Sample records for learning engineering survey

  1. Targeting Undergraduate Students for Surveys: Lessons from the Academic Pathways of People Learning Engineering Survey (APPLES). Research Brief

    ERIC Educational Resources Information Center

    Donaldson, Krista M.; Chen, Helen L.; Toye, George; Sheppard, Sheri D.

    2007-01-01

    The Academic Pathways of People Learning Engineering Survey (APPLES or APPLE survey) is a component of the Academic Pathways Study (APS) of the Center for the Advancement of Engineering Education (CAEE). The APS aims to provide a comprehensive account of how people become engineers by exploring key questions around the engineering learning…

  2. Exploring the Engineering Student Experience: Findings from the Academic Pathways of People Learning Engineering Survey (APPLES). TR-10-01

    ERIC Educational Resources Information Center

    Sheppard, Sheri; Gilmartin, Shannon; Chen, Helen L.; Donaldson, Krista; Lichtenstein, Gary; Eris, Ozgur; Lande, Micah; Toye, George

    2010-01-01

    This report is based on data from the Academic Pathways of People Learning Engineering Survey (APPLES), administered to engineering students at 21 U.S. engineering colleges and schools in the spring of 2008. The first comprehensive set of analyses completed on the APPLES dataset presented here looks at how engineering students experience their…

  3. Survey on Intelligent Assistance for Workplace Learning in Software Engineering

    NASA Astrophysics Data System (ADS)

    Ras, Eric; Rech, Jörg

    Technology-enhanced learning (TEL) systems and intelligent assistance systems aim at supporting software engineers during learning and work. A questionnaire-based survey with 89 responses from industry was conducted to find out what kinds of services should be provided and how, as well as to determine which software engineering phases they should focus on. In this paper, we present the survey results regarding intelligent assistance for workplace learning in software engineering. We analyzed whether specific types of assistance depend on the organization's size, the respondent's role, and the experience level. The results show a demand for TEL that supports short-term problem solving and long-term competence development at the workplace.

  4. Characterizing learning-through-service students in engineering by gender and academic year

    NASA Astrophysics Data System (ADS)

    Carberry, Adam Robert

    Service is increasingly being viewed as an integral part of education nationwide. Service-based courses and programs are growing in popularity as opportunities for students to learn and experience their discipline. Widespread adoption of learning-through-service (LTS) in engineering is stymied by a lack of a body of rigorous research supporting the effectiveness of these experiences. In this study, I examine learning-through-service through a nationwide survey of engineering undergraduate and graduate students participating in a variety of LTS experiences. Students (N = 322) participating in some form of service -- service-learning courses or extra-curricular service programs -- from eighty-seven different institutions across the United States completed a survey measuring demographic information (institution, gender, academic year, age, major, and grade point average), self-perceived sources of learning (service and traditional coursework), engineering epistemological beliefs, personality traits, and self-concepts (self-efficacy, motivation, expectancy, and anxiety) toward engineering design. Responses to the survey were used to characterize engineering LTS students and identify differences in these variables in terms of gender and academic year. The overall findings were that LTS students perceived their service experience to be a beneficial source for learning professional skills and, to a lesser degree, technical skills, held moderately sophisticated engineering epistemological beliefs, and were generally outgoing, compassionate, and adventurous. Self-perceived sources of learning, epistemological beliefs, and personality traits were shown to be poor predictors of student engineering achievement. Self-efficacy, motivation, and outcome expectancy toward engineering design were generally high for all LTS students; most possessed rather low anxiety levels toward engineering design. These trends were generally consistent between genders and across the five academic years (first-year, sophomores, juniors, seniors, and graduate students) surveyed. Females had significantly more sophisticated epistemological beliefs, greater perceptions of service as a source of learning professional and technical skills, and higher anxiety toward engineering design. They also were significantly more extroverted and agreeable. Males had higher confidence, motivation, and expectancy for success toward engineering design. Across academic year it was seen that students varied in their engineering design self-concepts, except for motivation.

  5. Scaling up: Taking the Academic Pathways of People Learning Engineering Survey (APPLES) National. Research Brief

    ERIC Educational Resources Information Center

    Donaldson, Krista M.; Chen, Helen L.; Toye, George; Clark, Mia; Sheppard, Sheri D.

    2008-01-01

    The Academic Pathways of People Learning Engineering Survey (APPLES) was deployed for a second time in spring 2008 to undergraduate engineering students at 21 US universities. The goal of the second deployment of APPLES was to corroborate and extend findings from the Academic Pathways Study (APS; 2003-2007) and the first deployment of APPLES…

  6. The impact of project-based learning on improving student learning outcomes of sustainability concepts in transportation engineering courses

    NASA Astrophysics Data System (ADS)

    Fini, Elham H.; Awadallah, Faisal; Parast, Mahour M.; Abu-Lebdeh, Taher

    2018-05-01

    This paper describes an intervention to enhance students' learning by involving students in brainstorming activities about sustainability concepts and their implications in transportation engineering. The paper discusses the process of incorporating the intervention into a transportation course, as well as the impact of this intervention on students' learning outcomes. To evaluate and compare students' learning as a result of the intervention, the Laboratory for Innovative Technology and Engineering Education survey instrument was used. The survey instrument includes five constructs: higher-order cognitive skills, self-efficacy, ease of learning subject matter, teamwork, and communication skills. Pre- and post-intervention surveys of student learning outcomes were conducted to determine the effectiveness of the intervention on enhancing students' learning outcomes. The results show that the implementation of the intervention significantly improved higher-order cognitive skills, self-efficacy, teamwork, and communication skills. Involving students in brainstorming activities related to sustainability concepts and their implications in transportation proved to be an effective teaching and learning strategy.

  7. Engineering Students' Use of Computer Assisted Learning (CAL)

    ERIC Educational Resources Information Center

    Huczynski, Andrzej; Johnston, Scott Paul

    2005-01-01

    This study examines the use of Computer Assisted Learning (CAL) by undergraduate engineering students studying a business and management course. Discussing both the relationship between management and engineering and CAL applied to engineering education, this study is based on a survey of 82 undergraduates and adopts a quantitative research…

  8. Convergence and translation: attitudes to inter-professional learning and teaching of creative problem-solving among medical and engineering students and staff.

    PubMed

    Spoelstra, Howard; Stoyanov, Slavi; Burgoyne, Louise; Bennett, Deirdre; Sweeney, Catherine; Drachsler, Hendrik; Vanderperren, Katrien; Van Huffel, Sabine; McSweeney, John; Shorten, George; O'Flynn, Siun; Cantillon-Murphy, Padraig; O'Tuathaigh, Colm

    2014-01-22

    Healthcare worldwide needs translation of basic ideas from engineering into the clinic. Consequently, there is increasing demand for graduates equipped with the knowledge and skills to apply interdisciplinary medicine/engineering approaches to the development of novel solutions for healthcare. The literature provides little guidance regarding barriers to, and facilitators of, effective interdisciplinary learning for engineering and medical students in a team-based project context. A quantitative survey was distributed to engineering and medical students and staff in two universities, one in Ireland and one in Belgium, to chart knowledge and practice in interdisciplinary learning and teaching, and of the teaching of innovation. We report important differences for staff and students between the disciplines regarding attitudes towards, and perceptions of, the relevance of interdisciplinary learning opportunities, and the role of creativity and innovation. There was agreement across groups concerning preferred learning, instructional styles, and module content. Medical students showed greater resistance to the use of structured creativity tools and interdisciplinary teams. The results of this international survey will help to define the optimal learning conditions under which undergraduate engineering and medicine students can learn to consider the diverse factors which determine the success or failure of a healthcare engineering solution.

  9. Convergence and translation: attitudes to inter-professional learning and teaching of creative problem-solving among medical and engineering students and staff

    PubMed Central

    2014-01-01

    Background Healthcare worldwide needs translation of basic ideas from engineering into the clinic. Consequently, there is increasing demand for graduates equipped with the knowledge and skills to apply interdisciplinary medicine/engineering approaches to the development of novel solutions for healthcare. The literature provides little guidance regarding barriers to, and facilitators of, effective interdisciplinary learning for engineering and medical students in a team-based project context. Methods A quantitative survey was distributed to engineering and medical students and staff in two universities, one in Ireland and one in Belgium, to chart knowledge and practice in interdisciplinary learning and teaching, and of the teaching of innovation. Results We report important differences for staff and students between the disciplines regarding attitudes towards, and perceptions of, the relevance of interdisciplinary learning opportunities, and the role of creativity and innovation. There was agreement across groups concerning preferred learning, instructional styles, and module content. Medical students showed greater resistance to the use of structured creativity tools and interdisciplinary teams. Conclusions The results of this international survey will help to define the optimal learning conditions under which undergraduate engineering and medicine students can learn to consider the diverse factors which determine the success or failure of a healthcare engineering solution. PMID:24450310

  10. Gauging Workplace Readiness: Assessing the Information Needs of Engineering Co-op Students

    ERIC Educational Resources Information Center

    Jeffryes, Jon; Lafferty, Meghan

    2012-01-01

    Librarians at the Science and Engineering Library at the University of Minnesota surveyed engineering students participating in a work placement as part of the cooperative education program. The survey asked about students' on-the-job information usage, comfort level accessing different types of engineering literature, and experience learning to…

  11. Affective strategies, attitudes, and a model of speaking performance development for engineering students

    NASA Astrophysics Data System (ADS)

    Wijirahayu, S.; Dorand, P.

    2018-01-01

    Learning English as a Foreign language (EFL) as one of the challenges especially for students majoring in Telecommunication Engineering to develop their communication skill as a professional could be one of the chances for them to face a more global era. Yet, there are important factors that may influence the progress of the speaking performance and attitude is one of them. Therefore, a survey involving two main psychological variables in language learning namely attitude and affective strategies and the third variable is speaking performance was conducted and a model of affective strategies in language learning developing through the application of Content Language Integrated Learning and multimedia instruction was introduced. This study involved 71 sophomore students and two classes of university students majoring in Telecommunication Engineering and Electrical Engineering. The researchers used both survey and action research method with quantitative as well as qualitative in approach.

  12. Blended Learning, E-Learning and Mobile Learning in Mathematics Education

    ERIC Educational Resources Information Center

    Borba, Marcelo C.; Askar, Petek; Engelbrecht, Johann; Gadanidis, George; Llinares, Salvador; Aguilar, Mario Sánchez

    2016-01-01

    In this literature survey we focus on identifying recent advances in research on digital technology in the field of mathematics education. To conduct the survey we have used internet search engines with keywords related to mathematics education and digital technology and have reviewed some of the main international journals, including the ones in…

  13. The Impact of a Living Learning Community on First-Year Engineering Students

    ERIC Educational Resources Information Center

    Flynn, Margaret A.; Everett, Jess W.; Whittinghill, Dex

    2016-01-01

    The purpose of this study was to investigate the impact of an engineering living and learning community (ELC) on first-year engineering students. A control group of non-ELC students was used to compare the experiences of the ELC participants. Analysis of survey data showed that there was significant differences between the ELC students and the…

  14. Incorporating service-learning within engineering and technology education in secondary schools

    NASA Astrophysics Data System (ADS)

    Smiley, Craig L.

    This study focuses the status of service-learning incorporated into the secondary engineering and technology classroom in the State of Indiana. Post-secondary engineering service-learning programs have been found to increase student interest in engineering to attract females into engineering (Coyle, Jamieson, & Oakes, 2005). Engineering, Design, and Development (EDD) is the capstone class of Project Lead The Way (PLTW) curriculum taught in many schools across Indiana, in which students design and develop a project that addresses an open-ended engineering problem. Of all the courses offered in the PLTW curriculum, this has the greatest potential for students to engage in a service-learning project, because the open-ended engineering problem could be used to help the community. A Likert-type survey was sent to the 62 secondary technology education teachers in Indiana who were certified to teach EDD during the 2011-2012 school year to identify the frequency at which the core components of service-learning, as identified by the National Service-Learning Clearinghouse (2006), were being implemented in the EDD curriculum. Fifteen teachers completed the survey by the end of the 2011-2012 academic calendar. Four of the 15 EDD teachers (27%) reported that a majority of their students' projects addressed a need in the community, and therefore were considered to be service-learning projects. The percentage of projects that were called service-learning projects by the respondents appeared to have a direct relationship with the total number of students enrolled in the PLTW program, and an inverse relationship with the number of years the teacher had been teaching technology education. Upon further study, only 2 of these EDD teachers (13%) were guiding students to collaborate with their community partner frequently enough to have an experience indicative of high quality service-learning according to the National Service-Learning Clearinghouse.

  15. Students' Attitude towards STEM Education

    ERIC Educational Resources Information Center

    Popa, Roxana-Alexandra; Ciascai, Liliana

    2017-01-01

    STEM is the acronym of Science, Technology, Engineering, and Mathematics fields. STEM education refers both to teaching and learning in the above-mentioned disciplines, but especially to teaching and learning a new discipline based on the integration of Science, Technology, Engineering, and Mathematics. The present survey aims to investigate the…

  16. Enhancement of Teaching and Learning of the Fundamentals of Nuclear Engineering Using Multimedia Courseware.

    ERIC Educational Resources Information Center

    Keyvan, Shahla A.; Pickard, Rodney; Song, Xiaolong

    1997-01-01

    Computer-aided instruction incorporating interactive multimedia and network technologies can boost teaching effectiveness and student learning. This article describes the development and implementation of network server-based interactive multimedia courseware for a fundamental course in nuclear engineering. A student survey determined that 80% of…

  17. Survey Result of the Engineering Undergraduate Student's “Human Performance”

    NASA Astrophysics Data System (ADS)

    Nakayama, Minoru; Takahashi, Hideaki; Kusakabe, Osamu; Ohtaguchi, Kazuhisa; Mizutani, Nobuyasu

    Development of engineer's “Human Performance” is being required to respond to various changes. “Human Performace” is defined as an ability of putting own knowledge and skill to a practical issue. Current engineering undergraduate education promotes to learn this ability. To examine effectiveness of the educational program, a questionnaire consisting of 66 items was developed and the survey was conducted across eight universities. As results, most students recognize importance of the ability, but their achievement is lower for English communication skill and adaptation of cultural difference. They learned the ability on laboratory experience for their thesis, experiment class, club activities, part-time jobs and other activities.

  18. Computer-Assisted Learning in UK Engineering Degree Programmes: Lessons Learned from an Extensive Case Study Programme

    ERIC Educational Resources Information Center

    Rothberg, S. J.; Lamb, F. M.; Willis, L.

    2006-01-01

    This paper gives a synopsis of an extensive programme of case studies on real uses of computer-assisted learning (CAL) materials within UK engineering degree programmes. The programme was conducted between 2000 and 2003 and followed a questionnaire-based survey looking at CAL use in the UK and in Australia. The synopsis reveals a number of key…

  19. Design and Analysis of Questionnaires for Survey Skills in Chemical Engineering

    ERIC Educational Resources Information Center

    Lucas Yagüe, Susana; Coca Sanz, Mónica; González Benito, Gerardo; Cartón López, Ángel; Urueña Alonso, Miguel Ángel; García Cubero, Mª Teresa

    2011-01-01

    The new reorganization of university education has involved relevant changes in teaching and learning methodologies in order to help students to learn more effectively and to develop important skills and competences demanded by the professional world. In this sense the new configuration of the degree in Chemical Engineering required the…

  20. Innovative and Creative K-12 Engineering Strategies: Implications of Pre-Service Teacher Survey

    ERIC Educational Resources Information Center

    Mativo, John M.; Park, Jae H.

    2012-01-01

    This study sought to find student perceptions of how the engineering design process is learned and applied by pre-service teachers at the University of Georgia. The course description read "demonstration and hands-on learning, including problem solving, designing, construction and testing of prototypes, and activities that increase aesthetic,…

  1. Attitudes and Motivation of Students in an Introductory Technical Graphics Course: A Meta-Analysis Study

    ERIC Educational Resources Information Center

    Ernst, Jeremy V.; Clark, Aaron C.

    2012-01-01

    Students in introductory engineering graphics courses at North Carolina State University (NCSU) were asked to complete surveys to help educators and administrators understand their attitudes toward learning and their motivation to learn. Analyses of the completed surveys provided the Graphic Communications Program at NCSU with an understanding of…

  2. Attitudes towards Science, Technology, Engineering and Mathematics (STEM) in a Project-Based Learning (PjBL) Environment

    ERIC Educational Resources Information Center

    Tseng, Kuo-Hung; Chang, Chi-Cheng; Lou, Shi-Jer; Chen, Wen-Ping

    2013-01-01

    Many scholars claimed the integration of science, technology, engineering and mathematics (STEM) education is beneficial to the national economy and teachers and institutes have been working to develop integrated education programs. This study examined a project-based learning (PjBL) activity that integrated STEM using survey and interview…

  3. The Chem-E-Car as a Vehicle for Service Learning through K-12 Outreach

    ERIC Educational Resources Information Center

    Chirdon, William

    2017-01-01

    This article presents the results of combining the American Institute of Chemical Engineers' (AIChE) Chem-E-Car competition activities with engineering outreach to K-12 students in a service-learning course. Survey results are presented to show how the program develops technical skills as well as leadership, teamwork, and communication skills in…

  4. The Roles of Professional Engineers at the Institutions of Higher Learning in Nation-Building

    ERIC Educational Resources Information Center

    Harun, Zambri; Khamis, Nor Kamaliana; Isa, Mohamad Dali; Hashim, Hashimah

    2013-01-01

    This paper discusses the roles of professional engineers (PEs) who are attached to the Institutions of Higher Learning (IHLs) and how their contributions are as important as their counterparts in the industry. This paper highlights the roles for PEs at IHLs based on a survey conducted at selected IHLs in Malaysia. Academician-professional…

  5. Assessing the Pedagogical Impact of the VaNTH Engineering Research Center on Faculty and Postdoctoral Professionals

    ERIC Educational Resources Information Center

    Cox, Monica; Cawthorne, James; McNeill, Nathan; Cekic, Osman; Frye, Matthew; Stacer, Melissa

    2011-01-01

    From 1999 to 2007, the Vanderbilt-Northwestern-Texas-Harvard/MIT (VaNTH) Engineering Research Center focused on improving bioengineering education through the applications of learning science, learning technology, and assessment and evaluation within the domain of bioengineering. This paper discusses results from a survey to explore the impact of…

  6. Mathematics and online learning experiences: a gateway site for engineering students

    NASA Astrophysics Data System (ADS)

    Masouros, Spyridon D.; Alpay, Esat

    2010-03-01

    This paper focuses on the preliminary design of a multifaceted computer-based mathematics resource for undergraduate and pre-entry engineering students. Online maths resources, while attractive in their flexibility of delivery, have seen variable interest from students and teachers alike. Through student surveys and wide consultations, guidelines have been developed for effectively collating and integrating learning, support, application and diagnostic tools to produce an Engineer's Mathematics Gateway. Specific recommendations include: the development of a shared database of engineering discipline-specific problems and examples; the identification of, and resource development for, troublesome mathematics topics which encompass ideas of threshold concepts and mastery components; the use of motivational and promotional material to raise student interest in learning mathematics in an engineering context; the use of general and lecture-specific concept maps and matrices to identify the needs and relevance of mathematics to engineering topics; and further exploration of the facilitation of peer-based learning through online resources.

  7. Use of E-Learning Functionalities and Standards: The Spanish Case

    ERIC Educational Resources Information Center

    Llamas-Nistal, M.; Caeiro-Rodriguez, M.; Castro, M.

    2011-01-01

    This paper shows the results of a survey performed in Spain on the different functionalities of e-learning platforms. This survey was filled in by a group of teachers, experts in engineering education from across Spain, within the scope of the Spanish Chapter of the IEEE Education Society. This paper presents their opinions on several aspects of…

  8. STEM Integration in Middle School Life Science: Student Learning and Attitudes

    NASA Astrophysics Data System (ADS)

    Guzey, S. Selcen; Moore, Tamara J.; Harwell, Michael; Moreno, Mario

    2016-08-01

    In many countries around the world, there has been an increasing emphasis on improving science education. Recent reform efforts in the USA call for teachers to integrate scientific and engineering practices into science teaching; for example, science teachers are asked to provide learning experiences for students that apply crosscutting concepts (e.g., patterns, scale) and increase understanding of disciplinary core ideas (e.g., physical science, earth science). Engineering practices and engineering design are essential elements of this new vision of science teaching and learning. This paper presents a research study that evaluates the effects of an engineering design-based science curriculum on student learning and attitudes. Three middle school life science teachers and 275 seventh grade students participated in the study. Content assessments and attitude surveys were administered before and after the implementation of the curriculum unit. Statewide mathematics test proficiency scores were included in the data analysis as well. Results provide evidence of the positive effects of implementing the engineering design-based science unit on student attitudes and learning.

  9. Roadmapping towards Sustainability Proficiency in Engineering Education

    ERIC Educational Resources Information Center

    Rodriguez-Andara, Alejandro; Río-Belver, Rosa María; Rodríguez-Salvador, Marisela; Lezama-Nicolás, René

    2018-01-01

    Purpose: The purpose of this paper is to deliver a roadmap that displays pathways to develop sustainability skills in the engineering curricula. Design/methodology/approach: The selected approach to enrich engineering students with sustainability skills was active learning methodologies. First, a survey was carried out on a sample of 189 students…

  10. Creating the learning situation to promote student deep learning: Data analysis and application case

    NASA Astrophysics Data System (ADS)

    Guo, Yuanyuan; Wu, Shaoyan

    2017-05-01

    How to lead students to deeper learning and cultivate engineering innovative talents need to be studied for higher engineering education. In this study, through the survey data analysis and theoretical research, we discuss the correlation of teaching methods, learning motivation, and learning methods. In this research, we find that students have different motivation orientation according to the perception of teaching methods in the process of engineering education, and this affects their choice of learning methods. As a result, creating situations is critical to lead students to deeper learning. Finally, we analyze the process of learning situational creation in the teaching process of «bidding and contract management workshops». In this creation process, teachers use the student-centered teaching to lead students to deeper study. Through the study of influence factors of deep learning process, and building the teaching situation for the purpose of promoting deep learning, this thesis provide a meaningful reference for enhancing students' learning quality, teachers' teaching quality and the quality of innovation talent.

  11. Tour Through the Solar System: A Hands-On Planetary Geology Course for High School Students

    NASA Astrophysics Data System (ADS)

    Sherman, S. B.; Gillis-Davis, J. J.

    2011-09-01

    We have developed a course in planetary geology for high school students, the primary goals of which are to help students learn how to learn, to reduce the fear and anxiety associated with learning science and math, and to encourage an interest in science, technology, engineering, and mathematics (STEM) fields. Our emphasis in this course is on active learning in a learner-centered environment. All students scored significantly higher on the post-knowledge survey compared with the pre-knowledge survey, and there is a good correlation between the post-knowledge survey and the final exam. Student evaluations showed an increased interest in STEM fields as a result of this course.

  12. Characterizing Employers' Expectations of the Communication Abilities of New Engineering Graduates

    ERIC Educational Resources Information Center

    Ruff, Susan; Carter, Michael

    2015-01-01

    To better understand the gap between recent graduates' communication abilities and employers' expectations, the authors surveyed software engineering professionals. They asked which of 67 communication abilities are unimportant for software engineers, which ones are learned on the job, which ones recent graduates are expected to have but lack, and…

  13. Embedding Entrepreneurial Thinking into Fluids-related Courses: Small Changes Lead to Positive Results

    NASA Astrophysics Data System (ADS)

    Carnasciali, Maria-Isabel

    2017-11-01

    Many fluid dynamics instructors have embraced student-centered learning pedagogies (Active & Collaborative Learning (ACL) and Problem/Project Based Learning (PBL)) to promote learning and increase student engagement. A growing effort in engineering education calls to equip students with entrepreneurial skills needed to drive innovation. The Kern Entrepreneurial Engineering Network (KEEN) defines entrepreneurial mindset based on three key attributes: curiosity, connections, and creating value. Elements of ACL and PBL have been used to embed Entrepreneurial Thinking concepts into two fluids-related subjects: 1) an introductory thermal-fluid systems course, and 2) thermo-fluids laboratory. Assessment of students' work reveal an improvement in student learning. Course Evaluations and Surveys indicate an increased perceived-value of course content. Training and development made possible through funding from the Kern Entrepreneurial Engineering Network and the Bucknall Excellence in Teaching Award.

  14. Encouraging the learning of hydraulic engineering subjects in agricultural engineering schools

    NASA Astrophysics Data System (ADS)

    Rodríguez Sinobas, Leonor; Sánchez Calvo, Raúl

    2014-09-01

    Several methodological approaches to improve the understanding and motivation of students in Hydraulic Engineering courses have been adopted in the Agricultural Engineering School at Technical University of Madrid. During three years student's progress and satisfaction have been assessed by continuous monitoring and the use of 'online' and web tools in two undergraduate courses. Results from their application to encourage learning and communication skills in Hydraulic Engineering subjects are analysed and compared to the initial situation. Student's academic performance has improved since their application, but surveys made among students showed that not all the methodological proposals were perceived as beneficial. Their participation in the 'online', classroom and reading activities was low although they were well assessed.

  15. A New Approach to Teaching Biomechanics Through Active, Adaptive, and Experiential Learning.

    PubMed

    Singh, Anita

    2017-07-01

    Demand of biomedical engineers continues to rise to meet the needs of healthcare industry. Current training of bioengineers follows the traditional and dominant model of theory-focused curricula. However, the unmet needs of the healthcare industry warrant newer skill sets in these engineers. Translational training strategies such as solving real world problems through active, adaptive, and experiential learning hold promise. In this paper, we report our findings of adding a real-world 4-week problem-based learning unit into a biomechanics capstone course for engineering students. Surveys assessed student perceptions of the activity and learning experience. While students, across three cohorts, felt challenged to solve a real-world problem identified during the simulation lab visit, they felt more confident in utilizing knowledge learned in the biomechanics course and self-directed research. Instructor evaluations indicated that the active and experiential learning approach fostered their technical knowledge and life-long learning skills while exposing them to the components of adaptive learning and innovation.

  16. Identify the Motivational Factors to Affect the Higher Education Students to Learn Using Technology

    ERIC Educational Resources Information Center

    Yau, Hon Keung; Cheng, Alison Lai Fong; Ho, Wing Man

    2015-01-01

    The purpose of this study is twofold. Firstly, engineering students' motivation in using technology for learning in one of Hong Kong universities is investigated. Secondly, new research model about students' perception in using technology for learning is developed. Survey was employed and the questionnaires were distributed to targeted university…

  17. Teachers' Roles, Students' Personalities, Inquiry Learning Outcomes, and Practices of Science and Engineering: The Development and Validation of the McGill Attainment Value for Inquiry Engagement Survey in STEM Disciplines

    ERIC Educational Resources Information Center

    Ibrahim, Ahmed; Aulls, Mark W.; Shore, Bruce M.

    2017-01-01

    Inquiry engagement is a newly defined construct that represents the participation in carrying out practices of science and engineering to achieve learning outcomes and is influenced by learners' personalities and teachers' roles. Expectancy value theory posits that attainment values are important components of task values that, in turn, directly…

  18. Preparing university students to lead K-12 engineering outreach programmes: a design experiment

    NASA Astrophysics Data System (ADS)

    Anthony, Anika B.; Greene, Howard; Post, Paul E.; Parkhurst, Andrew; Zhan, Xi

    2016-11-01

    This paper describes an engineering outreach programme designed to increase the interest of under-represented youth in engineering and to disseminate pre-engineering design challenge materials to K-12 educators and volunteers. Given university students' critical role as facilitators of the outreach programme, researchers conducted a two-year design experiment to examine the programme's effectiveness at preparing university students to lead pre-engineering activities. Pre- and post-surveys incorporated items from the Student Engagement sub-scale of the Teacher Sense of Efficacy Scale. Surveys were analysed using paired-samples t-test. Interview and open-ended survey data were analysed using discourse analysis and the constant comparative method. As a result of participation in the programme, university students reported a gain in efficacy to lead pre-engineering activities. The paper discusses programme features that supported efficacy gains and concludes with a set of design principles for developing learning environments that effectively prepare university students to facilitate pre-engineering outreach programmes.

  19. The impact of a living learning community on first-year engineering students

    NASA Astrophysics Data System (ADS)

    Flynn, Margaret A.; Everett, Jess W.; Whittinghill, Dex

    2016-05-01

    The purpose of this study was to investigate the impact of an engineering living and learning community (ELC) on first-year engineering students. A control group of non-ELC students was used to compare the experiences of the ELC participants. Analysis of survey data showed that there was significant differences between the ELC students and the non-ELC students in how they responded to questions regarding social support, academic support, connectedness to campus, and satisfaction with the College of Engineering and the institution as a whole. Particularly, there were significant differences between ELC and non-ELC students for questions related to feeling like part of an engineering community, having strong relationships with peers, belonging to a supportive peer network, studying with engineering peers, and spending time with classmates outside of class.

  20. Progreen Online Engineering Diploma in the Middle East: Assessment of the Educational Experience

    ERIC Educational Resources Information Center

    Baytiyeh, Hoda

    2018-01-01

    Little is known about the status of online learning in the Middle East. This study investigates educational experiences of engineers enrolled in the new joint online ProGreen diploma programme offered by three universities, two in Lebanon and one in Egypt. Forty-eight working engineers responded to an online survey based on the three components of…

  1. Comparing the Attitudes of Pre-Health Professional and Engineering Students in Introductory Physics Courses

    NASA Astrophysics Data System (ADS)

    McKinney, Meghan

    2015-04-01

    This talk will discuss using the Colorado Learning Attitudes about Science Survey (CLASS) to compare student attitudes towards the study of physics of two different groups. Northern Illinois University has two levels of introductory mechanics courses, one geared towards biology majors and pre-health professionals, and one for engineering and physics majors. The course for pre-health professionals is an algebra based course, while the course for engineering and physics majors is a calculus based course. We've adapted the CLASS into a twenty question survey that measures student attitudes towards the practice of and conceptions about physics. The survey is administered as a pre and post assessment to look at student attitudes before and after their first course in physics.

  2. Engaging students in learning: findings from a study of project-led education

    NASA Astrophysics Data System (ADS)

    Fernandes, Sandra; Mesquita, Diana; Assunção Flores, Maria; Lima, Rui M.

    2014-01-01

    This paper reports on findings from a three-year study of project-based learning implemented in the first year of the Industrial Engineering and Management programme, at the University of Minho, Portugal. This particular model was inspired on project-led education (PLE), following Powell and Weenk's [2003. Project-Led Engineering Education. Utrecht: Lemma] work. It aims to analyse students' perceptions of PLE as a learning device and its implications for faculty and students' role in teaching and learning. Data collection took place in two phases through individual surveys and focus groups to students. Findings suggest the importance of PLE as a device to enhance meaningful learning and provide evidence from students that it helps to increase their engagement in learning. Implications of PLE for faculty and students role in teaching and learning will be discussed in the paper.

  3. Engineering Ethics : The Second Report on Student Awareness and Course Methodology

    NASA Astrophysics Data System (ADS)

    Abe, Takao; Hachimori, Akira; Honywood, Michael

    This paper is the second one detailing the findings of a questionnaire survey administered to gauge respondents' awareness of engineering ethics. The survey was carried out with the cooperation of Japanese, South Korean, and Chinese universities as well as a number of Japanese corporations. Our findings indicate that while students and company employees alike generally exhibit an appetite for learning about engineering ethics, South Korean and Chinese students have adopted a posture that is more conducive to such study than their Japanese counterparts. We also discovered a number of other differences rooted in students' nationality. Engineering ethics content seems to receive little attention in corporate training programs. Small and medium size companies in particular may not be addressing questions of engineering ethics in an aggressive manner.

  4. The Advancement in Using Remote Laboratories in Electrical Engineering Education: A Review

    ERIC Educational Resources Information Center

    Almarshoud, A. F.

    2011-01-01

    The rapid development in Internet technology and its big popularity has led some universities around the world to incorporate web-based learning in some of their programmes. The present paper introduces a comprehensive survey of the publications about using remote laboratories in electrical engineering education. Remote laboratories are web-based,…

  5. Metamodels for Computer-Based Engineering Design: Survey and Recommendations

    NASA Technical Reports Server (NTRS)

    Simpson, Timothy W.; Peplinski, Jesse; Koch, Patrick N.; Allen, Janet K.

    1997-01-01

    The use of statistical techniques to build approximations of expensive computer analysis codes pervades much of todays engineering design. These statistical approximations, or metamodels, are used to replace the actual expensive computer analyses, facilitating multidisciplinary, multiobjective optimization and concept exploration. In this paper we review several of these techniques including design of experiments, response surface methodology, Taguchi methods, neural networks, inductive learning, and kriging. We survey their existing application in engineering design and then address the dangers of applying traditional statistical techniques to approximate deterministic computer analysis codes. We conclude with recommendations for the appropriate use of statistical approximation techniques in given situations and how common pitfalls can be avoided.

  6. Enhancing project-oriented learning by joining communities of practice and opening spaces for relatedness

    NASA Astrophysics Data System (ADS)

    Pascual, R.

    2010-03-01

    This article describes an extension to project-oriented learning to increase social construction of knowledge and learning. The focus is on: (a) maximising opportunities for students to share their knowledge with practitioners by joining communities of practice, and (b) increasing their intrinsic motivation by creating conditions for student's relatedness. The case study considers a last year capstone course in Mechanical Engineering. The work addresses innovative practices of active learning and beyond project-oriented learning through: (a) the development of a web-based decision support system, (b) meetings between the communities of students, maintenance engineers and academics, and (c) new off-campus group instances. The author hypothesises that this multi-modal approach increases deep learning and social impact of the educational process. Surveys to the actors support a successful achievement of the educational goals. The methodology can easily be extended to further improve the learning process.

  7. Transforming Classrooms through Game-Based Learning: A Feasibility Study in a Developing Country

    ERIC Educational Resources Information Center

    Vate-U-Lan, Poonsri

    2015-01-01

    This article reports an exploratory study which investigated attitudes towards the practice of game-based learning in teaching STEM (science, technology, engineering and mathematics) within a Thai educational context. This self-administered Internet-based survey yielded 169 responses from a snowball sampling technique. Three fifths of respondents…

  8. Combining the Benefits of Electronic and Online Dictionaries with CALL Web Sites to Produce Effective and Enjoyable Vocabulary and Language Learning Lessons

    ERIC Educational Resources Information Center

    Loucky, John Paul

    2005-01-01

    To more thoroughly analyze and compare the types of dictionaries being used by Japanese college students in three college engineering classes, two kinds of surveys were designed. The first was a general survey about purchase, use and preferences regarding electronic dictionaries. The second survey asked questions about how various computerised…

  9. Examining the Personal Nature of the K-14 Engineering Pipeline for Young Women

    NASA Astrophysics Data System (ADS)

    Gurski, Jennifer Sue

    This mixed-methods study examined young women's perceptions of their K-14 STEM pipeline experiences and their resulting choice to enter and persist in an engineering major. Despite the increase of women in the STEM workforce, women remain underrepresented among engineering majors (Beasley & Fischer, 2012; Heilbronner, 2012; Neihart & Teo, 2013). Few studies exist that utilize a retrospective approach to understand how the culmination of young women's K-14 experiences have influenced their formation of individually held perceptions that lead to engineering persistence. It is this study's aim to utilize a mixed-methods approach to answer the following research question: How do young women's perceptions of their K-14 STEM experiences influence their decision to enroll and persist in an engineering major? These perceptions are explored through an ethnographic approach focusing on young women enrolled in engineering programs during their junior and senior years of study at a small private liberal arts university with eight engineering majors. The mixed-methods approach follows a sequential design method (Creswell, 2013) and utilizes questions in a quantitative Likert-type survey from the Academic Pathways for People Learning Engineering (APPLES) survey (Eris, Chachra, Chen, Sheppard, & Ludlow, 2010) and the Motivated Strategy Learning Questionnaire (MSLQ) (Pintrich, Smith, Garcia, & McKeachie, 1991). The quantitative study results will lead to the development of open-ended, structured questions for conducting a qualitative focus group. Anonymity of all participants is maintained. Keywords: STEM, young women, perceptions, pipeline, intervention, underrepresentation, engineering, persistence, retrospective, self-efficacy.

  10. Survey Tools for Faculty to Quickly Assess Multidisciplinary Team Dynamics in Capstone Courses

    ERIC Educational Resources Information Center

    Solnosky, Ryan; Fairchild, Joshua

    2017-01-01

    Many engineering faculty have limited skills and/or assessment tools to evaluate team dynamics in multidisciplinary team-based capstone courses. Rapidly deployable tools are needed here to provide proactive feedback to teams to facilitate deeper learning. Two surveys were developed based on industrial and organizational psychology theories around…

  11. Survey Exploring Views of Scientists on Current Trends in Chemistry Education

    ERIC Educational Resources Information Center

    Vamvakeros, Xenofon; Pavlatou, Evangelia A.; Spyrellis, Nicolas

    2010-01-01

    A survey exploring the views of scientists, chemists and chemical engineers, on current trends in Chemistry Education was conducted in Greece. Their opinions were investigated using a questionnaire focusing on curricula (the content and process of chemistry teaching and learning), as well as on the respondents' general educational beliefs and…

  12. Students' Attitudes towards Group-Based Project Exams in Two Engineering Programmes

    ERIC Educational Resources Information Center

    Dahl, Bettina; Kolmos, Anette

    2015-01-01

    At Aalborg University, engineering students spend half the time each semester in groups working on projects in a problem-based learning (PBL) curriculum. The projects are assessed through group exams, except for between 2007 and 2013 when the law forbade group-based project exams. Prior to 2007, a survey showed that students preferred the…

  13. Engaging Community College Students Using an Engineering Learning Community

    NASA Astrophysics Data System (ADS)

    Maccariella, James, Jr.

    The study investigated whether community college engineering student success was tied to a learning community. Three separate data collection sources were utilized: surveys, interviews, and existing student records. Mann-Whitney tests were used to assess survey data, independent t-tests were used to examine pre-test data, and independent t-tests, analyses of covariance (ANCOVA), chi-square tests, and logistic regression were used to examine post-test data. The study found students that participated in the Engineering TLC program experienced a significant improvement in grade point values for one of the three post-test courses studied. In addition, the analysis revealed the odds of fall-to-spring retention were 5.02 times higher for students that participated in the Engineering TLC program, and the odds of graduating or transferring were 4.9 times higher for students that participated in the Engineering TLC program. However, when confounding variables were considered in the study (engineering major, age, Pell Grant participation, gender, ethnicity, and full-time/part-time status), the analyses revealed no significant relationship between participation in the Engineering TLC program and course success, fall-to-spring retention, and graduation/transfer. Thus, the confounding variables provided alternative explanations for results. The Engineering TLC program was also found to be effective in providing mentoring opportunities, engagement and motivation opportunities, improved self confidence, and a sense of community. It is believed the Engineering TLC program can serve as a model for other community college engineering programs, by striving to build a supportive environment, and provide guidance and encouragement throughout an engineering student's program of study.

  14. Trends and Lessons Learned in Interdisciplinary and Non-Business Case Method Application.

    ERIC Educational Resources Information Center

    Anyansi-Archibong, Chi; Czuchry, Andrew J.; House, Claudia S.; Cicirello, Tony

    2000-01-01

    Presents results of a survey designed to test the level of development and application of cases in non-business courses such as sciences, mathematics, engineering, health, and technology. Findings support the growing popularity of the case method of teaching and learning outside the business domain. Suggests a framework for establishing win-win…

  15. Connections Between Future Time Perspectives and Self-Regulated Learning for Mid-Year Engineering Students: A Multiple Case Study

    NASA Astrophysics Data System (ADS)

    Chasmar, Justine

    This dissertation presents multiple studies with the purpose of understanding the connections between undergraduate engineering students' motivations, specifically students' Future Time Perspectives (FTPs) and Self-Regulated Learning (SRL). FTP refers to the views students hold about the future and how their perceptions of current tasks are affected by these views. SRL connects the behaviors, metacognition, and motivation of students in their learning. The goals of this research project were to 1) qualitatively describe and document engineering students' SRL strategies, 2) examine interactions between engineering students' FTPs and SRL strategy use, and 3) explore goal-setting as a bridge between FTP and SRL. In an exploratory qualitative study with mid-year industrial engineering students to examine the SRL strategies used before and after an SRL intervention, results showed that students intended to use more SRL strategies than they attempted. However, students self-reported using new SRL strategies from the intervention. Students in this population also completed a survey and a single interview about FTP and SRL. Results showed perceptions of instrumentality of coursework and skills as motivation for using SRL strategies, and a varied use of SRL strategies for students with different FTPs. Overall, three types of student FTP were seen: students with a single realistic view of the future, conflicting ideal and realistic future views, or open views of the future. A sequential explanatory mixed methods study was conducted with mid-year students from multiple engineering majors. First a cluster analysis of survey results of FTP items compared to FTP interview responses was used for participant selection. Then a multiple case study was conducted with data collected through surveys, journal entries, course performance, and two interviews. Results showed that students with a well-defined FTP self-regulated in the present based on their varied perceptions of instrumentality for their present tasks and evaluated and adapted their SRL strategies based on grades. Students with conflicting perceptions of the future used a high level of SRL in courses related to both conflicting future paths or related to their short-term goals. Students with open views had high SRL in most of their courses due to a high perception of instrumentality for their present courses. Implications for practice include use of a context-based SRL intervention to teach effective learning strategies, a shift of key general education courses to earlier in the engineering curriculum, and utilization of career-focused problems to support student FTP development and stress the importance of course content in future engineering careers.

  16. The Experience and Persistence of College Students in STEM Majors

    ERIC Educational Resources Information Center

    Xu, Yonghong Jade

    2018-01-01

    In this study, an online survey was constructed based on the extant literature on college student success. The survey was used to collect data from a sample of college students in science, technology, engineering, and math (STEM) majors in order to examine their learning experiences and to identify the factors that may influence their persistence…

  17. Problem Based Learning for engineering.

    PubMed

    Kumar, Dinesh; Radcliffe, Pj

    2017-07-01

    the role of Problem Based Learning (PBL) is relative clear in domains such as medicine but its efficacy in engineering is as yet less certain. To clarify the role of PBL in engineering, a 3 day workshop was conducted for senior Brazilian engineering academics where they were given the theory and then an immersive PBL experience. One major purpose for running this workshop was for them to identify suitable courses where PBL could be considered. During this workshop, they were split in teams and given a diverse range of problems. At the conclusion of the workshop, a quantifiable survey was conducted and the results show that PBL can deliver superior educational outcomes providing the student group is drawn from the top 5% of the year 12 students, and that significantly higher resources are made available. Thus, any proposed PBL program in engineering must be able to demonstrate that it can meet these requirements before it can move forward to implementation.

  18. Integrating Engineering into Delaware's K-5 Classrooms: A Study of Pedagogical and Curricular Resources

    NASA Astrophysics Data System (ADS)

    Grusenmeyer, Linda Huey

    This study examines the personal and curricular resources available to Delaware's elementary teachers during a time of innovative curriculum change, i.e., their knowledge, goals and beliefs regarding elementary engineering curriculum and the pedagogical support to teach two Science and Engineering Practices provided by science teaching materials. Delaware was at the forefront of K-12 STEM movement, first to adopt statewide elementary curriculum materials to complement existing science units, and one of the first to adopt the new science standards--Next Generation Science Standards. What supports were available to teachers as they adapted and adopted this new curriculum? To investigate this question, I examined (1) teachers' beliefs about engineering and the engineering curriculum, and (2) the pedagogical supports available to teachers in selected science and engineering curriculum. Teachers' knowledge, goals, and beliefs regarding Delaware's adoption of new elementary engineering curriculum were surveyed using an adapted version of the Design, Engineering, and Technology Survey (Hong, Purser, & Gardella, 2011; Yaser, Baker, Carpius, Krauss, & Roberts, 2006). Also, three open ended questions sought to reveal deeper understanding of teacher knowledge and understanding of engineering; their concerns about personal and systemic resources related to the new curriculum, its logistics, and feasibility; and their beliefs about the potential positive impact presented by the engineering education initiative. Teacher concerns were analyzed using the Concerns-Based Adoption Model (Hall & Hord, 2010). Lay understandings of engineering were analyzed by contrasting naive representations of engineering with three key characteristics of engineering adapted from an earlier study (Capobianco Diefes-Dux, Mena, & Weller, 2011). Survey findings for teachers who had attended training and those who have not yet attended professional development in the new curriculum were compared with few notable differences. Almost all elementary teacher respondents were familiar with engineering and able to define it using one or more key characteristics. They valued the inclusion of engineering in the elementary curriculum; however trained and untrained teachers reported they were not confident about teaching it and were unaware of the new standards related to engineering. Teachers saw potential advantages or benefits of the new curriculum as helping improve science and math understanding, an opportunity to increase vocational awareness, and engaging students and motivating them to learn. Most teachers saw similar barriers to implementation- lack of teacher knowledge, lack of time to learn about engineering and how to teach engineering, and lack of administrative support. Almost all were open to additional in-service training to learn more about this new curriculum. Three fifth grade science units were examined for evidence of teacher pedagogical support in teaching two Science and Engineering Practices (SEP) advocated by the Next Generation Science Standards. An analytic framework was developed based upon two NGSS SEPs: Asking questions, defining problems and Engaging in argument from evidence. Findings revealed that the kits varied greatly in their pedagogical approaches to the two SEPs and differences might be explained by each kit's underlying orientations to the teaching-learning process. Findings from these investigations have implications for the design of professional development and for engineering curricula. They highlight the importance of considering teacher beliefs about curriculum implementation and subject matter, as well as the importance of creating curriculum materials that focus teacher attention toward student thinking and the language rich science and engineering practices. Recommendations also include ongoing professional development to allow teachers time to try out and revise pedagogical routines that support the SEPs studied here.

  19. Preliminary Outcomes from a Week-Long Environmental Engineering Summer Camp for High School Female Students

    NASA Astrophysics Data System (ADS)

    Balasubramanian, S.; Koloutsou-Vakakis, S.

    2014-12-01

    There is a need for environment engineers and sustainability managers to address global environmental, energy and health challenges. Environmental literacy programs at K-12 level provide a unique opportunity in motivating young minds in joining STEM and also provide additional value in learning about "saving planet earth". The Women in Engineering at the University of Illinois organize an annual week long camp, for female high school students with tracks corresponding to different fields of Engineering. The Environmental Engineering and Sustainability (EES) track is organized by faculty and graduate students of the Civil and Environmental Engineering department and introduces students to concepts in sustainability and systems thinking in connection with air and water quality, climate change and renewable energy. This study is a preliminary assessment of the relevance of the EES outreach track conducted in July 2014 in student learning. Specific goals include assessing (a) demographics of participants and their motivation to join this camp, (b) educational and enjoyability quotients of the modules and (c) learning and motivational outcomes using the Likert scale. A pre-camp survey indicated keen interest in learning about environmental engineering (4.56/5.0) and expected this camp to be a venue to learn about related career choices (4.9/5.0). Five days of instruction were divided thematically and included a mix of lectures, activity based learning, demonstrations and field visits. Overall modules were rated as educational (4.4/5.0) and enjoyable (4.5/5.0). Modules with hands-on learning were best received (4.67/5.0) and rated unique (4.7/5.0). Post camp, participants acknowledged the important contribution of environmental engineers to society (4.8/5.0) and could relate the different modules to the role engineer's play (4.06/5.0) for sustainability. On an average, the participants evinced interest in engineering as a career choice (4.0/5.0) but there was a broader range of responses regarding environmental engineering as their career choice (3.13/5.0).

  20. Assessing the Higher National Diploma Chemical Engineering programme in Ghana: students' perspective

    NASA Astrophysics Data System (ADS)

    Boateng, Cyril D.; Cudjoe Bensah, Edem; Ahiekpor, Julius C.

    2012-05-01

    Chemical engineers have played key roles in the growth of the chemical and allied industries in Ghana but indigenous industries that have traditionally been the domain of the informal sector need to be migrated to the formal sector through the entrepreneurship and innovation of chemical engineers. The Higher National Diploma Chemical Engineering programme is being migrated from a subject-based to a competency-based curriculum. This paper evaluates the programme from the point of view of students. Data were drawn from a survey conducted in the department and were analysed using SPSS. The survey involved administering questionnaires to students at all levels in the department. Analysis of the responses indicated that the majority of the students had decided to pursue chemical engineering due to the career opportunities available. Their knowledge of the programme learning outcomes was, however, poor. The study revealed that none of the students was interested in developing indigenous industries.

  1. Teaching Engineering Students Team Work

    NASA Technical Reports Server (NTRS)

    Levi, Daniel

    1998-01-01

    The purpose of this manual is to provide professor's in engineering classes which the background necessary to use student team projects effectively. This manual describes some of the characteristics of student teams and how to use them in class. It provides a set of class activities and films which can be used to introduce and support student teams. Finally, a set of teaching modules used in freshmen, sophomore, and senior aeronautical engineering classes are presented. This manual was developed as part of a NASA sponsored project to improve the undergraduate education of aeronautical engineers. The project has helped to purchase a set of team work films which can be checked out from Cal Poly's Learning Resources Center in the Kennedy Library. Research for this project has included literature reviews on team work and cooperative learning; interviews, observations, and surveys of Cal Poly students from Industrial and Manufacturing Engineering, Aeronautical Engineering and Psychology; participation in the Aeronautical Engineering senior design lab; and interviews with engineering faculty. In addition to this faculty manual, there is a student team work manual which has been designed to help engineering students work better in teams.

  2. An Analysis of a Nationwide Study on Curricular Emphasis in Basic Mechanics

    ERIC Educational Resources Information Center

    Raville, M. E.; Lnenicka, W. J.

    1976-01-01

    Discusses a survey of curricular allocations to mechanics in departments and schools of engineering. Tables show trends of coverage of mechanics topics and faculty perceptions of teaching and learning trends. (MLH)

  3. A survey on adaptive engine technology for serious games

    NASA Astrophysics Data System (ADS)

    Rasim, Langi, Armein Z. R.; Munir, Rosmansyah, Yusep

    2016-02-01

    Serious Games has become a priceless tool in learning because it can simulate abstract concept to appear more realistic. The problem faced is that the players have different ability in playing the games. This causes the players to become frustrated if the game is too difficult or to get bored if it is too easy. Serious games have non-player character (NPC) in it. The NPC should be able to adapt to the players in such a way so that the players can feel comfortable in playing the games. Because of that, serious games development must involve an adaptive engine, which is by applying a learning machine that can adapt to different players. The development of adaptive engine can be viewed in terms of the frameworks and the algorithms. Frameworks include rules based, plan based, organization description based, proficiency of player based, and learning style and cognitive state based. Algorithms include agents based and non-agent based

  4. A national collaboration process: Finnish engineering education for the benefit of people and environment.

    PubMed

    Takala, A; Korhonen-Yrjänheikki, K

    2013-12-01

    The key stakeholders of the Finnish engineering education collaborated during 2006-09 to reform the system of education, to face the challenges of the changing business environment and to create a national strategy for the Finnish engineering education. The work process was carried out using participatory work methods. Impacts of sustainable development (SD) on engineering education were analysed in one of the subprojects. In addition to participatory workshops, the core part of the work on SD consisted of a research with more than 60 interviews and an extensive literature survey. This paper discusses the results of the research and the work process of the Collaboration Group in the subproject of SD. It is suggested that enhancing systematic dialogue among key stakeholders using participatory work methods is crucial in increasing motivation and commitment in incorporating SD in engineering education. Development of the context of learning is essential for improving skills of engineering graduates in some of the key abilities related to SD: systemic- and life-cycle thinking, ethical understanding, collaborative learning and critical reflection skills. This requires changing of the educational paradigm from teacher-centred to learner-centred applying problem- and project-oriented active learning methods.

  5. Project Based Learning experiences in the space engineering education at Technical University of Madrid

    NASA Astrophysics Data System (ADS)

    Rodríguez, Jacobo; Laverón-Simavilla, Ana; del Cura, Juan M.; Ezquerro, José M.; Lapuerta, Victoria; Cordero-Gracia, Marta

    2015-10-01

    This work describes the innovation activities performed in the field of space education since the academic year 2009/10 at the Technical University of Madrid (UPM), in collaboration with the Spanish User Support and Operations Center (E-USOC), the center assigned by the European Space Agency (ESA) in Spain to support the operations of scientific experiments on board the International Space Station. These activities have been integrated within the last year of the UPM Aerospace Engineering degree. A laboratory has been created, where students have to validate and integrate the subsystems of a microsatellite using demonstrator satellites. In parallel, the students participate in a Project Based Learning (PBL) training process in which they work in groups to develop the conceptual design of a space mission. One student in each group takes the role of project manager, another one is responsible for the mission design and the rest are each responsible for the design of one of the satellite subsystems. A ground station has also been set up with the help of students developing their final thesis, which will allow future students to perform training sessions and learn how to communicate with satellites, how to receive telemetry and how to process the data. Several surveys have been conducted along two academic years to evaluate the impact of these techniques in engineering learning. The surveys evaluate the acquisition of specific and generic competences, as well as the students' degree of satisfaction with respect to the use of these learning methodologies. The results of the surveys and the perception of the lecturers show that PBL encourages students' motivation and improves their results. They not only acquire better technical training, but also improve their transversal skills. It is also pointed out that this methodology requires more dedication from lecturers than traditional methods.

