ERIC Educational Resources Information Center
Balci, Sibel; Cakiroglu, Jale; Tekkaya, Ceren
2006-01-01
The purpose of this study is to investigate the effects of the Engagement, Exploration, Explanation, Extension, and Evaluation (5E) learning cycle, conceptual change texts, and traditional instructions on 8th grade students' understanding of photosynthesis and respiration in plants. Students' understanding of photosynthesis and respiration in…
ERIC Educational Resources Information Center
Odom, Arthur L.; Kelly, Paul V.
2001-01-01
Explores the effectiveness of concept mapping, the learning cycle, expository instruction, and a combination of concept mapping/learning cycle in promoting conceptual understanding of diffusion and osmosis. Concludes that the concept mapping/learning cycle and concept mapping treatment groups significantly outperformed the expository treatment…
Removing Preconceptions with a "Learning Cycle."
ERIC Educational Resources Information Center
Gang, Su
1995-01-01
Describes a teaching experiment that uses the Learning Cycle to achieve the reorientation of physics' students conceptual frameworks away from commonsense perspectives toward scientifically rigorous outlooks. Uses Archimedes' principle as the content topic while using the Learning Cycle to remove students' nonscientific preconceptions. (JRH)
ERIC Educational Resources Information Center
Al khawaldeh, Salem A.
2013-01-01
Background and Purpose: The purpose of this study was to investigate the comparative effects of a prediction/discussion-based learning cycle (HPD-LC), conceptual change text (CCT) and traditional instruction on 10th grade students' understanding of genetics concepts. Sample: Participants were 112 10th basic grade male students in three classes of…
ERIC Educational Resources Information Center
Yilmaz, Diba; Tekkaya, Ceren; Sungur, Semra
2011-01-01
The present study examined the comparative effects of a prediction/discussion-based learning cycle, conceptual change text (CCT), and traditional instructions on students' understanding of genetics concepts. A quasi-experimental research design of the pre-test-post-test non-equivalent control group was adopted. The three intact classes, taught by…
ERIC Educational Resources Information Center
Sulisworo, Dwi; Sutadi, Novitasari
2017-01-01
There have been many studies related to the implementation of cooperative learning. However, there are still many problems in school related to the learning outcomes on science lesson, especially in physics. The aim of this study is to observe the application of science learning cycle (SLC) model on improving scientific literacy for secondary…
The Remedial Effect of a Biological Learning Game.
ERIC Educational Resources Information Center
Blum, Abraham
1979-01-01
Investigates the effectiveness of a structured learning game in overcoming learning difficulties encountered by Israeli students when studying the life cycles of fungi because of lack of structural conceptualization. The Fungi Life Cycle Game (FLCG) was used by undergraduate students enrolled in a phytopathology course. (HM)
Questions, Curiosity and the Inquiry Cycle
ERIC Educational Resources Information Center
Casey, Leo
2014-01-01
This article discusses the conceptual relationship between questions, curiosity and learning as inquiry elaborated in the work of Chip Bruce and others as the Inquiry Cycle. The Inquiry Cycle describes learning in terms of a continuous dynamic of ask, investigate, create, discuss and reflect. Of these elements "ask" has a privileged…
Conceptual Understanding of Acids and Bases Concepts and Motivation to Learn Chemistry
ERIC Educational Resources Information Center
Cetin-Dindar, Ayla; Geban, Omer
2017-01-01
The purpose of this study was to investigate the effect of 5E learning cycle model oriented instruction (LCMI) on 11th-grade students' conceptual understanding of acids and bases concepts and student motivation to learn chemistry. The study, which lasted for 7 weeks, involved two groups: An experimental group (LCMI) and a control group (the…
Teaching and Learning International Survey TALIS 2013: Conceptual Framework. Final
ERIC Educational Resources Information Center
Rutkowski, David; Rutkowski, Leslie; Bélanger, Julie; Knoll, Steffen; Weatherby, Kristen; Prusinski, Ellen
2013-01-01
In 2008, the initial cycle of the OECD's Teaching and Learning International Survey (TALIS 2008) established, for the first time, an international, large-scale survey of the teaching workforce, the conditions of teaching, and the learning environments of schools in participating countries. The second cycle of TALIS (TALIS 2013) aims to continue…
ERIC Educational Resources Information Center
O'Connor, Bridget N.
2004-01-01
Building on the conceptual foundations suggested in the previous two papers in this issue, this article describes the application of a workplace learning cycle theory to the construction of a curriculum for a graduate-level course of study in workplace education. As a way to prepare chief learning officers and heads of corporate universities, the…
NASA Astrophysics Data System (ADS)
khawaldeh, Salem A. Al
2013-07-01
Background and purpose: The purpose of this study was to investigate the comparative effects of a prediction/discussion-based learning cycle (HPD-LC), conceptual change text (CCT) and traditional instruction on 10th grade students' understanding of genetics concepts. Sample: Participants were 112 10th basic grade male students in three classes of the same school located in an urban area. The three classes taught by the same biology teacher were randomly assigned as a prediction/discussion-based learning cycle class (n = 39), conceptual change text class (n = 37) and traditional class (n = 36). Design and method: A quasi-experimental research design of pre-test-post-test non-equivalent control group was adopted. Participants completed the Genetics Concept Test as pre-test-post-test, to examine the effects of instructional strategies on their genetics understanding. Pre-test scores and Test of Logical Thinking scores were used as covariates. Results: The analysis of covariance showed a statistically significant difference between the experimental and control groups in the favor of experimental groups after treatment. However, no statistically significant difference between the experimental groups (HPD-LC versus CCT instruction) was found. Conclusions: Overall, the findings of this study support the use of the prediction/discussion-based learning cycle and conceptual change text in both research and teaching. The findings may be useful for improving classroom practices in teaching science concepts and for the development of suitable materials promoting students' understanding of science.
ERIC Educational Resources Information Center
Drachsler, H.; Kalz, M.
2016-01-01
The article deals with the interplay between learning analytics and massive open online courses (MOOCs) and provides a conceptual framework to situate ongoing research in the MOOC and learning analytics innovation cycle (MOLAC framework). The MOLAC framework is organized on three levels: On the micro-level, the data collection and analytics…
ERIC Educational Resources Information Center
Abraham, Michael R.; Renner, John W.
A learning cycle consists of three phases: exploration; conceptual invention; and expansion of an idea. These phases parallel Piaget's functioning model of assimilation, disequilibrium and accomodation, and organization respectively. The learning cycle perceives students as actors rather than reactors to the environment. Inherent in that…
Developing a Multi-Year Learning Progression for Carbon Cycling in Socio-Ecological Systems
ERIC Educational Resources Information Center
Mohan, Lindsey; Chen, Jing; Anderson, Charles W.
2009-01-01
This study reports on our steps toward achieving a conceptually coherent and empirically validated learning progression for carbon cycling in socio-ecological systems. It describes an iterative process of designing and analyzing assessment and interview data from students in upper elementary through high school. The product of our development…
NASA Astrophysics Data System (ADS)
Yilmaz, Diba; Tekkaya, Ceren; Sungur, Semra
2011-03-01
The present study examined the comparative effects of a prediction/discussion-based learning cycle, conceptual change text (CCT), and traditional instructions on students' understanding of genetics concepts. A quasi-experimental research design of the pre-test-post-test non-equivalent control group was adopted. The three intact classes, taught by the same science teacher, were randomly assigned as prediction/discussion-based learning cycle class (N = 30), CCT class (N = 25), and traditional class (N = 26). Participants completed the genetics concept test as pre-test, post-test, and delayed post-test to examine the effects of instructional strategies on their genetics understanding and retention. While the dependent variable of this study was students' understanding of genetics, the independent variables were time (Time 1, Time 2, and Time 3) and mode of instruction. The mixed between-within subjects analysis of variance revealed that students in both prediction/discussion-based learning cycle and CCT groups understood the genetics concepts and retained their knowledge significantly better than students in the traditional instruction group.
Developing mathematical practices through reflection cycles
NASA Astrophysics Data System (ADS)
Reinholz, Daniel L.
2016-09-01
This paper focuses on reflection in learning mathematical practices. While there is a long history of research on reflection in mathematics, it has focused primarily on the development of conceptual understanding. Building on notion of learning as participation in social practices, this paper broadens the theory of reflection in mathematics learning. To do so, it introduces the concept of reflection cycles. Each cycle begins with prospective reflection, which guides one's actions during an experience, and ends with retrospective reflection, which consolidates the experience and informs the next reflection cycle. Using reflection cycles as an organizing framework, this paper synthesizes the literature on reflective practices at a variety of levels: (1) metacognition, (2) self-assessment, (3) noticing, and (4) lifelong learning. These practices represent a spectrum of reflection, ranging from the micro level (1) to macro level (4).
ERIC Educational Resources Information Center
Ceylan, Eren; Geban, Omer
2009-01-01
The main purpose of the study was to compare the effectiveness of 5E learning cycle model based instruction and traditionally designed chemistry instruction on 10th grade students' understanding of state of matter and solubility concepts. In this study, 119 tenth grade students from chemistry courses instructed by same teacher from an Anatolian…
ERIC Educational Resources Information Center
Miller, Richard J.; Maellaro, Rosemary
2016-01-01
Experiential learning alone does not guarantee that students will accurately conceptualize content, or meet course outcomes in subsequent active experimentation stages. In an effort to more effectively meet learning objectives, the experiential learning cycle was modified with a unique combination of the 5 Whys root cause problem-solving tool and…
Big Ideas at a Very Small Scale
ERIC Educational Resources Information Center
Khourey-Bowers, Claudia
2009-01-01
The purpose of this article is to share a learning-cycle sequence of lessons designed to convey the particulate nature of matter through use of physical models and analogical thinking. This activity was adapted from Conceptual Chemistry, a long-running professional development program for teachers of grades 4-9. Conceptual Chemistry's approach is…
Radin Umar, Radin Zaid; Sommerich, Carolyn M; Lavender, Steve A; Sanders, Elizabeth; Evans, Kevin D
2018-05-14
Sound workplace ergonomics and safety-related interventions may be resisted by employees, and this may be detrimental to multiple stakeholders. Understanding fundamental aspects of decision making, behavioral change, and learning cycles may provide insights into pathways influencing employees' acceptance of interventions. This manuscript reviews published literature on thinking processes and other topics relevant to decision making and incorporates the findings into two new conceptual frameworks of the workplace change adoption process. Such frameworks are useful for thinking about adoption in different ways and testing changes to traditional intervention implementation processes. Moving forward, it is recommended that future research focuses on systematic exploration of implementation process activities that integrate principles from the research literature on sensemaking, decision making, and learning processes. Such exploration may provide the groundwork for development of specific implementation strategies that are theoretically grounded and provide a revised understanding of how successful intervention adoption processes work.
When Playing Meets Learning: Methodological Framework for Designing Educational Games
NASA Astrophysics Data System (ADS)
Linek, Stephanie B.; Schwarz, Daniel; Bopp, Matthias; Albert, Dietrich
Game-based learning builds upon the idea of using the motivational potential of video games in the educational context. Thus, the design of educational games has to address optimizing enjoyment as well as optimizing learning. Within the EC-project ELEKTRA a methodological framework for the conceptual design of educational games was developed. Thereby state-of-the-art psycho-pedagogical approaches were combined with insights of media-psychology as well as with best-practice game design. This science-based interdisciplinary approach was enriched by enclosed empirical research to answer open questions on educational game-design. Additionally, several evaluation-cycles were implemented to achieve further improvements. The psycho-pedagogical core of the methodology can be summarized by the ELEKTRA's 4Ms: Macroadaptivity, Microadaptivity, Metacognition, and Motivation. The conceptual framework is structured in eight phases which have several interconnections and feedback-cycles that enable a close interdisciplinary collaboration between game design, pedagogy, cognitive science and media psychology.
Conceptualizing Ecology: A Learning Cycle Approach.
ERIC Educational Resources Information Center
Lauer, Thomas E.
2003-01-01
Proposes a teaching strategy to teach ecological concepts and terminology through the use of games and simulations. Includes examples from physiological ecology, population ecology, and ecosystem ecology. (Author/SOE)
Classroom Assessment Techniques: A Conceptual Model for CATs in the Online Classroom
ERIC Educational Resources Information Center
Bergquist, Emily; Holbeck, Rick
2014-01-01
Formative assessments are an important part of the teaching and learning cycle. Instructors need to monitor student learning and check for understanding throughout the instructional phase of teaching to confirm that students understand the objective before embarking on the summative assessment. Typically, online classrooms are developed with…
Developing Mathematical Practices through Reflection Cycles
ERIC Educational Resources Information Center
Reinholz, Daniel L.
2016-01-01
This paper focuses on reflection in learning mathematical practices. While there is a long history of research on reflection in mathematics, it has focused primarily on the development of conceptual understanding. Building on notion of learning as participation in social practices, this paper broadens the theory of reflection in mathematics…
Teaching and Learning Cycles in a Constructivist Approach to Instruction
ERIC Educational Resources Information Center
Singer, Florence Mihaela; Moscovici, Hedy
2008-01-01
This study attempts to analyze and synthesize the knowledge collected in the area of conceptual models used in teaching and learning during inquiry-based projects, and to propose a new frame for organizing the classroom interactions within a constructivist approach. The IMSTRA model consists in three general phases: Immersion, Structuring,…
ERIC Educational Resources Information Center
Maskiewicz, April Cordero; Griscom, Heather Peckham; Welch, Nicole Turrill
2012-01-01
In this study, we used targeted active-learning activities to help students improve their ways of reasoning about carbon flow in ecosystems. The results of a validated ecology conceptual inventory (diagnostic question clusters [DQCs]) provided us with information about students' understanding of and reasoning about transformation of inorganic and…
ERIC Educational Resources Information Center
Heyd-Metzuyanim, Einat
2015-01-01
This study uses a new communicational lens that conceptualizes the activity of learning mathematics as interplay between mathematizing and identifying in order to study how the emotional, social, and cognitive aspects of learning mathematics interact with one another. The proposed framework is used to analyze the case of Idit, a girl who started…
Conceptual development and retention within the learning cycle
NASA Astrophysics Data System (ADS)
McWhirter, Lisa Jo
1998-12-01
This research was designed to achieve two goals: (1) examine concept development and retention within the learning cycle and (2) examine how students' concept development is mediated by classroom discussions and the students' small cooperative learning group. Forty-eight sixth-grade students and one teacher at an urban middle school participated in the study. The research utilized both quantitative and qualitative analyses. Quantitative assessments included a concept mapping technique as well as teacher generated multiple choice tests. Preliminary quantitative analysis found that students' reading levels had an effect on students' pretest scores in both the concept mapping and the multiple-choice assessment. Therefore, a covariant design was implemented for the quantitative analyses. Quantitative analysis techniques were used to examine concept development and retention, it was discovered that the students' concept knowledge increased significantly from the time of the conclusion of the term introduction phase to the conclusion of the expansion phase. These findings would indicate that all three phases of the learning cycle are necessary for conceptual development. However, quantitative analyses of concept maps indicated that this is not true for all students. Individual students showed evidence of concept development and integration at each phase. Therefore, concept development is individualized and all phases of the learning cycle are not necessary for all students. As a result, individual's assimilation, disequilibration, accommodation and organization may not correlate with the phases of the learning cycle. Quantitative analysis also indicated a significant decrease in the retention of concepts over time. Qualitative analyses were used to examine how students' concept development is mediated by classroom discussions and the students' small cooperative learning group. It was discovered that there was a correlation between teacher-student interaction and small-group interaction and concept mediation. Therefore, students who had a high level of teacher-student dialogue which utilized teacher led discussions with integrated scaffolding techniques where the same students who mediated the ideas within the small group discussions. Those students whose teacher-student interactions consisted of dialogue with little positive teacher feedback made no contributions within the small group regardless of their level of concept development.
Teacher Language Awareness in Supervisory Feedback Cycles
ERIC Educational Resources Information Center
Lindahl, Kristen; Baecher, Laura
2016-01-01
This study investigates pre- and post-observation feedback provided to TESOL teacher candidates who are preparing to work in content-based instruction/content and language integrated learning contexts, extending the conceptualization of teacher language awareness (TLA) to candidate supervision. It examines the extent to which TLA is manifested by…
Going in Cycles: Courseware and Material Development for Written Communication
ERIC Educational Resources Information Center
Schulze, Mathias; Liebscher, Grit
2010-01-01
The development of both the materials for an intermediate-level hybrid German writing course and the software in a virtual learning environment for the course may be viewed as activity systems. Viewing the individual components of each system as interrelated enables us to conceptualize the complexities of the development process, which goes well…
Increasing Conceptual Understanding of Glycolysis & the Krebs Cycle Using Role-Play
ERIC Educational Resources Information Center
Ross, Pauline M.; Tronson, Deidre A.; Ritchie, Raymond J.
2008-01-01
Cellular respiration and metabolism are topics that are reportedly poorly understood by students and judged to be difficult by many teachers. Although these topics may not be required learning areas in some high school biology curricula, a grasp of fundamental concepts of cellular metabolic processes is advantageous for students undertaking (or…
Framing Prospective Elementary Teachers' Conceptions of Dissolving as a Ladder of Explanations
ERIC Educational Resources Information Center
Subramaniam, Karthigeyan; Esprivalo Harrell, Pamela
2013-01-01
The paper details an exploratory qualitative study that investigated 61 prospective teachers' conceptual understanding of dissolving salt and sugar in water respectively. The study was set within a 15-week elementary science methods course that included a 5E learning cycle lesson on dissolving, the instructional context. Oversby's…
NASA Astrophysics Data System (ADS)
Dunac, Patricia S.; Demir, Kadir
2013-11-01
We engaged secondary science students in a teacher and student constructed Uno card game (UCG) to change their conceptual understanding of the various energy transformations. The paper outlines how we incorporated Toulmin’s argumentation pattern (Toulmin 1958 The Uses of Argument (Cambridge: Cambridge University Press)) in the UCG, using discourse (Erduran et al 2004 Sci. Educ. 88 915-33) and through a 5E learning cycle (Bybee 1997 Achieving Scientific Literacy: From Purposes to Practices (Portsmouth, NH: Heinemann Educational Books)). The activity helped students develop a deeper understanding of the energy transformation among and between different sources. Students experienced a conceptual gain in their ways of thinking, in contrast to traditional teaching and learning practices. The collaboration and interaction between teacher-student(s) and between students fostered an environment where they became co-constructors of knowledge.
NASA Astrophysics Data System (ADS)
Seely, Brian J.
This study aims to advance learning outdoors with mobile devices. As part of the ongoing Tree Investigators design-based research study, this research investigated a mobile application to support observation, identification, and explanation of the tree life cycle within an authentic, outdoor setting. Recognizing the scientific and conceptual complexity of this topic for young children, the design incorporated technological and design scaffolds within a narrative-based learning environment. In an effort to support learning, 14 participants (aged 5-9) were guided through the mobile app on tree life cycles by a comic-strip pedagogical agent, "Nutty the Squirrel", as they looked to explore and understand through guided observational practices and artifact creation tasks. In comparison to previous iterations of this DBR study, the overall patterns of talk found in this study were similar, with perceptual and conceptual talk being the first and second most frequently coded categories, respectively. However, this study coded considerably more instances of affective talk. This finding of the higher frequency of affective talk could possibly be explained by the relatively younger age of this iteration's participants, in conjunction with the introduced pedagogical agent, who elicited playfulness and delight from the children. The results also indicated a significant improvement when comparing the pretest results (mean score of .86) with the posttest results (mean score of 4.07, out of 5). Learners were not only able to recall the phases of a tree life cycle, but list them in the correct order. The comparison reports a significant increase, showing evidence of increased knowledge and appropriation of scientific vocabulary. The finding suggests the narrative was effective in structuring the complex material into a story for sense making. Future research with narratives should consider a design to promote learner agency through more interactions with the pedagogical agent and a conditional branching scenario framework to further evoke interest and engagement.
NASA Astrophysics Data System (ADS)
Samo Goyco, Marisol
This investigation describes and combines the qualitative and quantitative methods of nature. The research I have work explore, observe, record and also it describes the experience to consider the education and teaching of the course. This investigation is a research that our students from the biology course, since the constructivist approach identifying and correct mistake. In this investigation there were participating twenty five students of tenth grade from a public school specialized in music. This research includes conceptual maps, computer integration, science programmed, internet, and broadcast and assessment approach. The research of conceptual maps establishes the correct method to perform capture the acknowledgement and attention of the investigators and the students which represents a significant relation between the concepts. Thought the investigator sustains on the cycle spiral of Carr and kemmis (1988) I design every unit considering the previous ideology of the student and elaborating the unit plan. Sustaining Maintain the methodology of the action research. The methodology has response to a new teaching paradigm. Situate as a principal assignment of the professor to contribute in the process of active learning to the students. Also helps to have in this process a reflection in their function or goals. During the research I analyze and wrote the observation and materials. The investigator express in her writing the final findings in every cycle. Also evaluates the map concepts the varied integration of activity and the assessment skills which are used through the socialized discussion. The socialized discussion communicates the participant concepts that should be attended. The students express between their peers and in front of the research of the investigator how they felt in terms of resources and the development of the maps. At the moment of this information I design the next cycle responding to the outstanding needs, this reflection genre a mayor interest in the students for the concept learning, they also demonstrate an active participation in the learning process. The findings demonstrate that the conceptual maps and the resources integration are concepts of development. An outspoken communication with the educators produces advantage for both parts. In this study I suggest to the professor and evaluate their continually practice reducing the stress of educational between students and educators.
Helping secondary school students develop a conceptual understanding of refraction
NASA Astrophysics Data System (ADS)
Ashmann, Scott; Anderson, Charles W.; Boeckman, Heather
2016-07-01
Using real-world examples, ray diagrams, and a cognitive apprenticeship cycle, this paper focuses on developing students’ conceptual (not mathematical) understanding of refraction. Refraction can be a difficult concept for students to comprehend if they do not have well-designed opportunities to practice explaining situations where reflection and refraction occur. The use of ray diagrams can be useful in (a) the teacher modelling a correct explanation to a situation where refraction occurs and (b) for students to create as they practice other examples. This paper includes eight examples of increasing complexity that use a cognitive apprenticeship cycle approach to scaffold student learning. The first examples (rock fish, floating penny) are shown and a solution is modeled using a ray diagram. Three more examples (bent pencil, dropping an item in water, sunrise/sunset) are presented for students to practice, with each becoming more sophisticated. Three assessment exercises are then provided (two dots, three coins, broken tube).
The effect of conceptual metaphors through guided inquiry on student's conceptual change
NASA Astrophysics Data System (ADS)
Menia, Meli; Mudzakir, Ahmad; Rochintaniawati, Diana
2017-05-01
The purpose of this study was to identify student's conceptual change of global warming after integrated science learning based guided inquiry through conceptual metaphors. This study used a quasi-experimental with a nonequivalent control group design. The subject was students of two classes of one of MTsN Salido. Data was collected using conceptual change test (pretest and posttest), observation sheet to observe the learning processes, questionnaire sheet to identify students responses, and interview to identifyteacher'srespons of science learning with conceptual metaphors. The results showed that science learning based guided inquiry with conceptual metaphors is better than science learning without conceptual metaphors. The average of posttest experimental class was 79,40 and control class was 66,09. The student's conceptual change for two classes changed significantly byusing mann whitney U testwith P= 0,003(P less than sig. value, P< 0,05). This means that there was differenceson student's conceptual changebeetwen integrated science learning based guided inquiry with conceptual metaphors class and integrated science learning without conceptual metaphors class. The study also showed that teachers and studentsgive positive responsesto implementation of integrated science learning based guided inquiry with conceptual metaphors.
A conceptual persistent healthcare quality improvement process for software development management.
Lin, Jen-Chiun; Su, Mei-Ju; Cheng, Po-Hsun; Weng, Yung-Chien; Chen, Sao-Jie; Lai, Jin-Shin; Lai, Feipei
2007-01-01
This paper illustrates a sustained conceptual service quality improvement process for the management of software development within a healthcare enterprise. Our proposed process is revised from Niland's healthcare quality information system (HQIS). This process includes functions to survey the satisfaction of system functions, describe the operation bylaws on-line, and provide on-demand training. To achieve these goals, we integrate five information systems in National Taiwan University Hospital, including healthcare information systems, health quality information system, requirement management system, executive information system, and digital learning system, to form a full Deming cycle. A preliminary user satisfaction survey showed that our outpatient information system scored an average of 71.31 in 2006.
NASA Astrophysics Data System (ADS)
Niebert, Kai; Gropengiesser, Harald
2015-04-01
In recent years, researchers have become aware of the experiential grounding of scientific thought. Accordingly, research has shown that metaphorical mappings between experience-based source domains and abstract target domains are omnipresent in everyday and scientific language. The theory of conceptual metaphor explains these findings based on the assumption that understanding is embodied. Embodied understanding arises from recurrent bodily and social experience with our environment. As our perception is adapted to a medium-scale dimension, our embodied conceptions originate from this mesocosmic scale. With respect to this epistemological principle, we distinguish between micro-, meso- and macrocosmic phenomena. We use these insights to analyse how external representations of phenomena in the micro- and macrocosm can foster learning when they (a) address the students' learning demand by affording a mesocosmic experience or (b) assist reflection on embodied conceptions by representing their image schematic structure. We base our considerations on empirical evidence from teaching experiments on phenomena from the microcosm (microbial growth and signal conduction in neurons) and the macrocosm (greenhouse effect and carbon cycle). We discuss how the theory of conceptual metaphor can inform the development of external representations.
Traditional Instruction of Differential Equations and Conceptual Learning
ERIC Educational Resources Information Center
Arslan, Selahattin
2010-01-01
Procedural and conceptual learning are two types of learning, related to two types of knowledge, which are often referred to in mathematics education. Procedural learning involves only memorizing operations with no understanding of underlying meanings. Conceptual learning involves understanding and interpreting concepts and the relations between…
Conceptualizing Learning in the Climate Justice Movement
ERIC Educational Resources Information Center
Kluttz, Jenalee; Walter, Pierre
2018-01-01
This article extends Scandrett et al.'s conceptual framework for social movement learning to understand learning and knowledge creation in the climate justice movement. Drawing on radical pluralist theoretical approaches to social movement learning, learning in the climate justice movement is conceptualized at the micro, meso, and macro levels,…
NASA Astrophysics Data System (ADS)
Williams, Karen Ann
One section of college students (N = 25) enrolled in an algebra-based physics course was selected for a Piagetian-based learning cycle (LC) treatment while a second section (N = 25) studied in an Ausubelian-based meaningful verbal reception learning treatment (MVRL). This study examined the students' overall (concept + problem solving + mental model) meaningful understanding of force, density/Archimedes Principle, and heat. Also examined were students' meaningful understanding as measured by conceptual questions, problems, and mental models. In addition, students' learning orientations were examined. There were no significant posttest differences between the LC and MVRL groups for students' meaningful understanding or learning orientation. Piagetian and Ausubelian theories explain meaningful understanding for each treatment. Students from each treatment increased their meaningful understanding. However, neither group altered their learning orientation. The results of meaningful understanding as measured by conceptual questions, problem solving, and mental models were mixed. Differences were attributed to the weaknesses and strengths of each treatment. This research also examined four variables (treatment, reasoning ability, learning orientation, and prior knowledge) to find which best predicted students' overall meaningful understanding of physics concepts. None of these variables were significant predictors at the.05 level. However, when the same variables were used to predict students' specific understanding (i.e. concept, problem solving, or mental model understanding), the results were mixed. For forces and density/Archimedes Principle, prior knowledge and reasoning ability significantly predicted students' conceptual understanding. For heat, however, reasoning ability was the only significant predictor of concept understanding. Reasoning ability and treatment were significant predictors of students' problem solving for heat and forces. For density/Archimedes Principle, treatment was the only significant predictor of students' problem solving. None of the variables were significant predictors of mental model understanding. This research suggested that Piaget and Ausubel used different terminology to describe learning yet these theories are similar. Further research is needed to validate this premise and validate the blending of the two theories.
Stocker, Martin; Burmester, Margarita; Allen, Meredith
2014-04-03
As a conceptual review, this paper will debate relevant learning theories to inform the development, design and delivery of an effective educational programme for simulated team training relevant to health professionals. Kolb's experiential learning theory is used as the main conceptual framework to define the sequence of activities. Dewey's theory of reflective thought and action, Jarvis modification of Kolb's learning cycle and Schön's reflection-on-action serve as a model to design scenarios for optimal concrete experience and debriefing for challenging participants' beliefs and habits. Bandura's theory of self-efficacy and newer socio-cultural learning models outline that for efficient team training, it is mandatory to introduce the social-cultural context of a team. The ideal simulated team training programme needs a scenario for concrete experience, followed by a debriefing with a critical reflexive observation and abstract conceptualisation phase, and ending with a second scenario for active experimentation. Let them re-experiment to optimise the effect of a simulated training session. Challenge them to the edge: The scenario needs to challenge participants to generate failures and feelings of inadequacy to drive and motivate team members to critical reflect and learn. Not experience itself but the inadequacy and contradictions of habitual experience serve as basis for reflection. Facilitate critical reflection: Facilitators and group members must guide and motivate individual participants through the debriefing session, inciting and empowering learners to challenge their own beliefs and habits. To do this, learners need to feel psychological safe. Let the group talk and critical explore. Motivate with reality and context: Training with multidisciplinary team members, with different levels of expertise, acting in their usual environment (in-situ simulation) on physiological variables is mandatory to introduce cultural context and social conditions to the learning experience. Embedding in situ team training sessions into a teaching programme to enable repeated training and to assess regularly team performance is mandatory for a cultural change of sustained improvement of team performance and patient safety.
Investigation to reduce students’ misconception in energy material
NASA Astrophysics Data System (ADS)
Wijayanti, M. D.; Raharjo, S. B.; Saputro, S.; Mulyani, S.
2018-05-01
The purpose of this study is to analyse the misconception of Teacher Candidate of Elementary School (PGSD) on energy materials. This research is expected to be a common misconception in teaching and learning activities. One solution to overcome misconceptions is by investigation. This study uses qualitative research. The subject of this research needs 35 students. Data analysis is done by comparing the observation and test results. The results of this study is the result of students learning outcomes through cycle I and cycle II. The first cycle is due to overweight misconceptions of 18.57% and cycle II of 35.71%. Misconception can be caused by a procedural negligence. Students of PGSD Are examined to show if they understood in a simple movement problem which needs a neverse proportionality concept, to find out a way to prevent misunderstanding. The examination may consist of the question of energy materials by different representation for each student. The conceptual knowledge of the students show incorrectness because they feel confused of existing knowledge they got in their daily lives. It can cause scientific misunderstanding. The declining in student misconceptions is caused by investigation process. Search and data collection are helpful in improving their thinking skills.
How Does Learning in Leadership Work? A Conceptual Change Perspective
ERIC Educational Resources Information Center
Grimes, Matthew W.
2015-01-01
As the field of leadership education continues to prioritize learning in leadership, it is important to ask the question: What do we know about the learning process itself? Conceptual change, a learning framework used in educational psychology, can help to explain learning in leadership. Research on conceptual change in the social sciences is…
Framing Prospective Elementary Teachers' Conceptions of Dissolving as a Ladder of Explanations
NASA Astrophysics Data System (ADS)
Subramaniam, Karthigeyan; Esprivalo Harrell, Pamela
2013-11-01
The paper details an exploratory qualitative study that investigated 61 prospective teachers' conceptual understanding of dissolving salt and sugar in water respectively. The study was set within a 15-week elementary science methods course that included a 5E learning cycle lesson on dissolving, the instructional context. Oversby's (Prim Sci Rev 63:6-19, 2002, Aspects of teaching secondary science, Routledge Falmer, London, 2002) ladder of explanations for the context of dissolving, current scientific explanations for dissolving and perspectives on conceptions and misconceptions provided the unified framework for the study. Concept maps, interview transcripts, written artifacts, and drawings and narratives were used as data to investigate these prospective teachers' conceptual understanding of dissolving throughout the 15-weeks of the methods course. Analysis revealed that participants' explanations of dissolving were predominantly descriptive explanations (39 %) and interpretative explanations (38 %), with lower percentage occurrences of intentional (14 %) and cause and effect (9 %) level explanations. Most of these explanations were also constructed by a set of loosely connected and reinforcing everyday concepts abstracted from common everyday experiences making them misconceptions. Implications include: (1) the need for science teacher educators to use multiple platforms to derive their prospective elementary teachers' conceptual understandings of science content; and (2) to identify and help them identify their own scientific conceptions and misconceptions and how they influence the construction of scientific/nonscientific explanations. Science teacher educators also need to emphasize the role of meaningful frameworks associated with the concept that is being introduced during the Engage phase of the 5E learning cycle. This is important because, relevant prior knowledge is associated with the knowledge of the particle theory of matter and both are part of larger knowledge system comprised of interrelated scientific concepts.
When pretesting fails to enhance learning concepts from reading texts.
Hausman, Hannah; Rhodes, Matthew G
2018-05-03
Prior research suggests that people can learn more from reading a text when they attempt to answer pretest questions first. Specifically, pretests on factual information explicitly stated in a text increases the likelihood that participants can answer identical questions after reading than if they had not answered pretest questions. Yet, a central goal of education is to develop deep conceptual understanding. The present experiments investigated whether conceptual pretests facilitate learning concepts from reading texts. In Experiment 1, participants were given factual or conceptual pretest questions; a control group was not given a pretest. Participants then read a passage and took a final test consisting of both factual and conceptual questions. Some of the final test questions were repeated from the pretest and some were new. Although factual pretesting improved learning for identical factual questions, conceptual pretesting did not enhance conceptual learning. Conceptual pretest errors were significantly more likely to be repeated on the final test than factual pretest errors. Providing correct answers (Experiment 2) or correct/incorrect feedback (Experiment 3) following pretest questions enhanced performance on repeated conceptual test items, although these benefits likely reflect memorization and not conceptual understanding. Thus, pretesting appears to provide little benefit for learning conceptual information. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Studio optics: Adapting interactive engagement pedagogy to upper-division physics
NASA Astrophysics Data System (ADS)
Sorensen, Christopher M.; McBride, Dyan L.; Rebello, N. Sanjay
2011-03-01
The use of interactive engagement strategies to improve learning in introductory physics is not new, but have not been used as often for upper-division physics courses. We describe the development and implementation of a Studio Optics course for upper-division physics majors at Kansas State University. The course adapts a three-stage Karplus learning cycle and other elements to foster an environment that promotes learning through an integration of lecture, laboratories, and problem solving. Some of the instructional materials are described. We discuss the evaluation of the course using data collected from student interviews, a conceptual survey, an attitudinal survey, and the instructor's reflections. Overall, students responded positively to the new format and showed modest gains in learning. The instructor's experiences compared favorably with the traditional course that he had taught in the past.
ERIC Educational Resources Information Center
Chen, Yu-Lung; Pan, Pei-Rong; Sung, Yao-Ting; Chang, Kuo-En
2013-01-01
Computer simulation has significant potential as a supplementary tool for effective conceptual-change learning based on the integration of technology and appropriate instructional strategies. This study elucidates misconceptions in learning on diodes and constructs a conceptual-change learning system that incorporates…
CircleBoard-Pro: Concrete manipulative-based learning cycle unit for learning geometry
NASA Astrophysics Data System (ADS)
Jamhari, Wongkia, Wararat
2018-01-01
Currently, a manipulative is commonly used in mathematics education as a supported tool for teaching and learning. With engaging natural interaction of a concrete manipulative and advantages of a learning cycle approach, we proposed the concrete manipulative-based learning cycle unit to promote mathematics learning. Our main objectives are to observe possibilities on the use of a concrete manipulative in learning geometry, and to assess students' understanding of a specific topic, angle properties in a circle, of secondary level students. To meet the first objective, the concrete manipulative, called CricleBoard-Pro, was designed. CircleBoard-Pro is built for easy to writing on or deleting from, accurate angle measurement, and flexible movement. Besides, learning activities and worksheets were created for helping students to learn angle properties in a circle. Twenty eighth graders on a lower secondary school in Indonesia were voluntarily involved to learn mathematics using CircleBoard-Pro with the designed learning activities and worksheets. We informally observed students' performance by focusing on criteria of using manipulative tools in learning mathematics while the learning activities were also observed in terms of whether they work and which step of activities need to be improved. The results of this part showed that CircleBoard-Pro complied the criteria of the use of the manipulative in learning mathematics. Nevertheless, parts of learning activities and worksheets need to be improved. Based on the results of the observation, CircleBoard-Pro, learning activities, and worksheets were merged together and became the CircleBoardPro embedded on 5E (Engage - Explore - Explain - Elaborate - Evaluate) learning cycle unit. Then, students understanding were assessed to reach the second objective. Six ninth graders from an Indonesian school in Thailand were recruited to participate in this study. Conceptual tests for both pre-and post-test, and semi-structured interview were used. Students' pre-and post-test answers were analyzed not only by descriptive statistics but also in qualitatively discussion. The dialogues between the interviewer and interviewees were transcribed and analyzed to find in-depth understanding. Finally, we can conclude that the participated students had better comprehension of angle properties in a circle even they could not perform proof by themselves. For further study, we will focus on how we can help students to develop their geometric thinking.
E-learning process maturity level: a conceptual framework
NASA Astrophysics Data System (ADS)
Rahmah, A.; Santoso, H. B.; Hasibuan, Z. A.
2018-03-01
ICT advancement is a sure thing with the impact influencing many domains, including learning in both formal and informal situations. It leads to a new mindset that we should not only utilize the given ICT to support the learning process, but also improve it gradually involving a lot of factors. These phenomenon is called e-learning process evolution. Accordingly, this study attempts to explore maturity level concept to provide the improvement direction gradually and progression monitoring for the individual e-learning process. Extensive literature review, observation, and forming constructs are conducted to develop a conceptual framework for e-learning process maturity level. The conceptual framework consists of learner, e-learning process, continuous improvement, evolution of e-learning process, technology, and learning objectives. Whilst, evolution of e-learning process depicted as current versus expected conditions of e-learning process maturity level. The study concludes that from the e-learning process maturity level conceptual framework, it may guide the evolution roadmap for e-learning process, accelerate the evolution, and decrease the negative impact of ICT. The conceptual framework will be verified and tested in the future study.
The impact of rigorous mathematical thinking as learning method toward geometry understanding
NASA Astrophysics Data System (ADS)
Nugraheni, Z.; Budiyono, B.; Slamet, I.
2018-05-01
To reach higher order thinking skill, needed to be mastered the conceptual understanding. RMT is a unique realization of the cognitive conceptual construction approach based on Mediated Learning Experience (MLE) theory by Feurstein and Vygotsky’s sociocultural theory. This was quasi experimental research which was comparing the experimental class that was given Rigorous Mathematical Thinking (RMT) as learning method and control class that was given Direct Learning (DL) as the conventional learning activity. This study examined whether there was different effect of two learning method toward conceptual understanding of Junior High School students. The data was analyzed by using Independent t-test and obtained a significant difference of mean value between experimental and control class on geometry conceptual understanding. Further, by semi-structure interview known that students taught by RMT had deeper conceptual understanding than students who were taught by conventional way. By these result known that Rigorous Mathematical Thinking (RMT) as learning method have positive impact toward Geometry conceptual understanding.
Conceptual Change in Elementary School Teacher Candidate Knowledge of Rock-Cycle Processes.
ERIC Educational Resources Information Center
Stofflett, Rene Therese
1994-01-01
Investigates the knowledge of elementary school teacher candidates on rock-cycle processes. Three different instructional interventions were used to improve their knowledge: (1) conceptual-change teaching; (2) traditional didactic teaching; and (3) microteaching. The conceptual-change group showed the most growth in understanding, supporting…
High school student's motivation to engage in conceptual change-learning in science
NASA Astrophysics Data System (ADS)
Barlia, Lily
1999-11-01
This study investigated motivational factors that are related to engaging in conceptual change learning. While previous studies have recognized the resistance of students' scientific conception to change, few have investigated the role that non-cognitive factors might play when students are exposed to conceptual change instruction. Three research questions were examined: (a) What instructional strategies did the teacher use to both promote students' learning for conceptual change and increase their motivation in learning science? (b) What are the patterns of students' motivation to engage in conceptual change learning? And (c) what individual profiles can be constructed from the four motivational factors (i.e., goals, values, self-efficacy, and control beliefs) and how are these profiles linked to engagement (i.e., behavioral and cognitive engagement) in conceptual change learning of science? Eleven twelfth grade students (senior students) and the teacher in which conceptual change approach to teaching was used in daily activities were selected. Data collection for this study included student's self-reported responses to the Motivated Strategies for Learning Questionnaire (MSLQ), classroom observation of students and the teacher, and structured interviews. Analysis of these data resulted in a motivational factor profile for each student and cross case analysis for entire group. Results from this study indicate that each student has different motivation factors that are mostly influenced individual student to learn science. Among these motivation factors, task value and control beliefs were most important for students. The implication of these findings are that teachers need to encourage students to find learning for conceptual change a valuable task, and that students need to find applications for their new conceptions within their everyday lives. In addition, teachers need to encourage students to develop learning strategies for conceptual understanding. Furthermore, students' motivation to learn was also influenced by other factors that are not directly related to the four motivational factors assessed by the MSLQ such as the teacher's unique personality had a positive influenced on student learning. The overall conclusions drawn from this study are that conceptual change instruction requires the teacher to be aware of the importance of affective aspects and motivational factors of students learning.
