PubMed

    Ambrozewicz, Marta A; Khraibi, Ali A; Simsek-Duran, Fatma; DeBose, Sophia C; Baydoun, Hind A; Dobrian, Anca D

    2011-08-01

    Nitric oxide (NO) is an important regulator of renal sodium transport and participates in the control of natriuresis and diuresis. In obesity, the nitric oxide bioavailability was reportedly reduced, which may contribute to the maintenance of hypertension. The aim of this study was to determine the effect of NO depletion on renal sodium handling in a model of diet-induced obesity hypertension. Obese hypertensive (obesity-prone (OP)) and lean normotensive (obesity-resistant (OR)) Sprague-Dawley rats were treated with 1.2 mg/kg/day N(G)-nitro-L-arginine-methyl ester (L-NAME) for 4 weeks to inhibit NO synthesis. Acute pressure natriuresis and diuresis were measured in response to an increase in perfusion pressure. NHE3 and Na(+), K(+)-ATPase protein expression were measured by Western blot and NHE3 activity was determined as the rate of pH change in brush border membrane vesicles. NHE3 membrane localization was determined by confocal microscopy. L-NAME did not significantly attenuate the natriuretic and diuretic responses to increases in renal perfusion pressure (RPP) in OP rats while inducing a significant reduction in OR rats. Following chronic NO inhibition, NHE3 protein expression and activity and Na(+), K(+)-ATPase protein expression were significantly increased in the OR but not in the OP group. Immunofluorescence studies indicated that the increase in NHE3 activity could be, at least in part, due to NHE3 membrane trafficking. Obese hypertensive rats have a weaker natriuretic response in response to NO inhibition compared to lean rats and the mechanism involves different regulation of the apical sodium exchanger NHE3 expression, activity, and trafficking.

  9. Changes in obestatin gene and GPR39 receptor expression in peripheral tissues of rat models of obesity, type 1 and type 2 diabetes.

    PubMed

    Kolodziejski, Pawel Antoni; Pruszynska-Oszmalek, Ewa; Sassek, Maciej; Kaczmarek, Przemyslaw; Szczepankiewicz, Dawid; Billert, Maria; Mackowiak, Paweł; Strowski, Mathias Z; Nowak, Krzysztof W

    2017-04-01

    Obestatin has a role in regulating food intake and energy expenditure, but the roles of obestatin and the GPR39 receptor in obesity and type 1 and type 2 diabetes mellitus (T1DM and T2DM, respectively) are not well understood. The aim of the present study was to investigate changes in obestatin and GPR39 in pathophysiological conditions like obesity, T1DM, and T2DM. Using rat models of diet-induced obesity (DIO), T1DM and T2DM (n = 14 per group), obestatin, its precursor protein preproghrelin, and GPR39 expression was investigated in tissues involved in glucose and lipid homeostasis regulation. Furthermore, serum obestatin and ghrelin concentrations were determined. Serum obestatin concentrations were positively correlated with glucagon (r = 0.6456; P < 0.001) and visfatin (r = 0.5560; P < 0.001), and negatively correlated with insulin (r = -0.4362; P < 0.05), adiponectin (r = -0.3998; P < 0.05), and leptin (r = -0.4180; P < 0.05). There were differences in GPR39 and preproghrelin expression in the three animal models. Hepatic GPR39 and preproghrelin mRNA expression was greater in T1DM, T2DM, and obese rats than in lean controls, whereas pancreatic GPR39 mRNA and protein and preproghrelin mRNA expression was decreased in T1DM, T2DM, and DIO rats. Higher GPR39 and preproghrelin protein and mRNA levels were found in adipose tissues of T1DM compared with control. In adipose tissues of T2DM and DIO rats, GPR39 protein levels were lower than in lean or T1DM rats. Preproghrelin mRNA was higher in adipose tissues of T1DM, T2DM, and DIO than lean rats. We hypothesize that changes in obestatin, GPR39, and ghrelin may contribute to metabolic abnormalities in T1DM, T2DM, and obesity. © 2016 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  10. Protein kinase C is increased in the liver of humans and rats with non-insulin-dependent diabetes mellitus: an alteration not due to hyperglycemia.

    PubMed Central

    Considine, R V; Nyce, M R; Allen, L E; Morales, L M; Triester, S; Serrano, J; Colberg, J; Lanza-Jacoby, S; Caro, J F

    1995-01-01

    We tested the hypothesis that liver protein kinase C (PKC) is increased in non-insulin-dependent diabetes mellitus (NIDDM). To this end we examined the distribution of PKC isozymes in liver biopsies from obese individuals with and without NIDDM and in lean controls. PKC isozymes alpha, beta, epsilon and zeta were detected by immunoblotting in both the cytosol and membrane fractions. Isozymes gamma and delta were not detected. There was a significant increase in immunodetectable PKC-alpha (twofold), -epsilon (threefold), and -zeta (twofold) in the membrane fraction isolated from obese subjects with NIDDM compared with the lean controls. In obese subjects without NIDDM, the amount of membrane PKC isozymes was not different from the other two groups. We next sought an animal model where this observation could be studied further. The Zucker diabetic fatty rat offered such a model system. Immunodetectable membrane PKC-alpha, -beta, -epsilon, and -zeta were significantly increased when compared with both the lean and obese controls. The increase in immunodetectable PKC protein correlated with a 40% elevation in the activity of PKC at the membrane. Normalization of circulating glucose in the rat model by either insulin or phlorizin treatment did not result in a reduction in membrane PKC isozyme protein or kinase activity. Further, phlorizin treatment did not improve insulin receptor autophosphorylation nor did the treatment lower liver diacylglycerol. We conclude that liver PKC is increased in NIDDM, a change that is not secondary to hyperglycemia. It is possible that PKC-mediated phosphorylation of some component in the insulin signaling cascade contributes to the insulin resistance observed in NIDDM. Images PMID:7769136

  11. Ghrelin treatment causes increased food intake and retention of lean body mass in a rat model of cancer cachexia.

    PubMed

    DeBoer, Mark D; Zhu, Xin Xia; Levasseur, Peter; Meguid, Michael M; Suzuki, Susumu; Inui, Akio; Taylor, John E; Halem, Heather A; Dong, Jesse Z; Datta, Rakesh; Culler, Michael D; Marks, Daniel L

    2007-06-01

    Cancer cachexia is a debilitating syndrome of anorexia and loss of lean body mass that accompanies many malignancies. Ghrelin is an orexigenic hormone with a short half-life that has been shown to improve food intake and weight gain in human and animal subjects with cancer cachexia. We used a rat model of cancer cachexia and administered human ghrelin and a synthetic ghrelin analog BIM-28131 via continuous infusion using sc osmotic minipumps. Tumor-implanted rats receiving human ghrelin or BIM-28131 exhibited a significant increase in food consumption and weight gain vs. saline-treated animals. We used dual-energy x-ray absorptiometry scans to show that the increased weight was due to maintenance of lean mass vs. a loss of lean mass in saline-treated animals. Also, BIM-28131 significantly limited the loss of fat mass normally observed in tumor-implanted rats. We further performed real-time PCR analysis of the hypothalami and brainstems and found that ghrelin-treated animals exhibited a significant increase in expression of orexigenic peptides agouti-related peptide and neuropeptide Y in the hypothalamus and a significant decrease in the expression of IL-1 receptor-I transcript in the hypothalamus and brainstem. We conclude that ghrelin and a synthetic ghrelin receptor agonist improve weight gain and lean body mass retention via effects involving orexigenic neuropeptides and antiinflammatory changes.

  12. Regulation of palmitoyl-CoA chain elongation by clofibric acid in the liver of Zucker fa/fa rats.

    PubMed

    Toyama, Tomoaki; Kudo, Naomi; Mitsumoto, Atsushi; Kawashima, Yoichi

    2005-05-01

    The regulation of palmitoyl-CoA chain elongation (PCE) by clofibric acid [2-(4-chlorophenoxy)-2-methylpropionic acid] was investigated in comparison with stearoyl-CoA desaturase (SCD) in the liver of obese Zucker fa/fa rats. The proportion of oleic acid in the hepatic lipids of Zucker obese rats is 2.7 times higher than that of lean littermates. The activities of PCE and SCD in the liver of Zucker obese rats were markedly higher than in lean rats, and the hepatic uptake of 2-deoxyglucose (2-DG) was also higher in Zucker obese rats compared with lean rats. The increased activities of SCD and PCE in Zucker obese rats were due to the enhanced expression of mRNA of both SCD1 and rat FA elongase 2 (rELO2), but not SCD2 or rELO1. The proportion of oleic acid in the liver was significantly increased by the administration of clofibric acid to Zucker obese rats, and the hepatic PCE activity and rELO2 mRNA expression, but not the SCD activity or SCD1 mRNA expression, were increased in response to clofibric acid treatment. By contrast, the activities of both PCE and SCD and the mRNA expression of SCD1 and rELO2 in the liver were increased by the treatment of Zucker lean rats with clofibric acid. Multiple regression analysis, which was performed to determine the relationships involving PCE activity, SCD activity, and the proportion of oleic acid, revealed that the three parameters were significantly correlated and that the standardized partial regression coefficient of PCE was higher than that of SCD. These results indicate that oleic acid is synthesized by the concerted action of PCE and SCD and that PCE plays a crucial role in the formation of oleic acid when Zucker fa/fa rats are given clofibric acid.

  13. Gastric bypass surgery alters behavioral and neural taste functions for sweet taste in obese rats.

    PubMed

    Hajnal, Andras; Kovacs, Peter; Ahmed, Tamer; Meirelles, Katia; Lynch, Christopher J; Cooney, Robert N

    2010-10-01

    Roux-en-Y gastric bypass surgery (GBS) is the most effective treatment for morbid obesity. GBS is a restrictive malabsorptive procedure, but many patients also report altered taste preferences. This study investigated the effects of GBS or a sham operation (SH) on body weight, glucose tolerance, and behavioral and neuronal taste functions in the obese Otsuka Long-Evans Tokushima Fatty (OLETF) rats lacking CCK-1 receptors and lean controls (LETO). OLETF-GBS rats lost body weight (-26%) and demonstrated improved glucose tolerance. They also expressed a reduction in 24-h two-bottle preference for sucrose (0.3 and 1.0 M) and decreased 10-s lick responses for sucrose (0.3 through 1.5 M) compared with OLETF-SH or LETO-GBS. A similar effect was noted for other sweet compounds but not for salty, sour, or bitter tastants. In lean rats, GBS did not alter responses to any stimulus tested. Extracellular recordings from 170 taste-responsive neurons of the pontine parabrachial nucleus revealed a rightward shift in concentration responses to oral sucrose in obese compared with lean rats (OLETF-SH vs. LETO-SH): overall increased response magnitudes (above 0.9 M), and maximum responses occurring at higher concentrations (+0.46 M). These effects were reversed by GBS, and neural responses in OLETF-GBS were statistically not different from those in any LETO groups. These findings confirm obesity-related alterations in taste functions and demonstrate the ability of GBS to alleviate these impairments. Furthermore, the beneficial effects of GBS appear to be independent of CCK-1 receptor signaling. An understanding of the underlying mechanisms for reduced preferences for sweet taste could help in developing less invasive treatments for obesity.

  14. Antiobesity effects of the beta-cell hormone amylin in diet-induced obese rats: effects on food intake, body weight, composition, energy expenditure, and gene expression.

    PubMed

    Roth, Jonathan D; Hughes, Heather; Kendall, Eric; Baron, Alain D; Anderson, Christen M

    2006-12-01

    Effects of amylin and pair feeding (PF) on body weight and metabolic parameters were characterized in diet-induced obesity-prone rats. Peripherally administered rat amylin (300 microg/kg.d, 22d) reduced food intake and slowed weight gain: approximately 10% (P<0.05), similar to PF. Fat loss was 3-fold greater in amylin-treated rats vs. PF (P<0.05). Whereas PF decreased lean tissue (P<0.05 vs. vehicle controls; VEH), amylin did not. During wk 1, amylin and PF reduced 24-h respiratory quotient (mean+/-se, 0.82+/-0.0, 0.81+/-0.0, respectively; P<0.05) similar to VEH (0.84+/-0.01). Energy expenditure (EE mean+/-se) tended to be reduced by PF (5.67+/-0.1 kcal/h.kg) and maintained by amylin (5.86+/-0.1 kcal/h.kg) relative to VEH (5.77+/-0.0 kcal/h.kg). By wk 3, respiratory quotient no longer differed; however, EE increased with amylin treatment (5.74+/-0.09 kcal/.kg; P<0.05) relative to VEH (5.49+/-0.06) and PF (5.38+/-0.07 kcal/h.kg). Differences in EE, attributed to differences in lean mass, argued against specific amylin-induced thermogenesis. Weight loss in amylin and pair-fed rats was accompanied by similar increases arcuate neuropeptide Y mRNA (P<0.05). Amylin treatment, but not PF, increased proopiomelanocortin mRNA levels (P<0.05 vs. VEH). In a rodent model of obesity, amylin reduced body weight and body fat, with relative preservation of lean tissue, through anorexigenic and specific metabolic effects.

  15. Resistant starch modifies gut microflora and microbial metabolism in human flora-associated rats inoculated with faeces from Italian and UK donors.

    PubMed

    Silvi, S; Rumney, C J; Cresci, A; Rowland, I R

    1999-03-01

    The effect of sucrose and resistant starch ('CrystaLean'--a retrograded, amylose starch) on human gut microflora and associated parameters was studied in human flora-associated (HFA) rats, colonized with microfloras from UK or Italian subjects, to determine whether such floras were affected differently by dietary carbohydrates. Consumption of the resistant starch diet resulted in significant changes in four of the seven main groups of bacteria enumerated. In both the UK and Italian flora-associated rats, numbers of lactobacilli and bifidobacteria were increased 10-100-fold, and there was a concomitant decrease in enterobacteria when compared with sucrose-fed rats. The induced changes in caecal microflora of both HFA rat groups were reflected in changes in bacterial enzyme activities and caecal ammonia concentration. Although it had little effect on caecal short-chain fatty acid concentration, CrystaLean markedly increased the proportion of n-butyric acid in both rat groups and was associated with a significant increase in cell proliferation in the proximal colon of the Italian flora-associated rats. CrystaLean appeared to play a protective role in the colon environment, lowering caecal ammonia concentration, caecal pH and beta-glucuronidase activity.

  16. Leptin receptor-deficient obese Zucker rats reduce their food intake in response to a systemic supply of calories from glucose.

    PubMed

    Gilbert, Marc; Magnan, Christophe; Turban, Sophie; André, Jocelyne; Guerre-Millo, Michèle

    2003-02-01

    It has been established that leptin exerts a negative control on food intake, allowing one to maintain stable caloric intake over time. The aim of the present study was to investigate whether leptin regulates food intake when a supply of calories is provided by the systemic route. Experiments were carried out in leptin receptor-deficient obese fa/fa rats and lean Fa/fa controls. In both groups, 48 h of glucose infusion reduced food intake in proportion to caloric supply, resulting in virtually no change in total caloric intake as compared to before the infusion. This hypophagic response was reproduced without adding systemic calories, but by increasing glucose and insulin concentrations specifically in the brain through carotid artery infusion. Concomitant intracerebroventricular administration of 5-(tetradecyloxy)-2-furoic acid, an acetyl CoA carboxylase inhibitor that precludes malonyl-CoA synthesis, abolished the restriction of feeding in carotid-infused lean and obese rats. These data indicate that a supply of calories via glucose infusion induces a hypophagic response independent of leptin signaling in the rat, and support the hypothesis that a rise in central malonyl-CoA, triggered by increased glucose and insulin concentrations, participates in this adaptation. This process could contribute to the limiting of hyperphagia, primarily when leptin signaling is altered, as in the obese state.

  17. Prior weight loss exacerbates the biological drive to gain weight after the loss of ovarian function.

    PubMed

    Sherk, Vanessa D; Jackman, Matthew R; Giles, Erin D; Higgins, Janine A; Foright, Rebecca M; Presby, David M; Johnson, Ginger C; Houck, Julie A; Houser, Jordan L; Oljira, Robera; MacLean, Paul S

    2017-05-01

    Both the history of obesity and weight loss may change how menopause affects metabolic health. The purpose was to determine whether obesity and/or weight loss status alters energy balance (EB) and subsequent weight gain after the loss of ovarian function. Female lean and obese Wistar rats were randomized to 15% weight loss (WL) or ad libitum fed controls (CON). After the weight loss period, WL rats were kept in EB at the reduced weight for 8 weeks prior to ovariectomy (OVX). After OVX, all rats were allowed to eat ad libitum until weight plateaued. Energy intake (EI), spontaneous physical activity, and total energy expenditure (TEE) were measured with indirect calorimetry before OVX, immediately after OVX, and after weight plateau. Changes in energy intake (EI), TEE, and weight gain immediately after OVX were similar between lean and obese rats. However, obese rats gained more total weight and fat mass than lean rats over the full regain period. Post-OVX, EI increased more ( P  ≤ 0.03) in WL rats (58.9 ± 3.5 kcal/d) than CON rats (8.5 ± 5.2 kcal/d), and EI partially normalized (change from preOVX: 20.5 ± 4.2 vs. 1.5 ± 4.9 kcal/day) by the end of the study. As a result, WL rats gained weight (week 1:44 ± 20 vs. 7 ± 25 g) more rapidly (mean = 44 ± 20 vs. 7 ± 25 g/week; P  < 0.001) than CON Prior obesity did not affect changes in EB or weight regain following OVX, whereas a history of weight loss prior to OVX augmented disruptions in EB after OVX, resulting in more rapid weight regain. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  18. The supplementation of Korean mistletoe water extracts reduces hot flushes, dyslipidemia, hepatic steatosis, and muscle loss in ovariectomized rats.

    PubMed

    Kim, Min Jung; Park, Jong-Heum; Kwon, Dae Young; Yang, Hye Jeong; Kim, Da Sol; Kang, Suna; Shin, Bae Keun; Moon, Na Rang; Song, Beom-Seok; Kim, Jae-Hun; Park, Sunmin

    2015-04-01

    Since Korean mistletoe (Viscum album) has been used for alleviating metabolic diseases, it may also prevent the impairment of energy, glucose, lipid, and bone metabolisms in an estrogen-deficient animal model. We determined that long-term consumption of Korean mistletoe water extract (KME) can alleviate menopausal symptoms such as hot flush, increased abdominal fat mass, dyslipidemia, hyperglycemia, and decreased bone mineral density in ovariectomized (OVX) rats fed a high-fat diet, and explored the mechanisms of the effects. OVX rats were divided into four groups and fed high-fat diets supplemented with either 0.6% dextrin (control), 0.2% lyophilized KME + 0.4% dextrin (KME-L), or 0.6% lyophilized KME (KME-H). Sham rats were fed with the high-fat diets with 0.6% dextrin as a normal-control without estrogen deficiency. After eight weeks, OVX rats exhibited impaired energy, glucose and lipid metabolism, and decreased uterine and bone masses. KME-L did not alleviate energy dysfunction. However, KME-H lowered serum levels of total-, LDL-cholesterol, and triglycerides and elevated serum HDL-cholesterol levels in OVX rats with dyslipidemia, to similar levels as normal-control rats. Furthermore, KME-H improved HOMA-IR, an indicator of insulin resistance, in OVX rats. Surprisingly, KME-H fed rats had greater lean mass in the abdomen and leg without differences in fat mass but neither dosage of KME altered bone mineral density in the lumbar spine and femur. The increased lean mass was related to greater phosphorylation of mTOR and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) in the quadriceps muscles. Hepatic triglyceride contents were lowered with KME-H in OVX rats by increasing carnitine palmitoyltransferase-1 (CPT-1) expression and decreasing fatty acid synthase (FAS) and sterol regulatory element-binding protein-1c (SREBP-1c) expression. In conclusion, KME may be useful for preventing some menopausal symptoms such as hot flushes, dyslipidemia, hepatic steatosis, and loss of muscle mass in post-menopausal women. © 2014 by the Society for Experimental Biology and Medicine.

  19. The supplementation of Korean mistletoe water extracts reduces hot flushes, dyslipidemia, hepatic steatosis, and muscle loss in ovariectomized rats

    PubMed Central

    Kim, Min Jung; Park, Jong-Heum; Kwon, Dae Young; Yang, Hye Jeong; Kim, Da Sol; Kang, Suna; Shin, Bae Keun; Moon, Na Rang; Song, Beom-Seok; Kim, Jae-Hun

    2015-01-01

    Since Korean mistletoe (Viscum album) has been used for alleviating metabolic diseases, it may also prevent the impairment of energy, glucose, lipid, and bone metabolisms in an estrogen-deficient animal model. We determined that long-term consumption of Korean mistletoe water extract (KME) can alleviate menopausal symptoms such as hot flush, increased abdominal fat mass, dyslipidemia, hyperglycemia, and decreased bone mineral density in ovariectomized (OVX) rats fed a high-fat diet, and explored the mechanisms of the effects. OVX rats were divided into four groups and fed high-fat diets supplemented with either 0.6% dextrin (control), 0.2% lyophilized KME + 0.4% dextrin (KME-L), or 0.6% lyophilized KME (KME-H). Sham rats were fed with the high-fat diets with 0.6% dextrin as a normal-control without estrogen deficiency. After eight weeks, OVX rats exhibited impaired energy, glucose and lipid metabolism, and decreased uterine and bone masses. KME-L did not alleviate energy dysfunction. However, KME-H lowered serum levels of total-, LDL-cholesterol, and triglycerides and elevated serum HDL-cholesterol levels in OVX rats with dyslipidemia, to similar levels as normal-control rats. Furthermore, KME-H improved HOMA-IR, an indicator of insulin resistance, in OVX rats. Surprisingly, KME-H fed rats had greater lean mass in the abdomen and leg without differences in fat mass but neither dosage of KME altered bone mineral density in the lumbar spine and femur. The increased lean mass was related to greater phosphorylation of mTOR and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) in the quadriceps muscles. Hepatic triglyceride contents were lowered with KME-H in OVX rats by increasing carnitine palmitoyltransferase-1 (CPT-1) expression and decreasing fatty acid synthase (FAS) and sterol regulatory element-binding protein-1c (SREBP-1c) expression. In conclusion, KME may be useful for preventing some menopausal symptoms such as hot flushes, dyslipidemia, hepatic steatosis, and loss of muscle mass in post-menopausal women. PMID:25258426

  20. Glucose uptake of the muscle and adipose tissues in diabetes and obesity disease models: evaluation of insulin and β3-adrenergic receptor agonist effects by 18F-FDG.

    PubMed

    Ishino, Seigo; Sugita, Taku; Kondo, Yusuke; Okai, Mika; Tsuchimori, Kazue; Watanabe, Masanori; Mori, Ikuo; Hosoya, Masaki; Horiguchi, Takashi; Kamiguchi, Hidenori

    2017-06-01

    One of the major causes of diabetes and obesity is abnormality in glucose metabolism and glucose uptake in the muscle and adipose tissue based on an insufficient action of insulin. Therefore, many of the drug discovery programs are based on the concept of stimulating glucose uptake in these tissues. Improvement of glucose metabolism has been assessed based on blood parameters, but these merely reflect the systemic reaction to the drug administered. We have conducted basic studies to investigate the usefulness of glucose uptake measurement in various muscle and adipose tissues in pharmacological tests using disease-model animals. A radiotracer for glucose, 18 F-2-deoxy-2-fluoro-D-glucose ( 18 F-FDG), was administered to Wistar fatty rats (type 2 diabetes model), DIO mouse (obese model), and the corresponding control animals, and the basal glucose uptake in the muscle and adipose (white and brown) tissues were compared using biodistribution method. Moreover, insulin and a β3 agonist (CL316,243), which are known to stimulate glucose uptake in the muscle and adipose tissues, were administered to assess their effect. 18 F-FDG uptake in each tissue was measured as the radioactivity and the distribution was confirmed by autoradiography. In Wistar fatty rats, all the tissues measured showed a decrease in the basal level of glucose uptake when compared to Wistar lean rats. On the other hand, the same trend was observed only in the white adipose tissue in DIO mice, while brown adipose tissue showed increments in the basal glucose uptake in this model. Insulin administration stimulated glucose uptake in both Wistar lean and fatty rats, although the responses were inhibited in Wistar fatty rats. The same tendency was shown also in control mice, but clear increments in glucose uptake were not observed in the muscle and brown adipose tissue of DIO mice after insulin administration. β3 agonist administration showed the similar trend in Wistar lean and fatty rats as insulin, while the responses were inhibited in the adipose tissues of Wistar fatty rats. A system to monitor tissue glucose uptake with 18 F-FDG enabled us to detect clear differences in basal glucose uptake between disease-model animals and their corresponding controls. The responses in the tissues to insulin or β3 agonist could be identified. Taken as a whole, the biodistribution method with 18 F-FDG was confirmed to be useful for pharmacological evaluation of anti-diabetic or anti-obesity drugs using disease-model animals.

  1. Upregulation of adipose 11-beta-hydroxysteroid dehydrogenase type 1 expression in ovariectomized rats is due to obesity rather than lack of estrogen.

    PubMed

    Paulsen, Søren K; Nielsen, Maria P; Richelsen, Bjørn; Bruun, Jens M; Flyvbjerg, Allan; Pedersen, Steen B

    2008-04-01

    Increased tissue activity of cortisol induced by the activation of inert cortisone to active cortisol through 11-beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) may play a role in the metabolic syndrome. We recently found that 11beta-HSD1 in subcutaneous adipose tissue (AT) was lower in lean women compared with lean men. Estrogen suppresses hepatic and renal 11beta-HSD1 in rats; hence we investigated the in vitro effect of estrogen on human and rat AT, and the in vivo effects on rat AT 11beta-HSD1 expression. Wistar rats were divided into four groups of eight animals. One group was sham-operated (controls) and others were ovariectomized (OVX). One OVX group was left untreated (OVX-E), another (OVX+E) received estrogen treatment, and one received a hypo-caloric diet (OVX-E+D), matching the weight gain of the control group. AT from women undergoing liposuction or surgery and from killed male and female rats were incubated with estrogen alone or in the presence of IL-1beta. Gene expressions were determined by real-time reverse transcriptase PCR. Ovariectomy resulted in a 280% increase in adipose 11beta-HSD1 expression P < 0.05). 11beta-HSD1 expression in the (OVX+E)-group was significantly reduced compared with the nonsubstituted group (P < 0.05). 11beta-HSD1 expression in the (OVX-E+D)-group was reduced significantly (P < 0.05) when compared with the level of the estrogen-substituted group. No significant differences between the control group, the (OVX+E)-group, and the (OVX-E+D)-group were found. In the in vitro studies, no direct effect of estrogen on adipose 11beta-HSD1 was found. The upregulation of 11beta-HSD1 in ovariectomized rats was most likely due to changes in body composition rather than lack of estrogen.

  2. Effects of Electroacupuncture on Pro-/Anti-inflammatory Adipokines in Serum and Adipose Tissue in Lean and Diet-induced Obese Rats.

    PubMed

    Liaw, Jacqueline J T; Peplow, Philip V

    2016-04-01

    The effects of electroacupuncture (EA) on pro-/anti-inflammatory cytokines and blood glucose (BG) in lean and obese Long Evans rats were investigated. Group 1 and Group 3 had five lean and seven obese rats, respectively, and received EA at the Zhongwan/Guanyuan acupoints on Day 1, Day 3, Day 5, Day 8, Day 10, and Day 12. Group 2 and Group 4, with five lean and seven obese rats, respectively, did not undergo EA. After induction of anesthesia, BG was measured at 10 minutes and 20 minutes. EA was applied for 30 minutes, and BG was measured again. At the end of the study, blood and white adipose tissue were collected. Analyses showed that for all groups, the mean BG at 20 minutes (baseline) and 50 minutes were significantly greater on Day 1 than on any other day. Compared with Group 2, the baseline BG in Week 1 for Group 1 was significantly lower, but Groups 3 and 4 showed no difference. Group 1 had significantly higher serum interleukin-10 and tumor necrosis factor-α than Group 2, while Group 3's serum leptin was greater than Group 4's. White adipose tissue interleukin-10 and adiponectin:leptin ratio were higher for Group 1 than Group 2. EA affected no significant differences in any other components measured for lean and obese animals. Copyright © 2015. Published by Elsevier B.V.

  3. Polyphenol-Rich Extract of Syzygium cumini Leaf Dually Improves Peripheral Insulin Sensitivity and Pancreatic Islet Function in Monosodium L-Glutamate-Induced Obese Rats

    PubMed Central

    Sanches, Jonas R.; França, Lucas M.; Chagas, Vinicyus T.; Gaspar, Renato S.; dos Santos, Kayque A.; Gonçalves, Luciana M.; Sloboda, Deborah M.; Holloway, Alison C.; Dutra, Richard P.; Carneiro, Everardo M.; Cappelli, Ana Paula G.; Paes, Antonio Marcus de A.

    2016-01-01

    Syzygium cumini (L.) Skeels (Myrtaceae) has been traditionally used to treat a number of illnesses. Ethnopharmacological studies have particularly addressed antidiabetic and metabolic-related effects of extracts prepared from its different parts, especially seed, and pulp-fruit, however. there is a lack of studies on phytochemical profile and biological properties of its leaf. As there is considerable interest in bioactive compounds to treat metabolic syndrome and its clustered risk factors, we sought to characterize the metabolic effects of hydroethanolic extract of S. cumini leaf (HESc) on lean and monosodium L-glutamate (MSG)-induced obese rats. HPLC-MS/MS characterization of the HESc polyphenolic profile, at 254 nm, identified 15 compounds pertaining to hydrolysable tannin and flavanol subclasses. At 60 days of age, both groups were randomly assigned to receive HESc (500 mg/kg) or vehicle for 30 days. At the end of treatment, obese+HESc exhibited significantly lower body weight gain, body mass index, and white adipose tissue mass, compared to obese rats receiving vehicle. Obese rats treated with HESc showed a twofold increase in lipolytic activity in the periepididymal fat pad, as well as, brought triglyceride levels in serum, liver and skeletal muscle back to levels close those found in lean animals. Furthermore, HESc also improved hyperinsulinemia and insulin resistance in obese+HESc rats, which resulted in partial reversal of glucose intolerance, as compared to obese rats. HESc had no effect in lean rats. Assessment of ex vivo glucose-stimulated insulin secretion showed HESc potentiated pancreatic function in islets isolated from both lean and obese rats treated with HESc. In addition, HESc (10–1000 μg/mL) increased glucose stimulated insulin secretion from both isolated rat islets and INS-1E β-cells. These data demonstrate that S. cumini leaf improved peripheral insulin sensitivity via stimulating/modulating β-cell insulin release, which was associated with improvements in metabolic outcomes in MSG-induced obese rats. PMID:27014062

  4. Polyphenol-Rich Extract of Syzygium cumini Leaf Dually Improves Peripheral Insulin Sensitivity and Pancreatic Islet Function in Monosodium L-Glutamate-Induced Obese Rats.

    PubMed

    Sanches, Jonas R; França, Lucas M; Chagas, Vinicyus T; Gaspar, Renato S; Dos Santos, Kayque A; Gonçalves, Luciana M; Sloboda, Deborah M; Holloway, Alison C; Dutra, Richard P; Carneiro, Everardo M; Cappelli, Ana Paula G; Paes, Antonio Marcus de A

    2016-01-01

    Syzygium cumini (L.) Skeels (Myrtaceae) has been traditionally used to treat a number of illnesses. Ethnopharmacological studies have particularly addressed antidiabetic and metabolic-related effects of extracts prepared from its different parts, especially seed, and pulp-fruit, however. there is a lack of studies on phytochemical profile and biological properties of its leaf. As there is considerable interest in bioactive compounds to treat metabolic syndrome and its clustered risk factors, we sought to characterize the metabolic effects of hydroethanolic extract of S. cumini leaf (HESc) on lean and monosodium L-glutamate (MSG)-induced obese rats. HPLC-MS/MS characterization of the HESc polyphenolic profile, at 254 nm, identified 15 compounds pertaining to hydrolysable tannin and flavanol subclasses. At 60 days of age, both groups were randomly assigned to receive HESc (500 mg/kg) or vehicle for 30 days. At the end of treatment, obese+HESc exhibited significantly lower body weight gain, body mass index, and white adipose tissue mass, compared to obese rats receiving vehicle. Obese rats treated with HESc showed a twofold increase in lipolytic activity in the periepididymal fat pad, as well as, brought triglyceride levels in serum, liver and skeletal muscle back to levels close those found in lean animals. Furthermore, HESc also improved hyperinsulinemia and insulin resistance in obese+HESc rats, which resulted in partial reversal of glucose intolerance, as compared to obese rats. HESc had no effect in lean rats. Assessment of ex vivo glucose-stimulated insulin secretion showed HESc potentiated pancreatic function in islets isolated from both lean and obese rats treated with HESc. In addition, HESc (10-1000 μg/mL) increased glucose stimulated insulin secretion from both isolated rat islets and INS-1E β-cells. These data demonstrate that S. cumini leaf improved peripheral insulin sensitivity via stimulating/modulating β-cell insulin release, which was associated with improvements in metabolic outcomes in MSG-induced obese rats.

  5. Metabolic responses with endothelin antagonism in a model of insulin resistance.

    PubMed

    Berthiaume, Nathalie; Wessale, Jerry L; Opgenorth, Terry J; Zinker, Bradley A

    2005-06-01

    Atrasentan, an endothelin antagonist, would have beneficial effects on metabolic responses in a model of insulin resistance. Zucker lean or fatty rats were maintained either on regular (lean and fatty control, n = 12) or atrasentan-treated water (5 mg/kg/d, fatty atrasentan, n = 13) for 6 weeks. There was no significant difference in water intake and body weight with the atrasentan-treated group compared with fatty controls. Although atrasentan had no effect on 3-hour fasting glucose levels, it reduced fasting insulin levels between weeks 2 and 4 of treatment by 53% (fatty control vs fatty atrasentan, P < .01). Atrasentan decreased the incremental area under the plasma glucose response curve ( Delta AUC) after a nutritionally complete meal tolerance test (MTT), by 28% in the atrasentan-treated group compared with fatty controls ( P < .05), and decreased the MTT-induced insulin Delta AUC by 63% in treated animals compared with the fatty control group ( P < .01). In addition, atrasentan significantly decreased the MTT-induced glucose-insulin index Delta AUC by 58% in treated rats compared with fatty controls ( P < .01). In summary, in the Zucker fatty rat, atrasentan significantly reduces (1) 3-hour fasting insulin levels at 4 weeks, (2) glucose and insulin MTT-induced Delta AUCs, and (3) the MTT-induced glucose-insulin index Delta AUC. These results demonstrate an improvement in hyperinsulinemia as well as in glucose tolerance and insulin sensitivity with chronic endothelin antagonism in a model of insulin resistance and suggest that chronic endothelin antagonism may have benefits in the treatment of insulin resistance and/or diabetes.

  6. A selective androgen receptor modulator with minimal prostate hypertrophic activity enhances lean body mass in male rats and stimulates sexual behavior in female rats.

    PubMed

    Allan, George F; Tannenbaum, Pamela; Sbriscia, Tifanie; Linton, Olivia; Lai, Muh-Tsann; Haynes-Johnson, Donna; Bhattacharjee, Sheela; Zhang, Xuqing; Sui, Zhihua; Lundeen, Scott G

    2007-08-01

    Androgen receptor (AR) ligands with tissue selectivity (selective androgen receptor modulators, or SARMs) have potential for treating muscle wasting, hypogonadism of aging, osteoporosis, female sexual dysfunction, and other indications. JNJ-28330835 is a nonsteroidal AR ligand with mixed agonist and antagonist activity in androgen-responsive cell-based assays. It is an orally active SARM with muscle selectivity in orchidectomized rat models. It stimulated growth of the levator ani muscle, stimulating maximal growth at a dose of 10 mg/kg. At the same time, JNJ-28330835 reduced prostate weight in intact rats by a mean of 30% at 10 mg/kg, while having no inhibitory effect on muscle. Using magnetic resonance imaging (MRI) to monitor body composition, it prevented half of the loss of lean body mass associated with orchidectomy, and restored about 30% of lost lean mass to aged orchidectomized rats. It had agonist effects on markers of both osteoclast and osteoblast activity, suggesting that it reduces bone turnover. In a model of sexual behavior, JNJ-28330835 enhanced the preference of ovariectomized female rats for sexually intact male rats over nonsexual orchidectomized males. JNJ-28330835 is a prostate-sparing SARM with the potential for clinically beneficial effects in muscle-wasting diseases and sexual function disorders.

  7. Energy expenditures & physical activity in rats with chronic suboptimal nutrition.

    PubMed

    Rising, Russell; Lifshitz, Fima

    2006-01-31

    Sub-optimally nourished rats show reduced growth, biochemical and physiological changes. However, no one has assessed metabolic rate adaptations in rats subjected to chronic suboptimal nutrition (CSN). In this study energy expenditure (EE; kcal/100 g body weight) and physical activity (PA; oscillations in weight/min/kg body weight) were assessed in rats subjected to three levels of CSN. Body weight gain was diminished (76.7 +/- 12.0 and 61.6 +/- 11.0 g) in rats fed 70 and 60% of the ad-libitum fed controls which gained more weight (148.5 +/- 32.3 g). The rats fed 80% gained weight similarly to controls (136.3 +/- 10.5 g). Percent Fat-free body mass was reduced (143.8 +/- 8.7 and 142.0 +/- 7.6 g) in rats fed 70 and 60% of ad-libitum, but not in those fed 80% (200.8 +/- 17.5 g) as compared with controls (201.6 +/- 33.4 g). Body fat (g) decreased in rats fed 80% (19.7 +/- 5.3), 70% (15.3 +/- 3.5) and 60% (9.6 +/- 2.7) of ad-libitum in comparison to controls (26.0 +/- 6.7). EE and PA were also altered by CSN. The control rats increased their EE and PA during the dark periods by 1.4 +/- 0.8 and 1.7 +/- 1.1 respectively, as compared with light the period; whereas CSN rats fed 80 and 70% of ad-libitum energy intake had reduced EE and PA during the dark periods as compared with the light period EE(7.5 +/- 1.4 and 7.8 +/- 0.6 vs. 9.0 +/- 1.2 and 9.7 +/- 0.8; p < 0.05, respectively), PA(3.1 +/- 0.8 and 1.6 +/- 0.4 vs. 4.1 +/- 0.9 and 2.4 +/- 0.4; p < 0.05) and RQ (0.87 +/- 0.04 and 0.85 +/- 0.5; vs. 0.95 +/- 0.03 and 0.91 +/- 0.05 p < 0.05). In contrast, both light (7.1 +/- 1.4) and dark period (6.2 +/- 1.0) EE and PA (3.4 +/- 0.9 and 2.5 +/- 0.5 respectively) were reduced in rats fed 60% of ad-libitum energy intake. CSN rats adapt to mild energy restriction by reducing body fat, EE and PA mainly during the dark period while growth proceeds and lean body mass is preserved. At higher levels of energy restrictions there is decreased growth, body fat and lean mass. Moreover EE and PA are also reduced during both light and dark periods.

  8. Methodological evaluation of indirect calorimetry data in lean and obese rats.

    PubMed

    Rafecas, I; Esteve, M; Fernández-López, J A; Remesar, X; Alemany, M

    1993-11-01

    1. The applicability of current indirect calorimetry formulae to the study of energy and substrate balances on obese rats has been evaluated. The energy consumption of series of 60-day rats of Wistar, lean and obese Zucker stock were studied by means of direct and indirect calorimetry, and by establishing their energy balance through measurement of food intake and retention. Calorimetric studies encompassed a 24 h period, with gas and heat output measurements every 2 or 5 min, respectively, for direct and indirect calorimetry. 2. The analysis of fat composition (diet, whole rat, and synthesized and oxidized fat) showed only small variations that had only a limited effect on the overall energy equation parameters. 3. A gap in the nitrogen balance, which represents a urinary N excretion lower than the actual protein oxidized, resulted in significant deviations in the estimation of carbohydrate and lipid oxidized when using the equations currently available for indirect calorimetry. 4. Analysis of the amino acid composition of diet and rat protein as well as of the portion actually oxidized, and correcting for the nitrogen gap allowed the establishment of a set of equations that gave better coincidence of the calculated data with the measured substrate balance. 5. The measured heat output of all rats was lower than the estimated values calculated by means of either indirect calorimetry of direct energy balance measurement; the difference corresponded to the energy lost in water evaporation, and was in the range of one-fifth of total energy produced in the three rat stocks. 6. Wistar rats showed a biphasic circadian rhythm of substrate utilization, with alternate lipid synthesis/degradation that reversed that of carbohydrate, concordant with nocturnal feeding habits. Zucker rats did not show this rhythm; obese rats synthesized large amounts of fat during most of the light period, consuming fat at the end of the dark period, which suggests more diurnal feeding habits. Lean Zucker rats showed a similar, but less marked pattern. 7. The results obtained indicate that lean and obese rats can be studied using the same indirect calorimetry formulae provided that there is an adequate measure of protein oxidation and the composition of diet does not differ.

  9. Novel lean type 2 diabetic rat model using gestational low-protein programming

    USDA-ARS?s Scientific Manuscript database

    Type 2 diabetes (T2D) in lean individuals is not well studied and up to 26% of diabetes occurs in these individuals. Although the cause is not well understood, it has been primarily attributed to nutritional issues during early development. Our objective was to develop a lean T2D model using gestati...

  10. Gastric bypass surgery is protective from high-fat diet-induced non-alcoholic fatty liver disease and hepatic endoplasmic reticulum stress.

    PubMed

    Mosinski, J D; Pagadala, M R; Mulya, A; Huang, H; Dan, O; Shimizu, H; Batayyah, E; Pai, R K; Schauer, P R; Brethauer, S A; Kirwan, J P

    2016-06-01

    High-fat diets are known to contribute to the development of obesity and related co-morbidities including non-alcoholic fatty liver disease (NAFLD). The accumulation of hepatic lipid may increase endoplasmic reticulum (ER) stress and contribute to non-alcoholic steatohepatitis and metabolic disease. We hypothesized that bariatric surgery would counter the effects of a high-fat diet (HFD) on obesity-associated NAFLD. Sixteen of 24 male Sprague Dawley rats were randomized to Sham (N = 8) or Roux-en-Y gastric bypass (RYGB) surgery (N = 8) and compared to Lean controls (N = 8). Obese rats were maintained on a HFD throughout the study. Insulin resistance (HOMA-IR), and hepatic steatosis, triglyceride accumulation, ER stress and apoptosis were assessed at 90 days post-surgery. Despite eating a HFD for 90 days post-surgery, the RYGB group lost weight (-20.7 ± 6%, P < 0.01) and improved insulin sensitivity (P < 0.05) compared to Sham. These results occurred with no change in food intake between groups. Hepatic steatosis and ER stress, specifically glucose-regulated protein-78 (Grp78, P < 0.001), X-box binding protein-1 (XBP-1) and spliced XBP-1 (P < 0.01), and fibroblast growth factor 21 (FGF21) gene expression, were normalized in the RYGB group compared to both Sham and Lean controls. Significant TUNEL staining in liver sections from the Obese Sham group, indicative of accelerated cell death, was absent in the RYGB and Lean control groups. Additionally, fasting plasma glucagon like peptide-1 was increased in RYGB compared to Sham (P < 0.02). These data suggest that in obese rats, RYGB surgery protects the liver against HFD-induced fatty liver disease by attenuating ER stress and excess apoptosis. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  11. Platelets derived from the bone marrow of diabetic animals show dysregulated endoplasmic reticulum stress proteins that contribute to increased thrombosis.

    PubMed

    Hernández Vera, Rodrigo; Vilahur, Gemma; Ferrer-Lorente, Raquel; Peña, Esther; Badimon, Lina

    2012-09-01

    Patients with diabetes mellitus have an increased risk of suffering atherothrombotic syndromes and are prone to clustering cardiovascular risk factors. However, despite their dysregulated glucose metabolism, intensive glycemic control has proven insufficient to reduce thrombotic complications. Therefore, we aimed to elucidate the determinants of thrombosis in a model of type 2 diabetes mellitus with cardiovascular risk factors clustering. Intravital microscopy was used to analyze thrombosis in vivo in Zucker diabetic fatty rats (ZD) and lean normoglycemic controls. Bone marrow (BM) transplants were performed to test the contribution of each compartment (blood or vessel wall) to thrombogenicity. ZD showed significantly increased thrombosis compared with lean normoglycemic controls. BM transplants demonstrated the key contribution of the hematopoietic compartment to increased thrombogenicity. Indeed, lean normoglycemic controls transplanted with ZD-BM showed increased thrombosis with normal glucose levels, whereas ZD transplanted with lean normoglycemic controls-BM showed reduced thrombosis despite presenting hyperglycemia. Significant alterations in megakaryopoiesis and platelet-endoplasmic reticulum stress proteins, protein disulfide isomerase and 78-kDa glucose-regulated protein, were detected in ZD, and increased tissue factor procoagulant activity was detected in plasma and whole blood of ZD. Our results indicate that diabetes mellitus with cardiovascular risk factor clustering favors BM production of hyperreactive platelets with altered protein disulfide isomerase and 78-kDa glucose-regulated protein expression that can contribute to increase thrombotic risk independently of blood glucose levels.

  12. Central nervous system neuropeptide Y signaling via the Y1 receptor partially dissociates feeding behavior from lipoprotein metabolism in lean rats.

    PubMed

    Rojas, Jennifer M; Stafford, John M; Saadat, Sanaz; Printz, Richard L; Beck-Sickinger, Annette G; Niswender, Kevin D

    2012-12-15

    Elevated plasma triglyceride (TG) levels contribute to an atherogenic dyslipidemia that is associated with obesity, diabetes, and metabolic syndrome. Numerous models of obesity are characterized by increased central nervous system (CNS) neuropeptide Y (NPY) tone that contributes to excess food intake and obesity. Previously, we demonstrated that intracerebroventricular (icv) administration of NPY in lean fasted rats also elevates hepatic production of very low-density lipoprotein (VLDL)-TG. Thus, we hypothesize that elevated CNS NPY action contributes to not only the pathogenesis of obesity but also dyslipidemia. Here, we sought to determine whether the effects of NPY on feeding and/or obesity are dissociable from effects on hepatic VLDL-TG secretion. Pair-fed, icv NPY-treated, chow-fed Long-Evans rats develop hypertriglyceridemia in the absence of increased food intake and body fat accumulation compared with vehicle-treated controls. We then modulated CNS NPY signaling by icv injection of selective NPY receptor agonists and found that Y1, Y2, Y4, and Y5 receptor agonists all induced hyperphagia in lean, ad libitum chow-fed Long-Evans rats, with the Y2 receptor agonist having the most pronounced effect. Next, we found that at equipotent doses for food intake NPY Y1 receptor agonist had the most robust effect on VLDL-TG secretion, a Y2 receptor agonist had a modest effect, and no effect was observed for Y4 and Y5 receptor agonists. These findings, using selective agonists, suggest the possibility that the effect of CNS NPY signaling on hepatic VLDL-TG secretion may be relatively dissociable from effects on feeding behavior via the Y1 receptor.

  13. Transcriptome profiling of visceral adipose tissue in a novel obese rat model, WNIN/Ob & its comparison with other animal models.

    PubMed

    Sakamuri, Siva Sankara Vara Prasad; Putcha, Uday Kumar; Veettil, Giridharan Nappan; Ayyalasomayajula, Vajreswari

    2016-09-01

    Adipose tissue dysfunction in obesity is linked to the development of type 2 diabetes and cardiovascular diseases. We studied the differential gene expression in retroperitoneal adipose tissue of a novel obese rat model, WNIN/Ob, to understand the possible underlying transcriptional changes involved in the development of obesity and associatedcomorbidities in this model. Four month old, male WNIN/Ob lean and obese rats were taken, blood was collected and tissues were dissected. Body composition analysis and adipose tissue histology were performed. Global gene expression in retroperitoneal adipose tissue of lean and obese rats was studied by microarray using Affymetrix GeneChips. One thousand and seventeen probe sets were downregulated and 963 probe sets were upregulated (more than two-fold) in adipose tissue of WNIN/Ob obese rats when compared to that of lean rats. Small nucleolar RNA (SnoRNA) made most of the underexpressed probe sets, whereas immune system-related genes werethe most overexpressed in the adipose tissues of obese rats. Genes coding for cytoskeletal proteinswere downregulated, whereas genes related to lipid biosynthesis were elevated in the adipose tissue of obese rats. Majority of the altered genes and pathways in adipose tissue of WNIN/Ob obese rats were similar to the observations in other obese animal models and human obesity. Based on these observations, it is proposed that WNIN/Ob obese rat model may be a good model to study the mechanisms involved in the development of obesity and its comorbidities. Downregulation of SnoRNA appears to be a novel feature in this obese rat model.

  14. Feeding butter with elevated content of trans-10, cis-12 conjugated linoleic acid to obese-prone rats impairs glucose and insulin tolerance.

    PubMed

    Hamilton, Melissa; Hopkins, Loren E; AlZahal, Ousama; MacDonald, Tara L; Cervone, Daniel T; Wright, David C; McBride, Brian W; Dyck, David J

    2015-09-28

    We recently demonstrated that feeding a natural CLAt10,c12-enriched butter to lean female rats resulted in small, but significant increases in fasting glucose and insulin concentrations, and impaired insulin tolerance. Our goal was to extend these findings by utilizing the diabetes-prone female fatty Zucker rat. Rats were fed custom diets containing 45 % kcal of fat derived from control and CLAt10,c12-enriched butter for 8 weeks. CLA t10,c12-enriched butter was prepared from milk collected from cows fed a high fermentable carbohydrate diet to create subacute rumen acidosis (SARA); control (non-SARA) butter was collected from cows fed a low grain diet. Female fatty Zucker rats (10 weeks old) were randomly assigned to one of four diet treatments: i) low fat (10 % kcal), ii) 45 % kcal lard, iii) 45 % kcal SARA butter, or iv) 45 % kcal non-SARA butter. A low fat fed lean Zucker group was used as a control group. After 8 weeks, i) glucose and insulin tolerance tests, ii) insulin signaling in muscle, adipose and liver, and iii) metabolic caging measurements were performed. Glucose and insulin tolerance were significantly impaired in all fatty Zucker groups, but to the greatest extent in the LARD and SARA conditions. Insulin signaling (AKT phosphorylation) was impaired in muscle, visceral (perigonadal) adipose tissue and liver in fatty Zucker rats, but was generally similar across dietary groups. Physical activity, oxygen consumption, food intake and weight gain were also similar amongst the various fatty Zucker groups. Increasing the consumption of a food naturally enriched with CLAt10,c12 significantly worsens glucose and insulin tolerance in a diabetes-prone rodent model. This outcome is not explained by changes in tissue insulin signaling, physical activity, energy expenditure, food intake or body mass.

  15. Immune function, mitogenicity, and angiogenic growth factor concentrations in lean and obese rodent sera: implications in obesity-related prostate tumor biology.

    PubMed

    Mydlo, J H; Gerstein, M I; Harris, C F; Braverman, A S

    2003-01-01

    Some studies suggest that several tumors have a greater incidence in those patients with a high fat diet, such as colon, breast, and prostate. However, we wanted to determine the effects of obesity alone, independent of diet, on the progression of prostate tumor growth. Using a genetic model of obese and lean Zucker rats, we wanted to demonstrate any sera differences in the concentration of basic fibroblast growth factor (FGF-2) and vascular endothelial cell growth factor (VEGF), two important factors involved in the growth and progression of prostate cancer. We also wanted to investigate if there were any differences in immune function between the two sera, which could also account for uninhibited tumor growth, as well as differences in mitogenic stimulation. Female Zucker rat obese and lean sera were analyzed using ELISA assays for FGF-2, VEGF, and macrophage inflammatory protein-1 alpha (MIP-1a), as a measure of macrophage function. In addition, the sera of lean and obese sera were plated on wells growing LNCaP prostate cancer cells to determine differences in mitogenicity. We found a greater concentration of FGF-2 in the sera from obese Zucker rats compared to lean Zucker rats: 6.32+/-0.56 vs 3.48+/-0.34 pg/ml, respectively, P<0.05). We also demonstrated a greater concentration of VEGF in obese rat sera compared to lean sera: 54.4+/-4.1 vs 38.0+/-2.9 pg/mL, respectively, P<0.05). We detected a trend in mitogenic stimulation among LNCaP cells along the higher concentrations of the dose-response curve (0.72+/-0.06 vs 0.51+/-0.5). However, this was not statistically significant. In addition, we did not find a significant difference in MIP-1a macrophage activity levels between sera. To conclude, we speculate that the greater concentrations of VEGF and FGF-2 in the sera of obese rodents vs lean rodents may account for some of the differences seen in obesity-related tumor growth seen in the human condition. However, the lack of any sera differences of immune function, as measured by macrophage activity, as well as no significant differences on mitogenic proliferation on LNCaP prostate cancer cells, suggests that other mechanisms may exist to explain differences seen in obesity-related prostate tumor biology.

  16. Ovariectomy and overeating palatable, energy-dense food increase subcutaneous adipose tissue more than intra-abdominal adipose tissue in rats

    PubMed Central

    2011-01-01

    Background Menopause is associated with increased adiposity, especially increased deposition of intra-abdominal (IA) adipose tissue (AT). This differs from common or 'dietary' obesity, i.e., obesity apparently due to environmentally stimulated overeating, in which IAAT and subcutaneous (S) AT increase in similar proportions. The effect of menopause on adiposity is thought to be due to the decreased secretion of ovarian estrogens. Ovariectomy in rats and other animals is a commonly used model of menopause. It is well known that ovariectomy increases adiposity and that this can be reversed by estradiol treatment, but whether ovariectomy selectively increases IAAT has not been measured directly. Therefore, we used micro-computed tomography (microCT) to investigate this question in both chow-fed and dietary-obese rats. Methods Ovariectomized, ovariectomized and estradiol treated, and sham-operated (intact) rats were fed chow or chow plus Ensure (Abbott Nutrition; n = 7/group). Total (T) AT, IAAT and SAT were measured periodically by microCT. Regional distribution of AT was expressed as IAAT as a percentage of TAT (%IAAT). Excesses in these measures were calculated with respect to chow-fed intact rats to control for normal maturational changes. Chemical analysis of fat was done in chow-fed intact and ovariectomized rats at study end. Data were analyzed by t-tests and planned comparisons. Results Body mass, TAT, total fat mass, fat-free body mass, and %IAAT all increased in chow-fed intact rats during the 41 d study. In chow-fed rats, ovariectomy increased excess body mass, TAT, fat mass, fat-free body mass, and SAT, but had little effect on IAAT, in chow-fed rats, leading to a decrease in %IAAT. Ensure feeding markedly increased SAT, IAAT and TAT and did not significantly affect %IAAT. Ovariectomy had similar effects in Ensure-fed rats as in chow-fed rats, although less statistically reliable. Estradiol treatment prevented all the effects of ovariectomy. Conclusions Both ovariectomy in rats and menopause are associated with increased TAT. After ovariectomy, fat is preferentially deposited as SAT and lean body mass increases, whereas after menopause fat is preferentially deposited as IAAT and lean body mass decreases. These opposite effects of ovariectomy and menopause on regional AT distribution and lean body mass indicate that ovariectomy in rats is not a homologous model of menopause-associated changes in body composition that should be used with great caution in investigations of adiposity-related diseases. PMID:21569336

  17. A selective androgen receptor modulator with minimal prostate hypertrophic activity restores lean body mass in aged orchidectomized male rats.

    PubMed

    Allan, George; Sbriscia, Tifanie; Linton, Olivia; Lai, Muh-Tsann; Haynes-Johnson, Donna; Bhattacharjee, Sheela; Ng, Raymond; Sui, Zhihua; Lundeen, Scott

    2008-06-01

    Androgens are required for the maintenance of normal sexual activity in adulthood and for enhancing muscle growth and lean body mass in adolescents and adults. Androgen receptor (AR) ligands with tissue selectivity (selective androgen receptor modulators, or SARMs) have potential for treating muscle wasting, hypogonadism of aging, osteoporosis, female sexual dysfunction, and other indications. JNJ-37654032 is a nonsteroidal AR ligand with mixed agonist and antagonist activity in androgen-responsive cell-based assays. It is an orally active SARM with muscle selectivity in orchidectomized rat models. It stimulated growth of the levator ani muscle with ED(50) 0.8 mg/kg, stimulating maximal growth at a dose of 3mg/kg. In contrast, it stimulated ventral prostate growth to 21% of its full size at 3mg/kg. At the same time, JNJ-37654032 reduced prostate weight in intact rats by 47% at 3mg/kg, while having no inhibitory effect on muscle. Using magnetic resonance imaging to monitor body composition, JNJ-37654032 restored about 20% of the lean body mass lost following orchidectomy in aged rats. JNJ-37654032 reduced follicle-stimulating hormone levels in orchidectomized rats and reduced testis size in intact rats. JNJ-37654032 is a potent prostate-sparing SARM with the potential for clinical benefit in muscle-wasting diseases.

  18. Differential Secretion of Satiety Hormones With Progression of Obesity in JCR: LA-corpulent Rats

    PubMed Central

    Parnell, Jill A.; Reimer, Raylene A.

    2013-01-01

    Objective To characterize the gastrointestinal tract at the onset and in well-established obesity. Methods and Procedures Lean (+/?) and obese (cp/cp) male JCR:LA-cp rats lacking a functional leptin receptor were killed at 3.5 weeks and 9 months of age and plasma concentrations of satiety hormones determined. The small intestine, colon, and stomach were measured, weighed, and mRNA levels of satiety genes quantified. Results At the onset of obesity, obese rats had greater intestine, colon, and liver mass when adjusted for body weight compared to lean rats. Conversely, adult rats with established obesity had lower intestine and colon mass and length after adjustment for body weight. Early changes in gene expression included decreased ghrelin mRNA levels in stomach and increased peptide YY (PYY) mRNA levels in duodenum of young obese rats. After massive accumulation of adipose tissue had occurred, adult obese rats had increased proglucagon and ghrelin mRNA expression in the proximal intestine. In the distal small intestine, obese rats had lower proglucagon, ghrelin, and PYY mRNA levels. Finally, at the onset and in well-established obesity, obese rats had higher plasma insulin, amylin, glucagon like peptide-1 (GLP-1), and PYY, a finding, with the exception of insulin, unique to this model. Plasma total ghrelin levels were significantly lower at the onset of obesity and established obesity compared to the lean rats. Discussion Several defects are manifested in the obese gut early on in the disease before the accumulation of large excesses of body fat and represent potential targets for early intervention in obesity. PMID:18239578

  19. Short-term beef consumption promotes systemic oxidative stress, TMAO formation and inflammation in rats, and dietary fat content modulates these effects.

    PubMed

    Van Hecke, Thomas; Jakobsen, Louise M A; Vossen, Els; Guéraud, Françoise; De Vos, Filip; Pierre, Fabrice; Bertram, Hanne C S; De Smet, Stefaan

    2016-09-14

    A high consumption of red and/or processed meat is associated with a higher risk to develop several chronic diseases in which oxidative stress, trimethylamine-N-oxide (TMAO) and/or inflammation are involved. We aimed to elucidate the effect of white (chicken) vs. red (beef) meat consumption in a low vs. high dietary fat context (2 × 2 factorial design) on oxidative stress, TMAO and inflammation in Sprague-Dawley rats. Higher malondialdehyde (MDA) concentrations were found in gastrointestinal contents (up to 96% higher) and colonic tissues (+8.8%) of rats fed the beef diets (all P < 0.05). The lean beef diet resulted in lower blood glutathione, higher urinary excretion of the major 4-hydroxy-nonenal metabolite, and higher plasma C-reactive protein, compared to the other dietary treatments (all P < 0.05). Rats on the fat beef diet had higher renal MDA (+24.4% compared to all other diets) and heart MDA (+12.9% compared to lean chicken) and lower liver vitamin E (-26.2% compared to lean chicken) (all P < 0.05). Rats on the fat diets had lower plasma vitamin E (-23.8%), lower brain MDA (-6.8%) and higher plasma superoxide dismutase activity (+38.6%), higher blood glutathione (+16.9%) (all P < 0.05) and tendency to higher ventral prostate MDA (+14.5%, P = 0.078) and prostate weight (+18.9%, P = 0.073), compared to rats on the lean diets. Consumption of the beef diets resulted in higher urinary trimethylamine (4.5-fold) and TMAO (3.7-fold) concentrations (P < 0.001), compared to the chicken diets. In conclusion, consumption of a high beef diet may stimulate gastrointestinal and/or systemic oxidative stress, TMAO formation and inflammation, depending on the dietary fat content and composition.

  20. Glucocorticoids as modulators in the control of feeding.

    PubMed

    Castonguay, T W

    1991-01-01

    Three sets of experiments have been conducted that suggest that adrenal glucocorticoids play a role in the long-term control of intake and in dietary preferences. First, obesity is dependent upon glucocorticoid-modulated metabolic pathways. Surgical or pharmacological manipulations in obese animals that eliminate or diminish corticosterone activity result in levels of intake, meal patterns, macronutrient self-selection and weight gain that revert to levels seen in lean controls. Glucocorticoid replacement of adrenalectomized genetically obese Zucker rats restores the phenotypic expression of the obese rat's genetic heritage: increased weight gain, increased fat and total daily caloric intake and adiposity are restored in a dose-dependent fashion. Second, the increased fat intake observed subsequent to fasting in Sprague-Dawley rats is correlated with an increase in circulating corticosterone. Adrenalectomy blocks the fat specific refeeding response, and corticosterone treatment of adrenalectomized rats restores the increase in fat, carbohydrate and protein observed during refeeding. Third, humans suffering from Cushing's Disease have an increased preference for dietary fat. Weight-matched but disease-free obese controls show only slight increases in fat preference when compared to normal weight controls.

  1. Dual implantation of a radio-telemeter and vascular access port allows repeated hemodynamic and pharmacological measures in conscious lean and obese rats.

    PubMed

    Bussey, C T; Leeuw, A E de; Cook, R F; Ashley, Z; Schofield, J; Lamberts, R R

    2014-07-01

    Expansion of physiological knowledge increasingly requires examination of processes in the normal, conscious state. The current study describes a novel approach combining surgical implantation of radio-telemeters with vascular access ports (VAPs) to allow repeated hemodynamic and pharmacological measures in conscious rats. Dual implantation was conducted on 16-week-old male lean and obese Zucker rats. Continued viability one month after surgery was observed in 67% of lean and 44% of obese animals, giving an overall 54% completion rate. Over the five-week measurement period, reliable and reproducible basal mean arterial pressure and heart rate measures were observed. VAP patency and receptor-independent vascular reactivity were confirmed by consistent hemodynamic responses to sodium nitroprusside (6.25 µg/kg). Acutely, minimal hemodynamic responses to repeated bolus administration of 0.2 mL saline indicated no significant effect of increased blood volume or administration stress, making repeated acute measures viable. Similarly, repeated administration of the β-adrenoceptor agonist dobutamine (30 µg/kg) at 10 min intervals resulted in reproducible hemodynamic changes in both lean and obese animals. Therefore, our study demonstrates that this new approach is viable for the acute and chronic assessment of hemodynamic and pharmacological responses in both lean and obese conscious rats. This technique reduces the demand for animal numbers and allows hemodynamic measures with minimal disruption to animals' welfare, while providing reliable and reproducible results over several weeks. In conclusion, dual implantation of a radio-telemeter and VAP introduces a valuable technique for undertaking comprehensive studies involving repeated pharmacological tests in conscious animals to address important physiological questions. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  2. Highly purified eicosapentaenoic acid ameliorates cardiac injury and adipose tissue inflammation in a rat model of metabolic syndrome

    PubMed Central

    Ito, S.; Sano, Y.; Nagasawa, K.; Matsuura, N.; Yamada, Y.; Uchinaka, A.; Murohara, T.

    2016-01-01

    Summary Introduction n‐3 Polyunsaturated fatty acids such as eicosapentaenoic acid (EPA), which are abundant in fish oil, have been shown to delay the onset of cardiovascular events. We previously established DahlS.Z‐Lepr fa/Lepr fa (DS/obese) rats, which are derived from a cross between Dahl salt‐sensitive and Zucker rats, as a model of metabolic syndrome. This study has now explored the influence of highly purified EPA on cardiac and adipose tissue pathophysiology in this animal model. Materials and methods DS/obese rats were administered EPA (300 or 1,000 mg kg−1 d−1, per os) or vehicle from age 9 to 13 weeks. Homozygous lean (DahlS.Z‐Lepr +/Lepr +, or DS/lean) littermates were studied as controls. Results Whereas EPA had no effect on body weight, food intake or systolic blood pressure in DS/obese rats, it attenuated cardiac fibrosis, diastolic dysfunction, oxidative stress and inflammation in these animals. In addition, EPA did not affect insulin resistance but reduced adipocyte hypertrophy and inflammation in visceral fat of DS/obese rats. Moreover, EPA increased circulating levels of adiponectin as well as attenuated both the down‐regulation of AMP‐activated protein kinase phosphorylation and the up‐regulation of phosphorylation of the p65 subunit of nuclear factor‐kB in the heart of DS/obese rats. Conclusions Treatment of DS/obese rats with EPA did not affect hypertension but reduced cardiac fibrosis and diastolic dysfunction, with the latter effects being accompanied by AMP‐activated protein kinase activation and inactivation of nuclear factor‐kB signalling in the heart, possibly as a result of an increase in adiponectin secretion. EPA may be suitable for the treatment of cardiac injury associated with metabolic syndrome. PMID:27708849

  3. Effects of Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036 on hepatic steatosis in Zucker rats.

    PubMed

    Plaza-Diaz, Julio; Gomez-Llorente, Carolina; Abadia-Molina, Francisco; Saez-Lara, Maria Jose; Campaña-Martin, Laura; Muñoz-Quezada, Sergio; Romero, Fernando; Gil, Angel; Fontana, Luis

    2014-01-01

    We have previously described the safety and immunomodulatory effects of Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036 in healthy volunteers. The scope of this work was to evaluate the effects of these probiotic strains on the hepatic steatosis of obese rats. We used the Zucker rat as a genetic model of obesity. Zucker-Lepr(fa/fa) rats received one of three probiotic strains, a mixture of L. paracasei CNCM I-4034 and B. breve CNCM I-4035, or a placebo for 30 days. An additional group of Zucker-lean+/fa rats received a placebo for 30 days. No alterations in intestinal histology, in the epithelial, lamina propria, muscular layers of the ileal or colonic mucosa, or the submucosae, were observed in any of the experimental groups. Triacylglycerol content decreased in the liver of Zucker-Lepr(fa/fa) rats that were fed L. rhamnosus, B. breve, or the mixture of B. breve and L. paracasei. Likewise, the area corresponding to neutral lipids was significantly smaller in the liver of all four groups of Zucker-Lepr(fa/fa) rats that received probiotics than in rats fed the placebo. Zucker-Lepr(fa/fa) rats exhibited significantly greater serum LPS levels than Zucker-lean+/fa rats upon administration of placebo for 30 days. In contrast, all four groups of obese Zucker-Lepr(fa/fa) rats that received LAB strains exhibited serum LPS concentrations similar to those of Zucker-lean+/fa rats. Serum TNF-α levels decreased in the Zucker-Lepr(fa/fa) rats that received B. breve, L. rhamnosus, or the mixture, whereas L. paracasei feeding decreased IL-6 levels in the serum of Zucker-Lepr(fa/fa) rats. In conclusion, the probiotic strains reduced hepatic steatosis in part by lowering serum LPS, and had an anti-inflammatory effect in obese Zucker rats.

  4. Discovery of Novel Lipid Profiles in PCOS: Do Insulin and Androgen Oppositely Regulate Bioactive Lipid Production?

    PubMed

    Li, Shengxian; Chu, Qianqian; Ma, Jing; Sun, Yun; Tao, Tao; Huang, Rong; Liao, Yu; Yue, Jiang; Zheng, Jun; Wang, Lihua; Xue, Xinli; Zhu, Mingjiang; Kang, Xiaonan; Yin, Huiyong; Liu, Wei

    2017-03-01

    Polycystic ovary syndrome (PCOS) is a complex syndrome showing clinical features of an endocrine/metabolic disorder, including hyperinsulinemia and hyperandrogenism. Polyunsaturated fatty acids (PUFAs) and their derivatives, both tightly linked to PCOS and obesity, play important roles in inflammation and reproduction. This study aimed to investigate serum lipid profiles in newly diagnosed patients with PCOS using lipidomics and correlate these features with the hyperinsulinemia and hyperandrogenism associated with PCOS and obesity. Thirty-two newly diagnosed women with PCOS and 34 controls were divided into obese and lean subgroups. A PCOS rat model was used to validate results of the human studies. Serum lipid profiles, including phospholipids, free fatty acids (FFAs), and bioactive lipids, were analyzed using gas chromatography-mass spectrometry (MS) and liquid chromatography-MS. Elevation in phosphatidylcholine and a concomitant decrease in lysophospholipid were found in obese patients with PCOS vs lean controls. Obese patients with PCOS had decreased PUFA levels and increased levels of long-chain saturated fatty acids vs lean controls. Serum bioactive lipids downstream of arachidonic acid were increased in obese controls, but reduced in both obese and lean patients with PCOS vs their respective controls. Patients with PCOS showed abnormal levels of phosphatidylcholine, FFAs, and PUFA metabolites. Circulating insulin and androgens may have opposing effects on lipid profiles in patients with PCOS, particularly on the bioactive lipid metabolites derived from PUFAs. These clinical observations warrant further studies of the molecular mechanisms and clinical implications of PCOS and obesity. Copyright © 2017 by the Endocrine Society

  5. Discovery of Novel Lipid Profiles in PCOS: Do Insulin and Androgen Oppositely Regulate Bioactive Lipid Production?

    PubMed Central

    Li, Shengxian; Chu, Qianqian; Ma, Jing; Sun, Yun; Tao, Tao; Huang, Rong; Liao, Yu; Yue, Jiang; Zheng, Jun; Wang, Lihua; Xue, Xinli; Zhu, Mingjiang; Kang, Xiaonan; Yin, Huiyong

    2017-01-01

    Abstract Context: Polycystic ovary syndrome (PCOS) is a complex syndrome showing clinical features of an endocrine/metabolic disorder, including hyperinsulinemia and hyperandrogenism. Polyunsaturated fatty acids (PUFAs) and their derivatives, both tightly linked to PCOS and obesity, play important roles in inflammation and reproduction. Objective: This study aimed to investigate serum lipid profiles in newly diagnosed patients with PCOS using lipidomics and correlate these features with the hyperinsulinemia and hyperandrogenism associated with PCOS and obesity. Design and Setting: Thirty-two newly diagnosed women with PCOS and 34 controls were divided into obese and lean subgroups. A PCOS rat model was used to validate results of the human studies. Main Outcome Measures: Serum lipid profiles, including phospholipids, free fatty acids (FFAs), and bioactive lipids, were analyzed using gas chromatography–mass spectrometry (MS) and liquid chromatography–MS. Results: Elevation in phosphatidylcholine and a concomitant decrease in lysophospholipid were found in obese patients with PCOS vs lean controls. Obese patients with PCOS had decreased PUFA levels and increased levels of long-chain saturated fatty acids vs lean controls. Serum bioactive lipids downstream of arachidonic acid were increased in obese controls, but reduced in both obese and lean patients with PCOS vs their respective controls. Conclusions: Patients with PCOS showed abnormal levels of phosphatidylcholine, FFAs, and PUFA metabolites. Circulating insulin and androgens may have opposing effects on lipid profiles in patients with PCOS, particularly on the bioactive lipid metabolites derived from PUFAs. These clinical observations warrant further studies of the molecular mechanisms and clinical implications of PCOS and obesity. PMID:27886515

  6. In vivo assessment of diet-induced rat hepatic steatosis development by percutaneous single-fiber spectroscopy detects scattering spectral changes due to fatty infiltration

    NASA Astrophysics Data System (ADS)

    Piao, Daqing; Sultana, Nigar; Holyoak, G. Reed; Ritchey, Jerry W.; Wall, Corey R.; Murray, Jill K.; Bartels, Kenneth E.

    2015-11-01

    This study explores percutaneous single-fiber spectroscopy (SfS) of rat livers undergoing fatty infiltration. Eight test rats were fed a methionine-choline-deficient (MCD) diet, and four control rats were fed a normal diet. Two test rats and one control rat were euthanized on days 12, 28, 49, and 77 following initiation of the diet, after percutaneous SfS of the liver under transabdominal ultrasound guidance. Histology of each set of the two euthanized test rats showed mild and mild hepatic lipid accumulations on day 12, moderate and severe on day 28, severe and mild on day 49, and moderate and mild on day 77. Livers with moderate or higher lipid accumulation generally presented higher spectral reflectance intensity when compared to lean livers. Livers of the eight test rats on day 12, two of which had mild lipid accumulation, revealed an average scattering power of 0.37±0.14 in comparison to 0.07±0.14 for the four control rats (p<0.01). When livers of the test rats with various levels of fatty infiltration were combined, the average scattering power was 0.36±0.15 in comparison to 0.14±0.24 of the control rats (0.05

  7. In Vivo Cannabidiol Treatment Improves Endothelium-Dependent Vasorelaxation in Mesenteric Arteries of Zucker Diabetic Fatty Rats

    PubMed Central

    Wheal, Amanda J.; Jadoon, Khalid; Randall, Michael D.; O’Sullivan, Saoirse E.

    2017-01-01

    Background and purpose: We have shown that in vitro treatment with cannabidiol (CBD, 2 h) enhances endothelial function in arteries from Zucker diabetic fatty (ZDF) rats, partly due to a cyclooxygenase (COX)-mediated mechanism. The aim of the present study was to determine whether treatment with CBD in vivo would also enhance endothelial function. Experimental approach: Male ZDF rats, or ZDF Lean rats, were treated for 7 days (daily i.p. injection) with either 10mg/kg CBD or vehicle (n = 6 per group). Sections of mesenteric resistance arteries, femoral arteries and thoracic aortae were mounted on a wire myograph, and cumulative concentration-response curves to endothelium-dependent (acetylcholine, ACh, 1 nM–100 μM) or endothelium-independent (sodium nitroprusside, SNP, 1 nM–100 μM) agents were constructed. Multiplex analysis was used to measure serum metabolic and cardiovascular biomarkers. Key results: Vasorelaxation to ACh was significantly enhanced in mesenteric arteries from CBD-treated ZDF rats, but not ZDF Lean rats. The enhanced vasorelaxation in ZDF mesenteric arteries was no longer observed after COX inhibition using indomethacin or nitric oxide (NO) inhibition using L-NAME. Increased levels of serum c-peptide, insulin and intracellular adhesion molecule-1 observed in the ZDF compared to ZDF Lean rats were no longer significant after 7 days CBD treatment. Conclusion and implications: Short-term in vivo treatment with CBD improves ex vivo endothelium-dependent vasorelaxation in mesenteric arteries from ZDF rats due to COX- or NO-mediated mechanisms, and leads to improvements in serum biomarkers. PMID:28572770

  8. The ghrelin receptor agonist HM01 mimics the neuronal effects of ghrelin in the arcuate nucleus and attenuates anorexia-cachexia syndrome in tumor-bearing rats.

    PubMed

    Borner, Tito; Loi, Laura; Pietra, Claudio; Giuliano, Claudio; Lutz, Thomas A; Riediger, Thomas

    2016-07-01

    The gastric hormone ghrelin positively affects energy balance by increasing food intake and reducing energy expenditure. Ghrelin mimetics are a possible treatment against cancer anorexia-cachexia syndrome (CACS). This study aimed to characterize the action of the nonpeptidergic ghrelin receptor agonist HM01 on neuronal function, energy homeostasis and muscle mass in healthy rats and to evaluate its possible usefulness for the treatment of CACS in a rat tumor model. Using extracellular single-unit recordings, we tested whether HM01 mimics the effects of ghrelin on neuronal activity in the arcuate nucleus (Arc). Furthermore, we assessed the effect of chronic HM01 treatment on food intake (FI), body weight (BW), lean and fat volumes, and muscle mass in healthy rats. Using a hepatoma model, we investigated the possible beneficial effects of HM01 on tumor-induced anorexia, BW loss, muscle wasting, and metabolic rate. HM01 (10(-7)-10(-6) M) mimicked the effect of ghrelin (10(-8) M) by increasing the firing rate in 76% of Arc neurons. HM01 delivered chronically for 12 days via osmotic minipumps (50 μg/h) increased FI in healthy rats by 24%, paralleled by increased BW, higher fat and lean volumes, and higher muscle mass. Tumor-bearing rats treated with HM01 had 30% higher FI than tumor-bearing controls and were protected against BW loss. HM01 treatment resulted in higher muscle mass and fat mass. Moreover, tumor-bearing rats reduced their metabolic rate following HM01 treatment. Our studies substantiate the possible therapeutic usefulness of ghrelin receptor agonists like HM01 for the treatment of CACS and possibly other forms of disease-related anorexia and cachexia. Copyright © 2016 the American Physiological Society.

  9. New animal models reveal that coenzyme Q2 (Coq2) and placenta-specific 8 (Plac8) are candidate genes for the onset of type 2 diabetes associated with obesity in rats.

    PubMed

    Sasaki, Daiki; Kotoh, Jun; Watadani, Risa; Matsumoto, Kozo

    2015-12-01

    Obesity is a major risk factor for the onset of type 2 diabetes; however, little is known about the gene(s) involved. Therefore, we developed new animal models of obesity to search for diabetogenic genes associated with obesity. We generated double congenic rat strains with a hyperglycaemic quantitative trait locus (QTL) derived from the Otsuka Long-Evans Tokushima Fatty rat and a fa/fa (Lepr-/-) locus derived from the Zucker Fatty rat; phenotypic analysis for plasma glucose and insulin levels and RNA and protein levels were determined using reverse transcription quantitative PCR and Western blotting analyses, respectively. The double congenic strain F344-fa-nidd2 (Lepr-/- and Nidd2/of) exhibited significantly higher glucose levels and significantly lower hypoglycaemic response to insulin than the obese control strain F344-fa (Lepr-/-). These phenotypes were clearly observed in the obese strains but not in the lean strains. These results indicate that the Nidd2/of locus harbours a diabetogenic gene associated with obesity. We measured the expression of 60 genes in the Nidd2/of QTL region between the strains and found that the mRNA expression levels of five genes were significantly different between the strains under the condition of obesity. However, three of the five genes were differentially expressed in both obese and lean rats, indicating that these genes are not specific for the condition of obesity. Conversely, the other two genes, coenzyme Q2 (Coq2) and placenta-specific 8 (Plac8), were differentially expressed only in the obese rats, suggesting that these two genes are candidates for the onset of type 2 diabetes associated with obesity in rats.

  10. Robust Reductions of Excess Weight and Hyperphagia by Beloranib in Rat Models of Genetic and Hypothalamic Obesity.

    PubMed

    Elfers, Clinton T; Roth, Christian L

    2017-01-01

    Hypothalamic lesions or deficient melanocortin (MC) signaling via MC4 receptor (MC4r) mutations often lead to hyperphagia and severe treatment-resistant obesity. We tested the methionine aminopeptidase 2-inhibitor beloranib (ZGN-440) in 2 male rat models of obesity, one modeling hypothalamic obesity with a combined medial hypothalamic lesion (CMHL) and the other modeling a monogenic form of obesity with MC4r mutations (MC4r knockout [MC4rKO]). In CMHL rats (age 3 months), postsurgery excess weight gain was significantly inhibited (ZGN-440, 0.2 ± 0.7 g/d; vehicle, 3.8 ± 0.6 g/d; P < 0.001) during 12 days of ZGN-440 treatment (0.1 mg/kg daily subcutaneously) together with a 30% reduction of daily food intake vs vehicle injection. In addition, ZGN-440 treatment improved glucose tolerance and reduced plasma insulin, and circulating levels of α-melanocyte stimulating hormone were increased. Serum lipid levels did not differ significantly in ZGN-440-treated vs vehicle-treated rats. Similar results were found in MC4rKO rats: ZGN-440 treatment (14-21 d) was associated with significant reductions of body weight gain (MC4rKO, -1.7 ± 0.6 vs 2.8 ± 0.4 g/d; lean wild-type controls, -0.7 ± 0.2 vs 1.7 ± 0.7 g/d; ZGN-440 vs vehicle, respectively), reduction of food intake (MC4rKO, -28%; lean controls, -7.5%), and insulin resistance, whereas circulating levels of interleukin-1β did not change. In both obesity models, body temperature and locomotor activity were not affected by ZGN-440 treatment. In conclusion, the robust reduction of body weight in response to ZGN-440 observed in rats with severe obesity is related to a strong reduction of food intake that is likely related to changes in the central regulation of feeding. Copyright © 2017 by the Endocrine Society.

  11. Vitamin A status affects obesity development and hepatic expression of key genes for fuel metabolism in Zucker fatty rats.

    PubMed

    Zhang, Yan; Li, Rui; Li, Yang; Chen, Wei; Zhao, Shi; Chen, Guoxun

    2012-08-01

    We hypothesized that vitamin A (VA) status may affect obesity development. Male Zucker lean (ZL) and fatty (ZF) rats after weaning were fed a synthetic VA deficient (VAD) or VA sufficient (VAS) diet for 8 weeks before their plasma parameters and hepatic genes' expression were analyzed. The body mass (BM) of ZL or ZF rats fed the VAD diet was lower than that of their corresponding controls fed the VAS diet at 5 or 2 weeks, respectively. The VAD ZL and ZF rats had less food intake than the VAS rats after 5 weeks. The VAD ZL and ZF rats had lower plasma glucose, triglyceride, insulin, and leptin levels, as well as lower liver glycogen content, net mass of epididymal fat, and liver/BM and epididymal fat/BM ratios (ZL only) than their respective VAS controls. VAD rats had lower hepatic Cyp26a1, Srebp-1c, Fas, Scd1, Me1, Gck, and Pklr (ZL and ZF); and higher Igfbp1 (ZL and ZF), Pck1(ZF only), and G6pc (ZF only) mRNA levels than their respective VAS controls. We conclude that ZL and ZF rats responded differently to dietary VA deficiency. VA status affected obesity development and altered the expression of hepatic genes for fuel metabolism in ZF rats. The mechanisms will help us to combat metabolic diseases.

  12. Gravity and body mass regulation

    NASA Technical Reports Server (NTRS)

    Warren, L. E.; Horwitz, B. A.; Fuller, C. A.

    1997-01-01

    The effects of altered gravity on body mass, food intake, energy expenditure, and body composition are examined. Metabolic adjustments are reviewed in maintenance of energy balance, neural regulation, and humoral regulation are discussed. Experiments with rats indicate that genetically obese rats respond differently to hypergravity than lean rats.

  13. LKB1-AMPK signaling in muscle from obese insulin-resistant Zucker rats and effects of training.

    PubMed

    Sriwijitkamol, Apiradee; Ivy, John L; Christ-Roberts, Christine; DeFronzo, Ralph A; Mandarino, Lawrence J; Musi, Nicolas

    2006-05-01

    AMPK is a key regulator of fat and carbohydrate metabolism. It has been postulated that defects in AMPK signaling could be responsible for some of the metabolic abnormalities of type 2 diabetes. In this study, we examined whether insulin-resistant obese Zucker rats have abnormalities in the AMPK pathway. We compared AMPK and ACC phosphorylation and the protein content of the upstream AMPK kinase LKB1 and the AMPK-regulated transcriptional coactivator PPARgamma coactivator-1 (PGC-1) in gastrocnemius of sedentary obese Zucker rats and sedentary lean Zucker rats. We also examined whether 7 wk of exercise training on a treadmill reversed abnormalities in the AMPK pathway in obese Zucker rats. In the obese rats, AMPK phosphorylation was reduced by 45% compared with lean rats. Protein expression of the AMPK kinase LKB1 was also reduced in the muscle from obese rats by 43%. In obese rats, phosphorylation of ACC and protein expression of PGC-1alpha, two AMPK-regulated proteins, tended to be reduced by 50 (P = 0.07) and 35% (P = 0.1), respectively. There were no differences in AMPKalpha1, -alpha2, -beta1, -beta2, and -gamma3 protein content between lean and obese rats. Training caused a 1.5-fold increase in AMPKalpha1 protein content in the obese rats, although there was no effect of training on AMPK phosphorylation and the other AMPK isoforms. Furthermore, training also significantly increased LKB1 and PGC-1alpha protein content 2.8- and 2.5-fold, respectively, in the obese rats. LKB1 protein strongly correlated with hexokinase II activity (r = 0.75, P = 0.001), citrate synthase activity (r = 0.54, P = 0.02), and PGC-1alpha protein content (r = 0.81, P < 0.001). In summary, obese insulin-resistant rodents have abnormalities in the LKB1-AMPK-PGC-1 pathway in muscle, and these abnormalities can be restored by training.

  14. Atrazine induced epigenetic transgenerational inheritance of disease, lean phenotype and sperm epimutation pathology biomarkers

    PubMed Central

    McBirney, Margaux; King, Stephanie E.; Pappalardo, Michelle; Houser, Elizabeth; Unkefer, Margaret; Nilsson, Eric; Sadler-Riggleman, Ingrid; Beck, Daniel; Winchester, Paul

    2017-01-01

    Ancestral environmental exposures to a variety of environmental toxicants and other factors have been shown to promote the epigenetic transgenerational inheritance of adult onset disease. The current study examined the potential transgenerational actions of the herbicide atrazine. Atrazine is one of the most commonly used herbicides in the agricultural industry, in particular with corn and soy crops. Outbred gestating female rats were transiently exposed to a vehicle control or atrazine. The F1 generation offspring were bred to generate the F2 generation and then the F2 generation bred to generate the F3 generation. The F1, F2 and F3 generation control and atrazine lineage rats were aged and various pathologies investigated. The male sperm were collected to investigate DNA methylation differences between the control and atrazine lineage sperm. The F1 generation offspring (directly exposed as a fetus) did not develop disease, but weighed less compared to controls. The F2 generation (grand-offspring) was found to have increased frequency of testis disease and mammary tumors in males and females, early onset puberty in males, and decreased body weight in females compared to controls. The transgenerational F3 generation rats were found to have increased frequency of testis disease, early onset puberty in females, behavioral alterations (motor hyperactivity) and a lean phenotype in males and females. The frequency of multiple diseases was significantly higher in the transgenerational F3 generation atrazine lineage males and females. The transgenerational transmission of disease requires germline (egg or sperm) epigenetic alterations. The sperm differential DNA methylation regions (DMRs), termed epimutations, induced by atrazine were identified in the F1, F2 and F3 generations. Gene associations with the DMRs were identified. For the transgenerational F3 generation sperm, unique sets of DMRs (epimutations) were found to be associated with the lean phenotype or testis disease. These DMRs provide potential biomarkers for transgenerational disease. The etiology of disease appears to be in part due to environmentally induced epigenetic transgenerational inheritance, and epigenetic biomarkers may facilitate the diagnosis of the ancestral exposure and disease susceptibility. Observations indicate that although atrazine does not promote disease in the directly exposed F1 generation, it does have the capacity to promote the epigenetic transgenerational inheritance of disease. PMID:28931070

  15. The Effects of Fortetropin Supplementation on Body Composition, Strength, and Power in Humans and Mechanism of Action in a Rodent Model.

    PubMed

    Sharp, Matthew H; Lowery, Ryan P; Mobley, C Brooks; Fox, Carlton D; de Souza, Eduardo O; Shields, Kevin A; Healy, James C; Arick, Ned Q; Thompson, Richard M; Roberts, Michael D; Wilson, Jacob M

    2016-01-01

    The purpose of this study was to investigate the effects of Fortetropin on skeletal muscle growth and strength in resistance-trained individuals and to investigate the anabolic and catabolic signaling effects using human and rodent models. In the rodent model, male Wistar rats (250 g) were gavage fed with either 1.2 ml of tap water control (CTL) or 0.26 g Fortetropin for 8 days. Then rats participated in a unilateral plantarflexion exercise bout. Nonexercised and exercised limbs were harvested at 180 minutes following and analyzed for gene and protein expression relative to mammalian target of rapamycin (mTOR) and ubiquitin signaling. For the human model, 45 (of whom 37 completed the study), resistance-trained college-aged males were divided equally into 3 groups receiving a placebo macronutrient matched control, 6.6 or 19.8 g of Fortetropin supplementation during 12 weeks of resistance training. Lean mass, muscle thickness, and lower and upper body strength were measured before and after 12 weeks of training. The human study results indicated a Group × Time effect (p ≤ 0.05) for lean mass in which the 6.6 g (+1.7 kg) and 19.8 g (+1.68 kg) but not placebo (+0.6 kg) groups increased lean mass. Similarly, there was a Group × Time effect for muscle thickness (p ≤ 0.05), which increased in the experimental groups only. All groups increased equally in bench press and leg press strength. In the rodent model, a main effect for exercise (p ≤ 0.05) in which the control plus exercise but not Fortetropin plus exercise increased both ubiquitin monomer protein expression and polyubiquitination. mTOR signaling was elevated to a greater extent in the Fortetropin exercising conditions as indicated by greater phosphorylation status of 4EBP1, rp6, and p70S6K for both exercising conditions. Fortetropin supplementation increases lean body mass (LBM) and decreases markers of protein breakdown while simultaneously increasing mTOR signaling.

  16. Hypersensitivity of prediabetic JCR:LA-cp rats to fine airborne combustion particle-induced direct and noradrenergic-mediated vascular contraction.

    PubMed

    Proctor, Spencer D; Dreher, Kevin L; Kelly, Sandra E; Russell, James C

    2006-04-01

    Particulate matter with mean aerodynamic diameter < or =2.5 microm (PM(2.5)), from diesel exhaust, coal or residual oil burning, and from industrial plants, is a significant component of airborne pollution. Type 2 diabetes is associated with enhanced risk of adverse cardiovascular events following exposure to PM(2.5). Particle properties, sources, and pathophysiological mechanisms responsible are unknown. We studied effects of residual oil fly ash (ROFA) from a large U.S. powerplant on vascular function in a prediabetic, hyperinsulinemic model, the JCR:LA-cp rat. Residual oil fly ash leachate (ROFA-L) was studied using aortic rings from young-adult, obese, insulin-resistant rats and lean normal rats in vitro. Contractile response to phenylephrine and relaxant response to acetylcholine were determined in the presence and absence of L-NAME (N(G)-nitro-L-arginine methyl ester). In a separate series of studies, the direct contractile effects of ROFA-L on repeated exposure were determined. ROFA-L (12.5 microg ml(-1)) increased phenylephrine-mediated contraction in obese (p < 0.05), but not in lean rat aortae, with the effect being exacerbated by L-NAME, and it reduced acetylcholine-mediated relaxation of both obese and lean aortae (p < 0.0001). Initial exposure of aortae to ROFA-L caused a small contractile response (<0.05 g), which was markedly greater on second exposure in the obese (approximately 0.6 g, p < 0.0001) aortae but marginal in lean (approximately 0.1 g) aortae. Our data demonstrate that bioavailable constituents of oil combustion particles enhance noradrenergic-mediated vascular contraction, impair endothelium-mediated relaxation, and induce direct vasocontraction in prediabetic rats. These observations provide the first direct evidence of the causal properties of PM(2.5) and identify the pathophysiological role of the early prediabetic state in susceptibility to environmentally induced cardiovascular disease. These are important implications for public health and public policy.

