ERIC Educational Resources Information Center
Liang, Jyh-Chong; Su, Yi-Ching; Tsai, Chin-Chung
2015-01-01
The aim of this study was to explore Taiwanese college students' conceptions of and approaches to learning computer science and then explore the relationships between the two. Two surveys, Conceptions of Learning Computer Science (COLCS) and Approaches to Learning Computer Science (ALCS), were administered to 421 college students majoring in…
ERIC Educational Resources Information Center
Payton, Jamie; Barnes, Tiffany; Buch, Kim; Rorrer, Audrey; Zuo, Huifang
2015-01-01
This study is a follow-up to one published in computer science education in 2010 that reported preliminary results showing a positive impact of service learning on student attitudes associated with success and retention in computer science. That paper described how service learning was incorporated into a computer science course in the context of…
NASA Astrophysics Data System (ADS)
Payton, Jamie; Barnes, Tiffany; Buch, Kim; Rorrer, Audrey; Zuo, Huifang
2015-07-01
This study is a follow-up to one published in computer science education in 2010 that reported preliminary results showing a positive impact of service learning on student attitudes associated with success and retention in computer science. That paper described how service learning was incorporated into a computer science course in the context of the Students & Technology in Academia, Research, and Service (STARS) Alliance, an NSF-supported broadening participation in computing initiative that aims to diversify the computer science pipeline through innovative pedagogy and inter-institutional partnerships. The current paper describes how the STARS Alliance has expanded to diverse institutions, all using service learning as a vehicle for broadening participation in computing and enhancing attitudes and behaviors associated with student success. Results supported the STARS model of service learning for enhancing computing efficacy and computing commitment and for providing diverse students with many personal and professional development benefits.
Learning Oceanography from a Computer Simulation Compared with Direct Experience at Sea
ERIC Educational Resources Information Center
Winn, William; Stahr, Frederick; Sarason, Christian; Fruland, Ruth; Oppenheimer, Peter; Lee, Yen-Ling
2006-01-01
Considerable research has compared how students learn science from computer simulations with how they learn from "traditional" classes. Little research has compared how students learn science from computer simulations with how they learn from direct experience in the real environment on which the simulations are based. This study compared two…
ERIC Educational Resources Information Center
Jaime, Arturo; Blanco, José Miguel; Domínguez, César; Sánchez, Ana; Heras, Jónathan; Usandizaga, Imanol
2016-01-01
Different learning methods such as project-based learning, spiral learning and peer assessment have been implemented in science disciplines with different outcomes. This paper presents a proposal for a project management course in the context of a computer science degree. Our proposal combines three well-known methods: project-based learning,…
ERIC Educational Resources Information Center
Smetana, Lara Kathleen; Bell, Randy L.
2012-01-01
Researchers have explored the effectiveness of computer simulations for supporting science teaching and learning during the past four decades. The purpose of this paper is to provide a comprehensive, critical review of the literature on the impact of computer simulations on science teaching and learning, with the goal of summarizing what is…
ERIC Educational Resources Information Center
Rowland, Paul McD.
The effect of mode of computer-assisted instruction (CAI) and individual learning differences on the learning of science concepts was investigated. University elementary education majors learned about home energy use from either a computer simulation or a computer tutorial. Learning of science concepts was measured using achievement and…
Situated Learning in Computer Science Education
ERIC Educational Resources Information Center
Ben-Ari, Mordechai
2004-01-01
Sociocultural theories of learning such as Wenger and Lave's situated learning have been suggested as alternatives to cognitive theories of learning like constructivism. This article examines situated learning within the context of computer science (CS) education. Situated learning accurately describes some CS communities like open-source software…
Computers as learning resources in the health sciences: impact and issues.
Ellis, L B; Hannigan, G G
1986-01-01
Starting with two computer terminals in 1972, the Health Sciences Learning Resources Center of the University of Minnesota Bio-Medical Library expanded its instructional facilities to ten terminals and thirty-five microcomputers by 1985. Computer use accounted for 28% of total center circulation. The impact of these resources on health sciences curricula is described and issues related to use, support, and planning are raised and discussed. Judged by their acceptance and educational value, computers are successful health sciences learning resources at the University of Minnesota. PMID:3518843
The Learning Effects of Computer Simulations in Science Education
ERIC Educational Resources Information Center
Rutten, Nico; van Joolingen, Wouter R.; van der Veen, Jan T.
2012-01-01
This article reviews the (quasi)experimental research of the past decade on the learning effects of computer simulations in science education. The focus is on two questions: how use of computer simulations can enhance traditional education, and how computer simulations are best used in order to improve learning processes and outcomes. We report on…
NASA Astrophysics Data System (ADS)
Rothman, Alan H.
This study reports the results of research designed to examine the impact of computer-based science instruction on elementary school level students' science content achievement, their attitude about science learning, their level of critical thinking-inquiry skills, and their level of cognitive and English language development. The study compared these learning outcomes resulting from a computer-based approach compared to the learning outcomes from a traditional, textbook-based approach to science instruction. The computer-based approach was inherent in a curriculum titled The Voyage of the Mimi , published by The Bank Street College Project in Science and Mathematics (1984). The study sample included 209 fifth-grade students enrolled in three schools in a suburban school district. This sample was divided into three groups, each receiving one of the following instructional treatments: (a) Mixed-instruction primarily based on the use of a hardcopy textbook in conjunction with computer-based instructional materials as one component of the science course; (b) Non-Traditional, Technology-Based -instruction fully utilizing computer-based material; and (c) Traditional, Textbook-Based-instruction utilizing only the textbook as the basis for instruction. Pre-test, or pre-treatment, data related to each of the student learning outcomes was collected at the beginning of the school year and post-test data was collected at the end of the school year. Statistical analyses of pre-test data were used as a covariate to account for possible pre-existing differences with regard to the variables examined among the three student groups. This study concluded that non-traditional, computer-based instruction in science significantly improved students' attitudes toward science learning and their level of English language development. Non-significant, positive trends were found for the following student learning outcomes: overall science achievement and development of critical thinking-inquiry skills. These conclusions support the value of a non-traditional, computer-based approach to instruction, such as exemplified by The Voyage of the Mimi curriculum, and a recommendation for reform in science teaching that has recommended the use of computer technology to enhance learning outcomes from science instruction to assist in reversing the trend toward what has been perceived to be relatively poor science performance by American students, as documented by the 1996 Third International Mathematics and Science Study (TIMSS).
NASA Astrophysics Data System (ADS)
Ryoo, Jean; Goode, Joanna; Margolis, Jane
2015-10-01
This article describes the importance that high school computer science teachers place on a teachers' professional learning community designed around an inquiry- and equity-oriented approach for broadening participation in computing. Using grounded theory to analyze four years of teacher surveys and interviews from the Exploring Computer Science (ECS) program in the Los Angeles Unified School District, this article describes how participating in professional development activities purposefully aimed at fostering a teachers' professional learning community helps ECS teachers make the transition to an inquiry-based classroom culture and break professional isolation. This professional learning community also provides experiences that challenge prevalent deficit notions and stereotypes about which students can or cannot excel in computer science.
Concept Learning through Image Processing.
ERIC Educational Resources Information Center
Cifuentes, Lauren; Yi-Chuan, Jane Hsieh
This study explored computer-based image processing as a study strategy for middle school students' science concept learning. Specifically, the research examined the effects of computer graphics generation on science concept learning and the impact of using computer graphics to show interrelationships among concepts during study time. The 87…
The role of physicality in rich programming environments
NASA Astrophysics Data System (ADS)
Liu, Allison S.; Schunn, Christian D.; Flot, Jesse; Shoop, Robin
2013-12-01
Computer science proficiency continues to grow in importance, while the number of students entering computer science-related fields declines. Many rich programming environments have been created to motivate student interest and expertise in computer science. In the current study, we investigated whether a recently created environment, Robot Virtual Worlds (RVWs), can be used to teach computer science principles within a robotics context by examining its use in high-school classrooms. We also investigated whether the lack of physicality in these environments impacts student learning by comparing classrooms that used either virtual or physical robots for the RVW curriculum. Results suggest that the RVW environment leads to significant gains in computer science knowledge, that virtual robots lead to faster learning, and that physical robots may have some influence on algorithmic thinking. We discuss the implications of physicality in these programming environments for learning computer science.
ERIC Educational Resources Information Center
Papastergiou, Marina
2009-01-01
The aim of this study was to assess the learning effectiveness and motivational appeal of a computer game for learning computer memory concepts, which was designed according to the curricular objectives and the subject matter of the Greek high school Computer Science (CS) curriculum, as compared to a similar application, encompassing identical…
Applying service learning to computer science: attracting and engaging under-represented students
NASA Astrophysics Data System (ADS)
Dahlberg, Teresa; Barnes, Tiffany; Buch, Kim; Bean, Karen
2010-09-01
This article describes a computer science course that uses service learning as a vehicle to accomplish a range of pedagogical and BPC (broadening participation in computing) goals: (1) to attract a diverse group of students and engage them in outreach to younger students to help build a diverse computer science pipeline, (2) to develop leadership and team skills using experiential techniques, and (3) to develop student attitudes associated with success and retention in computer science. First, we describe the course and how it was designed to incorporate good practice in service learning. We then report preliminary results showing a positive impact of the course on all pedagogical goals and discuss the implications of the results for broadening participation in computing.
Design, Development, and Evaluation of a Mobile Learning Application for Computing Education
ERIC Educational Resources Information Center
Oyelere, Solomon Sunday; Suhonen, Jarkko; Wajiga, Greg M.; Sutinen, Erkki
2018-01-01
The study focused on the application of the design science research approach in the course of developing a mobile learning application, MobileEdu, for computing education in the Nigerian higher education context. MobileEdu facilitates the learning of computer science courses on mobile devices. The application supports ubiquitous, collaborative,…
Knowledge Construction in Computer Science and Engineering When Learning through Making
ERIC Educational Resources Information Center
Charlton, Patricia; Avramides, Katerina
2016-01-01
This paper focuses on a design based research study about STEM (Science, Technology, Engineering and Maths) learning by making through collaboration and production. This study examines learning by making by students to explore STEM using a constructionist approach with a particular focus on computer science and engineering. The use of IoT as a…
Machine learning: Trends, perspectives, and prospects.
Jordan, M I; Mitchell, T M
2015-07-17
Machine learning addresses the question of how to build computers that improve automatically through experience. It is one of today's most rapidly growing technical fields, lying at the intersection of computer science and statistics, and at the core of artificial intelligence and data science. Recent progress in machine learning has been driven both by the development of new learning algorithms and theory and by the ongoing explosion in the availability of online data and low-cost computation. The adoption of data-intensive machine-learning methods can be found throughout science, technology and commerce, leading to more evidence-based decision-making across many walks of life, including health care, manufacturing, education, financial modeling, policing, and marketing. Copyright © 2015, American Association for the Advancement of Science.
ERIC Educational Resources Information Center
Santoso, Harry B.; Batuparan, Alivia Khaira; Isal, R. Yugo K.; Goodridge, Wade H.
2018-01-01
Student Centered e-Learning Environment (SCELE) is a Moodle-based learning management system (LMS) that has been modified to enhance learning within a computer science department curriculum offered by the Faculty of Computer Science of large public university in Indonesia. This Moodle provided a mechanism to record students' activities when…
Promoting Technology-Assisted Active Learning in Computer Science Education
ERIC Educational Resources Information Center
Gao, Jinzhu; Hargis, Jace
2010-01-01
This paper describes specific active learning strategies for teaching computer science, integrating both instructional technologies and non-technology-based strategies shown to be effective in the literature. The theoretical learning components addressed include an intentional method to help students build metacognitive abilities, as well as…
NASA Astrophysics Data System (ADS)
Falkner, Katrina; Vivian, Rebecca
2015-10-01
To support teachers to implement Computer Science curricula into classrooms from the very first year of school, teachers, schools and organisations seek quality curriculum resources to support implementation and teacher professional development. Until now, many Computer Science resources and outreach initiatives have targeted K-12 school-age children, with the intention to engage children and increase interest, rather than to formally teach concepts and skills. What is the educational quality of existing Computer Science resources and to what extent are they suitable for classroom learning and teaching? In this paper, an assessment framework is presented to evaluate the quality of online Computer Science resources. Further, a semi-systematic review of available online Computer Science resources was conducted to evaluate resources available for classroom learning and teaching and to identify gaps in resource availability, using the Australian curriculum as a case study analysis. The findings reveal a predominance of quality resources, however, a number of critical gaps were identified. This paper provides recommendations and guidance for the development of new and supplementary resources and future research.
ERIC Educational Resources Information Center
Bennedsen, Jens; Caspersen, Michael E.
2008-01-01
In order to better understand predictors of success and, when possible, improve the design of the first year computer science courses at university to increase the likelihood of success, we study a number of factors that may potentially indicate students' computer science aptitude. Based on findings in general education, we have studied the…
Teaching Computer Science Courses in Distance Learning
ERIC Educational Resources Information Center
Huan, Xiaoli; Shehane, Ronald; Ali, Adel
2011-01-01
As the success of distance learning (DL) has driven universities to increase the courses offered online, certain challenges arise when teaching computer science (CS) courses to students who are not physically co-located and have individual learning schedules. Teaching CS courses involves high level demonstrations and interactivity between the…
Intelligent Computer-Assisted Language Learning.
ERIC Educational Resources Information Center
Harrington, Michael
1996-01-01
Introduces the field of intelligent computer assisted language learning (ICALL) and relates them to current practice in computer assisted language learning (CALL) and second language learning. Points out that ICALL applies expertise from artificial intelligence and the computer and cognitive sciences to the development of language learning…
ERIC Educational Resources Information Center
Ryoo, Jean; Goode, Joanna; Margolis, Jane
2015-01-01
This article describes the importance that high school computer science teachers place on a teachers' professional learning community designed around an inquiry- and equity-oriented approach for broadening participation in computing. Using grounded theory to analyze four years of teacher surveys and interviews from the Exploring Computer Science…
Eyetracking Methodology in SCMC: A Tool for Empowering Learning and Teaching
ERIC Educational Resources Information Center
Stickler, Ursula; Shi, Lijing
2017-01-01
Computer-assisted language learning, or CALL, is an interdisciplinary area of research, positioned between science and social science, computing and education, linguistics and applied linguistics. This paper argues that by appropriating methods originating in some areas of CALL-related research, for example human-computer interaction (HCI) or…
Topics in Computational Learning Theory and Graph Algorithms.
ERIC Educational Resources Information Center
Board, Raymond Acton
This thesis addresses problems from two areas of theoretical computer science. The first area is that of computational learning theory, which is the study of the phenomenon of concept learning using formal mathematical models. The goal of computational learning theory is to investigate learning in a rigorous manner through the use of techniques…
ERIC Educational Resources Information Center
Rolka, Christine; Remshagen, Anja
2015-01-01
Contextualized learning is considered beneficial for student success. In this article, we assess the impact of context-based learning tools on student grade performance in an introductory computer science course. In particular, we investigate two central questions: (1) does the use context-based learning tools, robots and animations, affect…
ERIC Educational Resources Information Center
Margolis, Jane; Goode, Joanna; Bernier, David
2011-01-01
Broadening computer science learning to include more students is a crucial item on the United States' education agenda, these authors say. Although policymakers advocate more computer science expertise, computer science offerings in high schools are few--and actually shrinking. In addition, poorly resourced schools with a high percentage of…
ERIC Educational Resources Information Center
Donnelly, Dermot F.; Linn, Marcia C.; Ludvigsen, Sten
2014-01-01
The National Science Foundation-sponsored report "Fostering Learning in the Networked World" called for "a common, open platform to support communities of developers and learners in ways that enable both to take advantage of advances in the learning sciences." We review research on science inquiry learning environments (ILEs)…
Learning technologies and the cyber-science classroom
NASA Astrophysics Data System (ADS)
Houlihan, Gerard
Access to computer and communication technology has long been regarded `part-and-parcel' of a good education. No educator can afford to ignore the profound impact of learning technologies on the way we teach science, nor fail to acknowledge that information literacy and computing skills will be fundamental to the practice of science in the next millennium. Nevertheless, there is still confusion concerning what technologies educators should employ in teaching science. Furthermore, a lack of knowledge combined with the pressures to be `seen' utilizing technology has lead some schools to waste scarce resources in a `grab-bag' attitude towards computers and technology. Such popularized `wish lists' can only drive schools to accumulate expensive equipment for no real learning purpose. In the future educators will have to reconsider their curriculum and pedagogy with a focus on the learning environment before determining what appropriate computing resources to acquire. This will be fundamental to the capabilities of science classrooms to engage with cutting-edge issues in science. This session will demonstrate the power of a broad range of learning technologies to enhance science education. The aim is to explore classroom possibilities as well as to provide a basic introduction to technical aspects of various software and hardware applications, including robotics and dataloggers and simulation software.
Formal Operations and Learning Style Predict Success in Statistics and Computer Science Courses.
ERIC Educational Resources Information Center
Hudak, Mary A.; Anderson, David E.
1990-01-01
Studies 94 undergraduate students in introductory statistics and computer science courses. Applies Formal Operations Reasoning Test (FORT) and Kolb's Learning Style Inventory (LSI). Finds that substantial numbers of students have not achieved the formal operation level of cognitive maturity. Emphasizes need to examine students learning style and…
Supporting Students' Learning in the Domain of Computer Science
ERIC Educational Resources Information Center
Gasparinatou, Alexandra; Grigoriadou, Maria
2011-01-01
Previous studies have shown that students with low knowledge understand and learn better from more cohesive texts, whereas high-knowledge students have been shown to learn better from texts of lower cohesion. This study examines whether high-knowledge readers in computer science benefit from a text of low cohesion. Undergraduate students (n = 65)…
Choosing Learning Methods Suitable for Teaching and Learning in Computer Science
ERIC Educational Resources Information Center
Taylor, Estelle; Breed, Marnus; Hauman, Ilette; Homann, Armando
2013-01-01
Our aim is to determine which teaching methods students in Computer Science and Information Systems prefer. There are in total 5 different paradigms (behaviorism, cognitivism, constructivism, design-based and humanism) with 32 models between them. Each model is unique and states different learning methods. Recommendations are made on methods that…
Fiction as an Introduction to Computer Science Research
ERIC Educational Resources Information Center
Goldsmith, Judy; Mattei, Nicholas
2014-01-01
The undergraduate computer science curriculum is generally focused on skills and tools; most students are not exposed to much research in the field, and do not learn how to navigate the research literature. We describe how fiction reviews (and specifically science fiction) are used as a gateway to research reviews. Students learn a little about…
Computer Card Games in Computer Science Education: A 10-Year Review
ERIC Educational Resources Information Center
Kordaki, Maria; Gousiou, Anthi
2016-01-01
This paper presents a 10-year review study that focuses on the investigation of the use of computer card games (CCGs) as learning tools in Computer Science (CS) Education. Specific search terms keyed into 10 large scientific electronic databases identified 24 papers referring to the use of CCGs for the learning of CS matters during the last…
NASA Astrophysics Data System (ADS)
DiSalvo, Elizabeth Betsy
The implementation of a learning environment for young African American males, called the Glitch Game Testers, was launched in 2009. The development of this program was based on formative work that looked at the contrasting use of digital games between young African American males and individuals who chose to become computer science majors. Through analysis of cultural values and digital game play practices, the program was designed to intertwine authentic game development practices and computer science learning. The resulting program employed 25 African American male high school students to test pre-release digital games full-time in the summer and part-time in the school year, with an hour of each day dedicated to learning introductory computer science. Outcomes for persisting in computer science education are remarkable; of the 16 participants who had graduated from high school as of 2012, 12 have gone on to school in computing-related majors. These outcomes, and the participants' enthusiasm for engaging in computing, are in sharp contrast to the crisis in African American male education and learning motivation. The research presented in this dissertation discusses the formative research that shaped the design of Glitch, the evaluation of the implementation of Glitch, and a theoretical investigation of the way in which participants navigated conflicting motivations in learning environments.
ERIC Educational Resources Information Center
Alkaria, Ahmed; Alhassan, Riyadh
2017-01-01
This study was conducted to examine the effect of in-service training of computer science teachers in Scratch language using an electronic learning platform on acquiring programming skills and attitudes towards teaching programming. The sample of this study consisted of 40 middle school computer science teachers. They were assigned into two…
Teachers' Organization of Participation Structures for Teaching Science with Computer Technology
NASA Astrophysics Data System (ADS)
Subramaniam, Karthigeyan
2016-08-01
This paper describes a qualitative study that investigated the nature of the participation structures and how the participation structures were organized by four science teachers when they constructed and communicated science content in their classrooms with computer technology. Participation structures focus on the activity structures and processes in social settings like classrooms thereby providing glimpses into the complex dynamics of teacher-students interactions, configurations, and conventions during collective meaning making and knowledge creation. Data included observations, interviews, and focus group interviews. Analysis revealed that the dominant participation structure evident within participants' instruction with computer technology was ( Teacher) initiation-( Student and Teacher) response sequences-( Teacher) evaluate participation structure. Three key events characterized the how participants organized this participation structure in their classrooms: setting the stage for interactive instruction, the joint activity, and maintaining accountability. Implications include the following: (1) teacher educators need to tap into the knowledge base that underscores science teachers' learning to teach philosophies when computer technology is used in instruction. (2) Teacher educators need to emphasize the essential idea that learning and cognition is not situated within the computer technology but within the pedagogical practices, specifically the participation structures. (3) The pedagogical practices developed with the integration or with the use of computer technology underscored by the teachers' own knowledge of classroom contexts and curriculum needs to be the focus for how students learn science content with computer technology instead of just focusing on how computer technology solely supports students learning of science content.
ERIC Educational Resources Information Center
Ekmekci, Adem; Gulacar, Ozcan
2015-01-01
Science education reform emphasizes innovative and constructivist views of science teaching and learning that promotes active learning environments, dynamic instructions, and authentic science experiments. Technology-based and hands-on instructional designs are among innovative science teaching and learning methods. Research shows that these two…
A Delphi Study on Technology Enhanced Learning (TEL) Applied on Computer Science (CS) Skills
ERIC Educational Resources Information Center
Porta, Marcela; Mas-Machuca, Marta; Martinez-Costa, Carme; Maillet, Katherine
2012-01-01
Technology Enhanced Learning (TEL) is a new pedagogical domain aiming to study the usage of information and communication technologies to support teaching and learning. The following study investigated how this domain is used to increase technical skills in Computer Science (CS). A Delphi method was applied, using three-rounds of online survey…
The MORPG-Based Learning System for Multiple Courses: A Case Study on Computer Science Curriculum
ERIC Educational Resources Information Center
Liu, Kuo-Yu
2015-01-01
This study aimed at developing a Multiplayer Online Role Playing Game-based (MORPG) Learning system which enabled instructors to construct a game scenario and manage sharable and reusable learning content for multiple courses. It used the curriculum of "Introduction to Computer Science" as a study case to assess students' learning…
From Requirements to Code: Issues and Learning in IS Students' Systems Development Projects
ERIC Educational Resources Information Center
Scott, Elsje
2008-01-01
The Computing Curricula (2005) place Information Systems (IS) at the intersection of exact sciences (e.g. General Systems Theory), technology (e.g. Computer Science), and behavioral sciences (e.g. Sociology). This presents particular challenges for teaching and learning, as future IS professionals need to be equipped with a wide range of…
ERIC Educational Resources Information Center
Namdar, Bahadir
2017-01-01
The purpose of this study was to investigate preservice science teachers' collaborative knowledge building through socioscientific argumentation on healthy eating in a multiple representation-rich computer supported collaborative learning (CSCL) environment. This study was conducted with a group of preservice science teachers (n = 18) enrolled in…
ERIC Educational Resources Information Center
Jacobson, Michael J.; Taylor, Charlotte E.; Richards, Deborah
2016-01-01
In this paper, we propose computational scientific inquiry (CSI) as an innovative model for learning important scientific knowledge and new practices for "doing" science. This approach involves the use of a "game-like" virtual world for students to experience virtual biological fieldwork in conjunction with using an agent-based…
2017-12-21
rank , and computer vision. Machine learning is closely related to (and often overlaps with) computational statistics, which also focuses on...Machine learning is a field of computer science that gives computers the ability to learn without being explicitly programmed.[1] Arthur Samuel...an American pioneer in the field of computer gaming and artificial intelligence, coined the term "Machine Learning " in 1959 while at IBM[2]. Evolved
Large-scale Labeled Datasets to Fuel Earth Science Deep Learning Applications
NASA Astrophysics Data System (ADS)
Maskey, M.; Ramachandran, R.; Miller, J.
2017-12-01
Deep learning has revolutionized computer vision and natural language processing with various algorithms scaled using high-performance computing. However, generic large-scale labeled datasets such as the ImageNet are the fuel that drives the impressive accuracy of deep learning results. Large-scale labeled datasets already exist in domains such as medical science, but creating them in the Earth science domain is a challenge. While there are ways to apply deep learning using limited labeled datasets, there is a need in the Earth sciences for creating large-scale labeled datasets for benchmarking and scaling deep learning applications. At the NASA Marshall Space Flight Center, we are using deep learning for a variety of Earth science applications where we have encountered the need for large-scale labeled datasets. We will discuss our approaches for creating such datasets and why these datasets are just as valuable as deep learning algorithms. We will also describe successful usage of these large-scale labeled datasets with our deep learning based applications.
ERIC Educational Resources Information Center
Danish, Joshua Adam
2009-01-01
Representations such as drawings, graphs, and computer simulations, are central to learning and doing science. Furthermore, ongoing success in science learning requires students to build on the representations and associated practices that they are presumed to have learned throughout their schooling career. Without these practices, students have…
ERIC Educational Resources Information Center
Ismail, Mohd Nasir; Ngah, Nor Azilah; Umar, Irfan Naufal
2010-01-01
The purpose of the study is to investigate the effects of mind mapping with cooperative learning (MMCL) and cooperative learning (CL) on: (a) programming performance; (b) problem solving skill; and (c) metacognitive knowledge among computer science students in Malaysia. The moderating variable is the students' logical thinking level with two…
Marshall, Thomas; Champagne-Langabeer, Tiffiany; Castelli, Darla; Hoelscher, Deanna
2017-12-01
To present research models based on artificial intelligence and discuss the concept of cognitive computing and eScience as disruptive factors in health and life science research methodologies. The paper identifies big data as a catalyst to innovation and the development of artificial intelligence, presents a framework for computer-supported human problem solving and describes a transformation of research support models. This framework includes traditional computer support; federated cognition using machine learning and cognitive agents to augment human intelligence; and a semi-autonomous/autonomous cognitive model, based on deep machine learning, which supports eScience. The paper provides a forward view of the impact of artificial intelligence on our human-computer support and research methods in health and life science research. By augmenting or amplifying human task performance with artificial intelligence, cognitive computing and eScience research models are discussed as novel and innovative systems for developing more effective adaptive obesity intervention programs.
NASA Astrophysics Data System (ADS)
Smetana, Lara Kathleen; Bell, Randy L.
2012-06-01
Researchers have explored the effectiveness of computer simulations for supporting science teaching and learning during the past four decades. The purpose of this paper is to provide a comprehensive, critical review of the literature on the impact of computer simulations on science teaching and learning, with the goal of summarizing what is currently known and providing guidance for future research. We report on the outcomes of 61 empirical studies dealing with the efficacy of, and implications for, computer simulations in science instruction. The overall findings suggest that simulations can be as effective, and in many ways more effective, than traditional (i.e. lecture-based, textbook-based and/or physical hands-on) instructional practices in promoting science content knowledge, developing process skills, and facilitating conceptual change. As with any other educational tool, the effectiveness of computer simulations is dependent upon the ways in which they are used. Thus, we outline specific research-based guidelines for best practice. Computer simulations are most effective when they (a) are used as supplements; (b) incorporate high-quality support structures; (c) encourage student reflection; and (d) promote cognitive dissonance. Used appropriately, computer simulations involve students in inquiry-based, authentic science explorations. Additionally, as educational technologies continue to evolve, advantages such as flexibility, safety, and efficiency deserve attention.
ERIC Educational Resources Information Center
Adams, Stephen T.
2004-01-01
Although one role of computers in science education is to help students learn specific science concepts, computers are especially intriguing as a vehicle for fostering the development of epistemological knowledge about the nature of scientific knowledge--what it means to "know" in a scientific sense (diSessa, 1985). In this vein, the…
Mathematics and Computer Science: Exploring a Symbiotic Relationship
ERIC Educational Resources Information Center
Bravaco, Ralph; Simonson, Shai
2004-01-01
This paper describes a "learning community" designed for sophomore computer science majors who are simultaneously studying discrete mathematics. The learning community consists of three courses: Discrete Mathematics, Data Structures and an Integrative Seminar/Lab. The seminar functions as a link that integrates the two disciplines. Participation…
Creating Science Simulations through Computational Thinking Patterns
ERIC Educational Resources Information Center
Basawapatna, Ashok Ram
2012-01-01
Computational thinking aims to outline fundamental skills from computer science that everyone should learn. As currently defined, with help from the National Science Foundation (NSF), these skills include problem formulation, logically organizing data, automating solutions through algorithmic thinking, and representing data through abstraction.…
ERIC Educational Resources Information Center
Baptista Nunes, Miguel, Ed.; McPherson, Maggie, Ed.
2014-01-01
These proceedings contain the papers of the International Conference e-Learning 2014, which was organised by the International Association for Development of the Information Society and is part of the Multi Conference on Computer Science and Information Systems (Lisbon, Portugal July 15-19, 2014). The e-Learning 2014 conference aims to address the…
ERIC Educational Resources Information Center
Guloy, Sheryl; Salimi, Farimah; Cukierman, Diana; McGee Thompson, Donna
2017-01-01
Using a design-based orientation, this mixed-method study explored ways to support computing science and engineering students whose study strategies may be inadequate to meet coursework expectations. Learning support workshops, paired with university courses, have been found to assist students as they transition to university learning, thereby…
Student Sensemaking with Science Diagrams in a Computer-Based Setting
ERIC Educational Resources Information Center
Furberg, Anniken; Kluge, Anders; Ludvigsen, Sten
2013-01-01
This paper reports on a study of students' conceptual sensemaking with science diagrams within a computer-based learning environment aimed at supporting collaborative learning. Through the microanalysis of students' interactions in a project about energy and heat transfer, we demonstrate "how" representations become productive social and cognitive…
Designing Online Scaffolds for Interactive Computer Simulation
ERIC Educational Resources Information Center
Chen, Ching-Huei; Wu, I-Chia; Jen, Fen-Lan
2013-01-01
The purpose of this study was to examine the effectiveness of online scaffolds in computer simulation to facilitate students' science learning. We first introduced online scaffolds to assist and model students' science learning and to demonstrate how a system embedded with online scaffolds can be designed and implemented to help high school…
ERIC Educational Resources Information Center
Science Teacher, 1989
1989-01-01
Reviews seven software programs: (1) "Science Baseball: Biology" (testing a variety of topics); (2) "Wildways: Understanding Wildlife Conservation"; (3) "Earth Science Computer Test Bank"; (4) "Biology Computer Test Bank"; (5) "Computer Play & Learn Series" (a series of drill and test…
NASA Astrophysics Data System (ADS)
Kwon, So Young
Using a quasi-experimental design, the researcher investigated the comparative effects of individually-generated and collaboratively-generated computer-based concept mapping on middle school science concept learning. Qualitative data were analyzed to explain quantitative findings. One hundred sixty-one students (74 boys and 87 girls) in eight, seventh grade science classes at a middle school in Southeast Texas completed the entire study. Using prior science performance scores to assure equivalence of student achievement across groups, the researcher assigned the teacher's classes to one of the three experimental groups. The independent variable, group, consisted of three levels: 40 students in a control group, 59 students trained to individually generate concept maps on computers, and 62 students trained to collaboratively generate concept maps on computers. The dependent variables were science concept learning as demonstrated by comprehension test scores, and quality of concept maps created by students in experimental groups as demonstrated by rubric scores. Students in the experimental groups received concept mapping training and used their newly acquired concept mapping skills to individually or collaboratively construct computer-based concept maps during study time. The control group, the individually-generated concept mapping group, and the collaboratively-generated concept mapping group had equivalent learning experiences for 50 minutes during five days, excepting that students in a control group worked independently without concept mapping activities, students in the individual group worked individually to construct concept maps, and students in the collaborative group worked collaboratively to construct concept maps during their study time. Both collaboratively and individually generated computer-based concept mapping had a positive effect on seventh grade middle school science concept learning but neither strategy was more effective than the other. However, the students who collaboratively generated concept maps created significantly higher quality concept maps than those who individually generated concept maps. The researcher concluded that the concept mapping software, Inspiration(TM), fostered construction of students' concept maps individually or collaboratively for science learning and helped students capture their evolving creative ideas and organize them for meaningful learning. Students in both the individual and the collaborative concept mapping groups had positive attitudes toward concept mapping using Inspiration(TM) software.
Laptop Use, Interactive Science Software, and Science Learning among At-Risk Students
ERIC Educational Resources Information Center
Zheng, Binbin; Warschauer, Mark; Hwang, Jin Kyoung; Collins, Penelope
2014-01-01
This year-long, quasi-experimental study investigated the impact of the use of netbook computers and interactive science software on fifth-grade students' science learning processes, academic achievement, and interest in further science, technology, engineering, and mathematics (STEM) study within a linguistically diverse school district in…
A Case Study of the Introduction of Computer Science in NZ Schools
ERIC Educational Resources Information Center
Bell, Tim; Andreae, Peter; Robins, Anthony
2014-01-01
For many years computing in New Zealand schools was focused on teaching students how to use computers, and there was little opportunity for students to learn about programming and computer science as formal subjects. In this article we review a series of initiatives that occurred from 2007 to 2009 that led to programming and computer science being…
NASA Astrophysics Data System (ADS)
Koch, Melissa; Gorges, Torie
2016-10-01
Underrepresented populations such as women, African-Americans, and Latinos/as often come to STEM (science, technology, engineering, and mathematics) careers by less traditional paths than White and Asian males. To better understand how and why women might shift toward STEM, particularly computer science, careers, we investigated the education and career direction of afterschool facilitators, primarily women of color in their twenties and thirties, who taught Build IT, an afterschool computer science curriculum for middle school girls. Many of these women indicated that implementing Build IT had influenced their own interest in technology and computer science and in some cases had resulted in their intent to pursue technology and computer science education. We wanted to explore the role that teaching Build IT may have played in activating or reactivating interest in careers in computer science and to see whether in the years following implementation of Build IT, these women pursued STEM education and/or careers. We reached nine facilitators who implemented the program in 2011-12 or shortly after. Many indicated that while facilitating Build IT, they learned along with the participants, increasing their interest in and confidence with technology and computer science. Seven of the nine participants pursued further STEM or computer science learning or modified their career paths to include more of a STEM or computer science focus. Through interviews, we explored what aspects of Build IT influenced these facilitators' interest and confidence in STEM and when relevant their pursuit of technology and computer science education and careers.
Design Principles for "Thriving in Our Digital World": A High School Computer Science Course
ERIC Educational Resources Information Center
Veletsianos, George; Beth, Bradley; Lin, Calvin; Russell, Gregory
2016-01-01
"Thriving in Our Digital World" is a technology-enhanced dual enrollment course introducing high school students to computer science through project- and problem-based learning. This article describes the evolution of the course and five lessons learned during the design, development, implementation, and iteration of the course from its…
How Learning Logic Programming Affects Recursion Comprehension
ERIC Educational Resources Information Center
Haberman, Bruria
2004-01-01
Recursion is a central concept in computer science, yet it is difficult for beginners to comprehend. Israeli high-school students learn recursion in the framework of a special modular program in computer science (Gal-Ezer & Harel, 1999). Some of them are introduced to the concept of recursion in two different paradigms: the procedural…
ERIC Educational Resources Information Center
Georgantaki, Stavroula C.; Retalis, Symeon D.
2007-01-01
"Object-Oriented Programming" subject is included in the ACM Curriculum Guidelines for Undergraduate and Graduate Degree Programs in Computer Science as well as in Curriculum for K-12 Computer Science. In a few research studies learning problems and difficulties have been recorded, and therefore, specific pedagogical guidelines and…
The Mathematics and Computer Science Learning Center (MLC).
ERIC Educational Resources Information Center
Abraham, Solomon T.