  6. Cooperative Project-Based Learning in a Web-Based Software Engineering Course

    ERIC Educational Resources Information Center

    Piccinini, Nicola; Scollo, Giuseppe

    2006-01-01

    Even in self-organized project-based learning, the instructors' role re-mains critical, especially in the initial orientation provided to the students in order to grasp the educational goals and the various roles they may undertake to achieve them. In this paper we survey a few questions proposed to that purpose in a web-based software engineering…

  7. Developing Engineering and Science Process Skills Using Design Software in an Elementary Education

    NASA Astrophysics Data System (ADS)

    Fusco, Christopher

    This paper examines the development of process skills through an engineering design approach to instruction in an elementary lesson that combines Science, Technology, Engineering, and Math (STEM). The study took place with 25 fifth graders in a public, suburban school district. Students worked in groups of five to design and construct model bridges based on research involving bridge building design software. The assessment was framed around individual student success as well as overall group processing skills. These skills were assessed through an engineering design packet rubric (student work), student surveys of learning gains, observation field notes, and pre- and post-assessment data. The results indicate that students can successfully utilize design software to inform constructions of model bridges, develop science process skills through problem based learning, and understand academic concepts through a design project. The final result of this study shows that design engineering is effective for developing cooperative learning skills. The study suggests that an engineering program offered as an elective or as part of the mandatory curriculum could be beneficial for developing students' critical thinking, inter- and intra-personal skills, along with an increased their understanding and awareness for scientific phenomena. In conclusion, combining a design approach to instruction with STEM can increase efficiency in these areas, generate meaningful learning, and influence student attitudes throughout their education.

  8. First Year Experiences in School of Mechanical Engineering Kanazawa University

    NASA Astrophysics Data System (ADS)

    Kinari, Toshiyasu; Kanjin, Yuichi; Furuhata, Toru; Tada, Yukio

    This paper reports two lectures of the first year experience, ‧Lecture on Life in Campus and Society‧ and ‧Freshman Seminar‧ and discusses their effects. Both lectures have been given freshmen of the school of mechanical engineering, Kanazawa University in H20 spring term. The former lecture is aimed at freshmen to keep on a proper way in both social and college life. It consists of normal class and e-learning system lectures. E-learning system examination requires students to review the whole text book and that seems to have brought better results in the survey. The latter seminar is aimed at freshmen to get active and self-disciplined learning way through their investigation, discussion, presentation, writing work, and so on.

  9. Survey of Analysis of Crime Detection Techniques Using Data Mining and Machine Learning

    NASA Astrophysics Data System (ADS)

    Prabakaran, S.; Mitra, Shilpa

    2018-04-01

    Data mining is the field containing procedures for finding designs or patterns in a huge dataset, it includes strategies at the convergence of machine learning and database framework. It can be applied to various fields like future healthcare, market basket analysis, education, manufacturing engineering, crime investigation etc. Among these, crime investigation is an interesting application to process crime characteristics to help the society for a better living. This paper survey various data mining techniques used in this domain. This study may be helpful in designing new strategies for crime prediction and analysis.

  10. Modal Survey Test of the SOTV 2X3 Meter Off-Axis Inflatable Concentrator

    NASA Technical Reports Server (NTRS)

    Engberg, Robert C.; Lassiter, John O.; McGee, Jennie K.

    2000-01-01

    NASA's Marshall Space Flight Center has had several projects involving inflatable space structures. Projects in solar thermal propulsion have had the most involvement, primarily inflatable concentrators. A flight project called Shooting Star Experiment initiated the first detailed design, analysis and testing effort involving an inflatable concentrator that supported a Fresnel lens. The lens was to concentrate the sun's rays to provide an extremely large heat transfer for an experimental solar propulsion engine. Since the conclusion of this experiment, research and development activities for solar propulsion at Marshall Space Flight Center have continued both in the solar propulsion engine technology as well as inflatable space structures. Experience gained in conducting modal survey tests of inflatable structures for the Shooting Star Experiment has been used by dynamic test engineers at Marshall Space Flight Center to conduct a modal survey test on a Solar Orbital Transfer Vehicle (SOTV) off-axis inflatable concentrator. This paper describes how both previously learned test methods and new test methods that address the unique test requirements for inflatable structures were used. Effects of the inherent nonlinear response of the inflatable concentrator on test methods and test results are noted as well. Nine analytical mode shapes were successfully correlated to test mode shapes. The paper concludes with several "lessons learned" applicable to future dynamics testing and shows how Marshall Space Flight Center has utilized traditional and new methods for modal survey testing of inflatable space structures.

  11. Vocational Teacher Perceptions on the use of ICT in Learning Computer Network

    NASA Astrophysics Data System (ADS)

    Yannuar; Rohendi, D.; Yanti, H.; Nurhabibah; Mi'raj, Y. Z.

    2018-02-01

    ICT has been widely used in primary education to vocational schools, but has not been so clearly integrate ICT in the learning process. While the teacher is the key to the effective use of ICT processed. This paper reports a study of surveys that examine the perspective of vocational school teachers. Current research aims to examine a vocational school teacher knowledge about ICT and support for computer use for learning. The sample in this research group consists of 25 teachers of vocational schools. The findings of this research use descriptive method with engineering survey with sampling purposes. Resources in research is journals and book report research results. The results showed teachers have a positive outlook towards the use of ICT in learning. The conclusions resulting from this research is the use of ICT to help teachers be more effective in teaching in the classroom and can improve student learning.

  12. Machine learning and data science in soft materials engineering

    NASA Astrophysics Data System (ADS)

    Ferguson, Andrew L.

    2018-01-01

    In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by ‘de-jargonizing’ data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.

  13. Machine learning and data science in soft materials engineering.

    PubMed

    Ferguson, Andrew L

    2018-01-31

    In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by 'de-jargonizing' data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.

  14. Mapping the level of scientific reasoning skills to instructional methodologies among Malaysian science-mathematics-engineering undergraduates

    NASA Astrophysics Data System (ADS)

    Tajudin, Nor'ain Mohd.; Saad, Noor Shah; Rahman, Nurulhuda Abd; Yahaya, Asmayati; Alimon, Hasimah; Dollah, Mohd. Uzi; Abd Karim, Mohd. Mustaman

    2012-05-01

    The objectives of this quantitative survey research were (1) to establish the level of scientific reasoning (SR) skills among science, mathematics and engineering (SME) undergraduates in Malaysian Institute of Higher Learning (IHL); (b) to identify the types of instructional methods in teaching SME at universities; and (c) to map instructional methods employed to the level of SR skills among the undergraduates. There were six universities according to zone involved in this study using the stratification random sampling technique. For each university, the faculties that involved were faculties which have degree students in science, mathematics and engineering programme. A total of 975 students were participated in this study. There were two instruments used in this study namely, the Lawson Scientific Reasoning Skills Test and the Lecturers' Teaching Style Survey. The descriptive statistics and the inferential statistics such as mean, t-test and Pearson correlation were used to analyze the data. Findings of the study showed that most students had concrete level of scientific reasoning skills where the overall mean was 3.23. The expert and delegator were dominant lecturers' teaching styles according to students' perception. In addition, there was no correlation between lecturers' teaching style and the level of scientific reasoning skills. Thus, this study cannot map the dominant lecturers' teaching style to the level of scientific reasoning skills of Science, Mathematics and Engineering undergraduates in Malaysian Public Institute of Higher Learning. Nevertheless, this study gave some indications that the expert and delegator teaching styles were not contributed to the development of students' scientific reasoning skills. This study can be used as a baseline for Science, Mathematics and Engineering undergraduates' level of scientific reasoning skills in Malaysian Public Institute of Higher Learning. Overall, this study also opens an endless source of other researchers to investigate more areas on scientific reasoning skills so that the potential instructional model can be developed to enhance students' level of scientific reasoning skills in Malaysian Public Institute of Higher Learning.

  15. User observations on information sharing (corporate knowledge and lessons learned)

    NASA Technical Reports Server (NTRS)

    Montague, Ronald A.; Gregg, Lawrence A.; Martin, Shirley A.; Underwood, Leroy H.; Mcgee, John M.

    1993-01-01

    The sharing of 'corporate knowledge' and lessons learned in the NASA aerospace community has been identified by Johnson Space Center survey participants as a desirable tool. The concept of the program is based on creating a user friendly information system that will allow engineers, scientists, and managers at all working levels to share their information and experiences with other users irrespective of location or organization. The survey addresses potential end uses for such a system and offers some guidance on the development of subsequent processes to ensure the integrity of the information shared. This system concept will promote sharing of information between NASA centers, between NASA and its contractors, between NASA and other government agencies, and perhaps between NASA and institutions of higher learning.

  16. CloudSat system engineering: techniques that point to a future success

    NASA Technical Reports Server (NTRS)

    Basilio, R. R.; Boain, R. J.; Lam, T.

    2002-01-01

    Over the past three years the CloutSat Project, a NASA Earth System Science Pathfinder mission to provide from space the first global survey of cloud profiles and cloud physical properties, has implemented a successful project system engineering approach. Techniques learned through heuristic reasoning of past project events and professional experience were applied along with select methods recently touted to increase effectiveness without compromising effiency.

  17. Selected engagement factors and academic learning outcomes of undergraduate engineering students

    NASA Astrophysics Data System (ADS)

    Justice, Patricia J.

    The concept of student engagement and its relationship to successful student performance and learning outcomes has a long history in higher education (Kuh, 2007). Attention to faculty and student engagement has only recently become of interest to the engineering education community. This interest can be attributed to long-standing research by George Kuh's, National Survey of Student Engagement (NSSE) at the Indiana University Center for Postsecondary Research. In addition, research projects sponsored by the National Science Foundation, the Academic Pathway Study (APS) at the Center for the Advancement of Engineering Education (CAEE) and the Center for the Advancement of Scholarship on Engineering Education (CASEE), Measuring Student and Faculty Engagement in Engineering Education, at the National Academy of Engineering. These research studies utilized the framework and data from the Engineering Change study by the Center for the Study of Higher Education, Pennsylvania State, that evaluated the impact of the new Accreditation Board of Engineering and Technology (ABET) EC2000 "3a through k" criteria identify 11 learning outcomes expected of engineering graduates. The purpose of this study was to explore the extent selected engagement factors of 1. institution, 2. social, 3. cognitive, 4. finance, and 5. technology influence undergraduate engineering students and quality student learning outcomes. Through the descriptive statistical analysis indicates that there maybe problems in the engineering program. This researcher would have expected at least 50% of the students to fall in the Strongly Agree and Agree categories. The data indicated that the there maybe problems in the engineering program problems in the data. The problems found ranked in this order: 1). Dissatisfaction with faculty instruction methods and quality of instruction and not a clear understanding of engineering majors , 2). inadequate Engineering faculty and advisors availability especially applicable to career paths, 4) engineering program objectives not aligned with student learning outcomes, 5. lack of encouragement to join engineering association for professional development. This study determined statistically that the factors having the most significant influence on undergraduate engineering student and learning outcome is the role that faculty plays inside and outside the classroom. The satisfaction of students regarding faculty on availability and feedback was negative. Engineering programs appear to have issues with alignment of ABET learning outcomes from a student perspective on knowledge, ability of engineering skills and ability acquired at the time of this study. The researcher believes that the findings are valid viewing the maturity of the majority of responses were from upper-class juniors and seniors. In addition, gender and racial/ethnicity disparity were found with low number of females compared to males. The racial/ ethnicity disparity was especially noted for Hispanic and Native American students.

  18. Evaluation of creative problem-solving abilities in undergraduate structural engineers through interdisciplinary problem-based learning

    NASA Astrophysics Data System (ADS)

    McCrum, Daniel Patrick

    2017-11-01

    For a structural engineer, effective communication and interaction with architects cannot be underestimated as a key skill to success throughout their professional career. Structural engineers and architects have to share a common language and understanding of each other in order to achieve the most desirable architectural and structural designs. This interaction and engagement develops during their professional career but needs to be nurtured during their undergraduate studies. The objective of this paper is to present the strategies employed to engage higher order thinking in structural engineering students in order to help them solve complex problem-based learning (PBL) design scenarios presented by architecture students. The strategies employed were applied in the experimental setting of an undergraduate module in structural engineering at Queen's University Belfast in the UK. The strategies employed were active learning to engage with content knowledge, the use of physical conceptual structural models to reinforce key concepts and finally, reinforcing the need for hand sketching of ideas to promote higher order problem-solving. The strategies employed were evaluated through student survey, student feedback and module facilitator (this author) reflection. The strategies were qualitatively perceived by the tutor and quantitatively evaluated by students in a cross-sectional study to help interaction with the architecture students, aid interdisciplinary learning and help students creatively solve problems (through higher order thinking). The students clearly enjoyed this module and in particular interacting with structural engineering tutors and students from another discipline.

  19. Profile of Pre-Service Science Teachers Based on STEM Career Interest Survey

    NASA Astrophysics Data System (ADS)

    Winarno, N.; Widodo, A.; Rusdiana, D.; Rochintaniawati, D.; Afifah, R. M. A.

    2017-09-01

    This study aims to investigate the profile of pre-service science teachers based on STEM (Science, Technology, Engineering, and Mathematics) Career Interest Survey. The study uses descriptive survey method as the research design. Samples collected from 66 preservice science teachers in a university located in Bandung, Indonesia. The results of the study are the profile of pre-service science teachers based on STEM Career Interest Survey shows that the average number of career interest in the field of technology is 4.08, in science 3.80, mathematics 3.39 and engineering 3.30. Pre-service science teachers are found to have interests in the STEM career fields. This research is necessary as there are many instances of people choosing majors or studies that are not in accordance with their interests and talents. The recommendation of this study is to develop learning in pre-service science teachers by using STEM approach.

  20. Experiential Collaborative Learning and Preferential Thinking

    NASA Astrophysics Data System (ADS)

    Volpentesta, Antonio P.; Ammirato, Salvatore; Sofo, Francesco

    The paper presents a Project-Based Learning (shortly, PBL) approach in a collaborative educational environment aimed to develop design ability and creativity of students coming from different engineering disciplines. Three collaborative learning experiences in product design were conducted in order to study their impact on preferred thinking styles of students. Using a thinking style inventory, pre- and post-survey data was collected and successively analyzed through ANOVA techniques. Statistically significant results showed students successfully developed empathy and an openness to multiple perspectives. Furthermore, data analysis confirms that the proposed collaborative learning experience positively contributes to increase awareness in students' thinking styles.

  1. Classroom Journal Club: Collaborative Study of Contemporary Primary Literature in the Biomechanics Classroom.

    PubMed

    Kuxhaus, Laurel; Corbiere, Nicole C

    2016-07-01

    Current engineering pedagogy primarily focuses on developing technical proficiency and problem solving skills; the peer-review process for sharing new research results is often overlooked. The use of a collaborative classroom journal club can engage students with the excitement of scientific discovery and the process of dissemination of research results, which are also important lifelong learning skills. In this work, a classroom journal club was implemented and a survey of student perceptions spanning three student cohorts was collected. In this collaborative learning activity, students regularly chose and discussed a recent biomechanics journal article, and were assessed based on specific, individual preparation tasks. Most student-chosen journal articles were relevant to topics discussed in the regular class lecture. Surveys assessed student perceptions of the activity. The survey responses show that, across all cohorts, students both enjoyed the classroom journal club and recognized it as an important learning experience. Many reported discussing their journal articles with others outside of the classroom, indicating good engagement. The results demonstrate that student engagement with primary literature can foster both technical knowledge and lifelong learning skills.

  2. A Survey of Current Rotorcraft Propulsion Health Monitoring Technologies

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.; Dempsey, Paula J.; Simon, Donald L.

    2012-01-01

    A brief review is presented on the state-of-the-art in rotorcraft engine health monitoring technologies including summaries on current practices in the area of sensors, data acquisition, monitoring and analysis. Also, presented are guidelines for verification and validation of Health Usage Monitoring System (HUMS) and specifically for maintenance credits to extend part life. Finally, a number of new efforts in HUMS are summarized as well as lessons learned and future challenges. In particular, gaps are identified to supporting maintenance credits to extend rotorcraft engine part life. A number of data sources were consulted and include results from a survey from the HUMS community, Society of Automotive Engineers (SAE) documents, American Helicopter Society (AHS) papers, as well as references from Defence Science & Technology Organization (DSTO), Civil Aviation Authority (CAA), and Federal Aviation Administration (FAA).

  3. Design and implementation of a flipped classroom learning environment in the biomedical engineering context.

    PubMed

    Corrias, Alberto; Cho Hong, James Goh

    2015-01-01

    The design and implementation of a learning environment that leverages on the use of various technologies is presented. The context is an undergraduate core engineering course within the biomedical engineering curriculum. The topic of the course is data analysis in biomedical engineering problems. One of the key ideas of this study is to confine the most mathematical and statistical aspects of data analysis in prerecorded video lectures. Students are asked to watch the video lectures before coming to class. Since the classroom session does not need to cover the mathematical theory, the time is spent on a selected real world scenario in the field of biomedical engineering that exposes students to an actual application of the theory. The weekly cycle is concluded with a hands-on tutorial session in the computer rooms. A potential problem would arise in such learning environment if the students do not follow the recommendation of watching the video lecture before coming to class. In an attempt to limit these occurrences, two key instruments were put in place: a set of online self-assessment questions that students are asked to take before the classroom session and a simple rewards system during the classroom session. Thanks to modern learning analytics tools, we were able to show that, on average, 57.9% of students followed the recommendation of watching the video lecture before class. The efficacy of the learning environment was assessed through various means. A survey was conducted among the students and the gathered data support the view that the learning environment was well received by the students. Attempts were made to quantify the impacts on learning of the proposed measures by taking into account the results of selected questions of the final examination of the course. Although the presence of confounding factors demands caution in the interpretation, these data seem to indicate a possible positive effect of the use of video lectures in this technologically enhanced learning environment.

  4. Forecast-Informed Reservoir Operations: Lessons Learned from a Multi-Agency Collaborative Research and Operations Effort to improve Flood Risk Management, Water Supply and Environmental Benefits

    NASA Astrophysics Data System (ADS)

    Talbot, C. A.; Ralph, M.; Jasperse, J.; Forbis, J.

    2017-12-01

    Lessons learned from the multi-agency Forecast-Informed Reservoir Operations (FIRO) effort demonstrate how research and observations can inform operations and policy decisions at Federal, State and Local water management agencies with the collaborative engagement and support of researchers, engineers, operators and stakeholders. The FIRO steering committee consists of scientists, engineers and operators from research and operational elements of the National Oceanographic and Atmospheric Administration and the US Army Corps of Engineers, researchers from the US Geological Survey and the US Bureau of Reclamation, the state climatologist from the California Department of Water Resources, the chief engineer from the Sonoma County Water Agency, and the director of the Scripps Institution of Oceanography's Center for Western Weather and Water Extremes at the University of California-San Diego. The FIRO framework also provides a means of testing and demonstrating the benefits of next-generation water cycle observations, understanding and models in water resources operations.

  5. Quality assurance and accreditation of engineering education in Jordan

    NASA Astrophysics Data System (ADS)

    Aqlan, Faisal; Al-Araidah, Omar; Al-Hawari, Tarek

    2010-06-01

    This paper provides a study of the quality assurance and accreditation in the Jordanian higher education sector and focuses mainly on engineering education. It presents engineering education, accreditation and quality assurance in Jordan and considers the Jordan University of Science and Technology (JUST) for a case study. The study highlights the efforts undertaken by the faculty of engineering at JUST concerning quality assurance and accreditation. Three engineering departments were accorded substantial equivalency status by the Accreditation Board of Engineering and Technology in 2009. Various measures of quality improvement, including curricula development, laboratories improvement, computer facilities, e-learning, and other supporting services are also discussed. Further assessment of the current situation is made through two surveys, targeting engineering instructors and students. Finally, the paper draws conclusions and proposes recommendations to enhance the quality of engineering education at JUST and other Jordanian educational institutions.

  6. Thinking Style Diversity and Collaborative Design Learning

    NASA Astrophysics Data System (ADS)

    Volpentesta, Antonio P.; Ammirato, Salvatore; Sofo, Francesco

    The paper explores the impact of structured learning experiences that were designed to challenge students’ ways of thinking and promote creativity. The aim was to develop the ability of students, coming from different engineering disciplines and characterized by particular thinking style profiles, to collaboratively work on a project-based learning experience in an educational environment. Three project-based learning experiences were structured using critical thinking methods to stimulate creativity. Pre and post-survey data using a specially modified thinking style inventory for 202 design students indicated a thinking style profile of preferences with a focus on exploring and questioning. Statistically significant results showed students successfully developed empathy and openness to multiple perspectives.

  7. Foundations to the unified psycho-cognitive engine.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernard, Michael Lewis; Bier, Asmeret Brooke; Backus, George A.

    This document outlines the key features of the SNL psychological engine. The engine is designed to be a generic presentation of cognitive entities interacting among themselves and with the external world. The engine combines the most accepted theories of behavioral psychology with those of behavioral economics to produce a unified simulation of human response from stimuli through executed behavior. The engine explicitly recognizes emotive and reasoned contributions to behavior and simulates the dynamics associated with cue processing, learning, and choice selection. Most importantly, the model parameterization can come from available media or survey information, as well subject-matter-expert information. The frameworkmore » design allows the use of uncertainty quantification and sensitivity analysis to manage confidence in using the analysis results for intervention decisions.« less

  8. Science Learning Centres Roundup

    ERIC Educational Resources Information Center

    Baker, Yvonne

    2013-01-01

    A recent YouGov poll indicated that almost half of eight to 18-year-olds aspire to a career in science. The latest Association of Colleges enrolment survey indicates a large increase in uptake of science, technology, engineering and mathematics (STEM) at further education (FE) colleges. These reports, along with other findings that suggest an…

  9. Applied Physics Modules Selected for Architectural and Civil Drafting Technologies.

    ERIC Educational Resources Information Center

    Waring, Gene

    Designed for individualized use in an applied physics course in postsecondary vocational-technical education, this series of six learning modules is equivalent to the content of a three-credit hour class in surveying and drafting technology, architectural drafting technology, building construction technology, and civil engineering technology.…

  10. Nonlinear machine learning in soft materials engineering and design

    NASA Astrophysics Data System (ADS)

    Ferguson, Andrew

    The inherently many-body nature of molecular folding and colloidal self-assembly makes it challenging to identify the underlying collective mechanisms and pathways governing system behavior, and has hindered rational design of soft materials with desired structure and function. Fundamentally, there exists a predictive gulf between the architecture and chemistry of individual molecules or colloids and the collective many-body thermodynamics and kinetics. Integrating machine learning techniques with statistical thermodynamics provides a means to bridge this divide and identify emergent folding pathways and self-assembly mechanisms from computer simulations or experimental particle tracking data. We will survey a few of our applications of this framework that illustrate the value of nonlinear machine learning in understanding and engineering soft materials: the non-equilibrium self-assembly of Janus colloids into pinwheels, clusters, and archipelagos; engineering reconfigurable ''digital colloids'' as a novel high-density information storage substrate; probing hierarchically self-assembling onjugated asphaltenes in crude oil; and determining macromolecular folding funnels from measurements of single experimental observables. We close with an outlook on the future of machine learning in soft materials engineering, and share some personal perspectives on working at this disciplinary intersection. We acknowledge support for this work from a National Science Foundation CAREER Award (Grant No. DMR-1350008) and the Donors of the American Chemical Society Petroleum Research Fund (ACS PRF #54240-DNI6).

  11. Developing learning community model with soft skill integration for the building engineering apprenticeship programme in vocational high school

    NASA Astrophysics Data System (ADS)

    Sutrisno, Dardiri, Ahmad; Sugandi, R. Machmud

    2017-09-01

    This study aimed to address the procedure, effectiveness, and problems in the implementation of learning model for Building Engineering Apprenticeship Training Programme. This study was carried out through survey method and experiment. The data were collected using questionnaire, test, and assessment sheet. The collected data were examined through description, t-test, and covariance analysis. The results of the study showed that (1) the model's procedure covered preparation course, readiness assessment, assignment distribution, handing over students to apprenticeship instructors, task completion, assisting, field assessment, report writing, and follow-up examination, (2) the Learning Community model could significantly improve students' active learning, but not improve students' hard skills and soft skills, and (3) the problems emerging in the implementation of the model were (1) students' difficulties in finding apprenticeship places and qualified instructors, and asking for relevant tasks, (2) teachers' difficulties in determining relevant tasks and monitoring students, and (3) apprenticeship instructors' difficulties in assigning, monitoring, and assessing students.

  12. Hands-on curriculum teaches biomedical engineering concepts to home-schooled students.

    PubMed

    Sagstetter, Ann M; Nimunkar, Amit J; Tompkins, Willis J

    2009-01-01

    University level outreach has increased over the last decade to stimulate K-12 student interest in engineering related fields. Home schooling students are one of the groups that are valued for engineering admissions due to diligent study habits and high achievement scores. However, home schooled students have inadequate access to science, math, and engineering related resources, which precludes the development of interdisciplinary teaching methods. To address this problem, we have developed a hands-on, STEM based curriculum as a safe and comprehensive supplement to current home schooling curricula. The ultimate goal is to stimulate university-student relations and subsequently increase engineering recruitment opportunities. Our pre and post workshop survey comparisons demonstrate that integrating disciplines, via the manner presented in this study, provides a K-12 student-friendly engineering learning method.

  13. Engineering the path to higher-order thinking in elementary education: A problem-based learning approach for STEM integration

    NASA Astrophysics Data System (ADS)

    Rehmat, Abeera Parvaiz

    As we progress into the 21st century, higher-order thinking skills and achievement in science and math are essential to meet the educational requirement of STEM careers. Educators need to think of innovative ways to engage and prepare students for current and future challenges while cultivating an interest among students in STEM disciplines. An instructional pedagogy that can capture students' attention, support interdisciplinary STEM practices, and foster higher-order thinking skills is problem-based learning. Problem-based learning embedded in the social constructivist view of teaching and learning (Savery & Duffy, 1995) promotes self-regulated learning that is enhanced through exploration, cooperative social activity, and discourse (Fosnot, 1996). This quasi-experimental mixed methods study was conducted with 98 fourth grade students. The study utilized STEM content assessments, a standardized critical thinking test, STEM attitude survey, PBL questionnaire, and field notes from classroom observations to investigate the impact of problem-based learning on students' content knowledge, critical thinking, and their attitude towards STEM. Subsequently, it explored students' experiences of STEM integration in a PBL environment. The quantitative results revealed a significant difference between groups in regards to their content knowledge, critical thinking skills, and STEM attitude. From the qualitative results, three themes emerged: learning approaches, increased interaction, and design and engineering implementation. From the overall data set, students described the PBL environment to be highly interactive that prompted them to employ multiple approaches, including design and engineering to solve the problem.

  14. Energy Experiments for STEM Students

    NASA Astrophysics Data System (ADS)

    Fanchi, John

    2011-03-01

    Texas Christian University (TCU) is developing an undergraduate program that prepares students to become engineers with an emphasis in energy systems. One of the courses in the program is a technical overview of traditional energy (coal, oil and gas), nuclear energy, and renewable energy that requires as a pre-requisite two semesters of calculus-based physics. Energy experiments are being developed that will facilitate student involvement and provide hands-on learning opportunities. Students participating in the course will improve their understanding of energy systems; be introduced to outstanding scientific and engineering problems; learn about the role of energy in a global and societal context; and evaluate contemporary issues associated with energy. This talk will present the status of experiments being developed for the technical energy survey course.

  15. Systems engineering in the Large Synoptic Survey Telescope project: an application of model based systems engineering

    NASA Astrophysics Data System (ADS)

    Claver, C. F.; Selvy, Brian M.; Angeli, George; Delgado, Francisco; Dubois-Felsmann, Gregory; Hascall, Patrick; Lotz, Paul; Marshall, Stuart; Schumacher, German; Sebag, Jacques

    2014-08-01

    The Large Synoptic Survey Telescope project was an early adopter of SysML and Model Based Systems Engineering practices. The LSST project began using MBSE for requirements engineering beginning in 2006 shortly after the initial release of the first SysML standard. Out of this early work the LSST's MBSE effort has grown to include system requirements, operational use cases, physical system definition, interfaces, and system states along with behavior sequences and activities. In this paper we describe our approach and methodology for cross-linking these system elements over the three classical systems engineering domains - requirement, functional and physical - into the LSST System Architecture model. We also show how this model is used as the central element to the overall project systems engineering effort. More recently we have begun to use the cross-linked modeled system architecture to develop and plan the system verification and test process. In presenting this work we also describe "lessons learned" from several missteps the project has had with MBSE. Lastly, we conclude by summarizing the overall status of the LSST's System Architecture model and our plans for the future as the LSST heads toward construction.

  16. Explore-create-share study: An evaluation of teachers as curriculum innovators in engineering education

    NASA Astrophysics Data System (ADS)

    Berry, Ayora

    The purpose of this study was to investigate the effects of a curriculum design-based (CDB) professional development model on K-12 teachers' capacity to integrate engineering education in the classroom. This teacher professional development approach differs from other training programs where teachers learn how to use a standard curriculum and adopt it in their classrooms. In a CDB professional development model teachers actively design lessons, student resources, and assessments for their classroom instruction. In other science, technology, engineering and mathematics (STEM) disciplines, CDB professional development has been reported to (a) position teachers as architects of change, (b) provide a professional learning vehicle for educators to reflect on instructional practices and develop content knowledge, (c) inspire a sense of ownership in curriculum decision-making among teachers, and (d) use an instructional approach that is coherent with teachers' interests and professional goals. The CDB professional development program in this study used the Explore-Create-Share (ECS) framework as an instructional model to support teacher-led curriculum design and implementation. To evaluate the impact of the CDB professional development and associated ECS instructional model, three research studies were conducted. In each study, the participants completed a six-month CDB professional development program, the PTC STEM Certificate Program, that included sixty-two instructional contact hours. Participants learned about industry and education engineering concepts, tested engineering curricula, collaborated with K-12 educators and industry professionals, and developed project-based engineering curricula using the ECS framework. The first study evaluated the impact of the CDB professional development program on teachers' engineering knowledge, self-efficacy in designing engineering curriculum, and instructional practice in developing project-based engineering units. The study included twenty-six teachers and data was collected pre-, mid-, and post-program using teacher surveys and a curriculum analysis instrument. The second study evaluated teachers' perceptions of the ECS model as a curriculum authoring tool and the quality of the curriculum units they developed. The study included sixty-two participants and data was collected post-program using teacher surveys and a curriculum analysis instrument. The third study evaluated teachers' experiences implementing ECS units in the classroom with a focus on identifying the benefits, challenges and solutions associated with project-based engineering in the classroom. The study included thirty-one participants and data was collected using an open-ended survey instrument after teachers completed implementation of the ECS curriculum unit. Results of these three studies indicate that teachers can be prepared to integrate engineering in the classroom using a CDB professional development model. Teachers reported an increase in engineering content knowledge, improved their self-efficacy in curriculum planning, and developed high quality instructional units that were aligned to engineering design practices and STEM educational standards. The ECS instructional model was acknowledged as a valuable tool for developing and implementing engineering education in the classroom. Teachers reported that ECS curriculum design aligned with their teaching goals, provided a framework to integrate engineering with other subject-area concepts, and incorporated innovative teaching strategies. After implementing ECS units in the classroom, teachers reported that the ECS model engaged students in engineering design challenges that were situated in a real world context and required the application of interdisciplinary content knowledge and skills. Teachers also reported a number of challenges related to scheduling, content alignment, and access to resources. In the face of these obstacles, teachers presented a number of solutions that included optimization of one's teaching practice, being resource savvy, and adopting a growth mindset.

  17. Increasing student confidence in technical and professional skills through project based learning

    NASA Astrophysics Data System (ADS)

    Robinson, Alice L.

    This work focuses on developing undergraduate students' technical and professional skills through a project-based spiral curriculum in the Agricultural & Biological Engineering department at Purdue that can be implemented campus wide. Through this curriculum, Purdue engineers will be prepared for leadership roles in responding to the global technological, economic, and societal challenges of the 21st century by exposure to the relationships between engineering and its impacts on real world needs and challenges. Project-based learning uses projects as the focus of instruction and has shown increased understanding, motivation, and confidence through application of engineering principles to real-world problems. The strength of a spiral curriculum is that it continually revisits basic ideas and themes with increasing complexity and sophistication. The proposed spiral curriculum incorporates the target attributes of the Purdue Engineer of 2020 through project based courses during sophomore, junior, and senior year. These courses will build on concepts taught during first year engineering as well. The Engineer of 2020 (NAE and Purdue) target attributes include strong technical and professional skills to solve societal and technological burdens. A prototype course has been developed, taught, and evaluated during the previous two fall semesters in the sophomore level of the Biological and Food Process Engineering curriculum. The target students met 3 hours a week in a traditional lecture setting plus 2 hours a week in a project based lab setting. The control group met only 3 hours a week in a traditional lecture setting. Peer and self assessment results from student surveys show increased confidence in every area surveyed. Focus groups revealed student reactions to the course. Students enjoyed the course but felt it difficult to handle ambiguity with project work. Future work includes course revisions to the content, assessment, and pedagogy of the prototype class, development of the remaining project courses in the curriculum, and increasing graduate student instruction in the courses to gain teaching and leadership experience.

  18. Constructing engineers through practice: Gendered features of learning and identity development

    NASA Astrophysics Data System (ADS)

    Tonso, Karen L.

    How do women and men student engineers develop an engineering identity (a sense of belonging, or not), while practicing "actual" engineering? What are the influences of gender, learning and knowledge, relations of power, and conceptions of equality on cultural identity development? I studied these issues in reform-minded engineering design classes, courses organized around teaching students communications, teamwork, and practical engineering. Engineering-student cultural identity categories revealed a status hierarchy, predicated on meeting "academic" criteria for excellence, and the almost total exclusion of women. While working as an engineering colleague on five student teams (three first-year and two senior) and attending their design classes, I documented how cultural identities were made evident and constructed in students' practical engineering. Design projects promoted linking academic knowledge with real-world situations, sharing responsibilities and trusting colleagues, communicating engineering knowledge to technical and non-technical members of business communities, and addressing gaps in students' knowledge. With a curriculum analysis and survey of students' perceptions of the differences between design and conventional courses, I embedded the design classes in the wider campus and found that: (1) Engineering education conferred prestige, power, and well-paying jobs on students who performed "academic" engineering, while failing to adequately encourage "actual" engineering practices. High-status student engineers were the least likely to perform "actual" engineering in design teams. (2) Engineering education advanced an ideology that encouraged its practitioners to consider men's privilege and women's invisibility normal. By making "acting like men act" the standards to which engineering students must conform, women learned to put up with oppressive treatment. Women's accepting their own mistreatment and hiding their womanhood became a condition of women's belonging. (3) Despite all of the pressures to do otherwise, (some) teams of students (at all levels) carved out small oases where "actual" engineering prevailed and women's participation was robust. Students--not faculty, not progressive pedagogy, not "reformed" courses--disrupted prevailing norms. However, two women engineering students, one on each senior team, performed fabulous "actual" engineering, yet neither of them had a job when they graduated--the only two senior students on my teams without jobs.

  19. Understanding the leaky engineering pipeline: Motivation and job adaptability of female engineers

    NASA Astrophysics Data System (ADS)

    Saraswathiamma, Manjusha Thekkedathu

    This dissertation is a mixed-method study conducted using qualitative grounded theory and quantitative survey and correlation approaches. This study aims to explore the motivation and adaptability of females in the engineering profession and to develop a theoretical framework for both motivation and adaptability issues. As a result, this study endeavors to design solutions for the low enrollment and attenuation of female engineers in the engineering profession, often referred to as the "leaky female engineering pipeline." Profiles of 123 female engineers were studied for the qualitative approach, and 98 completed survey responses were analyzed for the quantitative approach. The qualitative, grounded-theory approach applied the constant comparison method; open, axial, and selective coding was used to classify the information in categories, sub-categories, and themes for both motivation and adaptability. The emergent themes for decisions motivating female enrollment include cognitive, emotional, and environmental factors. The themes identified for adaptability include the seven job adaptability factors: job satisfaction, risk- taking attitude, career/skill development, family, gender stereotyping, interpersonal skills, and personal benefit, as well as the self-perceived job adaptability factor. Illeris' Three-dimensional Learning Theory was modified as a model for decisions motivating female enrollment. This study suggests a firsthand conceptual parallelism of McClusky's Theory of Margin for the adaptability of female engineers in the profession. Also, this study attempted to design a survey instrument to measure job adaptability of female engineers. The study identifies two factors that are significantly related to job adaptability: interpersonal skills (< p = 0.01) and family (< p = 0.05); gender stereotyping and personal benefit are other factors that are also significantly (< p = 0.1) related.

  20. Surveying the Landscape of Professional Development Research: Suggestions for New Perspectives in Design and Research

    ERIC Educational Resources Information Center

    Manduca, Cathryn A.

    2017-01-01

    Science, technology, engineering, and mathematics (STEM) higher education is in need of improved teaching methods to increase learning for all students. Faculty professional development programs are a widespread strategy for fostering this improvement. Studies of faculty development programs have focused on program design and the impact of…

  1. Learning from Tragedy: A Survey of Child and Adolescent Restraint Fatalities

    ERIC Educational Resources Information Center

    Nunno, Michael A.; Holden, Martha J.; Tollar, Amanda

    2006-01-01

    Objective: This descriptive study examines 45 child and adolescent fatalities related to restraints in residential (institutional) placements in the United States from 1993 to 2003. Method: The study team used common Internet search engines as its primary case discovery strategy to determine the frequency and the nature of the fatalities, as well…

  2. Princeton Science and Engineering Education Initiative: Revising Undergraduate Environmental Science Courses

    NASA Astrophysics Data System (ADS)

    Riihimaki, C. A.; Sealfon, C. D.; Paine, E. N.; O'Donnell, F. C.; Caylor, K. K.; Wilcove, D. S.

    2012-12-01

    The Science and Engineering Education Initiative at Princeton University aims to inspire and prepare all undergraduates, irrespective of their majors, to become scientifically and technologically literate citizens and decision-makers. Launched by the faculty on the Council on Science and Technology in September 2011, the initiative involves revising and creating science and engineering courses that emphasize the role of science in society. The course "Fundamentals of Environmental Studies" will serve as a model course for the initiative starting with revisions to the course in Fall 2012. Given the general interest undergraduates have for sustainability topics and the obvious connections between sustainability and society, this course should generate ample interest from students across the campus. We have begun the Initiative by defining student-centered learning goals and surveying students' attitudes towards science and engineering. Course by course, we are also gradually applying research-based teaching methods to better align course activities with learning goals, assessing learning gains, and creating a repository of successful methods and courses. Among the changes to "Fundamentals of Environmental Studies" will be a greater emphasis on science communication, such as incorporating an assignment in which students track the evolution of communicating a research project, from journal article to newspaper coverage to editorials.

  3. Active learning in the space engineering education at Technical University of Madrid

    NASA Astrophysics Data System (ADS)

    Rodríguez, Jacobo; Laverón-Simavilla, Ana; Lapuerta, Victoria; Ezquerro Navarro, Jose Miguel; Cordero-Gracia, Marta

    This work describes the innovative activities performed in the field of space education at the Technical University of Madrid (UPM), in collaboration with the center engaged by the European Space Agency (ESA) in Spain to support the operations for scientific experiments on board the International Space Station (E-USOC). These activities have been integrated along the last academic year of the Aerospatiale Engineering degree. A laboratory has been created, where the students have to validate and integrate the subsystems of a microsatellite by using demonstrator satellites. With the acquired skills, the students participate in a training process centered on Project Based Learning, where the students work in groups to perform the conceptual design of a space mission, being each student responsible for the design of a subsystem of the satellite and another one responsible of the mission design. In parallel, the students perform a training using a ground station, installed at the E-USOC building, which allow them to learn how to communicate with satellites, how to download telemetry and how to process the data. This also allows students to learn how the E-USOC works. Two surveys have been conducted to evaluate the impact of these techniques in the student engineering skills and to know the degree of satisfaction of students with respect to the use of these learning methodologies.

  4. Integration of Innovative Technologies for Enhancing Students' Motivation for Science Learning and Career

    NASA Astrophysics Data System (ADS)

    Xie, Yichun; Reider, David

    2014-06-01

    This paper analyzes the outcomes of an innovative technology experience for students and teachers (ITEST) project, Mayor's Youth Technology Corps (MYTCs) in Detroit, MI, which was funded by the NSF ITEST program. The MYTC project offered an integration of two technologies, geographic information system (GIS) and information assurance (IA), to stimulate students' interests in science, technology, engineering, and mathematics (STEM) career pathways and learning opportunities among high schools in underserved communities of the City of Detroit. Pre- and post-surveys demonstrated that the MYTC students showed growth in nearly every area covered in the surveys, including dispositions about STEM career and learning. A STEM career goal measure showed that overall interest in having a career in STEM increased 9 % throughout the program, with an additional 10 % for those who participated in an internship experience, the capstone of the MYTC project.

  5. Analysis of Student Service-Learning Reflections for the Assessment of Transferable-Skills Development

    NASA Astrophysics Data System (ADS)

    Rizzo, D. M.; Dewoolkar, M.; Hayden, N.; Oka, L.; Pearce, A. R.

    2010-12-01

    The civil and environmental engineering (CEE) programs at the University of Vermont (UVM) incorporate systems thinking and a systems approach to sustainable engineering problem solving. A systems approach considers long-term social, environmental and economic factors within the context of the engineering problem solution and encompasses sustainable engineering solutions. Our goal is to prepare students to become leaders in their chosen field who can anticipate co-products associated with forecasted solutions. As a way of practicing the systems approach, we include service-learning projects in many of our undergraduate engineering courses, culminating with the senior capstone design course. We use a variety of formative and summative assessment methods to gage student understanding and attitudes including student surveys, focus groups, assessment of student projects, and student reflections. Student reflections from two courses -Modeling Environmental and Transportation Systems (31 juniors) and Senior Design Project (30 seniors) are compared. Of these, 25 students were common to both courses. The focus of the systems modeling service-learning project involved mentoring home-schooled children (11-14 yrs old) to solve problems of mobility, using the fun and inspiration of biomimicry. Students were required to invent innovative methods to move people or goods that improve associated constraints (i.e., minimize congestion, reduce pollution, increase safety), or reduce the need for transportation altogether. The capstone design project required a comprehensive engineering design involving two or more CEE sub-disciplines. Both service-learning projects were intended to enhance students’ academic learning experience, attain civic engagement and reinforce transferable skills (written and oral communication, teamwork, leadership and mentoring skills). The student course reflections were not guided; yet they provided valuable data to assess commonalities and differences in student attitudes toward their service-learning projects, specifically, the development of transferable skills. In the spirit of service-learning pedagogy, we divide the contents of students’ written reflections into three categories - academic enhancement, civic engagement and personal growth skills. The commonalities focused mostly on civic engagement. Differences are observed primarily in academic enhancement and personal growth categories. Students working on the biomimicry design project reflected on personal growth (e.g. leadership skills, mentoring, creativity, organizational skills, communication to nontechnical audience), but did not credit it with academic enhancement. In contrast, the senior design reflections concentrated on academics, specifically, students appreciated the enhancement of technical skills as a part of their engineering experience.

  6. Interests and attitudes of engineering students

    NASA Astrophysics Data System (ADS)

    Rutherford, Brian

    2007-12-01

    Engineering programs have been less successful than other professions in achieving gender equity. Analyses of gender differences in the attitudes and interests of engineering students may help illuminate ways to combat the underrepresentation of women in engineering. This study examined data collected from 863 engineering students who attended 15 American universities from fall 2005 through spring 2006 using an online survey. The survey was designed to understand the backgrounds, academic preparation, motivation, interests, and attitudes of engineering students. To determine whether males and females received different academic preparation prior to entering engineering, the survey examined participants' mathematics, science, and technical coursework taken in high school. The questions probed students' comfort and interest level in mathematics, science, and technology/engineering and investigated student interest in the three fundamental engineering activities by asking 49 design, build, and analyze questions on topics covering a variety of engineering disciplines. A combination of question formats was used including pre-categorized demographic information, 5-point Likert scales, and open-ended responses. Gender similarities and differences were identified and their implications were considered for the recruitment and retention of engineers. Female engineering students in this study were equally or better prepared than males to major in engineering based on the number and types of science and mathematics classes taken in high school. However, statistically significant gender differences were found in the attitudes and interests of engineering students. The difference in the comfort level, interest in learning, being able to demonstrate, or in performing stem skills depended on the question topic rather than gender. The areas with the highest comfort and interest level were often different for females and males. Several topics and curriculum areas of high interest to both genders related to engineering education in several engineering disciplines were identified. It appears that females and males were motivated to choose engineering as a career for different reasons. Analysis revealed that female engineering students are generally more altruistic and less interested in "things" than male engineering students. This study also found that females were comfortable in mathematics or science, but were less comfortable using computers, tools, and machines---all essential engineering skills.

  7. Changing the Engineering Student Culture with Respect to Academic Integrity and Ethics.

    PubMed

    VanDeGrift, Tammy; Dillon, Heather; Camp, Loreal

    2017-08-01

    Engineers create airplanes, buildings, medical devices, and software, amongst many other things. Engineers abide by a professional code of ethics to uphold people's safety and the reputation of the profession. Likewise, students abide by a code of academic integrity while learning the knowledge and necessary skills to prepare them for the engineering and computing professions. This paper reports on studies designed to improve the engineering student culture with respect to academic integrity and ethics. To understand the existing culture at a university in the USA, a survey based on a national survey about cheating was administered to students. The incidences of self-reported cheating and incidences of not reporting others who cheat show the culture is similar to other institutions. Two interventions were designed and tested in an introduction to an engineering course: two case studies that students discussed in teams and the whole class, and a letter of recommendation assignment in which students wrote about themselves (character, strengths, examples of ethical decisions) three years into the future. Students were surveyed after the two interventions. Results show that first-year engineering students appreciate having a code of academic integrity and they want to earn their degree without cheating, yet less than half of the students would report on another cheating student. The letter of recommendation assignment had some impact on getting students to think about ethics, their character, and their actions. Future work in changing the student culture will continue in both a top-down (course interventions) and bottom-up (student-driven interventions) manner.

  8. Creative Engineering Based Education with Autonomous Robots Considering Job Search Support

    NASA Astrophysics Data System (ADS)

    Takezawa, Satoshi; Nagamatsu, Masao; Takashima, Akihiko; Nakamura, Kaeko; Ohtake, Hideo; Yoshida, Kanou

    The Robotics Course in our Mechanical Systems Engineering Department offers “Robotics Exercise Lessons” as one of its Problem-Solution Based Specialized Subjects. This is intended to motivate students learning and to help them acquire fundamental items and skills on mechanical engineering and improve understanding of Robotics Basic Theory. Our current curriculum was established to accomplish this objective based on two pieces of research in 2005: an evaluation questionnaire on the education of our Mechanical Systems Engineering Department for graduates and a survey on the kind of human resources which companies are seeking and their expectations for our department. This paper reports the academic results and reflections of job search support in recent years as inherited and developed from the previous curriculum.

  9. Progreen online engineering diploma in the Middle East: assessment of the educational experience

    NASA Astrophysics Data System (ADS)

    Baytiyeh, Hoda

    2018-03-01

    Little is known about the status of online learning in the Middle East. This study investigates educational experiences of engineers enrolled in the new joint online ProGreen diploma programme offered by three universities, two in Lebanon and one in Egypt. Forty-eight working engineers responded to an online survey based on the three components of the community of inquiry model: social presence, teaching presence, and cognitive presence. Exploratory factor analysis identified five factors: sense of belonging, self-directedness, self-actualisation, interaction, and instructional guidance. The findings showed that sense of belonging was the factor engineers rated highest but it did not correlate with instructional guidance. However, instructional guidance highly correlated with self-directedness and self-actualisation.

  10. Fostering soft skills in project-oriented learning within an agile atmosphere

    NASA Astrophysics Data System (ADS)

    Chassidim, Hadas; Almog, Dani; Mark, Shlomo

    2018-07-01

    The project-oriented and Agile approaches have motivated a new generation of software engineers. Within the academic curriculum, the issue of whether students are being sufficiently prepared for the future has been raised. The objective of this work is to present the project-oriented environment as an influential factor that software engineering profession requires, using the second year course 'Software Development and Management in Agile Approach' as a case-study. This course combines academic topics, self-learned and soft skills implementation, the call for creativity, and the recognition of updated technologies and dynamic circumstances. The results of a survey that evaluated the perceived value of the course showed that the highest contribution of our environment was in the effectiveness of the team-work and the overall development process of the project.

  11. An Introduction of Surveying and Geomatics Education with E-Platform in Nctu, Taiwan

    NASA Astrophysics Data System (ADS)

    Teo, T.-A.; Shih, P. T.-Y.

    2011-09-01

    This article presents the current status of Surveying and Geomatics education provided by Department of Civil Engineering at National Chiao Tung University, Taiwan. The Surveying and Geomatics Education at NCTU is introduced first. Then the current status of using E-learning platform for Surveying and Geomatics courses is described. This platform, also known as E-Campus, is designed and implemented by NCTU Digital Content Production Center. This paper also shows some statistical numbers of Surveying and Geomatics courses using E-Campus. The practical results indicated that the average login for undergraduate student is from 38 to 60 times per student for each course while the average login for graduate student is from 69 to 105.

  12. What Knowledge of Responsible Conduct of Research Do Undergraduates Bring to Their Undergraduate Research Experiences?

    ERIC Educational Resources Information Center

    Mabrouk, Patricia Ann

    2016-01-01

    Over a three-year period, chemistry and engineering students participating in six Research Experience for Undergraduates (REU) programs were surveyed before and after participating in a research ethics training workshop. The goal was to learn what undergraduate students already knew about key concepts in research ethics at the start of their…

  13. A Paradox in Physics Education in France

    ERIC Educational Resources Information Center

    Smigiel, Eddie; Sonntag, Michel

    2013-01-01

    This paper deals with the nature and the level of difficulty of teaching and learning physics in the first year of undergraduate engineering schools in France. Our case study is based on a survey regarding a classic and basic question in applied physics, and which was conducted with a group of second-year students in a post-baccalaureate 1…

  14. Simulation-Visualization and Self-Assessment Modules' Capabilities in Structural Analysis Course Including Survey Analysis Results

    ERIC Educational Resources Information Center

    Kadiam, Subhash Chandra Bose S. V.; Mohammed, Ahmed Ali; Nguyen, Duc T.

    2010-01-01

    In this paper, we describe an approach to analyze 2D truss/Frame/Beam structures under Flash-based environment. Stiffness Matrix Method (SMM) module was developed as part of ongoing projects on a broad topic "Students' Learning Improvements in Science, Technology, Engineering and Mathematics (STEM) Related Areas" at Old Dominion…

  15. The Role of System Thinking Development and Experiential Learning on Enterprise Transformation

    NASA Astrophysics Data System (ADS)

    Lopez, Gabriel

    The recent economic downturn has had global repercussions in all businesses alike. Competition is fierce and a survival of the fittest model is always present; fast delivery times and innovative designs ultimately translate into the enterprises' bottom line. In such market conditions, enterprises have to find ways to develop and train their workforce in a manner that enhances the innovative capabilities of the enterprise. Additionally, if companies are to stay competitive, they have to ensure critical skills in their workforce are transferred from generation to generation. This study builds on recent research on system-thinking development via experiential learning methodologies. First, a conceptual framework model was developed. This conceptual model captures a methodology to construct a system-thinking apprenticeship program suitable for system engineers. Secondly, a survey of system engineering professionals was conducted in order to assess and refine the proposed conceptual model. This dissertation captures the findings of the conceptual model and the implications of the study for enterprises and for system engineering organizations.