  17. Dietary salt restriction improves cardiac and adipose tissue pathology independently of obesity in a rat model of metabolic syndrome.

    PubMed

    Hattori, Takuya; Murase, Tamayo; Takatsu, Miwa; Nagasawa, Kai; Matsuura, Natsumi; Watanabe, Shogo; Murohara, Toyoaki; Nagata, Kohzo

    2014-12-02

    Metabolic syndrome (MetS) enhances salt sensitivity of blood pressure and is an important risk factor for cardiovascular disease. The effects of dietary salt restriction on cardiac pathology associated with metabolic syndrome remain unclear. We investigated whether dietary salt restriction might ameliorate cardiac injury in DahlS.Z-Lepr(fa)/Lepr(fa) (DS/obese) rats, which are derived from a cross between Dahl salt-sensitive and Zucker rats and represent a model of metabolic syndrome. DS/obese rats were fed a normal-salt (0.36% NaCl in chow) or low-salt (0.0466% NaCl in chow) diet from 9 weeks of age and were compared with similarly treated homozygous lean littermates (DahlS.Z-Lepr(+)/Lepr(+), or DS/lean rats). DS/obese rats fed the normal-salt diet progressively developed hypertension and showed left ventricular hypertrophy, fibrosis, and diastolic dysfunction at 15 weeks. Dietary salt restriction attenuated all of these changes in DS/obese rats. The levels of cardiac oxidative stress and inflammation and the expression of cardiac renin-angiotensin-aldosterone system genes were increased in DS/obese rats fed the normal-salt diet, and dietary salt restriction downregulated these parameters in both DS/obese and DS/lean rats. In addition, dietary salt restriction attenuated the increase in visceral adipose tissue inflammation and the decrease in insulin signaling apparent in DS/obese rats without reducing body weight or visceral adipocyte size. Dietary salt restriction did not alter fasting serum glucose levels but it markedly decreased the fasting serum insulin concentration in DS/obese rats. Dietary salt restriction not only prevents hypertension and cardiac injury but also ameliorates insulin resistance, without reducing obesity, in this model of metabolic syndrome. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  18. Dipeptidylpeptidase--IV, a key enzyme for the degradation of incretins and neuropeptides: activity and expression in the liver of lean and obese rats.

    PubMed

    Tarantola, E; Bertone, V; Milanesi, G; Capelli, E; Ferrigno, A; Neri, D; Vairetti, M; Barni, S; Freitas, I

    2012-10-08

    Given the scarcity of donors, moderately fatty livers (FLs) are currently being considered as possible grafts for orthotopic liver transplantation (OLT), notwithstanding their poor tolerance to conventional cold preservation. The behaviour of parenchymal and sinusoidal liver cells during transplantation is being studied worldwide. Much less attention has been paid to the biliary tree, although this is considered the Achille's heel even of normal liver transplantation. To evaluate the response of the biliary compartment of FLs to the various phases of OLT reliable markers are necessary. Previously we demonstrated that Alkaline Phosphatase was scarcely active in bile canaliculi of FLs and thus ruled it out as a marker. As an alternative, dipeptidylpeptidase-IV (DPP-IV), was investigated. This ecto-peptidase plays an important role in glucose metabolism, rapidly inactivating insulin secreting hormones (incretins) that are important regulators of glucose metabolism. DPP-IV inhibitors are indeed used to treat Type II diabetes. Neuropeptides regulating bile transport and composition are further important substrates of DPP-IV in the enterohepatic axis. DPP-IV activity was investigated with an azo-coupling method in the liver of fatty Zucker rats (fa/fa), using as controls lean Zucker (fa/+) and normal Wistar rats. Protein expression was studied by immunofluorescence with the monoclonal antibody (clone 5E8). In Wistar rat liver, DPP-IV activity and expression were high in the whole biliary tree, and moderate in sinusoid endothelial cells, in agreement with the literature. Main substrates of DPP-IV in hepatocytes and cholangiocytes could be incretins GLP-1 and GIP, and neuropeptides such as vasoactive intestinal peptide (VIP) and substance P, suggesting that these substances are inactivated or modified through the biliary route. In lean Zucker rat liver the enzyme reaction and protein expression patterns were similar to those of Wistar rat. In obese rat liver the patterns of DPP-IV activity and expression in hepatocytes reflected the morphological alterations induced by steatosis as lipid-rich hepatocytes had scarce activity, located either in deformed bile canaliculi or in the sinusoidal and lateral domains of the plasma membrane. These findings suggest that bile canaliculi in steatotic cells have an impaired capacity to inactivate incretins and neuropeptides. Incretin and/or neuropeptide deregulation is indeed thought to play important roles in obesity and insulin-resistance. No alteration in enzyme activity and expression was found in the upper segments of the biliary tree of obese respect to lean Zucker and Wistar rats. In conclusion, this research demonstrates that DPP-IV is a promising in situ marker of biliary functionality not only of normal but also of fatty rats. The approach, initially devised to investigate the behaviour of the liver during the various phases of transplantation, appears to have a much higher potentiality as it could be further exploited to investigate any pathological or stressful conditions involving the biliary tract (i.e., metabolic syndrome and cholestasis) and the response of the biliary tract to therapy and/or to surgery.

  19. Dipeptidylpeptidase-IV, a key enzyme for the degradation of incretins and neuropeptides: activity and expression in the liver of lean and obese rats

    PubMed Central

    Tarantola, E.; Bertone, V.; Milanesi, G.; Capelli, E.; Ferrigno, A.; Neri, D.; Vairetti, M.; Barni, S.; Freitas, I.

    2012-01-01

    Given the scarcity of donors, moderately fatty livers (FLs) are currently being considered as possible grafts for orthotopic liver transplantation (OLT), notwithstanding their poor tolerance to conventional cold preservation. The behaviour of parenchymal and sinusoidal liver cells during transplantation is being studied worldwide. Much less attention has been paid to the biliary tree, although this is considered the Achille's heel even of normal liver transplantation. To evaluate the response of the biliary compartment of FLs to the various phases of OLT reliable markers are necessary. Previously we demonstrated that Alkaline Phosphatase was scarcely active in bile canaliculi of FLs and thus ruled it out as a marker. As an alternative, dipeptidylpeptidase-IV (DPP-IV), was investigated. This ecto-peptidase plays an important role in glucose metabolism, rapidly inactivating insulin secreting hormones (incretins) that are important regulators of glucose metabolism. DPP-IV inhibitors are indeed used to treat Type II diabetes. Neuropeptides regulating bile transport and composition are further important substrates of DPP-IV in the enterohepatic axis. DPP-IV activity was investigated with an azo-coupling method in the liver of fatty Zucker rats (fa/fa), using as controls lean Zucker (fa/+) and normal Wistar rats. Protein expression was studied by immunofluorescence with the monoclonal antibody (clone 5E8). In Wistar rat liver, DPP-IV activity and expression were high in the whole biliary tree, and moderate in sinusoid endothelial cells, in agreement with the literature. Main substrates of DPP-IV in hepatocytes and cholangiocytes could be incretins GLP-1 and GIP, and neuropeptides such as vasoactive intestinal peptide (VIP) and substance P, suggesting that these substances are inactivated or modified through the biliary route. In lean Zucker rat liver the enzyme reaction and protein expression patterns were similar to those of Wistar rat. In obese rat liver the patterns of DPP-IV activity and expression in hepatocytes reflected the morphological alterations induced by steatosis as lipid-rich hepatocytes had scarce activity, located either in deformed bile canaliculi or in the sinusoidal and lateral domains of the plasma membrane. These findings suggest that bile canaliculi in steatotic cells have an impaired capacity to inactivate incretins and neuropeptides. Incretin and/or neuropeptide deregulation is indeed thought to play important roles in obesity and insulin-resistance. No alteration in enzyme activity and expression was found in the upper segments of the biliary tree of obese respect to lean Zucker and Wistar rats. In conclusion, this research demonstrates that DPP-IV is a promising in situ marker of biliary functionality not only of normal but also of fatty rats. The approach, initially devised to investigate the behaviour of the liver during the various phases of transplantation, appears to have a much higher potentiality as it could be further exploited to investigate any pathological or stressful conditions involving the biliary tract (i.e., metabolic syndrome and cholestasis) and the response of the biliary tract to therapy and/or to surgery. PMID:23361237

  20. Dietary Whole Egg Consumption Attenuates Body Weight Gain and Is More Effective than Supplemental Cholecalciferol in Maintaining Vitamin D Balance in Type 2 Diabetic Rats.

    PubMed

    Saande, Cassondra J; Jones, Samantha K; Hahn, Kaylee E; Reed, Carter H; Rowling, Matthew J; Schalinske, Kevin L

    2017-09-01

    Background: Type 2 diabetes (T2D) is characterized by vitamin D insufficiency owing to excessive urinary loss of 25-hydroxycholecalciferol [25(OH)D]. We previously reported that a diet containing dried whole egg, a rich source of vitamin D, was effective at maintaining circulating 25(OH)D concentrations in rats with T2D. Furthermore, whole egg consumption reduced body weight gain in rats with T2D. Objective: This study was conducted to compare whole egg consumption with supplemental cholecalciferol with respect to vitamin D balance, weight gain, and body composition in rats with T2D. Methods: Male Zucker diabetic fatty (ZDF) rats ( n = 24) and their lean controls ( n = 24) were obtained at 5 wk of age and randomly assigned to 3 treatment groups: a casein-based diet (CAS), a dried whole egg-based diet (WE), or a casein-based diet containing supplemental cholecalciferol (CAS+D) at the same amount of cholecalciferol provided by WE (37.6 μg/kg diet). Rats were fed their respective diets for 8 wk. Weight gain and food intake were measured daily, circulating 25(OH)D concentrations were measured by ELISA, and body composition was analyzed by dual X-ray absorptiometry. Results: Weight gain and percentage of body fat were reduced by ∼20% and 11%, respectively, in ZDF rats fed WE compared with ZDF rats fed CAS or CAS+D. ZDF rats fed CAS had 21% lower serum 25(OH)D concentrations than lean rats fed CAS. In ZDF rats, WE consumption increased serum 25(OH)D concentrations 130% compared with CAS, whereas consumption of CAS+D increased serum 25(OH)D concentrations 35% compared with CAS. Conclusions: Our data suggest that dietary consumption of whole eggs is more effective than supplemental cholecalciferol in maintaining circulating 25(OH)D concentrations in rats with T2D. Moreover, whole egg consumption attenuated weight gain and reduced percentage of body fat in ZDF rats. These data may support new dietary recommendations targeting the prevention of vitamin D insufficiency in T2D. © 2017 American Society for Nutrition.

  1. Dietary Slowly Digestible Starch Triggers the Gut-Brain Axis in Obese Rats with Accompanied Reduced Food Intake.

    PubMed

    Hasek, Like Y; Phillips, Robert J; Zhang, Genyi; Kinzig, Kimberly P; Kim, Choon Young; Powley, Terry L; Hamaker, Bruce R

    2018-03-01

    Slowly digestible starch (SDS), as a functional carbohydrate providing a slow and sustained glucose release, may be able to modulate food intake through activation of the gut-brain axis. Diet-induced obese rats were used to test the effect on feeding behavior of high-fat (HF) diets containing an SDS, fabricated to digest into the ileum, as compared to rapidly digestible starch (RDS). Ingestion of the HF-SDS diet over an 11-week period reduced daily food intake, through smaller meal size, to the same level as a lean body control group, while the group consuming the HF-RDS diet remained at a high food intake. Expression levels (mRNA) of the hypothalamic orexigenic neuropeptide Y (NPY) and Agouti-related peptide (AgRP) were significantly reduced, and the anorexigenic corticotropin-releasing hormone (CRH) was increased, in the HF-SDS fed group compared to the HF-RDS group, and to the level of the lean control group. SDS with digestion into the ileum reduced daily food intake and paralleled suppressed expression of appetite-stimulating neuropeptide genes associated with the gut-brain axis. This novel finding suggests further exploration involving a clinical study and potential development of SDS-based functional foods as an approach to obesity control. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Mixed compared with single-source proteins in high-protein diets affect kidney structure and function differentially in obese fa/fa Zucker rats.

    PubMed

    Devassy, Jessay G; Wojcik, Jennifer L; Ibrahim, Naser H M; Zahradka, Peter; Taylor, Carla G; Aukema, Harold M

    2017-02-01

    Questions remain regarding the potential negative effects of dietary high protein (HP) on kidney health, particularly in the context of obesity in which the risk for renal disease is already increased. To examine whether some of the variability in HP effects on kidney health may be due to source of protein, obese fa/fa Zucker rats were given HP (35% of energy from protein) diets containing either casein, soy protein, or a mixed source of animal and plant proteins for 12 weeks. Control lean and obese rats were given diets containing casein at normal protein (15% of energy from protein) levels. Body weight and blood pressure were measured, and markers of renal structural changes, damage, and function were assessed. Obesity alone resulted in mild renal changes, as evidenced by higher kidney weights, proteinuria, and glomerular volumes. In obese rats, increasing the protein level using the single, but not mixed, protein sources resulted in higher renal fibrosis compared with the lean rats. The mixed-protein HP group also had lower levels of serum monocyte chemoattractant protein-1, even though this diet further increased kidney and glomerular size. Soy and mixed-protein HP diets also resulted in a small number of damaged glomeruli, while soy compared with mixed-protein HP diet delayed the increase in blood pressure over time. Since obesity itself confers added risk of renal disease, an HP diet from mixed-protein sources that enables weight loss but has fewer risks to renal health may be advantageous.

  3. Effect of proximal versus distal 50% enterectomy on nutritional parameters in rats preconditioned with a high-fat diet or regular chow.

    PubMed

    Yanala, Ujwal R; Reidelberger, Roger D; Thompson, Jon S; Shostrom, Valerie K; Carlson, Mark A

    2015-11-27

    Obesity may protect against the nutritional consequences of short bowel syndrome. We hypothesized that rats preconditioned with an obesogenic diet would have better outcomes after surgical induction of short bowel syndrome compared to rats on regular chow. Rats were fed a high-fat diet or regular rat chow for six months, and then underwent 50% proximal, 50% distal, or sham enterectomy. Food intake, weight, and body composition were monitored before and for 4 weeks after surgery. The high-fat diet consistently produced obesity (>25% body fat). All procedures induced weight loss, but there was no discernable difference between resection vs. sham resection. Rats on the high-fat diet had a greater post-resection loss of body fat compared to rats on chow (36 vs. 26 g, respectively). There was a nonsignificant trend of less lean mass loss in the former compared to the latter rats (16 vs. 33 g, respectively). Enterectomy moderated serum ghrelin, GIP, PPY, insulin, and leptin. Intestinal adaptation was not different between obese vs. non-obese rats. Rats preconditioned with the high-fat diet may have had better retention of lean body mass after a surgical procedure compared to rats on chow. The effect of 50% enterectomy was less than expected.

  4. Obesity And Laboratory Diets Affects Tissue Malondialdehyde (MDA) Levels In Obese Rats

    NASA Astrophysics Data System (ADS)

    Chowdhury, Parimal; Scott, Joseph; Holley, Andy; Hakkak, Reza

    2010-04-01

    This study was conducted to investigate the interaction of obesity and laboratory diets on tissue malondialdehyde levels in rats. Female Zucker obese and lean rats were maintained on either regular grain-based diet or purified casein diet for two weeks, orally gavaged at day 50 with 65 mg/kg DMBA and sacrificed 24 hrs later. Malondialdehyde (MDA) levels were measured in blood and harvested tissues. Data were recorded as mean ± SEM and analyzed statistically. Results show that the obese group on purified casein diet had reduction of MDA levels in the brain, duodenum, liver, lung and kidney tissues as compared to lean group, p <0.05. Obese group on grain-based diet showed significant increase in MDA levels only in the duodenum, p <0.05. We conclude that dietary intervention differentially affects the oxidative markers in obese rats. It appears that purified casein diets were more effective than grain-based diet in reduction of oxidative stress in obese rats.

  5. Quantification of adipose tissue in a rodent model of obesity

    NASA Astrophysics Data System (ADS)

    Johnson, David H.; Flask, Chris; Wan, Dinah; Ernsberger, Paul; Wilson, David L.

    2006-03-01

    Obesity is a global epidemic and a comorbidity for many diseases. We are using MRI to characterize obesity in rodents, especially with regard to visceral fat. Rats were scanned on a 1.5T clinical scanner, and a T1W, water-spoiled image (fat only) was divided by a matched T1W image (fat + water) to yield a ratio image related to the lipid content in each voxel. The ratio eliminated coil sensitivity inhomogeneity and gave flat values across a fat pad, except for outlier voxels (> 1.0) due to motion. Following sacrifice, fat pad volumes were dissected and measured by displacement in canola oil. In our study of 6 lean (SHR), 6 dietary obese (SHR-DO), and 9 genetically obese rats (SHROB), significant differences in visceral fat volume was observed with an average of 29+/-16 ml increase due to diet and 84+/-44 ml increase due to genetics relative to lean control with a volume of 11+/-4 ml. Subcutaneous fat increased 14+/-8 ml due to diet and 198+/-105 ml due to genetics relative to the lean control with 7+/-3 ml. Visceral fat strongly correlated between MRI and dissection (R2 = 0.94), but MRI detected over five times the subcutaneous fat found with error-prone dissection. Using a semi-automated images segmentation method on the ratio images, intra-subject variation was very low. Fat pad composition as estimated from ratio images consistently differentiated the strains with SHROB having a greater lipid concentration in adipose tissues. Future work will include in vivo studies of diet versus genetics, identification of new phenotypes, and corrective measures for obesity; technical efforts will focus on correction for motion and automation in quantification.

  6. Naloxone and rimonabant reduce the reinforcing properties of exercise in rats.

    PubMed

    Rasmussen, Erin B; Hillman, Conrad

    2011-12-01

    Naloxone and rimonabant block neurotransmitter action of some drugs of abuse (such as ethanol, opiates, and nicotine), and thereby reduce drug seeking and self-administration by suppressing the drugs' reinforcing properties. The present study represents an attempt to elucidate whether these drugs may also reduce rewarding properties of other events, in this case, activity-based reinforcement. In Experiment 1, 10 obese and 10 lean Zucker rats pressed a locked door under a progressive ratio schedule of reinforcement that, when unlocked, provided access to a running wheel for 2-min intervals. After baseline breakpoints were established, doses of naloxone (0.3-10 mg/kg) were administered prior to experimental sessions. Obese rats exhibited lower baseline breakpoints for wheel activity, lower response rates, and fewer revolutions compared to lean rats. Naloxone decreased revolutions and response rates for lean and obese rats, but did not reduce breakpoints. In Experiment 2, five Long-Evans rats pressed a door to unlock a wheel for 20 s of wheel activity. Doses of rimonabant (1-10 mg/kg) were administered before some experimental sessions. The highest dose of rimonabant suppressed breakpoints and response rates, but did not affect revolutions. These data suggest that both drugs reduce the reinforcing properties of wheel running, but do so in different manners: naloxone may suppress wheel-based activity (consummatory behavior), but not seeking (appetitive behavior), and rimonabant does the converse. The data also support the role of endocannabinoids in the reinforcing properties of exercise, an implication that is important in terms of CB1 antagonists as a type of pharmacotherapy.

  7. Obesity decreases serum selenium levels in DMBA-induced mammary tumor using Obese Zucker Rat Model

    USDA-ARS?s Scientific Manuscript database

    Recently, we reported that obese Zucker rats had increased susceptibility to DMBA-induced mammary tumors compared to lean Zucker rats. Several studies suggest that lower serum selenium may play an important role in increasing the risk of several types of cancers (e.g, colon, breast and prostate canc...

  8. Hypothalamic CaMKKβ mediates glucagon anorectic effect and its diet-induced resistance.

    PubMed

    Quiñones, Mar; Al-Massadi, Omar; Gallego, Rosalía; Fernø, Johan; Diéguez, Carlos; López, Miguel; Nogueiras, Ruben

    2015-12-01

    Glucagon receptor antagonists and humanized glucagon antibodies are currently studied as promising therapies for obesity and type II diabetes. Among its variety of actions, glucagon reduces food intake, but the molecular mechanisms mediating this effect as well as glucagon resistance are totally unknown. Glucagon and adenoviral vectors were administered in specific hypothalamic nuclei of lean and diet-induced obese rats. The expression of neuropeptides controlling food intake was performed by in situ hybridization. The regulation of factors of the glucagon signaling pathway was assessed by western blot. The central injection of glucagon decreased feeding through a hypothalamic pathway involving protein kinase A (PKA)/Ca(2+)-calmodulin-dependent protein kinase kinase β (CaMKKβ)/AMP-activated protein kinase (AMPK)-dependent mechanism. More specifically, the central injection of glucagon increases PKA activity and reduces protein levels of CaMKKβ and its downstream target phosphorylated AMPK in the hypothalamic arcuate nucleus (ARC). Consistently, central glucagon significantly decreased AgRP expression. Inhibition of PKA and genetic activation of AMPK in the ARC blocked glucagon-induced anorexia in lean rats. Genetic down-regulation of glucagon receptors in the ARC stimulates fasting-induced hyperphagia. Although glucagon was unable to decrease food intake in DIO rats, glucagon sensitivity was restored after inactivation of CaMKKβ, specifically in the ARC. Thus, glucagon decreases food intake acutely via PKA/CaMKKβ/AMPK dependent pathways in the ARC, and CaMKKβ mediates its obesity-induced hypothalamic resistance. This work reveals the molecular underpinnings by which glucagon controls feeding that may lead to a better understanding of disease states linked to anorexia and cachexia.

  9. Mineralocorticoid Receptor Antagonism Prevents Obesity-Induced Cerebral Artery Remodeling and Reduces White Matter Injury in rats.

    PubMed

    Pires, Paulo Wagner; McClain, Jonathon Lee; Hayoz, Sebastian F; Dorrance, Anne McLaren

    2018-05-14

    Midlife obesity is a risk factor for dementia development. Obesity has also been linked to hyperaldosteronism, and this can be modeled in rats by high fat (HF) feeding from weaning. Aldosterone, or activation of the mineralocorticoid receptor (MR) causes cerebrovascular injury in lean hypertensive rats. We hypothesized that rats fed a HF diet would show inward middle cerebral artery (MCA) remodeling that could be prevented by MR antagonism. We further proposed that the cerebral artery remodeling would be associated with white mater injury. Three-week-old male Sprague-Dawley rats were fed a HF diet ± the MR antagonist canrenoic acid (Canr) for 17 weeks. Control rats received normal chow (Control NC). MCA structure was assessed by pressure myography. The MCAs from HF fed rats had smaller lumens and thicker walls when compared to arteries from Control NC rats; Canr prevented the MCA remodeling associated with HF feeding. HF feeding increased the mRNA expression of markers of cell proliferation and vascular inflammation in cerebral arteries and Canr treatment prevented this. White mater injury was increased in the rats fed the HF diet and this was reduced by Canr treatment. The expression of doublecortin, a marker of new and immature neurons was reduced in HF fed rats, and MR antagonism normalized this. These data suggest that HF feeding leads to MR dependent remodeling of the MCA and this is associated with markers of dementia development. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. A 90-day subchronic study of rats fed lean pork from genetically modified pigs with muscle-specific expression of recombinant follistatin.

    PubMed

    Zou, Shiying; Tang, Min; He, Xiaoyun; Cao, Yuan; Zhao, Jie; Xu, Wentao; Liang, Zhihong; Huang, Kunlun

    2015-11-01

    Because cardiovascular disease incidence has rapidly increased in recent years, people are choosing relatively healthier diets with low animal fat. A transgenic pig with low fat and a high percentage of lean meat was created in 2011; this pig overexpresses the follistatin (FST) gene. To evaluate the safety of lean pork derived from genetically modified (GM) pigs, a subchronic oral toxicity study was conducted using Sprague-Dawley rats. GM pork and non-GM pork were incorporated into the diet at levels of 3.75%, 7.5%, and 15% (w/w), and the main nutrients of the various diets were subsequently balanced. The safety of GM pork was assessed by comparison of the toxicology response variables in Sprague-Dawley rats consuming diets containing GM pork with those consuming non-GM pork. No treatment-related adverse or toxic effects were observed based on an examination of the daily clinical signs, body weight, food consumption, hematology, serum biochemistry, and organ weight or based on gross and histopathological examination. The results demonstrate that GM pork is as safe for consumption as conventional pork. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Peripheral oxytocin suppresses food intake and causes weight loss in diet-induced obese rats

    PubMed Central

    Thatcher, Brendan S.; Reidelberger, Roger D.; Ogimoto, Kayoko; Wolden-Hanson, Tami; Baskin, Denis G.; Schwartz, Michael W.; Blevins, James E.

    2012-01-01

    Growing evidence suggests that oxytocin plays an important role in the regulation of energy balance and that central oxytocin administration induces weight loss in diet-induced obese (DIO) animals. To gain a better understanding of how oxytocin mediates these effects, we examined feeding and neuronal responses to oxytocin in animals rendered obese following exposure to either a high-fat (HFD) or low-fat diet (LFD). Our findings demonstrate that peripheral administration of oxytocin dose-dependently reduces food intake and body weight to a similar extent in rats maintained on either diet. Moreover, the effect of oxytocin to induce weight loss remained intact in leptin receptor-deficient Koletsky (fak/fak) rats relative to their lean littermates. To determine whether systemically administered oxytocin activates hindbrain areas that regulate meal size, we measured neuronal c-Fos induction in the nucleus of the solitary tract (NTS) and area postrema (AP). We observed a robust neuronal response to oxytocin in these hindbrain areas that was unexpectedly increased in rats rendered obese on a HFD relative to lean, LFD-fed controls. Finally, we report that repeated daily peripheral administration of oxytocin in DIO animals elicited a sustained reduction of food intake and body weight while preventing the reduction of energy expenditure characteristic of weight-reduced animals. These findings extend recent evidence suggesting that oxytocin circumvents leptin resistance and induces weight-loss in DIO animals through a mechanism involving activation of neurons in the NTS and AP, key hindbrain areas for processing satiety-related inputs. PMID:22008455

  12. Effect of genetic strain and gender on age-related changes in body composition of the laboratory rat.

    PubMed

    Gordon, C J; Jarema, K; Johnstone, A F M; Phillips, P M

    2016-01-01

    Body fat serves as a storage compartment for lipophilic pollutants and affects the pharmacokinetics of many toxic chemicals. Understanding how body fat varies with gender, strain, and age may be essential for development of experimental models to study mechanisms of toxicity. Nuclear magnetic resonance (NMR)-based analysis serves as a noninvasive means of assessing proportions of fat, lean, and fluid in rodents over their lifetime. The aim of this study was to track changes in body composition of male and female Long-Evans (LE), Sprague-Dawley (SD), Fischer (F334), and Brown Norway (BN) rats from postweaning over a >2-yr period. Percent fat of preweaned LE and SD rats was markedly higher compared to the other strains. LE and SD strains displayed marked increases in body fat from weaning to 8 mo of age. Postweaned F344 male and females showed relatively low levels of percent fat; however, at 2 yr of age percent fat of females was equal to that of SD and LE in females. BN rats showed the highest levels of lean tissue and lowest levels of fat. Percent fat of the BN strain rose at the slowest rate as they aged. Percent fluid was consistently higher in males for all strains. Females tended to have higher percent fat than males in LE, SD, and F344 strains. Assessing changes in body fat as well as lean and fluid of various strains of male and female rats over their lifetime may prove useful in many research endeavors, including pharmacokinetics of lipophilic toxicants, mechanisms underlying obesity, and metabolic disorders.

  13. Vascular wall function in insulin-resistant JCR:LA-cp rats: role of male and female sex.

    PubMed

    O'Brien, S F; Russell, J C; Dolphin, P J; Davidge, S T

    2000-08-01

    Vascular wall function was assessed in obese insulin-resistant (cp/cp) and lean normal (+/?), male and female, JCR:LA-cp rats. Both male and female cp/cp rats showed enhanced maximum contractility in response to norepinephrine; impaired smooth muscle in response to sodium nitroprusside, a nitric oxide (NO) donor; and impaired relaxation in response to acetylcholine (ACh), compared with their lean counterparts. The abnormalities were similar in male and female cp/cp rats. The NO synthase inhibitor, Nomega-nitro-L-arginine methyl ester (L-NAME), inhibited ACh-mediated relaxation significantly in male rats, both cp/cp and +/?. The inhibition of ACh-mediated relaxation by L-NAME in +/? females was less, with no reduction in maximal relaxation, and was absent in cp/cp females. These effects suggest that the relative importance of NO in the endothelial modulation of smooth muscle contractility is greater in male rats. The results are consistent with a decreased role for endothelial NO in the cp/cp rats of both sexes and a reduction in NO-independent cholinergic relaxation in the male cp/cp rat. This NO-independent mechanism is not affected in the female cp/cp rats. The relatively small differences between males and females in smooth muscle cell and vascular function may contribute to sex-related differences in the atherogenesis, vasospasm, and ischemic damage associated with the obese insulin-resistant state.

  14. Preventing leptin resistance by blocking angiotensin II AT1 receptors in diet-induced obese rats

    PubMed Central

    Müller-Fielitz, Helge; Lau, Margot; Geißler, Cathleen; Werner, Lars; Winkler, Martina; Raasch, Walter

    2015-01-01

    Background and Purpose AT1 receptor blockers (ARBs) represent an approach for treating metabolic syndrome due to their potency in reducing hypertension, body weight and onset of type 2 diabetes. The mechanism underlying ARB-induced weight loss is still unclear. Experimental Approach Leptin resistance tests (LRTs) in diet-induced obese or lean rats were conducted to determine whether telmisartan (8 mg·kg−1·day−1, 14 days) enhances leptin sensitivity. Phosphorylation of signal transducer and activator of transcription 3 (pSTAT3) staining was performed in hypothalami to determine leptin transport across the blood–brain barrier. Key Results Telmisartin reduced weight gain, food intake and plasma leptin but blood pressure remained unchanged. The 24 h profiles of plasma leptin after saline injections were similar in controls and telmisartan-treated rats, but after leptin injections were higher in controls and slightly lower in telmisartan-treated animals. After telmisartan, energy intake during LRT was lower in leptin-than in saline-pretreated rats, but remained unchanged in controls, irrespectively of whether rats received saline or leptin. Leptin minimized the gain in body weight during LRT in telmisartan-treated rats as compared with saline-treated animals. pSTAT3 staining was reduced in cafeteria diet-fed rats as compared with chow-fed rats but this was normalized by telmisartan. Telmisartin reduced hypothalamic mRNA levels of the orexigenic peptides melanin-concentrating hormone and prepro-orexin. Conclusions and Implications Rats fed a cafeteria diet develop leptin resistance after 2 weeks. Leptin sensitivity was preserved by telmisartan treatment even in rats fed a cafeteria diet. This pleiotropic effect is not related to the hypotensive action of telmisartan. PMID:25258168

  15. Hypothalamic KLF4 mediates leptin's effects on food intake via AgRP

    PubMed Central

    Imbernon, Monica; Sanchez-Rebordelo, Estrella; Gallego, Rosalia; Gandara, Marina; Lear, Pamela; Lopez, Miguel; Dieguez, Carlos; Nogueiras, Ruben

    2014-01-01

    Krüppel-like factor 4 (KLF4) is a zinc-finger-type transcription factor expressed in a range of tissues that plays multiple functions. We report that hypothalamic KLF4 represents a new transcription factor specifically modulating agouti-related protein (AgRP) expression in vivo. Hypothalamic KLF4 colocalizes with AgRP neurons and is modulated by nutritional status and leptin. Over-expression of KLF4 in the hypothalamic arcuate nucleus (ARC) induces food intake and increases body weight through the specific stimulation of AgRP, as well as blunting leptin sensitivity in lean rats independent of forkhead box protein 01 (FoxO1). Down-regulation of KLF4 in the ARC inhibits fasting-induced food intake in both lean and diet-induced obese (DIO) rats. Silencing KLF4, however, does not, on its own, enhance peripheral leptin sensitivity in DIO rats. PMID:24944903

  16. Hypothalamic KLF4 mediates leptin's effects on food intake via AgRP.

    PubMed

    Imbernon, Monica; Sanchez-Rebordelo, Estrella; Gallego, Rosalia; Gandara, Marina; Lear, Pamela; Lopez, Miguel; Dieguez, Carlos; Nogueiras, Ruben

    2014-07-01

    Krüppel-like factor 4 (KLF4) is a zinc-finger-type transcription factor expressed in a range of tissues that plays multiple functions. We report that hypothalamic KLF4 represents a new transcription factor specifically modulating agouti-related protein (AgRP) expression in vivo. Hypothalamic KLF4 colocalizes with AgRP neurons and is modulated by nutritional status and leptin. Over-expression of KLF4 in the hypothalamic arcuate nucleus (ARC) induces food intake and increases body weight through the specific stimulation of AgRP, as well as blunting leptin sensitivity in lean rats independent of forkhead box protein 01 (FoxO1). Down-regulation of KLF4 in the ARC inhibits fasting-induced food intake in both lean and diet-induced obese (DIO) rats. Silencing KLF4, however, does not, on its own, enhance peripheral leptin sensitivity in DIO rats.

  17. Hypothalamic CaMKKβ mediates glucagon anorectic effect and its diet-induced resistance

    PubMed Central

    Quiñones, Mar; Al-Massadi, Omar; Gallego, Rosalía; Fernø, Johan; Diéguez, Carlos; López, Miguel; Nogueiras, Ruben

    2015-01-01

    Objective Glucagon receptor antagonists and humanized glucagon antibodies are currently studied as promising therapies for obesity and type II diabetes. Among its variety of actions, glucagon reduces food intake, but the molecular mechanisms mediating this effect as well as glucagon resistance are totally unknown. Methods Glucagon and adenoviral vectors were administered in specific hypothalamic nuclei of lean and diet-induced obese rats. The expression of neuropeptides controlling food intake was performed by in situ hybridization. The regulation of factors of the glucagon signaling pathway was assessed by western blot. Results The central injection of glucagon decreased feeding through a hypothalamic pathway involving protein kinase A (PKA)/Ca2+-calmodulin-dependent protein kinase kinase β (CaMKKβ)/AMP-activated protein kinase (AMPK)-dependent mechanism. More specifically, the central injection of glucagon increases PKA activity and reduces protein levels of CaMKKβ and its downstream target phosphorylated AMPK in the hypothalamic arcuate nucleus (ARC). Consistently, central glucagon significantly decreased AgRP expression. Inhibition of PKA and genetic activation of AMPK in the ARC blocked glucagon-induced anorexia in lean rats. Genetic down-regulation of glucagon receptors in the ARC stimulates fasting-induced hyperphagia. Although glucagon was unable to decrease food intake in DIO rats, glucagon sensitivity was restored after inactivation of CaMKKβ, specifically in the ARC. Thus, glucagon decreases food intake acutely via PKA/CaMKKβ/AMPK dependent pathways in the ARC, and CaMKKβ mediates its obesity-induced hypothalamic resistance. Conclusions This work reveals the molecular underpinnings by which glucagon controls feeding that may lead to a better understanding of disease states linked to anorexia and cachexia. PMID:26909312

  18. Treadmill exercise prevents diabetes-induced increases in lipid peroxidation and decreases in Cu,Zn-superoxide dismutase levels in the hippocampus of Zucker diabetic fatty rats.

    PubMed

    Kim, Jong Whi; Chae, Junghyun; Nam, Sung Min; Kim, Yo Na; Yoo, Dae Young; Choi, Jung Hoon; Jung, Hyo Young; Song, Wook; Hwang, In Koo; Seong, Je Kyung; Yoon, Yeo Sung

    2015-01-01

    In the present study, we investigated the effects of treadmill exercise on lipid peroxidation and Cu,Zn-superoxide dismutase (SOD1) levels in the hippocampus of Zucker diabetic fatty (ZDF) rats and lean control rats (ZLC) during the onset of diabetes. At 7 weeks of age, ZLC and ZDF rats were either placed on a stationary treadmill or made to run for 1 h/day for 5 consecutive days at 16~22 m/min for 5 weeks. At 12 weeks of age, the ZDF rats had significantly higher blood glucose levels and body weight than the ZLC rats. In addition, malondialdehyde (MDA) levels in the hippocampus of the ZDF rats were significantly higher than those of the ZLC rats whereas SOD1 levels in the hippocampus of the ZDF rats were moderately decreased. Notably, treadmill exercise prevented the increase of blood glucose levels in ZDF rats. In addition, treadmill exercise significantly ameliorated changes in MDA and SOD1 levels in the hippocampus although SOD activity was not altered. These findings suggest that diabetes increases lipid peroxidation and decreases SOD1 levels, and treadmill exercise can mitigate diabetes-induced oxidative damage in the hippocampus.

  19. Gene expression microarray profiles of cumulus cells in lean and overweight-obese polycystic ovary syndrome patients.

    PubMed

    Kenigsberg, Shlomit; Bentov, Yaakov; Chalifa-Caspi, Vered; Potashnik, Gad; Ofir, Rivka; Birk, Ohad S

    2009-02-01

    The aim of this work was to study gene expression patterns of cultured cumulus cells from lean and overweight-obese polycystic ovary syndrome (PCOS) patients using genome-wide oligonucleotide microarray. The study included 25 patients undergoing in vitro fertilization and intra-cytoplasmic sperm injection: 12 diagnosed with PCOS and 13 matching controls. Each of the groups was subdivided into lean (body mass index (BMI) < 24) and overweight (BMI > 27) subgroups. The following comparisons of gene expression data were made: lean PCOS versus lean controls, lean PCOS versus overweight PCOS, all PCOS versus all controls, overweight PCOS versus overweight controls, overweight controls versus lean controls and all overweight versus all lean. The largest number of differentially expressed genes (DEGs), with fold change (FC) |FC| >or= 1.5 and P-value < 0.01, was found in the lean PCOS versus lean controls comparison (487) with most of these genes being down-regulated in PCOS. The second largest group of DEGs originated from the comparison of lean PCOS versus overweight PCOS (305). The other comparisons resulted in a much smaller number of DEGs (174, 109, 125 and 12, respectively). In the comparison of lean PCOS with lean controls, most DEGs were transcription factors and components of the extracellular matrix and two pathways, Wnt/beta-catenin and mitogen-activated protein kinase. When comparing overweight PCOS with overweight controls, most DEGs were of pathways related to insulin signaling, metabolism and energy production. The finding of unique gene expression patterns in cumulus cells from the two PCOS subtypes is in agreement with other studies that have found the two to be separate entities with potentially different pathophysiologies.

  20. Rimonabant reduces the essential value of food in the genetically obese Zucker rat: an exponential demand analysis.

    PubMed

    Rasmussen, Erin B; Reilly, William; Buckley, Jessica; Boomhower, Steven R

    2012-02-01

    Research on free-food intake suggests that cannabinoids are implicated in the regulation of feeding. Few studies, however, have characterized how environmental factors that affect food procurement interact with cannabinoid drugs that reduce food intake. Demand analysis provides a framework to understand how cannabinoid blockers, such as rimonabant, interact with effort in reducing demand for food. The present study examined the effects rimonabant had on demand for sucrose in obese Zucker rats when effort to obtain food varied and characterized the data using the exponential ("essential value") model of demand. Twenty-nine male (15 lean, 14 obese) Zucker rats lever-pressed under eight fixed ratio (FR) schedules of sucrose reinforcement, in which the number of lever-presses to gain access to a single sucrose pellet varied between 1 and 300. After behavior stabilized under each FR schedule, acute doses of rimonabant (1-10mg/kg) were administered prior to some sessions. The number of food reinforcers and responses in each condition was averaged and the exponential and linear demand equations were fit to the data. These demand equations quantify the value of a reinforcer by its sensitivity to price (FR) increases. Under vehicle conditions, obese Zucker rats consumed more sucrose pellets than leans at smaller fixed ratios; however, they were equally sensitive to price increases with both models of demand. Rimonabant dose-dependently reduced reinforcers and responses for lean and obese rats across all FR schedules. Data from the exponential analysis suggest that rimonabant dose-dependently increased elasticity, i.e., reduced the essential value of sucrose, a finding that is consistent with graphical depictions of normalized demand curves. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Maternal consumption of a cafeteria diet during lactation in rats leads the offspring to a thin-outside-fat-inside phenotype.

    PubMed

    Pomar, C A; van Nes, R; Sánchez, J; Picó, C; Keijer, J; Palou, A

    2017-08-01

    The suckling period is a critical phase of development, in which maternal overnutrition may program the susceptibility of developing chronic diseases and disorders, such as obesity and metabolic alterations, in adult life. Here, we questioned whether the consumption of a cafeteria diet throughout lactation in rats affects the macronutrient composition of milk and whether it results in permanent metabolic effects in the offspring. Nursing rats were fed a control diet or a cafeteria diet during lactation. Milk was obtained at different time points of lactation. Offspring (males and females) were weaned onto a control diet until the age of 6 months. Circulating parameters were measured under ad libitum feeding and under 12-h fasting conditions at weaning and at 3 and 6 months of age. An oral glucose tolerance test (OGTT) was performed at 3 and 6 months of age. Rats fed a cafeteria diet during lactation consumed an unbalanced diet, with lower protein and higher fat content versus controls, which was reflected in the composition of the milk. The offspring of rats fed a cafeteria diet during lactation showed lower body weight and lower lean mass, but greater fat accumulation, compared with controls. They also displayed hyperleptinaemia, altered lipid profile and impaired response to an OGTT. Maternal consumption of a cafeteria diet throughout lactation in rats produces lasting effects in the metabolic health of their offspring, which are not associated with a higher body weight but with a greater fat accumulation, similarly to the thin-outside-fat-inside phenotype.

  2. Effects of dietary phytase on body weight gain, body composition and bone strength in growing rats fed a low-zinc diet.

    PubMed

    McClung, James P; Stahl, Chad H; Marchitelli, Louis J; Morales-Martinez, Nelson; Mackin, Katherine M; Young, Andrew J; Scrimgeour, Angus G

    2006-03-01

    Phytic acid, a major phosphorous storage compound found in foodstuffs, is known to form insoluble complexes with nutritionally essential minerals, including zinc (Zn). Phytases are enzymes that catalyze the removal of these minerals from phytic acid, improving their bioavailability. The objective of the present study was to determine the ability of dietary phytase to affect body weight, body composition, and bone strength in growing rats fed a high phytic acid, low Zn diet. Rats (n = 20) were fed either a control (AIN-93) or phytase supplemented (Natuphos, BASF, 1,500 phytase units (FTU)/kg) diet for a period of 8 weeks. Phytase supplementation resulted in increased (P<.05) bone and plasma Zn, but no change in plasma inorganic phosphorous or bone levels of Ca, Fe, or Mg. The addition of phytase to the diets resulted in a 22.4% increase (P<.05) in body weight at the end of the study as compared with rats fed a control diet. Dual x-ray absorptiometry (DXA) revealed that phytase supplementation resulted in increase lean body mass (LBM, P<.001) and increased bone mineral content (BMC, P<.001) as compared with feeding the control diet. Bone studies indicated that femurs and tibias from phytase supplemented rats had greater mass (P<.05) and were stronger (P<.05) than rats fed the control diet. This data suggest that the addition of phytase to low Zn diets results in improved Zn status, which may be responsible for beneficial effects on growth, body composition, and bone strength.

  3. Voluntary running exercise prevents β-cell failure in susceptible islets of the Zucker diabetic fatty rat.

    PubMed

    Delghingaro-Augusto, Viviane; Décary, Simon; Peyot, Marie-Line; Latour, Martin G; Lamontagne, Julien; Paradis-Isler, Nicolas; Lacharité-Lemieux, Marianne; Akakpo, Huguette; Birot, Olivier; Nolan, Christopher J; Prentki, Marc; Bergeron, Raynald

    2012-01-15

    Physical activity improves glycemic control in type 2 diabetes (T2D), but its contribution to preserving β-cell function is uncertain. We evaluated the role of physical activity on β-cell secretory function and glycerolipid/fatty acid (GL/FA) cycling in male Zucker diabetic fatty (ZDF) rats. Six-week-old ZDF rats engaged in voluntary running for 6 wk (ZDF-A). Inactive Zucker lean and ZDF (ZDF-I) rats served as controls. ZDF-I rats displayed progressive hyperglycemia with β-cell failure evidenced by falling insulinemia and reduced insulin secretion to oral glucose. Isolated ZDF-I rat islets showed reduced glucose-stimulated insulin secretion expressed per islet and per islet protein. They were also characterized by loss of the glucose regulation of fatty acid oxidation and GL/FA cycling, reduced mRNA expression of key β-cell genes, and severe reduction of insulin stores. Physical activity prevented diabetes in ZDF rats through sustaining β-cell compensation to insulin resistance shown in vivo and in vitro. Surprisingly, ZDF-A islets had persistent defects in fatty acid oxidation, GL/FA cycling, and β-cell gene expression. ZDF-A islets, however, had preserved islet insulin mRNA and insulin stores compared with ZDF-I rats. Physical activity did not prevent hyperphagia, dyslipidemia, or obesity in ZDF rats. In conclusion, islets of ZDF rats have a susceptibility to failure that is possibly due to altered β-cell fatty acid metabolism. Depletion of pancreatic islet insulin stores is a major contributor to islet failure in this T2D model, preventable by physical activity.

  4. Cardiac β-adrenergic responsiveness of obese Zucker rats: The role of AMPK.

    PubMed

    Bussey, Carol T; Thaung, Hp Aye; Hughes, Gillian; Bahn, Andrew; Lamberts, Regis R

    2018-06-05

    What is the central question of the study? What is the main finding and its importance? 1. Is the reduced signalling of AMPK, a key regulator of energy homeostasis in the heart, responsible for the reduced β-adrenergic responsiveness of the heart in obesity? 2. Inhibition of AMPK in isolated hearts prevented the reduced cardiac β-adrenergic responsiveness of obese rats, which was accompanied by reduced phosphorylation of AMPK, a proxy of AMPK activity. This suggests a direct functional link between β-adrenergic responsiveness and AMPK signalling in the heart, and that AMPK might be an important target to restore the β-adrenergic responsiveness in the heart in obesity. The obesity epidemic impacts heavily on cardiovascular health, in part due to changes in cardiac metabolism. AMP-activated protein kinase (AMPK) is a key regulator of energy homeostasis in the heart, and is regulated by β-adrenoceptors (AR) under normal conditions. In obesity, chronic sympathetic overactivation leads to impaired cardiac β-AR responsiveness, although it is unclear whether AMPK signalling, downstream of β-AR, contributes to this dysfunction. Therefore, we aimed to determine whether reduced AMPK signalling is responsible for the reduced β-AR responsiveness in obesity. In isolated hearts of lean and obese Zucker rats, we tested β-AR responsiveness to β 1 -AR agonist isoproterenol (ISO, 1 × 10 -10 - 5 × 10 -8  M) in the absence and presence of the AMPK inhibitor compound C (CC, 10 μM). β 1 -AR expression and AMPK phosphorylation were assessed by Western blot. β-Adrenergic responsiveness was reduced in the hearts of obese rats (LogEC50 of ISO-developed pressure dose-response curves: lean -8.53 ± 0.13 vs. obese -8.35 ± 0.10 10 x M; p < 0.05 lean vs. obese, n = 6 per group). This difference was not apparent after AMPK inhibition (LogEC50 of ISO-developed pressure curves: lean CC -8.19 ± 0.12 vs. obese CC 8.17 ± 0.13 10 x M, p > 0.05, n = 6 per group). β 1 -AR expression and AMPK phosphorylation were reduced in hearts of obese rats (AMPK at Thr 172 : lean 1.73 ± 0.17 vs. lean CC 0.81 ± 0.13, and obese 1.18 ± 0.09 vs. obese CC 0.81 ± 0.16 arbitrary units, p < 0.05, n = 6 per group). Thus, a direct functional link between β-adrenergic responsiveness and AMPK signalling in the heart exists, and AMPK might be an important target to restore the reduced cardiac β-adrenergic responsiveness in obesity. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Inhibition of Gastric Lipase as a Mechanism for Body Weight and Plasma Lipids Reduction in Zucker Rats Fed a Rosemary Extract Rich in Carnosic Acid

    PubMed Central

    Romo Vaquero, María; Yáñez-Gascón, María-Josefa; García Villalba, Rocío; Larrosa, Mar; Fromentin, Emilie; Ibarra, Alvin; Roller, Marc; Tomás-Barberán, Francisco; Espín de Gea, Juan Carlos; García-Conesa, María-Teresa

    2012-01-01

    Background Rosemary (Rosmarinus officinalis L.) extracts (REs) exhibit hepatoprotective, anti-obesity and anti-inflammatory properties and are widely used in the food industry. REs are rich in carnosic acid (CA) and carnosol which may be responsible for some of the biological activities of REs. The aim of this study was to investigate whether inhibition of lipase activity in the gut may be a mechanism by which a RE enriched in CA (40%) modulates body weight and lipids levels in a rat model of metabolic disorders and obesity. Methods and Principal Findings RE was administered for 64 days to lean (fa/+) and obese (fa/fa) female Zucker rats and body weight, food intake, feces weight and blood biochemical parameters were monitored throughout the study. Lipase activity (hydrolysis of p-nitrophenylbutyrate) was measured in the gastrointestinal tract at the end of the study and the contents of CA, carnosol and methyl carnosate were also determined. Sub-chronic administration of RE moderately reduced body weight gain in both lean and obese animals but did not affect food intake. Serum triglycerides, cholesterol and insulin levels were also markedly decreased in the lean animals supplemented with RE. Importantly, lipase activity was significantly inhibited in the stomach of the RE-supplemented animals where the highest content of intact CA and carnosol was detected. Conclusions Our results confirm that long-term administration of RE enriched in CA moderates weight gain and improves the plasma lipids profile, primarily in the lean animals. Our data also suggest that these effects may be caused, at least in part, by a significant inhibition of gastric lipase and subsequent reduction in fat absorption. PMID:22745826

  6. Hervey, Harris, and the parabiotic search for lipostatic signals.

    PubMed

    Smith, Gerard P

    2013-02-01

    This paper is an introduction to the papers by Hervey and Harris that describe their experimental use of parabiosis in rats and mice to search for circulating lipostatic signals. Beginning in 1959 with Hervey's foundational paper, they detected three parabiotic signals: the Hervey signal decreases food intake and fat mass in rats; the antilipogenic factor (ALF) decreased fat mass, but not food intake in rats; and the leptin-dependent signal in lean partners of ob/ob mice decreased fat mass, but not food intake. The known lipostatic signals, leptin and insulin, have been candidates for the Hervey and ALF signals, but insulin has been excluded and the evidence for leptin is inconclusive. The site of production of the three parabiotic signals and their molecular structure are not known and specific mechanisms of their lipostatic control are incompletely understood. Given their potential importance for understanding the physiology of lipostatic controls and for developing new therapies for obesity, Hervey and Harris make a strong argument for further research on the three parabiotic signals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Physical Activity, Energy Expenditure, and Defense of Body Weight in Melanocortin 4 Receptor-Deficient Male Rats

    PubMed Central

    Almundarij, Tariq I.; Smyers, Mark E.; Spriggs, Addison; Heemstra, Lydia A.; Beltz, Lisa; Dyne, Eric; Ridenour, Caitlyn; Novak, Colleen M.

    2016-01-01

    Melanocortin 4 receptor (MC4R) variants contribute to human obesity, and rats lacking functional MC4R (Mc4rK314X/K314X) are obese. We investigated the hypothesis that low energy expenditure (EE) and physical activity contribute to this obese phenotype in male rats, and determined whether lack of functional MC4R conferred protection from weight loss during 50% calorie restriction. Though Mc4rK314X/K314X rats showed low brown adipose Ucp1 expression and were less physically active than rats heterozygous for the mutation (Mc4r+/K314X) or wild-type (Mc4r+/+) rats, we found no evidence of lowered EE in Mc4rK314X/K314X rats once body weight was taken into account using covariance. Mc4rK314X/K314X rats had a significantly higher respiratory exchange ratio. Compared to Mc4r+/+ rats, Mc4rK314X/K314X and Mc4r+/K314X rats lost less lean mass during calorie restriction, and less body mass when baseline weight was accounted for. Limited regional overexpression of Mc3r was found in the hypothalamus. Although lower physical activity levels in rats with nonfunctional MC4R did not result in lower total EE during free-fed conditions, rats lacking one or two functional copies of Mc4r showed conservation of mass, particularly lean mass, during energy restriction. This suggests that variants affecting MC4R function may contribute to individual differences in the metabolic response to food restriction. PMID:27886210

  8. Impact of red meat consumption on the metabolome of rats.

    PubMed

    Jakobsen, Louise M A; Yde, Christian C; Van Hecke, Thomas; Jessen, Randi; Young, Jette F; De Smet, Stefaan; Bertram, Hanne Christine

    2017-03-01

    The scope of the present study was to investigate the effects of red versus white meat intake on the metabolome of rats. Twenty-four male Sprague-Dawley rats were randomly assigned to 15 days of ad libitum feeding of one of four experimental diets: (i) lean chicken, (ii) chicken with lard, (iii) lean beef, and (iv) beef with lard. Urine, feces, plasma, and colon tissue samples were analyzed using 1 H NMR-based metabolomics and real-time PCR was performed on colon tissue to examine the expression of specific genes. Urinary excretion of acetate and anserine was higher after chicken intake, while carnosine, fumarate, and trimethylamine N-oxide excretion were higher after beef intake. In colon tissue, higher choline levels and lower lipid levels were found after intake of chicken compared to beef. Expression of the apc gene was higher in response to the lean chicken and beef with lard diets. Correlation analysis revealed that intestinal apc gene expression was correlated with fecal lactate content (R 2 = 0.65). This study is the first to identify specific differences in the metabolome related to the intake of red and white meat. These differences may reflect perturbations in endogenous metabolism that can be linked to the proposed harmful effects associated with intake of red meat. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Early and Long-term Undernutrition in Female Rats Exacerbates the Metabolic Risk Associated with Nutritional Rehabilitation*

    PubMed Central

    Lizárraga-Mollinedo, Esther; Fernández-Millán, Elisa; García-San Frutos, Miriam; de Toro-Martín, Juan; Fernández-Agulló, Teresa; Ros, Manuel; Álvarez, Carmen; Escrivá, Fernando

    2015-01-01

    Human studies have suggested that early undernutrition increases the risk of obesity, thereby explaining the increase in overweight among individuals from developing countries who have been undernourished as children. However, this conclusion is controversial, given that other studies do not concur. This study sought to determine whether rehabilitation after undernutrition increases the risk of obesity and metabolic disorders. We employed a published experimental food-restriction model. Wistar female rats subjected to severe food restriction since fetal stage and controls were transferred to a moderately high-fat diet (cafeteria) provided at 70 days of life to 6.5 months. Another group of undernourished rats were rehabilitated with chow. The energy intake of undernourished animals transferred to cafeteria formula exceeded that of the controls under this regime and was probably driven by hypothalamic disorders in insulin and leptin signal transduction. The cafeteria diet resulted in greater relative increases in both fat and lean body mass in the undernourished rats when compared with controls, enabling the former group to completely catch up in length and body mass index. White adipose tissues of undernourished rats transferred to the high-lipid regime developed a browning which, probably, contributed to avoid the obesigenic effect observed in controls. Nevertheless, the restricted group rehabilitated with cafeteria formula had greater accretion of visceral than subcutaneous fat, showed increased signs of macrophage infiltration and inflammation in visceral pad, dyslipidemia, and ectopic fat accumulation. The data indicate that early long-term undernutrition is associated with increased susceptibility to the harmful effects of nutritional rehabilitation, without causing obesity. PMID:26105051

  10. Leptin gene promoter DNA methylation in WNIN obese mutant rats

    PubMed Central

    2014-01-01

    Background Obesity has become an epidemic in worldwide population. Leptin gene defect could be one of the causes for obesity. Two mutant obese rats WNIN/Ob and WNIN/GROb, isolated at National Centre for Laboratory Animal Sciences (NCLAS), Hyderabad, India, were found to be leptin resistant. The present study aims to understand the regulatory mechanisms underlying the resistance by promoter DNA methylation of leptin gene in these mutant obese rats. Methods Male obese mutant homozygous, carrier and heterozygous rats of WNIN/Ob and WNIN/GROb strain of 6 months old were studied to check the leptin gene expression (RT-PCR) and promoter DNA methylation (MassARRAY Compact system, SEQUENOM) of leptin gene by invivo and insilico approach. Results Homozygous WNIN/Ob and WNIN/GROb showed significantly higher leptin gene expression compared to carrier and lean counterparts. Leptin gene promoter DNA sequence region was analyzed ranging from transcription start site (TSS) to-550 bp length and found four CpGs in this sequence among them only three CpG loci (-309, -481, -502) were methylated in these WNIN mutant rat phenotypes. Conclusion The increased percentage of methylation in WNIN mutant lean and carrier phenotypes is positively correlated with transcription levels. Thus genetic variation may have effect on methylation percentages and subsequently on the regulation of leptin gene expression which may lead to obesity in these obese mutant rat strains. PMID:24495350

  11. Reduction of adult hippocampal neurogenesis is amplified by aluminum exposure in a model of type 2 diabetes

    PubMed Central

    Nam, Sung Min; Kim, Jong Whi; Yoo, Dae Young; Jung, Hyo Young; Choi, Jung Hoon; Hwang, In Koo; Seong, Je Kyung

    2016-01-01

    In this study, we investigated the effects of chronic aluminum (Al) exposure for 10 weeks on cell proliferation and neuroblast differentiation in the hippocampus of type 2 diabetic rats. Six-week-old Zucker diabetic fatty (ZDF) and Zucker lean control (ZLC) rats were selected and randomly divided into Al- and non-Al-groups. Al was administered via drinking water for 10 weeks, after which the animals were sacrificed at 16 weeks of age. ZDF rats in both Al- and non-Al-groups showed increases in body weight and blood glucose levels compared to ZLC rats. Al exposure did not significantly affect body weight, blood glucose levels or pancreatic β-cells and morphology of the pancreas in either ZLC or ZDF rats. However, exposure to Al reduced cell proliferation and neuroblast differentiation in both ZLC and ZDF rats. Exposure to Al resulted in poor development of the dendritic processes of neuroblasts in both ZLC and ZDF rats. Furthermore, onset and continuation of diabetes reduced cell proliferation and neuroblast differentiation, and Al exposure amplified reduction of these parameters. These results suggest that Al exposure via drinking water aggravates the impairment in hippocampal neurogenesis that is typically observed in type 2 diabetic animals. PMID:27051335

  12. The effects of repetitive vibration on sensorineural function: biomarkers of sensorineural injury in an animal model of metabolic syndrome

    PubMed Central

    Kiedrowski, Megan; Waugh, Stacey; Miller, Roger; Johnson, Claud; Krajnak, Kristine

    2016-01-01

    Exposure to hand-transmitted vibration in the work-place can result in the loss of sensation and pain in workers. These effects may be exacerbated by pre-existing conditions such as diabetes or the presence of primary Raynaud's phenomena. The goal of these studies was to use an established model of vibration-induced injury in Zucker rats. Lean Zucker rats have a normal metabolic profile, while obese Zucker rats display symptoms of metabolic disorder or Type II diabetes. This study examined the effects of vibration in obese and lean rats. Zucker rats were exposed to 4 h of vibration for 10 consecutive days at a frequency of 125 Hz and acceleration of 49 m/s2 for 10 consecutive days. Sensory function was checked using transcutaneous electrical stimulation on days 1, 5 and 9 of the exposure. Once the study was complete the ventral tail nerves, dorsal root ganglia and spinal cord were dissected, and levels of various transcripts involved in sensorineural dysfunction were measured. Sensorineural dysfunction was assessed using transcutaneous electrical stimulation. Obese Zucker rats displayed very few changes in sensorineural function. However they did display significant changes in transcript levels for factors involved in synapse formation, peripheral nerve remodeling, and inflammation. The changes in transcript levels suggested that obese Zucker rats had some level of sensory nerve injury prior to exposure, and that exposure to vibration activated pathways involved in injury and re-innervation. PMID:26433044

  13. Simultaneous characterization of metabolic, cardiac, vascular and renal phenotypes of lean and obese SHHF rats.

    PubMed

    Youcef, Gina; Olivier, Arnaud; L'Huillier, Clément P J; Labat, Carlos; Fay, Renaud; Tabcheh, Lina; Toupance, Simon; Rodriguez-Guéant, Rosa-Maria; Bergerot, Damien; Jaisser, Frédéric; Lacolley, Patrick; Zannad, Faiez; Laurent Vallar; Pizard, Anne

    2014-01-01

    Individuals with metabolic syndrome (MetS) are prone to develop heart failure (HF). However, the deleterious effects of MetS on the continuum of events leading to cardiac remodeling and subsequently to HF are not fully understood. This study characterized simultaneously MetS and cardiac, vascular and renal phenotypes in aging Spontaneously Hypertensive Heart Failure lean (SHHF(+/?) regrouping (+/+) and (+/cp) rats) and obese (SHHF(cp/cp), "cp" defective mutant allele of the leptin receptor gene) rats. We aimed to refine the milestones and their onset during the progression from MetS to HF in this experimental model. We found that SHHF(cp/cp )but not SHHF(+/?) rats developed dyslipidemia, as early as 1.5 months of age. This early alteration in the lipidic profile was detectable concomitantly to impaired renal function (polyuria, proteinuria but no glycosuria) and reduced carotid distensibility as compared to SHHF(+/?) rats. By 3 months of age SHHFcp/cp animals developed severe obesity associated with dislipidemia and hypertension defining the onset of MetS. From 6 months of age, SHHF(+/?) rats developed concentric left ventricular hypertrophy (LVH) while SHHF(cp/cp) rats developed eccentric LVH apparent from progressive dilation of the LV dimensions. By 14 months of age only SHHF(cp/cp) rats showed significantly higher central systolic blood pressure and a reduced ejection fraction resulting in systolic dysfunction as compared to SHHF(+/?). In summary, the metabolic and hemodynamic mechanisms participating in the faster decline of cardiac functions in SHHF(cp/cp) rats are established long before their physiological consequences are detectable. Our results suggest that the molecular mechanisms triggered within the first three months after birth of SHHF(cp/cp) rats should be targeted preferentially by therapeutic interventions in order to mitigate the later HF development.

  14. Simultaneous Characterization of Metabolic, Cardiac, Vascular and Renal Phenotypes of Lean and Obese SHHF Rats

    PubMed Central

    Youcef, Gina; Olivier, Arnaud; L'Huillier, Clément P. J.; Labat, Carlos; Fay, Renaud; Tabcheh, Lina; Toupance, Simon; Rodriguez-Guéant, Rosa-Maria; Bergerot, Damien; Jaisser, Frédéric; Lacolley, Patrick; Zannad, Faiez; Laurent Vallar; Pizard, Anne

    2014-01-01

    Individuals with metabolic syndrome (MetS) are prone to develop heart failure (HF). However, the deleterious effects of MetS on the continuum of events leading to cardiac remodeling and subsequently to HF are not fully understood. This study characterized simultaneously MetS and cardiac, vascular and renal phenotypes in aging Spontaneously Hypertensive Heart Failure lean (SHHF+/? regrouping +/+ and +/cp rats) and obese (SHHFcp/cp, “cp” defective mutant allele of the leptin receptor gene) rats. We aimed to refine the milestones and their onset during the progression from MetS to HF in this experimental model. We found that SHHFcp/cp but not SHHF+/? rats developed dyslipidemia, as early as 1.5 months of age. This early alteration in the lipidic profile was detectable concomitantly to impaired renal function (polyuria, proteinuria but no glycosuria) and reduced carotid distensibility as compared to SHHF+/? rats. By 3 months of age SHHFcp/cp animals developed severe obesity associated with dislipidemia and hypertension defining the onset of MetS. From 6 months of age, SHHF+/? rats developed concentric left ventricular hypertrophy (LVH) while SHHFcp/cp rats developed eccentric LVH apparent from progressive dilation of the LV dimensions. By 14 months of age only SHHFcp/cp rats showed significantly higher central systolic blood pressure and a reduced ejection fraction resulting in systolic dysfunction as compared to SHHF+/?. In summary, the metabolic and hemodynamic mechanisms participating in the faster decline of cardiac functions in SHHFcp/cp rats are established long before their physiological consequences are detectable. Our results suggest that the molecular mechanisms triggered within the first three months after birth of SHHFcp/cp rats should be targeted preferentially by therapeutic interventions in order to mitigate the later HF development. PMID:24831821

  15. “Liking” and “wanting” of sweet and oily food stimuli as affected by high-fat diet-induced obesity, weight loss, leptin, and genetic predisposition

    PubMed Central

    Shin, Andrew C.; Townsend, R. Leigh; Patterson, Laurel M.

    2011-01-01

    Cross-sectional studies in both humans and animals have demonstrated associations between obesity and altered reward functions at the behavioral and neural level, but it is unclear whether these alterations are cause or consequence of the obese state. Reward behaviors were quantified in male, outbred Sprague-Dawley (SD) and selected line obesity-prone (OP) and obesity-resistant (OR) rats after induction of obesity by high-fat diet feeding and after subsequent loss of excess body weight by chronic calorie restriction. As measured by the brief access lick and taste-reactivity paradigms, both obese SD and OP rats “liked” low concentrations of sucrose and corn oil less, but “liked” the highest concentrations more, compared with lean rats, and this effect was fully reversed by weight loss in SD rats. Acute food deprivation was unable to change decreased responsiveness to low concentrations but eliminated increased responsiveness to high concentrations in obese SD rats, and leptin administration in weight-reduced SD rats shifted concentration-response curves toward that seen in the obese state in the brief access lick test. “Wanting” and reinforcement learning as assessed in the incentive runway and progressive ratio lever-pressing paradigms was paradoxically decreased in both obese (compared with lean SD rats) and OP (compared with OR rats). Thus, reversible, obesity-associated, reduced “liking” and “wanting” of low-calorie foods in SD rats suggest a role for secondary effects of the obese state on reward functions, while similar differences between select lines of OP and OR rats before induction of obesity indicate a genetic component. PMID:21849633

  16. The Effects of Short-Term Propofol and Dexmedetomidine on Lung Mechanics, Histology, and Biological Markers in Experimental Obesity.

    PubMed

    Heil, Luciana Boavista Barros; Santos, Cíntia L; Santos, Raquel S; Samary, Cynthia S; Cavalcanti, Vinicius C M; Araújo, Mariana M P N; Poggio, Hananda; Maia, Lígia de A; Trevenzoli, Isis Hara; Pelosi, Paolo; Fernandes, Fatima C; Villela, Nivaldo R; Silva, Pedro L; Rocco, Patricia R M

    2016-04-01

    Administering anesthetics to the obese population requires caution because of a variety of reasons including possible interactions with the inflammatory process observed in obese patients. Propofol and dexmedetomidine have protective effects on pulmonary function and are widely used in short- and long-term sedation, particularly in intensive care unit settings in lean and obese subjects. However, the functional and biological effects of these drugs in obesity require further elucidation. In a model of diet-induced obesity, we compared the short-term effects of dexmedetomidine versus propofol on lung mechanics and histology, as well as biological markers of inflammation and oxidative stress modulation in obesity. Wistar rats (n = 56) were randomly fed a standard diet (lean) or experimental diet (obese) for 12 weeks. After this period, obese animals received sodium thiopental intraperitoneally and were randomly allocated into 4 subgroups: (1) nonventilated (n = 4) for molecular biology analysis only (control); (2) sodium thiopental (n = 8); (3) propofol (n = 8); and (4) dexmedetomidine (n = 8), which received continuous IV administration of the corresponding agents and were mechanically ventilated (tidal volume = 6 mL/kg body weight, fraction of inspired oxygen = 0.4, positive end-expiratory pressure = 3 cm H2O) for 1 hour. Compared with lean animals, obese rats did not present increased body weight but had higher total body and trunk fat percentages, airway resistance, and interleukin-6 levels in the lung tissue (P = 0.02, P = 0.0027, and P = 0.01, respectively). In obese rats, propofol, but not dexmedetomidine, yielded increased airway resistance, bronchoconstriction index (P = 0.016, P = 0.02, respectively), tumor necrosis factor-α, and interleukin-6 levels, as well as lower levels of nuclear factor-erythroid 2-related factor-2 and glutathione peroxidase (P = 0.001, Bonferroni-corrected t test). In this model of diet-induced obesity, a 1-hour propofol infusion yielded increased airway resistance, atelectasis, and lung inflammation, with depletion of antioxidative enzymes. However, unlike sodium thiopental and propofol, short-term infusion of dexmedetomidine had no impact on lung morphofunctional and biological variables.

  17. Chronic unpredictable stress regulates visceral adipocyte‐mediated glucose metabolism and inflammatory circuits in male rats

    PubMed Central

    Karagiannides, Iordanes; Golovatscka, Viktoriya; Bakirtzi, Kyriaki; Sideri, Aristea; Salas, Martha; Stavrakis, Dimitris; Polytarchou, Christos; Iliopoulos, Dimitrios; Pothoulakis, Charalabos; Bradesi, Sylvie

    2014-01-01

    Abstract Chronic psychological stress is a prominent risk factor involved in the pathogenesis of many complex diseases, including major depression, obesity, and type II diabetes. Visceral adipose tissue is a key endocrine organ involved in the regulation of insulin action and an important component in the development of insulin resistance. Here, we examined for the first time the changes on visceral adipose tissue physiology and on adipocyte‐associated insulin sensitivity and function after chronic unpredictable stress in rats. Male rats were subjected to chronic unpredictable stress for 35 days. Total body and visceral fat was measured. Cytokines and activated intracellular kinase levels were determined using high‐throughput multiplex assays. Adipocyte function was assessed via tritiated glucose uptake assay. Stressed rats showed no weight gain, and their fat/lean mass ratio increased dramatically compared to control animals. Stressed rats had significantly higher mesenteric fat content and epididymal fat pad weight and demonstrated reduced serum glucose clearing capacity following glucose challenge. Alterations in fat depot size were mainly due to changes in adipocyte numbers and not size. High‐throughput molecular screening in adipocytes isolated from stressed rats revealed activation of intracellular inflammatory, glucose metabolism, and MAPK networks compared to controls, as well as significantly reduced glucose uptake capacity in response to insulin stimulation. Our study identifies the adipocyte as a key regulator of the effects of chronic stress on insulin resistance, and glucose metabolism, with important ramifications in the pathophysiology of several stress‐related disease states. PMID:24819750

  18. Circulating adiponectin concentrations are increased by dietary resistant starch and correlate with serum 25-hydroxycholecalciferol concentrations and kidney function in Zucker diabetic fatty rats.

    PubMed

    Koh, Gar Yee; Derscheid, Rachel; Fuller, Kelly N Z; Valentine, Rudy J; Leow, Shu En; Reed, Leah; Wisecup, Emily; Schalinske, Kevin L; Rowling, Matthew J

    2016-04-01

    We previously reported that dietary resistant starch (RS) type 2 prevented proteinuria and promoted vitamin D balance in type 2 diabetic (T2D) rats. Here, our primary objective was to identify potential mechanisms that could explain our earlier observations. We hypothesized that RS could promote adiponectin secretion and regulate the renin-angiotensin system activity in the kidney. Lean Zucker rats (n = 5) were fed control diet; Zucker diabetic fatty rats (n = 5/group) were fed either an AIN-93G control diet (DC) or AIN-93G diet containing either 10% RS or 20% RS (HRS) for 6 weeks. Resistant starch had no impact on blood glucose concentrations and hemoglobin A1c percentage, yet circulating adiponectin was 77% higher in HRS-fed rats, compared to DC rats. Adiponectin concentrations strongly correlated with serum 25-hydroxycholecalciferol (r = 0.815; P < .001) and urinary creatinine concentrations (r = 0.818; P < .001) and inversely correlated with proteinuria (r = -0.583; P = .02). Serum angiotensin II concentrations were 44% lower, and expression of the angiotensin II receptor, type 1, was attenuated in RS-fed rats. Moreover, we observed a 14-fold increase in messenger RNA expression of nephrin, which is required for functioning of the renal filtration barrier, in HRS rats. The HRS, but not 10% RS diet, increased circulating 25-hydroxycholecalciferol concentrations and attenuated urinary loss of vitamin D metabolites in Zucker diabetic fatty rats. Taken together, we provide evidence that vitamin D balance in the presence of hyperglycemia is strongly associated with serum adiponectin levels and reduced renal renin-angiotensin system signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Cocaine- and amphetamine-regulated transcript (CART) peptide immunoreactivity in the brain of the CCK-1 receptor deficient obese OLETF rat

    PubMed Central

    Abraham, Hajnalka; Covasa, Mihai; Hajnal, Andras

    2013-01-01

    Cocaine- and amphetamine regulated transcript (CART) peptide is expressed in brain areas involved in homeostatic regulation and reward. CART has been shown to reduce food intake but the underlying mechanisms and the relevance of this effect to obesity yet remain unknown. Therefore, we used immunohistochemistry to investigate expression of CART peptide in various brain regions of the obese Otsuka Long Evans Tokushima Fatty (OLETF) rats lacking the CCK-1 receptor. Analysis revealed that whereas the distribution of CART peptide-immunoreactive neurons and axonal networks was identical in OLETF rats and lean controls, intensity of CART immunoreactivity was significantly reduced in the rostral part of the nucleus accumbens (p<0.01), the basolateral complex of the amygdala (p<0.05), and the rostro-medial nucleus of solitary tract (p<0.001) of the OLETF rats. These areas are involved in reward and integration of taste and viscerosensory information and have been previously associated with altered functions in this strain. The findings suggest that in addition to previously described deficits in peripheral satiety signals and augmented orexigenic regulation, the anorectic effect of CART peptide may also be diminished in OLETF rats. PMID:19533109

  20. Increased Coagulation and Decreased Fibrinolysis as Measured with Overall Hemostatic Potential Are Dependent on BMI and Not Associated with PCOS.

    PubMed

    Rakusa, Matej; Jensterle, Mojca; Božič-Mijovski, Mojca; Janez, Andrej

    2017-05-01

    Overall hemostatic potential (OHP) captures all factors that affect coagulation and fibrinolysis cascade. It has not yet been assessed in polycystic ovary syndrome (PCOS). The aim of the study was to identify the relationship of OHP with a syndrome per se and body mass index (BMI). In 90 women with PCOS aged 30.9 ± 8.1 years (50 obese, 13 overweight, and 27 lean) and 21 healthy age-matched controls (11 obese and 10 lean), OHP with overall coagulation potential (OCP) and overall fibrinolytic potential (OFP) was determined spectrophotometrically. OFP was calculated. OHP increased with BMI in PCOS (9.6 ± 2.3 in lean, 12.5 ± 5.1 in overweight, and 15.5 ± 3.8 Abs-sum in obese) and in controls (9.1 ± 1.0 in lean and 17.3 ± 4.6 Abs-sum in obese). There was significant difference between lean and obese PCOS (P < 0.001) and between lean and obese controls (P < 0.001). OCP also increased with BMI in PCOS (P < 0.001 for lean vs. obese) and in controls (P < 0.001 for lean vs. obese). OFP decreased with BMI in PCOS (P < 0.001 for obese vs. overweight vs. lean) and in controls (P < 0.001 for obese vs. lean). OHP in healthy obese and obese PCOS did not differ significantly, while OHP for healthy obese was increased in comparison to overweight and lean PCOS (P < 0.001). PCOS was not associated with increased OHP compared with BMI and age-matched controls. However, increase in OHP was positively associated with BMI in PCOS and healthy women.

  1. Electrophysiological characterization of spinal neurons in different models of diabetes type 1- and type 2-induced neuropathy in rats.

    PubMed

    Schuelert, N; Gorodetskaya, N; Just, S; Doods, H; Corradini, L

    2015-04-16

    Diabetic polyneuropathy (DPN) is a devastating complication of diabetes. The underlying pathogenesis of DPN is still elusive and an effective treatment devoid of side effects presents a challenge. There is evidence that in type-1 and -2 diabetes, metabolic and morphological changes lead to peripheral nerve damage and altered central nociceptive transmission, which may contribute to neuropathic pain symptoms. We characterized the electrophysiological response properties of spinal wide dynamic range (WDR) neurons in three diabetic models. The streptozotocin (STZ) model was used as a drug-induced model of type-1 diabetes, and the BioBreeding/Worcester (BB/Wor) and Zucker diabetic fatty (ZDF) rat models were used for genetic DPN models. Data were compared to the respective control group (BB/Wor diabetic-resistant, Zucker lean (ZL) and saline-injected Wistar rat). Response properties of WDR neurons to mechanical stimulation and spontaneous activity were assessed. We found abnormal response properties of spinal WDR neurons in all diabetic rats but not controls. Profound differences between models were observed. In BB/Wor diabetic rats evoked responses were increased, while in ZDF rats spontaneous activity was increased and in STZ rats mainly after discharges were increased. The abnormal response properties of neurons might indicate differential pathological, diabetes-induced, changes in spinal neuronal transmission. This study shows for the first time that specific electrophysiological response properties are characteristic for certain models of DPN and that these might reflect the diverse and complex symptomatology of DPN in the clinic. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Advanced engine management of individual cylinders for control of exhaust species

    DOEpatents

    Graves, Ronald L [Knoxville, TN; West, Brian H [Knoxville, TN; Huff, Shean P [Knoxville, TN; Parks, II, James E

    2008-12-30

    A method and system controls engine-out exhaust species of a combustion engine having a plurality of cylinders. The method typically includes various combinations of steps such as controlling combustion parameters in individual cylinders, grouping the individual cylinders into a lean set and a rich set of one or more cylinders, combusting the lean set in a lean combustion parameter condition having a lean air:fuel equivalence ratio, combusting the rich set in a rich combustion parameter condition having a rich air:fuel equivalence ratio, and adjusting the lean set and the rich set of one or more cylinders to generate net-lean combustion. The exhaust species may have elevated concentrations of hydrogen and oxygen.

  3. Evaluation of treadmill exercise effect on muscular lipid profiles of diabetic fatty rats by nanoflow liquid chromatography-tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lee, Jong Cheol; Kim, Il Yong; Son, Yeri; Byeon, Seul Kee; Yoon, Dong Hyun; Son, Jun Seok; Song, Han Sol; Song, Wook; Seong, Je Kyung; Moon, Myeong Hee

    2016-07-01

    We compare comprehensive quantitative profiling of lipids at the molecular level from skeletal muscle tissues (gastrocnemius and soleus) of Zucker diabetic fatty rats and Zucker lean control rats during treadmill exercise by nanoflow liquid chromatography-tandem mass spectrometry. Because type II diabetes is caused by decreased insulin sensitivity due to excess lipids accumulated in skeletal muscle tissue, lipidomic analysis of muscle tissues under treadmill exercise can help unveil the mechanism of lipid-associated insulin resistance. In total, 314 lipid species, including phospholipids, sphingolipids, ceramides, diacylglycerols (DAGs), and triacylglycerols (TAGs), were analyzed to examine diabetes-related lipid species and responses to treadmill exercise. Most lysophospholipid levels increased with diabetes. While DAG levels (10 from the gastrocnemius and 13 from the soleus) were >3-fold higher in diabetic rats, levels of most of these decreased after exercise in soleus but not in gastrocnemius. Levels of 5 highly abundant TAGs (52:1 and 54:3 in the gastrocnemius and 48:2, 50:2, and 52:4 in the soleus) displaying 2-fold increases in diabetic rats decreased after exercise in the soleus but not in the gastrocnemius in most cases. Thus, aerobic exercise has a stronger influence on lipid levels in the soleus than in the gastrocnemius in type 2 diabetic rats.

  4. Ciprofibrate, clofibric acid and respective glycinate derivatives. Effects of a four-week treatment on male lean and obese Zucker rats.

    PubMed

    Lupp, Amelie; Karge, Elke; Deufel, Thomas; Oelschlägers, Herbert; Fleck, Christian

    2008-01-01

    Fibrates are widely prescribed in hyperlpidemic patients to prevent atherosclerosis. Their therapeutic use, however, can be associated with adverse effects like gastrointestinal disorders, myalgia, myositis and hepatotoxicity. In rodents large doses can even cause hepatocellular carcinoma. Additionally, interactions with the biotransformation of other compounds at the cytochrome P450 (CYP) system have been observed. Thus, the discovery of new substances or derivatives with less side effects is of great interest. In the present study the influence of a four-week daily oral administration of 2 mg/kg body weight ciprofibrate (CAS 52214-84-3) or of 100 mg/kg body weight clofibric acid (CAS 882-09-7) was compared to that of the respective doses of their newly synthesized glycine conjugates in adult male lean and obese Zucker rats. Although obese rats displayed distinctly higher serum lipid concentrations, after fibrate treatment values were significantly lowered in lean animals only. Livers of obese rats were significantly enlarged, histologically showing a fine-droplet like fatty degeneration and an increase in glycogen content, but no signs of inflammation. After fibrate administration histologically a hypertrophy, an eosinophilia, a reduced glycogen content and also hepatocyteapoptosis were observed. Livers of obese rats displayed higher CYP1A1 andCYP2E1 expression, but lower immunostaining for CYP2B1 and CYP3A2. No differences between the two groups of rats were seen with respect to CYP4A1 expression. Due to fibrate treatment especially CYP2E1 and CYP4A1, but also CYP1A1, 2B1 and 3A2 were induced. Resulting CYP mediated monooxygenase activities were also elevated in most cases. In general, effects of clofibric acid and clofibric acid glycinate (CAS 4896-55-3) were less distinct than those of ciprofibrate and its glycinate (CAS 640772-36-7). With no parameterinvestigated major differences were seen between the parent fibrates and their glycine conjugates. Thus, the present investigations revealed no noticeable advantages of the glycinates over ciprofibrate or clofibric acid.

  5. Azilsartan improves glycemic status and reduces kidney damage in zucker diabetic fatty rats.

    PubMed

    Hye Khan, Md Abdul; Neckář, Jan; Haines, Jasmine; Imig, John D

    2014-08-01

    Azilsartan medoxomil (AZL-M), an angiotensin II receptor blocker, demonstrates antihypertensive and organ protective effects in hypertension. We investigated the efficacy of AZL-M to ameliorate metabolic syndrome and kidney damage associated with type 2 diabetes using Zucker diabetic fatty (ZDF) rats. ZDF rats were treated with vehicle or AZL-M for 8 weeks. Zucker diabetic lean (ZDL) rats were used as controls. Urine and plasma samples were collected for biochemical analysis, and kidney tissues were used for histopathological and immunohistopathological examination at the end of the 8-week protocol. ZDF rats were diabetic with hyperglycemia and impaired glucose tolerance, and AZL-M ameliorated the diabetic phenotype. ZDF rats were hypertensive compared with ZDL rats (181±6 vs. 129±7mm Hg), and AZL-M decreased blood pressure in ZDF rats (116±7mm Hg). In ZDF rats, there was marked renal damage with elevated proteinuria, albuminuria, nephrinuria, 2-4-fold higher tubular cast formation, and glomerular injury compared with ZDL rats. AZL-M treatment reduced renal damage in ZDF rats. ZDF rats demonstrated renal inflammation and oxidative stress with elevated urinary monocyte chemoattractant protein 1 excretion, renal infiltration of macrophages, and elevated kidney malondialdehyde levels. AZL-M reduced oxidative stress and inflammation in ZDF rats. Overall, we demonstrate that AZL-M attenuates kidney damage in type 2 diabetes. We further demonstrate that anti-inflammatory and antioxidative activities of AZL-M contribute to its kidney protective action. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. A Branched-Chain Amino Acid-Related Metabolic Signature that Differentiates Obese and Lean Humans and Contributes to Insulin Resistance

    PubMed Central

    Newgard, Christopher B; An, Jie; Bain, James R; Muehlbauer, Michael J; Stevens, Robert D; Lien, Lillian F; Haqq, Andrea M; Shah, Svati H.; Arlotto, Michelle; Slentz, Cris A; Rochon, James; Gallup, Dianne; Ilkayeva, Olga; Wenner, Brett R; Yancy, William E; Eisenson, Howard; Musante, Gerald; Surwit, Richard; Millington, David S; Butler, Mark D; Svetkey, Laura P

    2009-01-01

    Summary Metabolomic profiling of obese versus lean humans reveals a branched-chain amino acid (BCAA)-related metabolite signature that is suggestive of increased catabolism of BCAA and correlated with insulin resistance. To test its impact on metabolic homeostasis, we fed rats on high-fat (HF), HF with supplemented BCAA (HF/BCAA) or standard chow (SC) diets. Despite having reduced food intake and weight gain equivalent to the SC group, HF/BCAA rats were equally insulin resistant as HF rats. Pair-feeding of HF diet to match the HF/BCAA animals or BCAA addition to SC diet did not cause insulin resistance. Insulin resistance induced by HF/BCAA feeding was accompanied by chronic phosphorylation of mTOR, JNK, and IRS1(ser307), accumulation of multiple acylcarnitines in muscle, and was reversed by the mTOR inhibitor, rapamycin. Our findings show that in the context of a poor dietary pattern that includes high fat consumption, BCAA contributes to development of obesity-associated insulin resistance. PMID:19356713

  7. Green tea polyphenols ameliorate non-alcoholic fatty liver disease through upregulating AMPK activation in high fat fed Zucker fatty rats.

    PubMed

    Tan, Yi; Kim, Jane; Cheng, Jing; Ong, Madeleine; Lao, Wei-Guo; Jin, Xing-Liang; Lin, Yi-Guang; Xiao, Linda; Zhu, Xue-Qiong; Qu, Xian-Qin

    2017-06-07

    To investigate protective effects and molecular mechanisms of green tea polyphenols (GTP) on non-alcoholic fatty liver disease (NAFLD) in Zucker fatty (ZF) rats. Male ZF rats were fed a high-fat diet (HFD) for 2 wk then treated with GTP (200 mg/kg) or saline (5 mL/kg) for 8 wk, with Zucker lean rat as their control. At the end of experiment, serum and liver tissue were collected for measurement of metabolic parameters, alanine aminotransferase (ALT) and aspartate aminotransferase (AST), inflammatory cytokines and hepatic triglyceride and liver histology. Immunoblotting was used to detect phosphorylation of AMP-activated protein kinase (AMPK) acetyl-CoA carboxylase (ACC), and sterol regulatory element-binding protein 1c (SREBP1c). Genetically obese ZF rats on a HFD presented with metabolic features of hepatic pathological changes comparable to human with NAFLD. GTP intervention decreased weight gain (10.1%, P = 0.052) and significantly lowered visceral fat (31.0%, P < 0.01). Compared with ZF-controls, GTP treatment significantly reduced fasting serum insulin, glucose and lipids levels. Reduction in serum ALT and AST levels (both P < 0.01) were observed in GTP-treated ZF rats. GTP treatment also attenuated the elevated TNFα and IL-6 in the circulation. The increased hepatic TG accumulation and cytoplasmic lipid droplet were attenuated by GTP treatment, associated with significantly increased expression of AMPK-Thr172 ( P < 0.05) and phosphorylated ACC and SREBP1c (both P < 0.05), indicating diminished hepatic lipogenesis and triglycerides out flux from liver in GTP treated rats. The protective effects of GTP against HFD-induced NAFLD in genetically obese ZF rats are positively correlated to reduction in hepatic lipogenesis through upregulating the AMPK pathway.

  8. Chronic fructose intake accelerates non-alcoholic fatty liver disease in the presence of essential hypertension.

    PubMed

    Lírio, Layla Mendonça; Forechi, Ludimila; Zanardo, Tadeu Caliman; Batista, Hiago Martins; Meira, Eduardo Frizera; Nogueira, Breno Valentim; Mill, José Geraldo; Baldo, Marcelo Perim

    2016-01-01

    The growing epidemic of metabolic syndrome has been related to the increased use of fructose by the food industry. In fact, the use of fructose as an ingredient has increased in sweetened beverages, such as sodas and juices. We thus hypothesized that fructose intake by hypertensive rats would have a worse prognosis in developing metabolic disorder and non-alcoholic fatty liver disease. Male Wistar and SHR rats aged 6weeks were given water or fructose (10%) for 6weeks. Blood glucose was measured every two weeks, and insulin and glucose sensitivity tests were assessed at the end of the follow-up. Systolic blood pressure was measure by plethysmography. Lean mass and abdominal fat mass were collected and weighed. Liver tissue was analyzed to determine interstitial fat deposition and fibrosis. Fasting glucose increased in animals that underwent a high fructose intake, independent of blood pressure levels. Also, insulin resistance was observed in normotensive and mostly in hypertensive rats after fructose intake. Fructose intake caused a 2.5-fold increase in triglycerides levels in both groups. Fructose intake did not change lean mass. However, we found that fructose intake significantly increased abdominal fat mass deposition in normotensive but not in hypertensive rats. Nevertheless, chronic fructose intake only increased fat deposition and fibrosis in the liver in hypertensive rats. We demonstrated that, in normotensive and hypertensive rats, fructose intake increased triglycerides and abdominal fat deposition, and caused insulin resistance. However, hypertensive rats that underwent fructose intake also developed interstitial fat deposition and fibrosis in liver. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Alterations in circadian and meal-induced gut peptide levels in lean and obese rats.

    PubMed

    Moghadam, Alexander A; Moran, Timothy H; Dailey, Megan J

    2017-12-01

    Alterations in gut hormone signaling are a likely contributing factor to the metabolic disturbances associated with overweight/obesity as they coordinate the timing of feeding behavior, absorption, and utilization of nutrients. These hormones are released in response to food intake, or follow a circadian or anticipatory pattern of secretion that is independent of nutrient stimulation. The aim of this study was to identify the degree to which high-fat diet-induced obesity would alter the daily rhythm of gut peptide plasma levels (glucagon-like peptide-1 [GLP-1], peptide YY [PYY], insulin or amylin [AMY]) or meal-induced levels in the middle of the light or dark cycle. Male Sprague-Dawley rats were fed a high-fat diet (OBESE) or chow (LEAN), implanted with jugular catheters, and blood samples were taken every 2 h throughout the light/dark cycle while freely feeding or after an Ensure liquid meal. We found that even when OBESE and LEAN animals ate the same kcals and have a similar pattern of food intake, there is a difference in both the levels and rhythm of plasma gut peptides. GLP-1 and PYY are higher during the light cycle in LEAN animals and AMY is higher in the OBESE group throughout the light/dark cycle. There was also a differential response of plasma gut signals after the Ensure meal, even though the composition and amount of intake of the meal were the same in both groups. These changes occur prior to the high-fat diet induced loss of glycemic control and may be a target for early intervention. Impact statement The aim of this study was to test if obesity would alter the daily rhythm of gut peptides or meal-induced levels in the middle of the light or dark cycle. We found that even when animals are eating the same amount (in kcal) of food that the obese animals have altered daily rhythms and meal-induced gut peptide levels. In particular, we are the first to show that obesity induces increases in peptide YY levels during the light cycle and amylin remains high throughout the light and dark cycle in obese animals. These changes occurred prior to a loss of glycemic control. Thus, the rhythm of gut peptides could be used as an early indicator of later and more serious metabolic disturbances and may be a target for early intervention.

  10. Adipokines, oxidized low-density lipoprotein, and C-reactive protein levels in lean, overweight, and obese portuguese patients with type 2 diabetes.