Effects of student ontological position on cognition of human origins
NASA Astrophysics Data System (ADS)
Ervin, Jeremy Alan
In this study, the narratives from a hermeneutical dialectic cycle of three high school students were analyzed to understand the influences of ontological position on the learning of human origins. The interpretation of the narratives provides the reader an opportunity to consider the learning process from the perspective of worldview and conceptual change theories. Questions guiding this research include: Within a context of a worldview, what is the range of ontological positions among a high school AP biology class? To what extent does ontological position influence the learning of scientific concepts about human origins? If a student's ontological position is contradictory to scientific explanation of human origins, how will learning strategies and motivations change? All consenting students in an AP biology class were interviewed in order to select three students who represented three different ontological positions of a worldview: No Supernatural, Supernatural Without Impact, or Supernatural Impact. The issue of worldview is addressed at length in this work. Consenting students had completed the graduation requirements in biology, but were taking an additional biology course in preparation for college. Enrollment in an AP biology course was assumed to indicate that the selected students have an understanding of the concept of human origins at a comprehensive level, but not necessarily at an apprehension level, both being needed for conceptual change. Examination of the narratives reveals that students may alternate between two ontological positions in order to account for inconsistencies within a situation. This relativity enables the range of ontological positions to vary depending on concepts being considered. Not all Supernatural Impact positions conflict with biological understanding of human origins due to the ability of some to create a dichotomy between religion and school. Any comprehended concepts within this dichotomy lead to plagiaristic knowledge rather than conceptual change. When conflicts occur, students employ alternate learning strategies for comprehension, but not apprehension, which result in plagiaristic knowledge. These findings suggest that teachers consider the ontological positions of student worldviews because of the potential influence on knowledge construction and conceptual change, especially about topics involving the theory of evolution.
ERIC Educational Resources Information Center
Jacobson, Michael J.; Kapur, Manu; Reimann, Peter
2016-01-01
This article proposes a conceptual framework of learning based on perspectives and methodologies being employed in the study of complex physical and social systems to inform educational research. We argue that the contexts in which learning occurs are complex systems with elements or agents at different levels--including neuronal, cognitive,…
ERIC Educational Resources Information Center
Lin, Jing-Wen; Yen, Miao-Hsuan; Liang, Jia-Chi; Chiu, Mei-Hung; Guo, Chorng-Jee
2016-01-01
This study used content analysis to examine the most studied conceptual change factors that influence students' science learning processes and their learning outcomes. The reviewed research included empirical studies published since Posner et al. proposed their conceptual change model 30 years ago (from 1982 to 2011). One hundred sixteen SSCI…
Effects of Directed Learning Groups upon Students' Ability to Understand Conceptual Ideas
ERIC Educational Resources Information Center
Johnson, Karen Gabrielle; Galluzzo, Benjamin Jason
2014-01-01
Mathematical modeling and directed learning groups were employed in a terminal mathematics course to encourage university students to conceptualize real-world mathematics problems. Multiple assessments were utilized to determine whether students' conceptual development is enhanced by participating in directed learning groups conducted in a…
Analogy-Integrated e-Learning Module: Facilitating Students' Conceptual Understanding
ERIC Educational Resources Information Center
Florida, Jennifer
2012-01-01
The study deals with the development of an analogy-integrated e-learning module on Cellular Respiration, which is intended to facilitate conceptual understanding of students with different brain hemisphere dominance and learning styles. The module includes eight analogies originally conceptualized following the specific steps used to prepare…
Diagnostic and Remedial Learning Strategy Based on Conceptual Graphs
ERIC Educational Resources Information Center
Jong, BinShyan; Lin, TsongWuu; Wu, YuLung; Chan, Teyi
2004-01-01
Numerous scholars have applied conceptual graphs for explanatory purposes. This study devised the Remedial-Instruction Decisive path (RID path) algorithm for diagnosing individual student learning situation. This study focuses on conceptual graphs. According to the concepts learned by students and the weight values of relations among these…
Issues in developing valid assessments of speech pathology students' performance in the workplace.
McAllister, Sue; Lincoln, Michelle; Ferguson, Alison; McAllister, Lindy
2010-01-01
Workplace-based learning is a critical component of professional preparation in speech pathology. A validated assessment of this learning is seen to be 'the gold standard', but it is difficult to develop because of design and validation issues. These issues include the role and nature of judgement in assessment, challenges in measuring quality, and the relationship between assessment and learning. Valid assessment of workplace-based performance needs to capture the development of competence over time and account for both occupation specific and generic competencies. This paper reviews important conceptual issues in the design of valid and reliable workplace-based assessments of competence including assessment content, process, impact on learning, measurement issues, and validation strategies. It then goes on to share what has been learned about quality assessment and validation of a workplace-based performance assessment using competency-based ratings. The outcomes of a four-year national development and validation of an assessment tool are described. A literature review of issues in conceptualizing, designing, and validating workplace-based assessments was conducted. Key factors to consider in the design of a new tool were identified and built into the cycle of design, trialling, and data analysis in the validation stages of the development process. This paper provides an accessible overview of factors to consider in the design and validation of workplace-based assessment tools. It presents strategies used in the development and national validation of a tool COMPASS, used in an every speech pathology programme in Australia, New Zealand, and Singapore. The paper also describes Rasch analysis, a model-based statistical approach which is useful for establishing validity and reliability of assessment tools. Through careful attention to conceptual and design issues in the development and trialling of workplace-based assessments, it has been possible to develop the world's first valid and reliable national assessment tool for the assessment of performance in speech pathology.
2014-01-01
Background As a conceptual review, this paper will debate relevant learning theories to inform the development, design and delivery of an effective educational programme for simulated team training relevant to health professionals. Discussion Kolb’s experiential learning theory is used as the main conceptual framework to define the sequence of activities. Dewey’s theory of reflective thought and action, Jarvis modification of Kolb’s learning cycle and Schön’s reflection-on-action serve as a model to design scenarios for optimal concrete experience and debriefing for challenging participants’ beliefs and habits. Bandura’s theory of self-efficacy and newer socio-cultural learning models outline that for efficient team training, it is mandatory to introduce the social-cultural context of a team. Summary The ideal simulated team training programme needs a scenario for concrete experience, followed by a debriefing with a critical reflexive observation and abstract conceptualisation phase, and ending with a second scenario for active experimentation. Let them re-experiment to optimise the effect of a simulated training session. Challenge them to the edge: The scenario needs to challenge participants to generate failures and feelings of inadequacy to drive and motivate team members to critical reflect and learn. Not experience itself but the inadequacy and contradictions of habitual experience serve as basis for reflection. Facilitate critical reflection: Facilitators and group members must guide and motivate individual participants through the debriefing session, inciting and empowering learners to challenge their own beliefs and habits. To do this, learners need to feel psychological safe. Let the group talk and critical explore. Motivate with reality and context: Training with multidisciplinary team members, with different levels of expertise, acting in their usual environment (in-situ simulation) on physiological variables is mandatory to introduce cultural context and social conditions to the learning experience. Embedding in situ team training sessions into a teaching programme to enable repeated training and to assess regularly team performance is mandatory for a cultural change of sustained improvement of team performance and patient safety. PMID:24694243
Hasni, Abdelkrim
2009-01-01
Understanding real-life issues such as influenza epidemiology may be of particular interest to the development of scientific knowledge and initiation of conceptual changes about viruses and their life cycles for high school students. The goal of this research project was to foster the development of adolescents' conceptual understanding of viruses and influenza biology. Thus, the project included two components: 1) pre- and posttests to determine students' conceptions about influenza biology, epidemics/pandemics, and vaccination; and 2) design an intervention that supports conceptual change to promote improvements in influenza knowledge based on these primary conceptions. Thirty-five female students from a high school biology class participated in a series of instructional activities and pre- and posttest assessments. Results from the pretest indicated that high school students exhibit a limited understanding of concepts related to viruses. Six weeks after an intervention that promoted active learning, results from a posttest showed that conceptions about influenza are more accurately related to the provided scientific knowledge. Although adolescents have nonscientific models to explain influenza biology, we showed that a carefully designed intervention can affect students' knowledge as well as influence the implementation of health education programs in secondary schools. PMID:19255137
NASA Astrophysics Data System (ADS)
May, David B.; Etkina, Eugenia
2002-12-01
Students should develop self-reflection skills and appropriate views about knowledge and learning, both for their own sake and because these skills and views may be related to improvements in conceptual understanding. We explored the latter issue in the context of an introductory physics course for first-year engineering honors students. As part of the course, students submitted weekly reports, in which they reflected on how they learned specific physics content. The reports by 12 students were analyzed for the quality of reflection and some of the epistemological beliefs they exhibited. Students' conceptual learning gains were measured with standard survey instruments. We found that students with high conceptual gains tend to show reflection on learning that is more articulate and epistemologically sophisticated than students with lower conceptual gains. Some implications for instruction are suggested.
Analyzing Learning in Professional Learning Communities: A Conceptual Framework
ERIC Educational Resources Information Center
Van Lare, Michelle D.; Brazer, S. David
2013-01-01
The purpose of this article is to build a conceptual framework that informs current understanding of how professional learning communities (PLCs) function in conjunction with organizational learning. The combination of sociocultural learning theories and organizational learning theories presents a more complete picture of PLC processes that has…
Sev'er, A
1997-12-01
The link between recent or imminent separation and violence against female partners is discussed. Interviews were conducted among 87 divorced, separated and domestic violence survivors during 1985-88 to study violence perpetrated by men against their female intimate partners. Various bodies of literature are reviewed to establish the fact that separation heightens the risk of violence. The conceptual contributions of social learning and power and control theories are presented as they pertain to intimate violence against women. An expanded version of the power-and-control model is used to underscore the violence proneness of separations, especially when women initiate separations. To illustrate the expanded model, numerous Canadian examples are provided, drawn from interviews with divorced women, survivors of intimate violence, and news media reports. Finally, different strategies to break the cycle of violence are summarized.
NASA Astrophysics Data System (ADS)
Park-Martinez, Jayne Irene
The purpose of this study was to assess the effects of node-link mapping on students' meaningful learning and conceptual change in a 1-semester introductory life-science course. This study used node-link mapping to integrate and apply the National Research Council's (NRC, 2005) three principles of human learning: engaging students' prior knowledge, fostering their metacognition, and supporting their formulation of a scientific conceptual framework. The study was a quasi-experimental, pretest-posttest, control group design. The sample consisted of 68 primarily freshmen non-science majors enrolled in two intact sections of the targeted course. Both groups received the same teacher-centered instruction and student-centered activities designed to promote meaningful learning and conceptual change; however, the activity format differed. Control group activities were written; treatment group activities were node-link mapped. Prior to instruction, both groups demonstrated equivalent knowledge and misconceptions associated with genetics and evolution (GE), and ecology and environmental science (EE). Mean differences, pre-to-post instruction, on the GE and EE meaningful learning exam scores and the EE conceptual change inventory scores between the writing group (control) and the node-link mapping group (treatment) were analyzed using repeated measures MANOVAs. There were no significant mean pre-to-post differences between groups with respect to meaningful learning in the GE or EE units, or conceptual change in the EE unit. However, independent of group membership, the overall mean pre-to-post increases in meaningful learning and conceptual change were significant. These findings suggest that both node-link mapping and writing, when used in conjunction with the National Research Council's (NRC, 2005) three principles of human learning, can promote meaningful learning and conceptual change. The only significant interaction found with respect to meaningful learning, conceptual change, and learning styles (Kolb, 2005) was a positive effect of node-link mapping on converger's meaningful learning. However, that result was probably an artifact of small sample size rather than a true treatment effect. No other significant interactions were found. These results suggest that all students, regardless of their learning style, can benefit from either node-link mapping or writing to promote meaningful learning and conceptual change in general life-science courses.
Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across the life cycle of a product or service. This paper presents a conceptual framework to integrate human health impact assessment with risk screening approaches to extend LCA to include n...
ERIC Educational Resources Information Center
Wang, Yu-Lin; Ellinger, Andrea D.
2008-01-01
The purpose of this paper is to develop a conceptual framework and research hypotheses based upon a thorough review of the conceptual and limited published empirical research in the organizational learning and innovation performance literatures. Hypotheses indicate the relationships between organizational learning, its antecedent, perception of…
The Use of Conceptual Change Text toward Students’ Argumentation Skills in Learning Sound
NASA Astrophysics Data System (ADS)
Sari, B. P.; Feranie, S.; Winarno, N.
2017-09-01
This research aim is to investigate the effect of Conceptual Change Text toward students’ argumentation skills in learning sound concept. The participant comes from one of International school in Bandung, Indonesia. The method that used in this research is a quasi-experimental design with one control group (N=21) and one experimental group (N=21) were involves in this research. The learning model that used in both classes is demonstration model which included teacher explanation and examples, the difference only in teaching materials. In experiment group learn with Conceptual Change Text, while control group learn with conventional book which is used in school. The results showed that Conceptual Change Text instruction was better than the conventional book to improved students’ argumentation skills of sound concept. Based on this results showed that Conceptual Change Text instruction can be an alternative tool to improve students’ argumentation skills significantly.
NASA Astrophysics Data System (ADS)
Nugraheni, Z.; Budiyono, B.; Slamet, I.
2018-03-01
To reach higher order thinking skill, needed to be mastered the conceptual understanding and strategic competence as they are two basic parts of high order thinking skill (HOTS). RMT is a unique realization of the cognitive conceptual construction approach based on Feurstein with his theory of Mediated Learning Experience (MLE) and Vygotsky’s sociocultural theory. This was quasi-experimental research which compared the experimental class that was given Rigorous Mathematical Thinking (RMT) as learning method and the control class that was given Direct Learning (DL) as the conventional learning activity. This study examined whether there was different effect of two learning model toward conceptual understanding and strategic competence of Junior High School Students. The data was analyzed by using Multivariate Analysis of Variance (MANOVA) and obtained a significant difference between experimental and control class when considered jointly on the mathematics conceptual understanding and strategic competence (shown by Wilk’s Λ = 0.84). Further, by independent t-test is known that there was significant difference between two classes both on mathematical conceptual understanding and strategic competence. By this result is known that Rigorous Mathematical Thinking (RMT) had positive impact toward Mathematics conceptual understanding and strategic competence.
NASA Astrophysics Data System (ADS)
May, David B.
2002-11-01
To explore students' epistemological beliefs in a variety of conceptual domains in physics, and in a specific and novel context of measurement, this Dissertation makes use of Weekly Reports, a class assignment in which students reflect in writing on what they learn each week and how they learn it. Reports were assigned to students in the introductory physics course for honors engineering majors at The Ohio State University in two successive years. The Weekly Reports of several students from the first year were analyzed for the kinds of epistemological beliefs exhibited therein, called epistemological self-reflection, and a coding scheme was developed for categorizing and quantifying this reflection. The connection between epistemological self-reflection and conceptual learning in physics seen in a pilot study was replicated in a larger study, in which the coded reflections from the Weekly Reports of thirty students were correlated with their conceptual learning gains. Although the total amount of epistemological self-reflection was not found to be related to conceptual gain, different kinds of epistemological self-reflection were. Describing learning physics concepts in terms of logical reasoning and making personal connections were positively correlated with gains; describing learning from authority figures or by observing phenomena without making inferences were negatively correlated. Linear regression equations were determined in order to quantify the effects on conceptual gain of specific ways of describing learning. In an experimental test of this model, the regression equations and the Weekly Report coding scheme developed from the first year's data were used to predict the conceptual gains of thirty students from the second year. The prediction was unsuccessful, possibly because these students were not given as much feedback on their reflections as were the first-year students. These results show that epistemological beliefs are important factors affecting the conceptual learning of physics students. Also, getting students to reflect meaningfully on their knowledge and learning is difficult and requires consistent feedback. Research into the epistemological beliefs of physics students in different contexts and from different populations can help us develop more complete models of epistemological beliefs, and ultimately improve the conceptual and epistemological knowledge of all students.
Supporting Learning from Illustrated Texts: Conceptualizing and Evaluating a Learning Strategy
ERIC Educational Resources Information Center
Schlag, Sabine; Ploetzner, Rolf
2011-01-01
Texts and pictures are often combined in order to improve learning. Many students, however, have difficulty to appropriately process text-picture combinations. We have thus conceptualized a learning strategy which supports learning from illustrated texts. By inducing the processes of information selection, organization, integration, and…
A Conceptual Model for Effective Distance Learning in Higher Education
ERIC Educational Resources Information Center
Farajollahi, Mehran; Zare, Hosein; Hormozi, Mahmood; Sarmadi, Mohammad Reza; Zarifsanaee, Nahid
2010-01-01
The present research aims at presenting a conceptual model for effective distance learning in higher education. Findings of this research shows that an understanding of the technological capabilities and learning theories especially constructive theory and independent learning theory and communicative and interaction theory in Distance learning is…
Conceptualizing the Essence of Presence in E-Learning through Digital Dasein
ERIC Educational Resources Information Center
Haj-Bolouri, Amir; Flensburg, Per
2017-01-01
Previous research on e-learning elucidates the notion of presence and learning. Scholars have conceptualized different concepts and theories based on the idea of distance education and learning. However, the "experience" of learning has been overshadowed with emphasizes on pedagogical models for social presence, theories on how to…
NASA Astrophysics Data System (ADS)
Thornton, Ronald
2010-02-01
For the Activity Based Physics Group (APB), research in student learning has been a cornerstone, for the past 22 years, of the development of activity-based curricula supported by real-time data collection, analysis, and modeling. This presentation, the first of three related talks, will focus on student learning, Priscilla Laws will describe the curriculum and tools developed, and David Sokoloff will describe dissemination efforts. One of the earliest examples of seminal research, done as part of the early MBL development for middle school at TERC, showed that delaying the display of a position-time graph by 10 seconds instead of displaying it in real-time resulted in a substantial learning decrease. This result assured the use of real-time data collection in our curricula. As we developed our early kinematics and dynamics curricula for college and high school, we interviewed many students before and after instruction, to understand where they started and what they had learned. We used the results of these interviews and written student explanations of their thinking to develop robust multiple-choice evaluations that were easy to give and allowed us to understand student thinking using both ``right and wrong'' responses. Work such as this resulted in Questions on Linear Motion, Force and Motion Conceptual Evaluation (FMCE), Heat and Temperature Conceptual Evaluation (HTCE), Electrical Circuit Conceptual Evaluation (ECCE), Light and Optics Conceptual Evaluation (LOCE) and others which guided our curriculum development and convinced many that standard instruction in physics did not result in substantial conceptual learning. Other evaluations measured mathematical understandings.evaluations also allowed us to look at a progression of student ideas as they learned (``Conceptual Dynamics''), study the behavior of students who did and did not learn conceptually (``Uncommon Knowledge''), study the efficacy of peer groups, and finally identify some of factors that led to conceptual learning for both women and men. (e.g. increases in spatial ability). )
NASA Technical Reports Server (NTRS)
Lin, C. H.; Meyer, M. S.
1983-01-01
The systems engineering aspects of developing a conceptual design of the Space Station Environmental Control and Life Support System (ECLSS) are discussed. Topics covered include defining system requirements and groundrules for approach, formulating possible cycle closure options, and establishing a system-level mass balance on the essential materials processed in oxygen and water cycles. Consideration is also given to the performance of a system trade-off study to determine the best degree of cycle closure for the ECLSS, and the construction of a conceptual design of the ECLSS with subsystem performance specifications and candidate concepts. For the optimum balance between development costs, technological risks, and resupply penalties, a partially closed cycle ECLSS option is suggested.
ERIC Educational Resources Information Center
Seker, Burcu Sezginsoy; Erdem, Aliye
2017-01-01
Students learning a defined subject only perform by learning of thinking based on the concepts forming that subjects. Otherwise, students may move away from the scientific meaning of concepts and may fall into conceptual errors. Students' conceptual errors affect their following learning and cause them resist change. It is possible to prevent this…
Kindergarten students' explanations during science learning
NASA Astrophysics Data System (ADS)
Harris, Karleah
The study examines kindergarten students' explanations during science learning. The data on children's explanations are drawn from videotaped and transcribed discourse collected from four public kindergarten science classrooms engaged in a life science inquiry unit on the life cycle of the monarch butterfly. The inquiry unit was implemented as part of a larger intervention conducted as part of the Scientific Literacy Project or SLP (Mantzicopoulos, Patrick & Samarapungavan, 2005). The children's explanation data were coded and analyzed using quantitative content analysis procedures. The coding procedures involved initial "top down" explanation categories derived from the existing theoretical and empirical literature on scientific explanation and the nature of students' explanations, followed by an inductive or "bottom up" analysis, that evaluated and refined the categorization scheme as needed. The analyses provide important descriptive data on the nature and frequency of children's explanations generated in classroom discourse during the inquiry unit. The study also examines how teacher discourse strategies during classroom science discourse are related to children's explanations. Teacher discourse strategies were coded and analyzed following the same procedures as the children's explanations as noted above. The results suggest that, a) kindergarten students have the capability of generating a variety of explanations during inquiry-based science learning; b) teachers use a variety of classroom discourse strategies to support children's explanations during inquiry-based science learning; and c) The conceptual discourse (e.g., asking for or modeling explanations, asking for clarifications) to non-conceptual discourse (e.g., classroom management discourse) is related to the ratio of explanatory to non-explanatory discourse produced by children during inquiry-based science learning.
Teaching for clinical reasoning - helping students make the conceptual links.
McMillan, Wendy Jayne
2010-01-01
Dental educators complain that students struggle to apply what they have learnt theoretically in the clinical context. This paper is premised on the assumption that there is a relationship between conceptual thinking and clinical reasoning. The paper provides a theoretical framework for understanding the relationship between conceptual learning and clinical reasoning. A review of current literature is used to explain the way in which conceptual understanding influences clinical reasoning and the transfer of theoretical understandings to the clinical context. The paper argues that the connections made between concepts are what is significant about conceptual understanding. From this point of departure the paper describes teaching strategies that facilitate the kinds of learning opportunities that students need in order to develop conceptual understanding and to be able to transfer knowledge from theoretical to clinical contexts. Along with a variety of teaching strategies, the value of concept maps is discussed. The paper provides a framework for understanding the difficulties that students have in developing conceptual networks appropriate for later clinical reasoning. In explaining how students learn for clinical application, the paper provides a theoretical framework that can inform how dental educators facilitate the conceptual learning, and later clinical reasoning, of their students.
Instruction of Learning Strategies: Effects on Conceptual Learning, and Learning Satisfactions
ERIC Educational Resources Information Center
Caliskan, Serap
2011-01-01
This study has investigated the effects of learning strategy instruction on conceptual learning, and student satisfactions in an introductory physics course at university level. In this study, pretest-posttest and quasi-experimental design with a non-equivalent control group was used. A total of 36 sophomore students majoring in mathematics…
Game-Based Learning Engagement: A Theory- and Data-Driven Exploration
ERIC Educational Resources Information Center
Ke, Fengfeng; Xie, Kui; Xie, Ying
2016-01-01
The promise of using games for learning is that play- and learning-engagement would occur cohesively as a whole to compose a highly motivated learning experience. Yet the conceptualization of such an integrative process in the development of play-based learning engagement is lacking. In this analytical paper, we explored and conceptualized the…
Hwang, Wonil; Salvendy, Gavriel
2005-06-10
Ontologies, as a possible element of organizational memory information systems, appear to support organizational learning. Ontology tools can be used to share knowledge among the members of an organization. However, current ontology-viewing user interfaces of ontology tools do not fully support organizational learning, because most of them lack proper history representation in their display. In this study, a conceptual model was developed that emphasized the role of ontology in the organizational learning cycle and explored the integration of history representation in the ontology display. Based on the experimental results from a split-plot design with 30 participants, two conclusions were derived: first, appropriately selected history representations in the ontology display help users to identify changes in the ontologies; and second, compatibility between types of ontology display and history representation is more important than ontology display and history representation in themselves.
Valt, Christian; Klein, Christoph; Boehm, Stephan G
2015-08-01
Repetition priming is a prominent example of non-declarative memory, and it increases the accuracy and speed of responses to repeatedly processed stimuli. Major long-hold memory theories posit that repetition priming results from facilitation within perceptual and conceptual networks for stimulus recognition and categorization. Stimuli can also be bound to particular responses, and it has recently been suggested that this rapid response learning, not network facilitation, provides a sound theory of priming of object recognition. Here, we addressed the relevance of network facilitation and rapid response learning for priming of person recognition with a view to advance general theories of priming. In four experiments, participants performed conceptual decisions like occupation or nationality judgments for famous faces. The magnitude of rapid response learning varied across experiments, and rapid response learning co-occurred and interacted with facilitation in perceptual and conceptual networks. These findings indicate that rapid response learning and facilitation in perceptual and conceptual networks are complementary rather than competing theories of priming. Thus, future memory theories need to incorporate both rapid response learning and network facilitation as individual facets of priming. © 2014 The British Psychological Society.
ERIC Educational Resources Information Center
Kim, Jun Hee; Callahan, Jamie L.
2013-01-01
Purpose: This article aims to develop a conceptual framework delineating the key dimension of the learning organization which significantly influences learning transfer. Design/methodology/approach: The conceptual framework was developed by analyzing previous studies and synthesizing the results associated with the following four relationships:…
Le Climat d'Apprentissage; Analyse Conceptuelle=Learning Climate: A Conceptual Analysis.
ERIC Educational Resources Information Center
Michaud, Pierre; And Others
1989-01-01
Analyzes and defines the concept of "learning climate." Discusses the conceptual models of Biddle and Brookover. Considers the use of observation techniques and surveys to measure learning climate. Reviews research on the relationship between learning climate and the attainment of course and institutional objectives. (DMM)
Elementary School Teachers' Familiarity, Conceptual Knowledge, and Interest in Light
ERIC Educational Resources Information Center
Mumba, Frackson; Mbewe, Simon; Chabalengula, Vivien M.
2015-01-01
This study explored elementary school teachers' familiarity, conceptual knowledge, and interest in learning more about light and its related concepts. This study also sought to establish the relationship between elementary school teachers' familiarity, conceptual knowledge, and interest in learning light concepts. Sixty-six lower and upper…
ERIC Educational Resources Information Center
Hoggan, Chad
2014-01-01
This article presents findings from a research study wherein participants demonstrated the use of similes, metaphors, and analogies, termed "conceptual metaphors," in response to disorienting dilemmas instigated by breast cancer. In this qualitative case study of 18 breast cancer survivors, conceptual metaphors were used in three…
Promoting Conceptual Coherence within Context-Based Biology Education
ERIC Educational Resources Information Center
Ummels, Micha H. J.; Kamp, Marcel J. A.; De Kroon, Hans; Boersma, Kerst Th.
2015-01-01
In secondary science education, the learning and teaching of coherent conceptual understanding are often problematic. Context-based education has been proposed as a partial solution to this problem. This study aims to gain insight into the development of conceptual coherence and how context-embedded learning-teaching activities (LT) can promote…
NASA Astrophysics Data System (ADS)
Wang, Jeremy Yi-Ming
This dissertation examines the thesis that implicit learning plays a role in learning about scientific phenomena, and subsequently, in conceptual change. Decades of research in learning science demonstrate that a primary challenge of science education is overcoming prior, naive knowledge of natural phenomena in order to gain scientific understanding. Until recently, a key assumption of this research has been that to develop scientific understanding, learners must abandon their prior scientific intuitions and replace them with scientific concepts. However, a growing body of research shows that scientific intuitions persist, even among science experts. This suggests that naive intuitions are suppressed, not supplanted, as learners gain scientific understanding. The current study examines two potential roles of implicit learning processes in the development of scientific knowledge. First, implicit learning is a source of cognitive structures that impede science learning. Second, tasks that engage implicit learning processes can be employed to activate and suppress prior intuitions, enhancing the likelihood that scientific concepts are adopted and applied. This second proposal is tested in two experiments that measure training-induced changes in intuitive and conceptual knowledge related to sinking and floating objects in water. In Experiment 1, an implicit learning task was developed to examine whether implicit learning can induce changes in performance on near and far transfer tasks. The results of this experiment provide evidence that implicit learning tasks activate and suppress scientific intuitions. Experiment 2 examined the effects of combining implicit learning with traditional, direct instruction to enhance explicit learning of science concepts. This experiment demonstrates that sequencing implicit learning task before and after direct instruction has different effects on intuitive and conceptual knowledge. Together, these results suggest a novel approach for enhancing learning for conceptual change in science education.
A Conceptual Framework for Educational Design at Modular Level to Promote Transfer of Learning
ERIC Educational Resources Information Center
Botma, Yvonne; Van Rensburg, G. H.; Coetzee, I. M.; Heyns, T.
2015-01-01
Students bridge the theory-practice gap when they apply in practice what they have learned in class. A conceptual framework was developed that can serve as foundation to design for learning transfer at modular level. The framework is based on an adopted and adapted systemic model of transfer of learning, existing learning theories, constructive…
ERIC Educational Resources Information Center
Doyle, Louise; Kelliher, Felicity; Harrington, Denis
2016-01-01
The aim of this paper is to review the relevant literature on organisational learning and offer a preliminary conceptual framework as a basis to explore how the multi-levels of individual learning and team learning interact in a public healthcare organisation. The organisational learning literature highlights a need for further understanding of…
ERIC Educational Resources Information Center
Yin, Chengjiu; Song, Yanjie; Tabata, Yoshiyuki; Ogata, Hiroaki; Hwang, Gwo-Jen
2013-01-01
This paper proposes a conceptual framework, scaffolding participatory simulation for mobile learning (SPSML), used on mobile devices for helping students learn conceptual knowledge in the classroom. As the pedagogical design, the framework adopts an experiential learning model, which consists of five sequential but cyclic steps: the initial stage,…
A Competence-Based Service for Supporting Self-Regulated Learning in Virtual Environments
ERIC Educational Resources Information Center
Nussbaumer, Alexander; Hillemann, Eva-Catherine; Gütl, Christian; Albert, Dietrich
2015-01-01
This paper presents a conceptual approach and a Web-based service that aim at supporting self-regulated learning in virtual environments. The conceptual approach consists of four components: 1) a self-regulated learning model for supporting a learner-centred learning process, 2) a psychological model for facilitating competence-based…
What Is Game-Based Learning? Past, Present, and Future
ERIC Educational Resources Information Center
Jan, Mingfong; Gaydos, Matthew
2016-01-01
This article aims at clarifying and conceptualizing game-based learning (GBL) in order to pinpoint directions for practices and research. The authors maintain that GBL should be conceptualized toward the transformation of a textbook-learning culture. The authors emphasize the importance of a paradigm shift in learning and a reorientation in…
ERIC Educational Resources Information Center
Deed, Craig; Alterator, Scott
2017-01-01
Evaluating informal learning spaces in higher education institutions needs to respond to the complex conceptual orientation underpinning their intention and design. This article outlines a model of participatory analysis that accounts for the conceptual complexity, lived experience and broad intentions of informal learning space. Further, the…
NASA Astrophysics Data System (ADS)
Alao, Solomon
The need to identify factors that contribute to students' understanding of ecological concepts has been widely expressed in recent literature. The purpose of this study was to investigate the relationship between fifth grade students' prior knowledge, learning strategies, interest, and learning goals and their conceptual understanding of ecological science concepts. Subject were 72 students from three fifth grade classrooms located in a metropolitan area of the eastern United States. Students completed the goal commitment, interest, and strategy use questionnaire (GISQ), and a knowledge test designed to assess their prior knowledge and conceptual understanding of ecological science concepts. The learning goals scale assessed intentions to try to learn and understand ecological concepts. The interest scale assessed the feeling and value-related valences that students ascribed to science and ecological science concepts. The strategy use scale assessed the use of two cognitive strategies (monitoring and elaboration). The knowledge test assessed students' understanding of ecological concepts (the relationship between living organisms and their environment). Scores on all measures were examined for gender differences; no significant gender differences were observed. The motivational and cognitive variables contributed to students' understanding of ecological concepts. After accounting for interest, learning goals, and strategy use, prior knowledge accounted for 28% of the total variance in conceptual understanding. After accounting for prior knowledge, interest, learning goals, and strategy use explained 7%, 6%, and 4% of the total variance in conceptual understanding, respectively. More importantly, these variables were interrelated to each other and to conceptual understanding. After controlling for prior knowledge, learning goals, and strategy use, interest did not predict the variance in conceptual understanding. After controlling for prior knowledge, interest, and strategy use, learning goals did not predict the variance in conceptual understanding. And, after controlling for prior knowledge, interest, and learning goals, strategy use did not predict the variance in conceptual understanding. Results of this study indicated that prior knowledge, interest, learning goals, and strategy use should be included in theoretical models design to explain and to predict fifth grade students' understanding of ecological concepts. Results of this study further suggested that curriculum developers and science teachers need to take fifth grade students' prior knowledge of ecological concepts, interest in science and ecological concepts; intentions to learn and understand ecological concepts, and use of cognitive strategies into account when designing instructional contexts to support these students' understanding of ecological concepts.
The development of a digital logic concept inventory
NASA Astrophysics Data System (ADS)
Herman, Geoffrey Lindsay
Instructors in electrical and computer engineering and in computer science have developed innovative methods to teach digital logic circuits. These methods attempt to increase student learning, satisfaction, and retention. Although there are readily accessible and accepted means for measuring satisfaction and retention, there are no widely accepted means for assessing student learning. Rigorous assessment of learning is elusive because differences in topic coverage, curriculum and course goals, and exam content prevent direct comparison of two teaching methods when using tools such as final exam scores or course grades. Because of these difficulties, computing educators have issued a general call for the adoption of assessment tools to critically evaluate and compare the various teaching methods. Science, Technology, Engineering, and Mathematics (STEM) education researchers commonly measure students' conceptual learning to compare how much different pedagogies improve learning. Conceptual knowledge is often preferred because all engineering courses should teach a fundamental set of concepts even if they emphasize design or analysis to different degrees. Increasing conceptual learning is also important, because students who can organize facts and ideas within a consistent conceptual framework are able to learn new information quickly and can apply what they know in new situations. If instructors can accurately assess their students' conceptual knowledge, they can target instructional interventions to remedy common problems. To properly assess conceptual learning, several researchers have developed concept inventories (CIs) for core subjects in engineering sciences. CIs are multiple-choice assessment tools that evaluate how well a student's conceptual framework matches the accepted conceptual framework of a discipline or common faulty conceptual frameworks. We present how we created and evaluated the digital logic concept inventory (DLCI).We used a Delphi process to identify the important and difficult concepts to include on the DLCI. To discover and describe common student misconceptions, we interviewed students who had completed a digital logic course. Students vocalized their thoughts as they solved digital logic problems. We analyzed the interview data using a qualitative grounded theory approach. We have administered the DLCI at several institutions and have checked the validity, reliability, and bias of the DLCI with classical testing theory procedures. These procedures consisted of follow-up interviews with students, analysis of administration results with statistical procedures, and expert feedback. We discuss these results and present the DLCI's potential for providing a meaningful tool for comparing student learning at different institutions.
Research and Educational Implications of Some Recent Conceptualizations in Learning Disabilities.
ERIC Educational Resources Information Center
Wong, Bernice
1979-01-01
The three theories considered are H. S. Adelman's interactional model of learning disabilities, A. O. Ross' theory of developmental lag in selective attention, and J. K. Torgesen's conceptualization of the learning disabled child as an inactive learner. (Author/DLS)
ERIC Educational Resources Information Center
Ligozat, Florence; Almqvist, Jonas
2018-01-01
This special issue of the "European Educational Research Journal" presents a series of research papers reflecting the trends and evolutions in conceptual frameworks that took place within the EERA 27 "Didactics--Learning and Teaching" network during its first ten years of existence. Most conceptual tools used in this field were…
Conceptual Similarity Promotes Generalization of Higher Order Fear Learning
ERIC Educational Resources Information Center
Dunsmoor, Joseph E.; White, Allison J.; LaBar, Kevin S.
2011-01-01
We tested the hypothesis that conceptual similarity promotes generalization of conditioned fear. Using a sensory preconditioning procedure, three groups of subjects learned an association between two cues that were conceptually similar, unrelated, or mismatched. Next, one of the cues was paired with a shock. The other cue was then reintroduced to…
ERIC Educational Resources Information Center
Reinfried, Sibylle; Aeschbacher, Urs; Rottermann, Benno
2012-01-01
Students' everyday ideas of the greenhouse effect are difficult to change. Environmental education faces the challenge of developing instructional settings that foster students' conceptual understanding concept of the greenhouse effect in order to understand global warming. To facilitate students' conceptual development with regard to the…
Facilitating Students' Conceptual Change and Scientific Reasoning Involving the Unit of Combustion
ERIC Educational Resources Information Center
Lee, Chin-Quen; She, Hsiao-Ching
2010-01-01
This article reports research from a 3 year digital learning project to unite conceptual change and scientific reasoning in the learning unit of combustion. One group of students had completed the course combining conceptual change and scientific reasoning. The other group of students received conventional instruction. In addition to the…
A Scoping Review: Conceptualizations and Pedagogical Models of Learning in Nursing Simulation
ERIC Educational Resources Information Center
Poikela, Paula; Teräs, Marianne
2015-01-01
Simulations have been implemented globally in nursing education for years with diverse conceptual foundations. The aim of this scoping review is to examine the literature regarding the conceptualizations of learning and pedagogical models in nursing simulations. A scoping review of peer-reviewed articles published between 2000 and 2013 was…
To Master or Perform? Exploring Relations between Achievement Goals and Conceptual Change Learning
ERIC Educational Resources Information Center
Ranellucci, John; Muis, Krista R.; Duffy, Melissa; Wang, Xihui; Sampasivam, Lavanya; Franco, Gina M.
2013-01-01
Background: Research is needed to explore conceptual change in relation to achievement goal orientations and depth of processing. Aims: To address this need, we examined relations between achievement goals, use of deep versus shallow processing strategies, and conceptual change learning using a think-aloud protocol. Sample and Method:…
Improvements from a Flipped Classroom May Simply Be the Fruits of Active Learning
Jensen, Jamie L.; Kummer, Tyler A.; Godoy, Patricia D. d. M.
2015-01-01
The “flipped classroom” is a learning model in which content attainment is shifted forward to outside of class, then followed by instructor-facilitated concept application activities in class. Current studies on the flipped model are limited. Our goal was to provide quantitative and controlled data about the effectiveness of this model. Using a quasi-experimental design, we compared an active nonflipped classroom with an active flipped classroom, both using the 5-E learning cycle, in an effort to vary only the role of the instructor and control for as many of the other potentially influential variables as possible. Results showed that both low-level and deep conceptual learning were equivalent between the conditions. Attitudinal data revealed equal student satisfaction with the course. Interestingly, both treatments ranked their contact time with the instructor as more influential to their learning than what they did at home. We conclude that the flipped classroom does not result in higher learning gains or better attitudes compared with the nonflipped classroom when both utilize an active-learning, constructivist approach and propose that learning gains in either condition are most likely a result of the active-learning style of instruction rather than the order in which the instructor participated in the learning process. PMID:25699543
Vansteenkiste, Maarten; Simons, Joke; Lens, Willy; Soenens, Bart; Matos, Lennia
2005-01-01
The present experimental research examined whether framing early adolescents' (11- to 12-year-olds) learning activity in terms of the attainment of an extrinsic (i.e., physical attractiveness) versus intrinsic (i.e., health) goal and communicating these different goal contents in an internally controlling versus autonomy-supportive way affect performance. Both conceptual and rote learning were assessed. Three experimental field studies, 2 among obese and 1 among nonobese participants, confirmed the hypothesis that extrinsic goal framing and internal control undermine conceptual (but not rote) learning, even in comparison with a control group. Study 3 indicated that the positive effect of intrinsic goal framing on conceptual learning was mediated by task involvement, whereas the positive effect of autonomy-supportive communication style on conceptual learning was mediated by relative autonomous motivation.
ERIC Educational Resources Information Center
Kolikant, Yifat Ben-David; Pollack, Sarah
2015-01-01
Successful collaborative learning is often conceptualized in terms of convergence, a process through which participants' shared understanding increases. This conceptualization does not capture certain successful collaborative learning processes, especially in the humanities, where multiple perspectives are often celebrated. Such is the context of…
ERIC Educational Resources Information Center
Hanyak, Michael E., Jr.
2015-01-01
In an introductory chemical engineering course, the conceptual framework of a holistic problem-solving methodology in conjunction with a problem-based learning approach has been shown to create a learning environment that nurtures deep learning rather than surface learning. Based on exam scores, student grades are either the same or better than…
Sadeghi, Zahra
2016-09-01
In this paper, I investigate conceptual categories derived from developmental processing in a deep neural network. The similarity matrices of deep representation at each layer of neural network are computed and compared with their raw representation. While the clusters generated by raw representation stand at the basic level of abstraction, conceptual categories obtained from deep representation shows a bottom-up transition procedure. Results demonstrate a developmental course of learning from specific to general level of abstraction through learned layers of representations in a deep belief network. © The Author(s) 2016.
Development and Uses of Upper-Division Conceptual Assessments
ERIC Educational Resources Information Center
Wilcox, Bethany R.; Caballero, Marcos D.; Baily, Charles; Sadaghiani, Homeyra; Chasteen, Stephanie V.; Ryan, Qing X.; Pollock, Steven J.
2015-01-01
The use of validated conceptual assessments alongside conventional course exams to measure student learning in introductory courses has become standard practice in many physics departments. These assessments provide a more standard measure of certain learning goals, allowing for comparisons of student learning across instructors, semesters,…
Learning to Deflect: Conceptual Change in Physics during Digital Game Play
ERIC Educational Resources Information Center
Sengupta, Pratim; Krinks, Kara D.; Clark, Douglas B.