The Mathematics and Computer Science Learning Center (MLC) was established in the Department of Mathematics at North Carolina Central University during the fall semester of the 1982-83 academic year. The initial operations of the MLC were supported by grants to the University from the Burroughs-Wellcome Company and the Kenan Charitable Trust Fund.…
Learning Computer Science Concepts with Scratch
ERIC Educational Resources Information Center
Meerbaum-Salant, Orni; Armoni, Michal; Ben-Ari, Mordechai
2013-01-01
Scratch is a visual programming environment that is widely used by young people. We investigated if Scratch can be used to teach concepts of computer science (CS). We developed learning materials for middle-school students that were designed according to the constructionist philosophy of Scratch and evaluated them in a few schools during two…
ERIC Educational Resources Information Center
Khan, Amna; Ahmad, Farzana Hayat; Malik, Muhammad Muddassir
2017-01-01
This study aimed to identify the impact of a game based learning (GBL) application using computer technologies on student engagement in secondary school science classrooms. The literature reveals that conventional Science teaching techniques (teacher-centered lecture and teaching), which foster rote learning among students, are one of the major…
Teaching and Learning Methodologies Supported by ICT Applied in Computer Science
ERIC Educational Resources Information Center
Capacho, Jose
2016-01-01
The main objective of this paper is to show a set of new methodologies applied in the teaching of Computer Science using ICT. The methodologies are framed in the conceptual basis of the following sciences: Psychology, Education and Computer Science. The theoretical framework of the research is supported by Behavioral Theory, Gestalt Theory.…
ERIC Educational Resources Information Center
Falkner, Katrina; Vivian, Rebecca
2015-01-01
To support teachers to implement Computer Science curricula into classrooms from the very first year of school, teachers, schools and organisations seek quality curriculum resources to support implementation and teacher professional development. Until now, many Computer Science resources and outreach initiatives have targeted K-12 school-age…
ERIC Educational Resources Information Center
Schwarz, Christina V.; Meyer, Jason; Sharma, Ajay
2007-01-01
This study infused computer modeling and simulation tools in a 1-semester undergraduate elementary science methods course to advance preservice teachers' understandings of computer software use in science teaching and to help them learn important aspects of pedagogy and epistemology. Preservice teachers used computer modeling and simulation tools…
Enabling Wide-Scale Computer Science Education through Improved Automated Assessment Tools
NASA Astrophysics Data System (ADS)
Boe, Bryce A.
There is a proliferating demand for newly trained computer scientists as the number of computer science related jobs continues to increase. University programs will only be able to train enough new computer scientists to meet this demand when two things happen: when there are more primary and secondary school students interested in computer science, and when university departments have the resources to handle the resulting increase in enrollment. To meet these goals, significant effort is being made to both incorporate computational thinking into existing primary school education, and to support larger university computer science class sizes. We contribute to this effort through the creation and use of improved automated assessment tools. To enable wide-scale computer science education we do two things. First, we create a framework called Hairball to support the static analysis of Scratch programs targeted for fourth, fifth, and sixth grade students. Scratch is a popular building-block language utilized to pique interest in and teach the basics of computer science. We observe that Hairball allows for rapid curriculum alterations and thus contributes to wide-scale deployment of computer science curriculum. Second, we create a real-time feedback and assessment system utilized in university computer science classes to provide better feedback to students while reducing assessment time. Insights from our analysis of student submission data show that modifications to the system configuration support the way students learn and progress through course material, making it possible for instructors to tailor assignments to optimize learning in growing computer science classes.
Tutor Training in Computer Science: Tutor Opinions and Student Results.
ERIC Educational Resources Information Center
Carbone, Angela; Mitchell, Ian
Edproj, a project team of faculty from the departments of computer science, software development and education at Monash University (Australia) investigated the quality of teaching and student learning and understanding in the computer science and software development departments. Edproj's research led to the development of a training program to…
ERIC Educational Resources Information Center
Cheryan, Sapna; Meltzoff, Andrew N.; Kim, Saenam
2011-01-01
Three experiments examined whether the design of virtual learning environments influences undergraduates' enrollment intentions and anticipated success in introductory computer science courses. Changing the design of a virtual classroom--from one that conveys current computer science stereotypes to one that does not--significantly increased…
Retrospective Evaluation of a Collaborative LearningScience Module: The Users' Perspective
ERIC Educational Resources Information Center
DeWitt, Dorothy; Siraj, Saedah; Alias, Norlidah; Leng, Chin Hai
2013-01-01
This study focuses on the retrospective evaluation of collaborative mLearning (CmL) Science module for teaching secondary school science which was designed based on social constructivist learning theories and Merrill's First Principle of Instruction. This study is part of a developmental research in which computer-mediated communication (CMC)…
Using Scenarios to Design Complex Technology-Enhanced Learning Environments
ERIC Educational Resources Information Center
de Jong, Ton; Weinberger, Armin; Girault, Isabelle; Kluge, Anders; Lazonder, Ard W.; Pedaste, Margus; Ludvigsen, Sten; Ney, Muriel; Wasson, Barbara; Wichmann, Astrid; Geraedts, Caspar; Giemza, Adam; Hovardas, Tasos; Julien, Rachel; van Joolingen, Wouter R.; Lejeune, Anne; Manoli, Constantinos C.; Matteman, Yuri; Sarapuu, Tago; Verkade, Alex; Vold, Vibeke; Zacharia, Zacharias C.
2012-01-01
Science Created by You (SCY) learning environments are computer-based environments in which students learn about science topics in the context of addressing a socio-scientific problem. Along their way to a solution for this problem students produce many types of intermediate products or learning objects. SCY learning environments center the entire…
Collaborative Visualization Project: shared-technology learning environments for science learning
NASA Astrophysics Data System (ADS)
Pea, Roy D.; Gomez, Louis M.
1993-01-01
Project-enhanced science learning (PESL) provides students with opportunities for `cognitive apprenticeships' in authentic scientific inquiry using computers for data-collection and analysis. Student teams work on projects with teacher guidance to develop and apply their understanding of science concepts and skills. We are applying advanced computing and communications technologies to augment and transform PESL at-a-distance (beyond the boundaries of the individual school), which is limited today to asynchronous, text-only networking and unsuitable for collaborative science learning involving shared access to multimedia resources such as data, graphs, tables, pictures, and audio-video communication. Our work creates user technology (a Collaborative Science Workbench providing PESL design support and shared synchronous document views, program, and data access; a Science Learning Resource Directory for easy access to resources including two-way video links to collaborators, mentors, museum exhibits, media-rich resources such as scientific visualization graphics), and refine enabling technologies (audiovisual and shared-data telephony, networking) for this PESL niche. We characterize participation scenarios for using these resources and we discuss national networked access to science education expertise.
Using NCLab-karel to improve computational thinking skill of junior high school students
NASA Astrophysics Data System (ADS)
Kusnendar, J.; Prabawa, H. W.
2018-05-01
Increasingly human interaction with technology and the increasingly complex development of digital technology world make the theme of computer science education interesting to study. Previous studies on Computer Literacy and Competency reveal that Indonesian teachers in general have fairly high computational skill, but their skill utilization are limited to some applications. This engenders limited and minimum computer-related learning for the students. On the other hand, computer science education is considered unrelated to real-world solutions. This paper attempts to address the utilization of NCLab- Karel in shaping the computational thinking in students. This computational thinking is believed to be able to making learn students about technology. Implementation of Karel utilization provides information that Karel is able to increase student interest in studying computational material, especially algorithm. Observations made during the learning process also indicate the growth and development of computing mindset in students.
Concept Mapping Assessment of Media Assisted Learning in Interdisciplinary Science Education
NASA Astrophysics Data System (ADS)
Schaal, Steffen; Bogner, Franz X.; Girwidz, Raimund
2010-05-01
Acquisition of conceptual knowledge is a central aim in science education. In this study we monitored an interdisciplinary hypermedia assisted learning unit on hibernation and thermodynamics based on cooperative learning. We used concept mapping for the assessment, applying a pre-test/post-test design. In our study, 106 9th graders cooperated by working in pairs ( n = 53) for six lessons. As an interdisciplinary learning activity in such complex knowledge domains has to combine many different aspects, we focused on long-term knowledge. Learners working cooperatively in dyads constructed computer-supported concept maps which were analysed by specific software. The data analysis encompassed structural aspects of the knowledge corresponding to a target reference map. After the learning unit, the results showed the acquisition of higher-order domain-specific knowledge structures which indicates successful interdisciplinary learning through the hypermedia learning environment. The benefit of using a computer-assisted concept mapping assessment for research in science education, and in science classrooms is considered.
ERIC Educational Resources Information Center
Lamb, Richard L.
2016-01-01
Within the last 10 years, new tools for assisting in the teaching and learning of academic skills and content within the context of science have arisen. These new tools include multiple types of computer software and hardware to include (video) games. The purpose of this study was to examine and compare the effect of computer learning games in the…
ERIC Educational Resources Information Center
Grandell, Linda
2005-01-01
Computer science is becoming increasingly important in our society. Meta skills, such as problem solving and logical and algorithmic thinking, are emphasized in every field, not only in the natural sciences. Still, largely due to gaps in tuition, common misunderstandings exist about the true nature of computer science. These are especially…
ERIC Educational Resources Information Center
Adesope, Olusola O.; Cavagnetto, Andy; Hunsu, Nathaniel J.; Anguiano, Carlos; Lloyd, Joshua
2017-01-01
This study used a between-subjects experimental design to examine the effects of three different computer-based instructional strategies (concept map, refutation text, and expository scientific text) on science learning. Concept maps are node-link diagrams that show concepts as nodes and relationships among the concepts as labeled links.…
ERIC Educational Resources Information Center
Barker, Lecia J.; Garvin-Doxas, Kathy
2004-01-01
The authors conducted ethnographic research to provide deep understanding of the learning environment of a selection of computer science classrooms at a large, research university in the United States. Categories emerging from data analysis included (1) impersonal environment and guarded behavior; and (2) the creation and maintenance of informal…
Understanding the Role of Prior Knowledge in a Multimedia Learning Application
ERIC Educational Resources Information Center
Rias, Riaza Mohd; Zaman, Halimah Badioze
2013-01-01
This study looked at the effects that individual differences in prior knowledge have on student understanding in learning with multimedia in a computer science subject. Students were identified as having either low or high prior knowledge from a series of questions asked in a survey conducted at the Faculty of Computer and Mathematical Sciences at…
ERIC Educational Resources Information Center
Shen, Ruimin; Wang, Minjuan; Gao, Wanping; Novak, D.; Tang, Lin
2009-01-01
The computer science classes in China's institutions of higher education often have large numbers of students. In addition, many institutions offer "blended" classes that include both on-campus and online students. These large blended classrooms have long suffered from a lack of interactivity. Many online classes simply provide recorded…
Evaluation of the Effectiveness of a Web-Based Learning Design for Adult Computer Science Courses
ERIC Educational Resources Information Center
Antonis, Konstantinos; Daradoumis, Thanasis; Papadakis, Spyros; Simos, Christos
2011-01-01
This paper reports on work undertaken within a pilot study concerned with the design, development, and evaluation of online computer science training courses. Drawing on recent developments in e-learning technology, these courses were structured around the principles of a learner-oriented approach for use with adult learners. The paper describes a…
ERIC Educational Resources Information Center
Scogin, Stephen C.; Stuessy, Carol L.
2015-01-01
Next Generation Science Standards (NGSS) call for integrating knowledge and practice in learning experiences in K-12 science education. "PlantingScience" (PS), an ideal curriculum for use as an NGSS model, is a computer-mediated collaborative learning environment intertwining scientific inquiry, classroom instruction, and online…
ERIC Educational Resources Information Center
Buczynski, James Andrew
2005-01-01
Developing a library collection to support the curriculum of Canada's largest computer studies school has debunked many myths about collecting computer science and technology information resources. Computer science students are among the heaviest print book and e-book users in the library. Circulation statistics indicate that the demand for print…
Advances in Machine Learning and Data Mining for Astronomy
NASA Astrophysics Data System (ADS)
Way, Michael J.; Scargle, Jeffrey D.; Ali, Kamal M.; Srivastava, Ashok N.
2012-03-01
Advances in Machine Learning and Data Mining for Astronomy documents numerous successful collaborations among computer scientists, statisticians, and astronomers who illustrate the application of state-of-the-art machine learning and data mining techniques in astronomy. Due to the massive amount and complexity of data in most scientific disciplines, the material discussed in this text transcends traditional boundaries between various areas in the sciences and computer science. The book's introductory part provides context to issues in the astronomical sciences that are also important to health, social, and physical sciences, particularly probabilistic and statistical aspects of classification and cluster analysis. The next part describes a number of astrophysics case studies that leverage a range of machine learning and data mining technologies. In the last part, developers of algorithms and practitioners of machine learning and data mining show how these tools and techniques are used in astronomical applications. With contributions from leading astronomers and computer scientists, this book is a practical guide to many of the most important developments in machine learning, data mining, and statistics. It explores how these advances can solve current and future problems in astronomy and looks at how they could lead to the creation of entirely new algorithms within the data mining community.
Pupil Science Learning in Resource-Based e-Learning Environments
ERIC Educational Resources Information Center
So, Wing-mui Winnie; Ching, Ngai-ying Fiona
2011-01-01
With the rapid expansion of broadband Internet connection and availability of high performance yet low priced computers, many countries around the world are advocating the adoption of e-learning, the use of computer technology to improve learning and teaching. The trend of e-learning has urged many teachers to incorporate online resources in their…
Evolution of an Intelligent Deductive Logic Tutor Using Data-Driven Elements
ERIC Educational Resources Information Center
Mostafavi, Behrooz; Barnes, Tiffany
2017-01-01
Deductive logic is essential to a complete understanding of computer science concepts, and is thus fundamental to computer science education. Intelligent tutoring systems with individualized instruction have been shown to increase learning gains. We seek to improve the way deductive logic is taught in computer science by developing an intelligent,…
ERIC Educational Resources Information Center
Benda, Klara; Bruckman, Amy; Guzdial, Mark
2012-01-01
We present the results of an interview study investigating student experiences in two online introductory computer science courses. Our theoretical approach is situated at the intersection of two research traditions: "distance and adult education research," which tends to be sociologically oriented, and "computer science education…
ERIC Educational Resources Information Center
Boyer, Kristy Elizabeth; Phillips, Robert; Wallis, Michael D.; Vouk, Mladen A.; Lester, James C.
2009-01-01
The majority of computer science education research to date has focused on purely cognitive student outcomes. Understanding the "motivational" states experienced by students may enhance our understanding of the computer science learning process, and may reveal important instructional interventions that could benefit student engagement and…
ERIC Educational Resources Information Center
Liu, Gi-Zen; Chiu, Wan-Yu; Lin, Chih-Chung; Barrett, Neil E.
2014-01-01
To date, the concept of English for Specific Purposes has brought about a great impact on English language learning across various disciplines, including those in science education. Hence, this review paper aimed to address current English language learning in the science disciplines through the practice of computer-assisted language learning to…
ERIC Educational Resources Information Center
Lai, Ah-Fur; Lai, Horng-Yih; Chuang, Wei-Hsiang; Wu, Zih-Heng
2015-01-01
Traditional outdoor learning activities such as inquiry-based learning in nature science encounter many dilemmas. Due to prompt development of mobile computing and widespread of mobile devices, mobile learning becomes a big trend on education. The main purpose of this study is to develop a mobile-learning management system for overcoming the…
75 FR 45134 - Statement of Organization, Functions, and Delegations of Authority
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-02
... information and computer science and technology to public health practice, research and learning. PHITPO... informatics solutions with health IT policies and translating emerging science, research and learning into... health sciences to improve population health through research, consultation, practice, training...
ERIC Educational Resources Information Center
Dillenbourg, Pierre, Ed.
Intended to illustrate the benefits of collaboration between scientists from psychology and computer science, namely machine learning, this book contains the following chapters, most of which are co-authored by scholars from both sides: (1) "Introduction: What Do You Mean by 'Collaborative Learning'?" (Pierre Dillenbourg); (2)…
NASA Astrophysics Data System (ADS)
Podrasky, A.; Covitt, B. A.; Woessner, W.
2017-12-01
The availability of clean water to support human uses and ecological integrity has become an urgent interest for many scientists, decision makers and citizens. Likewise, as computational capabilities increasingly revolutionize and become integral to the practice of science, technology, engineering and math (STEM) disciplines, the STEM+ Computing (STEM+C) Partnerships program seeks to integrate the use of computational approaches in K-12 STEM teaching and learning. The Comp Hydro project, funded by a STEM+C grant from the National Science Foundation, brings together a diverse team of scientists, educators, professionals and citizens at sites in Arizona, Colorado, Maryland and Montana to foster water literacy, as well as computational science literacy, by integrating authentic, place- and data- based learning using physical, mathematical, computational and conceptual models. This multi-state project is currently engaging four teams of six teachers who work during two academic years with educators and scientists at each site. Teams work to develop instructional units specific to their region that integrate hydrologic science and computational modeling. The units, currently being piloted in high school earth and environmental science classes, provide a classroom context to investigate student understanding of how computation is used in Earth systems science. To develop effective science instruction that is rich in place- and data- based learning, effective collaborations between researchers, educators, scientists, professionals and citizens are crucial. In this poster, we focus on project implementation in Montana, where an instructional unit has been developed and is being tested through collaboration among University scientists, researchers and educators, high school teachers and agency and industry scientists and engineers. In particular, we discuss three characteristics of effective collaborative science education design for developing and implementing place- and data- based science education to support students in developing socio-scientific and computational literacy sufficient for making decisions about real world issues such as groundwater contamination. These characteristics include that science education experiences are real, responsive/accessible and rigorous.
ERIC Educational Resources Information Center
Çetin, Nagihan Imer
2016-01-01
The purpose of this study was to examine science teachers' level of using computers in teaching and the impact of a teacher professional development program (TPDP) on their views regarding utilizing computers in science education. Forty-three in-service science teachers from different regions of Turkey attended a 5 day TPDP. The TPDP was…
Can a tablet device alter undergraduate science students' study behavior and use of technology?
Morris, Neil P; Ramsay, Luke; Chauhan, Vikesh
2012-06-01
This article reports findings from a study investigating undergraduate biological sciences students' use of technology and computer devices for learning and the effect of providing students with a tablet device. A controlled study was conducted to collect quantitative and qualitative data on the impact of a tablet device on students' use of devices and technology for learning. Overall, we found that students made extensive use of the tablet device for learning, using it in preference to laptop computers to retrieve information, record lectures, and access learning resources. In line with other studies, we found that undergraduate students only use familiar Web 2.0 technologies and that the tablet device did not alter this behavior for the majority of tools. We conclude that undergraduate science students can make extensive use of a tablet device to enhance their learning opportunities without institutions changing their teaching methods or computer systems, but that institutional intervention may be needed to drive changes in student behavior toward the use of novel Web 2.0 technologies.
ERIC Educational Resources Information Center
Oshima, Jun; Oshima, Ritsuko; Murayama, Isao; Inagaki, Shigenori; Takenaka, Makiko; Nakayama, Hayashi; Yamaguchi, Etsuji
2004-01-01
This paper reports design experiments on two Japanese elementary science lesson units in a sixth-grade classroom supported by computer support for collaborative learning (CSCL) technology as a collaborative reflection tool. We took different approaches in the experiments depending on their instructional goals. In the unit 'air and how things…
ERIC Educational Resources Information Center
Liu, Tsung-Yu
2016-01-01
This study investigates how educational games impact on students' academic performance and multimedia flow experiences in a computer science course. A curriculum consists of five basic learning units, that is, the stack, queue, sort, tree traversal, and binary search tree, was conducted for 110 university students during one semester. Two groups…
ERIC Educational Resources Information Center
Fields, Deborah Ann; Kafai, Yasmin; Nakajima, Tomoko; Goode, Joanna; Margolis, Jane
2018-01-01
Recent discussions of making have focused on developing out-of-school makerspaces and activities to provide more equitable and enriching learning opportunities for youth. Yet school classrooms present a unique opportunity to help broaden access, diversify representation, and deepen participation in making. In turning to classrooms, we want to…
ERIC Educational Resources Information Center
Boutnaru, Shlomi; Hershkovitz, Arnon
2015-01-01
In recent years, schools (as well as universities) have added cyber security to their computer science curricula. This topic is still new for most of the current teachers, who would normally have a standard computer science background. Therefore the teachers are trained and then teaching their students what they have just learned. In order to…
The Quantitative Analysis of User Behavior Online - Data, Models and Algorithms
NASA Astrophysics Data System (ADS)
Raghavan, Prabhakar
By blending principles from mechanism design, algorithms, machine learning and massive distributed computing, the search industry has become good at optimizing monetization on sound scientific principles. This represents a successful and growing partnership between computer science and microeconomics. When it comes to understanding how online users respond to the content and experiences presented to them, we have more of a lacuna in the collaboration between computer science and certain social sciences. We will use a concrete technical example from image search results presentation, developing in the process some algorithmic and machine learning problems of interest in their own right. We then use this example to motivate the kinds of studies that need to grow between computer science and the social sciences; a critical element of this is the need to blend large-scale data analysis with smaller-scale eye-tracking and "individualized" lab studies.
Multilinear Computing and Multilinear Algebraic Geometry
2016-08-10
landmark paper titled “Most tensor problems are NP-hard” (see [14] in Section 3) in the Journal of the ACM, the premier journal in Computer Science ...Higher-order cone programming,” Machine Learning Thematic Trimester, International Centre for Mathematics and Computer Science , Toulouse, France...geometry-and-data-analysis • 2014 SIMONS INSTITUTE WORKSHOP: Workshop on Tensors in Computer Science and Geometry, University of California, Berkeley, CA
ERIC Educational Resources Information Center
DeWitt, Dorothy; Alias, Norlidah; Siraj, Saedah
2014-01-01
Collaborative problem-solving in science instruction allows learners to build their knowledge and understanding through interaction, using the language of science. Computer-mediated communication (CMC) tools facilitate collaboration and may provide the opportunity for interaction when using the language of science in learning. There seems to be…
Learning Computer Science: Perceptions, Actions and Roles
ERIC Educational Resources Information Center
Berglund, Anders; Eckerdal, Anna; Pears, Arnold; East, Philip; Kinnunen, Paivi; Malmi, Lauri; McCartney, Robert; Mostrom, Jan-Erik; Murphy, Laurie; Ratcliffe, Mark; Schulte, Carsten; Simon, Beth; Stamouli, Ioanna; Thomas, Lynda
2009-01-01
This phenomenographic study opens the classroom door to investigate teachers' experiences of students learning difficult computing topics. Three distinct themes are identified and analysed. "Why" do students succeed or fail to learn these concepts? "What" actions do teachers perceive will ameliorate the difficulties facing…
ERIC Educational Resources Information Center
Yang, Tzu-Chi; Hwang, Gwo-Jen; Yang, Stephen J. H.; Hwang, Gwo-Haur
2015-01-01
Computer programming is an important skill for engineering and computer science students. However, teaching and learning programming concepts and skills has been recognized as a great challenge to both teachers and students. Therefore, the development of effective learning strategies and environments for programming courses has become an important…
Cognitive Correlates of Performance in Algorithms in a Computer Science Course for High School
ERIC Educational Resources Information Center
Avancena, Aimee Theresa; Nishihara, Akinori
2014-01-01
Computer science for high school faces many challenging issues. One of these is whether the students possess the appropriate cognitive ability for learning the fundamentals of computer science. Online tests were created based on known cognitive factors and fundamental algorithms and were implemented among the second grade students in the…
An Undergraduate Computer Science Curriculum for the Hearing Impaired.
ERIC Educational Resources Information Center
Perkins, A. Louise
1995-01-01
Presents an example section from a computer-science-integrated curriculum that was originally based on the Association of Computing Machinery (ACM) 1978 curriculum. The curriculum was designed to allow both instructors and students to move away from teaching and learning facts. (DDR)
ERIC Educational Resources Information Center
Martin, Taylor; Sherin, Bruce
2013-01-01
The learning sciences community's interest in learning analytics (LA) has been growing steadily over the past several years. Three recent symposia on the theme (at the American Educational Research Association 2011 and 2012 annual conferences, and the International Conference of the Learning Sciences 2012), organized by Paulo Blikstein, led…
Mastering cognitive development theory in computer science education
NASA Astrophysics Data System (ADS)
Gluga, Richard; Kay, Judy; Lister, Raymond; Simon; Kleitman, Sabina
2013-03-01
To design an effective computer science curriculum, educators require a systematic method of classifying the difficulty level of learning activities and assessment tasks. This is important for curriculum design and implementation and for communication between educators. Different educators must be able to use the method consistently, so that classified activities and assessments are comparable across the subjects of a degree, and, ideally, comparable across institutions. One widespread approach to supporting this is to write learning objects in terms of Bloom's Taxonomy. This, or other such classifications, is likely to be more effective if educators can use them consistently, in the way experts would use them. To this end, we present the design and evaluation of our online interactive web-based tutorial system, which can be configured and used to offer training in different classification schemes. We report on results from three evaluations. First, 17 computer science educators complete a tutorial on using Bloom's Taxonomy to classify programming examination questions. Second, 20 computer science educators complete a Neo-Piagetian tutorial. Third evaluation was a comparison of inter-rater reliability scores of computer science educators classifying programming questions using Bloom's Taxonomy, before and after taking our tutorial. Based on the results from these evaluations, we discuss the effectiveness of our tutorial system design for teaching computer science educators how to systematically and consistently classify programming examination questions. We also discuss the suitability of Bloom's Taxonomy and Neo-Piagetian theory for achieving this goal. The Bloom's and Neo-Piagetian tutorials are made available as a community resource. The contributions of this paper are the following: the tutorial system for learning classification schemes for the purpose of coding the difficulty of computing learning materials; its evaluation; new insights into the consistency that computing educators can achieve using Bloom; and first insights into the use of Neo-Piagetian theory by a group of classifiers.
Spatial Learning and Computer Simulations in Science
ERIC Educational Resources Information Center
Lindgren, Robb; Schwartz, Daniel L.
2009-01-01
Interactive simulations are entering mainstream science education. Their effects on cognition and learning are often framed by the legacy of information processing, which emphasized amodal problem solving and conceptual organization. In contrast, this paper reviews simulations from the vantage of research on perception and spatial learning,…
NASA Astrophysics Data System (ADS)
Shell, Duane F.; Soh, Leen-Kiat
2013-12-01
The goal of the present study was to utilize a profiling approach to understand differences in motivation and strategic self-regulation among post-secondary STEM students in major versus required non-major computer science courses. Participants were 233 students from required introductory computer science courses (194 men; 35 women; 4 unknown) at a large Midwestern state university. Cluster analysis identified five profiles: (1) a strategic profile of a highly motivated by-any-means good strategy user; (2) a knowledge-building profile of an intrinsically motivated autonomous, mastery-oriented student; (3) a surface learning profile of a utility motivated minimally engaged student; (4) an apathetic profile of an amotivational disengaged student; and (5) a learned helpless profile of a motivated but unable to effectively self-regulate student. Among CS majors and students in courses in their major field, the strategic and knowledge-building profiles were the most prevalent. Among non-CS majors and students in required non-major courses, the learned helpless, surface learning, and apathetic profiles were the most prevalent. Students in the strategic and knowledge-building profiles had significantly higher retention of computational thinking knowledge than students in other profiles. Students in the apathetic and surface learning profiles saw little instrumentality of the course for their future academic and career objectives. Findings show that students in STEM fields taking required computer science courses exhibit the same constellation of motivated strategic self-regulation profiles found in other post-secondary and K-12 settings.
ERIC Educational Resources Information Center
Wielard, Valerie Michelle
2013-01-01
The primary objective of this project was to learn what effect a computer program would have on academic achievement and attitude toward science of college students enrolled in a biology class for non-science majors. It became apparent that the instructor also had an effect on attitudes toward science. The researcher designed a computer program,…
Climate Modeling Computing Needs Assessment
NASA Astrophysics Data System (ADS)
Petraska, K. E.; McCabe, J. D.
2011-12-01
This paper discusses early findings of an assessment of computing needs for NASA science, engineering and flight communities. The purpose of this assessment is to document a comprehensive set of computing needs that will allow us to better evaluate whether our computing assets are adequately structured to meet evolving demand. The early results are interesting, already pointing out improvements we can make today to get more out of the computing capacity we have, as well as potential game changing innovations for the future in how we apply information technology to science computing. Our objective is to learn how to leverage our resources in the best way possible to do more science for less money. Our approach in this assessment is threefold: Development of use case studies for science workflows; Creating a taxonomy and structure for describing science computing requirements; and characterizing agency computing, analysis, and visualization resources. As projects evolve, science data sets increase in a number of ways: in size, scope, timelines, complexity, and fidelity. Generating, processing, moving, and analyzing these data sets places distinct and discernable requirements on underlying computing, analysis, storage, and visualization systems. The initial focus group for this assessment is the Earth Science modeling community within NASA's Science Mission Directorate (SMD). As the assessment evolves, this focus will expand to other science communities across the agency. We will discuss our use cases, our framework for requirements and our characterizations, as well as our interview process, what we learned and how we plan to improve our materials after using them in the first round of interviews in the Earth Science Modeling community. We will describe our plans for how to expand this assessment, first into the Earth Science data analysis and remote sensing communities, and then throughout the full community of science, engineering and flight at NASA.
ERIC Educational Resources Information Center
Fernandez, Anne, Ed.; Sproats, Lee, Ed.; Sorensen, Stacey, Ed.
2000-01-01
The science community has been trying to use computers in teaching for many years. There has been much conformity in how this was to be achieved, and the wheel has been re-invented again and again as enthusiast after enthusiast has "done their bit" towards getting computers accepted. Computers are now used by science undergraduates (as well as…
Teaching Bioinformatics in Concert
Goodman, Anya L.; Dekhtyar, Alex
2014-01-01
Can biology students without programming skills solve problems that require computational solutions? They can if they learn to cooperate effectively with computer science students. The goal of the in-concert teaching approach is to introduce biology students to computational thinking by engaging them in collaborative projects structured around the software development process. Our approach emphasizes development of interdisciplinary communication and collaboration skills for both life science and computer science students. PMID:25411792
ERIC Educational Resources Information Center
Lévano, Marcos; Albornoz, Andrea
2016-01-01
This paper aims to propose a framework to improve the quality in teaching and learning in order to develop good practices to train professionals in the career of computer engineering science. To demonstrate the progress and achievements, our work is based on two principles for the formation of professionals, one based on the model of learning…
ERIC Educational Resources Information Center
Gasparinatou, Alexandra; Grigoriadou, Maria
2013-01-01
In this study, we examine the effect of background knowledge and local cohesion on learning from texts. The study is based on construction-integration model. Participants were 176 undergraduate students who read a Computer Science text. Half of the participants read a text of maximum local cohesion and the other a text of minimum local cohesion.…
Nontrivial, Nonintelligent, Computer-Based Learning.
ERIC Educational Resources Information Center
Bork, Alfred
1987-01-01
This paper describes three interactive computer programs used with personal computers to present science learning modules for all ages. Developed by groups of teachers at the Educational Technology Center at the University of California, Irvine, these instructional materials do not use the techniques of contemporary artificial intelligence. (GDC)
Students' Misconceptions about Medium-Scale Integrated Circuits
ERIC Educational Resources Information Center
Herman, G. L.; Loui, M. C.; Zilles, C.
2011-01-01
To improve instruction in computer engineering and computer science, instructors must better understand how their students learn. Unfortunately, little is known about how students learn the fundamental concepts in computing. To investigate student conceptions and misconceptions about digital logic concepts, the authors conducted a qualitative…
2017-01-01
Statistical learning has been studied in a variety of different tasks, including word segmentation, object identification, category learning, artificial grammar learning and serial reaction time tasks (e.g. Saffran et al. 1996 Science 274, 1926–1928; Orban et al. 2008 Proceedings of the National Academy of Sciences 105, 2745–2750; Thiessen & Yee 2010 Child Development 81, 1287–1303; Saffran 2002 Journal of Memory and Language 47, 172–196; Misyak & Christiansen 2012 Language Learning 62, 302–331). The difference among these tasks raises questions about whether they all depend on the same kinds of underlying processes and computations, or whether they are tapping into different underlying mechanisms. Prior theoretical approaches to statistical learning have often tried to explain or model learning in a single task. However, in many cases these approaches appear inadequate to explain performance in multiple tasks. For example, explaining word segmentation via the computation of sequential statistics (such as transitional probability) provides little insight into the nature of sensitivity to regularities among simultaneously presented features. In this article, we will present a formal computational approach that we believe is a good candidate to provide a unifying framework to explore and explain learning in a wide variety of statistical learning tasks. This framework suggests that statistical learning arises from a set of processes that are inherent in memory systems, including activation, interference, integration of information and forgetting (e.g. Perruchet & Vinter 1998 Journal of Memory and Language 39, 246–263; Thiessen et al. 2013 Psychological Bulletin 139, 792–814). From this perspective, statistical learning does not involve explicit computation of statistics, but rather the extraction of elements of the input into memory traces, and subsequent integration across those memory traces that emphasize consistent information (Thiessen and Pavlik 2013 Cognitive Science 37, 310–343). This article is part of the themed issue ‘New frontiers for statistical learning in the cognitive sciences'. PMID:27872374
Thiessen, Erik D
2017-01-05
Statistical learning has been studied in a variety of different tasks, including word segmentation, object identification, category learning, artificial grammar learning and serial reaction time tasks (e.g. Saffran et al. 1996 Science 274: , 1926-1928; Orban et al. 2008 Proceedings of the National Academy of Sciences 105: , 2745-2750; Thiessen & Yee 2010 Child Development 81: , 1287-1303; Saffran 2002 Journal of Memory and Language 47: , 172-196; Misyak & Christiansen 2012 Language Learning 62: , 302-331). The difference among these tasks raises questions about whether they all depend on the same kinds of underlying processes and computations, or whether they are tapping into different underlying mechanisms. Prior theoretical approaches to statistical learning have often tried to explain or model learning in a single task. However, in many cases these approaches appear inadequate to explain performance in multiple tasks. For example, explaining word segmentation via the computation of sequential statistics (such as transitional probability) provides little insight into the nature of sensitivity to regularities among simultaneously presented features. In this article, we will present a formal computational approach that we believe is a good candidate to provide a unifying framework to explore and explain learning in a wide variety of statistical learning tasks. This framework suggests that statistical learning arises from a set of processes that are inherent in memory systems, including activation, interference, integration of information and forgetting (e.g. Perruchet & Vinter 1998 Journal of Memory and Language 39: , 246-263; Thiessen et al. 2013 Psychological Bulletin 139: , 792-814). From this perspective, statistical learning does not involve explicit computation of statistics, but rather the extraction of elements of the input into memory traces, and subsequent integration across those memory traces that emphasize consistent information (Thiessen and Pavlik 2013 Cognitive Science 37: , 310-343).This article is part of the themed issue 'New frontiers for statistical learning in the cognitive sciences'. © 2016 The Author(s).
Designing Educational Games for Computer Programming: A Holistic Framework
ERIC Educational Resources Information Center
Malliarakis, Christos; Satratzemi, Maya; Xinogalos, Stelios
2014-01-01
Computer science is continuously evolving during the past decades. This has also brought forth new knowledge that should be incorporated and new learning strategies must be adopted for the successful teaching of all sub-domains. For example, computer programming is a vital knowledge area within computer science with constantly changing curriculum…
Improving Student Achievement in Introductory Computer Science Courses Using Peer-Led Team Learning
ERIC Educational Resources Information Center
Dennis, Sonya Maria
2013-01-01
There has been a steady decline of majors in the disciplines of science, technology, engineering, and mathematics ("STEM majors"). In an effort to improve recruitment and retention in "STEM" majors, an active-learning methodology--"peer-led team learning" ("PLTL")--was implemented by the participating…
Technological Applications in Science Assessment.
ERIC Educational Resources Information Center
Helgeson, Stanley L.; Kumar, David D.
Educational technology has been a focus of development and research in science teaching and learning. This document reviews research dealing with computer and hypermedia applications to assessment in science education. The paper reports the findings first for computer applications for assessment and then for hypermedia applications in assessment.…
ERIC Educational Resources Information Center
Linn, Marcia C.
1995-01-01
Describes a framework called scaffolded knowledge integration and illustrates how it guided the design of two successful course enhancements in the field of computer science and engineering: the LISP Knowledge Integration Environment and the spatial reasoning environment. (101 references) (Author/MKR)
Democratizing Children's Computation: Learning Computational Science as Aesthetic Experience
ERIC Educational Resources Information Center
Farris, Amy Voss; Sengupta, Pratim
2016-01-01
In this essay, Amy Voss Farris and Pratim Sengupta argue that a democratic approach to children's computing education in a science class must focus on the "aesthetics" of children's experience. In "Democracy and Education," Dewey links "democracy" with a distinctive understanding of "experience." For Dewey,…
2005-12-01
Computational Learning in the Department of Brain & Cognitive Sciences and in the Computer Science and Artificial Intelligence Laboratory at the Massachusetts...physiology and cognitive science . . . . . . . . . . . . . . . . . . . . . 67 2 CONTENTS A Appendices 68 A.1 Detailed model implementation and...physiol- ogy to cognitive science. The original model [Riesenhuber and Poggio, 1999b] made also a few predictions ranging from biophysics to psychophysics
ERIC Educational Resources Information Center
Merrick, K. E.
2010-01-01
This correspondence describes an adaptation of puzzle-based learning to teaching an introductory computer programming course. Students from two offerings of the course--with and without the puzzle-based learning--were surveyed over a two-year period. Empirical results show that the synthesis of puzzle-based learning concepts with existing course…
Learner-Interface Interaction for Technology-Enhanced Active Learning
ERIC Educational Resources Information Center
Sinha, Neelu; Khreisat, Laila; Sharma, Kiron
2009-01-01
Neelu Sinha, Laila Khreisat, and Kiron Sharma describe how learner-interface interaction promotes active learning in computer science education. In a pilot study using technology that combines DyKnow software with a hardware platform of pen-enabled HP Tablet notebook computers, Sinha, Khreisat, and Sharma created dynamic learning environments by…
ERIC Educational Resources Information Center
Srisupawong, Yuwarat; Koul, Ravinder; Neanchaleay, Jariya; Murphy, Elizabeth; Francois, Emmanuel Jean
2018-01-01
Motivation and success in computer-science courses are influenced by the strength of students' self-efficacy (SE) beliefs in their learning abilities. Students with weak SE may struggle to be successful in a computer-science course. This study investigated the factors that enhance or impede the computer self-efficacy (CSE) of computer-science…
ERIC Educational Resources Information Center
Haberman, Bruria; Yehezkel, Cecile
2008-01-01
The rapid evolvement of the computing domain has posed challenges in attempting to bridge the gap between school and the contemporary world of computing, which is related to content, learning culture, and professional norms. We believe that the interaction of high-school students who major in computer science or software engineering with leading…
Computer Science Concept Inventories: Past and Future
ERIC Educational Resources Information Center
Taylor, C.; Zingaro, D.; Porter, L.; Webb, K. C.; Lee, C. B.; Clancy, M.
