Sample records for learning memory performance

  1. Differential learning and memory performance in OEF/OIF veterans for verbal and visual material.

    PubMed

    Sozda, Christopher N; Muir, James J; Springer, Utaka S; Partovi, Diana; Cole, Michael A

    2014-05-01

    Memory complaints are particularly salient among veterans who experience combat-related mild traumatic brain injuries and/or trauma exposure, and represent a primary barrier to successful societal reintegration and everyday functioning. Anecdotally within clinical practice, verbal learning and memory performance frequently appears differentially reduced versus visual learning and memory scores. We sought to empirically investigate the robustness of a verbal versus visual learning and memory discrepancy and to explore potential mechanisms for a verbal/visual performance split. Participants consisted of 103 veterans with reported history of mild traumatic brain injuries returning home from U.S. military Operations Enduring Freedom and Iraqi Freedom referred for outpatient neuropsychological evaluation. Findings indicate that visual learning and memory abilities were largely intact while verbal learning and memory performance was significantly reduced in comparison, residing at approximately 1.1 SD below the mean for verbal learning and approximately 1.4 SD below the mean for verbal memory. This difference was not observed in verbal versus visual fluency performance, nor was it associated with estimated premorbid verbal abilities or traumatic brain injury history. In our sample, symptoms of depression, but not posttraumatic stress disorder, were significantly associated with reduced composite verbal learning and memory performance. Verbal learning and memory performance may benefit from targeted treatment of depressive symptomatology. Also, because visual learning and memory functions may remain intact, these might be emphasized when applying neurocognitive rehabilitation interventions to compensate for observed verbal learning and memory difficulties.

  2. Goal orientation and self-efficacy in relation to memory in adulthood

    PubMed Central

    Hastings, Erin C.; West, Robin L.

    2011-01-01

    The achievement goal framework (Dweck, 1986) has been well-established in children and college-students, but has rarely been examined empirically with older adults. The current study, including younger and older adults, examined the effects of memory self-efficacy, learning goals (focusing on skill mastery over time) and performance goals (focusing on performance outcome evaluations) on memory performance. Questionnaires measured memory self-efficacy and general orientation toward learning and performance goals; free and cued recall was assessed in a subsequent telephone interview. As expected, age was negatively related and education was positively related to memory self-efficacy, and memory self-efficacy was positively related to memory, in a structural equation model. Age was also negatively related to memory performance. Results supported the positive impact of learning goals and the negative impact of performance goals on memory self-efficacy. There was no significant direct effect of learning or performance goals on memory performance; their impact occurred via their effect on memory self-efficacy. The present study supports past research suggesting that learning goals are beneficial, and performance goals are maladaptive, for self-efficacy and learning, and validates the achievement goal framework in a sample including older adults. PMID:21728891

  3. Early Life Manipulations Alter Learning and Memory in Rats

    PubMed Central

    Kosten, Therese A; Kim, Jeansok J; Lee, Hongjoo J.

    2012-01-01

    Much research shows early life manipulations have enduring behavioral, neural, and hormonal effects. However, findings of learning and memory performance vary widely across studies. We reviewed studies in which pre-weaning rat pups were exposed to stressors and tested on learning and memory tasks in adulthood. Tasks were classified as aversive conditioning, inhibitory learning, or spatial/relational memory. Variables of duration, type, and timing of neonatal manipulation and sex and strain of animals were examined to determine if any predict enhanced or impaired performance. Brief separations enhanced and prolonged separations impaired performance on spatial/relational tasks. Performance was impaired in aversive conditioning and enhanced in inhibitory learning tasks regardless of manipulation duration. Opposing effects on performance for spatial/relational memory also depended upon timing of manipulation. Enhanced performance was likely if the manipulation occurred during postnatal week 3 but performance was impaired if it was confined to the first two postnatal weeks. Thus, the relationship between early life experiences and adulthood learning and memory performance is multifaceted and decidedly task-dependent. PMID:22819985

  4. Differential associations between types of verbal memory and prefrontal brain structure in healthy aging and late life depression.