2015-01-01
How does deep conceptual change occur when students play well-designed educational games? To answer this question, we present a case study in the form of a microgenetic analysis of a student's processes of knowledge construction as he played a conceptually-integrated digital game (SURGE Next) designed to support learning about Newtonian mechanics.…
ERIC Educational Resources Information Center
Gok, Tolga
2012-01-01
The purpose of this study is to assess students' conceptual learning of electricity and magnetism and examine how these conceptions, beliefs about physics, and quantitative problem-solving skills would change after peer instruction (PI). The Conceptual Survey of Electricity and Magnetism (CSEM), Colorado Learning Attitudes about Science Survey…
Applying a Conceptual Model in Sport Sector Work- Integrated Learning Contexts
ERIC Educational Resources Information Center
Agnew, Deborah; Pill, Shane; Orrell, Janice
2017-01-01
This paper applies a conceptual model for work-integrated learning (WIL) in a multidisciplinary sports degree program. Two examples of WIL in sport will be used to illustrate how the conceptual WIL model is being operationalized. The implications for practice are that curriculum design must recognize a highly flexible approach to the nature of…
ERIC Educational Resources Information Center
Samsudin, Achmad; Suhandi, Andi; Rusdiana, Dadi; Kaniawati, Ida; Costu, Bayram
2016-01-01
The aim of this study was to develop an Active Learning Based-Interactive Conceptual Instruction (ALBICI) model through PDEODE*E tasks (stands for Predict, Discuss, Explain, Observe, Discuss, Explore, and Explain) for promoting conceptual change and investigating its effectiveness of pre-service physics teachers' understanding on electric field…
ERIC Educational Resources Information Center
Chambers, Sharon K.; Andre, Thomas
1997-01-01
Presents a study that investigated relationships between gender, interest, and experience in electricity. Also explored the effect of conceptual change text manipulations on learning fundamental concepts of direct current. Suggests that conceptual change text manipulations are likely to be effective for both men and women. Contains 57 references.…
Multiple Perspectives of Conceptual Change in Science and the Challenges Ahead
ERIC Educational Resources Information Center
Treagust, David F.; Duit, Reinders
2009-01-01
Conceptual change views of teaching and learning processes in science, and also in various other content domains, have played a significant role in research on teaching and learning as well as in instructional design since the late 1970s. Conceptual change can be interpreted from different individual perspectives or from multiple perspectives. In…
ERIC Educational Resources Information Center
DiLuzio, Geneva J.; And Others
This document accompanies Conceptual Learning and Development Assessment Series II: Cutting Tool, a test constructed to chart the conceptual development of individuals. As a technical manual, it contains information on the rationale, development, standardization, and reliability of the test, as well as essential information and statistical data…
ERIC Educational Resources Information Center
DiLuzio, Geneva J.; And Others
This document accompanies the Conceptual Learning and Development Assessment Series III: Tree, a test constructed to chart the conceptual development of individuals. As a technical manual, it contains information on the rationale, development, standardization, and reliability of the test, as well as essential information and statistical data for…
ERIC Educational Resources Information Center
DiLuzio, Geneva J.; And Others
This document accompanies the Conceptual Learning and Development Assessment Series I: Equilateral Triangle, a test constructed to chart the conceptual developemnt of individuals. As a technical manual, it contains information on the rationale, development, standardization, and reliability of the test, as well as essential information and…
ERIC Educational Resources Information Center
DiLuzio, Geneva J.; And Others
This document accompanies the Conceptual Learning and Development Assessment Series IV: Noun, a test constructed to chart the conceptual development of individuals. As a technical manual, it contains information on the rationale, development, standardization, and reliability of the test, as well as essential information and statistical data for…
ERIC Educational Resources Information Center
Turcotte, Sandrine
2012-01-01
This article describes in detail a conversation analysis of conceptual change in a computer-supported collaborative learning environment. Conceptual change is an essential learning process in science education that has yet to be fully understood. While many models and theories have been developed over the last three decades, empirical data to…
Flexible Learning Itineraries Based on Conceptual Maps
ERIC Educational Resources Information Center
Agudelo, Olga Lucía; Salinas, Jesús
2015-01-01
The use of learning itineraries based on conceptual maps is studied in order to propose a more flexible instructional design that strengthens the learning process focused on the student, generating non-linear processes, characterising its elements, setting up relationships between them and shaping a general model with specifications for each…
Collective (Team) Learning Process Models: A Conceptual Review
ERIC Educational Resources Information Center
Knapp, Randall
2010-01-01
Teams have become a key resource for learning and accomplishing work in organizations. The development of collective learning in specific contexts is not well understood, yet has become critical to organizational success. The purpose of this conceptual review is to inform human resource development (HRD) practice about specific team behaviors and…
Orchestration in Learning Technology Research: Evaluation of a Conceptual Framework
ERIC Educational Resources Information Center
Prieto, Luis P.; Dimitriadis, Yannis; Asensio-Pérez, Juan I.; Looi, Chee-Kit
2015-01-01
The term "orchestrating learning" is being used increasingly often, referring to the coordination activities performed while applying learning technologies to authentic settings. However, there is little consensus about how this notion should be conceptualised, and what aspects it entails. In this paper, a conceptual framework for…
ERIC Educational Resources Information Center
Gok, Tolga
2018-01-01
The purpose of the research was to investigate the effects of think pair share (TPS) instructional strategy on students' conceptual learning and epistemological beliefs on physics and physics learning. The research was conducted with two groups. One of the groups was the experimental group (EG) and the other group was the control group (CG). 35…
Impact of Learning Model Based on Cognitive Conflict toward Student’s Conceptual Understanding
NASA Astrophysics Data System (ADS)
Mufit, F.; Festiyed, F.; Fauzan, A.; Lufri, L.
2018-04-01
The problems that often occur in the learning of physics is a matter of misconception and low understanding of the concept. Misconceptions do not only happen to students, but also happen to college students and teachers. The existing learning model has not had much impact on improving conceptual understanding and remedial efforts of student misconception. This study aims to see the impact of cognitive-based learning model in improving conceptual understanding and remediating student misconceptions. The research method used is Design / Develop Research. The product developed is a cognitive conflict-based learning model along with its components. This article reports on product design results, validity tests, and practicality test. The study resulted in the design of cognitive conflict-based learning model with 4 learning syntaxes, namely (1) preconception activation, (2) presentation of cognitive conflict, (3) discovery of concepts & equations, (4) Reflection. The results of validity tests by some experts on aspects of content, didactic, appearance or language, indicate very valid criteria. Product trial results also show a very practical product to use. Based on pretest and posttest results, cognitive conflict-based learning models have a good impact on improving conceptual understanding and remediating misconceptions, especially in high-ability students.
Pole, Jason D.
2009-01-01
Objectives. We sought to gain a better understanding of the relationship between learning disabilities, attention-deficit/hyperactivity disorder (ADHD), and risk of occupational injury among young workers. Methods. We assessed 15- to 24-year-old workers (n = 14 379) from cycle 2.1 of the Canadian Community Health Survey (CCHS). We gathered data on demographic characteristics, work-related factors, and presence of learning disabilities or ADHD. We conducted a multivariate logistic regression analysis to assess occurrences of medically attended work injuries. Results. There was an 89% adjusted increase in work injury risk among workers with self-reported dyslexia (a type of learning disability) relative to workers reporting no learning disabilities, although this result did not meet traditional statistical significance criteria. Being out of school, either with or without a high school diploma, was associated with a significantly increased risk of work injury, even after control for a number of demographic and work-related variables. Conclusions. Our findings underscore the notion that individual differences salient in the education system (e.g., learning disabilities, school dropout) need to be integrated into conceptual models of injury risk among young workers. PMID:19542044
The Role of Model Building in Problem Solving and Conceptual Change
ERIC Educational Resources Information Center
Lee, Chwee Beng; Jonassen, David; Teo, Timothy
2011-01-01
This study examines the effects of the activity of building systems models for school-based problems on problem solving and on conceptual change in elementary science classes. During a unit on the water cycle in an Asian elementary school, students constructed systems models of the water cycle. We found that representing ill-structured problems as…
Conceptual design of closed Brayton cycle for coal-fired power generation
NASA Technical Reports Server (NTRS)
Shah, R. P.; Corman, J. C.
1977-01-01
The objectives to be realized in developing a closed cycle gas turbine are (1) to exploit high temperature gas turbine technology while maintaining a working fluid which is free from combustion gas contamination, (2) to achieve compact turbo-equipment designs through pressurization of the working fluid, and (3) to obtain relatively simple cycle configurations. The technical/economic performance of a specific closed cycle gas turbine system was evaluated through the development of a conceptual plant and system design. This energy conversion system is designed for electric utility service and to utilize coal directly in an environmentally acceptable manner.
NASA Astrophysics Data System (ADS)
DiBenedetto, Christina M.
This study is the first of its kind to explore the thoughts, beliefs, attitudes and values of secondary educators as they experience conceptual change in their understanding of the nature of science learning vis a vis the Framework for K-12 Science Education published by the National Research Council. The study takes aim at the existing gap between the vision for science learning as an active process of inquiry and current pedagogical practices in K-12 science classrooms. For students to understand and explain everyday science ideas and succeed in science studies and careers, the means by which they learn science must change. Focusing on this change, the study explores the significance of educator attitudes, beliefs and values to science learning through interpretive phenomenological analysis around the central question, "In what ways do educators understand and articulate attitudes and beliefs toward the nature of science learning?" The study further explores the questions, "How do educators experience changes in their understanding of the nature of science learning?" and "How do educators believe these changes influence their pedagogical practice?" Study findings converge on four conceptions that science learning: is the action of inquiry; is a visible process initiated by both teacher and learner; values student voice and changing conceptions is science learning. These findings have implications for the primacy of educator beliefs, attitudes and values in reform efforts, science teacher leadership and the explicit instruction of both Nature of Science and conceptual change in educator preparation programs. This study supports the understanding that the nature of science learning is cognitive and affective conceptual change. Keywords: conceptual change, educator attitudes and beliefs, framework for K-12 science education, interpretive phenomenological analysis, nature of science learning, next generation science standards, science professional development, secondary science education.
ERIC Educational Resources Information Center
Huh, Yeol; Reigeluth, Charles M.
2017-01-01
A modified conceptual framework called the Continuous-Change Framework for self-regulated learning (SRL) is presented. Common elements and limitations among the past frameworks are discussed in relation to the modified conceptual framework. The iterative nature of the goal setting process and overarching presence of self-efficacy and motivational…
ERIC Educational Resources Information Center
Bilgin, Ibrahim; Geban, Omer
2006-01-01
The purpose of this study is to investigate the effects of the cooperative learning approach based on conceptual change conditions over traditional instruction on 10th grade students' conceptual understanding and achievement of computational problems related to chemical equilibrium concepts. The subjects of this study consisted of 87 tenth grade…
Maskiewicz, April Cordero; Griscom, Heather Peckham; Welch, Nicole Turrill
2012-01-01
In this study, we used targeted active-learning activities to help students improve their ways of reasoning about carbon flow in ecosystems. The results of a validated ecology conceptual inventory (diagnostic question clusters [DQCs]) provided us with information about students' understanding of and reasoning about transformation of inorganic and organic carbon-containing compounds in biological systems. These results helped us identify specific active-learning exercises that would be responsive to students' existing knowledge. The effects of the active-learning interventions were then examined through analysis of students' pre- and postinstruction responses on the DQCs. The biology and non-biology majors participating in this study attended a range of institutions and the instructors varied in their use of active learning; one lecture-only comparison class was included. Changes in pre- to postinstruction scores on the DQCs showed that an instructor's teaching method had a highly significant effect on student reasoning following course instruction, especially for questions pertaining to cellular-level, carbon-transforming processes. We conclude that using targeted in-class activities had a beneficial effect on student learning regardless of major or class size, and argue that using diagnostic questions to identify effective learning activities is a valuable strategy for promoting learning, as gains from lecture-only classes were minimal.
Maskiewicz, April Cordero; Griscom, Heather Peckham; Welch, Nicole Turrill
2012-01-01
In this study, we used targeted active-learning activities to help students improve their ways of reasoning about carbon flow in ecosystems. The results of a validated ecology conceptual inventory (diagnostic question clusters [DQCs]) provided us with information about students' understanding of and reasoning about transformation of inorganic and organic carbon-containing compounds in biological systems. These results helped us identify specific active-learning exercises that would be responsive to students' existing knowledge. The effects of the active-learning interventions were then examined through analysis of students' pre- and postinstruction responses on the DQCs. The biology and non–biology majors participating in this study attended a range of institutions and the instructors varied in their use of active learning; one lecture-only comparison class was included. Changes in pre- to postinstruction scores on the DQCs showed that an instructor's teaching method had a highly significant effect on student reasoning following course instruction, especially for questions pertaining to cellular-level, carbon-transforming processes. We conclude that using targeted in-class activities had a beneficial effect on student learning regardless of major or class size, and argue that using diagnostic questions to identify effective learning activities is a valuable strategy for promoting learning, as gains from lecture-only classes were minimal. PMID:22383618
Creative Writing and Learning in a Conceptual Astrophysics Course
NASA Astrophysics Data System (ADS)
Berenson, R.
2012-08-01
Creative writing assignments in a conceptual astrophysics course for liberal arts students can reduce student anxiety. This study demonstrates that such assignments also can aid learning as demonstrated by significantly improved performance on exams.
Closed-cycle gas dynamic laser design investigation
NASA Technical Reports Server (NTRS)
Ketch, G. W.; Young, W. E.
1977-01-01
A conceptual design study was made of a closed cycle gas-dynamic laser to provide definition of the major components in the laser loop. The system potential application is for long range power transmission by way of high power laser beams to provide satellite propulsion energy for orbit changing or station keeping. A parametric cycle optimization was conducted to establish the thermodynamic requirements for the system components. A conceptual design was conducted of the closed cycle system and the individual components to define physical characteristics and establish the system size and weight. Technology confirmation experimental demonstration programs were outlined to develop, evaluate, and demonstrate the technology base needed for this closed cycle GDL system.
ERIC Educational Resources Information Center
Ohlsson, Stellan; Cosejo, David G.
2014-01-01
The problem of how people process novel and unexpected information--"deep learning" (Ohlsson in "Deep learning: how the mind overrides experience." Cambridge University Press, New York, 2011)--is central to several fields of research, including creativity, belief revision, and conceptual change. Researchers have not converged…
ERIC Educational Resources Information Center
Mondi, Makingu; Woods, Peter; Rafi, Ahmad
2007-01-01
This paper presents the systematic development of a "Uses and Gratification Expectancy" (UGE) conceptual framework which is able to predict students' "Perceived e-Learning Experience." It is argued that students' UGE as regards e-learning resources cannot be implicitly or explicitly explored without first examining underlying communication…
ERIC Educational Resources Information Center
Abd-El-Khalick, Fouad; Akerson, Valarie L.
2004-01-01
This study assessed, and identified factors in participants' learning ecologies that mediated, the effectiveness of an explicit reflective instructional approach that satisfied conditions for learning as conceptual change on preservice elementary teachers' views of nature of science (NOS). Participants were 28 undergraduate students enrolled in an…
Structuring Cooperative Learning for Motivation and Conceptual Change in the Concepts of Mixtures
ERIC Educational Resources Information Center
Belge Can, Hatice; Boz, Yezdan
2016-01-01
This study investigates the effect of structuring cooperative learning based on conceptual change approach on grade 9 students' understanding the concepts of mixtures and their motivation, compared with traditional instruction. Among six classes of a high school, two of them were randomly assigned to cooperative learning group where students were…
ERIC Educational Resources Information Center
de Velasco, Jorge Ruiz; Newman, Elizabeth; Borsato, Graciela
2016-01-01
This report proposes a conceptual framework for defining and implementing a system of integrated student supports that provides equitable access to college and career readiness via Linked Learning pathways in high schools. The framework emphasizes the central commitment of the Linked Learning approach to challenge prevailing norms of…
ERIC Educational Resources Information Center
Yoon, Susan A.; Elinich, Karen; Wang, Joyce; Van Schooneveld, Jacqueline G.
2012-01-01
This research follows on previous studies that investigated how digitally augmented devices and knowledge scaffolds enhance learning in a science museum. We investigated what combination of scaffolds could be used in conjunction with the unique characteristics of informal participation to increase conceptual and cognitive outcomes. 307 students…
Knowing, Insight Learning, and the Integrity of Kinetic Movement
ERIC Educational Resources Information Center
Bautista, Alfredo; Roth, Wolff-Michael; Thom, Jennifer S.
2011-01-01
Psychologists, philosophers, and educators have traditionally interpreted the phenomenon of insight learning as the result of the sudden comprehension of abstract/conceptual ideas. The present article shows that such phenomenon may also follow and emerge from the kinetic movements of the human body; that is, we conceptualize insight learning as a…
Teaching Conceptually Oriented Social Science Education Programs in the Elementary School.
ERIC Educational Resources Information Center
Mahlios, Marc C.
Approaches to elementary social studies education that focus on concept and inquiry learning are outlined. The basic goal of the teacher in concept teaching is to aid the student in developing relationships among factual learning, conceptualization, and personal behavior. Learning activities should focus on the process concept (i.e., one that is…
Knowledgeable Learning and Conceptual Change: Value Adding to Teacher Training
ERIC Educational Resources Information Center
Yeigh, Tony
2013-01-01
This report concerns the use of pre and post responses to an online questionnaire as evidence of knowledgeable learning by education students at a regional Australian university. Factor analysis was used to reveal conceptual changes in the students' thinking about classroom management across a unit of learning they had undertaken. These changes…
Conceptualizing Open Educational Practices through the Lens of Constructive Alignment
ERIC Educational Resources Information Center
Paskevicius, Michael
2017-01-01
The act of instruction may be conceptualized as consisting of four elements: learning outcomes, learning resources, teaching and learning activities, and assessments and evaluation. For instructors in higher education, the way they manage the relationships between these elements is what could be considered the core of their instructional practice.…
NASA Astrophysics Data System (ADS)
Treagust, David F.; Duit, Reinders
2008-07-01
In this response, we attempt to clarify our position on conceptual change, state our position on mental models being a viable construct to represent learning, indicate important issues from the social cultural perspective that can inform our work on conceptual change and lastly comment on issues that we consider to be straw men. Above all we argue that there is no best theory of teaching and learning and argue for a multiple perspective approach to understanding science teaching and learning.
Understanding the complexity of redesigning care around the clinical microsystem.
Barach, P; Johnson, J K
2006-12-01
The microsystem is an organizing design construct in which social systems cut across traditional discipline boundaries. Because of its interdisciplinary focus, the clinical microsystem provides a conceptual and practical framework for simplifying complex organizations that deliver care. It also provides an important opportunity for organizational learning. Process mapping and microworld simulation may be especially useful for redesigning care around the microsystem concept. Process mapping, in which the core processes of the microsystem are delineated and assessed from the perspective of how the individual interacts with the system, is an important element of the continuous learning cycle of the microsystem and the healthcare organization. Microworld simulations are interactive computer based models that can be used as an experimental platform to test basic questions about decision making misperceptions, cause-effect inferences, and learning within the clinical microsystem. Together these tools offer the user and organization the ability to understand the complexity of healthcare systems and to facilitate the redesign of optimal outcomes.
ERIC Educational Resources Information Center
Koponen, Ismo T.; Kokkonen, Tommi; Nousiainen, Maiji
2017-01-01
We discuss here conceptual change and the formation of robust learning outcomes from the viewpoint of complex dynamic systems (CDS). The CDS view considers students' conceptions as context dependent and multifaceted structures which depend on the context of their application. In the CDS view the conceptual patterns (i.e. intuitive conceptions…
ERIC Educational Resources Information Center
Treagust, David F.; Duit, Reinders
2015-01-01
The role of analogies and metaphors has played a significant part in the work on teaching and learning science. This commentary discusses three papers from this current issue that cover a wide range of studies in the spirit of conceptual metaphors--ranging from a study somewhat similar to "classical" conceptual change, to a teacher…
Facilitating conceptual change in students’ understanding of concepts related to pressure
NASA Astrophysics Data System (ADS)
Ozkan, Gulbin; Sezgin Selcuk, Gamze
2016-09-01
The aim of this research was to explore the effects of three different types of methods of learning physics (conceptual change-based, real life context-based and traditional learning) on high school physics students in the 11th grade in terms of conceptual change they achieved in learning about the various topics (pressure exerted by solids, pressure in stagnant liquids and gases, buoyancy, Bernoulli’s principle). In this study, a pre-test/post-test quasi-experimental method with nonequivalent control group, involving a 3 (group) × 2 (time) factorial design was used. Study group 1 were given the conceptual change texts on the mentioned subjects, study group 2 were offered a teaching approach based on real life context-based learning, whereas the control group was taught in the traditional style. Data for the research were collected with the ‘pressure conceptual test’. As a result of research, the number of misconceptions had been reduced or shifted altogether in all three groups. After the instruction, it was seen that none of the students formed new misconceptions. It was found that the most positive change could be seen in the conceptual change text group followed by context-based and lastly traditional. The fact that none of the students formed new misconceptions is important, particularly since research such as the following shows that conceptual change is tenuous and inconsistent, taking time to shift in a sustained manner.
NASA Astrophysics Data System (ADS)
Ohlsson, Stellan; Cosejo, David G.
2014-07-01
The problem of how people process novel and unexpected information— deep learning (Ohlsson in Deep learning: how the mind overrides experience. Cambridge University Press, New York, 2011)—is central to several fields of research, including creativity, belief revision, and conceptual change. Researchers have not converged on a single theory for conceptual change, nor has any one theory been decisively falsified. One contributing reason is the difficulty of collecting informative data in this field. We propose that the commonly used methodologies of historical analysis, classroom interventions, and developmental studies, although indispensible, can be supplemented with studies of laboratory models of conceptual change. We introduce re- categorization, an experimental paradigm in which learners transition from one definition of a categorical concept to another, incompatible definition of the same concept, a simple form of conceptual change. We describe a re-categorization experiment, report some descriptive findings pertaining to the effects of category complexity, the temporal unfolding of learning, and the nature of the learner's final knowledge state. We end with a brief discussion of ways in which the re-categorization model can be improved.
CPD and KT: Models Used and Opportunities for Synergy.
Sargeant, Joan; Borduas, Francine; Sales, Anne; Klein, Doug; Lynn, Brenna; Stenerson, Heather
2017-01-01
The two fields of continuing professional development (CPD) and knowledge translation (KT) within the health care sector, and their related research have developed as somewhat parallel paths with limited points of overlap or intersection. This is slowly beginning to change. The purpose of this paper is to describe and compare the dominant conceptual models informing each field with the view of increasing understanding and appreciation of the two fields, how they are similar and where they differ, and the current and potential points of intersection. The models include the "knowledge-to-action" (KTA) cycle informing KT, models informing CPD curriculum design and individual self-directed learning, and the Kirkpatrick model for evaluating educational outcomes. When compared through the perspectives of conceptual designs, processes, and outcomes, the models overlap. We also identify shared gaps in both fields (eg, the need to explore the influence of the context in which CPD and KT interventions take place) and suggest opportunities for synergies and for moving forward.
ERIC Educational Resources Information Center
Klausmeier, Herbert J.; And Others
The Conceptual Learning and Development (CLD) Model suggests four successive levels of concept learning: (1) concrete--recognizing an object which has been encountered previously; (2) identity--recognizing a known object when it appears in a different spatial, time, or sensory perspective; (3) classificatory--generalizing that two items are alike…
ERIC Educational Resources Information Center
Abdullah, Sopiah; Shariff, Adilah
2008-01-01
The purpose of the study was to investigate the effects of inquiry-based computer simulation with heterogeneous-ability cooperative learning (HACL) and inquiry-based computer simulation with friendship cooperative learning (FCL) on (a) scientific reasoning (SR) and (b) conceptual understanding (CU) among Form Four students in Malaysian Smart…
ERIC Educational Resources Information Center
Toiviainen, Hanna; Lallimo, Jiri; Hong, Jianzhong
2012-01-01
Purpose: This article aims to analyze emergent learning practices for globalizing work through two research questions: "What are the conceptualizations of work represented by the Virtual Factory and how do they mediate globalizing work?" and "What is the potential of expansive learning efforts to expand conceptualizations towards…
ERIC Educational Resources Information Center
McLaughlin, Richard J.
2014-01-01
This research explored the conceptual compatibility of Transformative Learning Theory in accounts of Christian spiritual renewal at Wheaton College in 1995. The literature review examined two domains: Transformative Learning Theory (TLT) and renewal of spiritual life in American students. TLT was applied as quadrants of experience, critical…
ERIC Educational Resources Information Center
Gok, Tolga; Gok, Ozge
2016-01-01
The aim of this research was to investigate the effects of peer instruction on learning strategies, problem solving performance, and conceptual understanding of college students in a general chemistry course. The research was performed students enrolled in experimental and control groups of a chemistry course were selected. Students in the…
ERIC Educational Resources Information Center
Fisher, Tony; Denning, Tim; Higgins, Chris; Loveless, Avril
2012-01-01
This article describes a project to apply and validate a conceptual framework of clusters of purposeful learning activity involving ICT tools. The framework, which is based in a socio-cultural perspective, is described as "DECK", and comprises the following major categories of the use of digital technologies to support learning:…
ERIC Educational Resources Information Center
Park, Ji Yong; Nuntrakune, Tippawan
2013-01-01
The Thailand education reform adopted cooperative learning to improve the quality of education. However, it has been reported that the introduction and maintenance of cooperative learning has been difficult and uncertain because of the cultural differences. The study proposed a conceptual framework developed based on making a connection between…
Concept Development in Learning Physics: The Case of Electric Current and Voltage Revisited
ERIC Educational Resources Information Center
Koponen, Ismo T.; Huttunen, Laura
2013-01-01
In learning conceptual knowledge in physics, a common problem is the development and differentiation of concepts in the learning process. An important part of this development process is the re-organisation or re-structuring process in which students' conceptual knowledge and concepts change. This study proposes a new view of concept…
Conceptual model of iCAL4LA: Proposing the components using comparative analysis
NASA Astrophysics Data System (ADS)
Ahmad, Siti Zulaiha; Mutalib, Ariffin Abdul
2016-08-01
This paper discusses an on-going study that initiates an initial process in determining the common components for a conceptual model of interactive computer-assisted learning that is specifically designed for low achieving children. This group of children needs a specific learning support that can be used as an alternative learning material in their learning environment. In order to develop the conceptual model, this study extracts the common components from 15 strongly justified computer assisted learning studies. A comparative analysis has been conducted to determine the most appropriate components by using a set of specific indication classification to prioritize the applicability. The results of the extraction process reveal 17 common components for consideration. Later, based on scientific justifications, 16 of them were selected as the proposed components for the model.
A Framework for Re-thinking Learning in Science from Recent Cognitive Science Perspectives
NASA Astrophysics Data System (ADS)
Tytler, Russell; Prain, Vaughan
2010-10-01
Recent accounts by cognitive scientists of factors affecting cognition imply the need to reconsider current dominant conceptual theories about science learning. These new accounts emphasize the role of context, embodied practices, and narrative-based representation rather than learners' cognitive constructs. In this paper we analyse data from a longitudinal study of primary school children's learning to outline a framework based on these contemporary accounts and to delineate key points of difference from conceptual change perspectives. The findings suggest this framework provides strong theoretical and practical insights into how children learn and the key role of representational negotiation in this learning. We argue that the nature and process of conceptual change can be re-interpreted in terms of the development of students' representational resources.
Hughes, Roger; Margetts, Barrie
2012-11-01
The present paper describes a model for public health nutrition practice designed to facilitate practice improvement and provide a step-wise approach to assist with workforce development. The bi-cycle model for public health nutrition practice has been developed based on existing cyclical models for intervention management but modified to integrate discrete capacity-building practices. Education and practice settings. This model will have applications for educators and practitioners. Modifications to existing models have been informed by the authors' observations and experiences as practitioners and educators, and reflect a conceptual framework with applications in workforce development and practice improvement. From a workforce development and educational perspective, the model is designed to reflect adult learning principles, exposing students to experiential, problem-solving and practical learning experiences that reflect the realities of work as a public health nutritionist. In doing so, it assists the development of competency beyond knowing to knowing how, showing how and doing. This progression of learning from knowledge to performance is critical to effective competency development for effective practice. Public health nutrition practice is dynamic and varied, and models need to be adaptable and applicable to practice context to have utility. The paper serves to stimulate debate in the public health nutrition community, to encourage critical feedback about the validity, applicability and utility of this model in different practice contexts.
Research on conceptual/innovative design for the life cycle
NASA Technical Reports Server (NTRS)
Cagan, Jonathan; Agogino, Alice M.
1990-01-01
The goal of this research is developing and integrating qualitative and quantitative methods for life cycle design. The definition of the problem includes formal computer-based methods limited to final detailing stages of design; CAD data bases do not capture design intent or design history; and life cycle issues were ignored during early stages of design. Viewgraphs outline research in conceptual design; the SYMON (SYmbolic MONotonicity analyzer) algorithm; multistart vector quantization optimization algorithm; intelligent manufacturing: IDES - Influence Diagram Architecture; and 1st PRINCE (FIRST PRINciple Computational Evaluator).
Boehm, Stephan G; Smith, Ciaran; Muench, Niklas; Noble, Kirsty; Atherton, Catherine
2017-08-31
Repetition priming increases the accuracy and speed of responses to repeatedly processed stimuli. Repetition priming can result from two complementary sources: rapid response learning and facilitation within perceptual and conceptual networks. In conceptual classification tasks, rapid response learning dominates priming of object recognition, but it does not dominate priming of person recognition. This suggests that the relative engagement of network facilitation and rapid response learning depends on the stimulus domain. Here, we addressed the importance of the stimulus domain for rapid response learning by investigating priming in another domain, brands. In three experiments, participants performed conceptual decisions for brand logos. Strong priming was present, but it was not dominated by rapid response learning. These findings add further support to the importance of the stimulus domain for the relative importance of network facilitation and rapid response learning, and they indicate that brand priming is more similar to person recognition priming than object recognition priming, perhaps because priming of both brands and persons requires individuation.
NASA Astrophysics Data System (ADS)
Blums, Angela
The present study examines instructional approaches and cognitive factors involved in elementary school children's thinking and learning the Control of Variables Strategy (CVS), a critical aspect of scientific reasoning. Previous research has identified several features related to effective instruction of CVS, including using a guided learning approach, the use of self-reflective questions, and learning in individual and group contexts. The current study examined the roles of procedural and conceptual instruction in learning CVS and investigated the role of executive function in the learning process. Additionally, this study examined how learning to identify variables is a part of the CVS process. In two studies (individual and classroom experiments), 139 third, fourth, and fifth grade students participated in hands-on and paper and pencil CVS learning activities and, in each study, were assigned to either a procedural instruction, conceptual instruction, or control (no instruction) group. Participants also completed a series of executive function tasks. The study was carried out with two parts--Study 1 used an individual context and Study 2 was carried out in a group setting. Results indicated that procedural and conceptual instruction were more effective than no instruction, and the ability to identify variables was identified as a key piece to the CVS process. Executive function predicted ability to identify variables and predicted success on CVS tasks. Developmental differences were present, in that older children outperformed younger children on CVS tasks, and that conceptual instruction was slightly more effective for older children. Some differences between individual and group instruction were found, with those in the individual context showing some advantage over the those in the group setting in learning CVS concepts. Conceptual implications about scientific thinking and practical implications in science education are discussed.
ERIC Educational Resources Information Center
Ugulu, Ilker; Yorek, Nurettin; Baslar, Suleyman
2015-01-01
The objective of this study is to analyze and determine whether a developed recycling education program would lead to a positive change in the conceptual understanding of ecological concepts associated with matter cycles by high school students. The research was conducted on 68 high school 10th grade students (47 female and 21 male students). The…
A Common Core for Active Conceptual Modeling for Learning from Surprises
NASA Astrophysics Data System (ADS)
Liddle, Stephen W.; Embley, David W.
The new field of active conceptual modeling for learning from surprises (ACM-L) may be helpful in preserving life, protecting property, and improving quality of life. The conceptual modeling community has developed sound theory and practices for conceptual modeling that, if properly applied, could help analysts model and predict more accurately. In particular, we need to associate more semantics with links, and we need fully reified high-level objects and relationships that have a clear, formal underlying semantics that follows a natural, ontological approach. We also need to capture more dynamic aspects in our conceptual models to more accurately model complex, dynamic systems. These concepts already exist, and the theory is well developed; what remains is to link them with the ideas needed to predict system evolution, thus enabling risk assessment and response planning. No single researcher or research group will be able to achieve this ambitious vision alone. As a starting point, we recommend that the nascent ACM-L community agree on a common core model that supports all aspects—static and dynamic—needed for active conceptual modeling in support of learning from surprises. A common core will more likely gain the traction needed to sustain the extended ACM-L research effort that will yield the advertised benefits of learning from surprises.
Attitudes of eighth-grade honors students toward the conceptual change methods of teaching science
NASA Astrophysics Data System (ADS)
Heide, Clifford Lee
1998-12-01
The study researched the attitude of eighth grade honors science students toward the steps of the conceptual change teaching method. The attitudes of 25 students in an honors 8th grade science class in the Greater Phoenix metropolitan area were assessed using a multi-method approach. A quantitative method (student survey) and a qualitative method (focus group) were triangulated for convergence. Since conceptual change is a relatively new reform teaching modality, the study assessed students' attitudes utilizing this method. Conceptual change teaching is characterized by connections between concepts and facts which are organized around key ideas. Knowledge connected through concepts is constantly revised and edited by students as they continue to learn and add new concepts. The results of this study produced evidence that the conceptual change method of teaching science and its six process steps have qualities that foster positive student attitude. The study demonstrated that students' attitudes toward science is positively influenced through the conceptual change teaching method by enabling students to: (1) choose problems and find solutions to those problems (student directed); (2) work together in large and small groups; (3) learn through student oral presentations; (4) perform hands-on laboratory experiences; (5) learn through conceptual understanding not memorization; (6) implement higher order learning skills to make connections from the lab to the real world. Teachers can use the information in the study to become aware of the positive and negative attitudes of students taught with the conceptual change method. Even if the conceptual change teaching strategy is not the modality utilized by an educator, the factors identified by this study that affect student attitude could be used to help a teacher design lesson plans that help foster positive student attitudes.
Cleveland, Lacy M.; Olimpo, Jeffrey T.; DeChenne-Peters, Sue Ellen
2017-01-01
In response to calls for reform in undergraduate biology education, we conducted research examining how varying active-learning strategies impacted students’ conceptual understanding, attitudes, and motivation in two sections of a large-lecture introductory cell and molecular biology course. Using a quasi-experimental design, we collected quantitative data to compare participants’ conceptual understanding, attitudes, and motivation in the biological sciences across two contexts that employed different active-learning strategies and that were facilitated by unique instructors. Students participated in either graphic organizer/worksheet activities or clicker-based case studies. After controlling for demographic and presemester affective differences, we found that students in both active-learning environments displayed similar and significant learning gains. In terms of attitudinal and motivational data, significant differences were observed for two attitudinal measures. Specifically, those students who had participated in graphic organizer/worksheet activities demonstrated more expert-like attitudes related to their enjoyment of biology and ability to make real-world connections. However, all motivational and most attitudinal data were not significantly different between the students in the two learning environments. These data reinforce the notion that active learning is associated with conceptual change and suggests that more research is needed to examine the differential effects of varying active-learning strategies on students’ attitudes and motivation in the domain. PMID:28389428
NASA Astrophysics Data System (ADS)
Meade, Karen Marie
The purpose of this study was to identify conceptual and attitudinal effects of inquiry learning in technology-based undergraduate chemistry laboratories. There were 428 participants who were registered in general chemistry laboratory at the University of Iowa in the Spring of 2002. Conceptual and attitudinal pretest and posttest results were quantitative in nature. Qualitative results were collected from questionnaires and focus groups. Quantitative data were analyzed using a repeated measures analysis of variance to identify differences between treatment groups. A high-inquiry treatment group was open-ended and required student decisions regarding data collection, data representation, and interpretation. The low-inquiry treatment involved collaboration and traditional learning strategies. Major findings of this study were: (1) Pretest to posttest conceptual gains were significant for both treatment groups. Low-inquiry students performed significantly better on exploration questions than high-inquiry students. (2) Process skills developed at higher levels for high-inquiry students than low-inquiry students. (3) Positive attitudes decreased significantly for all students from pretest to posttest. More favorable attitudes toward science enjoyment and the ability to do well in science were found for high-inquiry students. More favorable attitudes toward science enjoyment and the ability to do well in science were found for low-inquiry males and high-inquiry females. (4) More favorable attitudes toward the nature of science caused by use of the learning cycle were reported by high-inquiry students. (5) Low-inquiry students reported more favorable attitudes toward technologies in the laboratory than did high-inquiry students. Favorable attitudes toward the use of infrared spectrometers and unfavorable attitudes toward the use of pH meters were reported by both treatment groups. (6) More formal reasoning skills were reported by high-inquiry students. Both groups reported that looking for patterns was a common theme in the laboratories. Hypotheses were reported as rarely used by both treatment groups. These findings are significant because they indicate that inquiry activities positively affect attitudes toward science, gender equality, and contribute to the development of formal reasoning skills and process skills.
A multidimensional framework of conceptual change for developing chemical equilibrium learning
NASA Astrophysics Data System (ADS)
Chanyoo, Wassana; Suwannoi, Paisan; Treagust, David F.
2018-01-01
The purposes of this research is to investigate the existing chemical equilibrium lessons in Thailand based on the multidimensional framework of conceptual change, to determine how the existing lessons could enhance students' conceptual change. This research was conducted based on qualitative perspective. Document, observations and interviews were used to collect data. To comprehend all students conceptions, diagnostic tests were applied comprised of The Chemical Equilibrium Diagnostic Test (the CEDT) and The Chemical Equilibrium Test for Reveal Conceptual Change (the CETforRCC). In addition, to study students' motivations, the Motivated Strategies for Learning Questionnaire (the MSLQ) and students' task engagement were applied. Following each perspective of conceptual change - ontological, epistemological, and social/affective - the result showed that the existing chemical equilibrium unit did not enhance students' conceptual change, and some issues were found. The problems obstructed students conceptual change should be remedy under the multidimensional framework of conceptual change. Finally, some suggestions were provided to enhance students' conceptual change in chemical equilibrium effectively
Cresser, Malcolm S; Aitkenhead, Matthew J; Mian, Ishaq A
2008-08-01
Although soil scientists and most environmental scientists are acutely aware of the interactions between the cycling of carbon and nitrogen, for conceptual convenience when portraying the nitrogen cycle in text books the N cycle tends to be considered in isolation from its interactions with the cycling of other elements and water, usually as a snap shot at the current time; the origins of dinitrogen are rarely considered, for example. The authors suggest that Lovelock's Gaia hypothesis provides a useful and stimulating framework for consideration of the terrestrial nitrogen cycle. If it is used, it suggests that urbanization and management of sewage, and intensive animal rearing are probably bigger global issues than nitrogen deposition from fossil fuel combustion, and that plant evolution may be driven by the requirement of locally sustainable and near optimal soil mineral N supply dynamics. This may, in turn, be partially regulating global carbon and oxygen cycles. It is suggested that pollutant N deposition may disrupt this essential natural plant and terrestrial ecosystem evolutionary process, causing biodiversity change. Interactions between the Earth and other bodies in the solar system, and possibly beyond, also need to be considered in the context of the global N cycle over geological time scales. This is because of direct potential impacts on the nitrogen content of the atmosphere, potential long-term impacts of past boloid collisions on plate tectonics and thus on global N cycling via subduction and volcanic emissions, and indirect effects upon C, O and water cycling that all may impact upon the N cycle in the long term.
Advanced Turbomachinery Components for Supercritical CO 2 Power Cycles
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDowell, Michael
2016-03-31
Six indirectly heated supercritical CO 2 (SCO 2 ) Brayton cycles with turbine inlet conditions of 1300°F and 4000 psia with varying plant capacities from 10MWe to 550MWe were analyzed. 550 MWe plant capacity directly heated SCO 2 Brayton cycles with turbine inlet conditions of 2500°F and 4000 psia were also analyzed. Turbomachinery configurations and conceptual designs for both indirectly and directly heated cycles were developed. Optimum turbomachinery and generator configurations were selected and the resulting analysis provides validation that the turbomachinery conceptual designs meet efficiency performance targets. Previously identified technology gaps were updated based on these conceptual designs. Materialmore » compatibility testing was conducted for materials typically used in turbomachinery housings, turbine disks and blades. Testing was completed for samples in unstressed and stressed conditions. All samples exposed to SCO 2 showed some oxidation, the extent of which varied considerably between the alloys tested. Examination of cross sections of the stressed samples found no evidence of cracking due to SCO 2 exposure.« less
ERIC Educational Resources Information Center
Olivier, Dianne F.; Huffman, Jane B.
2016-01-01
As the Professional Learning Community (PLC) process becomes embedded within schools, the level of district support has a direct impact on whether schools have the ability to re-culture and sustain highly effective collaborative practices. The purpose of this article is to share a professional learning community conceptual framework from the US,…
ERIC Educational Resources Information Center
Gray, James E.
2010-01-01
This research serves as a mixed methodological study that presents a conceptual framework which focuses on the relationship between professional learning communities, high yield literacy strategies, and their phases of change. As a result, the purpose of this study is threefold. First, a conceptual framework integrating professional learning…
A Conceptual Framework for Mentoring in a Learning Organization
ERIC Educational Resources Information Center
Klinge, Carolyn M.