  16. Investigation of students' experiences of gendered cultures in engineering workplaces

    NASA Astrophysics Data System (ADS)

    Male, Sally A.; Gardner, Anne; Figueroa, Eugenia; Bennett, Dawn

    2018-05-01

    Women remain severely under-represented in engineering in Australia as in all Western countries. This limits the pool of talent, standpoints and approaches within the profession. Furthermore, this under-representation equates to restriction of the benefits of being an engineer mainly to men. Gendered workplace experiences have been found to contribute to women leaving the profession. In this study we explore students' experiences of gendered cultures in engineering workplaces, using interviews with a purposive sample of 13 students (4 male) recruited following a previous survey. Although the overall experience of workplace learning is positive for many students, male and female engineering students reported experiences consistent with masculine cultures. Educators and employers must proactively lead improvements to the culture in engineering workplaces, prepare students for gendered workplaces and support students to reflect during and after workplace experiences. The experiences presented here could be adapted to enhance inclusivity training.

  17. Survey of Failure in Engineering Education and Industry

    NASA Astrophysics Data System (ADS)

    Arimitsu, Yutaka; Yagi, Hidetsugu

    Students have failure experiences in the project-based learning but they do not profess their experiences. On the other hand, failures and accidents, in the industrial world, are analyzed frequently, and a knowledge data base on failure and QC activities have been introduced. To turn failure experience in education to advantage, the authors survey the properties of failures in project based learning and views of students, teachers and managers of design divisions in companies. Teachers and students regard failure experiences as instructive and acceptable. The typical causes of failure in educational institutions are luck of skill in manufacturing and inadequate planning, which are minor causes of failure in the industry. To establish a knowledge data base on failure in educational institutions, properties of failure in education should be taken into account.

  18. Educating the engineers of 2020: An outcomes-based typology of engineering undergraduates

    NASA Astrophysics Data System (ADS)

    Knight, David B.

    Members of government and industry have called for greater emphasis within U.S. colleges and universities on producing engineers who can enter and advance a more competitive, globally connected workforce. Looking toward this future, engineers will need to exhibit strong analytical skills as in the past, but they also will need to be proficient in a cadre of new abilities to compete. This study examines, in combination, an array of knowledge and skills aligned with the National Academy of Engineering's "engineer of 2020." The study has two major goals. The first is to develop a typology of engineering students based on the learning outcomes associated with the engineer of E2020. The second is to understand the educational experiences that distinguish these groups of students who resemble, more or less, the engineer of 2020. This approach acknowledges that engineering graduates need a complex skill set to succeed in the new global economy; it is the combination of skills associated with the engineer of 2020, not the individual skills in isolation, which will ensure graduates can respond to workforce needs of the future. To date, research on student outcomes has studied learning outcomes independent of one another rather than investigating student learning holistically. The study uses student data from the Prototype to production: Processes and conditions for preparing the Engineer of 2020 study, sponsored by the National Science Foundation (NSF EEC-0550608). Engineering students from a nationally representative sample of engineering programs in the United States answered a survey that collected information on their pre-college academic preparation and sociodemographic characteristics, their curricular and co-curricular experiences in their engineering programs, and their self-ratings of their engineering-related competencies. Only data on engineering students in their senior year (n=2,422) were utilized in analyses. Analyses were conducted in multiple phases for each of five engineering disciplines in the data set (biomedical/bioengineering, chemical, civil, electrical, and mechanical engineering). First, cluster analyses produced typologies (or groupings) of engineering seniors (one for each of five engineering disciplines studied and an "all engineering" analysis) based on nine self-reported learning outcomes, including fundamental skills, design skills, contextual awareness, interdisciplinary competence, and professional skills. Second, profiles of pre-college characteristics as well as student experiences in college were developed for each discipline and the five disciplines combined. Using analyses of variance, Chi-square analyses, and multinomial logistic regression, this phase also identified differences in student characteristics and college experiences between clusters of students reporting high proficiencies on the array of outcomes and students in other clusters. This second phase informed the third phase, which produced parsimonious models that used pre-college characteristics and student experience variables to predict cluster membership. As a whole, the findings demonstrate that analyses that include the full array of E2020 learning outcomes produce meaningful typologies that distinguish between groupings of students in different engineering fields. Findings demonstrate that a subset of students - the engineers of 2020 - report high skills and abilities on the full array of learning outcomes. These are the graduates sought by both the federal government and industry who most closely resemble the engineers of 2020. In addition, distinctive curricular and co-curricular experiences distinguish this E2020 group of students in each engineering discipline from other groupings of students in that same discipline. These findings have valuable implications for practice because they identify an array of discipline-specific, in- and out-of-class learning experiences that appear to promote the development of this multi-dimensional set of outcomes. Overall, however, greater curricular emphases on broad and systems perspectives in the engineering curriculum most consistently set apart the students who report high proficiencies on the E2020 outcomes. The findings also indicate that strategies for improving undergraduate engineering outcomes should be tailored by engineering discipline. The study contributes to both practice and research by developing a technique that can be used to create an outcomes-based typology that can be applied to any set of learning outcomes. Graphical representations of results consolidate large quantities of information into an easily accessible format so that findings can guide both practitioners and policymakers who seek to improve this multi-dimensional set of undergraduate engineering learning outcomes. Future directions for research, including operationalizing organizational contexts influencing E2020 learning outcomes as well as anticipated career trajectories of students across the typology, are also discussed.

  19. Linking teaching and research in an undergraduate course and exploring student learning experiences

    NASA Astrophysics Data System (ADS)

    Wallin, Patric; Adawi, Tom; Gold, Julie

    2017-01-01

    In this case study, we first describe how teaching and research are linked in a master's course on tissue engineering. A central component of the course is an authentic research project that the students carry out in smaller groups and in collaboration with faculty. We then explore how the students experience learning in this kind of discovery-oriented environment. Data were collected through a survey, reflective writing, and interviews. Using a general inductive approach for qualitative analysis, we identified three themes related to the students' learning experiences: learning to navigate the field, learning to do real research, and learning to work with others. Overall, the students strongly valued learning in a discovery-oriented environment and three aspects of the course contributed to much of its success: taking a holistic approach to linking teaching and research, engaging students in the whole inquiry process, and situating authentic problems in an authentic physical and social context.

  20. Career Issues and Laboratory Climates: Different Challenges and Opportunities for Women Engineers and Scientists (survey of Fiscal Year 1997 Powre Awardees)

    NASA Astrophysics Data System (ADS)

    Rosser, Sue V.; Zieseniss, Mireille

    A survey of fiscal year 1997 POWRE (Professional Opportunities for Women in Research and Education) awardees from the National Science Foundation revealed that women engineers and scientists face similar issues, challenges, and opportunities and think that the laboratory climate has similar impacts on their careers. Separating responses of women scientists from those of women engineers revealed that 70% of both groups listed balancing work with family responsibilities as the most difficult issue. Discrepancies in percentages of women, coupled with differences among disciplinary and subdisciplinary cultures within science, engineering, mathematics, and technology fields, complicate work climates and their impact on women's careers. More frequently than women scientists, women engineers listed issues such as (a) low numbers of women leading to isolation, (b) lack of camaraderie and mentoring, (c) gaining credibility/respect from peers and administrators, (d) time management, (e) prioritizing responsibilities due to disproportionate demands, and (f) learning the rules of the game to survive in a male-dominated environment. Women engineers also listed two positive issues more frequently than women scientists: active recruitment/more opportunities for women and impact of successful women in the profession. The small number of women engineers may explain these results and suggests that it may be inappropriate to group them with other women scientists for analysis, programs, and policies.

  1. Understanding behavioural intention to play online game: The case of VocBlast

    NASA Astrophysics Data System (ADS)

    Ali, Z.

    2018-04-01

    Research has shown that mobile learning enables its users to learn at any time and place. The current study investigates the use of VocBlast; an app that integrates technical and engineering vocabulary, in terms of understanding the behavioural intention of its players. The study employs 129 engineering and technical students from Universiti Malaysia Pahang (UMP). Online survey was used to collect their opinions; in particular male and female students’ opinions on the use of the app in the future. The results of the study indicated that there was no significant difference pertaining to their behavioural intention using VocBlast in the course of time. The study implies that more time needs to be given to the students in playing VocBlast as it is believed that playing the game repetitively would promote positive perceptions among its players.

  2. Experiential learning in control systems laboratories and engineering project management

    NASA Astrophysics Data System (ADS)

    Reck, Rebecca Marie

    Experiential learning is a process by which a student creates knowledge through the insights gained from an experience. Kolb's model of experiential learning is a cycle of four modes: (1) concrete experience, (2) reflective observation, (3) abstract conceptualization, and (4) active experimentation. His model is used in each of the three studies presented in this dissertation. Laboratories are a popular way to apply the experiential learning modes in STEM courses. Laboratory kits allow students to take home laboratory equipment to complete experiments on their own time. Although students like laboratory kits, no previous studies compared student learning outcomes on assignments using laboratory kits with existing laboratory equipment. In this study, we examined the similarities and differences between the experiences of students who used a portable laboratory kit and students who used the traditional equipment. During the 2014- 2015 academic year, we conducted a quasi-experiment to compare students' achievement of learning outcomes and their experiences in the instructional laboratory for an introductory control systems course. Half of the laboratory sections in each semester used the existing equipment, while the other sections used a new kit. We collected both quantitative data and qualitative data. We did not identify any major differences in the student experience based on the equipment they used. Course objectives, like research objectives and product requirements, help provide clarity and direction for faculty and students. Unfortunately, course and laboratory objectives are not always clearly stated. Without a clear set of objectives, it can be hard to design a learning experience and determine whether students are achieving the intended outcomes of the course or laboratory. In this study, I identified a common set of laboratory objectives, concepts, and components of a laboratory apparatus for undergraduate control systems laboratories. During the summer of 2015, a panel of 40 control systems faculty members, from a variety of institutions, completed a multi-round Delphi survey in order to bring them toward consensus on the common aspects of their laboratories. The following winter, 45 additional faculty members and practitioners from the control systems community completed a follow-up survey to gather feedback on the results of the Delphi survey. During the Delphi study, the panelists identified 15 laboratory objectives, 26 concepts, and 15 components that were common in their laboratories. Then in both the Delphi survey and follow-up survey each participant rated the importance of each of these items. While the average ratings differed slightly between the two groups, the order of each set of items was compared with two different tests and the order was found to be similar. Some of the common and important learning objectives include connecting theory to what is implemented and observed in the laboratory, designing controllers, and modeling and simulating systems. The most common component in both groups was Math-Works software. Some of the common concepts include block diagrams, stability, and PID control. Defining common aspects of undergraduate control systems laboratories enables common development, detailed comparisons, and simplified adaptation of equipment and experiments between campuses and programs. Throughout an undergraduate program in engineering, there are multiple opportunities for hands-on laboratory experiences that are related to course content. However, a similarly immersive experience for project management graduate students is harder to incorporate for all students in a course at once. This study explores an experiential learning opportunity for graduate students in engineering management or project management programs. The project management students enroll in a project management course. Undergraduate students interested in working on a project with a real customer enroll in a different projects course. Two students from the project management course function as project managers and lead a team of undergraduate students in the second course through a project. I studied how closely the project management experience in these courses aligns with engineering project management in industry. In the spring of 2015, I enrolled in the project management course at a large Midwestern university. I used analytic autoethnography to compare my experiences in the course with my experiences as a project engineer at a large aerospace company. I found that the experience in the course provided an authentic and comprehensive opportunity to practice most of the skills listed in the Project Management Book of Knowledge (an industry standard) as necessary for project managers. Some components of the course that made it successful: I was the project manager for the whole term, I worked with a real client, and the team defined and delivered the project before the end of the semester.

  3. A Good Learning Opportunity, but Is It for Me? A Study of Swedish Students' Attitudes towards Exchange Studies in Higher Education

    ERIC Educational Resources Information Center

    Ahn, Song-ee

    2014-01-01

    This article describes students' involvement and interest in exchange programmes in Swedish higher education. Law and Engineering bachelor's programmes were chosen to exemplify an over-represented and under-represented group respectively in terms of international mobility in this context. The study combines interview and survey data. The author…

  4. Why Girl Students Achieve English Presentation Learning Significantly Better in Shanghai University of Engineering Science (SUES)

    ERIC Educational Resources Information Center

    Zhu, Wen; Liu, Zhixin

    2017-01-01

    In non literature major dominated university, it is obviously noted that girl students' English (as the second language) presentation scores often higher than boy students in the same teaching environment and evaluation system. A 397 samples' survey has been studied from the aspects of after school activities and sleep schedule to discuss if any…

  5. A Survey of Best Practices and Key Learning Objectives for Successful Secondary School STEM Academy Settings

    ERIC Educational Resources Information Center

    Kasza, Paul; Slater, Timothy F.

    2017-01-01

    Specialized secondary schools in the United States focusing on Science, Technology, Engineering, and Math (STEM) are becoming commonplace in the United States. Such schools are generally referred to by U.S. teachers as Academies. In a purposeful effort to provide a resource to educators building new STEM Academies, this study provides both a…

  6. The Internet as an informal learning environment: Assessing knowledge acquisition of science and engineering students using constructivist and objectivist formats

    NASA Astrophysics Data System (ADS)

    Hargis, Jace

    This study examined the effects of two different instructional formats on Internet WebPages in an informal learning environment. The purpose of this study is to (a) identify optimal instructional formats for on-line learning; (b) identify the relationship between post-assessment scores and the student's gender, age or racial identity; (c) examine the effects of verbal aptitudes on learning in different formats; (d) identify relationships between computer attitudes and achievement; and (e) identify the potential power for self-regulated learning and self-efficacy on Internet WebPages. Two learning strategy modules were developed; a constructivist and an objectivist instruction module. The study program consisted of an on-line consent form; a computer attitude survey; a Motivated Strategies for Learning Questionnaire; a verbal aptitude test; a pre-assessment; instructional directions followed by the instructional module and a post-assessment. The study tested 145 post-secondary science and engineering participants from the University of Florida. Participants were randomly assigned to one of two treatment groups or a control in a pretest/posttest design. An analysis of covariance with general linear models was used to account for effects of individual difference variables and aptitude treatment interaction (ATI). This statistical procedure was used to determine the relationships among the dependent variable, the achievement on each of the formats and the independent variables, attitudes, gender, racial identity, verbal aptitudes, and self-regulated learning/self-efficacy. Significant results at alpha = .05 were found for none of these variables. However, a linear prediction of age shows that older participants scored higher on the post-assessment after completing the objectivist module. Although there were no significant differences between the learning format and the variables, there was a difference between the modules and the control. Therefore, it is possible that regardless of characteristics, science and engineering students can learn on-line technical material.

  7. Introducing a flipped classroom to engineering students: A case study in mechanics of materials course

    NASA Astrophysics Data System (ADS)

    Suwapaet, Nuchida

    2018-03-01

    Flipped classroom is basically a reversed way of learning in classroom. Lecture is brought outside classroom and available online in many forms such as video lecture and e-books. In-class time is focused more on discussions and practices such as exercises and projects. Flipped classroom was introduced to Mechanical Engineering students in Mechanics of Materials course in 2016 academic year at Mahasarakham University, Thailand. The course was still taught in traditional way and series of video lecture were used as additional class materials outside classroom. There were 2 groups of students that enrolled in the course in 2 different semesters. Students in 1st semester were taught in traditional way (control group) and students in 2nd semester were used flipped classroom (experiment group). Students' grades between 2 groups were compared and analyzed. Satisfaction survey of using flipped classroom was carried out and evaluated. There were 3 aspects of evaluation which were content, varieties of activity, and functions. Results showed that the course's GPA of experiment group was 1.92 which was greater than the control group of 1.68. The greatly reduction of failed students in experiment group was noticeable. The percentages of failed students of control and experiment groups were 17% and 6%. Satisfaction survey evaluation results showed that the students satisfied in high level in every aspect. The comments pointed out that flipped classroom were easy to use and promoted self-study outside classroom. Those qualities would help students develop more skills in lifelong learning and learning to learn.

  8. Engineering Lessons Learned and Systems Engineering Applications

    NASA Technical Reports Server (NTRS)

    Gill, Paul S.; Garcia, Danny; Vaughan, William W.

    2005-01-01

    Systems Engineering is fundamental to good engineering, which in turn depends on the integration and application of engineering lessons learned. Thus, good Systems Engineering also depends on systems engineering lessons learned from within the aerospace industry being documented and applied. About ten percent of the engineering lessons learned documented in the NASA Lessons Learned Information System are directly related to Systems Engineering. A key issue associated with lessons learned datasets is the communication and incorporation of this information into engineering processes. As part of the NASA Technical Standards Program activities, engineering lessons learned datasets have been identified from a number of sources. These are being searched and screened for those having a relation to Technical Standards. This paper will address some of these Systems Engineering Lessons Learned and how they are being related to Technical Standards within the NASA Technical Standards Program, including linking to the Agency's Interactive Engineering Discipline Training Courses and the life cycle for a flight vehicle development program.

  9. Evaluation of Instruction Using the Conceptual Survey of Electricity and Magnetism in Mexico

    NASA Astrophysics Data System (ADS)

    Zavala, Genaro; Alarcon, Hugo

    2008-10-01

    A modified version of the Conceptual Survey of Electricity and Magnetism (CSEM) is regularly administered to students at the beginning of the semester as a pretest and at the end of the semester as a post-test in a large private university in Mexico. About 500 students each semester, from different engineering majors, take electricity and magnetism in the introductory level, divided into sections of 30-40 students so there are several different instructors, both full-time and part-time. We report on the analysis of the CSEM data using concentration analysis for the purpose of evaluation of instruction. The results showed that students' learning varies with respect to instructor and to CSEM concept area. Students have large learning gains in some concept areas but small learning gains in others. Deeper analysis of a concept area showed that some instructors may tend to strengthen some misconceptions that students have. The analysis can be used to give feedback to instructors for the purpose of improving instruction.

  10. Professional development of Russian HEIs' management and faculty in CDIO standards application

    NASA Astrophysics Data System (ADS)

    Chuchalin, Alexander; Malmqvist, Johan; Tayurskaya, Marina

    2016-07-01

    The paper presents the approach to complex training of managers and faculty staff for system modernisation of Russian engineering education. As a methodological basis of design and implementation of the faculty development programme, the CDIO (Conceive-Design-Implement-Operate) Approach was chosen due to compliance of its concept to the purposes and tasks of engineering education development in Russia. The authors describe the structure, the content and implementation technology of the programme designed by Tomsk Polytechnic University and Skolkovo Institute of Science and Technology with the assistance of Chalmers University of Technology and KTH Royal Institute of Technology and other members of the CDIO Initiative. The programme evaluation based on the questionnaire results showed that the programme content is relevant, has high practical value and high level of novelty for all categories of participants. Therefore, the CDIO approach was recommended for implementation to improve various elements of the engineering programme such as learning outcomes, content and structure, teaching, learning and assessment methods. Besides, the feedback results obtained through programme participants' survey contribute to identification of problems preventing development of engineering education in Russia and thus serve as milestones for further development of the programme.

  11. Students' attitudes towards learning statistics

    NASA Astrophysics Data System (ADS)

    Ghulami, Hassan Rahnaward; Hamid, Mohd Rashid Ab; Zakaria, Roslinazairimah

    2015-05-01

    Positive attitude towards learning is vital in order to master the core content of the subject matters under study. This is unexceptional in learning statistics course especially at the university level. Therefore, this study investigates the students' attitude towards learning statistics. Six variables or constructs have been identified such as affect, cognitive competence, value, difficulty, interest, and effort. The instrument used for the study is questionnaire that was adopted and adapted from the reliable instrument of Survey of Attitudes towards Statistics(SATS©). This study is conducted to engineering undergraduate students in one of the university in the East Coast of Malaysia. The respondents consist of students who were taking the applied statistics course from different faculties. The results are analysed in terms of descriptive analysis and it contributes to the descriptive understanding of students' attitude towards the teaching and learning process of statistics.

  12. College physics students' epistemological self-reflection and its relationship to conceptual learning

    NASA Astrophysics Data System (ADS)

    May, David B.; Etkina, Eugenia

    2002-12-01

    Students should develop self-reflection skills and appropriate views about knowledge and learning, both for their own sake and because these skills and views may be related to improvements in conceptual understanding. We explored the latter issue in the context of an introductory physics course for first-year engineering honors students. As part of the course, students submitted weekly reports, in which they reflected on how they learned specific physics content. The reports by 12 students were analyzed for the quality of reflection and some of the epistemological beliefs they exhibited. Students' conceptual learning gains were measured with standard survey instruments. We found that students with high conceptual gains tend to show reflection on learning that is more articulate and epistemologically sophisticated than students with lower conceptual gains. Some implications for instruction are suggested.

  13. Developing knowledge intensive ideas in engineering education: the application of camp methodology

    NASA Astrophysics Data System (ADS)

    Heidemann Lassen, Astrid; Løwe Nielsen, Suna

    2011-11-01

    Background: Globalization, technological advancement, environmental problems, etc. challenge organizations not just to consider cost-effectiveness, but also to develop new ideas in order to build competitive advantages. Hence, methods to deliberately enhance creativity and facilitate its processes of development must also play a central role in engineering education. However, so far the engineering education literature provides little attention to the important discussion of how to develop knowledge intensive ideas based on creativity methods and concepts. Purpose: The purpose of this article is to investigate how to design creative camps from which knowledge intensive ideas can unfold. Design/method/sample: A framework on integration of creativity and knowledge intensity is first developed, and then tested through the planning, execution and evaluation of a specialized creativity camp with focus on supply chain management. Detailed documentation of the learning processes of the participating 49 engineering and business students is developed through repeated interviews during the process as well as a survey. Results: The research illustrates the process of development of ideas, and how the participants through interdisciplinary collaboration, cognitive flexibility and joint ownership develop highly innovative and knowledge-intensive ideas, with direct relevance for the four companies whose problems they address. Conclusions: The article demonstrates how the creativity camp methodology holds the potential of combining advanced academic knowledge and creativity, to produce knowledge intensive ideas, when the design is based on ideas of experiential learning as well as creativity principles. This makes the method a highly relevant learning approach for engineering students in the search for skills to both develop and implement innovative ideas.

  14. What Do Subject Matter Experts Have to Say about Participating in Education and Outreach?

    NASA Astrophysics Data System (ADS)

    Manning, Colleen; NASA's Universe of Learning Team

    2018-01-01

    NASA’s Universe of Learning partners wish to actively engage with Subject Matter Experts (scientists and engineers) throughout the design, development, and delivery of products, programs, and professional development. In order to ensure these engagement efforts aligned with the needs of Subject Matter Experts, the external evaluators conducted an online survey. The subject pool included the scientists and engineers employed at the partner organizations as well as other scientists and engineers affiliated with NASA’s Astrophysics missions and research programs. This presentation will describe scientists’/engineers’ interest in various types of education/outreach, their availability to participate in education/outreach, factors that would encourage their participation in education/outreach, and the preparation and support they have for participation in education/outreach.

  15. Vertical stream curricula integration of problem-based learning using an autonomous vacuum robot in a mechatronics course

    NASA Astrophysics Data System (ADS)

    Chin, Cheng; Yue, Keng

    2011-10-01

    Difficulties in teaching a multi-disciplinary subject such as the mechatronics system design module in Departments of Mechatronics Engineering at Temasek Polytechnic arise from the gap in experience and skill among staff and students who have different backgrounds in mechanical, computer and electrical engineering within the Mechatronics Department. The departments piloted a new vertical stream curricula model (VSCAM) to enhance student learning in mechatronics system design through integration of educational activities from the first to the second year of the course. In this case study, a problem-based learning (PBL) method on an autonomous vacuum robot in the mechatronics systems design module was proposed to allow the students to have hands-on experience in the mechatronics system design. The proposed works included in PBL consist of seminar sessions, weekly works and project presentation to provide holistic assessment on teamwork and individual contributions. At the end of VSCAM, an integrative evaluation was conducted using confidence logs, attitude surveys and questionnaires. It was found that the activities were quite appreciated by the participating staff and students. Hence, PBL has served as an effective pedagogical framework for teaching multidisciplinary subjects in mechatronics engineering education if adequate guidance and support are given to staff and students.

  16. The Framework of Intervention Engine Based on Learning Analytics

    ERIC Educational Resources Information Center

    Sahin, Muhittin; Yurdugül, Halil

    2017-01-01

    Learning analytics primarily deals with the optimization of learning environments and the ultimate goal of learning analytics is to improve learning and teaching efficiency. Studies on learning analytics seem to have been made in the form of adaptation engine and intervention engine. Adaptation engine studies are quite widespread, but intervention…

  17. Engineering Lessons Learned and Systems Engineering Applications

    NASA Technical Reports Server (NTRS)

    Gill, Paul S.; Garcia, Danny; Vaughan, William W.

    2005-01-01

    Systems Engineering is fundamental to good engineering, which in turn depends on the integration and application of engineering lessons learned and technical standards. Thus, good Systems Engineering also depends on systems engineering lessons learned from within the aerospace industry being documented and applied. About ten percent of the engineering lessons learned documented in the NASA Lessons Learned Information System are directly related to Systems Engineering. A key issue associated with lessons learned datasets is the communication and incorporation of this information into engineering processes. Systems Engineering has been defined (EINIS-632) as "an interdisciplinary approach encompassing the entire technical effort to evolve and verify an integrated and life-cycle balanced set of system people, product, and process solutions that satisfy customer needs". Designing reliable space-based systems has always been a goal for NASA, and many painful lessons have been learned along the way. One of the continuing functions of a system engineer is to compile development and operations "lessons learned" documents and ensure their integration into future systems development activities. They can produce insights and information for risk identification identification and characterization. on a new project. Lessons learned files from previous projects are especially valuable in risk

  18. When Theater Comes to Engineering Design: Oh How Creative They Can Be.

    PubMed

    Pfeiffer, Ferris M; Bauer, Rachel E; Borgelt, Steve; Burgoyne, Suzanne; Grant, Sheila; Hunt, Heather K; Pardoe, Jennie J; Schmidt, David C

    2017-07-01

    The creative process is fun, complex, and sometimes frustrating, but it is critical to the future of our nation and progress in science, technology, engineering, mathematics (STEM), as well as other fields. Thus, we set out to see if implementing methods of active learning typical to the theater department could impact the creativity of senior capstone design students in the bioengineering (BE) department. Senior bioengineering capstone design students were allowed to self-select into groups. Prior to the beginning of coursework, all students completed a validated survey measuring engineering design self-efficacy. The control and experimental groups both received standard instruction, but in addition the experimental group received 1 h per week of creativity training developed by a theater professor. Following the semester, the students again completed the self-efficacy survey. The surveys were examined to identify differences in the initial and final self-efficacy in the experimental and control groups over the course of the semester. An analysis of variance was used to compare the experimental and control groups with p < 0.05 considered significant. Students in the experimental group reported more than a twofold (4.8 (C) versus 10.9 (E)) increase of confidence. Additionally, students in the experimental group were more motivated and less anxious when engaging in engineering design following the semester of creativity instruction. The results of this pilot study indicate that there is a significant potential to improve engineering students' creative self-efficacy through the implementation of a "curriculum of creativity" which is developed using theater methods.

  19. Active Learning in Engineering Education: A (Re)Introduction

    ERIC Educational Resources Information Center

    Lima, Rui M.; Andersson, Pernille Hammar; Saalman, Elisabeth

    2017-01-01

    The informal network "Active Learning in Engineering Education" (ALE) has been promoting Active Learning since 2001. ALE creates opportunity for practitioners and researchers of engineering education to collaboratively learn how to foster learning of engineering students. The activities in ALE are centred on the vision that learners…

  20. Engineering Ethics Education: A Comparative Study of Japan and Malaysia.

    PubMed

    Balakrishnan, Balamuralithara; Tochinai, Fumihiko; Kanemitsu, Hidekazu

    2018-03-22

    This paper reports the findings of a comparative study in which students' perceived attainment of the objectives of an engineering ethics education and their attitude towards engineering ethics were investigated and compared. The investigation was carried out in Japan and Malaysia, involving 163 and 108 engineering undergraduates respectively. The research method used was based on a survey in which respondents were sent a questionnaire to elicit relevant data. Both descriptive and inferential statistical analyses were performed on the data. The results of the analyses showed that the attainment of the objectives of engineering ethics education and students' attitude towards socio-ethical issues in engineering were significantly higher and positive among Japanese engineering students compared to Malaysian engineering students. Such findings suggest that a well-structured, integrated, and innovative pedagogy for teaching ethics will have an impact on the students' attainment of ethics education objectives and their attitude towards engineering ethics. As such, the research findings serve as a cornerstone to which the current practice of teaching and learning of engineering ethics education can be examined more critically, such that further improvements can be made to the existing curriculum that can help produce engineers that have strong moral and ethical characters.

  1. Relationships between High School Chemistry Students' Perceptions of a Constructivist Learning Environment and their STEM Career Expectations

    NASA Astrophysics Data System (ADS)

    Wild, Andrew

    2015-09-01

    Considerable attention has been devoted to factors affecting the persistence of women and historically underrepresented ethnic groups in their science education trajectories. The literature has focused more on structural factors that affect longitudinal outcomes rather than classroom experiences. This exploratory survey study described relationships among high school chemistry students' perceptions of a constructivist learning environment (CLE) and STEM career expectations. The sample included 693 students from 7 public high schools within the San Francisco Bay Area. Students' perceptions of a CLE predicted their expectations of entering a science career, but not engineering, computer, health, or mathematics-related careers. When all groups of students perceived the learning environment as more constructivist, they were more likely to expect science careers.

  2. Supporting Shared Resource Usage for a Diverse User Community: the OSG Experience and Lessons Learned

    NASA Astrophysics Data System (ADS)

    Garzoglio, Gabriele; Levshina, Tanya; Rynge, Mats; Sehgal, Chander; Slyz, Marko

    2012-12-01

    The Open Science Grid (OSG) supports a diverse community of new and existing users in adopting and making effective use of the Distributed High Throughput Computing (DHTC) model. The LHC user community has deep local support within the experiments. For other smaller communities and individual users the OSG provides consulting and technical services through the User Support area. We describe these sometimes successful and sometimes not so successful experiences and analyze lessons learned that are helping us improve our services. The services offered include forums to enable shared learning and mutual support, tutorials and documentation for new technology, and troubleshooting of problematic or systemic failure modes. For new communities and users, we bootstrap their use of the distributed high throughput computing technologies and resources available on the OSG by following a phased approach. We first adapt the application and run a small production campaign on a subset of “friendly” sites. Only then do we move the user to run full production campaigns across the many remote sites on the OSG, adding to the community resources up to hundreds of thousands of CPU hours per day. This scaling up generates new challenges - like no determinism in the time to job completion, and diverse errors due to the heterogeneity of the configurations and environments - so some attention is needed to get good results. We cover recent experiences with image simulation for the Large Synoptic Survey Telescope (LSST), small-file large volume data movement for the Dark Energy Survey (DES), civil engineering simulation with the Network for Earthquake Engineering Simulation (NEES), and accelerator modeling with the Electron Ion Collider group at BNL. We will categorize and analyze the use cases and describe how our processes are evolving based on lessons learned.

  3. Teaching statistics in biology: using inquiry-based learning to strengthen understanding of statistical analysis in biology laboratory courses.

    PubMed

    Metz, Anneke M

    2008-01-01

    There is an increasing need for students in the biological sciences to build a strong foundation in quantitative approaches to data analyses. Although most science, engineering, and math field majors are required to take at least one statistics course, statistical analysis is poorly integrated into undergraduate biology course work, particularly at the lower-division level. Elements of statistics were incorporated into an introductory biology course, including a review of statistics concepts and opportunity for students to perform statistical analysis in a biological context. Learning gains were measured with an 11-item statistics learning survey instrument developed for the course. Students showed a statistically significant 25% (p < 0.005) increase in statistics knowledge after completing introductory biology. Students improved their scores on the survey after completing introductory biology, even if they had previously completed an introductory statistics course (9%, improvement p < 0.005). Students retested 1 yr after completing introductory biology showed no loss of their statistics knowledge as measured by this instrument, suggesting that the use of statistics in biology course work may aid long-term retention of statistics knowledge. No statistically significant differences in learning were detected between male and female students in the study.

  4. Design of an integrated team project as bachelor thesis in bioscience engineering

    NASA Astrophysics Data System (ADS)

    Peeters, Marie-Christine; Londers, Elsje; Van der Hoeven, Wouter

    2014-11-01

    Following the decision at the KU Leuven to implement the educational concept of guided independent learning and to encourage students to participate in scientific research, the Faculty of Bioscience Engineering decided to introduce a bachelor thesis. Competencies, such as communication, scientific research and teamwork, need to be present in the design of this thesis. Because of the high number of students and the multidisciplinary nature of the graduates, all research divisions of the faculty are asked to participate. The yearly surveys and hearings were used for further optimisation. The actual design of this bachelor thesis is presented and discussed in this paper.

  5. Mark 4A project training evaluation

    NASA Technical Reports Server (NTRS)

    Stephenson, S. N.

    1985-01-01

    A participant evaluation of a Deep Space Network (DSN) is described. The Mark IVA project is an implementation to upgrade the tracking and data acquisition systems of the dSN. Approximately six hundred DSN operations and engineering maintenance personnel were surveyed. The survey obtained a convenience sample including trained people within the population in order to learn what training had taken place and to what effect. The survey questionnaire used modifications of standard rating scales to evaluate over one hundred items in four training dimensions. The scope of the evaluation included Mark IVA vendor training, a systems familiarization training seminar, engineering training classes, a on-the-job training. Measures of central tendency were made from participant rating responses. Chi square tests of statistical significance were performed on the data. The evaluation results indicated that the effects of different Mark INA training methods could be measured according to certain ratings of technical training effectiveness, and that the Mark IVA technical training has exhibited positive effects on the abilities of DSN personnel to operate and maintain new Mark IVA equipment systems.

  6. Engineering Students Learning Preferences in UNITEN: Comparative Study and Patterns of Learning Styles

    ERIC Educational Resources Information Center

    Lee, Chen Kang; Sidhu, Manjit Singh

    2015-01-01

    Engineering educators have been increasingly taking the learning style theories into serious consideration as part of their efforts to enhance the teaching and learning in engineering. This paper presents a research study to investigate the learning style preference of the mechanical engineering students in Universiti Tenaga Nasional (UNITEN),…

  7. Using wikis to investigate communication, collaboration and engagement in Capstone engineering design projects

    NASA Astrophysics Data System (ADS)

    Berthoud, L.; Gliddon, J.

    2018-03-01

    In today's global Aerospace industry, virtual workspaces are commonly used for collaboration between geographically distributed multidisciplinary teams. This study investigated the use of wikis to look at communication, collaboration and engagement in 'Capstone' team design projects at the end of an engineering degree. Wikis were set up for teams of engineering students from different disciplinary backgrounds and years. The students' perception of the usefulness of the tool were surveyed and the user contribution statistics and content categorisation were analysed for a case study wiki. Recommendations and lessons learned for the deployment of wikis are provided for interested academic staff from other institutions. Wikis were found to be of limited use to investigate levels of communication and collaboration in this study, but may be of interest in other contexts. Wikis were considered a potentially useful tool to track engagement for Capstone design projects in engineering subjects.

  8. Teaching problem solving: Don't forget the problem solver(s)

    NASA Astrophysics Data System (ADS)

    Ranade, Saidas M.; Corrales, Angela

    2013-05-01

    The importance of intrapersonal and interpersonal intelligences has long been known but educators have debated whether to and how to incorporate those topics in an already crowded engineering curriculum. In 2010, the authors used the classroom as a laboratory to observe the usefulness of including selected case studies and exercises from the fields of neurology, artificial intelligence, cognitive sciences and social psychology in a new problem-solving course. To further validate their initial findings, in 2012, the authors conducted an online survey of engineering students and engineers. The main conclusion is that engineering students will benefit from learning more about the impact of emotions, culture, diversity and cognitive biases when solving problems. Specifically, the work shows that an augmented problem-solving curriculum needs to include lessons on labelling emotions and cognitive biases, 'evidence-based' data on the importance of culture and diversity and additional practice on estimating conditional probability.

  9. A guided note taking strategy supports student learning in the large lecture classes

    NASA Astrophysics Data System (ADS)

    Tanamatayarat, J.; Sujarittham, T.; Wuttiprom, S.; Hefer, E.

    2017-09-01

    In higher education, lecturing has been found to be the most prevalent teaching format for large classes. Generally, this format tends not to result in effective learning outcomes. Therefore, to support student learning in these large lecture classes, we developed guided notes containing quotations, blank spaces, pictures, and problems. A guided note taking strategy was selected and has been used in our introductory physics course for many years. In this study, we investigated the results of implementing the guided note taking strategy to promote student learning on electrostatics. The samples were three groups of first-year students from two universities: 163 and 224 science students and 147 engineering students. All of the students were enrolled in the introductory physics course in the second semester. To assess the students’ understanding, we administered pre- and post-tests to the students by using the electrostatics test. The questions were selected from the conceptual survey of electricity and magnetism (CSEM) and some leading physics textbooks. The results of the students’ understanding were analyzed by the average normalized gains (). The value of each group was 0.61, 0.55, and 0.54, respectively. Furthermore, the students’ views on learning with the guided note taking strategy were explored by using the five-point rating scale survey. Most students perceived that the strategy helped support their active learning and engagement in the lectures.

  10. Developing Elementary Math and Science Process Skills Through Engineering Design Instruction

    NASA Astrophysics Data System (ADS)

    Strong, Matthew G.

    This paper examines how elementary students can develop math and science process skills through an engineering design approach to instruction. The performance and development of individual process skills overall and by gender were also examined. The study, preceded by a pilot, took place in a grade four extracurricular engineering design program in a public, suburban school district. Students worked in pairs and small groups to design and construct airplane models from styrofoam, paper clips, and toothpicks. The development and performance of process skills were assessed through a student survey of learning gains, an engineering design packet rubric (student work), observation field notes, and focus group notes. The results indicate that students can significantly develop process skills, that female students may develop process skills through engineering design better than male students, and that engineering design is most helpful for developing the measuring, suggesting improvements, and observing process skills. The study suggests that a more regular engineering design program or curriculum could be beneficial for students' math and science abilities both in this school and for the elementary field as a whole.

  11. Peer Learning in a MATLAB Programming Course

    NASA Astrophysics Data System (ADS)

    Reckinger, Shanon

    2016-11-01

    Three forms of research-based peer learning were implemented in the design of a MATLAB programming course for mechanical engineering undergraduate students. First, a peer learning program was initiated. These undergraduate peer learning leaders played two roles in the course, (I) they were in the classroom helping students' with their work, and, (II) they led optional two hour helps sessions outside of the class time. The second form of peer learning was implemented through the inclusion of a peer discussion period following in class clicker quizzes. The third form of peer learning had the students creating video project assignments and posting them on YouTube to explain course topics to their peers. Several other more informal techniques were used to encourage peer learning. Student feedback in the form of both instructor-designed survey responses and formal course evaluations (quantitative and narrative) will be presented. Finally, effectiveness will be measured by formal assessment, direct and indirect to these peer learning methods. This will include both academic data/grades and pre/post test scores. Overall, the course design and its inclusion of these peer learning techniques demonstrate effectiveness.

  12. The philosophical and pedagogical underpinnings of Active Learning in Engineering Education

    NASA Astrophysics Data System (ADS)

    Christie, Michael; de Graaff, Erik

    2017-01-01

    In this paper the authors draw on three sequential keynote addresses that they gave at Active Learning in Engineering Education (ALE) workshops in Copenhagen (2012), Caxias do Sol (2014) and San Sebastian (2015). Active Learning in Engineering Education is an informal international network of engineering educators dedicated to improving engineering education through active learning (http://www.ale-net.org/). The paper reiterates themes from those keynotes, namely, the philosophical and pedagogical underpinnings of Active Learning in Engineering Education, the scholarly questions that inspire engineering educators to go on improving their practice and exemplary models designed to activate the learning of engineering students. This paper aims to uncover the bedrock of established educational philosophies and theories that define and support active learning. The paper does not claim to present any new or innovative educational theory. There is already a surfeit of them. Rather, the aim is to assist Engineering Educators who wish to research how they can best activate the learning of their students by providing a readable, reasonable and solid underpinning for best practice in this field.

  13. Environmental impact assessment in higher education institutions in East Africa: the case of Rwanda.

    PubMed

    Kabera, Telesphore

    2017-03-01

    Due to the pressure on limited resources produced by a growing population and due to a decade of war, Rwanda is facing a major problem in environmental protection. Because of such problems, it seems only reasonable that environment-related courses should play an important role in the curricula of institutions of higher learning. The main aim of this research is to present a comprehensive picture of Environmental Impact Assessment (EIA) integration in graduate and undergraduate programs in Rwandese higher education institutions and to make recommendations for its improvement. During this study, two surveys were conducted: the first survey targeted Environmental Impact Assessment lecturers and the second survey was for Environmental Impact Assessment practitioners (including EIA certified experts and competent authorities). The study found that Environmental Impact Assessment is not well established in these institutions and it is not taught in some programs; civil engineering, for example, has no Environmental Impact Assessment courses. Recommendations to improve EIA education are proposed, such as requiring that a common core course in Environmental Impact Assessment be made available in Rwandese higher learning institutions.

  14. Project-based learning in a high school engineering program: A case study

    NASA Astrophysics Data System (ADS)

    France, Todd

    Generating greater student interest in science, technology, engineering, and mathematics (STEM) has been a major topic of discussion among educators, policymakers, and researchers in recent years, as increasing the number of graduates in these fields is widely considered a necessary step for sustaining the progress of today's society. Fostering this interest must occur before students reach college, and substantial efforts have been made to engage students at K-12 levels in STEM-focused learning. Attempts to involve students in engineering, a vital and growing profession, yet one in which students often have little experience, have frequently emphasized the design and construction of physical products, a practice supported by project-based learning. This thesis examines the environment of an engineering high school course that employed the project-based model. The course is part of a dedicated curricular program which aims to provide students with positive experiences in engineering-related activities while also preparing them for the rigors of college. A case study was conducted to provide insight into the benefits and drawbacks of the learning model. The study's outcomes are intended to provide guidance to educators participating in the design and/or facilitation of project-based activities, particularly those involved with engineering education. The research was performed using a qualitative approach. Long-term engagement with course participants was deemed critical to gaining a comprehensive understanding of the interactions and events that transpired on a daily basis. Nine educators involved with the program were interviewed, as were nineteen of the course's thirty-nine students. A wealth of other relevant data -- including surveys, field notes, and evaluations of student work -- was compiled for analysis as well. The study findings suggest that experiences in problem solving and teamwork were the central benefits of the course. Limitations existed due to a high focus on hands-on work, which infringed upon the significance of math and science content as well as the utilization of disciplined inquiry. In addition, group projects failed to hold individuals accountable, leading to assessment challenges. Program-wide, a number of issues hindered the teachers' abilities to institute changes, most notably a commitment to serve students of all abilities.

  15. Curricular Reform: Systems Modeling and Sustainability in Civil and Environmental Engineering at the University of Vermont

    NASA Astrophysics Data System (ADS)

    Rizzo, D. M.; Hayden, N. J.; Dewoolkar, M.; Neumann, M.; Lathem, S.

    2009-12-01

    Researchers at the University of Vermont were awarded a NSF-sponsored Department Level Reform (DLR) grant to incorporate a systems approach to engineering problem solving within the civil and environmental engineering programs. A systems approach challenges students to consider the environmental, social, and economic aspects within engineering solutions. Likewise, sustainability requires a holistic approach to problem solving that includes economic, social and environmental factors. Our reform has taken a multi-pronged approach in two main areas that include implementing: a) a sequence of three systems courses related to environmental and transportation systems that introduce systems thinking, sustainability, and systems analysis and modeling; and b) service-learning (SL) projects as a means of practicing the systems approach. Our SL projects are good examples of inquiry-based learning that allow students to emphasize research and learning in areas of most interest to them. The SL projects address real-world open-ended problems. Activities that enhance IT and soft skills for students are incorporated throughout the curricula. Likewise, sustainability has been a central piece of the reform. We present examples of sustainability in the SL and modeling projects within the systems courses (e.g., students have used STELLA™ systems modeling software to address the impact of different carbon sequestration strategies on global climate change). Sustainability in SL projects include mentoring home schooled children in biomimicry projects, developing ECHO exhibits and the design of green roofs, bioretention ponds and porous pavement solutions. Assessment includes formative and summative methods involving student surveys and focus groups, faculty interviews and observations, and evaluation of student work.

  16. Heuristic for learning common emitter amplification with bipolar transistors

    NASA Astrophysics Data System (ADS)

    Staffas, Kjell

    2017-11-01

    Mathematics in engineering education causes many thresholds in the courses because of the demand of abstract conceptualisation. Electronics depend heavily on more or less complex mathematics. Therefore the concepts of analogue electronics are hard to learn since a great deal of students struggle with the calculations and procedures needed. A survey was done focusing on students' struggle to pass a course in analogue electronics by introducing a top-down perspective and the revised taxonomy of Bloom. From a top-down perspective you can create learning environments from any spot in the taxonomy using a step-by-step approach of the verbs understand and apply. Three textbooks with a top-down perspective on analogue electronics are analysed on the concept of amplifying with a transistor circuit. The study claims issues when losing the top-down perspective to present concepts and procedures of the content to be learned.

  17. Rapid Object Detection Systems, Utilising Deep Learning and Unmanned Aerial Systems (uas) for Civil Engineering Applications

    NASA Astrophysics Data System (ADS)

    Griffiths, D.; Boehm, J.

    2018-05-01

    With deep learning approaches now out-performing traditional image processing techniques for image understanding, this paper accesses the potential of rapid generation of Convolutional Neural Networks (CNNs) for applied engineering purposes. Three CNNs are trained on 275 UAS-derived and freely available online images for object detection of 3m2 segments of railway track. These includes two models based on the Faster RCNN object detection algorithm (Resnet and Incpetion-Resnet) as well as the novel onestage Focal Loss network architecture (Retinanet). Model performance was assessed with respect to three accuracy metrics. The first two consisted of Intersection over Union (IoU) with thresholds 0.5 and 0.1. The last assesses accuracy based on the proportion of track covered by object detection proposals against total track length. In under six hours of training (and two hours of manual labelling) the models detected 91.3 %, 83.1 % and 75.6 % of track in the 500 test images acquired from the UAS survey Retinanet, Resnet and Inception-Resnet respectively. We then discuss the potential for such applications of such systems within the engineering field for a range of scenarios.

  18. Development of Concept-Based Physiology Lessons for Biomedical Engineering Undergraduate Students

    ERIC Educational Resources Information Center

    Nelson, Regina K.; Chesler, Naomi C.; Strang, Kevin T.

    2013-01-01

    engineering curriculum. In one or two introductory physiology courses, engineering students must learn physiology sufficiently to support learning in their subsequent engineering courses and careers. As preparation for future learning, physiology instruction centered on concepts may…

  19. Preparing synthetic biology for the world

    PubMed Central

    Moe-Behrens, Gerd H. G.; Davis, Rene; Haynes, Karmella A.

    2013-01-01

    Synthetic Biology promises low-cost, exponentially scalable products and global health solutions in the form of self-replicating organisms, or “living devices.” As these promises are realized, proof-of-concept systems will gradually migrate from tightly regulated laboratory or industrial environments into private spaces as, for instance, probiotic health products, food, and even do-it-yourself bioengineered systems. What additional steps, if any, should be taken before releasing engineered self-replicating organisms into a broader user space? In this review, we explain how studies of genetically modified organisms lay groundwork for the future landscape of biosafety. Early in the design process, biological engineers are anticipating potential hazards and developing innovative tools to mitigate risk. Here, we survey lessons learned, ongoing efforts to engineer intrinsic biocontainment, and how different stakeholders in synthetic biology can act to accomplish best practices for biosafety. PMID:23355834

  20. Project-based learning in engineering design in Bulgaria: expectations, experiments and results

    NASA Astrophysics Data System (ADS)

    Raycheva, Regina Pavlova; Angelova, Desislava Ivanova; Vodenova, Pavlina Minkova

    2017-11-01

    Using a students' workshop as a laboratory, this article summarises the observation of three years' implementation of a new study module for a Bachelor Program in Engineering Design (Interior and Furniture Design) at the University of Forestry, Sofia, Bulgaria. The article offers an analysis of group dynamics and the difficulties and issues observed during the process. Data from survey questionnaires are interpreted; proposals are made for future research. The conclusion of the authors includes the following points: positive response by students, important encounter with successful professionals and companies; creative fulfilment and experience of team work. On the weak side is the experienced discomfort in public presentation, lack of verbal and graphic skills, interpersonal issues and pressure of real requirements from teachers and company; lack of adequate attention by the tutors. The need of better understanding a team 'code' of behaviour and preparation for an active learning method was felt. A proposal leading to a mixed-team organisation for better support of first-time participants in the module is made.

  1. What Are the Perceptions of Lecturers towards Using Cooperative Learning in Civil Engineering?

    ERIC Educational Resources Information Center

    Ahern, Aoife

    2007-01-01

    The objective of the current paper is to examine how group learning and cooperative learning are used in civil engineering courses. The paper defines group learning and cooperative learning in the first section. It is hypothesized that group learning is used in civil engineering courses to build teamwork skills and communication skills among civil…

  2. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 53: From student to entry-level professional: Examining the technical communications practices of early career-stage US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Holloway, Karen; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    Studies indicate that communications and information-related activities take up a substantial portion of an engineer's work week; therefore, effective communications and information-use skills are one of the key engineering competencies that early career-stage aerospace engineers and scientists must possess to be successful. Feedback from industry rates communications and information-use skills high in terms of their importance to engineering practice; however, this same feedback rates the communications and information-use skills of early career-stage engineers low. To gather adequate and generalizable data about the communications and information-related activities of entry-level aerospace engineers and scientists, we surveyed 264 members of the AIAA who have no more than 1-5 years of aerospace engineering work experience. To learn more about the concomitant communications norms, we compared the results of this study with data (1,673 responses) we collected from student members of the AIAA and with data (341 responses) we collected from a study of aerospace engineering professionals. In this paper, we report selected results from these studies that focused on the communications practices and information-related activities of early career-stage U.S. aerospace engineers and scientists in the workplace.

  3. Teaching Statistics in Biology: Using Inquiry-based Learning to Strengthen Understanding of Statistical Analysis in Biology Laboratory Courses

    PubMed Central

    2008-01-01

    There is an increasing need for students in the biological sciences to build a strong foundation in quantitative approaches to data analyses. Although most science, engineering, and math field majors are required to take at least one statistics course, statistical analysis is poorly integrated into undergraduate biology course work, particularly at the lower-division level. Elements of statistics were incorporated into an introductory biology course, including a review of statistics concepts and opportunity for students to perform statistical analysis in a biological context. Learning gains were measured with an 11-item statistics learning survey instrument developed for the course. Students showed a statistically significant 25% (p < 0.005) increase in statistics knowledge after completing introductory biology. Students improved their scores on the survey after completing introductory biology, even if they had previously completed an introductory statistics course (9%, improvement p < 0.005). Students retested 1 yr after completing introductory biology showed no loss of their statistics knowledge as measured by this instrument, suggesting that the use of statistics in biology course work may aid long-term retention of statistics knowledge. No statistically significant differences in learning were detected between male and female students in the study. PMID:18765754

  4. Enhanced teaching and student learning through a simulator-based course in chemical unit operations design

    NASA Astrophysics Data System (ADS)

    Ghasem, Nayef

    2016-07-01

    This paper illustrates a teaching technique used in computer applications in chemical engineering employed for designing various unit operation processes, where the students learn about unit operations by designing them. The aim of the course is not to teach design, but rather to teach the fundamentals and the function of unit operation processes through simulators. A case study presenting the teaching method was evaluated using student surveys and faculty assessments, which were designed to measure the quality and effectiveness of the teaching method. The results of the questionnaire conclusively demonstrate that this method is an extremely efficient way of teaching a simulator-based course. In addition to that, this teaching method can easily be generalised and used in other courses. A student's final mark is determined by a combination of in-class assessments conducted based on cooperative and peer learning, progress tests and a final exam. Results revealed that peer learning can improve the overall quality of student learning and enhance student understanding.

  5. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 61: The Technical Communications Practices of ESL Aerospace Engineering Students in the United States: Results of a National Survey

    NASA Technical Reports Server (NTRS)

    Webb, John R.; Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1997-01-01

    When engineering students graduate and enter the world of work, they make the transition from an academic to a professional community of knowledge. The importance of oral and written communication to the professional success and advancement of engineers is well documented. For example, studies such as those conducted by Mailloux (1989) indicate that communicating data, information, and knowledge takes up as much as 80% of an engineer's time. However, these same studies also indicate that many engineering graduates cannot (a) write technical reports that effectively inform and influence decisionmaking, (b) present their ideas persuasively, and (c) communicate with their peers. If these statements are true, how is learning to communicate effectively in their professional knowledge community different for engineering students educated in the United States but who come from other cultures-cultures in which English is not the primary language of communication? Answering this question requires adequate and generalizable data about these students' communications abilities, skills, and competencies. To contribute to the answer, we undertook a national (mail) survey of 1,727 student members of the American Institute of Aeronautics and Astronautics (AIAA). The focus of our analysis and this paper is a comparison of the responses of 297 student members for whom English is a second language with the responses of 1,430 native English speaking students to queries regarding career choice, bilingualism and language fluency, communication skills, collaborative writing, computer use, and the use of electronic (computer) networks.