2014-01-01
Concept Inventories (CIs) are assessments designed to measure student learning of core concepts. CIs have become well known for their major impact on pedagogical techniques in other sciences, especially physics. Presently, there are no widely used, validated CIs for computer science. However, considerable groundwork has been performed in the form…
Setting the Stage for the Interactive Classroom of the 1980s.
ERIC Educational Resources Information Center
Hiraki, Joan; Garcia, Oscar N.
1981-01-01
Under a National Science Foundation CAUSE grant, the Department of Computer Science and Engineering at the University of South Florida, Tampa, is developing an interactive microcomputer/minicomputer/video disk learning system for engineering and science students. Journal availability: Educational Computer, P.O. Box 535, Cupertino, CA 95015.…
ERIC Educational Resources Information Center
Tsivitanidou, Olia; Zacharia, Zacharias C.; Hovardas, Tasos; Nicolaou, Aphrodite
2012-01-01
In this study we introduced a peer feedback tool to secondary school students while aiming at investigating whether this tool leads to a feedback dialogue when using a computer supported inquiry learning environment in science. Moreover, we aimed at examining what type of feedback students ask for and receive and whether the students use the…
Assessment of Situated Learning Using Computer Environments.
ERIC Educational Resources Information Center
Young, Michael
1995-01-01
Suggests that, based on a theory of situated learning, assessment must emphasize process as much as product. Several assessment examples are given, including a computer-based planning assistant for a mathematics and science video, suggestions for computer-based portfolio assessment, and speculations about embedded assessment of virtual situations.…
Learning Motivation in E-Learning Facilitated Computer Programming Courses
ERIC Educational Resources Information Center
Law, Kris M. Y.; Lee, Victor C. S.; Yu, Y. T.
2010-01-01
Computer programming skills constitute one of the core competencies that graduates from many disciplines, such as engineering and computer science, are expected to possess. Developing good programming skills typically requires students to do a lot of practice, which cannot sustain unless they are adequately motivated. This paper reports a…
Advanced Placement Computer Science (with Pascal). Teacher's Guide. Volume 1. Second Edition.
ERIC Educational Resources Information Center
Farkouh, Alice; And Others
The purpose of this guide is to give teachers and supervisors a working knowledge of various approaches to enhancing pupil learning about computer science, particularly through the use of Pascal. It contains instructional units dealing with: (1) computer components; (2) computer languages; (3) compilers; (4) essential features of a Pascal program;…
ERIC Educational Resources Information Center
Knipfer, Kristin; Mayr, Eva; Zahn, Carmen; Schwan, Stephan; Hesse, Friedrich W.
2009-01-01
In this article, the potentials of advanced technologies for learning in science exhibitions are outlined. For this purpose, we conceptualize science exhibitions as "dynamic information space for knowledge building" which includes three pathways of knowledge communication. This article centers on the second pathway, that is, knowledge…
NASA Astrophysics Data System (ADS)
Lamb, Richard L.
2016-02-01
Within the last 10 years, new tools for assisting in the teaching and learning of academic skills and content within the context of science have arisen. These new tools include multiple types of computer software and hardware to include (video) games. The purpose of this study was to examine and compare the effect of computer learning games in the form of three-dimensional serious educational games, two-dimensional online laboratories, and traditional lecture-based instruction in the context of student content learning in science. In particular, this study examines the impact of dimensionality, or the ability to move along the X-, Y-, and Z-axis in the games. Study subjects ( N = 551) were randomly selected using a stratified sampling technique. Independent strata subsamples were developed based upon the conditions of serious educational games, online laboratories, and lecture. The study also computationally models a potential mechanism of action and compares two- and three-dimensional learning environments. F test results suggest a significant difference for the main effect of condition across the factor of content gain score with large effect. Overall, comparisons using computational models suggest that three-dimensional serious educational games increase the level of success in learning as measured with content examinations through greater recruitment and attributional retraining of cognitive systems. The study supports assertions in the literature that the use of games in higher dimensions (i.e., three-dimensional versus two-dimensional) helps to increase student understanding of science concepts.
ERIC Educational Resources Information Center
Devolder, A.; van Braak, J.; Tondeur, J.
2012-01-01
Despite the widespread assumption that students require scaffolding support for self-regulated learning (SRL) processes in computer-based learning environments (CBLEs), there is little clarity as to which types of scaffolds are most effective. This study offers a literature review covering the various scaffolds that support SRL processes in the…
Students using visual thinking to learn science in a Web-based environment
NASA Astrophysics Data System (ADS)
Plough, Jean Margaret
United States students' science test scores are low, especially in problem solving, and traditional science instruction could be improved. Consequently, visual thinking, constructing science structures, and problem solving in a web-based environment may be valuable strategies for improving science learning. This ethnographic study examined the science learning of fifteen fourth grade students in an after school computer club involving diverse students at an inner city school. The investigation was done from the perspective of the students, and it described the processes of visual thinking, web page construction, and problem solving in a web-based environment. The study utilized informal group interviews, field notes, Visual Learning Logs, and student web pages, and incorporated a Standards-Based Rubric which evaluated students' performance on eight science and technology standards. The Visual Learning Logs were drawings done on the computer to represent science concepts related to the Food Chain. Students used the internet to search for information on a plant or animal of their choice. Next, students used this internet information, with the information from their Visual Learning Logs, to make web pages on their plant or animal. Later, students linked their web pages to form Science Structures. Finally, students linked their Science Structures with the structures of other students, and used these linked structures as models for solving problems. Further, during informal group interviews, students answered questions about visual thinking, problem solving, and science concepts. The results of this study showed clearly that (1) making visual representations helped students understand science knowledge, (2) making links between web pages helped students construct Science Knowledge Structures, and (3) students themselves said that visual thinking helped them learn science. In addition, this study found that when using Visual Learning Logs, the main overall ideas of the science concepts were usually represented accurately. Further, looking for information on the internet may cause new problems in learning. Likewise, being absent, starting late, and/or dropping out all may negatively influence students' proficiency on the standards. Finally, the way Science Structures are constructed and linked may provide insights into the way individual students think and process information.
ERIC Educational Resources Information Center
Lamb, Richard L.; Firestone, Jonah B.
2017-01-01
Conflicting explanations and unrelated information in science classrooms increase cognitive load and decrease efficiency in learning. This reduced efficiency ultimately limits one's ability to solve reasoning problems in the science. In reasoning, it is the ability of students to sift through and identify critical pieces of information that is of…
Teachers' Perspectives on Their Use of ICT in Teaching and Learning: A Case Study
ERIC Educational Resources Information Center
Kafyulilo, Ayoub; Keengwe, Jared
2014-01-01
This article presents the perspectives of science and mathematics teachers on their use of information and communication technology (ICT) in teaching and learning in Tanzania. The findings show that few teachers used computers for teaching and learning purposes while majority of them used computers for administrative purposes. Additionally,…
Explorations in Statistics: The Analysis of Ratios and Normalized Data
ERIC Educational Resources Information Center
Curran-Everett, Douglas
2013-01-01
Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This ninth installment of "Explorations in Statistics" explores the analysis of ratios and normalized--or standardized--data. As researchers, we compute a ratio--a numerator divided by a denominator--to compute a…
Ciullo, Stephen; Falcomata, Terry S; Pfannenstiel, Kathleen; Billingsley, Glenna
2015-01-01
Concept maps have been used to help students with learning disabilities (LD) improve literacy skills and content learning, predominantly in secondary school. However, despite increased access to classroom technology, no previous studies have examined the efficacy of computer-based concept maps to improve learning from informational text for students with LD in elementary school. In this study, we used a concurrent delayed multiple probe design to evaluate the interactive use of computer-based concept maps on content acquisition with science and social studies texts for Hispanic students with LD in Grades 4 and 5. Findings from this study suggest that students improved content knowledge during intervention relative to a traditional instruction baseline condition. Learning outcomes and social validity information are considered to inform recommendations for future research and the feasibility of classroom implementation. © The Author(s) 2014.
Designing for deeper learning in a blended computer science course for middle school students
NASA Astrophysics Data System (ADS)
Grover, Shuchi; Pea, Roy; Cooper, Stephen
2015-04-01
The focus of this research was to create and test an introductory computer science course for middle school. Titled "Foundations for Advancing Computational Thinking" (FACT), the course aims to prepare and motivate middle school learners for future engagement with algorithmic problem solving. FACT was also piloted as a seven-week course on Stanford's OpenEdX MOOC platform for blended in-class learning. Unique aspects of FACT include balanced pedagogical designs that address the cognitive, interpersonal, and intrapersonal aspects of "deeper learning"; a focus on pedagogical strategies for mediating and assessing for transfer from block-based to text-based programming; curricular materials for remedying misperceptions of computing; and "systems of assessments" (including formative and summative quizzes and tests, directed as well as open-ended programming assignments, and a transfer test) to get a comprehensive picture of students' deeper computational learning. Empirical investigations, accomplished over two iterations of a design-based research effort with students (aged 11-14 years) in a public school, sought to examine student understanding of algorithmic constructs, and how well students transferred this learning from Scratch to text-based languages. Changes in student perceptions of computing as a discipline were measured. Results and mixed-method analyses revealed that students in both studies (1) achieved substantial learning gains in algorithmic thinking skills, (2) were able to transfer their learning from Scratch to a text-based programming context, and (3) achieved significant growth toward a more mature understanding of computing as a discipline. Factor analyses of prior computing experience, multivariate regression analyses, and qualitative analyses of student projects and artifact-based interviews were conducted to better understand the factors affecting learning outcomes. Prior computing experiences (as measured by a pretest) and math ability were found to be strong predictors of learning outcomes.
ERIC Educational Resources Information Center
Hsu, P.-S.; Van Dyke, M.; Chen, Y.; Smith, T. J.
2016-01-01
The purpose of this mixed-methods study was to explore how seventh graders in a suburban school in the United States and sixth graders in an urban school in Taiwan developed argumentation skills and science knowledge in a project-based learning environment that incorporated a graph-oriented, computer-assisted application (GOCAA). A total of 42…
ERIC Educational Resources Information Center
Corlu, M. Sencer; Capraro, Robert M.; Corlu, M. Ali
2011-01-01
Students need to achieve automaticity in learning mathematics without sacrificing conceptual understanding of the algorithms that are essential in being successful in algebra and problem solving, as well as in science. This research investigated the relationship between science-contextualized problems and computational fluency by testing an…
Reconsidering Simulations in Science Education at a Distance: Features of Effective Use
ERIC Educational Resources Information Center
Blake, C.; Scanlon, E.
2007-01-01
This paper proposes a reconsideration of use of computer simulations in science education. We discuss three studies of the use of science simulations for undergraduate distance learning students. The first one, "The Driven Pendulum" simulation is a computer-based experiment on the behaviour of a pendulum. The second simulation, "Evolve" is…
Can Peer Instruction Be Effective in Upper-Division Computer Science Courses?
ERIC Educational Resources Information Center
Bailey Lee, Cynthia; Garcia, Saturnino; Porter, Leo
2013-01-01
Peer Instruction (PI) is an active learning pedagogical technique. PI lectures present students with a series of multiple-choice questions, which they respond to both individually and in groups. PI has been widely successful in the physical sciences and, recently, has been successfully adopted by computer science instructors in lower-division,…
ERIC Educational Resources Information Center
Stewart, Phillip Michael, Jr.
2013-01-01
Games in science education is emerging as a popular topic of scholarly inquiry. The National Research Council recently published a report detailing a research agenda for games and science education entitled "Learning Science Through Computer Games and Simulations" (2011). The report recommends moving beyond typical proof-of-concept…
ERIC Educational Resources Information Center
Selverian, Melissa E. Markaridian; Lombard, Matthew
2009-01-01
A thorough review of the research relating to Human-Computer Interface (HCI) form and content factors in the education, communication and computer science disciplines reveals strong associations of meaningful perceptual "illusions" with enhanced learning and satisfaction in the evolving classroom. Specifically, associations emerge…
ERIC Educational Resources Information Center
Smith, Peter, Ed.
Papers from a conference on small college computing issues are: "An On-line Microcomputer Course for Pre-service Teachers" (Mary K. Abkemeier); "The Mathematics and Computer Science Learning Center (MLC)" (Solomon T. Abraham); "Multimedia for the Non-Computer Science Faculty Member" (Stephen T. Anderson, Sr.); "Achieving Continuous Improvement:…
ERIC Educational Resources Information Center
Hubbard, Aleata Kimberly
2017-01-01
In this dissertation, I explored the pedagogical content knowledge of in-service high school educators recently assigned to teach computer science for the first time. Teachers were participating in a professional development program where they co-taught introductory computing classes with tech industry professionals. The study was motivated by…
ERIC Educational Resources Information Center
George, Frikkie; Ogunniyi, M.
2016-01-01
Instructional methodologies increasingly require teachers' efficacy and implementation of computer-assisted learning (CAL) practices in general and particularly in the science classroom. The South African National Education Department's e-Education[1] policy also encourages the use of computers and computer software in implementing outcome-based…
NASA Astrophysics Data System (ADS)
Schäfer, Andreas; Holz, Jan; Leonhardt, Thiemo; Schroeder, Ulrik; Brauner, Philipp; Ziefle, Martina
2013-06-01
In this study, we address the problem of low retention and high dropout rates of computer science university students in early semesters of the studies. Complex and high abstract mathematical learning materials have been identified as one reason for the dropout rate. In order to support the understanding and practicing of core mathematical concepts, we developed a game-based multitouch learning environment in which the need for a suitable learning environment for mathematical logic was combined with the ability to train cooperation and collaboration in a learning scenario. As application domain, the field of mathematical logic had been chosen. The development process was accomplished along three steps: First, ethnographic interviews were run with 12 students of computer science revealing typical problems with mathematical logic. Second, a multitouch learning environment was developed. The game consists of multiple learning and playing modes in which teams of students can collaborate or compete against each other. Finally, a twofold evaluation of the environment was carried out (user study and cognitive walk-through). Overall, the evaluation showed that the game environment was easy to use and rated as helpful: The chosen approach of a multiplayer game supporting competition, collaboration, and cooperation is perceived as motivating and "fun."
A meta-analysis of outcomes from the use of computer-simulated experiments in science education
NASA Astrophysics Data System (ADS)
Lejeune, John Van
The purpose of this study was to synthesize the findings from existing research on the effects of computer simulated experiments on students in science education. Results from 40 reports were integrated by the process of meta-analysis to examine the effect of computer-simulated experiments and interactive videodisc simulations on student achievement and attitudes. Findings indicated significant positive differences in both low-level and high-level achievement of students who use computer-simulated experiments and interactive videodisc simulations as compared to students who used more traditional learning activities. No significant differences in retention, student attitudes toward the subject, or toward the educational method were found. Based on the findings of this study, computer-simulated experiments and interactive videodisc simulations should be used to enhance students' learning in science, especially in cases where the use of traditional laboratory activities are expensive, dangerous, or impractical.
A Comparison of Computer-Assisted Instruction and Field-Based Learning for Youth Rangeland Education
ERIC Educational Resources Information Center
Peterson, Jennifer; Launchbaugh, Karen; Pickering, Michael; Hollenhorst, Steven
2006-01-01
Field-based learning experiences are often used to increase the effectiveness of science curricula. However, time and financial limitations in public schools often hinder a teacher's ability to bring their students into the field for learning, despite increased demands to incorporate more science content into their curricula. In addition, federal…
The Scientist in the Crib: Minds, Brains, and How Children Learn.
ERIC Educational Resources Information Center
Gopnik, Alison; Meltzoff, Andrew N.; Kuhl, Patricia K.
Arguing that evolution designed us to both teach and learn, this book explains how, and how much, babies and young children know and learn, and how much parents naturally teach them. The chapters are: (1) "Ancient Questions and a Young Science," including the concept of brain as computer, and the developmental science of Piaget and…
Integrating Computational Science Tools into a Thermodynamics Course
NASA Astrophysics Data System (ADS)
Vieira, Camilo; Magana, Alejandra J.; García, R. Edwin; Jana, Aniruddha; Krafcik, Matthew
2018-01-01
Computational tools and methods have permeated multiple science and engineering disciplines, because they enable scientists and engineers to process large amounts of data, represent abstract phenomena, and to model and simulate complex concepts. In order to prepare future engineers with the ability to use computational tools in the context of their disciplines, some universities have started to integrate these tools within core courses. This paper evaluates the effect of introducing three computational modules within a thermodynamics course on student disciplinary learning and self-beliefs about computation. The results suggest that using worked examples paired to computer simulations to implement these modules have a positive effect on (1) student disciplinary learning, (2) student perceived ability to do scientific computing, and (3) student perceived ability to do computer programming. These effects were identified regardless of the students' prior experiences with computer programming.
ERIC Educational Resources Information Center
Rias, Riaza Mohd; Zaman, Halimah Badioze
2011-01-01
Higher learning based instruction may be primarily concerned in most cases with the content of their academic lessons, and not very much with their instructional delivery. However, the effective application of learning theories and technology in higher education has an impact on student performance. With the rapid progress in the computer and…
ERIC Educational Resources Information Center
Mayer, Richard E.
A review of the research on techniques for increasing the novice's understanding of computers and computer programming, this paper considers the potential usefulness of five tentative recommendations pertinent to the design of computer literacy curricula: (1) provide the learner with a concrete model of the computer; (2) encourage the learner to…
ERIC Educational Resources Information Center
Stein, David; Ostrander, Peter; Lee, G. Maie
2016-01-01
The Magnet Program at Montgomery Blair High School is an application-based magnet program utilizing a curriculum focused on science, mathematics, and computer science catering to interested, talented, and eager to learn students in Montgomery County, Maryland. This article identifies and discusses some of the unique aspects of the Magnet Program…
NASA Astrophysics Data System (ADS)
Jaipal-Jamani, Kamini; Angeli, Charoula
2017-04-01
The current impetus for increasing STEM in K-12 education calls for an examination of how preservice teachers are being prepared to teach STEM. This paper reports on a study that examined elementary preservice teachers' ( n = 21) self-efficacy, understanding of science concepts, and computational thinking as they engaged with robotics in a science methods course. Data collection methods included pretests and posttests on science content, prequestionnaires and postquestionnaires for interest and self-efficacy, and four programming assignments. Statistical results showed that preservice teachers' interest and self-efficacy with robotics increased. There was a statistically significant difference between preknowledge and postknowledge scores, and preservice teachers did show gains in learning how to write algorithms and debug programs over repeated programming tasks. The findings suggest that the robotics activity was an effective instructional strategy to enhance interest in robotics, increase self-efficacy to teach with robotics, develop understandings of science concepts, and promote the development of computational thinking skills. Study findings contribute quantitative evidence to the STEM literature on how robotics develops preservice teachers' self-efficacy, science knowledge, and computational thinking skills in higher education science classroom contexts.
Using Computer Simulations to Integrate Learning.
ERIC Educational Resources Information Center
Liao, Thomas T.
1983-01-01
Describes the primary design criteria and the classroom activities involved in "The Yellow Light Problem," a minicourse on decision making in the secondary school Mathematics, Engineering and Science Achievement (MESA) program in California. Activities include lectures, discussions, science and math labs, computer labs, and development…
The iPlant collaborative: cyberinfrastructure for enabling data to discovery for the life sciences
USDA-ARS?s Scientific Manuscript database
The iPlant Collaborative provides life science research communities access to comprehensive, scalable, and cohesive computational infrastructure for data management; identify management; collaboration tools; and cloud, high-performance, high-throughput computing. iPlant provides training, learning m...
Learning Science in Grades 3 8 Using Probeware and Computers: Findings from the TEEMSS II Project
NASA Astrophysics Data System (ADS)
Zucker, Andrew A.; Tinker, Robert; Staudt, Carolyn; Mansfield, Amie; Metcalf, Shari
2008-02-01
The Technology Enhanced Elementary and Middle School Science II project (TEEMSS), funded by the National Science Foundation, produced 15 inquiry-based instructional science units for teaching in grades 3-8. Each unit uses computers and probeware to support students' investigations of real-world phenomena using probes (e.g., for temperature or pressure) or, in one case, virtual environments based on mathematical models. TEEMSS units were used in more than 100 classrooms by over 60 teachers and thousands of students. This paper reports on cases in which groups of teachers taught science topics without TEEMSS materials in school year 2004-2005 and then the same teachers taught those topics using TEEMSS materials in 2005-2006. There are eight TEEMSS units for which such comparison data are available. Students showed significant learning gains for all eight. In four cases (sound and electricity, both for grades 3-4; temperature, grades 5-6; and motion, grades 7-8) there were significant differences in science learning favoring the students who used the TEEMSS materials. The effect sizes are 0.58, 0.94, 1.54, and 0.49, respectively. For the other four units there were no significant differences in science learning between TEEMSS and non-TEEMSS students. We discuss the implications of these results for science education.
ERIC Educational Resources Information Center
Mouza, Chrystalla; Marzocchi, Alison; Pan, Yi-Cheng; Pollock, Lori
2016-01-01
Current policy efforts that seek to improve learning in science, technology, engineering, and mathematics (STEM) emphasize the importance of helping all students acquire concepts and tools from computer science that help them analyze and develop solutions to everyday problems. These goals have been generally described in the literature under the…
Analysis of Turkish Prospective Science Teachers' Perceptions on Technology in Education
ERIC Educational Resources Information Center
Koksal, Mustafa Serdar; Yaman, Suleyman; Saka, Yavuz
2016-01-01
Purpose of this study was to determine and analyze Turkish pre-service science teachers' perceptions on technology in terms of learning style, computer competency level, possession of a computer, and gender. The study involved 264 Turkish pre-service science teachers. Analyses were conducted through four-way ANOVA, t-tests, Mann Whitney U test and…
Computing in the Social Sciences and Humanities. [With CD-ROM].
ERIC Educational Resources Information Center
Burton, Orville Vernon, Ed.
This book-and-CD package provide a lively, hands-on introduction for teachers and scholars in the humanities and social sciences. New technology is changing the nature of research and teaching in the humanities and social sciences. From specialized online forums to Web-based teaching and distance learning, computers are being used to expand…
Evaluation of an Educational Computer Programme as a Change Agent in Science Classrooms
NASA Astrophysics Data System (ADS)
Muwanga-Zake, Johnnie Wycliffe Frank
2007-12-01
I report on benefits from 26 teacher-participant evaluators of a computer game designed to motivate learning and to ease conceptual understanding of biology in South Africa. Using a developmental, social constructivist and interpretative model, the recommendation is to include the value systems and needs of end-users (through social dialogue); curriculum issues (learning theories in the ECP and those the education authorities recommend, as well as ECP-curriculum integration); the nature of the subject the ECP presents (e.g., Nature of Science); and the compatibility of the ECP with school computers.
Medicine's Life Inside the Body
... Science > A Medicine's Life Inside the Body Inside Life Science View All Articles | Inside Life Science Home Page A Medicine's Life Inside the Body ... Medicines Work Computation Aids Drug Discovery This Inside Life Science article also appears on LiveScience . Learn about related ...
NASA Astrophysics Data System (ADS)
Liu, Gi-Zen; Chiu, Wan-Yu; Lin, Chih-Chung; Barrett, Neil E.
2014-12-01
To date, the concept of English for Specific Purposes has brought about a great impact on English language learning across various disciplines, including those in science education. Hence, this review paper aimed to address current English language learning in the science disciplines through the practice of computer-assisted language learning to identify the use of learning technologies in science-based literacy. In the literature review, the researchers found that science-based literacy instruction shares many pedagogical aims with English language teaching in terms of reading, writing, listening and speaking, allowing it to be classified as English for Scientific Purposes (EScP). To answer the research questions, the researchers conducted the survey by extracting related articles and teaching examples from the Web of Science. In the search procedure, the researchers used the keywords science OR scientific AND technolog* OR comput* in ten selected journals of social science citation index. Only articles which are specified as journal articles rather than other document types were included. After compiling the corpora, the researchers compared the trends, methodologies and results of EScP instruction in science education. The implications of this study include the opportunities, advantages and challenges for EScP instruction in science education to further develop better educational approaches, adopt new technologies, as well as offer some directions for researchers to conduct future studies.
A Visual Tool for Computer Supported Learning: The Robot Motion Planning Example
ERIC Educational Resources Information Center
Elnagar, Ashraf; Lulu, Leena
2007-01-01
We introduce an effective computer aided learning visual tool (CALVT) to teach graph-based applications. We present the robot motion planning problem as an example of such applications. The proposed tool can be used to simulate and/or further to implement practical systems in different areas of computer science such as graphics, computational…
ERIC Educational Resources Information Center
Howles, Trudy
2009-01-01
Student attrition and low graduation rates are critical problems in computer science education. Disappointing graduation rates and declining student interest have caught the attention of business leaders, researchers and universities. With weak graduation rates and little interest in scientific computing, many are concerned about the USA's ability…
An IoT and Wearable Technology Hackathon for Promoting Careers in Computer Science
ERIC Educational Resources Information Center
Byrne, Jake Rowan; O'Sullivan, Katriona; Sullivan, Kevin
2017-01-01
This paper explores the use of a constructivist 21st-century learning model to implement a week-long workshop, delivered as a "hackathon," to encourage preuniversity teenagers to pursue careers in STEM, with a particular emphasis on computer science. For Irish preuniversity students, their experience of computing can vary from word…
ERIC Educational Resources Information Center
Ryoo, Jean Jinsun
2013-01-01
Computing occupations are among the fastest growing in the U.S. and technological innovations are central to solving world problems. Yet only our most privileged students are learning to use technology for creative purposes through rigorous computer science education opportunities. In order to increase access for diverse students and females who…
Designing for Deeper Learning in a Blended Computer Science Course for Middle School Students
ERIC Educational Resources Information Center
Grover, Shuchi; Pea, Roy; Cooper, Stephen
2015-01-01
The focus of this research was to create and test an introductory computer science course for middle school. Titled "Foundations for Advancing Computational Thinking" (FACT), the course aims to prepare and motivate middle school learners for future engagement with algorithmic problem solving. FACT was also piloted as a seven-week course…
ERIC Educational Resources Information Center
Kolikant, Yifat Ben-David
2011-01-01
This study demonstrates the power of the cultural encounter metaphor in explaining learning and teaching difficulties, using as an example computer science education (CSE). CSE is envisioned as an encounter between veterans of two computer-oriented cultures, that of the teachers and that of the students. Forty questionnaires administered to CS…
States Move toward Computer Science Standards. Policy Update. Vol. 23, No. 17
ERIC Educational Resources Information Center
Tilley-Coulson, Eve
2016-01-01
While educators and parents recognize computer science as a key skill for career readiness, only five states have adopted learning standards in this area. Tides are changing, however, as the Every Student Succeeds Act (ESSA) recognizes with its call on states to provide a "well-rounded education" for students, to include computer science…
ERIC Educational Resources Information Center
Good, Jonathon; Keenan, Sarah; Mishra, Punya
2016-01-01
The popular press is rife with examples of how students in the United States and around the globe are learning to program, make, and tinker. The Hour of Code, maker-education, and similar efforts are advocating that more students be exposed to principles found within computer science. We propose an expansion beyond simply teaching computational…
A Revision of Learning and Teaching = Revision del aprender y del ensenar.
ERIC Educational Resources Information Center
Reggini, Horace C.
1983-01-01
This review of the findings of recent cognitive science research pertaining to learning and teaching focuses on how science and mathematics are being taught, analyzes how the presence of the computer demonstrates a need for radical rethinking of both the theory and the practice of learning, and points out that if educators fail to consider the…
ERIC Educational Resources Information Center
Yoon, Susan A.; Anderson, Emma; Koehler-Yom, Jessica; Evans, Chad; Park, Miyoung; Sheldon, Josh; Schoenfeld, Ilana; Wendel, Daniel; Scheintaub, Hal; Klopfer, Eric
2017-01-01
The recent next generation science standards in the United States have emphasized learning about complex systems as a core feature of science learning. Over the past 15 years, a number of educational tools and theories have been investigated to help students learn about complex systems; but surprisingly, little research has been devoted to…
ERIC Educational Resources Information Center
Campbell, Todd; Longhurst, Max L.; Wang, Shiang-Kwei; Hsu, Hui-Yin; Coster, Dan C.
2015-01-01
While access to computers, other technologies, and cyber-enabled resources that could be leveraged for enhancing student learning in science is increasing, generally it has been found that teachers use technology more for administrative purposes or to support traditional instruction. This use of technology, especially to support traditional…
ERIC Educational Resources Information Center
Granow, Rolf; Bischoff, Michael
In 1997, the German Federal Ministry of Education and Research started an initiative to promote e-learning in Germany by installing an extensive research program. The Virtual University of Applied Sciences in Engineering, Computer Science and Economic Engineering is the most prominent and best-funded of the more than 100 projects in the field…
ERIC Educational Resources Information Center
Richards, Adrian F.; Richards, Efrosine A.
The Inventory of Innovative Learning Materials in Marine Science and Technology includes 32 computer-, 148 video-, 16 film-, and 11 CD-ROM-based entries. They concern materials in biosciences (67), chemistry (5), geosciences (16), physics (23), technology (76) and other (20). This first, initial compilations is conceived as the basis for more…
NASA Technical Reports Server (NTRS)
Biswas, Rupak
2018-01-01
Quantum computing promises an unprecedented ability to solve intractable problems by harnessing quantum mechanical effects such as tunneling, superposition, and entanglement. The Quantum Artificial Intelligence Laboratory (QuAIL) at NASA Ames Research Center is the space agency's primary facility for conducting research and development in quantum information sciences. QuAIL conducts fundamental research in quantum physics but also explores how best to exploit and apply this disruptive technology to enable NASA missions in aeronautics, Earth and space sciences, and space exploration. At the same time, machine learning has become a major focus in computer science and captured the imagination of the public as a panacea to myriad big data problems. In this talk, we will discuss how classical machine learning can take advantage of quantum computing to significantly improve its effectiveness. Although we illustrate this concept on a quantum annealer, other quantum platforms could be used as well. If explored fully and implemented efficiently, quantum machine learning could greatly accelerate a wide range of tasks leading to new technologies and discoveries that will significantly change the way we solve real-world problems.
Supporting students' learning in the domain of computer science
NASA Astrophysics Data System (ADS)
Gasparinatou, Alexandra; Grigoriadou, Maria
2011-03-01
Previous studies have shown that students with low knowledge understand and learn better from more cohesive texts, whereas high-knowledge students have been shown to learn better from texts of lower cohesion. This study examines whether high-knowledge readers in computer science benefit from a text of low cohesion. Undergraduate students (n = 65) read one of four versions of a text concerning Local Network Topologies, orthogonally varying local and global cohesion. Participants' comprehension was examined through free-recall measure, text-based, bridging-inference, elaborative-inference, problem-solving questions and a sorting task. The results indicated that high-knowledge readers benefited from the low-cohesion text. The interaction of text cohesion and knowledge was reliable for the sorting activity, for elaborative-inference and for problem-solving questions. Although high-knowledge readers performed better in text-based and in bridging-inference questions with the low-cohesion text, the interaction of text cohesion and knowledge was not reliable. The results suggest a more complex view of when and for whom textual cohesion affects comprehension and consequently learning in computer science.
A Survey of Computer Science Capstone Course Literature
ERIC Educational Resources Information Center
Dugan, Robert F., Jr.
2011-01-01
In this article, we surveyed literature related to undergraduate computer science capstone courses. The survey was organized around course and project issues. Course issues included: course models, learning theories, course goals, course topics, student evaluation, and course evaluation. Project issues included: software process models, software…
Entanglement-Based Machine Learning on a Quantum Computer
NASA Astrophysics Data System (ADS)
Cai, X.-D.; Wu, D.; Su, Z.-E.; Chen, M.-C.; Wang, X.-L.; Li, Li; Liu, N.-L.; Lu, C.-Y.; Pan, J.-W.
2015-03-01
Machine learning, a branch of artificial intelligence, learns from previous experience to optimize performance, which is ubiquitous in various fields such as computer sciences, financial analysis, robotics, and bioinformatics. A challenge is that machine learning with the rapidly growing "big data" could become intractable for classical computers. Recently, quantum machine learning algorithms [Lloyd, Mohseni, and Rebentrost, arXiv.1307.0411] were proposed which could offer an exponential speedup over classical algorithms. Here, we report the first experimental entanglement-based classification of two-, four-, and eight-dimensional vectors to different clusters using a small-scale photonic quantum computer, which are then used to implement supervised and unsupervised machine learning. The results demonstrate the working principle of using quantum computers to manipulate and classify high-dimensional vectors, the core mathematical routine in machine learning. The method can, in principle, be scaled to larger numbers of qubits, and may provide a new route to accelerate machine learning.
Computational Experiments for Science and Engineering Education
NASA Technical Reports Server (NTRS)
Xie, Charles
2011-01-01
How to integrate simulation-based engineering and science (SBES) into the science curriculum smoothly is a challenging question. For the importance of SBES to be appreciated, the core value of simulations-that they help people understand natural phenomena and solve engineering problems-must be taught. A strategy to achieve this goal is to introduce computational experiments to the science curriculum to replace or supplement textbook illustrations and exercises and to complement or frame hands-on or wet lab experiments. In this way, students will have an opportunity to learn about SBES without compromising other learning goals required by the standards and teachers will welcome these tools as they strengthen what they are already teaching. This paper demonstrates this idea using a number of examples in physics, chemistry, and engineering. These exemplary computational experiments show that it is possible to create a curriculum that is both deeper and wider.
ERIC Educational Resources Information Center
Baytak, Ahmet
2009-01-01
Among educational researchers and practitioners, there is a growing interest in employing computer games for pedagogical purposes. The present research integrated a technology education class and a science class where 5th graders learned about environmental issues by designing games that involved environmental concepts. The purposes of this study…
ERIC Educational Resources Information Center
van Merrienboer, Jeroen J. G.
The contributions of instructional design to cognitive science are discussed. It is argued that both sciences have their own object of study, but share a common interest in human cognition and performance as part of instructional systems. From a case study based on experience in teaching introductory computer programming, it is concluded that both…
ERIC Educational Resources Information Center
Wheeler, David L.
1988-01-01
Scientists feel that progress in artificial intelligence and the availability of thousands of experimental results make this the right time to build and test theories on how people think and learn, using the computer to model minds. (MSE)
ERIC Educational Resources Information Center
Kausar, Tayyaba; Choudhry, Bushra Naoreen; Gujjar, Aijaz Ahmed
2008-01-01
This study was aimed to evaluate the effectiveness of CAI vs. classroom lecture for computer science at ICS level. The objectives were to compare the learning effects of two groups with class room lecture and computer assisted instruction studying the same curriculum and the effects of CAI and CRL in terms of cognitive development. Hypothesis of…
ERIC Educational Resources Information Center
Kausar, Tayyaba; Choudhry, Bushra Naoreen; Gujjar, Aijaz Ahmed
2008-01-01
This study was aimed to evaluate the effectiveness of CAI vs. classroom lecture for computer science at ICS level. The objectives were to compare the learning effects of two groups with class room lecture and computer assisted instruction studying the same curriculum and the effects of CAI and CRL in terms of cognitive development. Hypothesis of…
Great Computational Intelligence in the Formal Sciences via Analogical Reasoning
2017-05-08
computational harnessing of traditional mathematical statistics (as e.g. covered in Hogg, Craig & McKean 2005) is used to power statistical learning techniques...AFRL-AFOSR-VA-TR-2017-0099 Great Computational Intelligence in the Formal Sciences via Analogical Reasoning Selmer Bringsjord RENSSELAER POLYTECHNIC...08-05-2017 2. REPORT TYPE Final Performance 3. DATES COVERED (From - To) 15 Oct 2011 to 31 Dec 2016 4. TITLE AND SUBTITLE Great Computational
NASA Astrophysics Data System (ADS)
Beggrow, Elizabeth P.; Ha, Minsu; Nehm, Ross H.; Pearl, Dennis; Boone, William J.
2014-02-01
The landscape of science education is being transformed by the new Framework for Science Education (National Research Council, A framework for K-12 science education: practices, crosscutting concepts, and core ideas. The National Academies Press, Washington, DC, 2012), which emphasizes the centrality of scientific practices—such as explanation, argumentation, and communication—in science teaching, learning, and assessment. A major challenge facing the field of science education is developing assessment tools that are capable of validly and efficiently evaluating these practices. Our study examined the efficacy of a free, open-source machine-learning tool for evaluating the quality of students' written explanations of the causes of evolutionary change relative to three other approaches: (1) human-scored written explanations, (2) a multiple-choice test, and (3) clinical oral interviews. A large sample of undergraduates (n = 104) exposed to varying amounts of evolution content completed all three assessments: a clinical oral interview, a written open-response assessment, and a multiple-choice test. Rasch analysis was used to compute linear person measures and linear item measures on a single logit scale. We found that the multiple-choice test displayed poor person and item fit (mean square outfit >1.3), while both oral interview measures and computer-generated written response measures exhibited acceptable fit (average mean square outfit for interview: person 0.97, item 0.97; computer: person 1.03, item 1.06). Multiple-choice test measures were more weakly associated with interview measures (r = 0.35) than the computer-scored explanation measures (r = 0.63). Overall, Rasch analysis indicated that computer-scored written explanation measures (1) have the strongest correspondence to oral interview measures; (2) are capable of capturing students' normative scientific and naive ideas as accurately as human-scored explanations, and (3) more validly detect understanding than the multiple-choice assessment. These findings demonstrate the great potential of machine-learning tools for assessing key scientific practices highlighted in the new Framework for Science Education.