2015-01-01
The purpose of this article is to provide a conceptual framework for mentoring as an added component of a learning organization in the context of adult learning and development theories. Mentoring is traditionally a process in which an experienced person (the mentor) guides another person (the mentee or protégé) in the development of her or his…
Conceptualization of an R&D Based Learning-to-Innovate Model for Science Education
ERIC Educational Resources Information Center
Lai, Oiki Sylvia
2013-01-01
The purpose of this research was to conceptualize an R & D based learning-to-innovate (LTI) model. The problem to be addressed was the lack of a theoretical L TI model, which would inform science pedagogy. The absorptive capacity (ACAP) lens was adopted to untangle the R & D LTI phenomenon into four learning processes: problem-solving via…
ERIC Educational Resources Information Center
Tu, Wendy; Snyder, Martha M.
2017-01-01
Difficulties in learning statistics primarily at the college-level led to a reform movement in statistics education in the early 1990s. Although much work has been done, effective learning designs that facilitate active learning, conceptual understanding of statistics, and the use of real-data in the classroom are needed. Guided by Merrill's First…
Learning higher-order generalizations through free play: Evidence from 2- and 3-year-old children.
Sim, Zi L; Xu, Fei
2017-04-01
Constructivist views of cognitive development often converge on 2 key points: (a) the child's goal is to build large conceptual structures for understanding the world, and (b) the child plays an active role in developing these structures. While previous research has demonstrated that young children show a precocious capacity for concept and theory building when they are provided with helpful data within training settings, and that they explore their environment in ways that may promote learning, it remains an open question whether young children are able to build larger conceptual structures using self-generated evidence, a form of active learning. In the current study, we examined whether children can learn high-order generalizations (which form the basis for larger conceptual structures) through free play, and whether they can do so as effectively as when provided with relevant data. Results with 2- and 3-year-old children over 4 experiments indicate robust learning through free play, and generalization performance was comparable between free play and didactic conditions. Therefore, young children's self-directed learning supports the development of higher-order generalizations, laying the foundation for building larger conceptual structures and intuitive theories. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Werner, James J; Stange, Kurt C
2014-01-01
Practice-based research networks (PBRNs) have developed a grounded approach to conducting practice-relevant and translational research in community practice settings. Seismic shifts in the health care landscape are shaping PBRNs that work across organizational and institutional margins to address complex problems. Praxis-based research networks combine PBRN knowledge generation with multistakeholder learning, experimentation, and application of practical knowledge. The catalytic processes in praxis-based research networks are cycles of action and reflection based on experience, observation, conceptualization, and experimentation by network members and partners. To facilitate co-learning and solution-building, these networks have a flexible architecture that allows pragmatic inclusion of stakeholders based on the demands of the problem and the needs of the network. Praxis-based research networks represent an evolving trend that combines the core values of PBRNs with new opportunities for relevance, rigor, and broad participation. © Copyright 2014 by the American Board of Family Medicine.
Integrating Preparation for Parenting Into Childbirth Education: Part II—A Study
Corwin, Ann
1999-01-01
This study was designed to test the effectiveness of using a broad conceptualization of childbirth education that includes parenting preparation in pregnancy. The goal is to assist in breaking cycles of dysfunction in families. At the core of this expanded model of childbirth education is the concept of prevention. The intervention described in Part I in the Journal of Perinatal Education 7(4), 26–33 provided parents with information and coping mechanisms by drawing parallels to traditionally learned coping skills for childbirth with techniques needed to cope in post-partum. This approach also encouraged prenatal parents to learn techniques for promoting attachment to their children before birth. The curriculum was tested by randomizing 48 couples to the expanded or traditional model of childbirth education. A pre- and post-Prenatal Parenting Scale was administered to both groups. Only the experimental group demonstrated improvement at the post-class administration. PMID:22945974
Integrating Preparation for Parenting Into Childbirth Education: Part II-A Study.
Corwin, A
1999-01-01
This study was designed to test the effectiveness of using a broad conceptualization of childbirth education that includes parenting preparation in pregnancy. The goal is to assist in breaking cycles of dysfunction in families. At the core of this expanded model of childbirth education is the concept of prevention. The intervention described in Part I in the Journal of Perinatal Education 7(4), 26-33 provided parents with information and coping mechanisms by drawing parallels to traditionally learned coping skills for childbirth with techniques needed to cope in post-partum. This approach also encouraged prenatal parents to learn techniques for promoting attachment to their children before birth. The curriculum was tested by randomizing 48 couples to the expanded or traditional model of childbirth education. A pre- and post-Prenatal Parenting Scale was administered to both groups. Only the experimental group demonstrated improvement at the post-class administration.
Executive functions predict conceptual learning of science.
Rhodes, Sinéad M; Booth, Josephine N; Palmer, Lorna Elise; Blythe, Richard A; Delibegovic, Mirela; Wheate, Nial J
2016-06-01
We examined the relationship between executive functions and both factual and conceptual learning of science, specifically chemistry, in early adolescence. Sixty-three pupils in their second year of secondary school (aged 12-13 years) participated. Pupils completed tasks of working memory (Spatial Working Memory), inhibition (Stop-Signal), attention set-shifting (ID/ED), and planning (Stockings of Cambridge), from the CANTAB. They also participated in a chemistry teaching session, practical, and assessment on the topic of acids and alkalis designed specifically for this study. Executive function data were related to (1) the chemistry assessment which included aspects of factual and conceptual learning and (2) a recent school science exam. Correlational analyses between executive functions and both the chemistry assessment and science grades revealed that science achievements were significantly correlated with working memory. Linear regression analysis revealed that visuospatial working memory ability was predictive of chemistry performance. Interestingly, this relationship was observed solely in relation to the conceptual learning condition of the assessment highlighting the role of executive functions in understanding and applying knowledge about what is learned within science teaching. © 2016 The British Psychological Society.
NASA Astrophysics Data System (ADS)
Leuchter, Miriam; Saalbach, Henrik; Hardy, Ilonca
2014-07-01
Research on learning and instruction of science has shown that learning environments applied in preschool and primary school rarely makes use of structured learning materials in problem-based environments although these are decisive quality features for promoting conceptual change and scientific reasoning within early science learning. We thus developed and implemented a science learning environment for children in the first years of schooling which contains structured learning materials with the goal of supporting conceptual change concerning the understanding of the floating and sinking of objects and fostering students' scientific reasoning skills. In the present implementation study, we aim to provide a best-practice example of early science learning. The study was conducted with a sample of 15 classes of the first years of schooling and a total of 244 children. Tests were constructed to measure children's conceptual understanding before and after the implementation. Our results reveal a decrease in children's misconceptions from pretest to posttest. After the curriculum, the children were able to produce significantly more correct predictions about the sinking or floating of objects than before the curriculum and also relative to a control group. Moreover, due to the intervention, the explanations given for their predictions implied a more elaborated concept of material kinds. All in all, a well-structured curriculum promoting comparison and scientific reasoning by means of inquiry learning was shown to support children's conceptual change.
Acquisition of new concepts by two amnesic patients.
Van der Linden, M; Meulemans, T; Lorrain, D
1994-06-01
Two Korsakoff amnesics (A.G. and G.S.) and two control subjects were taught six new concepts. Each concept was composed of three parts: the name of the concept, the context in which the concept originated and its definition. The learning procedure consisted of two phases: (1) learning the concept names and definitions by means of the vanishing-cues method; (2) practice on examples of the concepts through a classification task: examples were either set in the same context as that given in the original definition or in mixed contexts (same and new contexts). Subjects were then tested after 24 hours, a week and a month on their ability to identify new examples as belonging to one of the conceptual rules studied (transfer tests). Both patients showed substantial learning. Patient A.G. was slow and dependent of the first letter cues in the vanishing-cues learning phase but nevertheless, she acquired a large and flexible conceptual knowledge and this was especially true for concepts that were practised by means of mixed-context examples. Patient G.S. easily learned to associate the definitions with the concept names but her conceptual knowledge remained more limited. These results confirm the existence of a semantic learning ability in amnesic patients. They also suggest that under appropriate learning conditions, amnesics may eventually acquire a new flexible conceptual knowledge.
Teaching and Learning about Force with a Representational Focus: Pedagogy and Teacher Change
NASA Astrophysics Data System (ADS)
Hubber, Peter; Tytler, Russell; Haslam, Filocha
2010-01-01
A large body of research in the conceptual change tradition has shown the difficulty of learning fundamental science concepts, yet conceptual change schemes have failed to convincingly demonstrate improvements in supporting significant student learning. Recent work in cognitive science has challenged this purely conceptual view of learning, emphasising the role of language, and the importance of personal and contextual aspects of understanding science. The research described in this paper is designed around the notion that learning involves the recognition and development of students’ representational resources. In particular, we argue that conceptual difficulties with the concept of force are fundamentally representational in nature. This paper describes a classroom sequence in force that focuses on representations and their negotiation, and reports on the effectiveness of this perspective in guiding teaching, and in providing insight into student learning. Classroom sequences involving three teachers were videotaped using a combined focus on the teacher and groups of students. Video analysis software was used to capture the variety of representations used, and sequences of representational negotiation. Stimulated recall interviews were conducted with teachers and students. The paper reports on the nature of the pedagogies developed as part of this representational focus, its effectiveness in supporting student learning, and on the pedagogical and epistemological challenges negotiated by teachers in implementing this approach.
Comparing student learning with multiple research-based conceptual surveys: CSEM and BEMA.
NASA Astrophysics Data System (ADS)
Pollock, S. J.
2008-10-01
We present results demonstrating similar distributions of student scores, and statistically indistinguishable gains on two popular research-based assessment tools: the Brief Electricity and Magnetism Assessment (BEMA) and the Conceptual Survey of Electricity and Magnetism(CSEM). To deepen our understanding of student learning in our course environment and of these assessment tools as measures of student learning, we identify systematic trends and differences in results from these two instruments. We investigate correlations of both pre- and post- conceptual scores with other measures including traditional exam scores and course grades, student background (earlier grades), gender, a pretest of scientific reasoning, and tests of attitudes and beliefs about science and learning science. Overall, for practical purposes, we find the BEMA and CSEM are roughly equivalently useful instruments for measuring student learning in our course.
Cycle time reduction using lean six sigma in make-to-order (MTO) environment: Conceptual framework
NASA Astrophysics Data System (ADS)
Man, Siti Mariam; Zain, Zakiyah; Nawawi, Mohd Kamal Mohd
2015-12-01
This paper outlines the framework for application of lean six sigma (LSS) methodology to improve semiconductor assembly cycle time in a make-to-order (MTO) business environment. The cycle time reduction is the prime objective in the context of an overall productivity improvement particularly in the MTO environment. The interaction of the production rate and cycle time is described, while the emphasis is on Define-Measure-Analyze-Improve-Control (DMAIC) and Plan-Do-Check-Act (PDCA) activities. A framework for the conceptual understanding is provided along with practical implementation issues. A relevant measure for the degree of flexibility (DOF) in the context of quick setup is also discussed.
NASA Astrophysics Data System (ADS)
McQuaide, Glenn G.
2006-12-01
Without adequate understanding of science, we cannot make responsible personal, regional, national, or global decisions about any aspect of life dealing with science. Better understanding how we learn about science can contribute to improving the quality of our educational experiences. Promoting pathways leading to life-long learning and deep understanding in our world should be a goal for all educators. This dissertation project was a phenomenological investigation into undergraduate understanding and acceptance of scientific theories, including biological evolution. Specifically, student descriptions of conceptual change while learning science theory were recorded and analyzed. These qualitative investigations were preceded by a survey that provided a means of selecting students who had a firmer understanding of science theory. Background information and survey data were collected in an undergraduate biology class at a small, Southern Baptist-affiliated liberal arts school located in south central Kentucky. Responses to questions on the MATE (Rutledge and Warden, 1999) instrument were used to screen students for interviews, which investigated the way by which students came to understand and accept scientific theories. This study identifies some ways by which individuals learn complex science theories, including biological evolution. Initial understanding and acceptance often occurs by the conceptual change method described by Posner et al. (1982). Three principle ways by which an individual may reach a level of understanding and acceptance of science theory were documented in this study. They were conceptual change through application of logic and reasoning; conceptual change through modification of religious views; and conceptual change through acceptance of authoritative knowledge. Development of a deeper, richer understanding and acceptance of complex, multi-faceted concepts such as biological evolution occurs in some individuals by means of conceptual enrichment. Conceptual enrichment occurs through addition of new knowledge, and then examining prior knowledge through the perspective of this new knowledge. In the field of science, enrichment reinforces complex concepts when multiple, convergent lines of supporting evidences point to the same rational scientific conclusion.
Collaboration Scripts--A Conceptual Analysis
ERIC Educational Resources Information Center
Kollar, Ingo; Fischer, Frank; Hesse, Friedrich W.
2006-01-01
This article presents a conceptual analysis of collaboration scripts used in face-to-face and computer-mediated collaborative learning. Collaboration scripts are scaffolds that aim to improve collaboration through structuring the interactive processes between two or more learning partners. Collaboration scripts consist of at least five components:…
What Should Common Core Assessments Measure?
ERIC Educational Resources Information Center
Chandler, Kayla; Fortune, Nicholas; Lovett, Jennifer N.; Scherrer, Jimmy
2016-01-01
The Common Core State Standards for mathematics promote ideals about learning mathematics by providing specific standards focused on conceptual understanding and incorporating practices in which students must participate to develop conceptual understanding. Thus, how we define learning is pivotal because our current definition isn't aligned with…
Conceptual learning by miniature brains
Avarguès-Weber, Aurore; Giurfa, Martin
2013-01-01
Concepts act as a cornerstone of human cognition. Humans and non-human primates learn conceptual relationships such as ‘same’, ‘different’, ‘larger than’, ‘better than’, among others. In all cases, the relationships have to be encoded by the brain independently of the physical nature of objects linked by the relation. Consequently, concepts are associated with high levels of cognitive sophistication and are not expected in an insect brain. Yet, various works have shown that the miniature brain of honeybees rapidly learns conceptual relationships involving visual stimuli. Concepts such as ‘same’, ‘different’, ‘above/below of’ or ‘left/right are well mastered by bees. We review here evidence about concept learning in honeybees and discuss both its potential adaptive advantage and its possible neural substrates. The results reviewed here challenge the traditional view attributing supremacy to larger brains when it comes to the elaboration of concepts and have wide implications for understanding how brains can form conceptual relations. PMID:24107530
Cruza, Norberto Sotelo; Fierros, Luis E
2006-01-01
The present study was done at the internal medicine service oft he Hospital lnfantil in the State of Sonora, Mexico. We tried to address the question of the use of conceptual schemes and mind maps and its impact on the teaching-learning-evaluation process among medical residents. Analyze the effects of conceptual schemes, and mind maps as a teaching and evaluation tool and compare them with multiple choice exams among Pediatric residents. Twenty two residents (RI, RII, RIII)on service rotation during six months were assessed initially, followed by a lecture on a medical subject. Conceptual schemes and mind maps were then introduced as a teaching-learning-evaluation instrument. Comprehension impact and comparison with a standard multiple choice evaluation was done. The statistical package (JMP version 5, SAS inst. 2004) was used. We noted that when we used conceptual schemes and mind mapping, learning improvement was noticeable among the three groups of residents (P < 0.001) and constitutes a better evaluation tool when compared with multiple choice exams (P < 0.0005). Based on our experience we recommend the use of this educational technique for medical residents in training.
ERIC Educational Resources Information Center
Brown, Bryan A.; Kloser, Matt
2009-01-01
We respond to Hwang and Kim and Yeo's critiques of the conceptual continuity framework in science education. First, we address the criticism that their analysis fails to recognize the situated perspective of learning by denying the dichotomy of the formal and informal knowledge as a starting point in the learning process. Second, we address the…
ERIC Educational Resources Information Center
Park-Martinez, Jayne Irene
2011-01-01
The purpose of this study was to assess the effects of node-link mapping on students' meaningful learning and conceptual change in a 1-semester introductory life-science course. This study used node-link mapping to integrate and apply the National Research Council's (NRC, 2005) three principles of human learning: engaging students' prior…
ERIC Educational Resources Information Center
Cleveland, Lacy M.; Olimpo, Jeffrey T.; DeChenne-Peters, Sue Ellen
2017-01-01
In response to calls for reform in undergraduate biology education, we conducted research examining how varying active-learning strategies impacted students' conceptual understanding, attitudes, and motivation in two sections of a large-lecture introductory cell and molecular biology course. Using a quasi-experimental design, we collected…
The opportunities and challenges of guided inquiry science for students with special needs
NASA Astrophysics Data System (ADS)
Miller, Marianne
Research in science education has been conducted with various goals for instruction. Four outcomes identified include: immediate and delayed recall, literal comprehension, science skills and processes, and conceptual understanding. The promise of developing important thinking skills exists for all students if science instruction is designed to teach students the products of science and the principled process of inquiry. Guided inquiry science seeks to develop conceptual understanding through the pursuit of meaningful questions using scientific problem solving to conduct investigations that are thoughtfully generated and evaluated. Using a social constructivist perspective, this study examines the learning experiences of four students, identified by their teachers as learning disabled or underachieving. Four case studies are presented of the students' participation in a guided inquiry investigation of the behavior of light. Measures of conceptual understanding included pre- and post-instruction assessments, interviews, journal writing, videotapes, and fieldnotes. All four students demonstrated improved conceptual understanding of light. Five patterns of relationships influenced the development of the students' thinking. First, differences in the culture of the two classrooms altered the learning environment, Second, the nature of teacher interaction with the target students affected conceptual understanding. Third, interactions with peers modified the learning experiences for the identified students. Fourth, the conceptual and procedural complexity of the tasks increased the tendency for the students to lose focus. Finally, the literacy requirements of the work were challenging for these students.
ERIC Educational Resources Information Center
Nyce, Peggy A.; And Others
1977-01-01
Forty-four third graders were given a two-choice conceptual discrimination learning task. The two major factors were (1) four treatment groups varying at the extremes on two personality measures, approval motivation and locus of control and (2) sex. (MS)
Intercultural Historical Learning: A Conceptual Framework
ERIC Educational Resources Information Center
Nordgren, Kenneth; Johansson, Maria
2015-01-01
This paper outlines a conceptual framework in order to systematically discuss the meaning of intercultural learning in history education and how it could be advanced. We do so by bringing together theories of historical consciousness, intercultural competence and postcolonial thinking. By combining these theories into one framework, we identify…
Opportunity to Learn and Conceptions of Educational Equality.
ERIC Educational Resources Information Center
Guiton, Gretchen; Oakes, Jeannie
1995-01-01
Conceptual issues in developing and using opportunity-to-learn (OTL) standards to inform policy questions about equal educational opportunity are discussed. Using two national databases, OTL measures are developed according to Libertarian, Liberal, and Democratic Liberal conceptualizations, and the influence of these concepts on the information…
A Conceptual Framework for Evolving, Recommender Online Learning Systems
ERIC Educational Resources Information Center
Peiris, K. Dharini Amitha; Gallupe, R. Brent
2012-01-01
A comprehensive conceptual framework is developed and described for evolving recommender-driven online learning systems (ROLS). This framework describes how such systems can support students, course authors, course instructors, systems administrators, and policy makers in developing and using these ROLS. The design science information systems…
NASA Astrophysics Data System (ADS)
Bean, J. R.; Zoehfeld, K.; Mitchell, K.; Levine, J.; White, L. D.
2016-12-01
Understanding climate change and how to mitigate the causes and consequences of anthropogenic activities are essential components of the Next Generations Science Standards. To comprehend climate change today and why current rates and magnitudes of change are of concern, students must understand the various factors that drive Earth system processes and also how they interrelate. The Understanding Global Change web resource in development from the UC Museum of Paleontology will provide science educators with a conceptual framework, graphical models, lessons, and assessment templates for teaching NGSS aligned, interdisciplinary, climate change curricula. To facilitate students learning about the Earth as a dynamic, interacting system of ongoing processes, the Understanding Global Change site will provide explicit conceptual links for the causes of climate change (e.g., burning of fossil fuels, deforestation), Earth system processes (e.g., Earth's energy budget, water cycle), and the changes scientists measure in the Earth system (e.g., temperature, precipitation). The conceptual links among topics will be presented in a series of storyboards that visually represent relationships and feedbacks among components of the Earth system and will provide teachers with guides for implementing NGSS-aligned climate change instruction that addresses physical science, life sciences, Earth and space science, and engineering performance expectations. These visualization and instructional methods are used by teachers during professional development programs at UC Berkeley and the Smithsonian National Museum of Natural History and are being tested in San Francisco Bay Area classrooms.
The circle of life: A cross-cultural comparison of children's attribution of life-cycle traits.
Burdett, Emily R R; Barrett, Justin L
2016-06-01
Do children attribute mortality and other life-cycle traits to all minded beings? The present study examined whether culture influences young children's ability to conceptualize and differentiate human beings from supernatural beings (such as God) in terms of life-cycle traits. Three-to-5-year-old Israeli and British children were questioned whether their mother, a friend, and God would be subject to various life-cycle processes: Birth, death, ageing, existence/longevity, and parentage. Children did not anthropomorphize but differentiated among human and supernatural beings, attributing life-cycle traits to humans, but not to God. Although 3-year-olds differentiated significantly among agents, 5-year-olds attributed correct life-cycle traits more consistently than younger children. The results also indicated some cross-cultural variation in these attributions. Implications for biological conceptual development are discussed. © 2015 The British Psychological Society.
Vakil, Eli; Lev-Ran Galon, Carmit
2014-01-01
Existing literature presents a complex and inconsistent picture of the specific deficiencies involved in skill learning following traumatic brain injury (TBI). In an attempt to address this difficulty, individuals with moderate to severe TBI (n = 29) and a control group (n = 29) were tested with two different skill-learning tasks: conceptual (i.e., Tower of Hanoi Puzzle, TOHP) and perceptual (i.e., mirror reading, MR). Based on previous studies of the effect of divided attention on these tasks and findings regarding the effect of TBI on conceptual and perceptual priming tasks, it was predicted that the group with TBI would show impaired baseline performance compared to controls in the TOHP task though their learning rate would be maintained, while both baseline performance and learning rate on the MR task would be maintained. Consistent with our predictions, overall baseline performance of the group with TBI was impaired in the TOHP test, while the learning rate was not. The learning rate on the MR task was preserved but, contrary to our prediction, response time of the group with TBI was slower than that of controls. The pattern of results observed in the present study was interpreted to possibly reflect an impairment of both the frontal lobes as well as that of diffuse axonal injury, which is well documented as being affected by TBI. The former impairment affects baseline performance of the conceptual learning skill, while the latter affects the overall slower performance of the perceptual learning skill.
Developing Coherent Conceptual Storylines: Two Elementary Challenges
ERIC Educational Resources Information Center
Hanuscin, Deborah; Lipsitz, Kelsey; Cisterna-Alburquerque, Dante; Arnone, Kathryn A.; van Garderen, Delinda; de Araujo, Zandra; Lee, Eun Ju
2016-01-01
The "conceptual storyline" of a lesson refers to the flow and sequencing of learning activities such that science concepts align and progress in ways that are instructionally meaningful to student learning of the concepts. Research demonstrates that when teachers apply lesson design strategies to create a coherent science content…
ERIC Educational Resources Information Center
Baser, Mustafa
2006-01-01
This paper reports upon an active learning approach that promotes conceptual change when studying direct current electricity circuits, using free open source software, "Qucs". The study involved a total of 102 prospective mathematics teacher students. Prior to instruction, students' understanding of direct current electricity was…
The Effect of Multimedia-Based Learning on the Concept Learning Levels and Attitudes of Students
ERIC Educational Resources Information Center
Beydogan, H. Ömer; Hayran, Zeynel
2015-01-01
Problem Statement: Rich stimuli received by sensory organs such as vision, hearing, and touch are important elements that affect an individual's perception, identification, classification, and conceptualization of the external world. In primary education, since students perform conceptual abstraction based upon concrete characteristics, when they…
Graduate Employability: The Perspective of Social Network Learning
ERIC Educational Resources Information Center
Chen, Yong
2017-01-01
This study provides a conceptual framework for understanding how the graduate acquire employability through the social network in the Chinese context, using insights from the social network theory. This paper builds a conceptual model of the relationship among social network, social network learning and the graduate employability, and uses…
Enhancing Conceptual Knowledge of Energy in Biology with Incorrect Representations
ERIC Educational Resources Information Center
Wernecke, Ulrike; Schütte, Kerstin; Schwanewedel, Julia; Harms, Ute
2018-01-01
Energy is an important concept in all natural sciences, and a challenging one for school science education. Students' conceptual knowledge of energy is often low, and they entertain misconceptions. Educational research in science and mathematics suggests that learning through depictive representations and learning from errors, based on the theory…
Future Elementary School Teachers' Conceptual Change Concerning Photosynthesis
ERIC Educational Resources Information Center
Ahopelto, Ilona; Mikkila-Erdmann, Mirjamaija; Anto, Erkki; Penttinen, Marjaana
2011-01-01
The purpose of this study was to examine conceptual change among future elementary school teachers while studying a scientific text concerning photosynthesis. Students' learning goals in relation to their learning outcomes were also examined. The participants were future elementary school teachers. The design consisted of pre- and post-tests. The…
Learning Complex Scientific Information: Motivation Theory and Its Relation to Student Perceptions.
ERIC Educational Resources Information Center
Hynd, Cynthia; Holschuh, Jodi; Nist, Sherrie
2000-01-01
Examines motivation in high school students' conceptual change about physics principles, and college students' motivation for biology learning. Finds grades and interest were important, but students did not report the importance of social support. Suggests similar motivations are important in both conceptual change and assimilation and help…
Re-Conceptualizing the Organizing Circumstance of Learning
ERIC Educational Resources Information Center
Spear Ellinwood, Karen Courtenay
2011-01-01
This study explores the web-navigation practices of adult learners in higher education and re-conceptualizes the concept of the organizing circumstance of self-managed learning, originated by Spear and Mocker (1984). The theoretical framework draws on funds of knowledge theory from a cultural historical perspective and elaborates a Vygotskian…
ERIC Educational Resources Information Center
Sahhyar; Nst, Febriani Hastini
2017-01-01
The purpose of this research was to analyze the physics cognitive competence and science process skill of students using scientific inquiry learning model based on conceptual change better than using conventional learning. The research type was quasi experiment and two group pretest-posttest designs were used in this study. The sample were Class…
Learning in Earth and space science: a review of conceptual change instructional approaches
NASA Astrophysics Data System (ADS)
Mills, Reece; Tomas, Louisa; Lewthwaite, Brian
2016-03-01
In response to calls for research into effective instruction in the Earth and space sciences, and to identify directions for future research, this systematic review of the literature explores research into instructional approaches designed to facilitate conceptual change. In total, 52 studies were identified and analyzed. Analysis focused on the general characteristics of the research, the conceptual change instructional approaches that were used, and the methods employed to evaluate the effectiveness of these approaches. The findings of this review support four assertions about the existing research: (1) astronomical phenomena have received greater attention than geological phenomena; (2) most studies have viewed conceptual change from a cognitive perspective only; (3) data about conceptual change were generated pre- and post-intervention only; and (4) the interventions reviewed presented limited opportunities to involve students in the construction and manipulation of multiple representations of the phenomenon being investigated. Based upon these assertions, the authors recommend that new research in the Earth and space science disciplines challenges traditional notions of conceptual change by exploring the role of affective variables on learning, focuses on the learning of geological phenomena through the construction of multiple representations, and employs qualitative data collection throughout the implementation of an instructional approach.
To master or perform? Exploring relations between achievement goals and conceptual change learning.
Ranellucci, John; Muis, Krista R; Duffy, Melissa; Wang, Xihui; Sampasivam, Lavanya; Franco, Gina M
2013-09-01
Research is needed to explore conceptual change in relation to achievement goal orientations and depth of processing. To address this need, we examined relations between achievement goals, use of deep versus shallow processing strategies, and conceptual change learning using a think-aloud protocol. Seventy-three undergraduate students were assessed on their prior knowledge and misconceptions about Newtonian mechanics, and then reported their achievement goals and participated in think-aloud protocols while reading Newtonian physics texts. A mastery-approach goal orientation positively predicted deep processing strategies, shallow processing strategies, and conceptual change. In contrast, a performance-approach goal orientation did not predict either of the processing strategies, but negatively predicted conceptual change. A performance-avoidance goal orientation negatively predicted deep processing strategies and conceptual change. Moreover, deep and shallow processing strategies positively predicted conceptual change as well as recall. Finally, both deep and shallow processing strategies mediated relations between mastery-approach goals and conceptual change. Results provide some support for Dole and Sinatra's (1998) Cognitive Reconstruction of Knowledge Model of conceptual change but also challenge specific facets with regard to the role of depth of processing in conceptual change. © 2012 The British Psychological Society.
Fostering radical conceptual change through dual-situated learning model
NASA Astrophysics Data System (ADS)
She, Hsiao-Ching
2004-02-01
This article examines how the Dual-Situated Learning Model (DSLM) facilitates a radical change of concepts that involve the understanding of matter, process, and hierarchical attributes. The DSLM requires knowledge of students' prior beliefs of science concepts and the nature of these concepts. In addition, DSLM also serves two functions: it creates dissonance with students' prior knowledge by challenging their epistemological and ontological beliefs about science concepts, and it provides essential mental sets for students to reconstruct a more scientific view of the concepts. In this study, the concept heat transfer: heat conduction and convection, which requires an understanding of matter, process, and hierarchical attributes, was chosen to examine how DSLM can facilitate radical conceptual change among students. Results show that DSLM has great potential to foster a radical conceptual change process in learning heat transfer. Radical conceptual change can definitely be achieved and does not necessarily involve a slow or gradual process.
ERIC Educational Resources Information Center
Dumais, Nancy; Hasni, Abdelkrim
2009-01-01
Understanding real-life issues such as influenza epidemiology may be of particular interest to the development of scientific knowledge and initiation of conceptual changes about viruses and their life cycles for high school students. The goal of this research project was to foster the development of adolescents' conceptual understanding of viruses…
Using historical perspective in designing discovery learning on Integral for undergraduate students
NASA Astrophysics Data System (ADS)
Abadi; Fiangga, S.
2018-01-01
In the course of Integral Calculus, to be able to calculate an integral of a given function is becoming the main idea in the teaching beside the ability in implementing the application of integral. The students tend to be unable to understand the conceptual idea of what is integration actually. One of the promising perspectives that can be used to invite students to discover the idea of integral is the History and Pedagogy Mathematics (HPM). The method of exhaustion and indivisible appear in the discussion on the early history of area measurement. This paper study will discuss the designed learning activities based on the method of exhaustion and indivisible in providing the undergraduate student’s discovery materials for integral using design research. The designed learning activities were conducted into design experiment that consists of three phases, i.e., preliminary, design experimental, and teaching experiment. The teaching experiment phase was conducted in two cycles for refinement purpose. The finding suggests that the implementation of the method of exhaustion and indivisible enable students to reinvent the idea of integral by using the concept of derivative.
NASA Astrophysics Data System (ADS)
Close, Hunter G.; Scherr, Rachel E.
2015-04-01
We demonstrate that a particular blended learning space is especially productive in developing understanding of energy transfers and transformations. In this blended space, naturally occurring learner interactions like body movement, gesture, and metaphorical speech are blended with a conceptual metaphor of energy as a substance in a class of activities called Energy Theater. We illustrate several mechanisms by which the blended aspect of the learning environment promotes productive intellectual engagement with key conceptual issues in the learning of energy, including distinguishing among energy processes, disambiguating matter and energy, identifying energy transfer, and representing energy as a conserved quantity. Conceptual advancement appears to be promoted especially by the symbolic material and social structure of the Energy Theater environment, in which energy is represented by participants and objects are represented by areas demarcated by loops of rope, and by Energy Theater's embodied action, including body locomotion, gesture, and coordination of speech with symbolic spaces in the Energy Theater arena. Our conclusions are (1) that specific conceptual metaphors can be leveraged to benefit science instruction via the blending of an abstract space of ideas with multiple modes of concrete human action, and (2) that participants' structured improvisation plays an important role in leveraging the blend for their intellectual development.
Master and novice secondary science teachers' understandings and use of the learning cycle
NASA Astrophysics Data System (ADS)
Reap, Melanie Ann
2000-09-01
The learning cycle paradigm had been used in science classrooms for nearly four decades. This investigation seeks to reveal how the 1earning cycle, as originally designed, is currently understood and implemented by teachers in authentic classroom settings. The specific purposes of this study were: (1) to describe teachers who use the learning cycle and compare their understandings and perceptions of the learning cycle procedure in instruction; (2) to elicit novice and master teacher perspectives on their instruction and determine their perception of the process by which learning cycles are implemented in the science classroom; (3) to describe the context of science instruction in the novice and master teacher's classroom to ascertain how the teacher facilitates implementation of the learning cycle paradigm in their authentic classroom setting. The study used a learning cycle survey, interviews and classroom observations using the Learning Cycle Teacher Behavior Instruments and the Verbal Interaction Category System to explore these features of learning cycle instruction. The learning cycle survey was administered to a sample of teachers who use the learning cycle, including master and novice learning cycle teachers. One master and one novice learning cycle teacher were selected from this sample for further study. Analysis of the surveys showed no significant differences in master and novice teacher understandings of the learning cycle as assessed by the instrument. However, interviews and observations of the selected master and novice learning cycle teachers showed several differences in how the paradigm is understood and implemented in the classroom. The master learning cycle teacher showed a more developed teaching philosophy and had more engaged, extensive interactions with students. The novice learning cycle teacher held a more naive teaching philosophy and had fewer, less developed interactions with students. The most significant difference was seen in the use of questioning and discussion. The master teacher used diverse questioning techniques and guided students in discussion of their findings while the novice teachers used more rote response questions and controlled the discussion. The findings of this study have implications for science teacher education, especially in the preparation of teachers in science methods courses and student teaching, and in in-service education programs.
NASA Astrophysics Data System (ADS)
Stofflett, René T.; Stoddart, Trish
This research examined the relationship between content instruction and the development of elementary teacher candidates' understanding of conceptual change pedagogy. Undergraduate students (n = 27) enrolled in two sections of a science methods course received content instruction through either traditional or conceptual change methods, followed by instruction about conceptual change pedagogy. Candidates were interviewed pre- and postinstruction about their content and pedagogical knowledge and also wrote conceptual change lessons. Twelve of the 27 subjects were videotaped teaching in the field. Results indicate that prior to instruction, most candidates had weak content knowledge and held traditional pedagogical conceptions. After instruction, students in the conceptual change group had significantly larger gains in their content knowledge than those in the traditional group, gave qualitatively stronger pedagogical responses, and used conceptual change strategies more consistently in practice. These results indicate that personal experience of learning science content through conceptual change methods facilitated the development of understanding and use of conceptual change pedagogy in teaching practice. Thus if conceptual change methods are to be incorporated into teacher candidates' repertoire, science content courses that students take prior to teacher education should be taught using conceptual change pedagogy. In addition, courses in science education should use pedagogy more in line with that taught in methods courses.
NASA Astrophysics Data System (ADS)
Brunsell, Eric Steven
An achievement gap exists between White and Hispanic students in the United States. Research has shown that improving the quality of instruction for minority students is an effective way to narrow this gap. Science education reform movements emphasize that science should be taught using a science inquiry approach. Extensive research in teaching and learning science also shows that a conceptual change model of teaching is effective in helping students learn science. Finally, research into how Hispanic students learn best has provided a number of suggestions for science instruction. The Inquiry for Conceptual Change model merges these three research strands into a comprehensive yet accessible model for instruction. This study investigates two questions. First, what are teachers' perceptions of science inquiry and its implementation in the classroom? Second, how does the use of the Inquiry for Conceptual Change model affect the learning of students in a predominantly Hispanic, urban neighborhood. Five teachers participated in a professional development project where they developed and implemented a science unit based on the Inquiry for Conceptual Change model. Three units were developed and implemented for this study. This is a qualitative study that included data from interviews, participant reflections and journals, student pre- and post-assessments, and researcher observations. This study provides an in-depth description of the role of professional development in helping teachers understand how science inquiry can be used to improve instructional quality for students in a predominantly Hispanic, urban neighborhood. These teachers demonstrated that it is important for professional development to be collaborative and provide opportunities for teachers to enact and reflect on new teaching paradigms. This study also shows promising results for the ability of the Inquiry for Conceptual Change model to improve student learning.
ERIC Educational Resources Information Center
Sleegers, Peter; den Brok, Perry; Verbiest, Eric; Moolenaar, Nienke M.; Daly, Alan J.
2013-01-01
Despite the popularity of professional learning communities (PLCs) among researchers, practitioners, and educational policy makers, studies on PLCs differ significantly on the dimensions and capacities used to conceptualize them. Further, the interrelatedness of different dimensions and capacities within PLCs is not often well conceived nor…
Context and Deep Learning Design
ERIC Educational Resources Information Center
Boyle, Tom; Ravenscroft, Andrew
2012-01-01
Conceptual clarification is essential if we are to establish a stable and deep discipline of technology enhanced learning. The technology is alluring; this can distract from deep design in a surface rush to exploit the affordances of the new technology. We need a basis for design, and a conceptual unit of organization, that are applicable across…
ERIC Educational Resources Information Center
Wang, Jing-Ru; Wang, Yuh-Chao; Tai, Hsin-Jung; Chen, Wen-Ju
2010-01-01
This study examined the differential impacts of an inquiry-based instruction on conceptual changes across levels of prior knowledge and reading ability. The instrument emphasized four simultaneously important components: conceptual knowledge, reading ability, attitude toward science, and learning environment. Although the learning patterns and…
ERIC Educational Resources Information Center
Liao, Ya-Wen; She, Hsiao-Ching
2009-01-01
This study reports the impacts of the Scientific Concept Construction and Reconstruction (SCCR) digital learning system on eighth grade students' concept construction, conceptual change, and scientific reasoning involving the topic of "atoms". A two-factorial experimental design was carried out to investigate the effects of the approach…
ERIC Educational Resources Information Center
Tam, Maureen
2014-01-01
Successful aging and lifelong learning are value-laden concepts that are culturally determined. To this effect, people with different value systems and cultural backgrounds may perceive and understand these two concepts differently, resulting in different definitions and conceptualizations by people in diverse cultural contexts. There have been…
ERIC Educational Resources Information Center
Ocal, Mehmet Fatih
2017-01-01
Integrating the properties of computer algebra systems and dynamic geometry environments, Geogebra became an effective and powerful tool for teaching and learning mathematics. One of the reasons that teachers use Geogebra in mathematics classrooms is to make students learn mathematics meaningfully and conceptually. From this perspective, the…
Conceptual Metaphor and Embodied Cognition in Science Learning: Introduction to Special Issue
ERIC Educational Resources Information Center
Amin, Tamer G.; Jeppsson, Fredrik; Haglund, Jesper
2015-01-01
This special issue of "International Journal of Science Education" is based on the theme "Conceptual Metaphor and Embodied Cognition in Science Learning." The idea for this issue grew out of a symposium organized on this topic at the conference of the European Science Education Research Association (ESERA) in September 2013.…
ERIC Educational Resources Information Center
Junsay, Merle L.
2016-01-01
This is a quasi-experimental study that explored the effects of reflective learning on prospective teachers' conceptual understanding, critical thinking, problem solving, and mathematical communication skills and the relationship of these variables. It involved 60 prospective teachers from two basic mathematics classes of an institution of higher…
ERIC Educational Resources Information Center
Costello, Charles G.
1978-01-01
Six laboratory experiments on learned helplessness and depression in humans reported by Seligman and his colleagues were critically reviewed. A number of methodological and conceptual problems were discussed. Suggests that it is important for psychologists to scrutinize psychological theories in order to assess their conceptual clarity and…
ERIC Educational Resources Information Center
Schill, Bethany; Howell, Linda
2011-01-01
A major part of developing concept-based instruction is the use of an overarching idea to provide a conceptual lens through which students view the content of a particular subject. By using a conceptual lens to focus learning, students think at a much deeper level about the content and its facts (Erickson 2007). Therefore, the authors collaborated…
ERIC Educational Resources Information Center
Azevedo, Roger
2015-01-01
Engagement is one of the most widely misused and overgeneralized constructs found in the educational, learning, instructional, and psychological sciences. The articles in this special issue represent a wide range of traditions and highlight several key conceptual, theoretical, methodological, and analytical issues related to defining and measuring…
The Blended Space between Third and First Person Learning: Drama, Cognition and Transfer
ERIC Educational Resources Information Center
Duffy, Peter B.