  6. E-learning in engineering education: a theoretical and empirical study of the Algerian higher education institution

    NASA Astrophysics Data System (ADS)

    Benchicou, Soraya; Aichouni, Mohamed; Nehari, Driss

    2010-06-01

    Technology-mediated education or e-learning is growing globally both in scale and delivery capacity due to the large diffusion of the ubiquitous information and communication technologies (ICT) in general and the web technologies in particular. This statement has not yet been fully supported by research, especially in developing countries such as Algeria. The purpose of this paper was to identify directions for addressing the needs of academics in higher education institutions in Algeria in order to adopt the e-learning approach as a strategy to improve quality of education. The paper will report results of an empirical study that measures the readiness of the Algerian higher education institutions towards the implementation of ICT in the educational process and the attitudes of faculty members towards the application of the e-learning approach in engineering education. Three main objectives were targeted, namely: (a) to provide an initial evaluation of faculty members' attitudes and perceptions towards web-based education; (b) reporting on their perceived requirements for implementing e-learning in university courses; (c) providing an initial input for a collaborative process of developing an institutional strategy for e-learning. Statistical analysis of the survey results indicates that the Algerian higher education institution, which adopted the Licence - Master and Doctorate educational system, is facing a big challenge to take advantage of emerging technological innovations and the advent of e-learning to further develop its teaching programmes and to enhance the quality of education in engineering fields. The successful implementation of this modern approach is shown to depend largely on a set of critical success factors that would include: 1. The extent to which the institution will adopt a formal and official e-learning strategy. 2. The extent to which faculty members will adhere and adopt this strategy and develop ownership of the various measures in the context of their teaching and research responsibilities. 3. The extent to which the university will offer adequate support in terms of training, software platform administration, online resource development and impact monitoring and assessment.

  7. The Factors that Affect Science Teachers' Participation in Professional Development

    NASA Astrophysics Data System (ADS)

    Roux, Judi Ann

    Scientific literacy for our students and the possibilities for careers available in Science, Technology, Engineering, and Mathematics (STEM) areas are important topics for economic growth as well as global competitiveness. The achievement of students in science learning is dependent upon the science teachers' effectiveness and experienced science teachers depend upon relevant professional development experiences to support their learning. In order to understand how to improve student learning in science, the learning of science teachers must also be understood. Previous research studies on teacher professional development have been conducted in other states, but Minnesota science teachers comprised a new and different population from those previously studied. The purpose of this two-phase mixed methods study was to identify the current types of professional development in which experienced, Minnesota secondary science teachers participated and the factors that affect their participation in professional development activities. The mixed-methods approach s utilized an initial online survey followed by qualitative interviews with five survey respondents. The results of the quantitative survey and the qualitative interviews indicated the quality of professional development experiences and the factors which affected the science teachers' participation in professional development activities. The supporting and inhibiting factors involved the availability of resources such as time and money, external relationships with school administrators, teacher colleagues, and family members, and personal intrinsic attributes such as desires to learn and help students. This study also describes implications for science teachers, school administrators, policymakers, and professional development providers. Recommendations for future research include the following areas: relationships between and among intrinsic and extrinsic factors, science-related professional development activities within local school districts, the use of formal and informal professional development, and the needs of rural science teachers compared to urban and suburban teachers.

  8. Lunar Reconnaissance Orbiter Lunar Workshops for Educators

    NASA Astrophysics Data System (ADS)

    Jones, A. P.; Hsu, B. C.; Hessen, K.; Bleacher, L.

    2012-12-01

    The Lunar Workshops for Educators (LWEs) are a series of weeklong professional development workshops, accompanied by quarterly follow-up sessions, designed to educate and inspire grade 6-12 science teachers, sponsored by the Lunar Reconnaissance Orbiter (LRO). Participants learn about lunar science and exploration, gain tools to help address common student misconceptions about the Moon, find out about the latest research results from LRO scientists, work with data from LRO and other lunar missions, and learn how to bring these data to their students using hands-on activities aligned with grade 6-12 National Science Education Standards and Benchmarks and through authentic research experiences. LWEs are held around the country, primarily in locations underserved with respect to NASA workshops. Where possible, workshops also include tours of science facilities or field trips intended to help participants better understand mission operations or geologic processes relevant to the Moon. Scientist and engineer involvement is a central tenant of the LWEs. LRO scientists and engineers, as well as scientists working on other lunar missions, present their research or activities to the workshop participants and answer questions about lunar science and exploration. This interaction with the scientists and engineers is consistently ranked by the LWE participants as one of the most interesting and inspiring components of the workshops. Evaluation results from the 2010 and 2011 workshops, as well as preliminary analysis of survey responses from 2012 participants, demonstrated an improved understanding of lunar science concepts among LWE participants in post-workshop assessments (as compared to identical pre-assessments) and a greater understanding of how to access and effectively share LRO data with students. Teachers reported increased confidence in helping students conduct research using lunar data, and learned about programs that would allow their students to make authentic contributions to lunar science. Participant feedback on workshop surveys was enthusiastically positive. 2012 was the third and final year for the LWEs in the current funding cycle. They will continue in a modified version at NASA Goddard Space Flight Center in Greenbelt, MD, where the LRO Project Office and Education and Public Outreach Team are based. We will present evaluation results from our external evaluator, and share lessons learned from this workshop series. The LWEs can serve as a model for others interested in incorporating scientist and engineer involvement, data from planetary missions, and data-based activities into a thematic professional development experience for science educators. For more information about the LWEs, please visit http://lunar.gsfc.nasa.gov/lwe/index.html.

  9. Active Learning in Engineering Education: a (re)introduction

    NASA Astrophysics Data System (ADS)

    Lima, Rui M.; Andersson, Pernille Hammar; Saalman, Elisabeth

    2017-01-01

    The informal network 'Active Learning in Engineering Education' (ALE) has been promoting Active Learning since 2001. ALE creates opportunity for practitioners and researchers of engineering education to collaboratively learn how to foster learning of engineering students. The activities in ALE are centred on the vision that learners construct their knowledge based on meaningful activities and knowledge. In 2014, the steering committee of the ALE network reinforced the need to discuss the meaning of Active Learning and that was the base for this proposal for a special issue. More than 40 submissions were reviewed by the European Journal of Engineering Education community and this theme issue ended up with eight contributions, which are different both in their research and Active Learning approaches. These different Active Learning approaches are aligned with the different approaches that can be increasingly found in indexed journals.

  10. What Do Informal Educators Need To Be Successful In Teaching Planetary Science And Engineering?: Results From The PLANETS Out-Of-School Time Educator Needs Assessment (NASA NNX16AC53A)

    NASA Astrophysics Data System (ADS)

    Clark, J.; Bloom, N.

    2016-12-01

    Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) is five-year interdisciplinary and cross-institutional partnership to develop and disseminate out-of-school time curricular and professional development modules that integrate planetary science, technology, and engineering. The Center for Science Teaching and Learning (CSTL) at Northern Arizona University (NAU), the U.S. Geological Survey (USGS) Astrogeology Science Center (Astrogeology), and the Museum of Science (MOS) Boston are partners in developing, piloting, and researching the impact of three out of school time planetary science and engineering curriculum and related professional development units over the life of the project. Critical to the success of out-of-school time curriculum implementation is to consider the needs of the informal education leaders. The CSTL at NAU is conducting a needs-assessment of OST educators nationwide to identify the gaps between current knowledge and abilities of OST educators and the knowledge and abilities necessary in order to facilitate effective STEM educational experiences for youth. The research questions are: a. What are current conditions of OST programs and professional development for OST educators? b. What do OST educators and program coordinators already know and think about facilitating meaningful and high quality STEM instruction? c. What are perceived needs of OST educators and program coordinators in order to implement meaningful and high quality STEM instruction? d. What design decisions will make professional development experiences more accessible, acceptable and useful to OST educators and program coordinators? In this presentation we will share the preliminary results of the national survey. The information about the needs of informal STEM educators can inform other NASA Science Mission Directorate educational partners in their program development in addition to AGU members designing informal education outreach.

  11. Learning from Engineering Failures: A Case Study of the Deepwater Horizon

    ERIC Educational Resources Information Center

    Rose, Mary Annette; Hunt, Brian

    2012-01-01

    Natural catastrophes and engineering failures provide timely, motivating, and conceptually rich backdrops for learning. Engineering educators have long embraced case studies of engineering failures as a sound pedagogical strategy for meeting several learning standards, such as "design within realistic constraints", and teaching failure…

  12. A Survey of Health Management User Objectives Related to Diagnostic and Prognostic Metrics

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin R.; Kurtoglu, Tolga; Poll, Scott D.

    2010-01-01

    One of the most prominent technical challenges to effective deployment of health management systems is the vast difference in user objectives with respect to engineering development. In this paper, a detailed survey on the objectives of different users of health management systems is presented. These user objectives are then mapped to the metrics typically encountered in the development and testing of two main systems health management functions: diagnosis and prognosis. Using this mapping, the gaps between user goals and the metrics associated with diagnostics and prognostics are identified and presented with a collection of lessons learned from previous studies that include both industrial and military aerospace applications.

  13. Deep Learning and Image Processing for Automated Crack Detection and Defect Measurement in Underground Structures

    NASA Astrophysics Data System (ADS)

    Panella, F.; Boehm, J.; Loo, Y.; Kaushik, A.; Gonzalez, D.

    2018-05-01

    This work presents the combination of Deep-Learning (DL) and image processing to produce an automated cracks recognition and defect measurement tool for civil structures. The authors focus on tunnel civil structures and survey and have developed an end to end tool for asset management of underground structures. In order to maintain the serviceability of tunnels, regular inspection is needed to assess their structural status. The traditional method of carrying out the survey is the visual inspection: simple, but slow and relatively expensive and the quality of the output depends on the ability and experience of the engineer as well as on the total workload (stress and tiredness may influence the ability to observe and record information). As a result of these issues, in the last decade there is the desire to automate the monitoring using new methods of inspection. The present paper has the goal of combining DL with traditional image processing to create a tool able to detect, locate and measure the structural defect.

  14. Rethinking construction: inclusion of slow learners as taker-off in quantity surveying practice

    NASA Astrophysics Data System (ADS)

    Majid, Masidah Abdul; Ashaari, Norul Izzati M.; @ Suhana Kamarudin Nurul Aini Osman, Suhaida; Suhaimi, Mohamad Saifulnizam Mohd

    2017-11-01

    The objective of this paper is to present the preliminary findings regarding the participation of OKU with learning disability in Science Technology, Engineering and Mathematics (STEM) sectors. Review of the works of past researchers suggested that OKU is a potential workforce in STEM sectors but still under-represented due to lack of efforts from stakeholders and learning institutions in providing information on the opportunities that are available. A research has been initiated to explore the potential of slow learners to become workforce in the construction industry as a taker off - part of work of a Quantity Surveyor. Against the findings from the literature review, the modest attempt to attract slow learners to become taker off in the construction industry require the formulation of appropriate learning environment and strong support from the respective key players and stakeholders.

  15. HydroViz: evaluation of a web-based tool for improving hydrology education

    NASA Astrophysics Data System (ADS)

    Habib, E.; Ma, Y.; Williams, D.; Sharif, H.; Hossain, F.

    2012-02-01

    HydroViz is a web-based, student-centered, highly visual educational tool designed to support active learning in the field of Engineering Hydrology. The development of HydroViz is informed by recent advances in hydrologic data, numerical simulations, visualization and web-based technologies. An evaluation study was conducted to determine the effectiveness of HydroViz, to examine the buy-in of the program, and to identify project components that need to be improved. A total of 182 students from seven freshmen and junior-/senior-level undergraduate classes in three universities participated in the study over the course of two semesters (spring 2010 and fall 2010). Data sources included homework assignments, online surveys, and informal interviews with students. Descriptive statistics were calculated for homework and the survey. Qualitative analysis of students' comments and informal interview notes were also conducted to identify ideas and patterns. HydroViz was effective in facilitating students' learning and understanding of hydrologic concepts and increasing related skills. Students had positive perceptions of various features of HydroViz and they believe that HydroViz fits well in the curriculum. The experience with HydroViz was somewhat effective in raising freshmen civil engineering students' interest in hydrology. In general, HydroViz tend to be more effective with students in junior- or senior-level classes than students in freshmen classes. There does not seem to be obvious differences between different universities. Students identified some issues that can be addressed to improve HydroViz. Future adaptation and expansion studies are under planning to scale-up the application and utility of HydroViz into various hydrology and water-resource engineering curriculum settings.

  16. Relationship of prior knowledge and working engineers' learning preferences: implications for designing effective instruction

    NASA Astrophysics Data System (ADS)

    Baukal, Charles E.; Ausburn, Lynna J.

    2017-05-01

    Continuing engineering education (CEE) is important to ensure engineers maintain proficiency over the life of their careers. However, relatively few studies have examined designing effective training for working engineers. Research has indicated that both learner instructional preferences and prior knowledge can impact the learning process, but it has not established if these factors are interrelated. The study reported here considered relationships of prior knowledge and three aspects of learning preferences of working engineers at a manufacturing company: learning strategy choices, verbal-visual cognitive styles, and multimedia preferences. Prior knowledge was not found to be significantly related to engineers' learning preferences, indicating independence of effects of these variables on learning. The study also examined relationships of this finding to the Multimedia Cone of Abstraction and implications for its use as an instructional design tool for CEE.

  17. Curricular and Co-Curricular Leadership Learning for Engineering Students

    ERIC Educational Resources Information Center

    Reeve, Doug; Evans, Greg; Simpson, Annie; Sacks, Robin; Olivia-Fisher, Estelle; Rottmann, Cindy; Sheridan, Patricia

    2015-01-01

    In recent years engineering educators have been encouraged to blend technical and professional learning in their curricular and co-curricular programming (Engineers Canada, 2009; National Academy of Engineering [NAE], 2004). Our paper describes a multifaceted leadership learning program developed to achieve this goal by infusing reflective,…

  18. Learning strategy preferences, verbal-visual cognitive styles, and multimedia preferences for continuing engineering education instructional design

    NASA Astrophysics Data System (ADS)

    Baukal, Charles Edward, Jr.

    A literature search revealed very little information on how to teach working engineers, which became the motivation for this research. Effective training is important for many reasons such as preventing accidents, maximizing fuel efficiency, minimizing pollution emissions, and reducing equipment downtime. The conceptual framework for this study included the development of a new instructional design framework called the Multimedia Cone of Abstraction (MCoA). This was developed by combining Dale's Cone of Experience and Mayer's Cognitive Theory of Multimedia Learning. An anonymous survey of 118 engineers from a single Midwestern manufacturer was conducted to determine their demographics, learning strategy preferences, verbal-visual cognitive styles, and multimedia preferences. The learning strategy preference profile and verbal-visual cognitive styles of the sample were statistically significantly different than the general population. The working engineers included more Problem Solvers and were much more visually-oriented than the general population. To study multimedia preferences, five of the seven levels in the MCoA were used. Eight types of multimedia were compared in four categories (types in parantheses): text (text and narration), static graphics (drawing and photograph), non-interactive dynamic graphics (animation and video), and interactive dynamic graphics (simulated virtual reality and real virtual reality). The first phase of the study examined multimedia preferences within a category. Participants compared multimedia types in pairs on dual screens using relative preference, rating, and ranking. Surprisingly, the more abstract multimedia (text, drawing, animation, and simulated virtual reality) were preferred in every category to the more concrete multimedia (narration, photograph, video, and real virtual reality), despite the fact that most participants had relatively little prior subject knowledge. However, the more abstract graphics were only slightly preferred to the more concrete graphics. In the second phase, the more preferred multimedia types in each category from the first phase were compared against each other using relative preference, rating, and ranking and overall rating and ranking. Drawing was the most preferred multimedia type overall, although only slightly more than animation and simulated virtual reality. Text was a distant fourth. These results suggest that instructional content for continuing engineering education should include problem solving and should be highly visual.

  19. Improving motivation and engagement in core engineering courses with student teams

    NASA Astrophysics Data System (ADS)

    Trenshaw, Kathryn Faye

    Team-based projects are common in capstone engineering design courses and increasingly common in first-year engineering programs. Despite high enrollments and budget cutbacks affecting many programs, second- and third-year students can also benefit from team-based project experiences, which motivate them to succeed in engineering and prepare them for a globally competitive workforce. My dissertation research demonstrates that team design projects can be incorporated into the curricula of engineering departments, and these projects result in positive affective outcomes for students. Using ABET outcomes and Self Determination Theory (SDT) as the background for my studies, I investigated students' confidence, motivation, and sense of community after experiencing team design projects in two different engineering departments at a large public institution. In the first study, I used a sequential mixed methods approach with a primary quantitative phase followed by an explanatory qualitative phase to evaluate a chemical engineering program that integrated team design projects throughout the curriculum. The evaluation methods included a survey based on desired ABET outcomes for students and focus groups to expand on the quantitative results. Students reported increased confidence in their design, teamwork, and communication skills after completing the projects. In my second and third studies, I used qualitative interviews based on SDT to explore student motivation in an electrical and computer engineering course redesigned to support students' intrinsic motivation to learn. SDT states that intrinsic motivation to learn is supported by increasing students' sense of autonomy, competence, and relatedness in regard to their learning. Using both narrative inquiry and phenomenological methodologies, I analyzed data from interviews of students for mentions of autonomy, competence, and relatedness as well as course events that were critical in changing students' motivation. Analysis revealed that individual choice, constructive failures, and a strong sense of community in the classroom were critical to moving students toward intrinsic motivation. Further, community building through team experiences characterized the essence of the student experience in the course. My research highlights a need for better quantitative measures of students' affective outcomes, specifically motivation, in the context of a single course. Based on the results of my studies, SDT should be reevaluated in terms of possible interdependencies between autonomy, competence, and relatedness, and how the social context of large engineering courses may create a deeper need for supporting relatedness.

  20. Engineering genders: A spatial analysis of engineering, gender, and learning

    NASA Astrophysics Data System (ADS)

    Weidler-Lewis, Joanna R.

    This three article dissertation is an investigation into the ontology of learning insofar as learning is a process of becoming. In each article I explore the general questions of who is learning, in what ways, and with what consequences. The context for this research is undergraduate engineering education with particular attention to the construction of gender in this context. The first article is an examination of the organization of freshman engineering design. The second article draws on Lefebvre's spatial triad as both a theory and method for studying learning. The third article is an interview study of LGBTQA students creating their futures as engineers.

  1. USE Efficiency: an innovative educational programme for energy efficiency in buildings

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Theofilos A.; Christoforidis, Georgios C.; Papagiannis, Grigoris K.

    2017-10-01

    Power engineers are expected to play a pivotal role in transforming buildings into smart and energy-efficient structures, which is necessary since buildings are responsible for a considerable amount of the total energy consumption. To fulfil this role, a holistic approach in education is required, tackling subjects traditionally related to other engineering disciplines. In this context, USE Efficiency is an inter-institutional and interdisciplinary educational programme implemented in nine European Universities targeting energy efficiency in buildings. The educational programme effectively links professors, students, engineers and industry experts, creating a unique learning environment. The scope of the paper is to present the methodology and the general framework followed in the USE Efficiency programme. The proposed methodology can be adopted for the design and implementation of educational programmes on energy efficiency and sustainable development in higher education. End-of-course survey results showed positive feedback from the participating students, indicating the success of the programme.

  2. Use of Mobile Devices for E-Learning in Geomatics

    NASA Astrophysics Data System (ADS)

    Mills, H.

    2015-05-01

    For the last 4 years, the School of Civil Engineering & Geosciences at Newcastle University, UK adapted mobile devices as learning approach only for undergraduate within Geomatics. All incoming students were given a mobile device as learning tool, which was supposed to be there main way to accessing teaching material. This paper will present how students adopted the mobile devices and how their learning has changed using mobile devices. It will highlight which apps can be used in a Geomatics teaching environment to engage students in their learning and teaching environment. The paper will furthermore look into apps which help students within the area of Photogrammetry and Remote Sensing, such as the Autodesk 123D catch up or the Remote RDP app to remotely control surveying instrumentations, such as laser scanners. Those apps are easy tools to engage students within digital learning environment which the students are familiar with. The paper will show how students embrace the technology but also current limitation of using those within Higher education establishments, such as sufficient Wifi and student support for using mobile devices.

  3. Engineers' professional learning: a practice-theory perspective

    NASA Astrophysics Data System (ADS)

    Reich, Ann; Rooney, Donna; Gardner, Anne; Willey, Keith; Boud, David; Fitzgerald, Terry

    2015-07-01

    With the increasing challenges facing professional engineers working in more complex, global and interdisciplinary contexts, different approaches to understanding how engineers practice and learn are necessary. This paper draws on recent research in the social sciences from the field of workplace learning, to suggest that a practice-theory perspective on engineers' professional learning is fruitful. It shifts the focus from the attributes of the individual learner (knowledge, skills and attitudes) to the attributes of the practice (interactions, materiality, opportunities and challenges). Learning is thus more than the technical acquisition and transfer of knowledge, but a complex bundle of activities, that is, social, material, embodied and emerging. The paper is illustrated with examples from a research study of the learning of experienced engineers in the construction industry to demonstrate common practices - site walks and design review meetings - in which learning takes place.

  4. Progressing science, technology, engineering, and math (STEM) education in North Dakota with near-space ballooning

    NASA Astrophysics Data System (ADS)

    Saad, Marissa Elizabeth

    The United States must provide quality science, technology, engineering, and math (STEM) education in order to maintain a leading role in the global economy. Numerous initiatives have been established across the United States that promote and encourage STEM education within the middle school curriculum. Integrating active learning pedagogy into instructors' lesson plans will prepare the students to think critically - a necessary skill for the twenty first century. This study integrated a three-week long Near Space Balloon project into six eighth grade Earth Science classes from Valley Middle School in Grand Forks, North Dakota. It was hypothesized that after the students designed, constructed, launched, and analyzed their payload experiments, they would have an increased affinity for high school science and math classes. A pre- and post-survey was distributed to the students (n=124), before and after the project to analyze how effective this engineering and space mission was regarding high school STEM interests. The surveys were statistically analyzed, comparing means by the Student's t-Test, specifically the Welch-Satterthwaite test. Female students displayed a 57.1% increase in math and a 63.6% increase in science; male students displayed a 46.6% increase in science and 0% increase in math. Most Likert-scale survey questions experienced no statistically significant change, supporting the null hypothesis. The only survey question that supported the hypothesis was, "I Think Engineers Work Alone," which experienced a 0.24% decrease in student understanding. The results suggest that integrating a three-week long Near Space Balloon project into middle school curricula will not directly influence the students' excitement to pursue STEM subjects and careers. An extensive, yearlong ballooning mission is recommended so that it can be integrated with multiple core subjects. Using such an innovative pedagogy method as with this balloon launch will help students master the scientific process and experience real team collaboration, as they did in this successful mission.

  5. Reaching Students: What Research Says about Effective Instruction in Undergraduate Science and Engineering

    ERIC Educational Resources Information Center

    Kober, Nancy

    2015-01-01

    The undergraduate years are a turning point in producing scientifically literate citizens and future scientists and engineers. Evidence from research about how students learn science and engineering shows that teaching strategies that motivate and engage students will improve their learning. So how do students best learn science and engineering?…

  6. The Philosophical and Pedagogical Underpinnings of Active Learning in Engineering Education

    ERIC Educational Resources Information Center

    Christie, Michael; de Graaff, Erik

    2017-01-01

    In this paper the authors draw on three sequential keynote addresses that they gave at Active Learning in Engineering Education (ALE) workshops in Copenhagen (2012), Caxias do Sol (2014) and San Sebastian (2015). Active Learning in Engineering Education is an informal international network of engineering educators dedicated to improving…

  7. Distance Learning and Skill Acquisition in Engineering Sciences: Present State and Prospects

    ERIC Educational Resources Information Center

    Potkonjak, Veljko; Jovanovic, Kosta; Holland, Owen; Uhomoibhi, James

    2013-01-01

    Purpose: The purpose of this paper is to present an improved concept of software-based laboratory exercises, namely a Virtual Laboratory for Engineering Sciences (VLES). Design/methodology/approach: The implementation of distance learning and e-learning in engineering sciences (such as Mechanical and Electrical Engineering) is still far behind…

  8. Effectiveness of an ethics course delivered in traditional and non-traditional formats.

    PubMed

    Feldhaus, Charles R; Fox, Patricia L

    2004-04-01

    This paper details a three-credit-hour undergraduate ethics course that was delivered using traditional, distance, and compressed formats. OLS 263: Ethical Decisions in Leadership is a 200-level course offered by the Department of Organizational Leadership and Supervision in the Purdue School of Engineering and Technology at Indiana University Purdue University Indianapolis (IUPUI). Students in engineering, technology, business, nursing, and other majors take the course. In an effort to determine student perceptions of course and instructor effectiveness, end-of-course student survey data were compared using data from traditional, distance, and compressed sections of the course. In addition, learning outcomes from the final course project were evaluated using a standardized assessment rubric and scores on the course project.

  9. Typology of engineering mathematics learners in a Singapore polytechnic: a socio-psychological perspective

    NASA Astrophysics Data System (ADS)

    Khiat, Henry

    2012-03-01

    This study aims to understand how engineering mathematics students form intentions in mathematics learning from a socio-psychological perspective. A grounded theory approach was adopted and 21 engineering students and six tutors participated in the study. The main findings in this study show that a student's intention in engineering mathematics learning is made up of a number of sequential components - their critical trigger, internalized significance, aim and perceived intention-related consequences in engineering mathematics learning. Accordingly, the participants may be broadly classified into five types of learners: idealistic learners, competitive learners, pragmatic learners, fatalistic learners and dissonant learners according to their intentions in engineering mathematics learning.

  10. Optimization Strategies for Sensor and Actuator Placement

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Kincaid, Rex K.

    1999-01-01

    This paper provides a survey of actuator and sensor placement problems from a wide range of engineering disciplines and a variety of applications. Combinatorial optimization methods are recommended as a means for identifying sets of actuators and sensors that maximize performance. Several sample applications from NASA Langley Research Center, such as active structural acoustic control, are covered in detail. Laboratory and flight tests of these applications indicate that actuator and sensor placement methods are effective and important. Lessons learned in solving these optimization problems can guide future research.

  11. Engineering Genders: A Spatial Analysis of Engineering, Gender, and Learning

    ERIC Educational Resources Information Center

    Weidler-Lewis, Joanna R.

    2016-01-01

    This three article dissertation is an investigation into the ontology of learning insofar as learning is a process of becoming. In each article I explore the general questions of who is learning, in what ways, and with what consequences. The context for this research is undergraduate engineering education with particular attention to the…

  12. Projects That Matter: Concepts and Models for Service-Learning in Engineering. AAHE's Series on Service-Learning in the Disciplines.

    ERIC Educational Resources Information Center

    Tsang, Edmund, Ed.

    This volume, the 14th in a series of monographs on service learning and academic disciplinary areas, is designed as a practical guide for faculty seeking to integrate service learning into an engineering course. The volume also deals with larger issues in engineering education and provides case studies of service-learning courses. The articles…

  13. Effectiveness of E-Learning for Students Vocational High School Building Engineering Program

    NASA Astrophysics Data System (ADS)

    Soeparno; Muslim, Supari

    2018-04-01

    Implementation of vocational learning in accordance with the 2013 curriculum must meet the criteria, one of which is learning to be consistent with advances in technology and information. Technology-based learning in vocational commonly referred to as E-Learning, online (in the network) and WBL (Web-Based Learning). Facts on the ground indicate that based learning technology and information on Vocational High School of Building Engineering is still not going well. The purpose of this research is to know: advantages and disadvantages of learning with E-Learning, conformity of learning with E-Learning with characteristics of students on Vocational High School of Building Engineering and effective learning method based on E-Learning for students on Vocational High School of Building Engineering. Research done by literature method, get the following conclusion as follow: the advantages of E-Learning is learning can be done anywhere and anytime, efficient in accessing materials and tasks, ease of communication and discussion; while the shortage is the need for additional costs for good internet access and lack of social interaction between teachers and students. E-learning is appropriate to basic knowledge competencies, and not appropriate at the level of advanced competencies and skills. Effective E-Learning Based Learning Method on Vocational High School of Building Engineering is a Blended method that is a mix between conventional method and e-learning.

  14. 77 FR 4650 - Airworthiness Directives; General Electric Company Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-31

    ... blade borescope inspection (BSI) or a failed engine core vibration survey, establishes a new lower life... LPT rotor stage 3 disk removal after a failed HPT blade BSI or a failed engine core vibration survey... engine test cell as part of an engine manual performance run fulfill the vibration survey requirements of...

  15. Promoting innovation: Enhancing transdisciplinary opportunities for medical and engineering students.

    PubMed

    Brazile, Tiffany; Hostetter Shoop, Glenda; McDonough, Christine M; Van Citters, Douglas W

    2018-01-30

    Addressing current healthcare challenges requires innovation and collaboration. Current literature provides limited guidance in promoting these skills in medical school. One approach involves transdisciplinary training in which students from different disciplines work together toward a shared goal. We assessed the need for such a curriculum at Dartmouth College. We surveyed medical and engineering students' educational values; learning experiences; professional goals; and interest in transdisciplinary education and innovation. Data were analyzed using descriptive statistics. Shared values among student groups included leadership development, innovation, collaboration, and resource sharing. Medical students felt their curriculum inadequately addressed creativity and innovation relative to their engineering counterparts (p < 0.05). Medical students felt less prepared for entrepreneurial activities (p < 0.05), while engineering students indicated a need for basic medical knowledge and patient-oriented design factors. Despite strong interest, collaboration was less than 50% of indicated interest. Medical and engineering students share an interest in the innovation process and need a shared curriculum to facilitate collaboration. A transdisciplinary course that familiarizes students with this process has the potential to promote physicians and engineers as leaders and innovators who can effectively work across industry lines. A transdisciplinary course was piloted in Spring 2017.

  16. Making Sense of Space: Distributed Spatial Sensemaking in a Middle School Summer Engineering Camp

    ERIC Educational Resources Information Center

    Ramey, Kay E.; Uttal, David H.

    2017-01-01

    Spatial thinking is important for success in engineering. However, little is known about "how" students learn and apply spatial skills, particularly in kindergarten to Grade 12 engineering learning. The present study investigated the role of spatial thinking in engineering learning at a middle school summer camp. Participants were 26…

  17. Learning Engineers to Reflect: Obstacles and Remedies in an Engineering Community

    ERIC Educational Resources Information Center

    Aase, Karina; Olsen, Odd Einar; Pedersen, Cathrine

    2007-01-01

    The article reports results from a research facilitated learning project carried out in an engineering department in an oil and gas company. The objective of the project was to enhance an awareness of and the ability to use, dialogue and reflection-based learning approaches. The results document that the project-based engineering setting induces…

  18. Creating meaningful learning experiences: Understanding students' perspectives of engineering design

    NASA Astrophysics Data System (ADS)

    Aleong, Richard James Chung Mun

    There is a societal need for design education to prepare holistic engineers with the knowledge, skills, and attitudes to innovate and compete globally. Design skills are paramount to the espoused values of higher education, as institutions of higher learning strive to develop in students the cognitive abilities of critical thinking, problem solving, and creativity. To meet these interests from industry and academia, it is important to advance the teaching and learning of engineering design. This research aims to understand how engineering students learn and think about design, as a way for engineering educators to optimize instructional practice and curriculum development. Qualitative research methodology was used to investigate the meaning that engineering students' ascribe to engineering design. The recruitment of participants and corresponding collection of data occurred in two phases using two different data collection techniques. The first phase involved the distribution of a one-time online questionnaire to all first year, third year, and fourth year undergraduate engineering students at three Canadian Universities. After the questionnaire, students were asked if they would be willing to participate in the second phase of data collection consisting of a personal interview. A total of ten students participated in interviews. Qualitative data analysis procedures were conducted on students' responses from the questionnaire and interviews. The data analysis process consisted of two phases: a descriptive phase to code and categorize the data, followed by an interpretative phase to generate further meaning and relationships. The research findings present a conceptual understanding of students' descriptions about engineering design, structured within two educational orientations: a learning studies orientation and a curriculum studies orientation. The learning studies orientation captured three themes of students' understanding of engineering design: awareness, relevance, and transfer. With this framework of student learning, engineering educators can enhance learning experiences by engaging all three levels of students' understanding. The curriculum studies orientation applied the three holistic elements of curriculum---subject matter, society, and the individual---to conceptualize design considerations for engineering curriculum and teaching practice. This research supports the characterization of students' learning experiences to help educators and students optimize their teaching and learning of design education.

  19. Gendered Practices of Constructing an Engineering Identity in a Problem-Based Learning Environment

    ERIC Educational Resources Information Center

    Du, Xiang-Yun

    2006-01-01

    This article examines the learning experiences of engineering students of both genders in a problem-based and project-organized learning environment (PBL) at a Danish university. This study relates an amalgam of theories on learning and gender to the context of engineering education. Based on data from a qualitative study of an electrical and…

  20. Learning Objects and Learning Content Management Systems in Engineering Education: Implications of New Trends

    ERIC Educational Resources Information Center

    Sjoer, Ellen; Dopper, Sofia

    2006-01-01

    Learning objects and learning content management systems are considered to be "the next wave in engineering education". The results of experiments with these new trends in ICT in engineering education are described in this paper. The prospects were examined and the concepts of reusability of content for teachers and for personalized…

  1. www.teld.net: Online Courseware Engine for Teaching by Examples and Learning by Doing.

    ERIC Educational Resources Information Center

    Huang, G. Q.; Shen, B.; Mak, K. L.

    2001-01-01

    Describes TELD (Teaching by Examples and Learning by Doing), a Web-based online courseware engine for higher education. Topics include problem-based learning; project-based learning; case methods; TELD as a Web server; course materials; TELD as a search engine; and TELD as an online virtual classroom for electronic delivery of electronic…

  2. Instructional Design Issues in a Distributed Collaborative Engineering Design (CED) Instructional Environment

    ERIC Educational Resources Information Center

    Koszalka, Tiffany A.; Wu, Yiyan

    2010-01-01

    Changes in engineering practices have spawned changes in engineering education and prompted the use of distributed learning environments. A distributed collaborative engineering design (CED) course was designed to engage engineering students in learning about and solving engineering design problems. The CED incorporated an advanced interactive…

  3. 1.2 million kids and counting-Mobile science laboratories drive student interest in STEM.

    PubMed

    Jones, Amanda L; Stapleton, Mary K

    2017-05-01

    In today's increasingly technological society, a workforce proficient in science, technology, engineering, and mathematics (STEM) skills is essential. Research has shown that active engagement by K-12 students in hands-on science activities that use authentic science tools promotes student learning and retention. Mobile laboratory programs provide this type of learning in schools and communities across the United States and internationally. Many programs are members of the Mobile Lab Coalition (MLC), a nonprofit organization of mobile and other laboratory-based education programs built on scientist and educator collaborations. A recent survey of the member programs revealed that they provide an impressive variety of programming and have collectively served over 1.2 million students across the US.

  4. Undergraduate Student Nurses' Use of Information and Communication Technology in Their Education.

    PubMed

    Honey, Michelle

    2018-01-01

    Students expect to use technology in their study just as they use technology in other aspects of their life. Technology is embedded in the day-to-day work of nursing, and therefore needs to be integrated in education to prepare students to assume professional roles and develop skills for lifelong learning. A quantitative descriptive study, using an anonymous survey, explored how undergraduate student nurses from one New Zealand school of nursing, access information and communication technologies for their learning. In total 226 completed questionnaires were returned (75%). Nearly all students (96%) have smart phones, all students have a computer and 99% use the university learning management system daily or several times a week. The search engine most commonly used to find information for assignments was Google Scholar (91%), with only 78% using subject specific academic databases. Implications from this study include the need for charging stations and further education on information searching.

  5. Simple Activities for Powerful Impact

    NASA Astrophysics Data System (ADS)

    LaConte, K.; Shupla, C. B.; Dusenbery, P.; Harold, J. B.; Holland, A.

    2016-12-01

    STEM education is having a transformational impact on libraries across the country. The STAR Library Education Network (STAR_Net) provides free Science-Technology Activities & Resources that are helping libraries to engage their communities in STEM learning experiences. Hear the results of a national 2015 survey of library and STEM professionals and learn what STEM programming is currently in place in public libraries and how libraries approach and implement STEM programs. Experience hands-on space science activities that are being used in library programs with multiple age groups. Through these hands-on activities, learners explore the nature of science and employ science and engineering practices, including developing and using models, planning and carrying out investigations, and engaging in argument from evidence (NGSS Lead States, 2013). Learn how STAR_Net can help you print (free!) mini-exhibits and educator guides. Join STAR_Net's online community and access STEM resources and webinars to work with libraries in your local community.

  6. MC-1 Engine Valves, Lessons Learned

    NASA Technical Reports Server (NTRS)

    Laszar, John

    2003-01-01

    Many lessons were learned during the development of the valves for the MC-1 engine. The purpose of this report is to focus on a variety of issues related to the engine valves and convey the lessons learned. This paper will not delve into detailed technical analysis of the components. None of the lessons learned are new or surprising, but simply reinforce the importance of addressing the details of the design early, at the component level. The Marshall Space Flight Center (MSFC), Huntsville, Alabama developed the MC-1 engine, a LOX / FW-1, 60,000 pound thrust engine. This engine was developed under the Low Cost Boost Technology office at MSFC and proved to be a very successful project for the MSFC Propulsion team and the various subcontractors working the development of the engine and its components.

  7. The Effect of Case Teaching on Meaningful and Retentive Learning When Studying Genetic Engineering

    ERIC Educational Resources Information Center

    Güccük, Ahmet; Köksal, Mustafa Serdar

    2017-01-01

    The purpose of this study is to investigate the effects of case teaching on how students learn about genetic engineering, in terms of meaningful learning and retention of learning. The study was designed as quasi-experimental research including 63 8th graders (28 boys and 35 girls). To collect data, genetic engineering achievement tests were…

  8. First-Year Engineering Students' Portrayal of Engineering in a Proposed Museum Exhibit for Middle School Students

    NASA Astrophysics Data System (ADS)

    Mena, Irene B.; Diefes-Dux, Heidi A.

    2012-04-01

    Students' perceptions of engineering have been documented through studies involving interviews, surveys, and word associations that take a direct approach to asking students about various aspects of their understanding of engineering. Research on perceptions of engineering rarely focuses on how students would portray engineering to others. First-year engineering student teams proposed a museum exhibit, targeted to middle school students, to explore the question "What is engineering?" The proposals took the form of a poster. The overarching research question focuses on how these students would portray engineering to middle school students as seen through their museum exhibit proposals. A preliminary analysis was done on 357 posters to determine the overall engineering themes for the proposed museum exhibits. Forty of these posters were selected and, using open coding, more thoroughly analyzed to learn what artifacts/objects, concepts, and skills student teams associate with engineering. These posters were also analyzed to determine if there were any differences by gender composition of the student teams. Building, designing, and teamwork are skills the first-year engineering students link to engineering. Regarding artifacts, students mentioned those related to transportation and structures most often. All-male teams were more likely to focus on the idea of space and to mention teamwork and designing as engineering skills; equal-gender teams were more likely to focus on the multidisciplinary aspect of engineering. This analysis of student teams' proposals provides baseline data, positioning instructors to develop and assess instructional interventions that stretch students' self-exploration of engineering.

  9. Effects of Engineering Design-Based Science on Elementary School Science Students' Engineering Identity Development across Gender and Grade

    NASA Astrophysics Data System (ADS)

    Capobianco, Brenda M.; Yu, Ji H.; French, Brian F.

    2015-04-01

    The integration of engineering concepts and practices into elementary science education has become an emerging concern for science educators and practitioners, alike. Moreover, how children, specifically preadolescents (grades 1-5), engage in engineering design-based learning activities may help science educators and researchers learn more about children's earliest identification with engineering. The purpose of this study was to examine the extent to which engineering identity differed among preadolescents across gender and grade, when exposing students to engineering design-based science learning activities. Five hundred fifty preadolescent participants completed the Engineering Identity Development Scale (EIDS), a recently developed measure with validity evidence that characterizes children's conceptions of engineering and potential career aspirations. Data analyses of variance among four factors (i.e., gender, grade, and group) indicated that elementary school students who engaged in the engineering design-based science learning activities demonstrated greater improvements on the EIDS subscales compared to those in the comparison group. Specifically, students in the lower grade levels showed substantial increases, while students in the higher grade levels showed decreases. Girls, regardless of grade level and participation in the engineering learning activities, showed higher scores in the academic subscale compared to boys. These findings suggest that the integration of engineering practices in the science classroom as early as grade one shows potential in fostering and sustaining student interest, participation, and self-concept in engineering and science.

  10. Personalized Virtual Learning Environment from the Detection of Learning Styles

    ERIC Educational Resources Information Center

    Martínez Cartas, M. L.; Cruz Pérez, N.; Deliche Quesada, D.; Mateo Quero, S.

    2013-01-01

    Through the previous detection of existing learning styles in a classroom, a Virtual Learning Environment (VLE) has been designed for students of several Engineering degrees, using the Learning Management System (LMS) utilized in the University of Jaen, ILIAS. Learning styles of three different Knowledge Areas; Chemical Engineering, Materials…

  11. Engineers' Professional Learning: A Practice-Theory Perspective

    ERIC Educational Resources Information Center

    Reich, Ann; Rooney, Donna; Gardner, Anne; Willey, Keith; Boud, David; Fitzgerald, Terry

    2015-01-01

    With the increasing challenges facing professional engineers working in more complex, global and interdisciplinary contexts, different approaches to understanding how engineers practice and learn are necessary. This paper draws on recent research in the social sciences from the field of workplace learning, to suggest that a practice-theory…

  12. Research report: learning styles of biomedical engineering students.

    PubMed

    Dee, Kay C; Nauman, Eric A; Livesay, Glen A; Rice, Janet

    2002-09-01

    Examining students' learning styles can yield information useful to the design of learning activities, courses, and curricula. A variety of measures have been used to characterize learning styles, but the literature contains little information specific to biomedical engineering (BMEN) students. We, therefore, utilized Felder's Index of Learning Styles to investigate the learning style preferences of BMEN students at Tulane University. Tulane BMEN students preferred to receive information visually (preferred by 88% of the student sample) rather than verbally, focus on sensory information (55%) instead of intuitive information, process information actively (66%) instead of reflectively, and understand information globally (59%) rather than sequentially. These preferences varied between cohorts (freshman, sophomore, etc.) and a significantly higher percentage of female students preferred active and sensing learning styles. Compared to other engineering student populations, our sample of Tulane BMEN students contained the highest percentage of students preferring the global learning style. Whether this is a general trend for all BMEN students or a trait specific to Tulane engineers requires further investigation. Regardless, this study confirms the existence of a range of learning styles within biomedical engineering students, and provides motivation for instructors to consider how well their teaching style engages multiple learning styles.

  13. Supporting clinical engineering in Italy: results of a survey conducted by the AIIC.

    PubMed

    Faggiano, Francesco; Ritrovato, Matteo; Freda, Paola; Vivo, Liliana; D'Alessandro, Luigi; Derrico, Pietro

    2012-01-01

    This article presents the outcomes of a survey developed and conducted by the Italian Association of Clinical Engineers (AIIC) in 2010 [1]. The AIIC, affiliated with the International Federation for Medical and Biological Engineering (IFMBE) since 2003, conducted this in-depth survey to investigate the educational profile of clinical engineers (CEs) as well as the activities and organization of clinical engineering departments (CEDs) in Italy. The survey consisted of a six-section questionnaire designed by the AIIC Board, which was based on other previous international surveys of CEDs. The questionnaire was sent to the AIIC members and to the most important Italian health-care organizations.

  14. A survey of residents' experience with patient safety and quality improvement concepts in radiation oncology.

    PubMed

    Spraker, Matthew B; Nyflot, Matthew; Hendrickson, Kristi; Ford, Eric; Kane, Gabrielle; Zeng, Jing

    The safety and quality of radiation therapy have recently garnered increased attention in radiation oncology (RO). Although patient safety guidelines expect physicians and physicists to lead clinical safety and quality improvement (QI) programs, trainees' level of exposure to patient safety concepts during training is unknown. We surveyed active medical and physics RO residents in North America in February 2016. Survey questions involved demographics and program characteristics, exposure to patient safety topics, and residents' attitude regarding their safety education. Responses were collected from 139 of 690 (20%) medical and 56 of 248 (23%) physics RO residents. More than 60% of residents had no exposure or only informal exposure to incident learning systems (ILS), root cause analysis, failure mode and effects analysis (FMEA), and the concepts of human factors engineering. Medical residents had less exposure to FMEA than physics residents, and fewer medical than physics residents felt confident in leading FMEA in clinic. Only 27% of residents felt that patient safety training was adequate in their program. Experiential learning through practical workshops was the most desired educational modality, preferred over web-based learning. Residents training in departments with ILS had greater exposure to patient safety concepts and felt more confident leading clinical patient safety and QI programs than residents training in departments without an ILS. The survey results show that most residents have no or only informal exposure to important patient safety and QI concepts and do not feel confident leading clinical safety programs. This represents a gaping need in RO resident education. Educational programs such as these can be naturally developed as part of an incident learning program that focuses on near-miss events. Future research should assess the needs of RO program directors to develop effective RO patient safety and QI training programs. Copyright © 2016 American Society of Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  15. On the design of learning outcomes for the undergraduate engineer's final year project

    NASA Astrophysics Data System (ADS)

    Thambyah, Ashvin

    2011-03-01

    The course for the final year project for engineering students, because of its strongly research-based, open-ended format, tends to not have well defined learning outcomes, which are also not aligned with any accepted pedagogical philosophy or learning technology. To address this problem, the revised Bloom's taxonomy table of Anderson and Krathwohl (2001) is utilised, as suggested previously by Lee and Lai (2007), to design new learning outcomes for the final year project course in engineering education. Based on the expectations of the engineering graduate, and integrating these graduate expectations into the six cognitive processes and four knowledge dimensions of the taxonomy table, 24 learning outcomes have been designed. It is proposed that these 24 learning outcomes be utilised as a suitable working template to inspire more critical evaluation of what is expected to be learnt by engineering students undertaking final year research or capstone projects.

  16. A Study on Students Acquisition of IT Knowledge and Its Implication on M-Learning.

    PubMed

    Balavivekanandhan, A; Arulchelvan, S

    2015-01-01

    The boom in mobile technology has seen a dramatic rise in its usage. This has led to usage of mobiles even in the academic context for further learning. Although the advantages of m-learning (mobile learning) are visible, studies are required to address the aspects that shape its virtual expectations. The acceptance of mobile technology relies mostly on how the students feel about mobile technology fitting into their requirements. Yet, in spite of the significance in the potential of m-learning, research studies have only inadequate data to identify the factors that influence their decision to adapt the mobile technology for the purpose of learning. To deal with this space, the present study was undertaken to correlate the IT skills of students with their impact on their acceptance of m-learning. The research study found that the perceived usability along with the usefulness of m-learning impacts the association between IT expertise and the objective of learners' acceptance of m-learning. A survey of 892 students from Engineering, Arts, and Science Colleges found that IT skills influence student's acquisition of m-learning technology. Specialized and advanced skills in mobile technology along with basic skills play a significant role in influencing a student to accept m-learning. But no specific substantiation has been established to support the statement that highly developed IT skills have influenced the students to accept m-learning.

  17. A Study on Students Acquisition of IT Knowledge and Its Implication on M-Learning

    PubMed Central

    Balavivekanandhan, A.; Arulchelvan, S.

    2015-01-01

    The boom in mobile technology has seen a dramatic rise in its usage. This has led to usage of mobiles even in the academic context for further learning. Although the advantages of m-learning (mobile learning) are visible, studies are required to address the aspects that shape its virtual expectations. The acceptance of mobile technology relies mostly on how the students feel about mobile technology fitting into their requirements. Yet, in spite of the significance in the potential of m-learning, research studies have only inadequate data to identify the factors that influence their decision to adapt the mobile technology for the purpose of learning. To deal with this space, the present study was undertaken to correlate the IT skills of students with their impact on their acceptance of m-learning. The research study found that the perceived usability along with the usefulness of m-learning impacts the association between IT expertise and the objective of learners' acceptance of m-learning. A survey of 892 students from Engineering, Arts, and Science Colleges found that IT skills influence student's acquisition of m-learning technology. Specialized and advanced skills in mobile technology along with basic skills play a significant role in influencing a student to accept m-learning. But no specific substantiation has been established to support the statement that highly developed IT skills have influenced the students to accept m-learning. PMID:26576451

  18. 3D Game-Based Learning System for Improving Learning Achievement in Software Engineering Curriculum

    ERIC Educational Resources Information Center

    Su,Chung-Ho; Cheng, Ching-Hsue

    2013-01-01

    The advancement of game-based learning has encouraged many related studies, such that students could better learn curriculum by 3-dimension virtual reality. To enhance software engineering learning, this paper develops a 3D game-based learning system to assist teaching and assess the students' motivation, satisfaction and learning achievement. A…

  19. Future Engineering Professors' Conceptions of Learning and Teaching Engineering

    ERIC Educational Resources Information Center

    Torres Ayala, Ana T.

    2012-01-01

    Conceptions of learning and teaching shape teaching practices and are, therefore, important to understanding how engineering professors learn to teach. There is abundant research about professors' conceptions of teaching; however, research on the conceptions of teaching of doctoral students, the future professors, is scarce. Furthermore,…

  20. Process Systems Engineering Education: Learning by Research

    ERIC Educational Resources Information Center

    Abbas, A.; Alhammadi, H. Y.; Romagnoli, J. A.

    2009-01-01

    In this paper, we discuss our approach in teaching the final-year course Process Systems Engineering. Students are given ownership of the course by transferring to them the responsibility of learning. A project-based group environment stimulates learning while solving a real engineering problem. We discuss postgraduate student involvement and how…

  1. Oregon Pre-Engineering Learning Outcomes Study: Final Report

    ERIC Educational Resources Information Center

    Conley, David T.; Langan, Holly; Veach, Darya; Farkas, Virginia

    2007-01-01

    The Oregon Pre-engineering Learning Outcomes Project was conducted by the Educational Policy Improvement Center (EPIC) with grant funding from the Engineering and Technology Industry Council (ETIC). The study sought to improve student preparation and success in pre-engineering programs through the development of the Oregon Pre-engineering Learning…

  2. Action Learning in Undergraduate Engineering Thesis Supervision

    ERIC Educational Resources Information Center

    Stappenbelt, Brad

    2017-01-01

    In the present action learning implementation, twelve action learning sets were conducted over eight years. The action learning sets consisted of students involved in undergraduate engineering research thesis work. The concurrent study accompanying this initiative investigated the influence of the action learning environment on student approaches…

  3. Early Career Summer Interdisciplinary Team Experiences and Student Persistence in STEM Fields

    NASA Astrophysics Data System (ADS)

    Cadavid, A. C.; Pedone, V. A.; Horn, W.; Rich, H.

    2015-12-01

    STEPS (Students Targeting Engineering and Physical Science) is an NSF-funded program designed to increase the number of California State University Northridge students getting bachelor's degrees in the natural sciences, mathematics, engineering and computer science. The greatest loss of STEM majors occurs between sophomore and junior- years, so we designed Summer Interdisciplinary Team Experience (SITE) as an early career program for these students. Students work closely with a faculty mentor in teams of ten to investigate regionally relevant problems, many of which relate to sustainability efforts on campus or the community. The projects emphasize hands-on activities and team-based learning and decision making. We report data for five years of projects, qualitative assessment through entrance and exit surveys and student interviews, and in initial impact on retention of the participants.

