Sample records for lean gasoline engine

  1. Model predictive control of a lean-burn gasoline engine coupled with a passive selective catalytic reduction system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Pingen; Lin, Qinghua; Prikhodko, Vitaly Y.

    Lean-burn gasoline engines have demonstrated 10–20% engine efficiency gain over stoichiometric engines and are widely considered as a promising technology for meeting the 54.5 miles-per-gallon (mpg) Corporate Average Fuel Economy standard by 2025. Nevertheless, NOx emissions control for lean-burn gasoline for meeting the stringent EPA Tier 3 emission standards has been one of the main challenges towards the commercialization of highly-efficient lean-burn gasoline engines in the United States. Passive selective catalytic reduction (SCR) systems, which consist of a three-way catalyst and SCR, have demonstrated great potentials of effectively reducing NOx emissions for lean gasoline engines but may cause significant fuelmore » penalty due to ammonia generation via rich engine combustion. The purpose of this study is to develop a model-predictive control (MPC) scheme for a lean-burn gasoline engine coupled with a passive SCR system to minimize the fuel penalty associated with passive SCR operation while satisfying stringent NOx and NH3 emissions requirements. Simulation results demonstrate that the MPC-based control can reduce the fuel penalty by 47.7% in a simulated US06 cycle and 32.0% in a simulated UDDS cycle, compared to the baseline control, while achieving over 96% deNOx efficiency and less than 15 ppm tailpipe ammonia slip. The proposed MPC control can potentially enable high engine efficiency gain for highly-efficient lean-burn gasoline engine while meeting the stringent EPA Tier 3 emission standards.« less

  2. Ammonia Generation and Utilization in a Passive SCR (TWC+SCR) System on Lean Gasoline Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prikhodko, Vitaly Y.; James E. Parks, II; Pihl, Josh A.

    Lean gasoline engines offer greater fuel economy than the common stoichiometric gasoline engine, but the current three way catalyst (TWC) on stoichiometric engines is unable to control nitrogen oxide (NOX) emissions in oxidizing exhaust. For these lean gasoline engines, lean NOX emission control is required to meet existing Tier 2 and upcoming Tier 3 emission regulations set by the U.S. Environmental Protection Agency (EPA). While urea-based selective catalytic reduction (SCR) has proven effective in controlling NOX from diesel engines, the urea storage and delivery components can add significant size and cost. As such, onboard NH 3 production via a passivemore » SCR approach is of interest. In a passive SCR system, NH 3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean operation, NOX passes through the TWC and is reduced by the stored NH 3 on the SCR catalyst. In this work, a passive SCR system was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine to assess NH 3 generation over a Pd-only TWC and utilization over a Cu-based SCR catalyst. System NOX reduction efficiency and fuel efficiency improvement compared to stoichiometric engine operation were measured. A feedback control strategy based on cumulative NH 3 produced by the TWC during rich operation and NOX emissions during lean operation was implemented on the engine to control lean/rich cycle timing. At an SCR average inlet temperature of 350 °C, an NH 3:NOX ratio of 1.15:1 (achieved through longer rich cycle timing) resulted in 99.7 % NOX conversion. Increasing NH 3 generation further resulted in even higher NOX conversion; however, tailpipe NH 3 emissions resulted. At higher underfloor temperatures, NH 3 oxidation over the SCR limited NH 3 availability for NOX reduction. At the engine conditions studied, greater than 99 % NOX conversion was achieved with passive SCR while delivering fuel efficiency benefits ranging between 6-11 % compared with stoichiometric operation.« less

  3. Ammonia Generation and Utilization in a Passive SCR (TWC+SCR) System on Lean Gasoline Engine

    DOE PAGES

    Prikhodko, Vitaly Y.; James E. Parks, II; Pihl, Josh A.; ...

    2016-04-05

    Lean gasoline engines offer greater fuel economy than the common stoichiometric gasoline engine, but the current three way catalyst (TWC) on stoichiometric engines is unable to control nitrogen oxide (NOX) emissions in oxidizing exhaust. For these lean gasoline engines, lean NOX emission control is required to meet existing Tier 2 and upcoming Tier 3 emission regulations set by the U.S. Environmental Protection Agency (EPA). While urea-based selective catalytic reduction (SCR) has proven effective in controlling NOX from diesel engines, the urea storage and delivery components can add significant size and cost. As such, onboard NH 3 production via a passivemore » SCR approach is of interest. In a passive SCR system, NH 3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean operation, NOX passes through the TWC and is reduced by the stored NH 3 on the SCR catalyst. In this work, a passive SCR system was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine to assess NH 3 generation over a Pd-only TWC and utilization over a Cu-based SCR catalyst. System NOX reduction efficiency and fuel efficiency improvement compared to stoichiometric engine operation were measured. A feedback control strategy based on cumulative NH 3 produced by the TWC during rich operation and NOX emissions during lean operation was implemented on the engine to control lean/rich cycle timing. At an SCR average inlet temperature of 350 °C, an NH 3:NOX ratio of 1.15:1 (achieved through longer rich cycle timing) resulted in 99.7 % NOX conversion. Increasing NH 3 generation further resulted in even higher NOX conversion; however, tailpipe NH 3 emissions resulted. At higher underfloor temperatures, NH 3 oxidation over the SCR limited NH 3 availability for NOX reduction. At the engine conditions studied, greater than 99 % NOX conversion was achieved with passive SCR while delivering fuel efficiency benefits ranging between 6-11 % compared with stoichiometric operation.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prikhodko, Vitaly Y; Pihl, Josh A; Toops, Todd J

    Ethanol is a very effective reductant of nitrogen oxides (NOX) over silver/alumina (Ag/Al2O3) catalysts in lean exhaust environment. With the widespread availability of ethanol/gasoline-blended fuel in the USA, lean gasoline engines equipped with an Ag/Al2O3 catalyst have the potential to deliver higher fuel economy than stoichiometric gasoline engines and to increase biofuel utilization while meeting exhaust emissions regulations. In this work a pre-commercial 2 wt% Ag/Al2O3 catalyst was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine for the selective catalytic reduction (SCR) of NOX with ethanol/gasoline blends. The ethanol/gasoline blends were delivered via in-pipe injection upstream ofmore » the Ag/Al2O3 catalyst with the engine operating under lean conditions. A number of engine conditions were chosen to provide a range of temperatures and space velocities for the catalyst performance evaluations. High NOX conversions were achieved with ethanol/gasoline blends containing at least 50% ethanol; however, higher C1/N ratio was needed to achieve greater than 90% NOX conversion, which also resulted in significant HC slip. Temperature and HC dosing were important in controlling selectivity to NH3 and N2O. At high temperatures, NH3 and N2O yields increased with increased HC dosing. At low temperatures, NH3 yield was very low, however, N2O levels became significant. The ability to generate NH3 under lean conditions has potential for application of a dual SCR approach (HC SCR + NH3 SCR) to reduce fuel consumption needed for NOX reduction and/or increased NOX conversion, which is discussed in this work.« less

  5. Filter-based control of particulate matter from a lean gasoline direct injection engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parks, II, James E; Lewis Sr, Samuel Arthur; DeBusk, Melanie Moses

    New regulations requiring increases in vehicle fuel economy are challenging automotive manufacturers to identify fuel-efficient engines for future vehicles. Lean gasoline direct injection (GDI) engines offer significant increases in fuel efficiency over the more common stoichiometric GDI engines already in the marketplace. However, particulate matter (PM) emissions from lean GDI engines, particularly during stratified combustion modes, are problematic for lean GDI technology to meet U.S. Environmental Protection Agency Tier 3 and other future emission regulations. As such, the control of lean GDI PM with wall-flow filters, referred to as gasoline particulate filter (GPF) technology, is of interest. Since lean GDImore » PM chemistry and morphology differ from diesel PM (where more filtration experience exists), the functionality of GPFs needs to be studied to determine the operating conditions suitable for efficient PM removal. In addition, lean GDI engine exhaust temperatures are generally higher than diesel engines which results in more continuous regeneration of the GPF and less presence of the soot cake layer common to diesel particulate filters. Since the soot layer improves filtration efficiency, this distinction is important to consider. Research on the emission control of PM from a lean GDI engine with a GPF was conducted on an engine dynamometer. PM, after dilution, was characterized with membrane filters, organic vs. elemental carbon characterization, and size distribution techniques at various steady state engine speed and load points. The engine was operated in three primary combustion modes: stoichiometric, lean homogeneous, and lean stratified. In addition, rich combustion was utilized to simulate PM from engine operation during active regeneration of lean NOx control technologies. High (>95%) PM filtration efficiencies were observed over a wide range of conditions; however, some PM was observed to slip through the GPF at high speed and load conditions. The PM characterization at various engine speeds and loads will help enable optimized GPF design and control to achieve more fuel efficient lean GDI vehicles with low PM emissions.« less

  6. Lean NOx catalysis for gasoline fueled European cars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-02-01

    There is increasing interest in operating gasoline fueled passenger cars lean of the stoichiometric air/fuel (A/F) ratio to improve fuel economy. These types of engines will operate at lean A/F ratios while cruising at partial load, and return to stoichiometric or even rich conditions when more power is required. The challenge for the engine and catalyst manufacturer is to develop a system which will combine the high activity rates of a state-of-the-art three-way catalyst (TWC) with the ability to reduce nitrogen oxides (NOx) in the presence of excess oxygen. The objective is to achieve the future legislative limits (EURO III/IV)more » in the European Union. Recent developments in automotive pollution control catalysis show that the use of NOx adsorption materials is a suitable way to reduce NOx emissions of gasoline-fueled lean-burn engines. However, the primary task for the implementation of this technology in the European market will be to improve the catalyst`s high-temperature stability and to decrease its susceptibility to sulfur poisoning. Outlined here are results of a recent R and D program to achieve NOx reduction under lean-burn gasoline engine conditions. Model gas test results as well as engine bench data are used for discussion of the parameters which control NOx adsorption efficiency under various conditions.« less

  7. Passive SCR for lean gasoline NO X control: Engine-based strategies to minimize fuel penalty associated with catalytic NH 3 generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prikhodko, Vitaly Y.; Parks, James E.; Pihl, Josh A.

    Lean gasoline engines offer greater fuel economy than common stoichiometric gasoline engines. However, excess oxygen prevents the use of the current three-way catalyst (TWC) to control nitrogen oxide (NO X) emissions in lean exhaust. A passive SCR concept, introduced by General Motors Global R&D, makes use of a TWC that is already onboard to generate NH 3 under slightly rich conditions, which is stored on the downstream SCR. The stored NH 3 is then used to reduce NO X emissions when the engine switches to lean operation. In this work, the effect of engine parameters, such as air-fuel equivalence ratiomore » and spark timing, on NH 3 generation over a commercial Pd-only TWC with no dedicated oxygen storage component was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine. NO X reduction, NH 3 formation, and reductant utilization processes were evaluated, and fuel efficiency was assessed and compared to the stoichiometric engine operation case. We found air-fuel equivalence ratio to be one of the most important parameters in controlling the NH 3 production; however, the rich operation necessary for NH 3 production results in a fuel consumption penalty. The fuel penalty can be minimized by adjusting spark timing to increase rich-phase engine out NO X emissions and, thereby, NH 3 levels. Additionally, higher engine out NO X during engine load increase to simulate acceleration resulted in additional fuel savings. Ultimately, a 10% fuel consumption benefit was achieved with the passive SCR approach by optimizing rich air-fuel equivalence ratio and spark timing while also utilizing acceleration load conditions.« less

  8. Passive SCR for lean gasoline NO X control: Engine-based strategies to minimize fuel penalty associated with catalytic NH 3 generation

    DOE PAGES

    Prikhodko, Vitaly Y.; Parks, James E.; Pihl, Josh A.; ...

    2016-02-18

    Lean gasoline engines offer greater fuel economy than common stoichiometric gasoline engines. However, excess oxygen prevents the use of the current three-way catalyst (TWC) to control nitrogen oxide (NO X) emissions in lean exhaust. A passive SCR concept, introduced by General Motors Global R&D, makes use of a TWC that is already onboard to generate NH 3 under slightly rich conditions, which is stored on the downstream SCR. The stored NH 3 is then used to reduce NO X emissions when the engine switches to lean operation. In this work, the effect of engine parameters, such as air-fuel equivalence ratiomore » and spark timing, on NH 3 generation over a commercial Pd-only TWC with no dedicated oxygen storage component was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine. NO X reduction, NH 3 formation, and reductant utilization processes were evaluated, and fuel efficiency was assessed and compared to the stoichiometric engine operation case. We found air-fuel equivalence ratio to be one of the most important parameters in controlling the NH 3 production; however, the rich operation necessary for NH 3 production results in a fuel consumption penalty. The fuel penalty can be minimized by adjusting spark timing to increase rich-phase engine out NO X emissions and, thereby, NH 3 levels. Additionally, higher engine out NO X during engine load increase to simulate acceleration resulted in additional fuel savings. Ultimately, a 10% fuel consumption benefit was achieved with the passive SCR approach by optimizing rich air-fuel equivalence ratio and spark timing while also utilizing acceleration load conditions.« less

  9. Ammonia Generation and Utilization in a Passive SCR (TWC+SCR) System on Lean Gasoline Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prikhodko, Vitaly Y; Parks, II, James E; Pihl, Josh A

    Lean gasoline engines offer greater fuel economy than the common stoichiometric gasoline engine, but the current three-way catalyst (TWC) on stoichiometric engines is unable to control nitrogen oxide (NOX) emissions in the oxygen-rich exhaust. Thus, lean NOX emission control is required to meet existing Tier 2 and upcoming Tier 3 emission regulations set by the U.S. Environmental Protection Agency (EPA). While urea-based selective catalytic reduction (SCR) has proven effective in controlling NOX from diesel engines, the urea storage and delivery components can add significant size and cost. As such, onboard NH3 production via a passive SCR approach is of interest.more » In a passive SCR system, NH3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean operation, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst. In this work, a passive SCR system was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine to assess NH3 generation over a Pd-only TWC and utilization over a Cu-based SCR catalyst. System NOX reduction efficiency and fuel efficiency improvement compared to stoichiometric engine operation were measured. A feedback control strategy based on cumulative NH3 produced by the TWC during rich operation and NOX emissions during lean operation was implemented on the engine to control lean/rich cycle timing. 15% excess NH3 production over a 1:1 NH3:NOX ratio was required (via longer rich cycle timing) to achieve 99.7% NOX conversion at an SCR average inlet temperature of 350 C. Increasing NH3 generation further resulted in even higher NOX conversion; however, tailpipe NH3 emissions resulted. At higher temperatures, NH3 oxidation becomes important and limits NH3 availability for NOX reduction. At the engine conditions studied here, greater than 99% NOX conversion was achieved with passive SCR while delivering fuel efficiency benefits ranging between 6-11% compared with stoichiometric operation.« less

  10. Effects of NOX Storage Component on Ammonia Formation in TWC for Passive SCR NOX Control in Lean Gasoline Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prikhodko, Vitaly Y.; Pihl, Josh A.; Toops, Todd J.

    A prototype three-way catalyst (TWC) with NOX storage component was evaluated for ammonia (NH3) generation on a 2.0-liter BMW lean burn gasoline direct injection engine as a component in a passive ammonia selective catalytic reduction (SCR) system. The passive NH3 SCR system is a potential approach for controlling nitrogen oxides (NOX) emissions from lean burn gasoline engines. In this system, NH3 is generated over a close-coupled TWC during periodic slightly-rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst.more » Adding a NOX storage component to a TWC provides two benefits in the context of a passive SCR system: (1) enabling longer lean operation by storing NOX upstream and preserving NH3 inventory on the downstream SCR catalyst; and (2) increasing the quantity and rate of NH3 production during rich operation. Since the fuel penalty associated with passive SCR NOX control depends on the fraction of time that the engine is running rich rather than lean, both benefits (longer lean times and shorter rich times achieved via improved NH3 production) will decrease the passive SCR fuel penalty. However, these benefits are primarily realized at low to moderate temperatures (300-500 °C), where the NOX storage component is able to store NOX, with little to no benefit at higher temperatures (>500 °C), where NOX storage is no longer effective. This study discusses engine parameters and control strategies affecting the NH3 generation over a TWC with NOX storage component.« less

  11. Radio Frequency Sensing of Particulate Matter Accumulation on a Gasoline Particulate Filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parks, James; Prikhodko, Vitaly Y.; Sappok, Alex

    Filter Sensing Technology’s radio frequency (RF) sensor for particulate filter on-board diagnostics (OBD) was studied on a lean gasoline engine at the National Transportation Research Center (NTRC) at Oak Ridge National Laboratory (ORNL). The response of the RF sensor to particulate matter (PM) or “soot” accumulation on the gasoline particulate filter (GPF) installed in the engine exhaust was evaluated. In addition, end plugs of the GPF were purposely removed, and subsequent changes to the RF sensor measured soot loading on the GPF were characterized. Results from the study showed that the RF sensor can accurately measure soot accumulation on amore » GPF; furthermore, the predicted decreased soot accumulation due to plug removal was detected by the RF sensor. Overall, the studies were short and preliminary in nature; however, clearly, the RF sensor demonstrated the capability of measuring GPF soot loading at a level suitable for use in lean gasoline engine emission control OBD and control.« less

  12. Lean mixture engine testing and evaluation program. [for automobile engine pollution and fuel performances

    NASA Technical Reports Server (NTRS)

    Dowdy, M. W.; Hoehn, F. W.; Griffin, D. C.

    1975-01-01

    Experimental results for fuel consumption and emissions are presented for a 350 CID (5.7 liter) Chevrolet V-8 engine modified for lean operation with gasoline. The lean burn engine achieved peak thermal efficiency at an equivalence ratio of 0.75 and a spark advance of 60 deg BTDC. At this condition the lean burn engine demonstrated a 10% reduction in brake specific fuel consumption compared with the stock engine; however, NOx and hydrocarbon emissions were higher. With the use of spark retard and/or slightly lower equivalence ratios, the NOx emissions performance of the stock engine was matched while showing a 6% reduction in brake specific fuel consumption. Hydrocarbon emissions exceeded the stock values in all cases. Diagnostic data indicate that lean performance in the engine configuration tested is limited by ignition delay, cycle-to-cycle pressure variations, and cylinder-to-cylinder distribution.

  13. Emissions and Total Energy Consumption of a Multicylinder Piston Engine Running on Gasoline and a Hydrogen-gasoline Mixture

    NASA Technical Reports Server (NTRS)

    Cassidy, J. F.

    1977-01-01

    A multicylinder reciprocating engine was used to extend the efficient lean operating range of gasoline by adding hydrogen. Both bottled hydrogen and hydrogen produced by a research methanol steam reformer were used. These results were compared with results for all gasoline. A high-compression-ratio, displacement production engine was used. Apparent flame speed was used to describe the differences in emissions and performance. Therefore, engine emissions and performance, including apparent flame speed and energy lost to the cooling system and the exhaust gas, were measured over a range of equivalence ratios for each fuel. All emission levels decreased at the leaner conditions. Adding hydrogen significantly increased flame speed over all equivalence ratios.

  14. 40 CFR Table 1 to Subpart Jjjj of... - NOX, CO, and VOC Emission Standards for Stationary Non-Emergency SI Engines ≥100 HP (Except...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Stationary Non-Emergency SI Engines â¥100 HP (Except Gasoline and Rich Burn LPG), Stationary SI Landfill... Standards for Stationary Non-Emergency SI Engines ≥100 HP (Except Gasoline and Rich Burn LPG), Stationary SI...-Emergency SI Natural Gas b and Non-Emergency SI Lean Burn LPG b 100≤HP HP 25 HP Table 1 to Subpart JJJJ of...

  15. New potentials for conventional aircraft when powered by hydrogen-enriched gasoline

    NASA Technical Reports Server (NTRS)

    Menard, W. A.; Moynihan, P. I.; Rupe, J. H.

    1976-01-01

    Overall system efficiency and performance of a Beech Model 20 Duke aircraft was studied to provide analytical representations of an aircraft piston engine system, including all essential components required for onboard hydrogen generation. Lower emission levels and a 20% reduction in fuel consumption may be obtained by using a catalytic hydrogen generator, incorporated as part of the air induction system, to generate hydrogen by breaking down small amounts of the aviation gasoline used in the normal propulsion system. This hydrogen is then mixed with gasoline and compressed air from the turbocharger before entering the engine combustion chamber. The special properties of the hydrogen-enriched gasoline allow the engine to operate at ultra lean fuel/air ratios, resulting in higher efficiencies.

  16. Exhaust particle characterization for lean and stoichiometric DI vehicles operating on ethanol-gasoline blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storey, John Morse; Barone, Teresa L; Thomas, John F

    2012-01-01

    Gasoline direct injection (GDI) engines can offer better fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet the U.S. fuel economy standards for 2016. Furthermore, lean-burn GDI engines can offer even higher fuel economy than stoichiometric GDI engines and have overcome challenges associated with cost-effective aftertreatment for NOx control. Along with changes in gasoline engine technology, fuel composition may increase in ethanol contentmore » beyond the current 10% due to the recent EPA waiver allowing 15% ethanol. In addition, the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA) mandates the use of biofuels in upcoming years. GDI engines are of environmental concern due to their high particulate matter (PM) emissions relative to port-fuel injected (PFI) gasoline vehicles; widespread market penetration of GDI vehicles may result in additional PM from mobile sources at a time when the diesel contribution is declining. In this study, we characterized particulate emissions from a European certified lean-burn GDI vehicle operating on ethanol-gasoline blends. Particle mass and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 driving cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. Fuels included certification gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle mass emissions were approximately 3 and 7 mg/mile for the FTP75 and US06, respectively, with lower emissions for the ethanol blends. The data are compared to a previous study on a U.S.-legal stoichiometric GDI vehicle operating on the same ethanol blends. The lean-burn GDI vehicle emitted a higher number of particles, but had an overall smaller average size. Particle number per mile decreased with increasing ethanol content for the transient tests. For the 30 and 80 mph tests, particle number concentration decreased with increasing ethanol content, although the shape of the particle size distribution remained the same. Engine-out OC/EC ratios were highest for the stoichiometric GDI vehicle with E20, but tailpipe OC/EC ratios were similar for all vehicles.« less

  17. 40 CFR Table 1 to Subpart Jjjj of... - NOX, CO, and VOC Emission Standards for Stationary Non-Emergency SI Engines ≥100 HP (Except...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Stationary Non-Emergency SI Engines â¥100 HP (Except Gasoline and Rich Burn LPG), Stationary SI Landfill... Standards for Stationary Non-Emergency SI Engines ≥100 HP (Except Gasoline and Rich Burn LPG), Stationary SI...-Emergency SI Natural Gas b and Non-Emergency SI Lean Burn LPG b 100≤HP<500 7/1/2008 2.0 4.0 1.0 160 540 86 1...

  18. 40 CFR Table 1 to Subpart Jjjj of... - NOX, CO, and VOC Emission Standards for Stationary Non-Emergency SI Engines ≥100 HP (Except...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Stationary Non-Emergency SI Engines â¥100 HP (Except Gasoline and Rich Burn LPG), Stationary SI Landfill... Standards for Stationary Non-Emergency SI Engines ≥100 HP (Except Gasoline and Rich Burn LPG), Stationary SI...-Emergency SI Natural Gas b and Non-Emergency SI Lean Burn LPG b 100≤HP<500 7/1/2008 2.0 4.0 1.0 160 540 86 1...

  19. 40 CFR Table 1 to Subpart Jjjj of... - NOX, CO, and VOC Emission Standards for Stationary Non-Emergency SI Engines ≥100 HP (Except...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Stationary Non-Emergency SI Engines â¥100 HP (Except Gasoline and Rich Burn LPG), Stationary SI Landfill... Standards for Stationary Non-Emergency SI Engines ≥100 HP (Except Gasoline and Rich Burn LPG), Stationary SI...-Emergency SI Natural Gas b and Non-Emergency SI Lean Burn LPG b 100≤HP<500 7/1/2008 2.0 4.0 1.0 160 540 86 1...

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pihl, Josh A.; Toops, Todd J.; Fisher, Galen B.

    Lean gasoline engines running on ethanol/gasoline blends and equipped with a silver/alumina catalyst for selective catalytic reduction (SCR) of NO by ethanol provide a pathway to reduced petroleum consumption through both increased biofuel utilization and improved engine efficiency relative to the current stoichiometric gasoline engines that dominate the U.S. light duty vehicle fleet. A pre-commercial silver/alumina catalyst demonstrated high NO x conversions over a moderate temperature window with both neat ethanol and ethanol/gasoline blends containing at least 50% ethanol. Selectivity to NH 3 increases with HC dosing and ethanol content in gasoline blends, but appears to saturate at around 45%.more » NO 2 and acetaldehyde behave like intermediates in the ethanol SCR of NO. NH 3 SCR of NO x does not appear to play a major role in the ethanol SCR reaction mechanism. Ethanol is responsible for the low temperature SCR activity observed with the ethanol/gasoline blends. In conclusion, the gasoline HCs do not deactivate the catalyst ethanol SCR activity, but they also do not appear to be significantly activated by the presence of ethanol.« less

  1. Method and apparatus for controlling fuel/air mixture in a lean burn engine

    DOEpatents

    Kubesh, John Thomas; Dodge, Lee Gene; Podnar, Daniel James

    1998-04-07

    The system for controlling the fuel/air mixture supplied to a lean burn engine when operating on natural gas, gasoline, hydrogen, alcohol, propane, butane, diesel or any other fuel as desired. As specific humidity of air supplied to the lean burn engine increases, the oxygen concentration of exhaust gas discharged by the engine for a given equivalence ratio will decrease. Closed loop fuel control systems typically attempt to maintain a constant exhaust gas oxygen concentration. Therefore, the decrease in the exhaust gas oxygen concentration resulting from increased specific humidity will often be improperly attributed to an excessive supply of fuel and the control system will incorrectly reduce the amount of fuel supplied to the engine. Also, the minimum fuel/air equivalence ratio for a lean burn engine to avoid misfiring will increase as specific humidity increases. A relative humidity sensor to allow the control system to provide a more enriched fuel/air mixture at high specific humidity levels. The level of specific humidity may be used to compensate an output signal from a universal exhaust gas oxygen sensor for changing oxygen concentrations at a desired equivalence ratio due to variation in specific humidity specific humidity. As a result, the control system will maintain the desired efficiency, low exhaust emissions and power level for the associated lean burn engine regardless of the specific humidity level of intake air supplied to the lean burn engine.

  2. Lean NOx Trap Catalysis for Lean Natural Gas Engine Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parks, II, James E; Storey, John Morse; Theiss, Timothy J

    Distributed energy is an approach for meeting energy needs that has several advantages. Distributed energy improves energy security during natural disasters or terrorist actions, improves transmission grid reliability by reducing grid load, and enhances power quality through voltage support and reactive power. In addition, distributed energy can be efficient since transmission losses are minimized. One prime mover for distributed energy is the natural gas reciprocating engine generator set. Natural gas reciprocating engines are flexible and scalable solutions for many distributed energy needs. The engines can be run continuously or occasionally as peak demand requires, and their operation and maintenance ismore » straightforward. Furthermore, system efficiencies can be maximized when natural gas reciprocating engines are combined with thermal energy recovery for cooling, heating, and power applications. Expansion of natural gas reciprocating engines for distributed energy is dependent on several factors, but two prominent factors are efficiency and emissions. Efficiencies must be high enough to enable low operating costs, and emissions must be low enough to permit significant operation hours, especially in non-attainment areas where emissions are stringently regulated. To address these issues the U.S. Department of Energy and the California Energy Commission launched research and development programs called Advanced Reciprocating Engine Systems (ARES) and Advanced Reciprocating Internal Combustion Engines (ARICE), respectively. Fuel efficiency and low emissions are two primary goals of these programs. The work presented here was funded by the ARES program and, thus, addresses the ARES 2010 goals of 50% thermal efficiency (fuel efficiency) and <0.1 g/bhp-hr emissions of oxides of nitrogen (NOx). A summary of the goals for the ARES program is given in Table 1-1. ARICE 2007 goals are 45% thermal efficiency and <0.015 g/bhp-hr NOx. Several approaches for improving the efficiency and emissions of natural gas reciprocating engines are being pursued. Approaches include: stoichiometric engine operation with exhaust gas recirculation and three-way catalysis, advanced combustion modes such as homogeneous charge compression ignition, and extension of the lean combustion limit with advanced ignition concepts and/or hydrogen mixing. The research presented here addresses the technical approach of combining efficient lean spark-ignited natural gas combustion with low emissions obtained from a lean NOx trap catalyst aftertreatment system. This approach can be applied to current lean engine technology or advanced lean engines that may result from related efforts in lean limit extension. Furthermore, the lean NOx trap technology has synergy with hydrogen-assisted lean limit extension since hydrogen is produced from natural gas during the lean NOx trap catalyst system process. The approach is also applicable to other lean engines such as diesel engines, natural gas turbines, and lean gasoline engines; other research activities have focused on those applications. Some commercialization of the technology has occurred for automotive applications (both diesel and lean gasoline engine vehicles) and natural gas turbines for stationary power. The research here specifically addresses barriers to commercialization of the technology for large lean natural gas reciprocating engines for stationary power. The report presented here is a comprehensive collection of research conducted by Oak Ridge National Laboratory (ORNL) on lean NOx trap catalysis for lean natural gas reciprocating engines. The research was performed in the Department of Energy's ARES program from 2003 to 2007 and covers several aspects of the technology. All studies were conducted at ORNL on a Cummins C8.3G+ natural gas engine chosen based on industry input to simulate large lean natural gas engines. Specific technical areas addressed by the research include: NOx reduction efficiency, partial oxidation and reforming chemistry, and the effects of sulfur poisons on the partial oxidation, reformer, and lean NOx trap catalysts. The initial work on NOx reduction efficiency demonstrated that NOx emissions <0.1 g/bhp-hr (the ARES goal) can be achieved with the lean NOx trap catalyst technology. Subsequent work focused on cost and size optimization and durability issues which addressed two specific ARES areas of interest to industry ('Cost of Power' and 'Availability, Reliability, and Maintainability', respectively). Thus, the research addressed the approach of the lean NOx trap catalyst technology toward the ARES goals as shown in Table 1-1.« less

  3. Chemical Pollution from Transportation Vehicles

    PubMed Central

    Starkman, Ernest S.

    1969-01-01

    Recent publicity on electrically powered vehicles notwithstanding, the gasoline engine will probably be the principal power plant for passenger cars for at least the next decade. Chemical pollutants discharged by the gasoline engine are now under partial control. Motor cars of 1968 and 1969 model discharge only about 30 percent as much carbon monoxide and unburned hydrocarbons as do older models. In theory, carbon monoxide, unburned hydrocarbons and oxides of nitrogen ultimately can be completely removed from gasoline engine exhaust. In order to accomplish this it would be necessary to modify cars to operate satisfactorily on a lean mixture and perhaps to use a catalyst in the exhaust system. Present designs of gas turbines for aircraft and for future projected application to ground vehicles yield pollutants (except for smoke) at levels below those of gasoline engines for a decade to come. It has also been shown possible to eliminate smoke as well as odor from the gas turbine. Thus with proper effort it is feasible to reduce pollution of the atmosphere due to transportation to an acceptable level, even if electrically or alternatively powered vehicles cannot be developed for a decade. PMID:4183827

  4. Experimental investigation and modeling of an aircraft Otto engine operating with gasoline and heavier fuels

    NASA Astrophysics Data System (ADS)

    Saldivar Olague, Jose

    A Continental "O-200" aircraft Otto-cycle engine has been modified to burn diesel fuel. Algebraic models of the different processes of the cycle were developed from basic principles applied to a real engine, and utilized in an algorithm for the simulation of engine performance. The simulation provides a means to investigate the performance of the modified version of the Continental engine for a wide range of operating parameters. The main goals of this study are to increase the range of a particular aircraft by reducing the specific fuel consumption of the engine, and to show that such an engine can burn heavier fuels (such as diesel, kerosene, and jet fuel) instead of gasoline. Such heavier fuels are much less flammable during handling operations making them safer than aviation gasoline and very attractive for use in flight operations from naval vessels. The cycle uses an electric spark to ignite the heavier fuel at low to moderate compression ratios, The stratified charge combustion process is utilized in a pre-chamber where the spray injection of the fuel occurs at a moderate pressure of 1200 psi (8.3 MPa). One advantage of fuel injection into the combustion chamber instead of into the intake port, is that the air-to-fuel ratio can be widely varied---in contrast to the narrower limits of the premixed combustion case used in gasoline engines---in order to obtain very lean combustion. Another benefit is that higher compression ratios can be attained in the modified cycle with heavier fuels. The combination of injection into the chamber for lean combustion, and higher compression ratios allow to limit the peak pressure in the cylinder, and to avoid engine damage. Such high-compression ratios are characteristic of Diesel engines and lead to increase in thermal efficiency without pre-ignition problems. In this experimental investigation, operations with diesel fuel have shown that considerable improvements in the fuel efficiency are possible. The results of simulations using performance models show that the engine can deliver up to 178% improvement in fuel efficiency and operating range, and reduce the specific fuel consumption to 58% when compared to gasoline. Directions for future research and other modifications to the proposed spark assisted cycle are also described.

  5. Lean Gasoline System Development for Fuel Efficient Small Cars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Stuart R.

    2013-11-25

    The General Motors and DOE cooperative agreement program DE-EE0003379 is completed. The program has integrated and demonstrated a lean-stratified gasoline engine, a lean aftertreatment system, a 12V Stop/Start system and an Active Thermal Management system along with the necessary controls that significantly improves fuel efficiency for small cars. The fuel economy objective of an increase of 25% over a 2010 Chevrolet Malibu and the emission objective of EPA T2B2 compliance have been accomplished. A brief review of the program, summarized from the narrative is: The program accelerates development and synergistic integration of four cost competitive technologies to improve fuel economymore » of a light-duty vehicle by at least 25% while meeting Tier 2 Bin 2 emissions standards. These technologies can be broadly implemented across the U.S. light-duty vehicle product line between 2015 and 2025 and are compatible with future and renewable biofuels. The technologies in this program are: lean combustion, innovative passive selective catalyst reduction lean aftertreatment, 12V stop/start and active thermal management. The technologies will be calibrated in a 2010 Chevrolet Malibu mid-size sedan for final fuel economy demonstration.« less

  6. Lean burn natural gas fueled S.I. engine and exhaust emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varde, K.S.; Patro, N.; Drouillard, K.

    1995-12-31

    An experimental study was undertaken to study exhaust emission from a lean-burn natural gas spark ignition engine. The possibility that such an engine may help to reduce exhaust emissions substantially by taking advantage of natural gas fuel properties, such as its antiknock properties and extended lean flammability limit compared to gasoline, was the main motivation behind the investigation. A four cylinder, automotive type spark ignition engine was used in the investigation. The engine was converted to operate on natural gas by replacing its fuel system with a gaseous carburetion system. A 3-way metal metrix catalytic converter was used in themore » engine exhaust system to reduce emission levels. The engine operated satisfactorily at an equivalence ratio as lean as 0.6, at all speeds and loads. As a result NOx emissions were significantly reduced. However, hydrocarbon emissions were high, particularly at very lean conditions and light loads. Most of these hydrocarbons were made up of methane with small concentrations of ethane and propane. Coefficient of variations in hydrocarbons were generally high at very lean operating conditions and light loads, but decreased with increasing equivalence ratio and engine speed. Methane concentrations in the engine exhaust decreased with increasing load and equivalence ratio. At lean air-to-fuel ratios and light loads oxidation of methane in the catalyst was substantially limited and no NOx reduction was achieved. In addition, the proportion of nitric oxide in oxides of nitrogen increased with increasing amount of NOx in the engine exhaust. A major problem encountered in the study was the inability of the fuel system to maintain near constant air-to-fuel ratios at steady operating conditions.« less

  7. Ultralean combustion in general aviation piston engines

    NASA Technical Reports Server (NTRS)

    Chirivella, J. E.

    1979-01-01

    The role of ultralean combustion in achieving fuel economy in general aviation piston engines was investigated. The aircraft internal combustion engine was reviewed with regard to general aviation requirements, engine thermodynamics and systems. Factors affecting fuel economy such as those connected with an ideal leanout to near the gasoline lean flammability limit (ultralean operation) were analyzed. A Lycoming T10-541E engine was tested in that program (both in the test cell and in flight). Test results indicate that hydrogen addition is not necessary to operate the engine ultralean. A 17 percent improvement in fuel economy was demonstrated in flight with the Beechcraft Duke B60 by simply leaning the engine at constant cruiser power and adjusting the ignition for best timing. No detonation was encountered, and a 25,000 ft ceiling was available. Engine roughness was shown to be the limiting factor in the leanout.

  8. Detailed characterization of particulate matter emitted by lean-burn gasoline direct injection engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zelenyuk, Alla; Wilson, Jacqueline; Imre, Dan

    This study presents detailed characterization of the chemical and physical properties of PM emitted by a 2.0L BMW lean-burn turbocharged GDI engine operated under a number of combustion strategies that include lean homogeneous, lean stratified, stoichiometric, and fuel rich conditions. We characterized PM number concentrations, size distributions, and the size, mass, compositions, and effective density of fractal and compact individual exhaust particles. For the fractal particles, these measurements yielded fractal dimension, average diameter of primary spherules, and number of spherules, void fraction, and dynamic shape factors as function of particle size. Overall, the PM properties were shown to vary significantlymore » with engine operation condition. Lean stratified operation yielded the most diesel-like size distribution and the largest PM number and mass concentrations, with nearly all particles being fractal agglomerates composed of elemental carbon with small amounts of ash and organics. In contrast, stoichiometric operation yielded a larger fraction of ash particles, especially at low speed and low load. Three distinct forms of ash particles were observed, with their fractions strongly dependent on engine operating conditions: sub-50 nm ash particles, abundant at low speed and low load, ash-containing fractal particles, and large compact ash particles that significantly contribute to PM mass loadings« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehl, M; Kukkadapu, G; Kumar, K

    The use of gasoline in homogeneous charge compression ignition engines (HCCI) and in duel fuel diesel - gasoline engines, has increased the need to understand its compression ignition processes under engine-like conditions. These processes need to be studied under well-controlled conditions in order to quantify low temperature heat release and to provide fundamental validation data for chemical kinetic models. With this in mind, an experimental campaign has been undertaken in a rapid compression machine (RCM) to measure the ignition of gasoline mixtures over a wide range of compression temperatures and for different compression pressures. By measuring the pressure history duringmore » ignition, information on the first stage ignition (when observed) and second stage ignition are captured along with information on the phasing of the heat release. Heat release processes during ignition are important because gasoline is known to exhibit low temperature heat release, intermediate temperature heat release and high temperature heat release. In an HCCI engine, the occurrence of low-temperature and intermediate-temperature heat release can be exploited to obtain higher load operation and has become a topic of much interest for engine researchers. Consequently, it is important to understand these processes under well-controlled conditions. A four-component gasoline surrogate model (including n-heptane, iso-octane, toluene, and 2-pentene) has been developed to simulate real gasolines. An appropriate surrogate mixture of the four components has been developed to simulate the specific gasoline used in the RCM experiments. This chemical kinetic surrogate model was then used to simulate the RCM experimental results for real gasoline. The experimental and modeling results covered ultra-lean to stoichiometric mixtures, compressed temperatures of 640-950 K, and compression pressures of 20 and 40 bar. The agreement between the experiments and model is encouraging in terms of first-stage (when observed) and second-stage ignition delay times and of heat release rate. The experimental and computational results are used to gain insight into low and intermediate temperature processes during gasoline ignition.« less

  10. Drive cycle simulation of high efficiency combustions on fuel economy and exhaust properties in light-duty vehicles

    DOE PAGES

    Gao, Zhiming; Curran, Scott J.; Parks, James E.; ...

    2015-04-06

    We present fuel economy and engine-out emissions for light-duty (LD) conventional and hybrid vehicles powered by conventional and high-efficiency combustion engines. Engine technologies include port fuel-injected (PFI), direct gasoline injection (GDI), reactivity controlled compression ignition (RCCI) and conventional diesel combustion (CDC). In the case of RCCI, the engine utilized CDC combustion at speed/load points not feasible with RCCI. The results, without emissions considered, show that the best fuel economies can be achieved with CDC/RCCI, with CDC/RCCI, CDC-only, and lean GDI all surpassing PFI fuel economy significantly. In all cases, hybridization significantly improved fuel economy. The engine-out hydrocarbon (HC), carbon monoxidemore » (CO), nitrogen oxides (NOx), and particulate matter (PM) emissions varied remarkably with combustion mode. The simulated engine-out CO and HC emissions from RCCI are significantly higher than CDC, but RCCI makes less NOx and PM emissions. Hybridization can improve lean GDI and RCCI cases by increasing time percentage for these more fuel efficient modes. Moreover, hybridization can dramatically decreases the lean GDI and RCCI engine out emissions. Importantly, lean GDI and RCCI combustion modes decrease exhaust temperatures, especially for RCCI, which limits aftertreatment performance to control tailpipe emissions. Overall, the combination of engine and hybrid drivetrain selected greatly affects the emissions challenges required to meet emission regulations.« less

  11. Catalysts, systems and methods to reduce NOX in an exhaust gas stream

    DOEpatents

    Castellano, Christopher R.; Moini, Ahmad; Koermer, Gerald S.; Furbeck, Howard

    2010-07-20

    Catalysts, systems and methods are described to reduce NO.sub.x emissions of an internal combustion engine. In one embodiment, an emissions treatment system for an exhaust stream is provided having an SCR catalyst comprising silver tungstate on an alumina support. The emissions treatment system may be used for the treatment of exhaust streams from diesel engines and lean burn gasoline engines. An emissions treatment system may further comprise an injection device operative to dispense a hydrocarbon reducing agent upstream of the catalyst.

  12. ILIDS measurements of the evaporation of fuel droplets during the intake and compression strokes in a firing lean burn engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skippon, S.M.; Tagaki, Y.

    1996-09-01

    The evaporation of fuel droplets is an important factor in determining the quality of mixture preparation in lean-burn engines, particularly when using open-valve injection timing, which results in large in-cylinder droplet populations. Interferometric Laser Imaging for Droplet Sizing (ILIDS) has been used to measure the in-cylinder droplet size distribution and fuel volume in the droplet phase as a function of crank angle for a typical full boiling range gasoline and three single component fuels with different boiling points: iso-pentane, iso-octane, and xylene, representing the volatilities of the light end, mid-range and heavy ends of a typical gasoline. The measurements weremore » made under firing conditions, with both open and closed valve injection timing, and at two different coolant temperatures, representing simulated cold start and fully warmed up conditions. A specially built single cylinder research engine was used, equipped with a transparent sapphire cylinder to provide all-round sidewall optical access to the cylinder interior. The engine had a four-valve leanburn head, swirl control valve and air-assisted injector. The experimental arrangements for ILIDS in a firing engine, and the optical access engine itself, are discussed in detail. The results showed significant differences in the rates of evaporation of the three fuel components: iso-pentane evaporated fully very early in the induction stroke, iso-octane droplets persisted longer, and xylene droplets persisted to the end of the compression stroke.« less

  13. Modelling of flame propagation in the gasoline fuelled Wankel rotary engine with hydrogen additives

    NASA Astrophysics Data System (ADS)

    Fedyanov, E. A.; Zakharov, E. A.; Prikhodkov, K. V.; Levin, Y. V.

    2017-02-01

    Recently, hydrogen has been considered as an alternative fuel for a vehicles power unit. The Wankel engine is the most suitable to be adapted to hydrogen feeding. A hydrogen additive helps to decrease incompleteness of combustion in the volumes near the apex of the rotor. Results of theoretical researches of the hydrogen additives influence on the flame propagation in the combustion chamber of the Wankel rotary engine are presented. The theoretical research shows that the blend of 70% gasoline with 30% hydrogen could accomplish combustion near the T-apex in the stoichiometric mixture and in lean one. Maps of the flame front location versus the angle of rotor rotation and hydrogen fraction are obtained. Relations of a minimum required amount of hydrogen addition versus the engine speed are shown on the engine modes close to the average city driving cycle. The amount of hydrogen addition that could be injected by the nozzle with different flow sections is calculated in order to analyze the capacity of the feed system.

  14. High Ethanol Fuel Endurance: A Study of the Effects of Running Gasoline with 15% Ethanol Concentration in Current Production Outboard Four-Stroke Engines and Conventional Two-Stroke Outboard Marine Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilbert, D.

    2011-10-01

    Three Mercury Marine outboard marine engines were evaluated for durability using E15 fuel -- gasoline blended with 15% ethanol. Direct comparison was made to operation on E0 (ethanol-free gasoline) to determine the effects of increased ethanol on engine durability. Testing was conducted using a 300-hour wide-open throttle (WOT) test protocol, a typical durability cycle used by the outboard marine industry. Use of E15 resulted in reduced CO emissions, as expected for open-loop, non-feedback control engines. HC emissions effects were variable. Exhaust gas and engine operating temperatures increased as a consequence of leaner operation. Each E15 test engine exhibited some deteriorationmore » that may have been related to the test fuel. The 9.9 HP, four-stroke E15 engine exhibited variable hydrocarbon emissions at 300 hours -- an indication of lean misfire. The 300HP, four-stroke, supercharged Verado engine and the 200HP, two-stroke legacy engine tested with E15 fuel failed to complete the durability test. The Verado engine failed three exhaust valves at 285 endurance hours while the 200HP legacy engine failed a main crank bearing at 256 endurance hours. All E0-dedicated engines completed the durability cycle without incident. Additional testing is necessary to link the observed engine failures to ethanol in the test fuel.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevik, James; Wallner, Thomas; Pamminger, Michael

    The efficiency improvement and emissions reduction potential of lean and exhaust gas recirculation (EGR)-dilute operation of spark-ignition gasoline engines is well understood and documented. However, dilute operation is generally limited by deteriorating combustion stability with increasing inert gas levels. The combustion stability decreases due to reduced mixture flame speeds resulting in significantly increased combustion initiation periods and burn durations. A study was designed and executed to evaluate the potential to extend lean and EGR-dilute limits using a low-energy transient plasma ignition system. The low-energy transient plasma was generated by nanosecond pulses and its performance compared to a conventional transistorized coilmore » ignition (TCI) system operated on an automotive, gasoline direct-injection (GDI) single-cylinder research engine. The experimental assessment was focused on steady-state experiments at the part load condition of 1500 rpm 5.6 bar indicated mean effective pressure (IMEP), where dilution tolerance is particularly critical to improving efficiency and emission performance. Experimental results suggest that the energy delivery process of the low-energy transient plasma ignition system significantly improves part load dilution tolerance by reducing the early flame development period. Statistical analysis of relevant combustion metrics was performed in order to further investigate the effects of the advanced ignition system on combustion stability. Results confirm that at select operating conditions EGR tolerance and lean limit could be improved by as much as 20% (from 22.7 to 27.1% EGR) and nearly 10% (from λ = 1.55 to 1.7) with the low-energy transient plasma ignition system.« less

  16. Hybrid Automotive Engine Using Ethanol-Burning Miller Cycle

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard

    2004-01-01

    A proposed hybrid (internal-combustion/ electric) automotive engine system would include as its internal-combustion subsystem, a modified Miller-cycle engine with regenerative air preheating and with autoignition like that of a Diesel engine. The fuel would be ethanol and would be burned lean to ensure complete combustion. Although the proposed engine would have a relatively low power-to-weight ratio compared to most present engines, this would not be the problem encountered if this engine were used in a non-hybrid system since hybrid systems require significantly lower power and thus smaller engines than purely internal-combustion-engine-driven vehicles. The disadvantage would be offset by the advantages of high fuel efficiency, low emission of nitrogen oxides and particulate pollutants, and the fact that ethanol is a renewable fuel. The original Miller-cycle engine, named after its inventor, was patented in the 1940s and is the basis of engines used in some modern automobiles, but is not widely known. In somewhat oversimplified terms, the main difference between a Miller-cycle engine and a common (Otto-cycle) automobile engine is that the Miller-cycle engine has a longer expansion stroke while retaining the shorter compression stroke. This is accomplished by leaving the intake valve open for part of the compression stroke, whereas in the Otto cycle engine, the intake valve is kept closed during the entire compression stroke. This greater expansion ratio makes it possible to extract more energy from the combustion process without expending more energy for compression. The net result is greater efficiency. In the proposed engine, the regenerative preheating would be effected by running the intake air through a heat exchanger connected to the engine block. The regenerative preheating would offer two advantages: It would ensure reliable autoignition during operation at low ambient temperature and would help to cool the engine, thereby reducing the remainder of the power needed for cooling and thereby further contributing to efficiency. An electrical resistance air preheater might be needed to ensure autoignition at startup and during a short warmup period. Because of the autoignition, the engine could operate without either spark plugs or glow plugs. Ethanol burns relatively cleanly and has been used as a motor fuel since the invention of internal-combustion engines. However, the energy content of ethanol per unit weight of ethanol is less than that of Diesel fuel or gasoline, and ethanol has a higher heat of vaporization. Because the Miller cycle offers an efficiency close to that of the Diesel cycle, burning ethanol in a Miller-cycle engine gives about as much usable output energy per unit volume of fuel as does burning gasoline in a conventional gasoline automotive engine. Because of the combination of preheating, running lean, and the use of ethyl alcohol, the proposed engine would generate less power per unit volume than does a conventional automotive gasoline engine. Consequently, for a given power level, the main body of the proposed engine would be bulkier. However, because little or no exhaust cleanup would be needed, the increase in bulk of the engine could be partially offset by the decrease in bulk of the exhaust system. The regenerative preheating also greatly reduces the external engine cooling requirement, and would translate to reduced engine bulk. It may even be possible to accomplish the remaining cooling of the engine by use of air only, eliminating the bulk and power consumption of a water cooling system. The combination of a Miller-cycle engine with regenerative air preheating, ethyl alcohol fuel, and hybrid operation could result in an automotive engine system that satisfies the need for a low pollution, high efficiency, and simple engine with a totally renewable fuel.

  17. Comparison of immunotoxic effects induced by the extracts from methanol and gasoline engine exhausts in vitro.

    PubMed

    Che, Wangjun; Liu, Guiming; Qiu, Hong; Zhang, Hao; Ran, Yun; Zeng, Xianggui; Wen, Weihua; Shu, Ya

    2010-06-01

    Gasoline engine exhaust has been considered as a major source of air pollution in China. Due to lower cyto- and geno-toxicity effects of methanol engine exhaust, methanol is regarded as a potential substitute for gasoline. We have previously compared cyto- and geno-toxicities of gasoline engine exhaust with that of methanol engine exhaust in A549 cells (Zhang et al., 2007).To characterize the immunotoxic effects for gasoline and methanol engine exhausts in immune cell, in this study, we further compared effects of gasoline and methanol engine exhausts on immune function in RAW264.7 cell and rabbit alveolar macrophages. Results showed that both gasoline and methanol engine exhaust could evidently inhibit RAW264.7 cell proliferation, promote RAW264.7 cell apoptosis, decrease E-rosette formation rate and inhibit anti-tumor effects of alveolar macrophages, at the same time, these effects of gasoline engine exhaust were far stronger than those of methanol engine exhaust. In addition, gasoline engine exhaust could significantly inhibit activities of ADCC of alveolar macrophages, but methanol engine exhaust could not. These results suggested that both gasoline and methanol engine exhausts might be immunotoxic atmospheric pollutants, but some effects of gasoline engine exhaust on immunotoxicities may be far stronger than that of methanol engine exhaust. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. 46 CFR 58.10-5 - Gasoline engine installations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Gasoline engine installations. 58.10-5 Section 58.10-5... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-5 Gasoline engine... drained by a device for automatic return of all drip to engine air intakes. (2) All gasoline engines must...