2014-01-01
This essay considers whether the neuroscientific concepts of conceptual blending (from cognitive linguistics) embodiment and analogy offer insights into why and how drama-based pedagogies strengthen classroom learning. Pilot writing samples from eight-and nine-year-old students suggest that conceptual blending is enhanced through drama-based…
Impact of Additional Guidance in Science Education on Primary Students' Conceptual Understanding
ERIC Educational Resources Information Center
Decristan, Jasmin; Hondrich, A. Lena; Büttner, Gerhard; Hertel, Silke; Klieme, Eckhard; Kunter, Mareike; Lühken, Arnim; Adl-Amini, Katja; Djakovic, Sanna-K.; Mannel, Susanne; Naumann, Alexander; Hardy, Ilonca
2015-01-01
A cognitive and a guidance dimension can describe the support of students' conceptual understanding in inquiry-based science education. The role of guidance for student learning has been intensively discussed. Furthermore, inquiry learning may pose particular challenges to students with low language proficiency. The present intervention in primary…
Effect of Writing-to-Learn Strategy on Undergraduates' Conceptual Understanding of Electrostatics
ERIC Educational Resources Information Center
Atasoy, Sengül
2013-01-01
The purpose of this study is to explore the effect of Writing-to-Learn (WTL) strategy on undergraduates' conceptual understanding of electrostatics. The sample of the study was 54 university students registered at elementary school mathematics education department. While the experimental group was asked to conduct WTL activities like explanatory…
ERIC Educational Resources Information Center
Adolphus, Telima; Omeodu, Doris
2016-01-01
The study investigates the effect of gender and collaborative learning approach on students' conceptual understanding of electromagnetic induction in Secondary Schools in Nigeria. Three research questions and 2 hypotheses were formulated to guide the research. The research design adopted for this study is the quasi-experimental design. In…
ERIC Educational Resources Information Center
Marek, Michael W.; Wu, Wen-Chi Vivian
2014-01-01
This conceptual, interdisciplinary inquiry explores Complex Dynamic Systems as the concept relates to the internal and external environmental factors affecting computer assisted language learning (CALL). Based on the results obtained by de Rosnay ["World Futures: The Journal of General Evolution", 67(4/5), 304-315 (2011)], who observed…
ERIC Educational Resources Information Center
Ding, Lin
2014-01-01
This study seeks to test the causal influences of reasoning skills and epistemologies on student conceptual learning in physics. A causal model, integrating multiple variables that were investigated separately in the prior literature, is proposed and tested through path analysis. These variables include student preinstructional reasoning skills…
Learning Goal Orientation, Formal Mentoring, and Leadership Competence in HRD: A Conceptual Model
ERIC Educational Resources Information Center
Kim, Sooyoung
2007-01-01
Purpose: The purpose of this paper is to suggest a conceptual model of formal mentoring as a leadership development initiative including "learning goal orientation", "mentoring functions", and "leadership competencies" as key constructs of the model. Design/methodology/approach: Some empirical studies, though there are not many, will provide…
ERIC Educational Resources Information Center
Ogbuehi, Philip I.; Fraser, Barry J.
2007-01-01
This study of middle-school students in California focused on the effectiveness of using innovative teaching strategies for enhancing the classroom environment, students' attitudes and conceptual development. A sample of 661 students from 22 classrooms in four inner city schools completed modified forms of the Constructivist Learning Environment…
ERIC Educational Resources Information Center
Hirsh, Alon; Levy, Sharona T.
2013-01-01
The present research addresses a curious finding: how learning physical principles enhanced athletes' biking performance but not their conceptual understanding. The study involves a model-based triathlon training program, Biking with Particles, concerning aerodynamics of biking in groups (drafting). A conceptual framework highlights several…
Engineering Design Activities and Conceptual Change in Middle School Science
ERIC Educational Resources Information Center
Schnittka, Christine G.
2009-01-01
The purpose of this research was to investigate the impact of engineering design classroom activities on conceptual change in science, and on attitudes toward and knowledge about engineering. Students were given a situated learning context and a rationale for learning science in an active, inquiry-based method, and worked in small collaborative…
Bridging Scientific Reasoning and Conceptual Change through Adaptive Web-Based Learning
ERIC Educational Resources Information Center
She, Hsiao-Ching; Liao, Ya-Wen
2010-01-01
This study reports an adaptive digital learning project, Scientific Concept Construction and Reconstruction (SCCR), and examines its effects on 108 8th grade students' scientific reasoning and conceptual change through mixed methods. A one-group pre-, post-, and retention quasi-experimental design was used in the study. All students received tests…
Encouraging Postgraduate Students of Literature and Art to Cross Conceptual Thresholds
ERIC Educational Resources Information Center
Wisker, Gina; Robinson, Gillian
2009-01-01
Much research into postgraduate student learning focuses on generic issues of research development. Early work, reported here, uses threshold concept theories and theories of conceptual threshold crossing to focus on the learning and supervisory support of postgraduates researching in the fields of literature and art. This paper is based on…
The Relation between Children's Conceptual Functioning with Color and Color Term Acquisition
ERIC Educational Resources Information Center
Kowalski, Kurt; Zimiles, Herbert
2006-01-01
Young children experience considerable difficulty in learning their first few color terms. One explanation for this difficulty is that initially they lack a conceptual representation of color sufficiently abstract to support word meaning. This hypothesis, that prior to learning color terms children do not represent color as an abstraction, was…
Thematic Review on Adult Learning: Spain. Background Report.
ERIC Educational Resources Information Center
Fernandez, Florentino Sanz; Prudenciano, Julio Lancho
This report on adult learning in Spain first establishes a series of socioeconomic, historical, and conceptual coordinates. Chapter 1 has three parts dedicated to the context. Part 1 has a conceptual map showing the different terms and categories used in adult education and training (AET). Part 2 shows the present socioeconomic context in which…
ERIC Educational Resources Information Center
Ford, Timothy G.; Ware, Jordan K.
2018-01-01
Few studies that examine organizational conditions conducive to teacher learning utilize social-psychological theory to explain how leader actions specifically support teachers' psychological needs as learners. We apply self-determination theory to the conceptualization of a new construct, Teacher Self-Regulatory Climate (TSRC), defined as a set…
ERIC Educational Resources Information Center
Close, Hunter G.; Scherr, Rachel E.
2015-01-01
We demonstrate that a particular blended learning space is especially productive in developing understanding of energy transfers and transformations. In this blended space, naturally occurring learner interactions like body movement, gesture, and metaphorical speech are blended with a conceptual metaphor of energy as a substance in a class of…
Bend or Break: Your IQ Is Not Your Identity
ERIC Educational Resources Information Center
Hasan, Melissa R
2013-01-01
Melissa Hasan believes that Conceptual Physics saved her sanity. A seemingly unimportant metallurgical fact she learned in high school has made parenting her toddler possible on most days. The most important thing she learned in High School from Conceptual Physics, and Interpersonal Relationships was that what is rigid breaks. In high school, she…
Cognitive Conflict and Situational Interest as Factors Influencing Conceptual Change
ERIC Educational Resources Information Center
Kang, Hunsik; Scharmann, Lawrence C.; Kang, Sukjin; Noh, Taehee
2010-01-01
In this study, we investigated the relationships among cognitive conflict and situational interest induced by a discrepant event, attention and effort allocated to learning, and conceptual change in learning the concept of density. Subjects were 183 seventh graders from six middle schools in Seoul, Korea. A preconception test, a test of responses…
Unifying Computer-Based Assessment across Conceptual Instruction, Problem-Solving, and Digital Games
ERIC Educational Resources Information Center
Miller, William L.; Baker, Ryan S.; Rossi, Lisa M.
2014-01-01
As students work through online learning systems such as the Reasoning Mind blended learning system, they often are not confined to working within a single educational activity; instead, they work through various different activities such as conceptual instruction, problem-solving items, and fluency-building games. However, most work on assessing…
NASA Astrophysics Data System (ADS)
Ülen, Simon; Gerlič, Ivan; Slavinec, Mitja; Repnik, Robert
2017-04-01
To provide a good understanding of many abstract concepts in the field of electricity above that of their students is often a major challenge for secondary school teachers. Many educational researchers promote conceptual learning as a teaching approach that can help teachers to achieve this goal. In this paper, we present Physlet-based materials for supporting conceptual learning about electricity. To conduct research into the effectiveness of these materials, we designed two different physics courses: one group of students, the experimental group, was taught using Physlet-based materials and the second group of students, the control group, was taught using expository instruction without using Physlets. After completion of the teaching, we assessed students' thinking skills and analysed the materials with an independent t test, multiple regression analyses and one-way analysis of covariance. The test scores were significantly higher in the experimental group than in the control group ( p < 0.05). The results of this study confirmed the effectiveness of conceptual learning about electricity with the help of Physlet-based materials.
NASA Astrophysics Data System (ADS)
Brown, Bryan A.; Kloser, Matt
2009-12-01
We respond to Hwang and Kim and Yeo's critiques of the conceptual continuity framework in science education. First, we address the criticism that their analysis fails to recognize the situated perspective of learning by denying the dichotomy of the formal and informal knowledge as a starting point in the learning process. Second, we address the critique that students' descriptions fail to meet the "gold standard" of science education—alignment with an authoritative source and generalizability—by highlighting some student-expert congruence that could serve as the foundation for future learning. Third, we address the critique that a conceptual continuity framework could lead to less rigorous science education goals by arguing that the ultimate goals do not change, but rather that if the pathways that lead to the goals' achievement could recognize existing lexical continuities' science teaching may become more efficient. In sum, we argue that a conceptual continuities framework provides an asset, not deficit lexical perspective from which science teacher educators and science educators can begin to address and build complete science understandings.
Life cycle cost modeling of conceptual space vehicles
NASA Technical Reports Server (NTRS)
Ebeling, Charles
1993-01-01
This paper documents progress to date by the University of Dayton on the development of a life cycle cost model for use during the conceptual design of new launch vehicles and spacecraft. This research is being conducted under NASA Research Grant NAG-1-1327. This research effort changes the focus from that of the first two years in which a reliability and maintainability model was developed to the initial development of a life cycle cost model. Cost categories are initially patterned after NASA's three axis work breakdown structure consisting of a configuration axis (vehicle), a function axis, and a cost axis. The focus will be on operations and maintenance costs and other recurring costs. Secondary tasks performed concurrent with the development of the life cycle costing model include continual support and upgrade of the R&M model. The primary result of the completed research will be a methodology and a computer implementation of the methodology to provide for timely cost analysis in support of the conceptual design activities. The major objectives of this research are: to obtain and to develop improved methods for estimating manpower, spares, software and hardware costs, facilities costs, and other cost categories as identified by NASA personnel; to construct a life cycle cost model of a space transportation system for budget exercises and performance-cost trade-off analysis during the conceptual and development stages; to continue to support modifications and enhancements to the R&M model; and to continue to assist in the development of a simulation model to provide an integrated view of the operations and support of the proposed system.
de Oliveira, Saionara Nunes; do Prado, Marta Lenise; Kempfer, Silvana Silveira; Martini, Jussara Gue; Caravaca-Morera, Jaime Alonso; Bernardi, Mariely Carmelina
2015-02-01
This was an action research study conducted during an undergraduate nursing course. The objective was to propose and implement experiential learning for nursing consultation education using clinical simulation with actors. The 4 steps of action research were followed: planning, action, observation and reflection. Three nursing undergraduate students participated in the study. Data were collected in May and July 2013 via participant comments and interviews and were analyzed in accordance with the operative proposal for qualitative data analysis. Planning included constructing and validating the clinical guides, selecting and training the actors, organizing and preparing the scenario and the issuing invitations to the participants. The action was carried out according to Kolb's (1984) 4 stages of learning cycles: Concrete Experience, Reflective Observation, Abstract Conceptualization and Active Experimentation. Clinical simulation involves different subjects' participation in all stages, and action research is a method that enables the clinical stimulation to be implemented. It must be guided by clear learning objectives and by a critical pedagogy that encourages critical thinking in students. Using actors and a real scenario facilitated psychological fidelity, and debriefing was the key moment of the reflective process that facilitated the integral training of students through experiential learning. Copyright © 2014 Elsevier Ltd. All rights reserved.
The Sequence of Learning Cycle Activities in High School Chemistry.
ERIC Educational Resources Information Center
Abraham, Michael R.; Renner, John W.
1986-01-01
Different learning cycle sequences were investigated to determine factors accounting for success of the cycle, compared learning with conventional instruction, and examined relationships between Piaget's theory and learning cycles. Results show that the normal learning cycle sequence is the optimum sequence for achievement of content knowledge in…
NASA Astrophysics Data System (ADS)
Yarden, Hagit; Yarden, Anat
2010-05-01
The importance of biotechnology education at the high-school level has been recognized in a number of international curriculum frameworks around the world. One of the most problematic issues in learning biotechnology has been found to be the biotechnological methods involved. Here, we examine the unique contribution of an animation of the polymerase chain reaction (PCR) in promoting conceptual learning of the biotechnological method among 12th-grade biology majors. All of the students learned about the PCR using still images ( n = 83) or the animation ( n = 90). A significant advantage to the animation treatment was identified following learning. Students’ prior content knowledge was found to be an important factor for students who learned PCR using still images, serving as an obstacle to learning the PCR method in the case of low prior knowledge. Through analysing students’ discourse, using the framework of the conceptual status analysis, we found that students who learned about PCR using still images faced difficulties in understanding some mechanistic aspects of the method. On the other hand, using the animation gave the students an advantage in understanding those aspects.
Thinking like an expert: surgical decision making as a cyclical process of being aware.
Cristancho, Sayra M; Apramian, Tavis; Vanstone, Meredith; Lingard, Lorelei; Ott, Michael; Forbes, Thomas; Novick, Richard
2016-01-01
Education researchers are studying the practices of high-stake professionals as they learn how to better train for flexibility under uncertainty. This study explores the "Reconciliation Cycle" as the core element of an intraoperative decision-making model of how experienced surgeons assess and respond to challenges. We analyzed 32 semistructured interviews using constructivist grounded theory to develop a model of intraoperative decision making. Using constant comparison analysis, we built on this model with 9 follow-up interviews about the most challenging cases described in our dataset. The Reconciliation Cycle constituted an iterative process of "gaining" and "transforming information." The cyclical nature of surgeons' decision making suggested that transforming information requires a higher degree of awareness, not yet accounted by current conceptualizations of situation awareness. This study advances the notion of situation awareness in surgery. This characterization will support further investigations on how expert and nonexpert surgeons implement strategies to cope with unexpected events. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
1981-01-01
The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating
NASA Astrophysics Data System (ADS)
1981-09-01
The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating
NASA Technical Reports Server (NTRS)
Taylor, M. F.; Whitmarsh, C. L., Jr.; Sirocky, P. J., Jr.; Iwanczyke, L. C.
1973-01-01
A preliminary design study of a conceptual 6000-megawatt open-cycle gas-core nuclear rocket engine system was made. The engine has a thrust of 196,600 newtons (44,200 lb) and a specific impulse of 4400 seconds. The nuclear fuel is uranium-235 and the propellant is hydrogen. Critical fuel mass was calculated for several reactor configurations. Major components of the reactor (reflector, pressure vessel, and waste heat rejection system) were considered conceptually and were sized.
NASA Astrophysics Data System (ADS)
Thorn, Patti Marie
When college Anatomy & Physiology instructors begin using active learning in their classrooms, what do they experience? How do their beliefs about teaching and learning change? What obstacles do they encounter and how do they respond? How do their responses influence future decisions regarding the use of active learning? This study documented the experiences of seven instructors from diverse types of institutions as they began using active learning in their classrooms. Conceptual change and social cognitive motivation theory provided guidance for the 15-month project. A classroom-situated professional development framework that included goal setting, planning and doing active learning and formative assessment, and reflecting on experiences was used. Multiple data sources (verbatim transcripts from emergent and semi-structured interviews, observation notes, surveys, written correspondence, instructional materials, and student surveys) and research methods allowed rigorous exploration of the research questions. A number of important findings emerged from the study. Data indicated that instructors struggled with a lack of instructional, pedagogical and clinical content knowledge, student resistance, personal and professional risk-taking issues, and widely shifting attitudes toward active learning. Data also suggested a developmental progression in beliefs about teaching and learning as instructors implemented active learning, and the progression shared similarities with reports of preservice teacher development documented in the learning-to-teach literature. Initially, instructors' beliefs shifted from knowledge transmission and intuitive theories to constructivist theories; however there was marked variation in the intelligibility, status, and endurance of the new beliefs. Data also allowed identification of two distinct conceptual change experiences. Analysis of instructor beliefs within and between the change groups strongly suggested that causal attribution constructs either facilitated or precluded belief development, conceptual change, and a more encompassing and sophisticated definition of active learning, and supported the emergence of an Attribution-Based Conceptual Change Schematic. The findings have significant implications for both change-desiring instructors and faculty development staff. The findings allow faculty to familiarize themselves with the obstacles and response patterns that may shape their own change experiences and allow development staff to design empirically grounded learning opportunities that may facilitate the development of beliefs about teaching and learning and promote faculty conceptual change.
Tan, Huan; Liang, Chen
2011-01-01
This paper proposes a conceptual hybrid cognitive architecture for cognitive robots to learn behaviors from demonstrations in robotic aid situations. Unlike the current cognitive architectures, this architecture puts concentration on the requirements of the safety, the interaction, and the non-centralized processing in robotic aid situations. Imitation learning technologies for cognitive robots have been integrated into this architecture for rapidly transferring the knowledge and skills between human teachers and robots.
Potassium topping cycles for stationary power. [conceptual analysis
NASA Technical Reports Server (NTRS)
Rossbach, R. J.
1975-01-01
A design study was made of the potassium topping cycle powerplant for central station use. Initially, powerplant performance and economics were studied parametrically by using an existing steam plant as the bottom part of the cycle. Two distinct powerplants were identified which had good thermodynamic and economic performance. Conceptual designs were made of these two powerplants in the 1200 MWe size, and capital and operating costs were estimated for these powerplants. A technical evaluation of these plants was made including conservation of fuel resources, environmental impact, technology status, and degree of development risk. It is concluded that the potassium topping cycle could have a significant impact on national goals such as air and water pollution control and conservation of natural resources because of its higher energy conversion efficiency.
Soederberg Miller, Lisa M; Gibson, Tanja N; Applegate, Elizabeth A; de Dios, Jeannette
2011-07-01
Prior knowledge, working memory capacity (WMC), and conceptual integration (attention allocated to integrating concepts in text) are critical within many contexts; however, their impact on the acquisition of health information (i.e. learning) is relatively unexplored.We examined how these factors impact learning about nutrition within a cross-sectional study of adults ages 18 to 81. Results showed that conceptual integration mediated the effects of knowledge and WMC on learning, confirming that attention to concepts while reading is important for learning about health. We also found that when knowledge was controlled, age declines in learning increased, suggesting that knowledge mitigates the effects of age on learning about nutrition.
Towards to an Explanation for Conceptual Change: A Mechanistic Alternative
ERIC Educational Resources Information Center
Rusanen, Anna-Mari
2014-01-01
Conceptual change is one of the most studied fields in science education and psychology of learning. However, there are still some foundational issues in conceptual change research on which no clear consensus has emerged. Firstly, there is no agreement on what changes in belief and concept systems constitute conceptual change and what changes do…
The Influence of Approach and Avoidance Goals on Conceptual Change
ERIC Educational Resources Information Center
Johnson, Marcus Lee; Sinatra, Gale M.
2014-01-01
Recently, conceptual change research has been experiencing a warming trend (G. M. Sinatra, 2005) whereby motivational and affective factors are being explored in the conceptual change process. The purpose of this study is to explore the 2 × 2 framework of achievement goal theory in relation to students' conceptual change learning for a specific…
NASA Astrophysics Data System (ADS)
Gao, Yizhu; Zhai, Xiaoming; Andersson, Björn; Zeng, Pingfei; Xin, Tao
2018-06-01
We applied latent class analysis and the rule space model to verify the cumulative characteristic of conceptual change by developing a learning progression for buoyancy. For this study, we first abstracted seven attributes of buoyancy and then developed a hypothesized learning progression for buoyancy. A 14-item buoyancy instrument was administered to 1089 8th grade students to verify and refine the learning progression. The results suggest four levels of progression during conceptual change when 8th grade students understand buoyancy. Students at level 0 can only master Density. When students progress to level 1, they can grasp Direction, Identification, Submerged volume, and Relative density on the basis of the prior level. Then, students gradually master Archimedes' theory as they reach level 2. The most advanced students can further grasp Relation with motion and arrive at level 3. In addition, this four-level learning progression can be accounted for by the Qualitative-Quantitative-Integrative explanatory model.
Valentine-Maher, Sarah K; Van Dyk, Elizabeth J; Aktan, Nadine M; Bliss, Julie Beshore
2014-03-01
Nursing programs are challenged to prepare future nurses to provide care and affect determinants of health for individuals and populations. This article advances a pedagogical model for clinical education that builds concepts related to both population-level care and direct care in the community through a contextual learning approach. Because the conceptual pillars and hybrid constructivist approach allow for conceptual learning consistency across experiences, the model expands programmatic capacity to use diverse community clinical sites that accept only small numbers of students. The concept-based and hybrid constructivist learning approach is expected to contribute to the development of broad intellectual skills and lifelong learning. The pillar concepts include determinants of health and nursing care of population aggregates; direct care, based on evidence and best practices; appreciation of lived experience of health and illness; public health nursing roles and relationship to ethical and professional formation; and multidisciplinary collaboration. Copyright 2014, SLACK Incorporated.
NASA Astrophysics Data System (ADS)
Ding, Lin
2014-12-01
This study seeks to test the causal influences of reasoning skills and epistemologies on student conceptual learning in physics. A causal model, integrating multiple variables that were investigated separately in the prior literature, is proposed and tested through path analysis. These variables include student preinstructional reasoning skills measured by the Classroom Test of Scientific Reasoning, pre- and postepistemological views measured by the Colorado Learning Attitudes about Science Survey, and pre- and postperformance on Newtonian concepts measured by the Force Concept Inventory. Students from a traditionally taught calculus-based introductory mechanics course at a research university participated in the study. Results largely support the postulated causal model and reveal strong influences of reasoning skills and preinstructional epistemology on student conceptual learning gains. Interestingly enough, postinstructional epistemology does not appear to have a significant influence on student learning gains. Moreover, pre- and postinstructional epistemology, although barely different from each other on average, have little causal connection between them.
The Effects of Peer Instruction on Students' Conceptual Learning and Motivation
ERIC Educational Resources Information Center
Gok, Tolga
2012-01-01
The aim of this study was to investigate the effects of peer instruction on college students' conceptual learning, motivation, and self-efficacy in an algebra-based introductory physics course for nonmajors. Variables were studied via a quasi-experiment, Solomon four-group design on 123 students. Treatment groups were taught by peer instruction.…
ERIC Educational Resources Information Center
Liaw, Hongming Leonard; Chiu, Mei-Hung; Chou, Chin-Cheng
2014-01-01
It has been shown that facial expression states of learners are related to their learning. As part of a continuing research project, the current study delved further for a more detailed description of the relation between facial microexpression state (FMES) changes and learning in conceptual conflict-based instructions. Based on the data gathered…
Conceptual and Epistemological Undercurrents of Learning as a Process of Change
ERIC Educational Resources Information Center
Montfort, Devlin B.
2011-01-01
In the preparation and education of civil engineers it is essential to both increase student knowledge of the world (conceptual understanding), but also to establish and develop new ways of thinking (epistemology). Both of these processes of change can be considered learning, but they are vastly different in the time, energy and resources they…
Towards Systems that Care: A Conceptual Framework Based on Motivation, Metacognition and Affect
ERIC Educational Resources Information Center
du Boulay, Benedict; Avramides, Katerina; Luckin, Rosemary; Martinez-Miron, Erika; Rebolledo-Mendez, Genaro; Carr, Amanda
2010-01-01
This paper describes a Conceptual Framework underpinning "Systems that Care" in terms of educational systems that take account of motivation, metacognition and affect, in addition to cognition. The main focus is on "motivation," as learning requires the student to put in effort and be engaged, in other words to be motivated to learn. But…
Learning in Physics by Doing Laboratory Work: Towards a New Conceptual Framework
ERIC Educational Resources Information Center
Danielsson, Anna Teresia; Linder, Cedric
2009-01-01
Drawing on a study that explores university students' experiences of doing laboratory work in physics, this article outlines a proposed conceptual framework for extending the exploration of the gendered experience of learning. In this framework situated cognition and post-structural gender theory are merged together. By drawing on data that aim at…
Learning Systems Biology: Conceptual Considerations toward a Web-Based Learning Platform
ERIC Educational Resources Information Center
Emmert-Streib, Frank; Dehmer, Matthias; Lyardet, Fernando
2013-01-01
Within recent years, there is an increasing need to train students, from biology and beyond, in quantitative methods that are relevant to cope with data-driven biology. Systems Biology is such a field that places a particular focus on the functional aspect of biology and molecular interacting processes. This paper deals with the conceptual design…
ERIC Educational Resources Information Center
Ülen, Simon; Gerlic, Ivan; Slavinec, Mitja; Repnik, Robert
2017-01-01
To provide a good understanding of many abstract concepts in the field of electricity above that of their students is often a major challenge for secondary school teachers. Many educational researchers promote conceptual learning as a teaching approach that can help teachers to achieve this goal. In this paper, we present Physlet-based materials…
ERIC Educational Resources Information Center
Kumar, David Devraj; Thomas, P. V.; Morris, John D.; Tobias, Karen M.; Baker, Mary; Jermanovich, Trudy
2011-01-01
This study examined the impact of computer simulation and supported science learning on a teacher's understanding and conceptual knowledge of current electricity. Pre/Post tests were used to measure the teachers' concept attainment. Overall, there was a significant and large knowledge difference effect from Pre to Post test. Two interesting…
Teaching to Emerge: Toward a Bottom-Up Pedagogy
ERIC Educational Resources Information Center
Brailas, Alexios; Koskinas, Konstantinos; Alexias, George
2017-01-01
This paper focuses on the conceptual model of an academic course inspired by complexity theory. In the proposed conceptual model, the aim of teaching is to form a learning organization: a knowledge community with emergent properties that cannot be reduced to any linear combination of the properties of its parts. In this approach, the learning of…
Teaching and Learning about Matter in Grade 6 Classrooms: A Conceptual Change Approach
ERIC Educational Resources Information Center
Pimthong, Pattamaporn; Yutakom, Naruemon; Roadrangka, Vantipa; Sanguanruang, Sudjid; Cowie, Bronwen; Cooper, Beverley
2012-01-01
The purpose of this study was to enhance the teaching and learning of matter and its properties for grade 6 students. The development of a conceptual change approach instructional unit was undertaken for this purpose. Pre- and post-concept surveys, classroom observations, and student and teacher interviews were used to collect data. The teaching…
Conceptual Learning in a Principled Design Problem Solving Environment
ERIC Educational Resources Information Center
Prusak, Naomi; Hershkowitz, Rina; Schwarz, Baruch B.
2013-01-01
To what extent can instructional design be based on principles for instilling a culture of problem solving and conceptual learning? This is the main focus of the study described in this paper, in which third grade students participated in a one-year course designed to foster problem solving and mathematical reasoning. The design relied on five…
ERIC Educational Resources Information Center
Efstathiou, Irene; Kyza, Eleni A.; Georgiou, Yiannis
2018-01-01
This study investigated the contribution of a location-based augmented reality (AR) inquiry-learning environment in developing 3rd grade students' historical empathy and conceptual understanding. Historical empathy is an important element of historical thinking, which is considered to improve conceptual understanding and support the development of…
ERIC Educational Resources Information Center
Willie, Charles V.
This paper presents a conceptual analysis of the different responsibilities that State and local levels should assume in promoting the purposes of education. It is their responsibility to provide learning environments that promote equity and equality. The problem for State and local authorities with reference to desegregated education is that of…
Sources from a Somerset Village: A Model for Informal Learning about Radiation and Radioactivity.
ERIC Educational Resources Information Center
Alsop, Steve; Watts, Mike
1997-01-01
Research on conceptual change emphasizes the importance of factors in the cognitive domain. This research argues that models of conceptual change learning should also encompass issues of affect, conation, and self-esteem. The use of these expressions is explained via four case studies on members of a rural village concerning informal learning…
A Conceptual Model of Management Learning in Micro Businesses: Implications for Research and Policy
ERIC Educational Resources Information Center
Devins, David; Gold, Jeff; Johnson, Steve; Holden, Rick
2005-01-01
Purpose: This article proposes the development of a conceptual model to help understand the nature of management learning in the micro business context and to inform research and policy discourse. Design/Methodology/Approach: The model is developed on the basis of a literature search and review of academic and grey literature. Findings: The…
ERIC Educational Resources Information Center
Klebansky, Anna; Fraser, Sharon P.
2013-01-01
This paper details a conceptual framework that situates curriculum design for information literacy and lifelong learning, through a cohesive developmental information literacy based model for learning, at the core of teacher education courses at UTAS. The implementation of the framework facilitates curriculum design that systematically,…
ERIC Educational Resources Information Center
Tarhini, Ali; Elyas, Tariq; Akour, Mohammad Ali; Al-Salti, Zahran
2016-01-01
The main aim of this paper is to develop an amalgamated conceptual model of technology acceptance that explains how individual, social, cultural and organizational factors affect the students' acceptance and usage behaviour of the Web-based learning systems. More specifically, the proposed model extends the Technology Acceptance Model (TAM) to…
ERIC Educational Resources Information Center
Sen, Senol; Yilmaz, Ayhan; Geban, Ömer
2016-01-01
The purpose of this study was to investigate the effect of Process Oriented Guided Inquiry Learning (POGIL) method compared to traditional teaching method on 11th grade students' conceptual understanding of electrochemistry concepts. Participants were 115 students from a public school in Turkey. Nonequivalent control group design was used. Two…
ERIC Educational Resources Information Center
Marshall, Julia
2014-01-01
Art integration is a rich and complex approach to teaching and learning that not only aligns with new initiatives in education that prioritize conceptual and procedural skills but could also contribute to education's transformation. Framing art integration as a transdisciplinary field with a distinct conceptual framework, epistemology, and…
ERIC Educational Resources Information Center
Pöhler, Birte; Prediger, Susanne
2015-01-01
Monolingual or multilingual students with low academic language proficiency need to acquire conceptual understanding for percentages and the language to communicate about them. The design research study explores how these two learning goals can be fostered by a macro-scaffolding approach for seventh grade students. The dual hypothetical learning…
Confronting Conceptual Challenges in Thermodynamics by Use of Self-Generated Analogies
ERIC Educational Resources Information Center
Haglund, Jesper; Jeppsson, Fredrik
2014-01-01
Use of self-generated analogies has been proposed as a method for students to learn about a new subject by reference to what they previously know, in line with a constructivist perspective on learning and a resource perspective on conceptual change. We report on a group exercise on using completion problems in combination with self-generated…
Conceptual Tutoring Software for Promoting Deep Learning: A Case Study
ERIC Educational Resources Information Center
Stott, Angela; Hattingh, Annemarie
2015-01-01
The paper presents a case study of the use of conceptual tutoring software to promote deep learning of the scientific concept of density among 50 final year pre-service student teachers in a natural sciences course in a South African university. Individually-paced electronic tutoring is potentially an effective way of meeting the students' varied…
Learning about Friction: Group Dynamics in Engineering Students' Work with Free Body Diagrams
ERIC Educational Resources Information Center
Berge, Maria; Weilenmann, Alexandra
2014-01-01
In educational research, it is well-known that collaborative work on core conceptual issues in physics leads to significant improvements in students' conceptual understanding. In this paper, we explore collaborative learning in action, adding to previous research in engineering education with a specific focus on the students' use of free body…
Cultivating the Ineffable: The Role of Contemplative Practice in Enactivist Learning
ERIC Educational Resources Information Center
Morgan, Patricia; Abrahamson, Dor
2016-01-01
We consider designs for conceptual learning where students first engage in pre-symbolic problem solving and then articulate their solutions formally. An enduring problem in these designs has been to support students in accessing their pre-conceptual situated process, so that they can reflect on it and couch it in mathematical form. Contemplative…
ERIC Educational Resources Information Center
Bowen, Tracey
2016-01-01
Professionalism is not easily defined for newcomers to the workforce. While much of the work-ready research focuses on desired graduate attributes and skills, the larger issue is the ways in which students conceptualize professionalism from their observations and experiences of others, and how these conceptualizations affect their professional…
ERIC Educational Resources Information Center
Leite, Maici Duarte; Marczal, Diego; Pimentel, Andrey Ricardo; Direne, Alexandre Ibrahim
2014-01-01
This paper presents the application of some concepts of Intelligent Tutoring Systems (ITS) to elaborate a conceptual framework that uses the remediation of errors with Multiple External Representations (MERs) in Learning Objects (LO). To this is demonstrated a development of LO for teaching the Pythagorean Theorem through this framework. This…
Conceptualizing and Describing Teachers' Learning of Pedagogical Concepts
ERIC Educational Resources Information Center
González, María José; Gómez, Pedro
2014-01-01
In this paper, we propose a model to explore how teachers learn pedagogical concepts in teacher education programs that expect them to become competent in lesson planning. In this context, we view pedagogical concepts as conceptual and methodological tools that help teachers to design a lesson plan on a topic, implement this lesson plan and assess…
Learning style and concept acquisition of community college students in introductory biology
NASA Astrophysics Data System (ADS)
Bobick, Sandra Burin
This study investigated the influence of learning style on concept acquisition within a sample of community college students in a general biology course. There are two subproblems within the larger problem: (1) the influence of demographic variables (age, gender, number of college credits, prior exposure to scientific information) on learning style, and (2) the correlations between prior scientific knowledge, learning style and student understanding of the concept of the gene. The sample included all students enrolled in an introductory general biology course during two consecutive semesters at an urban community college. Initial data was gathered during the first week of the semester, at which time students filled in a short questionnaire (age, gender, number of college credits, prior exposure to science information either through reading/visual sources or a prior biology course). Subjects were then given the Inventory of Learning Processes-Revised (ILP-R) which measures general preferences in five learning styles; Deep Learning; Elaborative Learning, Agentic Learning, Methodical Learning and Literal Memorization. Subjects were then given the Gene Conceptual Knowledge pretest: a 15 question objective section and an essay section. Subjects were exposed to specific concepts during lecture and laboratory exercises. At the last lab, students were given the Genetics Conceptual Knowledge Posttest. Pretest/posttest gains were correlated with demographic variables and learning styles were analyzed for significant correlations. Learning styles, as the independent variable in a simultaneous multiple regression, were significant predictors of results on the gene assessment tests, including pretest, posttest and gain. Of the learning styles, Deep Learning accounted for the greatest positive predictive value of pretest essay and pretest objective results. Literal Memorization was a significant negative predictor for posttest essay, essay gain and objective gain. Simultaneous multiple regression indicated that demographic variables were significant positive predictors for Methodical, Deep and Elaborative Learning Styles. Stepwise multiple regression resulted in number of credits, Read Science and gender (female) as significant predictors of learning styles. The findings of this study emphasize the importance of learning styles in conceptual understanding of the gene and the correlation of nonformal exposure to science information with learning style and conceptual understanding.
Using the Conceptual Change Instruction To Improve Learning.
ERIC Educational Resources Information Center
Alparslan, Cem; Tekkaya, Ceren; Geban, Omer
2003-01-01
Investigates the effect of conceptual change instruction on grade 11 students' understanding of respiration. The Respiration Concept Test was developed and used to test students' misconceptions. Results indicate that the conceptual change instruction that explicitly addressed students' misconceptions produced significantly greater achievement in…
Reynolds, Julie A; Thaiss, Christopher; Katkin, Wendy; Thompson, Robert J
2012-01-01
Despite substantial evidence that writing can be an effective tool to promote student learning and engagement, writing-to-learn (WTL) practices are still not widely implemented in science, technology, engineering, and mathematics (STEM) disciplines, particularly at research universities. Two major deterrents to progress are the lack of a community of science faculty committed to undertaking and applying the necessary pedagogical research, and the absence of a conceptual framework to systematically guide study designs and integrate findings. To address these issues, we undertook an initiative, supported by the National Science Foundation and sponsored by the Reinvention Center, to build a community of WTL/STEM educators who would undertake a heuristic review of the literature and formulate a conceptual framework. In addition to generating a searchable database of empirically validated and promising WTL practices, our work lays the foundation for multi-university empirical studies of the effectiveness of WTL practices in advancing student learning and engagement.
NASA Astrophysics Data System (ADS)
Jansen, Peter A.; Watter, Scott
2012-03-01
Connectionist language modelling typically has difficulty with syntactic systematicity, or the ability to generalise language learning to untrained sentences. This work develops an unsupervised connectionist model of infant grammar learning. Following the semantic boostrapping hypothesis, the network distils word category using a developmentally plausible infant-scale database of grounded sensorimotor conceptual representations, as well as a biologically plausible semantic co-occurrence activation function. The network then uses this knowledge to acquire an early benchmark clausal grammar using correlational learning, and further acquires separate conceptual and grammatical category representations. The network displays strongly systematic behaviour indicative of the general acquisition of the combinatorial systematicity present in the grounded infant-scale language stream, outperforms previous contemporary models that contain primarily noun and verb word categories, and successfully generalises broadly to novel untrained sensorimotor grounded sentences composed of unfamiliar nouns and verbs. Limitations as well as implications to later grammar learning are discussed.
Cleveland, Lacy M; Olimpo, Jeffrey T; DeChenne-Peters, Sue Ellen
2017-01-01
In response to calls for reform in undergraduate biology education, we conducted research examining how varying active-learning strategies impacted students' conceptual understanding, attitudes, and motivation in two sections of a large-lecture introductory cell and molecular biology course. Using a quasi-experimental design, we collected quantitative data to compare participants' conceptual understanding, attitudes, and motivation in the biological sciences across two contexts that employed different active-learning strategies and that were facilitated by unique instructors. Students participated in either graphic organizer/worksheet activities or clicker-based case studies. After controlling for demographic and presemester affective differences, we found that students in both active-learning environments displayed similar and significant learning gains. In terms of attitudinal and motivational data, significant differences were observed for two attitudinal measures. Specifically, those students who had participated in graphic organizer/worksheet activities demonstrated more expert-like attitudes related to their enjoyment of biology and ability to make real-world connections. However, all motivational and most attitudinal data were not significantly different between the students in the two learning environments. These data reinforce the notion that active learning is associated with conceptual change and suggests that more research is needed to examine the differential effects of varying active-learning strategies on students' attitudes and motivation in the domain. © 2017 L. M. Cleveland et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Hulteen, Ryan M; Morgan, Philip J; Barnett, Lisa M; Stodden, David F; Lubans, David R
2018-03-09
Evidence supports a positive association between competence in fundamental movement skills (e.g., kicking, jumping) and physical activity in young people. Whilst important, fundamental movement skills do not reflect the broad diversity of skills utilized in physical activity pursuits across the lifespan. Debate surrounds the question of what are the most salient skills to be learned which facilitate physical activity participation across the lifespan. In this paper, it is proposed that the term 'fundamental movement skills' be replaced with 'foundational movement skills'. The term 'foundational movement skills' better reflects the broad range of movement forms that increase in complexity and specificity and can be applied in a variety of settings. Thus, 'foundational movement skills' includes both traditionally conceptualized 'fundamental' movement skills and other skills (e.g., bodyweight squat, cycling, swimming strokes) that support physical activity engagement across the lifespan. A proposed conceptual model outlines how foundational movement skill competency can provide a direct or indirect pathway, via specialized movement skills, to a lifetime of physical activity. Foundational movement skill development is hypothesized to vary according to culture and/or geographical location. Further, skill development may be hindered or enhanced by physical (i.e., fitness, weight status) and psychological (i.e., perceived competence, self-efficacy) attributes. This conceptual model may advance the application of motor development principles within the public health domain. Additionally, it promotes the continued development of human movement in the context of how it leads to skillful performance and how movement skill development supports and maintains a lifetime of physical activity engagement.
This fact sheet is the first in a series of documents that address conceptual site models (CSMs). This fact sheet summarizes how environmental practitioners can use CSMs to achieve, communicate, and maintain stakeholder consensus.
NASA Astrophysics Data System (ADS)
Hernández, María Isabel; Couso, Digna; Pintó, Roser
2015-04-01
The study we have carried out aims to characterize 15- to 16-year-old students' learning progressions throughout the implementation of a teaching-learning sequence on the acoustic properties of materials. Our purpose is to better understand students' modeling processes about this topic and to identify how the instructional design and actual enactment influences students' learning progressions. This article presents the design principles which elicit the structure and types of modeling and inquiry activities designed to promote students' development of three conceptual models. Some of these activities are enhanced by the use of ICT such as sound level meters connected to data capture systems, which facilitate the measurement of the intensity level of sound emitted by a sound source and transmitted through different materials. Framing this study within the design-based research paradigm, it consists of the experimentation of the designed teaching sequence with two groups of students ( n = 29) in their science classes. The analysis of students' written productions together with classroom observations of the implementation of the teaching sequence allowed characterizing students' development of the conceptual models. Moreover, we could evidence the influence of different modeling and inquiry activities on students' development of the conceptual models, identifying those that have a major impact on students' modeling processes. Having evidenced different levels of development of each conceptual model, our results have been interpreted in terms of the attributes of each conceptual model, the distance between students' preliminary mental models and the intended conceptual models, and the instructional design and enactment.
Teaching for Hot Conceptual Change: Towards a New Model, beyond the Cold and Warm Ones
ERIC Educational Resources Information Center
Kural, Mehmet; Kocakülah, M. Sabri
2016-01-01
At the beginning of the 1980s, one of the most striking explanations of conceptual change was made by Posner, Strike, Hewson & Gertzog (1982) with a Conceptual Change Theory based on a Scientific Revolution Theory of Kuhn (1970). In Conceptual Change Theory, learning was explained with the Piaget (1970)'s concepts such as assimilation and…
NASA Astrophysics Data System (ADS)
Canu, Michael; Duque, Mauricio; de Hosson, Cécile
2017-01-01
Engineering students on control courses lack a deep understanding of equilibrium and stability that are crucial concepts in this discipline. Several studies have shown that students find it difficult to understand simple familiar or academic static equilibrium cases as well as dynamic ones from mechanics even if they know the discipline's criteria and formulae. Our aim is to study the impact of a specific and innovative classroom session, containing well-chosen situations that address students' misconceptions. We propose an example of Active Learning experiment based both on the Didactical Engineering methodology and the Conceptual Fields Theory that aims at promoting a conceptual change in students. The chosen methodology allows, at the same time, a proper design of the student learning activities, an accurate monitoring of the students' rational use during the tasks and provides an internal tool for the evaluation of the session's efficiency. Although the expected starting conceptual change was detected, it would require another activity in order to be reinforced.