  4. Success in introductory college physics: The role of gender, high school preparation, and student learning perceptions

    NASA Astrophysics Data System (ADS)

    Chen, Jean Chi-Jen

    Physics is fundamental for science, engineering, medicine, and for understanding many phenomena encountered in people's daily lives. The purpose of this study was to investigate the relationships between student success in college-level introductory physics courses and various educational and background characteristics. The primary variables of this study were gender, high school mathematics and science preparation, preference and perceptions of learning physics, and performance in introductory physics courses. Demographic characteristics considered were age, student grade level, parents' occupation and level of education, high school senior grade point average, and educational goals. A Survey of Learning Preference and Perceptions was developed to collect the information for this study. A total of 267 subjects enrolled in six introductory physics courses, four algebra-based and two calculus-based, participated in the study conducted during Spring Semester 2002. The findings from the algebra-based physics courses indicated that participant's educational goal, high school senior GPA, father's educational level, mother's educational level, and mother's occupation in the area of science, engineering, or computer technology were positively related to performance while participant age was negatively related. Biology preparation, mathematics preparation, and additional mathematics and science preparation in high school were also positively related to performance. The relationships between the primary variables and performance in calculus-based physics courses were limited to high school senior year GPA and high school physics preparation. Findings from all six courses indicated that participant's educational goal, high school senior GPA, father's educational level, and mother's occupation in the area of science, engineering, or computer technology, high school preparation in mathematics, biology, and the completion of additional mathematics and science courses were positively related to performance. No significant performance differences were found between male and female students. However, there were significant gender differences in physics learning perceptions. Female participants tended to try to understand physics materials and relate the physics problems to real world situations while their male counterparts tended to rely on rote learning and equation application. This study found that participants performed better by trying to understand the physics material and relate physics problems to real world situations. Participants who relied on rote learning did not perform well.

  5. Benefiting Female Students in Science, Math, and Engineering: The Nuts and Bolts of Establishing a WISE (Women in Science and Engineering) Learning Community

    ERIC Educational Resources Information Center

    Pace, Diana; Witucki, Laurie; Blumreich, Kathleen

    2008-01-01

    This paper describes the rationale and the step by step process for setting up a WISE (Women in Science and Engineering) learning community at one institution. Background information on challenges for women in science and engineering and the benefits of a learning community for female students in these major areas are described. Authors discuss…

  6. The Scholarship of Teaching: The CEET Initiative on Teaching and Learning. A Faculty Development Program on Teaching and Learning and Classroom Research. Volumes 1-4. October 2005-December 2006

    ERIC Educational Resources Information Center

    Scarborough, Jule Dee

    2007-01-01

    This Northern Illinois University College of Engineering and Engineering Technology (CEET) initiative represents the authors' first attempt to prepare engineering and technology professors for teaching to improve student learning and the Scholarship of Teaching. This college portfolio is nontraditional in that it combines a learning paper approach…

  7. The structural approach to shared knowledge: an application to engineering design teams.

    PubMed

    Avnet, Mark S; Weigel, Annalisa L

    2013-06-01

    We propose a methodology for analyzing shared knowledge in engineering design teams. Whereas prior work has focused on shared knowledge in small teams at a specific point in time, the model presented here is both scalable and dynamic. By quantifying team members' common views of design drivers, we build a network of shared mental models to reveal the structure of shared knowledge at a snapshot in time. Based on a structural comparison of networks at different points in time, a metric of change in shared knowledge is computed. Analysis of survey data from 12 conceptual space mission design sessions reveals a correlation between change in shared knowledge and each of several system attributes, including system development time, system mass, and technological maturity. From these results, we conclude that an early period of learning and consensus building could be beneficial to the design of engineered systems. Although we do not examine team performance directly, we demonstrate that shared knowledge is related to the technical design and thus provide a foundation for improving design products by incorporating the knowledge and thoughts of the engineering design team into the process.

  8. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 36: Technical uncertainty as a correlate of information use by US industry-affiliated aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Glassman, Nanci A.; Affelder, Linda O.; Hecht, Laura M.; Kennedy, John M.; Barclay, Rebecca O.

    1994-01-01

    This paper reports the results of an exploratory study that investigated the influence of technical uncertainty on the use of information and information sources by U.S. industry-affiliated aerospace engineers and scientists in completing or solving a project, task, or problem. Data were collected through a self-administered questionnaire. Survey participants were U.S. aerospace engineers and scientists whose names appeared on the Society of Automotive Engineers (SAE) mailing list. The results support the findings of previous research and the following study assumptions. Information and information-source use differ for projects, problems, and tasks with high and low technical uncertainty. As technical uncertainty increases, information-source use changes from internal to external and from informal to formal sources. As technical uncertainty increases, so too does the use of federally funded aerospace research and development (R&D). The use of formal information sources to learn about federally funded aerospace R&D differs for projects, problems, and tasks with high and low technical uncertainty.

  9. Translating theory into practice: integrating the affective and cognitive learning dimensions for effective instruction in engineering education

    NASA Astrophysics Data System (ADS)

    Alias, Maizam; Lashari, Tahira Anwar; Abidin Akasah, Zainal; Jahaya Kesot, Mohd.

    2014-03-01

    Learning in the cognitive domain is highly emphasised and has been widely investigated in engineering education. Lesser emphasis is placed on the affective dimension although the role of affects has been supported by research. The lack of understanding on learning theories and how they may be translated into classroom application of teaching and learning is one factor that contributes to this situation. This paper proposes a working framework for integrating the affective dimension of learning into engineering education that is expected to promote better learning within the cognitive domain. Four major learning theories namely behaviourism, cognitivism, socio-culturalism, and constructivism were analysed and how affects are postulated to influence cognition are identified. The affective domain constructs identified to be important are self-efficacy, attitude and locus of control. Based on the results of the analysis, a framework that integrates methodologies for achieving learning in the cognitive domain with the support of the affective dimension of learning is proposed. It is expected that integrated approach can be used as a guideline to engineering educators in designing effective and sustainable instructional material that would result in the effective engineers for future development.

  10. The effect of an enriched learning community on success and retention in chemistry courses

    NASA Astrophysics Data System (ADS)

    Willoughby, Lois Jane

    Since the mid-1990s, the United States has experienced a shortage of scientists and engineers, declining numbers of students choosing these fields as majors, and low student success and retention rates in these disciplines. Learning theorists, educational researchers, and practitioners believe that learning environments can be created so that an improvement in the numbers of students who complete courses successfully could be attained (Astin, 1993; Magolda & Terenzini, n.d.; O'Banion, 1997). Learning communities do this by providing high expectations, academic and social support, feedback during the entire educational process, and involvement with faculty, other students, and the institution (Ketcheson & Levine, 1999). A program evaluation of an existing learning community of science, mathematics, and engineering majors was conducted to determine the extent to which the program met its goals and was effective from faculty and student perspectives. The program provided laptop computers, peer tutors, supplemental instruction with and without computer software, small class size, opportunities for contact with specialists in selected career fields, a resource library, and Peer-Led Team Learning. During the two years the project has existed, success, retention, and next-course continuation rates were higher than in traditional courses. Faculty and student interviews indicated there were many affective accomplishments as well. Success and retention rates for one learning community class ( n = 27) and one traditional class (n = 61) in chemistry were collected and compared using Pearson chi square procedures ( p = .05). No statistically significant difference was found between the two groups. Data from an open-ended student survey about how specific elements of their course experiences contributed to success and persistence were analyzed by coding the responses and comparing the learning community and traditional classes. Substantial differences were found in their perceptions about the lecture, the lab, other supports used for the course, contact with other students, helping them reach their potential, and their recommendation about the course to others. Because of the limitation of small sample size, these differences are reported in descriptive terms.

  11. Learning Styles of Mexican Food Science and Engineering Students

    ERIC Educational Resources Information Center

    Palou, Enrique

    2006-01-01

    People have different learning styles that are reflected in different academic strengths, weaknesses, skills, and interests. Given the almost unlimited variety of job descriptions within food science and engineering, it is safe to say that students with every possible learning style have the potential to succeed as food scientists and engineers.…

  12. The Impact of a Cohort Model Learning Community on First-Year Engineering Student Success

    ERIC Educational Resources Information Center

    Doolen, Toni L.; Biddlecombe, Erin

    2014-01-01

    This study investigated the effect of cohort participation in a learning community and collaborative learning techniques on the success of first-year engineering students. Student success was measured as gains in knowledge, skills, and attitudes, student engagement, and persistence in engineering. The study group was comprised of students…

  13. An Investigation of First-Year Engineering Student and Instructor Perspectives of Learning Analytics Approaches

    ERIC Educational Resources Information Center

    Knight, David B.; Brozina, Cory; Novoselich, Brian

    2016-01-01

    This paper investigates how first-year engineering undergraduates and their instructors describe the potential for learning analytics approaches to contribute to student success. Results of qualitative data collection in a first-year engineering course indicated that both students and instructors\temphasized a preference for learning analytics…

  14. An Innovative Improvement of Engineering Learning System Using Computational Fluid Dynamics Concept

    ERIC Educational Resources Information Center

    Hung, T. C.; Wang, S. K.; Tai, S. W.; Hung, C. T.

    2007-01-01

    An innovative concept of an electronic learning system has been established in an attempt to achieve a technology that provides engineering students with an instructive and affordable framework for learning engineering-related courses. This system utilizes an existing Computational Fluid Dynamics (CFD) package, Active Server Pages programming,…

  15. Exploring Complex Engineering Learning over Time with Epistemic Network Analysis

    ERIC Educational Resources Information Center

    Svarovsky, Gina Navoa

    2011-01-01

    Recently, K-12 engineering education has received increased attention as a pathway to building stronger foundations in math and science and introducing young people to the profession. However, the National Academy of Engineering found that many K-12 engineering programs focus heavily on engineering design and science and math learning while…

  16. Improving Health with Science: Exploring Community-Driven Science Education in Kenya

    NASA Astrophysics Data System (ADS)

    Leak, Anne Emerson

    This study examines the role of place-based science education in fostering student-driven health interventions. While literature shows the need to connect science with students' place and community, there is limited understanding of strategies for doing so. Making such connections is important for underrepresented students who tend to perceive learning science in school as disconnected to their experiences out of school (Aikenhead, Calabrese-Barton, & Chinn, 2006). To better understand how students can learn to connect place and community with science and engineering practices in a village in Kenya, I worked with community leaders, teachers, and students to develop and study an education program (a school-based health club) with the goal of improving knowledge of health and sanitation in a Kenyan village. While students selected the health topics and problems they hoped to address through participating in the club, the topics were taught with a focus on providing opportunities for students to learn the practices of science and health applications of these practices. Students learned chemistry, physics, environmental science, and engineering to help them address the health problems they had identified in their community. Surveys, student artifacts, ethnographic field notes, and interview data from six months of field research were used to examine the following questions: (1) In what ways were learning opportunities planned for using science and engineering practices to improve community health? (2) In what ways did students apply science and engineering practices and knowledge learned from the health club in their school, homes, and community? and (3) What factors seemed to influence whether students applied or intended to apply what they learned in the health club? Drawing on place-based science education theory and community-engagement models of health, process and structural coding (Saldana, 2013) were used to determine patterns in students' applications of their learning. Students applied learning across health topics they identified as interesting and relevant to their community: hand-washing, disease-prevention, first aid, balanced diet, and water. Students' application of their learning was influenced by internal, external, and relational factors with the community, science education factors, and cultural factors. Some factors, which may have been barriers for students to apply their learning, were turned into supports via bridging strategies used by the students and teacher. Bridging strategies allowed students to connect between their place and science in meaningful ways in the classroom. These strategies were critical in bringing students' place into the classroom and enabling students to apply their learning toward place. The model resulting from the identified factors informed existing models for sociocultural considerations in community-based health interventions. The community-engagement applied practices of science (CAPS) model serves to conceptualize findings in this study and informs an integrated method for using community-engagement education as a stimuli for students to become cultural brokers and improve community health. In addition to focusing on teaching practices of science and encouraging students to apply their learning, this research suggests that bridging strategies can be used to connect science with a students' place in meaningful ways that serve both students and their local communities.

  17. Development of concept-based physiology lessons for biomedical engineering undergraduate students.

    PubMed

    Nelson, Regina K; Chesler, Naomi C; Strang, Kevin T

    2013-06-01

    Physiology is a core requirement in the undergraduate biomedical engineering curriculum. In one or two introductory physiology courses, engineering students must learn physiology sufficiently to support learning in their subsequent engineering courses and careers. As preparation for future learning, physiology instruction centered on concepts may help engineering students to further develop their physiology and biomedical engineering knowledge. Following the Backward Design instructional model, a series of seven concept-based lessons was developed for undergraduate engineering students. These online lessons were created as prerequisite physiology training to prepare students to engage in a collaborative engineering challenge activity. This work is presented as an example of how to convert standard, organ system-based physiology content into concept-based content lessons.

  18. Engineering students' conceptions of entrepreneurial learning as part of their education

    NASA Astrophysics Data System (ADS)

    Täks, Marge; Tynjälä, Päivi; Kukemelk, Hasso

    2016-01-01

    The purpose of this study was to examine what kinds of conceptions of entrepreneurial learning engineering students expressed in an entrepreneurship course integrated in their study programme. The data were collected during an entrepreneurship course in Estonia that was organised for fourth-year engineering students, using video-recorded group interviews (N = 48) and individual in-depth interviews (N = 16). As a result of the phenomenographic analysis, four qualitatively distinctive conceptions of entrepreneurial learning were discerned. Entrepreneurial learning was seen to involve (1) applying entrepreneurial ideas to engineering, (2) understanding entrepreneurial issues in a new way, (3) action-oriented personal development, and (4) self-realising through collective effort. These qualitatively distinct categories differed from each other in four dimensions of variation: nature of learning, response to pedagogy, relation to teamwork, and learning outcomes.

  19. Improving the Retention of First Year Students

    NASA Astrophysics Data System (ADS)

    Bishop, Graham

    The thesis compares student attrition rates in two UWS Schools for 2004 and 2005. It analyses possible reasons why students discontinue and identifies strategies and approaches to improving the quality of the teaching and learning environment for these students. The thesis focuses on the retention of first year students in the School of Engineering at the University of Western Sydney. Low retention rates are costly to the university, leading to inefficient use of resources, failure to fulfil student aspirations, and intervention between the university and the student. In each chapter, the thesis addresses student retention, satisfaction and performance and the interrelation between them and outlines the measures taken by the School of Engineering to improve these measurements for students commencing in 2006 and proposes many recommendations for further improvements in subsequent years. Each chapter addresses these issues by following the student pathway, commencing with the student leaving High School and entering their chosen university and course of study. At each stage, the relevant issues are addressed which have a direct or indirect impact on student retention, satisfaction and performance. Use is made of reports and papers published by universities and organisations, as outlined in the Literature Review. The research questions provide data through the results obtained from surveys. Typical Retention Rates are 75% for UWS, 81% for the Sector, 76% for the New Generation Universities (NGUs) and 62% for the School of Engineering on which this research is focussed. This thesis confirms the research from many countries that closely links student retention with the quality of teaching and learning. Key issues are: • a sound first year student orientation and welcome by staff; encountering efficient, effective and accurate student. The introduction of a more effective and tailored orientation program in 2007 attracted, at UWS School of Engineering, 92% attendance and greater awareness by the students of their study program and the available support services; • having student queries responded to promptly and effectively; The introduction of a First Year Coordinator in 2007 proved to be well received, with a significant number of students having prompt responses to their queries, as compared with previous years; clear expectations management about services and key academic issues like assessment; the marketing of UWS Engineering programs was addressed in 2006 and 2007, with an expansion of the marketing program operated for feeder schools and improved awareness of student expectations prior to entry: an ongoing exercise; having committed, accessible, responsive and capable teaching staff; the accessibility and responsiveness of teaching staff to first year student issues, as outlined in this thesis, is being addressed in 2007; receiving prompt and helpful feedback on their learning; an issue being addressed by the First Year Teaching Team as an essential element of the teaching and learning process; together with: effective use of an appropriate selection from a myriad of learning strategies and resources which give emphasis to active learning, practice oriented learning, peer supported learning and self-managed learning; supported by a reliable infrastructure and support systems; and consistently encountering staff that are responsive and committed to giving service to student support. (Abstract shortened by ProQuest.).

  20. Assessing engineering students' demonstration of workplace competencies in experiential learning environments through internships and cooperative work experiences

    NASA Astrophysics Data System (ADS)

    Laingen, Mark A.

    This study investigates the relationships between supervisor assessments and internship students' self-assessments for 15 workplace competencies, demonstrated in an internship or cooperative work environment. The 15 workplace competencies were developed by Iowa State University in collaboration with over 200 constituents comprised of Iowa State University COE alumni, engineering employers, COE faculty, partnering international faculty, and COE students, to provide clear, independent, and assessable measures for the eleven learning outcomes identified in the ABET Criterion 3 (a-k) outcomes. The study investigated workplace competency assessment data collected over ten years, commencing with the fall 2001 internship assessment term and concluding with the fall 2011 assessment term. The study used three separate methodologies to analyze workplace competency assessments in the COE. Part 1 analyzed data across the fifteen workplace competencies, and across ten programs in the College of Engineering, that have been involved with the workplace competency assessment of internship and cooperative students from the beginning of data collection in 2001. Supervisor assessment ratings were compared to internship student self-assessment ratings across the ten-year span from 2001-11using the non-parametric equivalent of the paired t-test; the Wilcoxon singed rank test for paired data. Part 2 of the study investigated the relationship between supervisor and student self-assessment data across assessment terms related to the 2001-05 and 2006-11 ABET accreditation cycles. The third part investigated how data tracking workplace competency strengths and weaknesses and ABET outcomes achievement percentages have changed between the assessment terms across accreditation cycles. Part 3 included an on-line survey sent to program curriculum committee members involved with workplace competency assessment data that investigated how the engineering programs are utilizing this data in support of continuous improvement of the program curricula. Results of the analysis demonstrate how paired supervisor assessment and student self-assessment ratings for assessment of the internship students' demonstration of workplace competencies can be useful in evaluating student demonstration of competency in COE learning outcomes through the experiential learning environment, and support continuous improvement practices for program curriculum development.

  1. Creating Learning Environment Connecting Engineering Design and 3D Printing

    NASA Astrophysics Data System (ADS)

    Pikkarainen, Ari; Salminen, Antti; Piili, Heidi

    Engineering education in modern days require continuous development in didactics, pedagogics and used practical methods. 3D printing provides excellent opportunity to connect different engineering areas into practice and produce learning by doing applications. The 3D-printing technology used in this study is FDM (Fused deposition modeling). FDM is the most used 3D-printing technology by commercial numbers at the moment and the qualities of the technology makes it popular especially in academic environments. For achieving the best result possible, students will incorporate the principles of DFAM (Design for additive manufacturing) into their engineering design studies together with 3D printing. This paper presents a plan for creating learning environment for mechanical engineering students combining the aspects of engineering design, 3D-CAD learning and AM (additive manufacturing). As a result, process charts for carrying out the 3D printing process from technological point of view and design process for AM from engineering design point of view were created. These charts are used in engineering design education. The learning environment is developed to work also as a platform for Bachelor theses, work-training environment for students, prototyping service centre for cooperation partners and source of information for mechanical engineering education in Lapland University of Applied Sciences.

  2. Knowledge Engineering as a Component of the Curriculum for Medical Cybernetists.

    PubMed

    Karas, Sergey; Konev, Arthur

    2017-01-01

    According to a new state educational standard, students who have chosen medical cybernetics as their major must develop a knowledge engineering competency. Previously, in the course "Clinical cybernetics" while practicing project-based learning students were designing automated workstations for medical personnel using client-server technology. The purpose of the article is to give insight into the project of a new educational module "Knowledge engineering". Students will acquire expert knowledge by holding interviews and conducting surveys, and then they will formalize it. After that, students will form declarative expert knowledge in a network model and analyze the knowledge graph. Expert decision making methods will be applied in software on the basis of a production model of knowledge. Project implementation will result not only in the development of analytical competencies among students, but also creation of a practically useful expert system based on student models to support medical decisions. Nowadays, this module is being tested in the educational process.

  3. The Theory of Planned Behaviour Applied to Search Engines as a Learning Tool

    ERIC Educational Resources Information Center

    Liaw, Shu-Sheng

    2004-01-01

    Search engines have been developed for helping learners to seek online information. Based on theory of planned behaviour approach, this research intends to investigate the behaviour of using search engines as a learning tool. After factor analysis, the results suggest that perceived satisfaction of search engine, search engines as an information…

  4. A Reactive Blended Learning Proposal for an Introductory Control Engineering Course

    ERIC Educational Resources Information Center

    Mendez, Juan A.; Gonzalez, Evelio J.

    2010-01-01

    As it happens in other fields of engineering, blended learning is widely used to teach process control topics. In this paper, the inclusion of a reactive element--a Fuzzy Logic based controller--is proposed for a blended learning approach in an introductory control engineering course. This controller has been designed in order to regulate the…

  5. Peer-Led Team Learning in Mathematics Courses for Freshmen Engineering and Computer Science Students

    ERIC Educational Resources Information Center

    Reisel, John R.; Jablonski, Marissa R.; Munson, Ethan; Hosseini, Hossein

    2014-01-01

    Peer-led Team Learning (PLTL) is an instructional method reported to increase student learning in STEM courses. As mathematics is a significant hurdle for many freshmen engineering students, a PLTL program was implemented for students to attempt to improve their course performance. Here, an analysis of PLTL for freshmen engineering students in…

  6. Knowledge Construction in Computer Science and Engineering When Learning through Making

    ERIC Educational Resources Information Center

    Charlton, Patricia; Avramides, Katerina

    2016-01-01

    This paper focuses on a design based research study about STEM (Science, Technology, Engineering and Maths) learning by making through collaboration and production. This study examines learning by making by students to explore STEM using a constructionist approach with a particular focus on computer science and engineering. The use of IoT as a…

  7. Evaluation of Hybrid Learning in a Construction Engineering Context: A Mixed-Method Approach

    ERIC Educational Resources Information Center

    Karabulut-Ilgu, Aliye; Jahren, Charles

    2016-01-01

    Engineering educators call for a widespread implementation of hybrid learning to respond to rapidly changing demands of the 21st century. In response to this call, a junior-level course in the Construction Engineering program entitled Construction Equipment and Heavy Construction Methods was converted into a hybrid learning model. The overarching…

  8. A Learning Style Comparison between Synchronous Online and Face-to-Face Engineering Graphics Instruction

    ERIC Educational Resources Information Center

    Goodridge, Wade H.; Lawanto, Oenardi; Santoso, Harry B.

    2017-01-01

    The implementation of a successful engineering program to a synchronous online curriculum is subject to many impacting factors. One such factor, that has not seen much investigation, concerns learning styles. Student learning styles may have a dramatic influence on the success of a synchronous online deliverable engineering graphics curriculum.…

  9. Examining E-Learning Barriers as Perceived by Faculty Members of Engineering Colleges in the Jordanian Universities

    ERIC Educational Resources Information Center

    Al-Alawneh, Muhammad K.

    2014-01-01

    Employing computer's technology that includes e-learning system in the field of Engineering is a vital issue which needs to be discussed. Therefore, this study purposed to examine e-learning barriers as perceived by faculty members of engineering in three major universities in Jordan (Yarmouk University, Jordan University of Science and…

  10. Labour perspectives of engineering degrees in the European Higher Education Area (EHEA): a case of study in the University of Cordoba (Spain)

    NASA Astrophysics Data System (ADS)

    Taguas, E. V.; Redel, M. D.; Pérez, R.; Peña, A.

    2009-04-01

    The Bologna process is reaching its final stages and is causing controversy among students. The adaptation of European universities to the European Higher Education Area (EHEA) entails not only the modification of curricular programmes and the nomenclature and duration of degrees, but also the incorporation of new teaching strategies aimed at ensuring that students acquire transversal skills and aptitudes and at increasing student participation in the teaching-learning process. A number of surveys have been carried out during the last few courses among students doing degrees in engineering (Industrial Engineering, Agronomy Engineering and Forestry Engineering). These surveys include questions on their knowledge of Bologna process, its advantages and drawbacks, their opinion about optional masters or doctorate degrees, what perspectives their degrees have on the labour market and suggestions for improvement. Although the different degrees showed notable differences, the content of EHEA is well-known by less than 30% of students, while 40% of them state they know about their perspectives on the labour market. The main advantages of EHEA were related to the improvement of practical knowledge in the subjects, the recognition of degrees in Europe and wider working opportunities. The main drawbacks pointed out were worse and shorter training periods, higher costs and fiercer competition between different degrees. In addition, they suggested that the new degrees are better adjusted to the demands of the labour market. 60% and 40% of them, respectively, approved of Masters degrees and PhDs. These features should be taken into account to organize and improve the contents of the degrees as well as to involve the students in the future of University education.

  11. Stereotype Threat: A Qualitative Study of the Challenges Facing Female Undergraduate Engineering Students

    NASA Astrophysics Data System (ADS)

    Entsminger, J. R., II

    From a sociocultural point of view, this qualitative case study explored how upper-level, female undergraduate engineering students perceived the possibility of or experience with stereotype threat as shaping their experiences. The study also investigated how these students explained their reasons for choosing their engineering major, the challenges they encountered in the major, and their reasons for persevering in spite of those challenges. Using Steele and Aronson's (1995) stereotype threat theory as a framework, and considering the documented underrepresentation of females in engineering, the study sought to examine how stereotype threat shaped the experiences of these students and if stereotype threat could be considered a valid reason for the underrepresentation. The study was conducted at a large, four-year public university. First, students in the College of Engineering and Engineering Technology completed the Participant Screening Survey. Based on responses from the survey, six female engineering students from the college were identified and invited to participate in the study. The participants came from the following majors: Electrical Engineering, Industrial and Systems Engineering, and Mechanical Engineering. After receiving the study consent letter and agreeing to participate, the students were involved in a 90-minute focus group meeting, a 45-minute one-on-one interview, and a 30-minute follow-up interview. After conducting the data collection methods, the data were then transcribed, analyzed, and coded for theme development. The themes that emerged coincided with each research question. The themes highlighted the complex interactions and experiences shared by the female engineering majors. The female students were enveloped in an environment where there existed an increased risk for activating stereotype threat. In addition, the female students described feeling pushed to prove to themselves and to others that the negative stereotype that 'females are bad at engineering' was untrue. The findings illustrated the need for systematic changes at the university level. Intervention recommendations were provided. In regards to female underrepresentation in science fields, including engineering, stereotype threat certainly had the potential to cause the female students to question themselves, their abilities, their choice of an academic major, and subsequently remove themselves from a hostile learning or working environment. Thus, educational institutions and workplace organizations are responsible for not only educating themselves regarding stereotype threat, but also for taking steps to alleviate the pernicious effects of stereotype threat.

  12. Outcomes-Based Assessment and Learning: Trialling Change in a Postgraduate Civil Engineering Course

    ERIC Educational Resources Information Center

    El-Maaddawy, Tamer; Deneen, Christopher

    2017-01-01

    This paper aims to demonstrate how assessment tasks can function within an outcomes-based learning framework to evaluate student attainment of learning outcomes. An outcomes-based learning framework designed to integrate teaching, learning, and assessment activities was developed and implemented in a civil engineering master-level course. The…

  13. Improving System Engineering Excellence at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Takada, Pamela Wallace; Newton, Steve; Gholston, Sampson; Thomas, Dale (Technical Monitor)

    2001-01-01

    NASA's Marshall Space Flight Center (MSFC) management feels that sound system engineering practices are essential for successful project management, NASA studies have concluded that recent project failures could be attributed in part to inadequate systems engineering. A recent survey of MSFC project managers and system engineers' resulted in the recognition of a need for training in Systems Engineering Practices, particularly as they relate to MSFC projects. In response to this survey, an internal pilot short-course was developed to reinforce accepted practices for system engineering at MSFC. The desire of the MSFC management is to begin with in-house training and offer additional educational opportunities to reinforce sound system engineering principles to the more than 800 professionals who are involved with system engineering and project management. A Systems Engineering Development Plan (SEDP) has been developed to address the longer-term systems engineering development needs of MSFC. This paper describes the survey conducted and the training course that was developed in response to that survey.

  14. NASA Planetary Science Summer School: Longitudinal Study

    NASA Astrophysics Data System (ADS)

    Giron, Jennie M.; Sohus, A.

    2006-12-01

    NASA’s Planetary Science Summer School is a program designed to prepare the next generation of scientists and engineers to participate in future missions of solar system exploration. The opportunity is advertised to science and engineering post-doctoral and graduate students with a strong interest in careers in planetary exploration. Preference is given to U.S. citizens. The “school” consists of a one-week intensive team exercise learning the process of developing a robotic mission concept into reality through concurrent engineering, working with JPL’s Advanced Project Design Team (Team X). This program benefits the students by providing them with skills, knowledge and the experience of collaborating with a concept mission design. A longitudinal study was conducted to assess the impact of the program on the past participants of the program. Data collected included their current contact information, if they are currently part of the planetary exploration community, if participation in the program contributed to any career choices, if the program benefited their career paths, etc. Approximately 37% of 250 past participants responded to the online survey. Of these, 83% indicated that they are actively involved in planetary exploration or aerospace in general; 78% said they had been able to apply what they learned in the program to their current job or professional career; 100% said they would recommend this program to a colleague.

  15. Towards an Automated Classification of Transient Events in Synoptic Sky Surveys

    NASA Technical Reports Server (NTRS)

    Djorgovski, S. G.; Donalek, C.; Mahabal, A. A.; Moghaddam, B.; Turmon, M.; Graham, M. J.; Drake, A. J.; Sharma, N.; Chen, Y.

    2011-01-01

    We describe the development of a system for an automated, iterative, real-time classification of transient events discovered in synoptic sky surveys. The system under development incorporates a number of Machine Learning techniques, mostly using Bayesian approaches, due to the sparse nature, heterogeneity, and variable incompleteness of the available data. The classifications are improved iteratively as the new measurements are obtained. One novel featrue is the development of an automated follow-up recommendation engine, that suggest those measruements that would be the most advantageous in terms of resolving classification ambiguities and/or characterization of the astrophysically most interesting objects, given a set of available follow-up assets and their cost funcations. This illustrates the symbiotic relationship of astronomy and applied computer science through the emerging disciplne of AstroInformatics.

  16. Impact of Informal Science Education on Children's Attitudes About Science

    NASA Astrophysics Data System (ADS)

    Wulf, Rosemary; Mayhew, Laurel M.; Finkelstein, Noah D.

    2010-10-01

    The JILA Physics Frontier Center Partnerships for Informal Science Education in the Community (PISEC) provides informal afterschool inquiry-based science teaching opportunities for university participants with children typically underrepresented in science. We focus on the potential for this program to help increase children's interest in science, mathematics, and engineering and their understanding of the nature of science by validating the Children's Attitude Survey, which is based on the Colorado Learning Attitudes about Science Survey [1] and designed to measure shifts in children's attitudes about science and the nature of science. We present pre- and post-semester results for several semesters of the PISEC program, and demonstrate that, unlike most introductory physics courses in college, our after-school informal science programs support and promote positive attitudes about science.

  17. Beyond Ethical Frameworks: Using Moral Experimentation in the Engineering Ethics Classroom.

    PubMed

    Walling, Olivia

    2015-12-01

    Although undergraduate engineering ethics courses often include the development of moral sensitivity as a learning objective and the use of active learning techniques, teaching centers on the transmission of cognitive knowledge. This article describes a complementary assignment asking students to perform an ethics "experiment" on themselves that has a potential to enhance affective learning and moral imagination. The article argues that the focus on cognitive learning may not promote, and may even impair, our efforts to foster moral sensitivity. In contrast, the active learning assignments and exercises, like the ethics "experiment" discussed, offer great potential to expand the scope of instruction in engineering ethics to include ethical behavior as well as knowledge. Engineering ethics education needs to extend beyond the narrow range of human action associated with the technical work of the engineer and explore ways to draw on broader lifeworld experiences to enrich professional practice and identity.

  18. Teaching Agile Software Engineering Using Problem-Based Learning

    ERIC Educational Resources Information Center

    El-Khalili, Nuha H.

    2013-01-01

    Many studies have reported the utilization of Problem-Based Learning (PBL) in teaching Software Engineering courses. However, these studies have different views of the effectiveness of PBL. This paper presents the design of an Advanced Software Engineering course for undergraduate Software Engineering students that uses PBL to teach them Agile…

  19. Engineering Sustainable Solutions Program: Critical Literacies for Engineers Portfolio

    ERIC Educational Resources Information Center

    Paten, Cheryl J. K.; Palousis, Nicholas; Hargroves, Karlson; Smith, Michael

    2005-01-01

    Purpose: While a number of universities in Australia have embraced concepts such as project/problem-based learning and design of innovative learning environments for engineering education, there has been a lack of national guidance on including sustainability as a "critical literacy" into all engineering streams. This paper was presented…

  20. Investigating the impact of a LEGO(TM)-based, engineering-oriented curriculum compared to an inquiry-based curriculum on fifth graders' content learning of simple machines

    NASA Astrophysics Data System (ADS)

    Marulcu, Ismail

    This mixed method study examined the impact of a LEGO-based, engineering-oriented curriculum compared to an inquiry-based curriculum on fifth graders' content learning of simple machines. This study takes a social constructivist theoretical stance that science learning involves learning scientific concepts and their relations to each other. From this perspective, students are active participants, and they construct their conceptual understanding through the guidance of their teacher. With the goal of better understanding the use of engineering education materials in classrooms the National Academy of Engineering and National Research Council in the book "Engineering in K-12 Education" conducted an in-depth review of the potential benefits of including engineering in K--12 schools as (a) improved learning and achievement in science and mathematics, (b) increased awareness of engineering and the work of engineers, (c) understanding of and the ability to engage in engineering design, (d) interest in pursuing engineering as a career, and (e) increased technological literacy (Katehi, Pearson, & Feder, 2009). However, they also noted a lack of reliable data and rigorous research to support these assertions. Data sources included identical written tests and interviews, classroom observations and videos, teacher interviews, and classroom artifacts. To investigate the impact of the design-based simple machines curriculum compared to the scientific inquiry-based simple machines curriculum on student learning outcomes, I compared the control and the experimental groups' scores on the tests and interviews by using ANCOVA. To analyze and characterize the classroom observation videotapes, I used Jordan and Henderson's (1995) method and divide them into episodes. My analyses revealed that the design-based Design a People Mover: Simple Machines unit was, if not better, as successful as the inquiry-based FOSS Levers and Pulleys unit in terms of students' content learning. I also found that students in the engineering group outperformed students in the control group in regards to their ability to answer open-ended questions when interviewed. Implications for students' science content learning and teachers' professional development are discussed.

  1. Assessment of an outreach program for eighth-grade science students: Measurement of affective and cognitive gains

    NASA Astrophysics Data System (ADS)

    Hauge, James Brian

    1998-12-01

    The College of Sciences and Mathematics Science Outreach Initiative was a program designed to attract students with the interest and ability to succeed in science and to keep them interested until they entered college. In this way, the Initiative sought to address the problem of a projected shortfall of scientists and engineers in the future. This study was conducted to evaluate the goals of the eighth grade component of the COSAM Initiative. These goals included: increased interest in and self-efficacy relating to science, increased achievement in science and mathematics, and increased enrollment in science and mathematics classes. Data were collected from 48 participants and 43 non-participants with surveys and from student records. Pre-treatment Chi-Square tests revealed that the groups did not differ in ethnicity, race, family income, parents' education, or parents' occupation. The surveys used were a total battery interest survey including (1) the Learning Science Things Survey (to measure interest in science topics), the Activities Interest Survey (to measure interest in science activities), the Career Orientation Survey (to measure interest in science careers) and the Learning Methods Survey (to measure interest in learning by experiential methods), (2) the Saturday Academy Survey (to measure self-efficacy concerning science activities), (3) the Saturday Academy Electronics/Eye Quiz (to test ability relating to science activities), and (4) the Summer Science Camp Survey (to measure interest in and self-efficacy concerning science activities). Student grades, SAT, and OLSAT scores, and the kinds of science and mathematics courses enrolled in during seventh and eighth grades were obtained from school records. Analysis of data using a mixed ANOVA design revealed that participation in the COSAM Initiative had no significant effect on interest in science as measured by the total battery survey. Similar analysis of Saturday Academy Survey data revealed that the participant group showed significantly greater gains in self-efficacy regarding science activities than did the non-participant group. No correlation was found between self-efficacy and ability as measured by the Electronics/Eye Quiz. Analysis of Summer Science Camp Survey data with paired samples tests revealed that interest and self-efficacy significantly increased after treatment. Interest and self-efficacy relating to Summer Science Camp activities were positively correlated after treatment. No significant effects were detected to indicate that participation in the COSAM Initiative positively affected school grades, standardized test scores, or increased the number of science and mathematics courses in which students enrolled.

  2. The Transformative Experience in Engineering Education

    NASA Astrophysics Data System (ADS)

    Goodman, Katherine Ann

    This research evaluates the usefulness of transformative experience (TE) in engineering education. With TE, students 1) apply ideas from coursework to everyday experiences without prompting (motivated use); 2) see everyday situations through the lens of course content (expanded perception); and 3) value course content in new ways because it enriches everyday affective experience (affective value). In a three-part study, we examine how engineering educators can promote student progress toward TE and reliably measure that progress. For the first study, we select a mechanical engineering technical elective, Flow Visualization, that had evidence of promoting expanded perception of fluid physics. Through student surveys and interviews, we compare this elective to the required Fluid Mechanics course. We found student interest in fluids fell into four categories: complexity, application, ubiquity, and aesthetics. Fluid Mechanics promotes interest from application, while Flow Visualization promotes interest based in ubiquity and aesthetics. Coding for expanded perception, we found it associated with students' engineering identity, rather than a specific course. In our second study, we replicate atypical teaching methods from Flow Visualization in a new design course: Aesthetics of Design. Coding of surveys and interviews reveals that open-ended assignments and supportive teams lead to increased ownership of projects, which fuels risk-taking, and produces increased confidence as an engineer. The third study seeks to establish parallels between expanded perception and measurable perceptual expertise. Our visual expertise experiment uses fluid flow images with both novices and experts (students who had passed fluid mechanics). After training, subjects sort images into laminar and turbulent categories. The results demonstrate that novices learned to sort the flow stimuli in ways similar to subjects in prior perceptual expertise studies. In contrast, the experts' significantly better results suggest they are accessing conceptual fluids knowledge to perform this new, visual task. The ability to map concepts onto visual information is likely a necessary step toward expanded perception. Our findings suggest that open-ended aesthetic experiences with engineering content unexpectedly support engineering identity development, and that visual tasks could be developed to measure conceptual understanding, promoting expanded perception. Overall, we find TE a productive theoretical framework for engineering education research.

  3. Influence of Science, Technology, and Engineering Curriculum on Rural Midwestern High School Student Career Decisions

    NASA Astrophysics Data System (ADS)

    Killingsworth, John

    Low degree completion in technical and engineering degrees is a growing concern for policymakers and educators in the United States. This study was an examination of the behaviors of adolescents specific to career decisions related to technology and engineering. The central research question for this study was: do rural, Midwestern high school technical and engineering curricula serve to engage students sufficiently to encourage them to persist through high school while sustaining their interests in technology and engineering careers? Engaging students in technology and engineering fields is the challenge for educators throughout the country and the Midwest. Rural schools have the additional challenge of meeting those issues because of resource limitations. Students in three Midwestern schools were surveyed to determine the level of interest in technology and engineering. The generalized likelihood ratio test was used to overcome concerns for small sample sizes. Accounting for dependent variables, multiple independent variables are examined using descriptive statistics to determine which have greater influence on career decisions, specifically those related to technology and engineering. A typical science curriculum is defined for rural Midwestern high schools. This study concludes that such curriculum achieves the goal of maintaining or increasing student interest and engagement in STEM careers. Furthermore, those schools that incorporate contextual and experiential learning activities into the curriculum demonstrate increased results in influencing student career choices toward technology and engineering careers. Implications for parents, educators, and industry professionals are discussed.

  4. Development of a problem - based learning (PBL) and cooperative learning (CL) transportation engineering course For undergraduate students.

    DOT National Transportation Integrated Search

    2008-08-01

    This study reports the findings of a project that was done during the implementation of a : problem-based learning (PBL) and cooperative learning (CL) elements into an : undergraduate transportation engineering course. The study procedure used the st...

  5. Learning Theories and Assessment Methodologies--An Engineering Educational Perspective

    ERIC Educational Resources Information Center

    Hassan, O. A. B.

    2011-01-01

    This paper attempts to critically review theories of learning from the perspective of engineering education in order to align relevant assessment methods with each respective learning theory, considering theoretical aspects and practical observations and reflections. The role of formative assessment, taxonomies, peer learning and educational…

  6. Constructively Aligned Teaching and Learning in Higher Education in Engineering: What Do Students Perceive as Contributing to the Learning of Interdisciplinary Thinking?

    ERIC Educational Resources Information Center

    Spelt, E. J. H.; Luning, P. A.; van Boekel, M. A. J. S.; Mulder, M.

    2015-01-01

    Increased attention to the need for constructively aligned teaching and learning in interdisciplinary higher education in engineering is observed. By contrast, little research has been conducted on the implementation of the outcome-based pedagogical approach to interdisciplinary higher education in engineering. Therefore, the present design-based…

  7. Model Wind Turbine Design in a Project-Based Middle School Engineering Curriculum Built on State Frameworks

    ERIC Educational Resources Information Center

    Cogger, Steven D.; Miley, Daniel H.

    2012-01-01

    This paper proposes that project-based active learning is a key part of engineering education at the middle school level. One project from a comprehensive middle school engineering curriculum developed by the authors is described to show how active learning and state frameworks can coexist. The theoretical basis for learning and assessment in a…

  8. The Implementation and Evaluation of a Project-Oriented Problem-Based Learning Module in a First Year Engineering Programme

    ERIC Educational Resources Information Center

    McLoone, Seamus C.; Lawlor, Bob J.; Meehan, Andrew R.

    2016-01-01

    This paper describes how a circuits-based project-oriented problem-based learning educational model was integrated into the first year of a Bachelor of Engineering in Electronic Engineering programme at Maynooth University, Ireland. While many variations of problem based learning exist, the presented model is closely aligned with the model used in…

  9. Engineering Enrollments, Fall 1986.

    ERIC Educational Resources Information Center

    Ellis, Richard A.

    1987-01-01

    Reports on the results of the Engineering Manpower Commission's 1986 survey of engineering enrollments, comparing them to the previous ten years of surveys. Provides tables of fall 1986 engineering enrollments categorized by curriculum, women, minorities, foreign nationals, schools, and by all students. (TW)

  10. Demanded competences in the agricultural engineering sector in Spain

    NASA Astrophysics Data System (ADS)

    Perdigones, A.; García, J. L.; Benavente, R. M.; Tarquis, A. M.

    2009-04-01

    An engineering education should prepare students, i.e., emerging engineers, to use problem-solving processes that combine creativity and imagination with rigour and discipline. The emphasis on training engineers may be best placed on answering the needs of industry; indeed, many proposals are now being made to try to reduce the gap between the educational and industrial communities. Training in the use of certain skills or competences may be one way of better preparing engineering undergraduates for eventual employment in industry. However, industry's needs in this respect must first be known. The aim of this work was to determine which skills are used by practising agricultural engineers with the aim of incorporating training in their use into our department's teaching curriculum. Three surveys were undertaken to determine which skills are demanded by agricultural engineers in their professional activities in Spain. Surveys were carried out by the Department of Rural Engineering, Technical University of Madrid (Spain), analysing two related degrees (agricultural engineer with a duration of the study plan of three and five years, respectively) during the courses 2006/07 and 2007/08. The first survey determined the competences acquired by the students along their academic studies (371 students interviewed). The second survey determined the skills demanded by the enterprises of the agricultural sector (50 enterprises interviewed). The third survey determined the skills demanded by the agricultural engineers working in the sector (70 engineers interviewed), specifically asking about the computer programs used by practising agricultural engineers. Surveys showed important differences between the competences demanded by the enterprises and the competences acquired by the students at the university. Enterprises mainly demanded general competences (team working, time organizing, and skills with computer programs) and were less interested in specific technical skills (engineering, economy, biological competences). These differences suggest it might be a good idea to increase the amount of time devoted to the skills demanded by the enterprises. The software packages most commonly used by practising engineers were Microsoft Office / Excel (used by 79% of respondents) and CAD (56%), as well as budgeting (27%), statistical (21%), engineering (15%) and GIS (13%) programs. As a result of this survey our university department opened an additional computer suite in order to provide students practical experience in the use of the demanded competences. The results of this survey underline the importance of competence training in this and perhaps other fields of engineering.

  11. How Newcomers Learn the Social Norms of an Organization: A Case Study of the Socialization of Newly Hired Engineers

    ERIC Educational Resources Information Center

    Korte, Russell F.

    2009-01-01

    Current scholarship views organizational socialization as a learning process that is primarily the responsibility of the newcomer. Yet recent learning research recognizes the importance of the social interactions in the learning process. This study investigated how newly hired engineers at a large manufacturing company learned job-related tasks…

  12. Effects of South Korean High School Students' Motivation to Learn Science and Technology on Their Concern Related to Engineering

    ERIC Educational Resources Information Center

    Lee, Eunsang

    2017-01-01

    This study investigated the gender difference among South Korean high school students in science learning motivation, technology learning motivation, and concern related engineering, as well as the correlation between these factors. It also verified effects of the sub-factors of science learning motivation and technology learning motivation on…

  13. The effectiveness of using WebCT in distance learning programmes in MACE, the University of Manchester

    NASA Astrophysics Data System (ADS)

    Ahmad, Rosman

    The World Wide Web impacted the educational model and became part of distance education early in this century. There were many changes taking place in higher education for political, economic and educational reasons." New goals and educational objectives were being set within educational institutions. There were particular emphases to produce a more effective delivery of learning methods for distance learning students. The use of Internet was seen as an important issue in the development of an understanding of the complex process of instilling knowledge to post graduates students. Well-established universities were re-examining their missions and looking for different ways of providing lifelong education. The School of Mechanical, Aerospace and Civil Engineering (MACE) was particularly keen to increase the use of web-based learning in its courses, which will increase the amount of students enrolled into these programmes and help them learn in a flexible and workable manner. This approach was reinforced by responses from a survey of MSc. degree students which suggested that the current distance learning programme were not being operated efficiently and did not develop adequate personal skills in relation to the requirements of prospective employers. One way of improving these programmes was to make use of the Virtual Learning Environment (VLE). A study was made and WebCT was found to be suitable. Five WebCT units were initially produced. The experience of designing and running the units was very useful in determining the effective use of the WebCT. From the analysis of students and staff surveys it has been demonstrated that these WebCT units are much more effective in achieving the project objectives in a wide number of areas which relate to students satisfaction, skills development and enhancing their interest into learning experience. The success of the WebCT units has stimulated interest in overseas establishments. It is hope that the success will follow in the author's home country, Malaysia.

  14. Data Driven Professional Development Design for Out-of-School Time Educators Using Planetary Science and Engineering Educational Materials

    NASA Astrophysics Data System (ADS)

    Clark, J.; Bloom, N.

    2017-12-01

    Data driven design practices should be the basis for any effective educational product, particularly those used to support STEM learning and literacy. Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) is a five-year NASA-funded (NNX16AC53A) interdisciplinary and cross-institutional partnership to develop and disseminate STEM out-of-school time (OST) curricular and professional development units that integrate planetary science, technology, and engineering. The Center for Science Teaching and Learning at Northern Arizona University, the U.S. Geological Survey Astrogeology Science Center, and the Museum of Science Boston are partners in developing, piloting, and researching the impact of three out of school time units. Two units are for middle grades youth and one is for upper elementary aged youth. The presentation will highlight the data driven development process of the educational products used to provide support for educators teaching these curriculum units. This includes how data from the project needs assessment, curriculum pilot testing, and professional support product field tests are used in the design of products for out of school time educators. Based on data analysis, the project is developing and testing four tiers of professional support for OST educators. Tier 1 meets the immediate needs of OST educators to teach curriculum and include how-to videos and other direct support materials. Tier 2 provides additional content and pedagogical knowledge and includes short content videos designed to specifically address the content of the curriculum. Tier 3 elaborates on best practices in education and gives guidance on methods, for example, to develop cultural relevancy for underrepresented students. Tier 4 helps make connections to other NASA or educational products that support STEM learning in out of school settings. Examples of the tiers of support will be provided.

  15. From creekology to geology: Finding and conserving oil on the Southern Plains, 1859--1930

    NASA Astrophysics Data System (ADS)

    Frehner, Brian

    This dissertation tells the story of the oil industry's westward migration from Pennsylvania to the Southern Plains states of Kansas, Oklahoma, and Texas and how different environments in these regions influenced prospectors' methods for finding oil. Petroleum engineers, geologists, and businessmen take center stage throughout the narrative, and I emphasize how their biases, values, and interests influenced the kind of knowledge produced. At the heart of this story lay a contest between professional, university-trained engineers and geologists and so-called practical oil men, or "wildcatters," who received their training less formally from surveying the landscape. Although both groups performed field work in their search for oil, I explore how each learned very different information from that activity. Wildcatters met with so much success that the oil industry failed to take geologists seriously for approximately fifty years after 1860 when the Pennsylvania oil boom started, and I argue that the environment played an important role in this contest for authority between oil prospectors who learned their trade through hands-on experience and those who learned it primarily in the classroom. I continue this theme by showing how the environment actively influenced the growing acceptance of geologists as the oil industry migrated west and companies with interests in Kansas, Oklahoma, and Texas began hiring geologists and establishing their own geological research departments. A pioneer in the use of geology, Henry L. Doherty, controlled Cities Service holding company and dispatched an army of geologists who discovered significant oil strikes in these states. Doherty's embrace of university-trained experts led him to advocate conservation of oil on the basis of geological and engineering principles. Practical men in Oklahoma, however, recognized the need for conservation even earlier and succeeded in lobbying their state legislature for laws which proved effective long before geologists and engineers entered the industry en masse. I show how the political battle over conservation between practical men and petroleum engineers and geologists underscores the complex and decades-long relationship between the oil industry and the natural world.

  16. Brief 74 Nuclear Engineering Enrollments and Degrees Survey, 2014 Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2015-03-15

    The 2014 survey includes degrees granted between September 1, 2013 and August 31, 2014, and enrollments for fall 2014. There are three academic programs new to this year's survey. Thirty-five academic programs reported having nuclear engineering programs during 2014, and data were provided by all thirty-five. The enrollments and degrees data include students majoring in nuclear engineering or in an option program equivalent to a major. Two nuclear engineering programs have indicated that health physics option enrollments and degrees are also reported in the health physics enrollments and degrees survey.

  17. Adaptive critic learning techniques for engine torque and air-fuel ratio control.

    PubMed

    Liu, Derong; Javaherian, Hossein; Kovalenko, Olesia; Huang, Ting

    2008-08-01

    A new approach for engine calibration and control is proposed. In this paper, we present our research results on the implementation of adaptive critic designs for self-learning control of automotive engines. A class of adaptive critic designs that can be classified as (model-free) action-dependent heuristic dynamic programming is used in this research project. The goals of the present learning control design for automotive engines include improved performance, reduced emissions, and maintained optimum performance under various operating conditions. Using the data from a test vehicle with a V8 engine, we developed a neural network model of the engine and neural network controllers based on the idea of approximate dynamic programming to achieve optimal control. We have developed and simulated self-learning neural network controllers for both engine torque (TRQ) and exhaust air-fuel ratio (AFR) control. The goal of TRQ control and AFR control is to track the commanded values. For both control problems, excellent neural network controller transient performance has been achieved.

  18. Overseas Internship Education in Engineering Graduate Courses and Evaluation of the Educational Effect

    NASA Astrophysics Data System (ADS)

    Noguchi, Toru; Yoshikawa, Kozo; Nakamura, Masato

    Center for Engineering Education Development, CEED, Hokkaido University was established to provide new graduate course programs more practical and concordant with the needs of industry and global society. The major program is the overseas internship, where students join some project as experiment, design, analysis, production, software making, etc, in the companies or research organizations in the foreign countries. For these three years, CEED sent over 65 students to 24 countries in the world. In this report, the CEED implementation of the internship program is described and examples of students‧ activities in the overseas internship are introduced. The educational effect is also stated based on the questionnaire survey. From the data, students‧ abilities such as, international understanding, challenging spirit, attitude to learn new things, as well as language proficiency are markedly improved.

  19. Improving student retention in computer engineering technology

    NASA Astrophysics Data System (ADS)

    Pierozinski, Russell Ivan

    The purpose of this research project was to improve student retention in the Computer Engineering Technology program at the Northern Alberta Institute of Technology by reducing the number of dropouts and increasing the graduation rate. This action research project utilized a mixed methods approach of a survey and face-to-face interviews. The participants were male and female, with a large majority ranging from 18 to 21 years of age. The research found that participants recognized their skills and capability, but their capacity to remain in the program was dependent on understanding and meeting the demanding pace and rigour of the program. The participants recognized that curriculum delivery along with instructor-student interaction had an impact on student retention. To be successful in the program, students required support in four domains: academic, learning management, career, and social.