  19. 46 CFR 58.10-5 - Gasoline engine installations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Gasoline engine installations. 58.10-5 Section 58.10-5... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-5 Gasoline engine... drained by a device for automatic return of all drip to engine air intakes. (2) All gasoline engines must...

  20. 46 CFR 58.10-5 - Gasoline engine installations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Gasoline engine installations. 58.10-5 Section 58.10-5... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-5 Gasoline engine... drained by a device for automatic return of all drip to engine air intakes. (2) All gasoline engines must...

  1. 46 CFR 58.10-5 - Gasoline engine installations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Gasoline engine installations. 58.10-5 Section 58.10-5... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-5 Gasoline engine... drained by a device for automatic return of all drip to engine air intakes. (2) All gasoline engines must...

  2. Lean NO x reduction over Ag/alumina catalysts via ethanol-SCR using ethanol/gasoline blends

    DOE PAGES

    Gunnarsson, Fredrik; Pihl, Josh A.; Toops, Todd J.; ...

    2016-09-04

    This paper focuses on the activity for lean NO x reduction over sol-gel synthesized silver alumina (Ag/Al 2O 3) catalysts, with and without platinum doping, using ethanol (EtOH), EtOH/C 3H 6 and EtOH/gasoline blends as reducing agents. The effect of ethanol concentration, both by varying the hydrocarbon-to-NO x ratio and by alternating the gasoline concentration in the EtOH/gasoline mixture, is investigated. High activity for NO x reduction is demonstrated for powder catalysts for EtOH and EtOH/C 3H 6 as well as for monolith coated catalysts (EtOH and EtOH/gasoline). The results show that pure Ag/Al 2O 3 catalysts display higher NOmore » x reduction and lower light-off temperature as compared to the platinum doped samples. The 4 wt.% Ag/Al 2O 3 catalyst displays 100% reduction in the range 340–425 °C, with up to 37% selectivity towards NH 3. These results are also supported by DRIFTS (Diffuse reflection infrared Fourier transform spectroscopy) experiments. Finally, the high ammonia formation could, in combination with an NH 3-SCR catalyst, be utilized to construct a NO x reduction system with lower fuel penalty cf. stand alone HC-SCR. In addition, it would result in an overall decrease in CO 2 emissions.« less

  3. Multi-location laser ignition using a spatial light modulator towards improving automotive gasoline engine performance

    NASA Astrophysics Data System (ADS)

    Kuang, Zheng; Lyon, Elliott; Cheng, Hua; Page, Vincent; Shenton, Tom; Dearden, Geoff

    2017-03-01

    We report on a study into multi-location laser ignition (LI) with a Spatial Light Modulator (SLM), to improve the performance of a single cylinder automotive gasoline engine. Three questions are addressed: i/ How to deliver a multi-beam diffracted pattern into an engine cylinder, through a small opening, while avoiding clipping? ii/ How much incident energy can a SLM handle (optical damage threshold) and how many simultaneous beam foci could thus be created? ; iii/ Would the multi-location sparks created be sufficiently intense and stable to ignite an engine and, if so, what would be their effect on engine performance compared to single-location LI? Answers to these questions were determined as follows. Multi-beam diffracted patterns were created by applying computer generated holograms (CGHs) to the SLM. An optical system for the SLM was developed via modelling in ZEMAX, to cleanly deliver the multi-beam patterns into the combustion chamber without clipping. Optical damage experiments were carried out on Liquid Crystal on Silicon (LCoS) samples provided by the SLM manufacturer and the maximum safe pulse energy to avoid SLM damage found to be 60 mJ. Working within this limit, analysis of the multi-location laser induced sparks showed that diffracting into three identical beams gave slightly insufficient energy to guarantee 100% sparking, so subsequent engine experiments used 2 equal energy beams laterally spaced by 4 mm. The results showed that dual-location LI gave more stable combustion and higher engine power output than single-location LI, for increasingly lean air-fuel mixtures. The paper concludes by a discussion of how these results may be exploited.

  4. Effective hydrogen generator testing for on-site small engine

    NASA Astrophysics Data System (ADS)

    Chaiwongsa, Praitoon; Pornsuwancharoen, Nithiroth; Yupapin, Preecha P.

    2009-07-01

    We propose a new concept of hydrogen generator testing for on-site small engine. In general, there is a trade-off between simpler vehicle design and infrastructure issues, for instance, liquid fuels such as gasoline and methanol for small engine use. In this article we compare the hydrogen gases combination the gasoline between normal systems (gasoline only) for small engine. The advantage of the hydrogen combines gasoline for small engine saving the gasoline 25%. Furthermore, the new concept of hydrogen combination for diesel engine, bio-diesel engine, liquid petroleum gas (LPG), natural gas vehicle (NGV), which is discussed in details.

  5. 40 CFR 86.335-79 - Gasoline-fueled engine test cycle.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Gasoline-fueled engine test cycle. 86... Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.335-79 Gasoline-fueled engine test cycle. (a) The following test sequence shall be followed in...

  6. 40 CFR 86.335-79 - Gasoline-fueled engine test cycle.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Gasoline-fueled engine test cycle. 86... Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.335-79 Gasoline-fueled engine test cycle. (a) The following test sequence shall be followed in...

  7. 40 CFR 86.335-79 - Gasoline-fueled engine test cycle.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Gasoline-fueled engine test cycle. 86... Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.335-79 Gasoline-fueled engine test cycle. (a) The following test sequence shall be followed in...

  8. 40 CFR 80.140 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... deposits formed in the carburetor during operation of a carburetted gasoline engine which can disrupt the... additive package to prevent the formation of deposits in gasoline engines. Deposit control efficiency means... and after operation of a gasoline engine, as evaluated by the reduction in the gasoline flow rate...

  9. 40 CFR 80.140 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... deposits formed in the carburetor during operation of a carburetted gasoline engine which can disrupt the... additive package to prevent the formation of deposits in gasoline engines. Deposit control efficiency means... and after operation of a gasoline engine, as evaluated by the reduction in the gasoline flow rate...

  10. 40 CFR 80.140 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... deposits formed in the carburetor during operation of a carburetted gasoline engine which can disrupt the... additive package to prevent the formation of deposits in gasoline engines. Deposit control efficiency means... and after operation of a gasoline engine, as evaluated by the reduction in the gasoline flow rate...

  11. Evaluation of the flame propagation within an SI engine using flame imaging and LES

    NASA Astrophysics Data System (ADS)

    He, Chao; Kuenne, Guido; Yildar, Esra; van Oijen, Jeroen; di Mare, Francesca; Sadiki, Amsini; Ding, Carl-Philipp; Baum, Elias; Peterson, Brian; Böhm, Benjamin; Janicka, Johannes

    2017-11-01

    This work shows experiments and simulations of the fired operation of a spark ignition engine with port-fuelled injection. The test rig considered is an optically accessible single cylinder engine specifically designed at TU Darmstadt for the detailed investigation of in-cylinder processes and model validation. The engine was operated under lean conditions using iso-octane as a substitute for gasoline. Experiments have been conducted to provide a sound database of the combustion process. A planar flame imaging technique has been applied within the swirl- and tumble-planes to provide statistical information on the combustion process to complement a pressure-based comparison between simulation and experiments. This data is then analysed and used to assess the large eddy simulation performed within this work. For the simulation, the engine code KIVA has been extended by the dynamically thickened flame model combined with chemistry reduction by means of pressure dependent tabulation. Sixty cycles have been simulated to perform a statistical evaluation. Based on a detailed comparison with the experimental data, a systematic study has been conducted to obtain insight into the most crucial modelling uncertainties.

  12. The physics of pulsed streamer discharge in high pressure air and applications to engine techonologies

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Hsu

    The goal of this dissertation is to study high pressure streamers in air and apply it to diesel engine technologies. Nanosecond scale pulsed high voltage discharges in air/fuel mixtures can generate radicals which in turn have been shown to improve combustion efficiency in gasoline fueled internal combustion engines. We are exploring the possibility to extend such transient plasma generation and expected radical species generation to the range of pressures encountered in compression-ignition (diesel) engines having compression ratios of ˜20:1, thereby improving lean burning efficiency and extending the range of lean combustion. At the beginning of this dissertation, research into streamer discharges is reviewed. Then, we conducted experiments of streamer propagation at high pressures, calculated the streamer velocity based on both optical and electrical measurements, and the similarity law was checked by analyzing the streamer velocity as a function of the reduced electric field, E/P. Our results showed that the similarity law is invalid, and an empirical scaling factor, E/√P, is obtained and verified by dimensional analysis. The equation derived from the dimensional analysis will be beneficial to proper electrode and pulse generator design for transient plasma assisted internal engine experiments. Along with the high pressure study, we applied such technique on diesel engine to improve the fuel efficiency and exhaust treatment. We observed a small effect of transient plasma on peak pressure, which implied that transient plasma has the capability to improve the fuel consumption. In addition, the NO can be reduced effectively by the same technique and the energy cost is 30 eV per NO molecule.

  13. Control of harmful hydrocarbon species in the exhaust of modern advanced GDI engines

    NASA Astrophysics Data System (ADS)

    Hasan, A. O.; Abu-jrai, A.; Turner, D.; Tsolakis, A.; Xu, H. M.; Golunski, S. E.; Herreros, J. M.

    2016-03-01

    A qualitative and quantitative analysis of toxic but currently non-regulated hydrocarbon compounds ranging from C5-C11, before and after a zoned three-way catalytic converter (TWC) in a modern gasoline direct injection (GDI) engine has been studied using gas chromatography-mass spectrometry (GC-MS). The GDI engine has been operated under conventional and advanced combustion modes, which result in better fuel economy and reduced levels of NOx with respect to standard SI operation. However, these fuel-efficient conditions are more challenging for the operation of a conventional TWC, and could lead to higher level of emissions released to the environment. Lean combustion leads to the reduction in pumping losses, fuel consumption and in-cylinder emission formation rates. However, lean HCCI will lead to high levels of unburnt HCs while the presence of oxygen will lower the TWC efficiency for NOx control. The effect on the catalytic conversion of the hydrocarbon species of the addition of hydrogen upstream the catalyst has been also investigated. The highest hydrocarbon engine-out emissions were produced for HCCI engine operation at low engine load operation. The catalyst was able to remove most of the hydrocarbon species to low levels (below the permissible exposure limits) for standard and most of the advanced combustion modes, except for naphthalene (classified as possibly carcinogenic to humans by the International Agency for Research on Cancer) and methyl-naphthalene (which has the potential to cause lung damage). However, when hydrogen was added upstream of the catalyst, the catalyst conversion efficiency in reducing methyl-naphthalene and naphthalene was increased by approximately 21%. This results in simultaneous fuel economy and environmental benefits from the effective combination of advanced combustion and novel aftertreatment systems.

  14. Comparison of cytotoxicity and genotoxicity induced by the extracts of methanol and gasoline engine exhausts.

    PubMed

    Zhang, Zunzhen; Che, Wangjun; Liang, Ying; Wu, Mei; Li, Na; Shu, Ya; Liu, Fang; Wu, Desheng

    2007-09-01

    Gasoline engine exhaust has been considered a major source of air pollution in China, and methanol is considered as a potential substitute for gasoline fuel. In this study, the genotoxicity and cytotoxicity of organic extracts of condensate, particulate matters (PM) and semivolatile organic compounds (SVOC) of gasoline and absolute methanol engine exhaust were examined by using MTT assay, micronucleus assay, comet assay and Ames test. The results have showed that gasoline engine exhaust exhibited stronger cytotoxicity to human lung carcinoma cell lines (A549 cell) than methanol engine exhaust. Furthermore, gasoline engine exhaust increased micronucleus formation, induced DNA damage in A549 cells and increased TA98 revertants in the presence of metabolic activating enzymes in a concentration-dependent manner. In contrast, methanol engine exhaust failed to exhibit these adverse effects. The results suggest methanol may be used as a cleaner fuel for automobile.

  15. 40 CFR 90.419 - Raw emission sampling calculations-gasoline fueled engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-gasoline fueled engines. 90.419 Section 90.419 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... KILOWATTS Gaseous Exhaust Test Procedures § 90.419 Raw emission sampling calculations—gasoline fueled...-stroke gasoline small engines, as follows: KH = (9.953 × H + 0.832) Where: H = the amount of water in an...

  16. 40 CFR 90.419 - Raw emission sampling calculations-gasoline fueled engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-gasoline fueled engines. 90.419 Section 90.419 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... KILOWATTS Gaseous Exhaust Test Procedures § 90.419 Raw emission sampling calculations—gasoline fueled...-stroke gasoline small engines, as follows: KH = (9.953 × H + 0.832) Where: H = the amount of water in an...

  17. 40 CFR 90.419 - Raw emission sampling calculations-gasoline fueled engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-gasoline fueled engines. 90.419 Section 90.419 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... KILOWATTS Gaseous Exhaust Test Procedures § 90.419 Raw emission sampling calculations—gasoline fueled...-stroke gasoline small engines, as follows: KH = (9.953 × H + 0.832) Where: H = the amount of water in an...

  18. Spark discharge and flame inception analysis through spectroscopy in a DISI engine fuelled with gasoline and butanol

    NASA Astrophysics Data System (ADS)

    Irimescu, A.; Merola, S. S.

    2017-10-01

    Extensive application of downsizing, as well as the application of alternative combustion control with respect to well established stoichiometric operation, have determined a continuous increase in the energy that is delivered to the working fluid in order to achieve stable and repeatable ignition. Apart from the complexity of fluid-arc interactions, the extreme thermodynamic conditions of this initial combustion stage make its characterization difficult, both through experimental and numerical techniques. Within this context, the present investigation looks at the analysis of spark discharge and flame kernel formation, through the application of UV-visible spectroscopy. Characterization of the energy transfer from the spark plug’s electrodes to the air-fuel mixture was achieved by the evaluation of vibrational and rotational temperatures during ignition, for stoichiometric and lean fuelling of a direct injection spark ignition engine. Optical accessibility was ensured from below the combustion chamber through an elongated piston design, that allowed the central region of the cylinder to be investigated. Fuel effects were evaluated for gasoline and n-butanol; roughly the same load was investigated in throttled and wide-open throttle conditions for both fuels. A brief thermodynamic analysis confirmed that significant gains in efficiency can be obtained with lean fuelling, mainly due to the reduction of pumping losses. Minimal effect of fuel type was observed, while mixture strength was found to have a stronger influence on calculated temperature values, especially during the initial stage of ignition. In-cylinder pressure was found to directly determine emission intensity during ignition, but the vibrational and rotational temperatures featured reduced dependence on this parameter. As expected, at the end of kernel formation, temperature values converged towards those typically found for adiabatic flames. The results show that indeed only a relatively small part of the electrical energy is actually used for promoting chemical reactions and that temperature during the arc and kernel phases are influenced to a reduced extent by fuel concentrations.

  19. Production, distribution, and cost of oxygenated gasoline blends as a CO control strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmes, J.G; Dworsky, B.S.

    1988-01-01

    During the past two decades, efforts to reduce the contribution of automotive emissions to air pollution have focused principally on the development of more stringent emission standards for new vehicles, and the use of inspection and maintenance (I/M) programs. Despite the achievements in the last few years, motor vehicles have remained a major source of air pollution in urban areas. Further reductions in either the emission standards or in I/M program pass/fail cutpoints are not politically feasible, and alternative methods to achieve emission reductions are being investigated. One potential method is through the use of alternative fuels that can reducemore » tailpipe emissions. For example, the addition of alcohol or ether into gasoline has been shown to lean out the engine and cut carbon monoxide emissions. This paper compares the costs of producing and distribution methanol, ethanol, and MTBE blends as part of a carbon monoxide control strategy. It addresses the costs of production, distribution, infrastructure development, and retailing associated with each fuel blend.« less

  20. Sensitivity of Emissions to Uncertainties in Residual Gas Fraction Measurements in Automotive Engines: A Numerical Study

    DOE PAGES

    Aithal, S. M.

    2018-01-01

    Initial conditions of the working fluid (air-fuel mixture) within an engine cylinder, namely, mixture composition and temperature, greatly affect the combustion characteristics and emissions of an engine. In particular, the percentage of residual gas fraction (RGF) in the engine cylinder can significantly alter the temperature and composition of the working fluid as compared with the air-fuel mixture inducted into the engine, thus affecting engine-out emissions. Accurate measurement of the RGF is cumbersome and expensive, thus making it hard to accurately characterize the initial mixture composition and temperature in any given engine cycle. This uncertainty can lead to challenges in accuratelymore » interpreting experimental emissions data and in implementing real-time control strategies. Quantifying the effects of the RGF can have important implications for the diagnostics and control of internal combustion engines. This paper reports on the use of a well-validated, two-zone quasi-dimensional model to compute the engine-out NO and CO emission in a gasoline engine. The effect of varying the RGF on the emissions under lean, near-stoichiometric, and rich engine conditions was investigated. Numerical results show that small uncertainties (~2–4%) in the measured/computed values of the RGF can significantly affect the engine-out NO/CO emissions.« less

  1. Sensitivity of Emissions to Uncertainties in Residual Gas Fraction Measurements in Automotive Engines: A Numerical Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aithal, S. M.

    Initial conditions of the working fluid (air-fuel mixture) within an engine cylinder, namely, mixture composition and temperature, greatly affect the combustion characteristics and emissions of an engine. In particular, the percentage of residual gas fraction (RGF) in the engine cylinder can significantly alter the temperature and composition of the working fluid as compared with the air-fuel mixture inducted into the engine, thus affecting engine-out emissions. Accurate measurement of the RGF is cumbersome and expensive, thus making it hard to accurately characterize the initial mixture composition and temperature in any given engine cycle. This uncertainty can lead to challenges in accuratelymore » interpreting experimental emissions data and in implementing real-time control strategies. Quantifying the effects of the RGF can have important implications for the diagnostics and control of internal combustion engines. This paper reports on the use of a well-validated, two-zone quasi-dimensional model to compute the engine-out NO and CO emission in a gasoline engine. The effect of varying the RGF on the emissions under lean, near-stoichiometric, and rich engine conditions was investigated. Numerical results show that small uncertainties (~2–4%) in the measured/computed values of the RGF can significantly affect the engine-out NO/CO emissions.« less

  2. 7 CFR 3201.103 - Gasoline fuel additives.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Gasoline fuel additives. 3201.103 Section 3201.103... Designated Items § 3201.103 Gasoline fuel additives. (a) Definition. Chemical agents added to gasoline to increase octane levels, improve lubricity, and provide engine cleaning properties to gasoline-fired engines...

  3. 40 CFR 205.157-2 - Compliance with standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... manufacturer may use more parameters): (A) Engine type: (1) Gasoline-two stroke; (2) gasoline-four stroke; (3) gasoline-rotary; and (4) other. (B) Engine displacement. (C) Engine configuration: (1) Number of cylinders...

  4. Performance, Efficiency, and Emissions Characterization of Reciprocating Internal Combustion Engines Fueled with Hydrogen/Natural Gas Blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirby S. Chapman; Amar Patil

    2007-06-30

    Hydrogen is an attractive fuel source not only because it is abundant and renewable but also because it produces almost zero regulated emissions. Internal combustion engines fueled by compressed natural gas (CNG) are operated throughout a variety of industries in a number of mobile and stationary applications. While CNG engines offer many advantages over conventional gasoline and diesel combustion engines, CNG engine performance can be substantially improved in the lean operating region. Lean operation has a number of benefits, the most notable of which is reduced emissions. However, the extremely low flame propagation velocities of CNG greatly restrict the leanmore » operating limits of CNG engines. Hydrogen, however, has a high flame speed and a wide operating limit that extends into the lean region. The addition of hydrogen to a CNG engine makes it a viable and economical method to significantly extend the lean operating limit and thereby improve performance and reduce emissions. Drawbacks of hydrogen as a fuel source, however, include lower power density due to a lower heating value per unit volume as compared to CNG, and susceptibility to pre-ignition and engine knock due to wide flammability limits and low minimum ignition energy. Combining hydrogen with CNG, however, overcomes the drawbacks inherent in each fuel type. Objectives of the current study were to evaluate the feasibility of using blends of hydrogen and natural gas as a fuel for conventional natural gas engines. The experiment and data analysis included evaluation of engine performance, efficiency, and emissions along with detailed in-cylinder measurements of key physical parameters. This provided a detailed knowledge base of the impact of using hydrogen/natural gas blends. A four-stroke, 4.2 L, V-6 naturally aspirated natural gas engine coupled to an eddy current dynamometer was used to measure the impact of hydrogen/natural gas blends on performance, thermodynamic efficiency and exhaust gas emissions in a reciprocating four stroke cycle engine. The test matrix varied engine load and air-to-fuel ratio at throttle openings of 50% and 100% at equivalence ratios of 1.00 and 0.90 for hydrogen percentages of 10%, 20% and 30% by volume. In addition, tests were performed at 100% throttle opening, with an equivalence ratio of 0.98 and a hydrogen blend of 20% to further investigate CO emission variations. Data analysis indicated that the use of hydrogen/natural gas fuel blend penalizes the engine operation with a 1.5 to 2.0% decrease in torque, but provided up to a 36% reduction in CO, a 30% reduction in NOX, and a 5% increase in brake thermal efficiency. These results concur with previous results published in the open literature. Further reduction in emissions can be obtained by retarding the ignition timing.« less

  5. Hige Compression Ratio Turbo Gasoline Engine Operation Using Alcohol Enhancement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heywood, John; Jo, Young Suk; Lewis, Raymond

    The overall objective of this project was to quantify the potential for improving the performance and efficiency of gasoline engine technology by use of alcohols to suppress knock. Knock-free operation is obtained by direct injection of a second “anti-knock” fuel such as ethanol, which suppresses knock when, with gasoline fuel, knock would occur. Suppressing knock enables increased turbocharging, engine downsizing, and use of higher compression ratios throughout the engine’s operating map. This project combined engine testing and simulation to define knock onset conditions, with different mixtures of gasoline and alcohol, and with this information quantify the potential for improving themore » efficiency of turbocharged gasoline spark-ignition engines, and the on-vehicle fuel consumption reductions that could then be realized. The more focused objectives of this project were therefore to: Determine engine efficiency with aggressive turbocharging and downsizing and high compression ratio (up to a compression ratio of 13.5:1) over the engine’s operating range; Determine the knock limits of a turbocharged and downsized engine as a function of engine speed and load; Determine the amount of the knock-suppressing alcohol fuel consumed, through the use of various alcohol-gasoline and alcohol-water gasoline blends, for different driving cycles, relative to the gasoline consumed; Determine implications of using alcohol-boosted engines, with their higher efficiency operation, in both light-duty and medium-duty vehicle sectors.« less

  6. Hybrid: Starting

    Science.gov Websites

    : gray bar STARTING When the vehicle is started, the gasoline engine "warms up." If necessary assists the gasoline engine when additional power is needed. It also acts as a generator, converting also starts the gasoline engine instantly when needed. Main stage: See through car with battery, engine

  7. Discovery of Novel NOx Catalysts for CIDI Applications by High-throughput Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blint, Richard J.

    DOE project DE-PS26-00NT40758 has developed very active, lean exhaust, NOx reduction catalysts that have been tested on the discovery system, laboratory reactors and engine dynamometer systems. The goal of this project is the development of effective, affordable NOx reduction catalysts for lean combustion engines in the US light duty vehicle market which can meet Tier II emission standards with hydrocarbons based reductants for reducing NOx. General Motors (prime contractor) along with subcontractors BASF (Engelhard) (a catalytic converter developer) and ACCELRYS (an informatics supplier) carried out this project which began in August of 2002. BASF (Engelhard) has run over 16,000 testsmore » of 6100 possible catalytic materials on a high throughput discovery system suitable for automotive catalytic materials. Accelrys developed a new database informatics system which allowed material tracking and data mining. A program catalyst was identified and evaluated at all levels of the program. Dynamometer evaluations of the program catalyst both with and without additives show 92% NOx conversions on the HWFET, 76% on the US06, 60% on the cold FTP and 65% on the Set 13 heavy duty test using diesel fuel. Conversions of over 92% on the heavy duty FTP using ethanol as a second fluid reductant have been measured. These can be competitive with both of the alternative lean NOx reduction technologies presently in the market. Conversions of about 80% were measured on the EUDC for lean gasoline applications without using active dosing to adjust the C:N ratio for optimum NOx reduction at all points in the certification cycle. A feasibility analysis has been completed and demonstrates the advantages and disadvantages of the technology using these materials compared with other potential technologies. The teaming agreements among the partners contain no obstacles to commercialization of new technologies to any potential catalyst customers.« less

  8. Hybrid: Cruising

    Science.gov Websites

    battery, engine, and electric motor visible. The car is moving. There are red arrows flowing from the gasoline engine to the front wheels. There are blue arrows flowing from the gasoline engine to the electric car is moving. There are red arrows flowing from the gasoline engine to the front wheels. There are

  9. 40 CFR 86.343-79 - Chart reading.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.343-79 Chart... responses corresponding to the end of each mode. (c) For gasoline-fueled engines, determine whether the test... gasoline-fueled engine mode); or (3) 5 percent of maximum torque during the remainder of the mode...

  10. 40 CFR 86.343-79 - Chart reading.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.343-79 Chart... responses corresponding to the end of each mode. (c) For gasoline-fueled engines, determine whether the test... gasoline-fueled engine mode); or (3) 5 percent of maximum torque during the remainder of the mode...

  11. Trends in auto emissions and gasoline composition.

    PubMed Central

    Sawyer, R F

    1993-01-01

    The invention of the spark-ignited internal combustion engine provided a market for a petroleum middle distillate, gasoline, about 100 years ago. The internal combustion engine and gasoline have co-evolved until motor vehicles now annually consume about 110 billion gallons of gasoline in the United States. Continuing air pollution problems and resulting regulatory pressures are driving the need for further automotive emissions reductions. Engine and emissions control technology provided most earlier reductions. Changing the composition of gasoline will play a major role in the next round of reductions. The engineering and regulatory definition of a reformulated gasoline is proceeding rapidly, largely as the result of an auto and oil industry cooperative data generation program. It is likely that this new, reformulated gasoline will be introduced in high-ozone regions of the United States in the mid-1990s. Alternative clean fuels, primarily methane, methanol, and liquid petroleum gas, will become more widely used during this same period, probably first in fleet operations. PMID:7517353

  12. 75 FR 36034 - Advance Notice of Proposed Rulemaking on Lead Emissions From Piston-Engine Aircraft Using Leaded...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-24

    ... Gasoline; Extension of Comment Period AGENCY: Environmental Protection Agency (EPA). ACTION: Advance notice...-Engine Aircraft Using Leaded Aviation Gasoline (hereinafter referred to as the ANPR). EPA published this... from the use of leaded aviation gasoline (avgas) in piston-engine powered aircraft. The ANPR is one of...

  13. 40 CFR 86.335-79 - Gasoline-fueled engine test cycle.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Gasoline-fueled engine test cycle. 86....335-79 Gasoline-fueled engine test cycle. (a) The following test sequence shall be followed in.... Cycle No. Mode No. Mode Observed torque (percent of maximum observed) Time in mode-seconds Cumulative...

  14. Laser ignition of engines: a realistic option!

    NASA Astrophysics Data System (ADS)

    Weinrotter, M.; Srivastava, D. K.; Iskra, K.; Graf, J.; Kopecek, H.; Klausner, J.; Herdin, G.; Wintner, E.

    2006-01-01

    Due to the demands of the market to increase efficiencies and power densities of gas engines, existing ignition schemes are gradually reaching their limits. These limitations initially triggered the development of laser ignition as an effective alternative, first only for gas engines and now for a much wider range of internal combustion engines revealing a number of immediate advantages like no electrode erosion or flame kernel quenching. Furthermore and most noteworthy, already the very first engine tests about 5 years ago had resulted in a drastic reduction of NO x emissions. Within this broad range investigation, laser plasmas were generated by ns Nd-laser pulses and characterized by emission and Schlieren diagnostic methods. High-pressure chamber experiments with lean hydrogen-methane-air mixtures were successfully performed and allowed the determination of essential parameters like minimum pulse energies at different ignition pressures and temperatures as well as at variable fuel air compositions. Multipoint ignition was studied for different ignition point locations. In this way, relevant parameters were acquired allowing to estimate future laser ignition systems. Finally, a prototype diode-pumped passively Q-switched Nd:YAG laser was tested successfully at a gasoline engine allowing to monitor the essential operation characteristics. It is expected that laser ignition involving such novel solid-state lasers will allow much lower maintenance efforts.

  15. Carbonyls emission from ethanol-blended gasoline and biodiesel-ethanol-diesel used in engines

    NASA Astrophysics Data System (ADS)

    Pang, Xiaobing; Mu, Yujing; Yuan, Juan; He, Hong

    Detailed carbonyls emissions from ethanol-blended gasoline (containing 10% v/v, ethanol, E-10) and biodiesel-ethanol-diesel (BE-diesel) were carefully investigated on an EQ491i gasoline engine equipped with a three-way-catalyst (TWC) and a Commins-4B diesel engine. In engine-out emissions for the gasoline engine, total carbonyls from E-10 varied in the range of 66.7-99.4 mg kW -1 h -1, which was 3.1-8.2% less than those from fossil gasoline (E-0). In tailpipe emissions, total carbonyls from E-10 varied in the range of 9.2-20.7 mg kW -1 h -1, which were 3.0-61.7% higher than those from E-0. The total carbonyls emissions from BE-diesel were 1-22% higher than those from diesel at different engine operating conditions. Compared with fossil fuels, E-10 can slightly reduce CO emission, and BE-diesel can substantially decrease PM emission, while both alternative fuels increased slightly NO x emission.

  16. Study of the various factors influencing deposit formation and operation of gasoline engine injection systems

    NASA Astrophysics Data System (ADS)

    Stepien, Z.

    2016-09-01

    Generally, ethanol fuel emits less pollutants than gasoline, it is completely renewable product and has the potential to reduce greenhouse gases emission but, at the same time can present a multitude of technical challenges to engine operation conditions including creation of very adverse engine deposits. These deposits increasing fuel consumption and cause higher exhaust emissions as well as poor performance in drivability. This paper describes results of research and determination the various factors influencing injector deposits build-up of ethanol-gasoline blends operated engine. The relationship between ethanol-gasoline fuel blends composition, their treatment, engine construction as well as its operation conditions and fuel injectors deposit formation has been investigated. Simulation studies of the deposit formation endanger proper functioning of fuel injection system were carried out at dynamometer engine testing. As a result various, important factors influencing the deposit creation process and speed formation were determined. The ability to control of injector deposits by multifunctional detergent-dispersant additives package fit for ethanol-gasoline blends requirements was also investigated.

  17. Design and experimental investigations on six-stroke SI engine using acetylene with water injection.

    PubMed

    Gupta, Keshav; Suthar, Kishanlal; Jain, Sheetal Kumar; Agarwal, Ghanshyam Das; Nayyar, Ashish

    2018-06-02

    In the present study, a four-stroke cycle gasoline engine is redesigned and converted into a six-stroke cycle engine and experimental study has been conducted using gasoline and acetylene as fuel with water injection at the end of the recompression stroke. Acetylene has been used as an alternative fuel along with gasoline and performance of the six-stroke spark ignition (SI) engine with these two fuels has been studied separately and compared. Brake power and thermal efficiency are found to be 5.18 and 1.55% higher with acetylene as compared to gasoline in the six-stroke engine. However, thermal efficiency is found to be 45% higher with acetylene in the six-stroke engine as compared to four-stroke SI engine. The CO and HC emissions were found to be reduced by 13.33 and 0.67% respectively with acetylene as compared to gasoline due to better combustion of acetylene. The NO x emission was reduced by 5.65% with acetylene due to lower peak temperature by water injection. The experimental results showed better engine performance and emissions with acetylene as fuel in the six-stroke engine.

  18. A comparative study of emission motorcycle with gasoline and CNG fuel

    NASA Astrophysics Data System (ADS)

    Sasongko, M. N.; Wijayanti, W.; Rahardja, R. A.

    2016-03-01

    A comparison of the exhaust emissions of the engine running gasoline and Compressed Natural Gas have been performed in this study. A gasoline engine 4 stroke single-cylinder with volume of 124.8 cc and compression ratio of 9.3:1 was converted to a CNG gaseous engine. The fuel injector was replaced with a solenoid valve system for injecting CNG gas to engine. The concentrations of CO, CO2, O2 and HC in the exhaust gas of engine were measured over the range of fuel flow rate from 25.32 mg/s to 70.22 mg/s and wide range of Air Fuel Ratio. The comparative analysis of this study showed that CNG engine has a lower HC, CO2 and CO emission at the stoichiometry mixture of fuel and air combustion. The emissions increased when the Air-Fuel ratio was switched from the stoichiometry condition. Moreover, CNG engine produced a lower HC and CO emission compared to the gasoline for difference air flow rate. The average of HC and CO emissions of the CNG was 92 % and 78 % lower than that of the gasoline

  19. 40 CFR 86.347-79 - Alternative calculations for diesel engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.347-79 Alternative calculations for diesel engines. (a) This section applies to Diesel engines only. Gasoline-fueled engines must use the calculations in § 86.345. (b) For Diesel engines, the...

  20. 40 CFR 86.347-79 - Alternative calculations for diesel engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.347-79 Alternative calculations for diesel engines. (a) This section applies to Diesel engines only. Gasoline-fueled engines must use the calculations in § 86.345. (b) For Diesel engines, the...

  1. Primary Emission and the Potential of Secondary Aerosol Formation from Chinese Gasoline Engine Exhaust

    NASA Astrophysics Data System (ADS)

    Hu, Min; Peng, Jianfei; Qin, Yanhong; Du, Zhuofei; Li, Mengjin; Zheng, Rong; Zheng, Jing; Shang, Dongjie; Lu, Sihua; Wu, Yusheng; Zeng, Limin; Guo, Song; Shao, Min; Wang, Yinhui; Shuai, Shijin

    2017-04-01

    Along with the urbanization and economic growth, vehicle population in China reached 269 million, ranked the second in the world in 2015. Gasoline vehicle is identified to be the main source for urban PM2.5 in China, accounting for 15%-31%. In this study the impact of fuel components on PM2.5 and volatile organic compounds (VOCs) emissions from a gasoline port fuel injection (PFI) engine and a gasoline direct injection (GDI) engine are discussed. Results show that, higher proportion of aromatics, alkenes or sulfur in gasoline fuel will lead to higher PM emissions. The PM from the PFI engine mainly consists of OC and a small amount of EC and inorganic ions, while the PM discharge from the GDI engine mainly consists of EC, OM and a small amount of inorganic ions. Since the GDI engines can reduce fuel consumption and CO2 emissions, and it would become more and more popular in the near future. The characteristics of POM component, emission factors and source profile were investigated from GDI engine, particularly focused on the effect of engine speed, load and the catalyst, which will be very much helpful for source identification as source indicators. Chamber experiments were conducted to quantify the potential of secondary aerosol formation from exhaust of a PFI gasoline engine and China V gasoline fuel. During 4-5 h simulation, equivalent to10 days of atmospheric photo-oxidation in Beijing, the extreme SOA production was 426 ± 85 mg/kg fuel, with high precursors and OH exposure. 14% of SOA measured in the chamber experiments could be explained through the oxidation of speciated single-ring aromatics. Unspeciated precursors, such as intermediate-volatility organic compounds and semi-volatility organic compounds, might be significant for SOA formation from gasoline VOCs. We concluded that reduction of emissions of aerosol precursor gases from vehicles is essential to mediate pollution in China.

  2. An Investigation of Factors That Influence the Hypothesis Generation Ability of Students in School- Based Agricultural Education Programs When Troubleshooting Small Gasoline Engines

    ERIC Educational Resources Information Center

    Blackburn, J. Joey; Robinson, J. Shane

    2017-01-01

    The purpose of this study was to determine if selected factors influenced the ability of students in school-based agricultural education programs to generate a correct hypothesis when troubleshooting small gasoline engines. Variables of interest included students' cognitive style, age, GPA, and content knowledge in small gasoline engines. Kirton's…

  3. Characterization of Reactivity Controlled Compression Ignition (RCCI) Using Premixed Gasoline and Direct-Injected Gasoline with a Cetane Improver on a Multi-Cylinder Engine

    DOE PAGES

    Dempsey, Adam B.; Curran, Scott; Reitz, Rolf D.

    2015-04-14

    The focus of the present paper was to characterize Reactivity Controlled Compression Ignition (RCCI) using a single-fuel approach of gasoline and gasoline mixed with a commercially available cetane improver on a multi-cylinder engine. RCCI was achieved by port-injecting a certification grade 96 research octane gasoline and direct-injecting the same gasoline mixed with various levels of a cetane improver, 2-ethylhexyl nitrate (EHN). The EHN volume percentages investigated in the direct-injected fuel were 10, 5, and 2.5%. The combustion phasing controllability and emissions of the different fueling combinations were characterized at 2300 rpm and 4.2 bar brake mean effective pressure over amore » variety of parametric investigations including direct injection timing, premixed gasoline percentage, and intake temperature. Comparisons were made to gasoline/diesel RCCI operation on the same engine platform at nominally the same operating condition. The experiments were conducted on a modern four cylinder light-duty diesel engine that was modified with a port-fuel injection system while maintaining the stock direct injection fuel system. The pistons were modified for highly premixed operation and feature an open shallow bowl design. The results indicate that the authority to control the combustion phasing through the fuel delivery strategy (e.g., direct injection timing or premixed gasoline percentage) is not a strong function of the EHN concentration in the direct-injected fuel. It was also observed that NOx emissions are a strong function of the global EHN concentration in-cylinder and the combustion phasing. Finally, in general, NOx emissions are significantly elevated for gasoline/gasoline+EHN operation compared with gasoline/diesel RCCI operation at a given operating condition.« less

  4. Lean Mixture Engines Testing and Evaluation Program : Volume 3. Appendices.

    DOT National Transportation Integrated Search

    1975-01-01

    This report is aimed at defining analytically and demonstrating experimentally the potential of the 'lean-burn concept.' Fuel consumption and emissions data are obtained on the engine dynamometer for the baseline engine, and two lean-burn configurati...

  5. Comparison of alcogas aviation fuel with export aviation gasoline

    NASA Technical Reports Server (NTRS)

    Gage, V R; Sparrow, S W; Harper, D R

    1921-01-01

    Mixtures of gasoline and alcohol when used in internal combustion engines designed for gasoline have been found to possess the advantage of alcohol in withstanding high compression without "knock" while retaining advantages of gasoline with regard to starting characteristics. Test of such fuels for maximum power-producing ability and fuel economy at various rates of consumption are thus of practical importance, with especial reference to high-compression engine development. This report discusses the results of tests which compares the performance of alcogas with x gasoline (export grade) as a standard.

  6. Advanced materials for automobiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narula, C.K.; Allison, J.E.; Bauer, D.R.

    Quite early on, manufacturers realized that lighter automobiles (with gas and diesel engines) would be more fuel efficient and produce fewer tailpipe emissions. They also realized that burning diesel fuel at elevated temperatures (1,315 C) would result in similar improvements. However, materials limitations prevent the operation of diesel vehicles at high temperatures. The fuel efficiency of gasoline-powered vehicles is currently improved by reducing the weight of the automobile and treated the emissions with a three-way catalyst. Additional improvements can be achieved with the use of advanced materials that reduce the weight of vehicles without compromising safety. The use of ceramics,more » fiber-reinforced plastics, and metal-matrix composites are discussed. The paper also discusses automotive catalysts and their components, electrically heated catalyst devices, a lean-burn NOx catalyst, and the future for materials chemistry.« less

  7. Lean Mixture Engines Testing and Evaluation Program : Volume 2. Comprehensive Discussion.

    DOT National Transportation Integrated Search

    1975-11-01

    This report is aimed at defining analytically and demonstrating experimentally the potential of the 'lean-burn concept.' Fuel consumption and emissions data are obtained on the engine dynamometer for the baseline engine, and two lean-burn configurati...

  8. Lean Mixture Engines Testing and Evaluation Program : Volume 1. Executive Summary.

    DOT National Transportation Integrated Search

    1975-01-01

    This report is aimed at defining analytically and demonstrating experimentally the potential of the 'lean-burn concept'. Fuel consumption and emissions data are obtained on the engine dynamometer for the baseline engine, and two lean-burn configurati...

  9. Tests of several bearing materials lubricated by gasoline

    NASA Technical Reports Server (NTRS)

    Joachin, W F; Case, Harold W

    1926-01-01

    This investigation on the relative wear of several bearing materials lubricated by gasoline was conducted at the Langley Memorial Aeronautical Laboratory, as part of a general research on fuel injection engines for aircraft. The specific purpose of the work was to find a durable bearing material for gear pumps to be used for the delivery of gasoline and diesel engine fuel oil at moderate pressures to the high pressure pumps of fuel injection engines.

  10. Feasibility demonstration of a road vehicle fueled with hydrogen-enriched gasoline

    NASA Technical Reports Server (NTRS)

    Hoehn, F. W.; Dowdy, M. W.

    1974-01-01

    Evaluation of the concept of using hydrogen-enriched gasoline in a modified internal combustion engine in order to make possible the burning of ultralean mixtures. The use of such an engine in a road vehicle demonstrated that the addition of small quantities of gaseous hydrogen to gasoline resulted in significant reductions in exhaust emissions of carbon monoxide and nitrogen oxides as well as in thermal efficiency improvements of the engine performance.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Mira supercomputer at the Argonne Leadership Computing Facility helped Argonne researchers model what happens inside an engine when you use gasoline in a diesel engine. Engineers are exploring this type of combustion as a sustainable transportation option because it may be more efficient than traditional gasoline combustion engines but produce less soot than diesel.

  12. Optimization of suitable ethanol blend ratio for motorcycle engine using response surface method.

    PubMed

    Chen, Yu-Liang; Chen, Suming; Tsai, Jin-Ming; Tsai, Chao-Yin; Fang, Hsin-Hsiung; Yang, I-Chang; Liu, Sen-Yuan

    2012-01-01

    In view of energy shortage and air pollution, ethanol-gasoline blended fuel used for motorcycle engine was studied in this work. The emissions of carbon monoxide (CO), nitrogen oxides (NO(X)) and engine performance of a 125 cc four-stroke motorcycle engine with original carburetor using ethanol-gasoline fuels were investigated. The model of three-variable Box Behnken design (BBD) was used for experimental design, the ethanol blend ratios were prepared at 0, 10, 20 vol%; the speeds of motorcycle were selected as 30, 45, 60 km/h; and the throttle positions were set at 30, 60, 90 %. Both engine performance and air pollutant emissions were then analyzed by response surface method (RSM) to yield optimum operation parameters for tolerable pollutant emissions and maximum engine performance. The RSM optimization analysis indicated that the most suitable ethanol-gasoline blended ratio was found at the range of 3.92-4.12 vol% to yield a comparable fuel conversion efficiency, while considerable reductions of exhaust pollutant emissions of CO (-29 %) and NO(X) (-12 %) when compared to pure gasoline fuel. This study demonstrated low ethanol-gasoline blended fuels could be used in motorcycle carburetor engines without any modification to keep engine power while reducing exhaust pollutants.

  13. Solid State Energy Conversion Alliance Delphi SOFC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven Shaffer; Sean Kelly; Larry Chick

    2003-05-20

    The objective of Phase I under this project is to develop a 5 kW SOFC power system for a range of fuels and applications. During Phase I, the following will be accomplished: 1. Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with piped-in water (Demonstration System A). 2. Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate catalytic partial oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. Thismore » topical report covers work performed by Delphi Automotive Systems from January through June 2002 under DOE Cooperative Agreement DE-FC-02NT41246 for the 5 kW mass-market automotive (gasoline) auxiliary power unit. This report highlights technical results of the work performed under the following tasks for the automotive 5 kW system: 1. System Design and Integration 2. SOFC Stack Development 3. Reformer Development The next anticipated Technical Progress Report will be submitted January 30, 2003 and will include tasks contained within the cooperative agreement including development work on the Demonstration System A, if available.« less

  14. SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOFC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven Shaffer; Sean Kelly; Subhasish Mukerjee

    2003-06-09

    The objective of Phase I under this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with piped-in water (Demonstration System A); and Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustionmore » engine. This technical progress report covers work performed by Delphi from July through December 2002 under Department of Energy Cooperative Agreement DE-FC-02NT41246 for the 5 kW mass-market automotive (gasoline) auxiliary power unit. This report highlights technical results of the work performed under the following tasks for the automotive 5 kW system: Task 1--System Design and Integration; Task 2--Solid Oxide Fuel Cell Stack Developments; Task 3--Reformer Developments; Task 4--Development of Balance of Plant (BOP) Components; Task 5--Manufacturing Development (Privately Funded); Task 6--System Fabrication; and Task 7--System Testing.« less

  15. Chemical and toxicological properties of emissions from CNG transit buses equipped with three-way catalysts compared to lean-burn engines and oxidation catalyst technologies

    NASA Astrophysics Data System (ADS)

    Yoon, Seungju; Hu, Shaohua; Kado, Norman Y.; Thiruvengadam, Arvind; Collins, John F.; Gautam, Mridul; Herner, Jorn D.; Ayala, Alberto

    2014-02-01

    Chemical and toxicological properties of emissions from compressed natural gas (CNG) fueled transit buses with stoichiometric combustion engines and three-way catalyst (TWC) exhaust control systems were measured using a chassis dynamometer testing facility and compared to the data from earlier CNG engine and exhaust control technologies. Gaseous and particulate matter emissions from buses with stoichiometric engines and TWC were significantly lower than the emissions from buses with lean-burn engines. Carbonyls and volatile organic compounds (VOCs) from buses with stoichiometric engines and TWC were lower by more than 99% compared to buses with lean-burn engines. Elemental and organic carbons (EC and OC), polycyclic aromatic hydrocarbons (PAHs), and trace elements from buses with stoichiometric engines and TWC were effectively controlled and significantly lower than the emissions from buses with lean-burn engines. Potential mutagenicity measured using a microsuspension modification of the Salmonella/microsome assay was lower by more than 99% for buses with stoichiometric engines and TWC, compared to buses with lean-burn engines and OxC.

  16. In vitro genotoxicity of exhaust emissions of diesel and gasoline engine vehicles operated on a unified driving cycle.

    PubMed

    Liu, Yu-Qing; Keane, Michael; Ensell, Mang; Miller, William; Kashon, Michael; Ong, Tong-man; Mauderly, Joe; Lawson, Doug; Gautam, Mridul; Zielinska, Barbara; Whitney, Kevin; Eberhardt, James; Wallace, William

    2005-01-01

    Acetone extracts of engine exhaust particulate matter (PM) and of vapor-phase semi-volatile organic compounds (SVOCs) collected from a set of 1998-2000 model year normal emitter diesel engine automobile or light trucks and from a set of 1982-1996 normal emitter gasoline engine automobiles or light trucks operated on the California Unified Driving Cycle at 22 [degree]C were assayed for in vitro genotoxic activities. Gasoline and diesel PM were comparably positive mutagens for Salmonella typhimurium strains YG1024 and YG1029 on a mass of PM extract basis with diesel higher on a mileage basis; gasoline SVOC was more active than diesel on an extracted-mass basis, with diesel SVOC more active on a mileage basis. For chromosomal damage indicated by micronucleus induction in Chinese hamster lung fibroblasts (V79 cells), diesel PM expressed about one-tenth that of gasoline PM on a mass of extract basis, but was comparably active on a mileage basis; diesel SVOC was inactive. For DNA damage in V79 cells indicated by the single cell gel electrophoresis (SCGE) assay, gasoline PM was positive while diesel PM was active at the higher doses; gasoline SVOC was active with toxicity preventing measurement at high doses, while diesel SVOC was inactive at all but the highest dose.

  17. Experimental Investigation of Spark-Ignited Combustion with High-Octane Biofuels and EGR. 1. Engine Load Range and Downsize Downspeed Opportunity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Splitter, Derek A; Szybist, James P

    2013-01-01

    The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in midlevel alcohol gasoline blends with 24% vol/vol isobutanol gasoline (IB24) and 30% vol/vol ethanol gasoline (E30). A single-cylinder research engine was used with an 11.85:1 compression ratio, hydraulically actuated valves, laboratory intake air, and was capable of external exhaust gas recirculation (EGR). Experiments were conducted with all fuels to full-load conditions with = 1, using both 0% and 15% external cooled EGR. Higher octane number biofuel blends exhibited increased stoichiometric torque capability at this compression ratio, where the unique properties of ethanolmore » enabled a doubling of the stoichiometric torque capability with E30 as compared to 87 AKI, up to 20 bar IMEPg (indicated mean effective pressure gross) at = 1. EGR provided thermodynamic advantages and was a key enabler for increasing engine efficiency for all fuel types. However, with E30, EGR was less useful for knock mitigation than gasoline or IB24. Torque densities with E30 with 15% EGR at = 1 operation were similar or better than a modern EURO IV calibration turbo-diesel engine. The results of the present study suggest that it could be possible to implement a 40% downsize + downspeed configuration (1.2 L engine) into a representative midsize sedan. For example, for a midsize sedan at a 65 miles/h cruise, an estimated fuel consumption of 43.9 miles per gallon (MPG) (engine out 102 g-CO2/km) could be achieved with similar reserve power to a 2.0 L engine with 87AKI (38.6 MPG, engine out 135 g-CO2/km). Data suggest that, with midlevel alcohol gasoline blends, engine and vehicle optimization can offset the reduced fuel energy content of alcohol gasoline blends and likely reduce vehicle fuel consumption and tailpipe CO2 emissions.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pamminger, Michael; Sevik, James; Scarcelli, Riccardo

    The compression ratio is a strong lever to increase the efficiency of an internal combustion engine. However, among others, it is limited by the knock resistance of the fuel used. Natural gas shows a higher knock resistance compared to gasoline, which makes it very attractive for use in internal combustion engines. The current paper describes the knock behavior of two gasoline fuels, and specific incylinder blend ratios with one of the gasoline fuels and natural gas. The engine used for these investigations is a single cylinder research engine for light duty application which is equipped with two separate fuel systems.more » Both fuels can be used simultaneously which allows for gasoline to be injected into the intake port and natural gas to be injected directly into the cylinder to overcome the power density loss usually connected with port fuel injection of natural gas. Adding natural gas at wide open throttle helps to reduce knock mitigating measures and increases the efficiency and power density compared to the other gasoline type fuels with lower knock resistance. The used methods, knock intensity and number of pressure waves, do not show significant differences in knock behavior for the natural gas - gasoline blends compared to the gasoline type fuels. A knock integral was used to describe the knock onset location of the fuels tested. Two different approaches were used to determine the experimental knock onset and were compared to the knock onset delivered by the knock integral (chemical knock onset). The gasoline type fuels show good agreement between chemical and experimental knock onset. However, the natural gas -gasoline blends show higher discrepancies comparing chemical and experimental knock onset.« less

  19. Advanced engine management of individual cylinders for control of exhaust species

    DOEpatents

    Graves, Ronald L [Knoxville, TN; West, Brian H [Knoxville, TN; Huff, Shean P [Knoxville, TN; Parks, II, James E

    2008-12-30

    A method and system controls engine-out exhaust species of a combustion engine having a plurality of cylinders. The method typically includes various combinations of steps such as controlling combustion parameters in individual cylinders, grouping the individual cylinders into a lean set and a rich set of one or more cylinders, combusting the lean set in a lean combustion parameter condition having a lean air:fuel equivalence ratio, combusting the rich set in a rich combustion parameter condition having a rich air:fuel equivalence ratio, and adjusting the lean set and the rich set of one or more cylinders to generate net-lean combustion. The exhaust species may have elevated concentrations of hydrogen and oxygen.