NASA Astrophysics Data System (ADS)
Wood, Lynda Charese
The study of teaching and learning during the period of translating ideals of reform into classroom practice enables us to understand student-teacher-researcher symbiotic learning. In line with this assumption, the purpose of this study is threefold:(1) observe effects of the Common Knowledge Construction Model (CKCM), a conceptual change inquiry model of teaching and learning, on African American students' conceptual change and achievement; (2) observe the shift in teacher's practical arguments; and (3) narrate the voice of "the Other" about teacher professional learning. This study uses retrospective data from a mixed-method approach consisting of Phenomenography, practical arguments and story-telling. Data sources include audio-recordings of a chemistry teacher's individual interviews of her students' prior- and post-intervention conceptions of acids and bases; results of Acid-Base Achievement Test (ABA-T); video-recordings of a chemistry teacher's enactment of CKCM acid-base lesson sequence; audio-recordings of teacher-researcher reflective discourse using classroom video-clips; teacher interviews; and teacher and researcher personal reflective journals. Students' conceptual changes reflect change in the number of categories of description; shift in language use from everyday talk to chemical talk; and development of a hierarchy of chemical knowledge. ABA-T results indicated 17 students in the experimental group achieved significantly higher scores than 22 students in the control group taught by traditional teaching methods. The teacher-researcher reflective discourse about enactment of the CKCM acid-base lesson sequence reveals three major shifts in teacher practical arguments: teacher inadequate preparedness to adequate preparedness; lack of confidence to gain in confidence; and surface learning to deep learning. The developing story uncovers several aspects about teaching and learning of African American students: teacher caring for the uncared; cultivating student and teacher confidence; converting dependence on teacher and self to peer interdependence. The study outlines six implications: caring conceptual change inquiry model for the often unreached mind; developing simple chemical talk into coherent chemical explanation; using CKCM for alternative high school students' conceptual change and achievement; engaging teachers in elicitation and appraisal of practical arguments for reconstruction of beliefs; overcoming challenges in teacher practical argument research; and "storytelling" as a way of unpacking teacher transformation amidst complexities of classroom teaching and learning.
Learning Rationales and Virtual Reality Technology in Education.
ERIC Educational Resources Information Center
Chiou, Guey-Fa
1995-01-01
Defines and describes virtual reality technology and differentiates between virtual learning environment, learning material, and learning tools. Links learning rationales to virtual reality technology to pave conceptual foundations for application of virtual reality technology education. Constructivism, case-based learning, problem-based learning,…
Career development in schizophrenia: a heuristic framework.
Gioia, Deborah
2005-06-01
Adults with schizophrenia continue to have poor rates of competitive employment. We have learned how to support individuals in the workplace with supported employment (SE); but have paid limited attention to early vocational identity development, work antecedents, illness characteristics, and career preferences. Vocational identity development is an important and natural condition of human growth for all persons and is well-researched in career counseling. For young adults with schizophrenia, the predictor of positive work outcome with the most evidence has been that working competitively prior to illness leads to better chances for work post-diagnosis. A heuristic framework is proposed to conceptualize how pre-illness vocational development (paid and unpaid) plus life cycle supports can provide direction to the individual in their work recovery.
NASA Astrophysics Data System (ADS)
McNally, Jim
2006-03-01
This paper attempts to establish a conceptual basis on which beginning teachers may be introduced to investigative science teaching in a way that accommodates the teacher voice. It draws mainly on preliminary theory from the shared reflections of 20 science teachers, augmented by a more general interview-based study of the experience of early professional learning of 18 new teachers. Internationally, it is situated in the wider concern in the literature with the nature of science, mainly in initial teacher education. Empirically located within the Scottish context, a grounded epistemological base of teacher knowledge is illustrated and presented as components of confidence in a cycle of professional learning that needs to be set in motion during initial teacher education. It is proposed that, given protected experience in their early attempts to teach investigatively, new teachers can begin to develop a confident pedagogy of loose opportunism that comes close to authentic science for the children they teach.
ERIC Educational Resources Information Center
Eymur, Gülüzar; Geban, Ömer
2017-01-01
The main purpose of this study was to investigate the effects of cooperative learning based on conceptual change approach instruction on ninth-grade students' understanding in chemical bonding concepts compared to traditional instruction. Seventy-two ninth-grade students from two intact chemistry classes taught by the same teacher in a public high…
ERIC Educational Resources Information Center
Manurung, Sondang R.; Mihardi, Satria
2016-01-01
The purpose of this study was to determine the effectiveness of hypertext media based kinematic learning and formal thinking ability to improve the conceptual understanding of physic prospective students. The research design used is the one-group pretest-posttest experimental design is carried out in the research by taking 36 students on from…
ERIC Educational Resources Information Center
Waite, Sue; Bølling, Mads; Bentsen, Peter
2016-01-01
Using a conceptual model focused on purposes, aims, content, pedagogy, outcomes, and barriers, we review and interpret literature on two forms of outdoor learning: Forest Schools in England and "udeskole" in Denmark. We examine pedagogical principles within a comparative analytical framework and consider how adopted pedagogies reflect…
Thinking Like a Chemist: Development of a Chemistry Card-Sorting Task to Probe Conceptual Expertise
ERIC Educational Resources Information Center
Krieter, Felicia E.; Julius, Ryan W.; Tanner, Kimberly D.; Bush, Seth D.; Scott, Gregory E.
2016-01-01
An underlying goal in most chemistry curricula is to enable students to think like chemists, yet there is much evidence to suggest that students can learn to solve problems without thinking conceptually like a chemist. There are few tools, however, that assess whether students are learning to think like Ph.D. faculty, putative experts in the…
ERIC Educational Resources Information Center
Mutlu, Ayfer
2018-01-01
The purpose of the research was to compare the effects of two different techniques of the cooperative learning approach, namely Team-Game Tournament and Jigsaw, on undergraduates' conceptual understanding in a Hormone Biochemistry course. Undergraduates were randomly assigned to Group 1 (N = 23) and Group 2 (N = 29). Instructions were accomplished…
ERIC Educational Resources Information Center
Laswadi; Kusumah, Yaya S.; Darwis, Sutawanir; Afgani, Jarnawi D.
2016-01-01
Conceptual understanding (CU) and procedural fluency (PF) are two important mathematical competencies required by students. CU helps students organizing their knowledge into a coherent whole, and PF helps them to find the right solution of a problem. In order to enhance CU and PF, students need learning experiences in constructing knowledge and…
ERIC Educational Resources Information Center
Brookes, David T.; Etkina, Eugenia
2007-01-01
This paper introduces a theory about the role of language in learning physics. The theory is developed in the context of physics students and physicists talking and writing about the subject of quantum mechanics. We found that physicists' language encodes different varieties of analogical models through the use of grammar and conceptual metaphor.…
ERIC Educational Resources Information Center
Jang, Hyungshim; Reeve, Johnmarshall; Halusic, Marc
2016-01-01
We tested the educational utility of "teaching in students' preferred ways" as a new autonomy-supportive way of teaching to enhance students' autonomy and conceptual learning. A pilot test first differentiated preferred versus nonpreferred ways of teaching. In the main study, a hired teacher who was blind to the purpose of the study…
ERIC Educational Resources Information Center
Çoruhlu, Tülay Senel; Bilgin, Arzu Kirman; Nas, Sibel Er
2016-01-01
The aim of this research is to investigate the effect of enriched learning environments which have been developed in the framework of the "erosion and landslide" concepts on the conceptual understanding of students. A quasi-experimental method has been used in this research. The sample consists of 40 students. 5th grade students (aged…
ERIC Educational Resources Information Center
Adeleke, M. A.
2007-01-01
The paper examined the possibility of finding out if improvements in students' problem solving performance in simultaneous linear equation will be recorded with the use of procedural and conceptual learning strategies and in addition to find out which of the strategies will be more effective. The study adopted a pretest, post test control group…
ERIC Educational Resources Information Center
Haag, Brenda Bannan; Grabowski, Barbara L.
The purpose of this exploratory study was to examine the effectiveness of learner manipulation of visuals with and without organizing cues in computer-based instruction on adults' factual, conceptual, and problem-solving learning. An instructional unit involving the physiology and the anatomy of the heart was used. A post-test only control group…
ERIC Educational Resources Information Center
Cheng, Peter C-H.; Shipstone, David M.
2003-01-01
Describes an approach to the teaching of electricity that uses box and AVOW diagrams, novel representations of the properties of the electric circuit that portray current, voltage, resistance, and power. The diagrams were developed as aids in learning, understanding, and problem solving and to promote conceptual change by challenging a number of…
The Impact of the Type of Projects on Preservice Teachers' Conceptualization of Service Learning
ERIC Educational Resources Information Center
Seban, Demet
2013-01-01
This paper discusses the effects of the type of project undertaken for a community practice course on preservice teachers' conceptualization of service learning. The goal of the projects is to enable participants to engage with service practice in a reflective manner. Through the examination of the reflective logs kept by students using Butin's…
ERIC Educational Resources Information Center
Yeh, Kuan-Hue; She, Hsiao-Ching
2010-01-01
The purpose of this study is to examine the difference in effectiveness between two on-line scientific learning programs--one with an argumentation component and one without an argumentation component--on students' scientific argumentation ability and conceptual change. A quasi-experimental design was used in this study. Two classes of 8th grade…
Colorado Upper-Division Electrostatics Diagnostic: A Conceptual Assessment for the Junior Level
ERIC Educational Resources Information Center
Chasteen, Stephanie V.; Pepper, Rachel E.; Caballero, Marcos D.; Pollock, Steven J.; Perkins, Katherine K.
2012-01-01
As part of an effort to systematically improve our junior-level E&M I course, we have developed a tool to assess student conceptual learning of electrostatics at the upper division. Together with a group of physics faculty, we established a list of learning goals for the course that, with results from student observations and interviews,…
ERIC Educational Resources Information Center
Coyle, Do; Halbach, Ana; Meyer, Oliver; Schuck, Kevin
2018-01-01
This article explores how a group of educators and researchers enacted an inclusive process of conceptual growth involving teachers and teacher educators as active agents, knowledge builders and meaning-makers in the development of a Pluriliteracies approach to Teaching for Learning (PTL). The evolution of a working model based on five emergent…
ERIC Educational Resources Information Center
Nivala, Markus; Saljo, Roger; Rystedt, Hans; Kronqvist, Pauliina; Lehtinen, Erno
2012-01-01
New representational technologies, such as virtual microscopy, create new affordances for medical education. In the article, a study on the following two issues is reported: (a) How does collaborative use of virtual microscopy shape students' engagement with and learning from virtual slides of tissue specimen? (b) How do visual and conceptual cues…
ERIC Educational Resources Information Center
Roth, Wolff-Michael
2014-01-01
In this study, I provide a microgenetic-historical account of learning in an informal setting: the conceptual change that occurred while a university-based scientific research laboratory investigated the absorption of light in rod-based photoreceptors of coho salmon, which the "dogma" had suggested to be related to the migration between…
Feyaerts, Gille; Deguerry, Murielle; Deboosere, Patrick; De Spiegelaere, Myriam
2017-06-01
With the implementation of health impact assessment (HIA)'s conceptual model into real-world policymaking, a number of fundamental issues arise concerning its decision-support function. Rooted in a rational vision of the decision-making process, focus regarding both conceptualisation and evaluation has been mainly on the function of instrumental policy-learning. However, in the field of social health inequalities, this function is strongly limited by the intrinsic 'wickedness' of the policy issue. Focusing almost exclusively on this instrumental function, the real influence HIA can have on policymaking in the longer term is underestimated and remains largely unexploited. Drawing insights from theoretical models developed in the field of political science and sociology, we explore the different decision-support functions HIA can fulfill and identify conceptual learning as potentially the most important. Accordingly, dominant focus on the technical engineering function, where knowledge is provided in order to 'rationalise' the policy process and to tackle 'tame' problems, should be complemented with an analysis of the conditions for conceptual learning, where knowledge introduces new information and perspectives and, as such, contributes in the longer term to a paradigm change.
Strand, Pia; Edgren, Gudrun; Borna, Petter; Lindgren, Stefan; Wichmann-Hansen, Gitte; Stalmeijer, Renée E
2015-05-01
The role of workplace supervisors in the clinical education of medical students is currently under debate. However, few studies have addressed how supervisors conceptualize workplace learning and how conceptions relate to current sociocultural workplace learning theory. We explored physician conceptions of: (a) medical student learning in the clinical workplace and (b) how they contribute to student learning. The methodology included a combination of a qualitative, inductive (conventional) and deductive (directed) content analysis approach. The study triangulated two types of interview data from 4 focus group interviews and 34 individual interviews. A total of 55 physicians participated. Three overarching themes emerged from the data: learning as membership, learning as partnership and learning as ownership. The themes described how physician conceptions of learning and supervision were guided by the notions of learning-as-participation and learning-as-acquisition. The clinical workplace was either conceptualized as a context in which student learning is based on a learning curriculum, continuity of participation and partnerships with supervisors, or as a temporary source of knowledge within a teaching curriculum. The process of learning was shaped through the reciprocity between different factors in the workplace context and the agency of students and supervising physicians. A systems-thinking approach merged with the "co-participation" conceptual framework advocated by Billet proved to be useful for analyzing variations in conceptions. The findings suggest that mapping workplace supervisor conceptions of learning can be a valuable starting point for medical schools and educational developers working with changes in clinical educational and faculty development practices.
Students' Ideas about How and Why Chemical Reactions Happen: Mapping the conceptual landscape
NASA Astrophysics Data System (ADS)
Yan, Fan; Talanquer, Vicente
2015-12-01
Research in science education has revealed that many students struggle to understand chemical reactions. Improving teaching and learning about chemical processes demands that we develop a clearer understanding of student reasoning in this area and of how this reasoning evolves with training in the domain. Thus, we have carried out a qualitative study to explore students reasoning about chemical causality and mechanism. Study participants included individuals at different educational levels, from college to graduate school. We identified diverse conceptual modes expressed by students when engaged in the analysis of different types of reactions. Main findings indicate that student reasoning about chemical reactions is influenced by the nature of the process. More advanced students tended to express conceptual modes that were more normative and had more explanatory power, but major conceptual difficulties persisted in their reasoning. The results of our study are relevant to educators interested in conceptual development, learning progressions, and assessment.
DSLM Instructional Approach to Conceptual Change Involving Thermal Expansion.
ERIC Educational Resources Information Center
She, Hsiao-Ching
2003-01-01
Examines the process of student conceptual change regarding thermal expansion using the Dual Situated Learning Model (DSLM) as an instructional approach. Indicates that DSLM promotes conceptual change and holds great potential to facilitate the process through classroom instruction at all levels. (Contains 38 references.) (Author/NB)
NASA Astrophysics Data System (ADS)
Lin, Tzu-Chiang; Lin, Tzung-Jin; Tsai, Chin-Chung
2014-05-01
This paper presents the third study of research trends in science education. In this review, a total of 990 papers published in the International Journal of Science Education, the Journal of Research in Science Teaching, and Science Education from 2008 to 2012 were analyzed. The results indicate that in the recent five years (2008-2012), the top three research topics in the published papers were those regarding the context of students' learning, science teaching, and students' conceptual learning. The changes in the most popular research topics in the past 15 years also evidentially indicate shifts in the journals' preferences and researchers' interest. For example, in 2003-2007, context of students' learning replaced students' conceptual learning, which was the most published research topic from 1998 to 2002. The research topic of students' learning contexts continued to rank the first in 2008-2012. Moreover, there was an increasing trend of research papers regarding science teaching from 1998 to 2012. The analysis of highly cited papers revealed that research topics such as argumentation, inquiry-based learning, and scientific modeling were recently highlighted by science educators. In recent 15 years, productive researchers' publications also focused on the topics about context of students' learning, science teaching, and students' conceptual learning.
Learning about friction: group dynamics in engineering students' work with free body diagrams
NASA Astrophysics Data System (ADS)
Berge, Maria; Weilenmann, Alexandra
2014-11-01
In educational research, it is well-known that collaborative work on core conceptual issues in physics leads to significant improvements in students' conceptual understanding. In this paper, we explore collaborative learning in action, adding to previous research in engineering education with a specific focus on the students' use of free body diagrams in interaction. By looking at details in interaction among a group of three engineering students, we illustrate how they collectively construct a free body diagram together when learning introductory mechanics. In doing so, we have focused on both learning possibilities and the dynamic processes that take place in the learning activity. These findings have a number of implications for educational practice.
Learner factors associated with radical conceptual change among undergraduates
NASA Astrophysics Data System (ADS)
Olson, Joanne Kay
Students frequently enter learning situations with knowledge inconsistent with scientific views. One goal of science instruction is to enable students to construct scientifically accepted ideas while rejecting inaccurate constructs. This process is called conceptual change. This study examined factors associated with students at three levels of conceptual change to elucidate possible influences on the conceptual change process. Factors studied included motivation (including utility value, interest, attainment value, mood, self efficacy, and task difficulty), prior experiences with science, perceptions of the nature of science, connections to objects or events outside the classroom, and specific activities that helped students learn. Four science classes for undergraduate preservice elementary teachers participated in the study, conducted during a three week unit on electricity. Data sources included concept maps, drawings, reflective journal entries, quizzes, a science autobiography assignment, and interviews. Concept maps, drawings, and quizzes were analyzed, and students were placed into high, moderate, and low conceptual change groups. Of the ninety-eight students in the study, fifty-seven were interviewed. Perhaps the most important finding of this study relates to the assessment of conceptual change. Interviews were conducted two months after the unit, and many items on the concept maps had decayed from students' memories. This indicates that time is an important factor. In addition, interview-derived data demonstrated conceptual change levels; concept maps were insufficient to indicate the depth of students' understanding. Factors associated with conceptual change include self efficacy and interest in topic. In addition, moderate conceptual change students cited specific activities as having helped them learn. Low and high students focused on the method of instruction rather than specific activities. Factors not found to be associated with conceptual change include: utility value, mood, task difficulty, and prior experiences with science, and connections to objects and events outside the classroom. Attainment value, perceptions of the nature of science, and mood cannot be ruled out as possible factors due to the problematic nature of assessing them within the context of this study.
ERIC Educational Resources Information Center
Sackes, Mesut
2010-01-01
This study seeks to explore and describe the role of cognitive, metacognitive, and motivational variables in conceptual change. More specifically, the purposes of the study were (1) to investigate the predictive ability of a learning model that was developed based on the intentional conceptual change perspective in predicting change in conceptual…
Conceptual Model Learning Objects and Design Recommendations for Small Screens
ERIC Educational Resources Information Center
Churchill, Daniel
2011-01-01
This article presents recommendations for the design of conceptual models for applications via handheld devices such as personal digital assistants and some mobile phones. The recommendations were developed over a number of years through experience that involves design of conceptual models, and applications of these multimedia representations with…
Learning and Retention of Quantum Concepts with Different Teaching Methods
ERIC Educational Resources Information Center
Deslauriers, Louis; Wieman, Carl
2011-01-01
We measured mastery and retention of conceptual understanding of quantum mechanics in a modern physics course. This was studied for two equivalent cohorts of students taught with different pedagogical approaches using the Quantum Mechanics Conceptual Survey. We measured the impact of pedagogical approach both on the original conceptual learning…
From the School Health Education Study to the National Health Education Standards: Concepts Endure
ERIC Educational Resources Information Center
Nobiling, Brandye D.; Lyde, Adrian R.
2015-01-01
Background: The landmark School Health Education Study (SHES) project influenced by the conceptual approach to teaching and learning provides perspective on modern school health instruction. Conceptual education, the cornerstone of the SHES curriculum framework (CF), "Health Education: A Conceptual Approach to Curriculum Design," fosters…
Conceptual Change and Education
ERIC Educational Resources Information Center
Vosniadou, Stella
2007-01-01
In order to understand the advanced, scientific concepts of the various disciplines, students cannot rely on the simple memorization of facts. They must learn how to restructure their naive, intuitive theories based on everyday experience and lay culture. In other words, they must undergo profound conceptual change. This type of conceptual change…
Strategies for Facilitating Conceptual Change in School Physics
ERIC Educational Resources Information Center
Gafoor, K. Abdul; Akhilesh, P. T.
2010-01-01
Learning occurs through various processes. Among these processes, conceptual change has a pivotal part. This article discusses briefly conceptual change in physics. Anchoring on Kuhn's original explanation of theory change in science, this article elaborates especially on the influence of children's science concepts in general, and pre-conceptions…
Brady, Timothy F; Oliva, Aude
2008-07-01
Recent work has shown that observers can parse streams of syllables, tones, or visual shapes and learn statistical regularities in them without conscious intent (e.g., learn that A is always followed by B). Here, we demonstrate that these statistical-learning mechanisms can operate at an abstract, conceptual level. In Experiments 1 and 2, observers incidentally learned which semantic categories of natural scenes covaried (e.g., kitchen scenes were always followed by forest scenes). In Experiments 3 and 4, category learning with images of scenes transferred to words that represented the categories. In each experiment, the category of the scenes was irrelevant to the task. Together, these results suggest that statistical-learning mechanisms can operate at a categorical level, enabling generalization of learned regularities using existing conceptual knowledge. Such mechanisms may guide learning in domains as disparate as the acquisition of causal knowledge and the development of cognitive maps from environmental exploration.
NASA Astrophysics Data System (ADS)
Wilder, Anna
The purpose of this study was to investigate the effects of a visualization-centered curriculum, Hemoglobin: A Case of Double Identity, on conceptual understanding and representational competence in high school biology. Sixty-nine students enrolled in three sections of freshman biology taught by the same teacher participated in this study. Online Chemscape Chime computer-based molecular visualizations were incorporated into the 10-week curriculum to introduce students to fundamental structure and function relationships. Measures used in this study included a Hemoglobin Structure and Function Test, Mental Imagery Questionnaire, Exam Difficulty Survey, the Student Assessment of Learning Gains, the Group Assessment of Logical Thinking, the Attitude Toward Science in School Assessment, audiotapes of student interviews, students' artifacts, weekly unit activity surveys, informal researcher observations and a teacher's weekly questionnaire. The Hemoglobin Structure and Function Test, consisting of Parts A and B, was administered as a pre and posttest. Part A used exclusively verbal test items to measure conceptual understanding, while Part B used visual-verbal test items to measure conceptual understanding and representational competence. Results of the Hemoglobin Structure and Function pre and posttest revealed statistically significant gains in conceptual understanding and representational competence, suggesting the visualization-centered curriculum implemented in this study was effective in supporting positive learning outcomes. The large positive correlation between posttest results on Part A, comprised of all-verbal test items, and Part B, using visual-verbal test items, suggests this curriculum supported students' mutual development of conceptual understanding and representational competence. Evidence based on student interviews, Student Assessment of Learning Gains ratings and weekly activity surveys indicated positive attitudes toward the use of Chemscape Chime software and the computer-based molecular visualization activities as learning tools. Evidence from these same sources also indicated that students felt computer-based molecular visualization activities in conjunction with other classroom activities supported their learning. Implications for instructional design are discussed.
Methods of Conceptual Clustering and their Relation to Numerical Taxonomy.
1985-07-22
the conceptual clustering problem is to first solve theaggregation problem, and then the characterization problem. In machine learning, the...cluster- ings by first generating some number of possible clusterings. For each clustering generated, one calls a learning from examples subroutine, which...class 1 from class 2, and vice versa, only the first combination implies a partition over the set of theoretically possible objects. The first
ERIC Educational Resources Information Center
Suarsana, I. Made; Widiasih, Ni Putu Santhi; Suparta, I. Nengah
2018-01-01
The aim of this study is to examine the effect of Brain Based Learning on second grade junior high school students? conceptual understanding on polyhedron. This study was conducted by using post-test only control group quasi-experimental design. The subjects of this study were 148 students that divided into three classes. Two classes were taken as…
ERIC Educational Resources Information Center
Nic Giolla Mhichíl, Mairéad; van Engen, Jeroen; Ó Ciardúbháin, Colm; Ó Cléircín, Gearóid; Appel, Christine
2014-01-01
This paper sets out to construct and present the evolving conceptual framework of the SpeakApps projects to consider the application of learning analytics to facilitate synchronous and asynchronous oral language skills within this CALL context. Drawing from both the CALL and wider theoretical and empirical literature of learner analytics, the…
ERIC Educational Resources Information Center
Chen, Hsin-liang; Doty, Philip
2005-01-01
This article is the first of two that present a six-part conceptual framework for the design and evaluation of digital libraries meant to support mathematics education in K-12 settings (see also pt. 2). This first article concentrates on (1) information organization, (2) information literacy, and (3) integrated learning with multimedia materials.…
ERIC Educational Resources Information Center
Celikten, Oksan; Ipekcioglu, Sevgi; Ertepinar, Hamide; Geban, Omer
2012-01-01
The purpose of this study was to compare the effectiveness of the conceptual change oriented instruction through cooperative learning (CCICL) and traditional science instruction (TI) on 4th grade students' understanding of earth and sky concepts and their attitudes toward earth and sky concepts. In this study, 56 fourth grade students from the…
ERIC Educational Resources Information Center
Utter, Brian C.; Paulson, Scott A.; Almarode, John T.; Daniel, David B.
2018-01-01
We argue, based on a multi-year collaboration to develop a pedagogy course for physics majors by experts in physics, education, and the science of learning, that the process of teaching science majors about education and the science of learning, and evidence-based teaching methods in particular, requires conceptual change analogous to that…
ERIC Educational Resources Information Center
Ennis, Catherine D.
2007-01-01
The author discusses a line of research examining the acquisition, organization, and use of knowledge associated with conceptual change in which she is engaged at the University of Maryland. It builds on foundational research by scholars in science, mathematics, and reading education as well as in motor learning and physical education pedagogy,…
ERIC Educational Resources Information Center
Ilter, Ilhan
2014-01-01
In this research, an experimental study was carried out in social studies 4th grade students to develop students' conceptual achievement and motivation to succeed academically. The study aims to investigate the effectiveness of project-based learning (PBL) in social studies. A quasi-experimental research design (pre- and posttest) was used in the…
ERIC Educational Resources Information Center
Gurbuz, Ramazan; Birgin, Osman; Catlioglu, Hakan
2014-01-01
The purpose of this study was to investigate the effect of activities based on the Multiple Intelligence Theory (MIT) of seventh grade students' conceptual learning and their retention in two consecutive subjects, namely "The Circumference and the Area of a Circle" and "The Surface Area of the Vertical Cylinder". The…
ERIC Educational Resources Information Center
She, Hsiao-Ching
2002-01-01
Examines the process of students' conceptual changes with regard to air pressure and buoyancy as a result of teaching with the dual situated learning model. Uses a model designed according to the students' ontological viewpoint on science concepts as well as the nature of these concepts. (Contains 40 references.) (Author/YDS)
Machine learning of fault characteristics from rocket engine simulation data
NASA Technical Reports Server (NTRS)
Ke, Min; Ali, Moonis
1990-01-01
Transformation of data into knowledge through conceptual induction has been the focus of our research described in this paper. We have developed a Machine Learning System (MLS) to analyze the rocket engine simulation data. MLS can provide to its users fault analysis, characteristics, and conceptual descriptions of faults, and the relationships of attributes and sensors. All the results are critically important in identifying faults.
Framework for Conducting Empirical Observations of Learning Processes.
ERIC Educational Resources Information Center
Fischer, Hans Ernst; von Aufschnaiter, Stephan
1993-01-01
Reviews four hypotheses about learning: Comenius's transmission-reception theory, information processing theory, Gestalt theory, and Piagetian theory. Uses the categories preunderstanding, conceptual change, and learning processes to classify and assess investigations on learning processes. (PR)
Jun, Won Hee; Lee, Eun Ju; Park, Han Jong; Chang, Ae Kyung; Kim, Mi Ja
2013-12-01
The 5E learning cycle model has shown a positive effect on student learning in science education, particularly in courses with theory and practice components. Combining problem-based learning (PBL) with the 5E learning cycle was suggested as a better option for students' learning of theory and practice. The purpose of this study was to compare the effects of the traditional learning method with the 5E learning cycle model with PBL. The control group (n = 78) was subjected to a learning method that consisted of lecture and practice. The experimental group (n = 83) learned by using the 5E learning cycle model with PBL. The results showed that the experimental group had significantly improved self-efficacy, critical thinking, learning attitude, and learning satisfaction. Such an approach could be used in other countries to enhance students' learning of fundamental nursing. Copyright 2013, SLACK Incorporated.
NASA Astrophysics Data System (ADS)
Rusanen, Anna-Mari; Pöyhönen, Samuli
2013-06-01
In this article we focus on the concept of concept in conceptual change. We argue that (1) theories of higher learning must often employ two different notions of concept that should not be conflated: psychological and scientific concepts. The usages for these two notions are partly distinct and thus straightforward identification between them is unwarranted. Hence, the strong analogy between scientific theory change and individual learning should be approached with caution. In addition, we argue that (2) research in psychology and cognitive science provides a promising theoretical basis for developing explanatory mechanistic models of conceptual change. Moreover, we argue that (3) arguments against deeper integration between the fields of psychology and conceptual change are not convincing, and that recent theoretical developments in the cognitive sciences might prove indispensable in filling in the details in mechanisms of conceptual change.
Navigating Tensions Between Conceptual and Metaconceptual Goals in the Use of Models
NASA Astrophysics Data System (ADS)
Delgado, Cesar
2015-04-01
Science education involves learning about phenomena at three levels: concrete (facts and generalizations), conceptual (concepts and theories), and metaconceptual (epistemology) (Snir et al. in J Sci Educ Technol 2(2):373-388, 1993). Models are key components in science, can help build conceptual understanding, and may also build metaconceptual understanding. Technology can transform teaching and learning by turning models into interactive simulations that learners can investigate. This paper identifies four characteristics of models and simulations that support conceptual learning but misconstrue models and science at a metaconceptual level. Ahistorical models combine the characteristics of several historical models; they conveniently compile ideas but misrepresent the history of science (Gilbert in Int J Sci Math Educ 2(2):115-130, 2004). Teleological models explain behavior in terms of a final cause; they can lead to useful heuristics but imply purpose in processes driven by chance and probability (Talanquer in Int J Sci Educ 29(7):853-870, 2007). Epistemological overreach occurs when models or simulations imply greater certainty and knowledge about phenomena than warranted; conceptualizing nature as being well known (e.g., having a mathematical structure) poses the danger of conflating model and reality or data and theory. Finally, models are inevitably ontologically impoverished. Real-world deviations and many variables are left out of models, as models' role is to simplify. Models and simulations also lose much of the sensory data present in phenomena. Teachers, designers, and professional development designers and facilitators must thus navigate the tension between conceptual and metaconceptual learning when using models and simulations. For each characteristic, examples are provided, along with recommendations for instruction and design. Prompts for explicit reflective activities around models are provided for each characteristic
Conceptual and epistemological undercurrents of learning as a process of change
NASA Astrophysics Data System (ADS)
Montfort, Devlin B.
2011-12-01
In the preparation and education of civil engineers it is essential to both increase student knowledge of the world (conceptual understanding), but also to establish and develop new ways of thinking (epistemology). Both of these processes of change can be considered learning, but they are vastly different in the time, energy and resources they require to accomplish. The second type of learning (conceptual change) is more difficult, and is only rarely accomplished in traditional university education. The purpose of this research is to apply existing research approaches from cognitive science and educational psychology to explain why by investigating conceptual change in the contexts of student learning and faculty adoption of new pedagogies. In each context, the difficulty with conceptual change was associated with the ways in which people categorize fundamental phenomena in the world around them, and with epistemological expectations of how those categorizations should be applied in new contexts. While attempts to encourage change often focus on "educating" people by providing them with more knowledge, the change processes seem to be primarily limited by people's existing knowledge and how it is structured. Because civil engineers interact closely with societal goals and processes (such as human safety and environmental policies), they adopt epistemological stances that are as-yet unaccounted for in most research on the subject, which assumes a strong distinction between epistemological stances toward the physical world compared to the social world. These differences suggest that civil engineers' conceptual change could be enhanced by more directly addressing their particular epistemological stances---which incorporate high needs for certainty in guaranteeing human safety, as well as high flexibility when being applied to human systems.
The nature of dissection: Exploring student conceptions
NASA Astrophysics Data System (ADS)
York, Katharine
The model of conceptual change in science describes the process of learning as a complete restructuring of knowledge, when learners discover or are shown more plausible, intelligent alternatives to existing conceptions. Emotions have been acknowledged as part of a learner's conceptual ecology, but the effects of emotions on learning have yet to be described. This research was conducted to examine the role that emotions have on learning for thirteen high school students, as they dissected cats in a Human Anatomy and Physiology class. The project also investigated whether a student's emotional reactions may be used to develop a sense of connectedness with the nonhuman world, which is defined as ecological literacy. This study utilized a grounded theory approach, in which student responses to interviews were the primary source of data. Interviews were transcribed, and responses were coded according to a constant comparative method of analysis. Responses were compared with the four conditions necessary for conceptual change to occur, and also to five principles of ecological literacy. Students who had negative reactions to dissection participated less in the activity, and demonstrated less conceptual change. Two female students showed the strongest emotional reactions to dissection, and also the lowest amount of conceptual change. One male student also had strong negative reactions to death, and showed no conceptual change. The dissection experiences of the students in this study did not generally reflect ecological principles. The two students whose emotional reactions to dissection were the most negative demonstrated the highest degree of ecological literacy. These results provide empirical evidence of the effects that emotions have on learning, and also supports the opinions of educators who do not favor dissection, because it does not teach students to respect all forms of life.
Identification of Conceptual Understanding in Biotechnology Learning
NASA Astrophysics Data System (ADS)
Suryanti, E.; Fitriani, A.; Redjeki, S.; Riandi, R.
2018-04-01
Research on the identification of conceptual understanding in the learning of Biotechnology, especially on the concept of Genetic Engineering has been done. The lesson is carried out by means of discussion and presentation mediated-powerpoint media that contains learning materials with relevant images and videos. This research is a qualitative research with one-shot case study or one-group posttest-only design. Analysis of 44 students' answers show that only 22% of students understand the concept, 18% of students lack understanding of concepts, 57% of students have misconceptions, and 3% of students are error. It can be concluded that most students has misconceptions in learning the concept of Genetic Engineering.
Seamless Language Learning: Second Language Learning with Social Media
ERIC Educational Resources Information Center
Wong, Lung-Hsiang; Chai, Ching Sing; Aw, Guat Poh
2017-01-01
This conceptual paper describes a language learning model that applies social media to foster contextualized and connected language learning in communities. The model emphasizes weaving together different forms of language learning activities that take place in different learning contexts to achieve seamless language learning. it promotes social…
NASA Astrophysics Data System (ADS)
Novak, Joseph D.
2002-07-01
The construction and reconstruction of meanings by learners requires that they actively seek to integrate new knowledge with knowledge already in their cognitive structure. Ausubel's assimilation theory of cognitive learning has been shown to be effective in guiding research and instructional design to facilitate meaningful learning (Ausubel, The psychology of meaningful verbal learning, New York: Grune and Stratton, 1963; Educational psychology: A cognitive view, New York: Holt, Rinehart and Winston, 1968; The acquisition and retention of knowledge, Dordrecht: Kluwer, 2000). Gowin's Vee heuristic has been employed effectively to aid teachers and students in understanding the constructed nature of knowledge (Gowin, Educating, Ithaca, NY: Cornell University Press, 1981). Situated learning occurs when learning is by rote or at a lower level of meaningful learning. Concept mapping has been used effectively to aid meaningful learning with resulting modification of student's knowledge structures. When these knowledge structures are limited or faulty in some way, they may be referred to as Limited or Inappropriate Propositional Hierarchies (LIPH's). Conceptual change, or more accurately conceptual reconstrution, requires meaningful learning to modify LIPH's. Collaborative group learning facilitates meaningful learning and new knowledge construction. World-wide economic changes are forcing major changes in business and industry placing a premium on the power and value of knowledge and new knowledge production. These changes require changes in school and university education that centers on the nature and power of meaningful learning. New computer tools are available to facilitate teaching activities targeted at modifying LIPH's, and aiding meaningful learning in general.
Understanding genetics: Analysis of secondary students' conceptual status
NASA Astrophysics Data System (ADS)
Tsui, Chi-Yan; Treagust, David F.
2007-02-01
This article explores the conceptual change of students in Grades 10 and 12 in three Australian senior high schools when the teachers included computer multimedia to a greater or lesser extent in their teaching of a genetics course. The study, underpinned by a multidimensional conceptual-change framework, used an interpretive approach and a case-based design with multiple data collection methods. Over 4-8 weeks, the students learned genetics in classroom lessons that included BioLogica activities, which feature multiple representations. Results of the online tests and interview tasks revealed that most students improved their understanding of genetics as evidenced in the development of genetics reasoning. However, using Thorley's (1990) status analysis categories, a cross-case analysis of the gene conceptions of 9 of the 26 students interviewed indicated that only 4 students' postinstructional conceptions were intelligible-plausible-fruitful. Students' conceptual change was consistent with classroom teaching and learning. Findings suggested that multiple representations supported conceptual understanding of genetics but not in all students. It was also shown that status can be a viable hallmark enabling researchers to identify students' conceptual change that would otherwise be less accessible. Thorley's method for analyzing conceptual status is discussed.
Students’ conceptions on white light and implications for teaching and learning about colour
NASA Astrophysics Data System (ADS)
Haagen-Schützenhöfer, Claudia
2017-07-01
The quality of learning processes is mainly determined by the extent to which students’ conceptions are addressed and thus conceptual change is triggered. Colour phenomena are a topic within initial instruction of optics which is challenging. A physically adequate concept of white light is crucial for being able to grasp the processes underlying colour formation. Our previous research suggests that misconceptions on white light may influence the conceptual understanding of colour phenomena. For the design of a learning environment on light and colours, the literature was reviewed. Then an explorative interview study with participants (N = 32), with and without instruction in introductory optics, was carried out. In addition, the representations used for white light in Austrian physics schoolbooks were analysed. Based on the results of the literature review, the interview study and the schoolbook analysis, a learning environment was designed and tested in teaching experiments. The results indicate that learners often lack an adequate concept of white light even after instruction in introductory optics. This seems to cause learning difficulties concerning colour phenomena. On the other hand, the evaluation of our learning environment showed that students are able to gain a good conceptual understanding of colour phenomena if instruction takes these content specific learning difficulties into account.
Writing-to-Learn in Undergraduate Science Education: A Community-Based, Conceptually Driven Approach
Reynolds, Julie A.; Thaiss, Christopher; Katkin, Wendy; Thompson, Robert J.
2012-01-01
Despite substantial evidence that writing can be an effective tool to promote student learning and engagement, writing-to-learn (WTL) practices are still not widely implemented in science, technology, engineering, and mathematics (STEM) disciplines, particularly at research universities. Two major deterrents to progress are the lack of a community of science faculty committed to undertaking and applying the necessary pedagogical research, and the absence of a conceptual framework to systematically guide study designs and integrate findings. To address these issues, we undertook an initiative, supported by the National Science Foundation and sponsored by the Reinvention Center, to build a community of WTL/STEM educators who would undertake a heuristic review of the literature and formulate a conceptual framework. In addition to generating a searchable database of empirically validated and promising WTL practices, our work lays the foundation for multi-university empirical studies of the effectiveness of WTL practices in advancing student learning and engagement. PMID:22383613
Competitive Strategies of States: A Life-Cycle Perspective. EQW Working Papers.
ERIC Educational Resources Information Center
Flynn, Patricia M.
This paper demonstrates that production life-cycle models provide a conceptual framework to analyze systematically the interrelationships between industrial and technological change and human resources. Section II presents the life-cycle model, focusing on its implications for the types and level of employment and skill requirements in an area.…
ERIC Educational Resources Information Center
Hwang, SungWon; Kim, Mijung
2009-01-01
We review Brown and Kloser's article, "Conceptual continuity and the science of baseball: using informal science literacy to promote students science learning" from a Vygotskian cultural-historical and dialectic perspective. Brown and Kloser interpret interview data with student baseball players and claim that students' conceptual understanding…
Navigating Tensions between Conceptual and Metaconceptual Goals in the Use of Models
ERIC Educational Resources Information Center
Delgado, Cesar
2015-01-01
Science education involves learning about phenomena at three levels: concrete (facts and generalizations), conceptual (concepts and theories), and metaconceptual (epistemology) (Snir et al. in "J Sci Educ Technol" 2(2):373-388, 1993). Models are key components in science, can help build conceptual understanding, and may also build…
Student Engagement: Developing a Conceptual Framework and Survey Instrument
ERIC Educational Resources Information Center
Burch, Gerald F.; Heller, Nathan A.; Burch, Jana J.; Freed, Rusty; Steed, Steve A.
2015-01-01
Student engagement is considered to be among the better predictors of learning, yet there is growing concern that there is no consensus on the conceptual foundation. The authors propose a conceptualization of student engagement grounded in A. W. Astin's (1984) Student Involvement Theory and W. A. Kahn's (1990) employee engagement research where…
Conceptual Change and Physics Instruction: A Longitudinal Study.
ERIC Educational Resources Information Center
Searle, Peter; Gunstone, Richard F.
This paper reports an action study of conceptual change in mechanics using an instructional strategy based on a constructivist view of learning. The aims of the study were to determine: (1) what effect the instructional strategy had on achieving conceptual change; (2) what devices or strategies students used in their attempts to understand…
Developing Conceptual Understanding and Procedural Skill in Mathematics: An Iterative Process.