    PubMed

    Lamar, Melissa; Charlton, Rebecca; Zhang, Aifeng; Kumar, Anand

    2012-07-01

    Verbal memory deficits attributed to late life depression (LLD) may result from executive dysfunction that is more detrimental to list-learning than story-based recall when compared to healthy aging. Despite these behavioral dissociations, little work has been done investigating related neuroanatomical dissociations across types of verbal memory performance in LLD. We compared list-learning to story-based memory performance in 24 non-demented individuals with LLD (age ~ 66.1 ± 7.8) and 41 non-demented/non-depressed healthy controls (HC; age ~ 67.6 ± 5.3). We correlated significant results of between-group analyses across memory performance variables with brain volumes of frontal, temporal and parietal regions known to be involved with verbal learning and memory. When compared to the HC group, the LLD group showed significantly lower verbal memory performance for spontaneous recall after repeated exposure and after a long-delay but only for the list-learning task; groups did not differ on story-based memory performance. Despite equivalent brain volumes across regions, only the LLD group showed brain associations with verbal memory performance and only for the list-learning task. Specifically, frontal volumes important for subjective organization and response monitoring correlated with list-learning performance in the LLD group. This study is the first to demonstrate neuroanatomical dissociations across types of verbal memory performance in individuals with LLD. Results provide structural evidence for the behavioral dissociations between list-learning and story-based recall in LLD when compared to healthy aging. More specifically, it points toward a network of predominantly anterior brain regions that may underlie the executive contribution to list-learning in older adults with depression. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Mapping the Proxies of Memory and Learning Function in Senior Adults with High-performing, Normal Aging and Neurocognitive Disorders.

    PubMed

    Lu, Hanna; Xi, Ni; Fung, Ada W T; Lam, Linda C W

    2018-06-09

    Memory and learning, as the core brain function, shows controversial results across studies focusing on aging and dementia. One of the reasons is because of the multi-faceted nature of memory and learning. However, there is still a dearth of comparable proxies with psychometric and morphometric portrait in clinical and non-clinical populations. We aim to investigate the proxies of memory and learning function with direct and derived measures and examine their associations with morphometric features in senior adults with different cognitive status. Based on two modality-driven tests, we assessed the component-specific memory and learning in the individuals with high performing (HP), normal aging, and neurocognitive disorders (NCD) (n = 488). Structural magnetic resonance imaging was used to measure the regional cortical thickness with surface-based morphometry analysis in a subsample (n = 52). Compared with HP elderly, the ones with normal aging and minor NCD showed declined recognition memory and working memory, whereas had better learning performance (derived scores). Meanwhile, major NCD patients showed more breakdowns of memory and learning function. The correlation between proxies of memory and learning and cortical thickness exhibited the overlapped and unique neural underpinnings. The proxies of memory and learning could be characterized by component-specific constructs with psychometric and morphometric bases. Overall, the constructs of memory are more likely related to the pathological changes, and the constructs of learning tend to reflect the cognitive abilities of compensation.

  6. Learning-performance distinction and memory processes for motor skills: a focused review and perspective.

    PubMed

    Kantak, Shailesh S; Winstein, Carolee J

    2012-03-01

    Behavioral research in cognitive psychology provides evidence for an important distinction between immediate performance that accompanies practice and long-term performance that reflects the relative permanence in the capability for the practiced skill (i.e. learning). This learning-performance distinction is strikingly evident when challenging practice conditions may impair practice performance, but enhance long-term retention of motor skills. A review of motor learning studies with a specific focus on comparing differences in performance between that at the end of practice and at delayed retention suggests that the delayed retention or transfer performance is a better indicator of motor learning than the performance at (or end of) practice. This provides objective evidence for the learning-performance distinction. This behavioral evidence coupled with an understanding of the motor memory processes of encoding, consolidation and retrieval may provide insight into the putative mechanism that implements the learning-performance distinction. Here, we propose a simplistic empirically-based framework--motor behavior-memory framework--that integrates the temporal evolution of motor memory processes with the time course of practice and delayed retention frequently used in behavioral motor learning paradigms. In the context of the proposed framework, recent research has used noninvasive brain stimulation to decipher the role of each motor memory process, and specific cortical brain regions engaged in motor performance and learning. Such findings provide beginning insights into the relationship between the time course of practice-induced performance changes and motor memory processes. This in turn has promising implications for future research and practical applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Neonatal brain abnormalities and memory and learning outcomes at 7 years in children born very preterm.