  20. REVIEW ARTICLE: Emission measurement techniques for advanced powertrains

    NASA Astrophysics Data System (ADS)

    Adachi, Masayuki

    2000-10-01

    Recent developments in high-efficiency low-emission powertrains require the emission measurement technologies to be able to detect regulated and unregulated compounds with very high sensitivity and a fast response. For example, levels of a variety of nitrogen compounds and sulphur compounds should be analysed in real time in order to develop aftertreatment systems to decrease emission of NOx for the lean burning powertrains. Also, real-time information on the emission of particulate matter for the transient operation of diesel engines and direct injection gasoline engines is invaluable. The present paper reviews newly introduced instrumentation for such emission measurement that is demanded for the developments in advanced powertrain systems. They include Fourier transform infrared spectroscopy, mass spectrometry and fast response flame ionization detection. In addition, demands and applications of the fuel reformer developments for fuel cell electric vehicles are discussed. Besides the detection methodologies, sample handling techniques for the measurement of concentrations emitted from low emission vehicles for which the concentrations of the pollutants are significantly lower than the concentrations present in ambient air, are also described.

  1. A New Concept of Dual Fuelled SI Engines Run on Gasoline and Alcohol

    NASA Astrophysics Data System (ADS)

    Stelmasiak, Zdzisław

    2011-06-01

    The paper discusses tests results of dual-fuel spark ignition engine with multipoint injection of alcohol and gasoline, injected in area of inlet valve. Fuelling of the engine was accomplished via prototype inlet system comprising duplex injectors controlled electronically. Implemented system enables feeding of the engine with gasoline only or alcohol only, and simultaneous combustion of a mixture of the both fuels with any fraction of alcohol. The tests were performed on four cylinders, spark ignition engine of Fiat 1100 MPI type. The paper presents comparative results of dual-fuel engine test when the engine runs on changing fraction of methyl alcohol. The tests have demonstrated an advantageous effect of alcohol additive on efficiency and TCH and NOx emission of the engine, especially in case of bigger shares of the alcohol and higher engine loads.

  2. Gasoline Engine Mechanics. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This vocational program guide is intended to assist in the organization, operation, and evaluation of a program in gasoline engine mechanics in school districts, area vocational centers, and community colleges. The following topics are covered: job duties of small-engine mechanics; program content (curriculum framework and student performance…

  3. 40 CFR 86.306-79 - Equipment required and specifications; overview.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test... for both gasoline-fueled and Diesel engine gaseous emission tests. Generally, the equipment required...

  4. 40 CFR 86.306-79 - Equipment required and specifications; overview.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test... for both gasoline-fueled and Diesel engine gaseous emission tests. Generally, the equipment required...

  5. 40 CFR 86.306-79 - Equipment required and specifications; overview.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test... for both gasoline-fueled and Diesel engine gaseous emission tests. Generally, the equipment required...

  6. 40 CFR 86.306-79 - Equipment required and specifications; overview.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test... for both gasoline-fueled and Diesel engine gaseous emission tests. Generally, the equipment required...

  7. Criteria pollutant and greenhouse gas emissions from CNG transit buses equipped with three-way catalysts compared to lean-burn engines and oxidation catalyst technologies.

    PubMed

    Yoon, Seungju; Collins, John; Thiruvengadam, Arvind; Gautam, Mridul; Herner, Jorn; Ayala, Alberto

    2013-08-01

    Engine and exhaust control technologies applied to compressed natural gas (CNG) transit buses have advanced from lean-burn, to lean-burn with oxidation catalyst (OxC), to stoichiometric combustion with three-way catalyst (TWC). With this technology advancement, regulated gaseous and particulate matter emissions have been significantly reduced. Two CNG transit buses equipped with stoichiometric combustion engines and TWCs were tested on a chassis dynamometer, and their emissions were measured. Emissions from the stoichiometric engines with TWCs were then compared to the emissions from lean-burn CNG transit buses tested in previous studies. Stoichiometric combustion with TWC was effective in reducing emissions of oxides of nitrogen (NO(x)), particulate matter (PM), and nonmethane hydrocarbon (NMHC) by 87% to 98% depending on pollutants and test cycles, compared to lean combustion. The high removal efficiencies exceeded the emission reduction required from the certification standards, especially for NO(x) and PM. While the certification standards require 95% and 90% reductions for NO(x) and PM, respectively, from the engine model years 1998-2003 to the engine model year 2007, the measured NO(x) and PM emissions show 96% and 95% reductions, respectively, from the lean-burn engines to the stoichiometric engines with TWC over the transient Urban Dynamometer Driving Schedule (UDDS) cycle. One drawback of stoichiometric combustion with TWC is that this technology produces higher carbon monoxide (CO) emissions than lean combustion. In regard to controlling CO emissions, lean combustion with OxC is more effective than stoichiometric combustion. Stoichiometric combustion with TWC produced higher greenhouse gas (GHG) emissions including carbon dioxide (CO2) and methane (CH4) than lean combustion during the UDDS cycle, but lower GHG emissions during the steady-state cruise cycle. Stoichiometric combustion with three-way catalyst is currently the best emission control technology available for compressed natural gas (CNG) transit buses to meet the stringent U.S. Environmental Protection Agency (EPA) 2010 heavy-duty engine NO(x) emissions standard. For existing lean-burn CNG transit buses in the fleet, oxidation catalyst would be the most effective retrofit technology for the control of NMHC and CO emissions.

  8. Installation and testing of a cummins Qsk19 lean burn natural gas engine

    NASA Astrophysics Data System (ADS)

    Sutley, Franklin H.

    The goal for a more efficient engine will never disappear. Over the years many different techniques have been explored within the common goal of higher efficiency. Lean combustion has proven to be effective at increasing efficiencies as well as reducing emissions. The purpose of this thesis is to install a modern Cummins QSK19G and perform certain test that will explore the lean combustion limits and other methods that could possibly increase efficiency even more. The entire installation and instrumentation process is documented within this thesis. The engine was installed in the Engines and Energy Conversion Laboratory at Colorado State University. The engine was installed with the hopes of instilling the desire for endless future tests from Cummins as well as other companies seeking this type of research engine. The lean limit was explored in the most detail. Cummins supplied a test plan that satisfied their desired stopping at a lean limit when the coefficient of variance of indicated mean effective pressure reached 5%. For the curiosity of others involved and this thesis, the lean limit was explored further until the engine could no longer ignite the ultra-lean combustion mixture. Friction accounts for a significant loss in a modern internal combustion engine. One role of the engine oil is to reduce these frictional losses as much as possible without causing increased wear. A test was conducted on the QSK19G to explore the effects of varying the engine oil viscosity. Frictional losses of two different viscosity oils were compared to the stock engine oil losses. The fact that reducing oil viscosity reduces frictional losses was proven in the test.

  9. The Effect of Ethanol Addition to Gasoline on Low- and Intermediate-Temperature Heat Release under Boosted Conditions in Kinetically Controlled Engines

    NASA Astrophysics Data System (ADS)

    Vuilleumier, David Malcolm

    The detailed study of chemical kinetics in engines has become required to further advance engine efficiency while simultaneously lowering engine emissions. This push for higher efficiency engines is not caused by a lack of oil, but by efforts to reduce anthropogenic carbon dioxide emissions, that cause global warming. To operate in more efficient manners while reducing traditional pollutant emissions, modern internal combustion piston engines are forced to operate in regimes in which combustion is no longer fully transport limited, and instead is at least partially governed by chemical kinetics of combusting mixtures. Kinetically-controlled combustion allows the operation of piston engines at high compression ratios, with partially-premixed dilute charges; these operating conditions simultaneously provide high thermodynamic efficiency and low pollutant formation. The investigations presented in this dissertation study the effect of ethanol addition on the low-temperature chemistry of gasoline type fuels in engines. These investigations are carried out both in a simplified, fundamental engine experiment, named Homogeneous Charge Compression Ignition, as well as in more applied engine systems, named Gasoline Compression Ignition engines and Partial Fuel Stratification engines. These experimental investigations, and the accompanying modeling work, show that ethanol is an effective scavenger of radicals at low temperatures, and this inhibits the low temperature pathways of gasoline oxidation. Further, the investigations measure the sensitivity of gasoline auto-ignition to system pressure at conditions that are relevant to modern engines. It is shown that at pressures above 40 bar and temperatures below 850 Kelvin, gasoline begins to exhibit Low-Temperature Heat Release. However, the addition of 20% ethanol raises the pressure requirement to 60 bar, while the temperature requirement remains unchanged. These findings have major implications for a range of modern engines. Low-Temperature Heat Release significantly enhances the auto-ignition process, which limits the conditions under which advanced combustion strategies may operate. As these advanced combustion strategies are required to meet emissions and fuel-economy regulations, the findings of this dissertation may benefit and be incorporated into future engine design toolkits, such as detailed chemical kinetic mechanisms.

  10. 40 CFR 86.1108-87 - Maintenance of records.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Penalties for Gasoline-Fueled and Diesel Heavy-Duty Engines and Heavy-Duty Vehicles, Including Light-Duty... heavy-duty engine or heavy-duty vehicle subject to any of the provisions of this subpart shall establish... testing under this subpart, specifically; (i) If testing heavy-duty gasoline engines, the equipment...

  11. 40 CFR 1065.710 - Gasoline.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Gasoline. 1065.710 Section 1065.710... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.710 Gasoline. (a) Gasoline for testing must have octane values that represent commercially available fuels for the...

  12. 40 CFR 1065.710 - Gasoline.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Gasoline. 1065.710 Section 1065.710... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.710 Gasoline. (a) Gasoline for testing must have octane values that represent commercially available fuels for the...

  13. 40 CFR 1065.710 - Gasoline.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Gasoline. 1065.710 Section 1065.710... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.710 Gasoline. (a) Gasoline for testing must have octane values that represent commercially available fuels for the...

  14. Experimental investigation of gasoline compression ignition combustion in a light-duty diesel engine

    NASA Astrophysics Data System (ADS)

    Loeper, C. Paul

    Due to increased ignition delay and volatility, low temperature combustion (LTC) research utilizing gasoline fuel has experienced recent interest [1-3]. These characteristics improve air-fuel mixing prior to ignition allowing for reduced emissions of nitrogen oxides (NOx) and soot (or particulate matter, PM). Computational fluid dynamics (CFD) results at the University of Wisconsin-Madison's Engine Research Center (Ra et al. [4, 5]) have validated these attributes and established baseline operating parameters for a gasoline compression ignition (GCI) concept in a light-duty diesel engine over a large load range (3-16 bar net IMEP). In addition to validating these computational results, subsequent experiments at the Engine Research Center utilizing a single cylinder research engine based on a GM 1.9-liter diesel engine have progressed fundamental understanding of gasoline autoignition processes, and established the capability of critical controlling input parameters to better control GCI operation. The focus of this thesis can be divided into three segments: 1) establishment of operating requirements in the low-load operating limit, including operation sensitivities with respect to inlet temperature, and the capabilities of injection strategy to minimize NOx emissions while maintaining good cycle-to-cycle combustion stability; 2) development of novel three-injection strategies to extend the high load limit; and 3) having developed fundamental understanding of gasoline autoignition kinetics, and how changes in physical processes (e.g. engine speed effects, inlet pressure variation, and air-fuel mixture processes) affects operation, develop operating strategies to maintain robust engine operation. Collectively, experimental results have demonstrated the ability of GCI strategies to operate over a large load-speed range (3 bar to 17.8 bar net IMEP and 1300-2500 RPM, respectively) with low emissions (NOx and PM less than 1 g/kg-FI and 0.2 g/kg-FI, respectively), and low fuel consumption (gross indicated fuel consumption <200 g/kWh). [1] Dec, J. E., Yang, Y., and Dronniou, N., 2011, "Boosted HCCI - Controlling Pressure- Rise Rates for Performance Improvements using Partial Fuel Stratification with Conventional Gasoline," SAE Int. J. Engines, 4(1), pp. 1169-1189. [2] Kalghatgi, G., Hildingsson, L., and Johansson, B., 2010, "Low NO(x) and Low Smoke Operation of a Diesel Engine Using Gasolinelike Fuels," Journal of Engineering for Gas Turbines and Power-Transactions of the Asme, 132(9), p. 9. [3] Manente, V., Zander, C.-G., Johansson, B., Tunestal, P., and Cannella, W., 2010, "An Advanced Internal Combustion Engine Concept for Low Emissions and High Efficiency from Idle to Max Load Using Gasoline Partially Premixed Combustion," SAE International, 2010-01-2198. [4] Ra, Y., Loeper, P., Reitz, R., Andrie, M., Krieger, R., Foster, D., Durrett, R., Gopalakrishnan, V., Plazas, A., Peterson, R., and Szymkowicz, P., 2011, "Study of High Speed Gasoline Direct Injection Compression Ignition (GDICI) Engine Operation in the LTC Regime," SAE Int. J. Engines, 4(1), pp. 1412-1430. [5] Ra, Y., Loeper, P., Andrie, M., Krieger, R., Foster, D., Reitz, R., and Durrett, R., 2012, "Gasoline DICI Engine Operation in the LTC Regime Using Triple- Pulse Injection," SAE Int. J. Engines, 5(3), pp. 1109-1132.

  15. Effect of ethanol-gasoline blends on small engine generator energy efficiency and exhaust emission.

    PubMed

    Lin, Wen-Yinn; Chang, Yuan-Yi; Hsieh, You-Ru

    2010-02-01

    This study was focused on fuel energy efficiency and pollution analysis of different ratios of ethanol-gasoline blended fuels (E0, E3, E6, and E9) under different loadings. In this research, the experimental system consisted of a small engine generator, a particulate matter measurement system, and an exhaust gas analyzer system. Different fuels, unleaded gasoline, and ethanol-gasoline blends (E0, E3, E6, and E9) were used to study their effects on the exhaust gas emission and were expressed as thermal efficiency of the small engine generator energy efficiency. The results suggested that particle number concentration increased as the engine loading increased; however, it decreased as the ethanol content in the blend increased. While using E6 as fuel, the carbon monoxide (CO) concentration was less than other fuels (E0, E3, and E9) for each engine loading. The average of CO concentration reduction by using E3, E6, and E9 is 42, 86, and 83%, respectively. Using an ethanol-gasoline blend led to a significant reduction in exhaust emissions by approximately 78.7, 97.5, and 89.46% of the mean average values of hydrocarbons (HCs) with E3, E6, and E9 fuels, respectively, for all engine loadings. Using an ethanol-gasoline blend led to a significant reduction in exhaust emissions by approximately 35, 86, and 77% of the mean average values of nitrogen oxides (NOx) with E3, E6, and E9 fuels, respectively, at each engine loading. The E6 fuel gave the best results of the exhaust emissions, and the E9 fuel gave the best results of the particle emissions and engine performance. The thermal efficiency of the small engine generator increased as the ethanol content in the blend increased and as the engine loading increased.

  16. 40 CFR 86.1401 - Scope; applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty... procedures for gasoline-fueled Otto-cycle light-duty vehicles, and for gasoline-fueled Otto-cycle light-duty...

  17. 40 CFR 1065.710 - Gasoline.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Gasoline. 1065.710 Section 1065.710... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.710 Gasoline. (a) This section specifies test fuel properties for gasoline with ethanol (low-level blend only) and...

  18. IRIS Toxicological Review and Summary Documents for Methyl Tert-Butyl Ether (MTBE)

    EPA Science Inventory

    MTBE is a volatile organic chemical used to oxygenate gasoline. Oxygenated gasoline improves the exhaust emissions from gasoline engines. Since 1992 it has been used to comply with the Federal Reformulated Gasoline (begun in 1995) and Wintertime Oxygenated Fuel (begun in 1992) p...

  19. Stop/Start: Driving

    Science.gov Websites

    gasoline engine does not run when the vehicle is at rest. When pulling out, the electric starter/generator the gasoline engine when pulling out from a stop and generating electricity which is stored in the

  20. Final Report: Utilizing Alternative Fuel Ignition Properties to Improve SI and CI Engine Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wooldridge, Margaret; Boehman, Andre; Lavoie, George

    Experimental and modeling studies were completed to explore leveraging physical and chemical fuel properties for improved thermal efficiency of internal combustion engines. Fundamental studies of the ignition chemistry of ethanol and iso-octane blends and constant volume spray chamber studies of gasoline and diesel sprays supported the core research effort which used several reciprocating engine platforms. Single cylinder spark ignition (SI) engine studies were carried out to characterize the impact of ethanol/gasoline, syngas (H 2 and CO)/gasoline and other oxygenate/gasoline blends on engine performance. The results of the single-cylinder engine experiments and other data from the literature were used to trainmore » a GT Power model and to develop a knock criteria based on reaction chemistry. The models were used to interpret the experimental results and project future performance. Studies were also carried out using a state of the art, direct injection (DI) turbocharged multi- cylinder engine with piezo-actuated fuel injectors to demonstrate the promising spray and spark timing strategies from single-cylinder engine studies on the multi-cylinder engine. Key outcomes and conclusions of the studies were: 1. Efficiency benefits of ethanol and gasoline fuel blends were consistent and substantial (e.g. 5-8% absolute improvement in gross indicated thermal efficiency (GITE)). 2. The best ethanol/gasoline blend (based on maximum thermal efficiency) was determined by the engine hardware and limits based on component protection (e.g. peak in-cylinder pressure or maximum turbocharger inlet temperature) – and not by knock limits. Blends with <50% ethanol delivered significant thermal efficiency gains with conventional SI hardware while maintain good safety integrity to the engine hardware. 3. Other compositions of fuel blends including syngas (H 2 and CO) and other dilution strategies provided significant efficiency gains as well (e.g. 5% absolute improvement in ITE). 4. When the combination of engine and fuel system is not knock limited, multiple fuel injection events maintain thermal efficiency while improving engine-out emissions (e.g. CO, UHC, and particulate number).« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dempsey, Adam B.; Curran, Scott; Reitz, Rolf D.

    The focus of the present paper was to characterize Reactivity Controlled Compression Ignition (RCCI) using a single-fuel approach of gasoline and gasoline mixed with a commercially available cetane improver on a multi-cylinder engine. RCCI was achieved by port-injecting a certification grade 96 research octane gasoline and direct-injecting the same gasoline mixed with various levels of a cetane improver, 2-ethylhexyl nitrate (EHN). The EHN volume percentages investigated in the direct-injected fuel were 10, 5, and 2.5%. The combustion phasing controllability and emissions of the different fueling combinations were characterized at 2300 rpm and 4.2 bar brake mean effective pressure over amore » variety of parametric investigations including direct injection timing, premixed gasoline percentage, and intake temperature. Comparisons were made to gasoline/diesel RCCI operation on the same engine platform at nominally the same operating condition. The experiments were conducted on a modern four cylinder light-duty diesel engine that was modified with a port-fuel injection system while maintaining the stock direct injection fuel system. The pistons were modified for highly premixed operation and feature an open shallow bowl design. The results indicate that the authority to control the combustion phasing through the fuel delivery strategy (e.g., direct injection timing or premixed gasoline percentage) is not a strong function of the EHN concentration in the direct-injected fuel. It was also observed that NOx emissions are a strong function of the global EHN concentration in-cylinder and the combustion phasing. Finally, in general, NOx emissions are significantly elevated for gasoline/gasoline+EHN operation compared with gasoline/diesel RCCI operation at a given operating condition.« less

  2. Comparative analysis of the Performance and Emission Characteristics of ethanol-butanol-gasoline blends

    NASA Astrophysics Data System (ADS)

    Taneja, Sumit; Singh, Perminderjit, Dr; Singh, Gurtej

    2018-02-01

    Global warming and energy security being the global problems have shifted the focus of researchers on the renewable sources of energy which could replace petroleum products partially or as a whole. Ethanol and butanol are renewable sources of energy which can be produced through fermentation of biomass. A lot of research has already been done to develop suitable ethanol-gasoline blends. In contrast very little literature available on the butanol-gasoline blends. This research focuses on the comparison of ethanol-gasoline fuels with butanol-gasoline fuels with regard to the emission and performance in an SI engine. Experiments were conducted on a variable compression ratio SI engine at 1600 rpm and compression ratio 8. The experiments involved the measurement of carbon monoxide, carbon dioxide, oxides of nitrogen and unburned hydrocarbons emission and among performance parameters brake specific fuel consumption and brake thermal efficiency were recorded at three loads of 2.5kgs (25%), 5kgs (50%) and 7.5kgs (75%). Results show that ethanol and butanol content in gasoline have decreased brake specific fuel consumption, carbon monoxide and unburned hydrocarbon emissions while the brake thermal efficiency and oxides of nitrogen are increased. Results indicate thatbutanol-gasoline blends have improved brake specific fuel consumption, carbon monoxide emissions in an SI engine as compared to ethanol-gasoline blends. The carbon dioxide emissions and brake thermal efficiencies are comparable for ethanol-gasoline blends and butanol-gasoline blends. The butanol content has a more adverse effect on emissions of oxides of nitrogen than ethanol.

  3. Hybrid: Passing

    Science.gov Websites

    accelerating or when additional power is needed, the gasoline engine and electric motor are both used to propel . The car is passing another vehicle. There are red arrows flowing from the gasoline engine to the front wheels. There are blue arrows flowing from the battery to the electric engine to the front wheels. Main

  4. Altitude Performance of Annular Combustor Type Turbojet Engine with JFC-2 Fuel /james W. Useller, James L. Harp, Jr. and Zelmar Barson

    NASA Technical Reports Server (NTRS)

    Useller, James W; Harp, James L JR; Barson, Zelmar

    1952-01-01

    An investigation was made comparing the performance of JFC-2 fuel and unleaded, clear gasoline in a 3000-pound-thrust turbojet engine. The JFC-2 fuel was a blend of percent diesel fuel and 25 percent aviation gasoline. Engine combustion efficiency was equal to that obtained with gasoline at rated engine speed and altitudes up to 35,000 feet, but at lower engine speeds or at higher altitudes the JFC-2 fuel gave lower combustion efficiency. No discernible difference was obtained in starting or low-speed combustiion blow-out characteristics of the two fuels. Turbine-discharge radial temperature profiles were nearly the same at altitudes up to 35,000 feet.

  5. 40 CFR 80.160 - Exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., automobile, engine, or component manufacturers for research, development, or test purposes, or any gasoline... such facility is associated with detergent, fuel, automotive, or engine research, development or... FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.160 Exemptions. (a) Research, development, and testing...

  6. 40 CFR 80.160 - Exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., automobile, engine, or component manufacturers for research, development, or test purposes, or any gasoline... such facility is associated with detergent, fuel, automotive, or engine research, development or... FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.160 Exemptions. (a) Research, development, and testing...

  7. 40 CFR 80.160 - Exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., automobile, engine, or component manufacturers for research, development, or test purposes, or any gasoline... such facility is associated with detergent, fuel, automotive, or engine research, development or... FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.160 Exemptions. (a) Research, development, and testing...

  8. 40 CFR 80.173 - Exemptions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., automobile, engine, or component manufacturers for research, development, or test purposes, or any gasoline... such facility is associated with detergent, fuel, automotive, or engine research, development or... FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.173 Exemptions. (a) Research, development, and testing...

  9. 40 CFR 80.173 - Exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., automobile, engine, or component manufacturers for research, development, or test purposes, or any gasoline... such facility is associated with detergent, fuel, automotive, or engine research, development or... FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.173 Exemptions. (a) Research, development, and testing...

  10. 40 CFR 80.173 - Exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., automobile, engine, or component manufacturers for research, development, or test purposes, or any gasoline... such facility is associated with detergent, fuel, automotive, or engine research, development or... FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.173 Exemptions. (a) Research, development, and testing...

  11. 40 CFR 80.160 - Exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., automobile, engine, or component manufacturers for research, development, or test purposes, or any gasoline... such facility is associated with detergent, fuel, automotive, or engine research, development or... FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.160 Exemptions. (a) Research, development, and testing...

  12. 40 CFR 80.160 - Exemptions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., automobile, engine, or component manufacturers for research, development, or test purposes, or any gasoline... such facility is associated with detergent, fuel, automotive, or engine research, development or... FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.160 Exemptions. (a) Research, development, and testing...

  13. 40 CFR 80.173 - Exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., automobile, engine, or component manufacturers for research, development, or test purposes, or any gasoline... such facility is associated with detergent, fuel, automotive, or engine research, development or... FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.173 Exemptions. (a) Research, development, and testing...

  14. 40 CFR 80.173 - Exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., automobile, engine, or component manufacturers for research, development, or test purposes, or any gasoline... such facility is associated with detergent, fuel, automotive, or engine research, development or... FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.173 Exemptions. (a) Research, development, and testing...

  15. [Effect of ethanol gasoline and unleaded gasoline on exhaust emissions of EFI vehicles with TWC].

    PubMed

    Wang, Chun-jie; Wang, Wei; Tang, Da-gang; Cui, Ping

    2004-07-01

    The injectors' flow-rate of all test vehicles that each was fixed with a three-way catalytic converter (TWC) and Electronic Fuel Injection System (EFI) was tested including before and after vehicles operated on unleaded and ethanol gasoline respectively running for a long time on real road. The three main engine-out exhaust emissions (HC, CO and NOx) from vehicles operating on different fuels were also analyzed by exhaust testing procedure for the whole light-duty vehicle. Test results showed that comparing with unleaded gasoline and ethanol gasoline has a remarkable effect on decreasing engine-out exhaust emissions of CO and HC (both at about ten percent) and the exhaust emissions of CO, HC and NOx from vehicles with TWC respectively. When burning with unleaded gasoline the three main pollutants from vehicles with TWC have already or nearly reached Europe Exhaust First Standard, after changing to ethanol gasoline CO has drastically decreased at about thirty percent, while HC and NOx decreased at about eighteen and ten percent respectively, at this time which they were all above Europe Exhaust Standard First or nearly reached Europe Exhaust Second Standard; ethanol gasoline has also other better performance such as a slight cleaning function on injectors, a slower deteriorative trend of engine-out CO and HC and a longer operating life-span of TWC.

  16. 40 CFR 80.1651 - Product transfer document requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., “This gasoline is for use in vehicles, engines, or equipment under an EPA-approved national security exemption only.” (2) For gasoline with a research, development, or testing exemption under § 80.1656, “This gasoline is for research, development, or testing purposes only.” (3) For gasoline for use in American...

  17. A study on emission characteristics of an EFI engine with ethanol blended gasoline fuels

    NASA Astrophysics Data System (ADS)

    He, Bang-Quan; Wang, Jian-Xin; Hao, Ji-Ming; Yan, Xiao-Guang; Xiao, Jian-Hua

    The effect of ethanol blended gasoline fuels on emissions and catalyst conversion efficiencies was investigated in a spark ignition engine with an electronic fuel injection (EFI) system. The addition of ethanol to gasoline fuel enhances the octane number of the blended fuels and changes distillation temperature. Ethanol can decrease engine-out regulated emissions. The fuel containing 30% ethanol by volume can drastically reduce engine-out total hydrocarbon emissions (THC) at operating conditions and engine-out THC, CO and NO x emissions at idle speed, but unburned ethanol and acetaldehyde emissions increase. Pt/Rh based three-way catalysts are effective in reducing acetaldehyde emissions, but the conversion of unburned ethanol is low. Tailpipe emissions of THC, CO and NO x have close relation to engine-out emissions, catalyst conversion efficiency, engine's speed and load, air/fuel equivalence ratio. Moreover, the blended fuels can decrease brake specific energy consumption.

  18. Virtual modelling of components of a production system as the tool of lean engineering

    NASA Astrophysics Data System (ADS)

    Monica, Z.

    2015-11-01

    Between the most effective techniques of manufacturing management is considered the Lean Engineering. The term “lean engineering” was created by Japanese manufacturers. The high efficiency of this method resulted in a meaningful growth in concern in the philosophy of Lean among European companies, and consequently the use of its European markets. Lean philosophy is an approach to manufacturing to minimize the use of all resources, including time. These are resources that are used in the company for a variety of activities. This implies, first identify and then eliminate activities which does not generate added value in the field of design, manufacturing, supply chain management, and customer relations. The producers of these principles not only employ teams multi-professional employees at all levels of the organization, but also use a more automated machines to produce large quantities of products with a high degree of diversity. Lean Engineering is to use a number of principles and practical guidelines that allow you to reduce costs by eliminating absolute extravagance, and also simplification of all manufacturing processes and maintenance. Nowadays it could be applied the powerful engineering programs to realize the concept of Lean Engineering. They could be described using the term CAD/CAM/CAE. They consist of completely different packages for both the design of elements, as well process design. Their common feature is generally considered with their application area. They are used for computer programs assisting the design, development and manufacturing phases of a manufacturing process. The idea of the presented work is to use the Siemens NX software for aiding the process of Lean Engineering system creating. The investigated system is a robotized workcell. In the NX system are created the components of the designed workcell such as machine tools, as industrial robot, as conveyors and buffers. The system let to functionally link these components to simulate the work process and to introduce the rules of Lean Engineering. The purpose is also to determine the rules of Lean designing in such advanced design and simulation environments.

  19. Lean, premixed, prevaporized combustion for aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Mularz, E. J.

    1979-01-01

    The application of lean, premixed, prevaporized combustion to aircraft turbine engine systems can result in benefits in terms of superior combustion performance, improved combustor and turbine durability, and environmentally acceptable pollutant emissions. Lean, premixed prevaporized combustion is particularly attractive for reducing the oxides of nitrogen emissions during high altitude cruise. The NASA stratospheric cruise emission reduction program will evolve and demonstrate lean, premixed, prevaporized combustion technology for aircraft engines. This multiphased program is described. In addition, the various elements of the fundamental studies phase of the program are reviewed, and results to date of many of these studies are summarized.

  20. LPG gaseous phase electronic port injection on performance, emission and combustion characteristics of Lean Burn SI Engine

    NASA Astrophysics Data System (ADS)

    Bhasker J, Pradeep; E, Porpatham

    2016-08-01

    Gaseous fuels have always been established as an assuring way to lessen emissions in Spark Ignition engines. In particular, LPG resolved to be an affirmative fuel for SI engines because of their efficient combustion properties, lower emissions and higher knock resistance. This paper investigates performance, emission and combustion characteristics of a microcontroller based electronic LPG gaseous phase port injection system. Experiments were carried out in a single cylinder diesel engine altered to behave as SI engine with LPG as fuel at a compression ratio of 10.5:1. The engine was regulated at 1500 rpm at a throttle position of 20% at diverse equivalence ratios. The test results were compared with that of the carburetion system. The results showed that there was an increase in brake power output and brake thermal efficiency with LPG gas phase injection. There was an appreciable extension in the lean limit of operation and maximum brake power output under lean conditions. LPG injection technique significantly reduces hydrocarbon and carbon monoxide emissions. Also, it extremely enhances the rate of combustion and helps in extending the lean limit of LPG. There was a minimal increase of NOx emissions over the lean operating range due to higher temperature. On the whole it is concluded that port injection of LPG is best suitable in terms of performance and emission for LPG fuelled lean burn SI engine.

  1. Final Rule for Amendment to Emission Requirements Applicable to New Gasoline Spark-Ignition Marine Engines

    EPA Pesticide Factsheets

    This rulemaking amends the regulations applicable to new gasoline spark-ignition marine engines to address an oversight regarding the production line testing program in the final regulations published on October 4, 1996, (61 FR 52087).

  2. A life-cycle comparison of alternative automobile fuels.

    PubMed

    MacLean, H L; Lave, L B; Lankey, R; Joshi, S

    2000-10-01

    We examine the life cycles of gasoline, diesel, compressed natural gas (CNG), and ethanol (C2H5OH)-fueled internal combustion engine (ICE) automobiles. Port and direct injection and spark and compression ignition engines are examined. We investigate diesel fuel from both petroleum and biosources as well as C2H5OH from corn, herbaceous bio-mass, and woody biomass. The baseline vehicle is a gasoline-fueled 1998 Ford Taurus. We optimize the other fuel/powertrain combinations for each specific fuel as a part of making the vehicles comparable to the baseline in terms of range, emissions level, and vehicle lifetime. Life-cycle calculations are done using the economic input-output life-cycle analysis (EIO-LCA) software; fuel cycles and vehicle end-of-life stages are based on published model results. We find that recent advances in gasoline vehicles, the low petroleum price, and the extensive gasoline infrastructure make it difficult for any alternative fuel to become commercially viable. The most attractive alternative fuel is compressed natural gas because it is less expensive than gasoline, has lower regulated pollutant and toxics emissions, produces less greenhouse gas (GHG) emissions, and is available in North America in large quantities. However, the bulk and weight of gas storage cylinders required for the vehicle to attain a range comparable to that of gasoline vehicles necessitates a redesign of the engine and chassis. Additional natural gas transportation and distribution infrastructure is required for large-scale use of natural gas for transportation. Diesel engines are extremely attractive in terms of energy efficiency, but expert judgment is divided on whether these engines will be able to meet strict emissions standards, even with reformulated fuel. The attractiveness of direct injection engines depends on their being able to meet strict emissions standards without losing their greater efficiency. Biofuels offer lower GHG emissions, are sustainable, and reduce the demand for imported fuels. Fuels from food sources, such as biodiesel from soybeans and C2H5OH from corn, can be attractive only if the co-products are in high demand and if the fuel production does not diminish the food supply. C2H5OH from herbaceous or woody biomass could replace the gasoline burned in the light-duty fleet while supplying electricity as a co-product. While it costs more than gasoline, bioethanol would be attractive if the price of gasoline doubled, if significant reductions in GHG emissions were required, or if fuel economy regulations for gasoline vehicles were tightened.

  3. A Life-Cycle Comparison of Alternative Automobile Fuels.

    PubMed

    MacLean, Heather L; Lave, Lester B; Lankey, Rebecca; Joshi, Satish

    2000-10-01

    We examine the life cycles of gasoline, diesel, compressed natural gas (CNG), and ethanol (C 2 H 5 OH)-fueled internal combustion engine (ICE) automobiles. Port and direct injection and spark and compression ignition engines are examined. We investigate diesel fuel from both petroleum and biosources as well as C 2 H 5 OH from corn, herbaceous bio-mass, and woody biomass. The baseline vehicle is a gasoline-fueled 1998 Ford Taurus. We optimize the other fuel/powertrain combinations for each specific fuel as a part of making the vehicles comparable to the baseline in terms of range, emissions level, and vehicle lifetime. Life-cycle calculations are done using the economic input-output life-cycle analysis (EIO-LCA) software; fuel cycles and vehicle end-of-life stages are based on published model results. We find that recent advances in gasoline vehicles, the low petroleum price, and the extensive gasoline infrastructure make it difficult for any alternative fuel to become commercially viable. The most attractive alternative fuel is compressed natural gas because it is less expensive than gasoline, has lower regulated pollutant and toxics emissions, produces less greenhouse gas (GHG) emissions, and is available in North America in large quantities. However, the bulk and weight of gas storage cylinders required for the vehicle to attain a range comparable to that of gasoline vehicles necessitates a redesign of the engine and chassis. Additional natural gas transportation and distribution infrastructure is required for large-scale use of natural gas for transportation. Diesel engines are extremely attractive in terms of energy efficiency, but expert judgment is divided on whether these engines will be able to meet strict emissions standards, even with reformulated fuel. The attractiveness of direct injection engines depends on their being able to meet strict emissions standards without losing their greater efficiency. Biofuels offer lower GHG emissions, are sustainable, and reduce the demand for imported fuels. Fuels from food sources, such as biodiesel from soybeans and C 2 H 5 OH from corn, can be attractive only if the co-products are in high demand and if the fuel production does not diminish the food supply. C 2 H 5 OH from herbaceous or woody biomass could replace the gasoline burned in the light-duty fleet while supplying electricity as a co-product. While it costs more than gasoline, bioethanol would be attractive if the price of gasoline doubled, if significant reductions in GHG emissions were required, or if fuel economy regulations for gasoline vehicles were tightened.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Splitter, Derek A; Szybist, James P

    The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in mid-level alcohol-gasoline blends with 24% vol./vol. iso-butanol-gasoline (IB24) and 30% vol./vol. ethanol-gasoline (E30). A single-cylinder research engine is used with a low and high compression ratio of 9.2:1 and 11.85:1 respectively. The engine is equipped with hydraulically actuated valves, laboratory intake air, and is capable of external exhaust gas recirculation (EGR). All fuels are operated to full-load conditions with =1, using both 0% and 15% external cooled EGR. The results demonstrate that higher octane number bio-fuels better utilize higher compression ratios withmore » high stoichiometric torque capability. Specifically, the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with the 11.85:1 compression ratio using E30 as compared to 87 AKI, up to 20 bar IMEPg at =1 (with 15% EGR, 18.5 bar with 0% EGR). EGR was shown to provide thermodynamic advantages with all fuels. The results demonstrate that E30 may further the downsizing and downspeeding of engines by achieving increased low speed torque, even with high compression ratios. The results suggest that at mid-level alcohol-gasoline blends, engine and vehicle optimization can offset the reduced fuel energy content of alcohol-gasoline blends, and likely reduce vehicle fuel consumption and tailpipe CO2 emissions.« less

  5. Understanding fuel anti-knock performances in modern SI engines using fundamental HCCI experiments

    DOE PAGES

    Yang, Yi; Dec, John E.; Sjoberg, Magnus; ...

    2015-08-19

    Modern spark-ignition (SI) engine technologies have considerably changed in-cylinder conditions under which fuel autoignition and engine knock take place. In this paper, fundamental HCCI engine experiments are proposed as a means for characterizing the impact of these technologies on the knock propensity of different fuels. In particular, the impacts of turbocharging, direct injection (DI), and downspeeding on operation with ethanol and gasoline are investigated to demonstrate this approach. Results reported earlier for ethanol and gasoline on HCCI combustion are revisited with the new perspective of how their autoignition characteristics fit into the anti-knock requirement in modern SI engines. For example,more » the weak sensitivity to pressure boost demonstrated by ethanol in HCCI autoignition can be used to explain the strong knock resistance of ethanol fuels for turbocharged SI engines. Further, ethanol's high sensitivity to charge temperature makes charge cooling, which can be produced by fuel vaporization via direct injection or by piston expansion via spark-timing retard, very effective for inhibiting knock. On the other hand, gasoline autoignition shows a higher sensitivity to pressure, so only very low pressure boost can be applied before knock occurs. Gasoline also demonstrates low temperature sensitivity, so it is unable to make as effective use of the charge cooling produced by fuel vaporization or spark retard. These arguments comprehensively explain literature results on ethanol's substantially better anti-knock performance over gasoline in modern turbocharged DISI engines. Fundamental HCCI experiments such as these can thus be used as a diagnostic and predictive tool for knock-limited SI engine performance for various fuels. As a result, examples are presented where HCCI experiments are used to identify biofuel compounds with good potential for modern SI-engine applications.« less

  6. Characterization of Hydrocarbon Emissions from Gasoline Direct-Injection Compression Ignition Engine Operating on a Higher Reactivity Gasoline Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storey, John; Lewis, Samuel; Moses-DeBusk, Melanie

    Low temperature combustion engine technologies are being investigated for high efficiency and low emissions. However, such engine technologies often produce higher engine-out hydrocarbon (HC) and carbon monoxide (CO) emissions, and their operating range is limited by the fuel properties. In this study, two different fuels, a US market gasoline containing 10% ethanol (RON 92 E10) and a higher reactivity gasoline (RON 80 E0), were compared on a Delphi’s second generation Gasoline Direct-Injection Compression Ignition (Gen 2.0 GDCI) multi-cylinder engine. The engine was evaluated at three operating points ranging from a light load condition (800 rpm/2 bar IMEP g) to mediummore » load conditions (1500 rpm/6 bar and 2000 rpm/10 bar IMEP g). The engine was equipped with two oxidation catalysts, between which was located the exhaust gas recirculation (EGR) inlet. Samples were taken at engine-out, between the catalysts, and at tailpipe locations. In addition, part of the raw exhaust was diluted and sampled for HC speciation. Canisters and sorbent membranes were used to collect volatile HCs and semi-volatile HCs, respectively. Di-nitrophenyl hydrazine (DNPH) cartridges were also used for collecting oxygenated species. Results showed overall lower HC emissions with the RON 80 E0 fuel compared to the RON 92 E10 fuel. For both fuels, the percentage of aromatic HCs was higher in the exhaust than in the fuels themselves. High engine-out aldehyde and ketone emissions were observed for both fuels. The reported HC speciation information can be useful for the development of a robust emission control system.« less

  7. Characterization of Hydrocarbon Emissions from Gasoline Direct-Injection Compression Ignition Engine Operating on a Higher Reactivity Gasoline Fuel

    DOE PAGES

    Storey, John; Lewis, Samuel; Moses-DeBusk, Melanie; ...

    2017-02-05

    Low temperature combustion engine technologies are being investigated for high efficiency and low emissions. However, such engine technologies often produce higher engine-out hydrocarbon (HC) and carbon monoxide (CO) emissions, and their operating range is limited by the fuel properties. In this study, two different fuels, a US market gasoline containing 10% ethanol (RON 92 E10) and a higher reactivity gasoline (RON 80 E0), were compared on a Delphi’s second generation Gasoline Direct-Injection Compression Ignition (Gen 2.0 GDCI) multi-cylinder engine. The engine was evaluated at three operating points ranging from a light load condition (800 rpm/2 bar IMEP g) to mediummore » load conditions (1500 rpm/6 bar and 2000 rpm/10 bar IMEP g). The engine was equipped with two oxidation catalysts, between which was located the exhaust gas recirculation (EGR) inlet. Samples were taken at engine-out, between the catalysts, and at tailpipe locations. In addition, part of the raw exhaust was diluted and sampled for HC speciation. Canisters and sorbent membranes were used to collect volatile HCs and semi-volatile HCs, respectively. Di-nitrophenyl hydrazine (DNPH) cartridges were also used for collecting oxygenated species. Results showed overall lower HC emissions with the RON 80 E0 fuel compared to the RON 92 E10 fuel. For both fuels, the percentage of aromatic HCs was higher in the exhaust than in the fuels themselves. High engine-out aldehyde and ketone emissions were observed for both fuels. The reported HC speciation information can be useful for the development of a robust emission control system.« less

  8. Cloud Forming Potential of Aerosol from Light-duty Gasoline Direct Injection Vehicles

    DOT National Transportation Integrated Search

    2017-12-01

    In this study, we evaluate the hygroscopicity and droplet kinetics of fresh and aged emissions from new generation gasoline direct injector engines retrofitted with a gasoline particulate filter (GPF). Furthermore, ageing and subsequent secondary aer...

  9. New potentials for conventional aircraft when powered by hydrogen-enriched gasoline

    NASA Technical Reports Server (NTRS)

    Menard, W. A.; Moynihan, P. I.; Rupe, J. H.

    1976-01-01

    Hydrogen enrichment for aircraft piston engines is under study in a new NASA program. The objective of the program is to determine the feasibility of inflight injection of hydrogen in general aviation aircraft engines to reduce fuel consumption and to lower emission levels. A catalytic hydrogen generator will be incorporated as part of the air induction system of a Lycoming turbocharged engine and will generate hydrogen by breaking down small amounts of the aviation gasoline used in the normal propulsion system. This hydrogen will then be mixed with gasoline and compressed air from the turbocharger before entering the engine combustion chamber. The special properties of the hydrogen-enriched gasoline allow the engine to operate at ultralean fuel/air ratios, resulting in higher efficiencies and hence less fuel consumption. This paper summarizes the results of a systems analysis study. Calculations assuming a Beech Duke aircraft indicate that fuel savings on the order of 20% are possible. An estimate of the potential for the utilization of hydrogen enrichment to control exhaust emissions indicates that it may be possible to meet the 1979 Federal emission standards.

  10. Effects of Biofuel and Variant Ambient Pressure on FlameDevelopment and Emissions of Gasoline Engine.

    NASA Astrophysics Data System (ADS)

    Hashim, Akasha; Khalid, Amir; Sapit, Azwan; Samsudin, Dahrum

    2016-11-01

    There are many technologies about exhaust emissions reduction for wide variety of spark ignition (SI) engine have been considered as the improvement throughout the combustion process. The stricter on legislation of emission and demands of lower fuel consumption needs to be priority in order to satisfy the demand of emission quality. Besides, alternative fuel such as methanol-gasoline blends is used as working fluid in this study due to its higher octane number and self-sustain concept which capable to contribute positive effect to the combustion process. The purpose of this study is to investigate the effects of methanol-gasoline fuel with different blending ratio and variant ambient pressures on flame development and emission for gasoline engine. An experimental study is carried towards to the flame development of methanol-gasoline fuel in a constant volume chamber. Schlieren optical visualization technique is a visual process that used when high sensitivity is required to photograph the flow of fluids of varying density used for captured the combustion images in the constant volume chamber and analysed through image processing technique. Apart from that, the result showed combustion burn rate increased when the percentage of methanol content in gasoline increased. Thus, high percentage of methanol-gasoline blends gave greater flame development area. Moreover, the emissions of CO, NOX and HC are performed a reduction when the percentage of methanol content in gasoline is increased. Contrarily, the emission of Carbon dioxide, CO2 is increased due to the combustion process is enhanced.

  11. 40 CFR 60.4235 - What fuel requirements must I meet if I am an owner or operator of a stationary SI gasoline fired...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... am an owner or operator of a stationary SI gasoline fired internal combustion engine subject to this... Stationary Spark Ignition Internal Combustion Engines Other Requirements for Owners and Operators § 60.4235... internal combustion engine subject to this subpart? Owners and operators of stationary SI ICE subject to...

  12. 40 CFR 60.4235 - What fuel requirements must I meet if I am an owner or operator of a stationary SI gasoline fired...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... am an owner or operator of a stationary SI gasoline fired internal combustion engine subject to this... Stationary Spark Ignition Internal Combustion Engines Other Requirements for Owners and Operators § 60.4235... internal combustion engine subject to this subpart? Owners and operators of stationary SI ICE subject to...

  13. 40 CFR 60.4235 - What fuel requirements must I meet if I am an owner or operator of a stationary SI gasoline fired...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... am an owner or operator of a stationary SI gasoline fired internal combustion engine subject to this... Stationary Spark Ignition Internal Combustion Engines Other Requirements for Owners and Operators § 60.4235... internal combustion engine subject to this subpart? Owners and operators of stationary SI ICE subject to...

  14. 40 CFR 60.4235 - What fuel requirements must I meet if I am an owner or operator of a stationary SI gasoline fired...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... am an owner or operator of a stationary SI gasoline fired internal combustion engine subject to this... Stationary Spark Ignition Internal Combustion Engines Other Requirements for Owners and Operators § 60.4235... internal combustion engine subject to this subpart? Owners and operators of stationary SI ICE subject to...

  15. 40 CFR 60.4235 - What fuel requirements must I meet if I am an owner or operator of a stationary SI gasoline fired...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... am an owner or operator of a stationary SI gasoline fired internal combustion engine subject to this... Stationary Spark Ignition Internal Combustion Engines Other Requirements for Owners and Operators § 60.4235... internal combustion engine subject to this subpart? Owners and operators of stationary SI ICE subject to...

  16. Hybrid: Overview

    Science.gov Websites

    electric motor provides additional power when needed, such as for accelerating and passing. This allows a at an intersection. Electric Motor: The electric motor assists the gasoline engine when additional braking into electricity and stores it in the battery. It also starts the gasoline engine instantly when

  17. 40 CFR 86.1101-87 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for Gasoline-Fueled and Diesel Heavy-Duty Engines and Heavy-Duty Vehicles, Including Light-Duty Trucks... year gasoline-fueled and diesel heavy-duty engines and heavy-duty vehicles. These vehicles include... heavy-duty vehicles under the provisions of subpart S of this part. [65 FR 59957, Oct. 6, 2000] ...

  18. Effect of anhydrous ethanol/gasoline blends on performance and exhaust emissions of spark-ignited non-road engines.

    PubMed

    Ribeiro, Camilo Bastos; Martins, Kelly Geronazzo; Gueri, Matheus Vitor Diniz; Pavanello, Guilherme Pozzobom; Schirmer, Waldir Nagel

    2018-06-12

    Ethanol is a renewable fuel and it is considered an alternative to gasoline in Otto-cycle engines. The present study evaluated the behavior of exhaustion gas carbon monoxide (CO) and total hydrocarbons (THC) according to the levels of anhydrous ethyl alcohol (AEA) added to gasoline in different proportions (E0, E10, E20, E27, that is, pure gasoline and its blends with AEA at 10, 20, and 27% v/v) in the use of non-road single cylinder engines of different powers (13 and 6.5 hp), to the loads applied to engine-generators and the air-fuel ratio (A/F) admitted to the engine cylinders. Also, the performance of engine-generators was verified in terms of mass, specific and energetic consumption and efficiency of the evaluated systems for the same blends and loads. The results showed that an increase in the AEA content in the blend resulted in significant drops in CO and THC concentrations for both engine-generators, while fuel consumption showed a slight upward trend; the increases in applied loads resulted in an increase in CO and THC concentrations and fuel consumption. In general, a higher AEA content (oxygenated) in the blends had a greater effect on gaseous emissions compared to the effect on consumption and system efficiency.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yi; Dec, John E.; Sjoberg, Magnus

    Modern spark-ignition (SI) engine technologies have considerably changed in-cylinder conditions under which fuel autoignition and engine knock take place. In this paper, fundamental HCCI engine experiments are proposed as a means for characterizing the impact of these technologies on the knock propensity of different fuels. In particular, the impacts of turbocharging, direct injection (DI), and downspeeding on operation with ethanol and gasoline are investigated to demonstrate this approach. Results reported earlier for ethanol and gasoline on HCCI combustion are revisited with the new perspective of how their autoignition characteristics fit into the anti-knock requirement in modern SI engines. For example,more » the weak sensitivity to pressure boost demonstrated by ethanol in HCCI autoignition can be used to explain the strong knock resistance of ethanol fuels for turbocharged SI engines. Further, ethanol's high sensitivity to charge temperature makes charge cooling, which can be produced by fuel vaporization via direct injection or by piston expansion via spark-timing retard, very effective for inhibiting knock. On the other hand, gasoline autoignition shows a higher sensitivity to pressure, so only very low pressure boost can be applied before knock occurs. Gasoline also demonstrates low temperature sensitivity, so it is unable to make as effective use of the charge cooling produced by fuel vaporization or spark retard. These arguments comprehensively explain literature results on ethanol's substantially better anti-knock performance over gasoline in modern turbocharged DISI engines. Fundamental HCCI experiments such as these can thus be used as a diagnostic and predictive tool for knock-limited SI engine performance for various fuels. As a result, examples are presented where HCCI experiments are used to identify biofuel compounds with good potential for modern SI-engine applications.« less

  20. DRIVE CYCLE EFFICIENCY AND EMISSIONS ESTIMATES FOR REACTIVITY CONTROLLED COMPRESSION IGNITION IN A MULTI-CYLINDER LIGHT-DUTY DIESEL ENGINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curran, Scott; Briggs, Thomas E; Cho, Kukwon

    2011-01-01

    In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the usemore » of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to carry out RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing and pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NOx and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. Brake thermal efficiency was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes.« less

  1. Gasoline Engine Mechanics. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Jones, Marion

    Several intermediate performance objectives and corresponding criterion measures are listed for each of six terminal objectives presented in this curriculum guide for an intermediate gasoline engine mechanics course at the secondary level. (For the beginning course guide see CE 010 947.) The materials were developed for a two-semester (2 hour…

  2. Basic Gasoline Engine Mechanics. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This packet contains a program guide and Career Merit Achievement Plan (Career MAP) for the implementation of a basic gasoline engine mechanics program in Florida secondary and postsecondary schools. The program guide describes the program content and structure, provides a program description, lists job titles under the program, and includes a…

  3. Speciation Profiles and Toxic Emission Factors for Nonroad Engines: DRAFT REPORT

    EPA Science Inventory

    This document details the research and development behind how MOVES2014a estimates air toxic emissions for nonroad engines and equipment run on conventional gasoline without ethanol (E0) and gasoline blended with 10% ethanol (E10) as well as diesel fuel, compressed natural gas (C...