  20. Situational Interest in Engineering Design Activities

    NASA Astrophysics Data System (ADS)

    Bonderup Dohn, Niels

    2013-08-01

    The aim of the present mixed-method study was to investigate task-based situational interest of sixth grade students (n = 46), between 12 and 14 years old, during an eight-week engineering design programme in a Science & Technology-class. Students' interests were investigated by means of a descriptive interpretative analysis of qualitative data from classroom observations and informal interviews. The analysis was complemented by a self-report survey to validate findings and determine prevalence. The analysis revealed four main sources of interest: designing inventions, trial-and-error experimentation, achieved functionality of invention, and collaboration. These sources differ in terms of stimuli factors, such as novelty, autonomy (choice), social involvement, self-generation of interest, and task goal orientation. The study shows that design tasks stimulated interest, but only to the extent that students were able to self-regulate their learning strategies.

  1. eLearning Hands-On: Blending Interactive eLearning with Practical Engineering Laboratory

    ERIC Educational Resources Information Center

    Kiravu, Cheddi; Yanev, Kamen M.; Tunde, Moses O.; Jeffrey, Anna M.; Schoenian, Dirk; Renner, Ansel

    2016-01-01

    Purpose: Integrating laboratory work into interactive engineering eLearning contents augments theory with practice while simultaneously ameliorating the apparent theory-practice gap in traditional eLearning. The purpose of this paper is to assess and recommend media that currently fulfil this desirable dual pedagogical goal.…

  2. Characterizing Engineering Learners' Preferences for Active and Passive Learning Methods

    ERIC Educational Resources Information Center

    Magana, Alejandra J.; Vieira, Camilo; Boutin, Mireille

    2018-01-01

    This paper studies electrical engineering learners' preferences for learning methods with various degrees of activity. Less active learning methods such as homework and peer reviews are investigated, as well as a newly introduced very active (constructive) learning method called "slectures," and some others. The results suggest that…

  3. Innovative assessment paradigm to enhance student learning in engineering education

    NASA Astrophysics Data System (ADS)

    El-Maaddawy, Tamer

    2017-11-01

    Incorporation of student self-assessment (SSA) in engineering education offers opportunities to support and encourage learner-led-learning. This paper presents an innovative assessment paradigm that integrates formative, summative, and SSA to enhance student learning. The assessment innovation was implemented in a senior-level civil engineering design course. Direct evidence of the impact of employing this innovation on student learning and achievement was derived by monitoring student academic performance in direct assessment tasks throughout the semester. Students' feedback demonstrated the effectiveness of this innovation to improve their understanding of course topics build their autonomy, independent judgement, and self-regulated learning skills.

  4. Discourse in freshman engineering teams: The relationship between verbal persuasions, self-efficacy, and achievement

    NASA Astrophysics Data System (ADS)

    Yasar, Senay

    Collaborative teamwork is a common practice in both science and engineering schools and workplaces. This study, using a mixed-methods approach, was designed to identify which team discourse characteristics are correlated with changes in student self-efficacy and achievement. Bandura's self-efficacy theory constitutes the theoretical framework. Seven teams, consisting of first-year engineering students, took the pre- and post-surveys and were video- and audio-recorded during a semester-long Introduction to Engineering Design course. Three instruments were developed: a self-efficacy survey, a team interaction observation protocol, and a team interaction self-report survey. The reliability and validity of these instruments were established. An iterative process of code development and refinement led to the development of thirty-five discourse types, which were grouped under six discourse categories: task-oriented, response-oriented, learning-oriented, support-oriented, challenge-oriented, and disruptive. The results of the quantitative data analysis showed that achievement and gain in self-efficacy were significantly correlated ( r=.55, p<.01). There was also a positive correlation between support-orientated discourse and post self-efficacy scores ( r=.43, p<.05). Negative correlations were observed between disruptive discourse behaviors and post self-efficacy (r=-.48, p<.05). Neither being challenged by peers nor receiving negative feedback revealed significant correlations with student self-efficacy. In addition, no direct correlations between the team discourse characteristics and achievement were found. These findings suggest that collaborative teamwork can lead to achievement to the extent that it supports self-efficacy. They also suggest that interactions such as receiving positive or negative feedback have less impact on self-efficacy than does the overall constructive behavior of the group. The qualitative component of the study, which focused on three case studies, presents how supportive and disruptive interactions occurred during team discourse. Discussion includes recommendations for educators on how to help teams build supportive environments as well as what to look for when forming teams and evaluating student team interactions.

  5. Influencing Student Beliefs about the Role of the Civil Engineer in Society

    ERIC Educational Resources Information Center

    Nesbit, Susan E.; Sianchuk, Robert; Aleksejuniene, Jolanta; Kindiak, Rebecca

    2012-01-01

    This study suggests that community service learning experiences facilitate the reconstruction of civil engineering student beliefs about both the type of work performed by civil engineers and the broad impact of civil engineering knowledge. Further, the service learning experiences highlight for students 1) the importance of relationships between…

  6. The Engineering Design Process: Conceptions along the Learning-To-Teach Continuum

    ERIC Educational Resources Information Center

    Iveland, Ashley

    2017-01-01

    In this study, I sought to identify differences in the views and understandings of engineering design among individuals along the learning-to-teach continuum. To do so, I conducted a comprehensive review of literature to determine the various aspects of engineering design described in the fields of professional engineering and engineering…

  7. Relationship of Prior Knowledge and Working Engineers' Learning Preferences: Implications for Designing Effective Instruction

    ERIC Educational Resources Information Center

    Baukal, Charles E.; Ausburn, Lynna J.

    2017-01-01

    Continuing engineering education (CEE) is important to ensure engineers maintain proficiency over the life of their careers. However, relatively few studies have examined designing effective training for working engineers. Research has indicated that both learner instructional preferences and prior knowledge can impact the learning process, but it…

  8. An Engineering Learning Community to Promote Retention and Graduation of At-Risk Engineering Students

    ERIC Educational Resources Information Center

    Ricks, Kenneth G.; Richardson, James A.; Stern, Harold P.; Taylor, Robert P.; Taylor, Ryan A.

    2014-01-01

    Retention and graduation rates for engineering disciplines are significantly lower than desired, and research literature offers many possible causes. Engineering learning communities provide the opportunity to study relationships among specific causes and to develop and evaluate activities designed to lessen their impact. This paper details an…

  9. Learning Activity Packets for Auto Mechanics II. Section A--Engine Rebuilding.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    Eight learning activity packets (LAPs) are provided for the instructional area of engine rebuilding in the auto mechanics II program. They accompany an instructor's guide available separately. The LAPs outline the study activities and performance tasks for these eight units: (1) engine condition evaluation; (2) engine removal; (3) engine…

  10. Auto Mechanics I. Learning Activity Packets (LAPs). Section C--Engine.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains five learning activity packets (LAPs) that outline the study activities for the "engine" instructional area for an Auto Mechanics I course. The five LAPs cover the following topics: basic engine principles, cooling system, engine lubrication system, exhaust system, and fuel system. Each LAP contains a cover sheet…

  11. Aligning professional skills and active learning methods: an application for information and communications technology engineering

    NASA Astrophysics Data System (ADS)

    Llorens, Ariadna; Berbegal-Mirabent, Jasmina; Llinàs-Audet, Xavier

    2017-07-01

    Engineering education is facing new challenges to effectively provide the appropriate skills to future engineering professionals according to market demands. This study proposes a model based on active learning methods, which is expected to facilitate the acquisition of the professional skills most highly valued in the information and communications technology (ICT) market. The theoretical foundations of the study are based on the specific literature on active learning methodologies. The Delphi method is used to establish the fit between learning methods and generic skills required by the ICT sector. An innovative proposition is therefore presented that groups the required skills in relation to the teaching method that best develops them. The qualitative research suggests that a combination of project-based learning and the learning contract is sufficient to ensure a satisfactory skills level for this profile of engineers.

  12. Using iPad-Based Mobile Learning to Teach Creative Engineering within a Problem-Based Learning Pedagogy

    ERIC Educational Resources Information Center

    Li, Yulong; Wang, Lixun

    2018-01-01

    This case study, noting the increasing interest in iPad-based mobile learning research and aware of the current dearth of engineering talent in the UK, aims to contribute to a still sparse area of research that links iPad use to engineering education. To achieve this, the study investigates the integration of iPad-based mobile learning…

  13. Undergraduate engineering students' experiences of interdisciplinary learning: a phenomenographic perspective

    NASA Astrophysics Data System (ADS)

    Hsu, Ming-Chien

    Engineers are expected to work with people with different disciplinary knowledge to solve real-world problems that are inherently complex, which is one of the reasons that interdisciplinary learning has become a common pedagogical practice in engineering education. However, empirical evidence on the impact of interdisciplinary learning on undergraduates is lacking. Regardless of the differences in the scope of methods used to assess interdisciplinary learning, frameworks of interdisciplinary learning are imperative for developing attainable outcomes as well as interpreting assessment data. Existing models of interdisciplinary learning have been either conceptual or based on research faculty members' experiences rather than empirical data. The study addressed the gap by exploring the different ways that undergraduate engineering students experience interdisciplinary learning. A phenomenographic methodological framework was used to guide the design, data collection, and data analysis of the study. Twenty-two undergraduate engineering students with various interdisciplinary learning experiences were interviewed using semi-structured protocols. They concretely described their experiences and reflected meaning associated with those experiences. Analysis of the data revealed eight qualitatively different ways that students experience interdisciplinary learning, which include: interdisciplinary learning as (A) no awareness of differences, (B) control and assertion, (C) coping with differences, (D) navigating creative differences, (E) learning from differences, (F) bridging differences, (G) expanding intellectual boundaries, and (H) commitment to holistic perspectives. Categories D through H represent a hierarchical structure of increasingly comprehensive way of experiencing interdisciplinary learning. Further analysis uncovered two themes that varied throughout the categories: (i) engagement with differences and (ii) purpose and integration. Students whose experiences lie outside of the hierarchical structure need to engage difference in a positive manner and also have a purpose in engaging differences in order to experience interdisciplinary learning in a more comprehensive way. The results offer insights into the design of curriculum and classroom interdisciplinary experiences in engineering education.

  14. Analysing Learning Outcomes in an Electrical Engineering Curriculum Using Illustrative Verbs Derived from Bloom's Taxonomy

    ERIC Educational Resources Information Center

    Meda, Lawrence; Swart, Arthur James

    2018-01-01

    Learning outcomes are essential to any curriculum in education, where they need to be clear, observable and measurable. However, some academics structure learning outcomes in a way that does not promote student learning. The purpose of this article is to present the analyses of learning outcomes of an Electrical Engineering curriculum offered at a…

  15. Comparison of Example-Based Learning and Problem-Based Learning in Engineering Domain

    ERIC Educational Resources Information Center

    Sern, Lai Chee; Salleh, Kahirol Mohd; Sulaiman, Nor lisa; Mohamad, Mimi Mohaffyza; Yunos, Jailani Md

    2015-01-01

    The research was conducted to compare the impacts of problem-based learning (PBL) and example-based learning (EBL) on the learning performance in an engineering domain. The research was implemented by means of experimental design. Specifically, a two-group experiment with a pre- and post-test design was used in this research. A total of 37…

  16. How Newcomers Learn the Social Norms of an Organization: A Case Study of the Socialization of Newly Hired Engineers. Research Brief

    ERIC Educational Resources Information Center

    Korte, Russel

    2009-01-01

    Current scholarship views organizational socialization as a learning process that is primarily the responsibility of the newcomer. Yet recent learning research recognizes the importance of the social interactions in the learning process. This study investigated how newly hired engineers at a large manufacturing company learned job-related tasks…

  17. Measuring the utility of the Science, Technology, Engineering, Mathematics (STEM) Academy Measurement Tool in assessing the development of K-8 STEM academies as professional learning communities

    NASA Astrophysics Data System (ADS)

    Irish, Teresa J.

    The aim of this study was to provide insights addressing national concerns in Science, Technology, Engineering, and Mathematics (STEM) education by examining how a set of six perimeter urban K-12 schools were transformed into STEM-focused professional learning communities (PLC). The concept of a STEM Academy as a STEM-focused PLC emphasizes the development of a STEM culture where professional discourse and teaching are focused on STEM learning. The STEM Academies examined used the STEM Academy Measurement Tool and Rubric (Tool) as a catalyst for discussion and change. This Tool was developed with input from stakeholders and used for school-wide initiatives, teacher professional development and K-12 student engagement to improve STEM teaching and learning. Two primary goals of this study were to assess the levels of awareness and use of the tool by all stakeholders involved in the project and to determine how the Tool assisted in the development and advancement of these schools as STEM PLCs. Data from the STEM Academy Participant Survey was analyzed to determine stakeholders' perceptions of the Tool in terms of (i) how aware stakeholders were of the Tool, (ii) whether they participated in the use of the Tool, (iii) how the characteristics of PLCs were perceived in their schools, and finally (iv) how the awareness of the Tool influenced teachers' perceptions of the presence of PLC characteristics. Findings indicate that school faculty were aware of the Tool on a number of different levels and evidence exists that the use of the Tool assisted in the development of STEM Academies, however impact varied from school to school. Implications of this study suggest that the survey should be used for a longer period of time to gain more in-depth knowledge on teachers' perceptions of the Tool as a catalyst across time. Additional findings indicate that the process for using the Tool should be ongoing and involve the stakeholders to have the greatest impact on school culture. This research contributes to the knowledge base related to building STEM PLCs aimed at improving K-12 teacher content and pedagogical knowledge as well as student learning and achievement in STEM education.

  18. Planetary Science Educational Materials for Out-of-School Time Educators

    NASA Astrophysics Data System (ADS)

    Barlow, Nadine G.; Clark, Joelle G.

    2017-10-01

    Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) is a five-year NASA-funded (NNX16AC53A) interdisciplinary and cross-institutional partnership to develop and disseminate STEM out-of-school time (OST) curricular and professional development units that integrate planetary science, technology, and engineering. The Center for Science Teaching and Learning (CSTL) and Department of Physics and Astronomy (P&A) at Northern Arizona University, the U.S. Geological Survey Astrogeology Science Center (USGS ASC), and the Museum of Science Boston (MoS) are partners in developing, piloting, and researching the impact of three out-of-school time units. Planetary scientists at USGS ASC and P&A have developed two units for middle grades youth and one for upper elementary aged youth. The two middle school units focus on greywater recycling and remote sensing of planetary surfaces while the elementary unit centers on exploring space hazards. All units are designed for small teams of ~4 youth to work together to investigate materials, engineer tools to assist in the explorations, and utilize what they have learned to solve a problem. Youth participate in a final share-out with adults and other youth of what they learned and their solution to the problem. Curriculum pilot testing of the two middle school units has begun with out-of-school time educators. A needs assessment has been conducted nationwide among educators and evaluation of the curriculum units is being conducted by CSTL during the pilot testing. Based on data analysis, the project is developing and testing four tiers of professional support for OST educators. Tier 1 meets the immediate needs of OST educators to teach curriculum and include how-to videos and other direct support materials. Tier 2 provides additional content and pedagogical knowledge and includes short content videos designed to specifically address the content of the curriculum. Tier 3 elaborates on best practices in education and gives guidance on methods, for example, to develop cultural relevancy for underrepresented students. Tier 4 helps make connections to other NASA or educational products that support STEM learning in out of school settings.

  19. Enhancing learning in geosciences and water engineering via lab activities

    NASA Astrophysics Data System (ADS)

    Valyrakis, Manousos; Cheng, Ming

    2016-04-01

    This study focuses on the utilisation of lab based activities to enhance the learning experience of engineering students studying Water Engineering and Geosciences. In particular, the use of modern highly visual and tangible presentation techniques within an appropriate laboratory based space are used to introduce undergraduate students to advanced engineering concepts. A specific lab activity, namely "Flood-City", is presented as a case study to enhance the active engagement rate, improve the learning experience of the students and better achieve the intended learning objectives of the course within a broad context of the engineering and geosciences curriculum. Such activities, have been used over the last few years from the Water Engineering group @ Glasgow, with success for outreach purposes (e.g. Glasgow Science Festival and demos at the Glasgow Science Centre and Kelvingrove museum). The activity involves a specific setup of the demonstration flume in a sand-box configuration, with elements and activities designed so as to gamely the overall learning activity. Social media platforms can also be used effectively to the same goals, particularly in cases were the students already engage in these online media. To assess the effectiveness of this activity a purpose designed questionnaire is offered to the students. Specifically, the questionnaire covers several aspects that may affect student learning, performance and satisfaction, such as students' motivation, factors to effective learning (also assessed by follow-up quizzes), and methods of communication and assessment. The results, analysed to assess the effectiveness of the learning activity as the students perceive it, offer a promising potential for the use of such activities in outreach and learning.

  20. A Subject Matter Expert View of Curriculum Development.

    NASA Astrophysics Data System (ADS)

    Milazzo, M. P.; Anderson, R. B.; Edgar, L. A.; Gaither, T. A.; Vaughan, R. G.

    2017-12-01

    In 2015, NASA selected for funding the PLANETS project: Planetary Learning that Advances the Nexus of Engineering, Technology, and Science. The PLANETS partnership develops planetary science and engineering curricula for out of classroom time (OST) education settings. This partnership is between planetary science Subject Matter Experts (SMEs) at the US Geological Survey (USGS), curriculum developers at the Boston Museum of Science (MOS) Engineering is Everywhere (EiE), science and engineering teacher professional development experts at Northern Arizona University (NAU) Center for Science Teaching and Learning (CSTL), and OST teacher networks across the world. For the 2016 and 2017 Fiscal Years, our focus was on creating science material for two OST modules designed for middle school students. We have begun development of a third module for elementary school students. The first model teaches about the science and engineering of the availability of water in the Solar System, finding accessible water, evaluating it for quality, treating it for impurities, initial use, a cycle of greywater treatment and re-use, and final treatment of blackwater. This module is described in more detail in the abstract by L. Edgar et al., Water in the Solar System: The Development of Science Education Curriculum Focused on Planetary Exploration (233008) The second module involves the science and engineering of remote sensing in planetary exploration. This includes discussion and activities related to the electromagnetic spectrum, spectroscopy and various remote sensing systems and techniques. In these activities and discussions, we include observation and measurement techniques and tools as well as collection and use of specific data of interest to scientists. This module is described in more detail in the abstract by R. Anderson et al., Remote Sensing Mars Landing Sites: An Out-of-School Time Planetary Science Education Activity for Middle School Students (232683) The third module, described by R.G. Vaughan, Hazards in the Solar System: Out-of-School Time Student Activities Focused on Engineering Protective Space Gloves (262143), focuses on hazards in the Solar System and the engineering approach to designing space gloves to protect against those hazards.

  1. Life-Cycle Cost Database. Volume II. Appendices E, F, and G. Sample Data Development.

    DTIC Science & Technology

    1983-01-01

    Bendix Field Engineering Corporation Columbia, Maryland 21045 5 CONTENTS Page GENERAL 8 Introduction Objective Engineering Survey SYSTEM DESCRIPTION...in a typical administrative type building over a 25-year period. 1.3 ENGINEERING SURVEY An on-site survey was conducted by Bendix Field Engineering...Damp Mop and Buff Buff Routine Vacuum Strip and Refinish Heavy Duty Vacuum Machine, Scrub and Surface Shampoo Pick Up Extraction Clean Repair Location

  2. Paired Peer Learning through Engineering Education Outreach

    ERIC Educational Resources Information Center

    Fogg-Rogers, Laura; Lewis, Fay; Edmonds, Juliet

    2017-01-01

    Undergraduate education incorporating active learning and vicarious experience through education outreach presents a critical opportunity to influence future engineering teaching and practice capabilities. Engineering education outreach activities have been shown to have multiple benefits; increasing interest and engagement with science and…

  3. Distance Teaching of Environmental Engineering Courses at the Open University.

    ERIC Educational Resources Information Center

    Porteous, Andrew; Nesaratnam, Suresh T.; Anderson, Judith

    1997-01-01

    Describes two integrated distance learning environmental engineering degree courses offered by the environmental engineering group of the Open University in Great Britain. Discusses admission requirements for courses, advantages offered by distance learning, professional accreditation, site visits, and tutors. (AIM)

  4. The Perceptions of Change and Change Readiness in Junior and Senior Engineering & Technology Students

    NASA Astrophysics Data System (ADS)

    Moler, Perry J.

    The purpose of this study was to understand what perceptions junior and senior engineering & technology students have about change, change readiness, and selected attributes, skills, and abilities. The selected attributes, skills, and abilities for this study were lifelong learning, leadership, and self-efficacy. The business environment of today is dynamic, with any number of internal and external events requiring an organization to adapt through the process of organizational development. Organizational developments affect businesses as a whole, but these developments are more evident in fields related to engineering and technology. Which require employees working through such developments be flexible and adaptable to a new professional environment. This study was an Explanatory Sequential Mixed Methods design, with Stage One being an online survey that collected individuals' perceptions of change, change readiness, and associated attributes, skills, and abilities. Stage Two was a face-to-face interview with a random sample of individuals who agreed to be interviewed in Stage One. This process was done to understand why students' perceptions are what they are. By using a mixed-method study, a more complete understanding of the current perceptions of students was developed, thus allowing external stakeholders' such as Human Resource managers more insight into the individuals they seek to recruit. The results from Stage One, one sample T-test with a predicted mean of 3.000 for this study indicated that engineering & technology students have a positive perceptions of Change Mean = 3.7024; Change Readiness Mean = 3.9313; Lifelong Learning Mean = 4.571; Leadership = 4.036; and Self-Efficacy Mean = 4.321. A One-way ANOVA was also conducted to understand the differences between traditional and non-traditional student regarding change and change readiness. The results of the ANOVA test indicated there were no significant differences between these two groups. The results from Stage Two showed that students perceived change as both positive and negative. This perception stems from their life experiences rather than from educational or professional experiences. The same can be said for the concepts of change readiness, lifelong learning, leadership, and self-efficacy. This indicates that engineering & technology programs should implement these concepts into their curriculum to better prepare engineering & technology students to enter into professional careers.

  5. Application of a Novel Collaboration Engineering Method for Learning Design: A Case Study

    ERIC Educational Resources Information Center

    Cheng, Xusen; Li, Yuanyuan; Sun, Jianshan; Huang, Jianqing

    2016-01-01

    Collaborative case studies and computer-supported collaborative learning (CSCL) play an important role in the modern education environment. A number of researchers have given significant attention to learning design in order to improve the satisfaction of collaborative learning. Although collaboration engineering (CE) is a mature method widely…

  6. Implementation of Process Oriented Guided Inquiry Learning (POGIL) in Engineering

    ERIC Educational Resources Information Center

    Douglas, Elliot P.; Chiu, Chu-Chuan

    2013-01-01

    This paper describes implementation and testing of an active learning, team-based pedagogical approach to instruction in engineering. This pedagogy has been termed Process Oriented Guided Inquiry Learning (POGIL), and is based upon the learning cycle model. Rather than sitting in traditional lectures, students work in teams to complete worksheets…

  7. "Learning by Doing": A Teaching Method for Active Learning in Scientific Graduate Education

    ERIC Educational Resources Information Center

    Bot, Ludovic; Gossiaux, Pol-Bernard; Rauch, Carl-Philippe; Tabiou, Safouana

    2005-01-01

    This article describes an active learning method for the teaching of physical sciences and mathematics to engineers. After defining the challenges involved in the training of engineers, we shall describe the answers provided by our method, "learning by doing" (named "Apprentissage Par l"Action" in French), by introducing…

  8. E-Learning in Engineering Education: Design of a Collaborative Advanced Remote Access Laboratory

    ERIC Educational Resources Information Center

    Chandra A. P., Jagadeesh; Samuel, R. D. Sudhaker

    2010-01-01

    Attaining excellence in technical education is a worthy challenge to any life goal. Distance learning opportunities make these goals easier to reach with added quality. Distance learning in engineering education is possible only through successful implementations of remote laboratories in a learning-by-doing environment. This paper presents one…

  9. Does Sequence Matter? Productive Failure and Designing Online Authentic Learning for Process Engineering

    ERIC Educational Resources Information Center

    Lai, Polly K.; Portolese, Alisha; Jacobson, Michael J.

    2017-01-01

    This paper presents a study that applied both "productive failure" (PF) and "authentic learning" instructional approaches in online learning activities for early-career process engineers' professional development. This study compares participants learning with either a PF (low-to-high [LH]) or a more traditional (high-to-low)…

  10. Incorporating Learning Theory into Existing Systems Engineering Models

    DTIC Science & Technology

    2013-09-01

    3. Social  Cognition 22 Table 1. Classification of learning theories Behaviorism Cognitivism Constructivism Connectivism...Introdution to design of large scale systems. New York: Mcgraw-Hill. Grusec. J. (1992). Social learning theory and development psychology: The... LEARNING THEORY INTO EXISTING SYSTEMS ENGINEERING MODELS by Valentine Leo September 2013 Thesis Advisor: Gary O. Langford Co-Advisor

  11. From Tootsie Rolls to Broken Bones: An Innovative Approach for Active Learning in Mechanics of Materials

    ERIC Educational Resources Information Center

    Linsey, Julie; Talley, Austin; White, Christina; Jensen, Dan; Wood, Kristin

    2009-01-01

    Active learning enhances engineering education. This paper presents rationale, curriculum supplements, and an approach to active learning that may be seamlessly incorporated into a traditional lecture-based engineering class. A framework of educational theory that structures the active learning experiences and includes consideration of learning…

  12. Survey of manufacturers of high-performance heat engines adaptable to solar applications

    NASA Technical Reports Server (NTRS)

    Stine, W. B.

    1984-01-01

    The results of an industry survey made during the summer of 1983 are summarized. The survey was initiated in order to develop an information base on advanced engines that could be used in the solar thermal dish-electric program. Questionnaires inviting responses were sent to 39 companies known to manufacture or integrate externally heated engines. Follow-up telephone communication ensured uniformity of response. It appears from the survey that the technology exists to produce external-heat-addition engines of appropriate size with thermal efficiencies of over 40%. Problem areas are materials and sealing.

  13. An overview of game-based learning in building services engineering education

    NASA Astrophysics Data System (ADS)

    Alanne, Kari

    2016-03-01

    To ensure proper competence development and short graduation times for engineering students, it is essential that the study motivation is encouraged by new learning methods. In game-based learning, the learner's engagement is increased and learning is made meaningful by applying game-like features such as competition and rewarding through virtual promotions or achievement badges. In this paper, the state of the art of game-based learning in building services engineering education at university level is reviewed and discussed. A systematic literature review indicates that educational games have been reported in the field of related disciplines, such as mechanical and civil engineering. The development of system-level educational games that realistically simulate work life in building services engineering is still in its infancy. Novel rewarding practices and more comprehensive approaches entailing the state-of-the-art information tools such as building information modelling, geographic information systems, building management systems and augmented reality are needed in the future.

  14. Transnational Discourses of Knowledge and Learning in Professional Work: Examples from Computer Engineering

    ERIC Educational Resources Information Center

    Nerland, Monika

    2010-01-01

    Taking a Foucauldian framework as its point of departure, this paper discusses how transnational discourses of knowledge and learning operate in the profession of computer engineering and form a certain logic through which modes of being an engineer are regulated. Both the knowledge domain of computer engineering and its related labour market is…

  15. The Impact of Structured Writing and Developing Awareness of Learning Preferences on the Performance and Attitudes of Engineering Teams

    ERIC Educational Resources Information Center

    Dahm, Kevin; Newell, James; Newell, Heidi; Harvey, Roberta

    2009-01-01

    This paper discusses efforts to develop metacognition in teams of engineering students by: first, exploring personal learning patterns, and second, ongoing biweekly journaling exercises. Thirty-three junior and senior engineering students (30 chemical engineer, one each from mechanical, civil and electrical) working on semester-long projects in…

  16. Students' Awareness and Perceptions of Learning Engineering: Content and Construct Validation of an Instrument

    ERIC Educational Resources Information Center

    Duncan-Wiles, Daphne S.

    2012-01-01

    With the recent addition of engineering to most K-12 testable state standards, efficient and comprehensive instruments are needed to assess changes in student knowledge and perceptions of engineering. In this study, I developed the Students' Awareness and Perceptions of Learning Engineering (STAPLE) instrument to quantitatively measure fourth…

  17. A Case Study: Problem-Based Learning for Civil Engineering Students in Transportation Courses

    ERIC Educational Resources Information Center

    Ahern, A. A.

    2010-01-01

    This paper describes two case studies where problem-based learning (PBL) has been introduced to undergraduate civil engineering students in University College Dublin. PBL has recently been put in place in the penultimate and final year transport engineering classes in the civil engineering degree in University College Dublin. In this case study,…

  18. Effects of Engineering Design-Based Science on Elementary School Science Students' Engineering Identity Development across Gender and Grade

    ERIC Educational Resources Information Center

    Capobianco, Brenda M.; Yu, Ji H.; French, Brian F.

    2015-01-01

    The integration of engineering concepts and practices into elementary science education has become an emerging concern for science educators and practitioners, alike. Moreover, how children, specifically preadolescents (grades 1-5), engage in engineering design-based learning activities may help science educators and researchers learn more about…

  19. Armagh Observatory - Historic Building Information Modelling for Virtual Learning in Building Conservation

    NASA Astrophysics Data System (ADS)

    Murphy, M.; Chenaux, A.; Keenaghan, G.; GIbson, V..; Butler, J.; Pybusr, C.

    2017-08-01

    In this paper the recording and design for a Virtual Reality Immersive Model of Armagh Observatory is presented, which will replicate the historic buildings and landscape with distant meridian markers and position of its principal historic instruments within a model of the night sky showing the position of bright stars. The virtual reality model can be used for educational purposes allowing the instruments within the historic building model to be manipulated within 3D space to demonstrate how the position measurements of stars were made in the 18th century. A description is given of current student and researchers activities concerning on-site recording and surveying and the virtual modelling of the buildings and landscape. This is followed by a design for a Virtual Reality Immersive Model of Armagh Observatory use game engine and virtual learning platforms and concepts.

  20. Implementation of an active instructional design for teaching the concepts of current, voltage and resistance

    NASA Astrophysics Data System (ADS)

    Orlaineta-Agüero, S.; Del Sol-Fernández, S.; Sánchez-Guzmán, D.; García-Salcedo, R.

    2017-01-01

    In the present work we show the implementation of a learning sequence based on an active learning methodology for teaching Physics, this proposal tends to promote a better learning in high school students with the use of a comic book and it combines the use of different low-cost experimental activities for teaching the electrical concepts of Current, Resistance and Voltage. We consider that this kind of strategy can be easily extrapolated to higher-education levels like Engineering-college/university level and other disciplines of Science. To evaluate this proposal, we used some conceptual questions from the Electric Circuits Concept Evaluation survey developed by Sokoloff and the results from this survey was analysed with the Normalized Conceptual Gain proposed by Hake and the Concentration Factor that was proposed by Bao and Redish, to identify the effectiveness of the methodology and the models that the students presented after and before the instruction, respectively. We found that this methodology was more effective than only the implementation of traditional lectures, we consider that these results cannot be generalized but gave us the opportunity to view many important approaches in Physics Education; finally, we will continue to apply the same experiment with more students, in the same and upper levels of education, to confirm and validate the effectiveness of this methodology proposal.

  1. The Present and Future State of Blended Learning in Workplace Learning Settings in the United States

    ERIC Educational Resources Information Center

    Kim, Kyong-Jee; Bonk, Curtis J.; Oh, Eunjung

    2008-01-01

    This article reports a survey about blended learning in workplace learning settings. The survey found that blended learning gained popularity in many organizations but also that several barriers exist in implementing it. This survey also includes predictions on instructional strategies, emerging technologies, and evaluation techniques for blended…

  2. Identifying student difficulties with entropy, heat engines, and the Carnot cycle

    NASA Astrophysics Data System (ADS)

    Smith, Trevor I.; Christensen, Warren M.; Mountcastle, Donald B.; Thompson, John R.

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] We report on several specific student difficulties regarding the second law of thermodynamics in the context of heat engines within upper-division undergraduate thermal physics courses. Data come from ungraded written surveys, graded homework assignments, and videotaped classroom observations of tutorial activities. Written data show that students in these courses do not clearly articulate the connection between the Carnot cycle and the second law after lecture instruction. This result is consistent both within and across student populations. Observation data provide evidence for myriad difficulties related to entropy and heat engines, including students' struggles in reasoning about situations that are physically impossible and failures to differentiate between differential and net changes of state properties of a system. Results herein may be seen as the application of previously documented difficulties in the context of heat engines, but others are novel and emphasize the subtle and complex nature of cyclic processes and heat engines, which are central to the teaching and learning of thermodynamics and its applications. Moreover, the sophistication of these difficulties is indicative of the more advanced thinking required of students at the upper division, whose developing knowledge and understanding give rise to questions and struggles that are inaccessible to novices.

  3. Using group learning to promote integration and cooperative learning between Asian and Australian second-year veterinary science students.

    PubMed

    Mills, Paul C; Woodall, Peter F; Bellingham, Mark; Noad, Michael; Lloyd, Shan

    2007-01-01

    There is a tendency for students from different nationalities to remain within groups of similar cultural backgrounds. The study reported here used group project work to encourage integration and cooperative learning between Australian students and Asian (Southeast Asian) international students in the second year of a veterinary science program. The group project involved an oral presentation during a second-year course (Structure and Function), with group formation engineered to include very high, high, moderate, and low achievers (based on previous grades). One Asian student and three Australian students were placed in each group. Student perceptions of group dynamics were analyzed through a self-report survey completed at the end of the presentations and through group student interviews. Results from the survey were analyzed by chi-square to compare the responses between Asian and Australian students, with statistical significance accepted at p < 0.05. There were too few Asian students for statistical analysis from a single year; therefore, the results from two successive years, 2004 (N = 104; 26% Asian) and 2005 (N = 105; 20% Asian), were analyzed. All participating students indicated in the interviews that the project was worthwhile and a good learning experience. Asian students expressed a greater preference for working in a group than for working alone (p = 0.001) and reported more frequently than Australian students that teamwork produces better results (p = 0.01). Australian students were more likely than Asian students to voice their opinion in a team setting (p = 0.001), while Asian students were more likely to depend on the lecturer for directions (p = 0.001). The results also showed that group project work appeared to create an environment that supported learning and was a successful strategy to achieve acceptance of cultural differences.

  4. Environmental Impact Research Program: Auditory Survey Methods. Section 6.3.5. U.S. Army Corps of Engineers Wildlife Resources Management Manual

    DTIC Science & Technology

    1990-06-01

    mourning dove (Zenaida macroura), American woodcock (Scolopax minor) , northein bobwhite Colijius virgililanus) , and ruffed grouse (Bonasca umbelus...Continued). Auditory survey methods Call counts Avian population indexes Mourning dove survey Avian survey and sampling Ruf fed grouse survey Bobwhite...ENGINEERS WILDLIFE RESOURCES MANAGEMENT MANUAL CONCEPT .... ............. .. 3 RUFFED GROUSE SURVEYS ... ....... 9 MOURNING DOVE SURVEYS

  5. Digitized Educational Technology: A Learning Tool Using Remotely Sensed Data

    NASA Technical Reports Server (NTRS)

    Love, Gloria Carter

    1999-01-01

    Digitized Educational software for different levels of instruction were developed and placed on the web (geocities). Students attending the Pre-Engineering Summer 1998 Camp at Dillard University explored the use of the software which included presentations, applications, and special exercises. Student comments were received and considered for adjustments. The second outreach program included students from Colton Junior High School and Natural Science Majors at Dillard University. The Natural Majors completed a second survey concerning reasons why students selected majors in the Sciences and Mathematics. Two student research assistants (DU) and faculty members/parents of Colton Junior High assisted.

  6. Engineer: The Professional Bulletin of Army Engineers. Volume 38, PB 5-08-3/4, July-December 2008

    DTIC Science & Technology

    2008-12-01

    50 The Battle of Shiloh By Captain John T. Shelton 54 Pioneering Nondoctrinal Bridging Operations: The “Roller Skate ” Repair By First...for Army Lessons Learned (CALL) to conduct an Engineer and Base Camp Collection and Analysis Team (CAAT). As a result of this trip, we collected a...provided an outbrief at the 20th Engineer Brigade Lessons Learned Conference in December. Many thanks to the 20th Engineer Brigade, 926th Engineer

  7. Learning and Construction in Engineering Jobs.

    ERIC Educational Resources Information Center

    Buch, Anders

    Knowledge production and learning in engineering is a local, situated, negotiated, and thoroughly social process. Although engineering work entails the construal, production, and application of artifacts and technical devices belonging to the "object world," the process of designing is a process of achieving consensus among real or…

  8. 'Not Hard to Sway': A Case Study of Student Engagement in Two Large Engineering Classes

    ERIC Educational Resources Information Center

    Shekhar, Prateek; Borrego, Maura

    2018-01-01

    Although engineering education research has empirically validated the effectiveness of active learning in improving student learning over traditional lecture-based methods, the adoption of active learning in classrooms has been slow. One of the greatest reported barriers is student resistance towards engagement in active learning exercises. This…

  9. A Study of Trial and Error Learning in Technology, Engineering, and Design Education

    ERIC Educational Resources Information Center

    Franzen, Marissa Marie Sloan

    2016-01-01

    The purpose of this research study was to determine if trial and error learning was an effective, practical, and efficient learning method for Technology, Engineering, and Design Education students at the post-secondary level. A mixed methods explanatory research design was used to measure the viability of the learning source. The study sample was…

  10. Learning Engines - A Functional Object Model for Developing Learning Resources for the WWW.

    ERIC Educational Resources Information Center

    Fritze, Paul; Ip, Albert

    The Learning Engines (LE) model, developed at the University of Melbourne (Australia), supports the integration of rich learning activities into the World Wide Web. The model is concerned with the practical design, educational value, and reusability of software components. The model is focused on the academic teacher who is in the best position to…

  11. The Positive Influence of Active Learning in a Lecture Hall: An Analysis of Normalised Gain Scores in Introductory Environmental Engineering

    ERIC Educational Resources Information Center

    Kinoshita, Timothy J.; Knight, David B.; Gibbes, Badin

    2017-01-01

    Burgeoning college enrolments and insufficient funding to higher education have expanded the use of large lecture courses. As this trend continues, it is important to ensure that students can still learn in those challenging learning environments. Within education broadly and undergraduate engineering specifically, active learning pedagogies have…

  12. Conceptual Framework to Help Promote Retention and Transfer in the Introductory Chemical Engineering Course

    ERIC Educational Resources Information Center

    Hanyak, Michael E., Jr.

    2015-01-01

    In an introductory chemical engineering course, the conceptual framework of a holistic problem-solving methodology in conjunction with a problem-based learning approach has been shown to create a learning environment that nurtures deep learning rather than surface learning. Based on exam scores, student grades are either the same or better than…

  13. Spatial Visualization Learning in Engineering: Traditional Methods vs. a Web-Based Tool

    ERIC Educational Resources Information Center

    Pedrosa, Carlos Melgosa; Barbero, Basilio Ramos; Miguel, Arturo Román

    2014-01-01

    This study compares an interactive learning manager for graphic engineering to develop spatial vision (ILMAGE_SV) to traditional methods. ILMAGE_SV is an asynchronous web-based learning tool that allows the manipulation of objects with a 3D viewer, self-evaluation, and continuous assessment. In addition, student learning may be monitored, which…

  14. Design Fixation and Cooperative Learning in Elementary Engineering Design Project: A Case Study

    ERIC Educational Resources Information Center

    Luo, Yi

    2015-01-01

    This paper presents a case study examining 3rd, 4th and 5th graders' design fixation and cooperative learning in an engineering design project. A mixed methods instrument, the Cooperative Learning Observation Protocol (CLOP), was adapted to record frequency and class observation on cooperative learning engagement through detailed field notes.…

  15. Self-Regulated Learning Strategies of Engineering College Students While Learning Electric Circuit Concepts with Enhanced Guided Notes

    ERIC Educational Resources Information Center

    Lawanto, Oenardi; Santoso, Harry

    2013-01-01

    The current study evaluated engineering college students' self-regulated learning (SRL) strategies while learning electric circuit concepts using enhanced guided notes (EGN). Our goal was to describe how students exercise SRL strategies and how their grade performance changes after using EGN. Two research questions guided the study: (1) To what…

  16. Learning approaches as predictors of academic performance in first year health and science students.

    PubMed

    Salamonson, Yenna; Weaver, Roslyn; Chang, Sungwon; Koch, Jane; Bhathal, Ragbir; Khoo, Cheang; Wilson, Ian

    2013-07-01

    To compare health and science students' demographic characteristics and learning approaches across different disciplines, and to examine the relationship between learning approaches and academic performance. While there is increasing recognition of a need to foster learning approaches that improve the quality of student learning, little is known about students' learning approaches across different disciplines, and their relationships with academic performance. Prospective, correlational design. Using a survey design, a total of 919 first year health and science students studying in a university located in the western region of Sydney from the following disciplines were recruited to participate in the study - i) Nursing: n = 476, ii) Engineering: n = 75, iii) Medicine: n = 77, iv) Health Sciences: n = 204, and v) Medicinal Chemistry: n = 87. Although there was no statistically significant difference in the use of surface learning among the five discipline groups, there were wide variations in the use of deep learning approach. Furthermore, older students and those with English as an additional language were more likely to use deep learning approach. Controlling for hours spent in paid work during term-time and English language usage, both surface learning approach (β = -0.13, p = 0.001) and deep learning approach (β = 0.11, p = 0.009) emerged as independent and significant predictors of academic performance. Findings from this study provide further empirical evidence that underscore the importance for faculty to use teaching methods that foster deep instead of surface learning approaches, to improve the quality of student learning and academic performance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Engineers and Their Role in Public Policy: An Active Learning Experience for Enhancing the Understanding of the State

    ERIC Educational Resources Information Center

    Acevedo, Jorge; Barros, Ricardo; Ramirez, Catalina; Realpe, Natalia

    2009-01-01

    To achieve effective intervention of engineers in the public sector, engineers should develop skills to comprehend their ethical and professional responsibility, and they should gain the necessary education to understand the possible impact of engineering solutions in a global and social context. An active learning process has been conceived,…

  18. Virtual laboratory learning media development to improve science literacy skills of mechanical engineering students on basic physics concept of material measurement

    NASA Astrophysics Data System (ADS)

    Jannati, E. D.; Setiawan, A.; Siahaan, P.; Rochman, C.

    2018-05-01

    This study aims to determine the description of virtual laboratory learning media development to improve science literacy skills of Mechanical Engineering students on the concept of basic Physics. Quasi experimental method was employed in this research. The participants of this research were first semester students of mechanical engineering in Majalengka University. The research instrument was readability test of instructional media. The results of virtual laboratory learning media readability test show that the average score is 78.5%. It indicates that virtual laboratory learning media development are feasible to be used in improving science literacy skill of Mechanical Engineering students in Majalengka University, specifically on basic Physics concepts of material measurement.

  19. Envisioning engineering education and practice in the coming intelligence convergence era — a complex adaptive systems approach

    NASA Astrophysics Data System (ADS)

    Noor, Ahmed K.

    2013-12-01

    Some of the recent attempts for improving and transforming engineering education are reviewed. The attempts aim at providing the entry level engineers with the skills needed to address the challenges of future large-scale complex systems and projects. Some of the frontier sectors and future challenges for engineers are outlined. The major characteristics of the coming intelligence convergence era (the post-information age) are identified. These include the prevalence of smart devices and environments, the widespread applications of anticipatory computing and predictive / prescriptive analytics, as well as a symbiotic relationship between humans and machines. Devices and machines will be able to learn from, and with, humans in a natural collaborative way. The recent game changers in learnscapes (learning paradigms, technologies, platforms, spaces, and environments) that can significantly impact engineering education in the coming era are identified. Among these are open educational resources, knowledge-rich classrooms, immersive interactive 3D learning, augmented reality, reverse instruction / flipped classroom, gamification, robots in the classroom, and adaptive personalized learning. Significant transformative changes in, and mass customization of, learning are envisioned to emerge from the synergistic combination of the game changers and other technologies. The realization of the aforementioned vision requires the development of a new multidisciplinary framework of emergent engineering for relating innovation, complexity and cybernetics, within the future learning environments. The framework can be used to treat engineering education as a complex adaptive system, with dynamically interacting and communicating components (instructors, individual, small, and large groups of learners). The emergent behavior resulting from the interactions can produce progressively better, and continuously improving, learning environment. As a first step towards the realization of the vision, intelligent adaptive cyber-physical ecosystems need to be developed to facilitate collaboration between the various stakeholders of engineering education, and to accelerate the development of a skilled engineering workforce. The major components of the ecosystems include integrated knowledge discovery and exploitation facilities, blended learning and research spaces, novel ultra-intelligent software agents, multimodal and autonomous interfaces, and networked cognitive and tele-presence robots.

  20. Understanding the Role of Academic Language on Conceptual Understanding in an Introductory Materials Science and Engineering Course

    NASA Astrophysics Data System (ADS)

    Kelly, Jacquelyn

    Students may use the technical engineering terms without knowing what these words mean. This creates a language barrier in engineering that influences student learning. Previous research has been conducted to characterize the difference between colloquial and scientific language. Since this research had not yet been applied explicitly to engineering, conclusions from the area of science education were used instead. Various researchers outlined strategies for helping students acquire scientific language. However, few examined and quantified the relationship it had on student learning. A systemic functional linguistics framework was adopted for this dissertation which is a framework that has not previously been used in engineering education research. This study investigated how engineering language proficiency influenced conceptual understanding of introductory materials science and engineering concepts. To answer the research questions about engineering language proficiency, a convenience sample of forty-one undergraduate students in an introductory materials science and engineering course was used. All data collected was integrated with the course. Measures included the Materials Concept Inventory, a written engineering design task, and group observations. Both systemic functional linguistics and mental models frameworks were utilized to interpret data and guide analysis. A series of regression analyses were conducted to determine if engineering language proficiency predicts group engineering term use, if conceptual understanding predicts group engineering term use, and if conceptual understanding predicts engineering language proficiency. Engineering academic language proficiency was found to be strongly linked to conceptual understanding in the context of introductory materials engineering courses. As the semester progressed, this relationship became even stronger. The more engineering concepts students are expected to learn, the more important it is that they are proficient in engineering language. However, exposure to engineering terms did not influence engineering language proficiency. These results stress the importance of engineering language proficiency for learning, but warn that simply exposing students to engineering terms does not promote engineering language proficiency.

  1. Implementing a 3D printing service in a biomedical library

    PubMed Central

    Walker, Verma

    2017-01-01

    Three-dimensional (3D) printing is opening new opportunities in biomedicine by enabling creative problem solving, faster prototyping of ideas, advances in tissue engineering, and customized patient solutions. The National Institutes of Health (NIH) Library purchased a Makerbot Replicator 2 3D printer to give scientists a chance to try out this technology. To launch the service, the library offered training, conducted a survey on service model preferences, and tracked usage and class attendance. 3D printing was very popular, with new lab equipment prototypes being the most common model type. Most survey respondents indicated they would use the service again and be willing to pay for models. There was high interest in training for 3D modeling, which has a steep learning curve. 3D printers also require significant care and repairs. NIH scientists are using 3D printing to improve their research, and it is opening new avenues for problem solving in labs. Several scientists found the 3D printer so helpful they bought one for their labs. Having a printer in a central and open location like a library can help scientists, doctors, and students learn how to use this technology in their work. PMID:28096747

  2. Implementing a 3D printing service in a biomedical library.

    PubMed

    Walker, Verma

    2017-01-01

    Three-dimensional (3D) printing is opening new opportunities in biomedicine by enabling creative problem solving, faster prototyping of ideas, advances in tissue engineering, and customized patient solutions. The National Institutes of Health (NIH) Library purchased a Makerbot Replicator 2 3D printer to give scientists a chance to try out this technology. To launch the service, the library offered training, conducted a survey on service model preferences, and tracked usage and class attendance. 3D printing was very popular, with new lab equipment prototypes being the most common model type. Most survey respondents indicated they would use the service again and be willing to pay for models. There was high interest in training for 3D modeling, which has a steep learning curve. 3D printers also require significant care and repairs. NIH scientists are using 3D printing to improve their research, and it is opening new avenues for problem solving in labs. Several scientists found the 3D printer so helpful they bought one for their labs. Having a printer in a central and open location like a library can help scientists, doctors, and students learn how to use this technology in their work.

  3. Project Alexander the Great: a study on the world proliferation of bioengineering/biomedical engineering education.

    PubMed

    Abu-Faraj, Ziad O

    2008-01-01

    Bioengineering/Biomedical Engineering is considered amongst the most reputable fields within the global arena, and will likely be the primer for any future breakthroughs in Medicine and Biology. Bioengineering/biomedical engineering education has evolved since late 1950s and is undergoing advancement in leading academic institutions worldwide. This paper delineates an original study on the world proliferation of bioengineering/biomedical engineering education and bears the name 'Project Alexander the Great'. The initial step of the project was to survey all 10448 universities, recognized by the International Association of Universities, spread among the 193 member states of the United Nations within the six continents. The project aims at identifying, disseminating, and networking, through the world-wide-web, those institutions of higher learning that provide bioengineering/biomedical engineering education. The significance of this project is multifold: i) the inception of a web-based 'world-map' in bioengineering/biomedical engineering education for the potential international student desiring to pursue a career in this field; ii) the global networking of bioengineering/biomedical engineering academic/research programs; iii) the promotion of first-class bioengineering/biomedical engineering education and the catalysis of global proliferation of this field; iv) the erection of bridges among educational institutions, industry, and professional societies or organizations involved in Bioengineering/Biomedical Engineering; and v) the catalysis in the establishment of framework agreements for cooperation among the identified institutions offering curricula in this field. This paper presents the results obtained from Africa and North America. The whole project is due to be completed by 2009.

  4. Problem-based learning biotechnology courses in chemical engineering.

    PubMed

    Glatz, Charles E; Gonzalez, Ramon; Huba, Mary E; Mallapragada, Surya K; Narasimhan, Balaji; Reilly, Peter J; Saunders, Kevin P; Shanks, Jacqueline V

    2006-01-01

    We have developed a series of upper undergraduate/graduate lecture and laboratory courses on biotechnological topics to supplement existing biochemical engineering, bioseparations, and biomedical engineering lecture courses. The laboratory courses are based on problem-based learning techniques, featuring two- and three-person teams, journaling, and performance rubrics for guidance and assessment. Participants initially have found them to be difficult, since they had little experience with problem-based learning. To increase enrollment, we are combining the laboratory courses into 2-credit groupings and allowing students to substitute one of them for the second of our 2-credit chemical engineering unit operations laboratory courses.

  5. 76 FR 11821 - Submission for OMB Review; Comment Request Survey of Principal Investigators on Earthquake...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ...: Survey of Principal Investigators on Earthquake Engineering Research Awards Made by the National Science... survey of Principal Investigators on NSF earthquake engineering research awards, including but not... NATIONAL SCIENCE FOUNDATION Submission for OMB Review; Comment Request Survey of Principal...

  6. Three dimensions of learning: experiential activity for engineering innovation education and research

    NASA Astrophysics Data System (ADS)

    Killen, Catherine P.

    2015-09-01

    This paper outlines a novel approach to engineering education research that provides three dimensions of learning through an experiential class activity. A simulated decision activity brought current research into the classroom, explored the effect of experiential activity on learning outcomes and contributed to the research on innovation decision making. The 'decision task' was undertaken by more than 480 engineering students. It increased their reported measures of learning and retention by an average of 0.66 on a five-point Likert scale, and revealed positive correlations between attention, enjoyment, ongoing interest and learning and retention. The study also contributed to innovation management research by revealing the influence of different data visualisation methods on decision quality, providing an example of research-integrated education that forms part of the research process. Such a dovetailing of different research studies demonstrates how engineering educators can enhance educational impact while multiplying the outcomes from their research efforts.

  7. An exploratory investigation of teaching innovations and learning factors in a lean manufacturing systems engineering course

    NASA Astrophysics Data System (ADS)

    Choomlucksana, Juthamas; Doolen, Toni L.

    2017-11-01

    The use of collaborative activities and simulation sessions in engineering education has been explored previously. However, few studies have investigated the relationship of these types of teaching innovations with other learner characteristics, such as self-efficacy and background knowledge. This study explored the effects of collaborative activities and simulation sessions on learning and the relationships between self-efficacy beliefs, background knowledge, and learning. Data were collected from two different terms in an upper division engineering course entitled Lean Manufacturing Systems Engineering. Findings indicated that the impact of collaborative activities and simulation sessions appears to be different, depending on the concepts being taught. Simulation sessions were found to have a significant effect on self-efficacy beliefs, and background knowledge had a mixed effect on learning. Overall the results of this study highlight the complex set of relationships between classroom innovations, learner characteristics, and learning.