    PubMed

    Omizzolo, Cristina; Scratch, Shannon E; Stargatt, Robyn; Kidokoro, Hiroyuki; Thompson, Deanne K; Lee, Katherine J; Cheong, Jeanie; Neil, Jeffrey; Inder, Terrie E; Doyle, Lex W; Anderson, Peter J

    2014-01-01

    Using prospective longitudinal data from 198 very preterm and 70 full term children, this study characterised the memory and learning abilities of very preterm children at 7 years of age in both verbal and visual domains. The relationship between the extent of brain abnormalities on neonatal magnetic resonance imaging (MRI) and memory and learning outcomes at 7 years of age in very preterm children was also investigated. Neonatal MRI scans were qualitatively assessed for global, white-matter, cortical grey-matter, deep grey-matter, and cerebellar abnormalities. Very preterm children performed less well on measures of immediate memory, working memory, long-term memory, and learning compared with term-born controls. Neonatal brain abnormalities, and in particular deep grey-matter abnormality, were associated with poorer memory and learning performance at 7 years in very preterm children. Findings support the importance of cerebral neonatal pathology for predicting later memory and learning function.

  8. The contribution of temporary storage and executive processes to category learning.

    PubMed

    Wang, Tengfei; Ren, Xuezhu; Schweizer, Karl

    2015-09-01

    Three distinctly different working memory processes, temporary storage, mental shifting and inhibition, were proposed to account for individual differences in category learning. A sample of 213 participants completed a classic category learning task and two working memory tasks that were experimentally manipulated for tapping specific working memory processes. Fixed-links models were used to decompose data of the category learning task into two independent components representing basic performance and improvement in performance in category learning. Processes of working memory were also represented by fixed-links models. In a next step the three working memory processes were linked to components of category learning. Results from modeling analyses indicated that temporary storage had a significant effect on basic performance and shifting had a moderate effect on improvement in performance. In contrast, inhibition showed no effect on any component of the category learning task. These results suggest that temporary storage and the shifting process play different roles in the course of acquiring new categories. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. [Influence of stress on learning and memory].

    PubMed

    Ukai, M

    2000-08-01

    This paper describes the influence of stress on learning and memory. The mice receiving inescapable electroshock fail to perform the active conditioned avoidance response of lever-pressing. This is called learned helplessness, which is ameliorated by treatment with antidepressants including one of the selective serotonin reuptake inhibitors (SSRIs). It is of particular interest that posttraumatic stress disease (PTSD) accompanied by memory impairment could be improved by treatment with SSRIs. The different kinds of stress including ischemia, footshock, psychological stress, and forced swimming influence learning and memory as indexed by spontaneous alternation performance as well as passive avoidance learning. In addition, a variety of stresses influence the activity of hormones and neurotransmitters like monoamines, neuropeptides, and excitatory amino acids resulting in changes in learning and memory. Finally, the accumulation of data is necessary to clarify the exact mechanism of stress on learning and memory.

  10. Short-term memory, executive control, and children's route learning.

    PubMed

    Purser, Harry R M; Farran, Emily K; Courbois, Yannick; Lemahieu, Axelle; Mellier, Daniel; Sockeel, Pascal; Blades, Mark

    2012-10-01

    The aim of this study was to investigate route-learning ability in 67 children aged 5 to 11years and to relate route-learning performance to the components of Baddeley's model of working memory. Children carried out tasks that included measures of verbal and visuospatial short-term memory and executive control and also measures of verbal and visuospatial long-term memory; the route-learning task was conducted using a maze in a virtual environment. In contrast to previous research, correlations were found between both visuospatial and verbal memory tasks-the Corsi task, short-term pattern span, digit span, and visuospatial long-term memory-and route-learning performance. However, further analyses indicated that these relationships were mediated by executive control demands that were common to the tasks, with long-term memory explaining additional unique variance in route learning. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Long-term associative learning predicts verbal short-term memory performance.