  4. Stop/Start: Driving

    Science.gov Websites

    /generator visible. The car is moving. There are purple arrows flowing from the gasoline engine to the electric starter/generator. There are red arrows flowing from the gasoline engine to the front wheels . There are blue arrows flowing from the electric starter/generator to the battery. Main stage: See

  5. Toxicity and mutagenicity of exhaust from compressed natural gas: Could this be a clean solution for megacities with mixed-traffic conditions?

    PubMed

    Agarwal, Avinash K; Ateeq, Bushra; Gupta, Tarun; Singh, Akhilendra P; Pandey, Swaroop K; Sharma, Nikhil; Agarwal, Rashmi A; Gupta, Neeraj K; Sharma, Hemant; Jain, Ayush; Shukla, Pravesh C

    2018-08-01

    Despite intensive research carried out on particulates, correlation between engine-out particulate emissions and adverse health effects is not well understood yet. Particulate emissions hold enormous significance for mega-cities like Delhi that have immense traffic diversity. Entire public transportation system involving taxis, three-wheelers, and buses has been switched from conventional liquid fuels to compressed natural gas (CNG) in the Mega-city of Delhi. In this study, the particulate characterization was carried out on variety of engines including three diesel engines complying with Euro-II, Euro-III and Euro-IV emission norms, one Euro-II gasoline engine and one Euro-IV CNG engine. Physical, chemical and biological characterizations of particulates were performed to assess the particulate toxicity. The mutagenic potential of particulate samples was investigated at different concentrations using two different Salmonella strains, TA98 and TA100 in presence and absence of liver S9 metabolic enzyme fraction. Particulates emitted from diesel and gasoline engines showed higher mutagenicity, while those from CNG engine showed negligible mutagenicity compared to other test fuels and engine configurations. Polycyclic aromatic hydrocarbons (PAHs) adsorbed onto CNG engine particulates were also relatively fewer compared to those from equivalent diesel and gasoline engines. Taken together, our findings indicate that CNG is comparatively safer fuel compared to diesel and gasoline and can offer a cleaner transport energy solution for mega-cities with mixed-traffic conditions, especially in developing countries. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Large eddy simulation and experimental study on vented gasoline-air mixture explosions in a semi-confined obstructed pipe.

    PubMed

    Li, Guoqing; Du, Yang; Wang, Shimao; Qi, Sheng; Zhang, Peili; Chen, Wenzhuo

    2017-10-05

    In this work, LES simulation coupled with a TFC sub-grid combustion model has been performed in a semi-confined pipe (L/D=10, V=10L) in the presence of four hollow-square obstacles (BR=49.8%) with circular hollow cross-section, in order to study the premixed gasoline-air mixture explosions. The comparisons between simulated results and experimental results have been conducted. It was found that the simulated results were in good agreement with experimental data in terms of flame structures, flame locations and overpressure time histories. Moreover, the interaction between flame propagation process and obstacles, overpressure dynamics were analyzed. In addition, the effects of initial gasoline vapor concentration (lean (ϕ=1.3%), stoichiometric (ϕ=1.7%) and rich (ϕ=2.1%)), and the number of obstacles (from 1 to 4) were also investigated by experiments. Some of the experimental results have been compared with the literature data. It is found that the explosion parameters of gasoline-air mixtures (e.g. the maximum overpressure peaks, average overpressure growth rates, etc.) are different from some other fuels such as hydrogen, methane and LPG, etc. Copyright © 2017. Published by Elsevier B.V.

  7. Effect of cooled EGR on performance and exhaust gas emissions in EFI spark ignition engine fueled by gasoline and wet methanol blends

    NASA Astrophysics Data System (ADS)

    Rohadi, Heru; Syaiful, Bae, Myung-Whan

    2016-06-01

    Fuel needs, especially the transport sector is still dominated by fossil fuels which are non-renewable. However, oil reserves are very limited. Furthermore, the hazardous components produced by internal combustion engine forces many researchers to consider with alternative fuel which is environmental friendly and renewable sources. Therefore, this study intends to investigate the impact of cooled EGR on the performance and exhaust gas emissions in the gasoline engine fueled by gasoline and wet methanol blends. The percentage of wet methanol blended with gasoline is in the range of 5 to 15% in a volume base. The experiment was performed at the variation of engine speeds from 2500 to 4000 rpm with 500 intervals. The re-circulated exhaust gasses into combustion chamber was 5%. The experiment was performed at the constant engine speed. The results show that the use of cooled EGR with wet methanol of 10% increases the brake torque up to 21.3%. The brake thermal efficiency increases approximately 39.6% using cooled EGR in the case of the engine fueled by 15% wet methanol. Brake specific fuel consumption for the engine using EGR fueled by 10% wet methanol decreases up to 23% at the engine speed of 2500 rpm. The reduction of CO, O2 and HC emissions was found, while CO2 increases.

  8. Improving the fuel economy of stoichiometrically fueled S.I. engines by means of EGR and enhanced ignition -- A comparison of gasoline, methanol and natural gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neame, G.R.; Gardiner, D.P.; Mallory, R.W.

    1995-12-31

    This paper describes an experimental study in which the potential for fuel economy improvements with EGR was investigated using an automotive V6 engine. Steady state engine dynamometer tests were run at 2,000 rpm and 200 kPa Brake Mean Effective Pressure (BMEP). The engine was fueled with gasoline, methanol or natural gas. Plasma jet ignition was evaluated as a means of improving EGR tolerance. EGR tolerance with methanol was found to be better than with gasoline, while natural gas showed the poorest EGR tolerance. Plasma jet ignition extended EGR limits for all three fuels. Fuel economy benefits were realized with naturalmore » gas and gasoline at low EGR rates and without EGR but plasma jet ignition provided no improvements with methanol until over 10% EGR was used. Plasma jet ignition made stable operation possible with methanol at 40% EGR, where fuel economy improvements were ultimately limited by the slow burning associated with the high EGR rate. Both slow burning and high cyclic variation affected gasoline at high EGR rates, while stability limits to spark advance with natural gas caused fuel economy to degrade at relatively low EGR rates.« less

  9. Primary gas- and particle-phase emissions and secondary organic aerosol production from gasoline and diesel off-road engines.

    PubMed

    Gordon, Timothy D; Tkacik, Daniel S; Presto, Albert A; Zhang, Mang; Jathar, Shantanu H; Nguyen, Ngoc T; Massetti, John; Truong, Tin; Cicero-Fernandez, Pablo; Maddox, Christine; Rieger, Paul; Chattopadhyay, Sulekha; Maldonado, Hector; Maricq, M Matti; Robinson, Allen L

    2013-12-17

    Dilution and smog chamber experiments were performed to characterize the primary emissions and secondary organic aerosol (SOA) formation from gasoline and diesel small off-road engines (SOREs). These engines are high emitters of primary gas- and particle-phase pollutants relative to their fuel consumption. Two- and 4-stroke gasoline SOREs emit much more (up to 3 orders of magnitude more) nonmethane organic gases (NMOGs), primary PM and organic carbon than newer on-road gasoline vehicles (per kg of fuel burned). The primary emissions from a diesel transportation refrigeration unit were similar to those of older, uncontrolled diesel engines used in on-road vehicles (e.g., premodel year 2007 heavy-duty diesel trucks). Two-strokes emitted the largest fractional (and absolute) amount of SOA precursors compared to diesel and 4-stroke gasoline SOREs; however, 35-80% of the NMOG emissions from the engines could not be speciated using traditional gas chromatography or high-performance liquid chromatography. After 3 h of photo-oxidation in a smog chamber, dilute emissions from both 2- and 4-stroke gasoline SOREs produced large amounts of semivolatile SOA. The effective SOA yield (defined as the ratio of SOA mass to estimated mass of reacted precursors) was 2-4% for 2- and 4-stroke SOREs, which is comparable to yields from dilute exhaust from older passenger cars and unburned gasoline. This suggests that much of the SOA production was due to unburned fuel and/or lubrication oil. The total PM contribution of different mobile source categories to the ambient PM burden was calculated by combining primary emission, SOA production and fuel consumption data. Relative to their fuel consumption, SOREs are disproportionately high total PM sources; however, the vastly greater fuel consumption of on-road vehicles renders them (on-road vehicles) the dominant mobile source of ambient PM in the Los Angeles area.

  10. Multiple fuel supply system for an internal combustion engine

    DOEpatents

    Crothers, William T.

    1977-01-01

    A multiple fuel supply or an internal combustion engine wherein phase separation of components is deliberately induced. The resulting separation permits the use of a single fuel tank to supply components of either or both phases to the engine. Specifically, phase separation of a gasoline/methanol blend is induced by the addition of a minor amount of water sufficient to guarantee separation into an upper gasoline phase and a lower methanol/water phase. A single fuel tank holds the two-phase liquid with separate fuel pickups and separate level indicators for each phase. Either gasoline or methanol, or both, can be supplied to the engine as required by predetermined parameters. A fuel supply system for a phase-separated multiple fuel supply contained in a single fuel tank is described.

  11. Performance and emission analysis of single cylinder SI engine using bioethanol-gasoline blend produced from Salvinia Molesta

    NASA Astrophysics Data System (ADS)

    Gupta, Priyank; Protim Das, Partha; Mubarak, M.; Shaija, A.

    2018-01-01

    Rapid depletion of world’s crude oil reserve, rising global energy demand and concerns about greenhouse gases emission have led to the high-level interest in biofuels. The biofuel, bioethanol is found as an alternative fuel for SI engines as it has similar properties those of gasoline. Higher areal productivity with fast growth rate of microalgae and aquatic weeds makes them promising alternative feedstocks for bioethanol production. In this study, bioethanol produced from S.molesta (aquatic weed) using combined pre-treatment and hydrolysis followed by fermentation with yeast was used to make bioethanol-gasoline blend. The quantity of bioethanol produced from S.molesta was 99.12% pure. The physical properties such as density and heating value of bioethanol were 792.2 kg/m3 and 26.12 MJ/kg, respectively. In this work, the effects of bioethanol-gasoline (E5) fuel blends on the performance and combustion characteristics of a spark ignition (SI) engine were investigated. In the experiments, a single-cylinder, four-stroke SI engine was used. The tests were performed using electric dynamometer while running the engine at the speed (3200 rpm), and seven different load (0, 0.5, 1, 1.5, 2, 2.5 and 3 kW). The results obtained from the use of bioethanol-gasoline fuel blends were compared to those of gasoline fuel. The test results showed an increase of 0.3% in brake thermal efficiency for E5. From the emission analysis, reduced emissions of 39 ppm unburned hydrocarbon, 1.55% carbon monoxide and 2% smoke opacity, respectively was observed with E5 at full load. An increase in CO2 by 0.17% and NOx by 86.7 ppm was observed for E5 at full load.

  12. A Primer on Alternative Transportation Fuels

    DTIC Science & Technology

    2010-09-01

    cycles used are the Otto Cycle (gasoline engines), the Diesel Cycle, and the Brayton Cycle (gas and steam turbines). These cycles are usually...can be achieved. This leads to diesel engines usually being about 30% more efficient than gasoline engines. The ideal Brayton cycle operates between...wetted area of the vessel. For analytical simplicity we will use a formula for A developed by David Taylor : 2 1)(6.2 LA Δ

  13. The relative performance obtained with several methods of control of an overcompressed engine using gasoline

    NASA Technical Reports Server (NTRS)

    Gardiner, Arthur W; Whedon, William E

    1928-01-01

    This report presents some results obtained during an investigation to determine the relative characteristics for several methods of control of an overcompressed engine using gasoline and operating under sea-level conditions. For this work, a special single cylinder test engine, 5-inch bore by 7-inch stroke, and designed for ready adjustment of compression ratio, valve timing and valve lift while running, was used. This engine has been fully described in NACA-TR-250. Tests were made at an engine speed of 1,400 R. P. M. for compression ratios ranging from 4.0 to 7.6. The air-fuel ratios were on the rich side of the chemically correct mixture and were approximately those giving maximum power. When using plain domestic gasoline, detonation was controlled to a constant, predetermined amount (audible), such as would be permissible for continuous operation, by (a) throttling the carburetor, (b) maintaining full throttle but greatly retarding the ignition, and (c) varying the timing of the inlet valve to reduce the effective compression ratio. From the results of the tests, it may be concluded that method (b) gives the best all-round performance and, being easily employed in service, appears to be the most practicable method for controlling an overcompressed engine using gasoline at low altitudes.

  14. Analysis of Cyclic Variability of Heat Release for High-EGR GDI Engine Operation with Observations on Implications for Effective Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaul, Brian C; Wagner, Robert M; Green Jr, Johney Boyd

    2013-01-01

    Operation of spark-ignition (SI) engines with high levels of charge dilution through exhaust gas recirculation (EGR) achieves significant engine efficiency gains while maintaining stoichiometric operation for compatibility with three-way catalysts. Dilution levels, however, are limited by cyclic variability-including significant numbers of misfires-that becomes more pronounced with increasing dilution. This variability has been shown to have both stochastic and deterministic components. Stochastic effects include turbulence, mixing variations, and the like, while the deterministic effect is primarily due to the nonlinear dependence of flame propagation rates and ignition characteristics on the charge composition, which is influenced by the composition of residual gasesmore » from prior cycles. The presence of determinism implies that an increased understanding the dynamics of such systems could lead to effective control approaches that allow operation near the edge of stability, effectively extending the dilution limit. This nonlinear dependence has been characterized previously for homogeneous charge, port fuel-injected (PFI) SI engines operating fuel-lean as well as with inert diluents such as bottled N2 gas. In this paper, cyclic dispersion in a modern boosted gasoline direct injection (GDI) engine using a cooled external EGR loop is examined, and the potential for improvement with effective control is evaluated through the use of symbol sequence statistics and other techniques from chaos theory. Observations related to the potential implications of these results for control approaches that could effectively enable engine operation at the edge of combustion stability are noted.« less

  15. THE DEVELOPMENT OF A STANDARDIZED ACHIEVEMENT TEST FOR SMALL GASOLINE ENGINE INSTRUCTION.

    ERIC Educational Resources Information Center

    EBBERT, J. MARVIN

    THE PURPOSE OF THE STUDY WAS TO DEVELOP A STANDARDIZED, MULTIPLE-CHOICE ACHIEVEMENT TEST ON THE OPERATION, CARE, AND MAINTENANCE OF SMALL GASOLINE ENGINES. OBJECTIVES AND A UNIT OUTLINE WERE DEVELOPED WITH THE COOPERATION OF 75 INDIANA VOCATIONAL AGRICULTURE TEACHERS. A PANEL SUGGESTED MODIFICATIONS, AND THE REFINED OBJECTIVES AND OUTLINE WERE…

  16. 75 FR 24972 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Cooperative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-06

    ... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Cooperative Research Group on High Efficiency Dilute Gasoline Engine II Notice is... Research Group on High-Efficiency Dilute Gasoline Engine II, (``HEDGE II'') has filed written notifications...

  17. 76 FR 9811 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Cooperative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Cooperative Research Group on High-Efficiency Dilute Gasoline Engine II Notice is... Research Group on High-Efficiency Dilute Gasoline Engine II (``HEDGE II'') has filed written notifications...

  18. 75 FR 62569 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Cooperative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Cooperative Research Group on High Efficiency Dilute Gasoline Engine II Notice is...--Cooperative Research Group on High-Efficiency Dilute Gasoline Engine II, (``HEDGE II'') has filed written...

  19. 75 FR 4423 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Cooperative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Cooperative Research Group on High Efficiency Dilute Gasoline Engine II Notice is...--Cooperative Research Group on High-Efficiency Dilute Gasoline Engine II, (``HEDGE II'') has filed written...

  20. 75 FR 14192 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Cooperative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-24

    ... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Cooperative Research Group on High-Efficiency Dilute Gasoline Engine II Notice is...--Cooperative Research Group on High-Efficiency Dilute Gasoline Engine II (``HEDGE II'') has filed written...

  1. 75 FR 79024 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Cooperative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Cooperative Research Group on High-Efficiency Dilute Gasoline Engine II Notice is... Research Group on High-Efficiency Dilute Gasoline Engine II (``HEDGE II'') has filed written notifications...

  2. Gasoline Engine Mechanics. Performance Objectives. Basic Course.

    ERIC Educational Resources Information Center

    Jones, Marion

    Several intermediate performance objectives and corresponding criterion measures are listed for each of five terminal objectives presented in this curriculum guide for a basic gasoline engine mechanics course at the secondary level. (For the intermediate course guide see CE 010 946.) The materials were developed for a two semester (2 hours daily)…

  3. 40 CFR 86.345-79 - Emission calculations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gasoline-fueled engine test from the pre-test data. Apply the Y value to the K W equation for the entire test. (5) Calculate a separate Y value for each Diesel test segment from the pretest-segment data... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.345-79...

  4. 40 CFR 86.345-79 - Emission calculations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gasoline-fueled engine test from the pre-test data. Apply the Y value to the K W equation for the entire test. (5) Calculate a separate Y value for each Diesel test segment from the pretest-segment data... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.345-79...

  5. 40 CFR 86.345-79 - Emission calculations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gasoline-fueled engine test from the pre-test data. Apply the Y value to the K W equation for the entire test. (5) Calculate a separate Y value for each Diesel test segment from the pretest-segment data... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.345-79...

  6. 40 CFR 86.345-79 - Emission calculations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gasoline-fueled engine test from the pre-test data. Apply the Y value to the K W equation for the entire test. (5) Calculate a separate Y value for each Diesel test segment from the pretest-segment data... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.345-79...

  7. Development of Diesel Exhaust Aftertreatment System for Tier II Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, R. C.; Cole, A. S., Stroia, B. J.; Huang, S. C.

    2002-06-01

    Due to their excellent fuel efficiency, reliability, and durability, compression ignition direct injection (CIDI) engines have been used extensively to power almost all highway trucks, urban buses, off-road vehicles, marine carriers, and industrial equipment. CIDI engines burn 35 to 50% less fuel than gasoline engines of comparable size, and they emit far less greenhouse gases (Carbon Dioxides), which have been implicated in global warming. Although the emissions of CIDI engines have been reduced significantly over the last decade, there remains concern with the Nitrogen Oxides (NOX) and Particulate Matter (PM) emission levels. In 2000, the US EPA proposed very stringentmore » emissions standards to be introduced in 2007 along with low sulfur (< 15ppm) diesel fuel. The California Air Resource Board (CARB) has also established the principle that future diesel fueled vehicles should meet the same emissions standards as gasoline fueled vehicles and the EPA followed suit with its Tier II emissions regulations. Meeting the Tier II standards requires NOX and PM emissions to be reduced dramatically. Achieving such low emissions while minimizing fuel economy penalty cannot be done through engine development and fuel reformulation alone, and requires application of NOX and PM aftertreatment control devices. A joint effort was made between Cummins Inc. and the Department of Energy to develop the generic aftertreatment subsystem technologies applicable for Light-Duty Vehicle (LDV) and Light-Duty Truck (LDT) engines. This paper provides an update on the progress of this joint development program. Three NOX reduction technologies including plasmaassisted catalytic NOX reduction (PACR), active lean NOX catalyst (LNC), and adsorber catalyst (AC) technology using intermittent rich conditions for NOX reduction were investigated in parallel in an attempt to select the best NOX control approach for light-duty aftertreatment subsystem integration and development. Investigations included system design and analysis, critical lab/engine experiments, and ranking then selection of NOX control technologies against reliability, up-front cost, fuel economy, service interval/serviceability, and size/weight. The results of the investigations indicate that the best NOX control approach for LDV and LDT applications is a NOX adsorber system. A greater than 83% NOX reduction efficiency is required to achieve 0.07g/mile NOX Tier II vehicle-out emissions. Both active lean NOX and PACR technology are currently not capable of achieving the high conversion efficiency required for Tier II, Bin 5 emissions standards. In this paper, the NOX technology assessment and selection is first reviewed and discussed. Development of the selected NOX technology (NOX adsorber) and PM control are then discussed in more detail. Discussion includes exhaust sulfur management, further adsorber formulation development, reductant screening, diesel particulate filter development & active regeneration, and preliminary test results on the selected integrated SOX trap, NOX adsorber, and diesel particulate filter system over an FTP-75 emissions cycle, and its impact on fuel economy. Finally, the direction of future work for continued advanced aftertreatment technology development is discussed. (SAE Paper SAE-2002-01-1867 © 2002 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)« less

  8. Engine performance with a hydrogenated safety fuel

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Young, Alfred W

    1933-01-01

    This report presents the results of an investigation to determine the engine performance obtained with a hydrogenated safety fuel developed to eliminate fire hazard. The tests were made on a single-cylinder universal test engine at compression ratios of 5.0, 5.5, and 6.0. Most of the tests were made with a fuel-injection system, although one set of runs was made with a carburetor when using gasoline to establish comparative performance. The tests show that the b.m.e.p. obtained with safety fuel when using a fuel-injection system is slightly higher than that obtained with gasoline when using a carburetor, although the fuel consumption with safety fuel is higher. When the fuel-injection system is used with each fuel and with normal engine temperatures the b.m.e.p. with safety fuel is from 2 to 4 percent lower than with gasoline and the fuel consumption about 25 to 30 percent higher. However, a few tests at an engine coolant temperature of 250 F have shown a specific fuel consumption approximating that obtained with gasoline with only a slight reduction in power. The idling of the test engine was satisfactory with the safety fuel. Starting was difficult with a cold engine but could be readily accomplished when the jacket water was hot. It is believed that the use of the safety fuel would practically eliminate crash fires.

  9. Intermediate Volatility Organic Compound Emissions from On-Road Gasoline Vehicles and Small Off-Road Gasoline Engines.

    PubMed

    Zhao, Yunliang; Nguyen, Ngoc T; Presto, Albert A; Hennigan, Christopher J; May, Andrew A; Robinson, Allen L

    2016-04-19

    Dynamometer experiments were conducted to characterize the intermediate volatility organic compound (IVOC) emissions from a fleet of on-road gasoline vehicles and small off-road gasoline engines. IVOCs were quantified through gas chromatography/mass spectrometry analysis of adsorbent samples collected from a constant volume sampler. The dominant fraction (>80%, on average) of IVOCs could not be resolved on a molecular level. These unspeciated IVOCs were quantified as two chemical classes (unspeciated branched alkanes and cyclic compounds) in 11 retention-time-based bins. IVOC emission factors (mg kg-fuel(-1)) from on-road vehicles varied widely from vehicle to vehicle, but showed a general trend of lower emissions for newer vehicles that met more stringent emission standards. IVOC emission factors for 2-stroke off-road engines were substantially higher than 4-stroke off-road engines and on-road vehicles. Despite large variations in the magnitude of emissions, the IVOC volatility distribution and chemical characteristics were consistent across all tests and IVOC emissions were strongly correlated with nonmethane hydrocarbons (NMHCs), primary organic aerosol and speciated IVOCs. Although IVOC emissions only correspond to approximately 4% of NMHC emissions from on-road vehicles over the cold-start unified cycle, they are estimated to produce as much or more SOA than single-ring aromatics. Our results clearly demonstrate that IVOCs from gasoline engines are an important class of SOA precursors and provide observational constraints on IVOC emission factors and chemical composition to facilitate their inclusion into atmospheric chemistry models.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Huifang; Lam, William; Remias, Joseph

    Mobile source emissions standards are becoming more stringent and particulate emissions from gasoline direct injection (GDI) engines represent a particular challenge. Gasoline particulate filter (GPF) is deemed as one possible technical solution for particulate emissions reduction. In this work, a study was conducted on eight formulations of lubricants to determine their effect on GDI engine particulate emissions and GPF performance. Accelerated ash loading tests were conducted on a 2.4L GDI engine with engine oil injection in gasoline fuel by 2%. The matrix of eight formulations was designed with changing levels of sulfated ash (SASH) level, Zinc dialkyldithiophosphates (ZDDP) level andmore » detergent type. Comprehensive evaluations of particulates included mass, number, size distribution, composition, morphology and soot oxidation properties. GPF performance was assessed through filtration efficiency, back pressure and morphology. It was determined that oil formulation affects the particulate emission characteristics and subsequent GPF performance.« less

  11. Induced cytotoxic damage by exposure to gasoline vapors: a study in Sinaloa, Mexico.

    PubMed

    Martinez-Valenzuela, Carmen; Soto, Fernanda Balderrama; Waliszewski, Stefan M; Meza, Enrique; Arroyo, Sandra Gómez; Martínez, Luis Daniel Ortega; Meraz, Eliakym Arambula; Caba, Mario

    2017-01-01

    Gasoline is a blend of organic compounds used in internal combustion engines. Gasoline-station attendants are exposed to gasoline vapors, which pose a potentially mutagenic risk. According to the International Agency for Research on Cancer, exposure to gasoline and engine exhaust is possibly carcinogenic to humans. We determined the frequency of micronucleus and other nuclear abnormalities, such as pyknotic nuclei, chromatin condensation, cells with nuclear buds, karyolytic cells, karyorrhexis, and binucleated cells in buccal mucosal smears of 60 gasoline-station attendants and 60 unexposed controls. In addition, we explored if factors such as smoking habits, alcohol consumption, and worked years exert an additional synergistic cytotoxic effect. There were statistically significant higher frequencies (p < 0.05) of nuclear abnormalities among exposed attendants compared to the controls. No statistical significant (p > 0.05) additional effect of lifestyle habits such as smoking and alcohol consumption or worked years on the cytotoxicity was observed. The results showed that from the beginning exposure to gasoline vapors increased the frequency of nuclear abnormalities in buccal epithelial cells. Our results provide valuable information on cytotoxic damage for an early pre-symptomatic diagnosis.

  12. Systems and methods for controlling diesel engine emissions

    DOEpatents

    Webb, Cynthia Chaffin; Weber, Phillip Anthony; Khair, Magdi K.

    2004-06-01

    Systems and methods for controlling diesel engine emissions, including, for example, oxides of nitrogen emissions, particulate matter emissions, and the like. The emission control system according to this invention is provided in the exhaust passageway of a diesel engine and includes a catalyst-based particulate filter; and first and second lean NO.sub.x trap systems coupled to the catalyst-based particulate filter. The first and second lean NO.sub.x trap systems are arranged in a parallel flow configuration with each other. Each of the first and second lean NO.sub.x trap systems include a carbon monoxide generating catalyst device, a sulfur trap device, a lean NO.sub.x device, a supplemental fuel injector device, and a plurality of flow diverter devices.

  13. ADJUSTMENT, MAINTENANCE, AND REPAIR OF SMALL GASOLINE ENGINES. AGRICULTURAL MACHINERY--SERVICE OCCUPATIONS, MODULE NUMBER 12.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    ONE OF A SERIES DESIGNED TO HELP TEACHERS PREPARE POSTSECONDARY STUDENTS FOR THE AGRICULTURAL MACHINERY SERVICE OCCUPATIONS AS PARTS MEN, MECHANICS, MECHANIC'S HELPERS, OR SERVICE SUPERVISORS, THIS GUIDE AIMS TO DEVELOP STUDENT COMPETENCY IN THE ADJUSTMENT, MAINTENANCE, AND REPAIR OF SMALL GASOLINE ENGINES. IT WAS DEVELOPED BY A NATIONAL TASK…

  14. 40 CFR 60.4239 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... I am a manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that use gasoline or... NEW STATIONARY SOURCES Standards of Performance for Stationary Spark Ignition Internal Combustion... manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that use gasoline or a manufacturer of...

  15. 35. MODEL T GASOLINE ENGINE. USED TO PUMP WATER FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. MODEL T GASOLINE ENGINE. USED TO PUMP WATER FROM THE ARTISAN WELL (THROUGH THE DOORWAY) TO THE CISTERN ON THE ROOF. WATER WAS THEN FED BY GRAVITY TO THE REST OF THE FACTORY. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  16. Conversion of Gasoline Engines to Use Ethanol as the Sole Fuel. Instructor's Guide.

    ERIC Educational Resources Information Center

    Mishler, Glenn; Spignesi, Bill

    This instructor's guide contains materials that are intended for use as part of the regular auto mechanics curriculum and that provide information necessary to convert a gasoline engine with a niminum of modifications to successfully be operated on ethanol alcohol. It accompanies a student guide that is available separately. Contents include a…

  17. Conversion of Gasoline Engines to Use Ethanol as the Sole Fuel. Student Guide.

    ERIC Educational Resources Information Center

    Mishler, Glenn; Spignesi, Bill

    This student guide is a learning packet that is intended for use as part of the regular auto mechanics curriculum and that provides the information necessary to convert a gasoline engine with a minimum of modifications to successfully be operated on ethanol alcohol. Contents include an introduction, objectives, procedures, list of tasks to be…

  18. On-board measurement of emissions from liquefied petroleum gas, gasoline and diesel powered passenger cars in Algeria.

    PubMed

    Chikhi, Saâdane; Boughedaoui, Ménouèr; Kerbachi, Rabah; Joumard, Robert

    2014-08-01

    On-board measurements of unit emissions of CO, HC, NOx and CO₂ were conducted on 17 private cars powered by different types of fuels including gasoline, dual gasoline-liquefied petroleum gas (LPG), gasoline, and diesel. The tests performed revealed the effect of LPG injection technology on unit emissions and made it possible to compare the measured emissions to the European Artemis emission model. A sequential multipoint injection LPG kit with no catalyst installed was found to be the most efficient pollutant reduction device for all of the pollutants, with the exception of the NOx. Specific test results for a sub-group of LPG vehicles revealed that LPG-fueled engines with no catalyst cannot compete with catalyzed gasoline and diesel engines. Vehicle age does not appear to be a determining parameter with regard to vehicle pollutant emissions. A fuel switch to LPG offers many advantages as far as pollutant emissions are concerned, due to LPG's intrinsic characteristics. However, these advantages are being rapidly offset by the strong development of both gasoline and diesel engine technologies and catalyst converters. The LPG's performance on a chassis dynamometer under real driving conditions was better than expected. The enforcement of pollutant emission standards in developing countries is an important step towards introducing clean technology and reducing vehicle emissions. Copyright © 2014. Published by Elsevier B.V.

  19. 76 FR 38648 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... Gasoline (Renewal) AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: In compliance...: Detergent Gasoline (Renewal). ICR numbers: EPA ICR No. 1655.07, OMB Control No. 2060-0275. ICR Status: This... regulations is consolidated in 40 CFR part 9. Abstract: Gasoline combustion results in the formation of engine...

  20. Kerosene-base fuels in small gasoline engines. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Failla, C.C.; Pouring, A.A.

    1991-01-01

    This document presents the results of an engineering study to demonstrate the technology for converting small gasoline spark-ignited engines, to burn kerosene type fuels to power small generators (0.5 to 3.0 kw). Commercially available (plus those in the developmental stage), reciprocating, two-stroke, four stroke and rotary engines were evaluated for their conversion potential. Unique combustion systems were identified and trade-off studies conducted on engine type, combustion systems, and modification required to burn kerosene type fuels, with special emphasis given to minimizing life cycle cost. Recommendations for the most feasible system are given.

  1. Relation of Hydrogen and Methane to Carbon Monoxide in Exhaust Gases from Internal-Combustion Engines

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C; Tessmann, Arthur M

    1935-01-01

    The relation of hydrogen and methane to carbon monoxide in the exhaust gases from internal-combustion engines operating on standard-grade aviation gasoline, fighting-grade aviation gasoline, hydrogenated safety fuel, laboratory diesel fuel, and auto diesel fuel was determined by analysis of the exhaust gases. Two liquid-cooled single-cylinder spark-ignition, one 9-cylinder radial air-cooled spark-ignition, and two liquid-cooled single-cylinder compression-ignition engines were used.

  2. Fresh gasoline emissions, not paved road dust, alter cardiac repolarization in ApoE-/- mice.

    PubMed

    Campen, Matthew J; McDonald, Jacob D; Reed, Matthew D; Seagrave, Jeanclare

    2006-01-01

    Fresh vehicular emissions potentially represent a ubiquitous environmental concern for cardiovascular health. We compared electrocardiographic effects of fresh gasoline engine emissions with resuspended paved road dust in a mouse model of coronary insufficiency. Apolipoprotein E (ApoE)-/- mice on a high fat diet were exposed by whole-body inhalation to either gasoline emissions at 60 microg/m3 particulate matter (PM), an equivalent atmosphere with particles filtered out of the whole exhaust, or paved road dust at 0.5 and 3.5 mg /m3 for 6 h/d for 3 d. Radiotelemetry recordings of electrocardiogram (ECG) were analyzed for changes in T-wave morphology (QT interval, T-wave amplitude, and T-wave Area). Following exposures, lung lavage and blood samples were obtained to assay for markers of pulmonary and systemic inflammation. No exposure induced significant changes in heart rate and only the high concentration of road dust induced signs of pulmonary inflammation. T-wave area exhibited significant deviation from baseline values during exposure to gasoline exhaust particulates, but not to either concentration of road dust or gasoline emissions sans particulates. Gasoline-exposed mice demonstrated elevated plasma endothelin-1, but did not cause systemic inflammation. These data support the hypothesis that freshly-generated engine emissions, as opposed to resuspended paved road dust, may drive cardiac effects that have been observed at road-sides in the environment. The absence of ECG effects for both very high concentrations of road dust PM and equivalent concentrations of the vapor/gas phase of gasoline engine exhaust further indicate the specific risk conferred by fresh vehicular PM.

  3. New potentials for conventional aircraft when powered by hydrogen-enriched gasoline

    NASA Technical Reports Server (NTRS)

    Menard, W. A.; Moynihan, P. I.; Rupe, J. H.

    1976-01-01

    Hydrogen enrichment for aircraft piston engines is under study in a new NASA program. The objective of the program is to determine the feasibility of inflight injection of hydrogen in general aviation aircraft engines to reduce fuel consumption and to lower emission levels. A catalytic hydrogen generator will be incorporated as part of the air induction system of a Lycoming turbocharged engine and will generate hydrogen by breaking down small amounts of the aviation gasoline used in the normal propulsion system. This hydrogen will then be mixed with gasoline and compressed air from the turbocharger before entering the engine combustion chamber. The paper summarizes the results of a systems analysis study. Calculations assuming a Beech Duke aircraft indicate that fuel savings on the order of 20% are possible. An estimate of the potential for the utilization of hydrogen enrichment to control exhaust emissions indicates that it may be possible to meet the 1979 Federal emission standards.

  4. Comparison of Performance of AN-F-58 Fuel and Gasoline in J34-WE-22 Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Dowman, Harry W; Younger, George G

    1949-01-01

    As part of an investigation of the performance of AN-F-58 fuel in various types of turbojet engine, the performance of this fuel in a 3000-pound-thrust turbojet engine has been investigated in an altitude test chamber together with the comparative performance of 62-octane gasoline. The investigation of normal engine performance, which covered a range of engine speeds at altitudes from 5000 to 50,000 feet and flight Mach numbers up to 1.00, showed that both the net thrust and average turbine-outlet temperatures were approximately the same for both fuels. The specific fuel consumption and the combustion efficiency at the maximum engine speeds investigated were approximately the same for both fuels at altitudes up to 35,000 feet, but at an altitude of 50,000 feet the specific fuel consumption was about 9 percent higher and the combustion efficiency was correspondingly lower with the AN-F-58 fuel than with gasoline. The low-engine-speed blow-out limits were about the same for both fuels. Ignition of AN-F-58 fuel with the standard spark plug was possible only with the spark plug in a clean condition; ignition was impossible at all flight conditions investigated when the plug was fouled by an accumulation of liquid fuel from a preceding false start. Use of an extended-electrode spark plug provided satisfactory ignition over a slightly smaller range of altitudes and flight Mach numbers than for gasoline with the standard spark plug.

  5. 40 CFR 86.1403 - Abbreviations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty Trucks; Certification...

  6. 40 CFR 86.1402 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty Trucks; Certification...

  7. 40 CFR 86.1404 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty Trucks; Certification...

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunnarsson, Fredrik; Pihl, Josh A.; Toops, Todd J.

    This paper focuses on the activity for lean NO x reduction over sol-gel synthesized silver alumina (Ag/Al 2O 3) catalysts, with and without platinum doping, using ethanol (EtOH), EtOH/C 3H 6 and EtOH/gasoline blends as reducing agents. The effect of ethanol concentration, both by varying the hydrocarbon-to-NO x ratio and by alternating the gasoline concentration in the EtOH/gasoline mixture, is investigated. High activity for NO x reduction is demonstrated for powder catalysts for EtOH and EtOH/C 3H 6 as well as for monolith coated catalysts (EtOH and EtOH/gasoline). The results show that pure Ag/Al 2O 3 catalysts display higher NOmore » x reduction and lower light-off temperature as compared to the platinum doped samples. The 4 wt.% Ag/Al 2O 3 catalyst displays 100% reduction in the range 340–425 °C, with up to 37% selectivity towards NH 3. These results are also supported by DRIFTS (Diffuse reflection infrared Fourier transform spectroscopy) experiments. Finally, the high ammonia formation could, in combination with an NH 3-SCR catalyst, be utilized to construct a NO x reduction system with lower fuel penalty cf. stand alone HC-SCR. In addition, it would result in an overall decrease in CO 2 emissions.« less

  9. Effect of organometallic fuel additives on nanoparticle emissions from a gasoline passenger car.

    PubMed

    Gidney, Jeremy T; Twigg, Martyn V; Kittelson, David B

    2010-04-01

    Particle size measurements were performed on the exhaust of a car operating on a chassis dynamometer fueled with standard gasoline and gasoline containing low levels of Pb, Fe, and Mn organometallic additives. When additives were present there was a distinct nucleation mode consisting primarily of sub-10 nm nanoparticles. At equal molar dosing Mn and Fe gave similar nanoparticle concentrations at the tailpipe, whereas Pb gave a considerably lower concentration. A catalytic stripper was used to remove the organic component of these particles and revealed that they were mainly solid and, because of their association with inorganic additives, presumably inorganic. Solid nucleation mode nanoparticles of similar size and concentration to those observed here from a gasoline engine with Mn and Fe additives have also been observed from modern heavy-duty diesel engines without aftertreatment at idle, but these solid particles are a small fraction of the primarily volatile nucleation mode particles emitted. The solid nucleation mode particles emitted by the diesel engines are likely derived from metal compounds in the lubrication oil, although carbonaceous particles cannot be ruled out. Significantly, most of these solid nanoparticles emitted by both engine types fall below the 23 nm cutoff of the PMP number regulation.

  10. Effects of Gasoline Direct Injection Engine Operating Parameters on Particle Number Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, X.; Ratcliff, M. A.; Zigler, B. T.

    2012-04-19

    A single-cylinder, wall-guided, spark ignition direct injection engine was used to study the impact of engine operating parameters on engine-out particle number (PN) emissions. Experiments were conducted with certification gasoline and a splash blend of 20% fuel grade ethanol in gasoline (E20), at four steady-state engine operating conditions. Independent engine control parameter sweeps were conducted including start of injection, injection pressure, spark timing, exhaust cam phasing, intake cam phasing, and air-fuel ratio. The results show that fuel injection timing is the dominant factor impacting PN emissions from this wall-guided gasoline direct injection engine. The major factor causing high PN emissionsmore » is fuel liquid impingement on the piston bowl. By avoiding fuel impingement, more than an order of magnitude reduction in PN emission was observed. Increasing fuel injection pressure reduces PN emissions because of smaller fuel droplet size and faster fuel-air mixing. PN emissions are insensitive to cam phasing and spark timing, especially at high engine load. Cold engine conditions produce higher PN emissions than hot engine conditions due to slower fuel vaporization and thus less fuel-air homogeneity during the combustion process. E20 produces lower PN emissions at low and medium loads if fuel liquid impingement on piston bowl is avoided. At high load or if there is fuel liquid impingement on piston bowl and/or cylinder wall, E20 tends to produce higher PN emissions. This is probably a function of the higher heat of vaporization of ethanol, which slows the vaporization of other fuel components from surfaces and may create local fuel-rich combustion or even pool-fires.« less

  11. Enabling High Efficiency Ethanol Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szybist, J.; Confer, K.

    2011-03-01

    Delphi Automotive Systems and ORNL established this CRADA to explore the potential to improve the energy efficiency of spark-ignited engines operating on ethanol-gasoline blends. By taking advantage of the fuel properties of ethanol, such as high compression ratio and high latent heat of vaporization, it is possible to increase efficiency with ethanol blends. Increasing the efficiency with ethanol-containing blends aims to remove a market barrier of reduced fuel economy with E85 fuel blends, which is currently about 30% lower than with petroleum-derived gasoline. The same or higher engine efficiency is achieved with E85, and the reduction in fuel economy ismore » due to the lower energy density of E85. By making ethanol-blends more efficient, the fuel economy gap between gasoline and E85 can be reduced. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has extensive knowledge and experience in powertrain components and subsystems as well as overcoming real-world implementation barriers. ORNL has extensive knowledge and expertise in non-traditional fuels and improving engine system efficiency for the next generation of internal combustion engines. Partnering to combine these knowledge bases was essential towards making progress to reducing the fuel economy gap between gasoline and E85. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, usually on a bi-weekly basis, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided substantial hardware support to the project by providing components for the single-cylinder engine experiments, engineering support for hardware modifications, guidance for operational strategies on engine research, and hardware support by providing a flexible multi-cylinder engine to be used for optimizing engine efficiency with ethanol-containing fuels.« less

  12. Real-Time Control of Lean Blowout in a Turbine Engine for Minimizing No(x) Emissions

    NASA Technical Reports Server (NTRS)

    Zinn, Ben

    2004-01-01

    This report describes research on the development and demonstration of a controlled combustor operates with minimal NO, emissions, thus meeting one of NASA s UEET program goals. NO(x) emissions have been successfully minimized by operating a premixed, lean burning combustor (modeling a lean prevaporized, premixed LPP combustor) safely near its lean blowout (LBO) limit over a range of operating conditions. This was accomplished by integrating the combustor with an LBO precursor sensor and closed-loop, rule-based control system that allowed the combustor to operate far closer to the point of LBO than an uncontrolled combustor would be allowed to in a current engine. Since leaner operation generally leads to lower NO, emissions, engine NO, was reduced without loss of safety.

  13. Extending lean operating limit and reducing emissions of methane spark-ignited engines using a microwave-assisted spark plug

    DOE PAGES

    Rapp, Vi H.; DeFilippo, Anthony; Saxena, Samveg; ...

    2012-01-01

    Amore » microwave-assisted spark plug was used to extend the lean operating limit (lean limit) and reduce emissions of an engine burning methane-air. In-cylinder pressure data were collected at normalized air-fuel ratios of λ = 1.46, λ = 1.51, λ = 1.57, λ = 1.68, and λ = 1.75. For each λ , microwave energy (power supplied to the magnetron per engine cycle) was varied from 0 mJ (spark discharge alone) to 1600 mJ. At lean conditions, the results showed adding microwave energy to a standard spark plug discharge increased the number of complete combustion cycles, improving engine stability as compared to spark-only operation. Addition of microwave energy also increased the indicated thermal efficiency by 4% at λ = 1.68. At λ = 1.75, the spark discharge alone was unable to consistently ignite the air-fuel mixture, resulting in frequent misfires. Although microwave energy produced more consistent ignition than spark discharge alone at λ = 1.75, 59% of the cycles only partially burned. Overall, the microwave-assisted spark plug increased engine performance under lean operating conditions (λ = 1.68) but did not affect operation at conditions closer to stoichiometric.« less

  14. Biological and Abiotic Transformations of Ethylene Dibromide and 1,2-Dichloroethane in Ground Water at Leaded Gasoline Spill Sites

    EPA Science Inventory

    Tetra-ethyl lead was widely used in leaded automobile gasoline from 1923 until 1987. To prevent lead deposits from fouling the engine, 1,2-dibromoethane (EDB) and 1,2-dichloroethane (1,2-DCA) were added to the gasoline to act as lead scavengers. The Maximum Contaminant Levels...

  15. Composition and Chemical Stability of Motor Fuels,

    DTIC Science & Technology

    Fuels, *Hydrocarbons, Cycloalkanes, Chemical analysis, Gasoline, Diesel fuels, Fuel additives, Chemical reactions, Stability, Jet engine fuels...Aviation gasoline, Aviation fuels, Chemical composition, Aromatic hydrocarbons, Unsaturated hydrocarbons, Storage, USSR, Translations, Fuel systems, Alkanes

  16. 40 CFR 86.1407-86.1412 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light...

  17. 40 CFR 86.1417-86.1421 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light...

  18. 40 CFR 86.1414-86.1415 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light...

  19. N-butanol and isobutanol as alternatives to gasoline: Comparison of port fuel injector characteristics

    NASA Astrophysics Data System (ADS)

    Fenkl, Michael; Pechout, Martin; Vojtisek, Michal

    2016-03-01

    The paper reports on an experimental investigation of the relationship between the pulse width of a gasoline engine port fuel injector and the quantity of the fuel injected when butanol is used as a fuel. Two isomers of butanol, n-butanol and isobutanol, are considered as potential candidates for renewable, locally produced fuels capable of serving as a drop-in replacement fuel for gasoline, as an alternative to ethanol which poses material compatibility and other drawbacks. While the injected quantity of fuel is typically a linear function of the time the injector coil is energized, the flow through the port fuel injector is complex, non ideal, and not necessarily laminar, and considering that butanol has much higher viscosity than gasoline, an experimental investigation was conducted. A production injector, coupled to a production fueling system, and driven by a pulse width generator was operated at various pulse lengths and frequencies, covering the range of engine rpm and loads on a car engine. The results suggest that at least at room temperature, the fueling rate remains to be a linear function of the pulse width for both n-butanol and isobutanol, and the volumes of fuel injected are comparable for gasoline and both butanol isomers.

  20. Performance and emissions of an engine fuelled by biogas of palm oil mill effluent

    NASA Astrophysics Data System (ADS)

    Arjuna, J.; Sitorus, T. B.; Ambarita, H.; Abda, S.

    2018-02-01

    This research investigates the performance and emissions of an engine by biogas and gasoline. The experiments use biogas of palm oil mill effluent (POME) with turbocharger at engine loading conditions (100, 200, 300, 400, and 500 Watt). Specific fuel consumption and thermal efficiency are used to compare engine performance, and emission analysis is based on parameters such as carbon monoxide (CO), hydrocarbon (HC), carbon dioxide (CO2) and oxide (O2). The experimental data show that the maximum thermal efficiency when engine use biogas and gasoline is 20.44% and 22.22% respectively. However, there was CO emission reduction significantly when the engine using POME biogas.

  1. 12. Detail of clutch and backup gasoline engine for powering ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Detail of clutch and backup gasoline engine for powering Stoney gates. Clutch mechanism manufactured by Baldridge Machine Company, Detroit, Michigan, ca. 1910. Instrument to the left records volume of flow through headworks. View looking south towards Stoney gates. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  2. Development of a Teaching Text of Care, Operation, Maintenance and Repair of Air-Cooled Gasoline Engines.

    ERIC Educational Resources Information Center

    Turner, Howard

    Objectives of a 2-volume book developed as a comprehensive reference for teachers and a text for students on small gasoline engines were that it be: (1) organized for teaching, (2) complete in detail, (3) well illustrated, (4) authentic, (5) edited to high school reading level, (6) correlated with basic scientific principles, and (7) evaluated by…

  3. Effects of Fuel Laminar Flame Speed Compared to Engine Tumble Ratio, Ignition Energy, and Injection Strategy on Lean and EGR Dilute Spark Ignition Combustion

    DOE PAGES

    Kolodziej, Christopher P.; Pamminger, Michael; Sevik, James; ...

    2017-03-28

    Previously we show that fuels with higher laminar flame speed also have increased tolerance to EGR dilution. In this work, the effects of fuel laminar flame speed on both lean and EGR dilute spark ignition combustion stability were examined. Fuels blends of pure components (iso-octane, n-heptane, toluene, ethanol, and methanol) were derived at two levels of laminar flame speed. Each fuel blend was tested in a single-cylinder spark-ignition engine under both lean-out and EGR dilution sweeps until the coefficient of variance of indicated mean effective pressure increased above thresholds of 3% and 5%. The relative importance of fuel laminar flamemore » speed to changes to engine design parameters (spark ignition energy, tumble ratio, and port vs. direct injection) was also assessed. Our results showed that fuel laminar flame speed can have as big an effect on lean or EGR dilute engine operation as engine design parameters, with the largest effects seen during EGR dilute operation and when changes were made to cylinder charge motion.« less

  4. Effects of Fuel Laminar Flame Speed Compared to Engine Tumble Ratio, Ignition Energy, and Injection Strategy on Lean and EGR Dilute Spark Ignition Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolodziej, Christopher P.; Pamminger, Michael; Sevik, James

    Previously we show that fuels with higher laminar flame speed also have increased tolerance to EGR dilution. In this work, the effects of fuel laminar flame speed on both lean and EGR dilute spark ignition combustion stability were examined. Fuels blends of pure components (iso-octane, n-heptane, toluene, ethanol, and methanol) were derived at two levels of laminar flame speed. Each fuel blend was tested in a single-cylinder spark-ignition engine under both lean-out and EGR dilution sweeps until the coefficient of variance of indicated mean effective pressure increased above thresholds of 3% and 5%. The relative importance of fuel laminar flamemore » speed to changes to engine design parameters (spark ignition energy, tumble ratio, and port vs. direct injection) was also assessed. Our results showed that fuel laminar flame speed can have as big an effect on lean or EGR dilute engine operation as engine design parameters, with the largest effects seen during EGR dilute operation and when changes were made to cylinder charge motion.« less

  5. A New Perspective on an Old Problem, Natural Attenuation of the Lead Scavengers EDB and DCA in Ground Water

    EPA Science Inventory

    Tetra-ethyl lead was widely used in leaded automobile gasoline from 1923 until 1987. To prevent lead deposits from fouling the engine, 1,2-dibromoethane (EDB) and 1,2-dichloroethane (1,2-DCA) were added to the gasoline to act as lead scavengers. If leaded gasoline is spilled to...