ASCR Workshop on Quantum Computing for Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aspuru-Guzik, Alan; Van Dam, Wim; Farhi, Edward
This report details the findings of the DOE ASCR Workshop on Quantum Computing for Science that was organized to assess the viability of quantum computing technologies to meet the computational requirements of the DOE’s science and energy mission, and to identify the potential impact of quantum technologies. The workshop was held on February 17-18, 2015, in Bethesda, MD, to solicit input from members of the quantum computing community. The workshop considered models of quantum computation and programming environments, physical science applications relevant to DOE's science mission as well as quantum simulation, and applied mathematics topics including potential quantum algorithms formore » linear algebra, graph theory, and machine learning. This report summarizes these perspectives into an outlook on the opportunities for quantum computing to impact problems relevant to the DOE’s mission as well as the additional research required to bring quantum computing to the point where it can have such impact.« less
ERIC Educational Resources Information Center
Mikulecky, Larry
Interactive computer programs, developed at Indiana University's Learning Skills Center, were designed to model effective strategies for reading biology and psychology textbooks. For each subject area, computer programs and textbook passages were used to instruct and model for students how to identify key concepts, compare and contrast concepts,…
Laptop Use, Interactive Science Software, and Science Learning Among At-Risk Students
NASA Astrophysics Data System (ADS)
Zheng, Binbin; Warschauer, Mark; Hwang, Jin Kyoung; Collins, Penelope
2014-08-01
This year-long, quasi-experimental study investigated the impact of the use of netbook computers and interactive science software on fifth-grade students' science learning processes, academic achievement, and interest in further science, technology, engineering, and mathematics (STEM) study within a linguistically diverse school district in California. Analysis of students' state standardized science test scores indicated that the program helped close gaps in scientific achievement between at-risk learners (i.e., English learners, Hispanics, and free/reduced-lunch recipients) and their counterparts. Teacher and student interviews and classroom observations suggested that computer-supported visual representations and interactions supported diverse learners' scientific understanding and inquiry and enabled more individualized and differentiated instruction. Finally, interviews revealed that the program had a positive impact on students' motivation in science and on their interest in pursuing science-related careers. This study suggests that technology-facilitated science instruction is beneficial for improving at-risk students' science achievement, scaffolding students' scientific understanding, and strengthening students' motivation to pursue STEM-related careers.
ERIC Educational Resources Information Center
Chen, Ching-Huei; Chen, Chia-Ying
2012-01-01
This study examined the effects of an inquiry-based learning (IBL) approach compared to that of a problem-based learning (PBL) approach on learner performance, attitude toward science and inquiry ability. Ninety-six students from three 7th-grade classes at a public school were randomly assigned to two experimental groups and one control group. All…
Multilayer Networks of Self-Interested Adaptive Units.
1987-07-01
T. J. Sejnowski. A learning algorithm for Boltzmann machines. Cognitive Science, 9:147-169, 1985. 121 S. Amarel. Problems of Representation in...Barto and C. W. Anderson. Structural learning in connectionist sys- tems. In Proceedings of the Seventh Annual Conference of the Cognitive Science...E. Hinton and T. J. Sejnowski. Analyzing cooperative computation. In Proceedings of the Fifth Annual Conference of the Cognitive Science Society
Ten quick tips for machine learning in computational biology.
Chicco, Davide
2017-01-01
Machine learning has become a pivotal tool for many projects in computational biology, bioinformatics, and health informatics. Nevertheless, beginners and biomedical researchers often do not have enough experience to run a data mining project effectively, and therefore can follow incorrect practices, that may lead to common mistakes or over-optimistic results. With this review, we present ten quick tips to take advantage of machine learning in any computational biology context, by avoiding some common errors that we observed hundreds of times in multiple bioinformatics projects. We believe our ten suggestions can strongly help any machine learning practitioner to carry on a successful project in computational biology and related sciences.
ERIC Educational Resources Information Center
Robinson, William R.
2000-01-01
Describes a review of research that addresses the effectiveness of simulations in promoting scientific discovery learning and the problems that learners may encounter when using discovery learning. (WRM)
Deep learning for computational chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goh, Garrett B.; Hodas, Nathan O.; Vishnu, Abhinav
The rise and fall of artificial neural networks is well documented in the scientific literature of both the fields of computer science and computational chemistry. Yet almost two decades later, we are now seeing a resurgence of interest in deep learning, a machine learning algorithm based on “deep” neural networks. Within the last few years, we have seen the transformative impact of deep learning the computer science domain, notably in speech recognition and computer vision, to the extent that the majority of practitioners in those field are now regularly eschewing prior established models in favor of deep learning models. Inmore » this review, we provide an introductory overview into the theory of deep neural networks and their unique properties as compared to traditional machine learning algorithms used in cheminformatics. By providing an overview of the variety of emerging applications of deep neural networks, we highlight its ubiquity and broad applicability to a wide range of challenges in the field, including QSAR, virtual screening, protein structure modeling, QM calculations, materials synthesis and property prediction. In reviewing the performance of deep neural networks, we observed a consistent outperformance against non neural networks state-of-the-art models across disparate research topics, and deep neural network based models often exceeded the “glass ceiling” expectations of their respective tasks. Coupled with the maturity of GPU-accelerated computing for training deep neural networks and the exponential growth of chemical data on which to train these networks on, we anticipate that deep learning algorithms will be a useful tool and may grow into a pivotal role for various challenges in the computational chemistry field.« less
Machine learning for Big Data analytics in plants.
Ma, Chuang; Zhang, Hao Helen; Wang, Xiangfeng
2014-12-01
Rapid advances in high-throughput genomic technology have enabled biology to enter the era of 'Big Data' (large datasets). The plant science community not only needs to build its own Big-Data-compatible parallel computing and data management infrastructures, but also to seek novel analytical paradigms to extract information from the overwhelming amounts of data. Machine learning offers promising computational and analytical solutions for the integrative analysis of large, heterogeneous and unstructured datasets on the Big-Data scale, and is gradually gaining popularity in biology. This review introduces the basic concepts and procedures of machine-learning applications and envisages how machine learning could interface with Big Data technology to facilitate basic research and biotechnology in the plant sciences. Copyright © 2014 Elsevier Ltd. All rights reserved.
Conceptions of Programming: A Study into Learning To Program.
ERIC Educational Resources Information Center
Booth, Shirley
This paper reports the results of a phenomenographic study which focused on identifying and describing the conceptions of programming and related phenomena of about 120 computer science and computer engineering students learning to program. The report begins by tracing developments in the students' conceptions of programming and its parts, and…
Formal Methods, Design, and Collaborative Learning in the First Computer Science Course.
ERIC Educational Resources Information Center
Troeger, Douglas R.
1995-01-01
A new introductory computer science course at City College of New York builds on a foundation of logic to teach programming based on a "design idea," a strong departure from conventional programming courses. Reduced attrition and increased student and teacher enthusiasm have resulted. (MSE)
Mastering Cognitive Development Theory in Computer Science Education
ERIC Educational Resources Information Center
Gluga, Richard; Kay, Judy; Lister, Raymond; Kleitman, Simon; Kleitman, Sabina
2013-01-01
To design an effective computer science curriculum, educators require a systematic method of classifying the difficulty level of learning activities and assessment tasks. This is important for curriculum design and implementation and for communication between educators. Different educators must be able to use the method consistently, so that…
Are Computer Science Students Ready for the Real World.
ERIC Educational Resources Information Center
Elliot, Noreen
The typical undergraduate program in computer science includes an introduction to hardware and operating systems, file processing and database organization, data communication and networking, and programming. However, many graduates may lack the ability to integrate the concepts "learned" into a skill set and pattern of approaching problems that…
Computer-Based Imaginary Sciences and Research on Concept Acquisition.
ERIC Educational Resources Information Center
Allen, Brockenbrough S.
To control for interactions in learning research due to subjects' prior knowledge of the instructional material presented, an imaginary curriculum was presented with a computer assisted technique based on Carl Berieter's imaginary science of Xenograde systems. The curriculum consisted of a classification system for ten conceptual classes of…
NASA Astrophysics Data System (ADS)
Annetta, Leonard A.; Frazier, Wendy M.; Folta, Elizabeth; Holmes, Shawn; Lamb, Richard; Cheng, Meng-Tzu
2013-02-01
Designed-based research principles guided the study of 51 secondary-science teachers in the second year of a 3-year professional development project. The project entailed the creation of student-centered, inquiry-based, science, video games. A professional development model appropriate for infusing innovative technologies into standards-based curricula was employed to determine how science teacher's attitudes and efficacy where impacted while designing science-based video games. The study's mixed-method design ascertained teacher efficacy on five factors (General computer use, Science Learning, Inquiry Teaching and Learning, Synchronous chat/text, and Playing Video Games) related to technology and gaming using a web-based survey). Qualitative data in the form of online blog posts was gathered during the project to assist in the triangulation and assessment of teacher efficacy. Data analyses consisted of an Analysis of Variance and serial coding of teacher reflective responses. Results indicated participants who used computers daily have higher efficacy while using inquiry-based teaching methods and science teaching and learning. Additional emergent findings revealed possible motivating factors for efficacy. This professional development project was focused on inquiry as a pedagogical strategy, standard-based science learning as means to develop content knowledge, and creating video games as technological knowledge. The project was consistent with the Technological Pedagogical Content Knowledge (TPCK) framework where overlapping circles of the three components indicates development of an integrated understanding of the suggested relationships. Findings provide suggestions for development of standards-based science education software, its integration into the curriculum and, strategies for implementing technology into teaching practices.
On the Implications of Neuroscience Research for Science Teaching and Learning: Are There Any?
ERIC Educational Resources Information Center
Lawson, Anton E.
2006-01-01
What, if anything, do teachers need to know about how the brain works to improve teaching and learning? After all, a plumber needs to know how to stop leaks--not the molecular structure of water. And one can learn how to use a computer without knowing how a computer chip works. Likewise, teachers need to know how to help students develop…
Discriminative Learning with Markov Logic Networks
2009-10-01
Discriminative Learning with Markov Logic Networks Tuyen N. Huynh Department of Computer Sciences University of Texas at Austin Austin, TX 78712...emerging area of research that addresses the problem of learning from noisy structured/relational data. Markov logic networks (MLNs), sets of weighted...TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Texas at Austin,Department of Computer
ERIC Educational Resources Information Center
Maurer, Hermann; Khan, Muhammad Salman
2010-01-01
Purpose: The purpose of this paper is to provide a scientometric and content analysis of the studies in the field of e-learning that were published in five Social Science Citation Index (SSCI) journals ("Journal of Computer Assisted Learning, Computers & Education, British Journal of Educational Technology, Innovations in Education and Teaching…
Enhancing Student Learning in Food Engineering Using Computational Fluid Dynamics Simulations
ERIC Educational Resources Information Center
Wong, Shin Y.; Connelly, Robin K.; Hartel, Richard W.
2010-01-01
The current generation of students coming into food science and engineering programs is very visually oriented from their early experiences. To increase their interest in learning, new and visually appealing teaching materials need to be developed. Two diverse groups of students may be identified based on their math skills. Food science students…
Integrative Metabolism: An Interactive Learning Tool for Nutrition, Biochemistry, and Physiology
ERIC Educational Resources Information Center
Carey, Gale
2010-01-01
Metabolism is a dynamic, simultaneous, and integrative science that cuts across nutrition, biochemistry, and physiology. Teaching this science can be a challenge. The use of a scenario-based, visually appealing, interactive, computer-animated CD may overcome the limitations of learning "one pathway at a time" and engage two- and…
Exploring the Effects of Concreteness Fading across Grades in Elementary School Science Education
ERIC Educational Resources Information Center
Jaakkola, Tomi; Veermans, Koen
2018-01-01
The present study investigates the effects that concreteness fading has on learning and transfer across three grade levels (4-6) in elementary school science education in comparison to learning with constantly concrete representations. 127 9- to 12-years-old elementary school students studied electric circuits in a computer-based simulation…
Zheng, Meixun; Bender, Daniel
2018-03-13
Computer-based testing (CBT) has made progress in health sciences education. In 2015, the authors led implementation of a CBT system (ExamSoft) at a dental school in the U.S. Guided by the Technology Acceptance Model (TAM), the purposes of this study were to (a) examine dental students' acceptance of ExamSoft; (b) understand factors impacting acceptance; and (c) evaluate the impact of ExamSoft on students' learning and exam performance. Survey and focus group data revealed that ExamSoft was well accepted by students as a testing tool and acknowledged by most for its potential to support learning. Regression analyses showed that perceived ease of use and perceived usefulness of ExamSoft significantly predicted student acceptance. Prior CBT experience and computer skills did not significantly predict acceptance of ExamSoft. Students reported that ExamSoft promoted learning in the first program year, primarily through timely and rich feedback on examination performance. t-Tests yielded mixed results on whether students performed better on computerized or paper examinations. The study contributes to the literature on CBT and the application of the TAM model in health sciences education. Findings also suggest ways in which health sciences institutions can implement CBT to maximize its potential as an assessment and learning tool.
Ideas for Integrating the Microcomputer with High School Science.
ERIC Educational Resources Information Center
Podany, Zita
This report discusses how computers are being used in high school science classrooms. For this report, four high school science teachers were interviewed. The approach to science instruction described in these four interviews deals with the areas of scientific and technological literacy, making science learning fun and attractive, and stimulating…
2013-01-01
Background Health science education faces numerous challenges: assimilation of knowledge, management of increasing numbers of learners or changes in educational models and methodologies. With the emergence of e-learning, the use of information and communication technologies (ICT) and Internet to improve teaching and learning in health science training institutions has become a crucial issue for low and middle income countries, including sub-Saharan Africa. In this perspective, the Faculty of Medicine and Biomedical Sciences (FMBS) of Yaoundé has played a pioneering role in Cameroon in making significant efforts to improve students’ and lecturers’ access to computers and to Internet on its campus. The objective is to investigate how computer literacy and the perception towards e-learning and its potential could contribute to the learning and teaching process within the FMBS academic community. Method A cross-sectional survey was carried out among students, residents and lecturers. The data was gathered through a written questionnaire distributed at FMBS campus and analysed with routine statistical software. Results 307 participants answered the questionnaire: 218 students, 57 residents and 32 lecturers. Results show that most students, residents and lecturers have access to computers and Internet, although students’ access is mainly at home for computers and at cyber cafés for Internet. Most of the participants have a fairly good mastery of ICT. However, some basic rules of good practices concerning the use of ICT in the health domain were still not well known. Google is the most frequently used engine to retrieve health literature for all participants; only 7% of students and 16% of residents have heard about Medical Subject Headings (MeSH). The potential of e-learning in the improvement of teaching and learning still remains insufficiently exploited. About two thirds of the students are not familiar with the concept of e-leaning. 84% of students and 58% of residents had never had access to e-learning resources. However, most of the participants perceive the potential of e-learning for learning and teaching, and are in favour of its development at the FMBS. Conclusion The strong interest revealed by the study participants to adopt and follow-up the development of e-learning, opens new perspectives to a faculty like the FMBS, located in a country with limited resources. However, the success of its development will depend on different factors: the definition of an e-learning strategy, the implementation of concrete measures and the adoption of a more active and participative pedagogy. PMID:23601853
Bediang, Georges; Stoll, Beat; Geissbuhler, Antoine; Klohn, Axel M; Stuckelberger, Astrid; Nko'o, Samuel; Chastonay, Philippe
2013-04-19
Health science education faces numerous challenges: assimilation of knowledge, management of increasing numbers of learners or changes in educational models and methodologies. With the emergence of e-learning, the use of information and communication technologies (ICT) and Internet to improve teaching and learning in health science training institutions has become a crucial issue for low and middle income countries, including sub-Saharan Africa. In this perspective, the Faculty of Medicine and Biomedical Sciences (FMBS) of Yaoundé has played a pioneering role in Cameroon in making significant efforts to improve students' and lecturers' access to computers and to Internet on its campus.The objective is to investigate how computer literacy and the perception towards e-learning and its potential could contribute to the learning and teaching process within the FMBS academic community. A cross-sectional survey was carried out among students, residents and lecturers. The data was gathered through a written questionnaire distributed at FMBS campus and analysed with routine statistical software. 307 participants answered the questionnaire: 218 students, 57 residents and 32 lecturers. Results show that most students, residents and lecturers have access to computers and Internet, although students' access is mainly at home for computers and at cyber cafés for Internet. Most of the participants have a fairly good mastery of ICT. However, some basic rules of good practices concerning the use of ICT in the health domain were still not well known. Google is the most frequently used engine to retrieve health literature for all participants; only 7% of students and 16% of residents have heard about Medical Subject Headings (MeSH).The potential of e-learning in the improvement of teaching and learning still remains insufficiently exploited. About two thirds of the students are not familiar with the concept of e-leaning. 84% of students and 58% of residents had never had access to e-learning resources. However, most of the participants perceive the potential of e-learning for learning and teaching, and are in favour of its development at the FMBS. The strong interest revealed by the study participants to adopt and follow-up the development of e-learning, opens new perspectives to a faculty like the FMBS, located in a country with limited resources. However, the success of its development will depend on different factors: the definition of an e-learning strategy, the implementation of concrete measures and the adoption of a more active and participative pedagogy.
Students' explanations in complex learning of disciplinary programming
NASA Astrophysics Data System (ADS)
Vieira, Camilo
Computational Science and Engineering (CSE) has been denominated as the third pillar of science and as a set of important skills to solve the problems of a global society. Along with the theoretical and the experimental approaches, computation offers a third alternative to solve complex problems that require processing large amounts of data, or representing complex phenomena that are not easy to experiment with. Despite the relevance of CSE, current professionals and scientists are not well prepared to take advantage of this set of tools and methods. Computation is usually taught in an isolated way from engineering disciplines, and therefore, engineers do not know how to exploit CSE affordances. This dissertation intends to introduce computational tools and methods contextualized within the Materials Science and Engineering curriculum. Considering that learning how to program is a complex task, the dissertation explores effective pedagogical practices that can support student disciplinary and computational learning. Two case studies will be evaluated to identify the characteristics of effective worked examples in the context of CSE. Specifically, this dissertation explores students explanations of these worked examples in two engineering courses with different levels of transparency: a programming course in materials science and engineering glass box and a thermodynamics course involving computational representations black box. Results from this study suggest that students benefit in different ways from writing in-code comments. These benefits include but are not limited to: connecting xv individual lines of code to the overall problem, getting familiar with the syntax, learning effective algorithm design strategies, and connecting computation with their discipline. Students in the glass box context generate higher quality explanations than students in the black box context. These explanations are related to students prior experiences. Specifically, students with low ability to do programming engage in a more thorough explanation process than students with high ability. This dissertation concludes proposing an adaptation to the instructional principles of worked-examples for the context of CSE education.
Educational NASA Computational and Scientific Studies (enCOMPASS)
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess
2013-01-01
Educational NASA Computational and Scientific Studies (enCOMPASS) is an educational project of NASA Goddard Space Flight Center aimed at bridging the gap between computational objectives and needs of NASA's scientific research, missions, and projects, and academia's latest advances in applied mathematics and computer science. enCOMPASS achieves this goal via bidirectional collaboration and communication between NASA and academia. Using developed NASA Computational Case Studies in university computer science/engineering and applied mathematics classes is a way of addressing NASA's goals of contributing to the Science, Technology, Education, and Math (STEM) National Objective. The enCOMPASS Web site at http://encompass.gsfc.nasa.gov provides additional information. There are currently nine enCOMPASS case studies developed in areas of earth sciences, planetary sciences, and astrophysics. Some of these case studies have been published in AIP and IEEE's Computing in Science and Engineering magazines. A few university professors have used enCOMPASS case studies in their computational classes and contributed their findings to NASA scientists. In these case studies, after introducing the science area, the specific problem, and related NASA missions, students are first asked to solve a known problem using NASA data and past approaches used and often published in a scientific/research paper. Then, after learning about the NASA application and related computational tools and approaches for solving the proposed problem, students are given a harder problem as a challenge for them to research and develop solutions for. This project provides a model for NASA scientists and engineers on one side, and university students, faculty, and researchers in computer science and applied mathematics on the other side, to learn from each other's areas of work, computational needs and solutions, and the latest advances in research and development. This innovation takes NASA science and engineering applications to computer science and applied mathematics university classes, and makes NASA objectives part of the university curricula. There is great potential for growth and return on investment of this program to the point where every major university in the U.S. would use at least one of these case studies in one of their computational courses, and where every NASA scientist and engineer facing a computational challenge (without having resources or expertise to solve it) would use enCOMPASS to formulate the problem as a case study, provide it to a university, and get back their solutions and ideas.
Assessment of Adaptive PBL's Impact on HOT Development of Computer Science Students
ERIC Educational Resources Information Center
Raiyn, Jamal; Tilchin, Oleg
2015-01-01
Meaningful learning based on PBL is new learning strategy. Compared to traditional learning strategy, the meaningful learning strategy put the student in center of the learning process. The roles of the student in the meaningful learning strategy will be increased. The Problem-based Learning (PBL) model is considered the most productive way to…
Using "Facebook" to Improve Communication in Undergraduate Software Development Teams
ERIC Educational Resources Information Center
Charlton, Terence; Devlin, Marie; Drummond, Sarah
2009-01-01
As part of the CETL ALiC initiative (Centre of Excellence in Teaching and Learning: Active Learning in Computing), undergraduate computing science students at Newcastle and Durham universities participated in a cross-site team software development project. To ensure we offer adequate resources to support this collaboration, we conducted an…
Optimizing Cognitive Load for Learning from Computer-Based Science Simulations
ERIC Educational Resources Information Center
Lee, Hyunjeong; Plass, Jan L.; Homer, Bruce D.
2006-01-01
How can cognitive load in visual displays of computer simulations be optimized? Middle-school chemistry students (N = 257) learned with a simulation of the ideal gas law. Visual complexity was manipulated by separating the display of the simulations in two screens (low complexity) or presenting all information on one screen (high complexity). The…
Using Robotics to Improve Retention and Increase Comprehension in Introductory Programming Courses
ERIC Educational Resources Information Center
Pullan, Marie
2013-01-01
Several college majors, outside of computer science, require students to learn computer programming. Many students have difficulty getting through the programming sequence and ultimately change majors or drop out of college. To deal with this problem, active learning techniques were developed and implemented in a freshman programming logic and…
NASA Technical Reports Server (NTRS)
Mikouchi, A. K.; Mikouchi, T.
2000-01-01
We developed a computer software to make users learn about the Moon through their observation and appreciation. We performed a usability test at school, and knew that 7th grade students enjoyed it, making them more interested in the Moon than before.
Interdisciplinary Facilities that Support Collaborative Teaching and Learning
ERIC Educational Resources Information Center
Asoodeh, Mike; Bonnette, Roy
2006-01-01
It has become widely accepted that the computer is an indispensable tool in the study of science and technology. Thus, in recent years curricular programs such as Industrial Technology and associated scientific disciplines have been adopting and adapting the computer as a tool in new and innovative ways to support teaching, learning, and research.…
ERIC Educational Resources Information Center
Kapur, Manu; Kinzer, Charles K.
2007-01-01
This study investigated the effect of well- vs. ill-structured problem types on: (a) group interactional activity, (b) evolution of group participation inequities, (c) group discussion quality, and (d) group performance in a synchronous, computer-supported collaborative learning (CSCL) environment. Participants were 60 11th-grade science students…
ERIC Educational Resources Information Center
Govindasamy, Malliga K.
2014-01-01
Agent technology has become one of the dynamic and most interesting areas of computer science in recent years. The dynamism of this technology has resulted in computer generated characters, known as pedagogical agent, entering the digital learning environments in increasing numbers. Commonly deployed in implementing tutoring strategies, these…
ODU-CAUSE: Computer Based Learning Lab.
ERIC Educational Resources Information Center
Sachon, Michael W.; Copeland, Gary E.
This paper describes the Computer Based Learning Lab (CBLL) at Old Dominion University (ODU) as a component of the ODU-Comprehensive Assistance to Undergraduate Science Education (CAUSE) Project. Emphasis is directed to the structure and management of the facility and to the software under development by the staff. Serving the ODU-CAUSE User Group…
ERIC Educational Resources Information Center
Palaigeorgiou, George; Despotakis, Theofanis
2010-01-01
Learning about computers continues to be regarded as a rather informal and complex landscape dominated by individual exploratory and opportunistic approaches, even for students and instructors in Computer Science Departments. During the last two decades, software animated demonstrations (SADs), also known as screencasts, have attracted particular…
ERIC Educational Resources Information Center
Janniro, Michael J.
1993-01-01
Describes a study conducted by the Department of Defense Polygraph Institute for their forensic science curriculum that investigated the effects of computer-based instruction on student learning of psychophysiological detection of deception test question formulation. Treatment of the experimental and control group is explained and posttest scores…
Development and Evaluation of Computer-Based Laboratory Practical Learning Tool
ERIC Educational Resources Information Center
Gandole, Y. B.
2006-01-01
Effective evaluation of educational software is a key issue for successful introduction of advanced tools in the curriculum. This paper details to developing and evaluating a tool for computer assisted learning of science laboratory courses. The process was based on the generic instructional system design model. Various categories of educational…
Enhanced Experience Replay for Deep Reinforcement Learning
2015-11-01
ARL-TR-7538 ● NOV 2015 US Army Research Laboratory Enhanced Experience Replay for Deep Reinforcement Learning by David Doria...Experience Replay for Deep Reinforcement Learning by David Doria, Bryan Dawson, and Manuel Vindiola Computational and Information Sciences Directorate...
Computers as Media for Communication: Learning and Development in a Whole Earth Context.
ERIC Educational Resources Information Center
Levin, James A.
Educationally successful electronic network activities involving microcomputers and long-distance networks include a student newswire, joint social science projects, and joint science projects. A newswire activity, such as "The Computer Chronicles," can provide a wide range of audiences for writing, a functional environment for reading, and a…
Computer Technology-Integrated Projects Should Not Supplant Craft Projects in Science Education
ERIC Educational Resources Information Center
Klopp, Tabatha J.; Rule, Audrey C.; Schneider, Jean Suchsland; Boody, Robert M.
2014-01-01
The current emphasis on computer technology integration and narrowing of the curriculum has displaced arts and crafts. However, the hands-on, concrete nature of craft work in science modeling enables students to understand difficult concepts and to be engaged and motivated while learning spatial, logical, and sequential thinking skills. Analogy…
Finding the Hook: Computer Science Education in Elementary Contexts
ERIC Educational Resources Information Center
Ozturk, Zehra; Dooley, Caitlin McMunn; Welch, Meghan
2018-01-01
The purpose of this study was to investigate how elementary teachers with little knowledge of computer science (CS) and project-based learning (PBL) experienced integrating CS through PBL as a part of a standards-based elementary curriculum in Grades 3-5. The researchers used qualitative constant comparison methods on field notes and reflections…
Students' Explanations in Complex Learning of Disciplinary Programming
ERIC Educational Resources Information Center
Vieira, Camilo
2016-01-01
Computational Science and Engineering (CSE) has been denominated as the third pillar of science and as a set of important skills to solve the problems of a global society. Along with the theoretical and the experimental approaches, computation offers a third alternative to solve complex problems that require processing large amounts of data, or…
The Difficult Bridge between University and Industry: A Case Study in Computer Science Teaching
ERIC Educational Resources Information Center
Schilling, Jan; Klamma, Ralf
2010-01-01
Recently, there has been increasing criticism concerning academic computer science education. This paper presents a new approach based on the principles of constructivist learning design as well as the ideas of knowledge transfer in communities of practice. The course "High-tech Entrepreneurship and New Media" was introduced as an…
Supporting Abstraction Processes in Problem Solving through Pattern-Oriented Instruction
ERIC Educational Resources Information Center
Muller, Orna; Haberman, Bruria
2008-01-01
Abstraction is a major concept in computer science and serves as a powerful tool in software development. Pattern-oriented instruction (POI) is a pedagogical approach that incorporates patterns in an introductory computer science course in order to structure the learning of algorithmic problem solving. This paper examines abstraction processes in…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, James C. Jr.; Mason, Thomas; Guerrieri, Bruno
1997-10-01
Programs have been established at Florida A & M University to attract minority students to research careers in mathematics and computational science. The primary goal of the program was to increase the number of such students studying computational science via an interactive multimedia learning environment One mechanism used for meeting this goal was the development of educational modules. This academic year program established within the mathematics department at Florida A&M University, introduced students to computational science projects using high-performance computers. Additional activities were conducted during the summer, these included workshops, meetings, and lectures. Through the exposure provided by this programmore » to scientific ideas and research in computational science, it is likely that their successful applications of tools from this interdisciplinary field will be high.« less
Peer Collaboration: The Relation of Regulatory Behaviors to Learning with Hypermedia
ERIC Educational Resources Information Center
Winters, Fielding I.; Alexander, Patricia A.
2011-01-01
Peer collaboration is a pedagogical method currently used to facilitate learning in classrooms. Similarly, computer-learning environments (CLEs) are often used to promote student learning in science classrooms, in particular. However, students often have difficulty utilizing these environments effectively. Does peer collaboration help students…
The Role of Technology in Supporting Learning Communities.
ERIC Educational Resources Information Center
Riel, Margaret; Fulton, Kathleen
2001-01-01
In a learning community, students learn to cooperate and make teams work. Past technologies (print, photography, film, and computers) have enabled idea sharing, but are one-way communication modes. Broader learning communities have been made possible through electronic field trips, online mentoring, science investigations, and humanities…
ERIC Educational Resources Information Center
Macro Systems, Inc., Silver Spring, MD.
This final report describes the development of eight computer based science simulations designed for use with middle school mainstreamed students having learning disabilities or mild mental retardation. The total program includes software, a teacher's manual, 3 videos, and a set of 30 activity worksheets. Special features of the software for…
Teaching Science with Web-Based Inquiry Projects: An Exploratory Investigation
ERIC Educational Resources Information Center
Webb, Aubree M.; Knight, Stephanie L.; Wu, X. Ben; Schielack, Jane F.
2014-01-01
The purpose of this research is to explore a new computer-based interactive learning approach to assess the impact on student learning and attitudes toward science in a large university ecology classroom. A comparison was done with an established program to measure the relative impact of the new approach. The first inquiry project, BearCam, gives…
ERIC Educational Resources Information Center
Steiner, Dasi; Mendelovitch, Miriam
2017-01-01
The communications revolution reaches all sectors of the population and makes information accessible to all. This development presents complex challenges which require changes in the education system, teaching methods and learning environment. The integration of ICT (Information and Communications Technology) and science teaching requires…
Operation ARA: A Computerized Learning Game that Teaches Critical Thinking and Scientific Reasoning
ERIC Educational Resources Information Center
Halpern, Diane F.; Millis, Keith; Graesser, Arthur C.; Butler, Heather; Forsyth, Carol; Cai, Zhiqiang
2012-01-01
Operation ARA (Acquiring Research Acumen) is a computerized learning game that teaches critical thinking and scientific reasoning. It is a valuable learning tool that utilizes principles from the science of learning and serious computer games. Students learn the skills of scientific reasoning by engaging in interactive dialogs with avatars. They…
In vitro molecular machine learning algorithm via symmetric internal loops of DNA.
Lee, Ji-Hoon; Lee, Seung Hwan; Baek, Christina; Chun, Hyosun; Ryu, Je-Hwan; Kim, Jin-Woo; Deaton, Russell; Zhang, Byoung-Tak
2017-08-01
Programmable biomolecules, such as DNA strands, deoxyribozymes, and restriction enzymes, have been used to solve computational problems, construct large-scale logic circuits, and program simple molecular games. Although studies have shown the potential of molecular computing, the capability of computational learning with DNA molecules, i.e., molecular machine learning, has yet to be experimentally verified. Here, we present a novel molecular learning in vitro model in which symmetric internal loops of double-stranded DNA are exploited to measure the differences between training instances, thus enabling the molecules to learn from small errors. The model was evaluated on a data set of twenty dialogue sentences obtained from the television shows Friends and Prison Break. The wet DNA-computing experiments confirmed that the molecular learning machine was able to generalize the dialogue patterns of each show and successfully identify the show from which the sentences originated. The molecular machine learning model described here opens the way for solving machine learning problems in computer science and biology using in vitro molecular computing with the data encoded in DNA molecules. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Siahaan, P.; Suryani, A.; Kaniawati, I.; Suhendi, E.; Samsudin, A.
2017-02-01
The purpose of this research is to identify the development of students’ science process skills (SPS) on linear motion concept by utilizing simple computer simulation. In order to simplify the learning process, the concept is able to be divided into three sub-concepts: 1) the definition of motion, 2) the uniform linear motion and 3) the uniformly accelerated motion. This research was administered via pre-experimental method with one group pretest-posttest design. The respondents which were involved in this research were 23 students of seventh grade in one of junior high schools in Bandung City. The improving process of students’ science process skill is examined based on normalized gain analysis from pretest and posttest scores for all sub-concepts. The result of this research shows that students’ science process skills are dramatically improved by 47% (moderate) on observation skill; 43% (moderate) on summarizing skill, 70% (high) on prediction skill, 44% (moderate) on communication skill and 49% (moderate) on classification skill. These results clarify that the utilizing simple computer simulations in physics learning is be able to improve overall science skills at moderate level.
Dynamic Learning Style Prediction Method Based on a Pattern Recognition Technique
ERIC Educational Resources Information Center
Yang, Juan; Huang, Zhi Xing; Gao, Yue Xiang; Liu, Hong Tao
2014-01-01
During the past decade, personalized e-learning systems and adaptive educational hypermedia systems have attracted much attention from researchers in the fields of computer science Aand education. The integration of learning styles into an intelligent system is a possible solution to the problems of "learning deviation" and…
An Interactive Learning Environment for Information and Communication Theory
ERIC Educational Resources Information Center
Hamada, Mohamed; Hassan, Mohammed
2017-01-01
Interactive learning tools are emerging as effective educational materials in the area of computer science and engineering. It is a research domain that is rapidly expanding because of its positive impacts on motivating and improving students' performance during the learning process. This paper introduces an interactive learning environment for…
Personal Learning Network Clusters: A Comparison between Mathematics and Computer Science Students
ERIC Educational Resources Information Center
Harding, Ansie; Engelbrecht, Johann
2015-01-01
"Personal learning environments" (PLEs) and "personal learning networks" (PLNs) are well-known concepts. A personal learning network "cluster" is a small group of people who regularly interact academically and whose PLNs have a non-empty intersection that includes all the other members. At university level PLN…
Dynamics of list-server discussion on genetically modified foods.
Triunfol, Marcia L; Hines, Pamela J
2004-04-01
Computer-mediated discussion lists, or list-servers, are popular tools in settings ranging from professional to personal to educational. A discussion list on genetically modified food (GMF) was created in September 2000 as part of the Forum on Genetically Modified Food developed by Science Controversies: Online Partnerships in Education (SCOPE), an educational project that uses computer resources to aid research and learning around unresolved scientific questions. The discussion list "GMF-Science" was actively supported from January 2001 to May 2002. The GMF-Science list welcomed anyone interested in discussing the controversies surrounding GMF. Here, we analyze the dynamics of the discussions and how the GMF-Science list may contribute to learning. Activity on the GMF-Science discussion list reflected some but not all the controversies that were appearing in more traditional publication formats, broached other topics not well represented in the published literature, and tended to leave undiscussed the more technical research developments.
NASA Astrophysics Data System (ADS)
Veglio, E.; Graves, L. W.; Bank, C. G.
2014-12-01
We designed various computer-based applications and videos as educational resources for undergraduate courses at the University of Toronto in the Earth Science Department. These resources were developed in effort to enhance students' self-learning of key concepts as identified by educators at the department. The interactive learning modules and videos were created using the programs MATLAB and Adobe Creative Suite 5 (Photoshop and Premiere) and range from optical mineralogy (extinction and Becke line), petrology (equilibrium melting in 2-phase systems), crystallography (crystal systems), geophysics (gravity anomaly), and geologic history (evolution of Canada). These resources will be made available for students on internal course websites as well as through the University of Toronto Earth Science's website (www.es.utoronto.ca) where appropriate; the video platform YouTube.com may be used to reach a wide audience and promote the material. Usage of the material will be monitored and feedback will be collected over the next academic year in order to gage the use of these interactive learning tools and to assess if these computer-based applications and videos foster student engagement and active learning, and thus offer an enriched learning experience.
The FuturICT education accelerator
NASA Astrophysics Data System (ADS)
Johnson, J.; Buckingham Shum, S.; Willis, A.; Bishop, S.; Zamenopoulos, T.; Swithenby, S.; MacKay, R.; Merali, Y.; Lorincz, A.; Costea, C.; Bourgine, P.; Louçã, J.; Kapenieks, A.; Kelley, P.; Caird, S.; Bromley, J.; Deakin Crick, R.; Goldspink, C.; Collet, P.; Carbone, A.; Helbing, D.