  8. How is that done? Student views on resources used outside the engineering classroom

    NASA Astrophysics Data System (ADS)

    Maclaren, Peter

    2018-07-01

    While the traditional lecture remains a key feature in the teaching of mathematically intensive disciplines at a tertiary level, what students do outside class, the resources they use, and how they use them are critical factors in their success. This study reports on a survey of students studying a range of engineering subjects, giving their views on the effectiveness of resources that they use outside the classroom. Resource types examined included textbooks, lecturer course notes, in-class developed notes, and other online material, including multimedia. While lecturer-generated material was generally seen as more effective than formal textbooks and social media, external screencasts were rated as most effective where material appropriate to their class was available. It is suggested that student use of screencast resources has the potential to facilitate improved learning outcomes, and with accompanying changes in assessment focus, may enable more substantive pedagogical changes.

  9. Improving Video Game Development: Facilitating Heterogeneous Team Collaboration through Flexible Software Processes

    NASA Astrophysics Data System (ADS)

    Musil, Juergen; Schweda, Angelika; Winkler, Dietmar; Biffl, Stefan

    Based on our observations of Austrian video game software development (VGSD) practices we identified a lack of systematic processes/method support and inefficient collaboration between various involved disciplines, i.e. engineers and artists. VGSD includes heterogeneous disciplines, e.g. creative arts, game/content design, and software. Nevertheless, improving team collaboration and process support is an ongoing challenge to enable a comprehensive view on game development projects. Lessons learned from software engineering practices can help game developers to increase game development processes within a heterogeneous environment. Based on a state of the practice survey in the Austrian games industry, this paper presents (a) first results with focus on process/method support and (b) suggests a candidate flexible process approach based on Scrum to improve VGSD and team collaboration. Results showed (a) a trend to highly flexible software processes involving various disciplines and (b) identified the suggested flexible process approach as feasible and useful for project application.

  10. Challenge-based instruction in biomedical engineering: a scalable method to increase the efficiency and effectiveness of teaching and learning in biomedical engineering.

    PubMed

    Harris, Thomas R; Brophy, Sean P

    2005-09-01

    Vanderbilt University, Northwestern University, the University of Texas and the Harvard/MIT Health Sciences Technology Program have collaborated since 1999 to develop means to improve bioengineering education. This effort, funded by the National Science Foundation as the VaNTH Engineering Research Center in Bioengineering Educational Technologies, has sought a synthesis of learning science, learning technology, assessment and the domains of bioengineering in order to improve learning by bioengineering students. Research has shown that bioengineering educational materials may be designed to emphasize challenges that engage the student and, when coupled with a learning cycle and appropriate technologies, can lead to improvements in instruction.

  11. Learning about friction: group dynamics in engineering students' work with free body diagrams

    NASA Astrophysics Data System (ADS)

    Berge, Maria; Weilenmann, Alexandra

    2014-11-01

    In educational research, it is well-known that collaborative work on core conceptual issues in physics leads to significant improvements in students' conceptual understanding. In this paper, we explore collaborative learning in action, adding to previous research in engineering education with a specific focus on the students' use of free body diagrams in interaction. By looking at details in interaction among a group of three engineering students, we illustrate how they collectively construct a free body diagram together when learning introductory mechanics. In doing so, we have focused on both learning possibilities and the dynamic processes that take place in the learning activity. These findings have a number of implications for educational practice.

  12. Development of Web-Based Learning Environment Model to Enhance Cognitive Skills for Undergraduate Students in the Field of Electrical Engineering

    ERIC Educational Resources Information Center

    Lakonpol, Thongmee; Ruangsuwan, Chaiyot; Terdtoon, Pradit

    2015-01-01

    This research aimed to develop a web-based learning environment model for enhancing cognitive skills of undergraduate students in the field of electrical engineering. The research is divided into 4 phases: 1) investigating the current status and requirements of web-based learning environment models. 2) developing a web-based learning environment…

  13. Physics Group Work in a Phenomenographic Perspective--Learning Dynamics as the Experience of Variation and Relevance

    ERIC Educational Resources Information Center

    Ingerman, Ake; Berge, Maria; Booth, Shirley

    2009-01-01

    In this paper, we analyse learning dynamics in the context of physics group work of the kind increasingly found in engineering education. We apply a phenomenographic perspective on learning, seeing the notion of variation as the basic mechanism of learning. Empirically, we base our analysis on data from first year engineering students discussing…

  14. The Use of Engineering Design Concept for Computer Programming Course: A Model of Blended Learning Environment

    ERIC Educational Resources Information Center

    Tritrakan, Kasame; Kidrakarn, Pachoen; Asanok, Manit

    2016-01-01

    The aim of this research is to develop a learning model which blends factors from learning environment and engineering design concept for learning in computer programming course. The usage of the model was also analyzed. This study presents the design, implementation, and evaluation of the model. The research methodology is divided into three…

  15. Integration of iPad-Based M-Learning into a Creative Engineering Module in a Secondary School in England

    ERIC Educational Resources Information Center

    Li, Yulong; Liu, Xiaojing

    2017-01-01

    Mobile learning (M-learning) has become a popular topic in educational research, in previous research there have been many studies on attitude to M-learning directed towards staff, parents and students; however, limited research has focused on the comparison between teachers and students in the context of creative engineering and their respective…

  16. Improving Engineering Student Team Collaborative Discussions by Moving Them Online: An Investigation of Synchronous Chat and Face-to-Face Team Conversations

    ERIC Educational Resources Information Center

    Fowler, Robin Revette

    2014-01-01

    Collaborative learning, particularly in the context of team-based, project-based learning, is common in undergraduate engineering education and is associated with deeper learning and enhanced student motivation and retention. However, grouping students in teams for project-based learning sometimes has negative outcomes, which can include lowered…

  17. Computer Assisted Learning for Biomedical Engineering Education: Tools

    DTIC Science & Technology

    2001-10-25

    COMPUTER ASSISTED LEARNING FOR BIOMEDICAL ENGINEERING EDUCATION : TOOLS Ayhan ÝSTANBULLU1 Ýnan GÜLER2 1 Department of Electronic...of Technical Education , Gazi University, 06500 Ankara, Türkiye Abstract- Interactive multimedia learning environment is being proposed...Assisted Learning (CAL) are given and some tools used in this area are explained. Together with the developments in the area of distance education

  18. FRINGE EFFECTS OF VALUE ENGINEERING. A SURVEY PREPARED BY THE TECHNICAL SUBCOMMITTEE, AOA SPECIAL COMMITTEE ON VALUE ENGINEERING FOR THE OFFICE OF THE ASSISTANT SECRETARY OF DEFENSE (INSTALLATIONS AND LOGISTICS).

    DTIC Science & Technology

    Fringe effects of value engineering. A survey prepared by the technical subcommittee, AOA special committee on value engineering for the office of the assistant secretary of defense (installations and logistics).

  19. STEM Career Cluster Engineering and Technology Education pathway in Georgia: Perceptions of Georgia engineering and technology education high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education survey

    NASA Astrophysics Data System (ADS)

    Crenshaw, Mark VanBuren

    This study examined the perceptions held by Georgia Science, Technology, Engineering, and Mathematics (STEM) Career Cluster Engineering and Technology Education (ETE) high school pathway teachers and Georgia's Career, Technical and Agriculture Education (CTAE) administrators regarding the ETE pathway and its effect on implementation within their district and schools. It provides strategies for ETE teaching methods, curriculum content, STEM integration, and how to improve the ETE pathway program of study. Current teaching and curricular trends were examined in ETE as well as the role ETE should play as related to STEM education. The study, using the Characteristics of Engineering and Technology Education Survey, was conducted to answer the following research questions: (a) Is there a significant difference in the perception of ETE teaching methodology between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? (b) Is there a significant difference in the perception of ETE curriculum content between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? (c) Is there a significant difference in the perception of STEM integration in the ETE high school pathway between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? and (d) Is there a significant difference in the perception of how to improve the ETE high school pathway between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? Suggestions for further research also were offered.

  20. Experiential Learning in Engineering Education.

    ERIC Educational Resources Information Center

    Harrisberger, Lee; And Others

    After a discussion of experiential learning as an element in higher education and of the program evaluation process used in this study, six different but successful experiential learning programs in engineering are described and compared. From these comparisons some conclusions are drawn about important program elements. The six programs described…

  1. Multiple Learning Strategies Project. Small Engine Repair. Visually Impaired.

    ERIC Educational Resources Information Center

    Foster, Don; And Others

    This instructional package designed for visually impaired students, focuses on the vocational area of small engine repair. Contained in this document are forty learning modules organized into fourteen units: engine block; starters; fuel tank, lines, filters and pumps; carburetors; electrical; test equipment; motorcycle; machining; tune-ups; short…

  2. Integration of Sustainability in Engineering Education: Why Is PBL an Answer?

    ERIC Educational Resources Information Center

    Guerra, Aida

    2017-01-01

    Purpose: Education for sustainable development (ESD) is one of the challenges engineering education currently faces. Engineering education needs to revise and change its curriculum to integrate ESD principles and knowledge. Problem based learning (PBL) has been one of the main learning pedagogies used to integrate sustainability in engineering…

  3. Learning by Seeing: The TEMAS Multimedia Learning Objects for Civil Engineers

    ERIC Educational Resources Information Center

    Cadoni, Ezio; Botturi, Luca; Forni, Daniele

    2008-01-01

    A goal of engineering and architecture bachelor and master's programs is to provide students with practical and technical preparation in the mechanical characterization of materials and structures: future architects and civil engineers should be able to recognize and describe different construction materials and their behavior when used for…

  4. Engineering in Communities: Learning by Doing

    ERIC Educational Resources Information Center

    Goggins, J.

    2012-01-01

    Purpose: The purpose of this paper is to focus on a number of initiatives in civil engineering undergraduate programmes at the National University of Ireland, Galway (NUIG) that allow students to complete engineering projects in the community, enabling them to learn by doing. Design/methodology/approach: A formal commitment to civic engagement was…

  5. Technological Literacy Learning with Cumulative and Stepwise Integration of Equations into Electrical Circuit Diagrams

    ERIC Educational Resources Information Center

    Ozogul, G.; Johnson, A. M.; Moreno, R.; Reisslein, M.

    2012-01-01

    Technological literacy education involves the teaching of basic engineering principles and problem solving, including elementary electrical circuit analysis, to non-engineering students. Learning materials on circuit analysis typically rely on equations and schematic diagrams, which are often unfamiliar to non-engineering students. The goal of…

  6. Enhanced and Conventional Project-Based Learning in an Engineering Design Module

    ERIC Educational Resources Information Center

    Chua, K. J.; Yang, W. M.; Leo, H. L.

    2014-01-01

    Engineering education focuses chiefly on students' ability to solve problems. While most engineering students are proficient in solving paper questions, they may not be proficient at providing optimal solutions to pragmatic project-based problems that require systematic learning strategy, innovation, problem-solving, and execution. The…

  7. The Effectiveness of Concept Maps in Teaching Physics Concepts Applied to Engineering Education: Experimental Comparison of the Amount of Learning Achieved with and without Concept Maps

    ERIC Educational Resources Information Center

    Martinez, Guadalupe; Perez, Angel Luis; Suero, Maria Isabel; Pardo, Pedro J.

    2013-01-01

    A study was conducted to quantify the effectiveness of concept maps in learning physics in engineering degrees. The following research question was posed: What was the difference in learning results from the use of concept maps to study a particular topic in an engineering course? The study design was quasi-experimental and used a post-test as a…

  8. Adopting Problem-Based Learning Model for AN Electrical Engineering Curriculum

    NASA Astrophysics Data System (ADS)

    Khan, Mohamed Khan Aftab Ahmed; Sinnadurai, Rajendran; Amudha, M.; Elamvazuthi, I.; Vasant, P.

    2010-06-01

    The shortage of highly qualified academicians in a knowledge-based economy and potential benefits of Problem-Based Learning (PBL) approach has necessitated the adoption of PBL in many areas of education. This paper discusses a PBL experience for an electrical engineering undergraduate course. Some preliminary experiences of implementing them are described and discussed. It was found that PBL approach seem to be an efficient strategy not only for undergraduate engineering education but also for instilling lifelong learning.

  9. Improving student learning and views of physics in a large enrollment introductory physics class

    NASA Astrophysics Data System (ADS)

    Salehzadeh Einabad, Omid

    Introductory physics courses often serve as gatekeepers for many scientific and engineering programs and, increasingly, colleges are relying on large, lecture formats for these courses. Many students, however, leave having learned very little physics and with poor views of the subject. In interactive engagement (IE), classroom activities encourage students to engage with each other and with physics concepts and to be actively involved in their own learning. These methods have been shown to be effective in introductory physics classes with small group recitations. This study examined student learning and views of physics in a large enrollment course that included IE methods with no separate, small-group recitations. In this study, a large, lecture-based course included activities that had students explaining their reasoning both verbally and in writing, revise their ideas about physics concepts, and apply their reasoning to various problems. The questions addressed were: (a) What do students learn about physics concepts and how does student learning in this course compare to that reported in the literature for students in a traditional course?, (b) Do students' views of physics change and how do students' views of physics compare to that reported in the literature for students in a traditional course?, and (c) Which of the instructional strategies contribute to student learning in this course? Data included: pre-post administration of the Force Concept Inventory (FCI), classroom exams during the term, pre-post administration of the Colorado Learning Attitudes About Science Survey (CLASS), and student work, interviews, and open-ended surveys. The average normalized gain (=0.32) on the FCI falls within the medium-gain range as reported in the physics education literature, even though the average pre-test score was very low (30%) and this was the instructor's first implementation of IE methods. Students' views of physics remained relatively unchanged by instruction. Findings also indicate that the interaction of the instructional strategies together contributed to student learning. Based on these results, IE methods should be adopted in introductory physics classes, particularly in classes where students have low pre-test scores. It is also important to provide support for instructors new to IE strategies.

  10. `Not hard to sway': a case study of student engagement in two large engineering classes

    NASA Astrophysics Data System (ADS)

    Shekhar, Prateek; Borrego, Maura

    2018-07-01

    Although engineering education research has empirically validated the effectiveness of active learning in improving student learning over traditional lecture-based methods, the adoption of active learning in classrooms has been slow. One of the greatest reported barriers is student resistance towards engagement in active learning exercises. This paper argues that the level of student engagement in active learning classrooms is an interplay of social and physical classroom characteristics. Using classroom observations and instructor interviews, this study describes the influence of the interaction of student response systems and classroom layout on student engagement in two large active-learning-based engineering classrooms. The findings suggest that the use of different student response systems in combination with cluster-style seating arrangements can increase student engagement in large classrooms.

  11. Impact of pedagogical approaches on cognitive complexity and motivation to learn: Comparing nursing and engineering undergraduate students.

    PubMed

    McComb, Sara A; Kirkpatrick, Jane M

    2016-01-01

    The changing higher education landscape is prompting nurses to rethink educational strategies. Looking beyond traditional professional boundaries may be beneficial. We compare nursing to engineering because engineering has similar accreditation outcome goals and different pedagogical approaches. We compare students' cognitive complexity and motivation to learn to identify opportunities to share pedagogical approaches between nursing and engineering. Cross-sectional data were collected from 1,167 freshmen through super senior students. Comparisons were made across years and between majors. Overall nursing and engineering students advance in cognitive complexity while maintaining motivation for learning. Sophomores reported the lowest scores on many dimensions indicating that their experiences need review. The strong influence of the National Council Licensure Examination on nursing students may drive their classroom preferences. Increased intrinsic motivation, coupled with decreased extrinsic motivation, suggests that we are graduating burgeoning life-long learners equipped to maintain currency. The disciplines' strategies for incorporating real-world learning opportunities differ, yet the students similarly advance in cognitive complexity and maintain motivation to learn. Lessons can be exchanged across professional boundaries. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Competency Maps: an Effective Model to Integrate Professional Competencies Across a STEM Curriculum

    NASA Astrophysics Data System (ADS)

    Sánchez Carracedo, Fermín; Soler, Antonia; Martín, Carme; López, David; Ageno, Alicia; Cabré, Jose; Garcia, Jordi; Aranda, Joan; Gibert, Karina

    2018-05-01

    Curricula designed in the context of the European Higher Education Area need to be based on both domain-specific and professional competencies. Whereas universities have had extensive experience in developing students' domain-specific competencies, fostering professional competencies poses a new challenge we need to face. This paper presents a model to globally develop professional competencies in a STEM (science, technology, engineering, and mathematics) degree program, and assesses the results of its implementation after 4 years. The model is based on the use of competency maps, in which each competency is defined in terms of competency units. Each competency unit is described by a set of expected learning outcomes at three domain levels. This model allows careful analysis, revision, and iteration for an effective integration of professional competencies in domain-specific subjects. A global competency map is also designed, including all the professional competency learning outcomes to be achieved throughout the degree. This map becomes a useful tool for curriculum designers and coordinators. The results were obtained from four sources: (1) students' grades (classes graduated from 2013 to 2016, the first 4 years of the new Bachelor's Degree in Informatics Engineering at the Barcelona School of Informatics); (2) students' surveys (answered by students when they finished the degree); (3) the government employment survey, where former students evaluate their satisfaction of the received training in the light of their work experience; and (4) the Everis Foundation University-Enterprise Ranking, answered by over 2000 employers evaluating their satisfaction regarding their employees' university training, where the Barcelona School of Informatics scores first in the national ranking. The results show that competency maps are a good tool for developing professional competencies in a STEM degree.

  13. Learning analytics for smart campus: Data on academic performances of engineering undergraduates in Nigerian private university.

    PubMed

    Popoola, Segun I; Atayero, Aderemi A; Badejo, Joke A; John, Temitope M; Odukoya, Jonathan A; Omole, David O

    2018-04-01

    Empirical measurement, monitoring, analysis, and reporting of learning outcomes in higher institutions of developing countries may lead to sustainable education in the region. In this data article, data about the academic performances of undergraduates that studied engineering programs at Covenant University, Nigeria are presented and analyzed. A total population sample of 1841 undergraduates that studied Chemical Engineering (CHE), Civil Engineering (CVE), Computer Engineering (CEN), Electrical and Electronics Engineering (EEE), Information and Communication Engineering (ICE), Mechanical Engineering (MEE), and Petroleum Engineering (PET) within the year range of 2002-2014 are randomly selected. For the five-year study period of engineering program, Grade Point Average (GPA) and its cumulative value of each of the sample were obtained from the Department of Student Records and Academic Affairs. In order to encourage evidence-based research in learning analytics, detailed datasets are made publicly available in a Microsoft Excel spreadsheet file attached to this article. Descriptive statistics and frequency distributions of the academic performance data are presented in tables and graphs for easy data interpretations. In addition, one-way Analysis of Variance (ANOVA) and multiple comparison post-hoc tests are performed to determine whether the variations in the academic performances are significant across the seven engineering programs. The data provided in this article will assist the global educational research community and regional policy makers to understand and optimize the learning environment towards the realization of smart campuses and sustainable education.

  14. Active and Collaborative Learning in an Introductory Electrical and Computer Engineering Course

    ERIC Educational Resources Information Center

    Kotru, Sushma; Burkett, Susan L.; Jackson, David Jeff

    2010-01-01

    Active and collaborative learning instruments were introduced into an introductory electrical and computer engineering course. These instruments were designed to assess specific learning objectives and program outcomes. Results show that students developed an understanding comparable to that of more advanced students assessed later in the…

  15. Reform in Undergraduate Science, Technology, Engineering, and Mathematics: The Classroom Context

    ERIC Educational Resources Information Center

    Stage, Frances K.; Kinzie, Jillian

    2009-01-01

    This article reports the results of a series of site visits examining modifications to science, technology, engineering, and mathematics (STEM) teaching and learning based on reform on three differing campuses. Innovations in stem classrooms included collaborative approaches to learning; incorporation of active learning, authentic contexts, peer…

  16. Innovative Assessment Paradigm to Enhance Student Learning in Engineering Education

    ERIC Educational Resources Information Center

    El-Maaddawy, Tamer

    2017-01-01

    Incorporation of student self-assessment (SSA) in engineering education offers opportunities to support and encourage learner-led-learning. This paper presents an innovative assessment paradigm that integrates formative, summative, and SSA to enhance student learning. The assessment innovation was implemented in a senior-level civil engineering…

  17. Mechatronics Learning Studio: From "Play and Learn" to Industry-Inspired Green Energy Applications

    ERIC Educational Resources Information Center

    Habash, R. W. Y.; Suurtamm, C.; Necsulescu, D.

    2011-01-01

    This paper describes the evolution of the teaching of electrical engineering to mechanical engineering students based on motivation and a pedagogical strategy incorporating interdisciplinary mechatronics projects in a learning studio environment. Implementation of student projects within the curriculum has been demonstrated to be highly…

  18. Active Learning and Reflection in Product Development Engineering Education

    ERIC Educational Resources Information Center

    Shekar, Aruna

    2007-01-01

    Traditional engineering courses at tertiary level have been traditionally theory-based, supported by laboratory work, but there is now a world-wide trend towards project-based learning. In product development education, project-based learning is essential in order to integrate the disciplines of design, marketing and manufacturing towards the…

  19. Lifelong Learning Imperative in Engineering: Sustaining American Competitiveness in the 21st Century

    ERIC Educational Resources Information Center

    Dutta, Debasish; Patil, Lalit; Porter, James B., Jr.

    2012-01-01

    The Lifelong Learning Imperative (LLI) project was initiated to assess current practices in lifelong learning for engineering professionals, reexamine the underlying assumptions behind those practices, and outline strategies for addressing unmet needs. The LLI project brought together leaders of U.S. industry, academia, government, and…

  20. An Investigation of an Open-Source Software Development Environment in a Software Engineering Graduate Course

    ERIC Educational Resources Information Center

    Ge, Xun; Huang, Kun; Dong, Yifei

    2010-01-01

    A semester-long ethnography study was carried out to investigate project-based learning in a graduate software engineering course through the implementation of an Open-Source Software Development (OSSD) learning environment, which featured authentic projects, learning community, cognitive apprenticeship, and technology affordances. The study…

  1. A Design of Innovative Engineering Drawing Teaching Materials

    NASA Astrophysics Data System (ADS)

    Mujiarto; Djohar, A.; Komaro, M.

    2018-02-01

    Good teaching is influenced by several things such as effective school leaders and skilled teachers who are able to use information communication technology as a medium of learning. The purpose of this research in general is to develop innovative teaching materials in the form of multimedia animation for engineering drawing in the field of technology and engineering at vocational high school. Research method used research and development (research and development / R & D). The results showed that the E-book Multimedia Animation Engineering Drawing (E-MMAED) is easy to possess and contains complete material. Students stated that the use of E-MMAED adds to learning motivation and improves learning outcomes (student competencies). We recommend that teachers apply E-MMAED as a learning medium and create other innovations to improve student competences.

  2. Case study of a problem-based learning course of physics in a telecommunications engineering degree

    NASA Astrophysics Data System (ADS)

    Macho-Stadler, Erica; Jesús Elejalde-García, Maria

    2013-08-01

    Active learning methods can be appropriate in engineering, as their methodology promotes meta-cognition, independent learning and problem-solving skills. Problem-based learning is the educational process by which problem-solving activities and instructor's guidance facilitate learning. Its key characteristic involves posing a 'concrete problem' to initiate the learning process, generally implemented by small groups of students. Many universities have developed and used active methodologies successfully in the teaching-learning process. During the past few years, the University of the Basque Country has promoted the use of active methodologies through several teacher training programmes. In this paper, we describe and analyse the results of the educational experience using the problem-based learning (PBL) method in a physics course for undergraduates enrolled in the technical telecommunications engineering degree programme. From an instructors' perspective, PBL strengths include better student attitude in class and increased instructor-student and student-student interactions. The students emphasised developing teamwork and communication skills in a good learning atmosphere as positive aspects.

  3. Outreach to Scientists and Engineers at the Hanford Technical Library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buxton, Karen A.

    Staff at the Hanford Technical Library has developed a suite of programs designed to help busy researchers at the Pacific Northwest National Laboratory (PNNL) make better use of library products and services. Programs include formal training classes, one-on-one consultations, and targeted email messages announcing new materials to researchers in specific fields. A staple of outreach has been to teach classes to library clients covering research tools in their fields. These classes started out in the library classroom and then expanded to other venues around PNNL. Class surveys indicated that many researchers desired a practical approach to learning rather than themore » traditional lecture format. The library instituted “Library Learning Day” and hosted classes in the PNNL computer training room to provide lab employees with a hands-on learning experience. Classes are generally offered at noon and lab staff attends classes on their lunch hour. Many just do not have time to spend a full hour in training. Library staff added some experimental half-hour mini classes in campus buildings geared to the projects and interests of researchers there to see if this format was more appealing. As other programs have developed librarians are teaching fewer classes but average attendance figures has remained fairly stable from 2005-2007. In summer of 2004 the library began the Traveling Librarian program. Librarians call-on groups and individuals in 24 buildings on the Richland Washington campus. Five full-time and two part-time librarians are involved in the program. Librarians usually send out email announcements prior to visits and encourage scientists and engineers to make appointments for a brief 15 minute consultation in the researcher’s own office. During the meeting lab staff learn about products or product features that can help them work more productively. Librarians also make cold calls to staff that do not request a consultation and may not be making full use of the library. Scientists and engineers who require longer sessions can arrange half-hour training appointments in the researcher’s own office or at the library. Since the program was implemented staff made 165 visits to 1249 laboratory staff including some repeat consultation requests. New acquisitions lists are sent to individuals and groups that would be interested in recent journal, database, and books purchases. These lists are topic specific and targeted to groups and individuals with an interest in the field. For example newly acquired engineering resources are targeted at engineering groups. The new acquisitions list for engineering began mid year in 2005. An analysis of circulation statistics for engineering books in fiscal year 2005, 2006, and 2007 show that circulation increased each year with 2007 circulation nearly double that of 2005. This took place when overall circulation rose in FY06 but fell slightly in FY07. Outreach strategies tailored and individualized can be effective. Offering multiple outreach options offers researchers different ways to interact with library staff and services.« less

  4. Blended Learning in Higher Education: Current and Future Challenges in Surveying Education

    ERIC Educational Resources Information Center

    El-Mowafy, Ahmed; Kuhn, Michael; Snow, Tony

    2013-01-01

    The development of a blended learning approach to enhance surveying education is discussed. The need for this learning strategy is first investigated based on a major review of the surveying course, including analysis of its content, benchmarking with key national and international universities, and surveys of key stakeholders. Appropriate blended…

  5. Assessment of an undergraduate university chemistry course for science and engineering majors

    NASA Astrophysics Data System (ADS)

    Taggart, Austin Dale, II

    An assessment of the introductory chemistry program for science and engineering majors at the University of Houston has been carried out. The goal of the study was to assess the program in light of its history and from the viewpoints of both the introductory chemistry students and their faculty members. Archival data for the program were reviewed over the time period 1998--2003. Included were the ethnographic data, the academic performance data of students as measured by their class grades, and the student satisfaction data as measured by their end-of-class student survey responses. Over 10,000 archival student records were reviewed. The existing end of class survey was expanded to cover a wider range of categories, including curriculum, instruction, student academic background, learning style, attitude, motivation, evaluation, and levels of effort. A survey pilot study and two research surveys were carried out; about one thousand students were surveyed in 2007--2008. By correlating the survey item responses given by students to their predicted student grades, student identified success factors were identified. Benchmarking insights from other successful programs and significant trends were provided to further benefit the program. Long interviews with four of the introductory chemistry instructors served to assess the nature of the program from the perspective of the teaching faculty. A set of 15 interview questions were posed to each faculty member, and the views of faculty embers were captured and summarized. The unintended consequences of maintaining high academic standards of success with evaluation based upon on-line problem solving for a student body with a great diversity of backgrounds in large lecture classes were high rates of failure and attrition. About half of the introductory chemistry students failed to complete their first semester course with a passing grade. Employing lecture styles that support greater student engagement, counseling underprepared students, enforcement of prerequisites, and ensuring that students in introductory chemistry are keeping up with assignments may also serve to improve attendance and achievement.

  6. An Examination of the Effects of Collaborative Scientific Visualization via Model-Based Reasoning on Science, Technology, Engineering, and Mathematics (STEM) Learning within an Immersive 3D World

    ERIC Educational Resources Information Center

    Soleimani, Ali

    2013-01-01

    Immersive 3D worlds can be designed to effectively engage students in peer-to-peer collaborative learning activities, supported by scientific visualization, to help with understanding complex concepts associated with learning science, technology, engineering, and mathematics (STEM). Previous research studies have shown STEM learning benefits…

  7. Factors Affecting Perceived Learning of Engineering Students in Problem Based Learning Supported by Business Simulation

    ERIC Educational Resources Information Center

    Chaparro-Pelaez, Julian; Iglesias-Pradas, Santiago; Pascual-Miguel, Felix J.; Hernandez-Garcia, Angel

    2013-01-01

    Although literature about problem based learning (PBL) is not scarce, there is little research on experiences about learning methodologies that combine PBL and the use of simulation tools. This lack of studies is even more notable in the case of engineering courses. The motivation for this study is to show how such a combination of PBL and…

  8. Investigating the Impact of a LEGO(TM)-Based, Engineering-Oriented Curriculum Compared to an Inquiry-Based Curriculum on Fifth Graders' Content Learning of Simple Machines

    ERIC Educational Resources Information Center

    Marulcu, Ismail

    2010-01-01

    This mixed method study examined the impact of a LEGO-based, engineering-oriented curriculum compared to an inquiry-based curriculum on fifth graders' content learning of simple machines. This study takes a social constructivist theoretical stance that science learning involves learning scientific concepts and their relations to each other. From…

  9. From Scarcity to Visibility: Gender Differences in the Careers of Doctoral Scientists and Engineers.

    ERIC Educational Resources Information Center

    Long, J. Scott, Ed.

    This study documents the changes that have occurred in the representation of women in science and engineering and the characteristics of women scientists and engineers. Data from two National Science Foundation databases, the Survey of Earned Doctorates for New Ph.D.s and the Survey of Doctoral Recipients for the science & engineering doctoral…

  10. Student experience of a scenario-centred curriculum

    NASA Astrophysics Data System (ADS)

    Bell, Sarah; Galilea, Patricia; Tolouei, Reza

    2010-06-01

    In 2006 UCL implemented new scenario-centred degree programmes in Civil and Environmental Engineering. The new curriculum can be characterised as a hybrid of problem-based, project-based and traditional approaches to learning. Four times a year students work in teams for one week on a scenario which aims to integrate learning from lecture and laboratory classes and to develop generic skills including team working and communication. Student experience of the first two years the old and new curricula were evaluated using a modified Course Experience Questionnaire. The results showed that students on the new programme were motivated by the scenarios and perceived better generic skills development, but had a lower perception of teaching quality and the development of design skills. The results of the survey support the implementation new curriculum but highlight the importance of strong integration between conventional teaching and scenarios, and the challenges of adapting teaching styles to suit.

  11. Integration of centrifuge testing in undergraduate geotechnical engineering education at remote campuses

    NASA Astrophysics Data System (ADS)

    El Shamy, Usama; Abdoun, Tarek; McMartin, Flora; Pando, Miguel A.

    2013-06-01

    We report the results of a pilot study aimed at developing, implementing, and assessing an educational module that integrates remote major research instrumentation into undergraduate classes. Specifically, this study employs Internet Web-based technologies to allow for real-time video monitoring and execution of cutting-edge experiments. The students' activities within the module are centred on building a model of a shallow foundation on a sand deposit utilising a centrifuge facility and using this model for: (1) visual observation of the response of soil-foundation systems, (2) learning the use of instrumentation, (3) interpretation of acquired data, and (4) comparing experimental results to theoretical predictions. Testing a soil-foundation system helped the students identify the lab experiments needed to analyse and design the system. A survey was used to gauge students' perceptions of learning as a result of introducing the module, which were found to be positive.

  12. Competencies development and self-assessment in maintenance management e-training

    NASA Astrophysics Data System (ADS)

    Papathanassiou, Nikos; Pistofidis, Petros; Emmanouilidis, Christos

    2013-10-01

    The maintenance management function requires staff to possess a truly multidisciplinary set of skills. This includes competencies from engineering and information technology to health and safety, management and finance, while also taking into account the normative and legislative issues. This body of knowledge is rarely readily available within a single university course. The potential of e-learning in this field is significant, as it is a flexible and less costly alternative to conventional training. Furthermore, trainees can follow their own pace, as their available time is often a commodity. This article discusses the development of tools to support competencies development and self-assessment in maintenance management. Based on requirements arising from professional bodies' guidelines and a user survey, the developed tools implement a dedicated maintenance management training curriculum. The results from pilot testing on academic and industrial user groups are discussed and user evaluations are linked with specific e-learning design issues.

  13. Learning to "Fit In": The Emotional Work of Chinese Immigrants in Canadian Engineering Workplaces

    ERIC Educational Resources Information Center

    Shan, Hongxia

    2012-01-01

    Purpose: The paper aims to explore the emotion learning experiences of some Chinese immigrants in Canadian engineering workplaces. Design/methodology/approach: The paper is based on life history style interviews with 14 Chinese immigrant engineers and 14 key informant interviews. Findings: Research respondents constructed a competitive, masculine,…

  14. An Evaluation of HigherEd 2.0 Technologies in Undergraduate Mechanical Engineering Courses

    ERIC Educational Resources Information Center

    Orange, Amy; Heinecke, Walter; Berger, Edward; Krousgrill, Charles; Mikic, Borjana; Quinn, Dane

    2012-01-01

    Between 2006 and 2010, sophomore engineering students at four universities were exposed to technologies designed to increase their learning in undergraduate engineering courses. Our findings suggest that students at all sites found the technologies integrated into their courses useful to their learning. Video solutions received the most positive…

  15. Problem-Based Learning in Engineering Ethics Courses

    ERIC Educational Resources Information Center

    Kirkman, Robert

    2016-01-01

    I describe the first stages of a process of design research in which I employ problem-based learning in a course in engineering ethics, which fulfills a requirement for students in engineering degree programs. The aim of the course is to foster development of particular cognitive skills contributing to moral imagination, a capacity to notice,…

  16. Engineering Students' Conceptions of Entrepreneurial Learning as Part of Their Education

    ERIC Educational Resources Information Center

    Täks, Marge; Tynjälä, Päivi; Kukemelk, Hasso

    2016-01-01

    The purpose of this study was to examine what kinds of conceptions of entrepreneurial learning engineering students expressed in an entrepreneurship course integrated in their study programme. The data were collected during an entrepreneurship course in Estonia that was organised for fourth-year engineering students, using video-recorded group…

  17. Engineers' Perceptions of Diversity and the Learning Environment at Work: A Mixed Methods Study

    ERIC Educational Resources Information Center

    Firestone, Brenda L.

    2012-01-01

    The purpose of this dissertation research study was to investigate engineers' perceptions of diversity and the workplace learning environment surrounding diversity education efforts in engineering occupations. The study made use of a mixed methods methodology and was theoretically framed using a critical feminist adult education lens and…

  18. Implementation of Service-Learning in Engineering and Its Impact on Students' Attitudes and Identity

    ERIC Educational Resources Information Center

    Dukhan, N.; Schumack, M. R.; Daniels, J. J.

    2008-01-01

    The current paper outlines a concise engineering service-learning model and describes its implementation and logistics in the context of a typical heat transfer course for undergraduate engineering students. The project was executed in collaboration with a not-for-profit organisation. Summative reflections were conducted by the students by…

  19. Implementing Problem-Based Learning in Introductory Engineering Courses: A Qualitative Investigation of Facilitation Strategies

    ERIC Educational Resources Information Center

    Nicole Hunter, Deirdre-Annaliese

    2015-01-01

    Increasing pressure to transform teaching and learning of engineering is supported by mounting research evidence for the value of learner-centered pedagogies. Despite this evidence, engineering faculty are often unsuccessful in applying such teaching approaches often because they lack the necessary knowledge to customize these pedagogies for their…

  20. Changing the Teaching/Learning Procedures in Physics for Agricultural Engineering. A Case Study

    ERIC Educational Resources Information Center

    Mulero, Angel; Parra, M. Isabel; Cachadina, Isidro

    2012-01-01

    The subject "Physical Fundamentals of Engineering" for agricultural engineers in the University of Extremadura has long had high rates of students not attending classes, not presenting for examinations and, finally, failing the subject. During the 2007 and 2008 courses, the teaching/learning procedures were strongly modified. Analysis of the…

  1. Effects of Web-Based Interactive Modules on Engineering Students' Learning Motivations

    ERIC Educational Resources Information Center

    Bai, Haiyan; Aman, Amjad; Xu, Yunjun; Orlovskaya, Nina; Zhou, Mingming

    2016-01-01

    The purpose of this study is to assess the impact of a newly developed modules, Interactive Web-Based Visualization Tools for Gluing Undergraduate Fuel Cell Systems Courses system (IGLU), on learning motivations of engineering students using two samples (n[subscript 1] = 144 and n[subscript 2] = 135) from senior engineering classes. The…

  2. Aligning Professional Skills and Active Learning Methods: An Application for Information and Communications Technology Engineering

    ERIC Educational Resources Information Center

    Llorens, Ariadna; Berbegal-Mirabent, Jasmina; Llinàs-Audet, Xavier

    2017-01-01

    Engineering education is facing new challenges to effectively provide the appropriate skills to future engineering professionals according to market demands. This study proposes a model based on active learning methods, which is expected to facilitate the acquisition of the professional skills most highly valued in the information and…

  3. Evolution of Project-Based Learning in Small Groups in Environmental Engineering Courses

    ERIC Educational Resources Information Center

    Requies, Jesús M.; Agirre, Ion; Barrio, V. Laura; Graells, Moisès

    2018-01-01

    This work presents the assessment of the development and evolution of an active methodology (Project-Based Learning--PBL) implemented on the course "Unit Operations in Environmental Engineering", within the bachelor's degree in Environmental Engineering, with the purpose of decreasing the dropout rate in this course. After the initial…

  4. Multiple Learning Strategies Project. Small Engine Repair Service. [Regular Vocational. Vol. 2.

    ERIC Educational Resources Information Center

    Pitts, Jim; And Others

    This instructional package is one of two designed for use by regular vocational students in the vocational area of small engine repair service. Contained in this document are forty-nine learning modules organized into eleven units: test equipment; motorcycle; engine removal and replacement; machining; tune-ups; short blocks; storage; filling out…

  5. Engineering Design Activities and Conceptual Change in Middle School Science

    ERIC Educational Resources Information Center

    Schnittka, Christine G.

    2009-01-01

    The purpose of this research was to investigate the impact of engineering design classroom activities on conceptual change in science, and on attitudes toward and knowledge about engineering. Students were given a situated learning context and a rationale for learning science in an active, inquiry-based method, and worked in small collaborative…

  6. Hydrostatic Pressure Project: Linked-Class Problem-Based Learning in Engineering

    ERIC Educational Resources Information Center

    Davis, Freddie J.; Lockwood-Cooke, Pamela; Hunt, Emily M.

    2011-01-01

    Over the last few years, WTAMU Mathematics, Engineering and Science faculty has used interdisciplinary projects as the basis for implementation of a linked-class approach to Problem-Based Learning (PBL). A project that has significant relevance to engineering statics, fluid mechanics, and calculus is the Hydrostatic Pressure Project. This project…

  7. Design Approaches and Comparison of TAPS Packages for Engineering

    ERIC Educational Resources Information Center

    Sidhu, S. Manjit

    2007-01-01

    Purpose: The paper's purpose is to promote the use of modern technologies such as multimedia packages to engineering students. The aim is to help them to learning in their learning, visualization, problem solving and understanding engineering concepts such as in mechanics dynamics. Design/methodology/approach: TAPS packages are developed to help…

  8. Peer-Assisted Tutoring in a Chemical Engineering Curriculum: Tutee and Tutor Experiences

    ERIC Educational Resources Information Center

    Kieran, Patricia; O'Neill, Geraldine

    2009-01-01

    Peer-Assisted Tutorials (PATs), a form of Peer-Assisted Learning (PAL), were introduced to a conventional 4-year honours degree programme in Chemical Engineering. PATs were designed to support students in becoming more self-directed in their learning, to develop student confidence in tackling Chemical Engineering problems and to promote effective…

  9. Gender and Participation in an Engineering Problem-Based Learning Environment

    ERIC Educational Resources Information Center

    Hirshfield, Laura; Koretsky, Milo D.

    2018-01-01

    The use of problem-based learning (PBL) is gaining attention in the engineering classroom as a way to help students synthesize foundational knowledge and to better prepare students for practice. In this work, we study the discourse interactions between 27 student teams and two instructors in an engineering PBL environment to analyze how…

  10. Teaching smartphone and microcontroller systems using "Android Java"

    NASA Astrophysics Data System (ADS)

    Tigrek, Seyitriza

    Mobile devices are becoming indispensable tools for many students and educators. Mobile technology is starting a new era in the computing methodologies in many engineering disciplines and laboratories. Microcontroller extension that communicates with mobile devices will take the data acquisition and control process into a new level in the sensing technology and communication. The purpose of this thesis is to develop a framework to incorporate the new mobile platform with robust embedded systems into the engineering curriculum. For this purpose a course material is developed "Introduction to Programming Java on a Mobile Platform" to teach novice programmers how to create applications, specifically on Android. Combining an introductory level programming class with the Android platform can appeal to non-programming individuals in multiple disciplines. The proposed course curriculum reduces the learning time, and allows senior engineering students to use the new framework for their specific needs in the labs such as mobile data acquisition and control projects. This work provides techniques for instructors with modest programming background to teach cutting edge technology, which is smartphone programming. Techniques developed in this work minimize unnecessary information carried into current teaching approaches with hands-on practice. It also helps the students with minimal background requirements overcome the barriers that have evolved around computer programming. The motivation of this thesis is to create a tailored programming introductory course to teach Java programming on Android by incorporating selected efficient methods from extant literature. The mechanism proposed in this thesis is to keep students motivated by an active approach based on student-centered learning with collaborative work. Teamwork through pair programming is adapted in this teaching process. Bloom's taxonomy, along with a knowledge survey, is used as a guide to classify the information and exercise problems. A prototype curriculum is a deliverable of this research that is suitable for novice programmers-such as engineering freshmen students. It also contains advanced material that allows senior students to use mobile phone and a microcontroller system to enhance engineering laboratories.

  11. Avian and Herpetological Survey Results for Fairchild Air Force Base and Ancillary Properties

    DTIC Science & Technology

    2014-10-02

    unlimited. The US Army Engineer Research and Development Center (ERDC) solves the nation’s toughest engineering and environmental challenges. ERDC...Herpetological Survey Results for Fairchild Air Force Base and Ancillary Properties Jinelle H. Sperry Construction Engineering Research Laboratory (CERL) US ...Air Force Base (FAFB) and used survey results to extrapolate guidelines for species management. DISCLAIMER: The contents of this report are not to be

  12. The sustainability of improvements from continuing professional development in pharmacy practice and learning behaviors.

    PubMed

    McConnell, Karen J; Delate, Thomas; Newlon, Carey L

    2015-04-25

    To assess the long-term sustainability of continuing professional development (CPD) training in pharmacy practice and learning behaviors. This was a 3-year posttrial survey of pharmacists who had participated in an unblinded randomized controlled trial of CPD. The online survey assessed participants' perceptions of pharmacy practice, learning behaviors, and sustainability of CPD. Differences between groups on the posttrial survey responses and changes from the trial's follow-up survey to the posttrial survey responses within the intervention group were compared. Of the 91 pharmacists who completed the original trial, 72 (79%) participated in the sustainability survey. Compared to control participants, a higher percentage of intervention participants reported in the sustainability survey that they had utilized the CPD concept (45.7% vs 8.1%) and identified personal learning objectives (68.6% vs 43.2%) during the previous year. Compared to their follow-up survey responses, lower percentages of intervention participants reported identifying personal learning objectives (94.3% vs 68.6%), documenting their learning plan (82.9% vs 22.9%) and participating in learning by doing (42.9% vs 14.3%) in the sustainability survey. In the intervention group, many of the improvements to pharmacy practice items were sustained over the 3-year period but were not significantly different from the control group. Sustainability of a CPD intervention over a 3-year varied. While CPD-trained pharmacists reported utilizing CPD concepts at a higher rate than control pharmacists, their CPD learning behaviors diminished over time.

  13. Impact of Adding Internet Technology on Student Performance and Perception of Autonomy in Fundamentals of Electronics Course

    NASA Astrophysics Data System (ADS)

    Rosero-Zambrano, Carlos Andrés; Avila, Alba; Osorio, Luz Adriana; Aguirre, Sandra

    2018-04-01

    The coupling of the traditional classroom instruction and a virtual learning environment (VLE) in an engineering course is critical to stimulating the learning process and to encouraging students to develop competencies outside of the classroom. This can be achieved through planned activities and the use of information and communication technologies (ICTs), resources designed to complement students' autonomous learning needs. A quantitative analysis of students' academic performance using final course grades was performed for a fundamentals of electronics course and we examine students' perception of their autonomy using surveys. The students' progress and attitudes were monitored over four consecutive semesters. The first began with the design of the intervention and the following three consisted in the implementation. The strategy was focused on the development of course competencies through autonomous learning with ICT tools presented in the VLE. Findings indicate that the students who did the activities in the VLE showed an increase in performance scores in comparison with students who did not do them. The strategy used in this study, which enhanced perceived autonomy, was associated with a positive effect on their learning process. This research shows that a technology-enhanced course supported by ICT activities can both improve academic performance and foster autonomy in students.

  14. Modifying and Validating the Colorado Learning Attitudes about Science Survey for Use in Chemistry

    ERIC Educational Resources Information Center

    Barbera, Jack; Adams, Wendy K.; Wieman, Carl E.; Perkins, Katherine K.

    2008-01-01

    The chemistry version of the Colorado Learning Attitudes about Science Survey (CLASS-Chem) is a new instrument designed to measure students' (novices') beliefs about chemistry and learning chemistry compared to those of experts (instructors). This survey is intended to measure the effects of students' beliefs on learning, and to understand how…

  15. Scenario Based E-Learning in Electrical Engineering Education

    ERIC Educational Resources Information Center

    Tambunan, Hamonangan; Dalimunte, Amirhud; Silitonga, Marsangkap

    2017-01-01

    The scenario based e-learning in Electrical Engineering Education Learning (EEEL) was developed by covering the scope and characteristics of all subjects and the competence unit of graduates in the field of pedagogy, professional, social and personality, with url addresed http://jpte-ft-unimed.edu20.org. The scenario incorporates the concept of…

  16. Learning Probabilities in Computer Engineering by Using a Competency- and Problem-Based Approach

    ERIC Educational Resources Information Center

    Khoumsi, Ahmed; Hadjou, Brahim

    2005-01-01

    Our department has redesigned its electrical and computer engineering programs by adopting a learning methodology based on competence development, problem solving, and the realization of design projects. In this article, we show how this pedagogical approach has been successfully used for learning probabilities and their application to computer…

  17. A Multidimensional Approach to Examine Student Interdisciplinary Learning in Science and Engineering in Higher Education

    ERIC Educational Resources Information Center

    Spelt, Elisabeth Jacoba Hendrika; Luning, Pieternelleke Arianne; van Boekel, Martinus A. J. S.; Mulder, Martin

    2017-01-01

    Preparing science and engineering students to work in interdisciplinary teams necessitates research on teaching and learning of interdisciplinary thinking. A multidimensional approach was taken to examine student interdisciplinary learning in a master course on food quality management. The collected 615 student experiences were analysed for the…

  18. Revisiting Approaches to Learning in Science and Engineering: A Case Study

    ERIC Educational Resources Information Center

    Gynnild, V.; Myrhaug, D.

    2012-01-01

    Several studies have applied the dichotomy of deep and surface approaches to learning in a range of disciplinary contexts. Existing questionnaires have largely assumed the existence of these constructs; however, in a recent study Case and Marshall (2004) described two additional context-specific approaches to learning in engineering. The current…

  19. Approaches to Learning in a Second Year Chemical Engineering Course.

    ERIC Educational Resources Information Center

    Case, Jennifer M.; Gunstone, Richard F.

    2003-01-01

    Investigates student approaches to learning in a second year chemical engineering course by means of a qualitative research project which utilized interview and journal data from a group of 11 students. Identifies three approaches to learning: (1) conceptual; (2) algorithmic; and (3) information-based. Presents student responses to a series of…

  20. Discontinuities in University Student Experiences of Learning through Discussions

    ERIC Educational Resources Information Center

    Ellis, Robert A.; Calvo, Rafael A.

    2006-01-01

    This article reports on research into the student experience of learning through discussions in a third-year undergraduate engineering subject. Information engineering students studying e-commerce were required to engage in face-to-face and online discussions as a key aspect of their learning experience. This study investigates the quality of the…

  1. Interactive Learning to Stimulate the Brain's Visual Center and to Enhance Memory Retention

    ERIC Educational Resources Information Center

    Yun, Yang H.; Allen, Philip A.; Chaumpanich, Kritsakorn; Xiao, Yingcai

    2014-01-01

    This short paper describes an ongoing NSF-funded project on enhancing science and engineering education using the latest technology. More specifically, the project aims at developing an interactive learning system with Microsoft Kinect™ and Unity3D game engine. This system promotes active, rather than passive, learning by employing embodied…

  2. Fundamental Research in Engineering Education. Student Learning in Industrially Situated Virtual Laboratories

    ERIC Educational Resources Information Center

    Koretsky, Milo D.; Kelly, Christine; Gummer, Edith

    2011-01-01

    The instructional design and the corresponding research on student learning of two virtual laboratories that provide an engineering task situated in an industrial context are described. In this problem-based learning environment, data are generated dynamically based on each student team's distinct choices of reactor parameters and measurements.…

  3. Three Dimensions of Learning: Experiential Activity for Engineering Innovation Education and Research

    ERIC Educational Resources Information Center

    Killen, Catherine P.

    2015-01-01

    This paper outlines a novel approach to engineering education research that provides three dimensions of learning through an experiential class activity. A simulated decision activity brought current research into the classroom, explored the effect of experiential activity on learning outcomes and contributed to the research on innovation decision…

  4. Comparing Traditional versus Alternative Sequencing of Instruction When Using Simulation Modeling

    ERIC Educational Resources Information Center

    Bowen, Bradley; DeLuca, William

    2015-01-01

    Many engineering and technology education classrooms incorporate simulation modeling as part of curricula to teach engineering and STEM-based concepts. The traditional method of the learning process has students first learn the content from the classroom teacher and then may have the opportunity to apply the learned content through simulation…

  5. PBL-SEE: An Authentic Assessment Model for PBL-Based Software Engineering Education

    ERIC Educational Resources Information Center

    dos Santos, Simone C.

    2017-01-01

    The problem-based learning (PBL) approach has been successfully applied to teaching software engineering thanks to its principles of group work, learning by solving real problems, and learning environments that match the market realities. However, the lack of well-defined methodologies and processes for implementing the PBL approach represents a…

  6. Making It Social: Considering the Purpose of Literacy to Support Participation in Making and Engineering

    ERIC Educational Resources Information Center

    Tucker-Raymond, Eli; Gravel, Brian E.; Wagh, Aditi; Wilson, Naeem; Manderino, Michael; Castek, Jill

    2016-01-01

    Digital literacies for disciplinary learning explores intersections of digital and disciplinary literacies across learning contexts such as community makerspaces and schools and examines learning across disciplines including the arts, engineering, science, social studies, language arts, and math. Columns will address work with both youth and…

  7. Lessons Learned in Engineering

    NASA Technical Reports Server (NTRS)

    Blair, J. C.; Ryan, R. S.; Schutzenhofer, L. A.

    2011-01-01

    This Contractor Report (CR) is a compilation of Lessons Learned in approximately 55 years of engineering experience by each James C. Blair, Robert S. Ryan, and Luke A. Schutzenhofer. The lessons are the basis of a course on Lessons Learned that has been taught at Marshall Space Flight Center. The lessons are drawn from NASA space projects and are characterized in terms of generic lessons learned from the project experience, which are further distilled into overarching principles that can be applied to future projects. Included are discussions of the overarching principles followed by a listing of the lessons associated with that principle. The lesson with sub-lessons are stated along with a listing of the project problems the lesson is drawn from, then each problem is illustrated and discussed, with conclusions drawn in terms of Lessons Learned. The purpose of this CR is to provide principles learned from past aerospace experience to help achieve greater success in future programs, and identify application of these principles to space systems design. The problems experienced provide insight into the engineering process and are examples of the subtleties one experiences performing engineering design, manufacturing, and operations.

  8. Competency-based models of learning for engineers: a comparison

    NASA Astrophysics Data System (ADS)

    Lunev, Alexander; Petrova, Irina; Zaripova, Viktoria

    2013-10-01

    One of the goals of higher professional education is to develop generic student competencies across a variety of disciplines that play a crucial role in education and that provide wider opportunities for graduates in finding good jobs and more chance of promotion. In this article a list of generic competencies developed in Russian universities is compared with a similar list developed by a consortium of Russian and European universities (project TUNING-RUSSIA). Then there is a second comparison with a list of competencies taken from the CDIO Syllabus. This comparison indicates the degree of similarity among the lists and the possible convergence among universities all over the world. The results are taken from a survey carried out among Russian employers, academics, and graduates. The survey asked to rate each listed competence by its importance and the degree of achieving goals in the process of the education.