  6. Recent European Developments in Helicopters

    NASA Technical Reports Server (NTRS)

    1921-01-01

    Descriptions are given of two captured helicopters, one driven by electric power, the other by a gasoline engine. An account is given of flight tests of the gasoline powered vehicle. After 15 successful flight tests, the gasoline powered vehicle crashed due to the insufficient thrust. Also discussed here are the applications of helicopters for military observations, for meteorological work, and for carrying radio antennas.

  7. Measurements of ion concentration in gasoline and diesel engine exhaust

    NASA Astrophysics Data System (ADS)

    Yu, Fangqun; Lanni, Thomas; Frank, Brian P.

    The nanoparticles formed in motor vehicle exhaust have received increasing attention due to their potential adverse health effects. It has been recently proposed that combustion-generated ions may play a critical role in the formation of these volatile nanoparticles. In this paper, we design an experiment to measure the total ion concentration in motor vehicle engine exhaust, and report some preliminary measurements in the exhaust of a gasoline engine (K-car) and a diesel engine (diesel generator). Under the experimental set-up reported in this study and for the specific engines used, the total ion concentration is ca. 3.3×10 6 cm -3 with almost all of the ions smaller than 3 nm in the gasoline engine exhaust, and is above 2.7×10 8 cm -3 with most of the ions larger than 3 nm in the diesel engine exhaust. This difference in the measured ion properties is interpreted as a result of the different residence times of exhaust inside the tailpipe/connecting pipe and the different concentrations of soot particles in the exhaust. The measured ion concentrations appear to be within the ranges predicted by a theoretical model describing the evolution of ions inside a pipe.

  8. Evaluation of traffic exhaust contributions to ambient carbonaceous submicron particulate matter in an urban roadside environment in Hong Kong

    NASA Astrophysics Data System (ADS)

    Lee, Berto Paul; Kwok Keung Louie, Peter; Luk, Connie; Keung Chan, Chak

    2017-12-01

    Road traffic has significant impacts on air quality particularly in densely urbanized and populated areas where vehicle emissions are a major local source of ambient particulate matter. Engine type (i.e., fuel use) significantly impacts the chemical characteristics of tailpipe emission, and thus the distribution of engine types in traffic impacts measured ambient concentrations. This study provides an estimation of the contribution of vehicles powered by different fuels (gasoline, diesel, LPG) to carbonaceous submicron aerosol mass (PM1) based on ambient aerosol mass spectrometer (AMS) and elemental carbon (EC) measurements and vehicle count data in an urban inner city environment in Hong Kong with the aim to gauge the importance of different engine types to particulate matter burdens in a typical urban street canyon. On an average per-vehicle basis, gasoline vehicles emitted 75 and 93 % more organics than diesel and LPG vehicles, respectively, while EC emissions from diesel vehicles were 45 % higher than those from gasoline vehicles. LPG vehicles showed no appreciable contributions to EC and thus overall represented a small contributor to traffic-related primary ambient PM1 despite their high abundance (˜ 30 %) in the traffic mix. Total carbonaceous particle mass contributions to ambient PM1 from diesel engines were only marginally higher (˜ 4 %) than those from gasoline engines, which is likely an effect of recently introduced control strategies targeted at commercial vehicles and buses. Overall, gasoline vehicles contributed 1.2 µg m-3 of EC and 1.1 µ m-3 of organics, LPG vehicles 0.6 µg m-3 of organics and diesel vehicles 2.0 µg m-3 of EC and 0.7 µg m-3 of organics to ambient carbonaceous PM1.

  9. Lean Stability augmentation study

    NASA Technical Reports Server (NTRS)

    Mcvey, J. B.; Kennedy, J. B.

    1979-01-01

    An analytical and experimental program was conducted to investigate techniques and develop technology for improving the lean combustion limits of premixing, prevaporizing combustors applicable to gas turbine engine main burners. Three concepts for improving lean stability limits were selected for experimental evaluation among twelve approaches considered. Concepts were selected on the basis of the potential for improving stability limits and achieving emission goals, the technological risks associated with development of practical burners employing the concepts, and the penalties to airline direct operating costs resulting from decreased combustor performance, increased engine cost, increased maintenance cost and increased engine weight associated with implementation of the concepts. Tests of flameholders embodying the selected concepts were conducted.

  10. Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prikhodko, Vitaly Y; Curran, Scott; Barone, Teresa L

    2010-01-01

    Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection systemmore » to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.« less

  11. Building Lean Supply Chain and Manufacturing Skills through an Interactive Case Study

    ERIC Educational Resources Information Center

    Ozelkan, Ertunga C.; Teng, S. Gary; Johnson, Thomas; Benson, Tom; Nestvogel, Dean

    2007-01-01

    With the ongoing global pressure to cut costs and focus on quality, many companies have been implementing "lean manufacturing" concepts to survive in the competitive marketplace. Thus it is imperative that engineering and business graduates are equipped with the lean principles, and are ready to take ownership of lean initiatives as they enter the…

  12. Current issues in natural gas lubrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reber, J.

    1997-10-01

    Because of the ability of natural gas to burn completely relatively easily, supplying excess oxygen to promote complete reactions is a viable alternative to catalysts. Hence, lean burn technology has a natural fit for this industry. Lube oil is not adversely affected by lean burn operation. There is a slight tendency to cause more oil nitration than oxidation, but the real difference is not significant. Operators may notice somewhat more varnish (caramel color) and less sludge (black) as a result. Because the fuel is burned more completely, there is less problem with fuel-derived oil contamination. Also because of the excessmore » air in the combustion chamber, overall cylinder temperature is lower, causing less stress on the oil. Oil life is generally lengthened. One common misconception that lean burn engines require different lubricants may stem from a change at Waukesha Engine Division--Dresser Industries. Waukesha has changed its lube oil requirements for VHP 3521, 5115, 7042, 9390 GL turbocharged and lean burn model engines. The lube oil specification for these engines is 1% to 1.7% ash with the same 0.10% zinc maximum. This change is not because of the lean burn nature of these engines, rather it is because of drastically decreased lube oil consumption. With less oil consumption, less ash is carried to the critical exhaust valve seat area to prevent valve recession.« less

  13. Secondary Organic Aerosol Production from Gasoline Vehicle Exhaust: Effects of Engine Technology, Cold Start, and Emission Certification Standard.

    PubMed

    Zhao, Yunliang; Lambe, Andrew T; Saleh, Rawad; Saliba, Georges; Robinson, Allen L

    2018-02-06

    Secondary organic aerosol (SOA) formation from dilute exhaust from 16 gasoline vehicles was investigated using a potential aerosol mass (PAM) oxidation flow reactor during chassis dynamometer testing using the cold-start unified cycle (UC). Ten vehicles were equipped with gasoline direct injection engines (GDI vehicles) and six with port fuel injection engines (PFI vehicles) certified to a wide range of emissions standards. We measured similar SOA production from GDI and PFI vehicles certified to the same emissions standard; less SOA production from vehicles certified to stricter emissions standards; and, after accounting for differences in gas-particle partitioning, similar effective SOA yields across different engine technologies and certification standards. Therefore the ongoing, dramatic shift from PFI to GDI vehicles in the United States should not alter the contribution of gasoline vehicles to ambient SOA and the natural replacement of older vehicles with newer ones certified to stricter emissions standards should reduce atmospheric SOA levels. Compared to hot operations, cold-start exhaust had lower effective SOA yields, but still contributed more SOA overall because of substantially higher organic gas emissions. We demonstrate that the PAM reactor can be used as a screening tool for vehicle SOA production by carefully accounting for the effects of the large variations in emission rates.

  14. Exposure to diesel and gasoline engine emissions and the risk of lung cancer.

    PubMed

    Parent, Marie-Elise; Rousseau, Marie-Claude; Boffetta, Paolo; Cohen, Aaron; Siemiatycki, Jack

    2007-01-01

    Pollution from motor vehicles constitutes a major environmental health problem. The present paper describes associations between diesel and gasoline engine emissions and lung cancer, as evidenced in a 1979-1985 population-based case-control study in Montreal, Canada. Cases were 857 male lung cancer patients. Controls were 533 population controls and 1,349 patients with other cancer types. Subjects were interviewed to obtain a detailed lifetime job history and relevant data on potential confounders. Industrial hygienists translated each job description into indices of exposure to several agents, including engine emissions. There was no evidence of excess risks of lung cancer with exposure to gasoline exhaust. For diesel engine emissions, results differed by control group. When cancer controls were considered, there was no excess risk. When population controls were studied, the odds ratios, after adjustments for potential confounders, were 1.2 (95% confidence interval: 0.8, 1.8) for any exposure and 1.6 (95% confidence interval: 0.9, 2.8) for substantial exposure. Confidence intervals between risk estimates derived from the two control groups overlapped considerably. These results provide some limited support for the hypothesis of an excess lung cancer risk due to diesel exhaust but no support for an increase in risk due to gasoline exhaust.

  15. Fuels Containing Methane of Natural Gas in Solution

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas A.

    2004-01-01

    While exploring ways of producing better fuels for propulsion of a spacecraft on the Mars sample return mission, a researcher at Johnson Space Center (JSC) devised a way of blending fuel by combining methane or natural gas with a second fuel to produce a fuel that can be maintained in liquid form at ambient temperature and under moderate pressure. The use of such a blended fuel would be a departure for both spacecraft engines and terrestrial internal combustion engines. For spacecraft, it would enable reduction of weights on long flights. For the automotive industry on Earth, such a fuel could be easily distributed and could be a less expensive, more efficient, and cleaner-burning alternative to conventional fossil fuels. The concept of blending fuels is not new: for example, the production of gasoline includes the addition of liquid octane enhancers. For the future, it has been commonly suggested to substitute methane or compressed natural gas for octane-enhanced gasoline as a fuel for internal-combustion engines. Unfortunately, methane or natural gas must be stored either as a compressed gas (if kept at ambient temperature) or as a cryogenic liquid. The ranges of automobiles would be reduced from their present values because of limitations on the capacities for storage of these fuels. Moreover, technical challenges are posed by the need to develop equipment to handle these fuels and, especially, to fill tanks acceptably rapidly. The JSC alternative to provide a blended fuel that can be maintained in liquid form at moderate pressure at ambient temperature has not been previously tried. A blended automotive fuel according to this approach would be made by dissolving natural gas in gasoline. The autogenous pressure of this fuel would eliminate the need for a vehicle fuel pump, but a pressure and/or flow regulator would be needed to moderate the effects of temperature and to respond to changing engine power demands. Because the fuel would flash as it entered engine cylinders, relative to gasoline, it would disperse more readily and therefore would mix with air more nearly completely. As a consequence, this fuel would burn more nearly completely (and, hence, more cleanly) than gasoline does. The storage density of this fuel would be similar to that of gasoline, but its energy density would be such that the mileage (more precisely, the distance traveled per unit volume of fuel) would be greater than that of either gasoline or compressed natural gas. Because the pressure needed to maintain the fuel in liquid form would be more nearly constant and generally lower than that needed to maintain compressed natural gas in liquid form, the pressure rating of a tank used to hold this fuel could be lower than that of a tank used to hold compressed natural gas. A mixture of natural gas and gasoline could be distributed more easily than could some alternative fuels. A massive investment in new equipment would not be necessary: One could utilize the present fuel-distribution infrastructure and could blend the gasoline and natural gas at almost any place in the production or distribution process - perhaps even at the retail fuel pump. Yet another advantage afforded by use of a blend of gasoline and natural gas would be a reduction in the amount of gasoline consumed. Because natural gas costs less than gasoline does and is in abundant supply in the United States, the cost of automotive fuel and the demand for imported oil could be reduced.

  16. 40 CFR 86.099-10 - Emission standards for 1999 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... test sequence described in § 86.1230-96, diurnal plus hot soak measurements: 3.0 grams per test. (2... measurements (gasoline-fueled vehicles only): 3.5 grams per test. (B) Running loss test (gasoline-fueled vehicles only): 0.05 grams per mile. (C) Fuel dispensing spitback test (gasoline-fueled vehicles only): 1.0...

  17. 40 CFR 86.099-10 - Emission standards for 1999 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... test sequence described in § 86.1230-96, diurnal plus hot soak measurements: 3.0 grams per test. (2... measurements (gasoline-fueled vehicles only): 3.5 grams per test. (B) Running loss test (gasoline-fueled vehicles only): 0.05 grams per mile. (C) Fuel dispensing spitback test (gasoline-fueled vehicles only): 1.0...

  18. 40 CFR 86.099-10 - Emission standards for 1999 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... test sequence described in § 86.1230-96, diurnal plus hot soak measurements: 3.0 grams per test. (2... measurements (gasoline-fueled vehicles only): 3.5 grams per test. (B) Running loss test (gasoline-fueled vehicles only): 0.05 grams per mile. (C) Fuel dispensing spitback test (gasoline-fueled vehicles only): 1.0...

  19. 40 CFR 86.099-10 - Emission standards for 1999 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... test sequence described in § 86.1230-96, diurnal plus hot soak measurements: 3.0 grams per test. (2... measurements (gasoline-fueled vehicles only): 3.5 grams per test. (B) Running loss test (gasoline-fueled vehicles only): 0.05 grams per mile. (C) Fuel dispensing spitback test (gasoline-fueled vehicles only): 1.0...

  20. Gasoline from coal in the state of Illinois: feasibility study. Volume I. Design. [KBW gasification process, ICI low-pressure methanol process and Mobil M-gasoline process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-01-01

    Volume 1 describes the proposed plant: KBW gasification process, ICI low-pressure methanol process and Mobil M-gasoline process, and also with ancillary processes, such as oxygen plant, shift process, RECTISOL purification process, sulfur recovery equipment and pollution control equipment. Numerous engineering diagrams are included. (LTN)

  1. Carbon isotopic characterization of formaldehyde emitted by vehicles in Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Hu, Ping; Wen, Sheng; Liu, Yonglin; Bi, Xinhui; Chan, Lo Yin; Feng, Jialiang; Wang, Xinming; Sheng, Guoying; Fu, Jiamo

    2014-04-01

    Formaldehyde (HCHO) is the most abundant carbonyl compound in the atmosphere, and vehicle exhaust emission is one of its important anthropogenic sources. However, there is still uncertainty regarding HCHO flux from vehicle emission as well as from other sources. Herein, automobile source was characterized using HCHO carbon isotopic ratio to assess its contributions to atmospheric flux and demonstrate the complex production/consumption processes during combustion in engine cylinder and subsequent catalytic treatment of exhaust. Vehicle exhausts were sampled under different idling states and HCHO carbon isotopic ratios were measured by gas chromatograph-combustion-isotopic ratio mass spectrometry (GC-C-IRMS). The HCHO directly emitted from stand-alone engines (gasoline and diesel) running at different load was also sampled and measured. The HCHO carbon isotopic ratios were from -30.8 to -25.7‰ for gasoline engine, and from -26.2 to -20.7‰ for diesel engine, respectively. For diesel vehicle without catalytic converter, the HCHO carbon isotopic ratios were -22.1 ± 2.1‰, and for gasoline vehicle with catalytic converter, the ratios were -21.4 ± 0.7‰. Most of the HCHO carbon isotopic ratios were heavier than the fuel isotopic ratios (from -29 to -27‰). For gasoline vehicle, the isotopic fractionation (Δ13C) between HCHO and fuel isotopic ratios was 7.4 ± 0.7‰, which was higher than that of HCHO from stand-alone gasoline engine (Δ13Cmax = 2.7‰), suggesting additional consumption by the catalytic converter. For diesel vehicle without catalytic converter, Δ13C was 5.7 ± 2.0‰, similar to that of stand-alone diesel engine. In general, the carbon isotopic signatures of HCHO emitted from automobiles were not sensitive to idling states or to other vehicle parameters in our study condition. On comparing these HCHO carbon isotopic data with those of past studies, the atmospheric HCHO in a bus station in Guangzhou might mainly come from vehicle emission for the accordance of carbon isotopic data.

  2. The Impact of Low Octane Hydrocarbon Blending Streams on Ethanol Engine Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szybist, James P; West, Brian H

    2013-01-01

    Ethanol is a very attractive fuel from an end-use perspective because it has a high chemical octane number and a high latent heat of vaporization. When an engine is optimized to take advantage of these fuel properties, both efficiency and power can be increased through higher compression ratio, direct fuel injection, higher levels of boost, and a reduced need for enrichment to mitigate knock or protect the engine and aftertreatment system from overheating. The ASTM D5798 specification for high level ethanol blends, commonly called E85, underwent a major revision in 2011. The minimum ethanol content was revised downward from 68more » vol% to 51 vol%, which combined with the use of low octane blending streams such as natural gasoline introduces the possibility of a lower octane E85 fuel. While this fuel is suitable for current ethanol tolerant flex fuel vehicles, this study experimentally examines whether engines can still be aggressively optimized for the resultant fuel from the revised ASTM D5798 specification. The performance of six ethanol fuel blends, ranging from 51-85% ethanol, is compared to a premium-grade certification gasoline (UTG-96) in a single-cylinder direct-injection (DI) engine with a compression ratio of 12.9:1 at knock-prone engine conditions. UTG-96 (RON = 96.1), light straight run gasoline (RON = 63.6), and n-heptane (RON = 0) are used as the hydrocarbon blending streams for the ethanol-containing fuels in an effort to establish a broad range of knock resistance for high ethanol fuels. Results show that nearly all ethanol-containing fuels are more resistant to engine knock than UTG-96 (the only exception being the ethanol blend with 49% n-heptane). This knock resistance allows ethanol blends made with 33 and 49% light straight run gasoline, and 33% n-heptane to be operated at significantly more advanced combustion phasing for higher efficiency, as well as at higher engine loads. While experimental results show that the octane number of the hydrocarbon blend stock does impact engine performance, there remains a significant opportunity for engine optimization when considering even the lowest octane fuels that are in compliance with the current revision of ASTM D5798 compared to premium-grade gasoline.« less

  3. Potential of secondary aerosol formation from Chinese gasoline engine exhaust.

    PubMed

    Du, Zhuofei; Hu, Min; Peng, Jianfei; Guo, Song; Zheng, Rong; Zheng, Jing; Shang, Dongjie; Qin, Yanhong; Niu, He; Li, Mengren; Yang, Yudong; Lu, Sihua; Wu, Yusheng; Shao, Min; Shuai, Shijin

    2018-04-01

    Light-duty gasoline vehicles have drawn public attention in China due to their significant primary emissions of particulate matter and volatile organic compounds (VOCs). However, little information on secondary aerosol formation from exhaust for Chinese vehicles and fuel conditions is available. In this study, chamber experiments were conducted to quantify the potential of secondary aerosol formation from the exhaust of a port fuel injection gasoline engine. The engine and fuel used are common in the Chinese market, and the fuel satisfies the China V gasoline fuel standard. Substantial secondary aerosol formation was observed during a 4-5hr simulation, which was estimated to represent more than 10days of equivalent atmospheric photo-oxidation in Beijing. As a consequence, the extreme case secondary organic aerosol (SOA) production was 426±85mg/kg-fuel, with high levels of precursors and OH exposure. The low hygroscopicity of the aerosols formed inside the chamber suggests that SOA was the dominant chemical composition. Fourteen percent of SOA measured in the chamber experiments could be explained through the oxidation of speciated single-ring aromatics. Unspeciated precursors, such as intermediate-volatility organic compounds and semi-volatile organic compounds, might be significant for SOA formation from gasoline VOCs. We concluded that reductions of emissions of aerosol precursor gases from vehicles are essential to mediate pollution in China. Copyright © 2017. Published by Elsevier B.V.

  4. Influence of cooled exhaust gas recirculation on performance, emissions and combustion characteristics of LPG fuelled lean burn SI engine

    NASA Astrophysics Data System (ADS)

    Ravi, K.; Pradeep Bhasker, J.; Alexander, Jim; Porpatham, E.

    2017-11-01

    On fuel perspective, Liquefied Petroleum Gas (LPG) provides cleaner emissions and also facilitates lean burn signifying less fuel consumption and emissions. Lean burn technology can attain better efficiencies and lesser combustion temperatures but this temperature is quite sufficient to facilitate formation of nitrogen oxide (NOx). Exhaust Gas Recirculation (EGR) for NOx reduction has been considered allover but extremely little literatures exist on the consequence of EGR on lean burn LPG fuelled spark ignition (SI) engine. The following research is carried out to find the optimal rate of EGR addition to reduce NOx emissions without settling on performance and combustion characteristics. A single cylinder diesel engine is altered to operate as LPG fuelled SI engine at a compression ratio of 10.5:1 and arrangements to provide different ratios of cooled EGR in the intake manifold. Investigations are done to arrive at optimum ratio of the EGR to reduce emissions without compromising on performance. Significant reductions in NOx emissions alongside HC and CO emissions were seen. Higher percentages of EGR further diluted the charge and lead to improper combustion and thus increased hydrocarbon emissions. Cooled EGR reduced the peak in-cylinder temperature which reduced NOx emissions but lead to misfire at lower lean limits.

  5. Decontamination of Water Containing Radiological Warfare Agents

    DTIC Science & Technology

    1975-03-01

    debris was cond~ucted undcr Project Snowball. Open tanks of water were exposed to a 500- toxi TNT explosion 2 at varying distances from grouind zero...trailhr; 4-cylinder, 4-stroke, liquid- cooled gasoline engine: aluminum evaporator-conden ser; vapor complressor; watcr pumps; heat exchanger; cngine...field consists of a 10-kw gasoline -engine-driven generator and three electric-motor-driven pumps. See Figure 21 for a photograph of the cation and anion

  6. The history, genotoxicity, and carcinogenicity of carbon-based fuels and their emissions. Part 3: diesel and gasoline.

    PubMed

    Claxton, Larry D

    2015-01-01

    Within this review the genotoxicity of diesel and gasoline fuels and emissions is placed in an historical context. New technologies have changed the composition of transportation methods considerably, reducing emissions of many of the components of health concern. The similarity of modern diesel and gasoline fuels and emissions to other carbonaceous fuels and emissions is striking. Recently an International Agency for Research on Cancer (IARC) Working Group concluded that there was sufficient evidence in humans for the carcinogenicity of diesel exhaust (Group 1). In addition, the Working Group found that diesel exhaust has "a positive association (limited evidence) with an increased risk of bladder cancer." Like most other carbonaceous fuel emissions, diesel and gasoline exhausts contain toxic levels of respirable particles (PM <2.5μm) and polycyclic aromatic hydrocarbons. However, the level of toxic components in exhausts from diesel and gasoline emissions has declined in certain regions over time because of changes in engine design, the development of better aftertreatment devices (e.g., catalysts), increased fuel economy, changes in the fuels and additives used, and greater regulation. Additional research and better exposure assessments are needed so that decision makers and the public can decide to what extent diesel and gasoline engines should be replaced. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Effects of gasoline aromatic content on emissions of volatile organic compounds and aldehydes from a four-stroke motorcycle.

    PubMed

    Yao, Yung-Chen; Tsai, Jiun-Horng

    2013-01-01

    A new four-stroke carburettor motorcycle engine without any engine adjustments was used to study the impact of fuel aromatic content on the exhaust emissions of organic air pollutants (volatile organic compounds and carbonyls). Three levels of aromatic content, i.e. 15, 25, and 50% (vol.) aromatics mixed with gasoline were tested. The emissions of aromatic fuel were compared with those of commercial unleaded gasoline. The results indicated that the A 15 (15 vol% aromatics in gasoline) fuel exhibited the greatest total organic emission improvement among these three aromatic fuels as compared with commercial gasoline, reaching 59%. The highest emission factors of alkanes, alkenes, and carbonyl groups appeared in the reference fuel (RF) among all of the test fuels. A 15 showed the highest emission reduction in alkanes (73%), aromatics (36%), and carbonyls (28%), as compared to those of the RF. The highest emission reduction ofalkenes was observed when using A25 as fuel. A reduction in fuel aromatic content from 50 to 25 and 15 vol% in gasoline decreased benzene and toluene emissions, but increased the aldehyde emissions. In general, the results showed that the highest emission reductions for the most of measured organic pollutants appeared when using A 15 as the fuel.

  8. A review of vapour lock issues during motor gasoline or automotive gasoline usage in piston engine aircraft

    NASA Astrophysics Data System (ADS)

    Thanikasalam, K.; Rahmat, M.; Fahmi, A. G. Mohammad; Zulkifli, A. M.; Shawal, N. Noor; Ilanchelvi, K.; Ananth, M.; Elayarasan, R.

    2018-05-01

    Since there is a developing practice of utilizing automotive fuels as flight fuel, there are higher chances of dangerous scenarios, particularly in the operation of piston aircraft engines. The use of motor vehicle gas (MOGAS) or aviation gas (AVGAS) in the operation of aviation piston engine increases the risk of vapour locking. A statistical examination of European aviation industry indicates that around 20,000 aircraft are affected either specifically or conceivably by the different negative impacts of gasoline blended with ethanol. Particularly, for most contemporary carburettor engines, there are risks associated with ethanol-admixed fuels that have potential to upset engine operation. The danger of vapour locking, which is the generation of gas bubbles inside the fuel system causing an impairment of fuel movement in the engine, is well documented particularly by studies on aircraft using MOGAS. Contrasted with AVGAS, MOGAS is inclined to demonstrate this phenomenon. Vapour lock is perhaps the leading serious problem that ought to be addressed if MOGAS is to be used as a substitute for AVGAS. Vapour lock problem is critical because it causes malfunctions to aircraft engines. Thus, an understanding of vapour handling ability of small aircraft is essential to establish safe operating confines at existing fuel temperature and pressures.

  9. Comparative effects of MTBE and ethanol additions into gasoline on exhaust emissions

    NASA Astrophysics Data System (ADS)

    Song, Chong-Lin; Zhang, Wen-Mei; Pei, Yi-Qiang; Fan, Guo-Liang; Xu, Guan-Peng

    The effects of the additives of ethanol (EA) and methyl tert-butyl ether (MTBE) in various blend ratios into the gasoline fuel on the exhaust emissions and the catalytic conversion efficiencies were investigated in an EFI gasoline engine. The regulated exhaust emissions (CO, THC and NO X) and the unregulated exhaust emissions (benzene, formaldehyde, acetaldehyde, unburned EA and MTBE) before and after the three-way catalytic converter were measured. The experimental results showed that EA brought about generally lower regulated engine-out emissions than MTBE did. But, the comparison of the unregulated engine-out emissions between both additives was different. Concretely, the effect of EA on benzene emission was worse than that of MTBE on the whole, which was a contrast with formaldehyde emission. The difference in the acetaldehyde comparison depended much on the engine operating conditions, especially the engine speed. Both EA and MTBE were identified in the engine exhaust gases only when they were added to the fuel, and their volume fraction increased with blend ratios. The catalytic conversion efficiencies of the regulated emissions for the EA blends were in general lower than those for MTBE blends, especially at the low and high engine speeds. There was little difference in the catalytic conversion efficiencies for both benzene and formaldehyde, while distinct difference for acetaldehyde.

  10. 77 FR 72653 - Designation of Product Categories for Federal Procurement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-05

    ... cleaners; automotive care products; engine crankcase oil; gasoline fuel additives; metal cleaners and... crankcase oil; gasoline fuel additives; metal cleaners and corrosion removers; microbial cleaning products... for biobased feed stock? Does manufacturing of products within this product category increase...

  11. Improving the environmental and performance characteristics of vehicles by introducing the surfactant additive into gasoline.

    PubMed

    Magaril, Elena; Magaril, Romen

    2016-09-01

    The operation of modern vehicles requires the introduction of package of fuel additives to ensure the required level of operating characteristics, some of which cannot be achieved by current oil refining methods. The use of additives allows flexibility of impact on the properties of the fuel at minimal cost, increasing the efficiency and environmental safety of vehicles. Among the wide assortment of additives available on the world market, many are surfactants. It has been shown that the introduction of some surfactants into gasoline concurrently reduces losses from gasoline evaporation, improves the mixture formation during injection of gasoline into the engine and improves detergent and anticorrosive properties. The surfactant gasoline additive that provides significant improvement in the quality of gasoline used and environmental and operating characteristics of vehicles has been developed and thoroughly investigated. The results of studies confirming the efficiency of the gasoline additive application are herein presented.

  12. Penny-pinching strategy pays off at the gas pumps. [Hudson Oil Co

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazem, S.G.

    1978-06-05

    Mary Hudson Vandergrift is president and chief executive of Hudson Oil Company. She reigns over the oldest and one of the largest independent gasoline-marketing companies in the U.S., with 300 service stations scattered across thirty-six states, and her own refinery. Her company rang up sales of $230 million last year, and FORTUNE estimates that profits were in the neighborhood of $10 million. Many of Miss Hudson's strategies in gasoline marketing have been getting to be commonplace in the business. She runs a lean operation, cutting costs to the bone. She shuns grease racks and service bays; at each station amore » small, austere kiosk houses only a cash box and rest rooms. Most customers must serve themselves. She undersells the major oil companies by 1 to 2 cents per gallon. Her refinery turns out 450,000 gallons of gasoline daily, enough to fill 50% of Hudson's retail needs and for every barrel of crude it refines, Hudson Oil gets a rebate of about $2 from the government as part of the entitlements program that aims to keep small refiners competitive with the majors. (MCW)« less

  13. After-Test Engine Inspection of U.S. Army Administrative and Light-Tactical Vehicles Operated on Gasohol and Unleaded Gasoline.

    DTIC Science & Technology

    1983-02-01

    Force 76-84 @ 1.82 (338)-(374)@(46.23) Intake 174.0 71 220.3 215-237 @ 1.39 88 85 81 95-105 @ I 13/16" (774) (316) (980) (956)-(1054)@ (391) (378) (360...Mfg. Specs per Veh. Gasohol Gasoline Station Chrysler V-8, 318 CID 07121303 5 16 31 -- Ft. Belvoir 07090311 6 16 38 -- Ft. Belvoir 03223146 5 16...TABLE 6. CRC RATINGS FOR TEST ENGINES FROM FT. BELVOIR, VA Type Engine Chrysler V-8, 318 CID Jeep, 4 Cylinder, 140 CID Serial Number 07121303 07090311

  14. Co-Optimization of Fuels & Engines: Misfueling Mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sluder, C. Scott; Moriarty, Kristi; Jehlik, Forrest

    This report examines diesel/gasoline misfueling, leaded/unleaded gasoline misfueling, E85/E15/E10 misfueling, and consumer selection of regular grade fuel over premium grade fuel in an effort to evaluate misfueling technologies that may be needed to support the introduction of vehicles optimized for a new fuel in the marketplace. This is one of a series of reports produced as a result of the Co-Optimization of Fuels & Engines (Co-Optima) project, a Department of Energy-sponsored multi-agency project to accelerate the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines.

  15. The effect of incomplete fuel-air mixing on the lean blowout limit, lean stability limit and NO(x) emissions in lean premixed gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Shih, W.-P.; Lee, J. G.; Santavicca, D. A.

    1994-01-01

    Gas turbine engines for both land-based and aircraft propulsion applications are facing regulations on NOx emissions which cannot be met with current combustor technology. A number of alternative combustor strategies are being investigated which have the potential capability of achieving ultra-low NOx emissions, including lean premixed combustors, direct injection combustors, rich burn-quick quench-lean burn combustors and catalytic combustors. The research reported in this paper addresses the effect of incomplete fuel-air mixing on the lean limit performance and the NOx emissions characteristics of lean premixed combustors.

  16. Advanced Gasoline Turbocharged Direction Injection (GTDI) Engine Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Terrance

    This program was undertaken in response to US Department of Energy Solicitation DE-FOA-0000079, resulting in a cooperative agreement with Ford and MTU to demonstrate improvement of fuel efficiency in a vehicle equipped with an advanced GTDI engine. Ford Motor Company has invested significantly in GTDI engine technology as a cost effective, high volume, fuel economy solution, marketed globally as EcoBoost technology. Ford envisions additional fuel economy improvement in the medium and long term by further advancing EcoBoost technology. The approach for the project was to engineer a comprehensive suite of gasoline engine systems technologies to achieve the project objectives, andmore » to progressively demonstrate the objectives via concept analysis / computer modeling, single-cylinder and multi-cylinder engine testing on engine dynamometer, and vehicle level testing on chassis rolls.« less

  17. Butanol/Gasoline Test Plan

    DTIC Science & Technology

    2012-03-01

    Differences between gasoline fuel and biobutanol fuel including the effects of temperature  Safety-related and health issues including safety...where engine-operating parameters such as fuel consumption , performance, and emissions are monitored under controlled conditions, with the addition...7 3.3 Power and Fuel Consumption

  18. Emissions from diesel and stratified charge powered cars. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, K.J.

    A total of ten passenger cars, four powered by diesel engines, two by stratified charge gasoline engines, one by a stratified charge operating on gasoline and diesel fuel, two by control equipped conventional engines, and one powered by a gas turbine, have been subjected to a wide variety of emissions evaluations. The vehicles, all late model, low mileage, included a Nissan Datsun, a Mercedes 220D, a Peugeot 504D, an Opel Rekord 2100D, a standard Capri, a stratified charge (PROCO) Capri, a low emission prototype Ford LTD, the Texaco TCCS stratified charge powered Cricket operated on gasoline and on diesel fuel,more » a Honda CVCC stratified charge, and a Chrysler gas turbine car. All were 4-cylinder except the LTD and the gas turbine. Tailpipe emissions were measured by the 1975 light duty Federal Test Procedure for gaseous emissions. Smoke and fuel economy were also determined during this test cycle. Chassis dynamometer versions of the 1974 heavy duty diesel smoke and gaseous emissions tests were employed. Odor and related instrumental-chemical measurements were made under seven steady state and three acceleration conditions. The prototype diesel odor analytical system, developed under CRC contract, was applied to the exhaust from both diesel and gasoline engines. Its use as a predictive method of diesel odor was investigated. Noise measurements were taken by SAE driveby as well as under a variety of exterior-interior conditions. Comparisons of the results for all vehicles are by emission category. The emissions from the group of diesel cars are compared to the conventional gasoline, Ford PROCO, Texas TCCS, and Honda CVCC.« less

  19. Lube oil-dependent ash chemistry on soot oxidation reactivity in a gasoline direct-injection engine

    DOE PAGES

    Choi, Seungmok; Seong, Heeje

    2016-09-30

    Gasoline particulate filters (GPF) are considered an enabling technology to meet stringent particulate matter (PM) regulations for gasoline direct-injection (GDI) engines, which are known to produce significant PM emissions. While ash loading in filters has been recognized to be detrimental in filter performance by increasing back pressure, increased ash fractions in soot were observed to enhance soot oxidation. In this study, GDI soot samples derived from different gasoline/lube oil blends were evaluated to identify potential promoting factors when formulated lube oils were dosed into gasoline fuel. Ca-derived ash enhanced soot oxidation remarkably, while P- and ZDDP-derived ash deteriorated soot oxidation.more » It is apparent that the promoting effect of lube oil-derived ash is due mainly to the Ca component that is the most abundant among additive components in lube oil. Bulk and surface analyses of these ash compounds indicate that Ca-derived ash would be complex compounds, while the contribution of CaSO 4, which is one of the most abundant ash compounds from diesel engines, is almost negligible. For the validation of the ash promoting impact in filters, the regeneration experiments were compared for a TWC-coated GPF in a GDI engine before and after ash loading was performed. The pressure drop of the ash-loaded GPF decreased noticeably in the initial regeneration stage and it increased gradually, whereas that of no ash-loaded GPF increased gradually without any reduction. So, it is concluded that the ash layer in the GPF assisted soot oxidation in the early regeneration stage when it was in close contact with soot.« less

  20. Lube oil-dependent ash chemistry on soot oxidation reactivity in a gasoline direct-injection engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Seungmok; Seong, Heeje

    Gasoline particulate filters (GPF) are considered an enabling technology to meet stringent particulate matter (PM) regulations for gasoline direct-injection (GDI) engines, which are known to produce significant PM emissions. While ash loading in filters has been recognized to be detrimental in filter performance by increasing back pressure, increased ash fractions in soot were observed to enhance soot oxidation. In this study, GDI soot samples derived from different gasoline/lube oil blends were evaluated to identify potential promoting factors when formulated lube oils were dosed into gasoline fuel. Ca-derived ash enhanced soot oxidation remarkably, while P- and ZDDP-derived ash deteriorated soot oxidation.more » It is apparent that the promoting effect of lube oil-derived ash is due mainly to the Ca component that is the most abundant among additive components in lube oil. Bulk and surface analyses of these ash compounds indicate that Ca-derived ash would be complex compounds, while the contribution of CaSO 4, which is one of the most abundant ash compounds from diesel engines, is almost negligible. For the validation of the ash promoting impact in filters, the regeneration experiments were compared for a TWC-coated GPF in a GDI engine before and after ash loading was performed. The pressure drop of the ash-loaded GPF decreased noticeably in the initial regeneration stage and it increased gradually, whereas that of no ash-loaded GPF increased gradually without any reduction. So, it is concluded that the ash layer in the GPF assisted soot oxidation in the early regeneration stage when it was in close contact with soot.« less

  1. Compositional effects on the ignition of FACE gasolines [Compositional effects on the ignition of FACE gasoline fuels: experiments, surrogate fuel formulation, and chemical kinetic modeling

    DOE PAGES

    Sarathy, S. Mani; Kukkadapu, Goutham; Mehl, Marco; ...

    2016-05-08

    As regulatory measures for improved fuel economy and decreased emissions are pushing gasoline engine combustion technologies towards extreme conditions (i.e., boosted and intercooled intake with exhaust gas recirculation), fuel ignition characteristics become increasingly important for enabling stable operation. Here, this study explores the effects of chemical composition on the fundamental ignition behavior of gasoline fuels. Two well-characterized, high-octane, non-oxygenated FACE (Fuels for Advanced Combustion Engines) gasolines, FACE F and FACE G, having similar antiknock indices but different octane sensitivities and chemical compositions are studied. Ignition experiments were conducted in shock tubes and a rapid compression machine (RCM) at nominal pressuresmore » of 20 and 40 atm, equivalence ratios of 0.5 and 1.0, and temperatures ranging from 650 to 1270 K. Results at temperatures above 900 K indicate that ignition delay time is similar for these fuels. However, RCM measurements below 900 K demonstrate a stronger negative temperature coefficient behavior for FACE F gasoline having lower octane sensitivity. In addition, RCM pressure profiles under two-stage ignition conditions illustrate that the magnitude of low-temperature heat release (LTHR) increases with decreasing fuel octane sensitivity. However, intermediate-temperature heat release is shown to increase as fuel octane sensitivity increases. Various surrogate fuel mixtures were formulated to conduct chemical kinetic modeling, and complex multicomponent surrogate mixtures were shown to reproduce experimentally observed trends better than simpler two- and three-component mixtures composed of n-heptane, iso-octane, and toluene. Measurements in a Cooperative Fuels Research (CFR) engine demonstrated that the multicomponent surrogates accurately captured the antiknock quality of the FACE gasolines. Simulations were performed using multicomponent surrogates for FACE F and G to reveal the underlying chemical kinetics linking fuel composition with ignition characteristics. Finally, a key discovery of this work is the kinetic coupling between aromatics and naphthenes, which affects the radical pool population and thereby controls ignition.« less

  2. Compositional effects on the ignition of FACE gasolines [Compositional effects on the ignition of FACE gasoline fuels: experiments, surrogate fuel formulation, and chemical kinetic modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarathy, S. Mani; Kukkadapu, Goutham; Mehl, Marco

    As regulatory measures for improved fuel economy and decreased emissions are pushing gasoline engine combustion technologies towards extreme conditions (i.e., boosted and intercooled intake with exhaust gas recirculation), fuel ignition characteristics become increasingly important for enabling stable operation. Here, this study explores the effects of chemical composition on the fundamental ignition behavior of gasoline fuels. Two well-characterized, high-octane, non-oxygenated FACE (Fuels for Advanced Combustion Engines) gasolines, FACE F and FACE G, having similar antiknock indices but different octane sensitivities and chemical compositions are studied. Ignition experiments were conducted in shock tubes and a rapid compression machine (RCM) at nominal pressuresmore » of 20 and 40 atm, equivalence ratios of 0.5 and 1.0, and temperatures ranging from 650 to 1270 K. Results at temperatures above 900 K indicate that ignition delay time is similar for these fuels. However, RCM measurements below 900 K demonstrate a stronger negative temperature coefficient behavior for FACE F gasoline having lower octane sensitivity. In addition, RCM pressure profiles under two-stage ignition conditions illustrate that the magnitude of low-temperature heat release (LTHR) increases with decreasing fuel octane sensitivity. However, intermediate-temperature heat release is shown to increase as fuel octane sensitivity increases. Various surrogate fuel mixtures were formulated to conduct chemical kinetic modeling, and complex multicomponent surrogate mixtures were shown to reproduce experimentally observed trends better than simpler two- and three-component mixtures composed of n-heptane, iso-octane, and toluene. Measurements in a Cooperative Fuels Research (CFR) engine demonstrated that the multicomponent surrogates accurately captured the antiknock quality of the FACE gasolines. Simulations were performed using multicomponent surrogates for FACE F and G to reveal the underlying chemical kinetics linking fuel composition with ignition characteristics. Finally, a key discovery of this work is the kinetic coupling between aromatics and naphthenes, which affects the radical pool population and thereby controls ignition.« less

  3. Life cycle models of conventional and alternative-fueled automobiles

    NASA Astrophysics Data System (ADS)

    Maclean, Heather Louise

    This thesis reports life cycle inventories of internal combustion engine automobiles with feasible near term fuel/engine combinations. These combinations include unleaded gasoline, California Phase 2 Reformulated Gasoline, alcohol and gasoline blends (85 percent methanol or ethanol combined with 15 percent gasoline), and compressed natural gas in spark ignition direct and indirect injection engines. Additionally, I consider neat methanol and neat ethanol in spark ignition direct injection engines and diesel fuel in compression ignition direct and indirect injection engines. I investigate the potential of the above options to have a lower environmental impact than conventional gasoline-fueled automobiles, while still retaining comparable pricing and consumer benefits. More broadly, the objective is to assess whether the use of any of the alternative systems will help to lead to the goal of a more sustainable personal transportation system. The principal tool is the Economic Input-Output Life Cycle Analysis model which includes inventories of economic data, environmental discharges, and resource use. I develop a life cycle assessment framework to assemble the array of data generated by the model into three aggregate assessment parameters; economics, externalities, and vehicle attributes. The first step is to develop a set of 'comparable cars' with the alternative fuel/engine combinations, based on characteristics of a conventional 1998 gasoline-fueled Ford Taurus sedan, the baseline vehicle for the analyses. I calculate the assessment parameters assuming that these comparable cars can attain the potential thermal efficiencies estimated by experts for each fuel/engine combination. To a first approximation, there are no significant differences in the assessment parameters for the vehicle manufacture, service, fixed costs, and the end-of-life for any of the options. However, there are differences in the vehicle operation life cycle components and the state of technology development for the combinations. Overall, none of the alternatives emerges as a clear winner, lowering the externalities and improving sustainability, while considering technology issues and vehicle attributes. The majority of the alternatives are not likely to displace the baseline automobile. However, the attractiveness of the alternatives depends on the focus of future regulations, government priorities, and technology development. If long-term global sustainability is the principal concern, then improvements in fuel economy alone will not provide the level of reduction in impact required. A switch to renewable fuels (e.g., alcohols or diesel produced from biomass) to power the vehicles will likely be necessary. (Abstract shortened by UMI.)

  4. The Effects of Low-Level Ethanol Blends in 4-Stroke Small Non-Road Engines

    NASA Astrophysics Data System (ADS)

    Reek, Chris

    Small Non-Road Engines (SNRE's) abound in numbers and are used daily by consumers and businesses alike. Considering the atmosphere of change looming in the air regarding alternative fuels, this particular engine classification will also be affected by any change in standardization of fuels. This body of research attempts to address possible ways SNRE's can change their operational characteristics after being fueled by specific yet differing fuels. These characteristics will be contrasted against blends of ethanol with gasoline, from 0% ethanol to 20% ethanol, run on test engines to determine patterns, if any, of these characteristics. Topics include: materials compatibility, engine longevity/durability, engine performance, emissions characteristics, operational temperatures, engine oil characteristics, and inspection of engines. These parameters will be used to compare the effects of low-level blends of ethanol with gasoline has on these particular SNRE's.

  5. Industrial Education. "Small Engines".

    ERIC Educational Resources Information Center

    Parma City School District, OH.

    Part of a series of curriculum guides dealing with industrial education in junior high schools, this guide provides the student with information and manipulative experiences on small gasoline engines. Included are sections on shop adjustment, safety, small engines, internal combustion, engine construction, four stroke engines, two stroke engines,…

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sileghem, L.; Wallner, T.; Verhelst, S.

    As knock is one of the main factors limiting the efficiency of spark-ignition engines, the introduction of alcohol blends could help to mitigate knock concerns due to the elevated knock resistance of these blends. A model that can accurately predict their autoignition behavior would be of great value to engine designers. The current work aims to develop such a model for alcohol–gasoline blends. First, a mixing rule for the autoignition delay time of alcohol–gasoline blends is proposed. Subsequently, this mixing rule is used together with an autoignition delay time correlation of gasoline and an autoignition delay time cor-relation of methanolmore » in a knock integral model that is implemented in a two-zone engine code. The pre-dictive performance of the resulting model is validated through comparison against experimental measurements on a CFR engine for a range of gasoline–methanol blends. The knock limited spark advance, the knock intensity, the knock onset crank angle and the value of the knock integral at the experimental knock onset have been simulated and compared to the experimental values derived from in-cylinder pressure measurements.« less

  7. Environmental implications of alternative-fueled automobiles: Air quality and greenhouse gas tradeoffs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MaClean, H.L.; Lave, L.B.

    The authors analyze alternative fuel-powerstrain options for internal combustion engine automobiles. Fuel/engine efficiency, energy use, pollutant discharges, and greenhouse gas emissions are estimated for spark and compression ignited, direct injected (DI), and indirect injected (II) engines fueled by conventional and reformulated gasoline, reformulated diesel, compressed natural gas (CNG), and alcohols. Since comparisons of fuels and technologies in dissimilar vehicles are misleading, the authors hold emissions level, range, vehicle size class, and style constant. At present, CNG vehicles have the best exhaust emissions performance while DI diesels have the worst. Compared to a conventional gasoline fueled II automobile, greenhouse gases couldmore » be reduced by 40% by a DI CNG automobile and by 25% by a DI diesel. Gasoline- and diesel-fueled automobiles are able to attain long ranges with little weight or fuel economy penalty. CNG vehicles have the highest penalty for increasing range, due to their heavy fuel storage systems, but are the most attractive for a 160-km range. DI engines, particularly diesels, may not be able to meet strict emissions standards, at least not without lowering efficiency.« less

  8. Estimation of CO2 reduction by parallel hard-type power hybridization for gasoline and diesel vehicles.

    PubMed

    Oh, Yunjung; Park, Junhong; Lee, Jong Tae; Seo, Jigu; Park, Sungwook

    2017-10-01

    The purpose of this study is to investigate possible improvements in ICEVs by implementing fuzzy logic-based parallel hard-type power hybrid systems. Two types of conventional ICEVs (gasoline and diesel) and two types of HEVs (gasoline-electric, diesel electric) were generated using vehicle and powertrain simulation tools and a Matlab-Simulink application programming interface. For gasoline and gasoline-electric HEV vehicles, the prediction accuracy for four types of LDV models was validated by conducting comparative analysis with the chassis dynamometer and OBD test data. The predicted results show strong correlation with the test data. The operating points of internal combustion engines and electric motors are well controlled in the high efficiency region and battery SOC was well controlled within ±1.6%. However, for diesel vehicles, we generated virtual diesel-electric HEV vehicle because there is no available vehicles with similar engine and vehicle specifications with ICE vehicle. Using a fuzzy logic-based parallel hybrid system in conventional ICEVs demonstrated that HEVs showed superior performance in terms of fuel consumption and CO 2 emission in most driving modes. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Reactivity-controlled compression ignition drive cycle emissions and fuel economy estimations using vehicle system simulations

    DOE PAGES

    Curran, Scott J.; Gao, Zhiming; Wagner, Robert M.

    2014-12-22

    In-cylinder blending of gasoline and diesel to achieve reactivity-controlled compression ignition has been shown to reduce NO X and soot emissions while maintaining or improving brake thermal efficiency as compared with conventional diesel combustion. The reactivity-controlled compression ignition concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load, allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. In this paper, a multi-mode reactivity-controlled compression ignition strategy is employed where the engine switches from reactivity-controlled compression ignition to conventional diesel combustionmore » when speed and load demand are outside of the experimentally determined reactivity-controlled compression ignition range. The potential for reactivity-controlled compression ignition to reduce drive cycle fuel economy and emissions is not clearly understood and is explored here by simulating the fuel economy and emissions for a multi-mode reactivity-controlled compression ignition–enabled vehicle operating over a variety of US drive cycles using experimental engine maps for multi-mode reactivity-controlled compression ignition, conventional diesel combustion, and a 2009 port-fuel injected gasoline engine. Drive cycle simulations are completed assuming a conventional mid-size passenger vehicle with an automatic transmission. Multi-mode reactivity-controlled compression ignition fuel economy simulation results are compared with the same vehicle powered by a representative 2009 port-fuel injected gasoline engine over multiple drive cycles. Finally, engine-out drive cycle emissions are compared with conventional diesel combustion, and observations regarding relative gasoline and diesel tank sizes needed for the various drive cycles are also summarized.« less

  10. Evaluation of mobile source emission trends in the United States

    NASA Astrophysics Data System (ADS)

    Dallmann, Timothy R.; Harley, Robert A.

    2010-07-01

    A fuel-based approach is used to estimate exhaust emissions of nitrogen oxides (NOx) and fine particulate matter (PM2.5) from mobile sources in the United States for the years 1996-2006. Source categories considered include on-road and off-road gasoline and diesel engines. Pollutant emissions for each mobile source category were estimated by combining fuel consumption with emission factors expressed per unit of fuel burned. Over the 10-year time period that is the focus of this study, sales of gasoline and diesel fuel intended for on-road use increased by 15 and 43%, respectively. Diesel fuel use by off-road equipment increased by ˜20% over the same time period. Growth in fuel consumption offset some of the reductions in pollutant emission factors that occurred during this period. For NOx, there have been dramatic (factor of 2) decreases in emission factors for on-road gasoline engines between 1996 and 2006. In contrast, diesel NOx emission factors decreased more gradually. Exhaust PM2.5 emission factors appear to have decreased for most engine categories, but emission uncertainties are large for this pollutant. Diesel engines appear to be the dominant mobile source of both NOx and PM2.5; the diesel share of total NOx has increased over time as gasoline engine emissions have declined. Comparing fuel-based emission estimates with U.S. Environmental Protection Agency's national emission inventory led to the following conclusions: (1) total emissions of NOx and PM2.5 estimated by two different methods were similar, (2) source contributions to these totals differ significantly, with higher relative contributions coming from on-road diesel engines in this study.