ERIC Educational Resources Information Center
Rittle-Johnson, Bethany; Siegler, Robert S.; Alibali, Martha Wagner
2001-01-01
Proposes that conceptual and procedural knowledge develop in an iterative fashion and improved problem representation is one mechanism underlying the relations between them. Two experiments were conducted with 5th and 6th grade students learning about decimal fractions. Results indicate conceptual and procedural knowledge do develop, iteratively,…
NASA Astrophysics Data System (ADS)
Corvo, Arthur Francis
Given the reality that active and competitive participation in the 21 st century requires American students to deepen their scientific and mathematical knowledge base, the National Research Council (NRC) proposed a new conceptual framework for K--12 science education. The framework consists of an integration of what the NRC report refers to as the three dimensions: scientific and engineering practices, crosscutting concepts, and core ideas in four disciplinary areas (physical, life and earth/spaces sciences, and engineering/technology). The Next Generation Science Standards (NGSS ), which are derived from this new framework, were released in April 2013 and have implications on teacher learning and development in Science, Technology, Engineering, and Mathematics (STEM). Given the NGSS's recent introduction, there is little research on how teachers can prepare for its release. To meet this research need, I implemented a self-study aimed at examining my teaching practices and classroom outcomes through the lens of the NRC's conceptual framework and the NGSS. The self-study employed design-based research (DBR) methods to investigate what happened in my secondary classroom when I designed, enacted, and reflected on units of study for my science, engineering, and mathematics classes. I utilized various best practices including Learning for Use (LfU) and Understanding by Design (UbD) models for instructional design, talk moves as a tool for promoting discourse, and modeling instruction for these designed units of study. The DBR strategy was chosen to promote reflective cycles, which are consistent with and in support of the self-study framework. A multiple case, mixed-methods approach was used for data collection and analysis. The findings in the study are reported by study phase in terms of unit planning, unit enactment, and unit reflection. The findings have implications for science teaching, teacher professional development, and teacher education.
Conceptual Framework To Extend Life Cycle Assessment ...
Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across the life cycle of a product or service. This paper presents a conceptual framework to integrate human health impact assessment with risk screening approaches to extend LCA to include near-field chemical sources (e.g., those originating from consumer products and building materials) that have traditionally been excluded from LCA. A new generation of rapid human exposure modeling and high-throughput toxicity testing is transforming chemical risk prioritization and provides an opportunity for integration of screening-level risk assessment (RA) with LCA. The combined LCA and RA approach considers environmental impacts of products alongside risks to human health, which is consistent with regulatory frameworks addressing RA within a sustainability mindset. A case study is presented to juxtapose LCA and risk screening approaches for a chemical used in a consumer product. The case study demonstrates how these new risk screening tools can be used to inform toxicity impact estimates in LCA and highlights needs for future research. The framework provides a basis for developing tools and methods to support decision making on the use of chemicals in products. This paper presents a conceptual framework for including near-field exposures into Life Cycle Assessment using advanced human exposure modeling and high-throughput tools
ERIC Educational Resources Information Center
Kilinc, Emin
2012-01-01
We are living in a conceptual world which we build through both informal and systematic interaction. Concepts enable us to simplify and organize our environment and communicate efficiently with others. The learning of concepts is represented by a general idea, usually expressed by a word, which represent a class or group of things or actions…
ERIC Educational Resources Information Center
Supasorn, Saksri
2015-01-01
This study aimed to develop the small-scale experiments involving electrochemistry and the galvanic cell model kit featuring the sub-microscopic level. The small-scale experiments in conjunction with the model kit were implemented based on the 5E inquiry learning approach to enhance students' conceptual understanding of electrochemistry. The…
ERIC Educational Resources Information Center
Buber, Ayse; Coban, Gul Unal
2017-01-01
The purpose of this study was to investigate the effects of learning activities based on argumentation about "Force and Motion" unit on conceptual understanding and views about establishing thinking friendly classroom environment of 7th graders. The study was conducted with total 39 students (20 students in experimental group and 19…
NASA Astrophysics Data System (ADS)
Venville, Grady
2004-05-01
Although research from a developmental/psychological perspective indicates that many children do not have a scientific understanding of living things, even by the age of 10 years, little research has been conducted about how students learn this science topic in the classroom. This exploratory research used a case-study design and qualitative data-collection methods to investigate the process of conceptual change from ontological and social perspectives when Year 1 (5- and 6-year-old) students were learning about living things. Most students were found to think about living things with either stable, nonscientific or stable, scientific framework theories. Transitional phases of understanding also were identified. Patterns of conceptual change observed over the 5-week period of instruction included theory change and belief revision as well as reversals in beliefs. The predominant pattern of learning, however, was the assimilation of facts and information into the students' preferred framework theory. The social milieu of the classroom context exposed students' scientific and nonscientific beliefs that influenced other individuals in a piecemeal fashion. Children with nonscientific theories of living things were identified as being least able to benefit from socially constructed, scientific knowledge; hence, recommendations are made for teaching that focuses on conceptual change strategies rather than knowledge enrichment.
NASA Astrophysics Data System (ADS)
Idaszak, R.; Lenhardt, W. C.; Jones, M. B.; Ahalt, S.; Schildhauer, M.; Hampton, S. E.
2014-12-01
The NSF, in an effort to support the creation of sustainable science software, funded 16 science software institute conceptualization efforts. The goal of these conceptualization efforts is to explore approaches to creating the institutional, sociological, and physical infrastructures to support sustainable science software. This paper will present the lessons learned from two of these conceptualization efforts, the Institute for Sustainable Earth and Environmental Software (ISEES - http://isees.nceas.ucsb.edu) and the Water Science Software Institute (WSSI - http://waters2i2.org). ISEES is a multi-partner effort led by National Center for Ecological Analysis and Synthesis (NCEAS). WSSI, also a multi-partner effort, is led by the Renaissance Computing Institute (RENCI). The two conceptualization efforts have been collaborating due to the complementarity of their approaches and given the potential synergies of their science focus. ISEES and WSSI have engaged in a number of activities to address the challenges of science software such as workshops, hackathons, and coding efforts. More recently, the two institutes have also collaborated on joint activities including training, proposals, and papers. In addition to presenting lessons learned, this paper will synthesize across the two efforts to project a unified vision for a science software institute.
Envisioning Complexity: Towards a New Conceptualization of Educational Research for Sustainability
ERIC Educational Resources Information Center
Pipere, Anita
2016-01-01
This paper aims to present some conceptual insights into the research paradigm of complexity that deals with such problems like sustainability, education, and, more specifically--sustainability education. The transdisciplinary perspective and cognitive approaches of a hermeneutical cycle and semantic waves used in argumentation assist in grasping…
Helping Secondary School Students Develop a Conceptual Understanding of Refraction
ERIC Educational Resources Information Center
Ashmann, Scott; Anderson, Charles W.; Boeckman, Heather
2016-01-01
Using real-world examples, ray diagrams, and a cognitive apprenticeship cycle, this paper focuses on developing students' conceptual (not mathematical) understanding of refraction. Refraction can be a difficult concept for students to comprehend if they do not have well-designed opportunities to practice explaining situations where reflection and…
NASA Astrophysics Data System (ADS)
Yoon, Sae Yeol; Peate, David W.
2015-06-01
According to the national survey of science education, science educators in the USA currently face many challenges such as lack of qualified secondary Earth and Space Science (ESS) teachers. Less qualified teachers may have difficulty teaching ESS because of a lack of conceptual understanding, which leads to diminished confidence in content knowledge. More importantly, teachers' limited conceptual understanding of the core ideas automatically leads to a lack of pedagogical content knowledge. This mixed methods study aims to explore the ways in which current secondary schooling, especially the small numbers of highly qualified ESS teachers in the USA, might influence students' learning of the discipline. To gain a better understanding of the current conditions of ESS education in secondary schools, in the first phase, we qualitatively examined a sample middle and high school ESS textbook to explore how the big ideas of ESS, particularly geological time, are represented. In the second phase, we quantitatively analyzed the participating college students' conceptual understanding of geological time by comparing those who had said they had had secondary school ESS learning experience with those who did not. Additionally, college students' perceptions on learning and teaching ESS are discussed. Findings from both the qualitative and quantitative phases indicate participating students' ESS learning experience in their secondary schools seemed to have limited or little influence on their conceptual understandings of the discipline. We believe that these results reflect the current ESS education status, connected with the declining numbers of highly qualified ESS teachers in secondary schools.
NASA Astrophysics Data System (ADS)
Liu, Lei
The dissertation aims to achieve two goals. First, it attempts to establish a new theoretical framework---the collaborative scientific conceptual change model, which explicitly attends to social factor and epistemic practices of science, to understand conceptual change. Second, it report the findings of a classroom study to investigate how to apply this theoretical framework to examine the trajectories of collaborative scientific conceptual change in a CSCL environment and provide pedagogical implications. Two simulations were designed to help students make connections between the macroscopic substances and the aperceptual microscopic entities and underlying processes. The reported study was focused on analyzing the aggregated data from all participants and the video and audio data from twenty focal groups' collaborative activities and the process of their conceptual development in two classroom settings. Mixed quantitative and qualitative analyses were applied to analyze the video/audio data. The results found that, overall participants showed significant improvements from pretest to posttest on system understanding. Group and teacher effect as well as group variability were detected in both students' posttest performance and their collaborative activities, and variability emerged in group interaction. Multiple data analyses found that attributes of collaborative discourse and epistemic practices made a difference in student learning. Generating warranted claims in discourse as well as the predicting, coordinating theory-evidence, and modifying knowledge in epistemic practices had an impact on student's conceptual understanding. However, modifying knowledge was found negatively related to students' learning effect. The case studies show how groups differed in using the computer tools as a medium to conduct collaborative discourse and epistemic practices. Only with certain combination of discourse features and epistemic practices can the group interaction lead to successful convergent understanding. The results of the study imply that the collaborative scientific conceptual change model is an effective framework to study conceptual change and the simulation environment may mediate the development of successful collaborative interactions (including collaborative discourse and epistemic practices) that lead to collaborative scientific conceptual change.
ERIC Educational Resources Information Center
Carducci, Rozana
2006-01-01
The references in this document provide an overview of empirical and conceptual scholarship on the application of learning theories in community college classrooms. Specific theories discussed in the citations include: active learning, cooperative learning, multiple intelligences, problem-based learning, and self-regulated learning. In addition to…
Quantifying the Adaptive Cycle
The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative...
Learning with Hypertext Learning Environments: Theory, Design, and Research.
ERIC Educational Resources Information Center
Jacobson, Michael J.; And Others
1996-01-01
Studied 69 undergraduates who used conceptually-indexed hypertext learning environments with differently structured thematic criss-crossing (TCC) treatments: guided and learner selected. Found that students need explicit modeling and scaffolding support to learn complex knowledge from these learning environments, and considers implications for…
The development and validation of Science Learning Inventory (SLI): A conceptual change framework
NASA Astrophysics Data System (ADS)
Seyedmonir, Mehdi
2000-12-01
A multidimensional theoretical model, Conceptual Change Science Learning (CCSL), was developed based on Standard Model of Conceptual Change and Cognitive Reconstruction of Knowledge Model. The model addresses three main components of science learning, namely the learner's conceptual ecology, the message along with its social context, and the cognitive engagement. A learner's conceptual ecology is organized around three clusters, including epistemological beliefs, existing conceptions, and motivation. Learner's cognitive engagement is represented by a continuum from peripheral processing involving shallow cognitive engagement to central processing involving deep cognitive engagement. Through reciprocal, non-sequential interactions of such constructs, the learners' conceptual change is achieved. Using a quantitative empirical approach, three studies were conducted to investigate the theoretical constructs based on the CCSL Model. The first study reports the development and validation of the hypothesized and factor-analytic scales comprising the instrument, Science Learning Inventory (SLI) intended for college students. The self-report instrument was designed in two parts, SLI-A (conceptual ecology and cognitive engagement) with 48 initial items, and SLI-B (science epistemology) with 49 initial items. The items for SLI-B were based on the tenets of Nature of Science as reflected in the recent reform documents, Science for All Americans (Project 2061) and National Science Education Standards. The results of factor analysis indicated seven factors for SLI-A and four factors for SLI-B. The second study investigated the criterion-related (conceptual change) predictive validity of the SLI in an instructional setting (a college-level physics course). The findings suggested the possibility of different interplay of factors and dynamics depending on the nature of the criterion (gain scores from a three-week intervention versus final course grade). Gain scores were predicted by "self-reflective study behavior" and "science self-efficacy" scales of SLI, whereas the course grade was predicted by "metacognitive engagement" and "dynamic scientific truth," (a factor from science epistemology). The third study investigated the effects of text-based conceptual-change strategy (Enhanced Refutational Text; ERT) on Newtonian Laws of Motion, and the efficacy of the SLI scales in a controlled setting. Also, initial divergent and convergent validity procedures are reported in the study. The results provided partial support for the superiority of ERT over expository text. The ERT was an effective intervention for students with no prior physics background but not for students with prior physics background.
Improvements from a flipped classroom may simply be the fruits of active learning.
Jensen, Jamie L; Kummer, Tyler A; d M Godoy, Patricia D
2015-03-02
The "flipped classroom" is a learning model in which content attainment is shifted forward to outside of class, then followed by instructor-facilitated concept application activities in class. Current studies on the flipped model are limited. Our goal was to provide quantitative and controlled data about the effectiveness of this model. Using a quasi-experimental design, we compared an active nonflipped classroom with an active flipped classroom, both using the 5-E learning cycle, in an effort to vary only the role of the instructor and control for as many of the other potentially influential variables as possible. Results showed that both low-level and deep conceptual learning were equivalent between the conditions. Attitudinal data revealed equal student satisfaction with the course. Interestingly, both treatments ranked their contact time with the instructor as more influential to their learning than what they did at home. We conclude that the flipped classroom does not result in higher learning gains or better attitudes compared with the nonflipped classroom when both utilize an active-learning, constructivist approach and propose that learning gains in either condition are most likely a result of the active-learning style of instruction rather than the order in which the instructor participated in the learning process. © 2015 J. L. Jensen et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
An overview of conceptual understanding in science education curriculum in Indonesia
NASA Astrophysics Data System (ADS)
Widiyatmoko, A.; Shimizu, K.
2018-03-01
The purpose of this article is to discuss the term of “conceptual understanding” in science education curriculum in Indonesia. The implementation of 2013 Curriculum focuses on the acquisition of contextual knowledge in respective areas and environments. The curriculum seeks to develop students' evaluation skills in three areas: attitude, technical skills, and scientific knowledge. It is based on two layers of competencies: core and basic competencies. The core competencies in the curriculum 2013 represent the ability level to achieve the gradute competency standards of a students at each grade level. There are four mandatory core competencies for all educational levels and all subjects including science, which are spiritual, social, knowledge and skills competencies. In terms of knowledge competencies, conceptual understanding is an inseparable part of science concept since conceptual understanding is one of the basic competencies in science learning. This competency is a part of science graduation standard indicated in MoEC article number 20 in 2016. Therefore, conceptual understanding is needed by students for learning science successfully.
The roles of perceptual and conceptual information in face recognition.
Schwartz, Linoy; Yovel, Galit
2016-11-01
The representation of familiar objects is comprised of perceptual information about their visual properties as well as the conceptual knowledge that we have about them. What is the relative contribution of perceptual and conceptual information to object recognition? Here, we examined this question by designing a face familiarization protocol during which participants were either exposed to rich perceptual information (viewing each face in different angles and illuminations) or with conceptual information (associating each face with a different name). Both conditions were compared with single-view faces presented with no labels. Recognition was tested on new images of the same identities to assess whether learning generated a view-invariant representation. Results showed better recognition of novel images of the learned identities following association of a face with a name label, but no enhancement following exposure to multiple face views. Whereas these findings may be consistent with the role of category learning in object recognition, face recognition was better for labeled faces only when faces were associated with person-related labels (name, occupation), but not with person-unrelated labels (object names or symbols). These findings suggest that association of meaningful conceptual information with an image shifts its representation from an image-based percept to a view-invariant concept. They further indicate that the role of conceptual information should be considered to account for the superior recognition that we have for familiar faces and objects. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Transforming the junior level: Outcomes from instruction and research in E&M
NASA Astrophysics Data System (ADS)
Chasteen, Stephanie V.; Pollock, Steven J.; Pepper, Rachel E.; Perkins, Katherine K.
2012-12-01
Over the course of four years, we have researched and transformed a key course in the career of an undergraduate physics major—junior-level electricity and magnetism. With the aim of educating our majors based on a more complete understanding of the cognitive and conceptual challenges of upper-division courses, we used principles of active engagement and learning theory to develop course materials and conceptual assessments. Our research results from student and faculty interviews and observations also informed our approach. We present several measures of the outcomes of this work at the University of Colorado at Boulder and external institutions. Students in the transformed courses achieved higher learning gains compared to those in the traditionally taught courses, particularly in the areas of conceptual understanding and ability to articulate their reasoning about a problem. The course transformations appear to close a gender gap, improving female students’ scores on conceptual and traditional assessments so that they are more similar to those of male students. Students enthusiastically support the transformations, and indicate that several course elements provide useful scaffolding in conceptual understanding, as well as physicists’ “habits of mind” such as problem-solving approaches and work habits. Despite these positive outcomes, student conceptual learning gains do not fully meet faculty expectations, suggesting that it is valuable to further investigate how the content and skills indicative of “thinking like a physicist” can be most usefully taught at the upper division.
NASA Astrophysics Data System (ADS)
Li, Sissi L.
At the university level, introductory science courses usually have high student to teacher ratios which increases the challenge to meaningfully connect with students. Various curricula have been developed in physics education to actively engage students in learning through social interactions with peers and instructors in class. This learning environment demands not only conceptual understanding but also learning to be a scientist. However, the success of student learning is typically measured in test performance and course grades while assessment of student development as science learners is largely ignored. This dissertation addresses this issue with the development of an instrument towards a measure of physics learning identity (PLI) which is used to guide and complement case studies through student interviews and in class observations. Using the conceptual framework based on Etienne Wenger's communities of practice (1998), I examine the relationship between science learning and learning identity from a situated perspective in the context of a large enrollment science class as a community of practice. This conceptual framework emphasizes the central role of identity in the practices negotiated in the classroom community and in the way students figure out their trajectory as members. Using this framework, I seek to understand how the changes in student learning identity are supported by active engagement based instruction. In turn, this understanding can better facilitate the building of a productive learning community and provide a measure for achievement of the curricular learning goals in active engagement strategies. Based on the conceptual framework, I developed and validated an instrument for measuring physics learning identity in terms of student learning preferences, self-efficacy for learning physics, and self-image as a physics learner. The instrument was pilot tested with a population of Oregon State University students taking calculus based introductory physics. The responses were analyzed using principal component exploratory factor analysis. The emergent factors were analyzed to create reliable subscales to measure PLI in terms of physics learning self-efficacy and social expectations about learning. Using these subscales, I present a case study of a student who performed well in the course but resisted the identity learning goals of the curriculum. These findings are used to support the factors that emerged from the statistical analysis and suggest a potential model of the relationships between the factors describing science learning and learning identity in large enrollment college science classes. This study offers an instrument with which to measure aspects of physics learning identity and insights on how PLI might develop in a classroom community of practice.
The Relation of Story Structure to a Model of Conceptual Change in Science Learning
NASA Astrophysics Data System (ADS)
Klassen, Stephen
2010-03-01
Although various reasons have been proposed to explain the potential effectiveness of science stories to promote learning, no explicit relationship of stories to learning theory in science has been propounded. In this paper, two structurally analogous models are developed and compared: a structural model of stories and a temporal conceptual change model of learning. On the basis of the similarity of the models, as elaborated, it is proposed that the structure of science stories may promote a re-enactment of the learning process, and, thereby, such stories serve to encourage active learning through the generation of hypotheses and explanations. The practical implications of this theoretical analogy can be applied to the classroom in that the utilization of stories provides the opportunity for a type of re-enactment of the learning process that may encourage both engagement with the material and the development of long-term memory structures.
The Evocative Power of Words: Activation of Concepts by Verbal and Nonverbal Means
Lupyan, Gary; Thompson-Schill, Sharon L.
2014-01-01
A major part of learning a language is learning to map spoken words onto objects in the environment. An open question is what are the consequences of this learning for cognition and perception? Here, we present a series of experiments that examine effects of verbal labels on the activation of conceptual information as measured through picture verification tasks. We find that verbal cues, such as the word “cat,” lead to faster and more accurate verification of congruent objects and rejection of incongruent objects than do either nonverbal cues, such as the sound of a cat meowing, or words that do not directly refer to the object, such as the word “meowing.” This label advantage does not arise from verbal labels being more familiar or easier to process than other cues, and it does extends to newly learned labels and sounds. Despite having equivalent facility in learning associations between novel objects and labels or sounds, conceptual information is activated more effectively through verbal means than through non-verbal means. Thus, rather than simply accessing nonverbal concepts, language activates aspects of a conceptual representation in a particularly effective way. We offer preliminary support that representations activated via verbal means are more categorical and show greater consistency between subjects. These results inform the understanding of how human cognition is shaped by language and hint at effects that different patterns of naming can have on conceptual structure. PMID:21928923
Conceptual Frameworks beyond the Learning Organisation.
ERIC Educational Resources Information Center
Griffey, Simon
1998-01-01
The learning organization concept is the lowest of a three-stage hierarchy of learning-wisdom-enlightenment. This sequence is related to the evolution of the human mind from prepersonal to personal to transpersonal. (SK)
"Fab 13": The Learning Factory.
ERIC Educational Resources Information Center
Crooks, Steven M.; Eucker, Tom R.
2001-01-01
Describes how situated learning theory was employed in the design of Fab 13, a four-day simulation-based learning experience for manufacturing professionals at Intel Corporation. Presents a conceptual framework for understanding situated learning and discusses context, content, anchored instruction, facilitation, scaffolding, collaborating,…
ERIC Educational Resources Information Center
Potvin, Patrice; Mercier, Julien; Charland, Patrick; Riopel, Martin
2012-01-01
This research investigates the effect of classroom explicitation of initial conceptions (CEIC) on conceptual change in the context of learning electricity. Eight hundred and seventy five thirteen year-olds were tested in laboratory conditions to see if CEIC is or is not a productive step toward conceptual change. All students experienced a…
ERIC Educational Resources Information Center
Kosonen, Kari; Ilomäki, Liisa; Lakkala, Minna
2015-01-01
The present study focuses on examining how digitally guided conceptual mapping can be used in orienting students in higher education to learn complex domain content and practices. The outcomes of conceptual mapping were investigated as the orienting bases created by the students that used digitalized conceptual tools to construct an external…
An Analysis of Conceptual Flow Patterns and Structures in the Physics Classroom
ERIC Educational Resources Information Center
Eshach, Haim
2010-01-01
The aim of the current research is to characterize the conceptual flow processes occurring in whole-class dialogic discussions with a high level of interanimation; in the present case, of a high-school class learning about image creation on plane mirrors. Using detailed chains of interaction and conceptual flow discourse maps--both developed for…
How Do Students Learn Theology?
ERIC Educational Resources Information Center
Saines, Don
2009-01-01
This paper explores the way students learn theology through a small qualitative research project. It is undertaken in conversation with current higher education learning theory. This learning theory suggests that it is important to discover how a student conceptualizes learning and how they perceive the teaching environment. Students interviewed…
Integrating Research on Misconceptions, Reasoning Patterns and Three Types of Learning Cycles.
ERIC Educational Resources Information Center
Lawson, Anton E.
This paper describes how the learning cycle leads students to become more skilled reasoners. The three phases of the learning cycle are described and examples and goals of each are provided. Information is also offered on the three types of learning cycles: the descriptive; the empirical-inductive; and the hypothetical-deductive. Each is described…
The Learning Cycle: A Reintroduction
NASA Astrophysics Data System (ADS)
Maier, Steven J.; Marek, Edmund A.
2006-02-01
The learning cycle is an inquiry approach to instruction that continues to demonstrate significant effectiveness in the classroom.1-3 Rooted in Piaget's theory of intellectual development, learning cycles provide a structured means for students to construct concepts from direct experiences with science phenomena. Learning cycles have been the subject of numerous articles in science practitioner periodicals as well as the focus of much research in science education journals.4 This paper reintroduces the learning cycle by giving a brief description, followed by an example suitable for a range of physics classrooms.
NASA Astrophysics Data System (ADS)
Hanrahan, Mary
1994-12-01
This paper presents a model for the type of classroom environment believed to facilitate scientific conceptual change. A survey based on this model contains items about students' motivational beliefs, their study approach and their perceptions of their teacher's actions and learning goal orientation. Results obtained from factor analyses, correlations and analyses of variance, based on responses from 113 students, suggest that an empowering interpersonal teacher-student relationship is related to a deep approach to learning, a positive attitude to science, and positive self-efficacy beliefs, and may be increased by a constructivist approach to teaching.
ERIC Educational Resources Information Center
Lin, Jing
2016-01-01
This study focuses on the internal conditions of students' concept learning and builds a learning cycle' based on the "phases of the Moon" (MP) to, deepen students' understanding. The learning cycle of MP developed in this study includes three basic learning links, which are: cognitive conflict, abstraction and generalization, and…
ERIC Educational Resources Information Center
Lu, Owen H. T.; Huang, Anna Y. Q.; Huang, Jeff C. H.; Lin, Albert J. Q.; Ogata, Hiroaki; Yang, Stephen J. H.
2018-01-01
Blended learning combines online digital resources with traditional classroom activities and enables students to attain higher learning performance through well-defined interactive strategies involving online and traditional learning activities. Learning analytics is a conceptual framework and is a part of our Precision education used to analyze…
Conceptualizing On-the-Job Learning Styles
ERIC Educational Resources Information Center
Berings, Marjolein G. M. C.; Poell, Rob F.; Simons, P. Robert-Jan
2005-01-01
The broad aims of this study are to gain insight into employees' on-the-job learning activities to help them improve their on-the-job learning. The authors define on-the-job learning styles and operationalize the concept to include both mental and overt learning styles and both interpersonal and intrapersonal learning styles. Organizations and…
The Nature of Student Teachers' Regulation of Learning in Teacher Education
ERIC Educational Resources Information Center
Endedijk, Maaike D.; Vermunt, Jan D.; Verloop, Nico; Brekelmans, Mieke
2012-01-01
Background: Self-regulated learning (SRL) has mainly been conceptualized to involve student learning within academic settings. In teacher education, where learning from theory and practice is combined, student teachers also need to regulate their learning. Hence, there is an urgent need to extend SRL theories to the domain of teacher learning and…
NASA Astrophysics Data System (ADS)
Moreland, Judy; Jones, Alister; Northover, Ann
2001-02-01
This paper reports on a two-year classroom investigation of primary school (Years 1-8) technology education. The first year of the project explored emerging classroom practices in technology. In the second year intervention strategies were developed to enhance teaching, learning and assessment practices. Findings from the first year revealed that assessment was often seen in terms of social and managerial aspects, such as teamwork, turn taking and co-operative skills, rather than procedural and conceptual technological aspects. Existing formative interactions with students distorted the learning away from the procedural and conceptual aspects of the subject. The second year explored the development of teachers' technological knowledge in order to enhance formative assessment practices in technology, to inform classroom practice in technology, and to enhance student learning. Intervention strategies were designed to enhance the development of procedural, conceptual, societal and technical aspects of technology for teachers and students. The results from this intervention were very positive. This paper highlights the importance of developing teacher expertise pertaining to broad concepts of technology, detailed concepts in different technological areas and general pedagogical knowledge. The findings from this research therefore have implications for thinking about teaching, learning and assessment in technology.
Dynamic updating of hippocampal object representations reflects new conceptual knowledge
Mack, Michael L.; Love, Bradley C.; Preston, Alison R.
2016-01-01
Concepts organize the relationship among individual stimuli or events by highlighting shared features. Often, new goals require updating conceptual knowledge to reflect relationships based on different goal-relevant features. Here, our aim is to determine how hippocampal (HPC) object representations are organized and updated to reflect changing conceptual knowledge. Participants learned two classification tasks in which successful learning required attention to different stimulus features, thus providing a means to index how representations of individual stimuli are reorganized according to changing task goals. We used a computational learning model to capture how people attended to goal-relevant features and organized object representations based on those features during learning. Using representational similarity analyses of functional magnetic resonance imaging data, we demonstrate that neural representations in left anterior HPC correspond with model predictions of concept organization. Moreover, we show that during early learning, when concept updating is most consequential, HPC is functionally coupled with prefrontal regions. Based on these findings, we propose that when task goals change, object representations in HPC can be organized in new ways, resulting in updated concepts that highlight the features most critical to the new goal. PMID:27803320
2017-05-25
the planning process. Current US Army doctrine links conceptual planning to the Army Design Methodology and detailed planning to the Military...Decision Making Process. By associating conceptual and detailed planning with doctrinal methodologies , it is easy to regard the transition as a set period...plans into detailed directives resulting in changes to the operational environment. 15. SUBJECT TERMS Design; Army Design Methodology ; Conceptual
Firefighter Workplace Learning: An Exploratory Case Study
ERIC Educational Resources Information Center
Tracey, Edward A.
2014-01-01
Despite there being a significant amount of research investigating workplace learning, research exploring firefighter workplace learning is almost nonexistent. The purpose of this qualitative multi-case study was to explore how firefighters conceptualize, report, and practice workplace learning. The researcher also investigated how firefighters…
Learning Cities for All: Directions to a New Adult Education and Learning Movement
ERIC Educational Resources Information Center
Scott, Leodis
2015-01-01
This chapter features a conceptual framework that considers the practical characteristics of learning cities, pointing to the field of adult and continuing education to lead a movement for the purposes of education, learning, and engagement for all.
E-Learning Research and Development: On Evaluation, Learning Performance, and Visual Attention
ERIC Educational Resources Information Center
Rüth, Marco
2017-01-01
Digital learning is becoming a prevalent everyday human behavior. Effective digital learning services are integral for educational innovation and constitute competitive advantages for education businesses. Quality management in e-learning research and development is thus of utmost importance and needs both strong conceptual and empirical…
East-West Perspectives on Elder Learning
ERIC Educational Resources Information Center
Tam, Maureen
2012-01-01
This paper describes and conceptualizes the meaning of lifelong learning from two cultural perspectives--East and West. It examines the different principles underpinning lifelong learning that explain why and how elders in the two cultures engage differently in continued learning. Finally, it discusses the cultural impact on elder learning by…
Exploring Mobile Learning in the Third Space
ERIC Educational Resources Information Center
Schuck, Sandy; Kearney, Matthew; Burden, Kevin
2017-01-01
Mobile learning is enabling educators and students to learn in ways not previously possible. The ways that portable, multi-functional mobile devices can untether the learner from formal institutional learning give scope for learning to be conceptualised in an expanded variety of places, times and ways. In this conceptual article the authors…
Stealing Knowledge in a Landscape of Learning: Conceptualizations of Jazz Education
ERIC Educational Resources Information Center
Bjerstedt, Sven
2016-01-01
Theoretical approaches to learning in practice-based jazz improvisation contexts include situated learning and ecological perspectives. This article focuses on how interest-driven, self-sustaining jazz learning activities can be matched against the concepts of stolen knowledge (Brown & Duguid, 1996) and landscape of learning (Bjerstedt, 2014).…
ERIC Educational Resources Information Center
Vartiainen, Henriikka; Enkenberg, Jorma
2013-01-01
Sociocultural approaches emphasize the systemic, context-bound nature of learning, which is mediated by other people, physical and conceptual artifacts, and tools. However, current educational systems tend not to approach learning from the systemic perspective, and mostly situate learning within classroom environments. This design-based research…
A Conceptual Framework for Organizing Active Learning Experiences in Biology Instruction
ERIC Educational Resources Information Center
Gardner, Joel; Belland, Brian R.
2012-01-01
Introductory biology courses form a cornerstone of undergraduate instruction. However, the predominantly used lecture approach fails to produce higher-order biology learning. Research shows that active learning strategies can increase student learning, yet few biology instructors use all identified active learning strategies. In this paper, we…
Team Learning and Team Composition in Nursing
ERIC Educational Resources Information Center
Timmermans, Olaf; Van Linge, Roland; Van Petegem, Peter; Elseviers, Monique; Denekens, Joke
2011-01-01
Purpose: This study aims to explore team learning activities in nursing teams and to test the effect of team composition on team learning to extend conceptually an initial model of team learning and to examine empirically a new model of ambidextrous team learning in nursing. Design/methodology/approach: Quantitative research utilising exploratory…
ERIC Educational Resources Information Center
Myers, Scott A.; Goodboy, Alan K.
2015-01-01
The mission of "Communication Education" is to publish the best research on communication and learning. Researchers study the communication-learning interface in many ways, but a common approach is to explore how instructor and student communication can lead to better learning outcomes. Although scholars have long classified learning…
NASA Astrophysics Data System (ADS)
Ibrahim, Hyatt Abdelhaleem
The effect of Guided Constructivism (Interactivity-Based Learning Environment) and Traditional Expository instructional methods on students' misconceptions about concepts of Newtonian Physics was investigated. Four groups of 79 of University of Central Florida students enrolled in Physics 2048 participated in the study. A quasi-experimental design of nonrandomized, nonequivalent control and experimental groups was employed. The experimental group was exposed to the Guided Constructivist teaching method, while the control group was taught using the Traditional Expository teaching approach. The data collection instruments included the Force Concept Inventory Test (FCI), the Mechanics Baseline Test (MBT), and the Maryland Physics Expectation Survey (MPEX). The Guided Constructivist group had significantly higher means than the Traditional Expository group on the criterion variables of: (1) conceptions of Newtonian Physics, (2) achievement in Newtonian Physics, and (3) beliefs about the content of Physics knowledge, beliefs about the role of Mathematics in learning Physics, and overall beliefs about learning/teaching/appropriate roles of learners and teachers/nature of Physics. Further, significant relationships were found between (1) achievement, conceptual structures, beliefs about the content of Physics knowledge, and beliefs about the role of Mathematics in learning Physics; (2) changes in misconceptions about the physical phenomena, and changes in beliefs about the content of Physics knowledge. No statistically significant difference was found between the two teaching methods on achievement of males and females. These findings suggest that differences in conceptual learning due to the nature of the teaching method used exist. Furthermore, greater conceptual learning is fostered when teachers use interactivity-based teaching strategies to train students to link everyday experience in the real physical world to formal school concepts. The moderate effect size and power of the study suggest that the effect may not be subtle, but reliable. Physics teachers can use these results to inform their decisions about structuring learning environment when conceptual learning is important.
Using the Learning Cycle To Teach Physical Science: A Hands-on Approach for the Middle Grades.
ERIC Educational Resources Information Center
Beisenherz, Paul; Dantonio, Marylou
The Learning Cycle Strategy enables students themselves to construct discrete science concepts and includes an exploration phase, introduction phase, and application phase. This book focuses on the use of the Learning Cycle to teach physical sciences and is divided into three sections. Section I develops a rationale for the Learning Cycle as an…
The interactive learning toolkit: technology and the classroom
NASA Astrophysics Data System (ADS)
Lukoff, Brian; Tucker, Laura
2011-04-01
Peer Instruction (PI) and Just-in-Time-Teaching (JiTT) have been shown to increase both students' conceptual understanding and problem-solving skills. However, the time investment for the instructor to prepare appropriate conceptual questions and manage student JiTT responses is one of the main implementation hurdles. To overcome this we have developed the Interactive Learning Toolkit (ILT), a course management system specifically designed to support PI and JiTT. We are working to integrate the ILT with a fully interactive classroom system where students can use their laptops and smartphones to respond to ConcepTests in class. The goal is to use technology to engage students in conceptual thinking both in and out of the classroom.
Discrepant Events: A Challenge to Students' Intuition
NASA Astrophysics Data System (ADS)
González-Espada, Wilson J.; Birriel, Jennifer; Birriel, Ignacio
2010-11-01
Studies on cognitive aspects of science education, especially how students achieve conceptual change, have been a focus of interest for many years. Researchers of student learning and conceptual change have developed several easily applicable teaching strategies. One of these strategies is known as discrepant events. Discrepant events are very powerful ways to stimulate interest, motivate students to challenge their covert science misconceptions, and promote higher-order thinking skills. The key point is that directly challenging students' naive ideas will lead to more quality science learning going on in the classroom. In this paper, we summarize the research-based role of discrepant events in conceptual change and we share several highly successful discrepant events we use in our own classes.
NASA Astrophysics Data System (ADS)
Brookes, David T.; Etkina, Eugenia
2007-06-01
This paper introduces a theory about the role of language in learning physics. The theory is developed in the context of physics students and physicists talking and writing about the subject of quantum mechanics. We found that physicists’ language encodes different varieties of analogical models through the use of grammar and conceptual metaphor. We hypothesize that students categorize concepts into ontological categories based on the grammatical structure of physicists’ language. We also hypothesize that students overextend and misapply conceptual metaphors in physicists’ speech and writing. Using our theory, we will show how, in some cases, we can explain student difficulties in quantum mechanics as difficulties with language.
ERIC Educational Resources Information Center
Hense, Jan; Mandl, Heinz
2012-01-01
This conceptual paper aims to clarify the theoretical underpinnings of game based learning (GBL) and learning with digital learning games (DLGs). To do so, it analyses learning of game related skills and contents, which occurs constantly during playing conventional entertainment games, from three perspectives: learning theory, emotion theory, and…
Conceptual design of thermal energy storage systems for near term electric utility applications
NASA Technical Reports Server (NTRS)
Hall, E. W.; Hausz, W.; Anand, R.; Lamarche, N.; Oplinger, J.; Katzer, M.
1979-01-01
Potential concepts for near term electric utility applications were identified. The most promising ones for conceptual design were evaluated for their economic feasibility and cost benefits. The screening process resulted in selecting two coal-fired and two nuclear plants for detailed conceptual design. The coal plants utilized peaking turbines and the nuclear plants varied the feedwater extraction to change power output. It was shown that the performance and costs of even the best of these systems could not compete in near term utility applications with cycling coal plants and typical gas turbines available for peaking power. Lower electricity costs, greater flexibility of operation, and other benefits can be provided by cycling coal plants for greater than 1500 hours of peaking or by gas turbines for less than 1500 hours if oil is available and its cost does not increase significantly.
A reliability and mass perspective of SP-100 Stirling cycle lunar-base powerplant designs
NASA Technical Reports Server (NTRS)
Bloomfield, Harvey S.
1991-01-01
The purpose was to obtain reliability and mass perspectives on selection of space power system conceptual designs based on SP-100 reactor and Stirling cycle power-generation subsystems. The approach taken was to: (1) develop a criterion for an acceptable overall reliability risk as a function of the expected range of emerging technology subsystem unit reliabilities; (2) conduct reliability and mass analyses for a diverse matrix of 800-kWe lunar-base design configurations employing single and multiple powerplants with both full and partial subsystem redundancy combinations; and (3) derive reliability and mass perspectives on selection of conceptual design configurations that meet an acceptable reliability criterion with the minimum system mass increase relative to reference powerplant design. The developed perspectives provided valuable insight into the considerations required to identify and characterize high-reliability and low-mass lunar-base powerplant conceptual design.
Devine, Emily Beth; Alfonso-Cristancho, Rafael; Devlin, Allison; Edwards, Todd C; Farrokhi, Ellen T; Kessler, Larry; Lavallee, Danielle C; Patrick, Donald L; Sullivan, Sean D; Tarczy-Hornoch, Peter; Yanez, N David; Flum, David R
2013-08-01
To describe the inaugural comparative effectiveness research (CER) cohort study of Washington State's Comparative Effectiveness Research Translation Network (CERTAIN), which compares invasive with noninvasive treatments for peripheral artery disease, and to focus on the patient centeredness of this cohort study by describing it within the context of a newly published conceptual framework for patient-centered outcomes research (PCOR). The peripheral artery disease study was selected because of clinician-identified uncertainty in treatment selection and differences in desired outcomes between patients and clinicians. Patient centeredness is achieved through the "Patient Voices Project," a CERTAIN initiative through which patient-reported outcome (PRO) instruments are administered for research and clinical purposes, and a study-specific patient advisory group where patients are meaningfully engaged throughout the life cycle of the study. A clinician-led research advisory panel follows in parallel. Primary outcomes are PRO instruments that measure function, health-related quality of life, and symptoms, the latter developed with input from the patients. Input from the patient advisory group led to revised retention procedures, which now focus on short-term (3-6 months) follow-up. The research advisory panel is piloting a point-of-care, patient assessment checklist, thereby returning study results to practice. The cohort study is aligned with the tenets of one of the new conceptual frameworks for conducting PCOR. The CERTAIN's inaugural cohort study may serve as a useful model for conducting PCOR and creating a learning health care network. Copyright © 2013 Elsevier Inc. All rights reserved.
Devine, EB; Alfonso-Cristancho, R; Devlin, A; Edwards, TC; Farrokhi, ET; Kessler, L; Lavallee, DC; Patrick, DL; Sullivan, SD; Tarczy-Hornoch, P; Yanez, ND; Flum, DR
2014-01-01
Objective To describe the inaugural comparative effectiveness research (CER) cohort study of Washington State’s Comparative Effectiveness Research Translation Network (CERTAIN), which compares invasive to non-invasive treatments for peripheral artery disease; to focus on the patient-centeredness of this cohort study by describing it within the context of a newly published conceptual frameworks for patient-centered outcomes research (PCOR). Study Design and Setting The peripheral artery disease study was selected due to clinician-identified uncertainty in treatment selection and differences in desired outcomes between patients and clinicians. Patient-centeredness is achieved through the ‘Patient Voices Project’, a CERTAIN initiative through which patient-reported outcome (PRO) instruments are administered for research and clinical purposes, and a study-specific patient advisory group where patients are meaningfully engaged throughout the life cycle of the trial. A clinician-led research advisory panel follows in parallel. Results Primary outcomes are PRO instruments that measure function, health-related quality of life, and symptoms; the latter developed with input from patients. Input from the patient advisory group led to revised retention procedures, which now focus on short-term (3–6 months) follow-up. The research advisory panel is piloting a point-of-care, patient assessment checklist, there by returning study results to practice. The cohort study is aligned with the tenets of one of the new conceptual frameworks for conducting PCOR. Conclusion CERTAIN’s inaugural cohort study may serve as a useful model for conducting PCOR and creating a Learning Healthcare Network. PMID:23849146
Design for Safety - The Ares Launch Vehicles Paradigm Change
NASA Technical Reports Server (NTRS)
Safie, Fayssal M.; Maggio, Gaspare
2010-01-01
The lessons learned from the S&MA early involvement in the Ares I launch vehicle design phases proved that performing an in-line function jointly with engineering is critical for S&MA to have an effective role in supporting the system, element, and component design. These lessons learned were used to effectively support the Ares V conceptual design phase and planning for post conceptual design phases. The Top level Conceptual LOM assessment for Ares V performed by the S&MA community jointly with the engineering Advanced Concept Office (ACO) was influential in the final selection of the Ares V system configuration. Post conceptual phase, extensive reliability effort should be planned to support future Heavy Lift Launch Vehicles (HLLV) design. In-depth reliability analysis involving the design, manufacturing, and system engineering communities is critical to understand design and process uncertainties and system integrated failures.