  9. Survey of Applications of Active Control Technology for Gust Alleviation and New Challenges for Lighter-weight Aircraft

    NASA Technical Reports Server (NTRS)

    Regan, Christopher D.; Jutte, Christine V.

    2012-01-01

    This report provides a historical survey and assessment of the state of the art in the modeling and application of active control to aircraft encountering atmospheric disturbances in flight. Particular emphasis is placed on applications of active control technologies that enable weight reduction in aircraft by mitigating the effects of atmospheric disturbances. Based on what has been learned to date, recommendations are made for addressing gust alleviation on as the trend for more structurally efficient aircraft yields both lighter and more flexible aircraft. These lighter more flexible aircraft face two significant challenges reduced separation between rigid body and flexible modes, and increased sensitivity to gust encounters due to increased wing loading and improved lift to drag ratios. The primary audience of this paper is engineering professionals new to the area of gust load alleviation and interested in tackling the multifaceted challenges that lie ahead for lighter-weight aircraft.

  10. Early Childhood Educator and Administrator Surveys on the Use of Assessments and Standards in Early Childhood Settings. REL 2014-019

    ERIC Educational Resources Information Center

    Irwin, Clare W.; O'Dwyer, Laura; Cook, Kyle DeMeo

    2014-01-01

    The Early Childhood Educator Survey and the Early Childhood Administrator Survey allow users to collect consistent data on the use of child assessments and learning standards in early childhood learning settings. Each survey includes modules on educator/administrator background information, assessment use, and learning standards implementation.…

  11. A SURVEY AND BIBLIOGRAPHY OF CONTEMPORARY RESEARCH ON POLITICAL LEARNING AND SOCIALIZATION.

    ERIC Educational Resources Information Center

    DENNIS, JACK

    A GENERAL SURVEY WAS MADE OF RESEARCH AND LITERATURE IN THE FIELD OF POLITICAL LEARNING AND SOCIALIZATION, AND A BIBLIOGRAPHY WAS PREPARED. THE SURVEY WAS MADE TO PROVIDE AN INDICATION OF THE MAIN CURRENTS OF STUDY OF CHILDREN'S LEARNING OF POLITICAL CONCEPTS. THE SURVEY INCLUDED MAJOR SUBSTANTIVE PROBLEMS OF POLITICAL SOCIALIZATION RESEARCH--(1)…

  12. Efficiency Assessment of a Blended-Learning Educational Methodology in Engineering

    NASA Astrophysics Data System (ADS)

    Rogado, Ana Belén González; Conde, Ma José Rodríguez; Migueláñez, Susana Olmos; Riaza, Blanca García; Peñalvo, Francisco José García

    The content of this presentation highlights the importance of an active learning methodology in engineering university degrees in Spain. We present of some of the outcomes from an experimental study carried out during the academic years 2007/08 and 2008/09 with engineering students (Technical Industrial Engineering: Mechanics, Civical Design Engineering: Civical building, Technical Architecture and Technical Engineering on Computer Management.) at the University of Salamanca. In this research we select a subject which is common for the four degrees: Computer Science. This study has the aim of contributing to the improvement of education and teaching methods for a better performance of students in Engineering.

  13. LEADER - An integrated engine behavior and design analyses based real-time fault diagnostic expert system for Space Shuttle Main Engine (SSME)

    NASA Technical Reports Server (NTRS)

    Gupta, U. K.; Ali, M.

    1989-01-01

    The LEADER expert system has been developed for automatic learning tasks encompassing real-time detection, identification, verification, and correction of anomalous propulsion system operations, using a set of sensors to monitor engine component performance to ascertain anomalies in engine dynamics and behavior. Two diagnostic approaches are embodied in LEADER's architecture: (1) learning and identifying engine behavior patterns to generate novel hypotheses about possible abnormalities, and (2) the direction of engine sensor data processing to perform resoning based on engine design and functional knowledge, as well as the principles of the relevant mechanics and physics.

  14. Engineering good: how engineering metaphors help us to understand the moral life and change society.

    PubMed

    Coeckelbergh, Mark

    2010-06-01

    Engineering can learn from ethics, but ethics can also learn from engineering. In this paper, I discuss what engineering metaphors can teach us about practical philosophy. Using metaphors such as calculation, performance, and open source, I articulate two opposing views of morality and politics: one that relies on images related to engineering as science and one that draws on images of engineering practice. I argue that the latter view and its metaphors provide a more adequate way to understand and guide the moral life. Responding to two problems of alienation and taking into account developments such as Fab Lab I then further explore the implications of this view for engineering and society.

  15. 15 CFR 801.10 - Rules and regulations for the BE-120, Benchmark Survey of Transactions in Selected Services and...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... engineering services; industrial-type maintenance, installation, alteration, and training services; legal... services; (17) Financial services (purchases only); (18) Industrial engineering services; (19) Industrial...; educational and training services; engineering, architectural, and surveying services; financial services...

  16. Investigating the Language of Engineering Education

    NASA Astrophysics Data System (ADS)

    Variawa, Chirag

    A significant part of professional communication development in engineering is the ability to learn and understand technical vocabulary. Mastering such vocabulary is often a desired learning outcome of engineering education. In promoting this goal, this research investigates the development of a tool that creates wordlists of characteristic discipline-specific vocabulary for a given course. These wordlists explicitly highlight requisite vocabulary learning and, when used as a teaching aid, can promote greater accessibility in the learning environment. Literature, including work in higher education, diversity and language learning, suggest that designing accessible learning environments can increase the quality of instruction and learning for all students. Studying the student/instructor interface using the framework of Universal Instructional Design identified vocabulary learning as an invisible barrier in engineering education. A preliminary investigation of this barrier suggested that students have difficulty assessing their understanding of technical vocabulary. Subsequently, computing word frequency on engineering course material was investigated as an approach for characterizing this barrier. However, it was concluded that a more nuanced method was necessary. This research program was built on previous work in the fields of linguistics and computer science, and lead to the design of an algorithm. The developed algorithm is based on a statistical technique called, Term Frequency-Inverse Document Frequency. Comparator sets of documents are used to hierarchically identify characteristic terms on a target document, such as course materials from a previous term of study. The approach draws on a standardized artifact of the engineering learning environment as its dataset; a repository of 2254 engineering final exams from the University of Toronto, to process the target material. After producing wordlists for ten courses, with the goal of highlighting characteristic discipline-specific terms, the effectiveness of the approach was evaluated by comparing the computed results to the judgment of subject-matter experts. The overall data show a good correlation between the program and the subject-matter experts. The results indicated a balance between accuracy and feasibility, and suggested that this approach could mimic subject-matter expertise to create a list discipline-specific vocabulary from course materials.

  17. A Study of the Relationship Between the Practice of Civil Engineering and Student Courses: Volume 1.

    ERIC Educational Resources Information Center

    Bull, A. J. U.; Richardson, E.

    Australian civil engineers were surveyed for a study intended to establish a model for development based on a list of the basic stock of knowledge and techniques that need to be mastered by the graduate civil engineer. Following a brief introduction and summary, chapters 3-7 review the survey objectives, civil engineering definitions and…

  18. Student Engagement in a Structured Problem-Based Approach to Learning: A First-Year Electronic Engineering Study Module on Heat Transfer

    ERIC Educational Resources Information Center

    Montero, E.; Gonzalez, M. J.

    2009-01-01

    Problem-based learning has been at the core of significant developments in engineering education in recent years. This term refers to any learning environment in which the problem drives the learning, because it is posed in such a way that students realize they need to acquire new knowledge before the problem can be solved. This paper presents the…

  19. Influence of gender in choosing a career amongst engineering fields: a survey study from Turkey

    NASA Astrophysics Data System (ADS)

    Bucak, Seyda; Kadirgan, Neset

    2011-10-01

    The aim of this study is to understand the motivating factors behind students' choices in their decision-making process and also get an insight on their perception of different engineering branches. A survey was prepared and the results were evaluated amongst 1163 answers. Two major influences on student's decision in their professional choices are shown to be career services and family members. Generally, students have claimed to choose a profession based on 'finding a job' and 'being happy'. Some engineering branches such as Genetic and Bioengineering, Chemical Engineering, Environmental Engineering and Industrial Engineering, are shown to be distinctly preferred by female students, whereas mechanical, civil and electronic engineering are favourites for male students. The survey results were also compared with the distribution of male and female students in various engineering departments. This study clearly shows that certain engineering branches are perceived as more appropriate for women and are thus favoured by female students, while those perceived as more appropriate for men are favoured by male students.

  20. Design of cognitive engine for cognitive radio based on the rough sets and radial basis function neural network

    NASA Astrophysics Data System (ADS)

    Yang, Yanchao; Jiang, Hong; Liu, Congbin; Lan, Zhongli

    2013-03-01

    Cognitive radio (CR) is an intelligent wireless communication system which can dynamically adjust the parameters to improve system performance depending on the environmental change and quality of service. The core technology for CR is the design of cognitive engine, which introduces reasoning and learning methods in the field of artificial intelligence, to achieve the perception, adaptation and learning capability. Considering the dynamical wireless environment and demands, this paper proposes a design of cognitive engine based on the rough sets (RS) and radial basis function neural network (RBF_NN). The method uses experienced knowledge and environment information processed by RS module to train the RBF_NN, and then the learning model is used to reconfigure communication parameters to allocate resources rationally and improve system performance. After training learning model, the performance is evaluated according to two benchmark functions. The simulation results demonstrate the effectiveness of the model and the proposed cognitive engine can effectively achieve the goal of learning and reconfiguration in cognitive radio.

  1. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 56: Technical Communications in Engineering and Science: The Practices Within a Government Defense Laboratory

    NASA Technical Reports Server (NTRS)

    VonSeggern, Marilyn; Jourdain, Janet M.; Pinelli, Thomas E.

    1996-01-01

    Research in recent decades has identified the varied information needs of engineers versus scientists. While most of that research looked at the differences among organizations, we surveyed engineers and scientists within a single Air Force research and development laboratory about their information gathering, usage, and production practices. The results of the Phillips Laboratory survey confirm prior assumptions about distinctions between engineering and science. Because military employees responded at a much higher rate than civilian staff, the survey also became an opportunity to profile a little-known segment of the engineer/scientist population. In addition to the effect Phillips Laboratory's stated mission may have on member engineers and scientists, other factors causing variations in technical communication and information-related activities are identified.

  2. The Relationship of Learning Communities to Engineering Students' Perceptions of the Freshman Year Experience, Academic Performance, and Persistence

    ERIC Educational Resources Information Center

    Tolley, Patricia Ann Separ

    2009-01-01

    The purpose of this correlational study was to examine the effects of a residential learning community and enrollment in an introductory engineering course to engineering students' perceptions of the freshman year experience, academic performance, and persistence. The sample included students enrolled in a large, urban, public, research university…

  3. FísicActiva: Applying Active Learning Strategies to a Large Engineering Lecture

    ERIC Educational Resources Information Center

    Auyuanet, Adriana; Modzelewski, Helena; Loureiro, Silvia; Alessandrini, Daniel; Míguez, Marina

    2018-01-01

    This paper presents and analyses the results obtained by applying Active Learning techniques in overcrowded Physics lectures at the University of the Republic, Uruguay. The course referred to is Physics 1, the first Physics course that all students of the Faculty of Engineering take in their first semester for all the Engineering-related careers.…

  4. An eLearning Standard Approach for Supporting PBL in Computer Engineering

    ERIC Educational Resources Information Center

    Garcia-Robles, R.; Diaz-del-Rio, F.; Vicente-Diaz, S.; Linares-Barranco, A.

    2009-01-01

    Problem-based learning (PBL) has proved to be a highly successful pedagogical model in many fields, although it is not that common in computer engineering. PBL goes beyond the typical teaching methodology by promoting student interaction. This paper presents a PBL trial applied to a course in a computer engineering degree at the University of…

  5. Evaluation of Engineering and Technology Activities in Primary Schools in Terms of Learning Environment, Attitudes and Understanding

    ERIC Educational Resources Information Center

    Koul, Rekha B.; Fraser, Barry J.; Maynard, Nicoleta; Tade, Moses

    2018-01-01

    Because the importance of science, technology, engineering and mathematics (STEM) education continues to be recognised around the world, we developed and validated an instrument to assess the learning environment and student attitudes in STEM classrooms, with a specific focus on engineering and technology (E&T) activities in primary schools.…

  6. NEEDS (The National Engineering Education Delivery System): If We Build It (According to Standards) They Will Come!

    ERIC Educational Resources Information Center

    Saylor, John M.

    The National Science Foundation (NSF) is providing funds for coalitions of engineering educational institutions to improve the quality of undergraduate engineering education. A hypothesis that is being tested is that people can learn better in environments that allow self-paced and/or collaborative learning. The main tools for providing this…

  7. Motivating Factors that Affect Enrolment and Student Performance in an ODL Engineering Program

    ERIC Educational Resources Information Center

    Dadigamuwa, P. R.; Senanayake, Samans

    2012-01-01

    The present study was carried out to determine the motivating factors for enrolling in an engineering study programme in open and distance learning (ODL) and the factors that affect the students' performance. The study was conducted with two convenient samples of students following distance learning courses in engineering technology, conducted by…

  8. Physiology and the Biomedical Engineering Curriculum: Utilizing Emerging Instructional Technologies to Promote Development of Adaptive Expertise in Undergraduate Students

    ERIC Educational Resources Information Center

    Nelson, Regina K.

    2013-01-01

    A mixed-methods research study was designed to test whether undergraduate engineering students were better prepared to learn advanced topics in biomedical engineering if they learned physiology via a quantitative, concept-based approach rather than a qualitative, system-based approach. Experiments were conducted with undergraduate engineering…

  9. The Role of Effective Modeling in the Development of Self-Efficacy: The Case of the Transparent Engine

    ERIC Educational Resources Information Center

    Scheibe, Kevin P.; Mennecke, Brian E.; Luse, Andy

    2007-01-01

    Computing technology augments learning in education in a number of ways. One particular method uses interactive programs to demonstrate complex concepts. The purpose of this article is to examine one type of interactive learning technology, the transparent engine. The transparent engine allows instructors and students to view and directly interact…

  10. Multiple Learning Strategies Project. Small Engine Repair Service. Regular Vocational. [Vol. 1.

    ERIC Educational Resources Information Center

    Pitts, Jim; And Others

    This instructional package is one of two designed for use by regular vocational students in the vocational area of small engine repair service. Contained in this document are forty-four learning modules organized into ten units: engine block; air cleaner; starters; fuel tanks; lines, filters, and pumps; carburetors; electrical; magneto systems;…

  11. Integrator Element as a Promoter of Active Learning in Engineering Teaching

    ERIC Educational Resources Information Center

    Oliveira, Paulo C.; Oliveira, Cristina G.

    2014-01-01

    In this paper, we present a teaching proposal used in an Introductory Physics course to civil engineering students from Porto's Engineering Institute/Instituto Superior de Engenharia do Porto (ISEP). The proposal was born from the need to change students' perception and motivation for learning physics. It consists in the use of an integrator…

  12. Using the van Hiele K-12 Geometry Learning Theory to Modify Engineering Mechanics Instruction

    ERIC Educational Resources Information Center

    Sharp, Janet M.; Zachary, Loren W.

    2004-01-01

    Engineering students use spatial thinking when examining diagrams or models to study structure design. It is expected that most engineering students have solidified spatial thinking skills during K-12 schooling. However, according to what we know about geometry learning and teaching, spatial thinking probably needs to be explicitly taught within…

  13. Consequences of Team Charter Quality: Teamwork Mental Model Similarity and Team Viability in Engineering Design Student Teams

    ERIC Educational Resources Information Center

    Conway Hughston, Veronica

    2014-01-01

    Since 1996 ABET has mandated that undergraduate engineering degree granting institutions focus on learning outcomes such as professional skills (i.e. solving unstructured problems and working in teams). As a result, engineering curricula were restructured to include team based learning--including team charters. Team charters were diffused into…

  14. Advancing Integrated STEM Learning through Engineering Design: Sixth-Grade Students' Design and Construction of Earthquake Resistant Buildings

    ERIC Educational Resources Information Center

    English, Lyn D.; King, Donna; Smeed, Joanna

    2017-01-01

    As part of a 3-year longitudinal study, 136 sixth-grade students completed an engineering-based problem on earthquakes involving integrated STEM learning. Students employed engineering design processes and STEM disciplinary knowledge to plan, sketch, then construct a building designed to withstand earthquake damage, taking into account a number of…

  15. The effects of social concern goals on the value of learning and on the intentions of medical students to change their majors

    PubMed Central

    Park, Soowon; Cho, Seunghee; Lee, Jun-Young

    2017-01-01

    ABSTRACT Background: In the process of developing a professional medical expertise, goals can become a psychological impetus and act as a source of retaining an individual’s persistency. Therefore, the goals of medical students should be considered when designing a curriculum for health professions. Purpose: The purpose of this study was to examine relative effects of goal categories on the value of learning and intention to change one’s major. Method: Data were obtained from the Korea Education Longitudinal Study, which included 1938 representative Korean college freshmen majoring in medicine, engineering, natural science and humanities. They answered a survey questionnaire about goal categories (i.e., social concern, affiliation, self-growth, leisure, wealth, and fame), the value of learning, and intention to change one's major. Results: For medical students, social concern goals were positively related to the value of learning and negatively related to the intention to change one's major. Social concern goals decreased the intention to change one's major directly, and also indirectly through increased value of learning. Conclusion: Providing context for enhancing medical students’ social concern goals is necessary in a medical training curriculum, not only for the students’ professional development but also for improving society. Abbreviations: GCT: Goal contents theory GPA: Grade point average KELS: Korea education longitudinal study SDLA: Self-directed learning abilities SDT: Self-determination theory PMID:28580860

  16. The effects of social concern goals on the value of learning and on the intentions of medical students to change their majors.

    PubMed

    Park, Soowon; Cho, Seunghee; Lee, Jun-Young

    2017-01-01

    In the process of developing a professional medical expertise, goals can become a psychological impetus and act as a source of retaining an individual's persistency. Therefore, the goals of medical students should be considered when designing a curriculum for health professions. The purpose of this study was to examine relative effects of goal categories on the value of learning and intention to change one's major. Data were obtained from the Korea Education Longitudinal Study, which included 1938 representative Korean college freshmen majoring in medicine, engineering, natural science and humanities. They answered a survey questionnaire about goal categories (i.e., social concern, affiliation, self-growth, leisure, wealth, and fame), the value of learning, and intention to change one's major. For medical students, social concern goals were positively related to the value of learning and negatively related to the intention to change one's major. Social concern goals decreased the intention to change one's major directly, and also indirectly through increased value of learning. Providing context for enhancing medical students' social concern goals is necessary in a medical training curriculum, not only for the students' professional development but also for improving society. GCT: Goal contents theory GPA: Grade point average KELS: Korea education longitudinal study SDLA: Self-directed learning abilities SDT: Self-determination theory.

  17. Cool Astronomy: Education and Public Outreach for the WISE mission

    NASA Astrophysics Data System (ADS)

    Mendez, Bryan J.

    2011-01-01

    The Education and Public Outreach (E/PO) program of the Wide-field Infrared Survey Explorer (WISE) aims to educate and engage students, teachers, and the general public in the endeavor of science. We bring a collection of accomplished professionals in formal and informal astronomy education from around the nation to create learning materials and experiences that appeal to broad audiences. Our E/PO program trains teachers in science, technology, engineering, and mathematics (STEM) topics related to WISE; creates standards-based classroom resources and lessons using WISE data and WISE-related STEM topics; develops interactive programming for museums and science centers; and inspires the public with WISE science and images.

  18. (Extreme) Core-collapse Supernova Simulations

    NASA Astrophysics Data System (ADS)

    Mösta, Philipp

    2017-01-01

    In this talk I will present recent progress on modeling core-collapse supernovae with massively parallel simulations on the largest supercomputers available. I will discuss the unique challenges in both input physics and computational modeling that come with a problem involving all four fundamental forces and relativistic effects and will highlight recent breakthroughs overcoming these challenges in full 3D simulations. I will pay particular attention to how these simulations can be used to reveal the engines driving some of the most extreme explosions and conclude by discussing what remains to be done in simulation work to maximize what we can learn from current and future time-domain astronomy transient surveys.

  19. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 58; Survey of Reader Preferences Concerning the Format of NASA Langley-Authored Technical Reports

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1996-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. Little is also known about the intermediary-based system that is used to transfer the results of federally funded R&D to the U.S. aerospace industry. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this paper, we summarize the literature on the U.S. government technical report and present the results of a survey of U.S. aerospace engineers and scientists that solicited their opinions concerning the format of NASA Langley Research Center (LaRC)-authored technical reports. To learn more about the preferences of U.S. aerospace engineers and scientists concerning the format of NASA LaRC-authored technical reports, we surveyed 133 report producers (i.e., authors) and 137 report users in March-April 1996. Questions covered such topics as (1) the order in which report components are read, (2) components used to determine if a report would be read, (3) those components that could be deleted, (4) the placement of such components as the symbols list, (e) the de-sirability of a table of contents, (5) the format of reference citations, (6) column layout and right margin treatment, and (7) and person and voice. Mail (self-reported) surveys were used to collect the data. The response rates for report producers (i.e., authors) was 68% and for users was 62%.

  20. Engineering Technology Enrollments Fall 1986.

    ERIC Educational Resources Information Center

    Ellis, Richard A.

    1988-01-01

    Provides some of the results of the Engineering Manpower Commission's fall 1986 survey of enrollments in engineering education. Includes tabular data on those enrollments categorized by students in all institutions surveyed and for just those students in accredited programs, as well as by curriculum and by school and state. (TW)

  1. Teaching bioprocess engineering to undergraduates: Multidisciplinary hands-on training in a one-week practical course.

    PubMed

    Henkel, Marius; Zwick, Michaela; Beuker, Janina; Willenbacher, Judit; Baumann, Sandra; Oswald, Florian; Neumann, Anke; Siemann-Herzberg, Martin; Syldatk, Christoph; Hausmann, Rudolf

    2015-01-01

    Bioprocess engineering is a highly interdisciplinary field of study which is strongly benefited by practical courses where students can actively experience the interconnection between biology, engineering, and physical sciences. This work describes a lab course developed for 2nd year undergraduate students of bioprocess engineering and related disciplines, where students are challenged with a real-life bioprocess-engineering application, the production of recombinant protein in a fed-batch process. The lab course was designed to introduce students to the subject of operating and supervising an experiment in a bioreactor, along with the analysis of collected data and a final critical evaluation of the experiment. To provide visual feedback of the experimental outcome, the organism used during class was Escherichia coli which carried a plasmid to recombinantly produce enhanced green fluorescent protein (eGFP) upon induction. This can easily be visualized in both the bioreactor and samples by using ultraviolet light. The lab course is performed with bioreactors of the simplest design, and is therefore highly flexible, robust and easy to reproduce. As part of this work the implementation and framework, the results, the evaluation and assessment of student learning combined with opinion surveys are presented, which provides a basis for instructors intending to implement a similar lab course at their respective institution. © 2015 by the International Union of Biochemistry and Molecular Biology.

  2. How OpenLearn Supports a Business Model for OER

    ERIC Educational Resources Information Center

    Law, Patrina; Perryman, Leigh-Anne

    2017-01-01

    In 2013, the Open University (OU) in the UK launched a large-scale survey of users of its OpenLearn platform for open educational resources. The survey results revealed that OpenLearn is functioning as a showcase and a taster for the OU, thereby offering informal learners a bridge to formal education. In 2014 and 2015, the OpenLearn survey was…

  3. Manufacturing Road Map for Tissue Engineering and Regenerative Medicine Technologies

    PubMed Central

    Hunsberger, Joshua; Harrysson, Ola; Shirwaiker, Rohan; Starly, Binil; Wysk, Richard; Cohen, Paul; Allickson, Julie; Yoo, James

    2015-01-01

    Summary The Regenerative Medicine Foundation Annual Conference held on May 6 and 7, 2014, had a vision of assisting with translating tissue engineering and regenerative medicine (TERM)-based technologies closer to the clinic. This vision was achieved by assembling leaders in the field to cover critical areas. Some of these critical areas included regulatory pathways for regenerative medicine therapies, strategic partnerships, coordination of resources, developing standards for the field, government support, priorities for industry, biobanking, and new technologies. The final day of this conference featured focused sessions on manufacturing, during which expert speakers were invited from industry, government, and academia. The speakers identified and accessed roadblocks plaguing the field where improvements in advanced manufacturing offered many solutions. The manufacturing sessions included (a) product development toward commercialization in regenerative medicine, (b) process challenges to scale up manufacturing in regenerative medicine, and (c) infrastructure needs for manufacturing in regenerative medicine. Subsequent to this, industry was invited to participate in a survey to further elucidate the challenges to translation and scale-up. This perspective article will cover the lessons learned from these manufacturing sessions and early results from the survey. We also outline a road map for developing the manufacturing infrastructure, resources, standards, capabilities, education, training, and workforce development to realize the promise of TERM. PMID:25575525

  4. [Effects of perceived benefits about when and how to use a learning strategy].

    PubMed

    Yamaguchi, Tsuyoshi

    2017-04-01

    Previous studies have shown a positive correlation between the use of a learning strategy and perceived benefits. However, the impact of perceived benefits as conditional knowledge in metacognitive knowledge has not been examined. The present study investigated the effect of perceived benefits about when (short and long) and how (persistent and suitable) to use learning strategies using two surveys. Each survey utilized a sample of undergraduate students from three different Japanese universities, and the Bayesian hierarchical modeling and within-person variance were used to verify the relationship between the use of a learning strategy and perceived benefits. The students completed questionnaires regarding cognitive (Survey 2a) and metacognitive (Survey 2b) strategies (Survey 1 included two strategies), and achievement goals (without Survey 1). Findings revealed the effects of long-term and short-term persistent perceived benefits on the use of a learning strategy in all the surveys. These results suggest that persistent benefits be emphasized in order to promote the use of learning strategies, and that the appropriate perceived benefits be emphasized in order to become an adaptive learner.

  5. The Development of Technology Enhanced Learning: Findings from a 2008 Survey of UK Higher Education Institutions

    ERIC Educational Resources Information Center

    Jenkins, Martin; Browne, Tom; Walker, Richard; Hewitt, Roger

    2011-01-01

    This article summarises the key findings from a UK survey of higher education institutions, focusing on the development of technology enhanced learning (TEL). TEL is defined as any online facility or system that directly supports learning and teaching. The 2008 survey builds upon previous UCISA surveys conducted in 2001, 2003 and 2005 and for…

  6. University of Maryland MRSEC - Education: Homeschool

    Science.gov Websites

    science and engineering learning. For a list of past homeschool programs, click here. “I would like to University of Maryland campus in the MRSEC Science & Engineering Learning Center (Room 1233, Chemistry

  7. A study of education and KSAOs on career entry for product engineers: What employers really want

    NASA Astrophysics Data System (ADS)

    Thornburgh, James

    The purpose of the study was to investigate the ways that employers of product engineers evaluate potential employees' job readiness, and which theories related to the education-work transaction are supported by practice. This study used a mixed methods approach and consisted of a state-wide survey (N=106) and local interviews (N=8). The results of the research indicate that attributes of both the Theory of Individual Differences and Credentialing Theory are present in the hiring practices of product engineers. Consistent with the Theory of Individual Differences, employers indicate they look for evidence of various job-related Knowledge, Skills, Abilities, and Other attributes (KSAOs) and they indicate they are willing to hire applicants who have less than a bachelor's degree. Consistent with Credentialing Theory, employers advertise a formal education minimum which represents only one way that individuals may learn to be an engineer. This study also confirmed prior research that most employers use primarily non-evidence based predictors to evaluate applicants. The primary initial screening predictors were experience, GPA, and major, while the primary finalist selection predictors were unstructured interviews, and applications, followed by structured interviews, job knowledge tests, and work sample test. Contrary to previous findings, this study did not find any major differences between what HR professionals, engineering managers, or other manager look for in terms of qualifications or what predictors they use when evaluating applicants for product engineer positions.

  8. Learning style preference and student aptitude for concept maps.

    PubMed

    Kostovich, Carol T; Poradzisz, Michele; Wood, Karen; O'Brien, Karen L

    2007-05-01

    Acknowledging that individuals' preferences for learning vary, faculty in an undergraduate nursing program questioned whether a student's learning style is an indicator of aptitude in developing concept maps. The purpose of this research was to describe the relationship between nursing students' learning style preference and aptitude for concept maps. The sample included 120 undergraduate students enrolled in the adult health nursing course. Students created one concept map and completed two instruments: the Learning Style Survey and the Concept Map Survey. Data included Learning Style Survey scores, grade for the concept map, and grade for the adult health course. No significant difference was found between learning style preference and concept map grades. Thematic analysis of the qualitative survey data yielded further insight into students' preferences for creating concept maps.

  9. Civil engineering reference guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merritt, F.S.

    1986-01-01

    The civil engineering reference guide contains the following: Structural theory. Structural steel design. Concrete design and construction. Wood design and construction. Bridge engineering. Geotechnical engineering. Water engineering. Environmental engineering. Surveying.

  10. Concept Development and Meaningful Learning among Electrical Engineering Students Engaged in a Problem-Based Laboratory Experience

    ERIC Educational Resources Information Center

    Bledsoe, Karen E.; Flick, Lawrence

    2012-01-01

    This phenomenographic study documented changes in student-held electrical concepts the development of meaningful learning among students with both low and high prior knowledge within a problem-based learning (PBL) undergraduate electrical engineering course. This paper reports on four subjects: two with high prior knowledge and two with low prior…

  11. Design and Implementation of a Mechatronics Learning Module in a Large First-Semester Engineering Course

    ERIC Educational Resources Information Center

    Castles, R. T.; Zephirin, T.; Lohani, V. K.; Kachroo, P.

    2010-01-01

    Since 2005, the first-year engineering program at Virginia Tech, Blacksburg, has been significantly restructured to include more hands-on learning. A major grant (2004-2009) under the department level reform (DLR) program of the National Science Foundation (NSF) facilitated this restructuring. A number of hands-on learning modules were developed…

  12. Effects of Cloud-Based m-Learning on Student Creative Performance in Engineering Design

    ERIC Educational Resources Information Center

    Chang, Yu-Shan; Chen, Si-Yi; Yu, Kuang-Chao; Chu, Yih-Hsien; Chien, Yu-Hung

    2017-01-01

    This study explored the effects of cloud-based m-learning on students' creative processes and products in engineering design. A nonequivalent pretest-posttest design was adopted, and 62 university students from Taipei City, Taiwan, were recruited as research participants in the study. The results showed that cloud-based m-learning had a positive…

  13. A Knowledge Engineering Approach to Developing Educational Computer Games for Improving Students' Differentiating Knowledge

    ERIC Educational Resources Information Center

    Hwang, Gwo-Jen; Sung, Han-Yu; Hung, Chun-Ming; Yang, Li-Hsueh; Huang, Iwen

    2013-01-01

    Educational computer games have been recognized as being a promising approach for motivating students to learn. Nevertheless, previous studies have shown that without proper learning strategies or supportive models, the learning achievement of students might not be as good as expected. In this study, a knowledge engineering approach is proposed…

  14. Innovation Development--An Action Learning Programme for Medical Scientists and Engineers

    ERIC Educational Resources Information Center

    Beniston, Lee; Ellwood, Paul; Gold, Jeff; Roberts, James; Thorpe, Richard

    2014-01-01

    There is increasing evidence that action learning is valuable in a higher education setting. This paper goes on to report a personal development programme, based on principles of critical action learning, where the aim is to equip early-career scientists and engineers working in a university setting with the knowledge, skills and confidence to…

  15. Theoretical Overview on the Improvement of Interest in Learning Theoretical Course for Engineering Students

    ERIC Educational Resources Information Center

    Xiao, Manlin; Zhang, Jianglin

    2016-01-01

    The phenomenon that engineering students have little interest in theoretical knowledge learning is more and more apparent. Therefore, most students fail to understand and apply theories to solve practical problems. To solve this problem, the importance of improving students' interest in the learning theoretical course is discussed firstly in this…

  16. The Impact of Project-Based Learning on Improving Student Learning Outcomes of Sustainability Concepts in Transportation Engineering Courses

    ERIC Educational Resources Information Center

    Fini, Elham H.; Awadallah, Faisal; Parast, Mahour M.; Abu-Lebdeh, Taher

    2018-01-01

    This paper describes an intervention to enhance students' learning by involving students in brainstorming activities about sustainability concepts and their implications in transportation engineering. The paper discusses the process of incorporating the intervention into a transportation course, as well as the impact of this intervention on…

  17. Understanding and Enhancing Learning Communities in Tertiary Education in Science and Engineering

    ERIC Educational Resources Information Center

    Forret, Michael; Eames, Chris; Coll, Richard

    2007-01-01

    This research aims to build upon current research in the area of teaching and learning at tertiary level and explore the nature of learning communities in tertiary science and engineering. This study uses a sociocultural approach to address the following question: "What are teachers' and learners' perceptions of the nature of the learning…

  18. Characterizing Learning-through-Service Students in Engineering by Gender and Academic Year

    ERIC Educational Resources Information Center

    Carberry, Adam Robert

    2010-01-01

    Service is increasingly being viewed as an integral part of education nationwide. Service-based courses and programs are growing in popularity as opportunities for students to learn and experience their discipline. Widespread adoption of learning-through-service (LTS) in engineering is stymied by a lack of a body of rigorous research supporting…

  19. Hippocampal Modulation of Associative Learning

    DTIC Science & Technology

    1992-01-01

    Improvement of Visual Communication and Its Impact on Spatial Learning. Third Annual Argonne Symposium for Undergraduates in Science, Engineering and...baseline for these observations. PUBLICATIONS: Goldbogen, G., Lerman, Z., Morton, D. and Wallisky, M. An Investigation of the Improvement of Visual ... Communication and Its Impact on Spatial Learning. Third Annual Argonne Symposium for Undergraduates in Science, Engineering and Mathematics (Submitted

  20. Distance Learning Engineering Students Languish under Project-Based Learning, but Thrive in Case Studies and Practical Workshops

    ERIC Educational Resources Information Center

    Swart, Arthur James

    2016-01-01

    The International Engineering Alliance lists 12 important graduate attributes that students must demonstrate during their higher educational career. One of these important graduate attributes is the ability to solve problems, which can be demonstrated by the use of project-based learning, case studies, and practical workshops. The purpose of this…

  1. What Value Does Service Learning Have on Introductory Engineering Students' Motivation and ABET Program Outcomes?

    ERIC Educational Resources Information Center

    Sevier, Carol; Chyung, Seung Youn; Callahan, Janet; Schrader, Cheryl B.

    2012-01-01

    A quasi-experimental study was conducted to investigate the effectiveness of using a service learning (SL) method on influencing introductory engineering students' motivation and ABET program outcomes, compared to the effectiveness of using a conventional, non-service-learning (NSL) method. The sample used in the study was 214 students enrolled in…

  2. Learning English: Experiences and Needs of Saudi Engineering Students

    ERIC Educational Resources Information Center

    Unruh, Susan; Obeidat, Fayiz

    2015-01-01

    In this qualitative study, Saudi engineering students talk openly of their experiences learning English in the Kingdom of Saudi Arabia (KSA) and as university students in the United States (US). These students reported that they learned only the basics of vocabulary and grammar in KSA. Consequently, they came to the US with few English skills. In…

  3. Bridging the Design-Science Gap with Tools: Science Learning and Design Behaviors in a Simulated Environment for Engineering Design

    ERIC Educational Resources Information Center

    Chao, Jie; Xie, Charles; Nourian, Saeid; Chen, Guanhua; Bailey, Siobhan; Goldstein, Molly H.; Purzer, Senay; Adams, Robin S.; Tutwiler, M. Shane

    2017-01-01

    Many pedagogical innovations aim to integrate engineering design and science learning. However, students frequently show little attempt or have difficulties in connecting their design projects with the underlying science. Drawing upon the Cultural-Historical Activity Theory, we argue that the design tools available in a learning environment…

  4. Research News

    MedlinePlus

    ... in Research Studies Participate in a Clinical Trial Surveys and Other Research Studies Participate in Genetic Studies Donate to Tissue ... Learn More Participate in Genetic Studies Learn More Surveys and Other Research Studies Learn More Donate to Tissue Banks Learn ...

  5. Learning to teach effectively: Science, technology, engineering, and mathematics graduate teaching assistants' teaching self-efficacy

    NASA Astrophysics Data System (ADS)

    Dechenne, Sue Ellen

    Graduate teaching assistants (GTAs) from science, technology, engineering, and mathematics (STEM) are important in the teaching of undergraduate students (Golde & Dore, 2001). However, they are often poorly prepared for teaching (Luft, Kurdziel, Roehrig, & Turner, 2004). This dissertation addresses teaching effectiveness in three related manuscripts: (1) A position paper that summarizes the current research on and develops a model of GTA teaching effectiveness. (2) An adaptation and validation of two instruments; GTA perception of teaching training and STEM GTA teaching self-efficacy. (3) A model test of factors that predict STEM GTA teaching self-efficacy. Together these three papers address key questions in the understanding of teaching effectiveness in STEM GTAs including: (a) What is our current knowledge of factors that affect the teaching effectiveness of GTAs? (b) Given that teaching self-efficacy is strongly linked to teaching performance, how can we measure STEM GTAs teaching self-efficacy? (c) Is there a better way to measure GTA teaching training than currently exists? (d) What factors predict STEM GTA teaching self-efficacy? An original model for GTA teaching effectiveness was developed from a thorough search of the GTA teaching literature. The two instruments---perception of training and teaching self-efficacy---were tested through self-report surveys using STEM GTAs from six different universities including Oregon State University (OSU). The data was analyzed using exploratory and confirmatory factor analysis. Using GTAs from the OSU colleges of science and engineering, the model of sources of STEM GTA teaching self-efficacy was tested by administering self-report surveys and analyzed by using OLS regression analysis. Language and cultural proficiency, departmental teaching climate, teaching self-efficacy, GTA training, and teaching experience affect GTA teaching effectiveness. GTA teaching self-efficacy is a second-order factor combined from self-efficacy for instructional strategies and a positive learning environment. It is correlated to GTA perception of teaching training and university GTA training. The K-12 teaching experience, GTA perception of teaching training, and facilitating factors in the departmental climate predict STEM GTA teaching self-efficacy. Hours of GTA training and supervision are fully mediated by perception of GTA training. Implications for research and training of STEM GTAs are discussed.

  6. Science and engineering students' classroom experiences: An analysis by gender and discipline

    NASA Astrophysics Data System (ADS)

    Barrett, Martha Cohen

    Based on a concern about the persistence of women in science-related disciplines, this study sought to determine whether science and engineering students' classroom experiences and the importance students attributed to their experiences differed by gender and discipline. Using Chickering & Gamson's (1987) "Seven Principles for Good Practice in Undergraduate Education" as a framework, students' classroom experiences were separated into eight broad categories: Student Preparation, Feedback to Students, Instructor's Expectations of Students, Active Learning, Student Interaction, Instructor's Response to Differences Among Students, Student-Faculty Contact, and Learning Experiences. A survey instrument that included questions related to the eight broad classroom experience dimensions was used to collect data on students' classroom experiences and values in 22 undergraduate biology, chemistry, and mechanical engineering classrooms in a total of three institutions. Most of the classes were sophomore/junior level, and the number of students in each of the classes varied. 896 surveys met the study criteria and were included in the analyses. A total of 23 indices were created using the data collected in the study. Although there were no significant differences in how men and women perceived instructors' classroom behaviors, there were differences in the extent to which men and women reported that they valued particular classroom experiences. For each of these differences (importance of preparation, importance of requirements, importance of cooperative environment, importance of diversity flexibility, and importance of familiarity and respect), women valued the experience more highly than did men. There were also differences in classroom experiences and in the extent to which students valued their experiences across the three disciplines, with more disciplinary differences in students' classroom experiences than in the value they attached to their experiences. While some of the variables included in the study, such as size of class, encouragement from teachers, and expected grade, accounted for a portion of the reported differences in students' experiences and the importance they attached to their experiences, gender and discipline did not add much to the overall understanding of differences in experiences and values.

  7. A Survey of Gender Biases of Freshman Students toward Engineering.

    ERIC Educational Resources Information Center

    Schaer, Barbara; And Others

    1991-01-01

    A survey of 724 freshman engineering orientation students investigated the significance of 5 literature-cited barriers to women's success in engineering--sexual discrimination, financial concerns, academic comfort, career awareness, and locus of control. Significant main effects were found for gender but not ethnic group. The instrument is…

  8. Employment Problems of Engineers Highlighted by New Survey.

    ERIC Educational Resources Information Center

    Engineers Joint Council, New York, NY.

    Summarized is an employment survey, conducted by the Engineers Joint Council for the National Science Foundation. Twenty percent of the membership of 23 engineering societies were sampled. The results are reported as unemployment rates for selected degree and age groups, field of specialization, geographical areas, citizenship, and type of…

  9. Microprocessors in U.S. Electrical Engineering Departments, 1974-1975.

    ERIC Educational Resources Information Center

    Sloan, M. E.

    Drawn from a survey of engineering departments known to be teaching microprocessor courses, this paper shows that the adoption of microprocessors by Electrical Engineering Departments has been rapid compared with their adoption of minicomputers. The types of courses that are being taught can be categorized as: surveys of microprocessors, intensive…

  10. Engineers as Information Processors: A Survey of US Aerospace Engineering Faculty and Students.

    ERIC Educational Resources Information Center

    Holland, Maurita Peterson; And Others

    1991-01-01

    Reports on survey results from 275 faculty and 640 students, predominantly in the aerospace engineering field, concerning their behaviors about the appropriation and dissemination of information. Indicates that, as information processors, aerospace faculty and students are "information naive." Raises questions about the efficacy of…

  11. Clinicians' views on learning in brain injury rehabilitation.

    PubMed

    Boosman, H; Visser-Meily, J M A; Winkens, I; van Heugten, C M

    2013-06-01

    To determine clinicians' views on learning ability in brain injury rehabilitation. Online survey. An online survey was sent to physicians, psychologists and therapists of three Dutch organizations for neuropsychology or rehabilitation. The survey enquired (1) whether clinicians take learning ability into account; (2) about factors influencing learning ability; and (3) about assessment tools used to assess learning ability. Thirty-seven physicians, 83 psychologists and 43 therapists completed the online survey. In total, 93% of respondents reported that they take learning ability into account when making a prognosis. The most frequently mentioned factors influencing learning ability were cognition, awareness of deficits and motivation. Learning ability was mainly determined by means of cognitive and memory tests and observations during therapy. This study demonstrates that a patient's learning ability may be influenced by not only cognition but also by motivation and awareness of deficits. Structured and standardized assessment of these factors may be suggested for standard use in clinical practice. More research is needed about the influence these factors have on the learning process.

  12. Examining the Effects of Integrated Science, Engineering, and Nonfiction Literature on Student Learning in Elementary Classrooms

    NASA Astrophysics Data System (ADS)

    Tank, Kristina Maruyama

    In recent years there has been an increasing emphasis on the integration of multiple disciplines in order to help prepare more students to better address the complex challenges they will face in the 21st century. Exposing students to an integrated and multidisciplinary approach will help them to better understand the connections between subjects instead of as individual and separate subjects. Science, Technology, Engineering and Mathematics (STEM) Integration has been suggested as an approach that would model a multidisciplinary approach while also offering authentic and meaningful learning experiences to students. However, there is limited research on STEM integration in the elementary classroom and additional research is needed to better define and explore the effects of this integration for both students and science educators. With the recent recommendations for teaching both science and engineering in elementary classrooms (NRC, 2012), two common models include teaching science through inquiry and teaching science through engineering-design pedagogies. This study will explore both of these models as it seeks to better understand one piece of the larger issue of STEM and STEM integration by examining how the integration of science, engineering, and nonfiction literature affects students learning in elementary classrooms. This study employed an embedded mixed methods design to measure the effects of this integration on student learning in four fifth grade classrooms from the same elementary school. The findings revealed that the students who participated in the nonfiction reading instruction that was integrated with their science instruction showed a greater increase in all measures of student learning in both science and reading when compared to the control students. The findings from the integrated science, engineering and nonfiction literature revealed similar findings with the treatment students showing a greater increase in the measures of student learning in all three of the content areas. These results suggest that integrating nonfiction literature with science or science and engineering instruction can be an effective strategy in improving student learning in elementary classrooms.

  13. Gemini Observatory base facility operations: systems engineering process and lessons learned

    NASA Astrophysics Data System (ADS)

    Serio, Andrew; Cordova, Martin; Arriagada, Gustavo; Adamson, Andy; Close, Madeline; Coulson, Dolores; Nitta, Atsuko; Nunez, Arturo

    2016-08-01

    Gemini North Observatory successfully began nighttime remote operations from the Hilo Base Facility control room in November 2015. The implementation of the Gemini North Base Facility Operations (BFO) products was a great learning experience for many of our employees, including the author of this paper, the BFO Systems Engineer. In this paper we focus on the tailored Systems Engineering processes used for the project, the various software tools used in project support, and finally discuss the lessons learned from the Gemini North implementation. This experience and the lessons learned will be used both to aid our implementation of the Gemini South BFO in 2016, and in future technical projects at Gemini Observatory.

  14. Genome scale engineering techniques for metabolic engineering.

    PubMed

    Liu, Rongming; Bassalo, Marcelo C; Zeitoun, Ramsey I; Gill, Ryan T

    2015-11-01

    Metabolic engineering has expanded from a focus on designs requiring a small number of genetic modifications to increasingly complex designs driven by advances in genome-scale engineering technologies. Metabolic engineering has been generally defined by the use of iterative cycles of rational genome modifications, strain analysis and characterization, and a synthesis step that fuels additional hypothesis generation. This cycle mirrors the Design-Build-Test-Learn cycle followed throughout various engineering fields that has recently become a defining aspect of synthetic biology. This review will attempt to summarize recent genome-scale design, build, test, and learn technologies and relate their use to a range of metabolic engineering applications. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  15. Engineering Good: How Engineering Metaphors Help us to Understand the Moral Life and Change Society

    PubMed Central

    2009-01-01

    Engineering can learn from ethics, but ethics can also learn from engineering. In this paper, I discuss what engineering metaphors can teach us about practical philosophy. Using metaphors such as calculation, performance, and open source, I articulate two opposing views of morality and politics: one that relies on images related to engineering as science and one that draws on images of engineering practice. I argue that the latter view and its metaphors provide a more adequate way to understand and guide the moral life. Responding to two problems of alienation and taking into account developments such as Fab Lab I then further explore the implications of this view for engineering and society. PMID:19722107

  16. Why research-informed teaching in engineering education? A review of the evidence

    NASA Astrophysics Data System (ADS)

    Bubou, Gordon Monday; Offor, Ibebietei Temple; Bappa, Abubakar Saddiq

    2017-05-01

    Challenges of today's engineering education (EE) are emergent, necessitating calls for its reformation to empower future engineers function optimally as innovative leaders, in both local and international contexts. These challenges: keeping pace with technological dynamism; high attrition; and most importantly, quality teaching/learning require multifaceted approaches. But how can EE respond to the growing demand for relevant teaching? What can we do for engineering faculties to leverage on quality teaching? How do we embed quality teaching in EE? Scholarship of teaching and learning is advocated as one viable approach. It uses evidence-based teaching (EBT) strategies, and research-informed evidence to guide educational decisions regarding teaching and learning. We review the theories underpinning EBT, the scientific evidence on which it is based, and innovative instructional strategies that enhance active learning. Some of these issues have been discussed already, largely through developing countries lens. Nevertheless, linkages to equivalent global perspectives are presented here.

  17. PBL and CDIO: complementary models for engineering education development

    NASA Astrophysics Data System (ADS)

    Edström, Kristina; Kolmos, Anette

    2014-09-01

    This paper compares two models for reforming engineering education, problem/project-based learning (PBL), and conceive-design-implement-operate (CDIO), identifying and explaining similarities and differences. PBL and CDIO are defined and contrasted in terms of their history, community, definitions, curriculum design, relation to disciplines, engineering projects, and change strategy. The structured comparison is intended as an introduction for learning about any of these models. It also invites reflection to support the understanding and evolution of PBL and CDIO, and indicates specifically what the communities can learn from each other. It is noted that while the two approaches share many underlying values, they only partially overlap as strategies for educational reform. The conclusions are that practitioners have much to learn from each other's experiences through a dialogue between the communities, and that PBL and CDIO can play compatible and mutually reinforcing roles, and thus can be fruitfully combined to reform engineering education.

  18. Case study: Comparison of motivation for achieving higher performance between self-directed and manager-directed aerospace engineering teams

    NASA Astrophysics Data System (ADS)

    Erlick, Katherine

    "The stereotype of engineers is that they are not people oriented; the stereotype implies that engineers would not work well in teams---that their task emphasis is a solo venture and does not encourage social aspects of collaboration" (Miner & Beyerlein, 1999, p. 16). The problem is determining the best method of providing a motivating environment where design engineers may contribute within a team in order to achieve higher performance in the organization. Theoretically, self-directed work teams perform at higher levels. But, allowing a design engineer to contribute to the team while still maintaining his or her anonymity is the key to success. Therefore, a motivating environment must be established to encourage greater self-actualization in design engineers. The purpose of this study is to determine the favorable motivational environment for design engineers and describe the comparison between two aerospace design-engineering teams: one self-directed and the other manager directed. Following the comparison, this study identified whether self-direction or manager-direction provides the favorable motivational environment for operating as a team in pursuit of achieving higher performance. The methodology used in this research was the case study focusing on the team's levels of job satisfaction and potential for higher performance. The collection of data came from three sources, (a) surveys, (b) researcher observer journal and (c) collection of artifacts. The surveys provided information regarding personal behavior characteristics, potentiality for higher performance and motivational attributes. The researcher journal provided information regarding team dynamics, individual interaction, conflict and conflict resolution. The milestone for performance was based on the collection of artifacts from the two teams. The findings from this study illustrated that whether the team was manager-directed or self-directed does not appear to influence the needs and wants of the team members. The self-directed team was more motivated to learn their topic than was the manager-directed team, but they struggled with their path in following their vision whereas the manager-directed team kept their focus under the guidance of their manager. Finally, both teams are in fact effective; however specific circumstances may be an important objective when deciding to utilize either a self-directed or manager-directed team.

  19. Paired peer learning through engineering education outreach

    NASA Astrophysics Data System (ADS)

    Fogg-Rogers, Laura; Lewis, Fay; Edmonds, Juliet

    2017-01-01

    Undergraduate education incorporating active learning and vicarious experience through education outreach presents a critical opportunity to influence future engineering teaching and practice capabilities. Engineering education outreach activities have been shown to have multiple benefits; increasing interest and engagement with science and engineering for school children, providing teachers with expert contributions to engineering subject knowledge, and developing professional generic skills for engineers such as communication and teamwork. This pilot intervention paired 10 pre-service teachers and 11 student engineers to enact engineering outreach in primary schools, reaching 269 children. A longitudinal mixed methods design was employed to measure change in attitudes and Education Outreach Self-Efficacy in student engineers; alongside attitudes, Teaching Engineering Self-Efficacy and Engineering Subject Knowledge Confidence in pre-service teachers. Highly significant improvements were noted in the pre-service teachers' confidence and self-efficacy, while both the teachers and engineers qualitatively described benefits arising from the paired peer mentor model.

  20. Development of a short-form Learning Organization Survey: the LOS-27.

    PubMed

    Singer, Sara J; Moore, Scott C; Meterko, Mark; Williams, Sandra

    2012-08-01

    Despite urgent need for innovation, adaptation, and change in health care, few tools enable researchers or practitioners to assess the extent to which health care facilities perform as learning organizations or the effects of initiatives that require learning. This study's objective was to develop and test a short-form Learning Organization Survey to fill this gap. The authors applied exploratory factor analysis and confirmatory factor analysis to data from Veterans Health Administration personnel to derive a short-form survey and then conducted further confirmatory factor analysis and factor invariance testing on additional Veterans Health Administration data to evaluate the short form. Results suggest that a 27-item, 7-factor survey (2 environmental factors, 1 on leadership, and 4 on concrete learning processes and practices) reliably measures key features of organizational learning, allowing researchers to evaluate theoretical propositions about organizational learning, its antecedents, and outcomes and enabling managers to assess and enhance organizations' learning capabilities and performance.

Top