2012-11-01
Education is a major force for economic and social wellbeing. Despite high aspirations, education at all levels can be expensive and ineffective. Three Grand Challenges are identified: (1) enable people to learn orders of magnitude more effectively, (2) enable people to learn at orders of magnitude less cost, and (3) demonstrate success by exemplary interdisciplinary education in complex systems science. A ten year `man-on-the-moon' project is proposed in which FuturICT's unique combination of Complexity, Social and Computing Sciences could provide an urgently needed transdisciplinary language for making sense of educational systems. In close dialogue with educational theory and practice, and grounded in the emerging data science and learning analytics paradigms, this will translate into practical tools (both analytical and computational) for researchers, practitioners and leaders; generative principles for resilient educational ecosystems; and innovation for radically scalable, yet personalised, learner engagement and assessment. The proposed Education Accelerator will serve as a `wind tunnel' for testing these ideas in the context of real educational programmes, with an international virtual campus delivering complex systems education exploiting the new understanding of complex, social, computationally enhanced organisational structure developed within FuturICT.
Simulating Serious Games: A Discrete-Time Computational Model Based on Cognitive Flow Theory
ERIC Educational Resources Information Center
Westera, Wim
2018-01-01
This paper presents a computational model for simulating how people learn from serious games. While avoiding the combinatorial explosion of a games micro-states, the model offers a meso-level pathfinding approach, which is guided by cognitive flow theory and various concepts from learning sciences. It extends a basic, existing model by exposing…
ERIC Educational Resources Information Center
Hsu, P. -S.; Van Dyke, M.; Chen, Y.; Smith, T. J.
2015-01-01
The purpose of this quasi-experimental study was to explore how seventh graders in a suburban school in the United States developed argumentation skills and science knowledge in a project-based learning environment that incorporated a graph-oriented, computer-assisted application. A total of 54 students (three classes) comprised this treatment…
ERIC Educational Resources Information Center
Turcotte, Sandrine
2012-01-01
This article describes in detail a conversation analysis of conceptual change in a computer-supported collaborative learning environment. Conceptual change is an essential learning process in science education that has yet to be fully understood. While many models and theories have been developed over the last three decades, empirical data to…
ERIC Educational Resources Information Center
Giannakos, Michail N.
2014-01-01
Computer Science (CS) courses comprise both Programming and Information and Communication Technology (ICT) issues; however these two areas have substantial differences, inter alia the attitudes and beliefs of the students regarding the intended learning content. In this research, factors from the Social Cognitive Theory and Unified Theory of…
ERIC Educational Resources Information Center
McColskey, Wendy; Parke, Helen; Furtak, Erin; Butler, Susan
This article addresses what was learned through the National Computational Science Leadership Program about involving teachers in planning high quality units of instruction around computational science investigations. Two cohorts of roughly 25 teacher teams nationwide were given opportunities to develop "replacement units." The goal was to support…
Tri-P-LETS: Changing the Face of High School Computer Science
ERIC Educational Resources Information Center
Sherrell, Linda; Malasri, Kriangsiri; Mills, David; Thomas, Allen; Greer, James
2012-01-01
From 2004-2007, the University of Memphis carried out the NSF-funded Tri-P-LETS (Three P Learning Environment for Teachers and Students) project to improve local high-school computer science curricula. The project reached a total of 58 classrooms in eleven high schools emphasizing problem solving skills, programming concepts as opposed to syntax,…
Using Visual Technologies in the Introductory Programming Courses for Computer Science Majors
ERIC Educational Resources Information Center
Price, Kellie W.
2013-01-01
Decreasing enrollments, lower rates of student retention and changes in the learning styles of today's students are all issues that the Computer Science (CS) academic community is currently facing. As a result, CS educators are being challenged to find the right blend of technology and pedagogy for their curriculum in order to help students…
ERIC Educational Resources Information Center
Wiggins, Joseph B.; Grafsgaard, Joseph F.; Boyer, Kristy Elizabeth; Wiebe, Eric N.; Lester, James C.
2017-01-01
In recent years, significant advances have been made in intelligent tutoring systems, and these advances hold great promise for adaptively supporting computer science (CS) learning. In particular, tutorial dialogue systems that engage students in natural language dialogue can create rich, adaptive interactions. A promising approach to increasing…
CS Unplugged and Middle-School Students' Views, Attitudes, and Intentions regarding CS
ERIC Educational Resources Information Center
Taub, Rivka; Armoni, Michal; Ben-Ari, Mordechai
2012-01-01
Many students hold incorrect ideas and negative attitudes about computer science (CS). In order to address these difficulties, a series of learning activities called Computer Science Unplugged was developed by Tim Bell and his colleagues. These activities expose young people to central concepts in CS in an entertaining way without requiring a…
minimUML: A Minimalist Approach to UML Diagramming for Early Computer Science Education
ERIC Educational Resources Information Center
Turner, Scott A.; Perez-Quinones, Manuel A.; Edwards, Stephen H.
2005-01-01
In introductory computer science courses, the Unified Modeling Language (UML) is commonly used to teach basic object-oriented design. However, there appears to be a lack of suitable software to support this task. Many of the available programs that support UML focus on developing code and not on enhancing learning. Programs designed for…
ERIC Educational Resources Information Center
Ernst, Jeremy V.; Clark, Aaron C.
2012-01-01
In 2009, the North Carolina Virtual Public Schools worked with researchers at the William and Ida Friday Institute to produce and evaluate the use of game creation by secondary students as a means for learning content related to career awareness in Science, Technology, Engineering and Mathematics (STEM) disciplines, with particular emphasis in…
Computer Science Education in North-Rhine Westphalia, Germany--A Case Study
ERIC Educational Resources Information Center
Knobelsdorf, Maria; Magenheim, Johannes; Brinda, Torsten; Engbring, Dieter; Humbert, Ludger; Pasternak, Arno; Schroeder, Ulrik; Thomas, Marco; Vahrenhold, Jan
2015-01-01
In North-Rhine Westphalia, the most populated state in Germany, Computer Science (CS) has been taught in secondary schools since the early 1970s. This article provides an overview of the past and current situation of CS education in North-Rhine Westphalia, including lessons learned through efforts to introduce and to maintain CS in secondary…
DiSalvo, Betsy
2014-01-01
To determine appropriate computer science curricula, educators sought to better understand the different affordances of teaching with a visual programming language (Alice) or a text-based language (Jython). Although students often preferred one language, that language wasn't necessarily the one from which they learned the most.
ERIC Educational Resources Information Center
Lin, Feng; Chan, Carol K. K.
2018-01-01
This study examined the role of computer-supported knowledge-building discourse and epistemic reflection in promoting elementary-school students' scientific epistemology and science learning. The participants were 39 Grade 5 students who were collectively pursuing ideas and inquiry for knowledge advance using Knowledge Forum (KF) while studying a…
ERIC Educational Resources Information Center
Giannakos, Michail N.; Pappas, Ilias O.; Jaccheri, Letizia; Sampson, Demetrios G.
2017-01-01
Researchers have been working to understand the high dropout rates in computer science (CS) education. Despite the great demand for CS professionals, little is known about what influences individuals to complete their CS studies. We identify gains of studying CS, the (learning) environment, degree's usefulness, and barriers as important predictors…
ERIC Educational Resources Information Center
Cohen, Edward Charles
2013-01-01
Design based research was utilized to investigate how students use a greenhouse effect simulation in order to derive best learning practices. During this process, students recognized the authentic scientific process involving computer simulations. The simulation used is embedded within an inquiry-based technology-mediated science curriculum known…
Enhancing Computer Science Education with a Wireless Intelligent Simulation Environment
ERIC Educational Resources Information Center
Cook, Diane J.; Huber, Manfred; Yerraballi, Ramesh; Holder, Lawrence B.
2004-01-01
The goal of this project is to develop a unique simulation environment that can be used to increase students' interest and expertise in Computer Science curriculum. Hands-on experience with physical or simulated equipment is an essential ingredient for learning, but many approaches to training develop a separate piece of equipment or software for…
Tadmor, Brigitta; Tidor, Bruce
2005-09-01
Progress in the life sciences, including genome sequencing and high-throughput experimentation, offers an opportunity for understanding biology and medicine from a systems perspective. This 'new view', which complements the more traditional component-based approach, involves the integration of biological research with approaches from engineering disciplines and computer science. The result is more than a new set of technologies. Rather, it promises a fundamental reconceptualization of the life sciences based on the development of quantitative and predictive models to describe crucial processes. To achieve this change, learning communities are being formed at the interface of the life sciences, engineering and computer science. Through these communities, research and education will be integrated across disciplines and the challenges associated with multidisciplinary team-based science will be addressed.
The kids got game: Computer/video games, gender and learning outcomes in science classrooms
NASA Astrophysics Data System (ADS)
Anderson, Janice Lyn
In recent years educators have begun to explore how to purposively design computer/video games to support student learning. This interest in video games has arisen in part because educational video games appear to have the potential to improve student motivation and interest in technology, and engage students in learning through the use of a familiar medium (Squire, 2005; Shaffer, 2006; Gee, 2005). The purpose of this dissertation research is to specifically address the issue of student learning through the use of educational computer/video games. Using the Quest Atlantis computer game, this study involved a mixed model research strategy that allowed for both broad understandings of classroom practices and specific analysis of outcomes through the themes that emerged from the case studies of the gendered groups using the game. Specifically, this study examined how fifth-grade students learning about science concepts, such as water quality and ecosystems, unfolds over time as they participate in the Quest Atlantis computer game. Data sources included classroom observations and video, pre- and post-written assessments, pre- and post- student content interviews, student field notebooks, field reports and the field notes of the researcher. To make sense of how students learning unfolded, video was analyzed using a framework of interaction analysis and small group interactions (Jordan & Henderson, 1995; Webb, 1995). These coded units were then examined with respect to student artifacts and assessments and patterns of learning trajectories analyzed. The analysis revealed that overall, student learning outcomes improved from pre- to post-assessments for all students. While there were no observable gendered differences with respect to the test scores and content interviews, there were gendered differences with respect to game play. Implications for game design, use of external scaffolds, games as tools for learning and gendered findings are discussed.
SEED: A Suite of Instructional Laboratories for Computer Security Education
ERIC Educational Resources Information Center
Du, Wenliang; Wang, Ronghua
2008-01-01
The security and assurance of our computing infrastructure has become a national priority. To address this priority, higher education has gradually incorporated the principles of computer and information security into the mainstream undergraduate and graduate computer science curricula. To achieve effective education, learning security principles…
Recommendations to Support Computational Thinking in the Elementary Classroom
ERIC Educational Resources Information Center
Estapa, Anne; Hutchison, Amy; Nadolny, Larysa
2018-01-01
Computational thinking is an important and necessary way of thinking for computer programmers and other professionals in science, technology, engineering, and mathematics (STEM). Research on emerging practices around computational thinking that is developed through coding initiatives in schools reports that elementary children typically learn how…
2010-10-18
August 2010 was building the right game “ – World of Warcraft has 30% women (according to womengamers.com) Conclusion: – We don’t really understand why...Report of the National Academies on Informal Learning • Infancy - late adulthood: Learn about the world & develop important skills for science...Education With Rigor and Vigor – Excitement, interest, and motivation to learn about phenomena in the natural and physical world . – Generate
ERIC Educational Resources Information Center
Brown, John Seely; Goldstein, Ira
A revolution that will transform learning in our society, altering both the methods and the content of education, has been made possible by harnessing tomorrow's powerful computer technology to serve as intelligent instructional systems. The unique quality of the computer that makes a revolution possible is that it can serve not only as a…
Computer Supported Cooperative Work in Information Search and Retrieval.
ERIC Educational Resources Information Center
Twidale, Michael B.; Nichols, David M.
1998-01-01
Considers how research in collaborative technologies can inform research and development in library and information science. Topics include computer supported collaborative work; shared drawing; collaborative writing; MUDs; MOOs; workflow; World Wide Web; collaborative learning; computer mediated communication; ethnography; evaluation; remote…
Student-Generated Visualization as a Study Strategy for Science Concept Learning
ERIC Educational Resources Information Center
Hsieh, Yi-Chuan Jane; Cifuentes, Lauren
2006-01-01
Mixed methods were adopted to explore the effects of student-generated visualization on paper and on computers as a study strategy for middle school science concept learning. In a post-test-only-control-group design, scores were compared among a control-group (n=28), a group that was trained to visualize on paper (n=30), and a group that was…
Analogy Mapping Development for Learning Programming
NASA Astrophysics Data System (ADS)
Sukamto, R. A.; Prabawa, H. W.; Kurniawati, S.
2017-02-01
Programming skill is an important skill for computer science students, whereas nowadays, there many computer science students are lack of skills and information technology knowledges in Indonesia. This is contrary with the implementation of the ASEAN Economic Community (AEC) since the end of 2015 which is the qualified worker needed. This study provided an effort for nailing programming skills by mapping program code to visual analogies as learning media. The developed media was based on state machine and compiler principle and was implemented in C programming language. The state of every basic condition in programming were successful determined as analogy visualization.
NASA Astrophysics Data System (ADS)
Jaime, Arturo; Blanco, José Miguel; Domínguez, César; Sánchez, Ana; Heras, Jónathan; Usandizaga, Imanol
2016-06-01
Different learning methods such as project-based learning, spiral learning and peer assessment have been implemented in science disciplines with different outcomes. This paper presents a proposal for a project management course in the context of a computer science degree. Our proposal combines three well-known methods: project-based learning, spiral learning and peer assessment. Namely, the course is articulated during a semester through the structured (progressive and incremental) development of a sequence of four projects, whose duration, scope and difficulty of management increase as the student gains theoretical and instrumental knowledge related to planning, monitoring and controlling projects. Moreover, the proposal is complemented using peer assessment. The proposal has already been implemented and validated for the last 3 years in two different universities. In the first year, project-based learning and spiral learning methods were combined. Such a combination was also employed in the other 2 years; but additionally, students had the opportunity to assess projects developed by university partners and by students of the other university. A total of 154 students have participated in the study. We obtain a gain in the quality of the subsequently projects derived from the spiral project-based learning. Moreover, this gain is significantly bigger when peer assessment is introduced. In addition, high-performance students take advantage of peer assessment from the first moment, whereas the improvement in poor-performance students is delayed.
The Behavioral and Social Sciences Survey: Mathematical Sciences and Social Sciences.
ERIC Educational Resources Information Center
Kruskal, William, Ed.
This book, one of a series prepared in connection with the Behavioral and Social Sciences Survey (BASS) conducted between 1967 and 1969, deals with problems of statistics, mathematics, and computation as they related to the social sciences. Chapter 1 shows how these subjects help in their own ways for studying learning behavior with irregular…
High-Performance Computing User Facility | Computational Science | NREL
User Facility High-Performance Computing User Facility The High-Performance Computing User Facility technologies. Photo of the Peregrine supercomputer The High Performance Computing (HPC) User Facility provides Gyrfalcon Mass Storage System. Access Our HPC User Facility Learn more about these systems and how to access
Can Computers Be Used Successfully for Teaching College Mathematics?
ERIC Educational Resources Information Center
Hatfield, Steven H.
1976-01-01
Author states that the use of computers in mathematics courses tends to generate interest in course subject matter and make learning a less passive experience. Computers also introduce students to computer science as a field of study, and provide basic knowledge of computers as an important aspect of today's technology. (Author/RW)
Foundations for a new science of learning.
Meltzoff, Andrew N; Kuhl, Patricia K; Movellan, Javier; Sejnowski, Terrence J
2009-07-17
Human learning is distinguished by the range and complexity of skills that can be learned and the degree of abstraction that can be achieved compared with those of other species. Homo sapiens is also the only species that has developed formal ways to enhance learning: teachers, schools, and curricula. Human infants have an intense interest in people and their behavior and possess powerful implicit learning mechanisms that are affected by social interaction. Neuroscientists are beginning to understand the brain mechanisms underlying learning and how shared brain systems for perception and action support social learning. Machine learning algorithms are being developed that allow robots and computers to learn autonomously. New insights from many different fields are converging to create a new science of learning that may transform educational practices.
Foundations for a New Science of Learning
Meltzoff, Andrew N.; Kuhl, Patricia K.; Movellan, Javier; Sejnowski, Terrence J.
2009-01-01
Human learning is distinguished by the range and complexity of skills that can be learned and the degree of abstraction that can be achieved compared to other species. Humans are also the only species that has developed formal ways to enhance learning: teachers, schools, and curricula. Human infants have an intense interest in people and their behavior, and possess powerful implicit learning mechanisms that are affected by social interaction. Neuroscientists are beginning to understand the brain mechanisms underlying learning and how shared brain systems for perception and action support social learning. Machine learning algorithms are being developed that allow robots and computers to learn autonomously. New insights from many different fields are converging to create a new science of learning that may transform educational practices. PMID:19608908
Studying Students' Attitudes on Using Examples of Game Source Code for Learning Programming
ERIC Educational Resources Information Center
Theodoraki, Aristea; Xinogalos, Stelios
2014-01-01
Games for learning are currently used in several disciplines for motivating students and enhancing their learning experience. This new approach of technology-enhanced learning has attracted researchers' and instructors' attention in the area of programming that is one of the most cognitively demanding fields in Computer Science. Several…
Implementation of Project Based Learning in Mechatronic Lab Course at Bandung State Polytechnic
ERIC Educational Resources Information Center
Basjaruddin, Noor Cholis; Rakhman, Edi
2016-01-01
Mechatronics is a multidisciplinary that includes a combination of mechanics, electronics, control systems, and computer science. The main objective of mechatronics learning is to establish a comprehensive mindset in the development of mechatronic systems. Project Based Learning (PBL) is an appropriate method for use in the learning process of…
Learning Science through Computer Games and Simulations
ERIC Educational Resources Information Center
Honey, Margaret A., Ed.; Hilton, Margaret, Ed.
2011-01-01
At a time when scientific and technological competence is vital to the nation's future, the weak performance of U.S. students in science reflects the uneven quality of current science education. Although young children come to school with innate curiosity and intuitive ideas about the world around them, science classes rarely tap this potential.…
ALCF Data Science Program: Productive Data-centric Supercomputing
NASA Astrophysics Data System (ADS)
Romero, Nichols; Vishwanath, Venkatram
The ALCF Data Science Program (ADSP) is targeted at big data science problems that require leadership computing resources. The goal of the program is to explore and improve a variety of computational methods that will enable data-driven discoveries across all scientific disciplines. The projects will focus on data science techniques covering a wide area of discovery including but not limited to uncertainty quantification, statistics, machine learning, deep learning, databases, pattern recognition, image processing, graph analytics, data mining, real-time data analysis, and complex and interactive workflows. Project teams will be among the first to access Theta, ALCFs forthcoming 8.5 petaflops Intel/Cray system. The program will transition to the 200 petaflop/s Aurora supercomputing system when it becomes available. In 2016, four projects have been selected to kick off the ADSP. The selected projects span experimental and computational sciences and range from modeling the brain to discovering new materials for solar-powered windows to simulating collision events at the Large Hadron Collider (LHC). The program will have a regular call for proposals with the next call expected in Spring 2017.http://www.alcf.anl.gov/alcf-data-science-program This research used resources of the ALCF, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.
ERIC Educational Resources Information Center
Davies, Alison; Ramsay, Jill; Lindfield, Helen; Couperthwaite, John
2005-01-01
This paper examines BSc Physiotherapy students' experiences of developing their neurological observational and analytical skills using a blend of traditional classroom activities and computer-based materials at the University of Birmingham. New teaching and learning resources were developed and supported in the School of Health Sciences using Web…
ERIC Educational Resources Information Center
Tang, Kok-Sing; Tan, Seng-Chee
2017-01-01
The study in this article examines and illustrates the intertextual meanings made by a group of high school science students as they embarked on a knowledge building discourse to solve a physics problem. This study is situated in a computer-supported collaborative learning (CSCL) environment designed to support student learning through a science…
Selecting Software for Students with Learning and Other Disabilities
ERIC Educational Resources Information Center
Marino, Matthew T.; Tsurusaki, Blakely K.; Basham, James D.
2011-01-01
Have you ever bought a computer program that you thought would be great for your struggling students, only to find that it did not work on your school computers, or that your students found it difficult to use? Selecting science software for students with learning and other disabilities can be a challenge. This Idea Bank provides a list of…
ERIC Educational Resources Information Center
Furberg, Anniken
2016-01-01
This paper reports on a study of teacher support in a setting where students engaged with computer-supported collaborative learning (CSCL) in science. The empirical basis is an intervention study where secondary school students and their teacher performed a lab experiment in genetics supported by a digital learning environment. The analytical…
ERIC Educational Resources Information Center
Mascaró, Maite; Sacristán, Ana Isabel; Rufino, Marta M.
2016-01-01
For the past 4 years, we have been involved in a project that aims to enhance the teaching and learning of experimental analysis and statistics, of environmental and biological sciences students, through computational programming activities (using R code). In this project, through an iterative design, we have developed sequences of R-code-based…
ERIC Educational Resources Information Center
Fang, Su-Chi; Hsu, Ying-Shao; Hsu, Wei Hsiu
2016-01-01
The study explored how to best use scaffolds for supporting students' inquiry practices in computer-supported learning environments. We designed a series of inquiry units assisted with three versions of written inquiry prompts (generic and context-specific); that is, three scaffold-fading conditions: implicit, explicit, and fading. We then…
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC.
This report addresses an opportunity to accelerate progress in virtually every branch of science and engineering concurrently, while also boosting the American economy as business firms also learn to exploit these new capabilities. The successful rapid advancement in both science and technology creates its own challenges, four of which are…
ERIC Educational Resources Information Center
Jaipal-Jamani, Kamini; Angeli, Charoula
2017-01-01
The current impetus for increasing STEM in K-12 education calls for an examination of how preservice teachers are being prepared to teach STEM. This paper reports on a study that examined elementary preservice teachers' (n = 21) self-efficacy, understanding of science concepts, and computational thinking as they engaged with robotics in a science…
ERIC Educational Resources Information Center
Mikulecky, Larry
A study evaluated the effectiveness of a series of print materials and interactive computer-guided study programs designed to lead undergraduate students to apply basic textbook reading and concept mapping strategies to the study of science and social science textbooks. Following field testing with 25 learning skills students, 50 freshman biology…
Incorporating Laptop Technologies into an Animal Sciences Curriculum
ERIC Educational Resources Information Center
Birrenkott, Glenn; Bertrand, Jean A.; Bolt, Brian
2005-01-01
Teaching animal sciences, like most agricultural disciplines, requires giving students hands-on learning opportunities in remote and often computer-unfriendly sites such as animal farms. How do faculty integrate laptop use into such an environment?
Teacher experiences in the use of the "Zoology Zone" multimedia resource in elementary science
NASA Astrophysics Data System (ADS)
Paradis, Lynne Darlene
This interpretive research study explored the experiences of teachers with the use of the Zoology Zone multimedia resource in teaching grade three science. Four generalist teachers used the multimedia resource in the teaching of the Animal Life Cycle topic from the Alberta grade three science program. The experiences of the teachers were examined through individual interviews, classroom visits and group interviews. Three dimensions of the study, as they related to elementary science teaching using the Zoology Zone multimedia resource were examined: (a) technology as a teaching resource, (b) science education and constructivist theory, and (c) teacher learning. In the area of planning for instruction, the teachers found that using the multimedia resource demanded more time and effort than using non-computer resources because of the dependence teachers had on others for ensuring access to computer labs and setting up the multimedia resource to run on school computers. The teachers felt there was value in giving students the opportunity to independently explore the multimedia resource because it captured their attention, included appropriate content, and was designed so that students could navigate through the teaming activities easily and make choices about how to proceed with their own learning. Despite the opportunities for student directed learning, the teachers found that it was also necessary to include some teacher directed learning to ensure that students were learning the mandated curriculum. As the study progressed, it became evident that the teachers valued the social dimensions of learning by making it a priority to include lessons that encouraged student to student interaction, student to teacher interaction, small group and whole class discussion, and peer teaching. When students were engaged with the multimedia resource, the teacher facilitated learning by circulating to each student and discussing student findings. Teachers focussed primarily on the content components of the Alberta science program of studies. They stated that the time allotted for science instruction was insufficient to effectively address the teaching of skills for science inquiry and of the 'big' ideas in science. The teachers stated that they valued inquiry teaching, constructivist teaching and the integration of the Information and Communication Technology (ICT) outcomes but that utilizing these teaching approaches was challenging because of the depth and breadth of the mandated curriculum. It became apparent that science instruction did not meet all the expectations of the mandated science curriculum and that the teachers did not plan for the integration of the ICT outcomes. The teachers in the study stated that they felt that multimedia resources did have a place in the elementary science curriculum and that the ICT outcomes could be achieved as part of science instruction using the Zoology Zone multimedia resource. The study concludes with some implications for teachers, educational policy makers and school administration, related to the use of multimedia resources in the teaching of elementary science and in the teaching of the ICT outcomes.
New Trends in E-Science: Machine Learning and Knowledge Discovery in Databases
NASA Astrophysics Data System (ADS)
Brescia, Massimo
2012-11-01
Data mining, or Knowledge Discovery in Databases (KDD), while being the main methodology to extract the scientific information contained in Massive Data Sets (MDS), needs to tackle crucial problems since it has to orchestrate complex challenges posed by transparent access to different computing environments, scalability of algorithms, reusability of resources. To achieve a leap forward for the progress of e-science in the data avalanche era, the community needs to implement an infrastructure capable of performing data access, processing and mining in a distributed but integrated context. The increasing complexity of modern technologies carried out a huge production of data, whose related warehouse management and the need to optimize analysis and mining procedures lead to a change in concept on modern science. Classical data exploration, based on local user own data storage and limited computing infrastructures, is no more efficient in the case of MDS, worldwide spread over inhomogeneous data centres and requiring teraflop processing power. In this context modern experimental and observational science requires a good understanding of computer science, network infrastructures, Data Mining, etc. i.e. of all those techniques which fall into the domain of the so called e-science (recently assessed also by the Fourth Paradigm of Science). Such understanding is almost completely absent in the older generations of scientists and this reflects in the inadequacy of most academic and research programs. A paradigm shift is needed: statistical pattern recognition, object oriented programming, distributed computing, parallel programming need to become an essential part of scientific background. A possible practical solution is to provide the research community with easy-to understand, easy-to-use tools, based on the Web 2.0 technologies and Machine Learning methodology. Tools where almost all the complexity is hidden to the final user, but which are still flexible and able to produce efficient and reliable scientific results. All these considerations will be described in the detail in the chapter. Moreover, examples of modern applications offering to a wide variety of e-science communities a large spectrum of computational facilities to exploit the wealth of available massive data sets and powerful machine learning and statistical algorithms will be also introduced.
Computational intelligence in earth sciences and environmental applications: issues and challenges.
Cherkassky, V; Krasnopolsky, V; Solomatine, D P; Valdes, J
2006-03-01
This paper introduces a generic theoretical framework for predictive learning, and relates it to data-driven and learning applications in earth and environmental sciences. The issues of data quality, selection of the error function, incorporation of the predictive learning methods into the existing modeling frameworks, expert knowledge, model uncertainty, and other application-domain specific problems are discussed. A brief overview of the papers in the Special Issue is provided, followed by discussion of open issues and directions for future research.
Girls in computer science: A female only introduction class in high school
NASA Astrophysics Data System (ADS)
Drobnis, Ann W.
This study examined the impact of an all girls' classroom environment in a high school introductory computer science class on the student's attitudes towards computer science and their thoughts on future involvement with computer science. It was determined that an all girls' introductory class could impact the declining female enrollment and female students' efficacy towards computer science. This research was conducted in a summer school program through a regional magnet school for science and technology which these students attend during the school year. Three different groupings of students were examined for the research: female students in an all girls' class, female students in mixed-gender classes and male students in mixed-gender classes. A survey, Attitudes about Computers and Computer Science (ACCS), was designed to obtain an understanding of the students' thoughts, preconceptions, attitude, knowledge of computer science, and future intentions around computer science, both in education and career. Students in all three groups were administered the ACCS prior to taking the class and upon completion of the class. In addition, students in the all girls' class wrote in a journal throughout the course, and some of those students were also interviewed upon completion of the course. The data was analyzed using quantitative and qualitative techniques. While there were no major differences found in the quantitative data, it was determined that girls in the all girls' class were truly excited by what they had learned and were more open to the idea of computer science being a part of their future.
ERIC Educational Resources Information Center
Patterson, Janice H.; Smith, Marshall S.
This report presents a national agenda for research on the learning of thinking skills via computer technology which was developed at a National Academy of Sciences conference on educational, methodological, and practical issues involved in the use of computers to promote complex thought in grades K-12. The discussion of research topics agreed…
Smolinski, Tomasz G
2010-01-01
Computer literacy plays a critical role in today's life sciences research. Without the ability to use computers to efficiently manipulate and analyze large amounts of data resulting from biological experiments and simulations, many of the pressing questions in the life sciences could not be answered. Today's undergraduates, despite the ubiquity of computers in their lives, seem to be largely unfamiliar with how computers are being used to pursue and answer such questions. This article describes an innovative undergraduate-level course, titled Computer Literacy for Life Sciences, that aims to teach students the basics of a computerized scientific research pursuit. The purpose of the course is for students to develop a hands-on working experience in using standard computer software tools as well as computer techniques and methodologies used in life sciences research. This paper provides a detailed description of the didactical tools and assessment methods used in and outside of the classroom as well as a discussion of the lessons learned during the first installment of the course taught at Emory University in fall semester 2009.
Riding the Hype Wave: Evaluating new AI Techniques for their Applicability in Earth Science
NASA Astrophysics Data System (ADS)
Ramachandran, R.; Zhang, J.; Maskey, M.; Lee, T. J.
2016-12-01
Every few years a new technology rides the hype wave generated by the computer science community. Converts to this new technology who surface from both the science community and the informatics community promulgate that it can radically improve or even change the existing scientific process. Recent examples of new technology following in the footsteps of "big data" now include deep learning algorithms and knowledge graphs. Deep learning algorithms mimic the human brain and process information through multiple stages of transformation and representation. These algorithms are able to learn complex functions that map pixels directly to outputs without relying on human-crafted features and solve some of the complex classification problems that exist in science. Similarly, knowledge graphs aggregate information around defined topics that enable users to resolve their query without having to navigate and assemble information manually. Knowledge graphs could potentially be used in scientific research to assist in hypothesis formulation, testing, and review. The challenge for the Earth science research community is to evaluate these new technologies by asking the right questions and considering what-if scenarios. What is this new technology enabling/providing that is innovative and different? Can one justify the adoption costs with respect to the research returns? Since nothing comes for free, utilizing a new technology entails adoption costs that may outweigh the benefits. Furthermore, these technologies may require significant computing infrastructure in order to be utilized effectively. Results from two different projects will be presented along with lessons learned from testing these technologies. The first project primarily evaluates deep learning techniques for different applications of image retrieval within Earth science while the second project builds a prototype knowledge graph constructed for Hurricane science.
Saving Face While Geeking Out: Video Game Testing as a Justification for Learning Computer Science
ERIC Educational Resources Information Center
DiSalvo, Betsy; Guzdial, Mark; Bruckman, Amy; McKlin, Tom
2014-01-01
Why would individuals who are capable of learning opt not to? Learning is important for stability and success. It would seem rational that students in groups that are frequently underrepresented or marginalized would be motivated to learn. However, negotiation of multiple identities and self-beliefs can impact motivations to learn. For example,…
The Impact of Computing in Education in Korea.
ERIC Educational Resources Information Center
Huh, Unna
1993-01-01
Discusses educational computing in Korea to be used for improving the teaching-learning process, improving science education, and preparing for an information society. Highlights include government, higher education, and private company support; basic objectives and long-term planning for educational computing; software applications; and future…
Why formal learning theory matters for cognitive science.
Fulop, Sean; Chater, Nick
2013-01-01
This article reviews a number of different areas in the foundations of formal learning theory. After outlining the general framework for formal models of learning, the Bayesian approach to learning is summarized. This leads to a discussion of Solomonoff's Universal Prior Distribution for Bayesian learning. Gold's model of identification in the limit is also outlined. We next discuss a number of aspects of learning theory raised in contributed papers, related to both computational and representational complexity. The article concludes with a description of how semi-supervised learning can be applied to the study of cognitive learning models. Throughout this overview, the specific points raised by our contributing authors are connected to the models and methods under review. Copyright © 2013 Cognitive Science Society, Inc.
Markowitz, Dina G; DuPré, Michael J
2007-01-01
The University of Rochester's Graduate Experience in Science Education (GESE) course familiarizes biomedical science graduate students interested in pursuing academic career tracks with a fundamental understanding of some of the theory, principles, and concepts of science education. This one-semester elective course provides graduate students with practical teaching and communication skills to help them better relate science content to, and increase their confidence in, their own teaching abilities. The 2-h weekly sessions include an introduction to cognitive hierarchies, learning styles, and multiple intelligences; modeling and coaching some practical aspects of science education pedagogy; lesson-planning skills; an introduction to instructional methods such as case studies and problem-based learning; and use of computer-based instructional technologies. It is hoped that the early development of knowledge and skills about teaching and learning will encourage graduate students to continue their growth as educators throughout their careers. This article summarizes the GESE course and presents evidence on the effectiveness of this course in providing graduate students with information about teaching and learning that they will use throughout their careers.
DuPré, Michael J.
2007-01-01
The University of Rochester's Graduate Experience in Science Education (GESE) course familiarizes biomedical science graduate students interested in pursuing academic career tracks with a fundamental understanding of some of the theory, principles, and concepts of science education. This one-semester elective course provides graduate students with practical teaching and communication skills to help them better relate science content to, and increase their confidence in, their own teaching abilities. The 2-h weekly sessions include an introduction to cognitive hierarchies, learning styles, and multiple intelligences; modeling and coaching some practical aspects of science education pedagogy; lesson-planning skills; an introduction to instructional methods such as case studies and problem-based learning; and use of computer-based instructional technologies. It is hoped that the early development of knowledge and skills about teaching and learning will encourage graduate students to continue their growth as educators throughout their careers. This article summarizes the GESE course and presents evidence on the effectiveness of this course in providing graduate students with information about teaching and learning that they will use throughout their careers. PMID:17785406
Scaffolding Learning by Modelling: The Effects of Partially Worked-out Models
ERIC Educational Resources Information Center
Mulder, Yvonne G.; Bollen, Lars; de Jong, Ton; Lazonder, Ard W.
2016-01-01
Creating executable computer models is a potentially powerful approach to science learning. Learning by modelling is also challenging because students can easily get overwhelmed by the inherent complexities of the task. This study investigated whether offering partially worked-out models can facilitate students' modelling practices and promote…
Concept Learning and Heuristic Classification in Weak-Theory Domains
1990-03-01
age and noise-induced cochlear age..gt.60 noise-induced cochlear air(mild) age-induced cochlear history(noise) norma ]_ear speechpoor)acousticneuroma...Annual review of computer science. Machine Learning, 4, 1990. (to appear). [18] R.T. Duran . Concept learning with incomplete data sets. Master’s thesis
Mobile Technology Integrated Pedagogical Model
ERIC Educational Resources Information Center
Khan, Arshia
2014-01-01
Integrated curricula and experiential learning are the main ingredients to the recipe to improve student learning in higher education. In the academic computer science world it is mostly assumed that this experiential learning takes place at a business as an internship experience. The intent of this paper is to schism the traditional understanding…
Design, Development, and Validation of Learning Objects
ERIC Educational Resources Information Center
Nugent, Gwen; Soh, Leen-Kiat; Samal, Ashok
2006-01-01
A learning object is a small, stand-alone, mediated content resource that can be reused in multiple instructional contexts. In this article, we describe our approach to design, develop, and validate Shareable Content Object Reference Model (SCORM) compliant learning objects for undergraduate computer science education. We discuss the advantages of…
Student leadership in small group science inquiry
NASA Astrophysics Data System (ADS)
Oliveira, Alandeom W.; Boz, Umit; Broadwell, George A.; Sadler, Troy D.
2014-09-01
Background: Science educators have sought to structure collaborative inquiry learning through the assignment of static group roles. This structural approach to student grouping oversimplifies the complexities of peer collaboration and overlooks the highly dynamic nature of group activity. Purpose: This study addresses this issue of oversimplification of group dynamics by examining the social leadership structures that emerge in small student groups during science inquiry. Sample: Two small student groups investigating the burning of a candle under a jar participated in this study. Design and method: We used a mixed-method research approach that combined computational discourse analysis (computational quantification of social aspects of small group discussions) with microethnography (qualitative, in-depth examination of group discussions). Results: While in one group social leadership was decentralized (i.e., students shared control over topics and tasks), the second group was dominated by a male student (centralized social leadership). Further, decentralized social leadership was found to be paralleled by higher levels of student cognitive engagement. Conclusions: It is argued that computational discourse analysis can provide science educators with a powerful means of developing pedagogical models of collaborative science learning that take into account the emergent nature of group structures and highly fluid nature of student collaboration.