    PubMed

    Neuparth, Maria João; Proença, Jorge Brandão; Santos-Silva, Alice; Coimbra, Susana

    2013-01-01

    Aim. Our aim was to study how different BMI scores may influence the levels of inflammation, oxidative stress, adipogenesis, glucose, and lipid metabolism, in lean, overweight, and obese Portuguese patients with type 2 diabetes mellitus (T2DM). Methods. We studied 28 lean, 38 overweight, and 17 obese patients with T2DM and 20 controls (gender and age matched). The circulating levels of oxLDL, CRP, and some adipokines-adiponectin, leptin, and chemerin-and the lipid profile were evaluated. Results. Obese patients presented significantly lower levels of adiponectin and higher leptin, oxLDL, and chemerin levels, as compared to the overweight, lean, and control groups. Overweight, compared to lean and control, subjects showed significantly lower adiponectin and higher leptin and chemerin levels; oxLDL values were significantly higher in overweight than in lean patients. Lean patients presented significantly higher chemerin values than the control. Obese patients presented significantly higher CRP values, as compared to lean patients and the control group. Obese and overweight patients presented significantly higher triglycerides values than lean patients. Except for CRP, all the observed significant changes between control and patients remained significant after statistical adjustment for the body mass index (BMI). Conclusion. The levels of leptin, adiponectin, oxLDL, CRP, and triglycerides in patients with T2DM seem to be more associated with obesity and less with diabetes. Chemerin levels were raised in lean, overweight, and obese patients, suggesting that, independently of BMI, an adipocyte dysfunction occurs. Moreover, chemerin may provide an important early biomarker of adipocyte dysfunction and a link between obesity and type 2 diabetes mellitus.

  11. Adipokines, Oxidized Low-Density Lipoprotein, and C-Reactive Protein Levels in Lean, Overweight, and Obese Portuguese Patients with Type 2 Diabetes

    PubMed Central

    Neuparth, Maria João; Proença, Jorge Brandão; Santos-Silva, Alice; Coimbra, Susana

    2013-01-01

    Aim. Our aim was to study how different BMI scores may influence the levels of inflammation, oxidative stress, adipogenesis, glucose, and lipid metabolism, in lean, overweight, and obese Portuguese patients with type 2 diabetes mellitus (T2DM). Methods. We studied 28 lean, 38 overweight, and 17 obese patients with T2DM and 20 controls (gender and age matched). The circulating levels of oxLDL, CRP, and some adipokines—adiponectin, leptin, and chemerin—and the lipid profile were evaluated. Results. Obese patients presented significantly lower levels of adiponectin and higher leptin, oxLDL, and chemerin levels, as compared to the overweight, lean, and control groups. Overweight, compared to lean and control, subjects showed significantly lower adiponectin and higher leptin and chemerin levels; oxLDL values were significantly higher in overweight than in lean patients. Lean patients presented significantly higher chemerin values than the control. Obese patients presented significantly higher CRP values, as compared to lean patients and the control group. Obese and overweight patients presented significantly higher triglycerides values than lean patients. Except for CRP, all the observed significant changes between control and patients remained significant after statistical adjustment for the body mass index (BMI). Conclusion. The levels of leptin, adiponectin, oxLDL, CRP, and triglycerides in patients with T2DM seem to be more associated with obesity and less with diabetes. Chemerin levels were raised in lean, overweight, and obese patients, suggesting that, independently of BMI, an adipocyte dysfunction occurs. Moreover, chemerin may provide an important early biomarker of adipocyte dysfunction and a link between obesity and type 2 diabetes mellitus. PMID:24634792

  12. Cerebrovasculoprotective Effects of Azilsartan Medoxomil in Diabetes

    PubMed Central

    Abdelsaid, Mohammed; Coucha, Maha; Ergul, Adviye

    2014-01-01

    We have shown that Goto-Kakizaki (GK) rats, a lean model of type 2 diabetes, develop significant cerebrovascular remodeling by 18 weeks of age, which is characterized by increased media thickness and matrix deposition. While early glycemic control prevents diabetes-mediated remodeling of the cerebrovasculature, whether the remodeling can be reversed is unknown. Given that angiotensin II Type 1 receptor blockers (ARBs) reverse pathological vascular remodeling and function independent of changes in blood pressure in other vascular beds, we hypothesized that azilsartan medoxomil, a new ARB, is vasculoprotective by preventing and reversing cerebrovascular remodeling in diabetes. Control Wistar and diabetic GK rats (n=6–8/group), were treated with vehicle (water) or azilsartan medoxomil (3 mg/kg/day) from 14 to 18 or 18 to 22 weeks of age before or after vascular remodeling is established, respectively. Blood glucose and blood pressure were monitored and middle cerebral artery structure and function were evaluated using pressurized arteriography. Blood glucose was higher in GK rats compared to Wistar rats. Azilsartan treatment lowered blood glucose in diabetes with no effect on blood pressure. Diabetic animals exhibited lower myogenic tone, increased wall thickness, and cross sectional area compared to controls, which were corrected by azilsartan treatment when started at the onset of diabetes or later after vascular remodeling is established. Azilsartan medoxomil offers preventive and therapeutic vasculoprotection in diabetes-induced cerebrovascular remodeling and myogenic dysfunction and this is independent of blood pressure. PMID:24999268

  13. Behavioural, morphological and electrophysiological assessment of the effects of type 2 diabetes mellitus on large and small nerve fibres in Zucker diabetic fatty, Zucker lean and Wistar rats.

    PubMed

    Garcia-Perez, E; Schönberger, T; Sumalla, M; Stierstorfer, B; Solà, R; Doods, H; Serra, J; Gorodetskaya, N

    2018-04-20

    Peripheral neuropathy is a common complication in type 2 diabetes mellitus (T2DM). The most common presentation is in the form of a distal axonal sensory-motor polyneuropathy that involves large and small nerve fibres in variable proportion. Zucker Diabetic Fatty (ZDF), Zucker Lean (ZL) and Wistar Han (WH) rats were used to assess the behavioural, morphological and electrophysiological effects that T2DM have on peripheral large and small nerve fibres of 6- to 40-week-old rats. ZDF rats presented mechanical hypersensitivity that initially worsened in parallel to the progression of diabetes and eventually reverted at later stages of the disease. The reversal from hypersensitivity to hyposensitivity paralleled a reduction in the number of intraepithelial skin nerve terminals and in the nerve fibre lengths. However, no increased levels of degeneration of dorsal root ganglion neurons were observed. Nerve conduction studies showed a reduction in sensory and motor nerve conduction velocity (CV) in hyperglycaemic ZDF rats. Microneurography showed significant alterations in several parameters of activity-dependent slowing (ADS) of mechano-insensitive C-nociceptors in ZDF rats. Surprisingly, some of these changes were also observed in ZL rats. Moreover, we found spontaneous activity in all three strains implying that C-nociceptors become hyperexcitable and spontaneously active not only in ageing hyperglycaemic ZDF rats but also in age-matched and apparently normoglycaemic ZL and WH rats fed with the same diet. ZDF rats presented a diabetic neuropathy involving large and small nerve fibres; additionally, ZL and WH rats also showed early small abnormalities in C-fibres, clearly detected by microneurography SIGNIFICANCE: This study provides a functional description of large and small nerve fibre function in a diabetic model that recapitulates many of the findings observed in patients suffering from type 2 diabetes mellitus. © 2018 European Pain Federation - EFIC®.

  14. Novel effects of the cannabinoid inverse agonist AM 251 on parameters related to metabolic syndrome in obese Zucker rats.

    PubMed

    Merroun, Ikram; Sánchez-González, Cristina; Martínez, Rosario; López-Chaves, Carlos; Porres, Jesús M; Aranda, Pilar; Llopis, Juan; Galisteo, Milagros; Zarzuelo, Antonio; Errami, Mohammed; López-Jurado, María

    2013-11-01

    Recent research suggests that cannabinoid receptor CB1 antagonists can affect appetite and body weight gain, although their influence on other parameters related to metabolic syndrome is not well documented. The present study was designed to assess the effects of chronic treatment with the CB1 receptor inverse agonist AM 251 (3 mg/kg for 3 weeks) in obese and lean Zucker rats on parameters related to metabolic syndrome. Four groups of rats were used: lean Zucker rats, untreated obese Zucker rats, AM 251-treated obese Zucker rats and a pair-fed obese Zucker rat experimental group which received the same amount of food as that consumed by the animals treated with AM251. Food intake, body weight gain, energy expenditure, plasma biochemical parameters, leptin, insulin and hepatic status markers were analysed. Daily injection of AM 251 in obese Zucker rats produced a marked and sustained decrease in daily food intake and body weight and a considerable increase in energy expenditure in comparison with untreated obese Zucker rats. AM 251 administration to obese rats significantly reduced plasma levels of glucose, leptin, AST, ALT, Gamma GT, total bilirubin and LDL cholesterol whereas HDL cholesterol plasma levels increased. The results also showed a decrease in liver/weight body ratio and total fat content in the liver. The main effects of AM251 (3 mg/kg) found in this study were not observed in pair-fed obese animals, highlighting the additional beneficial effects of treatment with AM 251. The results obtained in obese rats can be interpreted as a decrease in leptin and insulin resistance, thereby improving glucose and lipid metabolism, alleviating the steatosis present in the metabolic syndrome and thus favourably modifying plasma levels of hepatic biomarkers. Our results indicate that the cannabinoid CB1 inverse agonist AM 251 represents a promising therapeutic strategy for the treatment of obesity and metabolic syndrome. © 2013.

  15. Tetragonia tetragonioides (Pall.) Kuntze protects estrogen-deficient rats against disturbances of energy and glucose metabolism and decreases proinflammatory cytokines.

    PubMed

    Ryuk, Jin Ah; Ko, Byoung-Seob; Lee, Hye Won; Kim, Da Sol; Kang, Suna; Lee, Yong Hyen; Park, Sunmin

    2017-03-01

    Tetragonia tetragonioides (Pall.) Kuntze (TTK) and JakYakGamCho-Tang (JGT) have been used for improving women's health and treating inflammatory diseases. We determined that the long-term consumption of these herbal extracts alleviates the progression of postmenopausal symptoms in high-fat-diet fed ovariectomized (OVX) rats, and further explored the mechanisms involved. Five groups of OVX rats were fed high fat diets that were supplemented with either 2% dextrin (control), 2% TTK (70% ethanol extract), 2% JGT (water extract), 1% JGT + 1% TTK (JGTT), or 30 µg/kg body weight/day of 17β-estradiol (positive control). After eight weeks of dietary intervention, the herbal treatments did not change the serum concentrations of 17β-estradiol or uterine weight in control rats, but they were higher in the positive-control group. TTK rats exhibited higher daily energy expenditure, particularly fat oxidation, without modifying the energy intake than the controls. TTK lowered the fat mass but lean body mass of the abdomen and leg were increased. JGT decreased periuterine fat mass and lean body mass more than the control but the decrease was not as much as TTK. TTK resulted in substantially lower serum concentrations of the proinflammatory cytokines, tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein-1, than the control and JGT had lesser effect than TTK. Insulin resistance, determined by homeostasis model assessment estimate for assessing insulin resistance (HOMA-IR) and insulin tolerance test, was reduced in the decreasing order of control, JGT, JGTT, and TTK and the HOMA-IR of TTK was similar to the positive control. TTK, but not JGT, enhanced glucose tolerance compared with the control, although the serum insulin levels in TTK were lower compared to the control. Interestingly, the β-cell masses were much greater in the TTK and JGTT groups than in the control, and they were comparable to the positive control. The increases in β-cell masses in TTK and JGTT groups were associated with enhanced β-cell proliferation and suppressed apoptosis, which was related to the decreased TNF-α and interleukin-1β expressions. In conclusion, JGTT did not improve menopausal symptoms better than TTK itself. TTK itself prevented the OVX-induced impairments in energy, lipid, and glucose metabolism, similar to the positive control, without changing serum 17β-estradiol levels and potentiating insulin signaling and decreasing proinflammatory cytokines. TTK may be a useful intervention to alleviate some menopausal symptoms similar to selective estrogen receptor modulators and should be investigated with further human study. Impact statement Menopause decreases the quality of life in middle-aged women and herbal remedies are sometimes used as alternatives for hormone replacement therapy, which may have detrimental side effects. Although several herbal extracts have been studied, no remedies improve all the menopausal symptoms. In this study, the 70% ethanol extract of Tetragonia tetragonioides (Pall.) Kuntze (TTK) reduced the symptoms of hot flushes and improved energy, glucose, and lipid metabolism in estrogen-deficient animals without increasing serum 17β-estradiol levels. This extract acts like a selective estrogen receptor modulator and it may be a useful intervention for alleviating menopausal symptoms. This is the first study to show that the 70% ethanol extract of TTK has the potential to treat menopause-associated symptoms and metabolic disturbances. It may be a useful intervention for alleviating the symptoms of menopause in women if its efficacy can be confirmed in human studies.

  16. Filter-based control of particulate matter from a lean gasoline direct injection engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parks, II, James E; Lewis Sr, Samuel Arthur; DeBusk, Melanie Moses

    New regulations requiring increases in vehicle fuel economy are challenging automotive manufacturers to identify fuel-efficient engines for future vehicles. Lean gasoline direct injection (GDI) engines offer significant increases in fuel efficiency over the more common stoichiometric GDI engines already in the marketplace. However, particulate matter (PM) emissions from lean GDI engines, particularly during stratified combustion modes, are problematic for lean GDI technology to meet U.S. Environmental Protection Agency Tier 3 and other future emission regulations. As such, the control of lean GDI PM with wall-flow filters, referred to as gasoline particulate filter (GPF) technology, is of interest. Since lean GDImore » PM chemistry and morphology differ from diesel PM (where more filtration experience exists), the functionality of GPFs needs to be studied to determine the operating conditions suitable for efficient PM removal. In addition, lean GDI engine exhaust temperatures are generally higher than diesel engines which results in more continuous regeneration of the GPF and less presence of the soot cake layer common to diesel particulate filters. Since the soot layer improves filtration efficiency, this distinction is important to consider. Research on the emission control of PM from a lean GDI engine with a GPF was conducted on an engine dynamometer. PM, after dilution, was characterized with membrane filters, organic vs. elemental carbon characterization, and size distribution techniques at various steady state engine speed and load points. The engine was operated in three primary combustion modes: stoichiometric, lean homogeneous, and lean stratified. In addition, rich combustion was utilized to simulate PM from engine operation during active regeneration of lean NOx control technologies. High (>95%) PM filtration efficiencies were observed over a wide range of conditions; however, some PM was observed to slip through the GPF at high speed and load conditions. The PM characterization at various engine speeds and loads will help enable optimized GPF design and control to achieve more fuel efficient lean GDI vehicles with low PM emissions.« less

  17. Investigation of brain-derived neurotrophic factor (BDNF) gene expression in hypothalamus of obese rats: Modulation by omega-3 fatty acids.

    PubMed

    Abdel-Maksoud, Sahar M; Hassanein, Sally I; Gohar, Neveen A; Attia, Saad M M; Gad, Mohamed Z

    2017-10-01

    The aim of this study was investigating the effect of omega-3 fatty acids (ω-3 FAs) on brain-derived neurotrophic factor (BDNF) gene expression, using in vivo and in vitro models, to unravel the potential mechanisms of polyunsaturated fatty acids use in obesity. Twenty-nine Sprague-Dawley rats were divided into three groups; lean controls fed normal chow diet for 14 weeks, obese controls fed 60% of their diet as saturated fats for 14 weeks, and ω-3 FAs-treated rats fed 60% saturated fat diet for 14 weeks with concomitant oral administration of 400 mg/kg/day ω-3 FAs, mainly docosahexaenoic acid and EPA, from week 12 to week 14. For the in vitro experiment, hypothalamic cells from six obese rats were cultured in the presence of different concentrations of ω-3 FAs to determine its direct effect on BDNF expression. In vivo results showed that obesity has negative effect on BDNF gene expression in rat hypothalamus that was reversed by administration of ω-3 FAs. Obese rats showed hypercholesterolemia, hypertriglyceridemia, normoinsulinemia, hyperglycemia and hyperleptinemia. Treatment with ω-3 FAs showed significant decrease in serum total cholesterol and TAG. Also serum glucose level and HOMA index were decreased significantly. In vitro results demonstrated the increase in BDNF expression by ω-3 FAs in a dose-dependent manner. Obesity causes down-regulation of BDNF gene expression that can be reversed by ω-3 FAs treatment, making them an interesting treatment approach for obesity and metabolic disease.

  18. Hypocaloric high-protein diet improves fatty liver and hypertriglyceridemia in sucrose-fed obese rats via two pathways.

    PubMed

    Uebanso, Takashi; Taketani, Yutaka; Fukaya, Makiko; Sato, Kazusa; Takei, Yuichiro; Sato, Tadatoshi; Sawada, Naoki; Amo, Kikuko; Harada, Nagakatsu; Arai, Hidekazu; Yamamoto, Hironori; Takeda, Eiji

    2009-07-01

    The mechanism by which replacement of some dietary carbohydrates with protein during weight loss favors lipid metabolism remains obscure. In this study, we investigated the effect of an energy-restricted, high-protein/low-carbohydrate diet on lipid metabolism in obese rats. High-sucrose-induced obese rats were assigned randomly to one of two energy-restricted dietary interventions: a carbohydrate-based control diet (CD) or a high-protein diet (HPD). Lean rats of the same age were assigned as normal control. There was significantly greater improvement in fatty liver and hypertriglyceridemia with the HPD diet relative to the CD diet. Expression of genes regulated by fibroblast growth factor-21 (FGF21) and involved in liver lipolysis and lipid utilitization, such as lipase and acyl-CoA oxidase, increased in obese rats fed the HPD. Furthermore, there was an inverse correlation between levels of FGF21 gene expression (regulated by glucagon/insulin balance) and increased triglyceride concentrations in liver from obese rats. Expression of hepatic stearoyl-CoA desaturase-1 (SCD1), regulated primarily by the dietary carbohydrate, was also markedly reduced in the HPD group (similar to plasma triglyceride levels in fasting animals) relative to the CD group. In conclusion, a hypocaloric high-protein diet improves fatty liver and hypertriglyceridemia effectively relative to a carbohydrate diet. The two cellular pathways at work behind these benefits include stimulation of hepatic lipolysis and lipid utilization mediated by FGF21 and reduction of hepatic VLDL-TG production by SCD1 regulation.

  19. Analysis of time-dependent adaptations in whole-body energy balance in obesity induced by high-fat diet in rats.

    PubMed

    So, Mandy; Gaidhu, Mandeep P; Maghdoori, Babak; Ceddia, Rolando B

    2011-06-16

    High-fat (HF) diet has been extensively used as a model to study metabolic disorders of human obesity in rodents. However, the adaptive whole-body metabolic responses that drive the development of obesity with chronically feeding a HF diet are not fully understood. Therefore, this study investigated the physiological mechanisms by which whole-body energy balance and substrate partitioning are adjusted in the course of HF diet-induced obesity. Male Wistar rats were fed ad libitum either a standard or a HF diet for 8 weeks. Food intake (FI) and body weight were monitored daily, while oxygen consumption, respiratory exchange ratio, physical activity, and energy expenditure (EE) were assessed weekly. At week 8, fat mass and lean body mass (LBM), fatty acid oxidation and uncoupling protein-1 (UCP-1) content in brown adipose tissue (BAT), as well as acetyl-CoA carboxylase (ACC) content in liver and epidydimal fat were measured. Within 1 week of ad libitum HF diet, rats were able to spontaneously reduce FI to precisely match energy intake of control rats, indicating that alterations in dietary energy density were rapidly detected and FI was self-regulated accordingly. Oxygen consumption was higher in HF than controls throughout the study as whole-body fat oxidation also progressively increased. In HF rats, EE initially increased, but then reduced as dark cycle ambulatory activity reached values ~38% lower than controls. No differences in LBM were detected; however, epidydimal, inguinal, and retroperitoneal fat pads were 1.85-, 1.89-, and 2.54-fold larger in HF-fed than control rats, respectively. Plasma leptin was higher in HF rats than controls throughout the study, indicating the induction of leptin resistance by HF diet. At week 8, UCP-1 content and palmitate oxidation in BAT were 3.1- and 1.5-fold higher in HF rats than controls, respectively, while ACC content in liver and epididymal fat was markedly reduced. The thermogenic response induced by the HF diet was offset by increased energy efficiency and time-dependent reduction in physical activity, favoring fat accumulation. These adaptations were mainly driven by the nutrient composition of the diet, since control and HF animals spontaneously elicited isoenergetic intake.

  20. Submandibular Gland and Caries Susceptibility in the Obese Zucker Rat

    PubMed Central

    Mozaffari, Mahmood S.; Abdelsayed, Rafik; Zakhary, Ibrahim; El-Salanty, Mohammed; Liu, Jun Yao; Wimborne, Hereward; El-Marakby, Ahmed

    2010-01-01

    Background Obesity is a prevalent disorder characterized as marked insulin resistance and low grade inflammation. We tested the hypothesis that obesity upregulates inflammatory markers in the submandibular gland in association with derangements of its architecture and predisposition to caries in obese Zucker rats. We also examined the potential impact of chromium picolinate (Cr(Pic)3), a nutritional supplement suggested to improve glycemic control, on the aforementioned parameters. Design Male obese Zucker rats (OZR) were treated with diets lacking and containing 5 or 10 mg/kg chromium (as Cr(Pic)3) from 6 weeks to about 6 months of age; lean Zucker rats (LZR) served as controls. Thereafter, glycemic status, salivary tissue architecture and levels of several inflammatory markers were determined in association with caries susceptibility. Results OZR showed reduced insulin sensitivity, increased ratio of phospho-nuclear factor kappa B (NF-κB) to total NF-κB and increased intercellular adhesion molecule-1 level but similar histological features compared to LZR. Importantly, compared to LZR, OZR displayed rampant caries and a tendency for reduced dentin mineral density. Treatment of OZR with Cr(Pic)3 attenuated upregulation of these proinflammatory indicators in association with reduced severity of caries without improving insulin sensitivity. Conclusions Obesity promotes proinflammatory changes within the submandibular gland, without affecting glandular architecture, in association with rampant caries; Cr(Pic)3 treatment provided some protective effects. PMID:20973827

  1. Chemotherapy-induced anorexia is accompanied by activation of brain pathways signaling dehydration.

    PubMed

    Sinno, Maria Hamze; Coquerel, Quentin; Boukhettala, Nabile; Coëffier, Moïse; Gallas, Syrine; Terashi, Mutsumi; Ibrahim, Ayman; Breuillé, Denis; Déchelotte, Pierre; Fetissov, Sergueï O

    2010-12-02

    Cancer chemotherapy is accompanied by anorexia and mucositis. To clarify the mechanisms of chemotherapy-induced anorexia, we studied the expression of c-fos and appetite-regulating neuropeptidergic and inflammatory mediators in the hypothalamus of rats treated with methotrexate (MTX). Sprague-Dawley rats received MTX (2.5mg/kg, subcutaneously) on three consecutive days and were compared with ad libitum- and pair-fed control rats five days after the first injection. MTX administration inhibited food and water intake and induced lean and fat mass losses. MTX also induced mucositis and diarrhea without changes in plasma osmolality. Pair-fed rats lost a similar amount of body weight but had no mucositis or diarrhea. Increased number of c-fos positive hypothalamic vasopressin neurosecretory neurons as well as numerous c-fos positive cells in the subfornical organ and in the organum vasculosum of the lamina terminalis were found in MTX-treated as compared to control or pair-fed rats. In both MTX and pair-fed rats, a decrease of hypothalamic proopiomelanocortin mRNA expression and low plasma levels of interleukin-1β (IL-1β) were found reflecting probably the energy deficit. No significant changes of IL-1β mRNA expression and intensity of microglial staining in the hypothalamus were found in MTX-treated rats. The pattern of c-fos expression in the hypothalamus during MTX treatment is similar to that seen with systemic dehydration, which is known to cause anorexia. No evidence of inflammatory origin of anorexia was found, suggesting that chemotherapy accompanied by mucositis and diarrhea may cause anorexia associated with systemic dehydration. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Correlates of increased lean muscle mass in women with polycystic ovary syndrome.

    PubMed

    Carmina, E; Guastella, E; Longo, R A; Rini, G B; Lobo, R A

    2009-10-01

    Muscle mass plays an important role in determining cardiovascular and metabolic risks in polycystic ovary syndrome (PCOS). In addition, whether lean mass influences carotid intima-media thickness (IMT) in PCOS has not been assessed. Prospective investigation. Ninety-five women with PCOS were age- and weight-matched to 90 ovulatory controls. All women had dual X-ray absorptiometry for lean, fat and bone mass, and bone mass density (BMD). Serum testosterone, sex hormone-binding globulin, insulin, and glucose and carotid IMT were determined. Free androgen index (FAI) and insulin resistance (by QUICKI) were calculated. In PCOS, waist circumference and insulin were higher and QUICKI lower than in controls (P<0.01). Trunk fat mass, % trunk fat, and lean mass were higher in PCOS compared to controls (P<0.01), while total bone mass and BMD were similar. IMT was increased in PCOS (P<0.01) but only 15% of PCOS patients had abnormal (> or = 0.9 mm) values. Lean mass correlated with fat parameters, insulin, QUICKI, and FAI, but not with total testosterone; and after adjustments for insulin and QUICKI, lean mass still correlated with fat mass (P<0.01) but not FAI. Lean mass correlated with IMT (P<0.01), but this was dependent on insulin. However, excluding those patients with abnormal IMT values, IMT correlated with lean mass independently of insulin. Bone mass correlated with lean and fat mass, but not with insulin or androgen. PCOS patients with 'pathological' IMT values had higher % trunk fat, lean mass, and insulin, lower QUICKI, and higher testosterone and FAI compared with those with normal IMT. Lean mass is increased in PCOS, while bone mass is similar to that of matched controls. The major correlates of lean mass are fat mass and insulin but not androgen. Lean mass also correlated with IMT, and although influenced by insulin, small changes in IMT may partially reflect changes in muscle mass, while clearly abnormal values relate to more severe abnormalities of PCOS.

  3. Vitamin D supplementation restores the blunted muscle protein synthesis response in deficient old rats through an impact on ectopic fat deposition.

    PubMed

    Chanet, Audrey; Salles, Jérôme; Guillet, Christelle; Giraudet, Christophe; Berry, Alexandre; Patrac, Véronique; Domingues-Faria, Carla; Tagliaferri, Camille; Bouton, Katia; Bertrand-Michel, Justine; Van Dijk, Miriam; Jourdan, Marion; Luiking, Yvette; Verlaan, Sjors; Pouyet, Corinne; Denis, Philippe; Boirie, Yves; Walrand, Stéphane

    2017-08-01

    We investigated the impact of vitamin D deficiency and repletion on muscle anabolism in old rats. Animals were fed a control (1 IU vitamin D 3 /g, ctrl, n=20) or a vitamin D-depleted diet (VDD; 0 IU, n=30) for 6 months. A subset was thereafter sacrificed in the control (ctrl6) and depleted groups (VDD6). Remaining control animals were kept for 3 additional months on the same diet (ctrl9), while a part of VDD rats continued on a depleted diet (VDD9) and another part was supplemented with vitamin D (5 IU, VDS9). The ctr16 and VDD6 rats and the ctr19, VDD9 and VDS9 rats were 21 and 24 months old, respectively. Vitamin D status, body weight and composition, muscle strength, weight and lipid content were evaluated. Muscle protein synthesis rate (fractional synthesis rate; FSR) and the activation of controlling pathways were measured. VDD reduced plasma 25(OH)-vitamin D, reaching deficiency (<25 nM), while 25(OH)-vitamin D increased to 118 nM in the VDS group (P<.0001). VDD animals gained weight (P<.05) with no corresponding changes in lean mass or muscle strength. Weight gain was associated with an increase in fat mass (+63%, P<.05), intramyocellular lipids (+75%, P<.05) and a trend toward a decreased plantaris weight (-19%, P=.12). Muscle FSR decreased by 40% in the VDD group (P<.001), but was restored by vitamin D supplementation (+70%, P<.0001). Such changes were linked to an over-phosphorylation of eIF2α. In conclusion, vitamin D deficiency in old rats increases adiposity and leads to reduced muscle protein synthesis through activation of eIF2α. These disorders are restored by vitamin D supplementation. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Effects of interval aerobic training combined with strength exercise on body composition, glycaemic and lipid profile and aerobic capacity of obese rats.

    PubMed

    Coll-Risco, Irene; Aparicio, Virginia A; Nebot, Elena; Camiletti-Moirón, Daniel; Martínez, Rosario; Kapravelou, Garyfallia; López-Jurado, María; Porres, Jesús M; Aranda, Pilar

    2016-08-01

    The purpose of this study was to investigate the effects of interval aerobic training combined with strength exercise in the same training session on body composition, and glycaemic and lipid profile in obese rats. Sixteen lean Zucker rats and sixteen obese Zucker rats were randomly divided into exercise and sedentary subgroups (4 groups, n = 8). Exercise consisted of interval aerobic training combined with strength exercise in the same training session. The animals trained 60 min/day, 5 days/week for 8 weeks. Body composition, lipid and glycaemic profiles and inflammatory markers were assessed. Results showed that fat mass was reduced in both lean and obese rats following the exercise training (effect size (95% confidence interval (CI)) = 1.8 (0.5-3.0)). Plasma low-density lipoprotein-cholesterol and fasting glucose were lower in the exercise compared to the sedentary groups (d = 2.0 (0.7-3.2) and 1.8 (0.5-3.0), respectively). Plasma insulin was reduced in exercise compared to sedentary groups (d = 2.1 (0.8-3.4)). Some exercise × phenotype interactions showed that the highest decreases in insulin, homeostatic model assessment-insulin resistance, fasting and postprandial glucose were observed in the obese + exercise group (all, P < 0.01). The findings of this study suggest that interval aerobic training combined with strength exercise would improve body composition, and lipid and glycaemic profiles, especially in obese rats.

  5. MSG intake suppresses weight gain, fat deposition, and plasma leptin levels in male Sprague-Dawley rats.

    PubMed

    Kondoh, Takashi; Torii, Kunio

    2008-09-03

    Monosodium l-glutamate (MSG), an umami taste substance, may be a key molecule coupled to a food intake signaling pathway, possibly mediated through a specific l-glutamate (GLU) sensing mechanism in the gastrointestinal tract. Here we investigated the effect of the spontaneous ingestion of a 1% MSG solution and water on food intake and body weight in male Sprague-Dawley rats fed diets of varying caloric density, fat and carbohydrate contents. Fat mass and lean mass in the abdomen, blood pressure, and several blood metabolic markers were also measured. Rats given free access to MSG and water showed a high preference (93-97%) for the MSG solution, regardless of the diet they consumed. Rats ingesting MSG had a significantly smaller weight gain, reduced abdominal fat mass, and lower plasma leptin levels, compared to rats ingesting water alone. Naso-anal length, lean mass, food and energy intakes, blood pressure, blood glucose, and plasma levels of insulin, triglyceride, total cholesterol, albumin, and GLU were not influenced by the ingestion of the MSG solution. These same effects were observed in a study of adult rats. Together, these results suggest that MSG ingestion reduces weight gain, body fat mass, and plasma leptin levels. Moreover, these changes are likely to be mediated by increased energy expenditure, not reduced energy intake or delayed development. Conceivably, these effects of MSG might be mediated via gut GLU receptors functionally linked to afferent branches of the vagus nerve in the gut, or the afferent sensory nerves in the oral cavity.

  6. Insulin-induced capillary recruitment is impaired in both lean and obese women with PCOS.

    PubMed

    Ketel, I J G; Serné, E H; Ijzerman, R G; Korsen, T J M; Twisk, J W; Hompes, P G A; Smulders, Y M; Homburg, R; Vorstermans, L; Stehouwer, C D A; Lambalk, C B

    2011-11-01

    Insulin resistance, i.e. impaired insulin-mediated glucose uptake (IMGU), is a major risk factor for type 2 diabetes in women with polycystic ovary syndrome (PCOS). Insulin-induced capillary recruitment (IICR) is considered a significant determinant of IMGU. We investigated whether IICR is a determinant IMGU in obese and lean women with and without PCOS. The study included 36 women with PCOS (20 lean, BMI 21.9 ± 2.3 kg/m(2) and 16 obese, BMI 35.9 ± 6.0 kg/m(2)) and 27 age-matched healthy controls (14 lean, BMI 22.2 ± 1.8 kg/m(2) and 13 obese, BMI 40.5 ± 7.0 kg/m(2)). IICR was evaluated by capillary microscopy during an isoglycemic-hyperinsulinemic clamp. IMGU was expressed as M/I value. The M/I value was significantly lower in obese PCOS women compared with obese controls [0.5 (0.2-1.1) versus 0.8 (0.3-1.4) (mg kg(-1) min(-1) pmol l(-1)) × 100, P < 0.01], whereas the small difference between lean PCOS and lean control women was non-significant [1.5 (0.5-2.6) versus 1.7 (1.0-3.7) (mg kg(-1) min(-1) pmol l(-1)) × 100, P = 0.17]. Hyperinsulinemia increased capillary recruitment in lean controls (53.5 ± 20.3 versus 64.9 ± 27.4 n/mm(2), P < 0.05), but not in either PCOS group nor in obese controls. IICR and androgens were a determinant of M/I value only in lean women with or without PCOS. PCOS per se is associated with impaired IICR. Obese women with PCOS, in part independent of obesity, demonstrated a profound insulin resistance, whereas the difference between lean PCOS women and healthy controls was small and statistically non-significant. IICR was a determinant of IMGU in lean, but not in obese, women regardless of the presence of PCOS.

  7. Gut vagal afferents are necessary for the eating-suppressive effect of intraperitoneally administered ginsenoside Rb1 in rats.

    PubMed

    Shen, Ling; Wang, David Q-H; Lo, Chunmin C; Arnold, Myrtha; Tso, Patrick; Woods, Stephen C; Liu, Min

    2015-12-01

    Ginsenoside Rb1 (Rb1) reduces food intake in both lean and high-fat diet induced-obese rats; however, the sites and/or mediation of the eating-suppressive effect of Rb1 have not previously been identified. We hypothesized that intraperitoneally (ip) administered Rb1 exerts its anorectic action by enhancing sensitivity to satiation signals, such as cholecystokinin (CCK), and/or that it acts through vagal afferent nerves that relay the satiating signaling to the hindbrain. To test these hypotheses, we gave ip bolus doses of Rb1 (2.5-10.0mg/kg) and CCK-8 (0.125-4.0μg/kg) alone or in combination and assessed food intake in rats. Low doses of Rb1 (2.5mg/kg) or CCK-8 (0.125μg/kg) alone had no effect on food intake whereas higher doses did. When these subthreshold doses of Rb1 and CCK-8 were co-administered, the combination significantly reduced food intake relative to saline controls, and this effect was attenuated by lorglumide, a selective CCK1-receptor antagonist. Interestingly, lorglumide blocked food intake induced by an effective dose of CCK-8 alone, but not by Rb1 alone, suggesting that Rb1's anorectic effect is independent of the CCK1 receptor. To determine whether peripherally administered Rb1 suppresses feeding via abdominal vagal nerves, we evaluated the effect of ip Rb1 injection in subdiaphragmatic vagal deafferentation (SDA) and control rats. Rb1's effect on food intake was significantly attenuated in SDA rats, compared with that in SHAM controls. These data indicate that the vagal afferent system is the major pathway conveying peripherally administered Rb1's satiation signal. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Dietary Protein Intake and Lean Muscle Mass in Survivors of Childhood Acute Lymphoblastic Leukemia: Report From the St. Jude Lifetime Cohort Study.

    PubMed

    Boland, Alexandra M; Gibson, Todd M; Lu, Lu; Kaste, Sue C; DeLany, James P; Partin, Robyn E; Lanctot, Jennifer Q; Howell, Carrie R; Nelson, Heather H; Chemaitilly, Wassim; Pui, Ching-Hon; Robison, Leslie L; Mulrooney, Daniel A; Hudson, Melissa M; Ness, Kirsten K

    2016-07-01

    Survivors of childhood acute lymphoblastic leukemia (ALL) are at risk for low lean muscle mass and muscle weakness, which may contribute to inactivity and early development of chronic diseases typically seen in older adults. Although increasing protein intake, in combination with resistance training, improves lean muscle mass in other populations, it is not known whether muscular tissue among survivors of ALL, whose impairments are treatment-related, will respond similarly. The aim of this study was to evaluate associations among dietary protein intake, resistance training, and lean muscle mass in survivors of ALL and age-, sex-, and race-matched controls. This was a cross-sectional study. Lean muscle mass was determined with dual-energy x-ray absorptiometry, dietary information with 24-hour recalls, and participation in resistance training with a questionnaire. Participants were 365 survivors of ALL (52% male; 87% white; median age=28.5 years, range=23.6-31.7) and 365 controls with no previous cancer. Compared with controls, survivors of ALL had lower lean muscle mass (55.0 versus 57.2 kg, respectively) and lower percentage of lean muscle mass (68.6% versus 71.4%, respectively) than controls. Similar proportions of survivors (71.1%) and controls (69.7%) met recommended dietary protein intake (0.8 g/kg/d). Survivors (45.4%) were less likely to report resistance training than controls (53.8%). In adjusted models, 1-g higher protein intake per kilogram of body mass per day was associated with a 7.9% increase and resistance training ≥1×wk, with a 2.8% increase in lean muscle mass. The cross-sectional study design limits temporal evaluation of the association between protein intake and lean muscle mass. The findings suggest that survivors of childhood ALL with low lean muscle mass may benefit from optimizing dietary protein intake in combination with resistance training. Research is needed to determine whether resistance training with protein supplementation improves lean muscle mass in survivors of childhood ALL. © 2016 American Physical Therapy Association.

  9. Dietary Protein Intake and Lean Muscle Mass in Survivors of Childhood Acute Lymphoblastic Leukemia: Report From the St. Jude Lifetime Cohort Study

    PubMed Central

    Boland, Alexandra M.; Gibson, Todd M.; Lu, Lu; Kaste, Sue C.; DeLany, James P.; Partin, Robyn E.; Lanctot, Jennifer Q.; Howell, Carrie R.; Nelson, Heather H.; Chemaitilly, Wassim; Pui, Ching-Hon; Robison, Leslie L.; Mulrooney, Daniel A.; Hudson, Melissa M.

    2016-01-01

    Background Survivors of childhood acute lymphoblastic leukemia (ALL) are at risk for low lean muscle mass and muscle weakness, which may contribute to inactivity and early development of chronic diseases typically seen in older adults. Although increasing protein intake, in combination with resistance training, improves lean muscle mass in other populations, it is not known whether muscular tissue among survivors of ALL, whose impairments are treatment-related, will respond similarly. Objective The aim of this study was to evaluate associations among dietary protein intake, resistance training, and lean muscle mass in survivors of ALL and age-, sex-, and race-matched controls. Design This was a cross-sectional study. Methods Lean muscle mass was determined with dual-energy x-ray absorptiometry, dietary information with 24-hour recalls, and participation in resistance training with a questionnaire. Participants were 365 survivors of ALL (52% male; 87% white; median age=28.5 years, range=23.6–31.7) and 365 controls with no previous cancer. Results Compared with controls, survivors of ALL had lower lean muscle mass (55.0 versus 57.2 kg, respectively) and lower percentage of lean muscle mass (68.6% versus 71.4%, respectively) than controls. Similar proportions of survivors (71.1%) and controls (69.7%) met recommended dietary protein intake (0.8 g/kg/d). Survivors (45.4%) were less likely to report resistance training than controls (53.8%). In adjusted models, 1-g higher protein intake per kilogram of body mass per day was associated with a 7.9% increase and resistance training ≥1×wk, with a 2.8% increase in lean muscle mass. Limitations The cross-sectional study design limits temporal evaluation of the association between protein intake and lean muscle mass. Conclusions The findings suggest that survivors of childhood ALL with low lean muscle mass may benefit from optimizing dietary protein intake in combination with resistance training. Research is needed to determine whether resistance training with protein supplementation improves lean muscle mass in survivors of childhood ALL. PMID:26893509

  10. The effect of caffeine and albuterol on body composition and metabolic rate

    PubMed Central

    Liu, Ann G.; Arceneaux, Kenneth P.; Chu, Jessica T.; Jacob, Gregory; Schreiber, Allyson L.; Tipton, Russell C.; Yu, Ying; Johnson, William D.; Greenway, Frank L.; Primeaux, Stefany D.

    2015-01-01

    Objective Caffeine and ephedrine was an effective combination therapy for weight loss until ephedrine was removed from the market due to safety concerns. We investigated the combination of caffeine and albuterol as a possibly safer alternative to ephedrine. Design and Methods In a series of experiments using cultured adipocytes, rat models, and humans, we evaluated the effects of caffeine and albuterol on lipolysis, metabolic rate, food intake, and body composition. Results Both caffeine and albuterol enhanced lipolysis in cultured adipocytes. Acute treatment of humans with caffeine and/or albuterol increased resting metabolic rate. Longer-term studies of rats revealed a trend for increased metabolic rate with albuterol treatment. There was increased lean mass gain concurrent with decreased fat mass gain with caffeine/albuterol treatment that was greater than albuterol treatment alone. Conclusions In rats, albuterol with caffeine produced significantly greater increases in lean body mass and reductions in fat mass without changes in food intake after 4-8 weeks of treatment. Since caffeine and albuterol are approved for the treatment of asthma in children and adolescents at the doses tested and change body composition without changing food intake, this combination may deserve further exploration for use in treating pediatric obesity. PMID:26239482

  11. Implications of obesity for tendon structure, ultrastructure and biochemistry: a study on Zucker rats.

    PubMed

    Biancalana, Adriano; Velloso, Lício Augusto; Taboga, Sebastião Roberto; Gomes, Laurecir

    2012-02-01

    The extracellular matrix consists of collagen, proteoglycans and non-collagen proteins. The incidence of obesity and associated diseases is currently increasing in developed countries. Obesity is considered to be a disease of modern times, and genes predisposing to the disease have been identified in humans and animals. The objective of the present study was to compare the morphological and biochemical aspects of the deep digital flexor tendon of lean (Fa/Fa or Fa/fa) and genetically obese (fa/fa) Zucker rats. Ultrastructural analysis showed the presence of lipid droplets in both groups, whereas disorganized collagen fibril bundles were observed in obese animals. Lean animals presented a larger amount of non-collagen proteins and glycosaminoglycans than obese rats. We propose that the overweight and lesser physical activity in obese animals may have provoked the alterations in the composition and organization of extracellular matrix components but a genetic mechanism cannot be excluded. These alterations might be related to organizational and structural modifications in the collagen bundles that influence the mechanical properties of tendons and the progression to a pathological state. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Adipocyte resistin mRNA levels are down-regulated by laparoscopic ovarian electrocautery in both obese and lean women with polycystic ovary syndrome.

    PubMed

    Seow, Kok-Min; Juan, Chi-Chang; Ho, Low-Tone; Hsu, Yung-Pei; Lin, Yu-Hung; Huang, Lee-Wen; Hwang, Jiann-Loung

    2007-04-01

    The aim of this study was to investigate serum and adipocyte mRNA expression of resistin in lean and obese women with polycystic ovary syndrome (PCOS) before and 3 months after laparoscopic ovarian electrocauterization (LOE). Adipose tissue obtained from 12 women with PCOS (six obese and six lean, body mass index > 27 kg m(-1) as threshold point) before and after LOE was analysed. Gene expression of resistin was measured by semi-quantitative RT-PCR. Ten lean, age-matched healthy women served as controls. Both lean and obese women with PCOS had significantly higher fasting and 2 h insulin and homeostasis model insulin resistance index (HOMA(IR)) values and lower fasting glucose-to-insulin ratios (G(0)/I(0)) than did the controls. The serum levels of glucose and insulin and HOMA(IR) were significantly decreased, and the G(0)/I(0) ratio was significantly increased 3 months after LOE. No difference was found in serum resistin levels between controls and either obese or lean women with PCOS before LOE, nor between PCOS patients before and after LOE. However, resistin mRNA expression levels in both lean and obese women with PCOS before LOE were significantly higher than that in controls and were decreased significantly after LOE back to control levels. Local resistin activity may be actively involved in the pathogenesis of PCOS. LOE reduces insulin resistance and down-regulates resistin mRNA expression in lean and obese women with PCOS.

  13. Loss of the Anorexic Response to Systemic 5-Aminoimidazole-4-Carboxamide-1-β-D-Ribofuranoside Administration Despite Reducing Hypothalamic AMP-Activated Protein Kinase Phosphorylation in Insulin-Deficient Rats

    PubMed Central

    Vitzel, Kaio F.; Bikopoulos, George; Hung, Steven; Curi, Rui; Ceddia, Rolando B.

    2013-01-01

    This study tested whether chronic systemic administration of 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) could attenuate hyperphagia, reduce lean and fat mass losses, and improve whole-body energy homeostasis in insulin-deficient rats. Male Wistar rats were first rendered diabetic through streptozotocin (STZ) administration and then intraperitoneally injected with AICAR for 7 consecutive days. Food and water intake, ambulatory activity, and energy expenditure were assessed at the end of the AICAR-treatment period. Blood was collected for circulating leptin measurement and the hypothalami were extracted for the determination of suppressor of cytokine signaling 3 (SOCS3) content, as well as the content and phosphorylation of AMP-kinase (AMPK), acetyl-CoA carboxylase (ACC), and the signal transducer and activator of transcription 3 (STAT3). Rats were thoroughly dissected for adiposity and lean body mass (LBM) determinations. In non-diabetic rats, despite reducing adiposity, AICAR increased (∼1.7-fold) circulating leptin and reduced hypothalamic SOCS3 content and food intake by 67% and 25%, respectively. The anorexic effect of AICAR was lost in diabetic rats, even though hypothalamic AMPK and ACC phosphorylation markedly decreased in these animals. Importantly, hypothalamic SOCS3 and STAT3 levels remained elevated and reduced, respectively, after treatment of insulin-deficient rats with AICAR. Diabetic rats were lethargic and displayed marked losses of fat and LBM. AICAR treatment increased ambulatory activity and whole-body energy expenditure while also attenuating diabetes-induced fat and LBM losses. In conclusion, AICAR did not reverse hyperphagia, but it promoted anti-catabolic effects on skeletal muscle and fat, enhanced spontaneous physical activity, and improved the ability of rats to cope with the diabetes-induced dysfunctional alterations in glucose metabolism and whole-body energy homeostasis. PMID:23967267

  14. The role of pyridoxine as a countermeasure for in-flight loss of lean body mass

    NASA Technical Reports Server (NTRS)

    Gilbert, Joyce A.

    1992-01-01

    Ground based and in flight research has shown that humans, under conditions of microgravity, sustain a loss of lean body tissue (protein) and changes in several biological processes including, reductions in red blood cell mass, and neurotransmitters. The maintenance of muscle mass, the major component of lean body mass, is required to meet the needs of space station EVAs. Central to the biosynthesis of amino acids, the building blocks of protein, is pyridoxine (vitamin B-6). Muscle mass integrity requires the availability of vitamin B-6 for protein metabolism and neurotransmitter synthesis. Furthermore, the formation of red blood cells require pyridoxine as a cofactor in the biosynthesis of hemoglobin, a protein that carries oxygen to tissues. In its active form, pyridoxal-5'-phosphate (PLP), vitamin B-6 serves as a link between amino acid and carbohydrate metabolism through intermediates of glycolysis and the tricarboxylic acid cycle. In addition to its role in energy metabolism, PLP is involved in the biosynthesis of hemoglobin and neurotransmitter which are necessary for neurological functions. Alterations in pyridoxine metabolism may affect countermeasures designed to overcome some of these biochemical changes. The focus of this research is to determine the effects of microgravity on the metabolic utilization of vitamin B-6, integrating nutrition as an integral component of the countermeasure (exercise) to maintain lean body mass and muscle strength. The objectives are: 1) to determine whether microgravity effects the metabolic utilization of pyridoxine and 2) to quantitate changes in B-6 vitamer distribution in tissue and excreta relative to loss of lean body tissue. The rationale for this study encompasses the unique challenge to control biochemical mechanisms effected during space travel and the significance of pyridoxine to maintain and counter muscle integrity for EVA activities. This experiment will begin to elucidate the importance of biochemical interactions between micronutrients and the homeostasis condition of biological processes in the space environment. To address this research topic a simulated microgravity model has been developed. The experiment uses radioisotopically labelled pyridoxine administered as an oral dose to rats which are maintained by tail suspension to simulate a microgravity environment. At the termination of the study, liver, muscle, blood and urine are collected and analyzed by reverse phase high pressure liquid chromatography to determine the quantity and distribution of the B-6 vitamers in tissue and excreta relative to lean body tissue loss. Earlier studies, published by this investigator, have shown that differences in vitamer distribution among samples from experimental versus control subjects indicate changes in metabolic utilization and storage of vitamin B-6.

  15. Phytase supplementation increases bone mineral density, lean body mass and voluntary physical activity in rats fed a low-zinc diet.

    PubMed

    Scrimgeour, Angus G; Marchitelli, Louis J; Whicker, Jered S; Song, Yang; Ho, Emily; Young, Andrew J

    2010-07-01

    Phytic acid forms insoluble complexes with nutritionally essential minerals, including zinc (Zn). Animal studies show that addition of microbial phytase (P) to low-Zn diets improves Zn status and bone strength. The present study determined the effects of phytase supplementation on bone mineral density (BMD), body composition and voluntary running activity of male rats fed a high phytic acid, low-Zn diet. In a factorial design, rats were assigned to ZnLO (5 mg/kg diet), ZnLO+P (ZnLO diet with 1500 U phytase/kg) or ZnAD (30 mg/kg diet) groups and were divided into voluntary exercise (EX) or sedentary (SED) groups, for 9 weeks. SED rats were significantly heavier from the second week, and no catch-up growth occurred in EX rats. Feed intakes were not different between groups throughout the study. ZnLO animals had decreased food efficiency ratios compared to both phytase-supplemented (ZnLO+P) and Zn-adequate (ZnAD) animals (P<.01 compared to ZnLO). The ZnLO+P and ZnAD rats ran 56-75 km more total distance than ZnLO rats (P<.05), with the ZnLO+P rats running more kilometers per week than the ZnLO rats by Week 6. In vivo DEXA analyses indicate that rats fed phytase-supplemented diets had higher lean body mass (LBM) than those fed ZnLO diets; and that rats fed the Zn-adequate diets had the highest LBM. Body fat (%) was significantly lower in EX rats and was both Zn- and phytase insensitive. Rats fed phytase-supplemented diets had higher bone mineral content (BMC), bone area (BA) and BMD than rats fed ZnLO diets; and in rats fed ZnAD diets these indices were the highest. The dietary effects on BMC, BA and BMD were independent of activity level. We conclude that consuming supplemental dietary phytase or dietary Zn additively enhances Zn status to increase BMD, LBM and voluntary physical activity in rats fed a low-Zn diet. While the findings confirm that bone health is vulnerable to disruption by moderate Zn deficiency in rats, this new data suggests that if dietary Zn is limiting, supplemental phytase may have beneficial effects on LBM and performance activity. (c) 2010 Elsevier Inc. All rights reserved.

  16. Impaired Expression of Neuronal Nitric Oxide Synthase in the Gracile Nucleus Is Involved in Neuropathic Changes in Zucker Diabetic Fatty Rats with and without 2,5-Hexanedione Intoxication

    PubMed Central

    Ma, Sheng-Xing; Peterson, Richard G.; Magee, Edward M.; Lee, Paul; Lee, Wai-Nang Paul; Li, Xi-Yan

    2015-01-01

    These studies examined the influence of 2,5-hexanedione (2,5-HD) intoxication on expression of neuronal nitric oxide synthase (nNOS) in the brainstem nuclei in Zucker Diabetic Fatty (ZDF) vs. lean control (LC) rats. Functional neuropathic changes were also investigated following axonal damage and impaired axonal transport induced by the treatment. Animals were intoxicated by i.p. injection of 2,5-HD plus unilateral administration of 2,5-HD over the sciatic nerve. The mechanical thresholds and withdrawal latencies to heat and cold stimuli on the foot were measured at baseline and after intoxication. The medulla sections were examined by nNOS immunohistochemistry and NADPH-diaphorase histochemistry at the end of the treatments. The mechanical thresholds and withdrawal latencies were significantly decreased while nNOS immunostained neurons and NADPH-diaphorase positive cells were selectively reduced in the gracile nucleus at baseline in ZDF vs. LC rats. NADPH-diaphorase reactivity and nNOS positive neurons were increased in the ipsilateral gracile nucleus in LC rats following 2,5-HD intoxication, but its up-regulation was attenuated in ZDF rats. These results suggest that diabetic and chemical intoxication-induced nNOS expression is selectively reduced in the gracile nucleus in ZDF rats. Impaired axonal damage-induced nNOS expression in the gracile nucleus is involved in neuropathic pathophysiology in type II diabetic rats. PMID:26519861

  17. Maternal obesity increases inflammation and exacerbates damage following neonatal hypoxic-ischaemic brain injury in rats.

    PubMed

    Teo, Jonathan D; Morris, Margaret J; Jones, Nicole M

    2017-07-01

    In humans, maternal obesity is associated with an increase in the incidence of birth related difficulties. However, the impact of maternal obesity on the severity of brain injury in offspring is not known. Recent studies have found evidence of increased glial response and inflammatory mediators in the brains as a result of obesity in humans and rodents. We hypothesised that hypoxic-ischaemic (HI) brain injury is greater in neonatal offspring from obese rat mothers compared to lean controls. Female Sprague Dawley rats were randomly allocated to high fat (HFD, n=8) or chow (n=4) diet and mated with lean male rats. On postnatal day 7 (P7), male and female pups were randomly assigned to HI injury or control (C) groups. HI injury was induced by occlusion of the right carotid artery followed by 3h exposure to 8% oxygen, at 37°C. Control pups were removed from the mother for the same duration under ambient conditions. Righting behaviour was measured on day 1 and 7 following HI. The extent of brain injury was quantified in brain sections from P14 pups using cresyl violet staining and the difference in volume between brain hemispheres was measured. Before mating, HFD mothers were 11% heavier than Chow mothers (p<0.05, t-test). Righting reflex was delayed in offspring from HFD-fed mothers compared to the Chow mothers. The Chow-HI pups showed a loss in ipsilateral brain tissue, while the HFD-HI group had significantly greater loss. No significant difference was detected in brain volume between the HFD-C and Chow-C pups. When analysed on a per litter basis, the size of the injury was significantly correlated with maternal weight. Similar observations were made with neuronal staining showing a greater loss of neurons in the brain of offspring from HFD-mothers following HI compared to Chow. Astrocytes appeared to more hypertrophic and a greater number of microglia were present in the injured hemisphere in offspring from mothers on HFD. HI caused an increase in the proportion of amoeboid microglia and exposure to maternal HFD exacerbated this response. In the contralateral hemisphere, offspring exposed to maternal HFD displayed a reduced proportion of ramified microglia. Our data clearly demonstrate that maternal obesity can exacerbate the severity of brain damage caused by HI in neonatal offspring. Given that previous studies have shown enhanced inflammatory responses in offspring of obese mothers, these factors including gliosis and microglial infiltration are likely to contribute to enhanced brain injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Metabolic syndrome impairs reactivity and wall mechanics of cerebral resistance arteries in obese Zucker rats.

    PubMed

    Brooks, Steven D; DeVallance, Evan; d'Audiffret, Alexandre C; Frisbee, Stephanie J; Tabone, Lawrence E; Shrader, Carl D; Frisbee, Jefferson C; Chantler, Paul D

    2015-12-01

    The metabolic syndrome (MetS) is highly prevalent in the North American population and is associated with increased risk for development of cerebrovascular disease. This study determined the structural and functional changes in the middle cerebral arteries (MCA) during the progression of MetS and the effects of chronic pharmacological interventions on mitigating vascular alterations in obese Zucker rats (OZR), a translationally relevant model of MetS. The reactivity and wall mechanics of ex vivo pressurized MCA from lean Zucker rats (LZR) and OZR were determined at 7-8, 12-13, and 16-17 wk of age under control conditions and following chronic treatment with pharmacological agents targeting specific systemic pathologies. With increasing age, control OZR demonstrated reduced nitric oxide bioavailability, impaired dilator (acetylcholine) reactivity, elevated myogenic properties, structural narrowing, and wall stiffening compared with LZR. Antihypertensive therapy (e.g., captopril or hydralazine) starting at 7-8 wk of age blunted the progression of arterial stiffening compared with OZR controls, while treatments that reduced inflammation and oxidative stress (e.g., atorvastatin, rosiglitazone, and captopril) improved NO bioavailability and vascular reactivity compared with OZR controls and had mixed effects on structural remodeling. These data identify specific functional and structural cerebral adaptations that limit cerebrovascular blood flow in MetS patients, contributing to increased risk of cognitive decline, cerebral hypoperfusion, and ischemic stroke; however, these pathological adaptations could potentially be blunted if treated early in the progression of MetS. Copyright © 2015 the American Physiological Society.

  19. Cerebrovasculoprotective effects of azilsartan medoxomil in diabetes.

    PubMed

    Abdelsaid, Mohammed; Coucha, Maha; Ergul, Adviye

    2014-11-01

    We have shown that Goto-Kakizaki (GK) rats, a lean model of type 2 diabetes, develop significant cerebrovascular remodeling by the age of 18 weeks, which is characterized by increased media thickness and matrix deposition. Although early glycemic control prevents diabetes-mediated remodeling of the cerebrovasculature, whether the remodeling can be reversed is unknown. Given that angiotensin II type 1 receptor blockers reverse pathologic vascular remodeling and function independent of changes in blood pressure in other vascular beds, we hypothesized that azilsartan medoxomil, a new angiotensin II type 1 receptor blocker, is vasculoprotective by preventing and reversing cerebrovascular remodeling in diabetes. Control Wistar and diabetic GK rats (n = 6-8 per group) were treated with vehicle (water) or azilsartan medoxomil (3 mg/kg/d) from the age of 14 to 18 or 18 to 22 weeks before or after vascular remodeling is established, respectively. Blood glucose and blood pressure were monitored and middle cerebral artery structure and function were evaluated using pressurized arteriography. Blood glucose was higher in GK rats compared with Wistar rats. Azilsartan treatment lowered blood glucose in diabetic animals with no effect on blood pressure. Diabetic animals exhibited lower myogenic tone, increased wall thickness, and cross-sectional area compared with control group animals, which were corrected by azilsartan treatment when started at the onset of diabetes or later after vascular remodeling is established. Azilsartan medoxomil offers preventive and therapeutic vasculoprotection in diabetes-induced cerebrovascular remodeling and myogenic dysfunction and this is independent of blood pressure. Published by Elsevier Inc.

  20. Rimonabant’s Reductive Effects on High Densities of Food Reinforcement, but not Palatability, in Lean and Obese Zucker Rats

    PubMed Central

    Buckley, Jessica Lynn; Rasmussen, Erin B.

    2014-01-01

    Rationale Cannabinoid antagonists purportedly have greater effects in reducing the intake of highly palatable food compared to less palatable food. However, this assertion is based on free-feeding studies in which the amount of palatable food eaten under baseline conditions is often confounded with other variables, such as unequal access to both food options and differences in qualitative features of the foods. Objective We attempted to reduce these confounds by using a model of choice that programmed the delivery rates of sucrose and carrot-flavored pellets. Methods Lever-pressing of ten lean (Fa/Fa or Fa/fa) and ten obese (fa/fa) Zucker rats was placed under three conditions in which programmed ratios for food pellets on two levers were 5:1, 1:1, and 1:5. In Phase 1, responses on the two levers produced one type of pellet (sucrose or carrot); in Phase 2, responses on one lever produced sucrose pellets and on the other lever produced carrot pellets. After responses stabilized under each food ratio, acute doses of rimonabant (0, 3, and 10 mg/kg) were administered before experimental sessions. The number of reinforcers and responses earned per session under each ratio and from each lever was compared. Results and Conclusions Rimonabant reduced reinforcers in 1:5 and 5:1 food ratios in Phase 1, and across all ratios in Phase 2. Rimonabant reduced sucrose and carrot-flavored pellet consumption similarly; rimonabant did not affect bias toward sucrose, but increased sensitivity to amount differences in lean rats. This suggests that relative amount of food, not palatability, may be an important behavioral mechanism in the effects of rimonabant. PMID:24398820

  1. Rimonabant's reductive effects on high densities of food reinforcement, but not palatability, in lean and obese Zucker rats.

    PubMed

    Buckley, Jessica L; Rasmussen, Erin B

    2014-05-01

    Cannabinoid antagonists purportedly have greater effects in reducing the intake of highly palatable food compared to less palatable food. However, this assertion is based on free-feeding studies in which the amount of palatable food eaten under baseline conditions is often confounded with other variables, such as unequal access to both food options and differences in qualitative features of the foods. We attempted to reduce these confounds by using a model of choice that programmed the delivery rates of sucrose and carrot-flavored pellets. Lever pressing of ten lean (Fa/Fa or Fa/fa) and ten obese (fa/fa) Zucker rats was placed under three conditions in which programmed ratios for food pellets on two levers were 5:1, 1:1, and 1:5. In phase 1, responses on the two levers produced one type of pellet (sucrose or carrot); in phase 2, responses on one lever produced sucrose pellets and on the other lever produced carrot pellets. After responses stabilized under each food ratio, acute doses of rimonabant (0, 3, and 10 mg/kg) were administered before experimental sessions. The number of reinforcers and responses earned per session under each ratio and from each lever was compared. Rimonabant reduced reinforcers in 1:5 and 5:1 food ratios in phase 1, and across all ratios in phase 2. Rimonabant reduced sucrose and carrot-flavored pellet consumption similarly; rimonabant did not affect bias toward sucrose, but increased sensitivity to amount differences in lean rats. This suggests that relative amount of food, not palatability, may be an important behavioral mechanism in the effects of rimonabant.

  2. Model predictive control of a lean-burn gasoline engine coupled with a passive selective catalytic reduction system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Pingen; Lin, Qinghua; Prikhodko, Vitaly Y.

    Lean-burn gasoline engines have demonstrated 10–20% engine efficiency gain over stoichiometric engines and are widely considered as a promising technology for meeting the 54.5 miles-per-gallon (mpg) Corporate Average Fuel Economy standard by 2025. Nevertheless, NOx emissions control for lean-burn gasoline for meeting the stringent EPA Tier 3 emission standards has been one of the main challenges towards the commercialization of highly-efficient lean-burn gasoline engines in the United States. Passive selective catalytic reduction (SCR) systems, which consist of a three-way catalyst and SCR, have demonstrated great potentials of effectively reducing NOx emissions for lean gasoline engines but may cause significant fuelmore » penalty due to ammonia generation via rich engine combustion. The purpose of this study is to develop a model-predictive control (MPC) scheme for a lean-burn gasoline engine coupled with a passive SCR system to minimize the fuel penalty associated with passive SCR operation while satisfying stringent NOx and NH3 emissions requirements. Simulation results demonstrate that the MPC-based control can reduce the fuel penalty by 47.7% in a simulated US06 cycle and 32.0% in a simulated UDDS cycle, compared to the baseline control, while achieving over 96% deNOx efficiency and less than 15 ppm tailpipe ammonia slip. The proposed MPC control can potentially enable high engine efficiency gain for highly-efficient lean-burn gasoline engine while meeting the stringent EPA Tier 3 emission standards.« less

  3. Acute Exacerbation of Sleep Apnea by Hyperoxia Impairs Cognitive Flexibility in Brown-Norway Rats

    PubMed Central

    Topchiy, Irina; Amodeo, Dionisio A.; Ragozzino, Michael E.; Waxman, Jonathan; Radulovacki, Miodrag; Carley, David W.

    2014-01-01

    Study Objectives: To determine whether learning deficits occur during acute exacerbation of spontaneous sleep related breathing disorder (SRBD) in rats with high (Brown Norway; BN) and low (Zucker Lean; ZL) apnea propensity. Design: Spatial acquisition (3 days) and reversal learning (3 days) in the Morris water maze (MWM) with polysomnography (12:00–08:00): (1) with acute SRBD exacerbation (by 20-h hyperoxia immediately preceding reversal learning) or (2) without SRBD exacerbation (room air throughout). Setting: Randomized, placebo-controlled, repeated-measures design. Participants: 14 BN rats; 16 ZL rats. Interventions: 20-h hyperoxia. Measurements and Results: Apneas were detected as cessation of respiration ≥ 2 sec. Swim latency in MWM, apnea indices (AI; apneas/hour of sleep) and percentages of recording time for nonrapid eye movement (NREM), rapid eye movement (REM), and total sleep were assessed. Baseline AI in BN rats was more than double that of ZL rats (22.46 ± 2.27 versus 10.7 ± 0.9, P = 0.005). Hyperoxia increased AI in both BN (34.3 ± 7.4 versus 22.46 ± 2.27) and ZL rats (15.4 ± 2.7 versus 10.7 ± 0.9) without changes in sleep stage percentages. Control (room air) BN and ZL rats exhibited equivalent acquisition and reversal learning. Acute exacerbation of AI by hyperoxia produced a reversal learning performance deficit in BN but not ZL rats. In addition, the percentage of REM sleep and REM apnea index in BN rats during hyperoxia negatively correlated with reversal learning performance. Conclusions: Acute exacerbation of sleep related breathing disorder by hyperoxia impairs reversal learning in a rat strain with high apnea propensity, but not a strain with a low apnea propensity. This suggests a non-linear threshold effect may contribute to the relationships between sleep apnea and cognitive dysfunctions, but strain-specific differences also may be important. Citation: Topchiy I, Amodeo DA, Ragozzino ME, Waxman J, Radulovacki M, Carley DW. Acute exacerbation of sleep apnea by hyperoxia impairs cognitive flexibility in brown-norway rats. SLEEP 2014;37(11):1851-1861. PMID:25364080

  4. Fructose and saturated fats predispose hyperinsulinemia in lean male rat offspring

    USDA-ARS?s Scientific Manuscript database

    Background: Early exposure to suboptimal nutrition during perinatal period imposes risk to metabolic disorders later in life. Fructose intake has been associated with increases in de novo lipogensis, dyslipidemia, insulin resistance and obesity. Excess consumption of saturated fat is associated w...

  5. Oxidative stress and inflammation in lean and obese subjects with polycystic ovary syndrome.

    PubMed

    Blair, Sarah A; Kyaw-Tun, Tommy; Young, Ian S; Phelan, Niamh A; Gibney, James; McEneny, Jane

    2013-01-01

    To determine whether polycystic ovary syndrome (PCOS) independently influences oxidative stress and inflammation or if the culprit is the comorbidities of obesity and/or insulin resistance common to this condition. Thirty women with PCOS were matched for age, body mass index and insulin resistance with 30 control subjects. Oxidative stress was examined by measuring the total oxidant status (TOS) and total antioxidant capacity (TAC) by spectrophotometric assay. The inflammatory biomarkers, C-reactive protein, plasminogen activator inhibitor-1, myeloperoxidase, neopterin, and serum amyloid A were measured by ELISA methodologies. Oxidative status was increased in the PCOS subjects relative to their weight-matched controls (TOS: obese PCOS patients vs. obese controls, 42.42 +/- 4.49 vs. 32.57 +/- 1.97, p<0.05; lean PCOS patients vs. lean controls, 33.69 +/- 1.59 vs. 28.69 +/- 1.18 micromol H2O2 Equiv/L, p < 0.05). Furthermore, antioxidant capacity was lower in the lean PCOS group relative to their weight-matched controls (TAC: lean PCOS patients vs. lean controls, 1.10 +/- 0.09 vs. 1.49 +/- 0.03 nmol Trolox Equiv/L, p < 0.05). These results suggest that PCOS independently influenced oxidative stress. Overall, the presence of PCOS may increase cardiovascular risk.

  6. Very low-carbohydrate versus isocaloric high-carbohydrate diet in dietary obese rats.

    PubMed

    Axen, Kathleen V; Axen, Kenneth

    2006-08-01

    The effects of a very low-carbohydrate (VLC), high-fat (HF) dietary regimen on metabolic syndrome were compared with those of an isocaloric high-carbohydrate (HC), low-fat (LF) regimen in dietary obese rats. Male Sprague-Dawley rats, made obese by 8 weeks ad libitum consumption of an HF diet, developed features of the metabolic syndrome vs. lean control (C) rats, including greater visceral, subcutaneous, and hepatic fat masses, elevated plasma cholesterol levels, impaired glucose tolerance, and fasting and post-load insulin resistance. Half of the obese rats (VLC) were then fed a popular VLC-HF diet (Weeks 9 and 10 at 5% and Weeks 11 to 14 at 15% carbohydrate), and one-half (HC) were pair-fed an HC-LF diet (Weeks 9 to 14 at 60% carbohydrate). Energy intakes of pair-fed VLC and HC rats were less than C rats throughout Weeks 9 to 14. Compared with HC rats, VLC rats exhibited impaired insulin and glycemic responses to an intraperitoneal glucose load at Week 10 and lower plasma triacylglycerol levels but retarded loss of hepatic, retroperitoneal, and total body fat at Week 14. VLC, HC, and C rats no longer differed in body weight, plasma cholesterol, glucose tolerance, or fasting insulin resistance at Week 14. Progressive decreases in fasting insulin resistance in obese groups paralleled concomitant reductions in hepatic, retroperitoneal, and total body fat. When energy intake was matched, the VLC-HF diet provided no advantage in weight loss or in improving those components of the metabolic syndrome induced by dietary obesity and may delay loss of hepatic and visceral fat as compared with an HC-LF diet.

  7. Differential effects of inhalation exposure to PM2.5 on hypothalamic monoamines and corticotrophin releasing hormone in lean and obese rats.

    PubMed

    Balasubramanian, Priya; Sirivelu, Madhu P; Weiss, Kathryn A; Wagner, James G; Harkema, Jack R; Morishita, Masako; Mohankumar, P S; Mohankumar, Sheba M J

    2013-05-01

    Acute exposure to airborne pollutants, especially particulate matter (PM2.5) is known to increase hospital admissions for cardiovascular conditions, increase cardiovascular related mortality and predispose the elderly and obese individuals to cardiovascular conditions. The mechanisms by which PM2.5 exposure affects the cardiovascular system is not clear. Since the autonomic system plays an important role in cardiovascular regulation, we hypothesized that PM2.5 exposure most likely activates the paraventricular nucleus (PVN) of the hypothalamus to cause an increase in sympathetic nervous system and/or stress axis activity. We also hypothesized that these changes may be sustained in obese rats predisposing them to higher cardiovascular risk. To test this, adult male Brown Norway (BN) rats were subjected to one day or three days of inhalation exposures to filtered air (FA) or concentrated air particulate (CAP) derived from ambient PM2.5. Corpulent JCR-LA rats were exposed to FA or CAP for four days. Animals were sacrificed 24h after the last inhalation exposure. Their brains were removed, frozen and sectioned. The PVN and median eminence (ME) were microdissected. PVN was analyzed for norepinephrine (NE), dopamine (DA) and 5-hydroxy-indole acetic acid (5-HIAA) levels using HPLC-EC. ME was analyzed for corticotrophin releasing hormone (CRH) levels by ELISA. One day exposure to CAP increased NE levels in the PVN and CRH levels in the ME of BN rats. Repeated exposures to CAP did not affect NE levels in the PVN of BN rats, but increased NE levels in JCR/LA rats. A similar pattern was observed with 5-HIAA levels. DA levels on the other hand, were unaffected in both BN and JCR/LA strains. These data suggest that repeated exposures to PM2.5 continue to stimulate the PVN in obese animals but not lean rats. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Loss of lean body mass affects low bone mineral density in patients with rheumatoid arthritis - results from the TOMORROW study.

    PubMed

    Okano, Tadashi; Inui, Kentaro; Tada, Masahiro; Sugioka, Yuko; Mamoto, Kenji; Wakitani, Shigeyuki; Koike, Tatsuya; Nakamura, Hiroaki

    2017-11-01

    Osteoporosis is one of the complications for patients with rheumatoid arthritis (RA). Rheumatoid cachexia, the loss of lean body mass, is another. However, the relationship between decreased lean body mass and reduced bone mineral density (BMD) in patients with RA has not been well studied. This study included 413 participants, comprising 208 patients with RA and 205 age- and sex-matched healthy volunteers. Clinical data, BMD, bone metabolic markers (BMM) and body composition, such as lean body mass and percent fat, were collected. Risk factors for osteoporosis in patients with RA including the relationship BMD and body composition were analyzed. Patients with RA showed low BMD and high BMM compared with controls. Moreover, lean body mass was lower and percent fat was higher in patients with RA. Lean body mass correlated positively and percent fat negatively with BMD. Lean body mass was a positive and disease duration was a negative independent factor for BMD in multivariate statistical analysis. BMD and lean body mass were significantly lower in patients with RA compared to healthy controls. Lean body mass correlated positively with BMD and decreased lean body mass and disease duration affected low BMD in patients with RA. [UMIN Clinical Trials Registry, http://www.umin.ac.jp/ctr/ , UMIN000003876].

  9. Implementing Lean Six Sigma to achieve inventory control in supply chain management

    NASA Astrophysics Data System (ADS)

    Hong, Chen

    2017-11-01

    The inventory cost has important impact on the production cost. In order to get the maximum circulation of funds of enterprise with minimum inventory cost, the inventory control with Lean Six Sigma is presented in supply chain management. The inventory includes both the raw material and the semi-finished parts in manufacturing process. Though the inventory is often studied, the inventory control in manufacturing process is seldom mentioned. This paper reports the inventory control from the perspective of manufacturing process by using statistical techniques including DMAIC, Control Chart, and Statistical Process Control. The process stability is evaluated and the process capability is verified with Lean Six Sigma philosophy. The demonstration in power meter production shows the inventory is decreased from 25% to 0.4%, which indicates the inventory control can be achieved with Lean Six Sigma philosophy and the inventory cost in production can be saved for future sustainable development in supply chain management.

  10. β cell function and insulin resistance in lean cases with polycystic ovary syndrome.

    PubMed

    Pande, Arunkumar R; Guleria, Ashwani Kumar; Singh, Sudhanshu Dev; Shukla, Manoj; Dabadghao, Preeti

    2017-11-01

    Obesity is a major factor in development of insulin resistance (IR) and metabolic features in polycystic ovary syndrome (PCOS) patients. Nearly two-thirds patients with PCOS (30 of 37 confirmed cases of PCOS) in our previous community based study were lean, in contrast to Caucasians. Metabolic parameters including IR and β cell function have not been characterized well in this group of lean PCOS. To study the metabolic features including IR and β cell function in lean PCOS patients, 53 patients with BMI, <23 kg/m 2 were compared with 71 obese PCOS and 45 age and body mass index matched controls. Lean patients had similar β cell function and IR as compared to controls and obese patients, though the latter group had more metabolic abnormality. Fasting c-peptide and its ratio to glucose were significantly higher in lean patients compared to controls. In subset of subjects with five point OGTT, disposition index and Matsuda index (MI) showed significant negative correlation with BMI and blood pressure. MI also negatively correlated with waist, WHR, and HOMAB. High fasting C-peptide is probably a class effect as is seen in both lean and obese PCOS.

  11. Effect of hormone therapy on lean body mass, falls, and fractures: Six-year results from the Women’s Health Initiative Hormone Trials

    PubMed Central

    Bea, Jennifer W.; Zhao, Qiuhong; Cauley, Jane A.; LaCroix, Andrea Z.; Bassford, Tamsen; Lewis, Cora E.; Jackson, Rebecca D.; Tylavsky, Frances A.; Chen, Zhao

    2010-01-01

    Objective Loss of lean body mass with aging may contribute to falls and fractures. The objective of this analysis was to determine if taking postmenopausal hormone therapy (HT: estrogen plus progestogen therapy, EPT or estrogen therapy alone, ET) favorably affects age-related changes in lean body mass and if these changes partially account for decreased falls or fractures with HT. Methods Participants randomly assigned to either EPT (n=543) or control (n=471) and ET (n= 453) or control (n= 474) and receiving dual-energy X-ray absorptiometry (DXA) scans to estimate body composition during the Women’s Health Initiative (WHI) were evaluated. Falls and fracture occurrence were obtained by annual self-report. Fractures were confirmed by clinical chart review. Results At 6yrs post-randomization, lean body mass was not different between HT and control groups. Although lean body mass positively influenced BMD, independent of HT status, the preserved lean body mass observed in the HT arms in the first 3 years did not significantly contribute to models evaluating HT influence on falls and fractures between years 3 and 6. Women taking at least 80% of their medication in the HT arms demonstrated fewer falls compared to placebo; this difference was not attributable to change in lean body mass. Conclusions Despite early preservation of lean body mass with HT (3years), HT did not ameliorate long-term (6 years) loss in lean body mass with aging. PMID:20689466

  12. Effect of hormone therapy on lean body mass, falls, and fractures: 6-year results from the Women's Health Initiative hormone trials.

    PubMed

    Bea, Jennifer W; Zhao, Qiuhong; Cauley, Jane A; LaCroix, Andrea Z; Bassford, Tamsen; Lewis, Cora E; Jackson, Rebecca D; Tylavsky, Frances A; Chen, Zhao

    2011-01-01

    Loss of lean body mass with aging may contribute to falls and fractures. The objective of this analysis was to determine if taking postmenopausal hormone therapy (or HT: estrogen plus progestogen therapy or estrogen therapy alone) favorably affects age-related changes in lean body mass and if these changes partially account for decreased falls or fractures with HT. Participants randomly assigned to either estrogen plus progestogen therapy (n = 543) or control (n = 471) and estrogen therapy alone (n = 453) or control (n = 474) and receiving dual-energy x-ray absorptiometry scans to estimate body composition during the Women's Health Initiative were evaluated. Falls and fracture occurrence were obtained by annual self-report. Fractures were confirmed by a clinical chart review. At 6 years postrandomization, lean body mass was not different between HT and control groups. Although lean body mass positively influenced bone mineral density, independent of HT status, the preserved lean body mass observed in the HT arms in the first 3 years did not significantly contribute to models evaluating HT influence on falls and fractures between years 3 and 6. Women taking at least 80% of their medication in the HT arms demonstrated fewer falls compared with placebo; this difference was not attributable to change in lean body mass. Despite early preservation of lean body mass with HT (3 y), HT did not ameliorate long-term (6 y) loss in lean body mass with aging.

  13. Insulin-induced generation of reactive oxygen species and uncoupling of nitric oxide synthase underlie the cerebrovascular insulin resistance in obese rats

    PubMed Central

    Katakam, Prasad V G; Snipes, James A; Steed, Mesia M; Busija, David W

    2012-01-01

    Hyperinsulinemia accompanying insulin resistance (IR) is an independent risk factor for stroke. The objective is to examine the cerebrovascular actions of insulin in Zucker obese (ZO) rats with IR and Zucker lean (ZL) control rats. Diameter measurements of cerebral arteries showed diminished insulin-induced vasodilation in ZO compared with ZL. Endothelial denudation revealed vasoconstriction to insulin that was greater in ZO compared with ZL. Nonspecific inhibition of nitric oxide synthase (NOS) paradoxically improved vasodilation in ZO. Scavenging of reactive oxygen species (ROS), supplementation of tetrahydrobiopterin (BH4) precursor, and inhibition of neuronal NOS or NADPH oxidase or cyclooxygenase (COX) improved insulin-induced vasodilation in ZO. Immunoblot experiments revealed that insulin-induced phosphorylation of Akt, endothelial NOS, and expression of GTP cyclohydrolase-I (GTP-CH) were diminished, but phosphorylation of PKC and ERK was enhanced in ZO arteries. Fluorescence studies showed increased ROS in ZO arteries in response to insulin that was sensitive to NOS inhibition and BH4 supplementation. Thus, a vicious cycle of abnormal insulin-induced ROS generation instigating NOS uncoupling leading to further ROS production underlies the cerebrovascular IR in ZO rats. In addition, decreased bioavailability and impaired synthesis of BH4 by GTP-CH induced by insulin promoted NOS uncoupling. PMID:22234336

  14. Method and apparatus for controlling fuel/air mixture in a lean burn engine

    DOEpatents

    Kubesh, John Thomas; Dodge, Lee Gene; Podnar, Daniel James

    1998-04-07

    The system for controlling the fuel/air mixture supplied to a lean burn engine when operating on natural gas, gasoline, hydrogen, alcohol, propane, butane, diesel or any other fuel as desired. As specific humidity of air supplied to the lean burn engine increases, the oxygen concentration of exhaust gas discharged by the engine for a given equivalence ratio will decrease. Closed loop fuel control systems typically attempt to maintain a constant exhaust gas oxygen concentration. Therefore, the decrease in the exhaust gas oxygen concentration resulting from increased specific humidity will often be improperly attributed to an excessive supply of fuel and the control system will incorrectly reduce the amount of fuel supplied to the engine. Also, the minimum fuel/air equivalence ratio for a lean burn engine to avoid misfiring will increase as specific humidity increases. A relative humidity sensor to allow the control system to provide a more enriched fuel/air mixture at high specific humidity levels. The level of specific humidity may be used to compensate an output signal from a universal exhaust gas oxygen sensor for changing oxygen concentrations at a desired equivalence ratio due to variation in specific humidity specific humidity. As a result, the control system will maintain the desired efficiency, low exhaust emissions and power level for the associated lean burn engine regardless of the specific humidity level of intake air supplied to the lean burn engine.

  15. Fast digestive, leucine-rich, soluble milk proteins improve muscle protein anabolism, and mitochondrial function in undernourished old rats.

    PubMed

    Salles, Jérôme; Chanet, Audrey; Berry, Alexandre; Giraudet, Christophe; Patrac, Véronique; Domingues-Faria, Carla; Rocher, Christophe; Guillet, Christelle; Denis, Philippe; Pouyet, Corinne; Bonhomme, Cécile; Le Ruyet, Pascale; Rolland, Yves; Boirie, Yves; Walrand, Stéphane

    2017-11-01

    One strategy to manage malnutrition in older patients is to increase protein and energy intake. Here, we evaluate the influence of protein quality during refeeding on improvement in muscle protein and energy metabolism. Twenty-month-old male rats (n = 40) were fed 50% of their spontaneous intake for 12 weeks to induce malnutrition, then refed ad libitum with a standard diet enriched with casein or soluble milk proteins (22%) for 4 weeks. A 13C-valine was infused to measure muscle protein synthesis and expression of MuRF1, and MAFbx was measured to evaluate muscle proteolysis. mTOR pathway activation and mitochondrial function were assessed in muscle. Malnutrition was associated with a decrease in body weight, fat mass, and lean mass, particularly muscle mass. Malnutrition decreased muscle mTOR pathway activation and protein FSR associated with increased MuRF1 mRNA levels, and decreased mitochondrial function. The refeeding period partially restored fat mass and lean mass. Unlike the casein diet, the soluble milk protein diet improved muscle protein metabolism and mitochondrial function in old malnourished rats. These results suggest that providing better-quality proteins during refeeding may improve efficacy of renutrition in malnourished older patients. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Rapamycin Normalizes Serum Leptin by Alleviating Obesity and Reducing Leptin Synthesis in Aged Rats

    PubMed Central

    Matheny, Michael; Strehler, Kevin Y.E.; Toklu, Hale Zerrin; Kirichenko, Nataliya; Carter, Christy S.; Morgan, Drake; Tümer, Nihal

    2016-01-01

    This investigation examines whether a low intermittent dose of rapamycin will avoid the hyperlipidemia and diabetes-like syndrome associated with rapamycin while still decreasing body weight and adiposity in aged obese rats. Furthermore, we examined if the rapamycin-mediated decrease in serum leptin was a reflection of decreased adiposity, diminished leptin synthesis, or both. To these ends, rapamycin (1mg/kg) was administered three times a week to 3 and 24-month old rats. Body weight, food intake, body composition, mTORC1 signaling, markers of metabolism, as well as serum leptin levels and leptin synthesis in adipose tissue were examined and compared to that following a central infusion of rapamycin. Our data suggest that the dosing schedule of rapamycin acts on peripheral targets to inhibit mTORC1 signaling, preferentially reducing adiposity and sparing lean mass in an aged model of obesity resulting in favorable outcomes on blood triglycerides, increasing lean/fat ratio, and normalizing elevated serum leptin with age. The initial mechanism underlying the rapamycin responses appears to have a peripheral action and not central. The peripheral rapamycin responses may communicate an excessive nutrients signal to the hypothalamus that triggers an anorexic response to reduce food consumption. This coupled with potential peripheral mechanism serves to decrease adiposity and synthesis of leptin. PMID:25617379

  17. Lean muscle mass in classic or ovulatory PCOS: association with central obesity and insulin resistance.

    PubMed

    Mario, F M; do Amarante, F; Toscani, M K; Spritzer, P M

    2012-10-01

    This age-matched case-control study assessed total and segmental lean muscle mass in classic or ovulatory polycystic ovary syndrome (PCOS) patients and investigated whether lean mass is associated with hormone and metabolic features. Participants underwent anthropometric and clinical evaluation. Habitual physical activity was assessed with a digital pedometer, and body composition by dual-energy X-ray absorptiometry. Laboratory measurements included total cholesterol, cholesterol fractions, triglycerides, glucose, total serum testosterone, serum insulin, estradiol, luteinizing hormone, and SHBG. Energy intake was calculated using a food frequency questionnaire. Classic PCOS patients had higher body mass index (BMI), waist circumference, testosterone and lipid accumulation product values than ovulatory PCOS and controls. Energy consumption, homeostasis model assessment index, SHBG, free androgen index and triglycerides, total and trunk lean mass were higher only in classic PCOS women vs. controls. Arm, leg, trunk, total or limb lean masses were not correlated with hormone levels in any of the groups. However, in PCOS women lipid accumulation product was positively correlated with total (r=0.56, p=0.001), trunk (r=0.59, p=0.001), arm (r=0.54, p=0.001), leg (r=0.44, p=0.03) and limb (r=0.48, p=0.001) lean masses. BMI was positively correlated with all lean mass segments and independently associated with total lean mass. Lipid accumulation product and BMI were independently associated with trunk lean mass variation. The increase in lean mass in classic PCOS appears to be associated with insulin resistance and central obesity rather than with energy intake, physical activity or androgens. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.

  18. Age- and sex-related differences in nuclear lipid content and nucleoside triphosphatase activity in the JCR:LA-cp corpulent rat.

    PubMed

    Czubryt, M P; Russell, J C; Sarantopoulos, J; Gilchrist, J S; Pierce, G N

    1997-11-01

    The putative role of the nuclear nucleoside triphosphatase (NTPase) is to provide energy to the nuclear pore complex for poly A(+) mRNA export. Previous work has demonstrated that liver nuclear NTPase activity is greater in 6 month old corpulent (cp/cp) female JCR:LA rats, a hyperlipidemic rat model, compared to lean (+/?) animals. This increase appeared to be related to increases in nuclear membrane cholesterol content. The current study extended these initial data to compare NTPase activity as a function of age and sex in isolated JCR:LA-cp rat liver nuclei, to further test the hypothesis that nuclear membrane cholesterol may modulate NTPase activity. NTPase activity was increased in cp/cp female animals compared to +/? females at all ages studied, with Vmax values increased by 60-176%. Membrane integrity of cp/cp female nuclei was reduced compared to +/? female nuclei. Nuclear membrane cholesterol levels increased linearly with age by 50, 150 and 250% in 3, 6 and 9 month old cp/cp females over leans. In contrast, nuclei from cp/cp males exhibited only minor, isolated changes in NTPase activity. Furthermore, there were no significant changes in nuclear cholesterol content or membrane integrity in the less hyperlipidemic male animals at any age. These data suggest that altered lipid metabolism may lead to changes in nuclear membrane structure, which in turn may alter NTPase activity and functioning of the nuclear pore complex.

  19. Therapeutic actions of an insulin receptor activator and a novel peroxisome proliferator-activated receptor gamma agonist in the spontaneously hypertensive obese rat model of metabolic syndrome X.

    PubMed

    Velliquette, Rodney A; Friedman, Jacob E; Shao, J; Zhang, Bei B; Ernsberger, Paul

    2005-07-01

    Insulin resistance clusters with hyperlipidemia, impaired glucose tolerance, and hypertension as metabolic syndrome X. We tested a low molecular weight insulin receptor activator, demethylasterriquinone B-1 (DMAQ-B1), and a novel indole peroxisome proliferator-activated receptor gamma agonist, 2-(2-(4-phenoxy-2-propylphenoxy)ethyl)indole-5-acetic acid (PPEIA), in spontaneously hypertensive obese rats (SHROB), a genetic model of syndrome X. Agents were given orally for 19 days. SHROB showed fasting normoglycemia but impaired glucose tolerance after an oral load, as shown by increased glucose area under the curve (AUC) [20,700 mg x min/ml versus 8100 in lean spontaneously hypertensive rats (SHR)]. Insulin resistance was indicated by 20-fold excess fasting insulin and increased insulin AUC (6300 ng x min/ml versus 990 in SHR). DMAQ-B1 did not affect glucose tolerance (glucose AUC = 21,300) but reduced fasting insulin 2-fold and insulin AUC (insulin AUC = 4300). PPEIA normalized glucose tolerance (glucose AUC = 9100) and reduced insulin AUC (to 3180) without affecting fasting insulin. PPEIA also increased food intake, fat mass, and body weight gain (81 +/- 12 versus 45 +/- 8 g in untreated controls), whereas DMAQ-B1 had no effect on body weight but reduced subscapular fat mass. PPEIA but not DMAQ-B1 reduced blood pressure. In skeletal muscle, insulin-stimulated phosphorylation of the insulin receptor and insulin receptor substrate protein 1-associated phosphatidylinositol 3-kinase activity were decreased by 40 to 55% in SHROB relative to lean SHR. PPEIA, but not DMAQ-B1, enhanced both insulin actions. SHROB also showed severe hypertriglyceridemia (355 +/- 42 mg/dl versus 65 +/- 3 in SHR) attenuated by both agents (DMAQ-B1, 228 +/- 18; PPEIA, 79 +/- 3). Both these novel antidiabetic agents attenuate insulin resistance and hypertriglyceridemia associated with metabolic syndrome but via distinct mechanisms.

  20. Protective effects of prescription n-3 fatty acids against impairment of spatial cognitive learning ability in amyloid β-infused rats.

    PubMed

    Hashimoto, Michio; Tozawa, Ryuichi; Katakura, Masanori; Shahdat, Hossain; Haque, Abdul Md; Tanabe, Yoko; Gamoh, Shuji; Shido, Osamu

    2011-07-01

    Deposition of amyloid β peptide (Aβ) into the brain causes cognitive impairment. We investigated whether prescription pre-administration of n-3 fatty acids improves cognitive learning ability in young rats and whether it protects against learning ability impairments in an animal model of Alzheimer's disease that was prepared by infusion of Aβ(1-40) into the cerebral ventricles of rats. Pre-administration of TAK-085 (highly purified and concentrated n-3 fatty acids containing eicosapentaenoic acid ethyl ester and docosahexaenoic acid ethyl ester) at 300 mg kg(-1) day(-1) for 12 weeks significantly reduced the number of reference memory errors in an 8-arm radial maze, suggesting that long-term administration of TAK-085 improves cognitive leaning ability in rats. After pre-administration, the control group was divided into the vehicle and Aβ-infused groups, whereas the TAK-085 pre-administration group was divided into the TAK-085 and TAK-085 + Aβ groups (TAK-085-pre-administered Aβ-infused rats). Aβ(1-40) or vehicle was infused into the cerebral ventricle using a mini osmotic pump. Pre-administration of TAK-085 to the Aβ-infused rats significantly suppressed the number of reference and working memory errors and decreased the levels of lipid peroxide and reactive oxygen species in the cerebral cortex and hippocampus of Aβ-infused rats, suggesting that TAK-085 increases antioxidative defenses. The present study suggests that long-term administration of TAK-085 is a possible therapeutic agent for protecting against Alzheimer's disease-induced learning deficiencies. This journal is © The Royal Society of Chemistry 2011

  1. Ghrelin and its analogues, BIM-28131 and BIM-28125, improve body weight and regulate the expression of MuRF-1 and MAFbx in a rat heart failure model.