    PubMed

    Jones, Gary; Macken, Bill

    2018-02-01

    Studies using tests such as digit span and nonword repetition have implicated short-term memory across a range of developmental domains. Such tests ostensibly assess specialized processes for the short-term manipulation and maintenance of information that are often argued to enable long-term learning. However, there is considerable evidence for an influence of long-term linguistic learning on performance in short-term memory tasks that brings into question the role of a specialized short-term memory system separate from long-term knowledge. Using natural language corpora, we show experimentally and computationally that performance on three widely used measures of short-term memory (digit span, nonword repetition, and sentence recall) can be predicted from simple associative learning operating on the linguistic environment to which a typical child may have been exposed. The findings support the broad view that short-term verbal memory performance reflects the application of long-term language knowledge to the experimental setting.

  12. Recurrent Neural Networks With Auxiliary Memory Units.

    PubMed

    Wang, Jianyong; Zhang, Lei; Guo, Quan; Yi, Zhang

    2018-05-01

    Memory is one of the most important mechanisms in recurrent neural networks (RNNs) learning. It plays a crucial role in practical applications, such as sequence learning. With a good memory mechanism, long term history can be fused with current information, and can thus improve RNNs learning. Developing a suitable memory mechanism is always desirable in the field of RNNs. This paper proposes a novel memory mechanism for RNNs. The main contributions of this paper are: 1) an auxiliary memory unit (AMU) is proposed, which results in a new special RNN model (AMU-RNN), separating the memory and output explicitly and 2) an efficient learning algorithm is developed by employing the technique of error flow truncation. The proposed AMU-RNN model, together with the developed learning algorithm, can learn and maintain stable memory over a long time range. This method overcomes both the learning conflict problem and gradient vanishing problem. Unlike the traditional method, which mixes the memory and output with a single neuron in a recurrent unit, the AMU provides an auxiliary memory neuron to maintain memory in particular. By separating the memory and output in a recurrent unit, the problem of learning conflicts can be eliminated easily. Moreover, by using the technique of error flow truncation, each auxiliary memory neuron ensures constant error flow during the learning process. The experiments demonstrate good performance of the proposed AMU-RNNs and the developed learning algorithm. The method exhibits quite efficient learning performance with stable convergence in the AMU-RNN learning and outperforms the state-of-the-art RNN models in sequence generation and sequence classification tasks.

  13. Intervention strength does not differentially affect memory reconsolidation of strong memories.

    PubMed

    van Schie, Kevin; van Veen, Suzanne C; Hendriks, Yanniek R; van den Hout, Marcel A; Engelhard, Iris M

    2017-10-01

    Recently, it has become clear that retrieval (i.e., reactivation) of consolidated memories may return these memories into a labile state before they are restored into long-term memory ('reconsolidation'). Using behavioral manipulations, reactivated memories can be disrupted via the mechanism of novel learning. In the present study, we investigated whether changing a strong memory during reconsolidation depends on the strength of novel learning. To test this, participants (N=144) in six groups acquired a relatively strong memory on Day 1 by viewing and recalling a series of pictures three times. On Day 8, these pictures were reactivated in three groups, and they were not reactivated in the other three groups. Then, participants viewed and recalled new pictures once (weak new learning) or three times (strong new learning), or they did not learn any new pictures. On Day 9, participants performed a recognition test in which their memory for Day 1 pictures was assessed. Two main results are noted. First, the groups that reactivated pictures from Day 1 and received weak or strong new learning did not differ in memory performance. Second, these two groups consistently performed similar to groups that controlled for new learning without reactivation. Because these results contradict what was expected based on the reconsolidation hypothesis, we discuss possible explanations and implications. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Sleep stages, memory and learning.

    PubMed Central

    Dotto, L

    1996-01-01

    Learning and memory can be impaired by sleep loss during specific vulnerable "windows" for several days after new tasks have been learned. Different types of tasks are differentially vulnerable to the loss of different stages of sleep. Memory required to perform cognitive procedural tasks is affected by the loss of rapid-eye-movement (REM) sleep on the first night after learning occurs and again on the third night after learning. REM-sleep deprivation on the second night after learning does not produce memory deficits. Declarative memory, which is used for the recall of specific facts, is not similarly affected by REM-sleep loss. The learning of procedural motor tasks, including those required in many sports, is impaired by the loss of stage 2 sleep, which occurs primarily in the early hours of the morning. These findings have implications for the academic and athletic performance of students and for anyone whose work involves ongoing learning and demands high standards of performance. Images p1194-a PMID:8612256

  15. Sex Differences in Using Spatial and Verbal Abilities Influence Route Learning Performance in a Virtual Environment: A Comparison of 6- to 12-Year Old Boys and Girls.