Usability Evaluation of the Student Centered e-Learning Environment
ERIC Educational Resources Information Center
Junus, Inas Sofiyah; Santoso, Harry Budi; Isal, R. Yugo K.; Utomo, Andika Yudha
2015-01-01
Student Centered e-Learning Environment (SCeLE) has substantial roles to support learning activities at Faculty of Computer Science, Universitas Indonesia (Fasilkom UI). Although it has been utilized for about 10 years, the usability aspect of SCeLE as an e-Learning system has not been evaluated. Therefore, the usability aspects of SCeLE Fasilkom…
Data Science and Optimal Learning for Material Discovery and Design
in computation and experimental techniques generating vast arrays of data, without a clear link to experimental and computational data, designing new materials and impacting computational models. This meeting computational and experimental data (c) Analysis of data from probes such as light sources, as well as other
Empowering K-12 Students with Disabilities to Learn Computational Thinking and Computer Programming
ERIC Educational Resources Information Center
Israel, Maya; Wherfel, Quentin M.; Pearson, Jamie; Shehab, Saadeddine; Tapia, Tanya
2015-01-01
This article's focus is on including computing and computational thinking in K-12 instruction within science, technology, engineering, and mathematics (STEM) education, and to provide that instruction in ways that promote access for students traditionally underrepresented in the STEM fields, such as students with disabilities. Providing computing…
Numerical Package in Computer Supported Numeric Analysis Teaching
ERIC Educational Resources Information Center
Tezer, Murat
2007-01-01
At universities in the faculties of Engineering, Sciences, Business and Economics together with higher education in Computing, it is stated that because of the difficulty, calculators and computers can be used in Numerical Analysis (NA). In this study, the learning computer supported NA will be discussed together with important usage of the…
Innovation Research in E-Learning
NASA Astrophysics Data System (ADS)
Wu, Bing; Xu, WenXia; Ge, Jun
This study is a productivity review on the literature gleaned from SSCI, SCIE databases concerning innovation research in E-Learning. The result indicates that the number of literature productions on innovation research in ELearning is still growing from 2005. The main research development country is England, and from the analysis of the publication year, the number of papers is increasing peaking in 25% of the total in 2010. Meanwhile the main source title is British Journal of Educational Technology. In addition the subject area concentrated on Education & Educational Research, Computer Science, Interdisciplinary Applications and Computer Science, Software Engineering. Moreover the research focuses on are mainly conceptual research and empirical research, which were used to explore E-Learning in respective of innovation diffusion theory, also the limitations and future research of these research were discussed for further research.
ERIC Educational Resources Information Center
Wagh, Aditi; Cook-Whitt, Kate; Wilensky, Uri
2017-01-01
Research on the design of learning environments for K-12 science education has been informed by two bodies of literature: inquiry-based science and Constructionism. Inquiry-based science has emphasized engagement in activities that reflect authentic scientific practices. Constructionism has focused on designing intuitively accessible authoring…
ERIC Educational Resources Information Center
Masson, Steve; Vazquez-Abad, Jesus
2006-01-01
This paper proposes a new way to integrate history of science in science education to promote conceptual change by introducing the notion of historical microworld, which is a computer-based interactive learning environment respecting historic conceptions. In this definition, "interactive" means that the user can act upon the virtual environment by…
NASA Astrophysics Data System (ADS)
Akmam, A.; Anshari, R.; Amir, H.; Jalinus, N.; Amran, A.
2018-04-01
Misconception is one of the factors causing students are not suitable in to choose a method for problem solving. Computational Physics course is a major subject in the Department of Physics FMIPA UNP Padang. The problem in Computational Physics learning lately is that students have difficulties in constructing knowledge. The indication of this problem was the student learning outcomes do not achieve mastery learning. The root of the problem is the ability of students to think critically weak. Student critical thinking can be improved using cognitive by conflict learning strategies. The research aims to determine the effect of cognitive conflict learning strategy to student misconception on the subject of Computational Physics Course at the Department of Physics, Faculty of Mathematics and Science, Universitas Negeri Padang. The experimental research design conducted after-before design cycles with a sample of 60 students by cluster random sampling. Data were analyzed using repeated Anova measurements. The cognitive conflict learning strategy has a significant effect on student misconception in the subject of Computational Physics Course.
ERIC Educational Resources Information Center
Wu, Pai-Hsing; Wu, Hsin-Kai; Kuo, Che-Yu; Hsu, Ying-Shao
2015-01-01
Computer-based learning tools include design features to enhance learning but learners may not always perceive the existence of these features and use them in desirable ways. There might be a gap between what the tool features are designed to offer (intended affordance) and what they are actually used (actual affordance). This study thus aims at…
Computer-assisted learning in medicine. How to create a novel software for immunology.
Colsman, Andreas; Sticherling, Michael; Stöpel, Claus; Emmrich, Frank
2006-06-01
Teaching medical issues is increasingly demanding due to the permanent progress in medical sciences. Simultaneously, software applications are rapidly advancing with regard to their availability and easy use. Here a novel teaching program is presented for immunology, which is one of the fastest expanding topics in medical sciences. The requirements of media didactics were transferred to this e-learning tool for German students. After implementation, medical students evaluated the software and the different learning approaches showed acceptance. Altogether this novel software compares favourably to other English e-learning tools available in the Internet.
2,445 Hours of Code: What I Learned from Facilitating Hour of Code Events in High School Libraries
ERIC Educational Resources Information Center
Colby, Jennifer
2015-01-01
This article describes a school librarian's experience with initiating an Hour of Code event for her school's student body. Hadi Partovi of Code.org conceived the Hour of Code "to get ten million students to try one hour of computer science" (Partovi, 2013a), which is implemented during Computer Science Education Week with a goal of…
ERIC Educational Resources Information Center
Ahmad, Khuloud Nasser
2012-01-01
A reexamination of the traditional instruction of introductory computer science (CS) courses is becoming a necessity. Introductory CS courses tend to have high attrition rates and low success rates. In many universities, the CS department suffered from low enrollment for several years compared to other majors. Multiple studies have linked these…
ERIC Educational Resources Information Center
Snapp, Robert R.; Neumann, Maureen D.
2015-01-01
The rapid growth of digital technology, including the worldwide adoption of mobile and embedded computers, places new demands on K-grade 12 educators and their students. Young people should have an opportunity to learn the technical knowledge of computer science (e.g., computer programming, mathematical logic, and discrete mathematics) in order to…
The iPlant Collaborative: Cyberinfrastructure for Enabling Data to Discovery for the Life Sciences.
Merchant, Nirav; Lyons, Eric; Goff, Stephen; Vaughn, Matthew; Ware, Doreen; Micklos, David; Antin, Parker
2016-01-01
The iPlant Collaborative provides life science research communities access to comprehensive, scalable, and cohesive computational infrastructure for data management; identity management; collaboration tools; and cloud, high-performance, high-throughput computing. iPlant provides training, learning material, and best practice resources to help all researchers make the best use of their data, expand their computational skill set, and effectively manage their data and computation when working as distributed teams. iPlant's platform permits researchers to easily deposit and share their data and deploy new computational tools and analysis workflows, allowing the broader community to easily use and reuse those data and computational analyses.
The GI Project: a prototype electronic textbook for high school biology.
Calhoun, P S; Fishman, E K
1997-01-01
A prototype electronic science textbook for secondary education was developed to help bridge the gap between state-of-the-art medical technology and the basic science classroom. The prototype combines the latest in radiologic imaging techniques with a user-friendly multimedia computer program to teach the anatomy, physiology, and diseases of the gastrointestinal (GI) tract. The program includes original text, illustrations, photographs, animations, images from upper GI studies, plain radiographs, computed tomographic images, and three-dimensional reconstructions. These features are intended to create a stimulus-rich environment in which the high school science student can enjoy a variety of interactive experiences that will facilitate the learning process. The computer-based book is a new educational tool that promises to play a prominent role in the coming years. Current research suggests that computer-based books are valuable as an alternative educational medium. Although it is not yet clear what form textbooks will take in the future, computer-based books are already proving valuable as an alternative educational medium. For beginning students, they reinforce the material found in traditional textbooks and class presentations; for advanced students, they provide motivation to learn outside the traditional classroom.
PREFACE: High Performance Computing Symposium 2011
NASA Astrophysics Data System (ADS)
Talon, Suzanne; Mousseau, Normand; Peslherbe, Gilles; Bertrand, François; Gauthier, Pierre; Kadem, Lyes; Moitessier, Nicolas; Rouleau, Guy; Wittig, Rod
2012-02-01
HPCS (High Performance Computing Symposium) is a multidisciplinary conference that focuses on research involving High Performance Computing and its application. Attended by Canadian and international experts and renowned researchers in the sciences, all areas of engineering, the applied sciences, medicine and life sciences, mathematics, the humanities and social sciences, it is Canada's pre-eminent forum for HPC. The 25th edition was held in Montréal, at the Université du Québec à Montréal, from 15-17 June and focused on HPC in Medical Science. The conference was preceded by tutorials held at Concordia University, where 56 participants learned about HPC best practices, GPU computing, parallel computing, debugging and a number of high-level languages. 274 participants from six countries attended the main conference, which involved 11 invited and 37 contributed oral presentations, 33 posters, and an exhibit hall with 16 booths from our sponsors. The work that follows is a collection of papers presented at the conference covering HPC topics ranging from computer science to bioinformatics. They are divided here into four sections: HPC in Engineering, Physics and Materials Science, HPC in Medical Science, HPC Enabling to Explore our World and New Algorithms for HPC. We would once more like to thank the participants and invited speakers, the members of the Scientific Committee, the referees who spent time reviewing the papers and our invaluable sponsors. To hear the invited talks and learn about 25 years of HPC development in Canada visit the Symposium website: http://2011.hpcs.ca/lang/en/conference/keynote-speakers/ Enjoy the excellent papers that follow, and we look forward to seeing you in Vancouver for HPCS 2012! Gilles Peslherbe Chair of the Scientific Committee Normand Mousseau Co-Chair of HPCS 2011 Suzanne Talon Chair of the Organizing Committee UQAM Sponsors The PDF also contains photographs from the conference banquet.
ERIC Educational Resources Information Center
Andrei, Stefan; Osborne, Lawrence; Smith, Zanthia
2013-01-01
The current learning process of Deaf or Hard of Hearing (D/HH) students taking Science, Technology, Engineering, and Mathematics (STEM) courses needs, in general, a sign interpreter for the translation of English text into American Sign Language (ASL) signs. This method is at best impractical due to the lack of availability of a specialized sign…
A qualitative study of technophobic students' reactions to a technology-rich college science course
NASA Astrophysics Data System (ADS)
Guttschow, Gena Lee
The use of technology in education has grown rapidly in the last 20 years. In fact, many of today's college students have had some sort of computer in their elementary school classrooms. One might think that this consistent exposure to computers would foster positive attitudes about computers but this is not always the case. Currently, a substantial number of college students dislike interacting with technology. People who dislike interacting with technology are often referred to as "technophobic". Technophobic people have negative thoughts and feelings about technology and they often have a desire to avoid interaction with technology. Technophobic students' negative feelings about technology have the potential to interfere with their learning when technology is utilized as a tool for instruction of school subjects. As computer use becomes prevalent and in many instances mandatory in education, the issue of technophobia increasingly needs to be understood and addressed. This is a qualitative study designed with the intent of gaining an understanding the experiences of technophobic students who are required to use technology to learn science in a college class. Six developmental college students enrolled in a computer based anatomy and physiology class were chosen to participate in the study based on their high technophobia scores. They were interviewed three times during the quarter and videotaped once. The interview data were transcribed, coded, and analyzed. The analysis resulted in six case studies describing each participant's experience and 11 themes representing overlapping areas in the participants' worlds of experience. A discussion of the themes, the meaning they hold for me as a science educator and how they relate to the existing literature, is presented. The participants' descriptions of their experiences showed that the technophobic students did use the computers and learned skills when they had to in order to complete assignments. It was also revealed that the technophobic participants' negative attitudes did not improve after learning computer skills. Lastly, based on the participants' experiences it seems important to start a class with step-by step computer training, teaching foundational computer skills, and slowly progress towards autonomous computer exploration.
ERIC Educational Resources Information Center
Lee, Ahlam
2013-01-01
Many STEM studies have focused on traditional learning contexts, such as math- and science-related learning factors, as pre-college learning predictors for STEM major choices in colleges. Few studies have considered a progressive learning activity embedded within STEM contexts. This study chose computer-based learning activities in K-12 math…
Active Learning with Statistical Models.
1995-01-01
Active Learning with Statistical Models ASC-9217041, NSF CDA-9309300 6. AUTHOR(S) David A. Cohn, Zoubin Ghahramani, and Michael I. Jordan 7. PERFORMING...TERMS 15. NUMBER OF PAGES Al, MIT, Artificial Intelligence, active learning , queries, locally weighted 6 regression, LOESS, mixtures of gaussians...COMPUTATIONAL LEARNING DEPARTMENT OF BRAIN AND COGNITIVE SCIENCES A.I. Memo No. 1522 January 9. 1995 C.B.C.L. Paper No. 110 Active Learning with
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
Science education is not just about learning facts in a classroom--it's about doing activities where students put their understanding of science principles into action. That's why two unique types of activity-based tasks were administered as part of the 2009 National Assessment of Educational Progress (NAEP) science assessment. In addition to the…
Factors influencing exemplary science teachers' levels of computer use
NASA Astrophysics Data System (ADS)
Hakverdi, Meral
This study examines exemplary science teachers' use of technology in science instruction, factors influencing their level of computer use, their level of knowledge/skills in using specific computer applications for science instruction, their use of computer-related applications/tools during their instruction, and their students' use of computer applications/tools in or for their science class. After a relevant review of the literature certain variables were selected for analysis. These variables included personal self-efficacy in teaching with computers, outcome expectancy, pupil-control ideology, level of computer use, age, gender, teaching experience, personal computer use, professional computer use and science teachers' level of knowledge/skills in using specific computer applications for science instruction. The sample for this study includes middle and high school science teachers who received the Presidential Award for Excellence in Science Teaching Award (sponsored by the White House and the National Science Foundation) between the years 1997 and 2003 from all 50 states and U.S. territories. Award-winning science teachers were contacted about the survey via e-mail or letter with an enclosed return envelope. Of the 334 award-winning science teachers, usable responses were received from 92 science teachers, which made a response rate of 27.5%. Analysis of the survey responses indicated that exemplary science teachers have a variety of knowledge/skills in using computer related applications/tools. The most commonly used computer applications/tools are information retrieval via the Internet, presentation tools, online communication, digital cameras, and data collection probes. Results of the study revealed that students' use of technology in their science classroom is highly correlated with the frequency of their science teachers' use of computer applications/tools. The results of the multiple regression analysis revealed that personal self-efficacy related to the exemplary science teachers' level of computer use suggesting that computer use is dependent on perceived abilities at using computers. The teachers' use of computer-related applications/tools during class, and their personal self-efficacy, age, and gender are highly related with their level of knowledge/skills in using specific computer applications for science instruction. The teachers' level of knowledge/skills in using specific computer applications for science instruction and gender related to their use of computer-related applications/tools during class and the students' use of computer-related applications/tools in or for their science class. In conclusion, exemplary science teachers need assistance in learning and using computer-related applications/tool in their science class.
Metocognitive Support Accelerates Computer Assisted Learning for Novice Programmers
ERIC Educational Resources Information Center
Rum, Siti Nurulain Mohd; Ismail, Maizatul Akmar
2017-01-01
Computer programming is a part of the curriculum in computer science education, and high drop rates for this subject are a universal problem. Development of metacognitive skills, including the conceptual framework provided by socio-cognitive theories that afford reflective thinking, such as actively monitoring, evaluating, and modifying one's…
Montague, P. Read; Dolan, Raymond J.; Friston, Karl J.; Dayan, Peter
2013-01-01
Computational ideas pervade many areas of science and have an integrative explanatory role in neuroscience and cognitive science. However, computational depictions of cognitive function have had surprisingly little impact on the way we assess mental illness because diseases of the mind have not been systematically conceptualized in computational terms. Here, we outline goals and nascent efforts in the new field of computational psychiatry, which seeks to characterize mental dysfunction in terms of aberrant computations over multiple scales. We highlight early efforts in this area that employ reinforcement learning and game theoretic frameworks to elucidate decision-making in health and disease. Looking forwards, we emphasize a need for theory development and large-scale computational phenotyping in human subjects. PMID:22177032
ERIC Educational Resources Information Center
Hung, Yen-Chu
2012-01-01
The instructional value of web-based education systems has been an important area of research in information systems education. This study investigates the effect of various teaching methods on program design learning for students with specific learning styles in web-based education systems. The study takes first-year Computer Science and…
ERIC Educational Resources Information Center
Allinjawi, Arwa A.; Al-Nuaim, Hana A.; Krause, Paul
2014-01-01
Students often face difficulties while learning object-oriented programming (OOP) concepts. Many papers have presented various assessment methods for diagnosing learning problems to improve the teaching of programming in computer science (CS) higher education. The research presented in this article illustrates that although max-min composition is…
Fostering Multimedia Learning of Science: Exploring the Role of an Animated Agent's Image
ERIC Educational Resources Information Center
Dunsworth, Qi; Atkinson, Robert K.
2007-01-01
Research suggests that students learn better when studying a picture coupled with narration rather than on-screen text in a computer-based multimedia learning environment. Moreover, combining narration with the visual presence of an animated pedagogical agent may also encourage students to process information deeper than narration or on-screen…
ERIC Educational Resources Information Center
Hoffman, Daniel L.
2013-01-01
The purpose of the study is to better understand the role of physicality, interactivity, and interface effects in learning with digital content. Drawing on work in cognitive science, human-computer interaction, and multimedia learning, the study argues that interfaces that promote physical interaction can provide "conceptual leverage"…
A Computer Model of Simple Forms of Learning.
ERIC Educational Resources Information Center
Jones, Thomas L.
A basic unsolved problem in science is that of understanding learning, the process by which people and machines use their experience in a situation to guide future action in similar situations. The ideas of Piaget, Pavlov, Hull, and other learning theorists, as well as previous heuristic programing models of human intelligence, stimulated this…
Situational Leadership Theory as a Foundation for a Blended Learning Framework
ERIC Educational Resources Information Center
Meier, David
2016-01-01
Ultimately with the raise of computer technology, blended learning has found its way into teaching. The technology continues to evolve, challenging teachers and lecturers alike. Most studies on blended learning focus on the practical or applied side and use essentially pedagogical concepts. This study demonstrates that the leadership sciences can…
Monitoring and Depth of Strategy Use in Computer-Based Learning Environments for Science and History
ERIC Educational Resources Information Center
Deekens, Victor M.; Greene, Jeffrey A.; Lobczowski, Nikki G.
2018-01-01
Background: Self-regulated learning (SRL) models position metacognitive monitoring as central to SRL processing and predictive of student learning outcomes (Winne & Hadwin, 2008; Zimmerman, 2000). A body of research evidence also indicates that depth of strategy use, ranging from surface to deep processing, is predictive of learning…
Cognitive biases, linguistic universals, and constraint-based grammar learning.
Culbertson, Jennifer; Smolensky, Paul; Wilson, Colin
2013-07-01
According to classical arguments, language learning is both facilitated and constrained by cognitive biases. These biases are reflected in linguistic typology-the distribution of linguistic patterns across the world's languages-and can be probed with artificial grammar experiments on child and adult learners. Beginning with a widely successful approach to typology (Optimality Theory), and adapting techniques from computational approaches to statistical learning, we develop a Bayesian model of cognitive biases and show that it accounts for the detailed pattern of results of artificial grammar experiments on noun-phrase word order (Culbertson, Smolensky, & Legendre, 2012). Our proposal has several novel properties that distinguish it from prior work in the domains of linguistic theory, computational cognitive science, and machine learning. This study illustrates how ideas from these domains can be synthesized into a model of language learning in which biases range in strength from hard (absolute) to soft (statistical), and in which language-specific and domain-general biases combine to account for data from the macro-level scale of typological distribution to the micro-level scale of learning by individuals. Copyright © 2013 Cognitive Science Society, Inc.
ERIC Educational Resources Information Center
Benakli, Nadia; Kostadinov, Boyan; Satyanarayana, Ashwin; Singh, Satyanand
2017-01-01
The goal of this paper is to promote computational thinking among mathematics, engineering, science and technology students, through hands-on computer experiments. These activities have the potential to empower students to learn, create and invent with technology, and they engage computational thinking through simulations, visualizations and data…
The Search for New Intellectual Technologies.
ERIC Educational Resources Information Center
Molnar, Andrew R.
1982-01-01
Among the topics discussed relating to demands on business/industry/education resulting from the "pull" of the information explosion are: frontiers of knowledge, research on educational television, computer-based learning, intelligent videodiscs, quality of learning, science education/cognitive research, misconceptions, motivation,…
Combining Art and Science in "Arts and Sciences" Education
ERIC Educational Resources Information Center
Needle, Andrew; Corbo, Christopher; Wong, Denise; Greenfeder, Gary; Raths, Linda; Fulop, Zoltan
2007-01-01
Two of this article's authors--an art professor and a biology professor--shared a project for advanced biology, art, nursing, and computer science majors involving scientific research that used digital imaging of the brain of the zebrafish, a newly favored laboratory animal. These contemporary and innovative teaching and learning practices were a…
ERIC Educational Resources Information Center
Guo, Chorng-Jee, Ed.
1998-01-01
This proceedings covers the domain and content areas of learning and learners; curriculum and materials; instruction (including computer-assisted instruction); assessment and evaluation; history and philosophy of science; teacher preparation and professional development; and related areas of interest including environmental, special, health,…
Integrating Statistical Visualization Research into the Political Science Classroom
ERIC Educational Resources Information Center
Draper, Geoffrey M.; Liu, Baodong; Riesenfeld, Richard F.
2011-01-01
The use of computer software to facilitate learning in political science courses is well established. However, the statistical software packages used in many political science courses can be difficult to use and counter-intuitive. We describe the results of a preliminary user study suggesting that visually-oriented analysis software can help…
Effective STEM Programs for Adolescent Girls: Three Approaches and Many Lessons Learned
ERIC Educational Resources Information Center
Mosatche, Harriet S.; Matloff-Nieves, Susan; Kekelis, Linda; Lawner, Elizabeth K.
2013-01-01
While women's participation in math and physical science continues to lag to some degree behind that of men, the disparity is much greater in engineering and computer science. Though boys may outperform girls at the highest levels on math and science standardized tests, girls tend to get better course grades in math and science than boys do.…
ERIC Educational Resources Information Center
Sherin, Bruce
2013-01-01
A large body of research in the learning sciences has focused on students' commonsense science knowledge--the everyday knowledge of the natural world that is gained outside of formal instruction. Although researchers studying commonsense science have employed a variety of methods, 1-on-1 clinical interviews have played a unique role. The data…
An urban area minority outreach program for K-6 children in space science
NASA Astrophysics Data System (ADS)
Morris, P.; Garza, O.; Lindstrom, M.; Allen, J.; Wooten, J.; Sumners, C.; Obot, V.
The Houston area has minority populations with significant school dropout rates. This is similar to other major cities in the United States and elsewhere in the world where there are significant minority populations from rural areas. The student dropout rates are associated in many instances with the absence of educational support opportuni- ties either from the school and/or from the family. This is exacerbated if the student has poor English language skills. To address this issue, a NASA minority university initiative enabled us to develop a broad-based outreach program that includes younger children and their parents at a primarily Hispanic inner city charter school. The pro- gram at the charter school was initiated by teaching computer skills to the older chil- dren, who in turn taught parents. The older children were subsequently asked to help teach a computer literacy class for mothers with 4-5 year old children. The computers initially intimidated the mothers as most had limited educational backgrounds and En- glish language skills. To practice their newly acquired computer skills and learn about space science, the mothers and their children were asked to pick a space project and investigate it using their computer skills. The mothers and their children decided to learn about black holes. The project included designing space suits for their children so that they could travel through space and observe black holes from a closer proxim- ity. The children and their mothers learned about computers and how to use them for educational purposes. In addition, they learned about black holes and the importance of space suits in protecting astronauts as they investigated space. The parents are proud of their children and their achievements. By including the parents in the program, they have a greater understanding of the importance of their children staying in school and the opportunities for careers in space science and technology. For more information on our overall program, the charter school and their other space science related activities, visit their web site, http://www.tccc-ryss.org/solarsys/solarmingrant.htm
3D Object Recognition: Symmetry and Virtual Views
1992-12-01
NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATIONI Artificial Intelligence Laboratory REPORT NUMBER 545 Technology Square AIM 1409 Cambridge... ARTIFICIAL INTELLIGENCE LABORATORY and CENTER FOR BIOLOGICAL AND COMPUTATIONAL LEARNING A.I. Memo No. 1409 December 1992 C.B.C.L. Paper No. 76 3D Object...research done within the Center for Biological and Computational Learning in the Department of Brain and Cognitive Sciences, and at the Artificial
NASA Astrophysics Data System (ADS)
Blikstein, Paulo
The goal of this dissertation is to explore relations between content, representation, and pedagogy, so as to understand the impact of the nascent field of complexity sciences on science, technology, engineering and mathematics (STEM) learning. Wilensky & Papert coined the term "structurations" to express the relationship between knowledge and its representational infrastructure. A change from one representational infrastructure to another they call a "restructuration." The complexity sciences have introduced a novel and powerful structuration: agent-based modeling. In contradistinction to traditional mathematical modeling, which relies on equational descriptions of macroscopic properties of systems, agent-based modeling focuses on a few archetypical micro-behaviors of "agents" to explain emergent macro-behaviors of the agent collective. Specifically, this dissertation is about a series of studies of undergraduate students' learning of materials science, in which two structurations are compared (equational and agent-based), consisting of both design research and empirical evaluation. I have designed MaterialSim, a constructionist suite of computer models, supporting materials and learning activities designed within the approach of agent-based modeling, and over four years conducted an empirical inves3 tigation of an undergraduate materials science course. The dissertation is comprised of three studies: Study 1 - diagnosis . I investigate current representational and pedagogical practices in engineering classrooms. Study 2 - laboratory studies. I investigate the cognition of students engaging in scientific inquiry through programming their own scientific models. Study 3 - classroom implementation. I investigate the characteristics, advantages, and trajectories of scientific content knowledge that is articulated in epistemic forms and representational infrastructures unique to complexity sciences, as well as the feasibility of the integration of constructionist, agent-based learning environments in engineering classrooms. Data sources include classroom observations, interviews, videotaped sessions of model-building, questionnaires, analysis of computer-generated logfiles, and quantitative and qualitative analysis of artifacts. Results shows that (1) current representational and pedagogical practices in engineering classrooms were not up to the challenge of the complex content being taught, (2) by building their own scientific models, students developed a deeper understanding of core scientific concepts, and learned how to better identify unifying principles and behaviors in materials science, and (3) programming computer models was feasible within a regular engineering classroom.
Activities of the Research Institute for Advanced Computer Science
NASA Technical Reports Server (NTRS)
Oliger, Joseph
1994-01-01
The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on June 6, 1983. RIACS is privately operated by USRA, a consortium of universities with research programs in the aerospace sciences, under contract with NASA. The primary mission of RIACS is to provide research and expertise in computer science and scientific computing to support the scientific missions of NASA ARC. The research carried out at RIACS must change its emphasis from year to year in response to NASA ARC's changing needs and technological opportunities. Research at RIACS is currently being done in the following areas: (1) parallel computing; (2) advanced methods for scientific computing; (3) high performance networks; and (4) learning systems. RIACS technical reports are usually preprints of manuscripts that have been submitted to research journals or conference proceedings. A list of these reports for the period January 1, 1994 through December 31, 1994 is in the Reports and Abstracts section of this report.
Statistical mechanics of complex neural systems and high dimensional data
NASA Astrophysics Data System (ADS)
Advani, Madhu; Lahiri, Subhaneil; Ganguli, Surya
2013-03-01
Recent experimental advances in neuroscience have opened new vistas into the immense complexity of neuronal networks. This proliferation of data challenges us on two parallel fronts. First, how can we form adequate theoretical frameworks for understanding how dynamical network processes cooperate across widely disparate spatiotemporal scales to solve important computational problems? Second, how can we extract meaningful models of neuronal systems from high dimensional datasets? To aid in these challenges, we give a pedagogical review of a collection of ideas and theoretical methods arising at the intersection of statistical physics, computer science and neurobiology. We introduce the interrelated replica and cavity methods, which originated in statistical physics as powerful ways to quantitatively analyze large highly heterogeneous systems of many interacting degrees of freedom. We also introduce the closely related notion of message passing in graphical models, which originated in computer science as a distributed algorithm capable of solving large inference and optimization problems involving many coupled variables. We then show how both the statistical physics and computer science perspectives can be applied in a wide diversity of contexts to problems arising in theoretical neuroscience and data analysis. Along the way we discuss spin glasses, learning theory, illusions of structure in noise, random matrices, dimensionality reduction and compressed sensing, all within the unified formalism of the replica method. Moreover, we review recent conceptual connections between message passing in graphical models, and neural computation and learning. Overall, these ideas illustrate how statistical physics and computer science might provide a lens through which we can uncover emergent computational functions buried deep within the dynamical complexities of neuronal networks.
The HSP, the QCN, and the Dragon: Developing inquiry-based QCN instructional modules in Taiwan
NASA Astrophysics Data System (ADS)
Chen, K. H.; Liang, W.; Chang, C.; Yen, E.; Lin, C.; Lin, G.
2012-12-01
High Scope Program (HSP) is a long-term project funded by NSC in Taiwan since 2006. It is designed to elevate the quality of science education by means of incorporating emerging science and technology into the traditional curricula in senior high schools. Quake-Catcher Network (QCN), a distributed computing project initiated by Stanford University and UC Riverside, encourages the volunteers to install the low-cost, novel sensors at home and school to build a seismic network. To meet both needs, we have developed a model curriculum that introduces QCN, earthquake science, and cloud computing into high school classrooms. Through professional development workshops, Taiwan cloud-based earthquake science learning platform, and QCN club on Facebook, we have worked closely with Lan-Yang Girl's Senior High School teachers' team to design workable teaching plans through a practical operation of seismic monitoring at home or school. However, some obstacles to learning appear including QCN installation/maintain problems, high self-noise of the sensor, difficulty of introducing earthquake sciences for high school teachers. The challenges of QCN outreach in Taiwan bring out our future plans: (1) development of easy, frequently updated, physics-based QCN-experiments for high school teachers, and (2) design of an interactive learning platform with social networking function for students.
The iPlant Collaborative: Cyberinfrastructure for Enabling Data to Discovery for the Life Sciences
Merchant, Nirav; Lyons, Eric; Goff, Stephen; Vaughn, Matthew; Ware, Doreen; Micklos, David; Antin, Parker
2016-01-01
The iPlant Collaborative provides life science research communities access to comprehensive, scalable, and cohesive computational infrastructure for data management; identity management; collaboration tools; and cloud, high-performance, high-throughput computing. iPlant provides training, learning material, and best practice resources to help all researchers make the best use of their data, expand their computational skill set, and effectively manage their data and computation when working as distributed teams. iPlant’s platform permits researchers to easily deposit and share their data and deploy new computational tools and analysis workflows, allowing the broader community to easily use and reuse those data and computational analyses. PMID:26752627
ERIC Educational Resources Information Center
Zaidel, Lisa Brusman
1991-01-01
Presents suggestions to help elementary teachers organize learning centers and activities around the themes of Peter Rabbit (Grade 1), weather (Grade 3), and bees (Grade 5). Suggestions are given for activities in centers for listening/reading, language arts, computers, math, science, cooperative learning, research, and writing. (SM)
Science Education and Technology: Opportunities to Enhance Student Learning.
ERIC Educational Resources Information Center
Woolsey, Kristina; Bellamy, Rachel
1997-01-01
Describes how technological capabilities such as calculation, imaging, networking, and portability support a range of pedagogical approaches, such as inquiry-based science and dynamic modeling. Includes as examples software products created at Apple Computer and others available in the marketplace. (KDFB)
The ADL Registry and CORDRA. Volume 1: General Overview
2008-08-01
and problems encountered by others in related fields, such as library science , computer and network systems design, and publishing. As ADL...in and exist in isolated islands, limiting their visibility, access, and reuse. 4 Compared to publishing and library science , the learning
NASA Astrophysics Data System (ADS)
Linn, Marcia C.
1995-06-01
Designing effective curricula for complex topics and incorporating technological tools is an evolving process. One important way to foster effective design is to synthesize successful practices. This paper describes a framework called scaffolded knowledge integration and illustrates how it guided the design of two successful course enhancements in the field of computer science and engineering. One course enhancement, the LISP Knowledge Integration Environment, improved learning and resulted in more gender-equitable outcomes. The second course enhancement, the spatial reasoning environment, addressed spatial reasoning in an introductory engineering course. This enhancement minimized the importance of prior knowledge of spatial reasoning and helped students develop a more comprehensive repertoire of spatial reasoning strategies. Taken together, the instructional research programs reinforce the value of the scaffolded knowledge integration framework and suggest directions for future curriculum reformers.
ERIC Educational Resources Information Center
Chan, Kit Yu Karen; Yang, Sylvia; Maliska, Max E.; Grunbaum, Daniel
2012-01-01
The National Science Education Standards have highlighted the importance of active learning and reflection for contemporary scientific methods in K-12 classrooms, including the use of models. Computer modeling and visualization are tools that researchers employ in their scientific inquiry process, and often computer models are used in…
How Science Students Can Learn about Unobservable Phenomena Using Computer-Based Analogies
ERIC Educational Resources Information Center
Trey, L.; Khan, S.
2008-01-01
A novel instructional computer simulation that incorporates a dynamic analogy to represent Le Chatelier's Principle was designed to investigate the contribution of this feature to students' understanding. Two groups of 12th grade Chemistry students (n=15) interacted with the computer simulation during the study. Both groups did the same…
ERIC Educational Resources Information Center
Conlon, Michael P.; Mullins, Paul
2011-01-01
The Computer Science Department at Slippery Rock University created a laboratory for its Computer Networks and System Administration and Security courses under relaxed financial constraints. This paper describes the department's experience designing and using this laboratory, including lessons learned and descriptions of some student projects…
2015-09-30
Clark (2014), "Using High Performance Computing to Explore Large Complex Bioacoustic Soundscapes : Case Study for Right Whale Acoustics," Procedia...34Using High Performance Computing to Explore Large Complex Bioacoustic Soundscapes : Case Study for Right Whale Acoustics," Procedia Computer Science 20
A Game Based e-Learning System to Teach Artificial Intelligence in the Computer Sciences Degree
ERIC Educational Resources Information Center
de Castro-Santos, Amable; Fajardo, Waldo; Molina-Solana, Miguel
2017-01-01
Our students taking the Artificial Intelligence and Knowledge Engineering courses often encounter a large number of problems to solve which are not directly related to the subject to be learned. To solve this problem, we have developed a game based e-learning system. The elected game, that has been implemented as an e-learning system, allows to…
Developmental Changes in Learning: Computational Mechanisms and Social Influences
Bolenz, Florian; Reiter, Andrea M. F.; Eppinger, Ben
2017-01-01
Our ability to learn from the outcomes of our actions and to adapt our decisions accordingly changes over the course of the human lifespan. In recent years, there has been an increasing interest in using computational models to understand developmental changes in learning and decision-making. Moreover, extensions of these models are currently applied to study socio-emotional influences on learning in different age groups, a topic that is of great relevance for applications in education and health psychology. In this article, we aim to provide an introduction to basic ideas underlying computational models of reinforcement learning and focus on parameters and model variants that might be of interest to developmental scientists. We then highlight recent attempts to use reinforcement learning models to study the influence of social information on learning across development. The aim of this review is to illustrate how computational models can be applied in developmental science, what they can add to our understanding of developmental mechanisms and how they can be used to bridge the gap between psychological and neurobiological theories of development. PMID:29250006
ERIC Educational Resources Information Center
Kim, Byeongsu; Kim, Taehun; Kim, Jonghoon
2013-01-01
The paper-and-pencil programming strategy (PPS) is a way of representing an idea logically by any representation that can be created using paper and pencil. It was developed for non-computer majors to improve their understanding and use of computational thinking and increase interest in learning computer science. A total of 110 non-majors in their…
Displaying Computer Simulations Of Physical Phenomena
NASA Technical Reports Server (NTRS)
Watson, Val
1991-01-01
Paper discusses computer simulation as means of experiencing and learning to understand physical phenomena. Covers both present simulation capabilities and major advances expected in near future. Visual, aural, tactile, and kinesthetic effects used to teach such physical sciences as dynamics of fluids. Recommends classrooms in universities, government, and industry be linked to advanced computing centers so computer simulations integrated into education process.
ERIC Educational Resources Information Center
Kordaki, Maria; Papastergiou, Marina; Psomos, Panagiotis
2016-01-01
The aim of this work was twofold. First, an empirical study was designed aimed at investigating the perceptions that entry-level non-computing majors--namely Physical Education and Sport Science (PESS) undergraduate students--hold about basic Computer Literacy (CL) issues. The participants were 90 first-year PESS students, and their perceptions…
Learning with STEM Simulations in the Classroom: Findings and Trends from a Meta-Analysis
ERIC Educational Resources Information Center
D'Angelo, Cynthia M.; Rutstein, Daisy; Harris, Christopher J.