    PubMed

    Palus, Sandra; Schur, Robert; Akashi, Yoshihiro J; Bockmeyer, Barbara; Datta, Rakesh; Halem, Heather; Dong, Jesse; Culler, Michael D; Adams, Volker; Anker, Stefan D; Springer, Jochen

    2011-01-01

    Cardiac cachexia is a serious complication of chronic heart failure with a prevalence of 10-16% and poor prognosis. There are no current therapy options for cardiac cachexia. Ghrelin is the natural ligand for the GHS-1a-receptor and a potential target for conditions associated with cachexia. Ghrelin has been shown to increase weight in several species. The GHS-1a-receptor is not only found in the brain, but also in other tissues, including the myocardium. Human clinical trials with native ghrelin in cardiac cachexia demonstrated increases in appetite, weight and cardiac output. Human ghrelin or one of two analogues BIM-28125 and BIM-28131 (also known as RM-131) were tested at 50 nmole/kg/d and 500 nmole/kg/d versus placebo in a rat model of heart failure (myocardial infarction). Animals (SD-rats, approx. 225 g at surgery) received diuretics from day 14 and compounds from day 28 for 4 weeks using osmotic pumps. Weight was monitored and body composition analysed (NMR-scanning). Cardiac function was assessed by echocardiography and hemodynamics. Animals with MI gained less weight compared to sham rats until start of the therapy (311 g vs 324 g, p = 0.0129). Animals treated with BIM-28131 at 50 nmole/kg/d or all compounds at 500 nmole/kg/d displayed stronger weight gain compared to placebo and sham (all p<0.001). Before treatment, body composition was similar in all groups (average: 36 g fat, 248 g lean). Placebo-treated rats gained no fat, but only lean mass. The active compounds induced both fat and lean mass gain, but to a different extent. The fat-to-muscle-ratio of tissue gain was 0.9±0.07 for BIM-28131 at 50 nmole/kg/d, whereas at 500 nmole/kg/d it was 0.76±0.07 for BIM-28131, 0.68±0.12 for BIM-28125, and 0.48±0.05 for ghrelin. MuRF-1 and MAFbx were differentially regulated by treatment. Ghrelin is a very promising treatment option for cardiac cachexia, with the analogue BIM-28131 (RM-131) being the most effective compound.

  2. Exercise in ZDF rats does not attenuate weight gain, but prevents hyperglycemia concurrent with modulation of amino acid metabolism and AKT/mTOR activation in skeletal muscle.

    PubMed

    Adegoke, Olasunkanmi A J; Bates, Holly E; Kiraly, Michael A; Vranic, Mladen; Riddell, Michael C; Marliss, Errol B

    2015-08-01

    Protein metabolism is altered in obesity, accompanied by elevated plasma amino acids (AA). Previously, we showed that exercise delayed progression to type 2 diabetes in obese ZDF rats with maintenance of β cell function and reduction in hyperglucocorticoidemia. We hypothesized that exercise would correct the abnormalities we found in circulating AA and other indices of skeletal muscle protein metabolism. Male obese prediabetic ZDF rats (7-10/group) were exercised (swimming) 1 h/day, 5 days/week from ages 6-19 weeks, and compared with age-matched obese sedentary and lean ZDF rats. Food intake and weight gain were unaffected. Protein metabolism was altered in obese rats as evidenced by increased plasma concentrations of essential AA, and increased muscle phosphorylation (ph) of Akt(ser473) (187%), mTOR(ser2448) (140%), eIF4E-binding protein 1 (4E-BP1) (111%), and decreased formation of 4E-BP1*eIF4E complex (75%, 0.01 ≤ p ≤ 0.05 for all measures) in obese relative to lean rats. Exercise attenuated the increase in plasma essential AA concentrations and muscle Akt and mTOR phosphorylation. Exercise did not modify phosphorylation of S6K1, S6, and 4E-BP1, nor the formation of 4E-BP1*eIF4E complex, mRNA levels of ubiquitin or the ubiquitin ligase MAFbx. Positive correlations were observed between ph-Akt and fed circulating branched-chain AA (r = 0.56, p = 0.008), postprandial glucose (r = 0.42, p = 0.04) and glucose AUC during an IPGTT (r = 0.44, p = 0.03). Swimming exercise-induced attenuation of hyperglycemia in ZDF rats is independent of changes in body weight and could result in part from modulation of muscle AKT activation acting via alterations of systemic AA metabolism.

  3. A selective androgen receptor modulator that reduces prostate tumor size and prevents orchidectomy-induced bone loss in rats.

    PubMed

    Allan, George; Lai, Muh-Tsann; Sbriscia, Tifanie; Linton, Olivia; Haynes-Johnson, Donna; Bhattacharjee, Sheela; Dodds, Robert; Fiordeliso, James; Lanter, James; Sui, Zhihua; Lundeen, Scott

    2007-01-01

    The pharmacological activity of JNJ-26146900 is described. JNJ-26146900 is a nonsteroidal androgen receptor (AR) ligand with tissue-selective activity in rats. The compound was evaluated in in vitro and in vivo models of AR activity. It binds to the rat AR with a K(i) of 400nM and acts as a pure androgen antagonist in an in vitro cell-based assay. Its in vitro profile is similar to the androgen antagonist bicalutamide (Casodex). In intact rats, JNJ-26146900 reduces ventral prostate weight with an oral potency (ED(50)) of 20-30mg/kg, again comparable to that of bicalutamide. JNJ-26146900 prevented prostate tumor growth in the Dunning rat model, maximally inhibiting growth at a dose of 10mg/kg. It slowed tumor growth significantly in a CWR22-LD1 mouse xenograft model of human prostate cancer. It was tested in aged male rats for its ability to prevent bone loss and loss of lean body mass following orchidectomy. After 6 weeks of dosing, bone volume decreased by 33% in orchidectomized versus intact vehicle-treated rats with a probability (P) of less than 0.05, as measured by micro-computerized tomography analysis. At a dose of 30mg/kg, JNJ-26146900 significantly reduced castration-induced tibial bone loss as indicated by the following parameters: bone volume, trabecular connectivity, trabecular number and spacing between trabeculae. Bone mineral density decreased from 229+/-34mg/cm(3) of hydroxyapatite to 166+/-26mg/cm(3) following orchidectomy, and was maintained at 194+/-20mg/cm(3) with JNJ-26146900 treatment (P<0.05 relative to orchidectomy alone). Using magnetic resonance imaging, the compound was found to partially prevent orchidectomy-induced loss of lean body mass. Our data show that selective androgen receptor modulators (SARMs) have the potential for anabolic effects on bone and muscle while maintaining therapeutic efficacy in prostate cancer.

  4. Postprandial response of ghrelin and PYY and indices of low-grade chronic inflammation in lean young women with polycystic ovary syndrome.

    PubMed

    Zwirska-Korczala, K; Sodowski, K; Konturek, S J; Kuka, D; Kukla, M; Brzozowski, T; Cnota, W; Woźniak-Grygiel, E; Jaworek, J; Bułdak, R; Rybus-Kalinowska, B; Fryczowski, M

    2008-08-01

    The aim of the study were to answer the question 1.) Whether circulating pro-inflammatory markers of endothelial dysfunction and due to chronic low-grade inflammation of obesity, are altered in untreated lean, young relatively healthy polycystic ovary syndrome (PCOS) patients in comparison with healthy controls; 2.) Whether postprandial plasma concentration pattern of ghrelin and PYY can be predictable as risk factors for atherosclerosis and depend of obesity. Forty young women with PCOS were divided in two groups: 19 lean and 21 obese. The control group included 20 lean, healthy volunteers. Plasma total and active ghrelin, total PYY and PYY(3-36), serum adiponectin and insulin were measured using RIA technique, serum sCD40L, visfatin, sP-, sE-selectins, resistin by EIA. Composition of test meal was: 527 kcal total and consisted of 24.1% fat, 54.4% carbohydrate and 21.5% protein. Total and active ghrelin and total PYY were significantly lower in obese PCOS women, whereas active ghrelin was also significantly lower in lean PCOS women compared to controls. Postprandial plasma total ghrelin levels decrease were blunted in lean and obese compared to controls (12.8 % and 18.2% vs 28.2 %). Postprandial plasma active ghrelin decreased in lean and obese PCOS groups (49.9 % and 44.1 %) and controls (63.8 %). PCOS subjects exhibited smaller rises in postprandial levels of total PYY. Postprandial plasma PYY(3-36) levels increased in obese PCOS women (30.9 %) and controls (41%), whereas lean PCOS women exhibited blunted increase (11.5%). sCD40L levels increased, whereas adiponectin decreased in PCOS groups independently, whereas rise in visfatin, sE- and sP-selectin and the fall in adiponectin was associated with obesity. sP- and sE -selectins correlated positively with obesity. In summary, our study provides the first evidence that lean untreated young PCOS women contribute to the so called "pancreatic islet adaptation to insulin resistance" because of ghrelin and PYY profiles. We confirmed existing of low-grade chronic inflammation in early stage of visceral obesity in lean PCOS patients. The lost endogenous "islet adaptation to insulin resistance" may lead to endothelial dysfunction and promote acceleration of atherosclerosis.

  5. Nebivolol ameliorated kidney damage in Zucker diabetic fatty rats by regulation of oxidative stress/NO pathway: comparison with captopril.

    PubMed

    Wang, Yan; An, Wenjing; Zhang, Fei; Niu, Mengzhen; Liu, Yu; Shi, Ruizan

    2018-06-23

    The aim was to evaluate the effects and mechanisms of nebivolol on renal damage in Zucker diabetic fatty (ZDF) rats, in comparison with those of atenolol and captopril. Animals were divided into: control lean Zucker rats, ZDF rats, ZDF rats orally treated with nebivolol (10 mg/kg), atenolol (100 mg/kg) or captopril (40 mg/kg) for 6 months. Systolic blood pressure (SBP), blood glucose, kidney structure and function, plasma and kidney levels of nitric oxide (NO) and asymmetric dimethylarginine (ADMA), and oxidant status were evaluated. Kidney expressions of AMP-activated protein kinase (AMPK), NADPH oxidase (NOX) isoforms 2 and 4 and subunit p22 phox , nitric oxide synthase (NOS) isoforms, eNOS uncoupling, protein arginine N-methyltransferase (PRMT) 1, and dimethylarginine dimethylaminohydrolase (DDAH) 1 and 2 were tested. All drugs induced a similar control of SBP. Nebivolol did not affect the increased plasma glucose. Unlike atenolol, nebivolol prevented the decrease in plasma insulin, and, like captopril, it reduced plasma lipid contents. Nebivolol ameliorated, to a greater extent than captopril, damages to renal structure and function, which were associated with an improvement in interlobular artery dysfunction. Nebivolol elevated kidney phosphorylation of AMPK, attenuated NOX4 and p22 phox expression and oxidative stress marker levels. Nebivolol increased plasma and renal NO, enhanced expressions of eNOS, p-eNOS and nNOS, and suppressed eNOS uncoupling and iNOS expression. High ADMA in plasma and kidney were decreased by nebivolol through increasing DDAH2 and decreasing PRMT1. Long-term treatment of nebivolol ameliorated diabetic nephropathy, at least in part, via regulation of renal oxidative stress/NO pathway. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. The relationship between IL-18 and atherosclerotic cardiovascular risk in Egyptian lean women with polycystic ovary syndrome.

    PubMed

    Dawood, Alaaeldin; Alkafrawy, Nabil; Saleh, Said; Noreldin, Rasha; Zewain, Shimaa

    2018-04-01

    Polycystic ovarian syndrome (PCOS) is the most common endocrine disorder among women of reproductive age. The evidence in support of low-grade inflammation in PCOS as an etiology is emerging. Inflammation is likely to be associated with other prominent aspects of PCOS including insulin resistance (IR) and cardiovascular disease (CVD) risk. Interleukin-18 (IL-18) is considered as a strong marker of inflammation. Evaluation of the relation between serum IL-18 and atherosclerotic CVD (ASCVD) risk in Egyptian lean females with PCO. This study included control group of healthy lean normally menstruating females, lean PCOS group (BMI < 25 kg/m 2 ), and obese PCOS group (BMI > 25 kg/m 2 ) presented with infertility and diagnosed according to Rotterdam criteria. Measurements of serum lipid profile, IR, and IL-18 were done. Lipid accumulation product (LAP), IR and ASCVD risk were significantly higher in PCOS patients (lean and obese) compared to controls and in obese compared to lean. Serum IL-18 was significantly higher in the PCOV groups compared to the controls and correlated directly with LAP, IR and ASCVD risk. IL-18 is elevated in PCOS patients even in lean ones and is correlated with IR and ASCVD risk.

  7. Trunk lean gait decreases multi-segmental coordination in the vertical direction.

    PubMed

    Tokuda, Kazuki; Anan, Masaya; Sawada, Tomonori; Tanimoto, Kenji; Takeda, Takuya; Ogata, Yuta; Takahashi, Makoto; Kito, Nobuhiro; Shinkoda, Koichi

    2017-11-01

    [Purpose] The strategy of trunk lean gait to reduce external knee adduction moment (KAM) may affect multi-segmental synergy control of center of mass (COM) displacement. Uncontrolled manifold (UCM) analysis is an evaluation index to understand motor variability. The purpose of this study was to investigate how motor variability is affected by using UCM analysis on adjustment of the trunk lean angle. [Subjects and Methods] Fifteen healthy young adults walked at their preferred speed under two conditions: normal and trunk lean gait. UCM analysis was performed with respect to the COM displacement during the stance phase. The KAM data were analyzed at the points of the first KAM peak during the stance phase. [Results] The KAM during trunk lean gait was smaller than during normal gait. Despite a greater segmental configuration variance with respect to mediolateral COM displacement during trunk lean gait, the synergy index was not significantly different between the two conditions. The synergy index with respect to vertical COM displacement during trunk lean gait was smaller than that during normal gait. [Conclusion] These results suggest that trunk lean gait is effective in reducing KAM; however, it may decrease multi-segmental movement coordination of COM control in the vertical direction.

  8. Ischemic Preconditioning Increases the Tolerance of Fatty Liver to Hepatic Ischemia-Reperfusion Injury in the Rat

    PubMed Central

    Serafín, Anna; Roselló-Catafau, Joan; Prats, Neus; Xaus, Carme; Gelpí, Emilio; Peralta, Carmen

    2002-01-01

    Hepatic steatosis is a major risk factor in ischemia-reperfusion. The present study evaluates whether preconditioning, demonstrated to be effective in normal livers, could also confer protection in the presence of steatosis and investigates the potential underlying protective mechanisms. Fatty rats had increased hepatic injury and decreased survival after 60 minutes of ischemia compared with lean rats. Fatty livers showed a degree of neutrophil accumulation and microcirculatory alterations similar to that of normal livers. However, in presence of steatosis, an increased lipid peroxidation that could be reduced with glutathione-ester pretreatment was observed after hepatic reperfusion. Ischemic preconditioning reduced hepatic injury and increased animal survival. Both in normal and fatty livers, this endogenous protective mechanism was found to control lipid peroxidation, hepatic microcirculation failure, and neutrophil accumulation, reducing the subsequent hepatic injury. These beneficial effects could be mediated by nitric oxide, because the inhibition of nitric oxide synthesis and nitric oxide donor pretreatment abolished and simulated, respectively, the benefits of preconditioning. Thus, ischemic preconditioning could be an effective surgical strategy to reduce the hepatic ischemia-reperfusion injury in normal and fatty livers under normothermic conditions, including hepatic resections, and liver transplantation. PMID:12163383

  9. Systems and methods for controlling diesel engine emissions

    DOEpatents

    Webb, Cynthia Chaffin; Weber, Phillip Anthony; Khair, Magdi K.

    2004-06-01

    Systems and methods for controlling diesel engine emissions, including, for example, oxides of nitrogen emissions, particulate matter emissions, and the like. The emission control system according to this invention is provided in the exhaust passageway of a diesel engine and includes a catalyst-based particulate filter; and first and second lean NO.sub.x trap systems coupled to the catalyst-based particulate filter. The first and second lean NO.sub.x trap systems are arranged in a parallel flow configuration with each other. Each of the first and second lean NO.sub.x trap systems include a carbon monoxide generating catalyst device, a sulfur trap device, a lean NO.sub.x device, a supplemental fuel injector device, and a plurality of flow diverter devices.

  10. Expression of fourteen novel obesity-related genes in Zucker diabetic fatty rats.

    PubMed

    Schmid, Peter M; Heid, Iris; Buechler, Christa; Steege, Andreas; Resch, Markus; Birner, Christoph; Endemann, Dierk H; Riegger, Guenter A; Luchner, Andreas

    2012-07-13

    Genome-wide association studies (GWAS) are useful to reveal an association between single nucleotide polymorphisms and different measures of obesity. A multitude of new loci has recently been reported, but the exact function of most of the according genes is not known. The aim of our study was to start elucidating the function of some of these genes. We performed an expression analysis of fourteen genes, namely BDNF, ETV5, FAIM2, FTO, GNPDA2, KCTD15, LYPLAL1, MCR4, MTCH2, NEGR1, NRXN3, TMEM18, SEC16B and TFAP2B, via real-time RT-PCR in adipose tissue of the kidney capsule, the mesenterium and subcutaneum as well as the hypothalamus of obese Zucker diabetic fatty (ZDF) and Zucker lean (ZL) rats at an age of 22 weeks. All of our target genes except for SEC16B showed the highest expression in the hypothalamus. This suggests a critical role of these obesity-related genes in the central regulation of energy balance. Interestingly, the expression pattern in the hypothalamus showed no differences between obese ZDF and lean ZL rats. However, LYPLAL1, TFAP2B, SEC16B and FAIM2 were significantly lower expressed in the kidney fat of ZDF than ZL rats. NEGR1 was even lower expressed in subcutaneous and mesenterial fat, while MTCH2 was higher expressed in the subcutaneous and mesenterial fat of ZDF rats. The expression pattern of the investigated obesity genes implies for most of them a role in the central regulation of energy balance, but for some also a role in the adipose tissue itself. For the development of the ZDF phenotype peripheral rather than central mechanisms of the investigated genes seem to be relevant.

  11. A Noninvasive Method to Study Regulation of Extracellular Fluid Volume in Rats Using Nuclear Magnetic Resonance

    EPA Science Inventory

    Time-domain nuclear magnetic resonance (TD-NMR)-based measurement of body composition of rodents is an effective method to quickly and repeatedly measure proportions of fat, lean, and fluid without anesthesia. TD-NMR provides a measure of free water in a living animal, termed % f...

  12. Immunochemical Investigations of Cell Surface Antigens of Anaerobic Bacteria

    DTIC Science & Technology

    1984-10-15

    portion is linked to a carbohydrate core, which contains two unusual sugars (2- keto -3-deoxyoctonate and a heptose), as well as glucose, galactose, and...present in human intestinal contents. However, placing rats on a diet of lean ground beef for a two-week period resulted in alteration of the cecal

  13. Influence of diet, exercise and serum vitamin D on sarcopenia in post-menopausal women

    PubMed Central

    Mason, Caitlin; Xiao, Liren; Imayama, Ikuyo; Duggan, Catherine R.; Foster-Schubert, Karen E.; Kong, Angela; Campbell, Kristin L.; Wang, Ching-Yun; Villasenor, Adriana; Neuhouser, Marian L.; Alfano, Catherine M.; Blackburn, George L.; McTiernan, Anne

    2012-01-01

    Purpose To investigate the effects of 12 months of dietary weight loss and/or aerobic exercise on lean mass and the measurements defining sarcopenia in postmenopausal women, and to examine the potential moderating effect of serum 25-hydroxyvitamin D (25(OH)D) and age. Methods 439 overweight and obese postmenopausal women were randomized to: diet modification (N=118); exercise (N=117), diet+exercise (N=117), or control (N=87). The diet intervention was a group-based program with a 10% weight loss goal. The exercise intervention was 45 mins/day, 5 days/week of moderate-to-vigorous intensity aerobic activity. Total and appendicular lean mass were quantified by dual Xray absorptiometry (DXA) at baseline and 12 months. A skeletal muscle index (SMI=appendicular lean mass (kg)/m2) and the prevalence of sarcopenia (SMI<5.67 kg/m2) were calculated. Serum 25(OH)D was assayed using a competitive chemiluminescent immunoassay. Results Dietary weight loss resulted in a significant decrease in lean mass, and a borderline significant decrease in appendicular lean mass and SMI compared to controls. In contrast, aerobic exercise significantly preserved appendicular lean mass and SMI. Diet + exercise attenuated the loss of appendicular lean mass and SMI compared to diet alone, and did not result in significant loss of total- or appendicular lean mass compared to controls. Neither serum 25(OH)D nor age were significant moderators of the intervention effects. Conclusions Aerobic exercise added to dietary weight loss can attenuate the loss of appendicular lean mass during weight loss, and may be effective for the prevention and treatment of sarcopenia among overweight and obese postmenopausal women. PMID:23190588

  14. Steroid hormone profiling in obese and nonobese women with polycystic ovary syndrome.

    PubMed

    Deng, Yuying; Zhang, Yifei; Li, Shengxian; Zhou, Wenzhong; Ye, Lei; Wang, Lihua; Tao, Tao; Gu, Junjie; Yang, Zuwei; Zhao, Dandan; Gu, Weiqiong; Hong, Jie; Ning, Guang; Liu, Wei; Wang, Weiqing

    2017-10-26

    The study explored differences in the steroidogenic pathway between obese and nonobese women with polycystic ovary syndrome (PCOS) using liquid chromatography-tandem mass spectrometry (LC-MS/MS). 1044 women with PCOS (including 350 lean, 312 overweight and 382 obese) and 366 control women without PCOS (including 203 lean, 32 overweight and 131 obese) were enrolled. The differences in steroid hormones were amplified in lean PCOS versus lean controls compared with obese PCOS versus obese controls. Compared with obese PCOS, lean PCOS demonstrated increased dehydroepiandrosterone sulfate (P = 0.015), 17-hydropregnenolone (P = 0.003), 17-hydroprogesterone (17-OHP) (P < 0.001), progesterone (P < 0.001) and estrone (P < 0.001) levels. Enzyme activity evaluation showed that lean PCOS had increased activity of P450c17 (17-hydropregnenolone/pregnenolone, P < 0.001), P450aro (P < 0.001), 3βHSD2 (progesterone/ pregnenolone and 17-OHP/17-hydropregnenolone, both P < 0.001) and decreased activity of P450c21(11-deoxycorticorsterone/progesterone and 11-deoxycortisol/17-OHP, P < 0.001). Moreover, we found higher frequencies of CYP21A2- (encoding P450c21) c.552 C > G (p. D184E) in lean PCOS compared with obese PCOS patients (P = 0.006). In conclusion, this study demonstrated for the first time that the adrenal-specific enzyme P450c21 showed decreased activity in lean PCOS patients, and that the adrenal androgen excess may play different roles in lean and obese PCOS patients, which represents as different enzyme activity in the steroidogenic pathway.

  15. Lean leadership attributes: a systematic review of the literature.

    PubMed

    Aij, Kjeld Harald; Teunissen, Maurits

    2017-10-09

    Purpose Emphasis on quality and reducing costs has led many health-care organizations to reconfigure their management, process, and quality control infrastructures. Many are lean, a management philosophy with roots in manufacturing industries that emphasizes elimination of waste. Successful lean implementation requires systemic change and strong leadership. Despite the importance of leadership to successful lean implementation, few researchers have probed the question of ideal leadership attributes to achieve lean thinking in health care. The purpose of this paper is to provide insight into applicable attributes for lean leaders in health care. Design/methodology/approach The authors systematically reviewed the literature on principles of leadership and, using Dombrowski and Mielke's (2013) conceptual model of lean leadership, developed a parallel theoretical model for lean leadership in health care. Findings This work contributes to the development of a new framework for describing leadership attributes within lean management of health care. Originality/value The summary of attributes can provide a model for health-care leaders to apply lean in their organizations.

  16. Criteria pollutant and greenhouse gas emissions from CNG transit buses equipped with three-way catalysts compared to lean-burn engines and oxidation catalyst technologies.

    PubMed

    Yoon, Seungju; Collins, John; Thiruvengadam, Arvind; Gautam, Mridul; Herner, Jorn; Ayala, Alberto

    2013-08-01

    Engine and exhaust control technologies applied to compressed natural gas (CNG) transit buses have advanced from lean-burn, to lean-burn with oxidation catalyst (OxC), to stoichiometric combustion with three-way catalyst (TWC). With this technology advancement, regulated gaseous and particulate matter emissions have been significantly reduced. Two CNG transit buses equipped with stoichiometric combustion engines and TWCs were tested on a chassis dynamometer, and their emissions were measured. Emissions from the stoichiometric engines with TWCs were then compared to the emissions from lean-burn CNG transit buses tested in previous studies. Stoichiometric combustion with TWC was effective in reducing emissions of oxides of nitrogen (NO(x)), particulate matter (PM), and nonmethane hydrocarbon (NMHC) by 87% to 98% depending on pollutants and test cycles, compared to lean combustion. The high removal efficiencies exceeded the emission reduction required from the certification standards, especially for NO(x) and PM. While the certification standards require 95% and 90% reductions for NO(x) and PM, respectively, from the engine model years 1998-2003 to the engine model year 2007, the measured NO(x) and PM emissions show 96% and 95% reductions, respectively, from the lean-burn engines to the stoichiometric engines with TWC over the transient Urban Dynamometer Driving Schedule (UDDS) cycle. One drawback of stoichiometric combustion with TWC is that this technology produces higher carbon monoxide (CO) emissions than lean combustion. In regard to controlling CO emissions, lean combustion with OxC is more effective than stoichiometric combustion. Stoichiometric combustion with TWC produced higher greenhouse gas (GHG) emissions including carbon dioxide (CO2) and methane (CH4) than lean combustion during the UDDS cycle, but lower GHG emissions during the steady-state cruise cycle. Stoichiometric combustion with three-way catalyst is currently the best emission control technology available for compressed natural gas (CNG) transit buses to meet the stringent U.S. Environmental Protection Agency (EPA) 2010 heavy-duty engine NO(x) emissions standard. For existing lean-burn CNG transit buses in the fleet, oxidation catalyst would be the most effective retrofit technology for the control of NMHC and CO emissions.

  17. Year-long changes in protein metabolism in elderly men and women supplemented with a nutrition cocktail of beta-hydroxy-beta-methylbutyrate (HMB), L-arginine, and L-lysine.

    PubMed

    Baier, Shawn; Johannsen, Darcy; Abumrad, Naji; Rathmacher, John A; Nissen, Steven; Flakoll, Paul

    2009-01-01

    A major contributing factor to the loss of mobility in elderly people is the gradual and continuous loss of lean body mass. To determine whether supplementation of an amino acid cocktail daily for 1 year could improve the age-associated changes in protein turnover and lean body mass in elderly people. Elderly (76+/-1.6 years) women (n=39) and men (n=38) were recruited for a double-blinded controlled study. Study participants were randomly assigned to either an isonitrogenous control-supplement (n=37) or a treatment-supplement (HMB/Arg/Lys) consisting of beta-hydroxy-beta-methylbutyrate, L-arginine, and L-lysine (n=40) for the 1-year study. Lean tissue mass was measured using both bioelectrical-impedance analysis (BIA) and dual energy x-ray absorptiometry (DXA). Rates of whole-body protein turnover were estimated using primed/intermittent oral doses of 15N-glycine. In subjects taking the HMB/Arg/Lys supplement, lean tissue increased over the year of study while in the control group, lean tissue did not change. Compared with control, HMB/Arg/Lys increased body cell mass (BIA) by 1.6% (P=.002) and lean mass (DXA) by 1.2% (P=.05). The rates of protein turnover were significantly increased 8% and 12% in the HMB/Arg/Lys-supplemented group while rates of protein turnover decreased 11% and 9% in the control-supplemented subjects (P<.01), at 3 and 12 months, respectively. Consumption of a simple amino acid-related cocktail increased protein turnover and lean tissue in elderly individuals in a year-long study.

  18. Real-Time Control of Lean Blowout in a Turbine Engine for Minimizing No(x) Emissions

    NASA Technical Reports Server (NTRS)

    Zinn, Ben

    2004-01-01

    This report describes research on the development and demonstration of a controlled combustor operates with minimal NO, emissions, thus meeting one of NASA s UEET program goals. NO(x) emissions have been successfully minimized by operating a premixed, lean burning combustor (modeling a lean prevaporized, premixed LPP combustor) safely near its lean blowout (LBO) limit over a range of operating conditions. This was accomplished by integrating the combustor with an LBO precursor sensor and closed-loop, rule-based control system that allowed the combustor to operate far closer to the point of LBO than an uncontrolled combustor would be allowed to in a current engine. Since leaner operation generally leads to lower NO, emissions, engine NO, was reduced without loss of safety.

  19. Plekhs1 and Prdx3 are candidate genes responsible for mild hyperglycemia associated with obesity in a new animal model of F344-fa-nidd6 rat.

    PubMed

    Kotoh, Jun; Sasaki, Daiki; Matsumoto, Kozo; Maeda, Akihiko

    2016-12-01

    Type 2 diabetes is a polygenic disease and characterized by hyperglycemia and insulin resistance, and it is strongly associated with obesity. However, the mechanism by which obesity contributes to onset of type 2 diabetes is not well understood. We generated rat strains with a hyperglycemic quantitative trait locus (QTL) derived from the Otsuka Long-Evans Tokushima Fatty rat and a fa/fa (Lepr -/- ) locus derived from the Zucker Fatty rat. Phenotypes for plasma glucose, and insulin levels were measured, and RNA and protein levels were determined using reverse transcription quantitative PCR and Western blot analyses, respectively. Compared with the obese control strain F344-fa (Lepr -/- ), plasma glucose levels of the obese F344-fa-nidd6 (Lepr -/- and Nidd6/of) significantly increased, and plasma insulin levels significantly decreased. These phenotypes were not observed in the lean strains, suggesting that the Nidd6/of locus harbors a diabetogenic gene associated with obesity. We measured the expression of 41 genes in the Nidd6/of QTL region of each strain and found that the mRNA expression levels of the two genes significantly differed between the obese strains. The two genes, pleckstrin homology domain-containing, family S member 1 (Plechs1) and peroxiredoxin III (Prdx3), were differentially expressed only in the obese rats, suggesting that these two genes are involved in the mild elevation of blood glucose levels and insulin resistance in obesity.

  20. α-Motoneurons maintain biophysical heterogeneity in obesity and diabetes in Zucker rats.

    PubMed

    MacDonell, Christopher W; Chopek, Jeremy W; Gardiner, Kalan R; Gardiner, Phillip F

    2017-10-01

    Small-diameter sensory dysfunction resulting from diabetes has received much attention in the literature, whereas the impact of diabetes on α-motoneurons (MN) has not. In addition, the chance of developing insulin resistance and diabetes is increased in obesity. No study has examined the impact of obesity or diabetes on the biophysical properties of MN. Lean Zucker rats and Zucker diabetic fatty (ZDF) rats were separated into lean, obese (ZDF fed standard chow), and diabetic (ZDF fed high-fat diet that led to diabetes) groups. Glass micropipettes recorded hindlimb MN properties from identified flexor and extensor MN. MN were separated within their groups on the basis of input conductance, which created high- and low-input conductance subpopulations for each. A significant shorter (20%) afterhyperpolarization half-decay (AHP 1/2 ) was found in low-conductance MN for the diabetic group only, whereas AHP½ tended to be shorter in the obese group (19%). Significant positive correlations were found among rheobase and input conductance for both lean and obese animals. No differences were found between the groups for afterhyperpolarization amplitude (AHP amp ), input conductance, rheobase, or any of the rhythmic firing properties (frequency-current slope and spike-frequency adaptation index). MN properties continue to be heterogeneous in obese and diabetic animals. Obesity does not seem to influence lumbar MN. Despite the resistance of MN to the impact of diabetes, the reduced AHP 1/2 decay and the tendency for a reduction in AHP amp may be the first sign of change to MN function. NEW & NOTEWORTHY Knowledge about the impact of obesity and diabetes on the biophysical properties of motoneurons is lacking. We found that diabetes reduces the duration of the afterhyperpolarization and that motoneuron function is unchanged by obesity. A reduced afterhyperpolarization may impact discharge characteristics and may be the first sign of change to motoneuron function. Copyright © 2017 the American Physiological Society.

  1. Exercise Is More Effective at Altering Gut Microbial Composition and Producing Stable Changes in Lean Mass in Juvenile versus Adult Male F344 Rats

    PubMed Central

    Mika, Agnieszka; Van Treuren, Will; González, Antonio; Herrera, Jonathan J.; Knight, Rob; Fleshner, Monika

    2015-01-01

    The mammalian intestine harbors a complex microbial ecosystem that influences many aspects of host physiology. Exposure to specific microbes early in development affects host metabolism, immune function, and behavior across the lifespan. Just as the physiology of the developing organism undergoes a period of plasticity, the developing microbial ecosystem is characterized by instability and may also be more sensitive to change. Early life thus presents a window of opportunity for manipulations that produce adaptive changes in microbial composition. Recent insights have revealed that increasing physical activity can increase the abundance of beneficial microbial species. We therefore investigated whether six weeks of wheel running initiated in the juvenile period (postnatal day 24) would produce more robust and stable changes in microbial communities versus exercise initiated in adulthood (postnatal day 70) in male F344 rats. 16S rRNA gene sequencing was used to characterize the microbial composition of juvenile versus adult runners and their sedentary counterparts across multiple time points during exercise and following exercise cessation. Alpha diversity measures revealed that the microbial communities of young runners were less even and diverse, a community structure that reflects volatility and malleability. Juvenile onset exercise altered several phyla and, notably, increased Bacteroidetes and decreased Firmicutes, a configuration associated with leanness. At the genus level of taxonomy, exercise altered more genera in juveniles than in the adults and produced patterns associated with adaptive metabolic consequences. Given the potential of these changes to contribute to a lean phenotype, we examined body composition in juvenile versus adult runners. Interestingly, exercise produced persistent increases in lean body mass in juvenile but not adult runners. Taken together, these results indicate that the impact of exercise on gut microbiota composition as well as body composition may depend on the developmental stage during which exercise is initiated. PMID:26016739

  2. Biomechanical mechanism of lateral trunk lean gait for knee osteoarthritis patients.

    PubMed

    Tokuda, Kazuki; Anan, Masaya; Takahashi, Makoto; Sawada, Tomonori; Tanimoto, Kenji; Kito, Nobuhiro; Shinkoda, Koichi

    2018-01-03

    The biomechanical mechanism of lateral trunk lean gait employed to reduce external knee adduction moment (KAM) for knee osteoarthritis (OA) patients is not well known. This mechanism may relate to the center of mass (COM) motion. Moreover, lateral trunk lean gait may affect motor control of the COM displacement. Uncontrolled manifold (UCM) analysis is an evaluation index used to understand motor control and variability of the motor task. Here we aimed to clarify the biomechanical mechanism to reduce KAM during lateral trunk lean gait and how motor variability controls the COM displacement. Twenty knee OA patients walked under two conditions: normal and lateral trunk lean gait conditions. UCM analysis was performed with respect to the COM displacement in the frontal plane. We also determined how the variability is structured with regards to the COM displacement as a performance variable. The peak KAM under lateral trunk lean gait was lower than that under normal gait. The reduced peak KAM observed was accompanied by medially shifted knee joint center, shortened distance of the center of pressure to knee joint center, and shortened distance of the knee-ground reaction force lever arm during the stance phase. Knee OA patients with lateral trunk lean gait could maintain kinematic synergy by utilizing greater segmental configuration variance to the performance variable. However, the COM displacement variability of lateral trunk lean gait was larger than that of normal gait. Our findings may provide clinical insights to effectively evaluate and prescribe gait modification training for knee OA patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Obesity alters immune and metabolic profiles: new insight from obese-resistant mice on high fat diet

    PubMed Central

    Boi, Shannon K.; Buchta, Claire M.; Pearson, Nicole A.; Francis, Meghan B.; Meyerholz, David K.; Grobe, Justin L.; Norian, Lyse A.

    2016-01-01

    Objective Diet-induced obesity has been shown to alter immune function in mice, but distinguishing the effects of obesity from changes in diet composition is complicated. We hypothesized that immunological differences would exist between diet-induced obese (DIO) and obese-resistant (OB-Res) mice fed the same high-fat diet (HFD). Methods BALB/c mice were fed either standard chow or HFD to generate lean or DIO and OB-Res mice, respectively. Resulting mice were analyzed for serum immunologic and metabolic profiles, and cellular immune parameters. Results BALB/c mice on HFD can be categorized as DIO or OB-Res, based on body weight versus lean controls. DIO mice are physiologically distinct from OB-Res mice, whose serum Insulin, Leptin, GIP, and Eotaxin concentrations remain similar to lean controls. DIO mice have increased macrophage+ crown-like structures in white adipose tissue, although macrophage percentages were unchanged from OB-Res and lean mice. DIO mice also have decreased splenic CD4+ T cells, elevated serum GM-CSF, and increased splenic CD11c+ dendritic cells, but impaired dendritic cell stimulatory capacity (p < 0.05 versus lean controls). These parameters were unaltered in OB-Res mice versus lean controls. Conclusions Diet-induced obesity results in alterations in immune and metabolic profiles that are distinct from effects caused by HFD alone. PMID:27515998

  4. The role of proximal versus distal stomach resection in the weight loss seen after vertical sleeve gastrectomy

    PubMed Central

    Kulkarni, Bhushan V.; LaSance, Kathleen; Sorrell, Joyce E.; Lemen, Lisa; Woods, Stephen C.; Seeley, Randy J.

    2016-01-01

    The mechanisms involved in the weight loss seen after vertical sleeve gastrectomy (VSG) are not clear. The rat stomach has two morphologically and functionally distinct proximal and distal parts. The rat model for VSG involves complete removal of the proximal part and 80% removal of the distal part along the greater curvature. The purpose of this study was to understand the potential independent contributions of removal of these distinct gastric sections to VSG outcomes. We prepared four surgical groups of male Long-Evans rats: VSG, sham surgery (control), selective proximal section removal (PR), and selective distal section removal (DR). Gastric emptying rate (GER) was highest after VSG compared with all other groups. However, PR, in turn, had significantly greater GER compared with both DR and sham groups. The surgery-induced weight loss followed the same pattern with VSG causing the greatest weight loss and PR having greater weight loss compared with DR and sham groups. The results were robust for rats fed regular chow or a high-fat diet. Body mass analysis revealed that the weight loss was due to the loss of fat mass, and there was no change in lean mass after the surgeries. In conclusion, removal of the proximal stomach contributes to most, but not all, of the physiological impact of VSG. PMID:27581811

  5. The Sodium Glucose Cotransporter 2 Inhibitor Ipragliflozin Promotes Preferential Loss of Fat Mass in Non-obese Diabetic Goto-Kakizaki Rats.

    PubMed

    Takasu, Toshiyuki; Hayashizaki, Yuka; Hirosumi, Jiro; Minoura, Hideaki; Amino, Nobuaki; Kurosaki, Eiji; Takakura, Shoji

    2017-01-01

    Sodium glucose cotransporter 2 (SGLT2) inhibitors improve hyperglycemia in patients with type 2 diabetes mellitus (T2DM) by increasing urinary glucose excretion. In addition to their antihyperglycemic effect, SGLT2 inhibitors also reduce body weight and fat mass in obese and overweight patients with T2DM. However, whether or not SGLT2 inhibitors similarly affect body composition of non-obese patients with T2DM remains unclear. In this study, we investigated the effect of the SGLT2 inhibitor ipragliflozin on body composition in a Goto-Kakizaki (GK) rat model of non-obese T2DM. GK rats were treated with ipragliflozin once daily for 9 weeks, starting at 23 weeks of age. Body composition was then analyzed using dual-energy X-ray absorptiometry. Treatment with ipragliflozin increased urinary glucose excretion, reduced hemoglobin A1c (HbA1c) levels and suppressed body weight gain as the dose increased. Body composition analysis revealed that body fat mass was lower in the ipragliflozin-treated groups than in the control group, while lean body mass and bone mineral contents were comparable between groups. Thus, an SGLT2 inhibitor ipragliflozin was found to promote preferential loss of fat mass in a rat model of non-obese T2DM. Ipragliflozin might also promote preferential loss of fat in non-obese patients with T2DM.

  6. Effects of Alpha-Lipoic Acid on Oxidative Stress and Kinin Receptor Expression in Obese Zucker Diabetic Fatty Rats.

    PubMed

    Midaoui, Adil El; Talbot, Sébastien; Lahjouji, Karim; Dias, Jenny Pena; Fantus, I George; Couture, Réjean

    2015-06-01

    To investigate the impact of alpha-lipoic acid on superoxide anion production and NADPH oxidase activity as well as on the expression of kinin B1 and B2 receptors in key organs of obese Zucker Diabetic Fatty rats. Superoxide anion production was measured by lucigenin chemiluminescence. Kinin B1 and B2 receptors expression was measured at protein and mRNA levels by western blot and qRT-PCR in key organs of Zucker Diabetic Fatty and Zucker lean control rats treated for a period of 6 weeks with a standard diet or a diet containing the antioxidant α-lipoic acid (1 g/kg). Superoxide anion production and NADPH oxidase activity were significantly enhanced in aorta and adipose tissue of Zucker Diabetic Fatty rats. Kinin B1 and B2 receptors expression levels were also significantly increased in the liver and the gastrocnemius muscle of Zucker Diabetic Fatty rats. Expression of both receptors was not altered in the pancreas of Zucker Diabetic Fatty rats and was undetectable in white retroperitoneal adipose tissue. Alpha-lipoic acid prevented the rise in NADPH oxidase activity in aorta and epididymal adipose tissue of Zucker Diabetic Fatty rats and the upregulation of kinin B1 receptor in liver and gastrocnemius muscle and that of kinin B2 receptor in the liver. Alpha-lipoic acid treatment was found to prevent the final body weight increase without affecting significantly hyperglycemia, hyperinsulinemia and insulin resistance index in Zucker Diabetic Fatty rats. Findings support the hypothesis that oxidative stress is implicated in the induction of kinin B1 receptor in Zucker Diabetic Fatty rats. The ability of α-lipoic acid to blunt the body weight gain appears to be mediated in part by preventing NADPH oxidase activity rise in adipose tissue and reversing the hepatic upregulation of kinin B1 receptor in Zucker Diabetic Fatty rats.

  7. Interrelationship of CB1R and OBR pathways in regulation of metabolic, neuroendocrine, and behavioral responses to food restriction and voluntary wheel running

    PubMed Central

    Diane, Abdoulaye; Vine, Donna F.; Russell, James C.; Heth, C. Donald; Proctor, Spencer D.

    2014-01-01

    We hypothesized the cannabinoid-1 receptor and leptin receptor (ObR) operate synergistically to modulate metabolic, neuroendocrine, and behavioral responses of animals exposed to a survival challenge (food restriction and wheel running). Obese-prone (OP) JCR:LA-cp rats, lacking functional ObR, and lean-prone (LP) JCR:LA-cp rats (intact ObR) were assigned to OP-C and LP-C (control) or CBR1-antagonized (SR141716, 10 mg/kg body wt in food) OP-A and LP-A groups. After 32 days, all rats were exposed to 1.5-h daily meals without the drug and 22.5-h voluntary wheel running, a survival challenge that normally culminates in activity-based anorexia (ABA). Rats were removed from the ABA protocol when body weight reached 75% of entry weight (starvation criterion) or after 14 days (survival criterion). LP-A rats starved faster (6.44 ± 0.24 days) than LP-C animals (8.00 ± 0.29 days); all OP rats survived the ABA challenge. LP-A rats lost weight faster than animals in all other groups (P < 0.001). Consistent with the starvation results, LP-A rats increased the rate of wheel running more rapidly than LP-C rats (P = 0.001), with no difference in hypothalamic and primary neural reward serotonin levels. In contrast, OP-A rats showed suppression of wheel running compared with the OP-C group (days 6–14 of ABA challenge, P < 0.001) and decreased hypothalamic and neural reward serotonin levels (P < 0.01). Thus there is an interrelationship between cannabinoid-1 receptor and ObR pathways in regulation of energy balance and physical activity. Effective clinical measures to prevent and treat a variety of disorders will require understanding of the mechanisms underlying these effects. PMID:24903921

  8. Polycystic ovary syndrome: possible involvement of androgen-induced, chemerin-mediated ovarian recruitment of monocytes/macrophages.

    PubMed

    Lima, Patricia D A; Nivet, Anne-Laure; Wang, Qi; Chen, Yi-An; Leader, Arthur; Cheung, Annie; Tzeng, Chii-Ruey; Tsang, Benjamin K

    2018-04-24

    Polycystic ovary syndrome (PCOS) is a continuum of endocrine and reproductive disorders characterized by hyperandrogenism, antral follicle growth arrest and chronic inflammation. Macrophages play key role in inflammation and the balance between M1 (inflammatory) and M2 (anti-inflammatory) macrophages determines physiological/pathological outcomes. Here, we investigated if hyperandrogenism increases ovarian chemerin altering the balance of M1 and M2 macrophages and the granulosa cell death. Ovarian chemerin was up-regulated by 5α-dihydrotestosterone (DHT) in lean and overweight rats; while increased serum chemerin levels were only evident in overweight rats, suggesting that the serum chemerin may be reflective of a systemic response and associated with obesity, whereas increased ovarian chemerin expression is a localized response independent of the metabolic status. DHT altered follicle dynamics while increased the M1: M2 macrophages ratio in antral and pre-ovulatory follicles. While ovarian M1 macrophages expressing chemokine-like receptor 1 (CMKLR1) were increased, CMKLR1 + monocytes, which migrated towards chemerin-rich environment, were markedly decreased after 15 days of DHT. Androgen-induced granulosa cell apoptosis was dependent on the presence of macrophages. In humans, chemerin levels in follicular fluid, but not in serum, was higher in lean PCOS patients compared to BMI-matched controls and was associated with increased M1: M2 ratio. Our results support the concept that in PCOS, hyperandrogenemia increases chemerin expression while promotes CMKLR1 + monocytes recruitment and deregulates the immunological niche of ovaries. This study established a new immunological perspective in PCOS at the ovarian level. Hyperandrogenism is associated with up-regulation of chemerin and macrophage unbalance in the ovaries.

  9. Impact of genetic strain on body fat loss, food consumption, metabolism, ventilation, and motor activity in free running female rats

    EPA Science Inventory

    Nuclear magnetic resonance (NMR) based body composition analysis is an idea means of assessing changes in relative proportions of fat, lean, and fluid in rodents non­ invasively. While the data are not as accurate as convent ional chemical analysis, the systems allow one to follo...

  10. Fructose Consumption Does Not Worsen Bone Deficits Resulting From High-Fat Feeding in Young Male Rats

    PubMed Central

    Yarrow, Joshua F.; Toklu, Hale Z.; Balaez, Alex; Phillips, Ean G.; Otzel, Dana M.; Chen, Cong; Wronski, Thomas J.; Aguirre, J. Ignacio; Sakarya, Yasemin; Tümer, Nihal; Scarpace, Philip J.

    2016-01-01

    Dietary-induced obesity (DIO) resulting from high-fat (HF) or high-sugar diets produces a host of deleterious metabolic consequences including adverse bone development. We compared the effects of feeding standard rodent chow (Control), a 30% moderately HF (starch-based/sugar-free) diet, or a combined 30%/40% HF/high-fructose (HF/F) diet for 12 weeks on cancellous/cortical bone development in male Sprague-Dawley rats aged 8 weeks. Both HF feeding regimens reduced the lean/fat mass ratio, elevated circulating leptin, and reduced serum total antioxidant capacity (tAOC) when compared with Controls. Distal femur cancellous bone mineral density (BMD) was 23–34% lower in both HF groups (p<0.001) and was characterized by lower cancellous bone volume (BV/TV, p<0.01), lower trabecular number (Tb.N, p<0.001), and increased trabecular separation versus Controls (p<0.001). Cancellous BMD, BV/TV, and Tb.N were negatively associated with leptin and positively associated with tAOC at the distal femur. Similar cancellous bone deficits were observed at the proximal tibia, along with increased bone marrow adipocyte density (p<0.05), which was negatively associated with BV/TV and Tb.N. HF/F animals also exhibited lower osteoblast surface and reduced circulating osteocalcin (p<0.05). Cortical thickness (p<0.01) and tissue mineral density (p<0.05) were higher in both HF-fed groups versus Controls, while whole bone biomechanical characteristics were not different among groups. These results demonstrate that “westernized” HF diets worsen cancellous, but not cortical, bone parameters in skeletally-immature male rats and that fructose incorporation into HF diets does not exacerbate bone loss. In addition, they suggest that leptin and/or oxidative stress may influence DIO-induced alterations in adolescent bone development. PMID:26855373

  11. Fructose consumption does not worsen bone deficits resulting from high-fat feeding in young male rats.

    PubMed

    Yarrow, Joshua F; Toklu, Hale Z; Balaez, Alex; Phillips, Ean G; Otzel, Dana M; Chen, Cong; Wronski, Thomas J; Aguirre, J Ignacio; Sakarya, Yasemin; Tümer, Nihal; Scarpace, Philip J

    2016-04-01

    Dietary-induced obesity (DIO) resulting from high-fat (HF) or high-sugar diets produces a host of deleterious metabolic consequences including adverse bone development. We compared the effects of feeding standard rodent chow (Control), a 30% moderately HF (starch-based/sugar-free) diet, or a combined 30%/40% HF/high-fructose (HF/F) diet for 12weeks on cancellous/cortical bone development in male Sprague-Dawley rats aged 8weeks. Both HF feeding regimens reduced the lean/fat mass ratio, elevated circulating leptin, and reduced serum total antioxidant capacity (tAOC) when compared with Controls. Distal femur cancellous bone mineral density (BMD) was 23-34% lower in both HF groups (p<0.001) and was characterized by lower cancellous bone volume (BV/TV, p<0.01), lower trabecular number (Tb.N, p<0.001), and increased trabecular separation versus Controls (p<0.001). Cancellous BMD, BV/TV, and Tb.N were negatively associated with leptin and positively associated with tAOC at the distal femur. Similar cancellous bone deficits were observed at the proximal tibia, along with increased bone marrow adipocyte density (p<0.05), which was negatively associated with BV/TV and Tb.N. HF/F animals also exhibited lower osteoblast surface and reduced circulating osteocalcin (p<0.05). Cortical thickness (p<0.01) and tissue mineral density (p<0.05) were higher in both HF-fed groups versus Controls, while whole bone biomechanical characteristics were not different among groups. These results demonstrate that "westernized" HF diets worsen cancellous, but not cortical, bone parameters in skeletally-immature male rats and that fructose incorporation into HF diets does not exacerbate bone loss. In addition, they suggest that leptin and/or oxidative stress may influence DIO-induced alterations in adolescent bone development. Published by Elsevier Inc.

  12. Oral Fructose Absorption in Obese Children with Non-Alcoholic Fatty Liver Disease

    PubMed Central

    Sullivan, Jillian S; Le, MyPhuong T; Pan, Zhaoxing; Rivard, Christopher; Love-Osborne, Kathryn; Robbins, Kristen; Johnson, Richard J; Sokol, Ronald J; Sundaram, Shikha S

    2014-01-01

    Background Fructose intake is associated with NAFLD (Non-Alcoholic Fatty Liver Disease) development. Objective To measure fructose absorption/metabolism in pediatric NAFLD compared to obese and lean controls. Methods Children with histologically proven NAFLD, and obese and lean controls received oral fructose (1 gm/kg ideal body weight). Serum glucose, insulin, uric acid, and fructose, urine uric acid, urine fructose, and breath hydrogen levels were measured at baseline and multiple points until 360 minutes after fructose ingestion. Results Nine NAFLD (89% Hispanic, mean age 14.3 years, mean BMI 35.3 kg/m2), 6 Obese Controls (67% Hispanic, mean age 12.7 years, mean BMI 31.0 kg/m2), and 9 Lean Controls (44% Hispanic, mean age 14.3 years, mean BMI 19.4 kg/m2) were enrolled. Following fructose ingestion, NAFLD vs. Lean Controls had elevated serum glucose, insulin, and uric acid (p<0.05), higher urine uric acid (p=0.001) but lower fructose excretion (p=0.002) and lower breath hydrogen 180-min AUC (p=0.04). NAFLD vs. Obese Controls had similar post-fructose serum glucose, insulin, urine uric acid, and breath hydrogen, but elevated serum uric acid (p<0.05) and lower urine fructose excretion (p=0.02). Conclusions Children with NAFLD absorb and metabolize fructose more effectively than lean subjects, associated with an exacerbated metabolic profile following fructose ingestion. PMID:24961681

  13. Chemical and toxicological properties of emissions from CNG transit buses equipped with three-way catalysts compared to lean-burn engines and oxidation catalyst technologies

    NASA Astrophysics Data System (ADS)

    Yoon, Seungju; Hu, Shaohua; Kado, Norman Y.; Thiruvengadam, Arvind; Collins, John F.; Gautam, Mridul; Herner, Jorn D.; Ayala, Alberto

    2014-02-01

    Chemical and toxicological properties of emissions from compressed natural gas (CNG) fueled transit buses with stoichiometric combustion engines and three-way catalyst (TWC) exhaust control systems were measured using a chassis dynamometer testing facility and compared to the data from earlier CNG engine and exhaust control technologies. Gaseous and particulate matter emissions from buses with stoichiometric engines and TWC were significantly lower than the emissions from buses with lean-burn engines. Carbonyls and volatile organic compounds (VOCs) from buses with stoichiometric engines and TWC were lower by more than 99% compared to buses with lean-burn engines. Elemental and organic carbons (EC and OC), polycyclic aromatic hydrocarbons (PAHs), and trace elements from buses with stoichiometric engines and TWC were effectively controlled and significantly lower than the emissions from buses with lean-burn engines. Potential mutagenicity measured using a microsuspension modification of the Salmonella/microsome assay was lower by more than 99% for buses with stoichiometric engines and TWC, compared to buses with lean-burn engines and OxC.

  14. Effects of NOX Storage Component on Ammonia Formation in TWC for Passive SCR NOX Control in Lean Gasoline Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prikhodko, Vitaly Y.; Pihl, Josh A.; Toops, Todd J.

    A prototype three-way catalyst (TWC) with NOX storage component was evaluated for ammonia (NH3) generation on a 2.0-liter BMW lean burn gasoline direct injection engine as a component in a passive ammonia selective catalytic reduction (SCR) system. The passive NH3 SCR system is a potential approach for controlling nitrogen oxides (NOX) emissions from lean burn gasoline engines. In this system, NH3 is generated over a close-coupled TWC during periodic slightly-rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst.more » Adding a NOX storage component to a TWC provides two benefits in the context of a passive SCR system: (1) enabling longer lean operation by storing NOX upstream and preserving NH3 inventory on the downstream SCR catalyst; and (2) increasing the quantity and rate of NH3 production during rich operation. Since the fuel penalty associated with passive SCR NOX control depends on the fraction of time that the engine is running rich rather than lean, both benefits (longer lean times and shorter rich times achieved via improved NH3 production) will decrease the passive SCR fuel penalty. However, these benefits are primarily realized at low to moderate temperatures (300-500 °C), where the NOX storage component is able to store NOX, with little to no benefit at higher temperatures (>500 °C), where NOX storage is no longer effective. This study discusses engine parameters and control strategies affecting the NH3 generation over a TWC with NOX storage component.« less

  15. PON1 polymorphisms are associated with polycystic ovary syndrome susceptibility, related traits, and PON1 activity in Indian women with the syndrome.

    PubMed

    Dadachanji, Roshan; Shaikh, Nuzhat; Khavale, Sushma; Patil, Anushree; Shah, Nalini; Mukherjee, Srabani

    2015-07-01

    To investigate the association of paraoxonase 1 (PON1) polymorphisms (L55M and Q192R) with polycystic ovary syndrome (PCOS) susceptibility and its related traits in Indian women. Case-control study. Academic research institute, infertility, and endocrinology clinics. Controls (n = 326), women with PCOS (n = 482). None. Genotypic and allelic frequency distribution, genotype-phenotype association, different PON1 activities (lactonase, arylesterase, and paraoxonase). The genotypic and allelic frequency distributions of the L55M polymorphism were significantly different between lean controls and lean women with PCOS, and this polymorphism reduced the risk of PCOS development in lean but not in obese Indian women. Furthermore, this polymorphism was significantly associated with decreased 2-hour glucose, apolipoprotein B, free and bioavailable T, and free androgen index concurrent with increased sex hormone-binding globulin (SHBG) and FSH levels only in lean women with PCOS. However, Q192R polymorphism showed comparable genotypic frequency distribution between controls and women with PCOS. PON1 lactonase and arylesterase activities were significantly decreased in women with PCOS compared with controls. PON1 polymorphisms were shown to influence its activities. Our study showed that L55M, but not Q192R, polymorphism is significantly associated with reduced PCOS susceptibility only in lean women and also impacts glucose metabolism, lipid parameters, and hyperandrogenemia in them. Our study therefore suggests the possibility of differential genetic pathophysiology of PCOS between lean and obese women. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rangaraj, D; Chan, K; Boddu, S

    Lean thinking has revolutionized the manufacturing industry. Toyota has pioneered and leveraged this aspect of Lean thinking. Application of Lean thinking and Lean Six Sigma techniques into Healthcare and in particular in Radiation Oncology has its merits and challenges. To improve quality, safety and patient satisfaction with available resources or reducing cost in terms of time, staff and resources is demands of today's healthcare. Radiation oncology treatment involves many processes and steps, identifying and removing the non-value added steps in a process can significantly improve the efficiency. Real projects undertaken in radiation oncology department in cutting down the procedure timemore » for MRI guided brachytherapy to 40% less using lean thinking will be narrated. Simple Lean tools and techniques such as Gemba walk, visual control, daily huddles, standard work, value stream mapping, error-proofing, etc. can be applied with existing resources and how that improved the operation in a Radiation Oncology department's two year experience will be discussed. Lean thinking focuses on identifying and solving the root-cause of a problem by asking “Why” and not “Who” and this requires a culture change of no blame. Role of leadership in building lean culture, employee empowerment and trains and develops lean thinkers will be presented. Why Lean initiatives fail and how to implement lean successfully in your clinic will be discussed. Learning Objectives: Concepts of lean management or lean thinking. Lean tools and techniques applied in Radiation Oncology. Implement no blame culture and focus on system and processes. Leadership role in implementing lean culture. Challenges for Lean thinking in healthcare.« less

  17. Clinical and Metabolic Characterization of Lean Caucasian Subjects With Non-alcoholic Fatty Liver.

    PubMed

    Feldman, Alexandra; Eder, Sebastian K; Felder, Thomas K; Kedenko, Lyudmyla; Paulweber, Bernhard; Stadlmayr, Andreas; Huber-Schönauer, Ursula; Niederseer, David; Stickel, Felix; Auer, Simon; Haschke-Becher, Elisabeth; Patsch, Wolfgang; Datz, Christian; Aigner, Elmar

    2017-01-01

    Non-alcoholic fatty liver disease (NAFLD) is closely linked to obesity; however, 5-8% of lean subjects also have evidence of NAFLD. We aimed to investigate clinical, genetic, metabolic and lifestyle characteristics in lean Caucasian subjects with NAFLD. Data from 187 subjects allocated to one of the three groups according to body mass index (BMI) and hepatic steatosis on ultrasound were obtained: lean healthy (BMI≤25 kg/m 2 , no steatosis, N=71), lean NAFLD (BMI≤25 kg/m 2 , steatosis, N=55), obese NAFLD (BMI≥30 kg/m 2 , steatosis; N=61). All subjects received a detailed clinical and laboratory examination including oral glucose tolerance test. The serum metabolome was assessed using the Metabolomics AbsoluteIDQ p180 kit (BIOCRATES Life Sciences). Genotyping for single-nucleotide polymorphisms (SNPs) associated with NAFLD was performed. Lean NAFLD subjects had fasting insulin concentrations similar to lean healthy subjects but had markedly impaired glucose tolerance. Lean NAFLD subjects had a higher rate of the mutant PNPLA3 CG/GG variant compared to lean controls (P=0.007). Serum adiponectin concentrations were decreased in both NAFLD groups compared to controls (P<0.001 for both groups) The metabolomics study revealed a potential role for various lysophosphatidylcholines (lyso-PC C18:0, lyso-PC C17:0) and phosphatidylcholines (PCaa C36:3; false discovery rate (FDR)-corrected P-value<0.001) as well as lysine, tyrosine, and valine (FDR<0.001). Lean subjects with evidence of NAFLD have clinically relevant impaired glucose tolerance, low adiponectin concentrations and a distinct metabolite profile with an increased rate of PNPLA3 risk allele carriage.

  18. Ammonia Generation and Utilization in a Passive SCR (TWC+SCR) System on Lean Gasoline Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prikhodko, Vitaly Y.; James E. Parks, II; Pihl, Josh A.

    Lean gasoline engines offer greater fuel economy than the common stoichiometric gasoline engine, but the current three way catalyst (TWC) on stoichiometric engines is unable to control nitrogen oxide (NOX) emissions in oxidizing exhaust. For these lean gasoline engines, lean NOX emission control is required to meet existing Tier 2 and upcoming Tier 3 emission regulations set by the U.S. Environmental Protection Agency (EPA). While urea-based selective catalytic reduction (SCR) has proven effective in controlling NOX from diesel engines, the urea storage and delivery components can add significant size and cost. As such, onboard NH 3 production via a passivemore » SCR approach is of interest. In a passive SCR system, NH 3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean operation, NOX passes through the TWC and is reduced by the stored NH 3 on the SCR catalyst. In this work, a passive SCR system was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine to assess NH 3 generation over a Pd-only TWC and utilization over a Cu-based SCR catalyst. System NOX reduction efficiency and fuel efficiency improvement compared to stoichiometric engine operation were measured. A feedback control strategy based on cumulative NH 3 produced by the TWC during rich operation and NOX emissions during lean operation was implemented on the engine to control lean/rich cycle timing. At an SCR average inlet temperature of 350 °C, an NH 3:NOX ratio of 1.15:1 (achieved through longer rich cycle timing) resulted in 99.7 % NOX conversion. Increasing NH 3 generation further resulted in even higher NOX conversion; however, tailpipe NH 3 emissions resulted. At higher underfloor temperatures, NH 3 oxidation over the SCR limited NH 3 availability for NOX reduction. At the engine conditions studied, greater than 99 % NOX conversion was achieved with passive SCR while delivering fuel efficiency benefits ranging between 6-11 % compared with stoichiometric operation.« less

  19. Ammonia Generation and Utilization in a Passive SCR (TWC+SCR) System on Lean Gasoline Engine

    DOE PAGES

    Prikhodko, Vitaly Y.; James E. Parks, II; Pihl, Josh A.; ...

    2016-04-05

    Lean gasoline engines offer greater fuel economy than the common stoichiometric gasoline engine, but the current three way catalyst (TWC) on stoichiometric engines is unable to control nitrogen oxide (NOX) emissions in oxidizing exhaust. For these lean gasoline engines, lean NOX emission control is required to meet existing Tier 2 and upcoming Tier 3 emission regulations set by the U.S. Environmental Protection Agency (EPA). While urea-based selective catalytic reduction (SCR) has proven effective in controlling NOX from diesel engines, the urea storage and delivery components can add significant size and cost. As such, onboard NH 3 production via a passivemore » SCR approach is of interest. In a passive SCR system, NH 3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean operation, NOX passes through the TWC and is reduced by the stored NH 3 on the SCR catalyst. In this work, a passive SCR system was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine to assess NH 3 generation over a Pd-only TWC and utilization over a Cu-based SCR catalyst. System NOX reduction efficiency and fuel efficiency improvement compared to stoichiometric engine operation were measured. A feedback control strategy based on cumulative NH 3 produced by the TWC during rich operation and NOX emissions during lean operation was implemented on the engine to control lean/rich cycle timing. At an SCR average inlet temperature of 350 °C, an NH 3:NOX ratio of 1.15:1 (achieved through longer rich cycle timing) resulted in 99.7 % NOX conversion. Increasing NH 3 generation further resulted in even higher NOX conversion; however, tailpipe NH 3 emissions resulted. At higher underfloor temperatures, NH 3 oxidation over the SCR limited NH 3 availability for NOX reduction. At the engine conditions studied, greater than 99 % NOX conversion was achieved with passive SCR while delivering fuel efficiency benefits ranging between 6-11 % compared with stoichiometric operation.« less

  20. Alterations in Glutathione Redox Metabolism, Oxidative Stress, and Mitochondrial Function in the Left Ventricle of Elderly Zucker Diabetic Fatty Rat Heart

    PubMed Central

    Raza, Haider; John, Annie; Howarth, Frank C.

    2012-01-01

    The Zucker diabetic fatty (ZDF) rat is a genetic model in which the homozygous (FA/FA) male animals develop obesity and type 2 diabetes. Morbidity and mortality from cardiovascular complications, due to increased oxidative stress and inflammatory signals, are the hallmarks of type 2 diabetes. The precise molecular mechanism of contractile dysfunction and disease progression remains to be clarified. Therefore, we have investigated molecular and metabolic targets in male ZDF (30–34 weeks old) rat heart compared to age matched Zucker lean (ZL) controls. Hyperglycemia was confirmed by a 4-fold elevation in non-fasting blood glucose (478.43 ± 29.22 mg/dL in ZDF vs. 108.22 ± 2.52 mg/dL in ZL rats). An increase in reactive oxygen species production, lipid peroxidation and oxidative protein carbonylation was observed in ZDF rats. A significant increase in CYP4502E1 activity accompanied by increased protein expression was also observed in diabetic rat heart. Increased expression of other oxidative stress marker proteins, HO-1 and iNOS was also observed. GSH concentration and activities of GSH-dependent enzymes, glutathione S-transferase and GSH reductase, were, however, significantly increased in ZDF heart tissue suggesting a compensatory defense mechanism. The activities of mitochondrial respiratory enzymes, Complex I and Complex IV were significantly reduced in the heart ventricle of ZDF rats in comparison to ZL rats. Western blot analysis has also suggested a decreased expression of IκB-α and phosphorylated-JNK in diabetic heart tissue. Our results have suggested that mitochondrial dysfunction and increased oxidative stress in ZDF rats might be associated, at least in part, with altered NF-κB/JNK dependent redox cell signaling. These results might have implications in the elucidation of the mechanism of disease progression and designing strategies for diabetes prevention. PMID:23203193

  1. Plasma amino acid and metabolite signatures tracking diabetes progression in the UCD-T2DM rat model.

    PubMed

    Piccolo, Brian D; Graham, James L; Stanhope, Kimber L; Fiehn, Oliver; Havel, Peter J; Adams, Sean H

    2016-06-01

    Elevations of plasma concentrations of branched-chain amino acids (BCAAs) are observed in human insulin resistance and type 2 diabetes mellitus (T2DM); however, there has been some controversy with respect to the passive or causative nature of the BCAA phenotype. Using untargeted metabolomics, plasma BCAA and other metabolites were assessed in lean control Sprague-Dawley rats (LC) and temporally during diabetes development in the UCD-T2DM rat model, i.e., prediabetic (PD) and 2 wk (D2W), 3 mo (D3M), and 6 mo (D6M) post-onset of diabetes. Plasma leucine, isoleucine, and valine concentrations were elevated only in D6M rats compared with D2W rats (by 28, 29, and 30%, respectively). This was in contrast to decreased plasma concentrations of several other amino acids in D3M and/or D6M relative to LC rats (Ala, Arg, Glu, Gln, Met, Ser, Thr, and Trp). BCAAs were positively correlated with fasting glucose and negatively correlated with plasma insulin, total body weight, total adipose tissue weight, and gastrocnemius muscle weight in the D3M and D6M groups. Multivariate analysis revealed that D3M and D6M UCD-T2DM rats had lower concentrations of amino acids, amino acid derivatives, 1,5-anhydroglucitol, and conduritol-β-opoxide and higher concentrations of uronic acids, pantothenic acids, aconitate, benzoic acid, lactate, and monopalmitin-2-glyceride relative to PD and D2W UCD-T2DM rats. The UCD-T2DM rat does not display elevated plasma BCAA concentrations until 6 mo post-onset of diabetes. With the acknowledgement that this is a rodent model of T2DM, the results indicate that elevated plasma BCAA concentrations are not necessary or sufficient to elicit an insulin resistance or T2DM onset. Copyright © 2016 the American Physiological Society.

  2. Plasma amino acid and metabolite signatures tracking diabetes progression in the UCD-T2DM rat model

    PubMed Central

    Piccolo, Brian D.; Graham, James L.; Stanhope, Kimber L.; Fiehn, Oliver; Havel, Peter J.

    2016-01-01

    Elevations of plasma concentrations of branched-chain amino acids (BCAAs) are observed in human insulin resistance and type 2 diabetes mellitus (T2DM); however, there has been some controversy with respect to the passive or causative nature of the BCAA phenotype. Using untargeted metabolomics, plasma BCAA and other metabolites were assessed in lean control Sprague-Dawley rats (LC) and temporally during diabetes development in the UCD-T2DM rat model, i.e., prediabetic (PD) and 2 wk (D2W), 3 mo (D3M), and 6 mo (D6M) post-onset of diabetes. Plasma leucine, isoleucine, and valine concentrations were elevated only in D6M rats compared with D2W rats (by 28, 29, and 30%, respectively). This was in contrast to decreased plasma concentrations of several other amino acids in D3M and/or D6M relative to LC rats (Ala, Arg, Glu, Gln, Met, Ser, Thr, and Trp). BCAAs were positively correlated with fasting glucose and negatively correlated with plasma insulin, total body weight, total adipose tissue weight, and gastrocnemius muscle weight in the D3M and D6M groups. Multivariate analysis revealed that D3M and D6M UCD-T2DM rats had lower concentrations of amino acids, amino acid derivatives, 1,5-anhydroglucitol, and conduritol-β-opoxide and higher concentrations of uronic acids, pantothenic acids, aconitate, benzoic acid, lactate, and monopalmitin-2-glyceride relative to PD and D2W UCD-T2DM rats. The UCD-T2DM rat does not display elevated plasma BCAA concentrations until 6 mo post-onset of diabetes. With the acknowledgement that this is a rodent model of T2DM, the results indicate that elevated plasma BCAA concentrations are not necessary or sufficient to elicit an insulin resistance or T2DM onset. PMID:27094034

  3. High fat diet induced-obesity facilitates anxiety-like behaviors due to GABAergic impairment within the dorsomedial hypothalamus in rats.

    PubMed

    de Noronha, Sylvana Rendeiro; Campos, Glenda Viggiano; Abreu, Aline Rezende; de Souza, Aline Arlindo; Chianca, Deoclécio A; de Menezes, Rodrigo C

    2017-01-01

    Overweight and obesity are conditions associated with an overall range of clinical health consequences, and they could be involved with the development of neuropsychiatric diseases, such as generalized anxiety disorder (GAD) and panic disorder (PD). A crucial brain nuclei involved on the physiological functions and behavioral responses, especially fear, anxiety and panic, is the dorsomedial hypothalamus (DMH). However, the mechanisms underlying the process whereby the DMH is involved in behavioral changes in obese rats still remains unclear. The current study further investigates the relation between obesity and generalized anxiety, by investigating the GABA A sensitivity to pharmacological manipulation within the DMH in obese rats during anxiety conditions. Male Wistar rats were divided in two experimental groups: the first was fed a control diet (CD; 11% w/w) and second was fed a high fat diet (HFD; 45% w/w). Animals were randomly treated with muscimol, a GABA A agonist and bicuculline methiodide (BMI), a GABA A antagonist. Inhibitory avoidance and escape behaviors were investigated using the Elevated T-Maze (ETM) apparatus. Our results revealed that the obesity facilitated inhibitory avoidance acquisition, suggesting a positive relation between obesity and the development of an anxiety-like state. The injection of muscimol (an anxiolytic drug), within the DMH, increased the inhibitory avoidance latency in obese animals (featuring an anxiogenic state). Besides, muscimol prolonged the escape latency and controlling the possible panic-like behavior in these animals. Injection of BMI into the DMH was ineffective to produce an anxiety-like effect in obese animals opposing the results observed in lean animals. These findings support the hypotheses that obese animals are susceptible to develop anxiety-like behaviors, probably through changes in the GABAergic neurotransmission within the DMH. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Follistatin-like 3 across gestation in preeclampsia and uncomplicated pregnancies among lean and obese women.

    PubMed

    Founds, Sandra A; Ren, Dianxu; Roberts, James M; Jeyabalan, Arun; Powers, Robert W

    2015-04-01

    The purpose of this study was to examine circulating maternal follistatin-like 3 (FSTL-3) by gestational age and obesity in pregnancy and preeclampsia. FSTL-3 was quantified in maternal plasma collected in each trimester from prepregnancy body mass index-determined groups: 15 lean and 24 obese controls and 20 obese women who developed preeclampsia. Repeated measures mixed models and logistic regression were conducted (P ≤ .05). FSTL-3 was not related to maternal adiposity. FSTL-3 changed across pregnancy in lean controls and obese preeclampsia but not in obese controls. FSTL-3 was higher in preeclampsia in the second trimester compared to lean controls and in the third trimester compared to both control groups. Elevated FSTL-3 at mid-gestation was associated with an increased odds of preeclampsia (odds ratio 3.15; 95% confidence interval 1.19-8.36; P = .02). Elevated FSTL-3 concentrations were attributable to preeclampsia and were associated with increased likelihood of later developing preeclampsia, suggesting further study as a biomarker prior to clinically evident disease. © The Author(s) 2014.

  5. Anticoagulant effects of a Cannabis extract in an obese rat model.

    PubMed

    Coetzee, C; Levendal, R-A; van de Venter, M; Frost, C L

    2007-05-01

    Blood coagulation studies were conducted to determine the possible anti-/prothrombotic effect of an organic cannabis extract and the three major cannabinoids, THC, CBD and CBN. The in vitro effect of the cannabis extract on thrombin activity produced an IC50 value of 9.89 mg/ml, compared to THC at 1.79 mg/ml. It was also found that the extract, THC and CBN showed considerable inhibition of thrombin-induced clot formation in vitro with IC50 values of 600, 87 and 83 microg/ml for the extract, THC and CBN respectively. In an in vivo model used to determine clotting times of lean and obese rats treated with a cannabis extract, 50% clotting times were found to be 1.5 and 2 fold greater than their respective control groups, supporting the results obtained in the in vitro model. The study thus shows that Cannabis sativa and the cannabinoids, THC and CBN, display anticoagulant activity and may be useful in the treatment of diseases such as type 2 diabetes in which a hypercoagulable state exists.

  6. Tissue-specific proportions of phylloquinone to menaquinone-4 concentrations differ in response to dietary phylloquinone manipulation in lean male Zucker rats

    USDA-ARS?s Scientific Manuscript database

    Phylloquinone (PK) and menaquinone (MK) are naturally-occurring forms of vitamin K (VK). There is selective tissue distribution and conversion of dietary PK to MK4, providing indirect evidence of unique MK4 functions beyond those established for PK. We determined the effect of dietary PK manipulatio...

  7. Intestinal sweet-sensing pathways and metabolic changes after Roux-en-Y gastric bypass surgery

    PubMed Central

    Bhutta, Hina Y.; Deelman, Tara E.; le Roux, Carel W.; Ashley, Stanley W.; Rhoads, David B.

    2014-01-01

    Studies suggest that improvements in type 2 diabetes (T2D) post- Roux-en-Y gastric bypass (RYGB) surgery are attributable to decreased intestinal glucose absorption capacity mediated by exclusion of sweet taste-sensing pathways in isolated proximal bowel. We probed these pathways in rat models that had undergone RYGB with catheter placement in the biliopancreatic (BP) limb to permit post-RYGB exposure of isolated bowel to sweet taste stimulants. Lean Sprague Dawley (n = 13) and obese Zucker diabetic fatty rats (n = 15) underwent RYGB with BP catheter placement. On postoperative day 11 (POD 11), rats received catheter infusions of saccharin [sweet taste receptor (T1R2/3) agonist] or saline (control). Jejunum was analyzed for changes in glucose transporter/sensor mRNA expression and functional sodium-glucose transporter 1 (SGLT1)-mediated glucose uptake. Saccharin infusion did not alter glucose uptake in the Roux limb of RYGB rats. Intestinal expression of the glucose sensor T1R2 and transporters (SGLT1, glucose transporter 2) was similar in saccharin- vs. saline-infused rats of both strains. However, the abundance of SGLT3b mRNA, a putative glucose sensor, was higher in the common limb vs. BP/Roux limb in both strains of bypassed rats and was significantly decreased in the Roux limb after saccharin infusion. We concluded that failure of BP limb exposure to saccharin to increase Roux limb glucose uptake suggests that isolation of T1R2/3 is unlikely to be involved in metabolic benefits of RYGB, as restimulation failed to reverse changes in intestinal glucose absorption capacity. The altered expression pattern of SGLT3 after RYGB warrants further investigation of its potential involvement in resolution of T2D after RYGB. PMID:24994857

  8. Intestinal sweet-sensing pathways and metabolic changes after Roux-en-Y gastric bypass surgery.

    PubMed

    Bhutta, Hina Y; Deelman, Tara E; le Roux, Carel W; Ashley, Stanley W; Rhoads, David B; Tavakkoli, Ali

    2014-09-01

    Studies suggest that improvements in type 2 diabetes (T2D) post- Roux-en-Y gastric bypass (RYGB) surgery are attributable to decreased intestinal glucose absorption capacity mediated by exclusion of sweet taste-sensing pathways in isolated proximal bowel. We probed these pathways in rat models that had undergone RYGB with catheter placement in the biliopancreatic (BP) limb to permit post-RYGB exposure of isolated bowel to sweet taste stimulants. Lean Sprague Dawley (n = 13) and obese Zucker diabetic fatty rats (n = 15) underwent RYGB with BP catheter placement. On postoperative day 11 (POD 11), rats received catheter infusions of saccharin [sweet taste receptor (T1R2/3) agonist] or saline (control). Jejunum was analyzed for changes in glucose transporter/sensor mRNA expression and functional sodium-glucose transporter 1 (SGLT1)-mediated glucose uptake. Saccharin infusion did not alter glucose uptake in the Roux limb of RYGB rats. Intestinal expression of the glucose sensor T1R2 and transporters (SGLT1, glucose transporter 2) was similar in saccharin- vs. saline-infused rats of both strains. However, the abundance of SGLT3b mRNA, a putative glucose sensor, was higher in the common limb vs. BP/Roux limb in both strains of bypassed rats and was significantly decreased in the Roux limb after saccharin infusion. We concluded that failure of BP limb exposure to saccharin to increase Roux limb glucose uptake suggests that isolation of T1R2/3 is unlikely to be involved in metabolic benefits of RYGB, as restimulation failed to reverse changes in intestinal glucose absorption capacity. The altered expression pattern of SGLT3 after RYGB warrants further investigation of its potential involvement in resolution of T2D after RYGB. Copyright © 2014 the American Physiological Society.

  9. Ezetimibe improves hepatic steatosis in relation to autophagy in obese and diabetic rats.

    PubMed

    Chang, Eugene; Kim, Lisa; Park, Se Eun; Rhee, Eun-Jung; Lee, Won-Young; Oh, Ki-Won; Park, Sung-Woo; Park, Cheol-Young

    2015-07-07

    To investigate whether ezetimibe ameliorates hepatic steatosis and induces autophagy in a rat model of obesity and type 2 diabetes. Male age-matched lean control LETO and obese and diabetic OLETF rats were administered either PBS or ezetimibe (10 mg/kg per day) via stomach gavage for 20 wk. Changes in weight gain and energy intake were regularly monitored. Blood and liver tissue were harvested after overnight fasting at the end of study. Histological assessment was performed in liver tissue. The concentrations of glucose, insulin, triglycerides (TG), free fatty acids (FFA), and total cholesterol (TC) in blood and TG, FFA, and TG in liver tissue were measured. mRNA and protein abundance involved in autophagy was analyzed in the liver. To investigate the effect of ezetimibe on autophagy and reduction in hepatic fat accumulation, human Huh7 hepatocytes were incubated with ezetimibe (10 μmol/L) together with or without palmitic acid (PA, 0.5 mmol/L, 24 h). Transmission electron microscopy (TEM) was employed to demonstrate effect of ezetimibe on autophagy formation. Autophagic flux was measured with bafilomycin A1, an inhibitor of autophagy and following immunoblotting for autophagy-related protein expression. In the OLETF rats that received ezetimibe (10 mg/kg per day), liver weight were significantly decreased by 20% compared to OLETF control rats without changes in food intake and body weight (P < 0.05). Lipid parameters including TG, FFA, and TC in liver tissue of ezetimibe-administrated OLETF rats were dramatically decreased at least by 30% compared to OLETF controls (P < 0.01). The serum glucose, insulin, HOMA-IR, and lipid profiles were also improved by ezetimibe (P < 0.05). In addition, autophagy-related mRNA expression including ATG5, ATG6, and ATG7 and the protein level of microtubule-associated protein light chain 3 (LC3) were significantly increased in the liver in rats that received ezetimibe (P < 0.05). Likewise, for hepatocytes cultured in vitro, ezetimibe treatment significantly decreased PA-induced fat accumulation and increased PA-reduced mRNA and protein expression involved in autophagy (P < 0.05). Ezetimibe-increased autophagosomes was observed in TEM analysis. Immunoblotting analysis of autophagy formation with an inhibitor of autophagy demonstrated that ezetimibe-increased autophagy resulted from increased autophagic flux. The present study demonstrates that ezetimibe-mediated improvement in hepatic steatosis might involve the induction of autophagy.

  10. Total-body creatine pool size and skeletal muscle mass determination by creatine-(methyl-D3) dilution in rats.

    PubMed

    Stimpson, Stephen A; Turner, Scott M; Clifton, Lisa G; Poole, James C; Mohammed, Hussein A; Shearer, Todd W; Waitt, Greg M; Hagerty, Laura L; Remlinger, Katja S; Hellerstein, Marc K; Evans, William J

    2012-06-01

    There is currently no direct, facile method to determine total-body skeletal muscle mass for the diagnosis and treatment of skeletal muscle wasting conditions such as sarcopenia, cachexia, and disuse. We tested in rats the hypothesis that the enrichment of creatinine-(methyl-d(3)) (D(3)-creatinine) in urine after a defined oral tracer dose of D(3)-creatine can be used to determine creatine pool size and skeletal muscle mass. We determined 1) an oral tracer dose of D(3)-creatine that was completely bioavailable with minimal urinary spillage and sufficient enrichment in the body creatine pool for detection of D(3)-creatine in muscle and D(3)-creatinine in urine, and 2) the time to isotopic steady state. We used cross-sectional studies to compare total creatine pool size determined by the D(3)-creatine dilution method to lean body mass determined by independent methods. The tracer dose of D(3)-creatine (<1 mg/rat) was >99% bioavailable with 0.2-1.2% urinary spillage. Isotopic steady state was achieved within 24-48 h. Creatine pool size calculated from urinary D(3)-creatinine enrichment at 72 h significantly increased with muscle accrual in rat growth, significantly decreased with dexamethasone-induced skeletal muscle atrophy, was correlated with lean body mass (r = 0.9590; P < 0.0001), and corresponded to predicted total muscle mass. Total-body creatine pool size and skeletal muscle mass can thus be accurately and precisely determined by an orally delivered dose of D(3)-creatine followed by the measurement of D(3)-creatinine enrichment in a single urine sample and is promising as a noninvasive tool for the clinical determination of skeletal muscle mass.

  11. Antiobesity efficacy of GLP-1 receptor agonist liraglutide is associated with peripheral tissue-specific modulation of lipid metabolic regulators.

    PubMed

    Decara, Juan; Arrabal, Sergio; Beiroa, Daniel; Rivera, Patricia; Vargas, Antonio; Serrano, Antonia; Pavón, Francisco Javier; Ballesteros, Joan; Dieguez, Carlos; Nogueiras, Rubén; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2016-11-12

    To investigate the role of glucagon-like-peptide-1 receptor (GLP-1R) in peripheral lipid metabolism. Both lean and high-fat diet (HFD)-induced obesity (DIO) rats were used to compare the peripheral effects of the subcutaneous and repeated administration of the GLP-1R agonist liraglutide on the expression of key regulators involved in lipid metabolism, β-oxidation and thermogenesis in liver, abdominal muscle, and epididymal white adipose tissue (eWAT). We observed that liraglutide reduced caloric intake, body weight, and plasma levels of triglycerides and VLDL in a diet-independent manner. However, changes in liver fat content and the expression of lipid metabolism regulators were produced in a diet and tissue-dependent manner. In lean rats, liraglutide increased the gene/protein expression of elements involved in lipogenesis (ChREBP, Acaca/ACC, Fasn/FAS, Scd1/SCD1, PPARα/γ), β-oxidation (CPT1b), and thermogenesis (Cox4i1, Ucp1/UCP1) in eWAT and muscle, which suggest an increase in fatty-acid flux and utilization to activate energy expenditure. Regarding DIO rats, the specific reduction of liver lipid content by liraglutide was associated with a decreased expression of main elements involved in lipogenesis (phospho-ACC), peroxisomal β-oxidation (ACOX1), and lipid flux/storage (Pparγ/PPARγ) in liver, which suggest a recovery of lipid homeostasis. Interestingly, the muscle of DIO rats treated with liraglutide showed a decreased expression of PPARγ and the thermogenic factor UCP1. These results help us to better understand the peripheral mechanisms regulating lipid metabolism that underlay the effectiveness of GLP-1 analogues for the treatment of diabetes and obesity. © 2016 BioFactors, 42(6):600-611, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  12. Proteome-wide muscle protein fractional synthesis rates predict muscle mass gain in response to a selective androgen receptor modulator in rats.

    PubMed

    Shankaran, Mahalakshmi; Shearer, Todd W; Stimpson, Stephen A; Turner, Scott M; King, Chelsea; Wong, Po-Yin Anne; Shen, Ying; Turnbull, Philip S; Kramer, Fritz; Clifton, Lisa; Russell, Alan; Hellerstein, Marc K; Evans, William J

    2016-03-15

    Biomarkers of muscle protein synthesis rate could provide early data demonstrating anabolic efficacy for treating muscle-wasting conditions. Androgenic therapies have been shown to increase muscle mass primarily by increasing the rate of muscle protein synthesis. We hypothesized that the synthesis rate of large numbers of individual muscle proteins could serve as early response biomarkers and potentially treatment-specific signaling for predicting the effect of anabolic treatments on muscle mass. Utilizing selective androgen receptor modulator (SARM) treatment in the ovariectomized (OVX) rat, we applied an unbiased, dynamic proteomics approach to measure the fractional synthesis rates (FSR) of 167-201 individual skeletal muscle proteins in triceps, EDL, and soleus. OVX rats treated with a SARM molecule (GSK212A at 0.1, 0.3, or 1 mg/kg) for 10 or 28 days showed significant, dose-related increases in body weight, lean body mass, and individual triceps but not EDL or soleus weights. Thirty-four out of the 94 proteins measured from the triceps of all rats exhibited a significant, dose-related increase in FSR after 10 days of SARM treatment. For several cytoplasmic proteins, including carbonic anhydrase 3, creatine kinase M-type (CK-M), pyruvate kinase, and aldolase-A, a change in 10-day FSR was strongly correlated (r(2) = 0.90-0.99) to the 28-day change in lean body mass and triceps weight gains, suggesting a noninvasive measurement of SARM effects. In summary, FSR of multiple muscle proteins measured by dynamics of moderate- to high-abundance proteins provides early biomarkers of the anabolic response of skeletal muscle to SARM. Copyright © 2016 the American Physiological Society.

  13. Selected contribution: ambient temperature for experiments in rats: a new method for determining the zone of thermal neutrality.

    PubMed

    Romanovsky, Andrej A; Ivanov, Andrei I; Shimansky, Yury P

    2002-06-01

    There is a misbelief that the same animal has the same thermoneutral zone (TNZ) in different experimental setups. In reality, TNZ strongly depends on the physical environment and varies widely across setups. Current methods for determining TNZ require elaborate equipment and can be applied only to a limited set of experimental conditions. A new, broadly applicable approach that rapidly determines whether given conditions are neutral for a given animal is needed. Consistent with the definition of TNZ [the range of ambient temperature (T(a)) at which body core temperature (T(c)) regulation is achieved only by control of sensible heat loss], we propose three criteria of thermoneutrality: 1) the presence of high-magnitude fluctuations in skin temperature (T(sk)) of body parts serving as specialized heat exchangers with the environment (e.g., rat tail), 2) the closeness of T(sk) to the median of its operational range, and 3) a strong negative correlation between T(sk) and T(c). Thermocouple thermometry and liquid crystal thermography were performed in five rat strains at 13 T(a). Under the conditions tested (no bedding or filter tops, no group thermoregulation), the T(a) range of 29.5-30.5 degrees C satisfied all three TNZ criteria in Wistar, BDIX, Long-Evans, and Zucker lean rats; Zucker fatty rats had a slightly lower TNZ (28.0-29.0 degrees C). Skin thermometry or thermography is a definition-based, simple, and inexpensive technique to determine whether experimental or housing conditions are neutral, subneutral, or supraneutral for a given animal.

  14. Leanness and heightened nonresting energy expenditure: role of skeletal muscle activity thermogenesis

    PubMed Central

    Mukherjee, Sromona; Shukla, Charu; Britton, Steven L.; Koch, Lauren G.; Shi, Haifei; Novak, Colleen M.

    2014-01-01

    A high-calorie diet accompanied by low levels of physical activity (PA) accounts for the widespread prevalence of obesity today, and yet some people remain lean even in this obesogenic environment. Here, we investigate the cause for this exception. A key trait that predicts high PA in both humans and laboratory rodents is intrinsic aerobic capacity. Rats artificially selected as high-capacity runners (HCR) are lean and consistently more physically active than their low-capacity runner (LCR) counterparts; this applies to both males and females. Here, we demonstrate that HCR show heightened total energy expenditure (TEE) and hypothesize that this is due to higher nonresting energy expenditure (NREE; includes activity EE). After matching for body weight and lean mass, female HCR consistently had heightened nonresting EE, but not resting EE, compared with female LCR. Because of the dominant role of skeletal muscle in nonresting EE, we examined muscle energy use. We found that lean female HCR had higher muscle heat dissipation during activity, explaining their low economy of activity and high activity EE. This may be due to the amplified skeletal muscle expression levels of proteins involved in EE and reduced expression levels of proteins involved in energy conservation in HCR relative to LCR. This is also associated with an increased sympathetic drive to skeletal muscle in HCR compared with LCR. We find little support for the hypothesis that resting metabolic rate is correlated with maximal aerobic capacity if body size and composition are fully considered; rather, the critical factor appears to be activity thermogenesis. PMID:24398400

  15. Long-term physical exercise and atrial natriuretic peptide in obese Zucker rats.

    PubMed

    Pörsti, Ilkka; Kähönen, Mika; Wu, Xiumin; Arvola, Pertti; Ruskoaho, Heikki

    2002-07-01

    Endurance training increases natriuretic peptide synthesis in the hypertrophied myocardium of spontaneously hypertensive rats. We examined the effects of 22-week-long treadmill exercise on plasma and tissue atrial natriuretic peptide in Zucker rats, a model of genetic obesity and moderate hypertension without clear cardiac hypertrophy. The blood pressures of the animals were measured by the tail-cuff method, and plasma and tissue samples for the peptide determinations were taken at the end of the study. The training increased heart weight to body weight ratio, while atrial natriuretic peptide contents in the right and left atrium, ventricular tissue, and plasma did not change. The exercise prevented the elevation of blood pressure, which was observed in non-exercised obese Zucker rats, and also reduced blood pressure in the lean rats. In conclusion, these results suggest that in the absence of preceding myocardial hypertrophy, the long-term exercise-induced workload is not deleterious to the heart in experimental obesity, since no changes in plasma and tissue atrial natriuretic peptide were detected.