  11. Assessing the Climate Trade-Offs of Gasoline Direct Injection Engines.

    PubMed

    Zimmerman, Naomi; Wang, Jonathan M; Jeong, Cheol-Heon; Wallace, James S; Evans, Greg J

    2016-08-02

    Compared to port fuel injection (PFI) engine exhaust, gasoline direct injection (GDI) engine exhaust has higher emissions of black carbon (BC), a climate-warming pollutant. However, the relative increase in BC emissions and climate trade-offs of replacing PFI vehicles with more fuel efficient GDI vehicles remain uncertain. In this study, BC emissions from GDI and PFI vehicles were compiled and BC emissions scenarios were developed to evaluate the climate impact of GDI vehicles using global warming potential (GWP) and global temperature potential (GTP) metrics. From a 20 year time horizon GWP analysis, average fuel economy improvements ranging from 0.14 to 14% with GDI vehicles are required to offset BC-induced warming. For all but the lowest BC scenario, installing a gasoline particulate filter with an 80% BC removal efficiency and <1% fuel penalty is climate beneficial. From the GTP-based analysis, it was also determined that GDI vehicles are climate beneficial within <1-20 years; longer time horizons were associated with higher BC scenarios. The GDI BC emissions spanned 2 orders of magnitude and varied by ambient temperature, engine operation, and fuel composition. More work is needed to understand BC formation mechanisms in GDI engines to ensure that the climate impacts of this engine technology are minimal.

  12. Assessing Rates of Global Warming Emissions from Port- Fuel Injection and Gasoline Direct Injection Engines in Light-Duty Passenger Vehicles

    NASA Astrophysics Data System (ADS)

    Short, D.; , D., Vi; Durbin, T.; Karavalakis, G.; Asa-Awuku, A. A.

    2013-12-01

    Passenger vehicles are known emitters of climate warming pollutants. CO2 from automobile emissions are an anthropogenic greenhouse gas (GHG) and a large contributor to global warming. Worldwide, CO2 emissions from passenger vehicles are responsible for 11% of the total CO2 emissions inventory. Black Carbon (BC), another common vehicular emission, may be the second largest contributor to global warming (after CO2). Currently, 52% of BC emissions in the U.S are from the transportation sector, with ~10% originating from passenger vehicles. The share of pollutants from passenger gasoline vehicles is becoming larger due to the reduction of BC from diesel vehicles. Currently, the majority of gasoline passenger vehicles in the United States have port- fuel injection (PFI) engines. Gasoline direct injection (GDI) engines have increased fuel economy compared to the PFI engine. GDI vehicles are predicted to dominate the U.S. passenger vehicle market in the coming years. The method of gasoline injection into the combustion chamber is the primary difference between these two technologies, which can significantly impact primary emissions from light-duty vehicles (LDV). Our study will measure LDV climate warming emissions and assess the impact on climate due to the change in U.S vehicle technologies. Vehicles were tested on a light- duty chassis dynamometer for emissions of CO2, methane (CH4), and BC. These emissions were measured on F3ederal and California transient test cycles and at steady-state speeds. Vehicles used a gasoline blend of 10% by volume ethanol (E10). E10 fuel is now found in 95% of gasoline stations in the U.S. Data is presented from one GDI and one PFI vehicle. The 2012 Kia Optima utilizes GDI technology and has a large market share of the total GDI vehicles produced in the U.S. In addition, The 2012 Toyota Camry, equipped with a PFI engine, was the most popular vehicle model sold in the U.S. in 2012. Methane emissions were ~50% lower for the GDI technology. While BC emissions were 96% higher for the GDI technology. The GDI technology had a smaller effect on CO2 emissions with a 4% rise compared to the other emissions. Additional results will discuss the emission rates converted to reflect total yearly passenger vehicular emissions in the U.S. Overall, the results show increases of global warming emissions from GDI passenger vehicle technology.

  13. Composition, toxicity, and mutagenicity of particulate and semivolatile emissions from heavy-duty compressed natural gas-powered vehicles.

    PubMed

    Seagrave, JeanClare; Gigliotti, Andrew; McDonald, Jacob D; Seilkop, Steven K; Whitney, Kevin A; Zielinska, Barbara; Mauderly, Joe L

    2005-09-01

    Particulate matter (PM) and vapor-phase semivolatile organic compounds (SVOC) were collected from three buses fueled by compressed natural gas. The bus engines included a well-functioning, conventional engine; a "high emitter" engine; and a new technology engine with an oxidation catalyst. Chemical analysis of the emissions showed differences among these samples, with the high emitter sample containing markers of engine oil constituents. PM + SVOC samples were also collected for mutagenicity and toxicity testing. Extraction efficiencies from the collection media were lower than for similarly collected samples from gasoline or diesel vehicles. Responses to the recovered samples were compared on the basis of exhaust volume, to incorporate the emission rates into the potency factors. Mutagenicity was assessed by Salmonella reverse mutation assay. Mutagenicity was greatest for the high emitter sample and lowest for the new technology sample. Metabolic activation reduced mutagenicity in strain TA100, but not TA98. Toxicity, including inflammation, cytotoxicity, and parenchymal changes, was assessed 24 h after intratracheal instillation into rat lungs. Lung responses were generally mild, with little difference between the responses to equivalent volumes of emissions from the normal emitter and the new technology, but greater responses for the high emitter. These emission sample potencies are further compared on the basis of recovered mass with previously reported samples from normal and high-emitter gasoline and diesel vehicles. While mutagenic potencies for the CNG emission samples were similar to the range observed in the gasoline and diesel emission samples, lung toxicity potency factors were generally lower than those for the gasoline and diesel samples.

  14. Some Notes on Gasoline-Engine Development

    NASA Technical Reports Server (NTRS)

    Ricardo, H R

    1927-01-01

    Experiments were carried out using a special engine with small glass windows and a stroboscope to record various aspects of engine performance. Valve position, supercharging, and torque recoil were all investigated with this experimental apparatus.

  15. 40 CFR 86.000-24 - Test vehicles and engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied... family, the Administrator will limit selections to engine codes which have air conditioning available and...

  16. Implementing lean in Malaysian universities: Lean awareness level in an engineering faculty of a local university

    NASA Astrophysics Data System (ADS)

    Azim Khairi, M.; Rahman, Mohamed Abd

    2018-01-01

    Many academic articles were published in Malaysia promoting the goodness of lean in manufacturing and industrial sectors but less attention was apparently given to the possibility of obtaining the same universal benefits when applying lean in non-manufacturing sectors especially higher education. This study aims to determine the level of lean awareness among a local university’s community taking its Faculty of Engineering (FoE) as the case study. It also seeks to identify typical FoE’s staff perception on lean regarding its benefits and the obstacles in implementing it. A web-based survey using questionnaires was carried out for 215 respondents consisting of academic and administrative staff of the faculty. Statistical Package for the Social Science (SPSS) was used to analyze the survey data collected. A total of 13.95% of respondents returned the forms. Slightly more than half of those responded (56.7%) have encountered some of the lean terms with mean 1.43 and standard deviation 0.504. However, the large amount of standard deviation somewhat indicates that the real level of lean awareness of FoE as a group was low. In terms of lean benefits, reduction of waste was favored (93.3%) by the respondents with mean 0.93 and standard deviation 0.254. For obstacles in implementing lean, lack of knowledge was selected by most respondents (86.7%) to be the major factor with mean 0.87 and standard deviation 0.346. Through the analysis done, the study may conclude that level of lean awareness among the university‘s community was low thus may hinder implementation of lean concept.

  17. Impact of methanol-gasoline fuel blend on the fuel consumption and exhaust emission of a SI engine

    NASA Astrophysics Data System (ADS)

    Rifal, Mohamad; Sinaga, Nazaruddin

    2016-04-01

    In this study, the effect of methanol-gasoline fuel blend (M15, M30 and M50) on the fuel consumption and exhaust emission of a spark ignition engine (SI) were investigated. In the experiment, an engine four-cylinder, four stroke injection system (engine of Toyota Kijang Innova 1TR-FE) was used. Test were did to know the relation of fuel consumption and exhaust emission (CO, CO2, HC) were analyzed under the idle throttle operating condition and variable engine speed ranging from 1000 to 4000 rpm. The experimental result showed that the fuel consumption decrease with the use of methanol. It was also shown that the CO and HC emission were reduced with the increase methanol content while CO2 were increased.

  18. 40 CFR 86.213-04 - Fuel specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.213-04 Fuel specifications. Gasoline...

  19. 40 CFR 86.213-94 - Fuel specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.213-94 Fuel specifications. Gasoline...

  20. The Effect of Compression Ratio, Fuel Octane Rating, and Ethanol Content on Spark-Ignition Engine Efficiency.

    PubMed

    Leone, Thomas G; Anderson, James E; Davis, Richard S; Iqbal, Asim; Reese, Ronald A; Shelby, Michael H; Studzinski, William M

    2015-09-15

    Light-duty vehicles (LDVs) in the United States and elsewhere are required to meet increasingly challenging regulations on fuel economy and greenhouse gas (GHG) emissions as well as criteria pollutant emissions. New vehicle trends to improve efficiency include higher compression ratio, downsizing, turbocharging, downspeeding, and hybridization, each involving greater operation of spark-ignited (SI) engines under higher-load, knock-limited conditions. Higher octane ratings for regular-grade gasoline (with greater knock resistance) are an enabler for these technologies. This literature review discusses both fuel and engine factors affecting knock resistance and their contribution to higher engine efficiency and lower tailpipe CO2 emissions. Increasing compression ratios for future SI engines would be the primary response to a significant increase in fuel octane ratings. Existing LDVs would see more advanced spark timing and more efficient combustion phasing. Higher ethanol content is one available option for increasing the octane ratings of gasoline and would provide additional engine efficiency benefits for part and full load operation. An empirical calculation method is provided that allows estimation of expected vehicle efficiency, volumetric fuel economy, and CO2 emission benefits for future LDVs through higher compression ratios for different assumptions on fuel properties and engine types. Accurate "tank-to-wheel" estimates of this type are necessary for "well-to-wheel" analyses of increased gasoline octane ratings in the context of light duty vehicle transportation.

  1. Lean burn combustor technology at GE Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Dodds, Willard J.

    1992-01-01

    This presentation summarizes progress to date at GE Aircraft Engines in demonstration of a lean combustion system for the High Speed Civil Transport (HSCT). These efforts were supported primarily by NASA contracts, with the exception of initial size and weight estimates and development of advanced diagnostics which were conducted under GE Independent Research and Development projects. Key accomplishments to date are summarized below.

  2. Effects of spark plug configuration on combustion and emission characteristics of a LPG fuelled lean burn SI engine

    NASA Astrophysics Data System (ADS)

    Ravi, K.; Khan, Manazir Ahmed; Pradeep Bhasker, J.; Porpatham, E.

    2017-11-01

    Introduction of technological innovation in automotive engines in reducing pollution and increasing efficiency have been under contemplation. Gaseous fuels have proved to be a promising way to reduce emissions in Spark Ignition (SI) engines. In particular, LPG settled to be a favourable fuel for SI engines because of their higher hydrogen to carbon ratio, octane rating and lower emissions. Wide ignition limits and efficient combustion characteristics make LPG suitable for lean burn operation. But lean combustion technology has certain drawbacks like poor flame propagation, cyclic variations etc. Based on copious research it was found that location, types and number of spark plug significantly influence in reducing cyclic variations. In this work the influence of single and dual spark plugs of conventional and surface discharge electrode type were analysed. Dual surface discharge electrode spark plug enhanced the brake thermal efficiency and greatly reduced the cyclic variations. The experimental results show that rate of heat release and pressure rise was more and combustion duration was shortened in this configuration. On the emissions front, the NOx emission has increased whereas HC and CO emissions were reduced under lean condition.

  3. An experimental study of the combustion characteristics in SCCI and CAI based on direct-injection gasoline engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C.H.; Lee, K.H.

    2007-08-15

    Emissions remain a critical issue affecting engine design and operation, while energy conservation is becoming increasingly important. One approach to favorably address these issues is to achieve homogeneous charge combustion and stratified charge combustion at lower peak temperatures with a variable compression ratio, a variable intake temperature and a trapped rate of the EGR using NVO (negative valve overlap). This experiment was attempted to investigate the origins of these lower temperature auto-ignition phenomena with SCCI and CAI using gasoline fuel. In case of SCCI, the combustion and emission characteristics of gasoline-fueled stratified-charge compression ignition (SCCI) engine according to intake temperaturemore » and compression ratio was examined. We investigated the effects of air-fuel ratio, residual EGR rate and injection timing on the CAI combustion area. In addition, the effect of injection timing on combustion factors such as the start of combustion, its duration and its heat release rate was also investigated. (author)« less

  4. Predicting broadband noise from a stator vane of a gas turbine engine

    NASA Technical Reports Server (NTRS)

    Hanson, Donald B. (Inventor)

    2002-01-01

    A computer-implemented model of fan section of a gas turbine engine accounts for the turbulence in the gas flow emanating from the rotor assembly and impinging upon an inlet to the stator vane cascade. The model allows for user-input variations in the sweep and/or lean angles for the stator vanes. The model determines the resulting acoustic response of the fan section as a function of the turbulence and the lean and/or sweep angles of the vanes. The model may be embodied in software that is rapidly executed in a computer. This way, an optimum arrangement in terms of fan noise reduction is quickly determined for the stator vane lean and sweep physical positioning in the fan section of a gas turbine engine.

  5. SOA formation from gasoline vehicles: from the tailpipe to the atmosphere

    NASA Astrophysics Data System (ADS)

    Robinson, A. L.; Zhao, Y.; Lambe, A. T.; Saleh, R.; Saliba, G.; Tkacik, D. S.

    2017-12-01

    Secondary organic aerosol (SOA) formation from gasoline vehicles has been indicated as an important source of atmospheric SOA, but its contribution to atmospheric SOA is loosely constrained due to the lack of measurements to link SOA formation from the tailpipe to atmospheric SOA. In this study, we determine the contribution of SOA formation based on measurements made with a Potential Aerosol Mass (PAM) oxidation flow reactor by oxidizing vehicular exhaust and ambient air. We first investigate SOA formation from dilute gasoline-vehicle exhaust during chassis dynamometer testing. The test fleet consists of both vehicles equipped with gasoline direct injection engines (GDI vehicles) and those equipped with port fuel injection engines (PFI vehicles). These vehicles span a wide range of emissions standards from Tier0 to Super Ultra-Low Emission Vehicles (SULEV). Then, we combine our measurements of SOA formation from gasoline vehicles during dynamometer testing with measurements of SOA formation using a PAM reactor conducted in a highway tunnel and in the unban atmosphere. Comparisons of SOA formation between these datasets enable us to quantitatively connect SOA formation from individual vehicles, to a large on-road fleet, and to the atmosphere. To facilitate the comparisons, we account for the effects of both the photochemical age and dilution on SOA formation. Our results show that SOA formation from gasoline vehicles can contribute over 50% of fossil fuel-related atmospheric SOA in the Los Angeles area. Furthermore, our results demonstrate that the tightening of emissions standards effectively reduces SOA formation from gasoline vehicles, including both PFI and GDI vehicles, if the atmospheric chemistry regime remains the same.

  6. A hybrid disturbance rejection control solution for variable valve timing system of gasoline engines.

    PubMed

    Xie, Hui; Song, Kang; He, Yu

    2014-07-01

    A novel solution for electro-hydraulic variable valve timing (VVT) system of gasoline engines is proposed, based on the concept of active disturbance rejection control (ADRC). Disturbances, such as oil pressure and engine speed variations, are all estimated and mitigated in real-time. A feed-forward controller was added to enhance the performance of the system based on a simple and static first principle model, forming a hybrid disturbance rejection control (HDRC) strategy. HDRC was validated by experimentation and compared with an existing manually tuned proportional-integral (PI) controller. The results show that HDRC provided a faster response and better tolerance of engine speed and oil pressure variations. © 2013 ISA Published by ISA All rights reserved.

  7. 40 CFR 86.308-79 - Gas specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... blending. Nitrogen shall be the predominant diluent with the balance oxygen. Blends required for gasoline... zero grade nitrogen as a diluent. Combined CO and CO2 span gases are permitted. Zero grade nitrogen... analyzer shall be propane with zero-grade nitrogen as a diluent when testing gasoline-fueled engines. For...

  8. 40 CFR 86.308-79 - Gas specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... blending. Nitrogen shall be the predominant diluent with the balance oxygen. Blends required for gasoline... zero grade nitrogen as a diluent. Combined CO and CO2 span gases are permitted. Zero grade nitrogen... analyzer shall be propane with zero-grade nitrogen as a diluent when testing gasoline-fueled engines. For...

  9. 40 CFR 80.1352 - What are the pre-compliance reporting requirements for the gasoline benzene program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Benzene concentration. An estimate of the average gasoline benzene concentration corresponding to the time... engineering and permitting, Procurement and Construction, and Commissioning and startup. (7) Basic information regarding the selected technology pathway for compliance (e.g., precursor re-routing or other technologies...

  10. 40 CFR 86.304-79 - Section numbering; construction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86... the section number. The two digits following the hyphen designate the first model year for which a... year. (c) Unless indicated, all provisions in this subpart apply to both gasoline-fueled and Diesel...

  11. 40 CFR 86.304-79 - Section numbering; construction.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86... the section number. The two digits following the hyphen designate the first model year for which a... year. (c) Unless indicated, all provisions in this subpart apply to both gasoline-fueled and Diesel...

  12. 40 CFR 86.201-11 - General applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... new gasoline-fueled and diesel-fueled light-duty vehicles and light-duty trucks. (b) All of the... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium...

  13. Exposure to regular gasoline and ethanol oxyfuel during refueling in Alaska.

    PubMed Central

    Backer, L C; Egeland, G M; Ashley, D L; Lawryk, N J; Weisel, C P; White, M C; Bundy, T; Shortt, E; Middaugh, J P

    1997-01-01

    Although most people are thought to receive their highest acute exposures to gasoline while refueling, relatively little is actually known about personal, nonoccupational exposures to gasoline during refueling activities. This study was designed to measure exposures associated with the use of an oxygenated fuel under cold conditions in Fairbanks, Alaska. We compared concentrations of gasoline components in the blood and in the personal breathing zone (PBZ) of people who pumped regular unleaded gasoline (referred to as regular gasoline) with concentrations in the blood of those who pumped an oxygenated fuel that was 10% ethanol (E-10). A subset of participants in a wintertime engine performance study provided blood samples before and after pumping gasoline (30 using regular gasoline and 30 using E-10). The biological and environmental samples were analyzed for selected aromatic volatile organic compounds (VOCs) found in gasoline (benzene, ethylbenzene, toluene, m-/p-xylene, and o-xylene); the biological samples were also analyzed for three chemicals not found in gasoline (1,4-dichlorobenzene, chloroform, and styrene). People in our study had significantly higher levels of gasoline components in their blood after pumping gasoline than they had before pumping gasoline. The changes in VOC levels in blood were similar whether the individuals pumped regular gasoline or the E-10 blend. The analysis of PBZ samples indicated that there were also measurable levels of gasoline components in the air during refueling. The VOC levels in PBZ air were similar for the two groups. In this study, we demonstrate that people are briefly exposed to low (ppm and sub-ppm) levels of known carcinogens and other potentially toxic compounds while pumping gasoline, regardless of the type of gasoline used. Images Figure 1. Figure 2. Figure 3. PMID:9347900

  14. Murine precision-cut lung slices exhibit acute responses following exposure to gasoline direct injection engine emissions.

    PubMed

    Maikawa, Caitlin L; Zimmerman, Naomi; Rais, Khaled; Shah, Mittal; Hawley, Brie; Pant, Pallavi; Jeong, Cheol-Heon; Delgado-Saborit, Juana Maria; Volckens, John; Evans, Greg; Wallace, James S; Godri Pollitt, Krystal J

    2016-10-15

    Gasoline direct injection (GDI) engines are increasingly prevalent in the global vehicle fleet. Particulate matter emissions from GDI engines are elevated compared to conventional gasoline engines. The pulmonary effects of these higher particulate emissions are unclear. This study investigated the pulmonary responses induced by GDI engine exhaust using an ex vivo model. The physiochemical properties of GDI engine exhaust were assessed. Precision cut lung slices were prepared using Balb/c mice to evaluate the pulmonary response induced by one-hour exposure to engine-out exhaust from a laboratory GDI engine operated at conditions equivalent to vehicle highway cruise conditions. Lung slices were exposed at an air-liquid interface using an electrostatic aerosol in vitro exposure system. Particulate and gaseous exhaust was fractionated to contrast mRNA production related to polycyclic aromatic hydrocarbon (PAH) metabolism and oxidative stress. Exposure to GDI engine exhaust upregulated genes involved in PAH metabolism, including Cyp1a1 (2.71, SE=0.22), and Cyp1b1 (3.24, SE=0.12) compared to HEPA filtered air (p<0.05). GDI engine exhaust further increased Cyp1b1 expression compared to filtered GDI engine exhaust (i.e., gas fraction only), suggesting this response was associated with the particulate fraction. Exhaust particulate was dominated by high molecular weight PAHs. Hmox1, an oxidative stress marker, exhibited increased expression after exposure to GDI (1.63, SE=0.03) and filtered GDI (1.55, SE=0.04) engine exhaust compared to HEPA filtered air (p<0.05), likely attributable to a combination of the gas and particulate fractions. Exposure to GDI engine exhaust contributes to upregulation of genes related to the metabolism of PAHs and oxidative stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. 40 CFR 86.016-1 - General applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied...) of this section. (h) Turbine engines. Turbine engines are deemed to be compression-ignition engines... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for...

  16. Gasoline risk management: a compendium of regulations, standards, and industry practices.

    PubMed

    Swick, Derek; Jaques, Andrew; Walker, J C; Estreicher, Herb

    2014-11-01

    This paper is part of a special series of publications regarding gasoline toxicology testing and gasoline risk management; this article covers regulations, standards, and industry practices concerning gasoline risk management. Gasoline is one of the highest volume liquid fuel products produced globally. In the U.S., gasoline production in 2013 was the highest on record (API, 2013). Regulations such as those pursuant to the Clean Air Act (CAA) (Clean Air Act, 2012: § 7401, et seq.) and many others provide the U.S. federal government with extensive authority to regulate gasoline composition, manufacture, storage, transportation and distribution practices, worker and consumer exposure, product labeling, and emissions from engines and other sources designed to operate on this fuel. The entire gasoline lifecycle-from manufacture, through distribution, to end-use-is subject to detailed, complex, and overlapping regulatory schemes intended to protect human health, welfare, and the environment. In addition to these legal requirements, industry has implemented a broad array of voluntary standards and best management practices to ensure that risks from gasoline manufacturing, distribution, and use are minimized. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Lean direct wall fuel injection method and devices

    NASA Technical Reports Server (NTRS)

    Choi, Kyung J. (Inventor); Tacina, Robert (Inventor)

    2000-01-01

    A fuel combustion chamber, and a method of and a nozzle for mixing liquid fuel and air in the fuel combustion chamber in lean direct injection combustion for advanced gas turbine engines, including aircraft engines. Liquid fuel in a form of jet is injected directly into a cylindrical combustion chamber from the combustion chamber wall surface in a direction opposite to the direction of the swirling air at an angle of from about 50.degree. to about 60.degree. with respect to a tangential line of the cylindrical combustion chamber and at a fuel-lean condition, with a liquid droplet momentum to air momentum ratio in the range of from about 0.05 to about 0.12. Advanced gas turbines benefit from lean direct wall injection combustion. The lean direct wall injection technique of the present invention provides fast, uniform, well-stirred mixing of fuel and air. In addition, in order to further improve combustion, the fuel can be injected at a venturi located in the combustion chamber at a point adjacent the air swirler.

  18. Possible improvements in gasoline engines

    NASA Technical Reports Server (NTRS)

    Ziembinski, S

    1923-01-01

    High-compression engines are investigated with the three main objects being elimination of vibration, increase of maximum efficiency, and conservation of this efficiency at the highest possible speeds.

  19. Traffic Related Air Quality Trends in São Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Perez-Martinez, P.; Andrade, M. D. F.

    2014-12-01

    An air quality based approach is used to determine pollutant-trends of carbon monoxide (CO), nitrogen oxides (NOX), ozone (O3) and particle matter (PM10) mostly from road transport sources in the Metropolitan Region of São Paulo (MRSP) for the years 2000-2013. Road transport sources included flex (gasoline and ethanol) cars and motorcycles and diesel trucks and buses. Air pollutant concentrations for the transport sources were measured and related with the fuel sales by the emission factors (EFs) expressed in grams of pollutant per kilometer driven or unit of fuel consumed. Over the 14- year time period, pollutant concentrations of NOX, CO and PM10 decreased by 0.65, 0.37 and 0.71% month-1, respectively. Oppossitely during this time, fuel sales of gasoline, ethanol and diesel increased by 0.26, 1.96 and 0.38% month-1. Flex engines are the prevalent road source of CO, oppositely to diesel ones which appear to be the major source of NOX and PM10. Decrease in air pollutants are partially offset by the increment of fuel sales and related transport activity. For CO, there have been steep decreases in pollutant concentrations (rate of -5 parts per billion, ppb, month-1) for gasoline and ethanol engines between 2000 and 2013. Similarly, diesel related NOX and PM10 concentrations decreased but at slower time rates (-0.25 and -0.09 ppb month-1). Rates uncertainties are larger for diesel pollutants (coefficient of determination R of -0.47 and -0.41) than for gasoline and ethanol related CO (R equal to -0.72). This paper led to the following conclusions: (1) concentrations of gasoline and ethanol related CO, estimated by air quality network measurements, decreased at steeper rate than diesel pollutants NOX and PM10, (2) transport source contributions to the O3 formation differ significantly through the time period focus of this work, with higher contributions coming from gasoline and ethanol engines at the beinning of the reviewed period (2000-2007) and from diesel engines at the end (2008-2013).

  20. Improvement of laboratory turnaround time using lean methodology.

    PubMed

    Gupta, Shradha; Kapil, Sahil; Sharma, Monica

    2018-05-14

    Purpose The purpose of this paper is to discuss the implementation of lean methodology to reduce the turnaround time (TAT) of a clinical laboratory in a super speciality hospital. Delays in report delivery lead to delayed diagnosis increased waiting time and decreased customer satisfaction. The reduction in TAT will lead to increased patient satisfaction, quality of care, employee satisfaction and ultimately the hospital's revenue. Design/methodology/approach The generic causes resulting in increasing TAT of clinical laboratories were identified using lean tools and techniques such as value stream mapping (VSM), Gemba, Pareto Analysis and Root Cause Analysis. VSM was used as a tool to analyze the current state of the process and further VSM was used to design the future state with suggestions for process improvements. Findings This study identified 12 major non-value added factors for the hematology laboratory and 5 major non-value added factors for the biochemistry lab which were acting as bottlenecks resulting in limiting throughput. A four-month research study by the authors together with hospital quality department and laboratory staff members led to reduction of the average TAT from 180 to 95minutes in the hematology lab and from 268 to 208 minutes in the biochemistry lab. Practical implications Very few improvement initiatives in Indian healthcare are based on industrial engineering tools and techniques, which might be due to a lack of interaction between healthcare and engineering. The study provides a positive outcome in terms of improving the efficiency of services in hospitals and identifies a scope for lean in the Indian healthcare sector. Social implications Applying lean in the Indian healthcare sector gives its own potential solution to the problem caused, due to a wide gap between lean accessibility and lean implementation. Lean helped in changing the mindset of an organization toward providing the highest quality of services with faster delivery at an optimal cost. Originality/value This paper is an effort to reduce the gap between healthcare and industrial engineering and enhancing the use of lean practices in Indian healthcare. The study is motivated toward implementing lean methodology successfully in services.

  1. Divided Combustion Chamber Gasoline Engines - A Review for Emissions and Efficiency

    ERIC Educational Resources Information Center

    Bascunana, Jose L.

    1974-01-01

    Describes characteristic designs of the engine. Data for fuel economy and emission are presented. Data show that automobiles equipped with one of the engines described have passed the 1975 Federal Emissions Standards. (SLH)

  2. Conventional engine technology. Volume 2: Status of diesel engine technology

    NASA Technical Reports Server (NTRS)

    Schneider, H. W.

    1981-01-01

    The engines of diesel cars marketed in the United States were examined. Prominent design features, performance characteristics, fuel economy and emissions data were compared. Specific problems, in particular those of NO and smoke emissions, the effects of increasing dieselization on diesel fuel price and availability, current R&D work and advanced diesel concepts are discussed. Diesel cars currently have a fuel economy advantage over gasoline engine powered cars. Diesel drawbacks (noise and odor) were reduced to a less objectionable level. An equivalent gasoline engine driveability was obtained with turbocharging. Diesel manufacturers see a growth in the diesel market for the next ten years. Uncertainties regarding future emission regulation may inhibit future diesel production investments. With spark ignition engine technology advancing in the direction of high compression ratios, the fuel economy advantages of the diesel car is expected to diminish. To return its fuel economy lead, the diesel's potential for future improvement must be used.

  3. 33 CFR 183.501 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems General § 183.501 Applicability. (a) This subpart applies to all boats that have gasoline engines, except outboard engines, for electrical...

  4. Analysis of liquid-propellant rocket engines designed by F. A. Tsander

    NASA Technical Reports Server (NTRS)

    Dushkin, L. S.; Moshkin, Y. K.

    1977-01-01

    The development of the oxygen-gasoline OR-2 engines and the oxygen-alcohol GIRD-10 rocket engine is described. A result of Tsander's rocket research was an engineering method for propellant calculation of oxygen-propellant rocket engines that determined the basic parameters of the engine and the structural elements.

  5. Final Rule for Gasoline Spark-Ignition Marine Engines; Exemptions for New Nonroad Compression-Ignition Engines at or Above 37 Kilowatts and New Nonroad Spark-Ignition Engines at or Below 19 Kilowatts

    EPA Pesticide Factsheets

    These standards apply for outboard engines, personal watercraft engines, and jet boat engines. This rule also adds a national security exemption for Nonroad Compression-Ignition (CI) and Small SI sectors.

  6. Effect of Intake Air Filter Condition on Light-Duty Gasoline Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, John F; Huff, Shean P; West, Brian H

    2012-01-01

    Proper maintenance can help vehicles perform as designed, positively affecting fuel economy, emissions, and the overall drivability. This effort investigates the effect of one maintenance factor, intake air filter replacement, with primary focus on vehicle fuel economy, but also examining emissions and performance. Older studies, dealing with carbureted gasoline vehicles, have indicated that replacing a clogged or dirty air filter can improve vehicle fuel economy and conversely that a dirty air filter can be significantly detrimental to fuel economy. The effect of clogged air filters on the fuel economy, acceleration and emissions of five gasoline fueled vehicles is examined. Fourmore » of these were modern vehicles, featuring closed-loop control and ranging in model year from 2003 to 2007. Three vehicles were powered by naturally aspirated, port fuel injection (PFI) engines of differing size and cylinder configuration: an inline 4, a V6 and a V8. A turbocharged inline 4-cylinder gasoline direct injection (GDI) engine powered vehicle was the fourth modern gasoline vehicle tested. A vintage 1972 vehicle equipped with a carburetor (open-loop control) was also examined. Results reveal insignificant fuel economy and emissions sensitivity of modern vehicles to air filter condition, but measureable effects on the 1972 vehicle. All vehicles experienced a measured acceleration performance penalty with clogged intake air filters.« less

  7. Analog simulation of a hybrid gasoline-electric vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilmore, D.B.

    1982-03-01

    Hybrid vehicles using both internal combustion engines and electric motors represent one way to reduce fuel consumption. Our demonstration project envisioned more than halving the fuel consumption of a passenger vehicle by reducing greatly the capacity of its engine and adding regenerative braking and an all-electric range. We also envisaged maintaining the same performance as current passenger vehicles. A 0-6 000 rpm gasoline-driven internal combustion engine, two 0-7 800 rpm electric motors, a 0-7 800 rpm flywheel, and lead-acid batteries are the major components assembled using a mechnical epicyclic gear box. An EAI 681 analog computer allowed us to examinemore » quickly the effects of engine capacity, flywheel size, battery voltage, gear ratios, and mode of operation. An external potentiometer control on the computer allowed the operator to drive the vehicle through any acceleration cycle on level ground. We have shown that a 1.3 litre gasoline engine, two 13 kW separately excited direct current electric motors, a 38 kg flywheel, and a 48-volt battery pack will provide the same maximum performance as a conventional 4.1 litre internal combustion engine with automatic transmission at vehicle speeds below 60 km/h, and lower but satisfactory highway performance up to a top speed of 130 km/h. The transmission has undergone laboratory tests; it is to be road-tested in the first half of 1982.« less

  8. Electric and hybrid vehicle environmental control subsystem study

    NASA Technical Reports Server (NTRS)

    Heitner, K. L.

    1980-01-01

    An environmental control subsystem (ECS) in electric and hybrid vehicles is studied. A combination of a combustion heater and gasoline engine (Otto cycle) driven vapor compression air conditioner is selected. The combustion heater, the small gasoline engine, and the vapor compression air conditioner are commercially available. These technologies have good cost and performance characteristics. The cost for this ECS is relatively close to the cost of current ECS's. Its effect on the vehicle's propulsion battery is minimal and the ECS size and weight do not have significant impact on the vehicle's range.

  9. Comparison of hecter fuel with export aviation gasoline

    NASA Technical Reports Server (NTRS)

    Dickinson, H C; Gage, V R; Sparrow, S W

    1921-01-01

    Among the fuels which will operate at compression ratios up to at least 8.0 without preignition or "pinking" is hecter fuel, whence a careful determination of its performance is of importance. For the test data presented in this report the hecter fuel used was a mixture of 30 per cent benzol and 70 per cent cyclohexane, having a low freezing point, and distilling from first drop to 90 per cent at nearly a constant temperature, about 20 degrees c. below the average distillation temperature ("mean volatility") of the x gasoline (export grade). The results of these experiments show that the power developed by hecter fuel is the same as that developed by export aviation gasoline at about 1,800 r.p.m. at all altitudes. At lower speeds differences in the power developed by the fuels become evident. Comparisons at ground level were omitted to avoid any possibility of damaging the engine by operating with open throttle on gasoline at so high a compression. The fuel consumption per unit power based on weight, not volume, averaged more than 10 per cent greater with hecter than with x gasoline. The thermal efficiency of the engine when using hecter is less than when using gasoline, particularly at higher speeds. A generalization of the difference for all altitudes and speeds being 8 per cent. A general deduction from these facts is that more hecter is exhausted unburnt. Hecter can withstand high compression pressures and temperature without preignition. (author)

  10. 40 CFR 90.419 - Raw emission sampling calculations-gasoline fueled engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Raw emission sampling calculations... KILOWATTS Gaseous Exhaust Test Procedures § 90.419 Raw emission sampling calculations—gasoline fueled... selected as the basis for mass emission calculations using the raw gas method. ER03JY95.022 Where: WHC...

  11. 40 CFR 90.419 - Raw emission sampling calculations-gasoline fueled engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Raw emission sampling calculations... KILOWATTS Gaseous Exhaust Test Procedures § 90.419 Raw emission sampling calculations—gasoline fueled... selected as the basis for mass emission calculations using the raw gas method. ER03JY95.022 Where: WHC...

  12. . . . While Others Conserve Cash by Converting from Gasoline to Propane.

    ERIC Educational Resources Information Center

    Rasmussen, Scott A.

    1988-01-01

    Since 1983, when the David Douglas Public Schools (Portland, Oregon) converted 30 buses to propane fuel, the district has saved $75,000 in fuel and maintenance costs. Propane is priced consistently lower than gasoline and burns cleaner. Since propane engines do not require a carburetor, there are fewer maintenance problems. (MLH)

  13. 49 CFR 393.83 - Exhaust systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... combustible part of the motor vehicle. (b) No exhaust system shall discharge to the atmosphere at a location... gasoline engine shall discharge to the atmosphere at or within 6 inches forward of the rearmost part of the bus. (d) The exhaust system of a bus using fuels other than gasoline shall discharge to the atmosphere...

  14. 49 CFR 393.83 - Exhaust systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... combustible part of the motor vehicle. (b) No exhaust system shall discharge to the atmosphere at a location... gasoline engine shall discharge to the atmosphere at or within 6 inches forward of the rearmost part of the bus. (d) The exhaust system of a bus using fuels other than gasoline shall discharge to the atmosphere...

  15. 49 CFR 393.83 - Exhaust systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... combustible part of the motor vehicle. (b) No exhaust system shall discharge to the atmosphere at a location... gasoline engine shall discharge to the atmosphere at or within 6 inches forward of the rearmost part of the bus. (d) The exhaust system of a bus using fuels other than gasoline shall discharge to the atmosphere...

  16. 40 CFR 86.094-22 - Approval of application for certification; test fleet selections; determinations of parameters...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas... with gasoline-fueled or methanol-fueled engines only. The Administrator does not approve the test... development and application of the requisite technology, giving appropriate consideration to the cost of...

  17. Chemical transport model simulations of organic aerosol in southern California: model evaluation and gasoline and diesel source contributions

    EPA Science Inventory

    Gasoline- and diesel-fueled engines are ubiquitous sources of air pollution in urban environments. They emit both primary particulate matter and precursor gases that react to form secondary particulate matter in the atmosphere. In this work, we updated the organic aerosol module ...

  18. Aviation fuels : with especial reference to "white spirit."

    NASA Technical Reports Server (NTRS)

    Dumanois, P

    1928-01-01

    Gasoline, the fuel now used, is an extremely volatile and inflammable liquid capable of forming explosive mixtures, the cause of many catastrophes in aviation. It is therefore of special interest to investigate the possibility of using fuels which, while being less volatile than gasoline, would nevertheless enable this engine to function satisfactorily.

  19. 77 FR 45530 - Approval and Promulgation of Implementation Plans; New Mexico; Albuquerque/Bernalillo County...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... gasoline/electric hybrid vehicles; changes test frequency for some model year vehicles; allows motorists... hybrid vehicle gasoline engines, changing the test frequency for some model year vehicles, revising an... possible. Including the growing number of these hybrid vehicles in the I/M program will result in greater...

  20. 77 FR 65821 - Approval and Promulgation of Implementation Plans; New Mexico; Albuquerque/Bernalillo County...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... inspections for 1998 and newer diesel vehicles less than 10,001 pounds and all gasoline/ electric hybrid... greater than 1,000 and less than 10,001 pounds; including all hybrid vehicle gasoline engines; changing... Promulgation of Implementation Plans; New Mexico; Albuquerque/Bernalillo County: Motor Vehicle Inspection...

  1. On the knocking of gasoline engines

    NASA Technical Reports Server (NTRS)

    Richter, Ludwig

    1926-01-01

    It is of the greatest importance, not only for automobile engines, but also for every other kind of internal combustion engine, since it limits the degree of compression and the thermal efficiency and its investigation indicates ways for saving fuel.

  2. Future Software Sizing Metrics and Estimation Challenges

    DTIC Science & Technology

    2011-07-01

    systems 4. Ultrahigh software system assurance 5. Legacy maintenance and Brownfield development 6. Agile and Lean/ Kanban development. This paper...refined as the design of the maintenance modifications or Brownfield re-engineering is determined. VII. 6. AGILE AND LEAN/ KANBAN DEVELOPMENT The...difficulties of software maintenance estimation can often be mitigated by using lean workflow management techniques such as Kanban [25]. In Kanban

  3. A bill to require the Consumer Product Safety Commission to study and report on the impact on consumers of permitting an increase in the amount of ethanol blended with gasoline for use in gasoline-powered engines used in vehicles operated in interstate commerce, on public streets and roads, or offroad, appliances such as lawn mowers and other nonvehicular devices, and marine engines, and to require the National Highway Traffic Safety Administration to study and report on any safety or reliability impact of such an increase on motor vehicle engines and fuel systems.

    THOMAS, 111th Congress

    Sen. Hutchison, Kay Bailey [R-TX

    2010-09-29

    Senate - 09/29/2010 Read twice and referred to the Committee on Commerce, Science, and Transportation. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  4. Occupational exposure to diesel and gasoline emissions and lung cancer in Canadian men.

    PubMed

    Villeneuve, Paul J; Parent, Marie-Élise; Sahni, Vanita; Johnson, Kenneth C

    2011-07-01

    The International Agency for Research on Cancer classifies diesel exhaust as a probable human carcinogen; this decision is based largely from lung cancer evidence. Gasoline exhaust is classified as a possible carcinogen. Epidemiological studies are needed that improve upon some of the limitations of previous research with respect to the characterization of exposure, and the control for the potential confounding influence of smoking and other occupational exposures. Our objective was to investigate associations between occupational exposure to diesel and gasoline engine emissions and lung cancer. We used a case-control study design that involved men 40 years of age and older at the time of interview. Analyses are based on 1681 incident cases of lung cancer and 2,053 population controls. A self-reported questionnaire elicited a lifetime occupational history, including general tasks, and information on other potential risk factors. Occupational exposures to diesel and gasoline emissions, crystalline silica, and asbestos were assigned to each job held by study subjects by industrial hygienists who were blind to case-control status. Exposure metrics for diesel and gasoline emissions that were modeled included: ever exposure, cumulative exposure, and concentration of exposure. We found a dose-response relationship between cumulative occupational exposure to diesel engine emissions and lung cancer. This association was more pronounced for the squamous and large cell subtypes with adjusted odds ratios across the three increasing tertiles of cumulative lifetime exposure relative to those with no exposure of 0.99, 1.25, and 1.32 (p=0.04) for squamous cell carcinoma, and 1.06, 1.19, 1.68 (p=0.02) for large cell carcinoma. While the association with cumulative exposure to gasoline was weakly positive, it was not statistically significant. Our findings suggest that exposure to diesel engine emissions increases the risk of lung cancer particularly for squamous and large cell carcinoma subtypes. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  5. Total reflection X-ray fluorescence as a convenient tool for determination of trace elements in microscale gasoline and diesel

    NASA Astrophysics Data System (ADS)

    Zhang, Airui; Jin, Axiang; Wang, Hai; Wang, Xiaokang; Zha, Pengfei; Wang, Meiling; Song, Xiaoping; Gao, Sitian

    2018-03-01

    Quantitative determination of trace elements like S, Fe, Cu, Mn and Pb in gasoline and S in diesel is of great importance due to the growing concerns over air pollution, human health and engine failure caused by utilization of gasoline and diesel with these harmful elements. A method of total reflection X-ray fluorescence (TXRF) was developed to measure these harmful trace elements in gasoline and diesel. A variety of factors to affect measurement results, including TXRF parameters, microwave-assisted digestion conditions and internal standard element and its addition, were examined to optimize these experimental procedures. The hydrophobic treatment of the surface of quartz reflectors to support the analyte with neutral silicone solutions could prepare thin films of gasoline and diesel digestion solutions for subsequent TXRF analysis. The proposed method shows good potential and reliability to determine the content of harmful trace elements in gasoline and diesel with high sensitivity and accuracy without drawing different standard calibration curves, and can be easily employed to screen gasoline and diesel in routine quality control and assurance.

  6. Small Engines Care, Operation, Maintenance and Repair. Volume I.

    ERIC Educational Resources Information Center

    Turner, J. Howard

    Developed by teacher educators and agricultural engineers and tested by vocational agriculture teachers, this reference is for student and teacher use as part of a course on servicing and operating an engine. Content includes: (1) Distinguishing Features of Small Engines, (2) How Small Gasoline Engines Work, (3) Comparing 4-(Stroke)Cycle and…

  7. An Overview of NASA Research on Positive Displacement Type General Aviation Engines

    NASA Technical Reports Server (NTRS)

    Kempke, E. E.; Willis, E. A.

    1979-01-01

    The general aviation positive displacement engine program encompassing conventional, lightweight diesel, and rotary combustion engines is described. Lean operation of current production type spark ignition engines and advanced alternative engine concepts are emphasized.

  8. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...

  9. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...

  10. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...

  11. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...

  12. 7 CFR 3201.102 - Engine crankcase oils.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Engine crankcase oils. 3201.102 Section 3201.102... Designated Items § 3201.102 Engine crankcase oils. (a) Definition. Lubricating products formulated to provide lubrication and wear protection for four-cycle gasoline or diesel engines. (b) Minimum biobased content. The...

  13. Influence of Compression Ratio on High Load Performance and Knock Behavior for Gasoline Port-Fuel Injection, Natural Gas Direct Injection and Blended Operation in a Spark Ignition Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pamminger, Michael; Sevik, James; Scarcelli, Riccardo

    Natural Gas (NG) is an alternative fuel which has attracted a lot of attention recently, in particular in the US due to shale gas availability. The higher hydrogen-to-carbon (H/C) ratio, compared to gasoline, allows for decreasing carbon dioxide emissions throughout the entire engine map. Furthermore, the high knock resistance of NG allows increasing the efficiency at high engine loads compared to fuels with lower knock resistance. NG direct injection (DI) allows for fuel to be added after intake valve closing (IVC) resulting in an increase in power density compared to an injection before IVC. Steady-state engine tests were performed onmore » a single-cylinder research engine equipped with gasoline (E10) port-fuel injection (PFI) and NG DI to allow for in-cylinder blending of both fuels. Knock investigations were performed at two discrete compression ratios (CR), 10.5 and 12.5. Operating conditions span mid-load, wide-open-throttle and boosted conditions, depending on the knock response of the fuel blend. Blended operation was performed using E10 gasoline and NG. An additional gasoline type fuel (E85) with higher knock resistance than E10 was used as a high-octane reference fuel, since the octane rating of E10-NG fuel blends is unknown. Spark timing was varied at different loads under stoichiometric conditions in order to study the knock response as well as the effects on performance and efficiency. As anticipated, results suggest that the knock resistance can be increased significantly by increasing the NG amount. Comparing the engine operation with the least knock resistant fuel, E10 PFI, and the fuel blend with the highest knock resistance, 75% NG DI, shows an increase in indicated mean effective pressure of about 9 bar at CR 12.5. The usage of reference fuels with known knock characteristics allowed an assessment of knock characteristic of intermediate E10-NG blend levels. Mathematical correlations were developed allowing characterizing the occurrence of knocking combustion by using the Livengood-Wu knock integral. For most of the fueling strategies and operating conditions, the mathematical correlations show good agreement when compared to experimental data.« less

  14. 75 FR 68044 - Regulation To Mitigate the Misfueling of Vehicles and Engines With Gasoline Containing Greater...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-04

    ... (RVP) to accompany the transfer of gasoline blended with ethanol and a national survey of retail... Addition 3. General PTD Requirements C. Retail Fuel Dispenser Label and Fuel Ethanol Content Survey D.... Labeling Costs 2. PTD Costs 3. Survey Costs 4. Avoided Motor Vehicle and Nonroad Product Repair Costs G...

  15. 40 CFR 80.1335 - Can a refiner seek relief from the requirements of this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Hardship... comply with the gasoline benzene standards at § 80.1230(a) or (b) by the applicable date(s); and (2) It... will be in place for engineering and construction of benzene reduction technology, a plan for applying...

  16. 40 CFR 80.1335 - Can a refiner seek relief from the requirements of this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Hardship... comply with the gasoline benzene standards at § 80.1230(a) or (b) by the applicable date(s); and (2) It... will be in place for engineering and construction of benzene reduction technology, a plan for applying...

  17. 40 CFR 80.1335 - Can a refiner seek relief from the requirements of this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Hardship... comply with the gasoline benzene standards at § 80.1230(a) or (b) by the applicable date(s); and (2) It... will be in place for engineering and construction of benzene reduction technology, a plan for applying...

  18. Ether oxygenate additives in gasoline reduce toxicity of exhausts.

    PubMed

    Westphal, G A; Krahl, J; Brüning, T; Hallier, E; Bünger, J

    2010-02-09

    Fuel additives can improve combustion and knock resistance of gasoline engines. Common additives in commercial fuels are "short-chain, oxygen containing hydrocarbons" such as methyl tert-butyl ether (MTBE) and ethyl tert-butyl ether (ETBE). Since these additives change the combustion characteristics, this may as well influence toxic effects of the resulting emissions. Therefore we compared toxicity and BTEX emissions of gasoline engine exhaust regarding addition of MTBE or ETBE. Non-reformulated gasoline served as basic fuel. This fuel was supplemented with 10%, 20%, 25% and 30% ETBE or 15% MTBE. The fuels were combusted in a gasoline engine at idling, part load and rated power. Condensates and particulate matter (PM) were collected and PM samples extracted with dichloromethane. Cytotoxic effects were investigated in murine fibroblasts (L929) using the neutral red uptake assay and mutagenicity using the bacterial reverse mutation assay. BTEX emissions were analyzed by gas chromatography. PM-extracts showed mutagenicity with and without metabolic activation. Mutagenicity was reduced by the addition of MTBE and ETBE, 10% ETBE being most effective. The condensates produced no significant mutagenic response. The cytotoxicity of the condensates from ETBE- and MTBE-reformulated fuels was reduced as well. The BTEX content in the exhaust was lowered by the addition of MTBE and ETBE. This effect was significantly related to the ETBE content at rated power and part load. Addition of MTBE and ETBE to fuels can improve combustion and leads to decreased toxicity and BTEX content of the exhaust. Reduction of mutagenicity in the PM-extracts is most probably caused by a lower content of polycyclic aromatic hydrocarbons. (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  19. Lean, Premixed-Prevaporized (LPP) combustor conceptual design study

    NASA Technical Reports Server (NTRS)

    Dickman, R. A.; Dodds, W. J.; Ekstedt, E. E.

    1979-01-01

    Four combustion systems were designed and sized for the energy efficient engine. A fifth combustor was designed for the cycle and envelope of the twin-spool, high bypass ratio, high pressure ratio turbofan engine. Emission levels, combustion performance, life, and reliability assessments were made for these five combustion systems. Results of these design studies indicate that cruise NOx emission can be reduced by the use of lean, premixed-prevaporaized combustion and airflow modulation.