2016-01-01
This article presents a summary of the findings of a systematic review and meta-analysis of the literature on computer-based interactive simulations for K-12 science, technology, engineering, and mathematics (STEM) learning topics. For achievement outcomes, simulations had a moderate to strong effect on student learning. Overall, simulations have…
ERIC Educational Resources Information Center
Zhang, Yulei; Dang, Yan
2015-01-01
Web development is an important component in the curriculum of computer science and information systems areas. However, it is generally considered difficult to learn among students. In this study,we examined factors that could influence students' perceptions of accomplishment and enjoyment and their intention to learn in the web development…
ERIC Educational Resources Information Center
Georgiopoulos, M.; DeMara, R. F.; Gonzalez, A. J.; Wu, A. S.; Mollaghasemi, M.; Gelenbe, E.; Kysilka, M.; Secretan, J.; Sharma, C. A.; Alnsour, A. J.
2009-01-01
This paper presents an integrated research and teaching model that has resulted from an NSF-funded effort to introduce results of current Machine Learning research into the engineering and computer science curriculum at the University of Central Florida (UCF). While in-depth exposure to current topics in Machine Learning has traditionally occurred…
ERIC Educational Resources Information Center
Secret, Mary; Bryant, Nita L.; Cummings, Cory R.
2017-01-01
Our paper describes the design and delivery of an online interdisciplinary social science research methods course (ISRM) for graduate students in sociology, education, social work, and public administration. Collaborative activities and learning took place in two types of computer-mediated learning environments: a closed Blackboard course…
The Impact of an Interdisciplinary Space Program on Computer Science Student Learning
ERIC Educational Resources Information Center
Straub, Jeremy; Marsh, Ronald; Whalen, David
2015-01-01
Project-based learning and interdisciplinary projects present an opportunity for students to learn both technical skills and other skills which are relevant to their workplace success. This paper presents an assessment of the educational impact of the OpenOrbiter program, a student-run, interdisciplinary CubeSat (a type of small satellite with…
Gamification for Engaging Computer Science Students in Learning Activities: A Case Study
ERIC Educational Resources Information Center
Ibáñez, Maria-Blanca; Di-Serio, Ángela; Delgado-Kloos, Carlos
2014-01-01
Gamification is the use of game design elements in non-game settings to engage participants and encourage desired behaviors. It has been identified as a promising technique to improve students' engagement which could have a positive impact on learning. This study evaluated the learning effectiveness and engagement appeal of a gamified learning…
Peer-Led Team Learning in Mathematics Courses for Freshmen Engineering and Computer Science Students
ERIC Educational Resources Information Center
Reisel, John R.; Jablonski, Marissa R.; Munson, Ethan; Hosseini, Hossein
2014-01-01
Peer-led Team Learning (PLTL) is an instructional method reported to increase student learning in STEM courses. As mathematics is a significant hurdle for many freshmen engineering students, a PLTL program was implemented for students to attempt to improve their course performance. Here, an analysis of PLTL for freshmen engineering students in…
Learning from the Periphery in a Collaborative Robotics Workshop for Girls
ERIC Educational Resources Information Center
Sullivan, Florence R.; Keith, Kevin; Wilson, Nicholas C.
2016-01-01
This study investigates how students who are peripherally positioned in computer science-based, collaborative group work meaningfully engage with the group activity in order to learn. Our research took place in the context of a one-day, all-girl robotics workshop, in which the participants were learning to program robotic devices. A total of 17…
Creating Engaging Online Learning Material with the JSAV JavaScript Algorithm Visualization Library
ERIC Educational Resources Information Center
Karavirta, Ville; Shaffer, Clifford A.
2016-01-01
Data Structures and Algorithms are a central part of Computer Science. Due to their abstract and dynamic nature, they are a difficult topic to learn for many students. To alleviate these learning difficulties, instructors have turned to algorithm visualizations (AV) and AV systems. Research has shown that especially engaging AVs can have an impact…
ERIC Educational Resources Information Center
Al-Alawneh, Muhammad K.
2014-01-01
Employing computer's technology that includes e-learning system in the field of Engineering is a vital issue which needs to be discussed. Therefore, this study purposed to examine e-learning barriers as perceived by faculty members of engineering in three major universities in Jordan (Yarmouk University, Jordan University of Science and…
Quantum Machine Learning over Infinite Dimensions
Lau, Hoi-Kwan; Pooser, Raphael; Siopsis, George; ...
2017-02-21
Machine learning is a fascinating and exciting eld within computer science. Recently, this ex- citement has been transferred to the quantum information realm. Currently, all proposals for the quantum version of machine learning utilize the nite-dimensional substrate of discrete variables. Here we generalize quantum machine learning to the more complex, but still remarkably practi- cal, in nite-dimensional systems. We present the critical subroutines of quantum machine learning algorithms for an all-photonic continuous-variable quantum computer that achieve an exponential speedup compared to their equivalent classical counterparts. Finally, we also map out an experi- mental implementation which can be used as amore » blueprint for future photonic demonstrations.« less
Quantum Machine Learning over Infinite Dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, Hoi-Kwan; Pooser, Raphael; Siopsis, George
Machine learning is a fascinating and exciting eld within computer science. Recently, this ex- citement has been transferred to the quantum information realm. Currently, all proposals for the quantum version of machine learning utilize the nite-dimensional substrate of discrete variables. Here we generalize quantum machine learning to the more complex, but still remarkably practi- cal, in nite-dimensional systems. We present the critical subroutines of quantum machine learning algorithms for an all-photonic continuous-variable quantum computer that achieve an exponential speedup compared to their equivalent classical counterparts. Finally, we also map out an experi- mental implementation which can be used as amore » blueprint for future photonic demonstrations.« less
ERIC Educational Resources Information Center
Lim, Billy; Hosack, Bryan; Vogt, Paul
2012-01-01
This paper describes a framework for measuring student learning gains and engagement in a Computer Science 1 (CS 1) / Information Systems 1 (IS 1) course. The framework is designed for a CS1/IS1 course as it has been traditionally taught over the years as well as when it is taught using a new pedagogical approach with Web services. It enables the…
ERIC Educational Resources Information Center
Huang, Kun; Ge, Xun; Eseryel, Deniz
2017-01-01
This study investigated the effects of metaconceptually-enhanced, simulation-based inquiry learning on eighth grade students' conceptual change in science and their development of science epistemic beliefs. Two experimental groups studied the topics of motion and force using the same computer simulations but with different simulation guides: one…
Examining the Effects of Turkish Education Reform on Students' TIMSS 2007 Science Achievements
ERIC Educational Resources Information Center
Atar, Hakan Yavuz; Atar, Burcu
2012-01-01
The purpose of this study is to examine the effects of some of the changes such as student centered learning (i.e. inquiry science instruction), outfitting classrooms with latest technology and computers that the reform movement has brought about on students' TIMSS 2007 science achievements. Two-staged stratified sampling was used in the selection…
Dunne, James R; McDonald, Claudia L
2010-07-01
Pulse!! The Virtual Clinical Learning Lab at Texas A&M University-Corpus Christi, in collaboration with the United States Navy, has developed a model for research and technological development that they believe is an essential element in the future of military and civilian medical education. The Pulse!! project models a strategy for providing cross-disciplinary expertise and resources to educational, governmental, and business entities challenged with meeting looming health care crises. It includes a three-dimensional virtual learning platform that provides unlimited, repeatable, immersive clinical experiences without risk to patients, and is available anywhere there is a computer. Pulse!! utilizes expertise in the fields of medicine, medical education, computer science, software engineering, physics, computer animation, art, and architecture. Lab scientists collaborate with the commercial virtual-reality simulation industry to produce research-based learning platforms based on cutting-edge computer technology.
ERIC Educational Resources Information Center
Maaravi, Yossi
2018-01-01
In the current article, I describe a case of experiential learning that can be used to enhance learning, students' research skills and motivation in academic institutions. We used the already existing process of hackathons--intense computer programming events--and conducted a social science research marathon. Fifty-two graduate students…
2009-03-27
to learning and collaborative working • Developing more immersive learning where learning is promoted through experiencing the style of thinking of... Student Talk in Promoting Quality Learning in Science Classroom”, MS. Morrison, P., Barlow, M., Bethel, G. and Clothier, S. (2005), “Proficient Soldier...on student perceptions of learning effectiveness. 1 Computer self-efficacy: “The learner’s perception of their ability to carry out a series of
Current Developments in Machine Learning Techniques in Biological Data Mining.
Dumancas, Gerard G; Adrianto, Indra; Bello, Ghalib; Dozmorov, Mikhail
2017-01-01
This supplement is intended to focus on the use of machine learning techniques to generate meaningful information on biological data. This supplement under Bioinformatics and Biology Insights aims to provide scientists and researchers working in this rapid and evolving field with online, open-access articles authored by leading international experts in this field. Advances in the field of biology have generated massive opportunities to allow the implementation of modern computational and statistical techniques. Machine learning methods in particular, a subfield of computer science, have evolved as an indispensable tool applied to a wide spectrum of bioinformatics applications. Thus, it is broadly used to investigate the underlying mechanisms leading to a specific disease, as well as the biomarker discovery process. With a growth in this specific area of science comes the need to access up-to-date, high-quality scholarly articles that will leverage the knowledge of scientists and researchers in the various applications of machine learning techniques in mining biological data.
VoPham, Trang; Hart, Jaime E; Laden, Francine; Chiang, Yao-Yi
2018-04-17
Geospatial artificial intelligence (geoAI) is an emerging scientific discipline that combines innovations in spatial science, artificial intelligence methods in machine learning (e.g., deep learning), data mining, and high-performance computing to extract knowledge from spatial big data. In environmental epidemiology, exposure modeling is a commonly used approach to conduct exposure assessment to determine the distribution of exposures in study populations. geoAI technologies provide important advantages for exposure modeling in environmental epidemiology, including the ability to incorporate large amounts of big spatial and temporal data in a variety of formats; computational efficiency; flexibility in algorithms and workflows to accommodate relevant characteristics of spatial (environmental) processes including spatial nonstationarity; and scalability to model other environmental exposures across different geographic areas. The objectives of this commentary are to provide an overview of key concepts surrounding the evolving and interdisciplinary field of geoAI including spatial data science, machine learning, deep learning, and data mining; recent geoAI applications in research; and potential future directions for geoAI in environmental epidemiology.
ERIC Educational Resources Information Center
Willingham, Daniel T.
2013-01-01
Cognitive science is an interdisciplinary field of researchers from psychology, neuroscience, linguistics, philosophy, computer science, and anthropology who seek to understand the mind. This paper considers findings from this field that are strong and clear enough to merit classroom application. Although many teachers and parents worry that high…
ERIC Educational Resources Information Center
Roach, Linda E., Ed.
This document contains the following papers on science from the SITE (Society for Information Technology & Teacher Education) 2001 conference: (1) "Using a Computer Simulation before Dissection To Help Students Learn Anatomy" (Joseph Paul Akpan and Thomas Andre); (2) "EARTH2CLASS: A Unique Workshop/On-Line/Distance-Learning…
NASA Astrophysics Data System (ADS)
Shegog, Ross; Lazarus, Melanie M.; Murray, Nancy G.; Diamond, Pamela M.; Sessions, Nathalie; Zsigmond, Eva
2012-10-01
The transgenic mouse model is useful for studying the causes and potential cures for human genetic diseases. Exposing high school biology students to laboratory experience in developing transgenic animal models is logistically prohibitive. Computer-based simulation, however, offers this potential in addition to advantages of fidelity and reach. This study describes and evaluates a computer-based simulation to train advanced placement high school science students in laboratory protocols, a transgenic mouse model was produced. A simulation module on preparing a gene construct in the molecular biology lab was evaluated using a randomized clinical control design with advanced placement high school biology students in Mercedes, Texas ( n = 44). Pre-post tests assessed procedural and declarative knowledge, time on task, attitudes toward computers for learning and towards science careers. Students who used the simulation increased their procedural and declarative knowledge regarding molecular biology compared to those in the control condition (both p < 0.005). Significant increases continued to occur with additional use of the simulation ( p < 0.001). Students in the treatment group became more positive toward using computers for learning ( p < 0.001). The simulation did not significantly affect attitudes toward science in general. Computer simulation of complex transgenic protocols have potential to provide a "virtual" laboratory experience as an adjunct to conventional educational approaches.
Computer-based, Jeopardy™-like game in general chemistry for engineering majors
NASA Astrophysics Data System (ADS)
Ling, S. S.; Saffre, F.; Kadadha, M.; Gater, D. L.; Isakovic, A. F.
2013-03-01
We report on the design of Jeopardy™-like computer game for enhancement of learning of general chemistry for engineering majors. While we examine several parameters of student achievement and attitude, our primary concern is addressing the motivation of students, which tends to be low in a traditionally run chemistry lectures. The effect of the game-playing is tested by comparing paper-based game quiz, which constitutes a control group, and computer-based game quiz, constituting a treatment group. Computer-based game quizzes are Java™-based applications that students run once a week in the second part of the last lecture of the week. Overall effectiveness of the semester-long program is measured through pretest-postest conceptual testing of general chemistry. The objective of this research is to determine to what extent this ``gamification'' of the course delivery and course evaluation processes may be beneficial to the undergraduates' learning of science in general, and chemistry in particular. We present data addressing gender-specific difference in performance, as well as background (pre-college) level of general science and chemistry preparation. We outline the plan how to extend such approach to general physics courses and to modern science driven electives, and we offer live, in-lectures examples of our computer gaming experience. We acknowledge support from Khalifa University, Abu Dhabi
NASA Astrophysics Data System (ADS)
Huppert, J.; Michal Lomask, S.; Lazarowitz, R.
2002-08-01
Computer-assisted learning, including simulated experiments, has great potential to address the problem solving process which is a complex activity. It requires a highly structured approach in order to understand the use of simulations as an instructional device. This study is based on a computer simulation program, 'The Growth Curve of Microorganisms', which required tenth grade biology students to use problem solving skills whilst simultaneously manipulating three independent variables in one simulated experiment. The aims were to investigate the computer simulation's impact on students' academic achievement and on their mastery of science process skills in relation to their cognitive stages. The results indicate that the concrete and transition operational students in the experimental group achieved significantly higher academic achievement than their counterparts in the control group. The higher the cognitive operational stage, the higher students' achievement was, except in the control group where students in the concrete and transition operational stages did not differ. Girls achieved equally with the boys in the experimental group. Students' academic achievement may indicate the potential impact a computer simulation program can have, enabling students with low reasoning abilities to cope successfully with learning concepts and principles in science which require high cognitive skills.
Scaling up to address data science challenges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendelberger, Joanne R.
Statistics and Data Science provide a variety of perspectives and technical approaches for exploring and understanding Big Data. Partnerships between scientists from different fields such as statistics, machine learning, computer science, and applied mathematics can lead to innovative approaches for addressing problems involving increasingly large amounts of data in a rigorous and effective manner that takes advantage of advances in computing. Here, this article will explore various challenges in Data Science and will highlight statistical approaches that can facilitate analysis of large-scale data including sampling and data reduction methods, techniques for effective analysis and visualization of large-scale simulations, and algorithmsmore » and procedures for efficient processing.« less
Scaling up to address data science challenges
Wendelberger, Joanne R.
2017-04-27
Statistics and Data Science provide a variety of perspectives and technical approaches for exploring and understanding Big Data. Partnerships between scientists from different fields such as statistics, machine learning, computer science, and applied mathematics can lead to innovative approaches for addressing problems involving increasingly large amounts of data in a rigorous and effective manner that takes advantage of advances in computing. Here, this article will explore various challenges in Data Science and will highlight statistical approaches that can facilitate analysis of large-scale data including sampling and data reduction methods, techniques for effective analysis and visualization of large-scale simulations, and algorithmsmore » and procedures for efficient processing.« less
NASA Astrophysics Data System (ADS)
Al-Jaroudi, Mo H.
This causal-comparative descriptive study investigated the achievement of pre-service elementary teachers taking an introductory physical science course that integrates inquiry-based instruction with computer simulations. The study was intended to explore if pre-service elementary teachers with different attitudes towards science as well as students with different learning styles would benefit differentially. Four research questions including four hypotheses were developed. The first major question consist of four specific hypothesis that addressed preservice elementary teachers' learning styles (Active/Reflective, Sensing/Intuitive, Visual/Verbal, and Sequential/Global) and their conceptual understanding of chemistry and the particulate nature of matter in a science class which use hands-on learning integrated with computer based simulated activities. The second major question pertained to the relationship between preservice teachers learning science and chemistry and their attitude towards science. The third major question related to preservice elementary teachers science and chemistry achievement gain scores and attitude average affected by their learning styles. Finally, the fourth question pertained to the dissipation or the minimization of preservice elementary teachers' science and chemistry misconceptions over the course of study. Three instruments were given to preservice elementary teachers in three different classes: pretest/posttest for the science conceptual understanding examination, and pretest-only for the science attitude and learning styles instruments. Total usable science attitude surveys returned was 67 out of 70. The overall average mean was 3.13 (SD = .51) on a five point scale. Total return of science achievement instrument was 65, with a total mean test score (quantitative and qualitative together) of 6.38 (SD = 3.05) on the pretest, with a post test mean of 9.06 (SD = 4.19). Results revealed no statistically significant achievement gain scores based on students' learning styles, entering in all 4-combined dimensions at the same time Visual/Verbal, Sensing/Intuitive, Sequential/Global, and Active/Reflective (p > .05), indicating the four learning styles dimensions cannot be used to predict students' achievement gain. Results also indicated that there was no significant relationship between achievement gain and students' attitude (p > .05). Attitude and learning style together were also not significantly related to achievement gain. Preservice elementary teachers' comprehension of chemical concepts in this study varied from no comprehension to fair comprehension, and included many misconceptions; no answer showed complete understanding of the concepts. Many of the preservice teachers held misconception related to evaporation. If not addressed in science content and methods courses, this could be a problem as this new generation of teachers goes out to teach. It is proposed that to fix preservice elementary teachers' conceptual problems, curriculum needs to specifically focus on misconceptions. The preservice elementary subjects of the study showed a variety of misconceptions on both pretest and posttest concerning the particulate and the kinetic nature of matter. Suggestions are made is that a science content course could more contribute to preservice students' conceptual change if curriculum designers incorporate a segment that specifically addresses misconceptions, especially those misconceptions that have been documented in the literature for decades. A robust cognitive model for science education is proposed to increase teachers' science knowledge and to decrease science misconceptions.
NASA Astrophysics Data System (ADS)
Britton, Lynda A.
1998-12-01
Exploration of meaningful learning of the polymerase chain reaction (PCR) followed instruction by a researcher-developed hypermedia computer program that incorporated human constructivist principles and a "science-in-fiction" chapter of a novel that described PCR. Human constructivism is the Ausubel-Novak-Gowin (1997) meaningful learning theory that supports science learning through graphic representations and multiple examples. Science-in-fiction is a new genre of fiction introduced by the prominent scientist, Carl Djerassi, to engender an appreciation for science, and its ethical dilemmas. Chapter 19 of Djerassi's 1994 novel, The Bourbaki Gambit, was placed into hypermedia format to standardize the presentation. As part of a clinical microbiology course in the medical technology curriculum at a major medical center in the Deep South, 10 undergraduates participated in this study. Each first read The Bourbaki Gambit, and then half of the participants experienced the human constructivist approach first (the PCR group) while the others first encountered the science-in-fiction approach (the Chapter 19 group). For the rest, the order of presentation was reversed, so that all experienced both programs. Students' explanations while using the computer were videotaped. Students were tested and interviewed before experiencing either program, after their first instructional session, and again after the second instructional session. These students were also assessed on their knowledge of the nature of science by taking the Nature of Science Questionnaire, before and after instruction (Roach, 1993) and interviewed as a cross-check on its reliability. Students' preferred learning approaches were determined using Schmeck's Inventory of Learning Processes (Schmeck, Ribich, & Ramanaiah, 1977). Data were collected and analyzed both qualitatively and quantitatively using appropriate verbal analysis techniques (Chi, 1997). All but three students reached a structural level of PCR biological literacy. A mean of 79% of the concepts identified as necessary was attained by participants after experiencing both approaches. The Chapter 19 science-in-fiction group scored slightly better than those who experienced the PCR program first, indicating that the chapter served as an advance organizer when used first, but inhibited mastery when used second. Significant conceptual change about the nature of science was not detected, even though most students demonstrated deep and/or elaborative learning styles.
Dadich, Ann
2014-05-01
Workplace learning in continuing interprofessional education (CIPE) can be difficult to facilitate and evaluate, which can create a number of challenges for this type of learning. This article presents an innovative method to foster and investigate workplace learning in CIPE - citizen social science. Citizen social science involves clinicians as co-researchers in the systematic examination of social phenomena. When facilitated by an open-source online social networking platform, clinicians can participate via computer, smartphone, or tablet in ways that suit their needs and preferences. Furthermore, as co-researchers they can help to reveal the dynamic interplay that facilitates workplace learning in CIPE. Although yet to be tested, citizen social science offers four potential benefits: it recognises and accommodates the complexity of workplace learning in CIPE; it has the capacity to both foster and evaluate the phenomena; it can be used in situ, capturing and having direct relevance to the complexity of the workplace; and by advancing both theoretical and methodological debates on CIPE, it may reveal opportunities to improve and sustain workplace learning. By describing an example situated in the youth health sector, this article demonstrates how these benefits might be realised.
Computer Applications in Health Science Education.
Juanes, Juan A; Ruisoto, Pablo
2015-09-01
In recent years, computer application development has experienced exponential growth, not only in the number of publications but also in the scope or contexts that have benefited from its use. In health science training, and medicine specifically, the gradual incorporation of technological developments has transformed the teaching and learning process, resulting in true "educational technology". The goal of this paper is to review the main features involved in these applications and highlight the main lines of research for the future. The results of peer reviewed literature published recently indicate the following features shared by the key technological developments in the field of health science education: first, development of simulation and visualization systems for a more complete and realistic representation of learning material over traditional paper format; second, portability and versatility of the applications, adapted for an increasing number of devices and operative systems; third, increasing focus on open source applications such as Massive Open Online Course (MOOC).
NASA Astrophysics Data System (ADS)
Joiner, D. A.; Stevenson, D. E.; Panoff, R. M.
2000-12-01
The Computational Science Reference Desk is an online tool designed to provide educators in math, physics, astronomy, biology, chemistry, and engineering with information on how to use computational science to enhance inquiry based learning in the undergraduate and pre college classroom. The Reference Desk features a showcase of original content exploration activities, including lesson plans and background materials; a catalog of websites which contain models, lesson plans, software, and instructional resources; and a forum to allow educators to communicate their ideas. Many of the recent advances in astronomy rely on the use of computer simulation, and tools are being developed by CSERD to allow students to experiment with some of the models that have guided scientific discovery. One of these models allows students to study how scientists use spectral information to determine the makeup of the interstellar medium by modeling the interstellar extinction curve using spherical grains of silicate, amorphous carbon, or graphite. Students can directly compare their model to the average interstellar extinction curve, and experiment with how small changes in their model alter the shape of the interstellar extinction curve. A simpler model allows students to visualize spatial relationships between the Earth, Moon, and Sun to understand the cause of the phases of the moon. A report on the usefulness of these models in two classes, the Computational Astrophysics workshop at The Shodor Education Foundation and the Conceptual Astronomy class at the University of North Carolina at Greensboro, will be presented.
NASA Astrophysics Data System (ADS)
Wild, Andrew
2015-09-01
Considerable attention has been devoted to factors affecting the persistence of women and historically underrepresented ethnic groups in their science education trajectories. The literature has focused more on structural factors that affect longitudinal outcomes rather than classroom experiences. This exploratory survey study described relationships among high school chemistry students' perceptions of a constructivist learning environment (CLE) and STEM career expectations. The sample included 693 students from 7 public high schools within the San Francisco Bay Area. Students' perceptions of a CLE predicted their expectations of entering a science career, but not engineering, computer, health, or mathematics-related careers. When all groups of students perceived the learning environment as more constructivist, they were more likely to expect science careers.
Lab4CE: A Remote Laboratory for Computer Education
ERIC Educational Resources Information Center
Broisin, Julien; Venant, Rémi; Vidal, Philippe
2017-01-01
Remote practical activities have been demonstrated to be efficient when learners come to acquire inquiry skills. In computer science education, virtualization technologies are gaining popularity as this technological advance enables instructors to implement realistic practical learning activities, and learners to engage in authentic and…
A Model for Designing Library Instruction for Distance Learning
ERIC Educational Resources Information Center
Rand, Angela Doucet
2013-01-01
Providing library instruction in distance learning environments presents a unique set of challenges for instructional librarians. Innovations in computer-mediated communication and advances in cognitive science research provide the opportunity for designing library instruction that meets a variety of student information seeking needs. Using a…
Simulations in a Science and Society Course.
ERIC Educational Resources Information Center
Maier, Mark H.; Venanzi, Thomas
1984-01-01
Provides a course outline which includes simulation exercises designed as in-class activities related to science and society interactions. Simulations focus on the IQ debate, sociobiology, nuclear weapons and nulcear strategy, nuclear power and radiation, computer explosion, and cosmology. Indicates that learning improves when students take active…
Whales and Hermit Crabs: Integrated Programming and Science.
ERIC Educational Resources Information Center
Kataoka, Joy C.; Lock, Robin
1995-01-01
This article describes an integrated program in marine biology. The program was implemented in a nongraded inclusive setting with second- to fourth-grade students whose abilities ranged from gifted to learning disabled. The program integrated science, art, music, language arts, and research and computer skills. (DB)
Pedagogical Approaches for Technology-Integrated Science Teaching
ERIC Educational Resources Information Center
Hennessy, Sara; Wishart, Jocelyn; Whitelock, Denise; Deaney, Rosemary; Brawn, Richard; la Velle, Linda; McFarlane, Angela; Ruthven, Kenneth; Winterbottom, Mark
2007-01-01
The two separate projects described have examined how teachers exploit computer-based technologies in supporting learning of science at secondary level. This paper examines how pedagogical approaches associated with these technological tools are adapted to both the cognitive and structuring resources available in the classroom setting. Four…
Flexible Modeling of Latent Task Structures in Multitask Learning
2012-06-26
Flexible Modeling of Latent Task Structures in Multitask Learning Alexandre Passos† apassos@cs.umass.edu Computer Science Department, University of...of Maryland, College Park, MD USA Abstract Multitask learning algorithms are typically designed assuming some fixed, a priori known latent structure...shared by all the tasks. However, it is usually unclear what type of latent task structure is the most ap- propriate for a given multitask learning prob
Machine Learning in the Big Data Era: Are We There Yet?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukumar, Sreenivas Rangan
In this paper, we discuss the machine learning challenges of the Big Data era. We observe that recent innovations in being able to collect, access, organize, integrate, and query massive amounts of data from a wide variety of data sources have brought statistical machine learning under more scrutiny and evaluation for gleaning insights from the data than ever before. In that context, we pose and debate the question - Are machine learning algorithms scaling with the ability to store and compute? If yes, how? If not, why not? We survey recent developments in the state-of-the-art to discuss emerging and outstandingmore » challenges in the design and implementation of machine learning algorithms at scale. We leverage experience from real-world Big Data knowledge discovery projects across domains of national security and healthcare to suggest our efforts be focused along the following axes: (i) the data science challenge - designing scalable and flexible computational architectures for machine learning (beyond just data-retrieval); (ii) the science of data challenge the ability to understand characteristics of data before applying machine learning algorithms and tools; and (iii) the scalable predictive functions challenge the ability to construct, learn and infer with increasing sample size, dimensionality, and categories of labels. We conclude with a discussion of opportunities and directions for future research.« less
The Future of K-12 Computer Science Instruction
ERIC Educational Resources Information Center
Bottoms, Gene; Sundell, Kirsten
2016-01-01
Children born since the early 1990s have never known a world in which computer and information technologies are not essential to every aspect of their lives. However, far too many young people, especially low-income and minority youth, lack opportunities to learn about the impact of computer and information technologies on their lives and become…
The Influence of an Educational Computer Game on Children's Cultural Identities
ERIC Educational Resources Information Center
Chen, Hsiang-Ping; Lien, Chi-Jui; Annetta, Len; Lu, Yu-Ling
2010-01-01
This study develops an educational computer game, FORmosaHope (FH), to explore the influences that an educational computer game might have on children's cultural identities. FH is a role-playing game, in which children can actively explore a mini-world to learn about science, technology, and society. One hundred and thirty sixth-graders, about…
Computational Thinking in K-12: A Review of the State of the Field
ERIC Educational Resources Information Center
Grover, Shuchi; Pea, Roy
2013-01-01
Jeannette Wing's influential article on computational thinking 6 years ago argued for adding this new competency to every child's analytical ability as a vital ingredient of science, technology, engineering, and mathematics (STEM) learning. What is computational thinking? Why did this article resonate with so many and serve as a rallying cry for…
Chipps, Jennifer; Kerr, Jane; Brysiewicz, Petra; Walters, Fiona
2015-02-01
Learning management systems have been widely advocated for the support of distance learning. In low-resource settings, the uptake of these systems by students has been mixed. This study aimed to identify, through the use of the Technology Acceptance Model, the individual, organizational, and technological factors that could be influencing the use of learning management systems. A simple quantitative descriptive survey was conducted of nursing and health science students at a university in South Africa as part of their first exposure to a learning management system. A total of 274 respondents (56.7%) completed the survey questionnaire, made up of 213 nursing respondents (87.7%) and 61 health sciences respondents (25%). Overall, the respondents found the learning management system easy to use and useful for learning. There were significant differences between the two groups of respondents, with the respondents from health sciences being both younger and more computer literate. The nursing respondents, who received more support and orientations, reported finding the learning management system more useful. Recommendations are made for training and support to ensure uptake.
Social Computing as Next-Gen Learning Paradigm: A Platform and Applications
NASA Astrophysics Data System (ADS)
Margherita, Alessandro; Taurino, Cesare; Del Vecchio, Pasquale
As a field at the intersection between computer science and people behavior, social computing can contribute significantly in the endeavor of innovating how individuals and groups interact for learning and working purposes. In particular, the generation of Internet applications tagged as web 2.0 provides an opportunity to create new “environments” where people can exchange knowledge and experience, create new knowledge and learn together. This chapter illustrates the design and application of a prototypal platform which embeds tools such as blog, wiki, folksonomy and RSS in a unique web-based system. This platform has been developed to support a case-based and project-driven learning strategy for the development of business and technology management competencies in undergraduate and graduate education programs. A set of illustrative scenarios are described to show how a learning community can be promoted, created, and sustained through the technological platform.
Analogical Processes in Learning
1980-09-15
Stilluater, MN 55082 1200 19th Street NW 1 r. Genevieve Haddad Washington, DC 20208 1 Mr Avron Barr Program Manager Department of Computer Science Life ...Jack A. Thorp. Maj., USAF I Dr. Kenneth Bowles Life Sciences Directorate I Dr. Andrew R. Molnar Institute for Information Sciences AFOSR Science... Uiversity OGTI 31 1 Dr. Frank Withrow Stanford Univrsit Arlington Annex U. S. Office of Education Stanford. CA 91305 Columbia Pike at Arlington Ridge Rd
Teaching Computer Languages and Elementary Theory for Mixed Audiences at University Level
NASA Astrophysics Data System (ADS)
Christiansen, Henning
2004-09-01
Theoretical issues of computer science are traditionally taught in a way that presupposes a solid mathematical background and are usually considered more or less inaccessible for students without this. An effective methodology is described which has been developed for a target group of university students with different backgrounds such as natural science or humanities. It has been developed for a course that integrates theoretical material on computer languages and abstract machines with practical programming techniques. Prolog used as meta-language for describing language issues is the central instrument in the approach: Formal descriptions become running prototypes that are easy and appealing to test and modify, and can be extended into analyzers, interpreters, and tools such as tracers and debuggers. Experience shows a high learning curve, especially when the principles are extended into a learning-by-doing approach having the students to develop such descriptions themselves from an informal introduction.
ERIC Educational Resources Information Center
Wang, Li-Chun; Chen, Ming-Puu
2010-01-01
Learning to program is difficult for novices, even for those undergraduates who have majored in computer science. The study described in this paper has investigated the effects of game strategy and preference-matching on novice learners' flow experience and performance in learning to program using an experiential gaming activity. One hundred and…
ERIC Educational Resources Information Center
Kiesmuller, Ulrich
2009-01-01
At schools special learning and programming environments are often used in the field of algorithms. Particularly with regard to computer science lessons in secondary education, they are supposed to help novices to learn the basics of programming. In several parts of Germany (e.g., Bavaria) these fundamentals are taught as early as in the seventh…
ERIC Educational Resources Information Center
Estébanez, Raquel Pérez
2017-01-01
In the way of continuous improvement in teaching methods this paper explores the effects of Cooperative Learning (CL) against Traditional Learning (TL) in academic performance of students in higher education in two groups of the first course of Computer Science Degree at the university. The empirical study was conducted through an analysis of…
ERIC Educational Resources Information Center
de Villiers, M. Ruth
2007-01-01
The teaching and learning of a complex section in "Theoretical Computer Science 1" in a distance-education context at the University of South Africa (UNISA) has been enhanced by a supplementary e-learning application called "Relations," which interactively teaches mathematical skills in a cognitive domain. It has tutorial and…
Computer-simulated laboratory explorations for middle school life, earth, and physical Science
NASA Astrophysics Data System (ADS)
von Blum, Ruth
1992-06-01
Explorations in Middle School Science is a set of 72 computer-simulated laboratory lessons in life, earth, and physical Science for grades 6 9 developed by Jostens Learning Corporation with grants from the California State Department of Education and the National Science Foundation.3 At the heart of each lesson is a computer-simulated laboratory that actively involves students in doing science improving their: (1) understanding of science concepts by applying critical thinking to solve real problems; (2) skills in scientific processes and communications; and (3) attitudes about science. Students use on-line tools (notebook, calculator, word processor) to undertake in-depth investigations of phenomena (like motion in outer space, disease transmission, volcanic eruptions, or the structure of the atom) that would be too difficult, dangerous, or outright impossible to do in a “live” laboratory. Suggested extension activities lead students to hands-on investigations, away from the computer. This article presents the underlying rationale, instructional model, and process by which Explorations was designed and developed. It also describes the general courseware structure and three lesson's in detail, as well as presenting preliminary data from the evaluation. Finally, it suggests a model for incorporating technology into the science classroom.
Teaching and Learning in the Mixed-Reality Science Classroom
NASA Astrophysics Data System (ADS)
Tolentino, Lisa; Birchfield, David; Megowan-Romanowicz, Colleen; Johnson-Glenberg, Mina C.; Kelliher, Aisling; Martinez, Christopher
2009-12-01
As emerging technologies become increasingly inexpensive and robust, there is an exciting opportunity to move beyond general purpose computing platforms to realize a new generation of K-12 technology-based learning environments. Mixed-reality technologies integrate real world components with interactive digital media to offer new potential to combine best practices in traditional science learning with the powerful affordances of audio/visual simulations. This paper introduces the realization of a learning environment called SMALLab, the Situated Multimedia Arts Learning Laboratory. We present a recent teaching experiment for high school chemistry students. A mix of qualitative and quantitative research documents the efficacy of this approach for students and teachers. We conclude that mixed-reality learning is viable in mainstream high school classrooms and that students can achieve significant learning gains when this technology is co-designed with educators.
ERIC Educational Resources Information Center
Barak, Miri
2017-01-01
The new guidelines for science education emphasize the need to introduce computers and digital technologies as a means of enabling visualization and data collection and analysis. This requires science teachers to bring advanced technologies into the classroom and use them wisely. Hence, the goal of this study was twofold: to examine the…
Perceptions of teaching and learning automata theory in a college-level computer science course
NASA Astrophysics Data System (ADS)
Weidmann, Phoebe Kay
This dissertation identifies and describes student and instructor perceptions that contribute to effective teaching and learning of Automata Theory in a competitive college-level Computer Science program. Effective teaching is the ability to create an appropriate learning environment in order to provide effective learning. We define effective learning as the ability of a student to meet instructor set learning objectives, demonstrating this by passing the course, while reporting a good learning experience. We conducted our investigation through a detailed qualitative case study of two sections (118 students) of Automata Theory (CS 341) at The University of Texas at Austin taught by Dr. Lily Quilt. Because Automata Theory has a fixed curriculum in the sense that many curricula and textbooks agree on what Automata Theory contains, differences being depth and amount of material to cover in a single course, a case study would allow for generalizable findings. Automata Theory is especially problematic in a Computer Science curriculum since students are not experienced in abstract thinking before taking this course, fail to understand the relevance of the theory, and prefer classes with more concrete activities such as programming. This creates a special challenge for any instructor of Automata Theory as motivation becomes critical for student learning. Through the use of student surveys, instructor interviews, classroom observation, material and course grade analysis we sought to understand what students perceived, what instructors expected of students, and how those perceptions played out in the classroom in terms of structure and instruction. Our goal was to create suggestions that would lead to a better designed course and thus a higher student success rate in Automata Theory. We created a unique theoretical basis, pedagogical positivism, on which to study college-level courses. Pedagogical positivism states that through examining instructor and student perceptions of teaching and learning, improvements to a course are possible. These improvements can eventually develop a "best practice" instructional environment. This view is not possible under a strictly constructivist learning theory as there is no way to teach a group of individuals in a "best" way. Using this theoretical basis, we examined the gathered data from CS 341. (Abstract shortened by UMI.)
AFL-1: A programming Language for Massively Concurrent Computers.