Educational Criteria for Evaluating Simple Class Diagrams Made by Novices for Conceptual Modeling
ERIC Educational Resources Information Center
Kayama, Mizue; Ogata, Shinpei; Asano, David K.; Hashimoto, Masami
2016-01-01
Conceptual modeling is one of the most important learning topics for higher education and secondary education. The goal of conceptual modeling in this research is to draw a class diagram using given notation to satisfy the given requirements. In this case, the subjects are asked to choose concepts to satisfy the given requirements and to correctly…
ERIC Educational Resources Information Center
Gorecek Baybars, Meryem; Kucukozer, Huseyin
2018-01-01
The object of this study is to determine the conceptual understanding that prospective Science teachers have relating "de Broglie: Matter waves" and to investigate the effect of the instruction performed, on the conceptual understanding. This study was performed at a state university located in the western part of Turkey, with the…
ERIC Educational Resources Information Center
Ahn, Kyungja
2011-01-01
This case study aims to reveal how conceptualization of native speakership was constructed and reinforced in a South Korean university classroom of English as a foreign language (EFL). In addition, it examines how this conceptualization positions native speakers, a non-native EFL teacher, and learners, and what learning opportunities were provided…
McCray, Janet
2003-11-01
One of the key challenges for practitioners in present day health and social care has been responding effectively in the interprofessional teamwork setting, where collaboration is at the centre of professional activity. For whilst practitioners are expected to work interprofessionally there often remains limited attention to the actual process of interprofessional practice itself, within organizational strategy, local workforce development planning and individual continuing professional development. These concerns were a driver for this research with practitioners in the field of learning disability which resulted in the development of a conceptual framework for interprofessional practice. This paper sets out the process of conceptual framework development, underpinned by the concepts of knowledge of learning disabilities, contextual socialisation, empowerment, conflict management, transforming capability and interprofessional reflection on action. The researcher suggests that the framework may offer clinical leaders in learning disabilities and a range of other practice settings a tool to facilitate individual practitioner development, enabling as it does, the identification of a range of critical factors which impact on the outcomes of interprofessional practice intervention.
Knowledge Visualization for Self-Regulated Learning
ERIC Educational Resources Information Center
Wang, Minhong; Peng, Jun; Cheng, Bo; Zhou, Hance; Liu, Jie
2011-01-01
The Web allows self-regulated learning through interaction with large amounts of learning resources. While enjoying the flexibility of learning, learners may suffer from cognitive overload and conceptual and navigational disorientation when faced with various information resources under disparate topics and complex knowledge structures. This study…
The Semantic Learning Organization
ERIC Educational Resources Information Center
Sicilia, Miguel-Angel; Lytras, Miltiadis D.
2005-01-01
Purpose: The aim of this paper is introducing the concept of a "semantic learning organization" (SLO) as an extension of the concept of "learning organization" in the technological domain. Design/methodology/approach: The paper takes existing definitions and conceptualizations of both learning organizations and Semantic Web technology to develop…
Learning Methodology in the Classroom to Encourage Participation
ERIC Educational Resources Information Center
Luna, Esther; Folgueiras, Pilar
2014-01-01
Service learning is a methodology that promotes the participation of citizens in their community. This article presents a brief conceptualization of citizen participation, characteristics of service learning methodology, and validation of a programme that promotes service-learning projects. This validation highlights the suitability of this…
Optimizing conceptual aircraft designs for minimum life cycle cost
NASA Technical Reports Server (NTRS)
Johnson, Vicki S.
1989-01-01
A life cycle cost (LCC) module has been added to the FLight Optimization System (FLOPS), allowing the additional optimization variables of life cycle cost, direct operating cost, and acquisition cost. Extensive use of the methodology on short-, medium-, and medium-to-long range aircraft has demonstrated that the system works well. Results from the study show that optimization parameter has a definite effect on the aircraft, and that optimizing an aircraft for minimum LCC results in a different airplane than when optimizing for minimum take-off gross weight (TOGW), fuel burned, direct operation cost (DOC), or acquisition cost. Additionally, the economic assumptions can have a strong impact on the configurations optimized for minimum LCC or DOC. Also, results show that advanced technology can be worthwhile, even if it results in higher manufacturing and operating costs. Examining the number of engines a configuration should have demonstrated a real payoff of including life cycle cost in the conceptual design process: the minimum TOGW of fuel aircraft did not always have the lowest life cycle cost when considering the number of engines.
Bio-behavioral synchrony promotes the development of conceptualized emotions.
Atzil, Shir; Gendron, Maria
2017-10-01
As adults, we have structured conceptual representations of our emotions that help us to make sense of and regulate our ongoing affective experience. The ability to use emotion concepts is critical to make predictions about the world and choose appropriate action, such as 'I am afraid, and going to run away' or 'I am hungry and going to eat'. Thus, emotion concepts have an important role in helping us maintain our ongoing physiological balance, or allostasis. We will suggest here that infants can learn emotion concepts for the purpose of allostasis regulation, and that conceptualization is key component in emotional development. Moreover, we will suggest that social dyads facilitate concept learning because of a robust evolutionary feature seen in newborns of social species: they cannot survive alone and depend on conspecifics for allostasis regulation. Such social dependency creates a robust driving force for social learning of emotion concepts, and makes the social dyad, which is designed to regulate the infant's allostasis, an optimal medium for concept learning. In line with that, we will review evidence showing that the neural reference space for emotion overlaps with neural circuits that support allostasis (striatum, amygdala, and hypothalamus) and conceptualization (medial prefrontal cortex, posterior cingulate cortex), and that their developmental trajectories are interrelated, and depend on synchronous social care. Copyright © 2017 Elsevier Ltd. All rights reserved.
Inquiry in early years science teaching and learning: Curriculum design and the scientific story
NASA Astrophysics Data System (ADS)
McMillan, Barbara Alexander
2001-07-01
Inquiry in school science, as conceived by the authors of the Common Framework of Science Learning Outcomes K--12, is dependent upon four areas of skills. These are the skills of initiating and planning, performing and recording, analysing and interpreting, and communication and teamwork that map onto what Hodson calls the five phases of scientific inquiry in school science: initiation, design and planning, performance, interpretation, and reporting and communicating. This study looked at initiation in a multiage (Grades 1--3) classroom, and the curriculum, design tools, and inquiry acts believed to be necessary precursors of design and planning phases whether the inquiry in which young children engage is archival or laboratory investigation. The curriculum was designed to build upon children's everyday biological knowledge and through a series of carefully organized lessons to help them to begin to build scientifically valid conceptual models in the area of animal life cycles. The lessons began with what is called benchmark-invention after the historical work of Robert Karplus and the contemporary work of Earl Hunt and Jim Minstrell. The introduction of a biological concept was followed by a series of exploration activities in which children were encouraged to apply the concept invented in the benchmark lesson. Enlargement followed. This was the instructional phase in which children were helped to establish scientifically valid relationships between the invented concept and other biological concepts. The pre-instruction and post-instruction interview data suggest that the enacted curriculum and sequence in which the biological knowledge was presented helped the nineteen children in the study to recognize the connections and regularities within the life cycles of the major groupings of animals, and to begin to build scientific biological conceptual models. It is, however, argued that everyday biology, in the form of the person analogy, acts as an obstacle to biological understanding, and that the construction of scientific knowledge depends upon first hand experiences with organisms, as much as it does dialogical interaction, "acts of inquiry", and reflective exploration of multiple sources of information.
An Update on Transformative Learning.
ERIC Educational Resources Information Center
Baumgartner, Lisa M.
2001-01-01
Transformative learning can be conceptualized in emancipatory, cognitive-rational, developmental, and spiritual approaches. Current research is examining transformative learning in groups and organizations, ways to foster it in learners, and ethical considerations for adult educators. (Contains 41 references.) (SK)
ERIC Educational Resources Information Center
Diakidoy, Irene-Anna; Vosniadou, Stella; Hawks, Jackson D.
1997-01-01
Examines perceptions concerning the shape of the earth and the causes of the day/night cycle among American Indian children. Interviews with 26 Lakota/Dakota elementary children revealed a preference for a synthetic model of the earth and animistic explanations for the day/night cycle. Includes excerpts from the interviews. (MJP)
Performance and Mass Modeling Subtleties in Closed-Brayton-Cycle Space Power Systems
NASA Technical Reports Server (NTRS)
Barrett, Michael J.; Johnson, Paul K.
2005-01-01
Contents include the following: 1. Closed-Brayton-cycle (CBC) thermal energy conversion is one available option for future spacecraft and surface systems. 2. Brayton system conceptual designs for milliwatt to megawatt power converters have been developed 3. Numerous features affect overall optimized power conversion system performance: Turbomachinery efficiency. Heat exchanger effectiveness. Working-fluid composition. Cycle temperatures and pressures.
ERIC Educational Resources Information Center
Bohon, Leslie L.; McKelvey, Susan; Rhodes, Joan A.; Robnolt, Valerie J.
2017-01-01
Experiential learning theory places experience at the center of learning. Kolb's four-stage cycle of experiential learning suggests that effective learners must engage fully in each stage of the cycle--feeling, reflection, thinking, and action. This research assesses the alignment of Kolb's experiential learning cycle with the week-long Summer…
NASA Astrophysics Data System (ADS)
Çil, Emine; Çepni, Salih
2016-01-01
Background: One of the most important goals of science education is to enable students to understand the nature of science (NOS). However, generally regular science teaching in classrooms does not help students improve informed NOS views. Purpose: This study investigated the influence of an explicit reflective conceptual change approach compared with an explicit reflective inquiry-oriented approach on seventh graders' understanding of NOS. Sample: The research was conducted with seventh grade students. A total of 44 students participated in the study. Design and method: The study was an interpretive study because this study focused on the meanings that students attach to target aspects of NOS. Participants were divided into two groups, each consisting of 22 students. One of the groups learned NOS with an explicit reflective conceptual change approach. The requirements of conceptual change were provided through the use of conceptual change texts and concept cartoons. The other group learned NOS with an explicit reflective inquiry-oriented approach. The data were collected through open-ended questionnaires and semi-structured interviews. These instruments were employed in a pre-test, a post-test and a delayed test. Students' views of the aspects of NOS were categorized as naive, transitional and informed. Results: The result of this study indicated that before receiving instruction, most of the participants had transitional views of the tentative, empirical and imaginative and creative aspects of the NOS, and they had naive understandings of the distinction between observation and inference. The instruction in the experimental group led to a 60% - a 25% increase in the number of students who possessed an informed understanding of the tentative, empirical, creative and observation and inference aspect of the NOS. The instruction in the control group led to a 30% - a 15% increase in the informed NOS views. Conclusion: The explicit reflective conceptual change approach is more effective than the explicit reflective inquiry-oriented approach in improving participants' NOS conceptions. Another conclusion of this study is that if NOS is taught within the explicit reflective conceptual change approach, learners can retain learned views long after instruction.
Learning science in small groups: The relationship of conversation to conceptual understanding
NASA Astrophysics Data System (ADS)
McDonald, James Tarleton
The purpose of this study was to investigate the relationship between conversation and conceptual understanding of erosion. The objective of this study was to investigate how fifth grade students' conceptions of erosion changed while they used stream tables and worked in groups of four within an inquiry-based curriculum. This study used symbolic interactionism and sociocognitive frameworks to interpret science learning in the elementary classroom. The research focused on the conceptual understanding of the focal group students, their use of classroom discourse to talk about their understandings of erosion, and the expertise that emerged while using stream tables. This study took place over a one-semester long study on erosion. Key informants were eight fifth graders. The data sources consisted of children's journals; transcripts of audiotaped interviews with the key informants before, during, and after the erosion unit; transcripts of videotapes of the students using the stream tables; and field notes recording children's discourse and activity. Individual and group cases were constructed during the study. The knowledge of the eight focal group children was placed on a hierarchy of conceptual understanding that contained 8 components of the erosion process. All four of the students whose ideas were examined in depth gained in their conceptual understanding of erosion. Students' individual expertise enhanced their own conceptual understanding. The contribution of classroom discourse and expertise to conceptual understanding differed between the two focal groups. Group 1 used essential expertise to sustain generative conversations, maximizing their learning opportunities. Students in Group 1 got along with one another, rotated assigned roles and jobs, and were able to start their own generative conversations. Members of Group 1 asked generative questions, connected stream table events to real life situations, and involved everyone in the group. Group 2 engaged in a predominance of procedural discourse and had fewer learning opportunities. Group 2 had two dominant personalities who developed a conflict over roles and jobs, keeping their peers out of the conversation. Students in Group 2 had generative conversations, but these were not sustained due to the lack of acknowledgment of peer expertise and the starting their own generative conversations.
Argumentation as a Strategy for Conceptual Learning of Dynamics
NASA Astrophysics Data System (ADS)
Eskin, Handan; Ogan-Bekiroglu, Feral
2013-10-01
Researchers have emphasized the importance of promoting argumentation in science classrooms for various reasons. However, the study of argumentation is still a young field and more research needs to be carried out on the tools and pedagogical strategies that can assist teachers and students in both the construction and evaluation of scientific arguments. Thus, the aim of this study was to evaluate the impact of argumentation on students' conceptual learning in dynamics. True-experimental design using quantitative research methods was carried out for the study. The participants of the study were tenth graders studying in two classes in an urban all-girls school. There were 26 female students in each class. Five argumentations promoted in the different contexts were embedded through the dynamics unit over a 10-week duration. The study concludes that engaging in the argumentative process that involves making claims, using data to support these claims, warranting the claims with scientific evidence, and using backings, rebuttals, and qualifiers to further support the reasoning, reinforces students' understanding of science, and promotes conceptual change. The results suggest that argumentation should be employed during instruction as a way to enable conceptual learning.
Budé, Luc; van de Wiel, Margaretha W J; Imbos, Tjaart; Berger, Martijn P F
2011-06-01
Education is aimed at students reaching conceptual understanding of the subject matter, because this leads to better performance and application of knowledge. Conceptual understanding depends on coherent and error-free knowledge structures. The construction of such knowledge structures can only be accomplished through active learning and when new knowledge can be integrated into prior knowledge. The intervention in this study was directed at both the activation of students as well as the integration of knowledge. Undergraduate university students from an introductory statistics course, in an authentic problem-based learning (PBL) environment, were randomly assigned to conditions and measurement time points. In the PBL tutorial meetings, half of the tutors guided the discussions of the students in a traditional way. The other half guided the discussions more actively by asking directive and activating questions. To gauge conceptual understanding, the students answered open-ended questions asking them to explain and relate important statistical concepts. Results of the quantitative analysis show that providing directive tutor guidance improved understanding. Qualitative data of students' misconceptions seem to support this finding. Long-term retention of the subject matter seemed to be inadequate. ©2010 The British Psychological Society.
ERIC Educational Resources Information Center
Nelson, Deborah G. Kemler; O'Neil, Kelly A.; Asher, Yvonne M.
2008-01-01
Two studies investigated the relationship between learning names and learning concepts in preschool children. More specifically, we focused on the relationship between learning the names and learning the intended functions of artifacts, given that the intended function of an artifact is generally thought to constitute core conceptual information…
ERIC Educational Resources Information Center
Phan, Huy P.
2011-01-01
Multimedia learning is innovative and has revolutionised the way we learn online. It is important to create a multimedia learning environment that stimulates active participation and effective learning. The significance of multimedia learning extends to include the cultivation of professional and personal experiences that reflect the reality of a…
ERIC Educational Resources Information Center
Jones, Monty; Dexter, Sara
2016-01-01
Improving in-service teacher education is paramount to improving student learning outcomes, and while research in this area typically examines formal teacher learning opportunities, emerging research indicates that teachers also engage in informal and independent modes of learning. Our inquiry into how teachers learned about integrating technology…
NASA Technical Reports Server (NTRS)
Petrick, E. J.
1973-01-01
An analytical study was made of the stability of a closed-loop liquid-lithium temperature control of the primary loop of a conceptual nuclear Brayton space powerplant. The operating point was varied from 20 to 120 percent of design. A describing-function technique was used to evaluate the effects of temperature dead band and control coupling backlash. From the system investigation, it was predicted that a limit cycle will not exist with a temperature dead band, but a limit cycle will not exist when backlash is present. The results compare favorably with a digital computer simulation.
Conceptual design of thermal energy storage systems for near-term electric utility applications
NASA Technical Reports Server (NTRS)
Hall, E. W.
1980-01-01
Promising thermal energy storage systems for midterm applications in conventional electric utilities for peaking power generation are evaluated. Conceptual designs of selected thermal energy storage systems integrated with conventional utilities are considered including characteristics of alternate systems for peaking power generation, viz gas turbines and coal fired cycling plants. Competitive benefit analysis of thermal energy storage systems with alternate systems for peaking power generation and recommendations for development and field test of thermal energy storage with a conventional utility are included. Results indicate that thermal energy storage is only marginally competitive with coal fired cycling power plants and gas turbines for peaking power generation.
ERIC Educational Resources Information Center
Li, Xiaojie; Yang, Xianmin
2016-01-01
Learning concentration deserves in-depth investigation in the field of mobile learning. Therefore, this study examined the interaction effects of learning styles and interest on the learning concentration and academic achievement of students who were asked to learn conceptual knowledge via their mobile phones in a classroom setting. A total of 92…
Idea and Action: Action Research and the Development of Conceptual Change Teaching of Science.
ERIC Educational Resources Information Center
Tabachnick, B. Robert; Zeichner, Kenneth M.
1999-01-01
Describes and analyzes an action-research seminar for prospective elementary and secondary teachers in terms of how it facilitated prospective teachers' learning to teach for conceptual change. Contains 37 references. (Author/WRM)
A Cultural Comparison of Trust in eLearning Artifacts
ERIC Educational Resources Information Center
Simmons, Lakisha L.; Simmons, Chris B.; Hayek, Mario; Parks, Rachida; Mbarika, Victor W.
2012-01-01
A significant body of literature focuses on learning mediated by technology (eLearning). We conceptually develop and empirically test a model of trust antecedents with online undergraduate students. Contributing to the student eLearning success literature, we posit that eLearning students require the support of technologies and trust in those…
ERIC Educational Resources Information Center
Skinner, Christopher H.
2010-01-01
Almost all academic skills deficits can be conceptualized as learning rate problems as students are not failing to learn, but not learning rapidly enough. Thus, when selecting among various possible remedial procedures, educators need an evidence base that indicates which procedure results in the greatest increases in learning rates. Previous…
A Framework for Implementing Individualized Self-Regulated Learning Strategies in the Classroom
ERIC Educational Resources Information Center
Ness, Bryan M.; Middleton, Michael J.
2012-01-01
Self-regulated learning (SRL) is a conceptual model that can be used to design and implement individualized learning strategies for students with learning disabilities. Students who self-regulate their learning engage in planning, performance, and self-evaluation during academic tasks. This article highlights one approach for teaching SRL skills…
Understanding How Service Learning Pedagogy Impacts Student Learning Objectives
ERIC Educational Resources Information Center
Wang, Liz; Calvano, Lisa
2018-01-01
Service learning (SL) is gaining popularity in business schools as a way to supplement traditional pedagogies. Research indicates that SL improves particular learning outcomes, but little is known about how this happens. Using Kolb's theory of experiential learning, the authors develop and test a conceptual model that explains how SL activates the…
Research and Conceptualization of Ontologies in Intelligent Learning Systems
ERIC Educational Resources Information Center
Deliyska, Boryana; Manoilov, Peter
2010-01-01
The intelligent learning systems provide direct customized instruction to the learners without the intervention of human tutors on the basis of Semantic Web resources. Principal roles use ontologies as instruments for modeling learning processes, learners, learning disciplines and resources. This paper examines the variety, relationships, and…
Verb Learning in 14- and 18-Month-Old English-Learning Infants
ERIC Educational Resources Information Center
He, Angela Xiaoxue; Lidz, Jeffrey
2017-01-01
The present study investigates English-learning infants' early understanding of the link between the grammatical category "verb" and the conceptual category "event," and their ability to recruit morphosyntactic information online to learn novel verb meanings. We report two experiments using an infant-controlled…
Taking Another Look at the Data Management Life Cycle: Deconstruction, Agile, and Community
NASA Astrophysics Data System (ADS)
Young, J. W.; Lenhardt, W. C.; Parsons, M. A.; Benedict, K. K.
2014-12-01
The data life cycle has figured prominently in describing the context of digital scientific data stewardship and cyberinfractructure in support of science. There are many different versions of the data life cycle, but they all follow a similar basic pattern: plan, collect, ingest, asses, preserve, discover, and reuse. The process is often interpreted in a fairly linear fashion despite it being a cycle conceptually. More recently at GeoData 2014 and elsewhere, questions have been raised about the utility of the data life cycle as it is currently represented. We are proposing to the community a re-examination of the data life cycle using an agile lens. Our goal is not to deploy agile methods, but to use agile principles as a heuristic to think about how to incorporate data stewardship across the scientific process from proposal stage to research and beyond. We will present alternative conceptualizations of the data life cycle with a goal to solicit feedback and to develop a new model for conceiving and describing the overall data stewardship process. We seek to re-examine past assumptions and shed new light on the challenges and necessity of data stewardship. The ultimate goal is to support new science through enhanced data interoperability, usability, and preservation.
Together We Can Live and Learn. Living-Learning Communities as Integrated Curricular Experiences
ERIC Educational Resources Information Center
Dunn, Merrily S.; Dean, Laura A.
2013-01-01
This article briefly outlines the history of living-learning communities (LLC) in colleges and universities. It details conceptualization, design, implementation and assessment of such programs. Model recreation and leisure LLC are highlighted and discussed.
Structured feedback on students' concept maps: the proverbial path to learning?
Joseph, Conran; Conradsson, David; Nilsson Wikmar, Lena; Rowe, Michael
2017-05-25
Good conceptual knowledge is an essential requirement for health professions students, in that they are required to apply concepts learned in the classroom to a variety of different contexts. However, the use of traditional methods of assessment limits the educator's ability to correct students' conceptual knowledge prior to altering the educational context. Concept mapping (CM) is an educational tool for evaluating conceptual knowledge, but little is known about its use in facilitating the development of richer knowledge frameworks. In addition, structured feedback has the potential to develop good conceptual knowledge. The purpose of this study was to use Kinchin's criteria to assess the impact of structured feedback on the graphical complexity of CM's by observing the development of richer knowledge frameworks. Fifty-eight physiotherapy students created CM's targeting the integration of two knowledge domains within a case-based teaching paradigm. Each student received one round of structured feedback that addressed correction, reinforcement, forensic diagnosis, benchmarking, and longitudinal development on their CM's prior to the final submission. The concept maps were categorized according to Kinchin's criteria as either Spoke, Chain or Net representations, and then evaluated against defined traits of meaningful learning. The inter-rater reliability of categorizing CM's was good. Pre-feedback CM's were predominantly Chain structures (57%), with Net structures appearing least often. There was a significant reduction of the basic Spoke- structured CMs (P = 0.002) and a significant increase of Net-structured maps (P < 0.001) at the final evaluation (post-feedback). Changes in structural complexity of CMs appeared to be indicative of broader knowledge frameworks as assessed against the meaningful learning traits. Feedback on CM's seemed to have contributed towards improving conceptual knowledge and correcting naive conceptions of related knowledge. Educators in medical education could therefore consider using CM's to target individual student development.
Assessing Understanding of the Learning Cycle: The ULC
NASA Astrophysics Data System (ADS)
Marek, Edmund A.; Maier, Steven J.; McCann, Florence
2008-08-01
An 18-item, multiple choice, 2-tiered instrument designed to measure understanding of the learning cycle (ULC) was developed and field-tested from the learning cycle test (LCT) of Odom and Settlage ( Journal of Science Teacher Education, 7, 123 142, 1996). All question sets of the LCT were modified to some degree and 5 new sets were added, resulting in the ULC. The ULC measures (a) understandings and misunderstandings of the learning cycle, (b) the learning cycle’s association with Piaget’s ( Biology and knowledge theory: An essay on the relations between organic regulations and cognitive processes, 1975) theory of mental functioning, and (c) applications of the learning cycle. The resulting ULC instrument was evaluated for internal consistency with Cronbach’s alpha, yielding a coefficient of .791.
The Effects of Classic and Web-Designed Conceptual Change Texts on the Subject of Water Chemistry
ERIC Educational Resources Information Center
Tas, Erol; Gülen, Salih; Öner, Zeynep; Özyürek, Cengiz
2015-01-01
The purpose of this study is to research the effects of traditional and web-assisted conceptual change texts for the subject of water chemistry on the success, conceptual errors and permanent learning of students. A total of 37 8th graders in a secondary school of Samsun participated in this study which had a random experimental design with…
Music-therapy analyzed through conceptual mapping
NASA Astrophysics Data System (ADS)
Martinez, Rodolfo; de la Fuente, Rebeca
2002-11-01
Conceptual maps have been employed lately as a learning tool, as a modern study technique, and as a new way to understand intelligence, which allows for the development of a strong theoretical reference, in order to prove the research hypothesis. This paper presents a music-therapy analysis based on this tool to produce a conceptual mapping network, which ranges from magic through the rigor of the hard sciences.
NASA Astrophysics Data System (ADS)
Xiang, Lin
This is a collective case study seeking to develop detailed descriptions of how programming an agent-based simulation influences a group of 8 th grade students' model-based inquiry (MBI) by examining students' agent-based programmable modeling (ABPM) processes and the learning outcomes. The context of the present study was a biology unit on natural selection implemented in a charter school of a major California city during spring semester of 2009. Eight 8th grade students, two boys and six girls, participated in this study. All of them were low socioeconomic status (SES). English was a second language for all of them, but they had been identified as fluent English speakers at least a year before the study. None of them had learned either natural selection or programming before the study. The study spanned over 7 weeks and was comprised of two study phases. In phase one the subject students learned natural selection in science classroom and how to do programming in NetLogo, an ABPM tool, in a computer lab; in phase two, the subject students were asked to program a simulation of adaptation based on the natural selection model in NetLogo. Both qualitative and quantitative data were collected in this study. The data resources included (1) pre and post test questionnaire, (2) student in-class worksheet, (3) programming planning sheet, (4) code-conception matching sheet, (5) student NetLogo projects, (6) videotaped programming processes, (7) final interview, and (8) investigator's field notes. Both qualitative and quantitative approaches were applied to analyze the gathered data. The findings suggested that students made progress on understanding adaptation phenomena and natural selection at the end of ABPM-supported MBI learning but the progress was limited. These students still held some misconceptions in their conceptual models, such as the idea that animals need to "learn" to adapt into the environment. Besides, their models of natural selection appeared to be incomplete and many relationships among the model ideas had not been well established by the end of the study. Most of them did not treat the natural selection model as a whole but only focused on some ideas within the model. Very few of them could scientifically apply the natural selection model to interpret other evolutionary phenomena. The findings about participating students' programming processes revealed these processes were composed of consecutive programming cycles. The cycle typically included posing a task, constructing and running program codes, and examining the resulting simulation. Students held multiple ideas and applied various programming strategies in these cycles. Students were involved in MBI at each step of a cycle. Three types of ideas, six programming strategies and ten MBI actions were identified out of the processes. The relationships among these ideas, strategies and actions were also identified and described. Findings suggested that ABPM activities could support MBI by (1) exposing students' personal models and understandings, (2) provoking and supporting a series of model-based inquiry activities, such as elaborating target phenomena, abstracting patterns, and revising conceptual models, and (3) provoking and supporting tangible and productive conversations among students, as well as between the instructor and students. Findings also revealed three programming behaviors that appeared to impede productive MBI, including (1) solely phenomenon-orientated programming, (2) transplanting program codes, and (3) blindly running procedures. Based on the findings, I propose a general modeling process in ABPM activities, summarize the ways in which MBI can be supported in ABPM activities and constrained by multiple factors, and suggest the implications of this study in the future ABPM-assisted science instructional design and research.
Bascandziev, Igor; Tardiff, Nathan; Zaitchik, Deborah; Carey, Susan
2018-08-01
Some episodes of learning are easier than others. Preschoolers can learn certain facts, such as "my grandmother gave me this purse," only after one or two exposures (easy to learn; fast mapping), but they require several years to learn that plants are alive or that the sun is not alive (hard to learn). One difference between the two kinds of knowledge acquisition is that hard cases often require conceptual construction, such as the construction of the biological concept alive, whereas easy cases merely involve forming new beliefs formulated over concepts the child already has (belief revision, a form of knowledge enrichment). We asked whether different domain-general cognitive resources support these two types of knowledge acquisition (conceptual construction and knowledge enrichment that supports fast mapping) by testing 82 6-year-olds in a pre-training/training/post-training study. We measured children's improvement in an episode involving theory construction (the beginning steps of acquisition of the framework theory of vitalist biology, which requires conceptual change) and in an episode involving knowledge enrichment alone (acquisition of little known facts about animals, such as the location of crickets' ears and the color of octopus blood). In addition, we measured children's executive functions and receptive vocabulary to directly compare the resources drawn upon in the two episodes of learning. We replicated and extended previous findings highlighting the differences between conceptual construction and knowledge enrichment, and we found that Executive Functions predict improvement on the Vitalism battery but not on the Fun Facts battery and that Receptive Vocabulary predicts improvement the Fun Facts battery but not on the Vitalism battery. This double dissociation provides new evidence for the distinction between the two types of knowledge acquisition, and bears on the nature of the learning mechanisms involved in each. Copyright © 2018 Elsevier Inc. All rights reserved.
Enhancing the Conceptual Understanding of Science.
ERIC Educational Resources Information Center
Gabel, Dorothy
2003-01-01
Describes three levels of understanding science: the phenomena (macroscopic), the particle (microscopic), and the symbolic. Suggests that the objective of science instruction at all levels is conceptual understanding of scientific inquiry. Discusses effective instructional strategies, including analogy, collaborative learning, concept mapping,…
ERIC Educational Resources Information Center
Windschitl, Mark; Andre, Thomas
1998-01-01
Investigates the effects of a constructivist versus objectivist learning environment on college students' conceptual change using a computer simulation of the human cardiovascular system as an instructional tool. Contains 33 references. (DDR)
Virtual Communities of Collaborative Learning for Higher Education
ERIC Educational Resources Information Center
Sotomayor, Gilda E.
2014-01-01
This article aims to outline and project three new learning scenarios for Higher Education that, after the emergence of ICT and communication through the Network-lnternet, have appeared under the generic name of virtual communities. To that end, we start from a previous conceptual analysis on collaborative learning, cooperative learning and…
Effect of Similarity-Based Guided Discovery Learning on Conceptual Performance
ERIC Educational Resources Information Center
Mandrin, Pierre-A; Preckel, Daniel
2009-01-01
Analogies are known to foster concept learning, whereas discovery learning is effective for transfer. By combining discovery learning and analogies or similarities of concepts, attractive new arrangements emerge, but do they maintain both concept and transfer effects? Unfortunately, there is a lack of data confirming such combined effectiveness.…
ERIC Educational Resources Information Center
Sprinkle, Therese A.; Urick, Michael J.
2018-01-01
Purpose: Methods for facilitating learning and knowledge transfer in multigenerational workplaces are of importance to organizations. Yet, intergenerational learning is vastly understudied in academic organizational literature. This conceptual paper aims to recommend future directions for studying intergenerational learning by examining three…
Fostering Organizational Performance: The Role of Learning and Intrapreneurship
ERIC Educational Resources Information Center
Molina, Carlos; Callahan, Jamie L.
2009-01-01
Purpose: The purpose of this paper is to explore the connections between individual learning, intrapreneurship, and organizational learning to create an alternative model of how learning facilitates performance in organizations. Design/methodology/approach: This is a conceptual paper selecting targeted scholarly works that provide support for the…
Lifelong Learning: Capabilities and Aspirations
ERIC Educational Resources Information Center
Ilieva-Trichkova, Petya
2016-01-01
The present paper discusses the potential of the capability approach in conceptualizing and understanding lifelong learning as an agency process, and explores its capacity to guide empirical studies on lifelong learning. It uses data for 20 countries from the Adult Education Survey (2007; 2011) and focuses on aspirations for lifelong learning. The…
E-Learning for Depth in the Semantic Web
ERIC Educational Resources Information Center
Shafrir, Uri; Etkind, Masha
2006-01-01
In this paper, we describe concept parsing algorithms, a novel semantic analysis methodology at the core of a new pedagogy that focuses learners attention on deep comprehension of the conceptual content of learned material. Two new e-learning tools are described in some detail: interactive concept discovery learning and meaning equivalence…
Surviving Women's Learning Experiences from the Tsunami in Aceh
ERIC Educational Resources Information Center
Teng, Yan Fang Jane; Yusof, Qismullah
2014-01-01
This study investigated surviving women's learning experiences from the 2004 tsunami in Aceh. Women were the majority of casualties and the most vulnerable after the tsunami. Almost a decade later, we used a conceptual framework of experiential learning, critical reflection, and transformative learning to understand the surviving women's ways of…
Learning Objects--Instructional Metadata and Sequencing.
ERIC Educational Resources Information Center
Redeker, Giselher
The main focus of current discussions within the standardization process of learning technology is on economical opportunities and technical aspects of learning objects. There has been little discussion about the instructional or didactical issues. The purpose of this paper is to conceptualize a taxonomy of learning objects for the facilitation of…
Conceptualizing Learning Style Modalities for ESL/EFL Students.
ERIC Educational Resources Information Center
Wintergerst, Ann C.; DeCapua, Andrea; Verna, Marilyn Ann
2003-01-01
Reports results of testing a newly developed learning styles instrument on three groups of language learners: Russian English-as-a-Foreign-Language students, Russian English-as-a-Second-Language (ESL) students, and Asian ESL students to determine their learning style preference. Results indicate that these students learn English under three…
ERIC Educational Resources Information Center
Jutras, Phillip F.
Regis College (Massachusetts) has expanded student learning skills through through changes in the management program toward increasing integration of management and liberal arts disciplines and increased opportunities for cooperative and experiential learning. The program stresses making conceptual connections and part/whole relations in…
Leading Learning: Science Departments and the Chair
ERIC Educational Resources Information Center
Melville, Wayne; Campbell, Todd; Jones, Doug
2016-01-01
In this article, we have considered the role of the chair in leading the learning necessary for a department to become effective in the teaching and learning of science from a reformed perspective. We conceptualize the phrase "leading learning" to mean the chair's constitution of influence, power, and authority to intentionally impact…
Validating a Technology Enhanced Student-Centered Learning Model
ERIC Educational Resources Information Center
Kang, Myunghee; Hahn, Jungsun; Chung, Warren
2015-01-01
The Technology Enhanced Student Centered Learning (TESCL) Model in this study presents the core factors that ensure the quality of learning in a technology-supported environment. Although the model was conceptually constructed using a student-centered learning framework and drawing upon previous studies, it should be validated through real-world…
ERIC Educational Resources Information Center
Rau, Martina A.
2013-01-01
Most learning environments in the STEM disciplines use multiple graphical representations along with textual descriptions and symbolic representations. Multiple graphical representations are powerful learning tools because they can emphasize complementary aspects of complex learning contents. However, to benefit from multiple graphical…
The Ontologies of Complexity and Learning about Complex Systems
ERIC Educational Resources Information Center
Jacobson, Michael J.; Kapur, Manu; So, Hyo-Jeong; Lee, June
2011-01-01
This paper discusses a study of students learning core conceptual perspectives from recent scientific research on complexity using a hypermedia learning environment in which different types of scaffolding were provided. Three comparison groups used a hypermedia system with agent-based models and scaffolds for problem-based learning activities that…
(Re)Conceptualizing Design Approaches for Mobile Language Learning
ERIC Educational Resources Information Center
Hoven, Debra; Palalas, Agnieszka
2011-01-01
An exploratory study conducted at George Brown College in Toronto, Canada between 2007 and 2009 investigated language learning with mobile devices as an approach to augmenting ESP learning by taking learning outside the classroom into the real-world context. In common with findings at other community colleges, this study identified inadequate…
Reconceptualizing Design Research in the Age of Mobile Learning
ERIC Educational Resources Information Center
Bannan, Brenda; Cook, John; Pachler, Norbert
2016-01-01
The purpose of this paper is to begin to examine how the intersection of mobile learning and design research prompts the reconceptualization of research and design individually as well as their integration appropriate for current, complex learning environments. To fully conceptualize and reconceptualize design research in mobile learning, the…
Self-Directed Learning in the Process of Work: Conceptual Considerations--Empirical Evidences.
ERIC Educational Resources Information Center
Straka, Gerald A.; Schaefer, Cornelia
With reference to the literature on adult self-directed learning, a model termed the "Two-Shell Model of Motivated Self-Directed Learning" was formulated that differentiates sociohistorical environmental conditions, internal conditions, and activities related to four concepts (interest, learning strategies, control, and evaluation). The…
The guided autobiography method: a learning experience.
Thornton, James E
2008-01-01
This article discusses the proposition that learning is an unexplored feature of the guided autobiography method and its developmental exchange. Learning, conceptualized and explored as the embedded and embodied processes, is essential in narrative activities of the guided autobiography method leading to psychosocial development and growth in dynamic, temporary social groups. The article is organized in four sections and summary. The first section provides a brief overview of the guided autobiography method describing the interplay of learning and experiencing in temporary social groups. The second section offers a limited review on learning and experiencing as processes that are essential for development, growth, and change. The third section reviews the small group activities and the emergence of the "developmental exchange" in the guided autobiography method. Two theoretical constructs provide a conceptual foundation for the developmental exchange: a counterpart theory of aging as development and collaborative-situated group learning theory. The summary recaps the main ideas and issues that shape the guided autobiography method as learning and social experience using the theme, "Where to go from here."
Attentional load and implicit sequence learning.
Shanks, David R; Rowland, Lee A; Ranger, Mandeep S
2005-06-01
A widely employed conceptualization of implicit learning hypothesizes that it makes minimal demands on attentional resources. This conjecture was investigated by comparing learning under single-task and dual-task conditions in the sequential reaction time (SRT) task. Participants learned probabilistic sequences, with dual-task participants additionally having to perform a counting task using stimuli that were targets in the SRT display. Both groups were then tested for sequence knowledge under single-task (Experiments 1 and 2) or dual-task (Experiment 3) conditions. Participants also completed a free generation task (Experiments 2 and 3) under inclusion or exclusion conditions to determine if sequence knowledge was conscious or unconscious in terms of its access to intentional control. The experiments revealed that the secondary task impaired sequence learning and that sequence knowledge was consciously accessible. These findings disconfirm both the notion that implicit learning is able to proceed normally under conditions of divided attention, and that the acquired knowledge is inaccessible to consciousness. A unitary framework for conceptualizing implicit and explicit learning is proposed.
NASA Astrophysics Data System (ADS)
Bitting, Kelsey S.; McCartney, Marsha J.; Denning, Kathy R.; Roberts, Jennifer A.
2018-06-01
Virtual globe programs such as Google Earth replicate real-world experiential learning of spatial and geographic concepts by allowing students to navigate across our planet without ever leaving campus. However, empirical evidence for the learning value of these technological tools and the experience students gain by exploration assignments framed within them remains to be quantified and compared by student demographics. This study examines the impact of a Google Earth-based exploration assignment on conceptual understanding in introductory geoscience courses at a research university in the US Midwest using predominantly traditional college-age students from a range of majors. Using repeated-measures ANOVA and paired-samples t tests, we test the significance of the activity using pretest and posttest scores on a subset of items from the Geoscience Concept Inventory, and the interactive effects of student gender and ethnicity on student score improvement. Analyses show that learning from the Google Earth exploration activity is highly significant overall and for all but one of the concept inventory items. Furthermore, we find no significant interactive effects of class format, student gender, or student ethnicity on the magnitude of the score increases. These results provide strong support for the use of experiential learning in virtual globe environments for students in introductory geoscience and perhaps other disciplines for which direct observation of our planet's surface is conceptually relevant.
ERIC Educational Resources Information Center
Simon, Martin A.; Tzur, Ron
2004-01-01
Simon's (1995) development of the construct of hypothetical learning trajectory (HLT) offered a description of key aspects of planning mathematics lessons. An HLT consists of the goal for the students' learning, the mathematical tasks that will be used to promote student learning, and hypotheses about the process of the students' learning.…
ERIC Educational Resources Information Center
Leuchter, Miriam; Saalbach, Henrik; Hardy, Ilonca
2014-01-01
Research on learning and instruction of science has shown that learning environments applied in preschool and primary school rarely makes use of structured learning materials in problem-based environments although these are decisive quality features for promoting conceptual change and scientific reasoning within early science learning. We thus…