  16. Steatotic livers are susceptible to normothermic ischemia-reperfusion injury from mitochondrial Complex-I dysfunction

    PubMed Central

    Chu, Michael JJ; Premkumar, Rakesh; Hickey, Anthony JR; Jiang, Yannan; Delahunt, Brett; Phillips, Anthony RJ; Bartlett, Adam SJR

    2016-01-01

    AIM: To assess the effects of ischemic preconditioning (IPC, 10-min ischemia/10-min reperfusion) on steatotic liver mitochondrial function after normothermic ischemia-reperfusion injury (IRI). METHODS: Sixty male Sprague-Dawley rats were fed 8-wk with either control chow or high-fat/high-sucrose diet inducing > 60% mixed steatosis. Three groups (n = 10/group) for each dietary state were tested: (1) the IRI group underwent 60 min partial hepatic ischemia and 4 h reperfusion; (2) the IPC group underwent IPC prior to same standard IRI; and (3) sham underwent the same surgery without IRI or IPC. Hepatic mitochondrial function was analyzed by oxygraphs. Mitochondrial Complex-I, Complex-II enzyme activity, serum alanine aminotransferase (ALT), and histological injury were measured. RESULTS: Steatotic-IRI livers had a greater increase in ALT (2476 ± 166 vs 1457 ± 103 IU/L, P < 0.01) and histological injury following IRI compared to the lean liver group. Steatotic-IRI demonstrated lower Complex-I activity at baseline [78.4 ± 2.5 vs 116.4 ± 6.0 nmol/(min.mg protein), P < 0.001] and following IRI [28.0 ± 6.2 vs 104.3 ± 12.6 nmol/(min.mg protein), P < 0.001]. Steatotic-IRI also demonstrated impaired Complex-I function post-IRI compared to the lean liver IRI group. Complex-II activity was unaffected by hepatic steatosis or IRI. Lean liver mitochondrial function was unchanged following IRI. IPC normalized ALT and histological injury in steatotic livers but had no effect on overall steatotic liver mitochondrial function or individual mitochondrial complex enzyme activities. CONCLUSION: Warm IRI impairs steatotic liver Complex-I activity and function. The protective effects of IPC in steatotic livers may not be mediated through mitochondria. PMID:27217699

  17. Rapamycin Normalizes Serum Leptin by Alleviating Obesity and Reducing Leptin Synthesis in Aged Rats.

    PubMed

    Scarpace, Philip J; Matheny, Michael; Strehler, Kevin Y E; Toklu, Hale Zerrin; Kirichenko, Nataliya; Carter, Christy S; Morgan, Drake; Tümer, Nihal

    2016-07-01

    This investigation examines whether a low intermittent dose of rapamycin will avoid the hyperlipidemia and diabetes-like syndrome associated with rapamycin while still decreasing body weight and adiposity in aged obese rats. Furthermore, we examined if the rapamycin-mediated decrease in serum leptin was a reflection of decreased adiposity, diminished leptin synthesis, or both. To these ends, rapamycin (1mg/kg) was administered three times a week to 3 and 24-month old rats. Body weight, food intake, body composition, mTORC1 signaling, markers of metabolism, as well as serum leptin levels and leptin synthesis in adipose tissue were examined and compared to that following a central infusion of rapamycin. Our data suggest that the dosing schedule of rapamycin acts on peripheral targets to inhibit mTORC1 signaling, preferentially reducing adiposity and sparing lean mass in an aged model of obesity resulting in favorable outcomes on blood triglycerides, increasing lean/fat ratio, and normalizing elevated serum leptin with age. The initial mechanism underlying the rapamycin responses appears to have a peripheral action and not central. The peripheral rapamycin responses may communicate an excessive nutrients signal to the hypothalamus that triggers an anorexic response to reduce food consumption. This coupled with potential peripheral mechanism serves to decrease adiposity and synthesis of leptin. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Body composition of adult cystic fibrosis patients and control subjects as determined by densitometry, bioelectrical impedance, total-body electrical conductivity, skinfold measurements, and deuterium oxide dilution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newby, M.J.; Keim, N.L.; Brown, D.L.

    1990-08-01

    This study contrasts body compositions (by six methods) of eight cystic fibrosis (CF) subjects with those of eight control subjects matched for age, height, and sex. CF subjects weighed 84% as much as control subjects. Densitometry and two bioelectrical impedance-analysis methods suggested that reduced CF weights were due to less lean tissue (10.7, 9.5, and 10.4 kg). Total-body electrical conductivity (TOBEC) and skinfold-thickness measurements indicated that CF subjects were leaner than control subjects and had less fat (5.4 and 3.6 kg) and less lean (5.2 and 7 kg) tissue. D2O dilution showed a pattern similar to TOBEC (8.3 kg lessmore » lean, 2.7 kg less fat tissue). Densitometry estimates of fat (mass and percent) were not correlated (r less than 0.74, p greater than 0.05) with any other method for CF subjects but were correlated with all other methods for control subjects. CF subjects contained less fat and lean tissue than did control subjects. Densitometry by underwater weighing is unsuitable for assessing body composition of CF patients.« less

  19. Anti-ghrelin immunoglobulins modulate ghrelin stability and its orexigenic effect in obese mice and humans

    PubMed Central

    Takagi, Kuniko; Legrand, Romain; Asakawa, Akihiro; Amitani, Haruka; François, Marie; Tennoune, Naouel; Coëffier, Moïse; Claeyssens, Sophie; do Rego, Jean-Claude; Déchelotte, Pierre; Inui, Akio; Fetissov, Sergueï O.

    2013-01-01

    Obese individuals often have increased appetite despite normal plasma levels of the main orexigenic hormone ghrelin. Here we show that ghrelin degradation in the plasma is inhibited by ghrelin-reactive IgG immunoglobulins, which display increased binding affinity to ghrelin in obese patients and mice. Co-administration of ghrelin together with IgG from obese individuals, but not with IgG from anorectic or control patients, increases food intake in rats. Similarly, chronic injections of ghrelin together with IgG from ob/ob mice increase food intake, meal frequency and total lean body mass of mice. These data reveal that in both obese humans and mice, IgG with increased affinity for ghrelin enhances ghrelin’s orexigenic effect, which may contribute to increased appetite and overeating. PMID:24158035

  20. Activation of sorbitol pathway in metabolic syndrome and increased susceptibility to cataract in Wistar-Obese rats

    PubMed Central

    Giridharan, Nappan Veettil

    2012-01-01

    Purpose Obesity is a major public health problem worldwide, and of late, epidemiological studies indicate a preponderance of cataracts under obesity conditions. Although cataract is a multifactorial disorder and various biochemical mechanisms have been proposed, the influence of obesity on cataractogenesis has yet to be investigated. In such a scenario, a suitable animal model that develops cataract following the onset of obesity will be a welcome tool for biomedical research. Therefore, we investigated the molecular and biochemical basis for predisposition to cataract in the obese mutant rat models established in our institute because 15%–20% of these rats develop cataracts spontaneously as they reach 12–15 months of age. Methods We analyzed the major biochemical pathways in the normal lenses of different age groups of our obese mutant rat strains, Wistar/Obese (WNIN/Ob) and WNIN/GR-Ob, the former with euglycemia and the latter with an additional impaired glucose tolerance trait. In addition, sorbitol levels were estimated in the cataractous lenses of the obese rats. Results Except for the polyol pathway, all the principal pathways of the lens remained unaltered. Therefore, sorbitol levels were found to be high in the normal eye lenses of obese rats (WNIN/Ob and WNIN/GR-Ob) compared to their lean controls from three months of age onwards. Between WNIN/Ob and WNIN/GR-Ob, the levels of sorbitol were higher in the latter, suggesting a synergistic effect of impaired glucose tolerance along with obesity in the activation of the sorbitol pathway. Either way, an elevated sorbitol pathway seemed to be the predisposing factor responsible for cataract formation in these mutant rats. Conclusions Activation of the sorbitol pathway indeed enhances the risk of cataract development in conditions such as metabolic syndrome. These rat models thus may be valuable tools for investigating obesity-associated cataract and for developing intervention strategies, based on these findings. PMID:22393276

  1. Activation of sorbitol pathway in metabolic syndrome and increased susceptibility to cataract in Wistar-Obese rats.

    PubMed

    Reddy, Paduru Yadagiri; Giridharan, Nappan Veettil; Reddy, Geereddy Bhanuprakash

    2012-01-01

    Obesity is a major public health problem worldwide, and of late, epidemiological studies indicate a preponderance of cataracts under obesity conditions. Although cataract is a multifactorial disorder and various biochemical mechanisms have been proposed, the influence of obesity on cataractogenesis has yet to be investigated. In such a scenario, a suitable animal model that develops cataract following the onset of obesity will be a welcome tool for biomedical research. Therefore, we investigated the molecular and biochemical basis for predisposition to cataract in the obese mutant rat models established in our institute because 15%-20% of these rats develop cataracts spontaneously as they reach 12-15 months of age. We analyzed the major biochemical pathways in the normal lenses of different age groups of our obese mutant rat strains, Wistar/Obese (WNIN/Ob) and WNIN/GR-Ob, the former with euglycemia and the latter with an additional impaired glucose tolerance trait. In addition, sorbitol levels were estimated in the cataractous lenses of the obese rats. Except for the polyol pathway, all the principal pathways of the lens remained unaltered. Therefore, sorbitol levels were found to be high in the normal eye lenses of obese rats (WNIN/Ob and WNIN/GR-Ob) compared to their lean controls from three months of age onwards. Between WNIN/Ob and WNIN/GR-Ob, the levels of sorbitol were higher in the latter, suggesting a synergistic effect of impaired glucose tolerance along with obesity in the activation of the sorbitol pathway. Either way, an elevated sorbitol pathway seemed to be the predisposing factor responsible for cataract formation in these mutant rats. Activation of the sorbitol pathway indeed enhances the risk of cataract development in conditions such as metabolic syndrome. These rat models thus may be valuable tools for investigating obesity-associated cataract and for developing intervention strategies, based on these findings.

  2. The Obesogenic Potency of Various High-Caloric Diet Compositions in Male Rats, and Their Effects on Expression of Liver and Kidney Proteins Involved in Drug Elimination.

    PubMed

    Abdussalam, Ali; Elshenawy, Osama H; Bin Jardan, Yousef A; El-Kadi, Ayman O S; Brocks, Dion R

    2017-06-01

    Obesity is caused by a number of factors including heredity, lack of exercise, and poor diet. Diets rich in fats and carbohydrates are the common culprits leading to obesity. Here we studied the effects of these components on proteins involved in drug disposition. Male rats were given a normal diet (lean controls) or one rich in fats, carbohydrates (as high-fructose corn syrup equivalent) or in combination. After 14 weeks, plasma biochemistry, liver and kidney mRNA and protein for selected cytochrome P450 (CYP) and transporters were determined. Significant increases in body and perinephric fat weight were noted in each of the high-calorie diet-fed groups, with increases being higher in those given high-fat diets. Increases in the protein of CYP3A1/2 and CYP2C11 were seen in liver in high-fat-fed rats. No changes were seen for CYP1A1 at the level of mRNA or protein. For transporters, decreases in expressions of Oct1/2 and Mate1 were seen, with no change in Mdr1. The results showed similarity to earlier assessments of genetically prone rats and suggested that diet-induced obesity has the potential to lead to decreases in the clearance of drugs acting as substrates for CYP 3A, 2C11, and organic cation transport. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  3. Aerobic interval exercise improves parameters of nonalcoholic fatty liver disease (NAFLD) and other alterations of metabolic syndrome in obese Zucker rats.

    PubMed

    Kapravelou, Garyfallia; Martínez, Rosario; Andrade, Ana M; Nebot, Elena; Camiletti-Moirón, Daniel; Aparicio, Virginia A; Lopez-Jurado, Maria; Aranda, Pilar; Arrebola, Francisco; Fernandez-Segura, Eduardo; Bermano, Giovanna; Goua, Marie; Galisteo, Milagros; Porres, Jesus M

    2015-12-01

    Metabolic syndrome (MS) is a group of metabolic alterations that increase the susceptibility to cardiovascular disease and type 2 diabetes. Nonalcoholic fatty liver disease has been described as the liver manifestation of MS. We aimed to test the beneficial effects of an aerobic interval training (AIT) protocol on different biochemical, microscopic, and functional liver alterations related to the MS in the experimental model of obese Zucker rat. Two groups of lean and obese animals (6 weeks old) followed a protocol of AIT (4 min at 65%-80% of maximal oxygen uptake, followed by 3 min at 50%-65% of maximal oxygen uptake for 45-60 min, 5 days/week, 8 weeks of experimental period), whereas 2 control groups remained sedentary. Obese rats had higher food intake and body weight (P < 0.0001) and suffered significant alterations in plasma lipid profile, area under the curve after oral glucose overload (P < 0.0001), liver histology and functionality, and antioxidant status. The AIT protocol reduced the severity of alterations related to glucose and lipid metabolism and increased the liver protein expression of PPARγ, as well as the gene expression of glutathione peroxidase 4 (P < 0.001). The training protocol also showed significant effects on the activity of hepatic antioxidant enzymes, although this action was greatly influenced by rat phenotype. The present data suggest that AIT protocol is a feasible strategy to improve some of the plasma and liver alterations featured by the MS.

  4. [Effect of Tongluo Xingnao effervescent tablets on learning and memory dysfunction in rats with chronic cerebral ischemia].

    PubMed

    Hu, Yong; Ju, Shao-Hua; Zhang, Yin-Jie; Xiong, Min; Xu, Shi-Jun; Ma, Yun-Tong; Zhong, Zhen-Dong

    2014-05-01

    To study the effect of Tongluo Xingnao effervescent tablets on learning and memory capacity and expression of Na(+)-K(+)-ATPase in hippocampus of rats with chronic cerebral ischemia-induced learning and memory dysfunction model. The 2-VO method was used to establish sd rat model learning and memory dysfunction induced by chronic cerebral ischemia. The 50 rats in the successfully established model were randomly divided into the model control group, the Dihydroergotoxine Mesylate tablets group (0.7 mg x kg(-1), Tongluo Xingnao effervescent tablets high dose (7.56 g x kg(-1)), middle dose (3.78 g x kg(-1)) and low dose (1.59 g x kg(-1)) groups and the sham operation group (n = 10) as the control group. The groups were orally given 10 ml x kg(-1) x d(-1) drugs for consecutively 90 days. On the 86th day, Morris water maze was adopted for them. On the 90th day, a leaning and memory capacity test was held. The brain tissues were fixed with 10% formaldehyde and observed for pathomorphism after routine slide preparation and staining. The expression of hippocampal Na(+)-K(+)-ATPase was detected with immunohistochemistry and image quantitative analysis. Compared with the model group, all of Tongluo Xingnao effervescent tablets groups showed significant decrease in the escape latency at the 5th day in the Morris water maze, and notable increase in the frequency of the first quadrant dwell, the frequency passing the escape platform and the frequency entering effective area (p < 0.05). According to the pathomorphological detection, the control group showed a significantly higher pathological score than the sham operation group (p < 0.01), the middle dose group showed a significantly lower pathological score than the model group (p < 0.05). According to the immunohistochemistical detection, the model control group showed a remarkably lower mean OD value of Na(+)-K(+)-ATPase than the sham operation group (p < 0.05), high and middle dose groups showed a significantly higher mean od value than the model control group (p < 0.01). Tongluo Xingnao effervescent tablets can improve the learning and memory capacity, reduce pathological changes of hippocampal tissues of rats with chronic cerebral ischemia-induced learning and memory dysfunction model, and promote the expression of Na(+)-K(+)-ATPase in hippocampus.

  5. Post-weaning voluntary exercise exerts long-term moderation of adiposity in males but not in females in an animal model of early-onset obesity.

    PubMed

    Schroeder, Mariana; Shbiro, Liat; Gelber, Vered; Weller, Aron

    2010-04-01

    Given the alarming increase in childhood, adolescent and adult obesity there is an imperative need for understanding the early factors affecting obesity and for treatments that may help prevent or at least moderate it. Exercise is frequently considered as an effective treatment for obesity however the empirical literature includes many conflicting findings. In the present study, we used the OLETF rat model of early-onset hyperphagia-induced obesity to examine the influence of early exercise on peripheral adiposity-related parameters in both males and females. Rats were provided voluntary access to running wheels from postnatal day (PND) 22 until PND45. We examined fat pad weight (brown, retroperitoneal, inguinal and epididymal); inguinal adipocyte size and number; and leptin, adiponectin, corticosterone and creatinine levels. We also examined body weight, feeding efficiency and spontaneous intake. Early voluntary exercise reduced intake, adiposity and leptin in the OLETF males following a sharp reduction in adipocyte size despite a significant increase in fat cell number. Exercising males from the lean LETO control strain presented stable intake, but reduced body fat, feeding efficiency and increased plasma creatinine, suggesting an increment in muscle mass. OLETF females showed reduced feeding efficiency and liver fat, and a significant increase in brown fat. Exercising LETO control females increased intake, body weight and creatinine, but no changes in body fat. Overall, OLETF rats presented higher adiponectin levels than controls in both basal and post-exercise conditions. The results suggest an effective early time frame, when OLETF males can be successfully "re-programmed" through voluntary exercise; in OLETF females the effect is much more moderate. Findings expose sex-dependent peripheral mechanisms in coping with energy challenges. Copyright 2010 Elsevier Inc. All rights reserved.

  6. The combination of Artemisia princeps Pamp, Leonurus japonicas Houtt, and Gardenia jasminoides Ellis fruit attenuates the exacerbation of energy, lipid, and glucose by increasing hepatic PGC-1α expression in estrogen-deficient rats.

    PubMed

    Yang, Hye Jeong; Kim, Min Jung; Kwon, Dae Young; Moon, Bo Reum; Kim, A Reum; Kang, Suna; Park, Sunmin

    2016-05-23

    Artemisia princeps Pamp (APP), Leonurus japonicas Houtt (LJH), and Gardenia jasminoides Ellis fruit (GJE) have been traditionally used in East Asia to treat women's diseases related to reproductive system. They may attenuate the deterioration of energy, lipid, glucose and bone metabolism by estrogen deficiency. The present study explored the combination of APP, LJH, and GJE to overcome the symptoms of estrogen deficiency and the mechanism was explored. Ovariectomized (OVX) rats were divided into five groups and fed high-fat diets supplemented with 2 % dextrin (control), 2 % APP, 2 % APP + LJH (15:5), APP + LJH + GJE (10:5:5) or 17β-estradiol (30 μg/kg bw/day) for 8 weeks. After 8 weeks of their consumption, energy, lipid, glucose and bone metabolisms were investigated and hepatic insulin signaling and fatty acid metabolism were determined. APP + LJH + GJE, but not APP itself, improved energy metabolism and attenuated a decrease in energy expenditure by the same amount as estrogen. Moreover, APP + LJH + GJE reduced visceral fat and intramuscular fat and increased lean body mass measured by DEXA by as much as the positive-control. APP itself suppressed increased LDL cholesterol and triglyceride levels in OVX rats and APP + LJH + GJE alleviated dyslipidemia in OVX rats. Overnight-fasted serum insulin levels and HOMA-IR were reduced in the descending order of APP, APP + LJH, APP + LJH + GJE, positive-control in OVX rats. APP and APP + LJH elevated insulin secretion in the 1st part of OGTT to decrease serum glucose levels while APP + LJH + GJE reduced serum glucose levels without increasing serum insulin levels during OGTT. APP + LJH + GJE decreased insulin resistance during ITT in OVX rats more than the positive-control. The APP + LJH + GJE group exhibited increased hepatic peroxisomal proliferator-activated receptor-γ coactivator-1α expression, which increased the number of genes involved in fatty acid oxidation and decreased fatty acid synthesis. Hepatic insulin signaling (pAkt and pGSK-1β) was also potentiated to reduce phosphoenolpyruvate carboxykinase proteins. The combination of APP + LJH + GJE attenuated various menopausal symptoms in OVX rats. Thus, it may have potential as a therapeutic agent for the treatment of postmenopausal symptoms.

  7. Insights into relationships between body mass, composition and bone: findings in elite rugby players.

    PubMed

    Hind, Karen; Gannon, Lisa; Brightmore, Amy; Beck, Belinda

    2015-01-01

    Recent reports indicate that bone strength is not proportional to body weight in obese populations. Elite rugby players have a similar body mass index (BMI) to obese individuals but differ markedly with low body fat, high lean mass, and frequent skeletal exposure to loading through weight-bearing exercise. The purpose of this study was to determine relationships between body weight, composition, and bone strength in male rugby players characterized by high BMI and high lean mass. Fifty-two elite male rugby players and 32 nonathletic, age-matched controls differing in BMI (30.2 ± 3.2 vs 24.1 ± 2.1 kg/m²; p = 0.02) received 1 total body and one total hip dual-energy X-ray absorptiometry scan. Hip structural analysis of the proximal femur was used to determine bone mineral density (BMD) and cross-sectional bone geometry. Multiple linear regression was computed to identify independent variables associated with total hip and femoral neck BMD and hip structural analysis-derived bone geometry parameters. Analysis of covariance was used to explore differences between groups. Further comparisons between groups were performed after normalizing parameters to body weight and to lean mass. There was a trend for a positive fat-bone relationship in rugby players, and a negative relationship in controls, although neither reached statistical significance. Correlations with lean mass were stronger for bone geometry (r(2): 0.408-0.520) than for BMD (r(2): 0.267-0.293). Relative to body weight, BMD was 6.7% lower in rugby players than controls (p < 0.05). Rugby players were heavier than controls, with greater lean mass and BMD (p < 0.01). Relative to lean mass, BMD was 10%-14.3% lower in rugby players (p < 0.001). All bone geometry measures except cross-sectional area were proportional to body weight and lean mass. To conclude, BMD in elite rugby players was reduced in proportion to body weight and lean mass. However, their superior bone geometry suggests that overall bone strength may be adequate for loading demands. Fat-bone interactions in athletes engaged in high-impact sports require further exploration. Copyright © 2015. Published by Elsevier Inc.

  8. TRUNK LEAN DURING A SINGLE-LEG SQUAT IS ASSOCIATED WITH TRUNK LEAN DURING PITCHING.

    PubMed

    Plummer, Hillary A; Oliver, Gretchen D; Powers, Christopher M; Michener, Lori A

    2018-02-01

    Impaired trunk motion during pitching may be a risk factor for upper extremity injuries. Specifically, increased forces about the shoulder and elbow have been observed in pitchers with excessive contralateral trunk lean during pitching. Because of the difficulty in identifying abnormal trunk motions during a high-speed task such as pitching, a clinical screening test is needed to identify pitchers who have impaired trunk motion during pitching. The purpose of this study was to determine the relationship between the degree of lateral trunk lean during the single-leg squat and amount of trunk lean during pitching and if trunk lean during pitching can be predicted from lean during the single-leg squat. Controlled Laboratory Study; Cross-sectional. Seventy-three young baseball pitchers (11.4 ± 1.7 years; 156.3 ± 11.9 cm; 50.5 ± 8.8 kg) participated. An electromagnetic tracking system was used to obtain trunk kinematic data during a single-leg squat task (lead leg) and at maximum shoulder external rotation of a fastball pitch. Pearson correlation coefficients for trunk lean during the single-leg squat and pitching were calculated. A linear regression analysis was performed to determine if trunk lean during pitching can be predicted from lean during the single-leg squat. There was a positive correlation between trunk lean during the single-leg squat and trunk lean during pitching (r = 0.53; p<0.001). Lateral trunk lean during the single-leg squat predicted the amount of lateral trunk lean during pitching (R 2 = 0.28; p < 0.001). A moderate positive correlation was observed between trunk lean during an SLS and pitching. Trunk lean during the single-leg squat explained 28% of the variance in trunk lean during pitching. Diagnosis, level 3.

  9. TRUNK LEAN DURING A SINGLE-LEG SQUAT IS ASSOCIATED WITH TRUNK LEAN DURING PITCHING

    PubMed Central

    Oliver, Gretchen D.; Powers, Christopher M.; Michener, Lori A.

    2018-01-01

    Background Impaired trunk motion during pitching may be a risk factor for upper extremity injuries. Specifically, increased forces about the shoulder and elbow have been observed in pitchers with excessive contralateral trunk lean during pitching. Because of the difficulty in identifying abnormal trunk motions during a high-speed task such as pitching, a clinical screening test is needed to identify pitchers who have impaired trunk motion during pitching. Hypothesis/Purpose The purpose of this study was to determine the relationship between the degree of lateral trunk lean during the single-leg squat and amount of trunk lean during pitching and if trunk lean during pitching can be predicted from lean during the single-leg squat. Study Design Controlled Laboratory Study; Cross-sectional. Methods Seventy-three young baseball pitchers (11.4 ± 1.7 years; 156.3 ± 11.9 cm; 50.5 ± 8.8 kg) participated. An electromagnetic tracking system was used to obtain trunk kinematic data during a single-leg squat task (lead leg) and at maximum shoulder external rotation of a fastball pitch. Pearson correlation coefficients for trunk lean during the single-leg squat and pitching were calculated. A linear regression analysis was performed to determine if trunk lean during pitching can be predicted from lean during the single-leg squat. Results There was a positive correlation between trunk lean during the single-leg squat and trunk lean during pitching (r = 0.53; p<0.001). Lateral trunk lean during the single-leg squat predicted the amount of lateral trunk lean during pitching (R2 = 0.28; p < 0.001). Conclusions A moderate positive correlation was observed between trunk lean during an SLS and pitching. Trunk lean during the single-leg squat explained 28% of the variance in trunk lean during pitching. Level of Evidence Diagnosis, level 3 PMID:29484242

  10. Escape from rich-to-lean transitions: Stimulus change and timeout.

    PubMed

    Retzlaff, Billie J; Parthum, Elizabeth T P; Pitts, Raymond C; Hughes, Christine E

    2017-01-01

    Extended pausing during discriminable transitions from rich-to-lean conditions can be viewed as escape (i.e., rich-to-lean transitions function aversively). In the current experiments, pigeons' key pecking was maintained by a multiple fixed-ratio fixed-ratio schedule of rich or lean reinforcers. Pigeons then were provided with another, explicit, mechanism of escape by changing the stimulus from the transition-specific stimulus used in the multiple schedule to a mixed-schedule stimulus (Experiment 1) or by producing a period of timeout in which the stimulus was turned off and the schedule was suspended (Experiment 2). Overall, escape was under joint control of past and upcoming reinforcer magnitudes, such that responses on the escape key were most likely during rich-to-lean transitions, and second-most likely during lean-to-lean transitions. Even though pigeons pecked the escape key, they paused before doing so, and the latency to begin the fixed ratio (i.e., the pause) remained extended during rich-to-lean transitions. These findings suggest that although the stimulus associated with rich-to-lean transitions functioned aversively, pausing is more than simply escape responding from the stimulus. © 2017 Society for the Experimental Analysis of Behavior.

  11. The Formal Representation of Administrative and Operational Relationships within Defense Organizational Constructs

    DTIC Science & Technology

    2006-06-01

    of the 10th International Command and Control Research and Technology Symposium; Ritz - Carlton Hotel , McLean, VA; 13-16 June 2005. See: http...International Command and Control Research and Technology Symposium; Ritz - Carlton Hotel , McLean, VA; 13-16 June 2005. http://www.dodccrp.org/events/2005

  12. Contribution of regional brain melanocortin receptor subtypes to elevated activity energy expenditure in lean, active rats

    PubMed Central

    Shukla, Charu; Koch, Lauren G.; Britton, Steven L.; Cai, Minying; Hruby, Victor J.; Bednarek, Maria; Novak, Colleen M.

    2015-01-01

    Physical activity and non-exercise activity thermogenesis (NEAT) are crucial factors accounting for individual differences in body weight, interacting with genetic predisposition. In the brain, a number of neuroendocrine intermediates regulate food intake and energy expenditure (EE); this includes the brain melanocortin (MC) system, consisting of melanocortin peptides as well as their receptors (MCR). MC3R and MC4R have emerged as critical modulators of EE and food intake. To determine how variance in MC signaling may underlie individual differences in physical activity levels, we examined behavioral response to MC receptor agonists and antagonists in rats that show high and low levels of physical activity and NEAT, that is, high- and low-capacity runners (HCR, LCR), developed by artificial selection for differential intrinsic aerobic running capacity. Focusing on the hypothalamus, we identified brain region-specific elevations in expression of MCR 3, 4, and also MC5R, in the highly active, lean HCR relative to the less active and obesity-prone LCR. Further, the differences in activity and associated EE as a result of MCR activation or suppression using specific agonists and antagonists were similarly region-specific and directly corresponded to the differential MCR expression patterns. The agonists and antagonists investigated here did not significantly impact food intake at the doses used, suggesting that the differential pattern of receptor expression may by more meaningful to physical activity than to other aspects of energy balance regulation. Thus, MCR-mediated physical activity may be a key neural mechanism in distinguishing the lean phenotype and a target for enhancing physical activity and NEAT. PMID:26404873

  13. Risk Factors for the Loss of Lean Body Mass After Gastrectomy for Gastric Cancer.

    PubMed

    Aoyama, Toru; Sato, Tsutomu; Segami, Kenki; Maezawa, Yukio; Kano, Kazuki; Kawabe, Taiichi; Fujikawa, Hirohito; Hayashi, Tsutomu; Yamada, Takanobu; Tsuchida, Kazuhito; Yukawa, Norio; Oshima, Takashi; Rino, Yasushi; Masuda, Munetaka; Ogata, Takashi; Cho, Haruhiko; Yoshikawa, Takaki

    2016-06-01

    Lean body mass loss after surgery, which decreases the compliance of adjuvant chemotherapy, is frequently observed in gastric cancer patients who undergo gastrectomy for gastric cancer. However, the risk factors for loss of lean body mass remain unclear. The current study retrospectively examined the patients who underwent curative gastrectomy for gastric cancer between June 2010 and March 2014 at Kanagawa Cancer Center. All the patients received perioperative care for enhanced recovery after surgery. The percentage of lean body mass loss was calculated by the percentile of lean body mass 1 month after surgery to preoperative lean body mass. Severe lean body mass loss was defined as a lean body mass loss greater than 5 %. Risk factors for severe lean body mass loss were determined by both uni- and multivariate logistic regression analyses. This study examined 485 patients. The median loss of lean body mass was 4.7 %. A lean body mass loss of 5 % or more occurred for 225 patients (46.4 %). Both uni- and multivariate logistic analyses demonstrated that the significant independent risk factors for severe lean body mass loss were surgical complications with infection or fasting (odds ratio [OR] 3.576; p = 0.001), total gastrectomy (OR 2.522; p = 0.0001), and gender (OR 1.928; p = 0.001). Nutritional intervention or control of surgical invasion should be tested in future clinical trials for gastric cancer patients with these risk factors to maintain lean body mass after gastrectomy.

  14. Righting response of artificially inclined maritime pine (Pinus pinaster) saplings to wind loading.

    PubMed

    Berthier, Stephane; Stokes, Alexia

    2006-01-01

    To determine if trees respond to dynamic and static loading in the same manner, 2-year-old maritime pine (Pinus pinaster Ait.) trees were subjected to different types of mechanical loading in the field. One block of trees (the control) were kept in pots and planted in the field at an angle of 0 or 45 degrees to the vertical. A similar block of leaning potted trees was planted nearby and subjected to frequent, unilateral wind loading for a period of 1 s every 2 min. Half the leaning trees were oriented toward the direction of wind loading and half were oriented along the axis of wind loading. The stem profile was measured three times during the growing season to quantify the rate of stem straightening. Compression wood formation and stem shape were measured in all plants. No differences in mean height or diameter were observed between blocks and all leaning trees straightened, but not at the same rate. Although no difference in the rate of apical straightening occurred between control and wind-treated trees, the righting response of the basal part of the stem of leaning trees subjected to wind was four times greater than that of leaning trees without wind. No differences in the righting response were observed between leaning trees growing toward and trees growing away from the source of wind. No significant differences in compression wood formation were found between control trees and wind-treated trees, indicating that other factors must determine the reorientation rate of leaning trees. Results are discussed with reference to the quality of compression wood in conifers and the mechanotransductive pathway in plants.

  15. The promise of Lean in health care.

    PubMed

    Toussaint, John S; Berry, Leonard L

    2013-01-01

    An urgent need in American health care is improving quality and efficiency while controlling costs. One promising management approach implemented by some leading health care institutions is Lean, a quality improvement philosophy and set of principles originated by the Toyota Motor Company. Health care cases reveal that Lean is as applicable in complex knowledge work as it is in assembly-line manufacturing. When well executed, Lean transforms how an organization works and creates an insatiable quest for improvement. In this article, we define Lean and present 6 principles that constitute the essential dynamic of Lean management: attitude of continuous improvement, value creation, unity of purpose, respect for front-line workers, visual tracking, and flexible regimentation. Health care case studies illustrate each principle. The goal of this article is to provide a template for health care leaders to use in considering the implementation of the Lean management system or in assessing the current state of implementation in their organizations. Copyright © 2013 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  16. Exaggerated haemodynamic and neural responses to involuntary contractions induced by whole-body vibration in normotensive obese versus lean women.

    PubMed

    Dipla, Konstantina; Kousoula, Dimitra; Zafeiridis, Andreas; Karatrantou, Konstantina; Nikolaidis, Michalis G; Kyparos, Antonios; Gerodimos, Vassilis; Vrabas, Ioannis S

    2016-06-01

    What is the central question of this study? In obesity, the exaggerated blood pressure response to voluntary exercise is linked to hypertension, yet the mechanisms are not fully elucidated. We examined whether involuntary contractions elicit greater haemodynamic responses and altered neural control of blood pressure in normotensive obese versus lean women. What is the main finding and its importance? During involuntary contractions induced by whole-body vibration, there were augmented blood pressure and spontaneous baroreflex responses in obese compared with lean women. This finding is suggestive of an overactive mechanoreflex in the exercise-induced hypertensive response in obesity. Passive contractions did not elicit differential heart rate responses in obese compared with lean women, implying other mechanisms for the blunted heart rate response reported during voluntary exercise in obesity. In obesity, the exaggerated blood pressure (BP) response to exercise is linked to hypertension, yet the mechanisms are not fully elucidated. In this study, we examined whether involuntary mechanical oscillations, induced by whole-body vibration (WBV), elicit greater haemodynamic responses and altered neural control of BP in obese versus lean women. Twenty-two normotensive, premenopausal women (12 lean and 10 obese) randomly underwent a passive WBV (25 Hz) and a control protocol (similar posture without WVB). Beat-by-beat BP, heart rate, stroke volume, systemic vascular resistance, cardiac output, parasympathetic output (evaluated by heart rate variability) and spontaneous baroreceptor sensitivity (sBRS) were assessed. We found that during WBV, obese women exhibited an augmented systolic BP response compared with lean women that was correlated with body fat percentage (r = 0.77; P < 0.05). The exaggerated BP rise was driven mainly by the greater increase in cardiac output index in obese versus lean women, associated with a greater stroke volume index in obese women. Involuntary contractions did not elicit a differential magnitude of responses in heart rate, heart rate variability indices and systemic vascular resistance in obese versus lean women; however, they did result in greater sBRS responses (P < 0.05) in obese women. In conclusion, involuntary contractions elicited an augmented BP and sBRS response in normotensive obese versus lean women. The greater elevations in circulatory haemodynamics in obese women are suggestive of an overactive mechanoreflex in the exercise-induced hypertensive response in obesity. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.

  17. Ammonia Generation and Utilization in a Passive SCR (TWC+SCR) System on Lean Gasoline Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prikhodko, Vitaly Y; Parks, II, James E; Pihl, Josh A

    Lean gasoline engines offer greater fuel economy than the common stoichiometric gasoline engine, but the current three-way catalyst (TWC) on stoichiometric engines is unable to control nitrogen oxide (NOX) emissions in the oxygen-rich exhaust. Thus, lean NOX emission control is required to meet existing Tier 2 and upcoming Tier 3 emission regulations set by the U.S. Environmental Protection Agency (EPA). While urea-based selective catalytic reduction (SCR) has proven effective in controlling NOX from diesel engines, the urea storage and delivery components can add significant size and cost. As such, onboard NH3 production via a passive SCR approach is of interest.more » In a passive SCR system, NH3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean operation, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst. In this work, a passive SCR system was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine to assess NH3 generation over a Pd-only TWC and utilization over a Cu-based SCR catalyst. System NOX reduction efficiency and fuel efficiency improvement compared to stoichiometric engine operation were measured. A feedback control strategy based on cumulative NH3 produced by the TWC during rich operation and NOX emissions during lean operation was implemented on the engine to control lean/rich cycle timing. 15% excess NH3 production over a 1:1 NH3:NOX ratio was required (via longer rich cycle timing) to achieve 99.7% NOX conversion at an SCR average inlet temperature of 350 C. Increasing NH3 generation further resulted in even higher NOX conversion; however, tailpipe NH3 emissions resulted. At higher temperatures, NH3 oxidation becomes important and limits NH3 availability for NOX reduction. At the engine conditions studied here, greater than 99% NOX conversion was achieved with passive SCR while delivering fuel efficiency benefits ranging between 6-11% compared with stoichiometric operation.« less

  18. [Physical exercise is a help for lean women with polycystic ovary syndrome].

    PubMed

    Bisgaard, Helene; Dela, Flemming

    2017-06-05

    Polycystic ovary syndrome (PCOS) affects 12-21% of women in the childbearing age and is the most common cause of hyperandrogenaemia and anovulatory infertility. There is an increase in insulin resistance in both overweight and lean women with PCOS. Exercise treatment is mandatory among the overweight women due to sufficient evidence that it can improve the signs and symptoms of PCOS. This has not been fully investigated among the lean. However, new randomized controlled trials show that structured physical exercise can also improve insulin sensitivity, hyperandrogenaemia and menstrual frequency in lean women with PCOS.

  19. Effects of Partial Substitution of Lean Meat with Pork Backfat or Canola Oil on Sensory Properties of Korean Traditional Meat Patties (Tteokgalbi)

    PubMed Central

    Imm, Bue-Young; Kim, Chung Hwan; Imm, Jee-Young

    2014-01-01

    Korean traditional meat patties (Tteokgalbi) were prepared by replacing part of the lean meat content with either pork backfat or canola oil and the effect of substitution on sensory quality of the meat patties was investigated. Compared to the control patties, pork-loin Tteokgalbi with 10% pork backfat or 10% canola oil had significantly higher overall acceptability and higher perceived intensity of meat flavor, sweetness, umami, and oiliness. The pork-loin patties containing 10% fat also had lower perceived firmness, toughness, and chalkiness of than the control Tteokgalbi. The chicken breast Tteokgalbi with 10% canola oil had the lowest perceived firmness and chalkiness (control > pork backfat > canola oil). No significant difference was noted in the overall acceptability of chicken breast patties with 10% pork backfat and those with 10% canola oil. These results indicate that substituting 10% of lean meat of Tteokgalbi with fat improved the sensory acceptability of the product for Korean customers regardless of the lean meat and/or fat source used in the patties. Lean meat patties formulated with a limited amount of vegetable oil such as canola oil can be a healthy option for Korean consumers by providing desirable fatty acid profiles without sacrificing sensory quality of the product. PMID:26761287

  20. Effects of Partial Substitution of Lean Meat with Pork Backfat or Canola Oil on Sensory Properties of Korean Traditional Meat Patties (Tteokgalbi).

    PubMed

    Imm, Bue-Young; Kim, Chung Hwan; Imm, Jee-Young

    2014-01-01

    Korean traditional meat patties (Tteokgalbi) were prepared by replacing part of the lean meat content with either pork backfat or canola oil and the effect of substitution on sensory quality of the meat patties was investigated. Compared to the control patties, pork-loin Tteokgalbi with 10% pork backfat or 10% canola oil had significantly higher overall acceptability and higher perceived intensity of meat flavor, sweetness, umami, and oiliness. The pork-loin patties containing 10% fat also had lower perceived firmness, toughness, and chalkiness of than the control Tteokgalbi. The chicken breast Tteokgalbi with 10% canola oil had the lowest perceived firmness and chalkiness (control > pork backfat > canola oil). No significant difference was noted in the overall acceptability of chicken breast patties with 10% pork backfat and those with 10% canola oil. These results indicate that substituting 10% of lean meat of Tteokgalbi with fat improved the sensory acceptability of the product for Korean customers regardless of the lean meat and/or fat source used in the patties. Lean meat patties formulated with a limited amount of vegetable oil such as canola oil can be a healthy option for Korean consumers by providing desirable fatty acid profiles without sacrificing sensory quality of the product.

  1. Effects of differential rates of alternative reinforcement on resurgence of human behavior.

    PubMed

    Smith, Brooke M; Smith, Gregory S; Shahan, Timothy A; Madden, Gregory J; Twohig, Michael P

    2017-01-01

    Despite the success of exposure-based psychotherapies in anxiety treatment, relapse remains problematic. Resurgence, the return of previously eliminated behavior following the elimination of an alternative source of reinforcement, is a promising model of operant relapse. Nonhuman resurgence research has shown that higher rates of alternative reinforcement result in faster, more comprehensive suppression of target behavior, but also in greater resurgence when alternative reinforcement is eliminated. This study investigated rich and lean rates of alternative reinforcement on response suppression and resurgence in typically developing humans. In Phase 1, three groups (Rich, n = 18; Lean, n = 18; Control, n = 10) acquired the target response. In Phase 2, target responding was extinguished and alternative reinforcement delivered on RI 1 s, RI 3 s, and extinction schedules, respectively. Resurgence was assessed during Phase 3 under extinction conditions for all groups. Target responding was suppressed most thoroughly in Rich and partially in Lean. Target responding resurged in the Rich and Lean groups, but not in the Control group. Between groups, resurgence was more pronounced in the Rich group than the Lean and Control groups. Clinical implications of these findings, including care on the part of clinicians when identifying alternative sources of reinforcement, are discussed. © 2017 Society for the Experimental Analysis of Behavior.

  2. Hydroxypropyl methylcellulose, a viscous soluble fiber, reduces insulin resistance and decreases fatty liver in Zucker Diabetic Fatty rats.

    PubMed

    Brockman, David A; Chen, Xiaoli; Gallaher, Daniel D

    2012-11-12

    Diets producing a high glycemic response result in exaggerated insulin secretion which induces hepatic lipogenesis, contributing to development of insulin resistance and fatty liver. Viscous dietary fibers blunt the postprandial rise in blood glucose, however their effect on type 2 diabetes and obesity are not entirely known. This study examined the effect of chronic consumption of the viscous, non-fermentable dietary fiber, hydroxypropyl methylcellulose (HPMC), on glucose control, insulin resistance and liver lipids in an obese diabetic rat model. Three groups of Zucker Diabetic Fatty (ZDF) rats were fed diets containing either 5% non-viscous cellulose (control), low viscosity HPMC (LV-HPMC) or high viscosity HPMC (HV- HPMC) for six weeks. Zucker lean littermates consuming cellulose served as a negative control. Markers of glucose control, including oral glucose tolerance test, glycated hemoglobin and urinary glucose, were measured as well as adiposity and the accumulation of liver lipids. The HPMC diets increased the viscosity of the small intestinal contents and reduced the postprandial rise in blood glucose. The food efficiency ratio was greater with HPMC feeding compared to the obese control and urinary excretion of glucose and ketone bodies was reduced. The two HPMC groups had lower glycated hemoglobin and kidney weights and a reduced area under the curve during a glucose tolerance test, indicating improved glucose control. Epididymal fat pad weight as percent of body weight was reduced in the HV-HPMC group compared to the obese control group. The HV-HPMC group also had lower concentrations of liver lipid and cholesterol and reduced liver weight. However, HV-HPMC feeding did not affect hepatic gene expression of SREBP-1c or FAS. Muscle concentration of acylcarnitines, a lipid intermediate in fatty acid β-oxidation, was not different between the HPMC groups and obese control, suggesting no change in muscle fatty acid oxidation by HPMC. Consumption of the viscous non-fermentable fiber HPMC decreased diabetic wasting, improved glucose control and reduced insulin resistance and fatty liver in a model of obesity with diabetes.

  3. High intake of fatty fish, but not of lean fish, affects serum concentrations of TAG and HDL-cholesterol in healthy, normal-weight adults: a randomised trial.

    PubMed

    Hagen, Ingrid V; Helland, Anita; Bratlie, Marianne; Brokstad, Karl A; Rosenlund, Grethe; Sveier, Harald; Mellgren, Gunnar; Gudbrandsen, Oddrun A

    2016-08-01

    The aim of the present study was to examine whether high intake of lean or fatty fish (cod and farmed salmon, respectively) by healthy, normal-weight adults would affect risk factors of type 2 diabetes and CVD when compared with lean meat (chicken). More knowledge is needed concerning the potential health effects of high fish intake (>300 g/week) in normal-weight adults. In this randomised clinical trial, thirty-eight young, healthy, normal-weight participants consumed 750 g/week of lean or fatty fish or lean meat (as control) for 4 weeks at dinner according to provided recipes to ensure similar ways of preparations and choices of side dishes between the groups. Energy and macronutrient intakes at baseline and end point were similar in all groups, and there were no changes in energy and macronutrient intakes within any of the groups during the course of the study. High intake of fatty fish, but not lean fish, significantly reduced TAG and increased HDL-cholesterol concentrations in fasting serum when compared with lean meat intake. When compared with lean fish intake, fatty fish intake increased serum HDL-cholesterol. No differences were observed between lean fish, fatty fish and lean meat groups regarding fasting and postprandial glucose regulation. These findings suggest that high intake of fatty fish, but not of lean fish, could beneficially affect serum concentrations of TAG and HDL-cholesterol, which are CVD risk factors, in healthy, normal-weight adults, when compared with high intake of lean meat.

  4. Cyclosporine A administered during reperfusion fails to restore cardioprotection in prediabetic Zucker obese rats in vivo.

    PubMed

    Huhn, R; Heinen, A; Hollmann, M W; Schlack, W; Preckel, B; Weber, N C

    2010-12-01

    Hyperglycaemia blocks sevoflurane-induced postconditioning, and cardioprotection in hyperglycaemic myocardium can be restored by inhibition of the mitochondrial permeability transition pore (mPTP). We investigated whether sevoflurane-induced postconditioning is also blocked in the prediabetic heart and if so, whether cardioprotection could be restored by inhibiting mPTP. Zucker lean (ZL) and Zucker obese (ZO) rats were assigned to one of seven groups. Animals underwent 25 min of ischaemia and 120 min of reperfusion. Control (ZL-/ZO Con) animals were not further treated. postconditioning groups (ZL-/ZO Sevo-post) received sevoflurane for 5 min starting 1min prior to the onset of reperfusion. The mPTP inhibitor cyclosporine A (CsA) was administered intravenously in a concentration of 5 (ZO CsA and ZO CsA+Sevo-post) or 10 mg/kg (ZO CsA10+Sevo-post) 5 min before the onset of reperfusion. At the end of reperfusion, infarct sizes were measured by TTC staining. Blood samples were collected to measure plasma levels of insulin, cholesterol and triglycerides. Sevoflurane postconditioning reduced infarct size in ZL rats to 35±12% (p<0.05 vs. ZL Con: 60±6%). In ZO rats sevoflurane postconditioning was abolished (ZO Sevo-post: 59±12%, n.s. vs. ZO Con: 58±6%). 5 mg and 10 mg CsA could not restore cardioprotection (ZO CsA+Sevo-post: 59±7%, ZO CsA10+Sevo-post: 57±14%; n.s. vs. ZO Con). In ZO rats insulin, cholesterol and triglyceride levels were significant higher than in ZL rats (all p<0.05). Inhibition of mPTP with CsA failed to restore cardioprotection in the prediabetic but normoglycaemic heart of Zucker obese rats in vivo. Copyright © 2009 Elsevier B.V. All rights reserved.

  5. Suppressed Fat Appetite after Roux-en-Y Gastric Bypass Surgery Associates with Reduced Brain μ-opioid Receptor Availability in Diet-Induced Obese Male Rats.

    PubMed

    Hankir, Mohammed K; Patt, Marianne; Patt, Jörg T W; Becker, Georg A; Rullmann, Michael; Kranz, Mathias; Deuther-Conrad, Winnie; Schischke, Kristin; Seyfried, Florian; Brust, Peter; Hesse, Swen; Sabri, Osama; Krügel, Ute; Fenske, Wiebke K

    2016-01-01

    Brain μ-opioid receptors (MORs) stimulate high-fat (HF) feeding and have been implicated in the distinct long term outcomes on body weight of bariatric surgery and dieting. Whether alterations in fat appetite specifically following these disparate weight loss interventions relate to changes in brain MOR signaling is unknown. To address this issue, diet-induced obese male rats underwent either Roux-en-Y gastric bypass (RYGB) or sham surgeries. Postoperatively, animals were placed on a two-choice diet consisting of low-fat (LF) and HF food and sham-operated rats were further split into ad libitum fed (Sham-LF/HF) and body weight-matched (Sham-BWM) to RYGB groups. An additional set of sham-operated rats always only on a LF diet (Sham-LF) served as lean controls, making four experimental groups in total. Corresponding to a stage of weight loss maintenance for RYGB rats, two-bottle fat preference tests in conjunction with small-animal positron emission tomography (PET) imaging studies with the selective MOR radioligand [ 11 C]carfentanil were performed. Brains were subsequently collected and MOR protein levels in the hypothalamus, striatum, prefrontal cortex and orbitofrontal cortex were analyzed by Western Blot. We found that only the RYGB group presented with intervention-specific changes: having markedly suppressed intake and preference for high concentration fat emulsions, a widespread reduction in [ 11 C]carfentanil binding potential (reflecting MOR availability) in various brain regions, and a downregulation of striatal and prefrontal MOR protein levels compared to the remaining groups. These findings suggest that the suppressed fat appetite caused by RYGB surgery is due to reduced brain MOR signaling, which may contribute to sustained weight loss unlike the case for dieting.

  6. Suppressed Fat Appetite after Roux-en-Y Gastric Bypass Surgery Associates with Reduced Brain μ-opioid Receptor Availability in Diet-Induced Obese Male Rats

    PubMed Central

    Hankir, Mohammed K.; Patt, Marianne; Patt, Jörg T. W.; Becker, Georg A.; Rullmann, Michael; Kranz, Mathias; Deuther-Conrad, Winnie; Schischke, Kristin; Seyfried, Florian; Brust, Peter; Hesse, Swen; Sabri, Osama; Krügel, Ute; Fenske, Wiebke K.

    2017-01-01

    Brain μ-opioid receptors (MORs) stimulate high-fat (HF) feeding and have been implicated in the distinct long term outcomes on body weight of bariatric surgery and dieting. Whether alterations in fat appetite specifically following these disparate weight loss interventions relate to changes in brain MOR signaling is unknown. To address this issue, diet-induced obese male rats underwent either Roux-en-Y gastric bypass (RYGB) or sham surgeries. Postoperatively, animals were placed on a two-choice diet consisting of low-fat (LF) and HF food and sham-operated rats were further split into ad libitum fed (Sham-LF/HF) and body weight-matched (Sham-BWM) to RYGB groups. An additional set of sham-operated rats always only on a LF diet (Sham-LF) served as lean controls, making four experimental groups in total. Corresponding to a stage of weight loss maintenance for RYGB rats, two-bottle fat preference tests in conjunction with small-animal positron emission tomography (PET) imaging studies with the selective MOR radioligand [11C]carfentanil were performed. Brains were subsequently collected and MOR protein levels in the hypothalamus, striatum, prefrontal cortex and orbitofrontal cortex were analyzed by Western Blot. We found that only the RYGB group presented with intervention-specific changes: having markedly suppressed intake and preference for high concentration fat emulsions, a widespread reduction in [11C]carfentanil binding potential (reflecting MOR availability) in various brain regions, and a downregulation of striatal and prefrontal MOR protein levels compared to the remaining groups. These findings suggest that the suppressed fat appetite caused by RYGB surgery is due to reduced brain MOR signaling, which may contribute to sustained weight loss unlike the case for dieting. PMID:28133443

  7. The Effect of Age in the Alteration in Fluid Balance of Rats in Response to Centrifugation

    NASA Technical Reports Server (NTRS)

    Fuller, Charles A.

    2000-01-01

    With an increase in gravity load induced by centrifugation or upon return to Earth following spaceflight, there is a period of adjustment in fluid balance in rats. With centrifugation there is a reduced fluid intake with maintenance of the rate of urine excretion. Following spaceflight there is an increase in urine output and maintenance of fluid intake. The initial period of acclimation to hypergravity is associated with a net loss of fluids. In the present study in response to centrifugation at 2.0 G this period of acclimation is present in mature rats for a longer period of time, about 24 hours. Following this initial response a period of over compensation has previously been reported. In the present study this was not observed. The net effect of these alterations in water intake and output in response to centrifugation for 14 days was slight increase in the percent total body water, with effective compensation seen in both young and mature rats. Older rats have been shown to have a reduced relative thirst and compensatory renal function in response to hypohydration, hyperosmolality and pharmacological stimuli. Responsiveness to these stimuli are delayed and/or attenuated in older animals. Similar findings were noted in the present study in the initial response to centrifugation. The older animal had a delayed return of fluid intake to control levels. The delay of one day did not appear to effect long-term fluid homeostasis, as there was difference in the response of percent total body water at the end of 14 days of centrifugation with both age groups having a slight but significant increase. This increase has been attributed to the increase in lean body mass induced by centrifugation.

  8. Zinc metabolism in genetically obese (ob/ob) mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, M.L.; Failla, M.L.

    1987-05-01

    Recent reports indicate that the concentrations and total amounts of several essential trace metals in various tissues of genetically obese rodents differ markedly from those in lean controls. In the present studies the absorption, retention and tissue distribution of zinc and constitutive levels of zinc-metallothionein (Zn-MT) in selected tissues were compared in obese (ob/ob) and lean (+/.) C57BL/6J mice. When 5-, 10- and 22-wk-old mice were administered 1.2 mumol /sup 65/Zn by stomach tube the apparent absorption of /sup 65/Zn by obese mice was 1.5, 2.2 and 3.9 times higher, respectively, than that in age-matched lean mice. Retention of orallymore » administered /sup 65/Zn after 96 h was also substantially higher in obese mice than in lean mice. To assess the possible influences of hyperphagia and intestinal hypertrophy on the enhanced apparent absorption of /sup 65/Zn by obese mice food intake by an additional group of obese mice was restricted to that of age-matched lean controls. When actual absorption of zinc was determined according to the method of Heth and Hoekstra, groups of ad libitum--fed obese, pair-fed obese and lean mice absorbed 38, 32 and 18% of administered /sup 65/Zn, respectively. In contrast, the rate of /sup 65/Zn excretion 2-6 d after oral or subcutaneous administration of the metal was similar for obese and lean mice. Unrestricted and pair-fed obese mice had significantly lower percentages of carcass /sup 65/Zn present in skin, muscle plus bone, spleen and testes and higher percentages present in liver, small intestine and adipose tissue than lean mice.« less

  9. Microbiota and epigenetic regulation of inflammatory mediators in type 2 diabetes and obesity.

    PubMed

    Remely, M; Aumueller, E; Jahn, D; Hippe, B; Brath, H; Haslberger, A G

    2014-03-01

    Metabolic syndrome is associated with alterations in the structure of the gut microbiota leading to low-grade inflammatory responses. An increased penetration of the impaired gut membrane by bacterial components is believed to induce this inflammation, possibly involving epigenetic alteration of inflammatory molecules such as Toll-like receptors (TLRs). We evaluated changes of the gut microbiota and epigenetic DNA methylation of TLR2 and TLR4 in three groups of subjects: type 2 diabetics under glucagon-like peptide-1 agonist therapy, obese individuals without established insulin resistance, and a lean control group. Clostridium cluster IV, Clostridium cluster XIVa, lactic acid bacteria, Faecalibacterium prausnitzii and Bacteroidetes abundances were analysed by PCR and 454 high-throughput sequencing. The epigenetic methylation in the regulatory region of TLR4 and TLR2 was analysed using bisulfite conversion and pyrosequencing. We observed a significantly higher ratio of Firmicutes/ Bacteroidetes in type 2 diabetics compared to lean controls and obese. Major differences were shown in lactic acid bacteria, with the highest abundance in type 2 diabetics, followed by obese and lean participants. In comparison, F. prausnitzii was least abundant in type 2 diabetics, and most abundant in lean controls. Methylation analysis of four CpGs in the first exon of TLR4 showed significantly lower methylation in obese individuals, but no significant difference between type 2 diabetics and lean controls. Methylation of seven CpGs in the promoter region of TLR2 was significantly lower in type 2 diabetics compared to obese subjects and lean controls. The methylation levels of both TLRs were significantly correlated with body mass index. Our data suggest that changes in gut microbiota and thus cell wall components are involved in the epigenetic regulation of inflammatory reactions. An improved diet targeted to induce gut microbial balance and in the following even epigenetic changes of pro-inflammatory genes may be effective in the prevention of metabolic syndrome.

  10. High Whey Protein Intake Delayed the Loss of Lean Body Mass in Healthy Old Rats, whereas Protein Type and Polyphenol/Antioxidant Supplementation Had No Effects

    PubMed Central

    Mosoni, Laurent; Gatineau, Eva; Gatellier, Philippe; Migné, Carole; Savary-Auzeloux, Isabelle; Rémond, Didier; Rocher, Emilie; Dardevet, Dominique

    2014-01-01

    Our aim was to compare and combine 3 nutritional strategies to slow down the age-related loss of muscle mass in healthy old rats: 1) increase protein intake, which is likely to stimulate muscle protein anabolism; 2) use leucine rich, rapidly digested whey proteins as protein source (whey proteins are recognized as the most effective proteins to stimulate muscle protein anabolism). 3) Supplement animals with a mixture of chamomile extract, vitamin E, vitamin D (reducing inflammation and oxidative stress is also effective to improve muscle anabolism). Such comparisons and combinations were never tested before. Nutritional groups were: casein 12% protein, whey 12% protein, whey 18% protein and each of these groups were supplemented or not with polyphenols/antioxidants. During 6 months, we followed changes of weight, food intake, inflammation (plasma fibrinogen and alpha-2-macroglobulin) and body composition (DXA). After 6 months, we measured muscle mass, in vivo and ex-vivo fed and post-absorptive muscle protein synthesis, ex-vivo muscle proteolysis, and oxidative stress parameters (liver and muscle glutathione, SOD and total antioxidant activities, muscle carbonyls and TBARS). We showed that although micronutrient supplementation reduced inflammation and oxidative stress, the only factor that significantly reduced the loss of lean body mass was the increase in whey protein intake, with no detectable effect on muscle protein synthesis, and a tendency to reduce muscle proteolysis. We conclude that in healthy rats, increasing protein intake is an effective way to delay sarcopenia. PMID:25268515

  11. Viscous dietary fiber reduces adiposity and plasma leptin and increases muscle expression of fat oxidation genes in rats.

    PubMed

    Islam, Ajmila; Civitarese, Anthony E; Hesslink, Robert L; Gallaher, Daniel D

    2012-02-01

    Dietary interventions that reduce accumulation of body fat are of great interest. Consumption of viscous dietary fibers cause well-known positive metabolic effects, such as reductions in the postprandial glucose and insulin concentrations. However, their effect on body composition and fuel utilization has not been previously studied. To examine this, rats were fed a viscous nonfermentable dietary fiber, hydroxypropyl methylcellulose (HPMC), for 6 weeks. Body composition was measured by dual-energy X-ray absorptiometry (DXA) and fat pad weight. Plasma adipokines, AMP kinase activation, and enzyme and mRNA analysis of key regulators of energetics in liver and soleus muscle were measured. The HPMC diet significantly lowered percent body fat mass and increased percent lean body mass, compared to a cellulose-containing diet (no viscosity). Fasting leptin was reduced 42% and resistin 28% in the HPMC group compared to the cellulose group. Rats fed HPMC had greater activation of AMP kinase in liver and muscle and lower phosphoenolpyruvate carboxykinase (PEPCK) expression in liver. mRNA expression in skeletal muscle was significantly increased for carnitine palmitoyltransferase 1B (CPT-1B), PPARγ coactivator 1α, PPARδ and uncoupling protein 3 (UCP3), as was citrate synthase (CS) activity, in the HPMC group relative to the cellulose group. These results indicate that viscous dietary fiber preserves lean body mass and reduces adiposity, possibly by increasing mitochondrial biogenesis and fatty acid oxidation in skeletal muscle, and thus represents a metabolic effect of viscous fiber not previously described. Thus, viscous dietary fiber may be a useful dietary component to assist in reduction of body fat.

  12. Assessment of Body Composition Using Dual Energy X-Ray Absorptiometry in Patients with Liver Cirrhosis: Comparison with Anthropometry

    PubMed Central

    Jeong, Seong Han; Lee, Jeong A; Kim, Jin A; Lee, Mun Woo; Chae, Hee Bok; Choi, Won Jun; Shin, Hyoung Shik; Lee, Ki Hyeong; Youn, Sei Jin; Koong, Sung Soo; Park, Seon Mee

    1999-01-01

    Objectives The aim of this study was to evaluate changes of body composition in cirrhotic patients. Dual energy x-ray absorptiometry (DEXA) and anthropometry were used, and the values obtained were compared. Methods Mid-arm fat and muscle areas were calculated by anthropometry in 66 cirrhotic patients and 94 healthy controls. In 37 of the cirrhotic patients and 39 of the controls, fat mass, lean soft tissue mass and bone mineral contents were measured with DEXA. Results The number of cirrhotic patients with measured values below the fifth percentile of normal controls was 21 (31.8%) by mid-arm fat area, six (9.1%) by mid-arm muscle area, 15 (40.5%) by fat mass and 0 (0%) by lean soft tissue mass. The fat mass in cirrhotic patients was less than in controls, whereas lean soft tissue mass and bone mineral content were not different. Fat depletion was severe in Child-class C patients and with severe ascites. Mid-arm fat area and fat mass showed close correlation (r = 0.85, p<0.01), but mid-arm muscle area and lean soft tissue mass showed poor correlation (r = 0.32, p<0.05). Conclusion Cirrhotic patients showed lower fat component, with preserved lean soft tissue mass and bone mineral content. In clinical practice, the measurement of mid-arm fat area was useful for the assessment of fat mass. PMID:10461427

  13. Lean Six Sigma Analysis of Shipboard Audit Readiness on a U.S. Navy Destroyer

    DTIC Science & Technology

    2016-12-01

    these issues, PACFLT’s finance policy is to restrict accounting and reporting efforts of these units to a minimum level, and to place financial...Lean Thinking: Banish Waste and Create Wealth in Your Corporation , Womack and Jones (2003) map out Lean principles that are built on Toyoda and... corporation achieved different levels of success by using the Define, Measure, Analyze, Improve, and Control (DMAIC) methodology (Folaron, 2003). 3

  14. Physical activity prevents augmented body fat accretion in moderately iron-deficient rats.

    PubMed

    McClung, James P; Andersen, Nancy E; Tarr, Tyson N; Stahl, Chad H; Young, Andrew J

    2008-07-01

    Recent studies describe an association between poor iron status and obesity in humans, although the mechanism explaining this relationship is unclear. The present study aimed to determine the effect of moderate iron deficiency and physical activity (PA) on body composition in an animal model. Male Sprague-Dawley rats consumed iron-adequate (IA; 40 mg/kg) or moderately iron-deficient (ID; 9 mg/kg) diets ad libitum for 12 wk. Rats were assigned to 4 treatment groups (n = 10 per group): IA, sedentary (IAS); IA, PA (IAPA); ID, sedentary (IDS); or ID, PA (IDPA). Activity involved running on motorized running wheels at 4 m/min for 1 h/d for 5 d/wk. After 12 wk, ID rats were not anemic, but body iron stores were reduced as indicated by diminished (P < 0.05) femur iron compared with IA rats. Treatment group did not affect body weight or feed consumption. However, fat mass was greater (P < 0.05) in IDS rats (38.6 +/- 6.7%) than IAS (31.8 +/- 2.9%), IAPA (31.8 +/- 2.0%), and IDPA (32.8 +/- 4.5%) rats. Furthermore, lean body mass was diminished in IDS rats (58.7 +/- 6.8%) compared with IAS (65.6 +/- 3.0%), IAPA (65.6 +/- 2.1%), and IDPA (64.7 +/- 4.5%) rats. Thus, moderate iron deficiency may cause increased body fat accretion in rats and PA attenuates that effect.

  15. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats.

    PubMed

    Johnson, Paul M; Kenny, Paul J

    2010-05-01

    We found that development of obesity was coupled with emergence of a progressively worsening deficit in neural reward responses. Similar changes in reward homeostasis induced by cocaine or heroin are considered to be crucial in triggering the transition from casual to compulsive drug-taking. Accordingly, we detected compulsive-like feeding behavior in obese but not lean rats, measured as palatable food consumption that was resistant to disruption by an aversive conditioned stimulus. Striatal dopamine D2 receptors (D2Rs) were downregulated in obese rats, as has been reported in humans addicted to drugs. Moreover, lentivirus-mediated knockdown of striatal D2Rs rapidly accelerated the development of addiction-like reward deficits and the onset of compulsive-like food seeking in rats with extended access to palatable high-fat food. These data demonstrate that overconsumption of palatable food triggers addiction-like neuroadaptive responses in brain reward circuits and drives the development of compulsive eating. Common hedonic mechanisms may therefore underlie obesity and drug addiction.

  16. Hepatic steatosis in young lean insulin resistant women with polycystic ovary syndrome.

    PubMed

    Markou, Athina; Androulakis, Ioannis I; Mourmouris, Christos; Tsikkini, Ageliki; Samara, Christianna; Sougioultzis, Stavros; Piaditis, George; Kaltsas, Gregory

    2010-03-01

    To investigate the presence of nonalcoholic fatty liver disease (NAFLD) in young lean women with polycystic ovary syndrome (PCOS) and insulin resistance (IR). Case control study. Women with PCOS and healthy controls in a metabolic day ward. Seventeen young lean women with PCOS and 17 matched controls were studied prospectively. Fasting blood and a glucose tolerance test. Ovarian and liver ultrasonography, and computed tomography (CT) of the liver (women with PCOS only). Anthropometric variables, biochemical and hormonal parameters, and several IR indices were determined. Hepatic lipid content was assessed with ultrasonography and CT of the liver. Women with PCOS had higher androgen levels, and the IR indices, glucose and insulin area under the curve, QUICKI, MATSUDA, and HOMA, compared to controls. In addition to IR, women with PCOS had normal aminotransferase levels, and higher, although within the normal range, alkaline phosphatase levels compared with controls. Women with PCOS had no evidence of NAFLD by either ultrasonography or CT of the liver. Young lean women with PCOS and IR do not have evidence of NAFLD. Because of the presence of IR, follow-up is required to determine whether they are at risk of developing NAFLD. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  17. Does Lean healthcare improve patient satisfaction? A mixed-method investigation into primary care.

    PubMed

    Poksinska, Bozena Bonnie; Fialkowska-Filipek, Malgorzata; Engström, Jon

    2017-02-01

    Lean healthcare is claimed to contribute to improved patient satisfaction, but there is limited evidence to support this notion. This study investigates how primary-care centres working with Lean define and improve value from the patient's perspective, and how the application of Lean healthcare influences patient satisfaction. This paper contains two qualitative case studies and a quantitative study based on results from the Swedish National Patient Survey. Through the case studies, we investigated how primary-care organisations realised the principle of defining and improving value from the patient's perspective. In the quantitative study, we compared results from the patient satisfaction survey for 23 primary-care centres working with Lean with a control group of 23 care centres not working with Lean. We also analysed changes in patient satisfaction over time. Our case studies reveal that Lean healthcare implementations primarily target efficiency and little attention is paid to the patient's perspective. The quantitative study shows no significantly better results in patient satisfaction for primary-care centres working with Lean healthcare compared with those not working with Lean. Further, care centres working with Lean show no significant improvements in patient satisfaction over time. Lean healthcare implementations seem to have a limited impact on improving patient satisfaction. Care providers need to pay more attention to integrating the patient's perspective in the application of Lean healthcare. Value needs to be defined and value streams need to be improved based on both the knowledge and clinical expertise of care providers, and the preferences and needs of patients. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  18. Citrulline and Nonessential Amino Acids Prevent Fructose-Induced Nonalcoholic Fatty Liver Disease in Rats.

    PubMed

    Jegatheesan, Prasanthi; Beutheu, Stéphanie; Ventura, Gabrielle; Nubret, Esther; Sarfati, Gilles; Bergheim, Ina; De Bandt, Jean-Pascal

    2015-10-01

    Fructose induces nonalcoholic fatty liver disease (NAFLD). Citrulline (Cit) may exert a beneficial effect on steatosis. We compared the effects of Cit and an isonitrogenous mixture of nonessential amino acids (NEAAs) on fructose-induced NAFLD. Twenty-two male Sprague Dawley rats were randomly assigned into 4 groups (n = 4-6) to receive for 8 wk a 60% fructose diet, either alone or supplemented with Cit (1 g · kg(-1) · d(-1)), or an isonitrogenous amount of NEAAs, or the same NEAA-supplemented diet with starch and maltodextrin instead of fructose (controls). Nutritional and metabolic status, liver function, and expression of genes of hepatic lipid metabolism were determined. Compared with controls, fructose led to NAFLD with significantly higher visceral fat mass (128%), lower lean body mass (-7%), insulin resistance (135%), increased plasma triglycerides (TGs; 67%), and altered plasma amino acid concentrations with decreased Arg bioavailability (-27%). This was corrected by both NEAA and Cit supplementation. Fructose caused a 2-fold increase in the gene expression of fatty acid synthase (Fas) and 70% and 90% decreases in that of carnitine palmitoyl-transferase 1a and microsomal TG transfer protein via a nearly 10-fold higher gene expression of sterol regulatory element-binding protein-1c (Srebp1c) and carbohydrate-responsive element-binding protein (Chrebp), and a 90% lower gene expression of peroxisome proliferator-activated receptor α (Ppara). NEAA or Cit supplementation led to a Ppara gene expression similar to controls and decreased those of Srebp1c and Chrebp in the liver by 50-60%. Only Cit led to Fas gene expression and Arg bioavailability similar to controls. In our rat model, Cit and NEAAs effectively prevented fructose-induced NAFLD. On the basis of literature data and our findings, we propose that NEAAs may exert their effects specifically on the liver, whereas Cit presumably acts at both the hepatic and whole-body level, in part via improved peripheral Arg metabolism. © 2015 American Society for Nutrition.

  19. The peripheral quantitative computed tomographic and densitometric analysis of skeletal tissue in male Wistar rats after chromium sulfate treatment.

    PubMed

    Bieńko, Marek; Radzki, Radosław Piotr; Wolski, Dariusz

    2017-09-21

    This study evaluates the effects of three different doses of chromium sulphate on bone density and the tomographic parameters of skeletal tissue of rats. The experiment was performed on 40 male Wistar rats which received, by gavage, during 90 days, a chromium sulphate in either a daily dose of 400, 600 or 800 µg/kg BW. At the end of experiment, the rats were scanned using the densitometry method (DXA) to determine the bone mineral density, bone mineral content of total skeleton and vertebral column (L2-L4) and parameters of body composition (Lean Mass and Fat Mass). The isolated femora were scanned using peripheral a quantitative computed tomography method (pQCT) for a separate analysis of the trabecular and cortical bone tissue. The ultimate strength, work to ultimate and the Young modulus of femora was also investigated by the three-point bending test. The negative impact of chromium was observed in relation to bone tissue. All doses significantly decreased total skeleton density and mineral content, and also had impact upon the isolated femora and vertebral column. Trabecular volumetric bone mineral density and trabecular bone mineral content measured by pQCT in distal femur metaphysis were significantly lower in the experimental groups than in the control. Higher doses of chromium also significantly decreased values of ultimate strength and Young modulus in the investigated femora. The results of the experiment demonstrate that chromium sulphate is dose dependent, and exerts a disadvantageous effect on the skeleton, as it decreases bone density and resistance.

  20. Metformin treatment modulates the tumour-induced wasting effects in muscle protein metabolism minimising the cachexia in tumour-bearing rats.

    PubMed

    Oliveira, André G; Gomes-Marcondes, Maria Cristina C

    2016-07-07

    Cancer-cachexia state frequently induces both fat and protein wasting, leading to death. In this way, the knowledge of the mechanism of drugs and their side effects can be a new feature to treat and to have success, contributing to a better life quality for these patients. Metformin is an oral drug used in type 2 diabetes mellitus, showing inhibitory effect on proliferation in some neoplastic cells. For this reason, we evaluated its modulatory effect on Walker-256 tumour evolution and also on protein metabolism in gastrocnemius muscle and body composition. Wistar rats received or not tumour implant and metformin treatment and were distributed into four groups, as followed: control (C), Walker 256 tumour-bearing (W), metformin-treated (M) and tumour-bearing treated with metformin (WM). Animals were weighed three times a week, and after cachexia state has been detected, the rats were euthanised and muscle and tumour excised and analysed by biochemical and molecular assays. Tumour growth promoted some deleterious effects on chemical body composition, increasing water and decreasing fat percentage, and reducing lean body mass. In muscle tissue, tumour led to a decreased protein synthesis and an increased proteolysis, showing the higher activity of the ubiquitin-proteasome pathway. On the other hand, the metformin treatment likely minimised the tumour-induced wasting state; in this way, this treatment ameliorated chemical body composition, reduced the higher activities of proteolytic enzymes and decreased the protein waste. Metformin treatment not only decreases the tumour growth but also improves the protein metabolism in gastrocnemius muscle in tumour-bearing rats.

  1. Effects of xanthine oxidase inhibition with febuxostat on the development of nephropathy in experimental type 2 diabetes.

    PubMed

    Komers, Radko; Xu, Bei; Schneider, Jennifer; Oyama, Terry T

    2016-09-01

    Elevated serum uric acid (UA) is a risk factor for the development of kidney disease. Inhibitors of xanthine oxidase (XOi), an enzyme involved in UA synthesis, have protective effects at early stages of experimental diabetic nephropathy (DN). However, long-term effects of XOi in models of DN remain to be determined. The development of albuminuria, renal structure and molecular markers of DN were studied in type 2 diabetic Zucker obese (ZO) rats treated for 18 weeks with the XOi febuxostat and compared with vehicle-treated ZO rats, ZO rats treated with enalapril or a combination of both agents, and lean Zucker rats without metabolic defects. Febuxostat normalized serum UA and attenuated the development of albuminuria, renal structural changes, with no significant effects on BP, metabolic control or systemic markers of oxidative stress (OS). Most of these actions were comparable with those of enalapril. Combination treatment induced marked decreases in BP and was more effective in ameliorating structural changes, expression of profibrotic genes and systemic OS than either monotherapy. Febuxostat attenuated renal protein expression of TGF-ß, CTGF, collagen 4, mesenchymal markers (FSP1 and vimentin) and a tissue marker of OS nitrotyrosine. Moreover, febuxostat attenuated TGF-ß- and S100B-induced increased expression of fibrogenic molecules in renal tubular cells in vitro in UA-free media in an Akt kinase-dependent manner. Febuxostat is protective and enhances the actions of enalapril in experimental DN. Multiple mechanisms might be involved, such as a reduction of UA, renal OS and inhibition of profibrotic signalling. © 2016 The British Pharmacological Society.

  2. Exposure to activity-based anorexia impairs contextual learning in weight-restored rats without affecting spatial learning, taste, anxiety, or dietary-fat preference.

    PubMed

    Boersma, Gretha J; Treesukosol, Yada; Cordner, Zachary A; Kastelein, Anneke; Choi, Pique; Moran, Timothy H; Tamashiro, Kellie L

    2016-02-01

    Relapse rates are high amongst cases of anorexia nervosa (AN) suggesting that some alterations induced by AN may remain after weight restoration. To study the consequences of AN without confounds of environmental variability, a rodent model of activity-based anorexia (ABA) can be employed. We hypothesized that exposure to ABA during adolescence may have long-term consequences in taste function, cognition, and anxiety-like behavior after weight restoration. To test this hypothesis, we exposed adolescent female rats to ABA (1.5 h food access, combined with voluntary running wheel access) and compared their behavior to that of control rats after weight restoration was achieved. The rats were tested for learning/memory, anxiety, food preference, and taste in a set of behavioral tests performed during the light period. Our data show that ABA exposure leads to reduced performance during the novel object recognition task, a test for contextual learning, without altering performance in the novel place recognition task or the Barnes maze, both tasks that test spatial learning. Furthermore, we do not observe alterations in unconditioned lick responses to sucrose nor quinine (described by humans as "sweet" and "bitter," respectively). Nor Do we find alterations in anxiety-like behavior during an elevated plus maze or an open field test. Finally, preference for a diet high in fat is not altered. Overall, our data suggest that ABA exposure during adolescence impairs contextual learning in adulthood without altering spatial leaning, taste, anxiety, or fat preference. © 2015 Wiley Periodicals, Inc.

  3. Resistance training inhibits the elevation of skeletal muscle derived-BDNF level concomitant with improvement of muscle strength in zucker diabetic rat

    PubMed Central

    Kim, Hee-Jae; So, Byunghun; Son, Jun Seok; Song, Han Sol; Oh, Seung Lyul; Seong, Je Kyung; Lee, Hoyoung; Song, Wook

    2015-01-01

    [Purpose] In the present study, we investigated the effects of 8 weeks of progressive resistance training on the level of skeletal muscle derived BDNF as well as glucose intolerance in Zucker diabetic rats. [Methods] Six week-old male Zucker diabetic fatty (ZDF) and Zucker lean control (ZLC) rats were randomly divided into 3 groups: sedentary ZLC (ZLC-Con), sedentary ZDF (ZDF-Con), and exercised ZDF (ZDF-Ex). Progressive resistance training using a ladder and tail weights was performed for 8 weeks (3 days/week). [Results] After 8 weeks of resistance training, substantial reduction in body weight was observed in ZDF-Ex compared to ZDF-Con. Though the skeletal muscle volume did not change, grip strength grip strength was significantly higher in ZDF-Ex compared to ZDF-Con. In the soleus, the level of BDNF was increased in ZDF-Con, but was significantly decreased (p<0.05) in ZDF-Ex, showing a training effect. Moreover, we found that there was a negative correlation (r=-0.657; p=0.004) between grip strength and BDNF level whereas there was a positive correlation (r=0.612; p=0.008) between plasma glucose level and BDNF level in skeletal muscle. [Conclusion] Based upon our results, we demonstrated that resistance training inhibited the elevation of skeletal muscle derived-BDNF expression concomitant with the improvement of muscle strength in zucker diabetic rats. In addition, muscle-derived BDNF might be a potential mediator for the preventive effect of resistance training on the progress of type 2 diabetes. PMID:27274460

  4. 8-pCPT-cGMP prevents mitochondrial depolarization and improves the outcome of steatotic partial liver transplantation

    PubMed Central

    Liu, Qinlong; Rehman, Hasibur; Krishnasamy, Yasodha; Lemasters, John J; Zhong, Zhi

    2017-01-01

    Permeant cGMP analogs prevent the mitochondria permeability transition (MPT) in vitro. In this study, we explored whether 8-pCPT-cGMP prevents the MPT and decreases post-transplant damage to fatty partial liver grafts (FPG) in vivo. Rats were fed a control or high-fat, high-fructose diet for 2-week. Lean and fatty liver explants were reduced in size ex vivo to ~35% and stored in the University of Wisconsin solution with and without 8-pCPT-cGMP (300 µM) for 2 h. After transplantation, alanine aminotransferase release (indicator of hepatocellular injury), hyperbilirubinemia (indicator of poor liver function), and cell death were all higher in FPG than in lean partial grafts (LPG). Liver regeneration increased in LPG but was suppressed in FPG. 8-pCPT-cGMP blunted graft injury, improved liver regeneration and function, and increased survival of FPG. Hepatic mitochondrial depolarization detected by intravital multiphoton microscopy of rhodamine 123 in living rats was ~3.5-fold higher in FPG than in LPG. 8-pCPT-cGMP decreased mitochondrial depolarization in FPG almost to the level of LPG. Activation of mammalian target of rapamycin (mTOR), an energy sensitive kinase that stimulates cell proliferation and growth, and p70S6 kinase, a downstream signaling molecule of mTOR, was increased in LPG but suppressed in FPG. 8-pCPT-cGMP restored the activity of mTOR and p70S6 kinase in FPG. 8-pCPT-cGMP also increased activation of cAMP response element-binding protein (CREB) and expression of cyclins D1 and E in FPG. Non-alcoholic steatosis increases injury and suppresses regeneration after partial liver transplantation, at least in part, due to more severe mitochondrial dysfunction. Protection of mitochondria with a cGMP analog effectively improves outcomes of FPG transplantation. PMID:28694919

  5. Ezetimibe improves hepatic steatosis in relation to autophagy in obese and diabetic rats

    PubMed Central

    Chang, Eugene; Kim, Lisa; Park, Se Eun; Rhee, Eun-Jung; Lee, Won-Young; Oh, Ki-Won; Park, Sung-Woo; Park, Cheol-Young

    2015-01-01

    AIM: To investigate whether ezetimibe ameliorates hepatic steatosis and induces autophagy in a rat model of obesity and type 2 diabetes. METHODS: Male age-matched lean control LETO and obese and diabetic OLETF rats were administered either PBS or ezetimibe (10 mg/kg per day) via stomach gavage for 20 wk. Changes in weight gain and energy intake were regularly monitored. Blood and liver tissue were harvested after overnight fasting at the end of study. Histological assessment was performed in liver tissue. The concentrations of glucose, insulin, triglycerides (TG), free fatty acids (FFA), and total cholesterol (TC) in blood and TG, FFA, and TG in liver tissue were measured. mRNA and protein abundance involved in autophagy was analyzed in the liver. To investigate the effect of ezetimibe on autophagy and reduction in hepatic fat accumulation, human Huh7 hepatocytes were incubated with ezetimibe (10 μmol/L) together with or without palmitic acid (PA, 0.5 mmol/L, 24 h). Transmission electron microscopy (TEM) was employed to demonstrate effect of ezetimibe on autophagy formation. Autophagic flux was measured with bafilomycin A1, an inhibitor of autophagy and following immunoblotting for autophagy-related protein expression. RESULTS: In the OLETF rats that received ezetimibe (10 mg/kg per day), liver weight were significantly decreased by 20% compared to OLETF control rats without changes in food intake and body weight (P < 0.05). Lipid parameters including TG, FFA, and TC in liver tissue of ezetimibe-administrated OLETF rats were dramatically decreased at least by 30% compared to OLETF controls (P < 0.01). The serum glucose, insulin, HOMA-IR, and lipid profiles were also improved by ezetimibe (P < 0.05). In addition, autophagy-related mRNA expression including ATG5, ATG6, and ATG7 and the protein level of microtubule-associated protein light chain 3 (LC3) were significantly increased in the liver in rats that received ezetimibe (P < 0.05). Likewise, for hepatocytes cultured in vitro, ezetimibe treatment significantly decreased PA-induced fat accumulation and increased PA-reduced mRNA and protein expression involved in autophagy (P < 0.05). Ezetimibe-increased autophagosomes was observed in TEM analysis. Immunoblotting analysis of autophagy formation with an inhibitor of autophagy demonstrated that ezetimibe-increased autophagy resulted from increased autophagic flux. CONCLUSION: The present study demonstrates that ezetimibe-mediated improvement in hepatic steatosis might involve the induction of autophagy. PMID:26167075

  6. Pregnancy in infertile PCOD patients. Complications and outcome.

    PubMed

    Urman, B; Sarac, E; Dogan, L; Gurgan, T

    1997-08-01

    To evaluate the complications and outcome of pregnancy in women with polycystic ovary disease (PCOD). The course and outcome of 47 singleton pregnancies in women with well-documented PCOD were compared with those in 100 healthy controls. Women with PCOD had a significantly higher body mass index as compared to the control group (P < .05); however, the proportion of lean versus obese subjects in the two groups was similar. The incidence of an abnormal glucose challenge test, gestational diabetes mellitus and pregnancy-induced hypertension was significantly increased in pregnant women with PCOD (P < .05). When lean PCOD subjects were compared with lean control subjects, the difference in the incidence of the above complications was still significant (P < .05). The incidence of pregnancy complications was similar when obese PCOD subjects were compared with obese controls. Women with PCOD were at increased risk of gestational diabetes and pregnancy-induced hypertension, and this risk appeared to be independent of body mass index.

  7. Augmented Endothelial-Specific L-Arginine Transport Blunts the Contribution of the Sympathetic Nervous System to Obesity Induced Hypertension in Mice.

    PubMed

    Rajapakse, Niwanthi W; Karim, Florian; Evans, Roger G; Kaye, David M; Head, Geoffrey A

    2015-01-01

    Augmenting endothelial specific transport of the nitric oxide precursor L-arginine via cationic amino acid transporter-1 (CAT1) can prevent obesity related hypertension. We tested the hypotheses that CAT1 overexpression prevents obesity-induced hypertension by buffering the influence of the sympathetic nervous system (SNS) on the maintenance of arterial pressure and by buffering pressor responses to stress. Wild type (WT; n=13) and CAT1 overexpressing mice (CAT+; n=13) were fed a normal or a high fat diet for 20 weeks. Mice fed a high fat diet were returned to the control diet before experiments commenced. Baseline mean arterial pressure (MAP) and effects of restraint-, shaker- and almond feeding-stress and ganglionic blockade (pentolinium; 5 mg/kg; i.p.) on MAP were determined in conscious mice. Fat feeding increased body weight to a similar extent in WT and CAT+ but MAP was greater only in WT compared to appropriate controls (by 29%). The depressor response to pentolinium was 65% greater in obese WT than lean WT (P < 0.001), but was similar in obese and lean CAT+ (P = 0.65). In lean WT and CAT+, pressor responses to shaker and feeding stress, but not restraint stress, were less in the latter genotype compared to the former (P ≤ 0.001). Pressor responses to shaker and feeding stress were less in obese WT than lean WT (P ≤ 0.001), but similar in obese and lean CAT+. The increase in MAP in response to restraint stress was less in obese WT (22 ± 2%), but greater in obese CAT+ (37 ± 2%), when compared to respective lean WT (31 ± 3%) and lean CAT+ controls (27 ± 2%; P ≤ 0.02). We conclude that CAT1 overexpression prevents obesity-induced hypertension by reducing the influence of the SNS on the maintenance of arterial pressure but not by buffering pressor responses to stress.

  8. Distinct effects of calorie restriction on adipose tissue cytokine and angiogenesis profiles in obese and lean mice

    PubMed Central

    2012-01-01

    Background Obesity associates with low-grade inflammation and adipose tissue remodeling. Using sensitive high-throughput protein arrays we here investigated adipose tissue cytokine and angiogenesis-related protein profiles from obese and lean mice, and in particular, the influence of calorie restriction (CR). Methods Tissue samples from visceral fat were harvested from obese mice fed with a high-fat diet (60% of energy), lean controls receiving low-fat control diet as well as from obese and lean mice kept under CR (energy intake 70% of ad libitum intake) for 50 days. Protein profiles were analyzed using mouse cytokine and angiogenesis protein array kits. Results In obese and lean mice, CR was associated with 11.3% and 15.6% reductions in body weight, as well as with 4.0% and 4.6% reductions in body fat percentage, respectively. Obesity induced adipose tissue cytokine expressions, the most highly upregulated cytokines being IL-1ra, IL-2, IL-16, MCP-1, MIG, RANTES, C5a, sICAM-1 and TIMP-1. CR increased sICAM-1 and TIMP-1 expression both in obese and lean mice. Overall, CR showed distinct effects on cytokine expressions; in obese mice CR largely decreased but in lean mice increased adipose tissue cytokine expressions. Obesity was also associated with increased expressions of angiogenesis-related proteins, in particular, angiogenin, endoglin, endostatin, endothelin-1, IGFBP-3, leptin, MMP-3, PAI-1, TIMP-4, CXCL16, platelet factor 4, DPPIV and coagulation factor III. CR increased endoglin, endostatin and platelet factor 4 expressions, and decreased IGFBP-3, NOV, MMP-9, CXCL16 and osteopontin expressions both in obese and lean mice. Interestingly, in obese mice, CR decreased leptin and TIMP-4 expressions, whereas in lean mice their expressions were increased. CR decreased MMP-3 and PAI-1 only in obese mice, whereas CR decreased FGF acidic, FGF basic and coagulation factor III, and increased angiogenin and DPPIV expression only in lean mice. Conclusions CR exerts distinct effects on adipocyte cytokine and angiogenesis profiles in obese and lean mice. Our study also underscores the importance of angiogenesis-related proteins and cytokines in adipose tissue remodeling and development of obesity. PMID:22748184

  9. Characterization of the ZDSD Rat: A Translational Model for the Study of Metabolic Syndrome and Type 2 Diabetes

    PubMed Central

    Peterson, Richard G.; de Winter, Willem; Huebert, Norman; Hansen, Michael K.

    2015-01-01

    Metabolic syndrome and T2D produce significant health and economic issues. Many available animal models have monogenic leptin pathway mutations that are absent in the human population. Development of the ZDSD rat model was undertaken to produce a model that expresses polygenic obesity and diabetes with an intact leptin pathway. A lean ZDF rat with the propensity for beta-cell failure was crossed with a polygenetically obese Crl:CD (SD) rat. Offspring were selectively inbred for obesity and diabetes for >30 generations. In the current study, ZDSD rats were followed for 6 months; routine clinical metabolic endpoints were included throughout the study. In the prediabetic metabolic syndrome phase, ZDSD rats exhibited obesity with increased body fat, hyperglycemia, insulin resistance, dyslipidemia, glucose intolerance, and elevated HbA1c. As disease progressed to overt diabetes, ZDSD rats demonstrated elevated glucose levels, abnormal oral glucose tolerance, increases in HbA1c levels, reductions in body weight, increased insulin resistance with decreasing insulin levels, and dyslipidemia. The ZDSD rat develops prediabetic metabolic syndrome and T2D in a manner that mirrors the development of metabolic syndrome and T2D in humans. ZDSD rats will provide a novel, translational animal model for the study of human metabolic diseases and for the development of new therapies. PMID:25961053

  10. Evaluation of beta-cell sensitivity to glucose and first-phase insulin secretion in obese dogs.

    PubMed

    Verkest, Kurt R; Fleeman, Linda M; Rand, Jacquie S; Morton, John M

    2011-03-01

    To compare beta-cell sensitivity to glucose, first-phase insulin secretion, and glucose tolerance between dogs with naturally occurring obesity of > 2 years' duration and lean dogs. 17 client-owned obese or lean dogs. Frequently sampled IV glucose tolerance tests were performed with minimal model analysis on 6 obese dogs and matched controls. Glucagon stimulation tests were performed on 5 obese dogs and matched controls. Obese dogs were half as sensitive to the effects of insulin as lean dogs. Plasma glucose concentrations after food withholding did not differ significantly between groups; plasma insulin concentrations were 3 to 4 times as great in obese as in lean dogs. Obese dogs had plasma insulin concentrations twice those of lean dogs after administration of glucose and 4 times as great after administration of glucagon. First-phase insulin secretion was greater in obese dogs. Obese dogs compensated for obesity-induced insulin resistance by secreting more insulin. First-phase insulin secretion and beta-cell glucose sensitivity were not lost despite years of obesity-induced insulin resistance and compensatory hyperinsulinemia. These findings help explain why dogs, unlike cats and humans, have not been documented to develop type 2 diabetes mellitus.