1986-11-01
Bibliography Ackley, D.H., Hinton, G.E., Sejnowski, T.J., "A Learning Algorithm for boltzmann Machines", Cognitive Science, 1985, 9, 147-169. Agre...P.E., "Routines", Memo 828, MIT AI Laboratory, Many 1985. Ballard, D.H., Hayes, P.J., "Parallel Logical Inference", Conference of the Cognitive Science...34Experiments on Semantic Memory and Language Com- 125 prehension", in L.W. Greg (Ed.), Cognition in Learning and Memory, New York, Wiley, 1972._ Collins
Non-parallel processing: Gendered attrition in academic computer science
NASA Astrophysics Data System (ADS)
Cohoon, Joanne Louise Mcgrath
2000-10-01
This dissertation addresses the issue of disproportionate female attrition from computer science as an instance of gender segregation in higher education. By adopting a theoretical framework from organizational sociology, it demonstrates that the characteristics and processes of computer science departments strongly influence female retention. The empirical data identifies conditions under which women are retained in the computer science major at comparable rates to men. The research for this dissertation began with interviews of students, faculty, and chairpersons from five computer science departments. These exploratory interviews led to a survey of faculty and chairpersons at computer science and biology departments in Virginia. The data from these surveys are used in comparisons of the computer science and biology disciplines, and for statistical analyses that identify which departmental characteristics promote equal attrition for male and female undergraduates in computer science. This three-pronged methodological approach of interviews, discipline comparisons, and statistical analyses shows that departmental variation in gendered attrition rates can be explained largely by access to opportunity, relative numbers, and other characteristics of the learning environment. Using these concepts, this research identifies nine factors that affect the differential attrition of women from CS departments. These factors are: (1) The gender composition of enrolled students and faculty; (2) Faculty turnover; (3) Institutional support for the department; (4) Preferential attitudes toward female students; (5) Mentoring and supervising by faculty; (6) The local job market, starting salaries, and competitiveness of graduates; (7) Emphasis on teaching; and (8) Joint efforts for student success. This work contributes to our understanding of the gender segregation process in higher education. In addition, it contributes information that can lead to effective solutions for an economically significant issue in modern American society---gender equality in computer science.
Bringing Computational Thinking into the High School Science and Math Classroom
NASA Astrophysics Data System (ADS)
Trouille, Laura; Beheshti, E.; Horn, M.; Jona, K.; Kalogera, V.; Weintrop, D.; Wilensky, U.; University CT-STEM Project, Northwestern; University CenterTalent Development, Northwestern
2013-01-01
Computational thinking (for example, the thought processes involved in developing algorithmic solutions to problems that can then be automated for computation) has revolutionized the way we do science. The Next Generation Science Standards require that teachers support their students’ development of computational thinking and computational modeling skills. As a result, there is a very high demand among teachers for quality materials. Astronomy provides an abundance of opportunities to support student development of computational thinking skills. Our group has taken advantage of this to create a series of astronomy-based computational thinking lesson plans for use in typical physics, astronomy, and math high school classrooms. This project is funded by the NSF Computing Education for the 21st Century grant and is jointly led by Northwestern University’s Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), the Computer Science department, the Learning Sciences department, and the Office of STEM Education Partnerships (OSEP). I will also briefly present the online ‘Astro Adventures’ courses for middle and high school students I have developed through NU’s Center for Talent Development. The online courses take advantage of many of the amazing online astronomy enrichment materials available to the public, including a range of hands-on activities and the ability to take images with the Global Telescope Network. The course culminates with an independent computational research project.
Students Teach Students: Alternative Teaching in Greek Secondary Education
ERIC Educational Resources Information Center
Theodoropoulos, Anastasios; Antoniou, Angeliki; Lepouras, George
2016-01-01
The students of a Greek junior high school collaborated to prepare the teaching material of a theoretical Computer Science (CS) course and then shared their understanding with other students. This study investigates two alternative teaching methods (collaborative learning and peer tutoring) and compares the learning results to the traditional…
Towards Architecture for Pedagogical and Game Scenarios Adaptation in Serious Games
ERIC Educational Resources Information Center
Debabi, Wassila; Champagnat, Ronan
2017-01-01
Serious games seem to be a promising alternative to traditional practices for learning. Recently, their use in computer science education and learning programming became more widespread. Actually, many students in programming courses have difficulties to master all required competencies and skills especially at introductory level and games have…
The Teaching and Learning Environment SAIDA: Some Features and Lessons.
ERIC Educational Resources Information Center
Grandbastien, Monique; Morinet-Lambert, Josette
Written in ADA language, SAIDA, a Help System for Data Implementation, is an experimental teaching and learning environment which uses artificial intelligence techniques to teach a computer science course on abstract data representations. The application domain is teaching advanced programming concepts which have not received much attention from…
Reasoning with Atomic-Scale Molecular Dynamic Models
ERIC Educational Resources Information Center
Pallant, Amy; Tinker, Robert F.
2004-01-01
The studies reported in this paper are an initial effort to explore the applicability of computational models in introductory science learning. Two instructional interventions are described that use a molecular dynamics model embedded in a set of online learning activities with middle and high school students in 10 classrooms. The studies indicate…
ERIC Educational Resources Information Center
Poitras, Eric; Trevors, Gregory
2012-01-01
Planning, conducting, and reporting leading-edge research requires professionals who are capable of highly skilled reading. This study reports the development of an empirically informed computer-based learning environment designed to foster the acquisition of reading comprehension strategies that mediate expertise in the social sciences. Empirical…
Calibrated Peer Review for Computer-Assisted Learning of Biological Research Competencies
ERIC Educational Resources Information Center
Clase, Kari L.; Gundlach, Ellen; Pelaez, Nancy J.
2010-01-01
Recently, both science and technology faculty have been recognizing biological research competencies that are valued but rarely assessed. Some of these valued learning outcomes include scientific methods and thinking, critical assessment of primary papers, quantitative reasoning, communication, and putting biological research into a historical and…
An Augmented-Reality-Based Concept Map to Support Mobile Learning for Science
ERIC Educational Resources Information Center
Chen, Chien-Hsu; Chou, Yin-Yu; Huang, Chun-Yen
2016-01-01
Computer hardware and mobile devices have developed rapidly in recent years, and augmented reality (AR) technology has been increasingly applied in mobile learning. Although instructional AR applications have yielded satisfactory results and prompted students' curiosity and interest, a number of problems remain. The crucial topic for AR…
Scientific Inquiry, Digital Literacy, and Mobile Computing in Informal Learning Environments
ERIC Educational Resources Information Center
Marty, Paul F.; Alemanne, Nicole D.; Mendenhall, Anne; Maurya, Manisha; Southerland, Sherry A.; Sampson, Victor; Douglas, Ian; Kazmer, Michelle M.; Clark, Amanda; Schellinger, Jennifer
2013-01-01
Understanding the connections between scientific inquiry and digital literacy in informal learning environments is essential to furthering students' critical thinking and technology skills. The Habitat Tracker project combines a standards-based curriculum focused on the nature of science with an integrated system of online and mobile computing…
Learning Physical Domains: Toward a Theoretical Framework.
1986-12-01
advanced ids o the iaime doinain in containing more information, especially perceptual " ’It. iho lI b1 rwt... tI hat. psychboigists by no means...Acquisitions Dr Kenneth D Forbus 4833 Rugby Avenue University of Illinois Dr Robert Glaser Bethesda, MD 20014 Department of Computer Science Learning
A Low-Tech, Hands-On Approach To Teaching Sorting Algorithms to Working Students.
ERIC Educational Resources Information Center
Dios, R.; Geller, J.
1998-01-01
Focuses on identifying the educational effects of "activity oriented" instructional techniques. Examines which instructional methods produce enhanced learning and comprehension. Discusses the problem of learning "sorting algorithms," a major topic in every Computer Science curriculum. Presents a low-tech, hands-on teaching method for sorting…
Teaching and Learning in the Mixed-Reality Science Classroom
ERIC Educational Resources Information Center
Tolentino, Lisa; Birchfield, David; Megowan-Romanowicz, Colleen; Johnson-Glenberg, Mina C.; Kelliher, Aisling; Martinez, Christopher
2009-01-01
As emerging technologies become increasingly inexpensive and robust, there is an exciting opportunity to move beyond general purpose computing platforms to realize a new generation of K-12 technology-based learning environments. Mixed-reality technologies integrate real world components with interactive digital media to offer new potential to…
Libraries as Facilitators of Coding for All
ERIC Educational Resources Information Center
Martin, Crystle
2017-01-01
Learning to code has been an increasingly frequent topic of conversation both in academic circles and popular media. Learning to code recently received renewed attention with the announcement of the White House's Computer Science for All initiative (Smith 2016). This initiative intends "to empower all American students from kindergarten…
A Journey from the Sun to the Earth
ERIC Educational Resources Information Center
Psycharis, Sarantos; Daflos, Athanasios
2005-01-01
Computer-aided modelling and investigations can bring the real world into classrooms and facilitate its exploration, in contrast to acquiring factual knowledge from textbooks. Computer modelling puts a whole new "spin" on science education, redefining and reshaping the classroom learning experience. The authors used information and…
Bernoulli's Principle: Science as a Human Endeavor
ERIC Educational Resources Information Center
McCarthy, Deborah
2008-01-01
What do the ideas of Daniel Bernoulli--an 18th-century Swiss mathematician, physicist, natural scientist, and professor--and your students' next landing of the space shuttle via computer simulation have in common? Because of his contribution, referred in physical science as Bernoulli's principle, modern flight is possible. The mini learning-cycle…
ERIC Educational Resources Information Center
Simon, Nicole A.
2013-01-01
Virtual laboratory experiments using interactive computer simulations are not being employed as viable alternatives to laboratory science curriculum at extensive enough rates within higher education. Rote traditional lab experiments are currently the norm and are not addressing inquiry, Critical Thinking, and cognition throughout the laboratory…
Simulation and Collaborative Learning in Political Science and Sociology Classrooms.
ERIC Educational Resources Information Center
Peters, Sandra; Saxon, Deborah
The program described here used cooperative, content-based computer writing projects to teach Japanese students at an intermediate level of English proficiency enrolled in first-year, English-language courses in political science/environmental issues and sociology/environmental issues in an international college program. The approach was taken to…
"Using" Computer Graphic Representations to Promote Learning in Elementary Science Courses
ERIC Educational Resources Information Center
Lazaros, Edward J.; Spotts, Thomas H.
2009-01-01
This interdisciplinary activity promotes science, technology, and language arts and is well suited for upper elementary grade students. In the activity, students' research about a teacher-assigned weather phenomenon facilitates their study of the weather. When they have completed their research, students word process a paper summarizing their…
Have Technology and Multitasking Rewired How Students Learn?
ERIC Educational Resources Information Center
Willingham, Daniel T.
2010-01-01
Cognitive science is an interdisciplinary field of researchers from psychology, neuroscience, linguistics, philosophy, computer science, and anthropology who seek to understand the mind. In this article, the author considers findings from this field that are strong and clear enough to merit classroom application. He examines how technology has…
Utilizing Multi-Modal Literacies in Middle Grades Science
ERIC Educational Resources Information Center
Saurino, Dan; Ogletree, Tamra; Saurino, Penelope
2010-01-01
The nature of literacy is changing. Increased student use of computer-mediated, digital, and visual communication spans our understanding of adolescent multi-modal capabilities that reach beyond the traditional conventions of linear speech and written text in the science curriculum. Advancing technology opens doors to learning that involve…
Educating Laboratory Science Learners at a Distance Using Interactive Television
ERIC Educational Resources Information Center
Reddy, Christopher
2014-01-01
Laboratory science classes offered to students learning at a distance require a methodology that allows for the completion of tactile activities. Literature describes three different methods of solving the distance laboratory dilemma: kit-based laboratory experience, computer-based laboratory experience, and campus-based laboratory experience,…
Data Mining Citizen Science Results
NASA Astrophysics Data System (ADS)
Borne, K. D.
2012-12-01
Scientific discovery from big data is enabled through multiple channels, including data mining (through the application of machine learning algorithms) and human computation (commonly implemented through citizen science tasks). We will describe the results of new data mining experiments on the results from citizen science activities. Discovering patterns, trends, and anomalies in data are among the powerful contributions of citizen science. Establishing scientific algorithms that can subsequently re-discover the same types of patterns, trends, and anomalies in automatic data processing pipelines will ultimately result from the transformation of those human algorithms into computer algorithms, which can then be applied to much larger data collections. Scientific discovery from big data is thus greatly amplified through the marriage of data mining with citizen science.
NASA Astrophysics Data System (ADS)
Joseph, Dolly Rebecca Doran
The playing of computer games is one of the most popular non-school activities of children, particularly boys, and is often the entry point to greater facility with and use of other computer applications. Children are learning skills as they play, but what they learn often does not generalize beyond application to that and other similar games. Nevertheless, games have the potential to develop in students the knowledge and skills described by national and state educational standards. This study focuses upon middle-school aged children, and how they react to and respond to computer games designed for entertainment and educational purposes, within the context of science learning. Through qualitative, case study methodology, the game play, evaluation, and modification experiences of four diverse middle-school-aged students in summer camps are analyzed. The inquiry focused on determining the attributes of computer games that appeal to middle school students, the aspects of science that appeal to middle school children, and ultimately, how science games might be designed to appeal to middle school children. Qualitative data analysis led to the development of a method for describing players' activity modes during game play, rather than the conventional methods that describe game characteristics. These activity modes are used to describe the game design preferences of the participants. Recommendations are also made in the areas of functional, aesthetic, and character design and for the design of educational games. Middle school students may find the topical areas of forensics, medicine, and the environment to be of most interest; designing games in and across these topic areas has the potential for encouraging voluntary science-related play. Finally, when including children in game evaluation and game design activities, results suggest the value of providing multiple types of activities in order to encourage the full participation of all children.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevrekidis, Ioannis G.
The work explored the linking of modern developing machine learning techniques (manifold learning and in particular diffusion maps) with traditional PDE modeling/discretization/scientific computation techniques via the equation-free methodology developed by the PI. The result (in addition to several PhD degrees, two of them by CSGF Fellows) was a sequence of strong developments - in part on the algorithmic side, linking data mining with scientific computing, and in part on applications, ranging from PDE discretizations to molecular dynamics and complex network dynamics.
NASA Astrophysics Data System (ADS)
Gordova, Yulia; Martynova, Yulia; Shulgina, Tamara
2015-04-01
The current situation with the training of specialists in environmental sciences is complicated by the fact that the very scientific field is experiencing a period of rapid development. Global change has caused the development of measurement techniques and modeling of environmental characteristics, accompanied by the expansion of the conceptual and mathematical apparatus. Understanding and forecasting processes in the Earth system requires extensive use of mathematical modeling and advanced computing technologies. As a rule, available training programs in the environmental sciences disciplines do not have time to adapt to such rapid changes in the domain content. As a result, graduates of faculties do not understand processes and mechanisms of the global change, have only superficial knowledge of mathematical modeling of processes in the environment. They do not have the required skills in numerical modeling, data processing and analysis of observations and computation outputs and are not prepared to work with the meteorological data. For adequate training of future specialists in environmental sciences we propose the following approach, which reflects the new "research" paradigm in education. We believe that the training of such specialists should be done not in an artificial learning environment, but based on actual operating information-computational systems used in environment studies, in the so-called virtual research environment via development of virtual research and learning laboratories. In the report the results of the use of computational-informational web-GIS system "Climate" (http://climate.scert.ru/) as a prototype of such laboratory are discussed. The approach is realized at Tomsk State University to prepare bachelors in meteorology. Student survey shows that their knowledge has become deeper and more systemic after undergoing training in virtual learning laboratory. The scientific team plans to assist any educators to utilize the system in earth science education. This work is partially supported by SB RAS project VIII.80.2.1, RFBR grants 13-05-12034 and 14-05-00502.
NASA Astrophysics Data System (ADS)
Tucker, G. E.
1997-05-01
This NSF supported program, emphasizing hands-on learning and observation with modern instruments, is described in its pilot phase, prior to being launched nationally. A group of 14 year old students are using a small (21 cm) computer controlled telescope and CCD camera to do: (1) a 'sky survey' of brighter celestial objects, finding, identifying, and learning about them, and accumulating a portfolio of images, (2) photometry of variable stars, reducing the data to get a light curve, and (3) learn modern computer-based communication/dissemination skills by posting images and data to a Web site they are designing (http://www.javanet.com/ sky) and contributing data to archives (e.g. AAVSO) via the Internet. To attract more interest to astronomy and science in general and have a wider impact on the school and surrounding community, peer teaching is used as a pedagogical technique and families are encouraged to participate. Students teach e.g. astronomy, software and computers, Internet, instrumentation, and observing to other students, parents and the community by means of daytime presentations of their results (images and data) and evening public viewing at the telescope, operating the equipment themselves. Students can contribute scientifically significant data and experience the `discovery' aspect of science through observing projects where a measurement is made. Their `informal education' activities also help improve the perception of science in general and astronomy in particular in society at large. This program could benefit from collaboration with astronomers wanting to organize geographically distributed observing campaigns coordinated over the Internet and willing to advise on promising observational programs for small telescopes in the context of current science.
Modellus: Learning Physics with Mathematical Modelling
NASA Astrophysics Data System (ADS)
Teodoro, Vitor
Computers are now a major tool in research and development in almost all scientific and technological fields. Despite recent developments, this is far from true for learning environments in schools and most undergraduate studies. This thesis proposes a framework for designing curricula where computers, and computer modelling in particular, are a major tool for learning. The framework, based on research on learning science and mathematics and on computer user interface, assumes that: 1) learning is an active process of creating meaning from representations; 2) learning takes place in a community of practice where students learn both from their own effort and from external guidance; 3) learning is a process of becoming familiar with concepts, with links between concepts, and with representations; 4) direct manipulation user interfaces allow students to explore concrete-abstract objects such as those of physics and can be used by students with minimal computer knowledge. Physics is the science of constructing models and explanations about the physical world. And mathematical models are an important type of models that are difficult for many students. These difficulties can be rooted in the fact that most students do not have an environment where they can explore functions, differential equations and iterations as primary objects that model physical phenomena--as objects-to-think-with, reifying the formal objects of physics. The framework proposes that students should be introduced to modelling in a very early stage of learning physics and mathematics, two scientific areas that must be taught in very closely related way, as they were developed since Galileo and Newton until the beginning of our century, before the rise of overspecialisation in science. At an early stage, functions are the main type of objects used to model real phenomena, such as motions. At a later stage, rates of change and equations with rates of change play an important role. This type of equations--differential equations--are the most important mathematical objects used for modelling Natural phenomena. In traditional approaches, they are introduced only at advanced level, because it takes a long time for students to be introduced to the fundamental principles of Calculus. With the new proposed approach, rates of change can be introduced also at early stages on learning if teachers stress semi-quantitative reasoning and use adequate computer tools. In this thesis, there is also presented Modellus, a computer tool for modelling and experimentation. This computer tool has a user interface that allows students to start doing meaningful conceptual and empirical experiments without the need to learn new syntax, as is usual with established tools. The different steps in the process of constructing and exploring models can be done with Modellus, both from physical points of view and from mathematical points of view. Modellus activities show how mathematics and physics have a unity that is very difficult to see with traditional approaches. Mathematical models are treated as concrete-abstract objects: concrete in the sense that they can be manipulated directly with a computer and abstract in the sense that they are representations of relations between variables. Data gathered from two case studies, one with secondary school students and another with first year undergraduate students support the main ideas of the thesis. Also data gathered from teachers (from college and secondary schools), mainly through an email structured questionnaire, shows that teachers agree on the potential of modelling in the learning of physics (and mathematics) and of the most important aspects of the proposed framework to integrate modelling as an essential component of the curriculum. Schools, as all institutions, change at a very slow rate. There are a multitude of reasons for this. And traditional curricula, where the emphasis is on rote learning of facts, can only be changed if schools have access to new and powerful views of learning and to new tools, that support meaningful conceptual learning and are as common and easy to use as pencil and paper.
NASA Astrophysics Data System (ADS)
Lin, Feng; Chan, Carol K. K.
2018-04-01
This study examined the role of computer-supported knowledge-building discourse and epistemic reflection in promoting elementary-school students' scientific epistemology and science learning. The participants were 39 Grade 5 students who were collectively pursuing ideas and inquiry for knowledge advance using Knowledge Forum (KF) while studying a unit on electricity; they also reflected on the epistemic nature of their discourse. A comparison class of 22 students, taught by the same teacher, studied the same unit using the school's established scientific investigation method. We hypothesised that engaging students in idea-driven and theory-building discourse, as well as scaffolding them to reflect on the epistemic nature of their discourse, would help them understand their own scientific collaborative discourse as a theory-building process, and therefore understand scientific inquiry as an idea-driven and theory-building process. As hypothesised, we found that students engaged in knowledge-building discourse and reflection outperformed comparison students in scientific epistemology and science learning, and that students' understanding of collaborative discourse predicted their post-test scientific epistemology and science learning. To further understand the epistemic change process among knowledge-building students, we analysed their KF discourse to understand whether and how their epistemic practice had changed after epistemic reflection. The implications on ways of promoting epistemic change are discussed.
NASA Astrophysics Data System (ADS)
Judi, Hairulliza Mohamad; Sahari @ Ashari, Noraidah; Eksan, Zanaton Hj
2017-04-01
Previous research in Malaysia indicates that there is a problem regarding attitude towards statistics among students. They didn't show positive attitude in affective, cognitive, capability, value, interest and effort aspects although did well in difficulty. This issue should be given substantial attention because students' attitude towards statistics may give impacts on the teaching and learning process of the subject. Teaching statistics using role play is an appropriate attempt to improve attitudes to statistics, to enhance the learning of statistical techniques and statistical thinking, and to increase generic skills. The objectives of the paper are to give an overview on role play in statistics learning and to access the effect of these activities on students' attitude and learning in action research framework. The computer tool entrepreneur role play is conducted in a two-hour tutorial class session of first year students in Faculty of Information Sciences and Technology (FTSM), Universiti Kebangsaan Malaysia, enrolled in Probability and Statistics course. The results show that most students feel that they have enjoyable and great time in the role play. Furthermore, benefits and disadvantages from role play activities were highlighted to complete the review. Role play is expected to serve as an important activities that take into account students' experience, emotions and responses to provide useful information on how to modify student's thinking or behavior to improve learning.
ML-o-Scope: A Diagnostic Visualization System for Deep Machine Learning Pipelines
2014-05-16
ML-o-scope: a diagnostic visualization system for deep machine learning pipelines Daniel Bruckner Electrical Engineering and Computer Sciences... machine learning pipelines 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f...the system as a support for tuning large scale object-classification pipelines. 1 Introduction A new generation of pipelined machine learning models
WebWatcher: Machine Learning and Hypertext
1995-05-29
WebWatcher: Machine Learning and Hypertext Thorsten Joachims, Tom Mitchell, Dayne Freitag, and Robert Armstrong School of Computer Science Carnegie...HTML-page about machine learning in which we in- serted a hyperlink to WebWatcher (line 6). The user follows this hyperlink and gets to a page which...AND SUBTITLE WebWatcher: Machine Learning and Hypertext 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT
ERIC Educational Resources Information Center
Mihindo, W. Jane; Wachanga, S.W.; Anditi, Z. O.
2017-01-01
Science education should help develop student's interest in science as today's society depends largely on output of science and technology. Chemistry is one of the branches of science. Chemistry education helps to expand the pupil's knowledge of the universe and of his/her position in it. It helps in the appreciation and enjoyment of nature and…
1993-12-01
Unclassified/Unlimited 13. ABSTRACT ~Maximum 2W0 worr*J The purpose of this thesis is to develop a high-level model to create seli"adapting software which...Department of Computer Science ABSTRACT The purpose of this thesis is to develop a high-level model to create self-adapting software which teaches learning...stimulating and demanding. The power of the system model described herein is that it can vary as needed by the individual student. The system will
ERIC Educational Resources Information Center
Kaousar, Tayyeba; Choudhry, Bushra Naoreen; Gujjar, Aijaz Ahmed
2008-01-01
This study was aimed to evaluate the effectiveness of CAI vs. classroom lecture for computer science at ICS level. The objectives were to compare the learning effects of two groups with classroom lecture and computer-assisted instruction studying the same curriculum and the effects of CAI and CRL in terms of cognitive development. Hypotheses of…
Narrating Data Structures: The Role of Context in CS2
ERIC Educational Resources Information Center
Yarosh, Svetlana; Guzdial, Mark
2008-01-01
Learning computing with respect to the context of its use has been linked in previous reports to student motivation in introductory Computer Science (CS) courses. In this report, we consider the role of context in a second course. We present a case study of a CS2 data structures class that uses a media computation context. In this course, students…
Building machines that adapt and compute like brains.
Kriegeskorte, Nikolaus; Mok, Robert M
2017-01-01
Building machines that learn and think like humans is essential not only for cognitive science, but also for computational neuroscience, whose ultimate goal is to understand how cognition is implemented in biological brains. A new cognitive computational neuroscience should build cognitive-level and neural-level models, understand their relationships, and test both types of models with both brain and behavioral data.
ERIC Educational Resources Information Center
Abelson, Hal; Goldenberg, Paul
This experimental curriculum unit suggests how dramatic innovations in classroom content may be achieved through use of computers. The computational perspective is viewed as one which can enrich and transform traditional curricula, act as a focus for integrating insights from diverse disciplines, and enable learning to become more active and…
Computers and Cognitive Development at Work
ERIC Educational Resources Information Center
Roth, Wolff-Michael; Lee, Yew-Jin
2006-01-01
Data-logging exercises in science classrooms assume that with the proper scaffolding and provision of contexts by instructors, pupils are able to meaningfully comprehend the experimental variables under investigation. From a case study of knowing and learning in a fish hatchery using real-time computer statistical software, we show that…
How Computer-Assisted Teaching in Physics Can Enhance Student Learning
ERIC Educational Resources Information Center
Karamustafaoglu, O.
2012-01-01
Simple harmonic motion (SHM) is an important topic for physics or science students and has wide applications all over the world. Computer simulations are applications of special interest in physics teaching because they support powerful modeling environments involving physics concepts. This article is aimed to compare the effect of…
Using POGIL to Help Students Learn to Program
ERIC Educational Resources Information Center
Hu, Helen H.; Shepherd, Tricia D.
2013-01-01
POGIL has been successfully implemented in a scientific computing course to teach science students how to program in Python. Following POGIL guidelines, the authors have developed guided inquiry activities that lead student teams to discover and understand programming concepts. With each iteration of the scientific computing course, the authors…
Debugging Geographers: Teaching Programming to Non-Computer Scientists
ERIC Educational Resources Information Center
Muller, Catherine L.; Kidd, Chris
2014-01-01
The steep learning curve associated with computer programming can be a daunting prospect, particularly for those not well aligned with this way of logical thinking. However, programming is a skill that is becoming increasingly important. Geography graduates entering careers in atmospheric science are one example of a particularly diverse group who…
Making Construals as a New Digital Skill for Learning
ERIC Educational Resources Information Center
Beynon, Meurig; Boyatt, Russell; Foss, Jonathan; Hall, Chris; Hudnott, Elizabeth; Russ, Steve; Sutinen, Erkki; Macleod, Hamish; Kommers, Piet
2015-01-01
Making construals is a practical approach to computing that was originally developed for and by computer science undergraduates. It is the central theme of an EU project aimed at disseminating the relevant principles to a broader audience. This involves bringing together technical experts in making construals and international experts in…
The ACLS Survey of Scholars: Views on Publications, Computers, Libraries.
ERIC Educational Resources Information Center
Morton, Herbert C.; Price, Anne Jamieson
1986-01-01
Reviews results of a survey by the American Council of Learned Societies (ACLS) of 3,835 scholars in the humanities and social sciences who are working both in colleges and universities and outside the academic community. Areas highlighted include professional reading, authorship patterns, computer use, and library use. (LRW)
Practical Problem-Based Learning in Computing Education
ERIC Educational Resources Information Center
O'Grady, Michael J.
2012-01-01
Computer Science (CS) is a relatively new disciple and how best to introduce it to new students remains an open question. Likewise, the identification of appropriate instructional strategies for the diverse topics that constitute the average curriculum remains open to debate. One approach considered by a number of practitioners in CS education…
Computer Graphics and Metaphorical Elaboration for Learning Science Concepts.
ERIC Educational Resources Information Center
ChanLin, Lih-Juan; Chan, Kung-Chi
This study explores the instructional impact of using computer multimedia to integrate metaphorical verbal information into graphical representations of biotechnology concepts. The combination of text and graphics into a single metaphor makes concepts dual-coded, and therefore more comprehensible and memorable for the student. Visual stimuli help…
Comparative Analysis of Palm and Wearable Computers for Participatory Simulations
ERIC Educational Resources Information Center
Klopfer, Eric; Yoon, Susan; Rivas, Luz
2004-01-01
Recent educational computer-based technologies have offered promising lines of research that promote social constructivist learning goals, develop skills required to operate in a knowledge-based economy (Roschelle et al. 2000), and enable more authentic science-like problem-solving. In our research programme, we have been interested in combining…
ERIC Educational Resources Information Center
Vernadakis, Nikolaos; Antoniou, Panagiotis; Giannousi, Maria; Zetou, Eleni; Kioumourtzoglou, Efthimis
2011-01-01
The purpose of this study was to determine the effectiveness of a hybrid learning approach to deliver a computer science course concerning the Microsoft office PowerPoint 2003 program in comparison to delivering the same course content in the form of traditional lectures. A hundred and seventy-two first year university students were randomly…
Wilkinson, Ann; While, Alison E; Roberts, Julia
2009-04-01
This paper is a report of a review to describe and discuss the psychometric properties of instruments used in healthcare education settings measuring experience and attitudes of healthcare students regarding their information and communication technology skills and their use of computers and the Internet for education. Healthcare professionals are expected to be computer and information literate at registration. A previous review of evaluative studies of computer-based learning suggests that methods of measuring learners' attitudes to computers and computer aided learning are problematic. A search of eight health and social science databases located 49 papers, the majority published between 1995 and January 2007, focusing on the experience and attitudes of students in the healthcare professions towards computers and e-learning. An integrative approach was adopted, with narrative description of findings. Criteria for inclusion were quantitative studies using survey tools with samples of healthcare students and concerning computer and information literacy skills, access to computers, experience with computers and use of computers and the Internet for education purposes. Since the 1980s a number of instruments have been developed, mostly in the United States of America, to measure attitudes to computers, anxiety about computer use, information and communication technology skills, satisfaction and more recently attitudes to the Internet and computers for education. The psychometric properties are poorly described. Advances in computers and technology mean that many earlier tools are no longer valid. Measures of the experience and attitudes of healthcare students to the increased use of e-learning require development in line with computer and technology advances.
Using the Tower of Hanoi puzzle to infuse your mathematics classroom with computer science concepts
NASA Astrophysics Data System (ADS)
Marzocchi, Alison S.
2016-07-01
This article suggests that logic puzzles, such as the well-known Tower of Hanoi puzzle, can be used to introduce computer science concepts to mathematics students of all ages. Mathematics teachers introduce their students to computer science concepts that are enacted spontaneously and subconsciously throughout the solution to the Tower of Hanoi puzzle. These concepts include, but are not limited to, conditionals, iteration, and recursion. Lessons, such as the one proposed in this article, are easily implementable in mathematics classrooms and extracurricular programmes as they are good candidates for 'drop in' lessons that do not need to fit into any particular place in the typical curriculum sequence. As an example for readers, the author describes how she used the puzzle in her own Number Sense and Logic course during the federally funded Upward Bound Math/Science summer programme for college-intending low-income high school students. The article explains each computer science term with real-life and mathematical examples, applies each term to the Tower of Hanoi puzzle solution, and describes how students connected the terms to their own solutions of the puzzle. It is timely and important to expose mathematics students to computer science concepts. Given the rate at which technology is currently advancing, and our increased dependence on technology in our daily lives, it has become more important than ever for children to be exposed to computer science. Yet, despite the importance of exposing today's children to computer science, many children are not given adequate opportunity to learn computer science in schools. In the United States, for example, most students finish high school without ever taking a computing course. Mathematics lessons, such as the one described in this article, can help to make computer science more accessible to students who may have otherwise had little opportunity to be introduced to these increasingly important concepts.
NASA Astrophysics Data System (ADS)
Swetnam, T. L.; Walls, R.; Merchant, N.
2017-12-01
CyVerse, is a US National Science Foundation funded initiative "to design, deploy, and expand a national cyberinfrastructure for life sciences research, and to train scientists in its use," supporting and enabling cross disciplinary collaborations across institutions. CyVerse' free, open-source, cyberinfrastructure is being adopted into biogeoscience and space sciences research. CyVerse data-science agnostic platforms provide shared data storage, high performance computing, and cloud computing that allow analysis of very large data sets (including incomplete or work-in-progress data sets). Part of CyVerse success has been in addressing the handling of data through its entire lifecycle, from creation to final publication in a digital data repository to reuse in new analyses. CyVerse developers and user communities have learned many lessons that are germane to Earth and Environmental Science. We present an overview of the tools and services available through CyVerse including: interactive computing with the Discovery Environment (https://de.cyverse.org/), an interactive data science workbench featuring data storage and transfer via the Data Store; cloud computing with Atmosphere (https://atmo.cyverse.org); and access to HPC via Agave API (https://agaveapi.co/). Each CyVerse service emphasizes access to long term data storage, including our own Data Commons (http://datacommons.cyverse.org), as well as external repositories. The Data Commons service manages, organizes, preserves, publishes, allows for discovery and reuse of data. All data published to CyVerse's Curated Data receive a permanent identifier (PID) in the form of a DOI (Digital Object Identifier) or ARK (Archival Resource Key). Data that is more fluid can also be published in the Data commons through Community Collaborated data. The Data Commons provides landing pages, permanent DOIs or ARKs, and supports data reuse and citation through features such as open data licenses and downloadable citations. The ability to access and do computing on data within the CyVerse framework or with external compute resources when necessary, has proven highly beneficial to our user community, which has continuously grown since the inception of CyVerse nine years ago.
NASA Astrophysics Data System (ADS)
Hut, R. W.; van de Giesen, N. C.; Drost, N.
2017-05-01
The suggestions by Hutton et al. might not be enough to guarantee reproducible computational hydrology. Archiving software code and research data alone will not be enough. We add to the suggestion of Hutton et al. that hydrologists not only document their (computer) work, but that hydrologists use the latest best practices in designing research software, most notably the use of containers and open interfaces. To make sure hydrologists know of these best practices, we urge close collaboration with Research Software Engineers (RSEs).
Changing how and what children learn in school with computer-based technologies.
Roschelle, J M; Pea, R D; Hoadley, C M; Gordin, D N; Means, B M
2000-01-01
Schools today face ever-increasing demands in their attempts to ensure that students are well equipped to enter the workforce and navigate a complex world. Research indicates that computer technology can help support learning, and that it is especially useful in developing the higher-order skills of critical thinking, analysis, and scientific inquiry. But the mere presence of computers in the classroom does not ensure their effective use. Some computer applications have been shown to be more successful than others, and many factors influence how well even the most promising applications are implemented. This article explores the various ways computer technology can be used to improve how and what children learn in the classroom. Several examples of computer-based applications are highlighted to illustrate ways technology can enhance how children learn by supporting four fundamental characteristics of learning: (1) active engagement, (2) participation in groups, (3) frequent interaction and feedback, and (4) connections to real-world contexts. Additional examples illustrate ways technology can expand what children learn by helping them to understand core concepts in subjects like math, science, and literacy. Research indicates, however, that the use of technology as an effective learning tool is more likely to take place when embedded in a broader education reform movement that includes improvements in teacher training, curriculum, student assessment, and a school's capacity for change. To help inform decisions about the future role of computers in the classroom, the authors conclude that further research is needed to identify the uses that most effectively support learning and the conditions required for successful implementation.
Group Emotions: The Social and Cognitive Functions of Emotions in Argumentation
ERIC Educational Resources Information Center
Polo, Claire; Lund, Kristine; Plantin, Christian; Niccolai, Gerald P.
2016-01-01
The learning sciences of today recognize the tri-dimensional nature of learning as involving cognitive, social and emotional phenomena. However, many computer-supported argumentation systems still fail in addressing the socio-emotional aspects of group reasoning, perhaps due to a lack of an integrated theoretical vision of how these three…
Learning and Understanding System Stability Using Illustrative Dynamic Texture Examples
ERIC Educational Resources Information Center
Liu, Huaping; Xiao, Wei; Zhao, Hongyan; Sun, Fuchun
2014-01-01
System stability is a basic concept in courses on dynamic system analysis and control for undergraduate students with computer science backgrounds. Typically, this was taught using a simple simulation example of an inverted pendulum. Unfortunately, many difficult issues arise in the learning and understanding of the concepts of stability,…
ERIC Educational Resources Information Center
Iiskala, Tuike; Volet, Simone; Lehtinen, Erno; Vauras, Marja
2015-01-01
The significance of socially shared metacognitive regulation (SSMR) in collaborative learning is gaining momentum. To date, however, there is still a paucity of research of how SSMR is manifested in asynchronous computer-supported collaborative learning (CSCL), and hardly any systematic investigation of SSMR's functions and evolution across…
Attending to Structural Programming Features Predicts Differences in Learning and Motivation
ERIC Educational Resources Information Center
Witherspoon, Eben B.; Schunn, Christian D.; Higashi, Ross M.; Shoop, Robin
2018-01-01
Educational robotics programs offer an engaging opportunity to potentially teach core computer science concepts and practices in K-12 classrooms. Here, we test the effects of units with different programming content within a virtual robotics context on both learning gains and motivational changes in middle school (6th-8th grade) robotics…