  20. Assessment of lung cell toxicity of various gasoline engine exhausts using a versatile in vitro exposure system.

    PubMed

    Bisig, Christoph; Comte, Pierre; Güdel, Martin; Czerwinski, Jan; Mayer, Andreas; Müller, Loretta; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2018-04-01

    Adverse effect studies of gasoline exhaust are scarce, even though gasoline direct injection (GDI) vehicles can emit a high number of particles. The aim of this study was to conduct an in vitro hazard assessment of different GDI exhausts using two different cell culture models mimicking the human airway. In addition to gasoline particle filters (GPF), the effects of two lubrication oils with low and high ash content were assessed, since it is known that oils are important contributors to exhaust emissions. Complete exhausts from two gasoline driven cars (GDI1 and GDI2) were applied for 6 h (acute exposure) to a multi-cellular human lung model (16HBE14o-cell line, macrophages, and dendritic cells) and a primary human airway model (MucilAir™). GDI1 vehicle was driven unfiltered and filtered with an uncoated and a coated GPF. GDI2 vehicle was driven under four settings with different fuels: normal unleaded gasoline, 2% high and low ash oil in gasoline, and 2% high ash oil in gasoline with a GPF. GDI1 unfiltered was also used for a repeated exposure (3 times 6 h) to assess possible adverse effects. After 6 h exposure, no genes or proteins for oxidative stress or pro-inflammation were upregulated compared to the filtered air control in both cell systems, neither in GDI1 with GPFs nor in GDI2 with the different fuels. However, the repeated exposure led to a significant increase in HMOX1 and TNFa gene expression in the multi-cellular model, showing the responsiveness of the system towards gasoline engine exhaust upon prolonged exposure. The reduction of particles by GPFs is significant and no adverse effects were observed in vitro during a short-term exposure. On the other hand, more data comparing different lubrication oils and their possible adverse effects are needed. Future experiments also should, as shown here, focus on repeated exposures. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Production, purification and utilization of biogas as fuel for internal combustion engine

    NASA Astrophysics Data System (ADS)

    Hernandez, Noel M.; Villanueva, Eliseo P.

    2018-03-01

    This study attempts to modify a 4-cylinder gasoline engine to run with a purified compressed biogas as substitute for fossil fuels. Water scrubbing method was used as the easiest purification technique to remove CO2 and iron filing for H2S. The pressurized raw biogas was fed in a low cost made portable floating type gas holder with volume capacity of 0.74 m3. The purified biogas was compressed using a reciprocating compressor through a two stage series of enrichment and moisture removal process using activated alumina into the steel cylinder to improve the quality of the methane content. The enriched biogas was filled in the LPG tank for 20 minutes at 10 bars at an average of 73.67% CH4 with no traces of H2S as storage for engine utilization. The modification involved the installation and mounting of LPG conversion kit. A comparative analysis of the performance and combustion characteristics of the engine was evaluated separately with gasoline and purified compressed biogas using electro-dynamometer as variable loads. The findings show that power output deterioration in compressed biogas was mainly due to high percentage of CO2 and other gases impurities. It also shows that because of the calorific value of biogas, the thermal efficiency is lesser than that of gasoline. It implies that the overall engine performance can be improved by removing undesirable gases in the mixture.

  2. Engine Certification and Compliance Testing

    EPA Pesticide Factsheets

    The National Vehicle and Fuel Emissions Laboratory (NVFEL) tests a portion of all heavy-duty diesel and small gasoline engines intended for sale in the United States to confirm compliance with EPA’s exhaust emissions standards.

  3. 40 CFR 86.079-31 - Separate certification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied... certification of part of his product line. The selection of test vehicles (or test engines) and the computation...

  4. 40 CFR 86.079-31 - Separate certification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied... certification of part of his product line. The selection of test vehicles (or test engines) and the computation...

  5. 40 CFR 86.1110-87 - Sample selection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Penalties for Gasoline-Fueled and Diesel Heavy-Duty Engines and Heavy-Duty Vehicles, Including Light-Duty... mass production processes for engines or vehicles to be distributed into commerce. In the case of heavy...

  6. 40 CFR 86.1106-87 - Production compliance auditing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Nonconformance Penalties for Gasoline-Fueled and Diesel Heavy-Duty Engines and Heavy-Duty Vehicles, Including... for heavy-duty engine or heavy-duty vehicle emission standards for one or more exhaust pollutants are...

  7. Results from service tests on AI-91 gasoline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turovskii, F.V.; Bakaleinik, A.M.; Belyaev, A.A.

    1988-01-01

    Research was conducted to establish whether the operational reliability of engines will be affected by the use of a gasoline with an octane number two points lower than that of commercial AI-93 leaded gasoline with knock resistance in acceleration that is better than that of the AI-93 by approximately the same amount. Extended road tests were run in VAZ-2106 and Moskvich-2140 automobiles using gasoline with a research octane number of 91, containing an antiknock additive based on tetramethyl lead, and AI-93. The experimental AI-91 and the commercial AI-93 gasolines were prepared from the same base blend. Average specific fuel consumptionsmore » were identical for automobiles using AI-93 and AI-91 with the tetramethyl lead additive. For automobiles using AI-91 with the additive and with ethyl bromide as a lead scavenger the fuel consumption was 2% lower.« less

  8. Development of the Junkers-diesel Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Gasterstadt,

    1930-01-01

    The working process of the Junkers engine has resulted from a series of attempts to attain high performance and to control the necessarily rapid and complete combustion at extremely high speeds. The two main problems of Diesel engines in aircraft are addressed; namely, incomplete combustion and the greater weight of Diesel engine parts compared to gasoline engines.

  9. Linear air-fuel sensor development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garzon, F.; Miller, C.

    1996-12-14

    The electrochemical zirconia solid electrolyte oxygen sensor, is extensively used for monitoring oxygen concentrations in various fields. They are currently utilized in automobiles to monitor the exhaust gas composition and control the air-to-fuel ratio, thus reducing harmful emission components and improving fuel economy. Zirconia oxygen sensors, are divided into two classes of devices: (1) potentiometric or logarithmic air/fuel sensors; and (2) amperometric or linear air/fuel sensors. The potentiometric sensors are ideally suited to monitor the air-to-fuel ratio close to the complete combustion stoichiometry; a value of about 14.8 to 1 parts by volume. This occurs because the oxygen concentration changesmore » by many orders of magnitude as the air/fuel ratio is varied through the stoichiometric value. However, the potentiometric sensor is not very sensitive to changes in oxygen partial pressure away from the stoichiometric point due to the logarithmic dependence of the output voltage signal on the oxygen partial pressure. It is often advantageous to operate gasoline power piston engines with excess combustion air; this improves fuel economy and reduces hydrocarbon emissions. To maintain stable combustion away from stoichiometry, and enable engines to operate in the excess oxygen (lean burn) region several limiting-current amperometric sensors have been reported. These sensors are based on the electrochemical oxygen ion pumping of a zirconia electrolyte. They typically show reproducible limiting current plateaus with an applied voltage caused by the gas diffusion overpotential at the cathode.« less

  10. Method and apparatus to selectively reduce NO.sub.x in an exhaust gas feedstream

    DOEpatents

    Schmieg, Steven J [Troy, MI; Blint, Richard J [Shelby Township, MI; Den, Ling [Sterling Heights, MI; Viola, Michael B [Macomb Township, MI; Lee, Jong-Hwan [Rochester Hills, MI

    2011-08-30

    A method and apparatus are described to selectively reduce NO.sub.x emissions of an internal combustion engine. An exhaust aftertreatment system includes an injection device operative to dispense a hydrocarbon reductant upstream of a silver-alumina catalytic reactor device. A control system determines a NO.sub.x concentration and hydrocarbon/NOx ratio based upon selected parameters of the exhaust gas feedstream and dispenses hydrocarbon reductant during lean engine operation. Included is a method to control elements of the feedstream during lean operation. The hydrocarbon reductant may include engine fuel.

  11. 40 CFR 86.311-79 - Miscellaneous equipment; specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... engines. (2) When testing gasoline-fueled engines all chart recorders (analyzers, torque, rpm, etc.) shall.... (b) Accuracy of temperature measurements. (1) The following temperature measurements shall be accurate to within 1.2 °C: (i) Temperature measurements used in calculating the engine intake humidity: (ii...

  12. 40 CFR 86.311-79 - Miscellaneous equipment; specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... engines. (2) When testing gasoline-fueled engines all chart recorders (analyzers, torque, rpm, etc.) shall.... (b) Accuracy of temperature measurements. (1) The following temperature measurements shall be accurate to within 1.2 °C: (i) Temperature measurements used in calculating the engine intake humidity: (ii...

  13. 40 CFR 86.311-79 - Miscellaneous equipment; specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... engines. (2) When testing gasoline-fueled engines all chart recorders (analyzers, torque, rpm, etc.) shall.... (b) Accuracy of temperature measurements. (1) The following temperature measurements shall be accurate to within 1.2 °C: (i) Temperature measurements used in calculating the engine intake humidity: (ii...

  14. Laser ignition - Spark plug development and application in reciprocating engines

    NASA Astrophysics Data System (ADS)

    Pavel, Nicolaie; Bärwinkel, Mark; Heinz, Peter; Brüggemann, Dieter; Dearden, Geoff; Croitoru, Gabriela; Grigore, Oana Valeria

    2018-03-01

    Combustion is one of the most dominant energy conversion processes used in all areas of human life, but global concerns over exhaust gas pollution and greenhouse gas emission have stimulated further development of the process. Lean combustion and exhaust gas recirculation are approaches to improve the efficiency and to reduce pollutant emissions; however, such measures impede reliable ignition when applied to conventional ignition systems. Therefore, alternative ignition systems are a focus of scientific research. Amongst others, laser induced ignition seems an attractive method to improve the combustion process. In comparison with conventional ignition by electric spark plugs, laser ignition offers a number of potential benefits. Those most often discussed are: no quenching of the combustion flame kernel; the ability to deliver (laser) energy to any location of interest in the combustion chamber; the possibility of delivering the beam simultaneously to different positions, and the temporal control of ignition. If these advantages can be exploited in practice, the engine efficiency may be improved and reliable operation at lean air-fuel mixtures can be achieved, making feasible savings in fuel consumption and reduction in emission of exhaust gasses. Therefore, laser ignition can enable important new approaches to address global concerns about the environmental impact of continued use of reciprocating engines in vehicles and power plants, with the aim of diminishing pollutant levels in the atmosphere. The technology can also support increased use of electrification in powered transport, through its application to ignition of hybrid (electric-gas) engines, and the efficient combustion of advanced fuels. In this work, we review the progress made over the last years in laser ignition research, in particular that aimed towards realizing laser sources (or laser spark plugs) with dimensions and properties suitable for operating directly on an engine. The main envisaged solutions for positioning of the laser spark plug, i.e. placing it apart from or directly on the engine, are introduced. The path taken from the first solution proposed, to build a compact laser suitable for ignition, to the practical realization of a laser spark plug is described. Results obtained by ignition of automobile test engines, with laser devices that resemble classical spark plugs, are specifically discussed. It is emphasized that technological advances have brought this method of laser ignition close to the application and installation in automobiles powered by gasoline engines. Achievements made in the laser ignition of natural gas engines are outlined, as well as the utilization of laser ignition in other applications. Scientific and technical advances have allowed realization of laser devices with multiple (up to four) beam outputs, but many other important aspects (such as integration, thermal endurance or vibration strength) are still to be solved. Recent results of multi-beam ignition of a single-cylinder engine in a test bench set-up are encouraging and have led to increased research interest in this direction. A fundamental understanding of the processes involved in laser ignition is crucial in order to exploit the technology's full potential. Therefore, several measurement techniques, primarily optical types, used to characterize the laser ignition process are reviewed in this work.

  15. Evaluation of Mobile Source Emissions and Trends

    NASA Astrophysics Data System (ADS)

    Dallmann, Timothy Ryan

    Mobile sources contribute significantly to air pollution problems. Relevant pollutants include numerous gaseous and particle-phase species that can affect human health, ecosystems, and climate. Accurate inventories of emissions from these sources are needed to help understand possible adverse impacts, and to develop effective air quality management strategies. Unfortunately large uncertainties persist in the understanding of mobile source emissions, and how these emissions are changing over time. This dissertation aims to evaluate long-term trends in mobile source emissions in the United States, and to make detailed measurements of emissions from present-day fleets of on-road vehicles operating in California. Long-term trends in mobile source emissions of nitrogen oxides (NO x) and fine particulate matter (PM2.5) in the United States were investigated through development of a fuel-based emission inventory. Annual emissions from on- and off-road gasoline and diesel engines were quantified for the years 1996-2006. Diesel engines were found to be the dominant mobile source of NOx and PM2.5, and on-road diesel vehicles were identified as the single largest anthropogenic source of NOx emissions in the United States as of 2005. The importance of diesel engines as a source of exhaust particulate matter emissions has led to the recent introduction of advanced emission control technologies in the United States, such as diesel particle filters (DPF), which have been required since 2007 for all new on-road heavy-duty (HD) diesel engines. In addition to national requirements for the use of such control devices on new engines, California has mandated accelerated clean-up of statewide emissions from older in-use diesel engines. The plume capture method was further applied to measure emissions from a more diverse population of trucks observed at the Caldecott tunnel in summer 2010. Emissions from hundreds of individual trucks were measured, and emission factor distributions were characterized for nitric oxide (NO), nitrogen dioxide (NO2), carbon monoxide (CO), formaldehyde, BC, as well as optical properties of the emitted particles. Emission factor distributions for all species were skewed, with a small fraction of trucks contributing disproportionately to total emissions. These findings confirm that the use of catalyzed DPF systems is leading to increased primary NO2 emissions. Absorption and scattering cross-section emission factors were used to calculate the aerosol single scattering albedo (SSA, at 532 nm) for individual truck exhaust plumes, which averaged 0.14 +/- 0.03. This value of aerosol SSA is very low compared to typical values (0.90-0.99) observed in ambient air studies. It is indicative of a strongly light-absorbing aerosol, due to the high BC emissions that are a characteristic feature of diesel exhaust PM emissions. Measurements at the Caldecott tunnel also included efforts to quantify light-duty (LD) gasoline vehicle emission factors, and further investigation of the relative contributions of on-road gasoline and diesel engines to air pollutant emissions. Measurements of CO, NOx, PM2.5, BC, and organic aerosol (OA) were made in a tunnel traffic bore where LD vehicles account for >99% of total traffic. Measured pollutant concentrations were apportioned between LD gasoline vehicles and diesel trucks, and fleet-average emission factors were quantified for LD gasoline vehicles using a carbon balance method. Diesel trucks contributed 18 +/- 3, 22 +/- 5, 44 +/- 8% of measured NOx, OA, and BC concentrations, respectively, despite accounting for <1% of total vehicles. Emission factors and overall fuel consumption for gasoline and diesel engines were used to describe the relative contributions of these sources to overall on-road vehicle emissions. Gasoline engines were found to be the dominant source of CO, an insignificant source of BC, and a relatively minor source of on-road OA emissions at urban, state, and national scales. Measurements at the Caldecott tunnel also featured use of a new high-resolution time-of-flight aerosol mass spectrometer, which was used to characterize the chemical composition of PM emitted by gasoline and diesel vehicles. Measurements of PM in the exhaust of individual HD trucks show a predominance of cyclyoalkane-derived ion signals relative to saturated alkane ion signals in the truck exhaust OA spectra, indicating that lubricating oil, rather than diesel fuel, was the dominant source of OA emitted by diesel trucks. This conclusion is supported by the presence of lubricant-derived trace elements in truck exhaust, emitted relative to total OA at levels that correspond to their weight fractions in bulk oil. Furthermore, comparison of mass spectra for sampling periods with varying levels of diesel influence found a high degree of similarity in the chemical composition of OA emitted by gasoline and diesel engines, suggesting a common lubricating oil rather than fuel-derived source for OA emissions. (Abstract shortened by UMI.).

  16. Compression Ratio Adjuster

    NASA Technical Reports Server (NTRS)

    Akkerman, J. W.

    1982-01-01

    New mechanism alters compression ratio of internal-combustion engine according to load so that engine operates at top fuel efficiency. Ordinary gasoline, diesel and gas engines with their fixed compression ratios are inefficient at partial load and at low-speed full load. Mechanism ensures engines operate as efficiently under these conditions as they do at highload and high speed.

  17. 40 CFR 86.336-79 - Diesel engine test cycle.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Diesel engine test cycle. 86.336-79... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.336-79 Diesel engine test cycle. (a) The following 13-mode cycle shall be followed in dynamometer operation...

  18. 40 CFR 86.098-24 - Test vehicles and engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Test vehicles and engines. 86.098-24... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for...-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied...

  19. 40 CFR 86.1112-87 - Determining the compliance level and reporting of test results.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENGINES (CONTINUED) Nonconformance Penalties for Gasoline-Fueled and Diesel Heavy-Duty Engines and Heavy... may establish the compliance level for a pollutant for any engine or vehicle configuration by using... pollutant using the primary PCA sampling plan shall: (i) Conduct emission tests on 24 engines or vehicles in...

  20. 40 CFR 86.1112-87 - Determining the compliance level and reporting of test results.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ENGINES (CONTINUED) Nonconformance Penalties for Gasoline-Fueled and Diesel Heavy-Duty Engines and Heavy... may establish the compliance level for a pollutant for any engine or vehicle configuration by using... pollutant using the primary PCA sampling plan shall: (i) Conduct emission tests on 24 engines or vehicles in...

  1. 40 CFR 86.1112-87 - Determining the compliance level and reporting of test results.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENGINES (CONTINUED) Nonconformance Penalties for Gasoline-Fueled and Diesel Heavy-Duty Engines and Heavy... may establish the compliance level for a pollutant for any engine or vehicle configuration by using... pollutant using the primary PCA sampling plan shall: (i) Conduct emission tests on 24 engines or vehicles in...

  2. 40 CFR 86.1112-87 - Determining the compliance level and reporting of test results.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... number of additional tests conducted shall be the difference between 24 and the number of engines or... ENGINES Nonconformance Penalties for Gasoline-Fueled and Diesel Heavy-Duty Engines and Heavy-Duty Vehicles... compliance level for a pollutant for any engine or vehicle configuration by using the primary PCA sampling...

  3. 40 CFR 86.1105-87 - Emission standards for which nonconformance penalties are available.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... VEHICLES AND ENGINES (CONTINUED) Nonconformance Penalties for Gasoline-Fueled and Diesel Heavy-Duty Engines...-fueled light heavy-duty diesel engines: (A) The following values shall be used to calculate an NCP in... heavy-duty diesel engines: (A) The following values shall be used to calculate an NCP in accordance with...

  4. 40 CFR 86.1105-87 - Emission standards for which nonconformance penalties are available.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... VEHICLES AND ENGINES (CONTINUED) Nonconformance Penalties for Gasoline-Fueled and Diesel Heavy-Duty Engines...-fueled light heavy-duty diesel engines: (A) The following values shall be used to calculate an NCP in... heavy-duty diesel engines: (A) The following values shall be used to calculate an NCP in accordance with...

  5. 40 CFR 86.004-26 - Mileage and service accumulation; emission measurements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Light-Duty Trucks and Heavy-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural... without making a determination. Any engine used to represent emission-data engine selections under § 86... each emission-data engine selection under § 86.094-24(b)(2). Evaporative emission controls must be...

  6. 40 CFR 86.004-26 - Mileage and service accumulation; emission measurements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Light-Duty Trucks and Heavy-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural... without making a determination. Any engine used to represent emission-data engine selections under § 86... each emission-data engine selection under § 86.094-24(b)(2). Evaporative emission controls must be...

  7. 40 CFR 63.11132 - What definitions apply to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... an internal combustion engine (including the fuel system) that is not used in a motor vehicle or a... internal combustion engines. Gasoline cargo tank means a delivery tank truck or railcar which is loading or... motor vehicle, motor vehicle engine, nonroad vehicle, or nonroad engine, including a nonroad vehicle or...

  8. 40 CFR 86.000-24 - Test vehicles and engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Test vehicles and engines. 86.000-24... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for...-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied...

  9. 40 CFR 86.098-24 - Test vehicles and engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Test vehicles and engines. 86.098-24... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for...-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied...

  10. 40 CFR 86.000-24 - Test vehicles and engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Test vehicles and engines. 86.000-24... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for...-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied...

  11. 40 CFR 86.336-79 - Diesel engine test cycle.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Diesel engine test cycle. 86.336-79... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.336-79...

  12. 40 CFR 86.336-79 - Diesel engine test cycle.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Diesel engine test cycle. 86.336-79... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.336-79...

  13. 40 CFR 86.001-24 - Test vehicles and engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Test vehicles and engines. 86.001-24... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for...-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied...

  14. 40 CFR 86.000-24 - Test vehicles and engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Test vehicles and engines. 86.000-24... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for...-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied...

  15. 40 CFR 86.001-24 - Test vehicles and engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Test vehicles and engines. 86.001-24... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for...-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied...

  16. 40 CFR 86.098-24 - Test vehicles and engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Test vehicles and engines. 86.098-24... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for...-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied...

  17. 76 FR 70128 - California State Motor Vehicle Pollution Control Standards; Amendments to the California Heavy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-10

    ... Standards; Amendments to the California Heavy-Duty Engine On-Board Diagnostic Regulation; Waiver Request... that it has adopted amendments to its regulations related to heavy-duty engine on-board diagnostic (HD... and gasoline powered heavy-duty engines (engines used in vehicles having a gross vehicle weight rating...

  18. 40 CFR 86.1103-87 - Criteria for availability of nonconformance penalties.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) Nonconformance Penalties for Gasoline-Fueled and Diesel Heavy-Duty Engines and Heavy-Duty.... (a) EPA shall establish for each subclass of heavy-duty engines and heavy-duty vehicles (other than...

  19. 40 CFR 86.1104-91 - Determination of upper limits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Nonconformance Penalties for Gasoline-Fueled and Diesel Heavy-Duty Engines and Heavy-Duty Vehicles, Including... pollutant emission standard for a subclass of heavy-duty engines or heavy-duty vehicles for which an NCP is...

  20. Effects of unbalance location on dynamic characteristics of high-speed gasoline engine turbocharger with floating ring bearings

    NASA Astrophysics Data System (ADS)

    Wang, Longkai; Bin, Guangfu; Li, Xuejun; Liu, Dingqu

    2016-03-01

    For the high-speed gasoline engine turbocharger rotor, due to the heterogeneity of multiple parts material, manufacturing and assembly errors, running wear in impeller and uneven carbon of turbine, the random unbalance usually can be developed which will induce excessive rotor vibration, and even lead to nonlinear vibration accidents. However, the investigation of unbalance location on the nonlinear high-speed turbocharger rotordynamic characteristics is less. In order to discuss the rotor unbalance location effects of turbocharger with nonlinear floating ring bearings(FRBs), the realistic turbocharger of gasoline engine is taken as a research object. The rotordynamic equations of motion under the condition of unbalance are derived by applied unbalance force and nonlinear oil film force of FRBs. The FE model of turbocharger rotor-bearing system is modeled which includes the unbalance excitation and nonlinear FRBs. Under the conditions of four different applied locations of unbalance, the nonlinear transient analyses are performed based on the rotor FEM. The differences of dynamic behavior are obvious to the turbocharger rotor systems for four conditions, and the bifurcation phenomena are different. From the results of waterfall and transient response analysis, the speed for the appearance of fractional frequency is not identical and the amplitude magnitude is different from the different unbalance locations, and the non-synchronous vibration does not occur in the turbocharger and the amplitude is relative stable and minimum under the condition 4. The turbocharger vibration and non-synchronous components could be reduced or suppressed by controlling the applied location of unbalance, which is helpful for the dynamic design, fault diagnosis and vibration control of the high-speed gasoline engine turbochargers.

  1. 14. June 1974. VIEW OF THE ENGINE ROOM, LOOKING NORTH, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. June 1974. VIEW OF THE ENGINE ROOM, LOOKING NORTH, SHOWING THE OTTO GASOLINE ENGINE, THE DRIVE PULLEY IS BARELY VISIBLE TO THE LEFT OF THE FLYWHEEL. - Gruber Wagon Works, Pennsylvania Route 183 & State Hill Road at Red Bridge Park, Bernville, Berks County, PA

  2. 33 CFR 183.110 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... room means the compartment where a permanently installed gasoline or diesel engine is installed... boat is in its static floating position, except engine rooms. Connected means allowing a flow of water in excess of one-quarter ounce per hour from the engine room bilge into any other compartment with a...

  3. Evaporative Gasoline Emissions and Asthma Symptoms

    PubMed Central

    Gordian, Mary Ellen; Stewart, Alistair W; Morris, Stephen S

    2010-01-01

    Attached garages are known to be associated with indoor air volatile organic compounds (VOCs). This study looked at indoor exposure to VOCs presumably from evaporative emissions of gasoline. Alaskan gasoline contains 5% benzene making benzene a marker for gasoline exposure. A survey of randomly chosen houses with attached garages was done in Anchorage Alaska to determine the exposure and assess respiratory health. Householders were asked to complete a health survey for each person and a household survey. They monitored indoor air in their primary living space for benzene, toluene, ethylbenzene and xylenes for one week using passive organic vapor monitoring badges. Benzene levels in homes ranged from undetectable to 58 parts per billion. The median benzene level in 509 homes tested was 2.96 ppb. Elevated benzene levels in the home were strongly associated with small engines and gasoline stored in the garage. High concentrations of benzene in gasoline increase indoor air levels of benzene in residences with attached garages exposing people to benzene at levels above ATSDR’s minimal risk level. Residents reported more severe symptoms of asthma in the homes with high gasoline exposure (16%) where benzene levels exceeded the 9 ppb. PMID:20948946

  4. LPV gain-scheduled control of SCR aftertreatment systems

    NASA Astrophysics Data System (ADS)

    Meisami-Azad, Mona; Mohammadpour, Javad; Grigoriadis, Karolos M.; Harold, Michael P.; Franchek, Matthew A.

    2012-01-01

    Hydrocarbons, carbon monoxide and some of other polluting emissions produced by diesel engines are usually lower than those produced by gasoline engines. While great strides have been made in the exhaust aftertreatment of vehicular pollutants, the elimination of nitrogen oxide (NO x ) from diesel vehicles is still a challenge. The primary reason is that diesel combustion is a fuel-lean process, and hence there is significant unreacted oxygen in the exhaust. Selective catalytic reduction (SCR) is a well-developed technology for power plants and has been recently employed for reducing NO x emissions from automotive sources and in particular, heavy-duty diesel engines. In this article, we develop a linear parameter-varying (LPV) feedforward/feedback control design method for the SCR aftertreatment system to decrease NO x emissions while keeping ammonia slippage to a desired low level downstream the catalyst. The performance of the closed-loop system obtained from the interconnection of the SCR system and the output feedback LPV control strategy is then compared with other control design methods including sliding mode, and observer-based static state-feedback parameter-varying control. To reduce the computational complexity involved in the control design process, the number of LPV parameters in the developed quasi-LPV (qLPV) model is reduced by applying the principal component analysis technique. An LPV feedback/feedforward controller is then designed for the qLPV model with reduced number of scheduling parameters. The designed full-order controller is further simplified to a first-order transfer function with a parameter-varying gain and pole. Finally, simulation results using both a low-order model and a high-fidelity and high-order model of SCR reactions in GT-POWER interfaced with MATLAB/SIMULINK illustrate the high NO x conversion efficiency of the closed-loop SCR system using the proposed parameter-varying control law.

  5. New potentials for conventional aircraft when powered by hydrogen-enriched gasoline

    NASA Technical Reports Server (NTRS)

    Menard, W. A.; Moynihan, P. I.; Rupe, J. H.

    1976-01-01

    Hydrogen enrichment for aircraft piston engines is studied. The feasibility is examined of inflight injection of hydrogen in general aviation aircraft engines to reduce fuel consumption and to lower emission levels. Results are summarized.

  6. A perspective on the range of gasoline compression ignition combustion strategies for high engine efficiency and low NOx and soot emissions: Effects of in-cylinder fuel stratification

    DOE PAGES

    Dempsey, Adam B.; Curran, Scott J.; Wagner, Robert M.

    2016-01-14

    Many research studies have shown that low temperature combustion in compression ignition engines has the ability to yield ultra-low NOx and soot emissions while maintaining high thermal efficiency. To achieve low temperature combustion, sufficient mixing time between the fuel and air in a globally dilute environment is required, thereby avoiding fuel-rich regions and reducing peak combustion temperatures, which significantly reduces soot and NOx formation, respectively. It has been demonstrated that achieving low temperature combustion with diesel fuel over a wide range of conditions is difficult because of its properties, namely, low volatility and high chemical reactivity. On the contrary, gasolinemore » has a high volatility and low chemical reactivity, meaning it is easier to achieve the amount of premixing time required prior to autoignition to achieve low temperature combustion. In order to achieve low temperature combustion while meeting other constraints, such as low pressure rise rates and maintaining control over the timing of combustion, in-cylinder fuel stratification has been widely investigated for gasoline low temperature combustion engines. The level of fuel stratification is, in reality, a continuum ranging from fully premixed (i.e. homogeneous charge of fuel and air) to heavily stratified, heterogeneous operation, such as diesel combustion. However, to illustrate the impact of fuel stratification on gasoline compression ignition, the authors have identified three representative operating strategies: partial, moderate, and heavy fuel stratification. Thus, this article provides an overview and perspective of the current research efforts to develop engine operating strategies for achieving gasoline low temperature combustion in a compression ignition engine via fuel stratification. In this paper, computational fluid dynamics modeling of the in-cylinder processes during the closed valve portion of the cycle was used to illustrate the opportunities and challenges associated with the various fuel stratification levels.« less

  7. A perspective on the range of gasoline compression ignition combustion strategies for high engine efficiency and low NOx and soot emissions: Effects of in-cylinder fuel stratification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dempsey, Adam B.; Curran, Scott J.; Wagner, Robert M.

    Many research studies have shown that low temperature combustion in compression ignition engines has the ability to yield ultra-low NOx and soot emissions while maintaining high thermal efficiency. To achieve low temperature combustion, sufficient mixing time between the fuel and air in a globally dilute environment is required, thereby avoiding fuel-rich regions and reducing peak combustion temperatures, which significantly reduces soot and NOx formation, respectively. It has been demonstrated that achieving low temperature combustion with diesel fuel over a wide range of conditions is difficult because of its properties, namely, low volatility and high chemical reactivity. On the contrary, gasolinemore » has a high volatility and low chemical reactivity, meaning it is easier to achieve the amount of premixing time required prior to autoignition to achieve low temperature combustion. In order to achieve low temperature combustion while meeting other constraints, such as low pressure rise rates and maintaining control over the timing of combustion, in-cylinder fuel stratification has been widely investigated for gasoline low temperature combustion engines. The level of fuel stratification is, in reality, a continuum ranging from fully premixed (i.e. homogeneous charge of fuel and air) to heavily stratified, heterogeneous operation, such as diesel combustion. However, to illustrate the impact of fuel stratification on gasoline compression ignition, the authors have identified three representative operating strategies: partial, moderate, and heavy fuel stratification. Thus, this article provides an overview and perspective of the current research efforts to develop engine operating strategies for achieving gasoline low temperature combustion in a compression ignition engine via fuel stratification. In this paper, computational fluid dynamics modeling of the in-cylinder processes during the closed valve portion of the cycle was used to illustrate the opportunities and challenges associated with the various fuel stratification levels.« less

  8. 40 CFR 86.347-79 - Alternative calculations for diesel engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Alternative calculations for diesel... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.347-79 Alternative calculations for diesel engines. (a) This section applies to Diesel...

  9. 40 CFR 86.347-79 - Alternative calculations for diesel engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Alternative calculations for diesel... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.347-79 Alternative calculations for diesel engines. (a) This section applies to Diesel...

  10. 40 CFR 86.004-28 - Compliance with emission standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General... and Heavy-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled...) Paragraph (c) of this section applies to heavy-duty engines. (2) The applicable exhaust emission standards...

  11. 40 CFR 86.004-28 - Compliance with emission standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General... and Heavy-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled... standards. (a)-(b) [Reserved] (c)(1) Paragraph (c) of this section applies to heavy-duty engines. (2) The...

  12. 40 CFR 86.004-28 - Compliance with emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General... and Heavy-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled...) Paragraph (c) of this section applies to heavy-duty engines. (2) The applicable exhaust emission standards...

  13. Baseline tests of the Kordesh hybrid passenger vehicle

    NASA Technical Reports Server (NTRS)

    Soltis, R. F.; Bozek, J. M.; Denington, R. J.; Dustin, M. O.

    1978-01-01

    Performance test results are presented for a four-passenger Austin A40 sedan that was converted to a heat-engine-alternator-and battery-powered hybrid. It is propelled by a conventional, gasoline-fueled, heat-engine-driven alternator and a traction pack powering a series-wound, 10 hp direct-current electric drive motor. The 16 hp gasoline engine drives the 7 kilowatt alternator, which provides electrical power to the drive motor or to the 96 volt traction battery through a rectifier. The propulsion battery consists of eight 12 volt batteries connected in series. The electric motor is coupled to a four-speed standard transmission, which drives the rear wheels. Power to the motor is controlled by a three-step foot throttle, which actuates relays that control armature current and field excitation. Conventional hydraulic brakes are used.

  14. Chemical analysis and biological testing of a polar fraction of ambient air, diesel engine, and gasoline engine particulate extracts.

    PubMed Central

    Strandell, M; Zakrisson, S; Alsberg, T; Westerholm, R; Winquist, L; Rannug, U

    1994-01-01

    Extracts of gasoline and diesel vehicle exhaust and ambient air particles were fractionated into five fractions according to polarity on a silica gel column. Two medium polar fractions showing high genotoxic activity in the Ames test were further subfractionated, using normal-phase high-performance liquid chromatography. Chemical analyses were performed by means of gas chromatography combined with mass spectrometry and flame ionization and detection. The crude extracts, fractions, and subfractions were assayed with the Ames test, with and without S9, and the most abundant compounds in the subfractions are reported. PMID:7529708

  15. Development and Evaluation of an Air Quality Modeling Approach to Assess Near-Field Impacts of Lead Emissions from Piston-Engine Aircraft Operating on Leaded Aviation Gasoline

    EPA Science Inventory

    Since aviation gasoline is now the largest remaining source of lead (Pb) emissions to the air in the United States, there is increased interest by regulatory agencies and the public in assessing the impacts on residents living in close proximity to these sources. An air quality m...

  16. Analyze Experiment For Vigas and Pertamax to Performance and Exhaust Gas Emission for Gasoline Motor 2000cc

    NASA Astrophysics Data System (ADS)

    As'adi, Muhamad; Chrisna Ayu Dwiharpini Tupan, Diachirta

    2018-02-01

    The purpose and target for this analyze experiment is we get the performance variabel from gasoline motor which used LGV for fuel and Pertamax, so can give knowledge to community if LGV can be using LGV for fuel to transportation industry and more economic. We used experiment method of engine gasoline motor with 2000 cc which is LGV and Pertamax for fuel. The experiment with static experiment tes above Dyno Test. The result is engine perform to subscribe Torque, power, fuel consumption. Beside the static test we did the Exhaust Steam Emission. The result is the used LGV with the commercial brand Vigas can increase the maximum Engine Power 20.86% and Average Power 14.1%, the maximum torque for Motor which is use LGV as fuel is smaller than Motor with Pertamax, the decrease is 0.94%.Using Vigas in Motor can increase the mileage until 6.9% compare with the Motor with pertamax.Air Fuel Ratio (AFR) for both of the fuels still below the standard, so still happen waste of fuel, specially in low compression.Using Vigas can reduce the Exhaust Steam Emission especially CO2

  17. A Summary of Research and Progress on Carbon Monoxide Exposure Control Solutions on Houseboats

    PubMed Central

    Hall, Ronald M.; Earnest, G. Scott; Hammond, Duane R.; Dunn, Kevin H.; Garcia, Alberto

    2015-01-01

    Investigations of carbon monoxide (CO-related poisonings and deaths on houseboats were conducted by the Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. These investigations measured hazardous CO concentrations on and around houseboats that utilize gasoline-powered generators. Engineering control devices were developed and tested to mitigate this deadly hazard. CO emissions were measured using various sampling techniques which included exhaust emission analyzers, detector tubes, evacuated containers (grab air samples analyzed by a gas chromatograph), and direct-reading CO monitors. CO results on houseboats equipped with gasoline-powered generators without emission controls indicated hazardous CO concentrations exceeding immediately dangerous to life and health (IDLH) levels in potentially occupied areas of the houseboat. Air sample results on houseboats that were equipped with engineering controls to remove the hazard were highly effective and reduced CO levels by over 98% in potentially occupied areas. The engineering control devices used to reduce the hazardous CO emissions from gasoline-powered generators on houseboats were extremely effective at reducing CO concentrations to safe levels in potentially occupied areas on the houseboats and are now beginning to be widely used. PMID:24568306

  18. A summary of research and progress on carbon monoxide exposure control solutions on houseboats.

    PubMed

    Hall, Ronald M; Earnest, G Scott; Hammond, Duane R; Dunn, Kevin H; Garcia, Alberto

    2014-01-01

    Investigations of carbon monoxide (CO-related poisonings and deaths on houseboats were conducted by the Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. These investigations measured hazardous CO concentrations on and around houseboats that utilize gasoline-powered generators. Engineering control devices were developed and tested to mitigate this deadly hazard. CO emissions were measured using various sampling techniques which included exhaust emission analyzers, detector tubes, evacuated containers (grab air samples analyzed by a gas chromatograph), and direct-reading CO monitors. CO results on houseboats equipped with gasoline-powered generators without emission controls indicated hazardous CO concentrations exceeding immediately dangerous to life and health (IDLH) levels in potentially occupied areas of the houseboat. Air sample results on houseboats that were equipped with engineering controls to remove the hazard were highly effective and reduced CO levels by over 98% in potentially occupied areas. The engineering control devices used to reduce the hazardous CO emissions from gasoline-powered generators on houseboats were extremely effective at reducing CO concentrations to safe levels in potentially occupied areas on the houseboats and are now beginning to be widely used.

  19. Assessment of environmentally friendly fuel emissions from in-use vehicle exhaust: low-blend iso-stoichiometric GEM mixture as example.

    PubMed

    Schifter, Isaac; Díaz-Gutiérrez, Luis; Rodríguez-Lara, René; González-Macías, Carmen; González-Macías, Uriel

    2017-05-01

    Gasoline-ethanol-methanol fuel blends were formulated with the same stoichiometric air-to-fuel ratio and volumetric energy concentration as any binary ethanol-gasoline blend. When the stoichiometric blends operated in a vehicle, the time period, injector voltage, and pressure for each fuel injection event in the engine corresponded to a given stoichiometric air-to-fuel ratio, and the load was essentially constant. Three low oxygen content iso-stoichiometric ternary gasoline-ethanol-methanol fuel blends were prepared, and the properties were compared with regular-type fuel without added oxygen. One of the ternary fuels was tested using a fleet of in-use vehicles for15 weeks and compared to neat gasoline without oxygenated compounds as a reference. Only a small number of publications have compared these ternary fuels in the same engine, and little data exist on the performance and emissions of in-use spark-ignition engines. The total hydrocarbon emissions observed was similar in both fuels, in addition to the calculated ozone forming potential of the tailpipe and evaporative emissions. In ozone non-attainment areas, the original purpose for oxygenate gasolines was to decrease carbon monoxide emissions. The results suggest that the strategy is less effective than expected because there still exist a great number of vehicles that have suffered the progressive deterioration of emissions and do not react to oxygenation, while new vehicles are equipped with sophisticated air/fuel control systems, and oxygenation does not improve combustion because the systems adjust the stoichiometric point, making it insensitive to the origin of the added excess oxygen (fuel or excess air). Graphical abstract Low level ternary blend of gasoline-ethanol-methanol were prepared with the same stoichiometric air-fuel ratio and volumetric energy concentration, based on the volumetric energy density of the pre-blended components. Exhaust and evaporative emissions was compared with a blend having no oxygen in a fleet of 12 in-use vehicles. Vehicles that had suffer a normal deterioration of emissions and do not react to oxygenation, and new vehicles with more sophisticated air/fuel control systems do not improve combustion.

  20. pH-dependent release of trace elements including platinum group elements (PGEs) from gasoline and diesel catalysts

    NASA Astrophysics Data System (ADS)

    Sucha, Veronika; Mihaljevic, Martin; Ettler, Vojtech; Strnad, Ladislav

    2014-05-01

    The release of trace metals and platinum group elements (PGEs) from automobile exhaust catalysts represents a remarkable source of higly dispersed environmental contamination. Especially, PGEs have shown increasing research interest due to their possible bioaccessibility. In our research, we focused on leaching behaviour of trace metals from gasoline and diesel automobile catalysts. While catalysts for gasoline engines contain a mixture of Pt-Pd-Rh or Pd-Rh, catalysts for diesel engines are composed only of Pt. We used dust from two crushed gasoline and two crushed diesel catalysts (new and aged). The dust of gasoline catalysts contains significant concentrations of Pt (700 mg.kg-1), Pd (11 000 mg.kg-1) and Rh (700 mg.kg-1). And the dust of diesel catalysts are composed of Pt (3 900 mg.kg-1) and they contains negligible amounts of Pd dan Rh (< 0.5 mg.kg-1, < 0.1 mg.kg-1, respectively). To evaluate leaching of trace metals from dust we used pH-stat leaching test according to the European standard CEN/TS 14997. The concentrations of cations: PGEs (Pt, Pd a Rh), K, Na, Ca, Mg, Al, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb, La and Ce were determined by inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS), and anions: F-, Cl-, SO42- and NO3- by high-performance liquid chromatography. Although the dusts from catalysts were relatively stable to acid/base influence, the leaching of trace metals from catalysts showed a dependence on pH. Generally, the highest concentrations were released under acidic conditions. The leaching of PGEs was higher for Pt in diesel catalysts and for Pd and Rh in gasoline catalysts. The highest concentrations of Zn and Pb were observed in old catalysts. The rare earth metals were released more from gasoline catalysts. Catalysts particles represent health risk especially with respect to their PGEs contents.

  1. F1 style MGU-H applied to the turbocharger of a gasoline hybrid electric passenger car

    NASA Astrophysics Data System (ADS)

    Boretti, Albert

    2017-12-01

    We consider a turbocharged gasoline direct injection (DI) engine featuring a motor-generator-unit (MGU-H) fitted on the turbocharger shaft. The MGU-H receives or delivers energy to the same energy storage (ES) of the hybrid power unit that comprises a motor-generator unit on the driveline (MGU-K) in addition to the internal combustion engine (ICE). The energy supply from the ES is mostly needed during sharp accelerations to avoid turbo-lag, and to boost torque at low speeds. At low speeds, it also improves the ratio of engine crankshaft power to fuel flow power, as well as the ratio of engine crankshaft plus turbocharger shaft power to fuel flow power. The energy supply to the ES is possible at high speeds and loads, where otherwise the turbine could have been waste gated, and during decelerations. This improves the ratio of engine crankshaft plus turbocharger shaft power to fuel flow power.

  2. Carbon monoxide poisonings from small, gasoline-powered, internal combustion engines: just what is a "well-ventilated area"?

    PubMed

    Earnest, G S; Mickelsen, R L; McCammon, J B; O'Brien, D M

    1997-11-01

    This study modeled the time required for a gasoline-powered, 5 horsepower (hp), 4-cycle engine to generate carbon monoxide (CO) concentrations exceeding the National Institute for Occupational Safety and Health 200-ppm ceiling and 1200-ppm immediately dangerous to life and health concentration for various room sizes and ventilation rates. The model permitted the ambiguous term "well-ventilated area" to be defined. The model was compared with field data collected at a site where two workers were poisoned while operating a 5-hp concrete saw in a bathroom having open doors and an operating ventilation system. There is agreement between both the modeled and field-generated data, indicating that hazardous CO concentrations can develop within minutes. Comparison of field and modeling data showed the measured CO generation rate at approximately one-half of the value used in the model, which may be partially because the engine used in the field was not under load during data collection. The generation rate and room size from the actual poisoning was then used in the model. The model determined that ventilation rates of nearly 5000 ft3/min (120 air changes per hour) would be required to prevent the CO concentration from exceeding the 200-ppm ceiling for short periods. Results suggest that small gasoline-powered engines should not be operated inside of buildings or in semienclosed spaces and that manufacturers of such tools should improve their warnings and develop engineering control options for better user protection.

  3. Low grade bioethanol for fuel mixing on gasoline engine using distillation process

    NASA Astrophysics Data System (ADS)

    Abikusna, Setia; Sugiarto, Bambang; Suntoro, Dedi; Azami

    2017-03-01

    Utilization of renewable energy in Indonesia is still low, compared to 34% oil, 20% coal and 20% gas, utilization of energy sources for water 3%, geothermal 1%, 2% biofuels, and biomass 20%. Whereas renewable energy sources dwindling due to the increasing consumption of gasoline as a fuel. It makes us have to look for alternative renewable energy, one of which is bio ethanol. Several studies on the use of ethanol was done to the researchers. Our studies using low grade bio ethanol which begins with the disitillation independently utilize flue gas heat at compact distillator, produces high grade bio ethanol and ready to be mixed with gasoline. Stages of our study is the compact distillator design of the motor dynamic continued with good performance and emission testing and ethanol distilled. Some improvement is made is through the flue gas heat control mechanism in compact distillator using gate valve, at low, medium, and high speed engine. Compact distillator used is kind of a batch distillation column. Column design process using the shortcut method, then carried the tray design to determine the overall geometry. The distillation is done by comparing the separator with a tray of different distances. As well as by varying the volume of the feed and ethanol levels that will feed distilled. In this study, we analyzed the mixing of ethanol through variation between main jet and pilot jet in the carburetor separately interchangeably with gasoline. And finally mixing mechanism bio ethanol with gasoline improved with fuel mixer for performance.

  4. 40 CFR 86.319-79 - Analyzer checks and calibrations; frequency and overview.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust... testing, check the NOX converter efficiency, as described in § 86.332. (c) At least once every 30 days...

  5. 40 CFR 86.319-79 - Analyzer checks and calibrations; frequency and overview.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust... testing, check the NOX converter efficiency, as described in § 86.332. (c) At least once every 30 days...

  6. 40 CFR 86.319-79 - Analyzer checks and calibrations; frequency and overview.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust... testing, check the NOX converter efficiency, as described in § 86.332. (c) At least once every 30 days...

  7. 40 CFR Table 1 to Subpart Jjjj of... - NOX, CO, and VOC Emission Standards for Stationary Non-Emergency SI Engines ≥100 HP (Except...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false NOX, CO, and VOC Emission Standards for Stationary Non-Emergency SI Engines â¥100 HP (Except Gasoline and Rich Burn LPG), Stationary SI Landfill... Landfill/Digester Gas Engines, and Stationary Emergency Engines >25 HP Engine type and fuel Maximum engine...

  8. Real world CO2 and NOx emissions from 149 Euro 5 and 6 diesel, gasoline and hybrid passenger cars.

    PubMed

    O'Driscoll, Rosalind; Stettler, Marc E J; Molden, Nick; Oxley, Tim; ApSimon, Helen M

    2018-04-15

    In this study CO 2 and NO x emissions from 149 Euro 5 and 6 diesel, gasoline and hybrid passenger cars were compared using a Portable Emissions Measurement System (PEMS). The models sampled accounted for 56% of all passenger cars sold in Europe in 2016. We found gasoline vehicles had CO 2 emissions 13-66% higher than diesel. During urban driving, the average CO 2 emission factor was 210.5 (sd. 47) gkm -1 for gasoline and 170.2 (sd. 34) gkm -1 for diesel. Half the gasoline vehicles tested were Gasoline Direct Injection (GDI). Euro 6 GDI engines <1.4ℓ delivered ~17% CO 2 reduction compared to Port Fuel Injection (PFI). Gasoline vehicles delivered an 86-96% reduction in NO x emissions compared to diesel cars. The average urban NO x emission from Euro 6 diesel vehicles 0.44 (sd. 0.44) gkm -1 was 11 times higher than for gasoline 0.04 (sd. 0.04) gkm -1 . We also analysed two gasoline-electric hybrids which out-performed both gasoline and diesel for NO x and CO 2 . We conclude action is required to mitigate the public health risk created by excessive NO x emissions from modern diesel vehicles. Replacing diesel with gasoline would incur a substantial CO 2 penalty, however greater uptake of hybrid vehicles would likely reduce both CO 2 and NO x emissions. Discrimination of vehicles on the basis of Euro standard is arbitrary and incentives should promote vehicles with the lowest real-world emissions of both NO x and CO 2 . Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Advanced Natural Gas Reciprocating Engine(s)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pike, Edward

    The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 – 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cyclemore » efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.« less

  10. Aeronautic Instruments. Section V : Power Plant Instruments

    NASA Technical Reports Server (NTRS)

    Washburn, G E; Sylvander, R C; Mueller, E F; Wilhelm, R M; Eaton, H N; Warner, John A C

    1923-01-01

    Part 1 gives a general discussion of the uses, principles, construction, and operation of airplane tachometers. Detailed description of all available instruments, both foreign and domestic, are given. Part 2 describes methods of tests and effect of various conditions encountered in airplane flight such as change of temperature, vibration, tilting, and reduced air pressure. Part 3 describes the principal types of distance reading thermometers for aircraft engines, including an explanation of the physical principles involved in the functioning of the instruments and proper filling of the bulbs. Performance requirements and testing methods are given and a discussion of the source of error and results of tests. Part 4 gives methods of tests and calibration, also requirements of gauges of this type for the pressure measurement of the air pressure in gasoline tanks and the engine oil pressure on airplanes. Part 5 describes two types of gasoline gauges, the float type and the pressure type. Methods of testing and calibrating gasoline depth gauges are given. The Schroeder, R. A. E., and the Mark II flowmeters are described.

  11. Experimenting "Learn by Doing" and "Learn by Failing"

    ERIC Educational Resources Information Center

    Pozzi, Rossella; Noè, Carlo; Rossi, Tommaso

    2015-01-01

    According to the literature, in recent years, developing experiential learning has fulfilled the requirement of a deep understanding of lean philosophy by engineering students, demonstrating the advantages and disadvantages of some of the key principles of lean manufacturing. On the other hand, the literature evidences how some kinds of game-based…

  12. Lean Six Sigma Implementation for Military Logistics to Improve Readiness

    DTIC Science & Technology

    2007-04-30

    mistake-proofing ( poka - yoke ). Lean, as a management philosophy, is also very focused on creating a better workplace through the Toyota principle...Techniques • Pull System • Visual Control • Mistake proofing ( poka yoke ) • Equipment Changeover 37 Pull System • Issuance of an RFI engine would “trigger

  13. 40 CFR 86.1309-90 - Exhaust gas sampling system; Otto-cycle and non-petroleum-fueled engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gasoline-fueled, natural gas-fueled, liquefied petroleum gas-fueled or methanol-fueled engines. In the CVS... test period. (2) Engine exhaust to CVS duct. For methanol-fueled engines, reactions of the exhaust... samples for the bag sample, the methanol sample (Figure N90-2), and the formaldehyde sample (Figure N90-3...

  14. The Stirling Project

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Stirling Engine's advanced technology engine offers multiple advantages, principal among them reduced fuel consumption and lower exhaust emissions than comparable internal combustion auto engines, plus multifuel capability. Stirling can use gasoline, kerosene, diesel fuel, jet fuel, alcohol, methanol, butane and that's not the whole list. Applications include irrigation pumping, heat pumps, and electricity generation for submarine, Earth and space systems.

  15. 40 CFR 86.004-40 - Heavy-duty engine rebuilding practices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Provisions for Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles, Light-Duty Trucks and Heavy-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled... rebuilding practices. The provisions of this section are applicable to heavy-duty engines subject to model...