  11. Spaceflight and protein metabolism, with special reference to humans

    NASA Technical Reports Server (NTRS)

    Stein, T. P.; Gaprindashvili, T.

    1994-01-01

    Human space missions have shown that human spaceflight is associated with a loss of body protein. Specific changes include a loss of lean body mass, decreased muscle mass in the calves, decreased muscle strength, and changes in plasma proteins and amino acids. The major muscle loss is believed to be associated with the antigravity (postural) muscle. The most significant loss of protein appears to occur during the first month of flight. The etiology is believed to be multifactorial with contributions from disuse atrophy, undernutrition, and a stress type of response. This article reviews the results of American and Russian space missions to investigate this problem in humans, monkeys, and rats. The relationship of the flight results with ground-based models including bedrest for humans and hindlimb unweighting for rats is also discussed. The results suggest that humans adapt to spaceflight much better than either monkeys or rats.

  12. Intermittent hypoxia exacerbates metabolic effects of diet-induced obesity.

    PubMed

    Drager, Luciano F; Li, Jianguo; Reinke, Christian; Bevans-Fonti, Shannon; Jun, Jonathan C; Polotsky, Vsevolod Y

    2011-11-01

    Obesity causes insulin resistance (IR) and nonalcoholic fatty liver disease (NAFLD), but the relative contribution of sleep apnea is debatable. The main aim of this study is to evaluate the effects of chronic intermittent hypoxia (CIH), a hallmark of sleep apnea, on IR and NAFLD in lean mice and mice with diet-induced obesity (DIO). Mice (C57BL/6J), 6-8 weeks of age were fed a high fat (n = 18) or regular (n = 16) diet for 12 weeks and then exposed to CIH or control conditions (room air) for 4 weeks. At the end of the exposure, fasting (5 h) blood glucose, insulin, homeostasis model assessment (HOMA) index, liver enzymes, and intraperitoneal glucose tolerance test (1 g/kg) were measured. In DIO mice, body weight remained stable during CIH and did not differ from control conditions. Lean mice under CIH were significantly lighter than control mice by day 28 (P = 0.002). Compared to lean mice, DIO mice had higher fasting levels of blood glucose, plasma insulin, the HOMA index, and had glucose intolerance and hepatic steatosis at baseline. In lean mice, CIH slightly increased HOMA index (from 1.79 ± 0.13 in control to 2.41 ± 0.26 in CIH; P = 0.05), whereas glucose tolerance was not affected. In contrast, in DIO mice, CIH doubled HOMA index (from 10.1 ± 2.1 in control to 22.5 ± 3.6 in CIH; P < 0.01), and induced severe glucose intolerance. In DIO mice, CIH induced NAFLD, inflammation, and oxidative stress, which was not observed in lean mice. In conclusion, CIH exacerbates IR and induces steatohepatitis in DIO mice, suggesting that CIH may account for metabolic dysfunction in obesity.

  13. Intermittent Hypoxia Exacerbates Metabolic Effects of Diet-Induced Obesity

    PubMed Central

    Drager, Luciano F.; Li, Jianguo; Reinke, Christian; Bevans-Fonti, Shannon; Jun, Jonathan C.; Polotsky, Vsevolod Y.

    2015-01-01

    Obesity causes insulin resistance (IR) and nonalcoholic fatty liver disease (NAFLD), but the relative contribution of sleep apnea is debatable. The main aim of this study is to evaluate the effects of chronic intermittent hypoxia (CIH), a hallmark of sleep apnea, on IR and NAFLD in lean mice and mice with diet-induced obesity (DIO). Mice (C57BL/6J), 6–8 weeks of age were fed a high fat (n = 18) or regular (n = 16) diet for 12 weeks and then exposed to CIH or control conditions (room air) for 4 weeks. At the end of the exposure, fasting (5 h) blood glucose, insulin, homeostasis model assessment (HOMA) index, liver enzymes, and intraperitoneal glucose tolerance test (1 g/kg) were measured. In DIO mice, body weight remained stable during CIH and did not differ from control conditions. Lean mice under CIH were significantly lighter than control mice by day 28 (P = 0.002). Compared to lean mice, DIO mice had higher fasting levels of blood glucose, plasma insulin, the HOMA index, and had glucose intolerance and hepatic steatosis at baseline. In lean mice, CIH slightly increased HOMA index (from 1.79 ± 0.13 in control to 2.41 ± 0.26 in CIH; P = 0.05), whereas glucose tolerance was not affected. In contrast, in DIO mice, CIH doubled HOMA index (from 10.1 ± 2.1 in control to 22.5 ± 3.6 in CIH; P < 0.01), and induced severe glucose intolerance. In DIO mice, CIH induced NAFLD, inflammation, and oxidative stress, which was not observed in lean mice. In conclusion, CIH exacerbates IR and induces steatohepatitis in DIO mice, suggesting that CIH may account for metabolic dysfunction in obesity. PMID:21799478

  14. On the Skill of Balancing While Riding a Bicycle

    PubMed Central

    Cain, Stephen M.; Ashton-Miller, James A.; Perkins, Noel C.

    2016-01-01

    Humans have ridden bicycles for over 200 years, yet there are no continuous measures of how skill differs between novice and expert. To address this knowledge gap, we measured the dynamics of human bicycle riding in 14 subjects, half of whom were skilled and half were novice. Each subject rode an instrumented bicycle on training rollers at speeds ranging from 1 to 7 m/s. Steer angle and rate, steer torque, bicycle speed, and bicycle roll angle and rate were measured and steering power calculated. A force platform beneath the roller assembly measured the net force and moment that the bicycle, rider and rollers exerted on the floor, enabling calculations of the lateral positions of the system centers of mass and pressure. Balance performance was quantified by cross-correlating the lateral positions of the centers of mass and pressure. The results show that all riders exhibited similar balance performance at the slowest speed. However at higher speeds, the skilled riders achieved superior balance performance by employing more rider lean control (quantified by cross-correlating rider lean angle and bicycle roll angle) and less steer control (quantified by cross-correlating steer rate and bicycle roll rate) than did novice riders. Skilled riders also used smaller steering control input with less variation (measured by average positive steering power and standard deviations of steer angle and rate) and less rider lean angle variation (measured by the standard deviation of the rider lean angle) independent of speed. We conclude that the reduction in balance control input by skilled riders is not due to reduced balance demands but rather to more effective use of lean control to guide the center of mass via center of pressure movements. PMID:26910774

  15. Novel Insights into the Cardio-Protective Effects of FGF21 in Lean and Obese Rat Hearts

    PubMed Central

    Chen, Jing; Ramanjaneya, Manjunath; Bari, Muhammad F.; Bhudia, Sunil K.; Hillhouse, Edward W.; Tan, Bee K.; Randeva, Harpal S.

    2014-01-01

    Aims Fibroblast growth factor 21 (FGF21) is a hepatic metabolic regulator with pleotropic actions. Its plasma concentrations are increased in obesity and diabetes; states associated with an increased incidence of cardiovascular disease. We therefore investigated the direct effect of FGF21 on cardio-protection in obese and lean hearts in response to ischemia. Methods and Results FGF21, FGF21-receptor 1 (FGFR1) and beta-Klotho (βKlotho) were expressed in rodent, human hearts and primary rat cardiomyocytes. Cardiac FGF21 was expressed and secreted (real time RT-PCR/western blot and ELISA) in an autocrine-paracrine manner, in response to obesity and hypoxia, involving FGFR1-βKlotho components. Cardiac-FGF21 expression and secretion were increased in response to global ischemia. In contrast βKlotho was reduced in obese hearts. In isolated adult rat cardiomyocytes, FGF21 activated PI3K/Akt (phosphatidylinositol 3-kinase/Akt), ERK1/2(extracellular signal-regulated kinase) and AMPK (AMP-activated protein kinase) pathways. In Langendorff perfused rat [adult male wild-type wistar] hearts, FGF21 administration induced significant cardio-protection and restoration of function following global ischemia. Inhibition of PI3K/Akt, AMPK, ERK1/2 and ROR-α (retinoic-acid receptor alpha) pathway led to significant decrease of FGF21 induced cardio-protection and restoration of cardiac function in response to global ischemia. More importantly, this cardio-protective response induced by FGF21 was reduced in obesity, although the cardiac expression profiles and circulating FGF21 levels were increased. Conclusion In an ex vivo Langendorff system, we show that FGF21 induced cardiac protection and restoration of cardiac function involving autocrine-paracrine pathways, with reduced effect in obesity. Collectively, our findings provide novel insights into FGF21-induced cardiac effects in obesity and ischemia. PMID:24498293

  16. High intake of palatable food predicts binge-eating independent of susceptibility to obesity: an animal model of lean vs obese binge-eating and obesity with and without binge-eating.

    PubMed

    Boggiano, M M; Artiga, A I; Pritchett, C E; Chandler-Laney, P C; Smith, M L; Eldridge, A J

    2007-09-01

    To determine the stability of individual differences in non-nutritive 'junk' palatable food (PF) intake in rats; assess the relationship of these differences to binge-eating characteristics and susceptibility to obesity; and evaluate the practicality of using these differences to model binge-eating and obesity. Binge-eating prone (BEP) and resistant (BER) groups were identified. Differential responses to stress, hunger, macronutrient-varied PFs, a diet-induced obesity (DIO) regimen and daily vs intermittent access to a PF+chow diet, were assessed. One hundred and twenty female Sprague-Dawley rats. Reliability of intake patterns within rats; food intake and body weight after various challenges over acute (1, 2, 4 h), 24-h and 2-week periods. Although BEP and BER rats did not differ in amount of chow consumed, BEPs consumed >50% more intermittent PF than BERs (P<0.001) and consistently so (alpha=0.86). BEPs suppressed chow but not PF intake when stressed, and ate as much when sated as when hungry. Conversely, BERs were more affected by stress and ate less PF, not chow, when stressed and were normally hyperphagic to energy deficit. BEP overeating generalized to other PFs varying in sucrose, fat and nutrition content. Half the rats in each group proved to be obesity prone after a no-choice high fat diet (DIO diet) but a continuous diet of PF+chow normalized the BEPs high drive for PF. Greater intermittent intake of PF predicts binge-eating independent of susceptibility to weight gain. Daily fat consumption in a nutritious source (DIO-diet; analogous to a fatty meal) promoted overeating and weight gain but limiting fat to daily non-nutritive food (PF+chow; analogous to a snack with a low fat meal), did not. The data offer an animal model of lean and obese binge-eating, and obesity with and without binge-eating that can be used to identify the unique physiology of these groups and henceforth suggest more specifically targeted treatments for binge-eating and obesity.

  17. Lean management in health care: definition, concepts, methodology and effects reported (systematic review protocol).

    PubMed

    Lawal, Adegboyega K; Rotter, Thomas; Kinsman, Leigh; Sari, Nazmi; Harrison, Liz; Jeffery, Cathy; Kutz, Mareike; Khan, Mohammad F; Flynn, Rachel

    2014-09-19

    Lean is a set of operating philosophies and methods that help create a maximum value for patients by reducing waste and waits. It emphasizes the consideration of the customer's needs, employee involvement and continuous improvement. Research on the application and implementation of lean principles in health care has been limited. This is a protocol for a systematic review, following the Cochrane Effective Practice and Organisation of Care (EPOC) methodology. The review aims to document, catalogue and synthesize the existing literature on the effects of lean implementation in health care settings especially the potential effects on professional practice and health care outcomes. We have developed a Medline keyword search strategy, and this focused strategy will be translated into other databases. All search strategies will be provided in the review. The method proposed by the Cochrane EPOC group regarding randomized study designs, non-randomised controlled trials controlled before and after studies and interrupted time series will be followed. In addition, we will also include cohort, case-control studies, and relevant non-comparative publications such as case reports. We will categorize and analyse the review findings according to the study design employed, the study quality (low- versus high-quality studies) and the reported types of implementation in the primary studies. We will present the results of studies in a tabular form. Overall, the systematic review aims to identify, assess and synthesize the evidence to underpin the implementation of lean activities in health care settings as defined in this protocol. As a result, the review will provide an evidence base for the effectiveness of lean and implementation methodologies reported in health care. PROSPERO CRD42014008853.

  18. Lean management in health care: definition, concepts, methodology and effects reported (systematic review protocol)

    PubMed Central

    2014-01-01

    Background Lean is a set of operating philosophies and methods that help create a maximum value for patients by reducing waste and waits. It emphasizes the consideration of the customer’s needs, employee involvement and continuous improvement. Research on the application and implementation of lean principles in health care has been limited. Methods This is a protocol for a systematic review, following the Cochrane Effective Practice and Organisation of Care (EPOC) methodology. The review aims to document, catalogue and synthesize the existing literature on the effects of lean implementation in health care settings especially the potential effects on professional practice and health care outcomes. We have developed a Medline keyword search strategy, and this focused strategy will be translated into other databases. All search strategies will be provided in the review. The method proposed by the Cochrane EPOC group regarding randomized study designs, non-randomised controlled trials controlled before and after studies and interrupted time series will be followed. In addition, we will also include cohort, case–control studies, and relevant non-comparative publications such as case reports. We will categorize and analyse the review findings according to the study design employed, the study quality (low- versus high-quality studies) and the reported types of implementation in the primary studies. We will present the results of studies in a tabular form. Discussion Overall, the systematic review aims to identify, assess and synthesize the evidence to underpin the implementation of lean activities in health care settings as defined in this protocol. As a result, the review will provide an evidence base for the effectiveness of lean and implementation methodologies reported in health care. Systematic review registration PROSPERO CRD42014008853 PMID:25238974

  19. Lean Six Sigma Belt Certification Goals and Standing in TACOM Life Cycle Management Command

    DTIC Science & Technology

    2010-12-01

    goes up must come down, what’s hot eventually cools off” ( Schonberger , 2008, p. 1). Industry was tiring of just-in-time and total quality control by...placard ( Schonberger , 2008). In the next paragraphs, we will explore the concept of Lean Six Sigma by looking at the histories and principles behind...20_1- 10_.pdf Schonberger , R. (2008). Best Practices in Lean Six Sigma Process Improvement, A Deeper Look. New Jersey: John Wiley & Sons, Inc

  20. Use of Blade Lean in Turbomachinery Redesign

    NASA Technical Reports Server (NTRS)

    Moore, John; Moore, Joan G.; Lupi, Alex

    1993-01-01

    Blade lean is used to improve the uniformity of exit flow distributions from turbomachinery blading. In turbines, it has been used to control secondary flows by tailoring blade turning to reduce flow overturning and underturning and to create more uniform loss distributions from hub to shroud. In the present study, the Pump Consortium centrifugal impeller has been redesigned using blade lean. The flow at the exit of the baseline impeller had large blade-to-blade variations, creating a highly unsteady flow for the downstream diffuser. Blade lean is used to redesign the flow to move the high loss fluid from the suction side to the hub, significantly reducing blade-toblade variations at the exit.

  1. β-Hydroxy-β-Methylbutyrate Did Not Enhance High Intensity Resistance Training-Induced Improvements in Myofiber Dimensions and Myogenic Capacity in Aged Female Rats

    PubMed Central

    Kim, Jeong-Su; Park, Young-Min; Lee, Sang-Rok; Masad, Ihssan S.; Khamoui, Andy V.; Jo, Edward; Park, Bong-Sup; Arjmandi, Bahram H.; Panton, Lynn B.; Lee, Won Jun; Grant, Samuel C.

    2012-01-01

    Older women exhibit blunted skeletal muscle hypertrophy following resistance training (RT) compared to other age and gender cohorts that is partially due to an impaired regenerative capacity. In the present study, we examined whether β-hydroxy-β-methylbutyrate (HMB) provision to aged female rodents would enhance regenerative mechanisms and facilitate RT-induced myofiber growth. Nineteen-month old female Sprague-Dawley rats were randomly divided into three groups: HMB (0.48 g/kg/d; n = 6), non-HMB (n = 6), and control (n = 4). HMB and non-HMB groups underwent RT every third day for 10 weeks using a ladder climbing apparatus. Whole body strength, grip strength, and body composition was evaluated before and after RT. The gastrocnemius and soleus muscles were analyzed using magnetic resonance diffusion tensor imaging, RT-PCR, and immunohistochemistry to determine myofiber dimensions, transcript expression, and satellite cells/myonuclei, respectively. ANOVAs were used with significance set at p < 0.05. There were significant time effects (pre vs. post) for whole body strength (+262%), grip strength (+17%), lean mass (+20%), and fat mass (−19%). Both RT groups exhibited significant increases in the mean myofiber cross-sectional area (CSA) in the gastrocnemius and soleus (+8–22%) compared to control. Moreover, both groups demonstrated significant increases in the numbers of satellite cells (+100–108%) and myonuclei (+32%) in the soleus but not the gastrocnemius. A significant IGF-I mRNA elevation was only observed in soleus of the HMB group (+33%) whereas MGF and myogenin increased significantly in both groups (+32–40%). Our findings suggest that HMB did not further enhance intense RT-mediated myogenic mechanisms and myofiber CSA in aged female rats. PMID:23149873

  2. Physical trade-offs shape the evolution of buoyancy control in sharks.

    PubMed

    Gleiss, Adrian C; Potvin, Jean; Goldbogen, Jeremy A

    2017-11-15

    Buoyancy control is a fundamental aspect of aquatic life that has major implications for locomotor performance and ecological niche. Unlike terrestrial animals, the densities of aquatic animals are similar to the supporting fluid, thus even small changes in body density may have profound effects on locomotion. Here, we analysed the body composition (lipid versus lean tissue) of 32 shark species to study the evolution of buoyancy. Our comparative phylogenetic analyses indicate that although lean tissue displays minor positive allometry, liver volume exhibits pronounced positive allometry, suggesting that larger sharks evolved bulkier body compositions by adding lipid tissue to lean tissue rather than substituting lean for lipid tissue, particularly in the liver. We revealed a continuum of buoyancy control strategies that ranged from more buoyant sharks with larger livers in deeper ecosystems to relatively denser sharks with small livers in epipelagic habitats. Across this eco-morphological spectrum, our hydrodynamic modelling suggests that neutral buoyancy yields lower drag and more efficient steady swimming, whereas negative buoyancy may be more efficient during accelerated movements. The evolution of buoyancy control in sharks suggests that ecological and physiological factors mediate the selective pressures acting on these traits along two major gradients, body size and habitat depth. © 2017 The Author(s).

  3. The effects of a high dosage of creatine and caffeine supplementation on the lean body mass composition of rats submitted to vertical jumping training.

    PubMed

    Franco, Frederico Sc; Costa, Neuza Mb; Ferreira, Susana A; Carneiro-Junior, Miguel A; Natali, Antônio J

    2011-03-01

    The influences of creatine and caffeine supplementation associated with power exercise on lean body mass (LBM) composition are not clear. The purpose of this research was to determine whether supplementation with high doses of creatine and caffeine, either solely or combined, affects the LBM composition of rats submitted to vertical jumping training. Male Wistar rats were randomly divided into 8 groups: Sedentary (S) or Exercised (E) [placebo (Pl), creatine (Cr), caffeine (Caf) or creatine plus caffeine (CrCaf)]. The supplemented groups received creatine [load: 0.430 g/kg of body weight (BW) for 7 days; and maintenance: 0.143 g/kg of BW for 35 days], caffeine (15 mg/kg of BW for 42 days) or creatine plus caffeine. The exercised groups underwent a vertical jump training regime (load: 20 - 50% of BW, 4 sets of 10 jumps interspersed with 1 min resting intervals), 5 days/wk, for 6 weeks. LBM composition was evaluated by portions of water, protein and fat in the rat carcass. Data were submitted to ANOVA followed by the Tukey post hoc test and Student's t test. Exercised animals presented a lower carcass weight (10.9%; P = 0.01), as compared to sedentary animals. However, no effect of supplementation was observed on carcass weight (P > 0.05). There were no significant differences among the groups (P > 0.05) for percentage of water in the carcass. The percentage of fat in the group SCr was higher than in the groups SCaf and ECr (P < 0.05). A higher percentage of protein was observed in the groups EPl and ECaf when compared to the groups SPl and SCaf (P < 0.001). The percentage of fat in the carcass decreased (P < 0.001), while those of water and protein increased (P < 0.05) in exercised animals, compared to sedentary animals. Caffeine groups presented reduced percentage of fat when compared to creatine supplemented groups (P < 0.05). High combined doses of creatine and caffeine does not affect the LBM composition of either sedentary or exercised rats, however, caffeine supplementation alone reduces the percentage of fat. Vertical jumping training increases the percentages of water and protein and reduces the fat percentage in rats.

  4. Serum visfatin in relation to insulin resistance and markers of hyperandrogenism in lean and obese women with polycystic ovary syndrome.

    PubMed

    Kowalska, Irina; Straczkowski, Marek; Nikolajuk, Agnieszka; Adamska, Agnieszka; Karczewska-Kupczewska, Monika; Otziomek, Elzbieta; Wolczynski, Slawomir; Gorska, Maria

    2007-07-01

    Visfatin, a protein secreted by adipose tissue, is suggested to play a role in pathogenesis of insulin resistance. In polycystic ovary syndrome (PCOS), insulin resistance might be involved in the development of endocrine and metabolic abnormalities. The aim of the study was to asses the relation between serum visfatin concentration and insulin sensitivity and markers of hyperandrogenism in lean and obese PCOS patients. The study group consisted of 70 women with PCOS (23 lean and 47 obese) and 45 healthy women (25 lean and 20 obese). Euglycemic hyperinsulinemic clamp and the measurements of serum visfatin, sex hormones were performed. The PCOS group had lower insulin sensitivity (P=0.00049) and higher serum visfatin (P=0.047) in comparison to the control group. The decrease in insulin sensitivity was present in both the lean (P=0.019) and obese (P=0.0077) PCOS subjects, whereas increase in serum visfatin was observed only in lean PCOS subjects (P=0.012). In the whole group, serum visfatin was negatively correlated with insulin sensitivity (r=-0.27, P=0.004). This relationship was also observed in the subgroup of lean (r=-0.30, P=0.038), but not obese women. Additionally, in lean women, visfatin was associated with serum testosterone (r=0.47, P=0.002) and free androgen index (r=0.48, P=0.002), independently of other potential confounding factors. Visfatin is associated with insulin resistance and markers of hyperandrogenism in lean PCOS patients.

  5. Effects of testosterone treatment on body fat and lean mass in obese men on a hypocaloric diet: a randomised controlled trial.

    PubMed

    Ng Tang Fui, Mark; Prendergast, Luke A; Dupuis, Philippe; Raval, Manjri; Strauss, Boyd J; Zajac, Jeffrey D; Grossmann, Mathis

    2016-10-07

    Whether testosterone treatment has benefits on body composition over and above caloric restriction in men is unknown. We hypothesised that testosterone treatment augments diet-induced loss of fat mass and prevents loss of muscle mass. We conducted a randomised double-blind, parallel, placebo controlled trial at a tertiary referral centre. A total of 100 obese men (body mass index ≥ 30 kg/m 2 ) with a total testosterone level of or below 12 nmol/L and a median age of 53 years (interquartile range 47-60) receiving 10 weeks of a very low energy diet (VLED) followed by 46 weeks of weight maintenance were randomly assigned at baseline to 56 weeks of 10-weekly intramuscular testosterone undecanoate (n = 49, cases) or matching placebo (n = 51, controls). The main outcome measures were the between-group difference in fat and lean mass by dual-energy X-ray absorptiometry, and visceral fat area (computed tomography). A total of 82 men completed the study. At study end, compared to controls, cases had greater reductions in fat mass, with a mean adjusted between-group difference (MAD) of -2.9 kg (-5.7 to -0.2; P = 0.04), and in visceral fat (MAD -2678 mm 2 ; -5180 to -176; P = 0.04). Although both groups lost the same lean mass following VLED (cases -3.9 kg (-5.3 to -2.6); controls -4.8 kg (-6.2 to -3.5), P = 0.36), cases regained lean mass (3.3 kg (1.9 to 4.7), P < 0.001) during weight maintenance, in contrast to controls (0.8 kg (-0.7 to 2.3), P = 0.29) so that, at study end, cases had an attenuated reduction in lean mass compared to controls (MAD 3.4 kg (1.3 to 5.5), P = 0.002). While dieting men receiving placebo lost both fat and lean mass, the weight loss with testosterone treatment was almost exclusively due to loss of body fat. clinicaltrials.gov, identifier NCT01616732 , registration date: June 8, 2012.

  6. Effect of whey protein supplementation on body composition changes in women: a systematic review and meta-analysis.

    PubMed

    Bergia, Robert E; Hudson, Joshua L; Campbell, Wayne W

    2018-04-23

    A preponderance of evidence supports the beneficial effects of whey protein (WP) supplementation on body composition in men; however, there is currently insufficient evidence to make an equivalent claim in women. This systematic review and meta-analysis assessed the effects of WP supplementation with or without energy restriction (ER) and resistance training (RT) on changes in body mass, lean mass, and fat mass in women. Pubmed, Scopus, Cochrane, and CINAHL were searched using the keywords "whey protein," "body composition," and "lean mass." Two researchers independently screened 1845 abstracts and extracted 276 articles. Thirteen randomized controlled trials with 28 groups met the inclusion criteria. Globally, WP supplementation increased lean mass (WMD, 0.37 kg; 95% confidence interval [CI], 0.06 to 0.67) while not influencing changes in fat mass (-0.20 kg; 95%CI, -0.67 to 0.27) relative to non-WP control. The beneficial effect of WP on lean mass was lost when only studies with RT were included in the analysis (n = 7 comparisons; 0.23 kg; 95%CI, -0.17 to 0.63). The beneficial effect of WP on lean mass was more robust when only studies with an ER component were included (n = 6 comparisons; 0.90 kg; 95%CI, 0.31 to 1.49). There was no effect of WP on lean mass in studies without ER (n = 9 comparisons; 0.22 kg; 95%CI, -0.12 to 0.57). Whey protein supplementation improves body composition by modestly increasing lean mass without influencing changes in fat mass. Body composition improvements from WP are more robust when combined with ER .

  7. Serum antibody responses to vaccinal antigens in lean and obese geriatric dogs.

    PubMed

    Ellis, John; Gow, Sheryl; Rhodes, Carrie; Lacoste, Stacey; Kong, Lyndsay; Musil, Kristyna; Snead, Elisabeth

    2016-05-01

    The immune responses in control dogs [1 to 4 years of age, body condition score (BCS): 4 to 5 out of 9] were compared to those of aging dogs (based on breed and body size) either categorized as lean (BCS: 4 to 5 out of 9) or obese (BCS: 8 to 9 out of 9). Of interest were the serum titers to the following common agents found in vaccines, canine parainfluenza virus (CPIV), canine parvovirus (CPV), canine distemper virus (CDV), canine respiratory coronavirus (CRCoV), and Bordetella bronchiseptica. There were no statistical differences in the antibodies to CPIV, B. bronchispetica, and CRCoV, among the age/weight categories, nor among the age/weight categories and the time, in days, between the date of sample collection and the date of the last recorded vaccination for CPIV, B. bronchiseptica, CPV, and CDV. For CPV, the control dogs had significantly (P < 0.002) higher serum neutralization (SN) titers than the lean geriatric dogs and the obese geriatric dogs. For CDV SN titers, the only statistically significant (P = 0.01) difference was that the control dogs had higher SN titers than the lean geriatric dogs.

  8. Serum antibody responses to vaccinal antigens in lean and obese geriatric dogs

    PubMed Central

    Ellis, John; Gow, Sheryl; Rhodes, Carrie; Lacoste, Stacey; Kong, Lyndsay; Musil, Kristyna; Snead, Elisabeth

    2016-01-01

    The immune responses in control dogs [1 to 4 years of age, body condition score (BCS): 4 to 5 out of 9] were compared to those of aging dogs (based on breed and body size) either categorized as lean (BCS: 4 to 5 out of 9) or obese (BCS: 8 to 9 out of 9). Of interest were the serum titers to the following common agents found in vaccines, canine parainfluenza virus (CPIV), canine parvovirus (CPV), canine distemper virus (CDV), canine respiratory coronavirus (CRCoV), and Bordetella bronchiseptica. There were no statistical differences in the antibodies to CPIV, B. bronchispetica, and CRCoV, among the age/weight categories, nor among the age/weight categories and the time, in days, between the date of sample collection and the date of the last recorded vaccination for CPIV, B. bronchiseptica, CPV, and CDV. For CPV, the control dogs had significantly (P < 0.002) higher serum neutralization (SN) titers than the lean geriatric dogs and the obese geriatric dogs. For CDV SN titers, the only statistically significant (P = 0.01) difference was that the control dogs had higher SN titers than the lean geriatric dogs. PMID:27152043

  9. Systematic review with meta-analysis: risk factors for non-alcoholic fatty liver disease suggest a shared altered metabolic and cardiovascular profile between lean and obese patients.

    PubMed

    Sookoian, S; Pirola, C J

    2017-07-01

    The pathogenesis of non-alcoholic fatty liver disease (NAFLD) is closely associated with the co-occurrence of multiple pathological conditions characterising the metabolic syndrome (MetS), obesity in particular. However, NAFLD also develops in lean subjects, whose risk factors remain poorly defined. We performed a meta-analysis of 15 studies, along with the data pertaining to our own population (n=336 patients). Data from lean (n=1966) and obese (n=5938) patients with NAFLD were analysed; lean (n=9946) and obese (n=6027) subjects without NAFLD served as controls. Relative to the lean non-NAFLD controls, lean patients with NAFLD were older (3.79±0.72 years, P=1.36×10 -6 ) and exhibited the entire spectrum of the MetS risk factors. Specifically, they had a significant (P=10 -10 ) increase in plasma glucose levels (6.44±1.12 mg/dL) and HOMA-IR (0.52±0.094-unit increment), blood lipids (triglycerides: 48.37±3.6, P=10 -10 and total cholesterol: 7.04±3.8, mg/dL, P=4.2×10 -7 ), systolic (5.64±0.7) and diastolic (3.37±0.9) blood pressure (mm Hg), P=10 -10 , and waist circumference (5.88±0.4 cm, P=10 -10 ); values denote difference in means±SE. Nevertheless, the overall alterations in the obese group were much more severe when compared to lean subjects, regardless of the presence of NAFLD. Meta-regression suggested that NAFLD is a modifier of the level of blood lipids. Lean and obese patients with NAFLD share a common altered metabolic and cardiovascular profile. The former, while having normal body weight, showed excess of abdominal adipose tissue as well as other MetS features. © 2017 John Wiley & Sons Ltd.

  10. Laboratory studies of lean combustion

    NASA Technical Reports Server (NTRS)

    Sawyer, R. F.; Schefer, R. W.; Ganji, A. R.; Daily, J. W.; Pitz, R. W.; Oppenheim, A. K.; Angeli, J. W.

    1977-01-01

    The fundamental processes controlling lean combustion were observed for better understanding, with particular emphasis on the formation and measurement of gas-phase pollutants, the stability of the combustion process (blowout limits), methods of improving stability, and the application of probe and optical diagnostics for flow field characterization, temperature mapping, and composition measurements. The following areas of investigation are described in detail: (1) axisymmetric, opposed-reacting-jet-stabilized combustor studies; (2) stabilization through heat recirculation; (3) two dimensional combustor studies; and (4) spectroscopic methods. A departure from conventional combustor design to a premixed/prevaporized, lean combustion configuration is attractive for the control of oxides of nitrogen and smoke emissions, the promotion of uniform turbine inlet temperatures, and, possibly, the reduction of carbon monoxide and hydrocarbons at idle.

  11. The effects of testosterone on body composition in obese men are not sustained after cessation of testosterone treatment.

    PubMed

    Ng Tang Fui, Mark; Hoermann, Rudolf; Zajac, Jeffrey D; Grossmann, Mathis

    2017-10-01

    Testosterone treatment in obese dieting men augments the diet-associated loss of fat mass, but protects against loss of lean mass. We assessed whether body composition changes are maintained following withdrawal of testosterone treatment. We conducted a prespecified double-blind randomized placebo-controlled observational follow-up study of a randomized controlled trial (RCT). Participants were men with baseline obesity (body mass index >30 kg/m 2 ) and a repeated total testosterone level <12 nmol/L, previously enrolled in a 56-week testosterone treatment trial combined with a weight loss programme. Main outcome measures were mean adjusted differences (MAD) (95% confidence interval), in body composition between testosterone- and placebo-treated men at the end of the observation period. Of the 100 randomized men, 82 completed the RCT and 64 the subsequent observational study. Median [IQR] observation time after completion of the RCT was 82 weeks [74; 90] in men previously receiving testosterone (cases) and 81 weeks [67;91] in men previously receiving placebo (controls), P=.51. At the end of the RCT, while losing similar amounts of weight, cases had, compared to controls, lost more fat mass, MAD -2.9 kg (-5.7, -0.2), P=.04, but had lost less lean mass MAD 3.4 kg (1.3, 5.5), P=.002. At the end of the observation period, the former between-group differences in fat mass, MAD -0.8 kg (-3.6, 2.0), P=1.0, in lean mass, MAD -1.3 kg (-3.0, 0.5), P=.39, and in appendicular lean mass, MAD -0.1 kg/m 2 (-0.3, 0.1), P=.45, were no longer apparent. During observation, cases lost more lean mass, MAD -3.7 kg (-5.5, -1.9), P=.0005, and appendicular lean mass, MAD -0.5 kg/m 2 (-0.8, -0.3), P<.0001 compared to controls. The favourable effects of testosterone on body composition in men subjected to a concomitant weight loss programme were not maintained at 82 weeks after testosterone treatment cessation. © 2017 John Wiley & Sons Ltd.

  12. Individual Variability in Aerobic Fitness Adaptations to 70-d of Bed Rest and Exercise Training

    NASA Technical Reports Server (NTRS)

    Downs, Meghan; Buxton, Roxanne; Goetchius, Elizabeth; DeWitt, John; Ploutz-Snyder, Lori

    2016-01-01

    Change in maximal aerobic capacity (VO2pk) in response to exercise training and disuse is highly variable among individuals. Factors that could contribute to the observed variability (lean mass, daily activity, diet, sleep, stress) are not routinely controlled in studies. The NASA bed rest (BR) studies use a highly controlled hospital based model as an analog of spaceflight. In this study, diet, hydration, physical activity and light/dark cycles were precisely controlled and provided the opportunity to investigate individual variability. PURPOSE. Evaluate the contribution of exercise intensity and lean mass on change in VO2pk during 70-d of BR or BR + exercise. METHODS. Subjects completed 70-d of BR alone (CON, N=9) or BR + exercise (EX, N=17). The exercise prescription included 6 d/wk of aerobic exercise at 70 - 100% of max and 3 d/wk of lower body resistance exercise. Subjects were monitored 24 hr/d. VO2pk and lean mass (iDXA) were measured pre and post BR. ANOVA was used to evaluate changes in VO2pk pre to post BR. Subjects were retrospectively divided into high and low responders based on change in VO2pk (CON > 20% loss, n=5; EX >10% loss, n=4, or 5% gain, n=4) to further understand individual variability. RESULTS. VO2pk decreased from pre to post BR in CON (P<0.05) and was maintained in EX; however, significant individual variability was observed (CON: -22%, range: -39% to -.5%; EX: -1.8%, range: -16% to 12.6%). The overlap in ranges between groups included 3 CON who experienced smaller reduction in VO2pk (<16%) than the worst responding EX subjects. Individual variability was maintained when VO2pk was normalized to lean mass (range, CON: -33.7% to -5.7%; EX: -15.8% to 11%), and the overlap included 5 CON with smaller reductions in VO2pk than the worst responding EX subjects. High responders to disuse also lost the most lean mass; however, this relationship was not maintained in EX (i.e. the largest gains/losses in lean mass were observed in both high and low responders). Change in VO2pk was not related to exercise intensity. CONCLUSION. Change in VO2pk in response to disuse and exercise was highly variable among individuals, even in this tightly controlled study. Loss in lean mass accounts for a significant degree of variability in the CON; however, training induced gains in VO2pk appear unrelated to lean mass or exercise intensity.

  13. Breathprints of childhood obesity: changes in volatile organic compounds in obese children compared with lean controls.

    PubMed

    Alkhouri, N; Eng, K; Cikach, F; Patel, N; Yan, C; Brindle, A; Rome, E; Hanouneh, I; Grove, D; Lopez, R; Hazen, S L; Dweik, Raed A

    2015-02-01

    The objective of this study was to investigate changes in volatile organic compounds (VOCs) in exhaled breath in overweight/obese children compared with their lean counterparts. Single exhaled breath was collected and analyzed per protocol using selective ion flow tube mass spectrometry (SIFT-MS). Sixty overweight/obese children and 55 lean controls were included. Compared with the lean group, the obese group was significantly older (14.1 ± 2.8 vs. 12.1 ± 3.0 years), taller (164.8 ± 10.9 vs. 153.3 ± 17.1 cm) and more likely to be Caucasian (60% vs. 35.2%); P < 0.05 for all. A comparison of the SIFT-MS results of the obese group with the lean group revealed differences in concentration of more than 50 compounds. A panel of four VOCs can identify the presence of overweight/obesity with excellent accuracy. Further analysis revealed that breath isoprene, 1-decene, 1-octene, ammonia and hydrogen sulfide were significantly higher in the obese group compared with the lean group (P value < 0.01 for all). Obese children have a unique pattern of exhaled VOCs. Changes in VOCs observed in this study may help to gain insight into pathophysiological processes and pathways leading to the development of childhood obesity. © 2014 The Authors. Pediatric Obesity © 2014 International Association for the Study of Obesity.

  14. Impact of obesity on 7,12-dimethylbenz[a]anthracene-induced altered ovarian connexin gap junction proteins in female mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Nteeba, Jackson, E-mail: nteeba@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    The ovarian gap junction proteins alpha 4 (GJA4 or connexin 37; CX37), alpha 1 (GJA1 or connexin 43; CX43) and gamma 1 (GJC1 or connexin 45; CX45) are involved in cell communication and folliculogenesis. 7,12-dimethylbenz[a]anthracene (DMBA) alters Cx37 and Cx43 expression in cultured neonatal rat ovaries. Additionally, obesity has an additive effect on DMBA-induced ovarian cell death and follicle depletion, thus, we investigated in vivo impacts of obesity and DMBA on CX protein levels. Ovaries were collected from lean and obese mice aged 6, 12, 18, or 24 wks. A subset of 18 wk old mice (lean and obese) weremore » dosed with sesame oil or DMBA (1 mg/kg; ip) for 14 days and ovaries collected 3 days thereafter. Cx43 and Cx45 mRNA and protein levels decreased (P < 0.05) after 18 wks while Cx37 mRNA and protein levels decreased (P < 0.05) after 24 wks in obese ovaries. Cx37 mRNA and antral follicle protein staining intensity were reduced (P < 0.05) by obesity while total CX37 protein was reduced (P < 0.05) in DMBA exposed obese ovaries. Cx43 mRNA and total protein levels were decreased (P < 0.05) by DMBA in both lean and obese ovaries while basal protein staining intensity was reduced (P < 0.05) in obese controls. Cx45 mRNA, total protein and protein staining intensity level were decreased (P < 0.05) by obesity. These data support that obesity temporally alters gap junction protein expression and that DMBA-induced ovotoxicity may involve reduced gap junction protein function. - Highlights: • Ovarian gap junction proteins are affected by ovarian aging and obesity. • DMBA exposure negatively impacts gap junction proteins. • Altered gap junction proteins may contribute to infertility.« less

  15. Calculation of Glucose Dose for Intraperitoneal Glucose Tolerance Tests in Lean and Obese Mice.

    PubMed

    Jørgensen, Mikkel S; Tornqvist, Kristina S; Hvid, Henning

    2017-01-01

    Glucose tolerance tests are used frequently in nonclinical research with laboratory animals, for example during characterization of obese phenotypes. Despite published standard operating procedures for glucose tolerance tests in rodents, how glucose doses should be calculated when obese and lean animals are compared is not well documented. Typically the glucose dose is calculated as 2 g/kg body weight, regardless of body composition. With this approach, obese mice receive larger glucose doses than do lean animals, potentially leading to overestimation of glucose intolerance in obese animals. In this study, we performed intraperitoneal glucose tolerance tests in mice with diet-induced obesity and their lean controls, with glucose doses based on either the total body weight or the lean body mass of the animals. To determine glucose tolerance, we determined the blood glucose AUC during the glucose tolerance test. We found that the blood glucose AUC was increased significantly in obese mice compared with lean mice by 75% on average when glucose was dosed according to the lean body mass and by 87% when the glucose dose was calculated according to total body weight. Therefore, mice with diet-induced obesity were approximately equally glucose intolerant between the 2 dose-calculation protocols. However, we recommend calculating the glucose dose according to the lean body mass of the mice, because doing so eliminates the concern regarding overdosing of obese animals.

  16. Stratifying type 2 diabetes cases by BMI identifies genetic risk variants in LAMA1 and enrichment for risk variants in lean compared to obese cases.

    PubMed

    Perry, John R B; Voight, Benjamin F; Yengo, Loïc; Amin, Najaf; Dupuis, Josée; Ganser, Martha; Grallert, Harald; Navarro, Pau; Li, Man; Qi, Lu; Steinthorsdottir, Valgerdur; Scott, Robert A; Almgren, Peter; Arking, Dan E; Aulchenko, Yurii; Balkau, Beverley; Benediktsson, Rafn; Bergman, Richard N; Boerwinkle, Eric; Bonnycastle, Lori; Burtt, Noël P; Campbell, Harry; Charpentier, Guillaume; Collins, Francis S; Gieger, Christian; Green, Todd; Hadjadj, Samy; Hattersley, Andrew T; Herder, Christian; Hofman, Albert; Johnson, Andrew D; Kottgen, Anna; Kraft, Peter; Labrune, Yann; Langenberg, Claudia; Manning, Alisa K; Mohlke, Karen L; Morris, Andrew P; Oostra, Ben; Pankow, James; Petersen, Ann-Kristin; Pramstaller, Peter P; Prokopenko, Inga; Rathmann, Wolfgang; Rayner, William; Roden, Michael; Rudan, Igor; Rybin, Denis; Scott, Laura J; Sigurdsson, Gunnar; Sladek, Rob; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Tuomilehto, Jaakko; Uitterlinden, Andre G; Vivequin, Sidonie; Weedon, Michael N; Wright, Alan F; Hu, Frank B; Illig, Thomas; Kao, Linda; Meigs, James B; Wilson, James F; Stefansson, Kari; van Duijn, Cornelia; Altschuler, David; Morris, Andrew D; Boehnke, Michael; McCarthy, Mark I; Froguel, Philippe; Palmer, Colin N A; Wareham, Nicholas J; Groop, Leif; Frayling, Timothy M; Cauchi, Stéphane

    2012-05-01

    Common diseases such as type 2 diabetes are phenotypically heterogeneous. Obesity is a major risk factor for type 2 diabetes, but patients vary appreciably in body mass index. We hypothesized that the genetic predisposition to the disease may be different in lean (BMI<25 Kg/m²) compared to obese cases (BMI≥30 Kg/m²). We performed two case-control genome-wide studies using two accepted cut-offs for defining individuals as overweight or obese. We used 2,112 lean type 2 diabetes cases (BMI<25 kg/m²) or 4,123 obese cases (BMI≥30 kg/m²), and 54,412 un-stratified controls. Replication was performed in 2,881 lean cases or 8,702 obese cases, and 18,957 un-stratified controls. To assess the effects of known signals, we tested the individual and combined effects of SNPs representing 36 type 2 diabetes loci. After combining data from discovery and replication datasets, we identified two signals not previously reported in Europeans. A variant (rs8090011) in the LAMA1 gene was associated with type 2 diabetes in lean cases (P = 8.4×10⁻⁹, OR = 1.13 [95% CI 1.09-1.18]), and this association was stronger than that in obese cases (P = 0.04, OR = 1.03 [95% CI 1.00-1.06]). A variant in HMG20A--previously identified in South Asians but not Europeans--was associated with type 2 diabetes in obese cases (P = 1.3×10⁻⁸, OR = 1.11 [95% CI 1.07-1.15]), although this association was not significantly stronger than that in lean cases (P = 0.02, OR = 1.09 [95% CI 1.02-1.17]). For 36 known type 2 diabetes loci, 29 had a larger odds ratio in the lean compared to obese (binomial P = 0.0002). In the lean analysis, we observed a weighted per-risk allele OR = 1.13 [95% CI 1.10-1.17], P = 3.2×10⁻¹⁴. This was larger than the same model fitted in the obese analysis where the OR = 1.06 [95% CI 1.05-1.08], P = 2.2×10⁻¹⁶. This study provides evidence that stratification of type 2 diabetes cases by BMI may help identify additional risk variants and that lean cases may have a stronger genetic predisposition to type 2 diabetes.

  17. Modelling and model predictive control for a bicycle-rider system

    NASA Astrophysics Data System (ADS)

    Chu, T. D.; Chen, C. K.

    2018-01-01

    This study proposes a bicycle-rider control model based on model predictive control (MPC). First, a bicycle-rider model with leaning motion of the rider's upper body is developed. The initial simulation data of the bicycle rider are then used to identify the linear model of the system in state-space form for MPC design. Control characteristics of the proposed controller are assessed by simulating the roll-angle tracking control. In this riding task, the MPC uses steering and leaning torques as the control inputs to control the bicycle along a reference roll angle. The simulation results in different cases have demonstrated the applicability and performance of the MPC for bicycle-rider modelling.

  18. Study on HOPE Management Mode of Coal Enterprises Based on Systematic Thinking

    NASA Astrophysics Data System (ADS)

    Zhaoran, Zhang; Tianzhu, Zhang; Wenjing, Tong

    2018-02-01

    The extensive management mode of coal enterprises is no longer applicable to the demand of enterprise development under the new economic situation. Combined with the characteristics of coal mine production, based on the system of thinking, integration of lean, people, comprehensive, job management theory, formed HOPE management model, including a core system and three support systems and 18 elements. There are three stages in the development and implementation of this model. To 6S site management for the initial stage to job process reengineering for the intermediate stage to post value process control for the advanced stage. The successful implementation of HOPE model in coal enterprises needs comprehensive control from five aspects: lean culture construction, flattening organizational structure, cost control system, performance appraisal system and lean information management platform. HOPE model can be implemented smoothly and make “win-win” between enterprises and employees.

  19. A Lean Six Sigma approach to the improvement of the selenium analysis method.

    PubMed

    Cloete, Bronwyn C; Bester, André

    2012-11-02

    Reliable results represent the pinnacle assessment of quality of an analytical laboratory, and therefore variability is considered to be a critical quality problem associated with the selenium analysis method executed at Western Cape Provincial Veterinary Laboratory (WCPVL). The elimination and control of variability is undoubtedly of significant importance because of the narrow margin of safety between toxic and deficient doses of the trace element for good animal health. A quality methodology known as Lean Six Sigma was believed to present the most feasible solution for overcoming the adverse effect of variation, through steps towards analytical process improvement. Lean Six Sigma represents a form of scientific method type, which is empirical, inductive and deductive, and systematic, which relies on data, and is fact-based. The Lean Six Sigma methodology comprises five macro-phases, namely Define, Measure, Analyse, Improve and Control (DMAIC). Both qualitative and quantitative laboratory data were collected in terms of these phases. Qualitative data were collected by using quality-tools, namely an Ishikawa diagram, a Pareto chart, Kaizen analysis and a Failure Mode Effect analysis tool. Quantitative laboratory data, based on the analytical chemistry test method, were collected through a controlled experiment. The controlled experiment entailed 13 replicated runs of the selenium test method, whereby 11 samples were repetitively analysed, whilst Certified Reference Material (CRM) was also included in 6 of the runs. Laboratory results obtained from the controlled experiment was analysed by using statistical methods, commonly associated with quality validation of chemistry procedures. Analysis of both sets of data yielded an improved selenium analysis method, believed to provide greater reliability of results, in addition to a greatly reduced cycle time and superior control features. Lean Six Sigma may therefore be regarded as a valuable tool in any laboratory, and represents both a management discipline, and a standardised approach to problem solving and process optimisation.

  20. Women with polycystic ovary syndrome demonstrate worsening markers of cardiovascular risk over the short-term despite declining hyperandrogenaemia: Results of a longitudinal study with community controls.

    PubMed

    Huddleston, Heather G; Quinn, Molly M; Kao, Chia-Ning; Lenhart, Nikolaus; Rosen, Mitchell P; Cedars, Marcelle I

    2017-12-01

    To compare age-associated changes in cardiovascular risk markers in lean and obese reproductive-aged women with polycystic ovary syndrome (PCOS) with community controls. Longitudinal study at an academic medical centre PATIENTS: Patients diagnosed with PCOS by 2004 Rotterdam criteria in a multidisciplinary clinic were systematically enrolled from 2006-2014 in a PCOS cohort study and subsequently agreed to participate in a longitudinal study. The comparison controls were from the prospective, longitudinal Ovarian Aging (OVA) study, which consists of healthy women with regular menstrual cycles recruited from 2006 to 2011. Cardiovascular risk markers and hormone parameters at baseline and follow-up. Obese and lean PCOS (n = 38) and control women (n = 296) completed two study visits. The follow-up time (3.5 ± 1.5 vs 4.0 ± 0.8 years, P = .06) and magnitude of BMI gain (+0.1 kg/m 2 /y [-0.11, 0.36] vs +0.26 [-0.18, 0.87] P = .19) did not differ between obese and lean PCOS and controls. In PCOS subjects, total testosterone decreased in both obese and lean, but the decrease was greater in obese subjects (-0.09 nmol/L per year; 95% CI: -0.16, -0.02 vs -0.04 nmol/L per year; 95%CI: -0.11, 0.03). Compared to their respective controls, obese and lean PCOS saw worsening triglyceride (TG) levels (P < .05) and HOMA-IR (P < .05) over time, but there was no difference in change in LDL, HDL, fasting glucose, C-reactive protein or ALT. In a longitudinal study, reproductive-aged women with PCOS demonstrated declines in biochemical hyperandrogenaemia over time. Despite this, PCOS subjects experienced steeper increases in cardiovascular risk factors associated with insulin resistance, including triglycerides and HOMA-IR. © 2017 John Wiley & Sons Ltd.

  1. Beta cell compensation for insulin resistance in Zucker fatty rats: increased lipolysis and fatty acid signalling.

    PubMed

    Nolan, C J; Leahy, J L; Delghingaro-Augusto, V; Moibi, J; Soni, K; Peyot, M-L; Fortier, M; Guay, C; Lamontagne, J; Barbeau, A; Przybytkowski, E; Joly, E; Masiello, P; Wang, S; Mitchell, G A; Prentki, M

    2006-09-01

    The aim of this study was to determine the role of fatty acid signalling in islet beta cell compensation for insulin resistance in the Zucker fatty fa/fa (ZF) rat, a genetic model of severe obesity, hyperlipidaemia and insulin resistance that does not develop diabetes. NEFA augmentation of insulin secretion and fatty acid metabolism were studied in isolated islets from ZF and Zucker lean (ZL) control rats. Exogenous palmitate markedly potentiated glucose-stimulated insulin secretion (GSIS) in ZF islets, allowing robust secretion at physiological glucose levels (5-8 mmol/l). Exogenous palmitate also synergised with glucagon-like peptide-1 and the cyclic AMP-raising agent forskolin to enhance GSIS in ZF islets only. In assessing islet fatty acid metabolism, we found increased glucose-responsive palmitate esterification and lipolysis processes in ZF islets, suggestive of enhanced triglyceride-fatty acid cycling. Interruption of glucose-stimulated lipolysis by the lipase inhibitor Orlistat (tetrahydrolipstatin) blunted palmitate-augmented GSIS in ZF islets. Fatty acid oxidation was also higher at intermediate glucose levels in ZF islets and steatotic triglyceride accumulation was absent. The results highlight the potential importance of NEFA and glucoincretin enhancement of insulin secretion in beta cell compensation for insulin resistance. We propose that coordinated glucose-responsive fatty acid esterification and lipolysis processes, suggestive of triglyceride-fatty acid cycling, play a role in the coupling mechanisms of glucose-induced insulin secretion as well as in beta cell compensation and the hypersecretion of insulin in obesity.

  2. Lean Six Sigma Implementation for Military Logistics to Improve Readiness

    DTIC Science & Technology

    2007-04-30

    mistake-proofing ( poka - yoke ). Lean, as a management philosophy, is also very focused on creating a better workplace through the Toyota principle...Techniques • Pull System • Visual Control • Mistake proofing ( poka yoke ) • Equipment Changeover 37 Pull System • Issuance of an RFI engine would “trigger

  3. Lean Six Sigma: a new approach to the management of patients undergoing prosthetic hip replacement surgery.

    PubMed

    Improta, Giovanni; Balato, Giovanni; Romano, Maria; Carpentieri, Francesco; Bifulco, Paolo; Alessandro Russo, Mario; Rosa, Donato; Triassi, Maria; Cesarelli, Mario

    2015-08-01

    In 2012, health care spending in Italy reached €114.5 billion, accounting for 7.2% of the Gross Domestic Product (GDP) and 14.2% of total public spending. Therefore, reducing waste in health facilities could generate substantial cost savings. The objective of this study is to show that Lean Six Sigma represents an appropriate methodology for the development of a clinical pathway which allows to improve quality and to reduce costs in prosthetic hip replacement surgery. The methodology used for the development of a new clinical pathway was Lean Six Sigma. Problem solving in Lean Six Sigma is the DMAIC (Define, Measure, Analyse, Improve, Control) roadmap, characterized by five operational phases which make possible to reach fixed goals through a rigorous process of defining, measuring, analysing, improving and controlling business problems. The following project indicated several variables influencing the inappropriate prolongation of the length of stay for inpatient treatment and corrective actions were performed to improve the effectiveness and efficiency of the process of care. The average length of stay was reduced from 18.9 to 10.6 days (-44%). This article shows there is no trade-off between quality and costs: Lean Six Sigma improves quality and, at the same time, reduces costs. © 2015 John Wiley & Sons, Ltd.

  4. Effect of a soluble cocoa fiber-enriched diet in Zucker fatty rats.

    PubMed

    Sánchez, David; Moulay, Leila; Muguerza, Begoña; Quiñones, Mar; Miguel, Marta; Aleixandre, Amaya

    2010-06-01

    The effects of a soluble cocoa fiber (SCF) were studied in Zucker fatty rats. Two groups of Zucker fatty rats were fed the following diets: standard diet and 5% SCF-enriched diet. A group of Zucker lean rats fed the standard diet was used for results comparison with obese Zucker animals. Solid and liquid intakes, body weight, plasma glucose, lipid profile, and systolic (SBP) and diastolic (DBP) blood pressure were recorded weekly. At the end of the experimental period insulin was determined, and fat apparent digestibility (FAD) and insulin resistance were calculated. The Zucker fatty rats fed 5% SCF-enriched diet showed less weight gain and food intake than those fed the standard diet. The group fed the fiber-enriched diet showed lower values of the total cholesterol/high-density lipoprotein cholesterol ratio and triglyceride levels than the standard group. FAD was also lower in the fiber group. Both SBP and DBP were decreased. In addition, SCF reduced plasma glucose and insulin, and as a consequence the insulin resistance was also decreased. Our data demonstrate that SCF resulted in an improvement of the studied risk factors associated with cardiometabolic disorders.

  5. Regulation of plasma agouti-related protein and its relationship with hunger in lean and obese men.

    PubMed

    Hazell, Tom J; Sawula, Laura; Edgett, Brittany A; Walsh, Jeremy J; Gurd, Brendon J

    2016-12-01

    Agouti-related protein (AgRP) is an orexigenic (appetite stimulating) neuropeptide suggested to exert tonic control over long-term energy balance. While some have speculated AgRP is not involved in the episodic (i.e. meal to meal energy intake) control, acute decreases in plasma agouti-related protein (AgRP) following a meal have been observed in humans in a role consistent with episodic control for AgRP. Whether changes in plasma AgRP are associated with episodic, and/or tonic changes in appetite has yet to be directly examined. The present study examined the relationship between agouti-related protein (AgRP), leptin and the regulation of appetite following a 48-h fast and an acute meal challenge. Blood samples were obtained from young lean and obese men before and after a 48 h fast (lean n = 10; obese n = 7). Fasting resulted in an increase in AgRP and a decrease in leptin with these changes being greater in lean than obese. In addition, blood samples were obtained from lean men before and 1, 2, 3 and 4 h after a meal (n = 8). Following a meal, AgRP was reduced from 2 to 4 h, a change that was dissociated from both leptin and subjective measures of hunger and satiety. These results demonstrate that AgRP is not associated with changes in hunger or satiety, and can change without corresponding changes in leptin. This suggests that AgRP may not be involved in the episodic control of appetite and the release of AgRP may involve signals other than leptin. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Definition of insulin resistance using the homeostasis model assessment (HOMA-IR) in IVF patients diagnosed with polycystic ovary syndrome (PCOS) according to the Rotterdam criteria.

    PubMed

    Alebić, Miro Šimun; Bulum, Tomislav; Stojanović, Nataša; Duvnjak, Lea

    2014-11-01

    Polycystic ovary syndrome (PCOS) women are more insulin resistant than general population. Prevalence data on insulin resistance (IR) in PCOS vary depending on population characteristics and methodology used. The objectives of this study were to investigate whether IR in PCOS is exclusively associated with body mass and to assess the prevalence of IR in lean and overweight/obese PCOS. Study included 250 consecutive women who attended a Department of Human Reproduction diagnosed as having PCOS according to the Rotterdam criteria. Control group comprised 500 healthy women referred for male factor infertility evaluation during the same period as the PCOS women. PCOS women (n = 250) were more insulin resistant than controls (n = 500) even after adjustment for age and body mass index (BMI) (P = 0.03). Using logistic regression analysis, BMI ≥ 25 kg/m(2) (OR 6.0; 95 % CI 3.3-11.0), PCOS (OR 2.2; 95 % CI 1.4-3.5) and waist circumference ≥ 80 cm (OR 2.0; 95 % CI 1.1-3.8) were identified as independent determinants of IR (P < 0.001). IR was more prevalent in overweight/obese controls (n = 100) than in lean PCOS women (n = 150), 31 versus 9.3 %, but less prevalent than in overweight/obese PCOS (n = 100), 31 versus 57 %. The prevalence of IR between lean controls (5 %) and lean PCOS (9.3 %) did not significantly differ. Both PCOS-specific and obesity-related IR independently contribute to IR in PCOS. Using HOMA-IR cutoff value of 3.15 specific for Croatian women in our clinical setting, the assessed prevalence of IR in lean and overweight/obese PCOS women was 9.3 and 57 %, respectively.

  7. Protein-enriched diet, with the use of lean red meat, combined with progressive resistance training enhances lean tissue mass and muscle strength and reduces circulating IL-6 concentrations in elderly women: a cluster randomized controlled trial.

    PubMed

    Daly, Robin M; O'Connell, Stella L; Mundell, Niamh L; Grimes, Carley A; Dunstan, David W; Nowson, Caryl A

    2014-04-01

    Physical inactivity, inadequate dietary protein, and low-grade systemic inflammation contribute to age-related muscle loss, impaired function, and disability. We assessed the effects of progressive resistance training (PRT) combined with a protein-enriched diet facilitated through lean red meat on lean tissue mass (LTM), muscle size, strength and function, circulating inflammatory markers, blood pressure, and lipids in elderly women. In a 4-mo cluster randomized controlled trial, 100 women aged 60-90 y who were residing in 15 retirement villages were allocated to receive PRT with lean red meat (∼160 g cooked) to be consumed 6 d/wk [resistance training plus lean red meat (RT+Meat) group; n = 53] or control PRT [1 serving pasta or rice/d; control resistance training (CRT) group; n = 47)]. All women undertook PRT 2 times/wk and received 1000 IU vitamin D3/d. The mean (± SD) protein intake was greater in the RT+Meat group than in the CRT group throughout the study (1.3 ± 0.3 compared with 1.1 ± 0.3 g · kg⁻¹ · d⁻¹, respectively; P < 0.05). The RT+Meat group experienced greater gains in total body LTM (0.45 kg; 95% CI: 0.07, 0.84 kg), leg LTM (0.22 kg; 95% CI: 0.02, 0.42 kg), and muscle strength (18%; 95% CI: 0.03, 0.34) than did the CRT group (all P < 0.05). The RT+Meat group also experienced a 10% greater increase in serum insulin-like growth factor I (P < 0.05) and a 16% greater reduction in the proinflammatory marker interleukin-6 (IL-6) (P < 0.05) after 4 mo. There were no between-group differences for the change in blood lipids or blood pressure. A protein-enriched diet equivalent to ∼1.3 g · kg⁻¹ · d⁻¹ achieved through lean red meat is safe and effective for enhancing the effects of PRT on LTM and muscle strength and reducing circulating IL-6 concentrations in elderly women. This trial was registered at the Australian Clinical Trials Registry as ACTRN12609000223235.

  8. STS-105 coverage of Mission Control Center employees in the WFCR & BFCR

    NASA Image and Video Library

    2003-03-25

    JSC2001-E-25123 (16 August 2001) --- Astronauts Joseph R. Tanner (left) and Steve MacLean, both STS-105 spacecraft communicators (CAPCOM), discuss the progress of the extravehicular activity at their consoles in the shuttle flight control room (WFCR) in Houston’s Mission Control Center (MCC). At the time this photo was taken, mission specialists Daniel T. Barry and Patrick G. Forrester were performing the first of two scheduled space walks during Discovery’s voyage to the International Space Station (ISS). MacLean represents the Canadian Space Agency.

  9. How does lean work in emergency care? A case study of a lean-inspired intervention at the Astrid Lindgren Children's hospital, Stockholm, Sweden

    PubMed Central

    2012-01-01

    Background There is growing interest in applying lean thinking in healthcare, yet, there is still limited knowledge of how and why lean interventions succeed (or fail). To address this gap, this in-depth case study examines a lean-inspired intervention in a Swedish pediatric Accident and Emergency department. Methods We used a mixed methods explanatory single case study design. Hospital performance data were analyzed using analysis of variance (ANOVA) and statistical process control techniques to assess changes in performance one year before and two years after the intervention. We collected qualitative data through non-participant observations, semi-structured interviews, and internal documents to describe the process and content of the lean intervention. We then analyzed empirical findings using four theoretical lean principles (Spear and Bowen 1999) to understand how and why the intervention worked in its local context as well as to identify its strengths and weaknesses. Results Improvements in waiting and lead times (19-24%) were achieved and sustained in the two years following lean-inspired changes to employee roles, staffing and scheduling, communication and coordination, expertise, workspace layout, and problem solving. These changes resulted in improvement because they: (a) standardized work and reduced ambiguity, (b) connected people who were dependent on one another, (c) enhanced seamless, uninterrupted flow through the process, and (d) empowered staff to investigate problems and to develop countermeasures using a "scientific method". Contextual factors that may explain why not even greater improvement was achieved included: a mismatch between job tasks, licensing constraints, and competence; a perception of being monitored, and discomfort with inter-professional collaboration. Conclusions Drawing on Spear and Bowen's theoretical propositions, this study explains how a package of lean-like changes translated into better care process management. It adds new knowledge regarding how lean principles can be beneficially applied in healthcare and identifies changes to professional roles as a potential challenge when introducing lean thinking there. This knowledge may enable health care organizations and managers in other settings to configure their own lean program and to better understand the reasons behind lean's success (or failure). PMID:22296919

  10. How does lean work in emergency care? A case study of a lean-inspired intervention at the Astrid Lindgren Children's hospital, Stockholm, Sweden.

    PubMed

    Mazzocato, Pamela; Holden, Richard J; Brommels, Mats; Aronsson, Håkan; Bäckman, Ulrika; Elg, Mattias; Thor, Johan

    2012-02-01

    There is growing interest in applying lean thinking in healthcare, yet, there is still limited knowledge of how and why lean interventions succeed (or fail). To address this gap, this in-depth case study examines a lean-inspired intervention in a Swedish pediatric Accident and Emergency department. We used a mixed methods explanatory single case study design. Hospital performance data were analyzed using analysis of variance (ANOVA) and statistical process control techniques to assess changes in performance one year before and two years after the intervention. We collected qualitative data through non-participant observations, semi-structured interviews, and internal documents to describe the process and content of the lean intervention. We then analyzed empirical findings using four theoretical lean principles (Spear and Bowen 1999) to understand how and why the intervention worked in its local context as well as to identify its strengths and weaknesses. Improvements in waiting and lead times (19-24%) were achieved and sustained in the two years following lean-inspired changes to employee roles, staffing and scheduling, communication and coordination, expertise, workspace layout, and problem solving. These changes resulted in improvement because they: (a) standardized work and reduced ambiguity, (b) connected people who were dependent on one another, (c) enhanced seamless, uninterrupted flow through the process, and (d) empowered staff to investigate problems and to develop countermeasures using a "scientific method". Contextual factors that may explain why not even greater improvement was achieved included: a mismatch between job tasks, licensing constraints, and competence; a perception of being monitored, and discomfort with inter-professional collaboration. Drawing on Spear and Bowen's theoretical propositions, this study explains how a package of lean-like changes translated into better care process management. It adds new knowledge regarding how lean principles can be beneficially applied in healthcare and identifies changes to professional roles as a potential challenge when introducing lean thinking there. This knowledge may enable health care organizations and managers in other settings to configure their own lean program and to better understand the reasons behind lean's success (or failure).

  11. Pancreatic Fat Accumulation, Fibrosis, and Acinar Cell Injury in the Zucker Diabetic Fatty Rat Fed a Chronic High-Fat Diet

    PubMed Central

    Matsuda, Akiko; Makino, Naohiko; Tozawa, Tomohiro; Shirahata, Nakao; Honda, Teiichiro; Ikeda, Yushi; Sato, Hideyuki; Ito, Miho; Kakizaki, Yasuharu; Akamatsu, Manabu; Ueno, Yoshiyuki; Kawata, Sumio

    2014-01-01

    Objective The histological alteration of the exocrine pancreas in obesity has not been clarified. In the present study, we investigated biochemical and histological changes in the exocrine pancreas of obese model rats. Methods Zucker lean rats were fed a standard diet, and Zucker diabetic fatty (ZDF) rats were divided into 2 groups fed a standard diet and a high-fat diet, respectively. These experimental groups were fed each of the diets from 6 weeks until 12, 18, 24 weeks of age. We performed blood biochemical assays and histological analysis of the pancreas. Results In the ZDF rats fed a high-fat diet, the ratio of accumulated pancreatic fat area relative to exocrine gland area was increased significantly at 18 weeks of age in comparison with the other 2 groups (P < 0.05), and lipid droplets were observed in acinar cells. Subsequently, at 24 weeks of age in this group, pancreatic fibrosis and the serum exocrine pancreatic enzyme levels were increased significantly relative to the other 2 groups (P < 0.01). Conclusions In ZDF rats fed a chronic high-fat diet, fat accumulates in pancreatic acinar cells, and this fatty change seems to be related to subsequent pancreatic fibrosis and acinar cell injury. PMID:24717823

  12. Effects of xanthine oxidase inhibition with febuxostat on the development of nephropathy in experimental type 2 diabetes

    PubMed Central

    Xu, Bei; Schneider, Jennifer; Oyama, Terry T

    2016-01-01

    Background and Purpose Elevated serum uric acid (UA) is a risk factor for the development of kidney disease. Inhibitors of xanthine oxidase (XOi), an enzyme involved in UA synthesis, have protective effects at early stages of experimental diabetic nephropathy (DN). However, long‐term effects of XOi in models of DN remain to be determined. Experimental Approach The development of albuminuria, renal structure and molecular markers of DN were studied in type 2 diabetic Zucker obese (ZO) rats treated for 18 weeks with the XOi febuxostat and compared with vehicle‐treated ZO rats, ZO rats treated with enalapril or a combination of both agents, and lean Zucker rats without metabolic defects. Results Febuxostat normalized serum UA and attenuated the development of albuminuria, renal structural changes, with no significant effects on BP, metabolic control or systemic markers of oxidative stress (OS). Most of these actions were comparable with those of enalapril. Combination treatment induced marked decreases in BP and was more effective in ameliorating structural changes, expression of profibrotic genes and systemic OS than either monotherapy. Febuxostat attenuated renal protein expression of TGF‐ß, CTGF, collagen 4, mesenchymal markers (FSP1 and vimentin) and a tissue marker of OS nitrotyrosine. Moreover, febuxostat attenuated TGF‐ß‐ and S100B‐induced increased expression of fibrogenic molecules in renal tubular cells in vitro in UA‐free media in an Akt kinase‐dependent manner. Conclusions and Implications Febuxostat is protective and enhances the actions of enalapril in experimental DN. Multiple mechanisms might be involved, such as a reduction of UA, renal OS and inhibition of profibrotic signalling. PMID:27238746

  13. Effects of prepubertal-onset exercise on body weight changes up to middle age in rats.

    PubMed

    Shindo, Daisuke; Matsuura, Tomokazu; Suzuki, Masato

    2014-03-15

    The present study was conducted to examine whether prepubertal-onset exercise might help adults maintain long-term body weight (BW) reduction and increased energy metabolism after the cessation of exercise. Furthermore, the effects of the exercise regimen were compared with those of food restriction. Twenty-three male obese-diabetic [Otsuka Long-Evans Tokushima Fatty (OLETF)] rats were randomly assigned to prepubertal-onset exercise (Childhood-Ex), food restriction (Childhood-Diet), and sedentary control (OLETF-Sed) groups. Childhood-Ex rats exercised voluntarily every day using a rotating wheel, while the food volume of the Childhood-Diet group was restricted to achieve a BW similar to that recorded in the Childhood-Ex group. Both treatments were conducted at 5-19 wk of age; after this period, the rats were kept sedentary and allowed ad libitum food intake until 45 wk of age. BW was significantly lower, and percent lean body mass was significantly higher, in the Childhood-Ex group compared with those in the Childhood-Diet and OLETF-Sed groups throughout maturation and middle age after cessation of the interventions. The Childhood-Ex group also demonstrated higher citrate synthase, succinate dehydrogenase, and phosphofructokinase activity levels, as well as uncoupling protein-3 mRNA expression in skeletal muscle. This study revealed that inhibited BW gain in an animal model of human obese diabetes by prepubertal-onset exercise lasted for a long period after the completion of the exercise intervention. This effect may be facilitated by increased energy metabolism. However, these benefits were not found by prepubertal food restriction treatment. Importantly, to allow translation of our work, these novel insights need to be assessed in obese human individuals.

  14. Role of insulin in the hyperandrogenemia of lean women with polycystic ovary syndrome and normal insulin sensitivity.

    PubMed

    Baillargeon, Jean-Patrice; Carpentier, André

    2007-10-01

    To determine the effect of reducing insulin secretion on hyperandrogenemia in lean normoinsulinemic women with polycystic ovary syndrome (PCOS) and normal metabolic insulin sensitivity. Transversal assessment at baseline and prospective follow-up of lean PCOS group after 8 days of diazoxide, which reduces insulin secretion, and 1 month of leuprolide, which suppresses LH. Clinical research center of an academic hospital. Nine lean women (body mass index

  15. Carbohydrate-Free Peach (Prunus persica) and Plum (Prunus domestica) Juice Affects Fecal Microbial Ecology in an Obese Animal Model

    PubMed Central

    Markel, Melissa; Martino, Hercia S.; Minamoto, Yasushi; Steiner, Jörg M.; Byrne, David; Suchodolski, Jan S.; Mertens-Talcott, Susanne U.

    2014-01-01

    Background Growing evidence shows the potential of nutritional interventions to treat obesity but most investigations have utilized non-digestible carbohydrates only. Peach and plum contain high amounts of polyphenols, compounds with demonstrated anti-obesity effects. The underlying process of successfully treating obesity using polyphenols may involve an alteration of the intestinal microbiota. However, this phenomenon is not well understood. Methodology/Principal Findings Obese Zucker rats were assigned to three groups (peach, plum, and control, n = 10 each), wild-type group was named lean (n = 10). Carbohydrates in the fruit juices were eliminated using enzymatic hydrolysis. Fecal samples were obtained after 11 weeks of fruit or control juice administration. Real-time PCR and 454-pyrosequencing were used to evaluate changes in fecal microbiota. Over 1,500 different Operational Taxonomic Units at 97% similarity were detected in all rats. Several bacterial groups (e.g. Lactobacillus and members of Ruminococcacea) were found to be more abundant in the peach but especially in the plum group (plum juice contained 3 times more total polyphenolics compared to peach juice). Principal coordinate analysis based on Unifrac-based unweighted distance matrices revealed a distinct separation between the microbiota of control and treatment groups. These changes in fecal microbiota occurred simultaneously with differences in fecal short-chain acids concentrations between the control and treatment groups as well as a significant decrease in body weight in the plum group. Conclusions This study suggests that consumption of carbohydrate-free peach and plum juice has the potential to modify fecal microbial ecology in an obese animal model. The separate contribution of polyphenols and non-polyphenols compounds (vitamins and minerals) to the observed changes is unknown. PMID:25007331

  16. Stressed hearts in children with obesity and diabetes: a cause for concern?

    PubMed

    Berry, C; Sattar, N

    2011-04-01

    Obesity in young people is an emerging public health problem, particularly because of its association with type 2 diabetes. Since obesity and diabetes contribute to the development of cardiovascular disease in adults, the question arises as to whether or not these conditions may be associated with cardiovascular abnormalities in children and adolescents. In this issue of Diabetologia, Shah et al. report the results of a cross-sectional study of heart structure and function in 612 adolescents and young adults (aged 10-24 years) subdivided into three groups: (1) those with obesity and type 2 diabetes; (2) those with type 2 diabetes but without obesity; and (3) lean healthy controls. Their results revealed that left ventricular mass (indexed to body surface area) was greater in the obese individuals than in lean controls. Left ventricular systolic function was more dynamic in obese participants and obese participants with type 2 diabetes compared with lean controls, whereas systolic function was comparable in obese patients with or without type 2 diabetes. Furthermore, compared with the healthy lean control participants, diastolic function was impaired in the obese group and further impaired in the obese individuals with diabetes. These results, and those of a few other similar studies, lend support to the notion that obesity and diabetes in children cause subtle abnormalities in cardiovascular structure and function. The present commentary discusses potential mechanisms and possible clinical ramifications for such findings.

  17. Plasma visfatin level in lean women with PCOS: relation to proinflammatory markers and insulin resistance.

    PubMed

    Gen, Ramazan; Akbay, Esen; Muslu, Necati; Sezer, Kerem; Cayan, Filiz

    2009-04-01

    The present study was undertaken to investigate the association between plasma visfatin concentrations and inflammatory markers such as interleukin-6 (IL-6) and high-sensitive C-reactive protein (hsCRP) in company with several metabolic parameters in lean women with polycystic ovary syndrome (PCOS). The study group consisted of 21 lean women with PCOS (BMI 20.74 +/- 1.74 kg/m(2)) and 15 healthy, normally menstruating women (BMI 20.85 +/- 2.08 kg/m(2) control group). PCOS was defined according to the Rotterdam criteria. Visfatin, IL-6, hsCRP, hyperandrogenism markers and metabolic markers were examined in all PCOS and control women. Plasma visfatin level in the PCOS group was higher than that in the control group. Plasma hsCRP and IL-6 levels in PCOS group were similar with the control group. Plasma visfatin levels were positively associated with total cholesterol, high density lipoprotein, hirsutism score, total testosterone and FAI. Plasma visfatin level was negatively associated with SHBG. However, there were no correlation between plasma visfatin level and IL-6 and hsCRP. In multivariate regression analyses, only FAI and high density lipoprotein-cholesterol (HDL-C) showed a significant association with serum visfatin. Our data indicates that plasma visfatin levels are associated with HDL-C and markers of hyperandrogenism, but it is not associated with proinflammatory markers and insulin resistance in lean women with PCOS.

  18. Echocardiographic left ventricular masses in distance runners and weight lifters

    NASA Technical Reports Server (NTRS)

    Longhurst, J. C.; Gonyea, W. J.; Mitchell, J. H.; Kelly, A. R.

    1980-01-01

    The relationships of different forms of exercise training to left ventricular mass and body mass are investigated by echocardiographic studies of weight lifters, long-distance runners, and comparatively sized untrained control subjects. Left ventricular mass determinations by the Penn convention reveal increased absolute left ventricular masses in long-distance runners and competitive weight lifters with respect to controls matched for age, body weight, and body surface area, and a significant correlation between ventricular mass and lean body mass. When normalized to lean body mass, the ventricular masses of distance runners are found to be significantly higher than those of the other groups, suggesting that dynamic training elevates left ventricular mass compared to static training and no training, while static training increases ventricular mass only to the extent that lean body mass is increased.

  19. Structural imaging of the brain reveals decreased total brain and total gray matter volumes in obese but not in lean women with polycystic ovary syndrome compared to body mass index-matched counterparts.

    PubMed

    Ozgen Saydam, Basak; Has, Arzu Ceylan; Bozdag, Gurkan; Oguz, Kader Karli; Yildiz, Bulent Okan

    2017-07-01

    To detect differences in global brain volumes and identify relations between brain volume and appetite-related hormones in women with polycystic ovary syndrome (PCOS) compared to body mass index-matched controls. Forty subjects participated in this study. Cranial magnetic resonance imaging and measurements of fasting ghrelin, leptin and glucagon-like peptide 1 (GLP-1), as well as GLP-1 levels during mixed-meal tolerance test (MTT), were performed. Total brain volume and total gray matter volume (GMV) were decreased in obese PCOS compared to obese controls (p < 0.05 for both) whereas lean PCOS and controls did not show a significant difference. Secondary analyses of regional brain volumes showed decreases in GMV of the caudate nucleus, ventral diencephalon and hippocampus in obese PCOS compared to obese controls (p < 0.05 for all), whereas lean patients with PCOS had lower GMV in the amygdala than lean controls (p < 0.05). No significant relations were detected between structural differences and measured hormone levels at baseline or during MTT. This study, investigating structural brain alterations in PCOS, suggests volumetric reductions in global brain areas in obese women with PCOS. Functional studies with larger sample size are needed to determine physiopathological roles of these changes and potential effects of long-term medical management on brain structure of PCOS.

  20. Modelling Lean and Green Supply Chain

    NASA Astrophysics Data System (ADS)

    Duarte, Susana Carla Vieira Lino Medina

    The success of an organization depends on the effective control of its supply chain. It is important to recognize new opportunities for organization and its supply chain. In the last few years the approach to lean, agile, resilient and green supply chain paradigms has been addressed in the scientific literature. Research in this field shows that the integration of these concepts revealed some contradictions among so many paradigms. This thesis is mainly focused on the lean and green approaches. Thirteen different management frameworks, embodied in awards, standards and tools were studied to understand if they could contribute for the modelling process of a lean and green approach. The study reveals a number of categories that are common in most management frameworks, providing adequate conditions for a lean and green supply chain transformation. A conceptual framework for the evaluation of a lean and green organization`s supply chain was proposed. The framework considers six key criteria, namely, leadership, people, strategic planning, stakeholders, processes and results. It was proposed an assessment method considering a criteria score for each criterion. The purpose is to understand how lean and green supply chain can be compatible, using principles, practices, techniques or tools (i.e. elements) that support both, a lean and a green approach, in all key criteria. A case study in the automotive upstream supply chain was performed to understand more deeply if the elements proposed for the conceptual framework could be implemented in a real-scenario. Based on the conceptual framework and the case study, a roadmap to achieve a lean-green transformation is presented. The proposed roadmap revealed its contribution to the understanding on how and when an organization`s supply chain should apply the lean and green elements. This study is relevant to practice, as it may assist managers in the adoption of a lean and green supply chain approach, giving insights for the implementation of a hybrid supply chain.

  1. Alterations in intervertebral disc composition, matrix homeostasis and biomechanical behavior in the UCD-T2DM rat model of type 2 diabetes

    PubMed Central

    Fields, Aaron J.; Berg-Johansen, Britta; Metz, Lionel N.; Miller, Stephanie; La, Brandan; Liebenberg, Ellen C.; Coughlin, Dezba G.; Graham, James L.; Stanhope, Kimber L.; Havel, Peter J.; Lotz, Jeffrey C.

    2015-01-01

    Type 2 diabetes (T2D) adversely affects many tissues, and the greater incidence of discogenic low back pain among diabetic patients suggests that the intervertebral disc is affected too. Using a rat model of polygenic obese T2D, we demonstrate that diabetes compromises several aspects of disc composition, matrix homeostasis and biomechanical behavior. Coccygeal motion segments were harvested from 6-month-old lean Sprague-Dawley rats, obese Sprague-Dawley rats, and diabetic obese UCD-T2DM rats (diabetic for 69 ± 7 days). Findings indicated that diabetes but not obesity reduced disc glycosaminoglycan and water contents, and these degenerative changes correlated with increased vertebral endplate thickness and decreased endplate porosity, and with higher levels of the advanced glycation end-product (AGE) pentosidine. Consistent with their diminished glycosaminoglycan and water contents and their higher AGE levels, discs from diabetic rats were stiffer and exhibited less creep when compressed. At the matrix level, elevated expression of hypoxia-inducible genes and catabolic markers in the discs from diabetic rats coincided with increased oxidative stress and greater interactions between AGEs and one of their receptors (RAGE). Taken together, these findings indicate that endplate sclerosis, increased oxidative stress and AGE/RAGE-mediated interactions could be important factors for explaining the greater incidence of disc pathology in T2D. PMID:25641259

  2. Interactions between lean management and the psychosocial work environment in a hospital setting - a multi-method study.

    PubMed

    Ulhassan, Waqar; von Thiele Schwarz, Ulrica; Thor, Johan; Westerlund, Hugo

    2014-10-22

    As health care struggles to meet increasing demands with limited resources, Lean has become a popular management approach. It has mainly been studied in relation to health care performance. The empirical evidence as to how Lean affects the psychosocial work environment has been contradictory. This study aims to study the interaction between Lean and the psychosocial work environment using a comprehensive model that takes Lean implementation information, as well as Lean theory and the particular context into consideration. The psychosocial work environment was measured twice with the Copenhagen Psychosocial Questionnaire (COPSOQ) employee survey during Lean implementations on May-June 2010 (T1) (n = 129) and November-December 2011 (T2) (n = 131) at three units (an Emergency Department (ED), Ward-I and Ward-II). Information based on qualitative data analysis of the Lean implementations and context from a previous paper was used to predict expected change patterns in the psychosocial work environment from T1 to T2 and subsequently compared with COPSOQ-data through linear regression analysis. Between T1 and T2, qualitative information showed a well-organized and steady Lean implementation on Ward-I with active employee participation, a partial Lean implementation on Ward-II with employees not seeing a clear need for such an intervention, and deterioration in already implemented Lean activities at ED, due to the declining interest of top management. Quantitative data analysis showed a significant relation between the expected and actual results regarding changes in the psychosocial work environment. Ward-I showed major improvements especially related to job control and social support, ED showed a major decline with some exceptions while Ward-II also showed improvements similar to Ward-I. The results suggest that Lean may have a positive impact on the psychosocial work environment given that it is properly implemented. Also, the psychosocial work environment may even deteriorate if Lean work deteriorates after implementation. Employee managers and researchers should note the importance of employee involvement in the change process. Employee involvement may minimize the intervention's harmful effects on psychosocial work factors. We also found that a multi-method may be suitable for investigating relations between Lean and the psychosocial work environment.

  3. Intrinsic factors rather than vitamin D deficiency are related to insulin resistance in lean women with polycystic ovary syndrome.

    PubMed

    Sahin, S; Eroglu, M; Selcuk, S; Turkgeldi, L; Kozali, S; Davutoglu, S; Muhcu, M

    2014-10-01

    To investigate the correlation between insulin resistance (IR) and serum 25-OH-Vit D concentrations and hormonal parameters in lean women with polycystic ovary syndrome (PCOS). 50 lean women with PCOS and 40 body mass index (BMI) matched controls were compared in terms of fasting insulin and glucose, homeostatic model assessment insulin resistance (HOMA-IR), 25-OH-Vit D, high sensitivity C-reactive protein (hs-CRP), luteinizing hormone (LH), follicle-stimulating hormone (FSH), total testosterone, dehydroepiandrosterone sulfate (DHEA-S), total cholesterol, high density lipoprotein (HDL), low density lipoprotein (LDL), triglycerides and Ferriman-Gallway (FG) scores. Correlation analyses were performed between HOMA-IR and metabolic and endocrine parameters. 30% of patients with PCOS demonstrated IR. Levels of 25-OH-Vit D, hsCRP, cholesterol, HDL, LDL, triglyceride and fasting glucose did not differ between the study and control groups. Fasting insulin, HOMA-IR, LH, total testosterone, and DHEA-S levels were higher in PCOS group. HOMA-IR was found to correlate with hs-CRP and total testosterone but not with 25-OH-Vit D levels in lean patients with PCOS. An association between 25-OH-Vit D levels and IR is not evident in lean women with PCOS. hs-CRP levels do not indicate to an increased risk of cardiovascular disease in this population of patients. Because a strong association between hyperinsulinemia and hyperandrogenism exists in lean women with PCOS, it is advisable for this population of patients to be screened for metabolic disturbances, especially in whom chronic anovulation and hyperandrogenism are observed together.

  4. How to Reduce Head CT Orders in Children with Hydrocephalus Using the Lean Six Sigma Methodology: Experience at a Major Quaternary Care Academic Children's Center.

    PubMed

    Tekes, A; Jackson, E M; Ogborn, J; Liang, S; Bledsoe, M; Durand, D J; Jallo, G; Huisman, T A G M

    2016-06-01

    Lean Six Sigma methodology is increasingly used to drive improvement in patient safety, quality of care, and cost-effectiveness throughout the US health care delivery system. To demonstrate our value as specialists, radiologists can combine lean methodologies along with imaging expertise to optimize imaging elements-of-care pathways. In this article, we describe a Lean Six Sigma project with the goal of reducing the relative use of pediatric head CTs in our population of patients with hydrocephalus by 50% within 6 months. We applied a Lean Six Sigma methodology using a multidisciplinary team at a quaternary care academic children's center. The existing baseline imaging practice for hydrocephalus was outlined in a Kaizen session, and potential interventions were discussed. An improved radiation-free workflow with ultrafast MR imaging was created. Baseline data were collected for 3 months by using the departmental radiology information system. Data collection continued postintervention and during the control phase (each for 3 months). The percentage of neuroimaging per technique (head CT, head ultrasound, ultrafast brain MR imaging, and routine brain MR imaging) was recorded during each phase. The improved workflow resulted in a 75% relative reduction in the percentage of hydrocephalus imaging performed by CT between the pre- and postintervention/control phases (Z-test, P = .0001). Our lean interventions in the pediatric hydrocephalus care pathway resulted in a significant reduction in head CT orders and increased use of ultrafast brain MR imaging. © 2016 by American Journal of Neuroradiology.

  5. Metformin increases pressure pain threshold in lean women with polycystic ovary syndrome.

    PubMed

    Kiałka, Marta; Milewicz, Tomasz; Sztefko, Krystyna; Rogatko, Iwona; Majewska, Renata

    2016-01-01

    Despite the strong preclinical rationale, there are only very few data considering the utility of metformin as a potential pain therapeutic in humans. The aim of this study was to determine the association between metformin therapy and pressure pain threshold (PPT) in lean women with polycystic ovary syndrome (PCOS). We hypothesized that metformin therapy in lean PCOS women increases PPT. Twenty-seven lean PCOS women with free androgen index phenotype >5 and 18 lean healthy controls were enrolled in the study. Fifteen of the PCOS women were randomly assigned to be treated with metformin 1,500 mg daily for 6 months. PPT and plasma β-endorphin levels were measured in all women at the beginning of the study and after 6 months of observation. We observed an increase in PPT values measured on deltoid and trapezius muscle in the PCOS with metformin group after 6 months of metformin administration (4.81±0.88 kg/cm(2), P<0.001 on deltoid muscle, and 5.71±1.16 kg/cm(2) on trapezius muscle). We did not observe any significant changes in PPT values in the PCOS without treatment group and in controls. We did not observe any significant changes in serum β-endorphin levels in any studied groups during the 6-month observation. We conclude that metformin therapy increases PPT in lean PCOS women, without affecting plasma β-endorphin concentration. Our results may suggest the potential role of metformin in pain therapy. We propose that larger, randomized studies on metformin impact on pain perception should be performed.

  6. Fluoxetine induces lean phenotype in rat by increasing the brown/white adipose tissue ratio and UCP1 expression.

    PubMed

    da Silva, A I; Braz, G R F; Pedroza, A A; Nascimento, L; Freitas, C M; Ferreira, D J S; Manhães de Castro, R; Lagranha, C J

    2015-08-01

    The serotonergic system plays a crucial role in the energy balance regulation. Energy balance is mediated by food intake and caloric expenditure. Thus, the present study investigated the mechanisms that might be associated with fluoxetine treatment-induced weight reduction. Wistar male rat pups received daily injections with subcutaneous fluoxetine (Fx-group) or vehicle solution (Ct-group) from day 1 until 21 days of age. Several analyses were conducted to verify the involvement of mitochondria in weight reduction. We found that body weight in the Fx-group was lower compared to control. In association to lower fat mass in the Fx-group (25%). Neither neonatal caloric intake nor food intake reveals significant differences. Evaluating caloric expenditure (locomotor activity and temperature after stimulus), we did not observe differences in locomotor activity. However, we observed that the Fx group had a higher capacity to maintain body temperature in a cold environment compared with the Ct-group. Since brown adipose tissue-(BAT) is specialized for heat production and the rate of heat production is related to mitochondrial function, we found that Fx-treatment increases respiration by 36%, although after addition of GDP respiration returned to Ct-levels. Examining ROS production we observe that Fx-group produced less ROS than control group. Evaluating uncoupling protein (UCP) expression we found that Fx-treatment increases the expression by 23%. Taken together, our results suggest that modulation of serotonin system results in positive modulation of UCP and mitochondrial bioenergetics in brown fat tissue.

  7. Patient-centered medical home transformation with payment reform: patient experience outcomes.

    PubMed

    Heyworth, Leonie; Bitton, Asaf; Lipsitz, Stuart R; Schilling, Thad; Schiff, Gordon D; Bates, David W; Simon, Steven R

    2014-01-01

    To examine changes in patient experience across key domains of the patient-centered medical home (PCMH) following practice transformation with Lean quality improvement methodology inclusive of payment reform. Pre-intervention/post-intervention analysis of intervention with a comparison group, a quasi-experimental design. We surveyed patients following office visits at the intervention (n = 2502) and control (n = 1622) practices during the 15-month period before and 14-month period after PCMH Lean transformation (April-October 2009). We measured and compared pre-intervention and post-intervention levels of patient satisfaction and other indicators of patient-centered care. Propensity weights adjusted for potential case-mix differences in intervention and control groups; propensity-adjusted proportions accounted for physician-level clustering. More intervention patients were very satisfied with their care after the PCMH Lean intervention (68%) compared with pre-intervention (62%). Among control patients, there was no corresponding increase in satisfaction (63% very satisfied pre-intervention vs 64% very satisfied post-intervention). This comparison resulted in a statistical trend (P = .10) toward greater overall satisfaction attributable to the intervention. Post-intervention, patients in the intervention practice consistently rated indicators of patient-centered care higher than patients in the control practice, particularly in the personal physician and communication domain. In this domain, intervention patients reported superior provider explanations, time spent, provider concern, and follow-up instructions compared with control participants, whereas control group ratings fell in the post-intervention period (P for difference <.05). In a pilot PCMH transformation including Lean enhancement with payment reform, patient experience was sustained or improved across key PCMH domains.

  8. Lean Mass Loss Is Associated with Low Protein Intake during Dietary-Induced Weight Loss in Postmenopausal Women

    PubMed Central

    BOPP, MELANIE J.; HOUSTON, DENISE K.; LENCHIK, LEON; EASTER, LINDA; KRITCHEVSKY, STEPHEN B.; NICKLAS, BARBARA J.

    2013-01-01

    The health and quality-of-life implications of overweight and obesity span all ages in the United States. We investigated the association between dietary protein intake and loss of lean mass during weight loss in postmenopausal women through a retrospective analysis of a 20-week randomized, controlled diet and exercise intervention in women aged 50 to 70 years. Weight loss was achieved by differing levels of caloric restriction and exercise. The diet-only group reduced caloric intake by 2,800 kcal/week, and the exercise groups reduced caloric intake by 2,400 kcal/week and expended ~400 kcal/week through aerobic exercise. Total and appendicular lean mass was measured using dual energy x-ray absorptiometry. Linear regression analysis was used to examine the association between changes in lean mass and appendicular lean mass and dietary protein intake. Average weight loss was 10.8±4.0 kg, with an average of 32% of total weight lost as lean mass. Protein intake averaged 0.62 g/kg body weight/day (range=0.47 to 0.8 g/kg body weight/day). Participants who consumed higher amounts of dietary protein lost less lean mass and appendicular lean mass r(=0.3, P=0.01 and r=0.41, P<0.001, respectively). These associations remained significant after adjusting for intervention group and body size. Therefore, inadequate protein intake during caloric restriction may be associated with adverse body-composition changes in postmenopausal women. PMID:18589032

  9. High-throughput quantitation of amino acids in rat and mouse biological matrices using stable isotope labeling and UPLC-MS/MS analysis.

    PubMed

    Takach, Edward; O'Shea, Thomas; Liu, Hanlan

    2014-08-01

    Quantifying amino acids in biological matrices is typically performed using liquid chromatography (LC) coupled with fluorescent detection (FLD), requiring both derivatization and complete baseline separation of all amino acids. Due to its high specificity and sensitivity, the use of UPLC-MS/MS eliminates the derivatization step and allows for overlapping amino acid retention times thereby shortening the analysis time. Furthermore, combining UPLC-MS/MS with stable isotope labeling (e.g., isobaric tag for relative and absolute quantitation, i.e., iTRAQ) of amino acids enables quantitation while maintaining sensitivity, selectivity and speed of analysis. In this study, we report combining UPLC-MS/MS analysis with iTRAQ labeling of amino acids resulting in the elution and quantitation of 44 amino acids within 5 min demonstrating the speed and convenience of this assay over established approaches. This chromatographic analysis time represented a 5-fold improvement over the conventional HPLC-MS/MS method developed in our laboratory. In addition, the UPLC-MS/MS method demonstrated improvements in both specificity and sensitivity without loss of precision. In comparing UPLC-MS/MS and HPLC-MS/MS results of 32 detected amino acids, only 2 amino acids exhibited imprecision (RSD) >15% using UPLC-MS/MS, while 9 amino acids exhibited RSD >15% using HPLC-MS/MS. Evaluating intra- and inter-assay precision over 3 days, the quantitation range for 32 detected amino acids in rat plasma was 0.90-497 μM, with overall mean intra-day precision of less than 15% and mean inter-day precision of 12%. This UPLC-MS/MS assay was successfully implemented for the quantitative analysis of amino acids in rat and mouse plasma, along with mouse urine and tissue samples, resulting in the following concentration ranges: 0.98-431 μM in mouse plasma for 32 detected amino acids; 0.62-443 μM in rat plasma for 32 detected amino acids; 0.44-8590μM in mouse liver for 33 detected amino acids; 0.61-1241 μM in mouse kidney for 37 detected amino acids; and 1.39-1,681 μM in rat urine for 34 detected amino acids. The utility of the assay was further demonstrated by measuring and comparing plasma amino acid levels between pre-diabetic Zucker diabetic fatty rats (ZDF/Gmi fa/fa) and their lean littermates (ZDF/Gmi fa/?). Significant differences (P<0.001) in 9 amino acid concentrations were observed, with the majority ranging from a 2- to 5-fold increase in pre-diabetic ZDF rats on comparison with ZDF lean rats, consistent with previous literature reports. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. [Research on the Application of Lean Management in Medical Consumables Material Logistics Management].

    PubMed

    Yang, Chai; Zhang, Wei; Gu, Wei; Shen, Aizong

    2016-11-01

    Solve the problems of high cost, low utilization rate of resources, low medical care quality problem in medical consumables material logistics management for scientific of medical consumables management. Analysis of the problems existing in the domestic medical consumables material logistics management in hospital, based on lean management method, SPD(Supply, Processing, Distribution) for specific applications, combined HBOS(Hospital Business Operation System), HIS (Hospital Information System) system for medical consumables material management. Achieve the lean management in medical consumables material purchase, warehouse construction, push, clinical use and retrospect. Lean management in medical consumables material can effectively control the cost in logistics management, optimize the alocation of resources, liberate unnecessary time of medical staff, improve the quality of medical care. It is a scientific management method.

  11. Whole body BMC in pediatric Crohn disease: independent effects of altered growth, maturation, and body composition.

    PubMed

    Burnham, Jon M; Shults, Justine; Semeao, Edisio; Foster, Bethany; Zemel, Babette S; Stallings, Virginia A; Leonard, Mary B

    2004-12-01

    Whole body BMC was assessed in 104 children and young adults with CD and 233 healthy controls. CD was associated with significant deficits in BMC and lean mass, relative to height. Adjustment for lean mass eliminated the bone deficit in CD. Steroid exposure was associated with short stature but not bone deficits relative to height. Children with Crohn disease (CD) have multiple risk factors for impaired bone accrual. The confounding effects of poor growth and delayed maturation limit the interpretation of prior studies of bone health in CD. The objective of this study was to assess BMC relative to growth, body composition, and maturation in CD compared with controls. Whole body BMC and lean mass were assessed by DXA in 104 CD subjects and 233 healthy controls, 4-26 years of age. Multivariable linear regression models were developed to sequentially adjust for differences in skeletal size, pubertal maturation, and muscle mass. BMC-for-height z scores were derived to determine CD-specific covariates associated with bone deficits. Subjects with CD had significantly lower height z score, body mass index z score, and lean mass relative to height compared with controls (all p < 0.0001). After adjustment for group differences in age, height, and race, the ratio of BMC in CD relative to controls was significantly reduced in males (0.86; 95% CI, 0.83, 0.94) and females (0.91; 95% CI, 0.85, 0.98) with CD. Adjustment for pubertal maturation did not alter the estimate; however, addition of lean mass to the model eliminated the bone deficit. Steroid exposure was associated with short stature but not bone deficits. This study shows the importance of considering differences in body size and composition when interpreting DXA data in children with chronic inflammatory conditions and shows an association between deficits in muscle mass and bone in pediatric CD.

  12. Association of anti-Mullerian hormone and small-dense low-density lipoprotein cholesterol with hepatosteatosis in young lean women with and without polycystic ovary syndrome.

    PubMed

    Oztas, Efser; Caglar, Gamze S; Kaya, Cemil; Karadag, Demet; Demirtas, Selda; Kurt, Mevlut; Pabuccu, Recai

    2014-11-01

    To study the association of anti-Mullerian hormone (AMH) and small-dense low-density lipoprotein cholesterol (sd-LDL) with hepatosteatosis among young, lean, polycystic ovary patients. A prospective, case control study was carried out including 79 young lean women. Fifty-eight women with polycystic ovary syndrome (PCOS) and 21 age-and BMI-matched healthy controls were recruited. Anthropometric variables, biochemical and hormonal parameters, insulin-resistance indices, lipid profiles including sd-LDL levels and serum AMH levels were determined. Hepatic lipid content was evaluated by abdominal ultrasonography (USG). Determining the best predictor(s) which discriminate normal USG and hepatosteatosis was analyzed by multiple logistic regression analyses. Adjusted odds ratios and 95% confidence intervals were also calculated. PCOS patients had an increased prevalence of hepatosteatosis by 41.4% (P = 0.006) and they had significantly higher levels of sd-LDL and AMH when compared with the control group (P < 0.001). AMH and sd-LDL levels were positively and significantly associated with hepatosteatosis in young lean women with and without PCOS (OR: 2.877, 95%CI: 1.453-5.699, P: 0.02 and OR: 1.336, 95%CI: 1.083-1.648, P: 0.007, respectively). AMH and sd-LDL levels were positively correlated in PCOS patients (r = 0.626, P < 0.001). Both sd-LDL and AMH levels were the most predictive parameters for the determination of hepatosteatosis within the PCOS group. (OR: 3.347, 95%CI: 1.348-8.313, P = 0.009 and OR: 1.375, 95%CI: 1.072-1.764, P = 0.012, respectively). Statistically significant higher levels of AMH were associated with hepatosteatosis both in insulin resistance (IR) positive and IR negative PCOS patients (P < 0.001). Hepatosteatosis is common in young lean PCOS patients. Increased AMH and sd-LDL levels may independently predict hepatosteatosis in young lean women with and without PCOS.

  13. Transgenic animal model for studying the mechanism of obesity-associated stress urinary incontinence.

    PubMed

    Wang, Lin; Lin, Guiting; Lee, Yung-Chin; Reed-Maldonado, Amanda B; Sanford, Melissa T; Wang, Guifang; Li, Huixi; Banie, Lia; Xin, Zhengcheng; Lue, Tom F

    2017-02-01

    To study and compare the function and structure of the urethral sphincter in female Zucker lean (ZL) and Zucker fatty (ZF) rats and to assess the viability of ZF fats as a model for female obesity-associated stress urinary incontinence (SUI). Two study arms were created: a ZL arm including 16-week-old female ZL rats (ZUC-Lepr fa 186; n = 12) and a ZF arm including 16-week-old female ZF rats (ZUC-Lepr fa 185; n = 12). I.p. insulin tolerance testing was carried out before functional study. Metabolic cages, conscious cystometry and leak point pressure (LPP) assessments were conducted. Urethral tissues were harvested for immunofluorescence staining to check intramyocellular lipid (IMCL) and sphincter muscle (smooth muscle and striated muscle) composition. The ZF rats had insulin resistance, a greater voiding frequency and lower LPP compared with ZL rats (P < 0.05), with more IMCL deposition localized in the urethral striated muscle fibres of the ZF rats (P < 0.05). The thickness of the striated muscle layer and the ratio of striated muscle to smooth muscle were lower in ZF than in ZL rats. Obesity impairs urethral sphincter function via IMCL deposition and leads to atrophy and distortion of urethral striated muscle. The ZF rats could be a consistent and reliable animal model in which to study obesity-associated SUI. © 2016 The Authors BJU International © 2016 BJU International Published by John Wiley & Sons Ltd.

  14. Distinct skeletal muscle fiber characteristics and gene expression in diet-sensitive versus diet-resistant obesity.

    PubMed

    Gerrits, Martin F; Ghosh, Sujoy; Kavaslar, Nihan; Hill, Benjamin; Tour, Anastasia; Seifert, Erin L; Beauchamp, Brittany; Gorman, Shelby; Stuart, Joan; Dent, Robert; McPherson, Ruth; Harper, Mary-Ellen

    2010-08-01

    Inter-individual variability in weight gain and loss under energy surfeit and deficit conditions, respectively, are well recognized but poorly understood phenomena. We documented weight loss variability in an intensively supervised clinical weight loss program and assessed skeletal muscle gene expression and phenotypic characteristics related to variable response to a 900 kcal regimen. Matched pairs of healthy, diet-compliant, obese diet-sensitive (ODS) and diet-resistant (ODR) subjects were defined as those in the highest and lowest quintiles for weight loss rate. Physical activity energy expenditure was minimal and comparable. Following program completion and weight stabilization, skeletal muscle biopsies were obtained. Gene expression analysis of rectus femoris and vastus lateralis indicated upregulation of genes and gene sets involved in oxidative phosphorylation and glucose and fatty acid metabolism in ODS compared with ODR. In vastus lateralis, there was a higher proportion of oxidative (type I) fibers in ODS compared with ODR women and lean controls, fiber hypertrophy in ODS compared with ODR women and lean controls, and lower succinate dehydrogenase in oxidative and oxidative-glycolytic fibers in all obese compared with lean subjects. Intramuscular lipid content was generally higher in obese versus lean, and specifically higher in ODS vs. lean women. Altogether, our findings demonstrate differences in muscle gene expression and fiber composition related to clinical weight loss success.

  15. Distinct skeletal muscle fiber characteristics and gene expression in diet-sensitive versus diet-resistant obesity

    PubMed Central

    Gerrits, Martin F.; Ghosh, Sujoy; Kavaslar, Nihan; Hill, Benjamin; Tour, Anastasia; Seifert, Erin L.; Beauchamp, Brittany; Gorman, Shelby; Stuart, Joan; Dent, Robert; McPherson, Ruth; Harper, Mary-Ellen

    2010-01-01

    Inter-individual variability in weight gain and loss under energy surfeit and deficit conditions, respectively, are well recognized but poorly understood phenomena. We documented weight loss variability in an intensively supervised clinical weight loss program and assessed skeletal muscle gene expression and phenotypic characteristics related to variable response to a 900 kcal regimen. Matched pairs of healthy, diet-compliant, obese diet-sensitive (ODS) and diet-resistant (ODR) subjects were defined as those in the highest and lowest quintiles for weight loss rate. Physical activity energy expenditure was minimal and comparable. Following program completion and weight stabilization, skeletal muscle biopsies were obtained. Gene expression analysis of rectus femoris and vastus lateralis indicated upregulation of genes and gene sets involved in oxidative phosphorylation and glucose and fatty acid metabolism in ODS compared with ODR. In vastus lateralis, there was a higher proportion of oxidative (type I) fibers in ODS compared with ODR women and lean controls, fiber hypertrophy in ODS compared with ODR women and lean controls, and lower succinate dehydrogenase in oxidative and oxidative-glycolytic fibers in all obese compared with lean subjects. Intramuscular lipid content was generally higher in obese versus lean, and specifically higher in ODS vs. lean women. Altogether, our findings demonstrate differences in muscle gene expression and fiber composition related to clinical weight loss success. PMID:20332421

  16. Lean NOx catalysis for gasoline fueled European cars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-02-01

    There is increasing interest in operating gasoline fueled passenger cars lean of the stoichiometric air/fuel (A/F) ratio to improve fuel economy. These types of engines will operate at lean A/F ratios while cruising at partial load, and return to stoichiometric or even rich conditions when more power is required. The challenge for the engine and catalyst manufacturer is to develop a system which will combine the high activity rates of a state-of-the-art three-way catalyst (TWC) with the ability to reduce nitrogen oxides (NOx) in the presence of excess oxygen. The objective is to achieve the future legislative limits (EURO III/IV)more » in the European Union. Recent developments in automotive pollution control catalysis show that the use of NOx adsorption materials is a suitable way to reduce NOx emissions of gasoline-fueled lean-burn engines. However, the primary task for the implementation of this technology in the European market will be to improve the catalyst`s high-temperature stability and to decrease its susceptibility to sulfur poisoning. Outlined here are results of a recent R and D program to achieve NOx reduction under lean-burn gasoline engine conditions. Model gas test results as well as engine bench data are used for discussion of the parameters which control NOx adsorption efficiency under various conditions.« less

  17. Risk for development of severe liver disease in lean patients with nonalcoholic fatty liver disease: A long-term follow-up study.

    PubMed

    Hagström, Hannes; Nasr, Patrik; Ekstedt, Mattias; Hammar, Ulf; Stål, Per; Hultcrantz, Rolf; Kechagias, Stergios

    2018-01-01

    Most patients with nonalcoholic fatty liver disease (NAFLD) are overweight or obese. However, a significant proportion of patients have a normal body mass index (BMI), denoted as lean NAFLD. The long-term prognosis of lean NAFLD is unclear. We conducted a cohort study of 646 patients with biopsy-proven NAFLD. Patients were defined as lean (BMI < 25.0), overweight (BMI 25.0-29.9), or obese (BMI ≥ 30.0) at the time of biopsy. Each case was matched for age, sex, and municipality to 10 controls. Overall mortality and development of severe liver disease were evaluated using population-based registers. Cox regression models adjusted for age, sex, type 2 diabetes, and fibrosis stage were used to examine the long-term risk of mortality and liver-related events in lean and nonlean NAFLD. Lean NAFLD was seen in 19% of patients, while 52% were overweight and 29% were obese. Patients with lean NAFLD were older, had lower transaminases, lower stages of fibrosis, and lower prevalence of nonalcoholic steatohepatitis at baseline compared to patients with a higher BMI. During a mean follow-up of 19.9 years (range 0.4-40 years) representing 12,631 person years and compared to patients who were overweight, patients with lean NAFLD had no increased risk for overall mortality (hazard ratio 1.06; P =  0.73) while an increased risk for development of severe liver disease was found (hazard ratio 2.69; P =  0.007). Conclusion : Although patients with lean NAFLD have lower stages of fibrosis, they are at higher risk for development of severe liver disease compared to patients with NAFLD and a higher BMI, independent of available confounders. ( Hepatology Communications 2018;2:48-57).

  18. Stratifying Type 2 Diabetes Cases by BMI Identifies Genetic Risk Variants in LAMA1 and Enrichment for Risk Variants in Lean Compared to Obese Cases

    PubMed Central

    Perry, John R. B.; Voight, Benjamin F.; Yengo, Loïc; Amin, Najaf; Dupuis, Josée; Ganser, Martha; Grallert, Harald; Navarro, Pau; Li, Man; Qi, Lu; Steinthorsdottir, Valgerdur; Scott, Robert A.; Almgren, Peter; Arking, Dan E.; Aulchenko, Yurii; Balkau, Beverley; Benediktsson, Rafn; Bergman, Richard N.; Boerwinkle, Eric; Bonnycastle, Lori; Burtt, Noël P.; Campbell, Harry; Charpentier, Guillaume; Collins, Francis S.; Gieger, Christian; Green, Todd; Hadjadj, Samy; Hattersley, Andrew T.; Herder, Christian; Hofman, Albert; Johnson, Andrew D.; Kottgen, Anna; Kraft, Peter; Labrune, Yann; Langenberg, Claudia; Manning, Alisa K.; Mohlke, Karen L.; Morris, Andrew P.; Oostra, Ben; Pankow, James; Petersen, Ann-Kristin; Pramstaller, Peter P.; Prokopenko, Inga; Rathmann, Wolfgang; Rayner, William; Roden, Michael; Rudan, Igor; Rybin, Denis; Scott, Laura J.; Sigurdsson, Gunnar; Sladek, Rob; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Tuomilehto, Jaakko; Uitterlinden, Andre G.; Vivequin, Sidonie; Weedon, Michael N.; Wright, Alan F.; Hu, Frank B.; Illig, Thomas; Kao, Linda; Meigs, James B.; Wilson, James F.; Stefansson, Kari; van Duijn, Cornelia; Altschuler, David; Morris, Andrew D.; Boehnke, Michael; McCarthy, Mark I.; Froguel, Philippe; Palmer, Colin N. A.; Wareham, Nicholas J.; Groop, Leif

    2012-01-01

    Common diseases such as type 2 diabetes are phenotypically heterogeneous. Obesity is a major risk factor for type 2 diabetes, but patients vary appreciably in body mass index. We hypothesized that the genetic predisposition to the disease may be different in lean (BMI<25 Kg/m2) compared to obese cases (BMI≥30 Kg/m2). We performed two case-control genome-wide studies using two accepted cut-offs for defining individuals as overweight or obese. We used 2,112 lean type 2 diabetes cases (BMI<25 kg/m2) or 4,123 obese cases (BMI≥30 kg/m2), and 54,412 un-stratified controls. Replication was performed in 2,881 lean cases or 8,702 obese cases, and 18,957 un-stratified controls. To assess the effects of known signals, we tested the individual and combined effects of SNPs representing 36 type 2 diabetes loci. After combining data from discovery and replication datasets, we identified two signals not previously reported in Europeans. A variant (rs8090011) in the LAMA1 gene was associated with type 2 diabetes in lean cases (P = 8.4×10−9, OR = 1.13 [95% CI 1.09–1.18]), and this association was stronger than that in obese cases (P = 0.04, OR = 1.03 [95% CI 1.00–1.06]). A variant in HMG20A—previously identified in South Asians but not Europeans—was associated with type 2 diabetes in obese cases (P = 1.3×10−8, OR = 1.11 [95% CI 1.07–1.15]), although this association was not significantly stronger than that in lean cases (P = 0.02, OR = 1.09 [95% CI 1.02–1.17]). For 36 known type 2 diabetes loci, 29 had a larger odds ratio in the lean compared to obese (binomial P = 0.0002). In the lean analysis, we observed a weighted per-risk allele OR = 1.13 [95% CI 1.10–1.17], P = 3.2×10−14. This was larger than the same model fitted in the obese analysis where the OR = 1.06 [95% CI 1.05–1.08], P = 2.2×10−16. This study provides evidence that stratification of type 2 diabetes cases by BMI may help identify additional risk variants and that lean cases may have a stronger genetic predisposition to type 2 diabetes. PMID:22693455

  19. STS-105 coverage of Mission Control Center employees in the WFCR & BFCR

    NASA Image and Video Library

    2003-03-25

    JSC2001-E-25125 (16 August 2001) --- Flight directors John Shannon (left foreground) and Kelly Beck watch the large screens from their consoles in the shuttle flight control room (WFCR) in Houston’s Mission Control Center (MCC) along with astronauts Joseph R. Tanner (left background) and Steve MacLean, STS-105 spacecraft communicators (CAPCOM). At the time this photo was taken, mission specialists Daniel T. Barry and Patrick G. Forrester were performing the first of two scheduled space walks during Discovery’s visit to the International Space Station (ISS). MacLean represents the Canadian Space Agency.

  20. Combustion oscillation: Chemical control showing mechanistic link to recirculation zone purge time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gemmen, R.S.; Richards, G.A.; Yip, M.J.

    1995-12-01

    Active control mechanisms are being examined for lean premix combustion applications, such as gas turbine generators. Lean premix combustors are susceptible to large combustion oscillations, particularly when driven very lean to achieve low NOx. While past design work has been focussed on understanding the source of the oscillation and modifying the combustor to avoid such oscillations, commercial combustion designers have more recently considered applying new control elements. As part of the U.S. Department of Energy`s Advanced Gas Turbine Systems Program, the Morgantown Energy Technology Center is investigating various active control techniques. This paper presents results from experiments studying the effectmore » of pilot fuel modulation on combustor oscillation and pollutant emissions for a pilot stabilized dump swirl combustor, typical of gas turbine combustors. The results show that a significant level of attenuation can be achieved in the combustor pressure oscillation (50 to 90 percent) while only moderately affecting pollutant emissions. The control mechanism producing the attenuation is shown to be purely chemical in nature, rather than fluid mechanic. In addition, the frequency region over which control is obtained is shown to be related to the recirculation zone purge time. For this reason, control can be achieved at control frequencies much lower than the frequency of oscillation.« less

  1. High sensitivity C-reactive protein and its relationship with impaired glucose regulation in lean patients with polycystic ovary syndrome.

    PubMed

    Kim, Ji Won; Han, Ji Eun; Kim, You Shin; Won, Hyung Jae; Yoon, Tae Ki; Lee, Woo Sik

    2012-04-01

    The polycystic ovary syndrome (PCOS) is the most common endocrine-metabolic disorder, also associated with the metabolic syndrome. Serum high sensitivity C-reactive protein (hs-CRP), a marker of low-grade chronic inflammation is a potent predictor of cardiovascular events, closely linked to metabolic syndrome features and higher in patients with PCOS. However, hs-CRP in lean patients with PCOS has not been fully evaluated and few data are available. We aimed to investigate the relation between glucose intolerance and hs-CRP levels in lean patients with PCOS, and to evaluate the possible relationship between hs-CRP and PCOS by evaluating PCOS-related metabolic abnormalities in Korean women. We consecutively recruited 115 lean (BMI < 25kg/m(2)) patients diagnosed with PCOS and 103 lean healthy controls. The PCOS group was divided two groups: impaired glucose regulation (IGR) and normal glucose tolerance group (NGT). In lean patients with PCOS, hs-CRP level was higher in the IGR group than in the NGT group (0.60 ± 1.37 versus 0.18 ± 0.46, p(Bonf) = 0.023) and other metabolic risk factors were also higher in the IGR group than in the NGT group. And there were close relationships between hs-CRP level and metabolic risk factor, such as 2 h postprandial insulin level in the lean patients with PCOS.

  2. A Value Analysis of Lean Processes in Target Value Design and Integrated Project Delivery.

    PubMed

    Nanda, Upali; K Rybkowski, Zofia; Pati, Sipra; Nejati, Adeleh

    2017-04-01

    To investigate what key stakeholders consider to be the advantages and the opportunities for improvement in using lean thinking and tools in the integrated project delivery (IPD) process. A detailed literature review was followed by case study of a Lean-IPD project. Interviews with members of the project leadership team, focus groups with the integrated team as well as the design team, and an online survey of all stakeholders were conducted. Statistical analysis and thematic content analysis were used to analyze the data, followed by a plus-delta analysis. (1) Learning is a large, implicit benefit of Lean-IPD that is not currently captured by any success metric; (2) the cardboard mock-up was the most successful lean strategy; (3) although a collaborative project, the level of influence of different stakeholder groups was perceived to be different by different stakeholders; (4) overall, Lean-IPD was rated as better than traditional design-bid-build methods; and (5) opportunities for improvement reported were increase in accurate cost estimating, more efficient use of time, perception of imbalance of control/influence, and need for facilitation (which represents different points of view). While lean tools and an IPD method are preferred to traditional design-bid-build methods, the perception of different stakeholders varies and more work needs to be done to allow a truly shared decision-making model. Learning was identified as one of the biggest advantages.

  3. Quality effects of sugar replacement with alternative sweetener blends in lean yellow-shortened cupcakes over a 4-day storage period

    USDA-ARS?s Scientific Manuscript database

    In lean yellow shortened cupcakes, the multiple ingredient approach was used to replace 100% of the sugar in the control with a commercial sucralose/maltodextrin blend (Splenda Granulated) and isomalt. Sugar substitutions were 100% Splenda Granulated (SP100), and two ratios of Splenda Granulated to ...

  4. Lean manufacturing comes to China: a case study of its impact on workplace health and safety.

    PubMed

    Brown, Garrett D; O'Rourke, Dara

    2007-01-01

    Lean manufacturing, which establishes small production "cells," or teams of workers, who complete an entire product from raw material processing through final assembly and shipment, increases health and safety hazards by mixing previously separated exposures to various chemicals (with possible additive and cumulative effects) and noise. The intensification of work leads to greater ergonomic and stress-related adverse health effects, as well as increased safety hazards. The standard industrial hygiene approach of anticipation, recognition, evaluation, and hazard control is applicable to lean operations. A focus on worker participation in identifying and solving problems is critical for reducing negative impacts. A key to worker safety in lean production operations is the development of informed, empowered, and active workers with the knowledge, skills, and opportunity to act in the workplace to eliminate or reduce hazards.

  5. Lead-time reduction utilizing lean tools applied to healthcare: the inpatient pharmacy at a local hospital.

    PubMed

    Al-Araidah, Omar; Momani, Amer; Khasawneh, Mohammad; Momani, Mohammed

    2010-01-01

    The healthcare arena, much like the manufacturing industry, benefits from many aspects of the Toyota lean principles. Lean thinking contributes to reducing or eliminating nonvalue-added time, money, and energy in healthcare. In this paper, we apply selected principles of lean management aiming at reducing the wasted time associated with drug dispensing at an inpatient pharmacy at a local hospital. Thorough investigation of the drug dispensing process revealed unnecessary complexities that contribute to delays in delivering medications to patients. We utilize DMAIC (Define, Measure, Analyze, Improve, Control) and 5S (Sort, Set-in-order, Shine, Standardize, Sustain) principles to identify and reduce wastes that contribute to increasing the lead-time in healthcare operations at the pharmacy understudy. The results obtained from the study revealed potential savings of > 45% in the drug dispensing cycle time.

  6. Artistic versus rhythmic gymnastics: effects on bone and muscle mass in young girls.

    PubMed

    Vicente-Rodriguez, G; Dorado, C; Ara, I; Perez-Gomez, J; Olmedillas, H; Delgado-Guerra, S; Calbet, J A L

    2007-05-01

    We compared 35 prepubertal girls, 9 artistic gymnasts and 13 rhythmic gymnasts with 13 nonphysically active controls to study the effect of gymnastics on bone and muscle mass. Lean mass, bone mineral content and areal density were measured by dual energy X-ray absorptiometry, and physical fitness was also assessed. The artistic gymnasts showed a delay in pubertal development compared to the other groups (p<0.05). The artistic gymnasts had a 16 and 17 % higher aerobic power and anaerobic capacity, while the rhythmic group had a 14 % higher anaerobic capacity than the controls, respectively (all p<0.05). The artistic gymnasts had higher lean mass (p<0.05) in the whole body and the extremities than both the rhythmic gymnasts and the controls. Body fat mass was 87.5 and 61.5 % higher in the controls than in the artistic and the rhythmic gymnasts (p<0.05). The upper extremity BMD was higher (p<0.05) in the artistic group compared to the other groups. Lean mass strongly correlated with bone mineral content (r=0.84, p<0.001), and multiple regression analysis showed that total lean mass explained 64 % of the variability in whole body bone mineral content, but only 20 % in whole body bone mineral density. Therefore, recreational artistic gymnastic participation is associated with delayed pubertal development, enhanced physical fitness, muscle mass, and bone density in prepubertal girls, eliciting a higher osteogenic stimulus than rhythmic gymnastic.

  7. Reversibility after inhaling salbutamol in different body postures in asthmatic children: a pilot study.

    PubMed

    Visser, R; van der Palen, J; de Jongh, F H C; Thio, B J

    2015-04-01

    Pulmonary medication is mostly delivered in the form of medical aerosols to minimize systemic side effects. A major drawback of inhaled medication is that the majority of inhaled particles impacts in the oropharynx at the sharp bend of the airway. Stretching the airway by a forward leaning body posture with the neck extended ("sniffing position") may improve pulmonary deposition and clinical effects. 41 asthmatic children who were planned for standard reversibility testing at the pulmonary function lab, alternately inhaled 200 μgr salbutamol with an Autohaler(®) in the standard or in the forward leaning body posture. Forced Expiratory Volume in 1 s (FEV1), Forced Vital Capacity (FVC), Peak Expiratory Flow (PEF), Mean Expiratory Flow at 25% of vital capacity (MEF25) and Mean Expiratory Flow at 75% of vital capacity (MEF75) were analysed. The children in the forward leaning body posture group showed a significantly higher mean FEV1 reversibility than the control group after inhalation of 200 μgr salbutamol (10.2% versus 4.1%, p = 0.019). Additionally, mean MEF75 was significantly more reversible in the forward leaning body posture group versus the standard body posture group (32.2% resp. 8.9%, p = 0.013). This pilot study showed a higher reversibility of FEV1 and MEF75 after inhaling salbutamol in a forward leaning body posture compared to the standard body posture in asthmatic children. This suggests that pulmonary effects of salbutamol can be improved by inhaling in a forward leaning body posture with the neck extended. This effect is possibly due to a higher pulmonary deposition of salbutamol and should be confirmed in a randomized controlled trial. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Basal and meal-stimulated ghrelin, PYY, CCK levels and satiety in lean women with polycystic ovary syndrome: effect of low-dose oral contraceptive.

    PubMed

    Arusoglu, Gulcan; Koksal, Gulden; Cinar, Nese; Tapan, Serkan; Aksoy, Duygu Yazgan; Yildiz, Bulent O

    2013-11-01

    Ghrelin is an orexigenic peptide that stimulates food intake, whereas peptide YY (PYY) and cholecystokinin (CCK) are anorexigenic gut hormones. Patients with polycystic ovary syndrome (PCOS) appear to have alterations in appetite regulation. We aimed to determine whether fasting or meal-stimulated ghrelin, PYY, CCK, and satiety responses are different between lean PCOS patients and healthy women. We also aimed to assess the potential effect of oral contraceptive use on these hormones and satiety response. We conducted a prospective observational study in a university practice. Eighteen lean PCOS patients and 18 healthy control women matched for age and body mass index underwent measurements of circulating ghrelin, PYY, CCK, and satiety index (SI) before and after a standardized mixed meal at 0, 15, 30, 45, 60, 90, 120, and 180 minutes. For PCOS patients who were treated with ethinyl estradiol 30 μg/drospirenone 3 mg for 3 months, measurements were repeated. We measured ghrelin, PYY, and CCK levels and SI. At baseline, fasting ghrelin, PYY, CCK, and SI values in PCOS patients were not different from controls. Meal-stimulated PYY, CCK, and SI were also not different between the groups, whereas PCOS patients had significantly lower meal-stimulated ghrelin levels compared to controls (P = .04). Ghrelin, PYY, CCK, and SI did not show a significant change after treatment with ethinyl estradiol/drospirenone for 3 months. Basal and stimulated hunger and satiety hormones in lean PCOS patients are not different from lean healthy women, except for a lower meal-stimulated ghrelin response. Short-term use of a low-dose oral contraceptive does not have an effect on appetite regulation of PCOS.

  9. Passive SCR for lean gasoline NO X control: Engine-based strategies to minimize fuel penalty associated with catalytic NH 3 generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prikhodko, Vitaly Y.; Parks, James E.; Pihl, Josh A.

    Lean gasoline engines offer greater fuel economy than common stoichiometric gasoline engines. However, excess oxygen prevents the use of the current three-way catalyst (TWC) to control nitrogen oxide (NO X) emissions in lean exhaust. A passive SCR concept, introduced by General Motors Global R&D, makes use of a TWC that is already onboard to generate NH 3 under slightly rich conditions, which is stored on the downstream SCR. The stored NH 3 is then used to reduce NO X emissions when the engine switches to lean operation. In this work, the effect of engine parameters, such as air-fuel equivalence ratiomore » and spark timing, on NH 3 generation over a commercial Pd-only TWC with no dedicated oxygen storage component was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine. NO X reduction, NH 3 formation, and reductant utilization processes were evaluated, and fuel efficiency was assessed and compared to the stoichiometric engine operation case. We found air-fuel equivalence ratio to be one of the most important parameters in controlling the NH 3 production; however, the rich operation necessary for NH 3 production results in a fuel consumption penalty. The fuel penalty can be minimized by adjusting spark timing to increase rich-phase engine out NO X emissions and, thereby, NH 3 levels. Additionally, higher engine out NO X during engine load increase to simulate acceleration resulted in additional fuel savings. Ultimately, a 10% fuel consumption benefit was achieved with the passive SCR approach by optimizing rich air-fuel equivalence ratio and spark timing while also utilizing acceleration load conditions.« less

  10. Implementation of Lean System on Erbium Doped Fibre Amplifier Manufacturing Process to Reduce Production Time

    NASA Astrophysics Data System (ADS)

    Maneechote, T.; Luangpaiboon, P.

    2010-10-01

    A manufacturing process of erbium doped fibre amplifiers is complicated. It needs to meet the customers' requirements under a present economic status that products need to be shipped to customers as soon as possible after purchasing orders. This research aims to study and improve processes and production lines of erbium doped fibre amplifiers using lean manufacturing systems via an application of computer simulation. Three scenarios of lean tooled box systems are selected via the expert system. Firstly, the production schedule based on shipment date is combined with a first in first out control system. The second scenario focuses on a designed flow process plant layout. Finally, the previous flow process plant layout combines with production schedule based on shipment date including the first in first out control systems. The computer simulation with the limited data via an expected value is used to observe the performance of all scenarios. The most preferable resulted lean tooled box systems from a computer simulation are selected to implement in the real process of a production of erbium doped fibre amplifiers. A comparison is carried out to determine the actual performance measures via an analysis of variance of the response or the production time per unit achieved in each scenario. The goodness of an adequacy of the linear statistical model via experimental errors or residuals is also performed to check the normality, constant variance and independence of the residuals. The results show that a hybrid scenario of lean manufacturing system with the first in first out control and flow process plant lay out statistically leads to better performance in terms of the mean and variance of production times.

  11. Passive SCR for lean gasoline NO X control: Engine-based strategies to minimize fuel penalty associated with catalytic NH 3 generation

    DOE PAGES

    Prikhodko, Vitaly Y.; Parks, James E.; Pihl, Josh A.; ...

    2016-02-18

    Lean gasoline engines offer greater fuel economy than common stoichiometric gasoline engines. However, excess oxygen prevents the use of the current three-way catalyst (TWC) to control nitrogen oxide (NO X) emissions in lean exhaust. A passive SCR concept, introduced by General Motors Global R&D, makes use of a TWC that is already onboard to generate NH 3 under slightly rich conditions, which is stored on the downstream SCR. The stored NH 3 is then used to reduce NO X emissions when the engine switches to lean operation. In this work, the effect of engine parameters, such as air-fuel equivalence ratiomore » and spark timing, on NH 3 generation over a commercial Pd-only TWC with no dedicated oxygen storage component was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine. NO X reduction, NH 3 formation, and reductant utilization processes were evaluated, and fuel efficiency was assessed and compared to the stoichiometric engine operation case. We found air-fuel equivalence ratio to be one of the most important parameters in controlling the NH 3 production; however, the rich operation necessary for NH 3 production results in a fuel consumption penalty. The fuel penalty can be minimized by adjusting spark timing to increase rich-phase engine out NO X emissions and, thereby, NH 3 levels. Additionally, higher engine out NO X during engine load increase to simulate acceleration resulted in additional fuel savings. Ultimately, a 10% fuel consumption benefit was achieved with the passive SCR approach by optimizing rich air-fuel equivalence ratio and spark timing while also utilizing acceleration load conditions.« less

  12. Pre-pubertal diet restriction reduces reactive oxygen species and restores fertility in male WNIN/Obese rat.

    PubMed

    Dinesh Yadav, D M; Muralidhar, M N; Prasad, S M V K; Rajender Rao, K

    2018-03-01

    Obesity is a multifactorial disorder associated with increased body adiposity, chronic oxidative stress which contributes to impaired fertility in males. Diet restriction and anti-oxidant supplementations are known to protect obese subjects from oxidative stress and improves fertility. However, the role of oxidative stress and the age of intervention in restoring male fertility are poorly understood. This study was aimed to assess the effect of diet restriction on fertility with respect to the age of intervention, body composition and oxidative stress using WNIN/Ob obese mutant rat strain. Unlike lean and carrier phenotypes, obese rats are hyperphagic, hyperlipaemic and infertile. Male obese rats aged for 35, 60 and 90 days were fed either ad libitum or diet restricted for 6 weeks. Upon diet restriction mean body weight, total body fat percentage, circulatory lipids and oxidative stress markers were significantly reduced and it follows the order as 35 < 60 < 90 days. Diet-restricted males of the three age groups were allowed to mate with female carrier rats, and fertility was restored only in 35-day group. Diet restriction in male obese WNIN/Ob rats lowered the rate of body weight gain, with reduced oxidative stress overall and fertility restoration in groups intervened at pre-pubertal stages. © 2017 Blackwell Verlag GmbH.

  13. Bee Pollen Improves Muscle Protein and Energy Metabolism in Malnourished Old Rats through Interfering with the Mtor Signaling Pathway and Mitochondrial Activity

    PubMed Central

    Salles, Jérôme; Cardinault, Nicolas; Patrac, Véronique; Berry, Alexandre; Giraudet, Christophe; Collin, Marie-Laure; Chanet, Audrey; Tagliaferri, Camille; Denis, Philippe; Pouyet, Corinne; Boirie, Yves; Walrand, Stéphane

    2014-01-01

    Although the management of malnutrition is a priority in older people, this population shows a resistance to refeeding. Fresh bee pollen contains nutritional substances of interest for malnourished people. The aim was to evaluate the effect of fresh bee pollen supplementation on refeeding efficiency in old malnourished rats. Male 22-month-old Wistar rats were undernourished by reducing food intake for 12 weeks. The animals were then renourished for three weeks with the same diet supplemented with 0%, 5% or 10% of fresh monofloral bee pollen. Due to changes in both lean mass and fat mass, body weight decreased during malnutrition and increased after refeeding with no between-group differences (p < 0.0001). Rats refed with the fresh bee pollen-enriched diets showed a significant increase in muscle mass compared to restricted rats (p < 0.05). The malnutrition period reduced the muscle protein synthesis rate and mTOR/p70S6kinase/4eBP1 activation, and only the 10%-pollen diet was able to restore these parameters. Mitochondrial activity was depressed with food restriction and was only improved by refeeding with the fresh bee pollen-containing diets. In conclusion, refeeding diets that contain fresh monofloral bee pollen improve muscle mass and metabolism in old, undernourished rats. PMID:25470375

  14. Differential impact of diabetes mellitus type II and arterial hypertension on collateral artery growth and concomitant macrophage accumulation.

    PubMed

    Ito, Wulf D; Lund, Natalie; Sager, Hendrik; Becker, Wiebke; Wenzel, Ulrich

    2015-01-01

    Diabetes mellitus type II and arterial hypertension are major risk factors for peripheral arterial disease and have been considered to reduce collateral growth (arteriogenesis). Collateral growth proceeds through different stages. Vascular proliferation and macrophage accumulation are hallmarks of early collateral growth. We here compare the impact of arterial hypertension and diabetes mellitus type II on collateral proliferation (Brdu incorporation) and macrophage accumulation (ED 2 staining) as well as collateral vessel function (collateral conductance) in a rat model of peripheral vascular disease (femoral artery occlusion), diabetes mellitus type II (Zucker fatty diabetic rats and Zucker lean rat controls) and arterial hypertension (induced via clip placement around the right renal arteriy). We furthermore tested the impact of monocyte chemoattractant protein-1 (MCP‑1) on collateral proliferation and macrophage accumulation in these models Diabetic animals showed reduced vascular proliferation and macrophage accumulation, which however did not translate into a change of collateral conductance. Hypertensive animals on the contrary had reduced collateral conductances without altered macrophage accumulation and only a marginal reduction in collateral proliferation. Infusion of MCP‑1 only enhanced vascular proliferation in diabetic animals. These findings illustrate that impaired monocyte/macrophage recruitment is responsible for reduced collateral growth under diabetic conditions but not in arterial hypertension suggesting that diabetes mellitus in particular affects early stages of collateral growth whereas hypertension has its impact on later remodeling stages. Successful pro-arteriogenic treatment strategies in a patient population that presents with diabetes mellitus and arterial hypertension need to address different stages of collateral growth and thus different molecular and cellular targets simultaneously.

  15. Opposite effects on regulation of urea synthesis by early and late uraemia in rats.

    PubMed

    Nielsen, Susanne Schouw; Grøfte, Thorbjørn; Grønbaek, Henning; Tygstrup, Niels; Vilstrup, Hendrik

    2007-04-01

    Acute and chronic kidney failure lead to catabolism with loss of lean body mass. Up-regulation of hepatic urea synthesis may play a role for the loss of body nitrogen and for the level of uraemia. The aims were to investigate the effects of early and late experimental renal failure on the regulation of hepatic urea synthesis and the expression of urea cycle enzyme genes in the liver. We examined the in vivo capacity of urea nitrogen synthesis, mRNA levels of urea cycle enzyme genes, and N-balances 6 days and 21 days after 5/6th partial nephrectomy in rats, and compared these data with pair- and free-fed control animals. Compared with pair-fed animals, early uraemia halved the in vivo urea synthesis capacity and decreased urea gene expressions (P<0.05). In contrast, late uraemia up-regulated in vivo urea synthesis and expression of all urea genes (P<0.05), save that of the flux-generating enzyme carbamoyl phosphate synthetase. The N-balance in rats with early uraemia was markedly negative (P<0.05) and near zero in late uraemia. Early uraemia down-regulated urea synthesis, so hepatic ureagenesis was not in itself involved in the negative N-balance. In contrast, late uraemia up-regulated urea synthesis, which probably contributed towards the reduced N-balance of this condition. These time-dependent, opposite effects on the uraemia-induced regulation of urea synthesis in vivo were not related to food restriction and probably mostly reflected regulation on gene level.

  16. Increased rate of osteoporosis, low lean mass, and fragility fractures in COPD patients: association with disease severity.

    PubMed

    Graumam, R Q; Pinheiro, M M; Nery, L E; Castro, C H M

    2018-03-21

    A very high rate of osteoporosis, fractures, and low lean mass was observed in patients with chronic obstructive pulmonary disease (COPD). Disease severity was associated with bone and muscle adverse outcomes, while age ≥ 63.5 years old, low lean mass, higher iPTH, and a T-score below - 2.5 were all associated with higher risk of fracture. Osteoporosis is frequently neglected in patients with COPD. We aimed at evaluating the rate of osteoporosis, fractures, and low lean mass in patients with COPD. Ninety-nine patients with COPD (53 women, 64.5 ± 9.6 years old, and 46 men, 65.9 ± 8.0 years old) underwent bone densitometry (DXA) with body composition analyses. Healthy individuals (N = 57) not exposed to tobacco matched by sex, age, and body mass index (BMI) were used as controls. Spirometry, routine laboratory workout, and conventional thoracolumbar radiography surveying for vertebral deformities were performed in all patients. Osteoporosis was found in 40.4% of the COPD patients against only 13.0% of the healthy controls (p = 0.001). Vertebral fractures were seen in 24.4% of the men and 22.0% of the women with COPD. Disease severity (GOLD 3 and 4) was significantly associated with higher risk of vitamin D deficiency (p = 0.032), lower BMD (both men and women at all sites), higher frequency of osteoporosis (in women at all sites), lower skeletal mass index, and higher rate of low lean mass (in both men and women) than healthy controls and COPD patients with milder disease (GOLD 1 and 2). Age was a main predictor of vertebral fractures (OR = 1.164 (1.078-9.297); p < 0.001), while high plasma iPTH (OR = 1.045 (1.005-1.088); p = 0.029) and low ALM (OR = 0.99965 (0.99933-0.99997); p = 0.031) were predictors of non-vertebral fractures. Highly prevalent in COPD, osteoporosis and low lean mass were associated with FEV 1% < 50%. Age, low lean mass, high iPTH, and low bone mass were all significantly associated with fractures in COPD patients.

  17. The effect of whole-body vibration training on lean mass: A PRISMA-compliant meta-analysis.

    PubMed

    Chen, Hengting; Ma, Jianxiong; Lu, Bin; Ma, Xin-Long

    2017-11-01

    Whole-body vibration training (WBVT) confers a continuous vibration stimuli to the body. Although some reports have discussed the effects of whole-body vibration (WBV) on bone mineral density and muscle strength, study of WBV effects on lean mass have not been determined. The purpose of the present meta-analysis was to evaluate published, randomized controlled trials (RCTs) that investigated the effects of WBVT on lean mass. We identified only RCTs by searching databases, including Web of Science, PubMed, Scopus, Embase, and the Cochrane Library from inception to March 2017. Data extraction, quality assessment, and meta-analysis were performed. Ten RCTs with 5 RCTs concentrating on older people, 3 on young adults, and 2 on children and adolescents were included. We additionally explored the effect of WBVT on postmenopausal women (6 trials from the 10 trials). Significant improvements in lean mass with WBVT were merely found in young adults (P = .02) but not in other populations compared to control group. The effect of WBVT found in the present meta-analysis may be used in counteracting the loss of muscle mass in younger adults. Moreover, optimal WBVT protocols for greater muscle hypertrophy are expected to be investigated.

  18. Skeletal muscle mass and exercise performance in stable ambulatory patients with heart failure.

    PubMed

    Lang, C C; Chomsky, D B; Rayos, G; Yeoh, T K; Wilson, J R

    1997-01-01

    The purpose of this study was to determine whether skeletal muscle atrophy limits the maximal exercise capacity of stable ambulatory patients with heart failure. Body composition and maximal exercise capacity were measured in 100 stable ambulatory patients with heart failure. Body composition was assessed by using dual-energy X-ray absorption. Peak exercise oxygen consumption (VO2peak) and the anaerobic threshold were measured by using a Naughton treadmill protocol and a Medical Graphics CardioO2 System. VO2peak averaged 13.4 +/- 3.3 ml.min-1.kg-1 or 43 +/- 12% of normal. Lean body mass averaged 52.9 +/- 10.5 kg and leg lean mass 16.5 +/- 3.6 kg. Leg lean mass correlated linearly with VO2peak (r = 0.68, P < 0.01), suggesting that exercise performance is influences by skeletal muscle mass. However, lean body mass was comparable to levels noted in 1,584 normal control subjects, suggesting no decrease in muscle mass. Leg muscle mass was comparable to levels noted in 34 normal control subjects, further supporting this conclusion. These findings suggest that exercise intolerance in stable ambulatory patients with heart failure is not due to skeletal muscle atrophy.

  19. Molecular exploration of fecal microbiome in quinoa-supplemented obese mice.

    PubMed

    Garcia-Mazcorro, Jose F; Mills, David; Noratto, Giuliana

    2016-07-01

    Diet affects gut microorganisms and dietary interventions can help treat obesity and overweight. Our aim was to investigate the effect of quinoa supplementation on fecal microbial ecology of obese diabetic mice. Obese db/db mice were fed commercial diets with and without quinoa supplementation for eight weeks; non-obese mice consuming non-supplemented diet served as lean-control. Fecal bacterial communities were analyzed using marker gene sequencing of 16S rRNA genes. Over 300 000 good-quality sequences were studied and assigned to 5774 different bacterial species (Operational Taxonomic Units at 97% similarity). Significant differences in bacterial abundances were found among the treatment groups, including some associated specifically with quinoa consumption. Analysis of weighted UniFrac distances revealed a distinctive clustering of lean microbial communities independently from obese-control and quinoa-supplemented mice (Analysis of Similarities, P < 0.01). Predicted functional profiles showed significant differences in 38 metabolic functions but most were due to a difference between lean samples compared to both obese-control and quinoa. Quinoa supplementation was associated with lower butyrate and succinic acid concentrations in cecum that were not necessarily more similar to those concentrations in lean mice. This study provides insight into the complex interactions between nutritional supplements and the gut microbiota thus informing future molecular analysis of the health benefits. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Sex differences in subacute toxicity and hepatic microsomal metabolism of triptolide in rats.

    PubMed

    Liu, Li; Jiang, Zhenzhou; Liu, Jing; Huang, Xin; Wang, Tao; Liu, Jun; Zhang, Yun; Zhou, Zhixing; Guo, Jianlu; Yang, Lina; Chen, Yun; Zhang, Luyong

    2010-04-30

    Triptolide, a major active component of Tripterygium wilfordii Hook F (TWHF), has multiple pharmacological activities. However, its clinical use is often limited by its severe toxicity. In the present study, we evaluated the oral toxicity of triptolide in Sprague-Dawley rats for 28 days at the dosages of 0, 200 and 400microg/kg/day, respectively. Significant difference in the toxicity of triptolide at 400microg/kg was found between different sexes. The triptolide-treated female rats showed many abnormalities, including anorexia, diarrhea, leanness, suppression of weight gain and food intake, fatty liver, splenomegaly and atrophy of ovaries. In contrast, no such abnormalities were observed in male rats except for the significant reproductive toxicity. Furthermore, the metabolism of triptolide in liver microsomes from both sexes was investigated by HPLC. A greater rate of triptolide metabolism was observed in male rat hepatic microsomes, suggesting that one of the cytochrome P450s (CYPs) responsible for triptolide metabolism is male-specific or predominant at least. The inhibition experiments with CYP inhibitors showed that CYP3A and CYP2B were mainly involved in the metabolism of triptolide. In addition, since CYP3A2 is a male-predominant form in rats, significant sex difference in the metabolism of triptolide disappeared in vitro after anti-rat CYP3A2 antibody pretreatment. Results suggested that CYP3A2 made an important contribution to the sex-related metabolism of triptolide, which may result in the sex differences in triptolide toxicity.

  1. Isolation and structural characterization of 2R, 3R taxifolin 3-O-rhamnoside from ethyl acetate extract of Hydnocarpus alpina and its hypoglycemic effect by attenuating hepatic key enzymes of glucose metabolism in streptozotocin-induced diabetic rats.

    PubMed

    Balamurugan, Rangachari; Vendan, Subramanian Ezhil; Aravinthan, Adithan; Kim, Jong-Hoon

    2015-04-01

    Hydnocarpus alpina Wt. (Flacourtiaceae) (H. alpina) is a large tree traditionally used to treat leprosy; it also posses antidiabetic property. The present study was undertaken to isolate, characterize and to evaluate the antidiabetic effect of 2R, 3R taxifolin 3-O-rhamnoside. (rhamnoside) and its impact on carbohydrate metabolic key enzymes in control and streptozotocin (STZ)-induced diabetic rats. Diabetes mellitus was induced by a single intraperitoneal injection of streptozotocin (STZ) (40 mg/kg). Oral administration of rhamnoside for 21 days significantly reduced food intake, calorie intake, blood glucose and glycosylated hemoglobin levels, and improved plasma insulin levels. Administration of rhamnoside showed significant increase in the body weight, body composition (Lean body weight (LBW) and retro body fat), glycolytic hexokinase, glucose-6-phophate dehydrogenase and pyruvate kinase levels where as significant decrease was observed in the levels of glucose-6-phosphatase fructose-1, 6-bisphosphatase and lactate dehydrogenase in diabetic treated rats. Further, administration of rhamnoside significantly improved the glycogen content, glycogen synthase and glycogen phosphorylase, suggesting the antihyperglycemic potential of rhamnoside in diabetic rats. The results obtained were compared with glibenclamide a standard hypoglycaemic drug. Immunohistopathological study of pancreas revealed increased number of β-cells and insulin granules in diabetes-induced rats after treatment with rhamnoside for 21 days. Furthermore, Co-administration of rhamnoside (50 mg/kg) with nifedipine (13.6 mg/kg), a Ca(2+)ion channel blocker, or nicorandil (6.8 mg/kg), an ATP-sensitive K(+) ion channel opener, reveals the insulin secretion property of rhamnoside via a K(+)-ATP channels dependent pathway in diabetic rats. In conclusion, rhamnoside normalized blood glucose, glycosylated hemoglobin, key hepatic enzymes and glycogen content by increasing insulin secretion via K(+)-ATP channels dependent signaling pathway. The results suggest that the rhamnoside from H. alpina could be used as a therapeutic agent to treat diabetes mellitus. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  2. Mild and Short-Term Caloric Restriction Prevents Obesity-Induced Cardiomyopathy in Young Zucker Rats without Changing in Metabolites and Fatty Acids Cardiac Profile

    PubMed Central

    Ruiz-Hurtado, Gema; García-Prieto, Concha F.; Pulido-Olmo, Helena; Velasco-Martín, Juan P.; Villa-Valverde, Palmira; Fernández-Valle, María E.; Boscá, Lisardo; Fernández-Velasco, María; Regadera, Javier; Somoza, Beatriz; Fernández-Alfonso, María S.

    2017-01-01

    Caloric restriction (CR) ameliorates cardiac dysfunction associated with obesity. However, most of the studies have been performed under severe CR (30–65% caloric intake decrease) for several months or even years in aged animals. Here, we investigated whether mild (20% food intake reduction) and short-term (2-weeks) CR prevented the obese cardiomyopathy phenotype and improved the metabolic profile of young (14 weeks of age) genetically obese Zucker fa/fa rats. Heart weight (HW) and HW/tibia length ratio was significantly lower in fa/fa rats after 2 weeks of CR than in counterparts fed ad libitum. Invasive pressure measurements showed that systolic blood pressure, maximal rate of positive left ventricle (LV) pressure, LV systolic pressure and LV end-diastolic pressure were all significantly higher in obese fa/fa rats than in lean counterparts, which were prevented by CR. Magnetic resonance imaging revealed that the increase in LV end-systolic volume, stroke volume and LV wall thickness observed in fa/fa rats was significantly lower in animals on CR diet. Histological analysis also revealed that CR blocked the significant increase in cardiomyocyte diameter in obese fa/fa rats. High resolution magic angle spinning magnetic resonance spectroscopy analysis of the LV revealed a global decrease in metabolites such as taurine, creatine and phosphocreatine, glutamate, glutamine and glutathione, in obese fa/fa rats, whereas lactate concentration was increased. By contrast, fatty acid concentrations in LV tissue were significantly elevated in obese fa/fa rats. CR failed to restore the LV metabolomic profile of obese fa/fa rats. In conclusion, mild and short-term CR prevented an obesity-induced cardiomyopathy phenotype in young obese fa/fa rats independently of the cardiac metabolic profile. PMID:28203206

  3. Application of controllable pulverized-coal rich/lean combustion technology at the Hebi Wanhe Power Generation Co. Ltd.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jianzhong, L.; Xiang, Z.; Junhu, Z.

    1999-07-01

    The No.2 unit (670/H, 200MW) at Hebi Wanhe Power Generation C o. Ltd., was put into use in 1992. This is a coal-fired boiler with tangential fired method. The design coal is Hebi lean coal. To stabilize the combustion without oil at low load, eight original designed burners placed to No. 2 and 3 level on the No.2 boiler were replaced with the controllable pulverized rich/lean ones developed by the Institute for Thermal Power Engineering (ITPE) of Zhejiang University. The practice of successive operation shows that stable combustion can be achieved at 50% load without support oil, even at 45%more » load. The combustible matter in fly ash decreased to 1.12% and 1.17% from 1.83% and 1.32%, respectively at full load (200MW) and half load (100MW). The application has obvious economic benefits.« less

  4. Application of lean six sigma to waste minimization in cigarette paper industry

    NASA Astrophysics Data System (ADS)

    Syahputri, K.; Sari, R. M.; Anizar; Tarigan, I. R.; Siregar, I.

    2018-02-01

    The cigarette paper industry is one of the industry that is always experiencing increasing demand from consumers. Consumer expectations for the products produced also increased both in terms of quality and quantity. The company continuously improves the quality of its products by trying to minimize nonconformity, waste and improve the efficiency of the whole production process of the company. In this cigarette industry, there is a disability whose value is above the company’s defect tolerance that is 10% of the production amount per month. Another problem also occurs in the production time is too long due to the many activities that are not value added (non value added activities) on the production floor. To overcome this problem, it is necessary to improve the production process of cigarette paper and minimize production time by reducing non value added activities. Repairs done with Lean Six Sigma. Lean Six Sigma is a combination of Lean and Six Sigma concept with DMAIC method (Define, Measure, Analyze, Improve, Control). With this Lean approach, obtained total production time of 1479.13 minutes proposal with cycle efficiency process increased by 12.64%.

  5. Analysis of the "endocannabinoidome" in peripheral tissues of obese Zucker rats.

    PubMed

    Iannotti, F A; Piscitelli, F; Martella, A; Mazzarella, E; Allarà, M; Palmieri, V; Parrella, C; Capasso, R; Di Marzo, V

    2013-08-01

    The endocannabinoid system (ECS) represents one of the major determinants of metabolic disorders. We investigated potential changes in the endogenous levels of anandamide (AEA), 2-arachidonoylglycerol (2-AG), N-oleoylethanolamine (OEA) and N-palmitoylethanolamine (PEA) in some peripheral organs and tissues of obese Zucker(fa/fa) and lean Zucker(fa/+) rats by qPCR, liquid chromatography mass spectrometry, western blot and enzymatic activity assays. At 10-12 weeks of age AEA levels were significantly lower in BAT, small intestine and heart and higher in soleus of Zucker(fa/fa) rats. In this tissue, also the expression of CB1 receptors was higher. By contrast in Zucker(fa/fa) rats, 2-AG levels were changed (and lower) solely in the small and large intestine. Finally, in Zucker(fa/fa), PEA levels were unchanged, whereas OEA was slightly lower in BAT, and higher in the large intestine. Interestingly, these differences were accompanied by differential alterations of the genes regulating ECS tone. In conclusion, the levels of endocannabinoids are altered during obesity in a way partly correlating with changes of the genes related to their metabolism and activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Microvascular disorders in obese Zucker rats are restored by a rice bran diet.

    PubMed

    Justo, M L; Claro, C; Vila, E; Herrera, M D; Rodriguez-Rodriguez, R

    2014-05-01

    Nutritional-based approaches aimed to prevent microvascular dysfunction associated to obesity present potential advantages over pharmacological strategies. Our aim was to test whether a rice bran enzymatic extract (RBEE)-supplemented diet could attenuate microvascular alterations in obese rats. Lean and obese Zucker rats were fed standard diet supplemented or not with 1% and 5% RBEE for 20 weeks. Functional studies were performed in small mesenteric arteries in isometric myograph. Immunoblotting and fluorescence studies were made in arterial homogenates and arterial sections, respectively. RBEE-supplementation restored microvascular function in obese rats through a marked increase in NO and endothelial-derived hyperpolarizing factor contribution by up-regulation of eNOS and calcium-activated potassium channels expression, respectively, in association to a substantial reduction of microvascular inflammation and superoxide anion formation. These data agrees with the beneficial actions of RBEE on dyslipidemia, hyperinsulinemia and hypertension in obesity. The multi-factorial properties of RBEE-diet, especially for restoring the function of small resistance arteries shows this dietary-based approach to be a promising candidate for prevention of microvascular alterations in obesity, which are crucial in cardiovascular events in obese subjects. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Genetic variation in exon 17 of INSR is associated with insulin resistance and hyperandrogenemia among lean Indian women with polycystic ovary syndrome.

    PubMed

    Mukherjee, Srabani; Shaikh, Nuzhat; Khavale, Sushma; Shinde, Gayatri; Meherji, Pervin; Shah, Nalini; Maitra, Anurupa

    2009-05-01

    Polycystic ovary syndrome (PCOS) is a multigenic disorder, and insulin resistance is one of its hallmark features. Polymorphisms in exon 17 of insulin receptor (INSR) gene are reported to be associated with PCOS. We investigated this association in Indian women and its putative relationship with PCOS associated traits, which has not been explored so far. In this case control study, the polymorphisms were investigated by direct sequencing in 180 women with PCOS and 144 age matched controls. Clinical, anthropometric, biochemical, and hormonal parameters were also estimated. The silent C/T polymorphism at His1058 in exon 17 of INSR was found to be present in our study population. The polymorphic genotype (CT+TT) was significantly associated with PCOS in lean women (chi(2)=8.493, df=1, P=0.004). It showed association with higher fasting insulin levels (P=0.02), homeostasis model assessment of insulin resistance (P=0.005), free androgen index (P=0.03), and lower quantitative insulin sensitivity check index (P=0.004) in lean PCOS women. No other novel or known polymorphism was identified in exon 17 in this cohort. The study shows significant association of C/T polymorphism at His1058 of INSR with PCOS in the lean rather than obese Indian women. Its association with indices of insulin resistance and hyperandrogenemia is also seen in the same group. The findings strengthen the concept that pathogenesis of PCOS is different in lean and obese women.

  8. Vitamin D deficiency decreases adiposity in rats and causes altered expression of uncoupling proteins and steroid receptor coactivator3.

    PubMed

    Bhat, Mehrajuddin; Noolu, Bindu; Qadri, Syed S Y H; Ismail, Ayesha

    2014-10-01

    The vitamin D endocrine system is functional in the adipose tissue, as demonstrated in vitro, in cultured adipocytes, and in vivo in mutant mice that developed altered lipid metabolism and fat storage in the absence of either 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] or the vitamin D receptor. The aim of the present study was to examine the role of vitamin D and calcium on body adiposity in a diet-induced vitamin D deficient rat model. Vitamin D-deficient rats gained less weight and had lower amounts of visceral fat. Consistent with reduced adipose tissue mass, the vitamin D-deficient rats had low circulating levels of leptin, which reflects body fat stores. Expression of vitamin D and calcium sensing receptors, and that of genes involved in adipogenesis such as peroxisome proliferator-activated receptor, fatty acid synthase and leptin were significantly reduced in white adipose tissue of deficient rats compared to vitamin D-sufficient rats. Furthermore, the expression of uncoupling proteins (Ucp1 and Ucp2) was elevated in the white adipose tissue of the deficient rat indicative of higher energy expenditure, thereby leading to a lean phenotype. Expression of the p160 steroid receptor coactivator3 (SRC3), a key regulator of adipogenesis in white adipose tissue was decreased in vitamin D-deficient state. Interestingly, most of the changes observed in vitamin D deficient rats were corrected by calcium supplementation alone. Our data demonstrates that dietary vitamin D and calcium regulate adipose tissue function and metabolism. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Convergence in insulin resistance between very severely obese and lean women at the end of pregnancy.

    PubMed

    Forbes, Shareen; Barr, Sarah M; Reynolds, Rebecca M; Semple, Scott; Gray, Calum; Andrew, Ruth; Denison, Fiona C; Walker, Brian R; Norman, Jane E

    2015-11-01

    Disrupted intermediary metabolism may contribute to the adverse pregnancy outcomes in women with very severe obesity. Our aim was to study metabolism in such pregnancies. We recruited a longitudinal cohort of very severely obese (n = 190) and lean (n = 118) glucose-tolerant women for anthropometric and metabolic measurements at early, mid and late gestation and postpartum. In case-control studies of very severely obese and lean women we measured glucose and glycerol turnover during low- and high-dose hyperinsulinaemic-euglycaemic clamps (HEC) at early and late pregnancy and in non-pregnant women (each n = 6-9) and body fat distribution by MRI in late pregnancy (n = 10/group). Although greater glucose, insulin, NEFA and insulin resistance (HOMA-IR), and greater weight and % fat mass (FM) was observed in very severely obese vs lean participants, the degree of worsening was attenuated in the very severely obese individuals with advancing gestation, with no difference in triacylglycerol (TG) concentrations between very severely obese and lean women at term. Enhanced glycerol production was observed in early pregnancy only in very severely obese individuals, with similar intrahepatic FM in very severely obese vs lean women by late gestation. Offspring from obese mothers were heavier (p = 0.04). Pregnancies complicated by obesity demonstrate attenuation in weight gain and insulin resistance compared with pregnancies in lean women. Increased glycerol production is confined to obese women in early pregnancy and obese and lean individuals have similar intrahepatic FM by term. When targeting maternal metabolism to treat adverse pregnancy outcomes, therapeutic intervention may be most effective applied early in pregnancy.

  10. Is lost lean mass from intentional weight loss recovered during weight regain in postmenopausal women?

    PubMed

    Beavers, Kristen M; Lyles, Mary F; Davis, Cralen C; Wang, Xuewen; Beavers, Daniel P; Nicklas, Barbara J

    2011-09-01

    Despite the well-known recidivism of obesity, surprisingly little is known about the composition of body weight during weight regain. The objective of this study was to determine whether the composition of body weight regained after intentional weight loss is similar to the composition of body weight lost. The design was a follow-up to a randomized controlled trial of weight loss in which body composition was analyzed and compared in 78 postmenopausal women before the intervention, immediately after the intervention, and 6 and 12 mo after the intervention. All body mass and composition variables were lower immediately after weight loss than at baseline (all P < 0.05). More fat than lean mass was lost with weight loss, which resulted in body-composition changes favoring a lower percentage of body fat and a higher lean-to-fat mass ratio (P < 0.001). Considerable interindividual variability in weight regain was noted (CV = 1.07). In women who regained ≥2 kg body weight, a decreasing trend in the lean-to-fat mass ratio was observed, which indicated greater fat mass accretion than lean mass accretion (P < 0.001). Specifically, for every 1 kg fat lost during the weight-loss intervention, 0.26 kg lean tissue was lost; for every 1 kg fat regained over the following year, only 0.12 kg lean tissue was regained. Although not all postmenopausal women who intentionally lose weight will regain it within 1 y, the data suggest that fat mass is regained to a greater degree than is lean mass in those who do experience some weight regain. The health ramifications of our findings remain to be seen.

  11. Lean muscle volume of the thigh has a stronger relationship with muscle power than muscle strength in women with knee osteoarthritis.

    PubMed

    Davison, Michael J; Maly, Monica R; Keir, Peter J; Hapuhennedige, Sandani M; Kron, Amie T; Adachi, Jonathan D; Beattie, Karen A

    2017-01-01

    Thigh lean muscle and intramuscular fat have been implicated in the impairment of physical function observed in people with knee osteoarthritis. We investigated the relationships of quadriceps and hamstrings intramuscular fat fraction and lean muscle volume with muscle power and strength, controlling for neuromuscular activation, and physical performance in women with knee OA. Women (n=20) 55years or older with symptomatic, radiographic knee osteoarthritis underwent a 3.0T magnetic resonance imaging scan of the thigh of their most symptomatic knee. Axial fat-separated images were analyzed using software to quantify intramuscular fat and lean muscle volumes of the quadriceps and hamstrings. To quantify strength and power of the knee extensors and flexors, participants performed maximum voluntary isometric contraction and isotonic knee extensions and flexions, respectively. Electromyography of the quadriceps and hamstrings was measured. Participants also completed five physical performance tests. Quadriceps and hamstrings lean muscle volumes were related to isotonic knee extensor (B=0.624; p=0.017) and flexor (B=1.518; p=0.032) power, but not knee extensor (B=0.001; p=0.615) or flexor (B=0.001; p=0.564) isometric strength. Intramuscular fat fractions were not related to isotonic knee extensor or flexor power, nor isometric strength. No relationships were found between intramuscular fat or lean muscle volume and physical performance. Muscle power may be more sensitive than strength to lean muscle mass in women with knee osteoarthritis. Thigh lean muscle mass, but neither intramuscular nor intermuscular fat, is related to knee extensor and flexor power in women with knee osteoarthritis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Lean mass and fat mass predict bone mineral density in middle-aged individuals with noninsulin-requiring type 2 diabetes mellitus.

    PubMed

    Moseley, Kendall F; Dobrosielski, Devon A; Stewart, Kerry J; De Beur, Suzanne M Jan; Sellmeyer, Deborah E

    2011-05-01

    Despite high bone mineral density (BMD), persons with type 2 diabetes are at greater risk of fracture. The relationship between body composition and BMD in noninsulin-requiring diabetes is unclear. The aim was to examine how fat and lean mass independently affect the skeleton in this population. Subjects for this cross-sectional analysis were men (n = 78) and women (n = 56) aged 40-65 years (56 ± 6 years) with uncomplicated, noninsulin-requiring type 2 diabetes. Total body fat and lean mass, total body, hip and lumbar spine BMD were measured with dual energy X-ray absorptiometry. Magnetic resonance imaging measured total abdominal, visceral and subcutaneous (SQ) fat. Subjects had normal all-site BMD and were obese to overweight (body mass index 29-41 kg/m(2)) with controlled diabetes (HbA1c women 6·6 ± 1·2%, men 6·7 ± 1·6%). Lean mass was positively associated with total body, hip, femoral neck and hip BMD in both sexes. Fat mass, abdominal total and SQ fat were associated with total body and hip BMD in women. In multivariate analyses adjusted for sex, lean mass significantly predicted total, hip and femoral neck BMD in men and women. In unadjusted models, lean mass continued to predict BMD at these sites in men; fat mass also predicted total body, femoral and hip BMD in women. In men and women with uncomplicated, noninsulin-requiring diabetes, lean mass significantly predicted BMD at the total body, hip and femoral neck. Further research is needed to determine whether acquisition or maintenance of lean mass in T2DM can prevent hip fracture in this at-risk population. © 2011 Blackwell Publishing Ltd.

  13. Physician strives to create lean, clean health care machine. Studies of manufacturing processes may one day help make your practice more efficient.

    PubMed

    Hill, D

    2001-01-01

    Elisabeth Hager, MD, MMM, CPE, is teaming up with scientists and industrialists to teach physicians how to apply principles of lean, total-quality manufacturing to their practices. She believes innovation and efficiencies can help doctors resurrect their profession's image and their control over it--and perhaps even reinvent American health care.

  14. Expression of 11beta-hydroxysteroid dehydrogenase 1 and 2 in subcutaneous adipose tissue of lean and obese women with and without polycystic ovary syndrome.

    PubMed

    Svendsen, P F; Madsbad, S; Nilas, L; Paulsen, S K; Pedersen, S B

    2009-11-01

    To investigate the expression of 11beta-hydroxysteroid dehydrogenase (11beta-HSD) type 1 and 2 and hexose-6-phosphate dehydrogenase (H6PDH) mRNA in subcutaneous abdominal tissue from lean and obese women with and without polycystic ovary syndrome (PCOS), and to investigate the association between these enzymes and different measures of insulin sensitivity. Cross-sectional study. A total of 60 women, 36 women with PCOS, 17 lean (lean PCOS, LP) and 19 obese (obese PCOS, OP) and 24 age- and weight-matched control women, 8 lean (lean controls, LC) and 16 obese (obese controls, OC). Subcutaneous adipose tissue was collected from the abdomen. Peripheral insulin sensitivity was assessed by the euglycemic hyperinsulinemic clamp and determined as glucose disposal rate and insulin sensitivity index. Whole-body insulin sensitivity was calculated using homeostasis model assessment insulin resistance index. Body composition was evaluated by dual X-ray absorptiometry. Adipose mRNA expression of leptin and adiponectin were determined by real-time PCR. Polycystic ovary syndrome (P<0.05) and obesity (P<0.05) were independently associated with increased expression of 11beta-HSD1 mRNA. The subgroups LP and OC had increased 11beta-HSD1 and 11beta-HSD2 mRNA expression compared with LC (P<0.05, P<0.05). There were no effects of PCOS or obesity on11beta-HSD2 or H6PDH mRNA expression. Decreased peripheral insulin sensitivity (P<0.001) and increased upper body fat distribution (P<0.01) were associated with increased expression of 11beta-HSD1, but neither 11beta-HSD2 nor H6PDH. Polycystic ovary syndrome and obesity are independently associated with increased expression of 11beta-HSD1. This may lead to increased conversion of cortisone to cortisol in the peripheral adipose tissue and subsequently increased glucocorticoid activity. Decreased peripheral insulin sensitivity and central obesity was associated with increased expression of 11beta-HSD1.

  15. Uterine Artery Flow and Offspring Growth in Long-Evans Rats following Maternal Exposure to Ozone during Implantation

    PubMed Central

    Dye, Janice A.; Ledbetter, Allen D.; Schladweiler, Mette C.; Richards, Judy H.; Snow, Samantha J.; Wood, Charles E.; Henriquez, Andres R.; Thompson, Leslie C.; Farraj, Aimen K.; Hazari, Mehdi S.; Kodavanti, Urmila P.

    2017-01-01

    Background: Epidemiological studies suggest that increased ozone exposure during gestation may compromise fetal growth. In particular, the implantation stage of pregnancy is considered a key window of susceptibility for this outcome. Objectives: The main goals of this study were to investigate the effects of short-term ozone inhalation during implantation on fetal growth outcomes and to explore the potential for alterations in uterine arterial flow as a contributing mechanism. Methods: Pregnant Long-Evans rats were exposed to filtered air, 0.4 ppm ozone, or 0.8 ppm ozone for 4 h/d during implantation, on gestation days (GD) 5 and 6. Tail cuff blood pressure and uterine artery Doppler ultrasound were measured on GD 15, 19, and 21. To assess whether peri-implantation ozone exposure resulted in sustained pulmonary or systemic health effects, bronchoalveolar lavage fluid, serum metabolic and inflammatory end points, and kidney histopathology were evaluated in dams at GD 21. Growth parameters assessed in GD 21 offspring included fetal weight, length, and body composition. Results: Measures of maternal uterine arterial flow, including resistance index and mean velocity, indicated that resistance increased between GD 15 and GD 21 in 0.8 ppm dams but decreased in controls, although absolute values were similar in both groups on GD 21. Ozone-exposed dams also had lower serum glucose and higher free fatty acid concentrations than controls on GD 21. On GD 21, both male and female offspring had lower body weight than controls, and pooled subsets of 3 male and 3 female fetuses from litters exposed to 0.8 ppm ozone had lower lean mass and fat mass than pooled control offspring. Conclusions: Findings from our experimental model suggest that the offspring of dams exposed to ozone during implantation had reduced growth compared with controls, possibly as a consequence of ozone-induced vascular dysfunction. https://doi.org/10.1289/EHP2019 PMID:29269335

  16. Dual specificity phosphatase 6 deficiency is associated with impaired systemic glucose tolerance and reversible weight retardation in mice

    PubMed Central

    Schriever, Sonja C.; Müller, Timo D.; Tschöp, Matthias H.

    2017-01-01

    Here, we aimed to investigate the potential role of DUSP6, a dual specificity phosphatase, that specifically inactivates extracellular signal-regulated kinase (ERK), for the regulation of body weight and glucose homeostasis. We further assessed whether metabolic challenges affect Dusp6 expression in selected brain areas or white adipose tissue. Hypothalamic Dusp6 mRNA levels remained unchanged in chow-fed lean vs. high fat diet (HFD) fed obese C57Bl/6J mice, and in C57Bl/6J mice undergoing prolonged fasting or refeeding with fat free diet (FFD) or HFD. Similarly, Dusp6 expression levels were unchanged in selected brain regions of Lepob mice treated with 1 mg/kg of leptin for 6 days, compared to pair-fed or saline-treated Lepob controls. Dusp6 expression levels remained unaltered in vitro in primary adipocytes undergoing differentiation, but were increased in eWAT of HFD-fed obese C57Bl/6J mice, compared to chow-fed lean controls. Global chow-fed DUSP6 KO mice displayed reduced body weight and lean mass and slightly increased fat mass at a young age, which is indicative for early-age weight retardation. Subsequent exposure to HFD led to a significant increase in lean mass and body weight in DUSP6 deficient mice, compared to WT controls. Nevertheless, after 26 weeks of high-fat diet exposure, we observed comparable body weight, fat and lean mass in DUSP6 WT and KO mice, suggesting overall normal susceptibility to develop obesity. In line with the increased weight gain to compensate for early-age weight retardation, HFD-fed DUSP6 KO displayed increased expression levels of anabolic genes involved in lipid and cholesterol metabolism in the epididymal white adipose tissue (eWAT), compared to WT controls. Glucose tolerance was perturbed in both chow-fed lean or HFD-fed obese DUSP6 KO, compared to their respective WT controls. Overall, our data indicate that DUSP6 deficiency has limited impact on the regulation of energy metabolism, but impairs systemic glucose tolerance. Our data are in conflict to earlier reports that propose protection from diet-induced obesity and glucose intolerance in DUSP6 deficient mice. Reasons for the discrepancies remain elusive, but may entail differential genetic backgrounds, environmental factors such as the type and source of HFD, or alterations in the gut microbiome between facilities. PMID:28873424

  17. Effects of milk powder and its components on texture, yield, and color of a lean poultry meat model system.

    PubMed

    Barbut, S

    2010-06-01

    The effects of whole milk powder, 2 skim milk powders, caseinate, and 2 modified whey proteins (2% protein level in the final product) were evaluated in lean chicken meat batters and compared with controls with and without added lactose. All dairy proteins significantly (P<0.05) reduced cook losses when compared against the controls, with the 2 skim milk powders and modified whey-I showing the best results. Hardness and fracturability were also higher for all test batters compared with controls. Skim milk-II showed the highest fracturability value (21.9 vs. 7.1 N for the control) and was also found to be the most cost-effective ingredient for improving moisture binding and texture; skim milk-I and modified whey-I followed behind. Springiness and fracture distance were higher for all of the dairy proteins, except caseinate, indicating a positive contribution to the lean meat system's elasticity. In terms of color, adding the skim milk powders, modified whey-II, and whole milk powder resulted in lighter cooked meat batters as evidenced by the higher L* values and higher spectra curves.

  18. High-protein diet selectively reduces fat mass and improves glucose tolerance in Western-type diet-induced obese rats

    PubMed Central

    Stengel, Andreas; Goebel-Stengel, Miriam; Wang, Lixin; Hu, Eugenia; Karasawa, Hiroshi; Pisegna, Joseph R.

    2013-01-01

    Obesity is an increasing health problem. Because drug treatments are limited, diets remain popular. High-protein diets (HPD) reduce body weight (BW), although the mechanisms are unclear. We investigated physiological mechanisms altered by switching diet induced obesity (DIO) rats from Western-type diet (WTD) to HPD. Male rats were fed standard (SD) or WTD (45% calories from fat). After developing DIO (50% of rats), they were switched to SD (15% calories from protein) or HPD (52% calories from protein) for up to 4 weeks. Food intake (FI), BW, body composition, glucose tolerance, insulin sensitivity, and intestinal hormone plasma levels were monitored. Rats fed WTD showed an increased FI and had a 25% greater BW gain after 9 wk compared with SD (P < 0.05). Diet-induced obese rats switched from WTD to HPD reduced daily FI by 30% on day 1, which lasted to day 9 (−9%) and decreased BW during the 2-wk period compared with SD/SD (P < 0.05). During these 2 wk, WTD/HPD rats lost 72% more fat mass than WTD/SD (P < 0.05), whereas lean mass was unaltered. WTD/HPD rats had lower blood glucose than WTD/SD at 30 min postglucose gavage (P < 0.05). The increase of pancreatic polypeptide and peptide YY during the 2-h dark-phase feeding was higher in WTD/HPD compared with WTD/SD (P < 0.05). These data indicate that HPD reduces BW in WTD rats, which may be related to decreased FI and the selective reduction of fat mass accompanied by improved glucose tolerance, suggesting relevant benefits of HPD in the treatment of obesity. PMID:23883680

  19. Centrally administered urocortin 2 decreases gorging on high-fat diet in in both diet induced obesity-prone and -resistant rats

    PubMed Central

    Cottone, Pietro; Sabino, Valentina; Nagy, Tim R.; Coscina, Donald V.; Levin, Barry E.; Zorrilla, Eric P.

    2013-01-01

    Objective Obesity is a costly, deadly public health problem for which new treatments are needed. Individual differences in meal pattern have been proposed to play a role in obesity risk. The present study tested the hypothesis that i) the microstructure of chronic high-fat diet intake differs between genetically selected Diet-Induced Obesity (DIO) and Diet Resistant (DR) rats, and ii) central administration of urocortin 2 (Ucn 2), a corticotropin-releasing factor type 2 (CRF2) agonist, decreases high-fat diet intake not only in lean DR rats, but also in obese DIO rats. Design Male, selectively bred DIO and DR rats (n=10/genotype) were chronically fed a high-fat diet. Food and water intake as well as ingestion microstructure were then compared under baseline conditions and following third intracerebroventricular injection of Ucn 2 (0, 0.1, 0.3, 1, 3 µg). Results Irrespective of genotype, Ucn 2 reduced nocturnal food intake with a minimum effective dose of 0.3 µg, suppressing high-fat diet intake by ~40% at the 3 µg dose. Ucn 2 also made rats of both genotypes eat smaller and briefer meals, including at doses that did not reduce drinking. Obese DIO rats ate fewer but larger meals than DR rats, which they ate more quickly and consumed with 2/3rd less water. Conclusions Unlike leptin and insulin, Ucn 2 retains its full central anorectic efficacy to reduce high-fat diet intake even in obese, genetically-prone DIO rats, which otherwise show a “gorging” meal pattern. These results open new opportunities of investigation towards treating some forms of diet-induced obesity. PMID:23478425

  20. Polycystic ovary syndrome: association of a C/T single nucleotide polymorphism at tyrosine kinase domain of insulin receptor gene with pathogenesis among lean Japanese women.

    PubMed

    Kashima, Katsunori; Yahata, Tetsuro; Fujita, Kazuyuki; Tanaka, Kenichi

    2013-01-01

    To assess whether the insulin receptor (INSR) gene contributes to genetic susceptibility to polycystic ovary syndrome (PCOS) in a Japanese population. We ex-amined the frequency of the His 1058 C/T single nucleotide polymorphism (SNP) found in exon 17 of the INSR gene in 61 Japanese PCOS patients and 99 Japanese healthy controls. In addition, we analyzed the association between the genotype of this SNP and the clinical phenotypes. The frequency of the C/C genotype was not significantly different between all PCOS patients (47.5%) and controls (35.4%). However, among the lean cases (body mass index < or = 20 kg/m2) the frequency of the C/C genotype was significantly increased (p < 0.05) in PCOS patients (65.0%) as compared with controls (36.6%). We concluded that the His 1058 C/T polymorphism at the tyrosine kinase domain of the INSR gene had a relationship to the pathogenesis of lean PCOS patients in a Japanese population.

  1. Metabolic effects of polycystic ovary syndrome in adolescents

    PubMed Central

    Han, Yejin; Lee, Hye-Jin; Oh, Jee-Young; Sung, Yeon-Ah

    2015-01-01

    Purpose Polycystic ovary syndrome (PCOS) is characterized by hyperandrogenic anovulation in women of reproductive age. We investigated the metabolic effects of lean and overweight adolescents with PCOS. Methods Anthropometric measurements and biochemical parameters were evaluated in 49 adolescents with PCOS and 40 age- and body mass index (BMI)-matched controls. We further divided both PCOS and control groups into those having BMI within the normal range of less than 85th percentile and those being overweight and obese with a BMI greater than 85th percentile. Results Hemoglobin, gamma-glutamyl transferase (r-GT), total cholesterol, low-density lipoprotein-cholesterol and 2-hour postglucose load plasma insulin levels were significantly elevated in the lean PCOS group than in the lean control group. In the overweight/obese PCOS group, hemoglobin and r-GT levels were significantly elevated than in the overweight/obese control group. In the normal weight group, none of the subjects had metabolic syndrome according to the Adult Treatment Panel III criteria, but the incidence of metabolic syndrome in the overweight/obese PCOS group was 8.3% and that in the overweight/obese control group was 6.7%. Conclusion PCOS in adolescents causes metabolic abnormalities, underscoring the importance of early diagnosis of PCOS in oligomenorrheic adolescents. PMID:26512349

  2. The effects of coconut oil supplementation on the body composition and lipid profile of rats submitted to physical exercise.

    PubMed

    Resende, Nathália M; Félix, Henrique R; Soré, Murillo R; M M, Aníbal; Campos, Kleber E; Volpato, Gustavo T

    2016-05-13

    This study aims to verify the effects of coconut oil supplementation (COS) in the body composition and lipid profile of rats submitted to physical exercise. The animals (n=6 per group) were randomly assigned to: G1=Sedentary and Non-supplemented (Control Group), G2=Sedentary and Supplemented, G3=Exercised and Non-supplemented and G4=Exercised and Supplemented. The COS protocol used was 3 mL/Kg of body mass by gavage for 28 days. The physical exercise was the vertical jumping training for 28 days. It was determined the body mass parameters, Lee Index, blood glucose and lipid profile. The COS did not interfere with body mass, but the lean body mass was lower in G3 compared to G2. The final Lee Index classified G1 and G2 as obese (>30g/cm). The lipid profile showed total cholesterol was decreased in G3, LDL-c concentration was decreased in G2, triglycerides, VLDL-c and HDL-c concentrations were increased in G2 and G4 in relation to G1 and G3. The COS decreased LDL-c/HDL-c ratio. In conclusion, the COS associated or not to physical exercise worsen others lipid parameters, like triglycerides and VLDL-c level, showing the care with the use of lipid supplements.

  3. Plasma Amino Acids Stimulate Uncoupled Respiration of Muscle Subsarcolemmal Mitochondria in Lean but Not Obese Humans.

    PubMed

    Kras, Katon A; Hoffman, Nyssa; Roust, Lori R; Patel, Shivam H; Carroll, Chad C; Katsanos, Christos S

    2017-12-01

    Obesity is associated with mitochondrial dysfunction in skeletal muscle. Increasing the plasma amino acid (AA) concentrations stimulates mitochondrial adenosine triphosphate (ATP) production in lean individuals. To determine whether acute elevation in plasma AAs enhances muscle mitochondrial respiration and ATP production in subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria in obese adults. Assessment of SS and IMF mitochondrial function during saline (i.e., control) and AA infusions. Eligible participants were healthy lean (body mass index, <25 kg/m2; age, 37 ± 3 years; n = 10) and obese (body mass index >30 kg/m2; age 35 ± 3 years; n = 11) subjects. Single trial of saline infusion followed by AA infusion. SS and IMF mitochondria were isolated from muscle biopsies collected at the end of the saline and AA infusions. Mitochondrial respiration and ATP production. AA infusion increased adenosine 5'-diphosphate (ADP)-stimulated respiration and ATP production rates of SS mitochondria in the lean (P < 0.05), but not obese, subjects. Furthermore, AA infusion increased the uncoupled (i.e., non-ADP-stimulated) respiration of SS mitochondria in the lean subjects only (P < 0.05). AA infusion had no effect on any of these parameters in IMF mitochondria in either lean or obese subjects (P > 0.05). Increasing the plasma AA concentrations enhances the capacity for respiration and ATP production of muscle SS, but not IMF, mitochondria in lean individuals, in parallel with increases in uncoupled respiration. However, neither of these parameters increases in muscle SS or IMF mitochondria in obese individuals. Copyright © 2017 Endocrine Society

  4. Method and apparatus to selectively reduce NO.sub.x in an exhaust gas feedstream

    DOEpatents

    Schmieg, Steven J [Troy, MI; Blint, Richard J [Shelby Township, MI; Den, Ling [Sterling Heights, MI; Viola, Michael B [Macomb Township, MI; Lee, Jong-Hwan [Rochester Hills, MI

    2011-08-30

    A method and apparatus are described to selectively reduce NO.sub.x emissions of an internal combustion engine. An exhaust aftertreatment system includes an injection device operative to dispense a hydrocarbon reductant upstream of a silver-alumina catalytic reactor device. A control system determines a NO.sub.x concentration and hydrocarbon/NOx ratio based upon selected parameters of the exhaust gas feedstream and dispenses hydrocarbon reductant during lean engine operation. Included is a method to control elements of the feedstream during lean operation. The hydrocarbon reductant may include engine fuel.

  5. The Relative Merits of Lean, Enriched, and Empowered Offices: An Experimental Examination of the Impact of Workspace Management Strategies on Well-Being and Productivity

    ERIC Educational Resources Information Center

    Knight, Craig; Haslam, S. Alexander

    2010-01-01

    Principles of lean management encourage managers to exert tight control over office space and the people within it. Alternative, design-led approaches promote the value of offices that are enriched, particularly by plants and art. On the basis of a social identity perspective, we argue that both of these approaches may compromise organizational…

  6. Lean six sigma in healthcare.

    PubMed

    de Koning, Henk; Verver, John P S; van den Heuvel, Jaap; Bisgaard, Soren; Does, Ronald J M M

    2006-01-01

    Healthcare, as with any other service operation, requires systematic innovation efforts to remain competitive, cost efficient, and up-to-date. This article outlines a methodology and presents examples to illustrate how principles of Lean Thinking and Six Sigma can be combined to provide an effective framework for producing systematic innovation efforts in healthcare. Controlling healthcare cost increases, improving quality, and providing better healthcare are some of the benefits of this approach.