  16. 40 CFR 86.004-28 - Compliance with emission standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General... and Heavy-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled...]. For guidance see § 86.001-28. (c)(1) Paragraph (c) of this section applies to heavy-duty engines. (2...

  17. 40 CFR 86.1108-87 - Maintenance of records.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Penalties for Gasoline-Fueled and Diesel Heavy-Duty Engines and Heavy-Duty Vehicles, Including Light-Duty... requirements specified in 40 CFR part 1065, subparts B and C; (ii) If testing heavy-duty diesel engines, the... heavy-duty diesel engines, the record requirements specified in 40 CFR 1065.695; (C) If testing light...

  18. 40 CFR 86.334-79 - Test procedure overview.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.334-79... cycle and 1 hot cycle. The Diesel engine test consists of 3 idle modes and 5 power modes at each of 2 speeds which span the typical operating range of Diesel engines. These procedures require the...

  19. 40 CFR 86.1108-87 - Maintenance of records.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for Gasoline-Fueled and Diesel Heavy-Duty Engines and Heavy-Duty Vehicles, Including Light-Duty Trucks... requirements specified in 40 CFR part 1065, subparts B and C; (ii) If testing heavy-duty diesel engines, the... heavy-duty diesel engines, the record requirements specified in 40 CFR 1065.695; (C) If testing light...

  20. 40 CFR 86.334-79 - Test procedure overview.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.334-79... cycle and 1 hot cycle. The Diesel engine test consists of 3 idle modes and 5 power modes at each of 2 speeds which span the typical operating range of Diesel engines. These procedures require the...

  1. 40 CFR 86.1108-87 - Maintenance of records.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Penalties for Gasoline-Fueled and Diesel Heavy-Duty Engines and Heavy-Duty Vehicles, Including Light-Duty... requirements specified in 40 CFR part 1065, subparts B and C; (ii) If testing heavy-duty diesel engines, the... heavy-duty diesel engines, the record requirements specified in 40 CFR 1065.695; (C) If testing light...

  2. 40 CFR 86.334-79 - Test procedure overview.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.334-79... cycle and 1 hot cycle. The Diesel engine test consists of 3 idle modes and 5 power modes at each of 2 speeds which span the typical operating range of Diesel engines. These procedures require the...

  3. 40 CFR 86.1112-87 - Determining the compliance level and reporting of test results.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ENGINES (CONTINUED) Nonconformance Penalties for Gasoline-Fueled and Diesel Heavy-Duty Engines and Heavy...) The final deteriorated test results for each heavy-duty engine or light-duty truck tested according to... information the Administrator may request relevant to the determination as to whether the new heavy-duty...

  4. Injection system used into SI engines for complete combustion and reduction of exhaust emissions in the case of alcohol and petrol alcohol mixtures feed

    NASA Astrophysics Data System (ADS)

    Ispas, N.; Cofaru, C.; Aleonte, M.

    2017-10-01

    Internal combustion engines still play a major role in today transportation but increasing the fuel efficiency and decreasing chemical emissions remain a great goal of the researchers. Direct injection and air assisted injection system can improve combustion and can reduce the concentration of the exhaust gas pollutes. Advanced air-to-fuel and combustion air-to-fuel injection system for mixtures, derivatives and alcohol gasoline blends represent a major asset in reducing pollutant emissions and controlling combustion processes in spark-ignition engines. The use of these biofuel and biofuel blending systems for gasoline results in better control of spark ignition engine processes, making combustion as complete as possible, as well as lower levels of concentrations of pollutants in exhaust gases. The main purpose of this paper was to provide most suitable tools for ensure the proven increase in the efficiency of spark ignition engines, making them more environmentally friendly. The conclusions of the paper allow to highlight the paths leading to a better use of alcohols (biofuels) in internal combustion engines of modern transport units.

  5. 46 CFR 193.05-10 - Fixed fire extinguishing systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ....05-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH... combustion engine installations; (2) Gas turbine installations; (3) Enclosed spaces containing gasoline engines; (4) Chemical storerooms; (5) Any space containing auxiliaries with an aggregate power of 1,000...

  6. 46 CFR 193.05-10 - Fixed fire extinguishing systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....05-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH... combustion engine installations; (2) Gas turbine installations; (3) Enclosed spaces containing gasoline engines; (4) Chemical storerooms; (5) Any space containing auxiliaries with an aggregate power of 1,000...

  7. 46 CFR 193.05-10 - Fixed fire extinguishing systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ....05-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH... combustion engine installations; (2) Gas turbine installations; (3) Enclosed spaces containing gasoline engines; (4) Chemical storerooms; (5) Any space containing auxiliaries with an aggregate power of 1,000...

  8. 46 CFR 182.415 - Carburetors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... acceptable means of backfire flame control. Installation of backfire flame arresters bearing basic Approval... acceptable means of backfire flame control for gasoline engines: (1) A backfire flame arrester complying with... and firmly secured to withstand vibration, shock, and engine backfire. Such installations do not...

  9. 46 CFR 182.415 - Carburetors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... acceptable means of backfire flame control. Installation of backfire flame arresters bearing basic Approval... acceptable means of backfire flame control for gasoline engines: (1) A backfire flame arrester complying with... and firmly secured to withstand vibration, shock, and engine backfire. Such installations do not...

  10. 46 CFR 182.415 - Carburetors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... acceptable means of backfire flame control. Installation of backfire flame arresters bearing basic Approval... acceptable means of backfire flame control for gasoline engines: (1) A backfire flame arrester complying with... and firmly secured to withstand vibration, shock, and engine backfire. Such installations do not...

  11. 46 CFR 182.415 - Carburetors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... acceptable means of backfire flame control. Installation of backfire flame arresters bearing basic Approval... acceptable means of backfire flame control for gasoline engines: (1) A backfire flame arrester complying with... and firmly secured to withstand vibration, shock, and engine backfire. Such installations do not...

  12. 46 CFR 182.415 - Carburetors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... acceptable means of backfire flame control. Installation of backfire flame arresters bearing basic Approval... acceptable means of backfire flame control for gasoline engines: (1) A backfire flame arrester complying with... and firmly secured to withstand vibration, shock, and engine backfire. Such installations do not...

  13. Sensitivities of Internal Combustion Automotive Engines to Variations in Fuel Properties

    DOT National Transportation Integrated Search

    1982-02-01

    An assessment of the sensitivity of the automotive gasoline and diesel engines to variations in fuel properties has been made. The variables studied include H/C ratio, distillation range, aromatic content, ignition quality as determined by the octane...

  14. Full Hybrid: Stopped

    Science.gov Websites

    than batteries used to start conventional vehicles. Main stage: See through car with battery, engine electric motor or stored in the battery. It is also used to start the gasoline engine instantly when needed used to start conventional vehicles

  15. THE EFFECT OF SULFUR ON METHANE PARTIAL OXIDATION AND REFORMING PROCESSES FOR LEAN NOX TRAP CATALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parks, II, James E; Ponnusamy, Senthil

    2006-01-01

    Lean NOx trap catalysis has demonstrated the ability to reduce NOx emissions from lean natural gas reciprocating engines by >90%. The technology operates in a cyclic fashion where NOx is trapped on the catalyst during lean operation and released and reduced to N2 under rich exhaust conditions; the rich cleansing operation of the cycle is referred to as "regeneration" since the catalyst is reactivated for more NOx trapping after NOx purge. Creating the rich exhaust conditions for regeneration can be accomplished by catalytic partial oxidation of methane in the exhaust system. Furthermore, catalytic reforming of partial oxidation exhaust can enablemore » increased quantities of H2 which is an excellent reductant for lean NOx trap regeneration. It is critical to maintain clean and efficient partial oxidation and reforming processes to keep the lean NOx trap functioning properly and to reduce extra fuel consumption from the regeneration process. Although most exhaust constituents do not impede partial oxidation and reforming, some exhaust constituents may negatively affect the catalysts and result in loss of catalytic efficiency. Of particular concern are common catalyst poisons sulfur, zinc, and phosphorous. These poisons form in the exhaust through combustion of fuel and oil, and although they are present at low concentrations, they can accumulate to significant levels over the life of an engine system. In the work presented here, the effects of sulfur on the partial oxidation and reforming catalytic processes were studied to determine any durability limitations on the production of reductants for lean NOx trap catalyst regeneration.« less

  16. Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, D.L.

    1977-07-19

    A process is described for making a fuel by combining turpentine, alcohol and blending agent and reducing the temperature of a batch to form two separate phases of differing densities, both of which are separately useable as fuels for internal combustion engines. The proportions of combustion favor the denser phase. However, under certain conditions, the less dense phase may be desired. Either phase may also be combined with gasoline to enhance the performance of the gasoline.

  17. Method for automatically evaluating a transition from a batch manufacturing technique to a lean manufacturing technique

    DOEpatents

    Ivezic, Nenad; Potok, Thomas E.

    2003-09-30

    A method for automatically evaluating a manufacturing technique comprises the steps of: receiving from a user manufacturing process step parameters characterizing a manufacturing process; accepting from the user a selection for an analysis of a particular lean manufacturing technique; automatically compiling process step data for each process step in the manufacturing process; automatically calculating process metrics from a summation of the compiled process step data for each process step; and, presenting the automatically calculated process metrics to the user. A method for evaluating a transition from a batch manufacturing technique to a lean manufacturing technique can comprise the steps of: collecting manufacturing process step characterization parameters; selecting a lean manufacturing technique for analysis; communicating the selected lean manufacturing technique and the manufacturing process step characterization parameters to an automatic manufacturing technique evaluation engine having a mathematical model for generating manufacturing technique evaluation data; and, using the lean manufacturing technique evaluation data to determine whether to transition from an existing manufacturing technique to the selected lean manufacturing technique.

  18. SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven Shaffer; Sean Kelly; Subhasish Mukerjee

    2003-12-08

    The objective of Phase I under this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burnmore » internal combustion engine. This technical progress report covers work performed by Delphi from January 1, 2003 to June 30, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; and Task 9 Stack Testing with Coal-Based Reformate.« less

  19. Emissions of piston engine aircraft using aviation gasoline (avgas) and motor gasoline (mogas) as fuel – a review

    NASA Astrophysics Data System (ADS)

    Thanikasalam, K.; Rahmat, M.; Fahmi, A. G. Mohammad; Zulkifli, A. M.; Shawal, N. Noor; Ilanchelvi, K.; Ananth, M.; Elayarasan, R.

    2018-05-01

    There are two categories of aircraft engines, namely, piston and gas turbine engines. Piston engine extracts energy from a combustion compartment through a piston and crank apparatus that engages the propellers, which in turn, provides an aircraft the needed momentum. On the other hand, gas turbine engine heats a compressed air in the combustion compartment resulting in propulsion that drives an aircraft. Piston engine aircrafts might appear small but together thousands of piston engine aircraft, which encompasses a bulk of the general aviation fleet, present a considerable health threat. That is because these aircraft, which depend on avgas and mogas to run, comprise major remaining sources of lead emissions. People exposed to even small levels of lead, particularly children, have tendencies to suffer from cognitive and neurological harm. Dissimilar from commercial airliners that do not utilize leaded fuels, piston engine aircraft account for nearly half of the lead discharge in skies. But, what is the extent of the impact caused by these airborne emissions on the country’s economy and public health? To answer this query, a thorough literature review on emissions of piston engine aircraft ought to be undertaken. This article conducts a literature review on emissions of piston engine aircraft using avgas as fuel and mogas as fuel.

  20. Lean-rich axial stage combustion in a can-annular gas turbine engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laster, Walter R.; Szedlacsek, Peter

    2016-06-14

    An apparatus and method for lean/rich combustion in a gas turbine engine (10), which includes a combustor (12), a transition (14) and a combustor extender (16) that is positioned between the combustor (12) and the transition (14) to connect the combustor (12) to the transition (14). Openings (18) are formed along an outer surface (20) of the combustor extender (16). The gas turbine (10) also includes a fuel manifold (28) to extend along the outer surface (20) of the combustor extender (16), with fuel nozzles (30) to align with the respective openings (18). A method (200) for axial stage combustionmore » in the gas turbine engine (10) is also presented.« less

  1. 46 CFR 193.05-10 - Fixed fire extinguishing systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....05-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH... provided for internal combustion engine installations in accordance with the following: (1) Enclosed spaces containing gasoline engines shall have fixed carbon dioxide systems. (2) If a fire extinguishing system is...

  2. 46 CFR 193.05-10 - Fixed fire extinguishing systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....05-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH... provided for internal combustion engine installations in accordance with the following: (1) Enclosed spaces containing gasoline engines shall have fixed carbon dioxide systems. (2) If a fire extinguishing system is...

  3. Katherine Young, P.E. | NREL

    Science.gov Websites

    ) Water rights and resources engineering Database planning and development Research Interests Collection lean principles to streamline exploration and drilling and reduce error/risk Research, development and Groundwater modeling Quantitative methods in water resource engineering Water resource engineering and

  4. An economic evaluation comparison of solar water pumping system with engine pumping system for rice cultivation

    NASA Astrophysics Data System (ADS)

    Treephak, Kasem; Thongpron, Jutturit; Somsak, Dhirasak; Saelao, Jeerawan; Patcharaprakiti, Nopporn

    2015-08-01

    In this paper we propose the design and economic evaluation of the water pumping systems for rice cultivation using solar energy, gasoline fuel and compare both systems. The design of the water and gasoline engine pumping system were evaluated. The gasoline fuel cost used in rice cultivation in an area of 1.6 acres. Under same conditions of water pumping system is replaced by the photovoltaic system which is composed of a solar panel, a converter and an electric motor pump which is compose of a direct current (DC) motor or an alternating current (AC) motor with an inverter. In addition, the battery is installed to increase the efficiency and productivity of rice cultivation. In order to verify, the simulation and economic evaluation of the storage energy battery system with batteries and without batteries are carried out. Finally the cost of four solar pumping systems was evaluated and compared with that of the gasoline pump. The results showed that the solar pumping system can be used to replace the gasoline water pumping system and DC solar pump has a payback less than 10 years. The systems that can payback the fastest is the DC solar pumping system without batteries storage system. The system the can payback the slowest is AC solar pumping system with batteries storage system. However, VAC motor pump of 220 V can be more easily maintained than the motor pump of 24 VDC and batteries back up system can supply a more stable power to the pump system.

  5. Summary of Salient Findings of "Natural Attenuation of the Lead Scavengers 1,2-Dibromoethane (EDB) and 1,2-Dichloroethane (1,2-DCA) at Motor Fuel Release Sites and Implications for Risk Management"

    EPA Science Inventory

    Tetra-ethyl lead was widely used in leaded automobile gasoline from 1923 until 1987 (See Figure 1). To prevent lead deposits from fouling the engine, 1,2-dibromoethane (EDB) and 1,2-dichloroethane (1,2-DCA) were added to the gasoline to act as lead scavengers. These compounds r...

  6. Defense Energy Information System (DEIS): DEIS-80 Design System Specification. Revision A.

    DTIC Science & Technology

    1981-07-01

    and consumption of petroleum products such as aviation gasoline, jet fuels, motor gasolines, distillate, and residual oil within DoD. DEIS I software...water, fuel oil , coal, solar/thermal power, and wind power. This subsystem also reports environmental data such as degree days during a reporting period...Petroleum Oil and Lubricants Officer, the Fuels Officer, the Supply Of- ficer, or the Engineering Officer on the base or facility consolidate in

  7. Ceramics potential in automotive powerplants

    NASA Technical Reports Server (NTRS)

    Mclean, A. F.

    1983-01-01

    The paper addresses the potential that ceramic materials can play an important role in future automotive powerplants - both advanced heat engines and advanced battery systems. A number of related experimental programs are reviewed including ceramics for gasoline and diesel piston engines, gas turbine and Stirling Engines and sodium-sulfur batteries. A strong integrated program to develop ceramics technology is recommended.

  8. Construction Mechanic, Engine Tune-Up I, 8-7. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This course, adapted from military curriculum materials for use in vocational and technical education, teaches students to perform a complete engine tune-up using appropriate hand tools, special tools, and testing equipment. Students completing the course will be able to diagnose gasoline-engine performance and perform corrective measures to…

  9. 40 CFR 86.096-26 - Mileage and service accumulation; emission measurements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Light-Duty Trucks and Heavy-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural... determination. Any engine used to represent emission-data engine selections under § 86.094-24(b)(2) shall be... selection under § 86.094-24(b)(2). Evaporative emission controls must be connected, as described in § 86...

  10. 40 CFR 86.096-26 - Mileage and service accumulation; emission measurements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Light-Duty Trucks and Heavy-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural... determination. Any engine used to represent emission-data engine selections under § 86.094-24(b)(2) shall be... selection under § 86.094-24(b)(2). Evaporative emission controls must be connected, as described in § 86...

  11. 40 CFR 86.007-15 - NOX and particulate averaging, trading, and banking for heavy-duty engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., and banking for heavy-duty engines. 86.007-15 Section 86.007-15 Protection of Environment... Light-Duty Vehicles, Light-Duty Trucks and Heavy-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles...

  12. Modular and selective biosynthesis of gasoline-range alkanes.

    PubMed

    Sheppard, Micah J; Kunjapur, Aditya M; Prather, Kristala L J

    2016-01-01

    Typical renewable liquid fuel alternatives to gasoline are not entirely compatible with current infrastructure. We have engineered Escherichia coli to selectively produce alkanes found in gasoline (propane, butane, pentane, heptane, and nonane) from renewable substrates such as glucose or glycerol. Our modular pathway framework achieves carbon-chain extension by two different mechanisms. A fatty acid synthesis route is used to generate longer chains heptane and nonane, while a more energy efficient alternative, reverse-β-oxidation, is used for synthesis of propane, butane, and pentane. We demonstrate that both upstream (thiolase) and intermediate (thioesterase) reactions can act as control points for chain-length specificity. Specific free fatty acids are subsequently converted to alkanes using a broad-specificity carboxylic acid reductase and a cyanobacterial aldehyde decarbonylase (AD). The selectivity obtained by different module pairings provides a foundation for tuning alkane product distribution for desired fuel properties. Alternate ADs that have greater activity on shorter substrates improve observed alkane titer. However, even in an engineered host strain that significantly reduces endogenous conversion of aldehyde intermediates to alcohol byproducts, AD activity is observed to be limiting for all chain lengths. Given these insights, we discuss guiding principles for pathway selection and potential opportunities for pathway improvement. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  13. Toward the development of Raman spectroscopy as a nonperturbative online monitoring tool for gasoline adulteration.

    PubMed

    Tan, Khay M; Barman, Ishan; Dingari, Narahara C; Singh, Gajendra P; Chia, Tet F; Tok, Wee L

    2013-02-05

    There is a critical need for a real-time, nonperturbative probe for monitoring the adulteration of automotive gasoline. Running on adulterated fuel leads to a substantive increase in air pollution, because of increased tailpipe emissions of harmful pollutants, as well as a reduction in engine performance. Consequently, both classification of the gasoline type and quantification of the adulteration content are of great significance for quality control. Gasoline adulteration detection is currently carried out in the laboratory with gas chromatography, which is time-consuming and costly. Here, we propose the application of Raman spectroscopic measurements for on-site rapid detection of gasoline adulteration. In this proof-of-principle report, we demonstrate the effectiveness of Raman spectra, in conjunction with multivariate analysis methods, in classifying the base oil types and simultaneously detecting the adulteration content in a wide range of commercial gasoline mixtures, both in their native states and spiked with different adulterants. In particular, we show that Raman spectra acquired with an inexpensive noncooled detector provides adequate specificity to clearly discriminate between the gasoline samples and simultaneously characterize the specific adulterant content with a limit of detection below 5%. Our promising results in this study illustrate, for the first time, the capability and the potential of Raman spectroscopy, together with multivariate analysis, as a low-cost, powerful tool for on-site rapid detection of gasoline adulteration and opens substantive avenues for applications in related fields of quality control in the oil industry.

  14. EMISSIONS FROM TWO OUTBOARD ENGINES OPERATING ON REFORMULATED GASOLINE CONTAINING MTBE

    EPA Science Inventory

    Air and water pollutant emissions were measured from two 9.9 HP outboard engines: a two-stroke Evinrude and its four-stroke Honda counterpart. In addition to the measurement of regulated air pollutants, speciated organic pollutants and particulate matter emissions were determi...

  15. Diesel Powered School Buses: An Update.

    ERIC Educational Resources Information Center

    Gresham, Robert

    1984-01-01

    Because diesel engines are more economical and longer-lasting than gasoline engines, school districts are rapidly increasing their use of diesel buses. Dependence on diesel power, however, entails vulnerability to cost increases due to the unreliability of crude oil supplies and contributes to air pollution. (MCG)

  16. 40 CFR 1048.801 - What definitions apply to this part?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Exhaust-gas recirculation (EGR), turbochargers, and oxygen sensors are not aftertreatment. Aircraft means... device means any element of design that senses temperature, motive speed, engine rpm, transmission gear... oxygen. For example, stoichiometric combustion in a gasoline-fueled engine typically occurs at an air...

  17. 40 CFR 1048.801 - What definitions apply to this part?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Exhaust-gas recirculation (EGR), turbochargers, and oxygen sensors are not aftertreatment. Aircraft means... device means any element of design that senses temperature, motive speed, engine rpm, transmission gear... oxygen. For example, stoichiometric combustion in a gasoline-fueled engine typically occurs at an air...

  18. 40 CFR 1048.801 - What definitions apply to this part?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Exhaust-gas recirculation (EGR), turbochargers, and oxygen sensors are not aftertreatment. Aircraft means... device means any element of design that senses temperature, motive speed, engine rpm, transmission gear... oxygen. For example, stoichiometric combustion in a gasoline-fueled engine typically occurs at an air...

  19. AIR CONTAMINANT EXPOSURE DURING THE OPERATION OF LAWN AND GARDEN EQUIPMENT

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) initiated the Small Engine Exposure Study (SEES) to evaluate potential exposures among users of small, gasoline-powered, non-road spark-ignition (SI) lawn and garden engines. Equipment tested included riding tractors, walk-behind la...

  20. Gasoline-Engine Assembler (engine & turbine) 806.781; Internal-Combustion-Engine-Assembler (engine & turbine) 806.781; Outboard-Motor Assembler (engine & turbine) 806.781--Technical Report on Development of USTES Aptitude Test Battery.

    ERIC Educational Resources Information Center

    Manpower Administration (DOL), Washington, DC. U.S. Training and Employment Service.

    The United States Training and Employment Service General Aptitude Test Battery (GATB), first published in 1947, has been included in a continuing program of research to validate the tests against success in many different occupations. The GATB consists of 12 tests which measure nine aptitudes: General Learning Ability; Verbal Aptitude; Numerical…

  1. Advanced Light-Duty SI Engine Fuels Research: Multiple Optical Diagnostics of Well-mixed and Stratified Operation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjoberg, Carl Magnus Goran; Vuilleumier, David

    Ever tighter fuel economy standards and concerns about energy security motivate efforts to improve engine efficiency and to develop alternative fuels. This project contributes to the science base needed by industry to develop highly efficient direct injection spark ignition (DISI) engines that also beneficially exploit the different properties of alternative fuels. Here, the emphasis is on lean operation, which can provide higher efficiencies than traditional non-dilute stoichiometric operation. Since lean operation can lead to issues with ignition stability, slow flame propagation and low combustion efficiency, the focus is on techniques that can overcome these challenges. Specifically, fuel stratification is usedmore » to ensure ignition and completeness of combustion but this technique has soot and NOx emissions challenges. For ultra-lean well-mixed operation, turbulent deflagration can be combined with controlled end-gas autoignition to render mixed-mode combustion for sufficiently fast heat release. However, such mixed-mode combustion requires very stable inflammation, motivating studies on the effects of near-spark flow and turbulence, and the use of small amounts of fuel stratification near the spark plug.« less

  2. The relationship between gasoline composition and vehicle hydrocarbon emissions: a review of current studies and future research needs.

    PubMed Central

    Schuetzle, D; Siegl, W O; Jensen, T E; Dearth, M A; Kaiser, E W; Gorse, R; Kreucher, W; Kulik, E

    1994-01-01

    The purpose of this paper is to review current studies concerning the relationship of fuel composition to vehicle engine-out and tail-pipe emissions and to outline future research needed in this area. A number of recent combustion experiments and vehicle studies demonstrated that reformulated gasoline can reduce vehicle engine-out, tail-pipe, running-loss, and evaporative emissions. Some of these studies were extended to understand the fundamental relationships between fuel composition and emissions. To further establish these relationships, it was necessary to develop advanced analytical methods for the qualitative and quantitative analysis of hydrocarbons in fuels and vehicle emissions. The development of real-time techniques such as Fourier transform infrared spectroscopy, laser diode spectroscopy, and atmospheric pressure ionization mass spectrometry were useful in studying the transient behavior of exhaust emissions under various engine operating conditions. Laboratory studies using specific fuels and fuel blends were carried out using pulse flame combustors, single- and multicylinder engines, and vehicle fleets. Chemometric statistical methods were used to analyze the large volumes of emissions data generated from these studies. Models were developed that were able to accurately predict tail-pipe emissions from fuel chemical and physical compositional data. Some of the primary fuel precursors for benzene, 1,3-butadiene, formaldehyde, acetaldehyde and C2-C4 alkene emissions are described. These studies demonstrated that there is a strong relationship between gasoline composition and tail-pipe emissions. PMID:7529705

  3. The relationship between gasoline composition and vehicle hydrocarbon emissions: a review of current studies and future research needs.

    PubMed

    Schuetzle, D; Siegl, W O; Jensen, T E; Dearth, M A; Kaiser, E W; Gorse, R; Kreucher, W; Kulik, E

    1994-10-01

    The purpose of this paper is to review current studies concerning the relationship of fuel composition to vehicle engine-out and tail-pipe emissions and to outline future research needed in this area. A number of recent combustion experiments and vehicle studies demonstrated that reformulated gasoline can reduce vehicle engine-out, tail-pipe, running-loss, and evaporative emissions. Some of these studies were extended to understand the fundamental relationships between fuel composition and emissions. To further establish these relationships, it was necessary to develop advanced analytical methods for the qualitative and quantitative analysis of hydrocarbons in fuels and vehicle emissions. The development of real-time techniques such as Fourier transform infrared spectroscopy, laser diode spectroscopy, and atmospheric pressure ionization mass spectrometry were useful in studying the transient behavior of exhaust emissions under various engine operating conditions. Laboratory studies using specific fuels and fuel blends were carried out using pulse flame combustors, single- and multicylinder engines, and vehicle fleets. Chemometric statistical methods were used to analyze the large volumes of emissions data generated from these studies. Models were developed that were able to accurately predict tail-pipe emissions from fuel chemical and physical compositional data. Some of the primary fuel precursors for benzene, 1,3-butadiene, formaldehyde, acetaldehyde and C2-C4 alkene emissions are described. These studies demonstrated that there is a strong relationship between gasoline composition and tail-pipe emissions.

  4. Economic and environmental benefits of higher-octane gasoline.

    PubMed

    Speth, Raymond L; Chow, Eric W; Malina, Robert; Barrett, Steven R H; Heywood, John B; Green, William H

    2014-06-17

    We quantify the economic and environmental benefits of designing U.S. light-duty vehicles (LDVs) to attain higher fuel economy by utilizing higher octane (98 RON) gasoline. We use engine simulations, a review of experimental data, and drive cycle simulations to estimate the reduction in fuel consumption associated with using higher-RON gasoline in individual vehicles. Lifecycle CO2 emissions and economic impacts for the U.S. LDV fleet are estimated based on a linear-programming refinery model, a historically calibrated fleet model, and a well-to-wheels emissions analysis. We find that greater use of high-RON gasoline in appropriately tuned vehicles could reduce annual gasoline consumption in the U.S. by 3.0-4.4%. Accounting for the increase in refinery emissions from production of additional high-RON gasoline, net CO2 emissions are reduced by 19-35 Mt/y in 2040 (2.5-4.7% of total direct LDV CO2 emissions). For the strategies studied, the annual direct economic benefit is estimated to be $0.4-6.4 billion in 2040, and the annual net societal benefit including the social cost of carbon is estimated to be $1.7-8.8 billion in 2040. Adoption of a RON standard in the U.S. in place of the current antiknock index (AKI) may enable refineries to produce larger quantities of high-RON gasoline.

  5. Application of positive matrix factorization to identify potential sources of PAHs in soil of Dalian, China.

    PubMed

    Wang, Degao; Tian, Fulin; Yang, Meng; Liu, Chenlin; Li, Yi-Fan

    2009-05-01

    Soil derived sources of polycyclic aromatic hydrocarbons (PAHs) in the region of Dalian, China were investigated using positive matrix factorization (PMF). Three factors were separated based on PMF for the statistical investigation of the datasets both in summer and winter. These factors were dominated by the pattern of single sources or groups of similar sources, showing seasonal and regional variations. The main sources of PAHs in Dalian soil in summer were the emissions from coal combustion average (46%), diesel engine (30%), and gasoline engine (24%). In winter, the main sources were the emissions from coal-fired boiler (72%), traffic average (20%), and gasoline engine (8%). These factors with strong seasonality indicated that coal combustion in winter and traffic exhaust in summer dominated the sources of PAHs in soil. These results suggested that PMF model was a proper approach to identify the sources of PAHs in soil.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Som, Sibendu; Wang, Zihan; Pei, Yuanjiang

    A state-of-the-art spray modeling methodology, recently presented by Senecal et al. [ , , ], is applied to Large Eddy Simulations (LES) of vaporizing gasoline sprays. Simulations of non-combusting Spray G (gasoline fuel) from the Engine Combustion Network are performed. Adaptive mesh refinement (AMR) with cell sizes from 0.09 mm to 0.5 mm are utilized to further demonstrate grid convergence of the dynamic structure LES model for the gasoline sprays. Grid settings are recommended to optimize the accuracy/runtime tradeoff for LES-based spray simulations at different injection pressure conditions typically encountered in gasoline direct injection (GDI) applications. The influence of LESmore » sub-grid scale (SGS) models is explored by comparing the results from dynamic structure and Smagorinsky based models against simulations without any SGS model. Twenty different realizations are simulated by changing the random number seed used in the spray sub-models. It is shown that for global quantities such as spray penetration, comparing a single LES simulation to experimental data is reasonable. Through a detailed analysis using the relevance index (RI) criteria, recommendations are made regarding the minimum number of LES realizations required for accurate prediction of the gasoline sprays.« less

  7. Flight Investigation of the Knock-Limited Performance of a Triptane Blend, a Toluene Blend, and 28-R Fuel in an R-1830-75 Engine

    NASA Technical Reports Server (NTRS)

    Blackman, Calvin C.

    1946-01-01

    Knock-limited performance data were obtained for three fuels on an R-1830-75 engine in a B-24D airplane at engine speeds of 1800, 2250, and 2600 rpm, a spark advance of 25 degrees B.T.C., and carburetor-air temperatures of 85 F for 1800 and 2250 rpm and 100 F for 2600 rpm. The test fuels were a blend of 80 percent 28-R plus 20 percent triptane (leaded to 4.5 ml TEL/gal), a blend of 80 percent 28-R plus 15 percent toluene (leaded to 4.5 ml TEL / gal), and 28-R fuel. The knock-limited manifold pressure of the toluene blend depreciated more in the lean region than the triptane blend or 28-R fuel. The knock-limited brake horsepower for the triptane blend varied from 16 to 25 percent higher than 28-R in the lean region and 18 to 30 percent higher in the rich region. The knock-limited brake horsepower of the toluene blend was approximately 15 percent higher than that of 28-R in the rich region and varied from 2 to 10 percent higher in the lean region. Knock limits of the triptane blend and 28-R fuel tested in the R-1830-75 engine agreed with limits for the same fuels determined with the R-1830-94 engine for engine speeds of 1800 and 2250 rpm.

  8. 'Lean' approach gives greater efficiency.

    PubMed

    Call, Roger

    2014-02-01

    Adapting the 'Lean' methodologies used for many years by many manufacturers on the production line - such as in the automotive industry - and deploying them in healthcare 'spaces' can, Roger Call, an architect at Herman Miller Healthcare in the US, argues, 'easily remedy many of the inefficiencies' found within a healthcare facility. In an article that first appeared in the September 2013 issue of The Australian Hospital Engineer, he explains how 'Lean' approaches such as the 'Toyota production system', and 'Six Sigma', can be harnessed to good effect in the healthcare sphere.

  9. Combustor technology for future small gas turbine aircraft

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.; Niedzwiecki, Richard W.

    1993-01-01

    Future engine cycles proposed for advanced small gas turbine engines will increase the severity of the operating conditions of the combustor. These cycles call for increased overall engine pressure ratios which increase combustor inlet pressure and temperature. Further, the temperature rise through the combustor and the corresponding exit temperature also increase. Future combustor technology needs for small gas turbine engines is described. New fuel injectors with large turndown ratios which produce uniform circumferential and radial temperature patterns will be required. Uniform burning will be of greater importance because hot gas temperatures will approach turbine material limits. The higher combustion temperatures and increased radiation at high pressures will put a greater heat load on the combustor liners. At the same time, less cooling air will be available as more of the air will be used for combustion. Thus, improved cooling concepts and/or materials requiring little or no direct cooling will be required. Although presently there are no requirements for emissions levels from small gas turbine engines, regulation is expected in the near future. This will require the development of low emission combustors. In particular, nitrogen oxides will increase substantially if new technologies limiting their formation are not evolved and implemented. For example, staged combustion employing lean, premixed/prevaporized, lean direct injection, or rich burn-quick quench-lean burn concepts could replace conventional single stage combustors.

  10. 40 CFR 86.1102-87 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for Gasoline-Fueled and Diesel Heavy-Duty Engines and Heavy-Duty Vehicles, Including Light-Duty Trucks... means the deteriorated pollutant emissions level at the 60th percentile point for a population of heavy-duty engines or heavy-duty vehicles subject to Production Compliance Audit testing pursuant to the...

  11. 40 CFR 80.140 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-refinery component. Automated detergent blending facility means any facility (including, but not limited to... through the fuel injector(s). Gasoline means any fuel for use in motor vehicles and motor vehicle engines, including both highway and off-highway vehicles and engines, and commonly or commercially known or sold as...

  12. Exergetic life cycle assessment of hydrogen production from renewables

    NASA Astrophysics Data System (ADS)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.

    Life cycle assessment is extended to exergetic life cycle assessment and used to evaluate the exergy efficiency, economic effectiveness and environmental impact of producing hydrogen using wind and solar energy in place of fossil fuels. The product hydrogen is considered a fuel for fuel cell vehicles and a substitute for gasoline. Fossil fuel technologies for producing hydrogen from natural gas and gasoline from crude oil are contrasted with options using renewable energy. Exergy efficiencies and greenhouse gas and air pollution emissions are evaluated for all process steps, including crude oil and natural gas pipeline transportation, crude oil distillation and natural gas reforming, wind and solar electricity generation, hydrogen production through water electrolysis, and gasoline and hydrogen distribution and utilization. The use of wind power to produce hydrogen via electrolysis, and its application in a fuel cell vehicle, exhibits the lowest fossil and mineral resource consumption rate. However, the economic attractiveness, as measured by a "capital investment effectiveness factor," of renewable technologies depends significantly on the ratio of costs for hydrogen and natural gas. At the present cost ratio of about 2 (per unit of lower heating value or exergy), capital investments are about five times lower to produce hydrogen via natural gas rather than wind energy. As a consequence, the cost of wind- and solar-based electricity and hydrogen is substantially higher than that of natural gas. The implementation of a hydrogen fuel cell instead of an internal combustion engine permits, theoretically, an increase in a vehicle's engine efficiency of about of two times. Depending on the ratio in engine efficiencies, the substitution of gasoline with "renewable" hydrogen leads to (a) greenhouse gas (GHG) emissions reductions of 12-23 times for hydrogen from wind and 5-8 times for hydrogen from solar energy, and (b) air pollution (AP) emissions reductions of 38-76 times for hydrogen from wind and 16-32 times for hydrogen from solar energy. By comparison, substitution of gasoline with hydrogen from natural gas allows reductions in GHG emissions only as a result of the increased efficiency of a fuel cell engine, and a reduction of AP emissions of 2.5-5 times. These data suggest that "renewable" hydrogen represents a potential long-term solution to many environmental problems.

  13. Job Prospects for Chemical Engineers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1985-01-01

    After several lean years, chemical engineering (a popular discipline among women) is witnessing a higher job demand for new graduates. Companies show a trend toward specialty chemicals with resultant needs for more engineering talent. Other opportunities in the field include agriculture and food processing, environmental control, biotechnology,…

  14. Comparison of Airway Responses Induced in a Mouse Model by the Gas and Particulate Fractions of Gasoline Direct Injection Engine Exhaust.

    PubMed

    Maikawa, Caitlin L; Zimmerman, Naomi; Ramos, Manuel; Shah, Mittal; Wallace, James S; Pollitt, Krystal J Godri

    2018-03-01

    Diesel exhaust has been associated with asthma, but its response to other engine emissions is not clear. The increasing prevalence of vehicles with gasoline direct injection (GDI) engines motivated this study, and the objective was to evaluate pulmonary responses induced by acute exposure to GDI engine exhaust in an allergic asthma murine model. Mice were sensitized with an allergen to induce airway hyperresponsiveness or treated with saline (non-allergic group). Animals were challenged for 2-h to exhaust from a laboratory GDI engine operated at conditions equivalent to a highway cruise. Exhaust was filtered to assess responses induced by the particulate and gas fractions. Short-term exposure to particulate matter from GDI engine exhaust induced upregulation of genes related to polycyclic aromatic hydrocarbon (PAH) metabolism ( Cyp1b1 ) and inflammation ( TNFα ) in the lungs of non-allergic mice. High molecular weight PAHs dominated the particulate fraction of the exhaust, and this response was therefore likely attributable to the presence of these PAHs. The particle fraction of GDI engine exhaust further contributed to enhanced methacholine responsiveness in the central and peripheral tissues in animals with airway hyperresponsiveness. As GDI engines gain prevalence in the vehicle fleet, understanding the health impacts of their emissions becomes increasingly important.

  15. Comparison of Airway Responses Induced in a Mouse Model by the Gas and Particulate Fractions of Gasoline Direct Injection Engine Exhaust

    PubMed Central

    Maikawa, Caitlin L.; Zimmerman, Naomi; Ramos, Manuel; Wallace, James S.; Pollitt, Krystal J. Godri

    2018-01-01

    Diesel exhaust has been associated with asthma, but its response to other engine emissions is not clear. The increasing prevalence of vehicles with gasoline direct injection (GDI) engines motivated this study, and the objective was to evaluate pulmonary responses induced by acute exposure to GDI engine exhaust in an allergic asthma murine model. Mice were sensitized with an allergen to induce airway hyperresponsiveness or treated with saline (non-allergic group). Animals were challenged for 2-h to exhaust from a laboratory GDI engine operated at conditions equivalent to a highway cruise. Exhaust was filtered to assess responses induced by the particulate and gas fractions. Short-term exposure to particulate matter from GDI engine exhaust induced upregulation of genes related to polycyclic aromatic hydrocarbon (PAH) metabolism (Cyp1b1) and inflammation (TNFα) in the lungs of non-allergic mice. High molecular weight PAHs dominated the particulate fraction of the exhaust, and this response was therefore likely attributable to the presence of these PAHs. The particle fraction of GDI engine exhaust further contributed to enhanced methacholine responsiveness in the central and peripheral tissues in animals with airway hyperresponsiveness. As GDI engines gain prevalence in the vehicle fleet, understanding the health impacts of their emissions becomes increasingly important. PMID:29494515

  16. Innovative Adaptive Control Method Demonstrated for Active Suppression of Instabilities in Engine Combustors

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2005-01-01

    This year, an improved adaptive-feedback control method was demonstrated that suppresses thermoacoustic instabilities in a liquid-fueled combustor of a type used in aircraft engines. Extensive research has been done to develop lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle to reduce the environmental impact of aerospace propulsion systems. However, these lean-burning combustors are susceptible to thermoacoustic instabilities (high-frequency pressure waves), which can fatigue combustor components and even downstream turbine blades. This can significantly decrease the safe operating life of the combustor and turbine. Thus, suppressing the thermoacoustic combustor instabilities is an enabling technology for meeting the low-emission goals of the NASA Ultra-Efficient Engine Technology (UEET) Project.

  17. Effects of fresh lubricant oils on particle emissions emitted by a modern gasoline direct injection passenger car.

    PubMed

    Pirjola, Liisa; Karjalainen, Panu; Heikkilä, Juha; Saari, Sampo; Tzamkiozis, Theodoros; Ntziachristos, Leonidas; Kulmala, Kari; Keskinen, Jorma; Rönkkö, Topi

    2015-03-17

    Particle emissions from a modern turbocharged gasoline direct injection passenger car equipped with a three-way catalyst and an exhaust gas recirculation system were studied while the vehicle was running on low-sulfur gasoline and, consecutively, with five different lubrication oils. Exhaust particle number concentration, size distribution, and volatility were determined both at laboratory and on-road conditions. The results indicated that the choice of lubricant affected particle emissions both during the cold start and warm driving cycles. However, the contribution of engine oil depended on driving conditions being higher during acceleration and steady state driving than during deceleration. The highest emission factors were found with two oils that had the highest metal content. The results indicate that a 10% decrease in the Zn content of engine oils is linked with an 11-13% decrease to the nonvolatile particle number emissions in steady driving conditions and a 5% decrease over the New European Driving Cycle. The effect of lubricant on volatile particles was even higher, on the order of 20%.

  18. Pilot-scale studies of soil vapor extraction and bioventing for remediation of a gasoline spill at Cameron Station, Alexandria, Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, W.; Joss, C.J.; Martino, L.E.

    Approximately 10,000 gal of spilled gasoline and unknown amounts Of trichloroethylene and benzene were discovered at the US Army`s Cameron Station facility. Because the base is to be closed and turned over to the city of Alexandria in 1995, the Army sought the most rapid and cost-effective means of spill remediation. At the request of the Baltimore District of the US Army Corps of Engineers, Argonne conducted a pilot-scale study to determine the feasibility of vapor extraction and bioventing for resolving remediation problems and to critique a private firm`s vapor-extraction design. Argonne staff, working with academic and private-sector participants, designedmore » and implemented a new systems approach to sampling, analysis and risk assessment. The US Geological Survey`s AIRFLOW model was adapted for the study to simulate the performance of possible remediation designs. A commercial vapor-extraction machine was used to remove nearly 500 gal of gasoline from Argonne-installed horizontal wells. By incorporating numerous design comments from the Argonne project team, field personnel improved the system`s performance. Argonne staff also determined that bioventing stimulated indigenous bacteria to bioremediate the gasoline spin. The Corps of Engineers will use Argonne`s pilot-study approach to evaluate remediation systems at field operation sites in several states.« less

  19. Updating the U.S. Life Cycle GHG Petroleum Baseline to 2014 with Projections to 2040 Using Open-Source Engineering-Based Models.

    PubMed

    Cooney, Gregory; Jamieson, Matthew; Marriott, Joe; Bergerson, Joule; Brandt, Adam; Skone, Timothy J

    2017-01-17

    The National Energy Technology Laboratory produced a well-to-wheels (WTW) life cycle greenhouse gas analysis of petroleum-based fuels consumed in the U.S. in 2005, known as the NETL 2005 Petroleum Baseline. This study uses a set of engineering-based, open-source models combined with publicly available data to calculate baseline results for 2014. An increase between the 2005 baseline and the 2014 results presented here (e.g., 92.4 vs 96.2 g CO 2 e/MJ gasoline, + 4.1%) are due to changes both in modeling platform and in the U.S. petroleum sector. An updated result for 2005 was calculated to minimize the effect of the change in modeling platform, and emissions for gasoline in 2014 were about 2% lower than in 2005 (98.1 vs 96.2 g CO 2 e/MJ gasoline). The same methods were utilized to forecast emissions from fuels out to 2040, indicating maximum changes from the 2014 gasoline result between +2.1% and -1.4%. The changing baseline values lead to potential compliance challenges with frameworks such as the Energy Independence and Security Act (EISA) Section 526, which states that Federal agencies should not purchase alternative fuels unless their life cycle GHG emissions are less than those of conventionally produced, petroleum-derived fuels.

  20. Five-cylinder engine as an economical, smooth-running power plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hauk, F.; Dommes, W.

    For the first time in the history of automobile engineering, AUDI NSU has introduced a 5-cylinder in-line gasoline engine for production cars designed to run at speeds up to about 7,000 rpm. This unusual new design makes it possible to set new standards of performance and smoothness, while still retaining the advantages of front wheel drive.

  1. 40 CFR 86.008-10 - Emission standards for 2008 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-methane Hydrocarbons (NMHC) for engines fueled with either gasoline, natural gas, or liquefied petroleum gas. 0.14 grams per brake horsepower-hour (0.052grams per megajoule). (B) Non-methane Hydrocarbon... production of heavy-duty Otto-cycle motor vehicle engines for model year 2008, except as explicitly allowed...

  2. 40 CFR 86.008-10 - Emission standards for 2008 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-methane Hydrocarbons (NMHC) for engines fueled with either gasoline, natural gas, or liquefied petroleum gas. 0.14 grams per brake horsepower-hour (0.052grams per megajoule). (B) Non-methane Hydrocarbon... production of heavy-duty Otto-cycle motor vehicle engines for model year 2008, except as explicitly allowed...

  3. 40 CFR 86.008-10 - Emission standards for 2008 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-methane Hydrocarbons (NMHC) for engines fueled with either gasoline, natural gas, or liquefied petroleum gas. 0.14 grams per brake horsepower-hour (0.052grams per megajoule). (B) Non-methane Hydrocarbon... production of heavy-duty Otto-cycle motor vehicle engines for model year 2008, except as explicitly allowed...

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conway, R.

    This article describes a petrol (gasoline) engine development project to combine the duel technologies of an Otto cycle engine with a modified cooling system and a high-tech processor-controlled bottoming cycle to harness not only the waste heat from the exhaust gases but also a significant proportion of the heat lost by a conventional petrol engine to the water coolant, resulting in a very substantial increase in energy conversion efficiency.

  5. Modelling the average velocity of propagation of the flame front in a gasoline engine with hydrogen additives

    NASA Astrophysics Data System (ADS)

    Smolenskaya, N. M.; Smolenskii, V. V.

    2018-01-01

    The paper presents models for calculating the average velocity of propagation of the flame front, obtained from the results of experimental studies. Experimental studies were carried out on a single-cylinder gasoline engine UIT-85 with hydrogen additives up to 6% of the mass of fuel. The article shows the influence of hydrogen addition on the average velocity propagation of the flame front in the main combustion phase. The dependences of the turbulent propagation velocity of the flame front in the second combustion phase on the composition of the mixture and operating modes. The article shows the influence of the normal combustion rate on the average flame propagation velocity in the third combustion phase.

  6. Designing a combined casting mold for manufacture of a gasoline centrifugal pump body using CAD/CAM-systems

    NASA Astrophysics Data System (ADS)

    Galin, N. E.; Ogol, I. I.; Chervach, Yu B.; Dammer, V. Kh; Ru, Jia Hong

    2017-02-01

    The present paper examines designing of a combined casting mold for manufacture of a gasoline centrifugal pump body. The paper offers technological solutions for obtaining high quality castings at the testing stage of the finished mold. The paper is intended for practical use and prepared by order of JSC ‘Tomsk Electrical Engineering Plant’ using software and equipment of the department ‘Technologies of Computer-Aided Machinery Manufacturing’ of the Tomsk Polytechnic University (TPU) under the economic contract within state import substitution program. In preparing the paper, CAD/CAM-systems KOMPAS-3D and PowerMILL were used. In 2015, the designed casting mold was introduced into the production process at JSC ‘Tomsk Electrical Engineering Plant’.

  7. Prechamber equipped laser ignition for improved performance in natural gas engines

    DOE PAGES

    Almansour, Bader; Vasu, Subith; Gupta, Sreenath B.; ...

    2017-04-25

    Lean-burn operation of stationary natural gas engines offers lower NO x emissions and improved efficiency. A proven pathway to extend lean-burn operation has been to use laser ignition instead of standard spark ignition. However, under lean conditions, flame speed reduces thereby offsetting any efficiency gains resulting from the higher ratio of specific heats, γ. The reduced flame speeds, in turn, can be compensated with the use of a prechamber to result in volumetric ignition, and thereby lead to faster combustion. In this study, the optimal geometry of PCLI was identified through several tests in a single-cylinder engine as a compromisemore » between autoignition, NO x and soot formation within the prechamber. Subsequently, tests were conducted in a single-cylinder natural gas engine comparing the performance of three ignition systems: standard electrical spark ignition (SI), single-point laser ignition (LI), and prechamber equipped laser ignition (PCLI). Out of the three, the performance of PCLI was far superior compared to the other two. Efficiency gain of 2.1% points could be achieved while complying with EPA regulation (BSNO x < 1.34 kW-hr) and the industry standard for ignition stability (COV_IMEP < 5%). Finally, test results and data analysis are presented identifying the combustion mechanisms leading to the improved performance.« less

  8. 40 CFR 1054.205 - What must I include in my application?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emission family's specifications and other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, all-season gasoline... emission control systems operate. Describe the evaporative emission controls and show how your design will...

  9. 40 CFR 1054.205 - What must I include in my application?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... emission family's specifications and other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, all-season gasoline... emission control systems operate. Describe the evaporative emission controls and show how your design will...

  10. 40 CFR 1054.205 - What must I include in my application?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... emission family's specifications and other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, all-season gasoline... emission control systems operate. Describe the evaporative emission controls and show how your design will...

  11. 40 CFR 1054.205 - What must I include in my application?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... emission family's specifications and other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, all-season gasoline... emission control systems operate. Describe the evaporative emission controls and show how your design will...

  12. 40 CFR 1054.205 - What must I include in my application?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... emission family's specifications and other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, all-season gasoline... emission control systems operate. Describe the evaporative emission controls and show how your design will...

  13. 10 Tips to Protect Yourself from Unhealthy Air

    MedlinePlus

    ... parts of the country. Use hand-powered or electric lawn care equipment rather than gasoline-powered. Old two-stroke engines like lawnmowers and leaf or snow blowers often have no pollution control devices. They can pollute the air even more than cars, though engines sold since 2011 are cleaner. Don' ...

  14. 40 CFR 86.315-79 - General analyzer specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86... range used. The analyzer span is defined as the difference between the span-response and the zero...

  15. 40 CFR 86.327-79 - Quench checks; NOX analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.327-79..., recalibrate and repeat the quench check. (4) Prior to testing, the difference between the calculated NOX...

  16. 40 CFR 86.315-79 - General analyzer specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86... range used. The analyzer span is defined as the difference between the span-response and the zero...

  17. 40 CFR 86.315-79 - General analyzer specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86... range used. The analyzer span is defined as the difference between the span-response and the zero...

  18. 40 CFR 86.331-79 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86... difference between the span-gas response and the zero-gas response. Incrementally adjust the fuel flow above...

  19. 40 CFR 86.315-79 - General analyzer specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86... range used. The analyzer span is defined as the difference between the span-response and the zero...

  20. 40 CFR 86.331-79 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86... difference between the span-gas response and the zero-gas response. Incrementally adjust the fuel flow above...

Top