  7. Association of betatrophin with metabolic characteristics in overweight/obese and lean women with PCOS.

    PubMed

    Li, Linxia; Zhang, Feng; Cui, Jingjing; Shi, Yu; Xiang, Jiangdong; Wang, Xuejiao; Zhao, Naisi; Yan, Qingwu; Greenberg, Andrew S; Peng, Yongde; Ding, Xiaoying

    2017-03-01

    As a new hormone, betatrophin has gained attention as a potential new target to combat insulin resistance (IR) and diabetes. Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder among women of the reproductive age with long term sequelae which include IR and metabolic syndrome. The aim of this study is to evaluate the circulating plasma betatrophin levels in overweight/obese or lean women with or without PCOS and also to elucidate possible correlations with anthropometric and metabolic parameters. Thirty-two patients with PCOS as well as fifty-three control subjects were enrolled after obtaining informed written consent. Clinical and biochemical parameters of all subjects were determined. Plasma adiponectin, GLP-1 and betatrophin levels were measured by ELISA. Plasma betatrophin levels were significantly increased in lean patients with PCOS compared with lean and obese controls. Moreover, in PCOS group, betatrophin levels were significantly negatively correlated with waist hip ratio (WHR), fasting insulin level (FINS) and HOMA-IR, whereas, significantly positively correlated with adiponectin level. Multiple regression analysis showed that HOMA-IR was an independent factor influencing serum betatrophin levels. Further follow-up studies are needed to highlight whether and how increased betatrophin secretion play an important role in IR and carbohydrates metabolism in patients with PCOS.

  8. Using Lean Management to Reduce Emergency Department Length of Stay for Medicine Admissions.

    PubMed

    Allaudeen, Nazima; Vashi, Anita; Breckenridge, Julia S; Haji-Sheikhi, Farnoosh; Wagner, Sarah; Posley, Keith A; Asch, Steven M

    The practice of boarding admitted patients in the emergency department (ED) carries negative operational, clinical, and patient satisfaction consequences. Lean tools have been used to improve ED workflow. Interventions focused on reducing ED length of stay (LOS) for admitted patients are less explored. To evaluate a Lean-based initiative to reduce ED LOS for medicine admissions. Prospective quality improvement initiative performed at a single university-affiliated Department of Veterans Affairs (VA) medical center from February 2013 to February 2016. We performed a Lean-based multidisciplinary initiative beginning with a rapid process improvement workshop to evaluate current processes, identify root causes of delays, and develop countermeasures. Frontline staff developed standard work for each phase of the ED stay. Units developed a daily management system to reinforce, evaluate, and refine standard work. The primary outcome was the change in ED LOS for medicine admissions pre- and postintervention. ED LOS at the intervention site was compared with other similar VA facilities as controls over the same time period using a difference-in-differences approach. ED LOS for medicine admissions reduced 26.4%, from 8.7 to 6.4 hours. Difference-in-differences analysis showed that ED LOS for combined medicine and surgical admissions decreased from 6.7 to 6.0 hours (-0.7 hours, P = .003) at the intervention site compared with no change (5.6 hours, P = .2) at the control sites. We utilized Lean management to significantly reduce ED LOS for medicine admissions. Specifically, the development and management of standard work were key to sustaining these results.

  9. Lean Gasoline System Development for Fuel Efficient Small Cars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Stuart R.

    2013-11-25

    The General Motors and DOE cooperative agreement program DE-EE0003379 is completed. The program has integrated and demonstrated a lean-stratified gasoline engine, a lean aftertreatment system, a 12V Stop/Start system and an Active Thermal Management system along with the necessary controls that significantly improves fuel efficiency for small cars. The fuel economy objective of an increase of 25% over a 2010 Chevrolet Malibu and the emission objective of EPA T2B2 compliance have been accomplished. A brief review of the program, summarized from the narrative is: The program accelerates development and synergistic integration of four cost competitive technologies to improve fuel economymore » of a light-duty vehicle by at least 25% while meeting Tier 2 Bin 2 emissions standards. These technologies can be broadly implemented across the U.S. light-duty vehicle product line between 2015 and 2025 and are compatible with future and renewable biofuels. The technologies in this program are: lean combustion, innovative passive selective catalyst reduction lean aftertreatment, 12V stop/start and active thermal management. The technologies will be calibrated in a 2010 Chevrolet Malibu mid-size sedan for final fuel economy demonstration.« less

  10. Lean six sigma methodologies improve clinical laboratory efficiency and reduce turnaround times.

    PubMed

    Inal, Tamer C; Goruroglu Ozturk, Ozlem; Kibar, Filiz; Cetiner, Salih; Matyar, Selcuk; Daglioglu, Gulcin; Yaman, Akgun

    2018-01-01

    Organizing work flow is a major task of laboratory management. Recently, clinical laboratories have started to adopt methodologies such as Lean Six Sigma and some successful implementations have been reported. This study used Lean Six Sigma to simplify the laboratory work process and decrease the turnaround time by eliminating non-value-adding steps. The five-stage Six Sigma system known as define, measure, analyze, improve, and control (DMAIC) is used to identify and solve problems. The laboratory turnaround time for individual tests, total delay time in the sample reception area, and percentage of steps involving risks of medical errors and biological hazards in the overall process are measured. The pre-analytical process in the reception area was improved by eliminating 3 h and 22.5 min of non-value-adding work. Turnaround time also improved for stat samples from 68 to 59 min after applying Lean. Steps prone to medical errors and posing potential biological hazards to receptionists were reduced from 30% to 3%. Successful implementation of Lean Six Sigma significantly improved all of the selected performance metrics. This quality-improvement methodology has the potential to significantly improve clinical laboratories. © 2017 Wiley Periodicals, Inc.

  11. The expression of Apoc3 mRNA is regulated by HNF4α and COUP-TFII, but not acute retinoid treatments, in primary rat hepatocytes and hepatoma cells.

    PubMed

    Howell, Meredith; Li, Rui; Zhang, Rui; Li, Yang; Chen, Wei; Chen, Guoxun

    2014-02-01

    Vitamin A status regulates obesity development, hyperlipidemia, and hepatic lipogenic gene expression in Zucker fatty (ZF) rats. The development of hyperlipidemia in acne patients treated with retinoic acid (RA) has been attributed to the induction of apolipoprotein C-III expression. To understand the role of retinoids in the development of hyperlipidemia in ZF rats, the expression levels of several selected RA-responsive genes in the liver and isolated hepatocytes from Zucker lean (ZL) and ZF rats were compared using real-time PCR. The Rarb and Srebp-1c mRNA levels are higher in the liver and isolated hepatocytes from ZF than ZL rats. The Apoc3 mRNA level is only higher in the isolated hepatocytes from ZF than ZL rats. To determine whether dynamic RA production acutely regulates Apoc3 expression, its mRNA levels in response to retinoid treatments or adenovirus-mediated overexpression of hepatocyte nuclear factor 4 alpha (HNF4α) and chicken ovalbumin upstream-transcription factor II (COUP-TFII) were analyzed. Retinoid treatments for 2-6 h did not induce the expression of Apoc3 mRNA. The overexpression of HNF4α or COUP-TFII induced or inhibited Apoc3 expression, respectively. We conclude that short-term retinoid treatments could not induce Apoc3 mRNA expression, which is regulated by HNF4α and COUP-TFII in hepatocytes.

  12. Protein-restriction diet during the suckling phase programs rat metabolism against obesity and insulin resistance exacerbation induced by a high-fat diet in adulthood.

    PubMed

    Martins, Isabela Peixoto; de Oliveira, Júlio Cezar; Pavanello, Audrei; Matiusso, Camila Cristina Ianoni; Previate, Carina; Tófolo, Laize Peron; Ribeiro, Tatiane Aparecida; da Silva Franco, Claudinéia Conationi; Miranda, Rosiane Aparecida; Prates, Kelly Valério; Alves, Vander Silva; Francisco, Flávio Andrade; de Moraes, Ana Maria Praxedes; de Freitas Mathias, Paulo Cezar; Malta, Ananda

    2018-04-03

    Protein restriction during the suckling phase can malprogram rat offspring to a lean phenotype associated with metabolic dysfunctions later in life. We tested whether protein-caloric restriction during lactation can exacerbate the effect of a high-fat (HF) diet at adulthood. To test this hypothesis, we fed lactating Wistar dams with a low-protein (LP; 4% protein) diet during the first 2 weeks of lactation or a normal-protein (NP; 23% protein) diet throughout lactation. Rat offspring from NP and LP mothers received a normal-protein diet until 60 days old. At this time, a batch of animals from both groups was fed an HF (35% fat) diet, while another received an NF (7% fat) diet. Maternal protein-caloric restriction provoked lower body weight and fat pad stores, hypoinsulinemia, glucose intolerance, higher insulin sensitivity, reduced insulin secretion and altered autonomic nervous system (ANS) function in adult rat offspring. At 90 days old, NP rats fed an HF diet in adulthood displayed obesity, impaired glucose homeostasis and altered insulin secretion and ANS activity. Interestingly, the LP/HF group also presented fat pad and body weight gain, altered glucose homeostasis, hyperleptinemia and impaired insulin secretion but at a smaller magnitude than the NP-HF group. In addition, LP/HF rats displayed elevated insulin sensitivity. We concluded that protein-caloric restriction during the first 14 days of life programs the rat metabolism against obesity and insulin resistance exacerbation induced by an obesogenic HF diet. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Citrulline Supplementation Induces Changes in Body Composition and Limits Age-Related Metabolic Changes in Healthy Male Rats.

    PubMed

    Moinard, Christophe; Le Plenier, Servane; Noirez, Philippe; Morio, Béatrice; Bonnefont-Rousselot, Dominique; Kharchi, Caroline; Ferry, Arnaud; Neveux, Nathalie; Cynober, Luc; Raynaud-Simon, Agathe

    2015-07-01

    Aging is associated with profound metabolic disturbances, and citrulline may be of use to limit them. The aim of this work was to evaluate the long-term effect of citrulline supplementation on metabolism in healthy aged rats. Twenty-month-old male rats were randomly assigned to be fed (ad libitum) for 12 wk with either a citrulline-enriched diet (1 g ⋅ kg(-1) ⋅  d(-1)) or a standard diet [rendered isonitrogenous by addition of nonessential amino acids (NEAAs)]. Motor activity and muscle strength were measured, body composition was assessed, and muscle metabolism (protein structure, mitochondrial exploration, and transductional factors) and lipid metabolism (lipoprotein composition and sensitivity to oxidative stress) were explored. Compared with the NEAA-treated group, citrulline supplementation was associated with lower mortality (0% vs. 20%; P = 0.05), 9% higher lean body mass (P < 0.05), and 13% lower fat mass (P < 0.05). Compared with the NEAA-treated group, citrulline-treated rats had greater muscle mass (+14-48% depending on type of muscle; P < 0.05 for tibialis, gastrocnemius, and plantaris). Susceptibility to oxidation of lipoproteins, as measured by the maximal concentration of 7-ketocholesterol after copper-induced VLDL and LDL oxidation, was lower in citrulline-treated rats than in NEAA-treated rats (187 ± 8 μmol/L vs. 243 ± 7 μmol/L; P = 0.0005). Citrulline treatment in male aged rats favorably modulates body composition and protects against lipid oxidation and, thus, emerges as an interesting candidate to help prevent the aging process. © 2015 American Society for Nutrition.

  14. Evaluation of Visceral Adipose Tissue Oxygenation by Blood Oxygen Level-Dependent MRI in Zucker Diabetic Fatty Rats.

    PubMed

    Shi, Hong-Jian; Li, Yan-Feng; Ji, Wen-Jie; Lin, Zhi-Chun; Cai, Wei; Chen, Tao; Yuan, Bin; Niu, Xiu-Long; Li, Han-Ying; Shu, Wen; Li, Yu-Ming; Yuan, Fei; Zhou, Xin; Zhang, Zhuoli

    2018-06-01

    This study aimed to investigate the feasibility of blood oxygen level-dependent magnetic resonance imaging (BOLD-MRI) to evaluate visceral adipose tissue (VAT) oxygenation in Zucker diabetic fatty (ZDF) rats and its associations with systemic metaflammation. Five-week-old ZDF rats and Zucker lean (ZL) rats were fed a high-fat diet (HFD) for 18 weeks. A baseline BOLD-MRI scan of perirenal adipose tissue was performed after 8 weeks of HFD feeding, and then the rats were randomized to receive pioglitazone or a vehicle for the following 10 weeks. At sacrifice, BOLD-MRI scan, Hypoxyprobe-1 injection, and circulating T helper 17 (Th17), regulatory T (Treg) cells, and monocyte subtype flow cytometry analysis were performed. HFD feeding led to a significant increase in VAT BOLD-MRI R2* signals (20.14 ± 0.23 per second vs. 21.53 ± 0.20 per second; P = 0.012), an indicator for decreased oxygenation. R2* signal was significantly correlated with VAT pimonidazole adduct-positive area, insulin resistance, Th17 and Treg cells, CD43 + and CD43+ + monocyte subtypes, and VAT macrophage infiltration. Pioglitazone treatment improved the insulin resistance and was associated with a delayed progression of VAT oxygenation. This work demonstrated the feasibility of BOLD-MRI for detecting the VAT oxygenation status in ZDF rats, and the BOLD-MRI signals were associated with insulin resistance and systemic metaflammation in ZDF rats during the development of obesity. © 2018 The Obesity Society.

  15. Modulation of gut microbiota contributes to curcumin-mediated attenuation of hepatic steatosis in rats.

    PubMed

    Feng, Wenhuan; Wang, Hongdong; Zhang, Pengzi; Gao, Caixia; Tao, Junxian; Ge, Zhijuan; Zhu, Dalong; Bi, Yan

    2017-07-01

    Structural disruption of gut microbiota contributes to the development of non-alcoholic fatty liver disease (NAFLD) and modulating the gut microbiota represents a novel strategy for NAFLD prevention. Although previous studies have demonstrated that curcumin alleviates hepatic steatosis, its effect on the gut microbiota modulation has not been investigated. Next generation sequencing and multivariate analysis were utilized to evaluate the structural changes of gut microbiota in a NAFLD rat model induced by high fat-diet (HFD) feeding. We found that curcumin attenuated hepatic ectopic fat deposition, improved intestinal barrier integrity, and alleviated metabolic endotoxemia in HFD-fed rats. More importantly, curcumin dramatically shifted the overall structure of the HFD-disrupted gut microbiota toward that of lean rats fed a normal diet and altered the gut microbial composition. The abundances of 110 operational taxonomic units (OTUs) were altered by curcumin. Seventy-six altered OTUs were significantly correlated with one or more hepatic steatosis associated parameters and designated 'functionally relevant phylotypes'. Thirty-six of the 47 functionally relevant OTUs that were positively correlated with hepatic steatosis associated parameters were reduced by curcumin. These results indicate that curcumin alleviates hepatic steatosis in part through stain-specific impacts on hepatic steatosis associated phylotypes of gut microbiota in rats. Compounds with antimicrobial activities should be further investigated as novel adjunctive therapies for NAFLD. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Natural Killer Cells in Obesity: Impaired Function and Increased Susceptibility to the Effects of Cigarette Smoke

    PubMed Central

    O'Shea, Donal; Cawood, Tom J.; O'Farrelly, Cliona; Lynch, Lydia

    2010-01-01

    Background Obese individuals who smoke have a 14 year reduction in life expectancy. Both obesity and smoking are independantly associated with increased risk of malignancy. Natural killer cells (NK) are critical mediators of anti-tumour immunity and are compromised in obese patients and smokers. We examined whether NK cell function was differentially affected by cigarette smoke in obese and lean subjects. Methodology and Principal Findings Clinical data and blood were collected from 40 severely obese subjects (BMI>40 kg/m2) and 20 lean healthy subjects. NK cell levels and function were assessed using flow cytometry and cytotoxicity assays. The effect of cigarette smoke on NK cell ability to kill K562 tumour cells was assessed in the presence or absence of the adipokines leptin and adiponectin. NK cell levels were significantly decreased in obese subjects compared to lean controls (7.6 vs 16.6%, p = 0.0008). NK function was also significantly compromised in obese patients (30% +/− 13% vs 42% +/−12%, p = 0.04). Cigarette smoke inhibited NK cell ability to kill tumour cell lines (p<0.0001). NK cells from obese subjects were even more susceptible to the inhibitory effects of smoke compared to lean subjects (33% vs 28%, p = 0.01). Cigarette smoke prevented NK cell activation, as well as perforin and interferon-gamma secretion upon tumour challenge. Adiponectin but not leptin partially reversed the effects of smoke on NK cell function in both obese (p = 0.002) and lean controls (p = 0.01). Conclusions/Significance Obese subjects have impaired NK cell activity that is more susceptible to the detrimental effects of cigarette smoke compared to lean subjects. This may play a role in the increase of cancer and infection seen in this population. Adiponectin is capable of restoring NK cell activity and may have therapeutic potential for immunity in obese subjects and smokers. PMID:20107494

  17. Association of an APOC3 promoter variant with type 2 diabetes risk and need for insulin treatment in lean persons.

    PubMed

    van Hoek, M; van Herpt, T W; Dehghan, A; Hofman, A; Lieverse, A G; van Duijn, C M; Witteman, J C M; Sijbrands, E J G

    2011-06-01

    An APOC3 promoter haplotype has been previously associated with type 1 diabetes. In this population-based study, we investigated whether APOC3 polymorphisms increase type 2 diabetes risk and need for insulin treatment in lean participants. In the Rotterdam Study, a population-based prospective cohort (n = 7,983), Cox and logistic regression models were used to analyse the associations and interactive effects of APOC3 promoter variants (-482C > T, -455T > C) and BMI on type 2 diabetes risk and insulin treatment. Analyses were followed by replication in an independent case-control sample (1,817 cases, 2,292 controls) and meta-analysis. In lean participants, the -482T allele was associated with increased risk of prevalent and incident type 2 diabetes: OR -482CT 1.47 (95% CI 1.13-1.92), -482TT 1.40 (95% CI 0.83-2.35), p = 0.009 for trend; HR -482CT 1.35 (95% CI 0.96-1.89), -482TT 1.68 (95% CI 0.91-3.1), p = 0.03 for trend, respectively. These results were confirmed by replication. Meta-analysis was highly significant (-482T meta-analysis p = 1.1 × 10(-4)). A borderline significant interaction was observed for insulin use among participants with type 2 diabetes (-482CT*BMI p = 0.06, -455TC*BMI p = 0.02). At a population-based level, the influence of APOC3 promoter variants on type 2 diabetes risk varies with the level of adiposity. Lean carriers of the -482T allele had increased type 2 diabetes risk, while such an effect was not observed in overweight participants. Conversely, in overweight participants the -455C allele seemed protective against type 2 diabetes. The interaction of the variants with need for insulin treatment may indicate beta cell involvement in lean participants. Our findings suggest overlap in the genetic backgrounds of type 1 diabetes and type 2 diabetes in lean patients.

  18. Adaptive Controls Method Demonstrated for the Active Suppression of Instabilities in Engine Combustors

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2004-01-01

    An adaptive feedback control method was demonstrated that suppresses thermoacoustic instabilities in a liquid-fueled combustor of a type used in aircraft engines. Extensive research has been done to develop lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle to reduce the environmental impact of aerospace propulsion systems. However, these lean-burning combustors are susceptible to thermoacoustic instabilities (high-frequency pressure waves), which can fatigue combustor components and even the downstream turbine blades. This can significantly decrease the safe operating lives of the combustor and turbine. Thus, suppressing the thermoacoustic combustor instabilities is an enabling technology for lean, low-emissions combustors under NASA's Propulsion and Power Program. This control methodology has been developed and tested in a partnership of the NASA Glenn Research Center, Pratt & Whitney, United Technologies Research Center, and the Georgia Institute of Technology. Initial combustor rig testing of the controls algorithm was completed during 2002. Subsequently, the test results were analyzed and improvements to the method were incorporated in 2003, which culminated in the final status of this controls algorithm. This control methodology is based on adaptive phase shifting. The combustor pressure oscillations are sensed and phase shifted, and a high-frequency fuel valve is actuated to put pressure oscillations into the combustor to cancel pressure oscillations produced by the instability.

  19. Mental body transformation deficits in patients with chronic balance disorders.

    PubMed

    Allum, J H J; Langewitz, W; Sleptsova, M; Welge-Luessen, A; Honegger, F; Schatz, T H; Biner, C L; Maguire, C; Schmid, D A

    2017-01-01

    Movements may be generated consistent with imagining one's own body transformed or "disembodied" to a new position. Based on this concept we hypothesized that patients with objective balance deficits (obj-BD) would have altered neural transformation processes executing own body transformation (OBT) with functional consequences on balance control. Also we examined whether feeling unstable due to dizziness only (DO), without an obj-BD, also lead to an impaired OBT. 32 patients with chronic dizziness were tested: 16 patients with obj-BD as determined by balance control during a sequence of stance and gait tasks, 16 patients with dizziness only (DO). Patients and 9 healthy controls (HCs) were asked to replicate roll trunk movements of an instructor in a life size video: first, with spontaneously copied (SPO) or "embodied" egocentric movements (lean when the instructor leans); second, with "disembodied" or "transformed" movements (OBT) with exact replication - lean left when the instructor leans left. Onset latency of trunk roll, rise time to peak roll angle (interval), roll velocity, and amplitude were measured. SPO movements were always mirror-imaged. OBT task latencies were significantly longer and intervals shorter than for SPO tasks (p < 0.03) for all groups. Obj-BD but not DO patients had more errors for the OBT task and, compared to HCs, had longer onset latencies (p < 0.05) and smaller velocities (p < 0.003) and amplitudes (p < 0.001) in both the SPO and OBT tasks. Measures of DO patients were not significantly different from those of HCs. Mental transformation (OBT) and SPO copying abilities are impaired in subjects with obj-BD and dizziness, but not with dizziness only. We conclude that processing the neuropsychological representation of the human body (body schema) slows when balance control is deficient.

  20. Flashback Detection Sensor for Hydrogen Augmented Natural Gas Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, J.D.; Chorpening, B.T.; Sidwell, T.

    2007-05-01

    The use of hydrogen augmented fuel is being investigated by various researchers as a method to extend the lean operating limit, and potentially reduce thermal NOx formation in natural gas fired lean premixed (LPM) combustion systems. The resulting increase in flame speed during hydrogen augmentation, however, increases the propensity for flashback in LPM systems. Real-time in-situ monitoring of flashback is important for the development of control strategies for use of hydrogen augmented fuel in state-of-the-art combustion systems, and for the development of advanced hydrogen combustion systems. The National Energy Technology Laboratory (NETL) and Woodward Industrial Controls are developing a combustionmore » control and diagnostics sensor (CCADS), which has already been demonstrated as a useful sensor for in-situ monitoring of natural gas combustion, including detection of important combustion events such as flashback and lean blowoff. Since CCADS is a flame ionization sensor technique, the low ion concentration produced in pure hydrogen combustion raises concerns of whether CCADS can be used to monitor flashback in hydrogen augmented combustion. This paper discusses CCADS tests conducted at 0.2-0.6 MPa (2-6 atm), demonstrating flashback detection with fuel compositions up to 80% hydrogen (by volume) mixed with natural gas. NETL’s Simulation Validation (SimVal) combustor offers full optical access to pressurized combustion during these tests. The CCADS data and high-speed video show the reaction zone moves upstream into the nozzle as the hydrogen fuel concentration increases, as is expected with the increased flame speed of the mixture. The CCADS data and video also demonstrate the opportunity for using CCADS to provide the necessary in-situ monitor to control flashback and lean blowoff in hydrogen augmented combustion applications.« less

  1. Cardiovascular and Metabolic Consequences of Testosterone Supplements in Young and Old Male Spontaneously Hypertensive Rats: Implications for Testosterone Supplements in Men.

    PubMed

    Dalmasso, Carolina; Patil, Chetan N; Yanes Cardozo, Licy L; Romero, Damian G; Maranon, Rodrigo O

    2017-10-17

    The safety of testosterone supplements in men remains unclear. In the present study, we tested the hypothesis that in young and old male spontaneously hypertensive rats (SHR), long-term testosterone supplements increase blood pressure and that the mechanism is mediated in part by activation of the renin-angiotensin system. In untreated males, serum testosterone exhibited a sustained decrease after 5 months of age, reaching a nadir by 18 to 22 months of age. The reductions in serum testosterone were accompanied by an increase in body weight until very old age (18 months). Testosterone supplements were given for 6 weeks to young (12 weeks-YMSHR) and old (21-22 months-OMSHR) male SHR that increased serum testosterone by 2-fold in young males and by 4-fold in old males. Testosterone supplements decreased body weight, fat mass, lean mass, and plasma leptin, and increased plasma estradiol in YMSHR but had no effect in OMSHR. Mean arterial pressure (MAP) was significantly higher in OMSHR than in YMSHR and testosterone supplements decreased MAP in OMSHR, but significantly increased MAP in YMSHR. Enalapril, the angiotensin-converting enzyme inhibitor, reduced MAP in both control and testosterone-supplemented YMSHR, but had a greater effect on MAP in testosterone-treated rats, suggesting the mechanism responsible for the increase in MAP in YMSHR is mediated at least in part by activation of the renin-angiotensin system. Taken together with previous studies, these data suggest that testosterone supplements may have differential effects on men depending on age, cardiovascular and metabolic status, and dose and whether given long-term or short-term. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  2. β-Hydroxy-β-methylbutyrate (HMB) normalizes dexamethasone-induced autophagy-lysosomal pathway in skeletal muscle.

    PubMed

    Girón, María D; Vílchez, Jose D; Shreeram, Sathyavageeswaran; Salto, Rafael; Manzano, Manuel; Cabrera, Elena; Campos, Nefertiti; Edens, Neile K; Rueda, Ricardo; López-Pedrosa, Jose M

    2015-01-01

    Dexamethasone-induced muscle atrophy is due to an increase in protein breakdown and a decrease in protein synthesis, associated with an over-stimulation of the autophagy-lysosomal pathway. These effects are mediated by alterations in IGF-1 and PI3K/Akt signaling. In this study, we have investigated the effects of β-Hydroxy-β-methylbutyrate (HMB) on the regulation of autophagy and proteosomal systems. Rats were treated during 21 days with dexamethasone as a model of muscle atrophy. Co-administration of HMB attenuated the effects promoted by dexamethasone. HMB ameliorated the loss in body weight, lean mass and the reduction of the muscle fiber cross-sectional area (shrinkage) in gastrocnemius muscle. Consequently, HMB produced an improvement in muscle strength in the dexamethasone-treated rats. To elucidate the molecular mechanisms responsible for these effects, rat L6 myotubes were used. In these cells, HMB significantly attenuated lysosomal proteolysis induced by dexamethasone by normalizing the changes observed in autophagosome formation, LC3 II, p62 and Bnip3 expression after dexamethasone treatment. HMB effects were mediated by an increase in FoxO3a phosphorylation and concomitant decrease in FoxO transcriptional activity. The HMB effect was due to the restoration of Akt signaling diminished by dexamethasone treatment. Moreover, HMB was also involved in the regulation of the activity of ubiquitin and expression of MurF1 and Atrogin-1, components of the proteasome system that are activated or up-regulated by dexamethasone. In conclusion, in vivo and in vitro studies suggest that HMB exerts protective effects against dexamethasone-induced muscle atrophy by normalizing the Akt/FoxO axis that controls autophagy and ubiquitin proteolysis.

  3. β-Hydroxy-β-Methylbutyrate (HMB) Normalizes Dexamethasone-Induced Autophagy-Lysosomal Pathway in Skeletal Muscle

    PubMed Central

    Girón, María D.; Vílchez, Jose D.; Shreeram, Sathyavageeswaran; Salto, Rafael; Manzano, Manuel; Cabrera, Elena; Campos, Nefertiti; Edens, Neile K.; Rueda, Ricardo; López-Pedrosa, Jose M.

    2015-01-01

    Dexamethasone-induced muscle atrophy is due to an increase in protein breakdown and a decrease in protein synthesis, associated with an over-stimulation of the autophagy-lysosomal pathway. These effects are mediated by alterations in IGF-1 and PI3K/Akt signaling. In this study, we have investigated the effects of β-Hydroxy-β-methylbutyrate (HMB) on the regulation of autophagy and proteosomal systems. Rats were treated during 21 days with dexamethasone as a model of muscle atrophy. Co-administration of HMB attenuated the effects promoted by dexamethasone. HMB ameliorated the loss in body weight, lean mass and the reduction of the muscle fiber cross-sectional area (shrinkage) in gastrocnemius muscle. Consequently, HMB produced an improvement in muscle strength in the dexamethasone-treated rats. To elucidate the molecular mechanisms responsible for these effects, rat L6 myotubes were used. In these cells, HMB significantly attenuated lysosomal proteolysis induced by dexamethasone by normalizing the changes observed in autophagosome formation, LC3 II, p62 and Bnip3 expression after dexamethasone treatment. HMB effects were mediated by an increase in FoxO3a phosphorylation and concomitant decrease in FoxO transcriptional activity. The HMB effect was due to the restoration of Akt signaling diminished by dexamethasone treatment. Moreover, HMB was also involved in the regulation of the activity of ubiquitin and expression of MurF1 and Atrogin-1, components of the proteasome system that are activated or up-regulated by dexamethasone. In conclusion, in vivo and in vitro studies suggest that HMB exerts protective effects against dexamethasone-induced muscle atrophy by normalizing the Akt/FoxO axis that controls autophagy and ubiquitin proteolysis. PMID:25658432

  4. Diets enriched in whey or casein improve energy balance and prevent morbidity and renal damage in salt-loaded and high-fat-fed spontaneously hypertensive stroke-prone rats.

    PubMed

    Singh, Arashdeep; Pezeshki, Adel; Zapata, Rizaldy C; Yee, Nicholas J; Knight, Cameron G; Tuor, Ursula I; Chelikani, Prasanth K

    2016-11-01

    High-fat diets induce obesity and increase risks of diabetes and cardiovascular and renal disorders. Whey- or casein-enriched diets decrease food intake and weight gain; however, their cardiovascular and renal benefits are unclear. We determined whether whey- and casein-enriched diets improve energy balance and are protective against renal damage and morbidity associated with stroke in an obesogenic and hypertensive experimental setting. We also assessed whether the hypophagic effects of these diets were due to reduced diet preference. In experiment 1, spontaneously hypertensive stroke-prone rats were randomized to (a) control (CON; 14% kcal protein, 33% fat), (b) whey (WHY; 40% protein, 33% fat), (c) casein (CAS; 40% protein, 33% fat) or (d) chow (CHW; 24% protein, 13% fat) for 12 weeks with 1% salt in drinking water for CON, WHY and CAS groups. Our results demonstrated that both WHY and CAS produced short-term hypophagia, moderately increased energy expenditure and decreased respiratory quotient, body weight and lean mass, with effects of WHY being more prolonged. Further, only WHY decreased fat mass and blood pressure. Importantly, both WHY and CAS prevented morbidity associated with stroke and decreased indices of renal inflammation (tumor necrosis factor-α, interleukin-6) and damage (osteopontin, renal lesions). In experiment 2, following four initial conditioning trials, the preference for CON, WHY or CAS diet was determined. Both WHY and CAS decreased food intake during conditioning and decreased preference. In conclusion, diets enriched in whey or casein improved energy balance, increased survival and prevented renal damage in salt-loaded and high-fat-fed spontaneously hypertensive stroke-prone rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Poultry offal ensiled with lactobacillus acidophilus for growing and finishing swine diets.

    PubMed

    Tibbetts, G W; Seerley, R W; McCampbell, H C

    1987-01-01

    Poultry offal (heads, feet, viscera) from a broiler processing plant was ground and mixed with corn, dried molasses and a Lactobacillus acidophilus culture. Fermentation was shown to be effective in batch sizes of 3.8, 75.7 and 208.1 liters, as well as a 1,360-kg silo. It was generally complete at 72 h. In trial 1, rats were fed silage mixtures of 60:30:5:5, 45:45:5:5 and 30:60:5:5, offal, corn, molasses and inoculant, respectively. Rats did not gain as well when fed the silage diets (P less than .05) as when fed the basal diet; however, the ranking of silages was 45:45, 60:30 and 30:60, offal-to-corn ratio for rat daily gains and feed conversions. In trial 2, growing-finishing pigs were fed the 60:30:5:5 silage at rates of 0, 10, 20 and 30% of the diet. Average daily gains and feed-to-gain ratios were not affected by including offal silage at up to 20% of the diet, but 30% offal silage in diets resulted in depressed gains (P less than .05) and increased feed-to-gain ratios. Carcasses were not different among treatments for dressing percentage, length, average backfat and percentage of ham, loin, shoulder, lean cuts and primal cuts. Carcasses from pigs fed 20 and 30% offal silage had significantly darker and firmer loin-eyes than those from control fed pigs. Marbling was higher (P less than .05) in loin-eyes from pigs fed 30% offal silage as compared with those from pigs fed 0% offal silage.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Combined effects of chronic alcohol consumption and physical activity on bone health: study in a rat model.

    PubMed

    Maurel, Delphine B; Boisseau, Nathalie; Ingrand, Isabelle; Dolleans, Eric; Benhamou, Claude-Laurent; Jaffre, Christelle

    2011-12-01

    Chronic alcohol consumption may be deleterious for bone tissue depending on the amount of ethanol consumed, whereas physical activity has positive effects on bone. This study was designed to analyze the effects of moderate alcohol consumption on bone in trained rats. 48 male Wistar rats were divided into four groups: control (C), alcohol (A), exercise (E) and alcohol + exercise (AE). A and AE groups drank a solution composed of water and ethanol. E and AE groups were trained for 2 months (treadmill: 40 min/day, 5 times/week). Body composition and bone mineral density (BMD) were assessed by dual X-ray absorptiometry and microarchitectural parameters using micro-computed tomography. Serum osteocalcin and CTx were determined by ELISA assays. The body weight and lean mass gain were lower in group A, while the fat mass gain was lower in exercised groups. BMD and BMC were higher with alcohol after body weight adjustment. Trabecular thickness was significantly higher in AE and A groups compared to C and E; cross-sectional area was larger in A and C groups compared to AE and E. CTx levels were higher in A compared to C and in AE and E versus C and A. Osteocalcin levels were significantly greater in AE and E groups versus C and A. In conclusion, the light to moderate alcohol consumption over a short period increased the trabecular thickness, BMC and BMD in A and AE groups. However, we observed alterations in bone remodeling and body composition with alcohol, at the end of the protocol, which did not appear when alcohol was combined to exercise.

  7. Anabolic effect of plant brassinosteroid

    PubMed Central

    Esposito, Debora; Komarnytsky, Slavko; Shapses, Sue; Raskin, Ilya

    2011-01-01

    Brassinosteroids are plant-derived polyhydroxylated derivatives of 5a-cholestane, structurally similar to cholesterol-derived animal steroid hormones and insect ecdysteroids, with no known function in mammals. 28-Homobrassinolide (HB), a steroidal lactone with potent plant growth-promoting property, stimulated protein synthesis and inhibited protein degradation in L6 rat skeletal muscle cells (EC50 4 μM) mediated in part by PI3K/Akt signaling pathway. Oral administration of HB (20 or 60 mg/kg/d for 24 d) to healthy rats fed normal diet (protein content 23.9%) increased food intake, body weight gain, lean body mass, and gastrocnemius muscle mass as compared with vehicle-treated controls. The effect of HB administration increased slightly in animals fed a high-protein diet (protein content 39.4%). Both oral (up to 60 mg/kg) and subcutaneous (up to 4 mg/kg) administration of HB showed low androgenic activity when tested in the Hershberger assay. Moreover, HB showed no direct binding to the androgen receptor in vitro. HB treatment was also associated with an improved physical fitness of untrained healthy rats, as evident from a 6.7% increase in lower extremity strength, measured by grip test. In the gastrocnemius muscle of castrated animals, HB treatment significantly increased the number of type IIa and IIb fibers and the cross-sectional area of type I and type IIa fibers. These findings suggest that oral application of HB triggers selective anabolic response with minimal or no androgenic side-effects and begin to elucidate the putative cellular targets for plant brassinosteroids in mammals.—Esposito, D., Komarnytsky, S., Shapses, S., Raskin, I. Anabolic effect of plant brassinosteroid. PMID:21746867

  8. Improvement of nuclear power plants within the perspective of applications of lean manufacturing practices

    NASA Astrophysics Data System (ADS)

    Malek, A. K.; Muhammad, H. I.; Rosmaini, A.; Alaa, A. S.; Falah, A. M.

    2017-09-01

    Development and improvement process are essential to the companies and factories of various kinds and this necessity is related aspects of cost, time and risk that can be avoided, these aspects are available at the nuclear power stations essential demands cannot be ignored. The lean management technique is one of the recent trends in the management system. Where the lean management is stated as the system increases the customer value and reduces the wastage process in an industry or in a power plants. Therefore, there is an urgent necessity to ensure the development and improvement in nuclear power plants in the pre-established in process of being established and stage of the management and production. All of these stages according to the study are closely related to the necessity operationalize and apply lean manufacturing practices that these applications are ineffective and clear contribution to reduce costs and control of production processes and the process of reducing future risks that could be exposed to the station.

  9. Weight-control behaviour and weight-concerns in young elite athletes – a systematic review

    PubMed Central

    2013-01-01

    Weight-control behaviour is commonly observed in a wide range of elite sports, especially leanness sports, where control over body weight is crucial for high peak performance. Nonetheless, there is only a fine line between purely functional behaviour and clinically relevant eating disorders. Especially the rapid form of weight manipulation seems to foster later eating disorders. So far, most studies have focussed on adult athletes and concentrated on manifest eating disorders. In contrast, our review concentrates on young athletes and weight-control behaviour as a risk factor for eating disorders. An electronic search according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) Statement was performed using Pubmed, PsychInfo and Spolit. The following search terms were used: weight-control, weight-control behaviour, weight gain, weight loss, pathogenic weight-control behaviour and weight-concerns, each of them combined with elite athlete, young elite athlete, adolescent elite athlete and elite sports. Overall, data are inconsistent. In general, athletes do not seem to be at a higher risk for pathogenic weight concerns and weight-control behaviour. It does seem to be more prevalent in leanness sports, though. There is evidence for pathogenic weight-control behaviour in both genders; male athletes mostly trying to gain weight whereas females emphasise weight reduction. There is not enough data to make predictions about connections with age of onset. Young elite athletes do show weight-control behaviour with varying degrees of frequency and severity. In particular, leanness sports seem to be a risk factor for weight manipulation. Further research is needed for more details and possible connections. PMID:24999399

  10. A Green Algae Mixture of Scenedesmus and Schroederiella Attenuates Obesity-Linked Metabolic Syndrome in Rats

    PubMed Central

    Kumar, Senthil Arun; Magnusson, Marie; Ward, Leigh C.; Paul, Nicholas A.; Brown, Lindsay

    2015-01-01

    This study investigated the responses to a green algae mixture of Scenedesmus dimorphus and Schroederiella apiculata (SC) containing protein (46.1% of dry algae), insoluble fibre (19.6% of dry algae), minerals (3.7% of dry algae) and omega-3 fatty acids (2.8% of dry algae) as a dietary intervention in a high carbohydrate, high fat diet-induced metabolic syndrome model in four groups of male Wistar rats. Two groups were fed with a corn starch diet containing 68% carbohydrates as polysaccharides, while the other two groups were fed a diet high in simple carbohydrates (fructose and sucrose in food, 25% fructose in drinking water, total 68%) and fats (saturated and trans fats from beef tallow, total 24%). High carbohydrate, high fat-fed rats showed visceral obesity with hypertension, insulin resistance, cardiovascular remodelling, and nonalcoholic fatty liver disease. SC supplementation (5% of food) lowered total body and abdominal fat mass, increased lean mass, and attenuated hypertension, impaired glucose and insulin tolerance, endothelial dysfunction, infiltration of inflammatory cells into heart and liver, fibrosis, increased cardiac stiffness, and nonalcoholic fatty liver disease in the high carbohydrate, high fat diet-fed rats. This study suggests that the insoluble fibre or protein in SC helps reverse diet-induced metabolic syndrome. PMID:25875119

  11. Chronic CNS oxytocin signaling preferentially induces fat loss in high-fat diet-fed rats by enhancing satiety responses and increasing lipid utilization

    PubMed Central

    Thompson, Benjamin W.; Anekonda, Vishwanath T.; Ho, Jacqueline M.; Graham, James L.; Roberts, Zachary S.; Hwang, Bang H.; Ogimoto, Kayoko; Wolden-Hanson, Tami; Nelson, Jarrell; Kaiyala, Karl J.; Havel, Peter J.; Bales, Karen L.; Morton, Gregory J.; Schwartz, Michael W.; Baskin, Denis G.

    2016-01-01

    Based largely on a number of short-term administration studies, growing evidence suggests that central oxytocin is important in the regulation of energy balance. The goal of the current work is to determine whether long-term third ventricular (3V) infusion of oxytocin into the central nervous system (CNS) is effective for obesity prevention and/or treatment in rat models. We found that chronic 3V oxytocin infusion between 21 and 26 days by osmotic minipumps both reduced weight gain associated with the progression of high-fat diet (HFD)-induced obesity and elicited a sustained reduction of fat mass with no decrease of lean mass in rats with established diet-induced obesity. We further demonstrated that these chronic oxytocin effects result from 1) maintenance of energy expenditure at preintervention levels despite ongoing weight loss, 2) a reduction in respiratory quotient, consistent with increased fat oxidation, and 3) an enhanced satiety response to cholecystokinin-8 and associated decrease of meal size. These weight-reducing effects persisted for approximately 10 days after termination of 3V oxytocin administration and occurred independently of whether sucrose was added to the HFD. We conclude that long-term 3V administration of oxytocin to rats can both prevent and treat diet-induced obesity. PMID:26791828

  12. Chronic CNS oxytocin signaling preferentially induces fat loss in high-fat diet-fed rats by enhancing satiety responses and increasing lipid utilization.

    PubMed

    Blevins, James E; Thompson, Benjamin W; Anekonda, Vishwanath T; Ho, Jacqueline M; Graham, James L; Roberts, Zachary S; Hwang, Bang H; Ogimoto, Kayoko; Wolden-Hanson, Tami; Nelson, Jarrell; Kaiyala, Karl J; Havel, Peter J; Bales, Karen L; Morton, Gregory J; Schwartz, Michael W; Baskin, Denis G

    2016-04-01

    Based largely on a number of short-term administration studies, growing evidence suggests that central oxytocin is important in the regulation of energy balance. The goal of the current work is to determine whether long-term third ventricular (3V) infusion of oxytocin into the central nervous system (CNS) is effective for obesity prevention and/or treatment in rat models. We found that chronic 3V oxytocin infusion between 21 and 26 days by osmotic minipumps both reduced weight gain associated with the progression of high-fat diet (HFD)-induced obesity and elicited a sustained reduction of fat mass with no decrease of lean mass in rats with established diet-induced obesity. We further demonstrated that these chronic oxytocin effects result from 1) maintenance of energy expenditure at preintervention levels despite ongoing weight loss, 2) a reduction in respiratory quotient, consistent with increased fat oxidation, and 3) an enhanced satiety response to cholecystokinin-8 and associated decrease of meal size. These weight-reducing effects persisted for approximately 10 days after termination of 3V oxytocin administration and occurred independently of whether sucrose was added to the HFD. We conclude that long-term 3V administration of oxytocin to rats can both prevent and treat diet-induced obesity.

  13. Ob/ob Mouse Livers Show Decreased Oxidative Phosphorylation Efficiencies and Anaerobic Capacities after Cold Ischemia

    PubMed Central

    Tagaloa, Sherry; Zhang, Linda; Dare, Anna J.; MacDonald, Julia R.; Yeong, Mee-Ling; Bartlett, Adam S. J. R.; Phillips, Anthony R. J.

    2014-01-01

    Background Hepatic steatosis is a major risk factor for graft failure in liver transplantation. Hepatic steatosis shows a greater negative influence on graft function following prolonged cold ischaemia. As the impact of steatosis on hepatocyte metabolism during extended cold ischaemia is not well-described, we compared markers of metabolic capacity and mitochondrial function in steatotic and lean livers following clinically relevant durations of cold preservation. Methods Livers from 10-week old leptin-deficient obese (ob/ob, n = 9) and lean C57 mice (n = 9) were preserved in ice-cold University of Wisconsin solution. Liver mitochondrial function was then assessed using high resolution respirometry after 1.5, 3, 5, 8, 12, 16 and 24 hours of storage. Metabolic marker enzymes for anaerobiosis and mitochondrial mass were also measured in conjunction with non-bicarbonate tissue pH buffering capacity. Results Ob/ob and lean mice livers showed severe (>60%) macrovesicular and mild (<30%) microvesicular steatosis on Oil Red O staining, respectively. Ob/ob livers had lower baseline enzymatic complex I activity but similar adenosine triphosphate (ATP) levels compared to lean livers. During cold storage, the respiratory control ratio and complex I-fueled phosphorylation deteriorated approximately twice as fast in ob/ob livers compared to lean livers. Ob/ob livers also demonstrated decreased ATP production capacities at all time-points analyzed compared to lean livers. Ob/ob liver baseline lactate dehydrogenase activities and intrinsic non-bicarbonate buffering capacities were depressed by 60% and 40%, respectively compared to lean livers. Conclusions Steatotic livers have impaired baseline aerobic and anaerobic capacities compared to lean livers, and mitochondrial function indices decrease particularly from after 5 hours of cold preservation. These data provide a mechanistic basis for the clinical recommendation of shorter cold storage durations in steatotic donor livers. PMID:24956382

  14. Trimetazidine therapy for diabetic mouse hearts subjected to ex vivo acute heart failure.

    PubMed

    Breedt, Emilene; Lacerda, Lydia; Essop, M Faadiel

    2017-01-01

    Acute heart failure (AHF) is the most common primary diagnosis for hospitalized heart diseases in Africa. As increased fatty acid β-oxidation (FAO) during heart failure triggers detrimental effects on the myocardium, we hypothesized that trimetazidine (TMZ) (partial FAO inhibitor) offers cardioprotection under normal and obese-related diabetic conditions. Hearts were isolated from 12-14-week-old obese male and female diabetic (db/db) mice versus lean non-diabetic littermates (db/+) controls. The Langendorff retrograde isolated heart perfusion system was employed to establish an ex vivo AHF model: a) Stabilization phase-Krebs Henseleit buffer (10 mM glucose) at 100 mmHg (25 min); b) Critical Acute Heart Failure (CAHF) phase-(1.2 mM palmitic acid, 2.5 mM glucose) at 20 mmHg (25 min); and c) Recovery Acute Heart Failure phase (RAHF)-(1.2 mM palmitic acid, 10 mM glucose) at 100 mmHg (25 min). Treated groups received 5 μM TMZ in the perfusate during either the CAHF or RAHF stage for the full duration of each respective phase. Both lean and obese males benefited from TMZ treatment administered during the RAHF phase. Sex differences were observed only in lean groups where the phases of the estrous cycle influenced therapy; only the lean follicular female group responded to TMZ treatment during the CAHF phase. Lean luteal females rather displayed an inherent cardioprotection (without treatments) that was lost with obesity. However, TMZ treatment initiated during RAHF was beneficial for obese luteal females. TMZ treatment triggered significant recovery for male and obese female hearts when administered during RAHF. There were no differences between lean and obese male hearts, while lean females displayed a functional recovery advantage over lean males. Thus TMZ emerges as a worthy therapeutic target to consider for AHF treatment in normal and obese-diabetic individuals (for both sexes), but only when administered during the recovery phase and not during the very acute stages.

  15. Reduced Triglyceride Secretion in Response to an Acute Dietary Fat Challenge in Obese Compared to Lean Mice

    PubMed Central

    Uchida, Aki; Whitsitt, Mary C.; Eustaquio, Trisha; Slipchenko, Mikhail N.; Leary, James F.; Cheng, Ji-Xin; Buhman, Kimberly K.

    2012-01-01

    Obesity results in abnormally high levels of triglyceride (TG) storage in tissues such as liver, heart, and muscle, which disrupts their normal functions. Recently, we found that lean mice challenged with high levels of dietary fat store TGs in cytoplasmic lipid droplets in the absorptive cells of the intestine, enterocytes, and that this storage increases and then decreases over time after an acute dietary fat challenge. The goal of this study was to investigate the effects of obesity on intestinal TG metabolism. More specifically we asked whether TG storage in and secretion from the intestine are altered in obesity. We investigated these questions in diet-induced obese (DIO) and leptin-deficient (ob/ob) mice. We found greater levels of TG storage in the intestine of DIO mice compared to lean mice in the fed state, but similar levels of TG storage after a 6-h fast. In addition, we found similar TG storage in the intestine of lean and DIO mice at multiple time points after an acute dietary fat challenge. Surprisingly, we found remarkably lower TG secretion from both DIO and ob/ob mice compared to lean controls in response to an acute dietary fat challenge. Furthermore, we found altered mRNA levels for genes involved in regulation of intestinal TG metabolism in lean and DIO mice at 6 h fasting and in response to an acute dietary fat challenge. More specifically, we found that many of the genes related to TG synthesis, chylomicron synthesis, TG storage, and lipolysis were induced in response to an acute dietary fat challenge in lean mice, but this induction was not observed in DIO mice. In fact, we found a significant decrease in intestinal mRNA levels of genes related to lipolysis and fatty acid oxidation in DIO mice in response to an acute dietary fat challenge. Our findings demonstrate altered TG handling by the small intestine of obese compared to lean mice. PMID:22375122

  16. Assessment of Insulin Resistance and Impaired Glucose Tolerance in Lean Women with Polycystic Ovary Syndrome

    PubMed Central

    Bailey, Amelia Purser; Pastore, Lisa M.

    2011-01-01

    Abstract Objective To analyze insulin resistance (IR) and determine the need for a 2-hour oral glucose tolerance test (OGTT) for the identification of IR and impaired glucose tolerance (IGT) in lean nondiabetic women with polycystic ovary syndrome (PCOS). Methods This was a cross-sectional analysis of treatment-naive women with PCOS who enrolled in a university-based clinical trial. Nondiabetic women with PCOS based on the Eunice Kennedy Shriven National Institute of Child Health and Human Development (NICHD) definition, aged 18–43 years and weighing ≤113 kg, were evaluated. Glucose and insulin levels were assessed at times 0, 30, 60, 90, and 120 minutes after a 75-g glucose load. Lean was defined as body mass index (BMI) <25 kg/m2. Multiple linear regression was performed. Results A cohort of 78 women was studied. The prevalence of IR was 0% among lean women vs. 21% among nonlean subjects based on fasting insulin I0 and 40%–68% based on two different homeostatic model assessment (HOMA) cutoff points (p < 0.005). All women with IR had a BMI ≥ 28. Controlling for age and race, BMI explained over 57% of the variation in insulin fasting (Io), glucose fasting/Io (Go/Io), the qualitative insulin sensitivity check index (QUICKI), and HOMA and was a highly significant predictor of these outcomes (p < 0.0001). Only 1 of 31 (3%) of the lean PCOS women had IGT based on a 2-hour OGTT, and no lean subjects had IGT based on their fasting blood glucose. Conclusions Diabetes mellitus, IGT, and IR are far less common in young lean women with PCOS compared with obese women with PCOS. These data imply that it is unnecessary to routinely perform either IR testing or 2-hour OGTT in lean women with PCOS; however, greater subject accumulation is needed to determine if OGTT is necessary in lean women with PCOS. BMI is highly predictive of both insulin and glucose levels in women with PCOS. PMID:21194310

  17. Assessment of insulin resistance and impaired glucose tolerance in lean women with polycystic ovary syndrome.

    PubMed

    Stovall, Dale William; Bailey, Amelia Purser; Pastore, Lisa M

    2011-01-01

    To analyze insulin resistance (IR) and determine the need for a 2-hour oral glucose tolerance test (OGTT) for the identification of IR and impaired glucose tolerance (IGT) in lean nondiabetic women with polycystic ovary syndrome (PCOS). This was a cross-sectional analysis of treatment-naive women with PCOS who enrolled in a university-based clinical trial. Nondiabetic women with PCOS based on the Eunice Kennedy Shriven National Institute of Child Health and Human Development (NICHD) definition, aged 18-43 years and weighing ≤113 kg, were evaluated. Glucose and insulin levels were assessed at times 0, 30, 60, 90, and 120 minutes after a 75-g glucose load. Lean was defined as body mass index (BMI) <25 kg/m(2). Multiple linear regression was performed. A cohort of 78 women was studied. The prevalence of IR was 0% among lean women vs. 21% among nonlean subjects based on fasting insulin I(0) and 40%-68% based on two different homeostatic model assessment (HOMA) cutoff points (p < 0.005). All women with IR had a BMI ≥ 28. Controlling for age and race, BMI explained over 57% of the variation in insulin fasting (I(o)), glucose fasting/Io (G(o)/I(o)), the qualitative insulin sensitivity check index (QUICKI), and HOMA and was a highly significant predictor of these outcomes (p < 0.0001). Only 1 of 31 (3%) of the lean PCOS women had IGT based on a 2-hour OGTT, and no lean subjects had IGT based on their fasting blood glucose. Diabetes mellitus, IGT, and IR are far less common in young lean women with PCOS compared with obese women with PCOS. These data imply that it is unnecessary to routinely perform either IR testing or 2-hour OGTT in lean women with PCOS; however, greater subject accumulation is needed to determine if OGTT is necessary in lean women with PCOS. BMI is highly predictive of both insulin and glucose levels in women with PCOS.

  18. Fat distribution and end-expiratory lung volume in lean and obese men and women.

    PubMed

    Babb, Tony G; Wyrick, Brenda L; DeLorey, Darren S; Chase, Paul J; Feng, Mabel Y

    2008-10-01

    Although obesity significantly reduces end-expiratory lung volume (EELV), the relationship between EELV and detailed measures of fat distribution has not been studied in obese men and women. To investigate, EELV and chest wall fat distribution (ie, rib cage, anterior subcutaneous abdominal fat, posterior subcutaneous fat, and visceral fat) were measured in lean men and women (ie, < 25% body fat) and obese men and women (ie, > 30% body fat). All subjects underwent pulmonary function testing, hydrostatic weighing, and MRI scans. Data were analyzed for the men and women separately by independent t test, and the relationships between variables were determined by regression analysis. All body composition measurements were significantly different among the lean and obese men and women (p < 0.001). However, with only a few exceptions, fat distribution was similar among the lean and obese men and women (p > 0.05). The mean EELV was significantly lower in the obese men (39 +/- 6% vs 46 +/- 4% total lung capacity [TLC], respectively; p < 0.0005) and women (40 +/- 4% vs 53 +/- 4% TLC, respectively; p < 0.0001) compared with lean control subjects. Many estimates of body fat were significantly correlated with EELV for both men and women. In both men and women, the decrease in EELV with obesity appears to be related to the cumulative effect of increased chest wall fat rather than to any specific regional chest wall fat distribution. Also, with only a few exceptions, relative fat distribution is markedly similar between lean and obese subjects.

  19. [Work organisation improvement methods applied to activities of Blood Transfusion Establishments (BTE): Lean Manufacturing, VSM, 5S].

    PubMed

    Bertholey, F; Bourniquel, P; Rivery, E; Coudurier, N; Follea, G

    2009-05-01

    Continuous improvement of efficiency as well as new expectations from customers (quality and safety of blood products) and employees (working conditions) imply constant efforts in Blood Transfusion Establishments (BTE) to improve work organisations. The Lean method (from "Lean" meaning "thin") aims at identifying wastages in the process (overproduction, waiting, over-processing, inventory, transport, motion) and then reducing them in establishing a mapping of value chain (Value Stream Mapping). It consists in determining the added value of each step of the process from a customer perspective. Lean also consists in standardizing operations while implicating and responsabilizing all collaborators. The name 5S comes from the first letter of five operations of a Japanese management technique: to clear, rank, keep clean, standardize, make durable. The 5S method leads to develop the team working inducing an evolution of the way in the management is performed. The Lean VSM method has been applied to blood processing (component laboratory) in the Pays de la Loire BTE. The Lean 5S method has been applied to blood processing, quality control, purchasing, warehouse, human resources and quality assurance in the Rhône-Alpes BTE. The experience returns from both BTE shows that these methods allowed improving: (1) the processes and working conditions from a quality perspective, (2) the staff satisfaction, (3) the efficiency. These experiences, implemented in two BTE for different processes, confirm the applicability and usefulness of these methods to improve working organisations in BTE.

  20. Effect of low appendicular lean mass, grip strength, and gait speed on the functional outcome after surgery for distal radius fractures.

    PubMed

    Roh, Young Hak; Noh, Jung Ho; Gong, Hyun Sik; Baek, Goo Hyun

    2017-12-01

    Patients with low appendicular lean mass plus slow gait speed or weak grip strength are at risk for poor functional recovery after surgery for distal radius fracture, even when they have similar radiologic outcomes. Loss of skeletal muscle mass and consequent loss in muscle function associate with aging, and this condition negatively impacts the activities of daily living and increases elderly individuals' frailty to falls. Thus, patients with low appendicular lean mass would show different functional recovery compared to those without this condition after surgery for distal radius fracture (DRF). This study compares the functional outcomes after surgery for DRF in patients with or without low appendicular lean mass plus slowness or weakness. A total of 157 patients older than 50 years of age with a DRF treated via volar plate fixation were enrolled in this prospective study. A definition of low appendicular lean mass with slowness or weakness was based on the consensus of the Asian Working Group for Sarcopenia. The researchers compared functional assessments (wrist range of motion and Michigan Hand Questionnaire [MHQ]) and radiographic assessments (radial inclination, volar tilt, ulnar variance, and articular congruity) 12 months after surgery between patients with and without low appendicular lean mass plus slowness or weakness. Multivariable regression analyses were performed to determine whether appendicular lean mass, grip strength, gait speed, patient demographic, or injury characteristics accounted for the functional outcomes. Patients with low appendicular lean mass plus slowness or weakness showed a significantly lower recovery of MHQ score than those in the control group throughout 12 months. There was no significant difference in the range of motion between the groups. The radiologic outcomes showed no significant difference between groups in terms of volar tilt, radial inclination, or ulnar variance. According to multivariable regression analysis, the poor recovery of MHQ score was associated with an increase in age, weak grip strength, and lower appendicular lean mass, and these three factors accounted for 37% of the variation in the MHQ scores. Patients with low appendicular lean mass plus slowness or weakness are at risk for poor functional recovery after surgery for DRF, even when they have similar radiologic outcomes.

  1. Using Lean Six Sigma Methodology to Improve Quality of the Anesthesia Supply Chain in a Pediatric Hospital.

    PubMed

    Roberts, Renée J; Wilson, Ashley E; Quezado, Zenaide

    2017-03-01

    Six Sigma and Lean methodologies are effective quality improvement tools in many health care settings. We applied the DMAIC methodology (define, measure, analyze, improve, control) to address deficiencies in our pediatric anesthesia supply chain. We defined supply chain problems by mapping existing processes and soliciting comments from those involved. We used daily distance walked by anesthesia technicians and number of callouts for missing supplies as measurements that we analyzed before and after implementing improvements (anesthesia cart redesign). We showed improvement in the metrics after those interventions were implemented, and those improvements were sustained and thus controlled 1 year after implementation.

  2. The effects of obesity and type 2 diabetes mellitus on cardiac structure and function in adolescents and young adults.

    PubMed

    Shah, A S; Khoury, P R; Dolan, L M; Ippisch, H M; Urbina, E M; Daniels, S R; Kimball, T R

    2011-04-01

    We sought to evaluate the effects of obesity and obesity-related type 2 diabetes mellitus on cardiac geometry (remodelling) and systolic and diastolic function in adolescents and young adults. Cardiac structure and function were compared by echocardiography in participants who were lean, obese or obese with type 2 diabetes (obese diabetic), in a cross sectional study. Group differences were assessed using ANOVA. Independent determinants of cardiac outcome measures were evaluated with general linear models. Adolescents with obesity and obesity-related type 2 diabetes were found to have abnormal cardiac geometry compared with lean controls (16% and 20% vs <1%, p < 0.05). These two groups also had increased systolic function. Diastolic function decreased from the lean to obese to obese diabetic groups with the lowest diastolic function observed in the obese diabetic group (p < 0.05). Regression analysis showed that group, BMI z score (BMIz), group × BMIz interaction and systolic BP z score (BPz) were significant determinants of cardiac structure, while group, BMIz, systolic BPz, age and fasting glucose were significant determinants of the diastolic function (all p < 0.05). Adolescents with obesity and obesity-related type 2 diabetes demonstrate changes in cardiac geometry consistent with cardiac remodelling. These two groups also demonstrate decreased diastolic function compared with lean controls, with the greatest decrease observed in those with type 2 diabetes. Adults with diastolic dysfunction are known to be at increased risk of progressing to heart failure. Therefore, our findings suggest that adolescents with obesity-related type 2 diabetes may be at increased risk of progressing to early heart failure compared with their obese and lean counterparts.

  3. β-endorphins Plasma Level is Higher in Lean Polycystic Ovary Syndrome (PCOS) Women.

    PubMed

    Kiałka, M; Milewicz, T; Spałkowska, M; Krzyczkowska-Sendrakowska, M; Wasyl, B; Pełka, A; Krzysiek, J

    2016-01-01

    The evaluation the β-endorphin plasma levels in lean women with polycystic ovary syndrome as well as in women without this disorder. The associations between β-endorphins and other laboratory parameters were also investigated. 31 women lean, defined as women with normal range body mass index, 15 with polycystic ovary syndrome and 16 without this disorder were included to the study. In all the patients the level of β-endorphins was measured. Also the diagnostic laboratory profile including hormone assessment was made in all patients. There were significant differences in β-endorphin levels between the 2 groups. The β-endorphin level was higher in the polycystic ovary syndrome group compared to the healthy controls (15.5±4.37 pg/ml vs. 6.9±2.47 pg/ml, p<0.0001). The β-endorphin levels positively correlated with cortisol at 8 am (R=0.632, p=0.011) and negatively correlated with sex hormone binding globuline (R=0.518, p=0.0478) in polycystic ovary syndrome group. Increase in β-endorphin level of 1 pg/ml was associated with an increase of cortisol at 8 am level of 1.134 µg/dl and decrease of sex hormone binding globuline of 0.948 nmol/l in polycystic ovary syndrome group. Our study showed that the levels of β-endorphins were significantly higher in lean patients with polycystic ovary syndrome than in lean controls. Moreover, β-endorphins levels were found to be correlated with other hormonal parameters. In this respect, β-endorphins may play a role in polycystic ovary syndrome pathophysiology. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Transcriptome profiling reveals novel BMI- and sex-specific gene expression signatures for human cardiac hypertrophy.

    PubMed

    Newman, Mackenzie S; Nguyen, Tina; Watson, Michael J; Hull, Robert W; Yu, Han-Gang

    2017-07-01

    How obesity or sex may affect the gene expression profiles of human cardiac hypertrophy is unknown. We hypothesized that body-mass index (BMI) and sex can affect gene expression profiles of cardiac hypertrophy. Human heart tissues were grouped according to sex (male, female), BMI (lean<25 kg/m 2 , obese>30 kg/m 2 ), or left ventricular hypertrophy (LVH) and non-LVH nonfailed controls (NF). We identified 24 differentially expressed (DE) genes comparing female with male samples. In obese subgroup, there were 236 DE genes comparing LVH with NF; in lean subgroup, there were seven DE genes comparing LVH with NF. In female subgroup, we identified 1,320 significant genes comparing LVH with NF; in male subgroup, there were 1,383 significant genes comparing LVH with NF. There were seven significant genes comparing obese LVH with lean NF; comparing male obese LVH with male lean NF samples we found 106 significant genes; comparing female obese LVH with male lean NF, we found no significant genes. Using absolute value of log 2 fold-change > 2 or extremely small P value (10 -20 ) as a criterion, we identified nine significant genes (HBA1, HBB, HIST1H2AC, GSTT1, MYL7, NPPA, NPPB, PDK4, PLA2G2A) in LVH, also found in published data set for ischemic and dilated cardiomyopathy in heart failure. We identified a potential gene expression signature that distinguishes between patients with high BMI or between men and women with cardiac hypertrophy. Expression of established biomarkers atrial natriuretic peptide A (NPPA) and B (NPPB) were already significantly increased in hypertrophy compared with controls. Copyright © 2017 the American Physiological Society.

  5. Comparison of Goto-Kakizaki rats and high fat diet-induced obese rats: Are they reliable models to study Type 2 Diabetes mellitus?

    PubMed Central

    Panveloski-Costa, Ana Carolina; Yokota, Caroline Naomi Fukusawa; Pereira, Joice Naiara Bertaglia; Filho, Jorge Mancini; Torres, Rosangela Pavan; Hirabara, Sandro Massao; Curi, Rui; Alba-Loureiro, Tatiana Carolina

    2017-01-01

    Type 2 Diabetes mellitus (T2DM) is an evident growing disease that affects different cultures throughout the world. T2DM occurs under the influence of three main factors: the genetic background, environmental and behavioral components. Obesity is strongly associated to the development of T2DM in the occident, while in the orient most of the diabetic patients are considered lean. Genetics may be a key factor in the development of T2DM in societies where obesity is not a recurrent public health problem. Herein, two different models of rats were used to understand their differences and reliability as experimental models to study the pathophysiology of T2DM, in two different approaches: the genetic (GK rats) and the environmental (HFD-induced obese rats) influences. GK rats were resistant to weight gain even though food/energy consumption (relative to body weight) was higher in this group. HFD, on the other hand, induced obesity in Wistar rats. White adipose tissue (WAT) expansion in this group was accompanied by immune cells infiltration, inflammation and insulin resistance. GK rats also presented WAT inflammation and insulin resistance; however, no immune cells infiltration was observed in the WAT of this group. Liver of HFD group presented fat accumulation without differences in inflammatory cytokines content, while liver of GK rats didn’t present fat accumulation, but showed an increase of IL-6 and IL-10 content and glycogen. Also, GK rats showed increased plasma GOT and GPT. Soleus muscle of HFD presented normal insulin signaling, contrary to GK rats, which presented higher content of basal phosphorylation of GSK-3β. Our results demonstrated that HFD developed a mild insulin resistance in Wistar rats, but was not sufficient to develop T2DM. In contrast, GK rats presented all the typical hallmarks of T2DM, such as insulin resistance, defective insulin production, fasting hyperglycemia/hyperinsulinemia and lipid plasma alteration. Thus, on the given time point of this study, we may conclude that only GK rats shown to be a reliable model to study T2DM. PMID:29220408

  6. Spontaneous physical activity protects against fat mass gain

    PubMed Central

    Teske, Jennifer A.; Billington, Charles J.; Kuskowski, Michael A.; Kotz, Catherine M.

    2011-01-01

    It is unclear whether elevated spontaneous physical activity (SPA, very low-intensity physical activity) positively influences body composition long-term. Objective We determined whether SPA and caloric intake were differentially related to the growth curve trajectories of body weight, FM and FFM between obesity resistant and Sprague-Dawley rats at specific age intervals. Design and Subjects Body composition, SPA and caloric intake were measured in selectively-bred obesity resistant and out-bred Sprague-Dawley rats from 1-18 mo. Data from development throughout maturation were analyzed by longitudinal growth curve modeling to determine the rate and acceleration of body weight, fat mass (FM) and fat-free mass (FFM) gain. Results Obesity resistant rats had a lower rate of FM gain overall, a lower acceleration in body weight early in life, significantly greater SPA and lower cumulative caloric intake. Greater SPA in obesity resistant rats was significantly associated with a lower rate of FM gain overall and lower acceleration in body weight early in life. Obesity resistant rats lost less FFM compared to Sprague-Dawley rats despite that obesity resistant rats had a lower acceleration in FFM gain early in life. Obesity resistant rats gained less FM and more FFM per gram body weight and were less energy efficient than Sprague-Dawley rats. Caloric intake was significantly and positively related to body weight, FM and FFM gain in both groups. Circadian patterns of caloric intake were group and age-dependent. Our data demonstrate that elevated and sustained SPA during development and over the lifespan are related to the reduced the rate of FM gain and may preserve FFM. Conclusion These data support the idea that SPA level is a reproducible marker that reliably predicts propensity for obesity in rats, and that elevated levels of SPA maintained during the lifespan promote a lean phenotype. PMID:21610695

  7. Body imaging and sexual behavior in lean women with polycystic ovary syndrome.

    PubMed

    Morotti, Elena; Persico, Nicola; Battaglia, Bruno; Fabbri, Raffaella; Meriggiola, Maria Cristina; Venturoli, Stefano; Battaglia, Cesare

    2013-11-01

    In women with polycystic ovary syndrome (PCOS), changes in body appearance may influence the feminine identity of the patients with possible consequent depression and sexual dysfunction. The study aims to examine the differences in mood, perceived body image, sexual behavior, and clitoral vascularization between lean PCOS patients and healthy eumenorrheic controls. Thirty-three lean PCOS women (Group I) and 22 healthy nonhirsute volunteers (Group II) were submitted, on day 3-5 of the cycle, to ultrasonographic (US) and Doppler analyses, to clinical, hormonal, and biochemical evaluations, and to psychometric tests. Main outcome measures are Ferriman-Gallwey score (FG), clitoral volume, clitoral artery Pulsatility Index, the two-factor Italian McCoy female questionnaire (MFSQ), the Stunkard Figure Rating Scale (FRS), and the Beck Depression Inventory (BDI) questionnaire. The FG score and the androgens resulted, as expected, more elevated in PCOS patients than in controls. However, the US assessment of the clitoral body volume and the resistances registered at the level of the dorsal clitoral artery did not show any difference between Group I and Group II patients. Moreover, the two-factor Italian MFSQ, the FRS, and the BDI were similar in both groups. It seems that in lean PCOS women, the moderate hirsutism and hyperandrogenism do not have any important influence on body image and self-esteem and, as a consequence, on sexual function. © 2013 International Society for Sexual Medicine.

  8. Drive cycle simulation of high efficiency combustions on fuel economy and exhaust properties in light-duty vehicles

    DOE PAGES

    Gao, Zhiming; Curran, Scott J.; Parks, James E.; ...

    2015-04-06

    We present fuel economy and engine-out emissions for light-duty (LD) conventional and hybrid vehicles powered by conventional and high-efficiency combustion engines. Engine technologies include port fuel-injected (PFI), direct gasoline injection (GDI), reactivity controlled compression ignition (RCCI) and conventional diesel combustion (CDC). In the case of RCCI, the engine utilized CDC combustion at speed/load points not feasible with RCCI. The results, without emissions considered, show that the best fuel economies can be achieved with CDC/RCCI, with CDC/RCCI, CDC-only, and lean GDI all surpassing PFI fuel economy significantly. In all cases, hybridization significantly improved fuel economy. The engine-out hydrocarbon (HC), carbon monoxidemore » (CO), nitrogen oxides (NOx), and particulate matter (PM) emissions varied remarkably with combustion mode. The simulated engine-out CO and HC emissions from RCCI are significantly higher than CDC, but RCCI makes less NOx and PM emissions. Hybridization can improve lean GDI and RCCI cases by increasing time percentage for these more fuel efficient modes. Moreover, hybridization can dramatically decreases the lean GDI and RCCI engine out emissions. Importantly, lean GDI and RCCI combustion modes decrease exhaust temperatures, especially for RCCI, which limits aftertreatment performance to control tailpipe emissions. Overall, the combination of engine and hybrid drivetrain selected greatly affects the emissions challenges required to meet emission regulations.« less

  9. Effects of Eating Fresh Lean Pork on Cardiometabolic Health Parameters

    PubMed Central

    Murphy, Karen J.; Thomson, Rebecca L.; Coates, Alison M.; Buckley, Jonathan D.; Howe, Peter R. C.

    2012-01-01

    High protein meat-based diets are commonly promoted for weight loss, supposedly by increasing satiety and energy expenditure. Pork is a good source of protein however little information on the metabolic effects of pork consumption exists. This pilot study aimed to examine whether regular consumption of fresh lean pork could improve body composition and cardiovascular risk factors in a 6 month parallel intervention trial. 164 overweight adults (mean BMI 32) were randomly assigned to incorporate up to 1 kg pork/week by substituting for other foods or maintain their habitual diet (control). Plasma levels of lipids, glucose and insulin, BMI, waist/hip circumference, blood pressure, heart rate and arterial compliance were measured at baseline and 3 and 6 months. Body composition was determined using dual energy X-ray absorptiometry. A total of 144 volunteers completed and volunteers in the pork group increased their intake 10 fold by substituting pork for mainly beef and chicken. After 3 months, there were significant (p ≤ 0.01) reductions in weight, BMI, waist circumference, % body fat, fat mass and abdominal fat in the pork group relative to controls, which persisted for 6 months. There was no change in lean mass, indicating that the reduction in weight was due to loss of fat mass. There were no significant effects on other metabolic parameters. Regular consumption of lean fresh pork may improve body composition. PMID:22852059

  10. Visfatin and retinol-binding protein 4 concentrations in lean, glucose-tolerant women with PCOS.

    PubMed

    Yildiz, Bulent O; Bozdag, Gurkan; Otegen, Umit; Harmanci, Ayla; Boynukalin, Kubra; Vural, Zehra; Kirazli, Serafettin; Yarali, Hakan

    2010-01-01

    Since insulin resistance is accepted to be a common feature of polycystic ovary syndrome (PCOS), the exact molecular mechanism(s) involved in glucose and lipid metabolism have been under investigation in the syndrome. Recently, two novel adipokines, namely visfatin and retinol-binding protein 4 (RBP4), have been suggested to play a role in insulin resistance and diabetes. This study sought to determine whether plasma concentrations of visfatin and RBP4 are altered in PCOS by comparing a total of 27 lean, normal glucose-tolerant PCOS patients with 19 age- and body mass index-matched healthy controls. The mean plasma visfatin concentrations were higher in PCOS patients than those in healthy subjects (37.9+/-18.2 versus 19.8+/-17.5, P<0.01), while RBP4 concentrations were similar between the two. Both adipokines were correlated with each other in the whole (r=0.50, P<0.01) and in PCOS (r=0.52, P<0.01) groups but not in controls. The results suggest that lean, glucose-tolerant women with PCOS have increased circulating visfatin and unaltered RBP4 concentrations compared with healthy lean women. In order to clarify overlapping effects and their potential contribution to the pathophysiology of PCOS, further studies are needed. Copyright (c) 2009 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  11. Obesity and Prader-Willi Syndrome Affect Heart Rate Recovery from Dynamic Resistance Exercise in Youth.

    PubMed

    Castner, Diobel M; Clark, Susan J; Judelson, Daniel A; Rubin, Daniela A

    2016-01-15

    Following exercise, heart rate decline is initially driven by parasympathetic reactivation and later by sympathetic withdrawal. Obesity delays endurance exercise heart rate recovery (HRR) in both children and adults. Young people with Prader-Willi Syndrome (PWS), a congenital cause for obesity, have shown a slower 60-s endurance exercise HRR compared to lean and obese children, suggesting compromised regulation. This study further evaluated effects of obesity and PWS on resistance exercise HRR at 30 and 60 s in children. PWS (8-18 years) and lean and obese controls (8-11 years) completed a weighted step-up protocol (six sets x 10 reps per leg, separated by one-minute rest), standardized using participant stature and lean body mass. HRR was evaluated by calculated HRR value (HRRV = difference between HR at test termination and 30 (HRRV30) and 60 (HRRV60) s post-exercise). PWS and obese had a smaller HRRV30 than lean ( p < 0.01 for both). Additionally, PWS had a smaller HRRV60 than lean and obese ( p = 0.01 for both). Obesity appears to delay early parasympathetic reactivation, which occurs within 30 s following resistance exercise. However, the continued HRR delay at 60 s in PWS may be explained by either blunted parasympathetic nervous system reactivation, delayed sympathetic withdrawal and/or poor cardiovascular fitness.

  12. Lean Blow-out Studies in a Swirl Stabilized Annular Gas Turbine Combustor

    NASA Astrophysics Data System (ADS)

    Mishra, R. K.; Kishore Kumar, S.; Chandel, Sunil

    2015-05-01

    Lean blow out characteristics in a swirl stabilized aero gas turbine combustor have been studied using computational fluid dynamics. For CFD analysis, a 22.5° sector of an annular combustor is modeled using unstructured tetrahedral meshes comprising 1.2 × 106 elements. The governing equations are solved using the eddy dissipation combustion model in CFX. The primary combustion zone is analyzed by considering it as a well stirred reactor. The analysis has been carried out for different operating conditions of the reactants entering into the control volume. The results are treated as the base-line or reference values. Combustion lean blow-out limits are further characterized studying the behavior of combustion zone during transient engine operation. The validity of the computational study has been established by experimental study on a full-scale annular combustor in an air flow test facility that is capable of simulating different conditions at combustor inlet. The experimental result is in a good agreement with the analytical predictions. Upon increasing the combustor mass flow, the lean blow out limit increases, i.e., the blow out occurs at higher fuel-air ratios. In addition, when the operating pressure decreases, the lean blow out limit increases, i.e., blow out occurs at higher fuel-air ratios.

  13. Effects of blood glucose on delay discounting, food intake and counterregulation in lean and obese men.

    PubMed

    Klement, Johanna; Kubera, Britta; Eggeling, Jonas; Rädel, Christin; Wagner, Christin; Park, Soyoung Q; Peters, Achim

    2018-03-01

    Delay discounting as a measure of impulsivity has been shown to be higher in obesity with an association of increased food intake. Moreover, obese humans showed a higher wanting for high-calorie food than lean men when blood glucose concentrations were low. First studies linking blood glucose levels to delay discounting yielded mixed results. We hypothesized that obese people - in comparison to lean men - have a relative lack of energy, especially when blood glucose levels are low, that results in higher levels of delay discounting, food intake and hormonal counterregulation. We investigated 20 lean and 20 obese healthy young men in a single-blind balanced cross-over design. With a standardized glucose clamp technique, subjects underwent a hypoglycemic state in one condition and a euglycemic state in the control condition. Regularly, blood was sampled for assessment of hormonal status, and questionnaires were filled out to assess delay discounting and symptom awareness. After normalizing blood glucose concentrations, subjects were free to eat from a standardized test buffet, followed by a snack test. Delay discounting was higher in obese than in lean men throughout experiments (p < 0.03). However, we did not observe significant discounting differences between glucose conditions (p > 0.1). Furthermore, the discounting performance did not correlate with food intake from the test buffet or snack test (p > 0.3). As a response to hypoglycemia, hormonal counterregulation was pronounced in both weight groups (p < 0.03), but responses of ACTH, norepinephrine and glucagon were stronger in obese compared to lean men (p < 0.03). Also, intake from the high-calorie buffet after hypoglycemia compared to euglycemia was higher in obese subjects (p < 0.02) but comparable in lean men (p > 0.5). Our data suggest that augmented delay discounting is a robust feature in obesity that is not linked to glucose levels or actual food intake. With our systematically controlled approach, combining performance in delay discounting with regard to distinct blood glucose levels, different weight groups, counterregulatory behavior and food intake, our results imply that delay discounting is not susceptible to fluctuations of blood glucose and do not support the assumption that a low body's energy content leads to increased impulsivity. Further replications including women and larger sample sizes are needed to corroborate our data. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Quality of life in type 2 diabetes mellitus after a very low calorie diet and exercise.

    PubMed

    Snel, Marieke; Sleddering, Maria A; Vd Peijl, Inge D; Romijn, Johannes A; Pijl, Hanno; Meinders, A Edo; Jazet, Ingrid M

    2012-03-01

    To evaluate whether the addition of exercise to a very low calorie diet (VLCD) has beneficial short- and long-term effects on health-related quality of life (QoL) in obese patients with type 2 diabetes mellitus (T2DM). We included 27 obese, insulin-dependent T2DM patients in a 16-week VLCD study, of whom 13 participated simultaneously in an exercise program (VLCD+E). Before, immediately after and 18 months after the intervention anthropometric measurements, glucoregulation and QoL (SF-36, HADS, NHP and MFI-20) were assessed. Patients were compared to healthy lean and obese (matched for body mass index) controls matched for gender and age. At baseline, T2DM patients had significantly worse QoL scores in 18 and 14 of the 22 subscales of the QoL questionnaires, compared to lean and obese controls, resp. The 16-week VLCD (n=27) decreased bodyweight (-25.4±1.3 kg, p<0.0001, p=0.179 between groups), and improved glucoregulation (HbA1c -1.3±0.3%, p<0.0001, p=0.488 between groups) and 9 (VLCD-only) and 11 (VLCD+E) of the 22 subscales of QoL. After 18 months, in the VLCD+E group the QoL subscales did not differ from those in obese controls and only 4 of the 22 subscales were significantly worse compared to lean controls. However, in the VLCD-only group 17 and 13 of the 22 QoL subscales were significantly worse compared to the lean and obese controls, resp. A 16-week VLCD induces considerable weight loss, metabolic amelioration, and major improvements in QoL in obese T2DM patients. The addition of exercise is of paramount importance for the maintenance of better QoL. Copyright © 2011 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  15. A Novel Nociceptin Receptor Antagonist LY2940094 Inhibits Excessive Feeding Behavior in Rodents: A Possible Mechanism for the Treatment of Binge Eating Disorder.

    PubMed

    Statnick, Michael A; Chen, Yanyun; Ansonoff, Michael; Witkin, Jeffrey M; Rorick-Kehn, Linda; Suter, Todd M; Song, Min; Hu, Charlie; Lafuente, Celia; Jiménez, Alma; Benito, Ana; Diaz, Nuria; Martínez-Grau, Maria Angeles; Toledo, Miguel A; Pintar, John E

    2016-02-01

    Nociceptin/orphanin FQ (N/OFQ), a 17 amino acid peptide, is the endogenous ligand of the ORL1/nociceptin-opioid-peptide (NOP) receptor. N/OFQ appears to regulate a variety of physiologic functions including stimulating feeding behavior. Recently, a new class of thienospiro-piperidine-based NOP antagonists was described. One of these molecules, LY2940094 has been identified as a potent and selective NOP antagonist that exhibited activity in the central nervous system. Herein, we examined the effects of LY2940094 on feeding in a variety of behavioral models. Fasting-induced feeding was inhibited by LY2940094 in mice, an effect that was absent in NOP receptor knockout mice. Moreover, NOP receptor knockout mice exhibited a baseline phenotype of reduced fasting-induced feeding, relative to wild-type littermate controls. In lean rats, LY2940094 inhibited the overconsumption of a palatable high-energy diet, reducing caloric intake to control chow levels. In dietary-induced obese rats, LY2940094 inhibited feeding and body weight regain induced by a 30% daily caloric restriction. Last, in dietary-induced obese mice, LY2940094 decreased 24-hour intake of a high-energy diet made freely available. These are the first data demonstrating that a systemically administered NOP receptor antagonist can reduce feeding behavior and body weight in rodents. Moreover, the hypophagic effect of LY2940094 is NOP receptor dependent and not due to off-target or aversive effects. Thus, LY2940094 may be useful in treating disorders of appetitive behavior such as binge eating disorder, food choice, and overeating, which lead to obesity and its associated medical complications and morbidity. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  16. Ghrelin-induced adiposity is independent of orexigenic effects

    PubMed Central

    Perez-Tilve, Diego; Heppner, Kristy; Kirchner, Henriette; Lockie, Sarah H.; Woods, Stephen C.; Smiley, David L.; Tschöp, Matthias; Pfluger, Paul

    2011-01-01

    Ghrelin is a hormone produced predominantly by the stomach that targets a number of specific areas in the central nervous system to promote a positive energy balance by increasing food intake and energy storage. In that respect, similarities exist with the effects of consuming a high-fat diet (HFD), which also increases caloric intake and the amount of stored calories. We determined whether the effects of ghrelin on feeding and adiposity are influenced by the exposure to an HFD. Chronic intracerebroventricular ghrelin (2.5 nmol/d) increased feeding in lean rats fed a low-fat control diet (CD) [192±5 g (ghrelin+CD) vs. 152±5 g (control i.c.v. saline+CD), P<0.001], but the combination of ghrelin plus HFD did not result in significantly greater hyperphagia [150±7 g (ghrelin+HFD) vs. 136±4 g (saline+HFD)]. Despite failing to increase food intake in rats fed the HFD, ghrelin nonetheless increased adiposity [fat mass increase of 14±2 g (ghrelin+HFD) vs. 1±1 g (saline+HFD), P<0.001] up-regulating the gene expression of lipogenic enzymes in white adipose tissue. Our findings demonstrate that factors associated with high-fat feeding functionally interact with pathways regulating the effect of ghrelin on food intake. We conclude that ghrelin's central effects on nutrient intake and nutrient partitioning can be separated and suggest an opportunity to identify respective independent neuronal pathways.—Perez-Tilve, D., Heppner, K., Kirchner, H., Lockie, S. H., Woods, S. C., Smiley, D. L., Tschöp, M., and Pfluger, P. Ghrelin-induced adiposity is independent of orexigenic effects. PMID:21543764

  17. Modelling maternal obesity: the effects of a chronic high-fat, high-cholesterol diet on uterine expression of contractile-associated proteins and ex vivo contractile activity during labour in the rat.

    PubMed

    Muir, Ronan; Ballan, Jean; Clifford, Bethan; McMullen, Sarah; Khan, Raheela; Shmygol, Anatoly; Quenby, Siobhan; Elmes, Matthew

    2016-02-01

    Maternal obesity is associated with prolonged and dysfunctional labour and emergency caesarean section, but the mechanisms are unknown. The present study investigated the effects of an adiposity-inducing high-fat, high-cholesterol (HFHC) diet on uterine contractile-associated protein (CAP) expression and ex vivo uterine contractility in term non-labouring (TNL) and term labouring (TL) rats. Female rats were fed either control chow (CON n=20) or HFHC (n=20) diet 6 weeks before conception and during pregnancy. On gestational day 21 (TNL) or day 22 (TL) CON and HFHC (n=10) rats were killed to determine plasma cholesterol, triacylglycerol and progesterone concentrations and collection of myometrium for contractility studies and expression of CAPs caveolin-1 (Cav-1), connexin-43 (CX-43) and it's phosphorylated form (pCX-43), oxytocin receptor (OXTR) and cyclooxygenase-2 (COX-2). HFHC feeding increased visceral fat (P≤0.001), plasma cholesterol (P≤0.001) and triacylglycerol (P=0.039) concentrations. Stage of labour effected uterine expression of CAV-1 (P<0.02), pCX43 and COX-2 (both P<0.03). CAV-1 and pCX43 decreased but COX-2 increased with parturition. Significant diet- and labour-stage interactions were evident for CX-43 and pCX43 (P<0.03 and P<0.004 respectively). CX-43 decreased with TL in HFHC animals but was unaltered in CON. pCX-43 fell with labour in CON but remained high in HFHC. OXTR expression was significantly higher in HFHC compared with CON animals (P<0.03). Progesterone was higher in HFHC rats at term (P<0.014) but fell significantly with labour to similar concentrations as CON. Contractility studies identified synchronous contractions of stable amplitude in lean animals, but unstable asynchronous contractions with obesity. Uterine dose response to oxytocin was blunted during labour in HFHC rats with a log EC50 of -8.84 compared with -10.25 M in CON for integral activity (P<0.05). In conclusion, our adiposity model exhibits adverse effects on contractile activity during labour that can be investigated further to unravel the mechanisms causing uterine dystocia in obese women. © 2016 The Author(s).

  18. Comparison of MRI-assessed body fat content between lean women with polycystic ovary syndrome (PCOS) and matched controls: less visceral fat with PCOS.

    PubMed

    Dolfing, Jacoba G; Stassen, Chrit M; van Haard, Paul M M; Wolffenbuttel, Bruce H R; Schweitzer, Dave H

    2011-06-01

    BACKGROUND Polycystic ovary syndrome (PCOS) is a heterogeneous disorder. However, PCOS has a strong resemblance to the metabolic syndrome, including preponderance of visceral fat deposition. The aim of this study is to compare fat distribution between lean women with PCOS and controls matched for body composition but with regular menstrual cycles and proven fertility. METHODS In this prospective cross-sectional study in a fertility outpatient clinic, 10 Caucasian women with PCOS and 10 controls, all with a BMI between 19 and 25 kg/m(2), were included. Fasting glucose, insulin and C-peptide concentrations, homeostasis model assessment (HOMA), hormonal levels and bioelectrical impedance analysis (BIA) variables were assessed and fat content and ovarian volume determinations were obtained with magnetic resonance imaging (MRI). Multiple axial cross-sections were calculated. RESULTS The age of the PCOS and control groups were [mean (SD)] 28.2 years (2.6) versus 33.7 years (2.3) P < 0.0001, respectively, and both groups were matched for BMI: 21.6 kg/m(2) (1.1) versus 21.8 kg/m(2) (2.1) (ns), fasting glucose, insulin, C-peptide, HOMA-insulin resistance (IR) levels and BIA parameters. PCOS cases had higher ovarian volumes and less visceral fat compared with controls. CONCLUSIONS Lean women with PCOS have higher MRI-determined ovarian volumes and less visceral fat content when compared with control women.

  19. Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.

    2011-01-01

    Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.

  20. Increased adipogenic conversion of muscle satellite cells in obese Zucker rats.

    PubMed

    Scarda, A; Franzin, C; Milan, G; Sanna, M; Dal Prà, C; Pagano, C; Boldrin, L; Piccoli, M; Trevellin, E; Granzotto, M; Gamba, P; Federspil, G; De Coppi, P; Vettor, R

    2010-08-01

    Visceral and intermuscular adipose tissue (IMAT) depots account for most obesity-related metabolic and cardiovascular complications. Muscle satellite cells (SCs) are mesenchymal stem cells giving rise to myotubes and also to adipocytes, suggesting their possible contribution to IMAT origin and expansion. We investigated the myogenic differentiation of SCs and the adipogenic potential of both preadipocytes and SCs from genetically obese Zucker rats (fa/fa), focusing on the role of Wnt signaling in these differentiation processes. SCs were isolated by single-fiber technique from flexor digitorum brevis muscle and preadipocytes were extracted from subcutaneous adipose tissue (AT). Morphological features and gene expression profile were evaluated during in vitro myogenesis and adipogenesis. Wingless-type MMTV integration site family member 10b (Wnt10b) expression was quantified by quantitative PCR in skeletal muscle and AT. We did not observe any difference in the proliferation rate and in the myogenic differentiation of SCs from obese and lean rats. However, a decreased insulin-induced glucose uptake was present in myotubes originating from fa/fa rats. Under adipogenic conditions, preadipocytes and SCs of obese animals displayed an enhanced adipogenesis. Wnt10b expression was reduced in obese rats in both muscle and AT. Our data suggest that the increase in different fat depots including IMAT and the reduced muscle insulin sensitivity, the major phenotypical alteration of obese Zucker rats, could be ascribed to an intrinsic defect, either genetically determined or acquired, still present in both muscle and fat precursors. The involvement of Wnt10b as a regulator of both adipogenesis and muscle-to-fat conversion is suggested.

Top