    PubMed

    Merrill, Edward C; Yang, Yingying; Roskos, Beverly; Steele, Sara

    2016-01-01

    Previous studies have reported sex differences in wayfinding performance among adults. Men are typically better at using Euclidean information and survey strategies while women are better at using landmark information and route strategies. However, relatively few studies have examined sex differences in wayfinding in children. This research investigated relationships between route learning performance and two general abilities: spatial ability and verbal memory in 153 boys and girls between 6- to 12-years-old. Children completed a battery of spatial ability tasks (a two-dimension mental rotation task, a paper folding task, a visuo-spatial working memory task, and a Piagetian water level task) and a verbal memory task. In the route learning task, they had to learn a route through a series of hallways presented via computer. Boys had better overall route learning performance than did girls. In fact, the difference between boys and girls was constant across the age range tested. Structural equation modeling of the children's performance revealed that spatial abilities and verbal memory were significant contributors to route learning performance. However, there were different patterns of correlates for boys and girls. For boys, spatial abilities contributed to route learning while verbal memory did not. In contrast, for girls both spatial abilities and verbal memory contributed to their route learning performance. This difference may reflect the precursor of a strategic difference between boys and girls in wayfinding that is commonly observed in adults.

  16. Dreaming of a Learning Task is Associated with Enhanced Sleep-Dependent Memory Consolidation

    PubMed Central

    Wamsley, Erin J.; Tucker, Matthew; Payne, Jessica D.; Benavides, Joseph; Stickgold, Robert

    2010-01-01

    Summary It is now well established that post-learning sleep is beneficial for human memory performance [1–5]. Meanwhile, human and animal studies demonstrate that learning-related neural activity is re-expressed during post-training non-rapid eye movement sleep (NREM) [6–9]. NREM sleep processes appear to be particularly beneficial for hippocampus-dependent forms of memory [1–3, 10]. These observations suggest that learning triggers the reactivation and reorganization of memory traces during sleep, a systems-level process that in turn enhances behavioral performance. Here, we hypothesized that dreaming about a learning experience during NREM sleep would be associated with improved performance on a hippocampus-dependent spatial memory task. Subjects (n=99) were trained on a virtual navigation task, and then retested on the same task 5 hours after initial training. Improved performance at retest was strongly associated with task-related dream imagery during an intervening afternoon nap. Task-related thoughts during wakefulness, in contrast, did not predict improved performance. These observations suggest that sleep-dependent memory consolidation in humans is facilitated by the offline reactivation of recently formed memories, and furthermore, that dream experiences reflect this memory processing. That similar effects were not seen during wakefulness suggests that these mnemonic processes are specific to the sleep state. PMID:20417102

  17. Variability in memory performance in aged healthy individuals: an fMRI study.

    PubMed

    Grön, Georg; Bittner, Daniel; Schmitz, Bernd; Wunderlich, Arthur P; Tomczak, Reinhard; Riepe, Matthias W

    2003-01-01

    Episodic memory performance varies in older subjects but underlying biological correlates remain as yet ambiguous. We investigated episodic memory in healthy older individuals (n=24; mean age: 64.4+/-6.7 years) without subjective memory complaints or objective cognitive impairment. Episodic memory was assessed with repetitive learning and recall of abstract geometric patterns during fMRI. Group analysis of brain activity during initial learning and maximum recall revealed hippocampal activation. Correlation analysis of brain activation and task performance demonstrated significant hippocampal activity during initial learning and maximum recall in a success-dependent manner. Neither age nor gray matter densities correlated with hippocampal activation. Functional imaging of episodic memory thus permits to detect objectively variability in hippocampal recruitment in healthy aged individuals without subjective memory complaints. Correlation analysis of brain activation and performance during an episodic memory task may be used to determine and follow-up hippocampal malfunction in a very sensitive manner.

  18. Contributions of Language and Memory Demands to Verbal Memory Performance in Language-Learning Disabilities

    ERIC Educational Resources Information Center

    Isaki, Emi; Spaulding, Tammie J.; Plante, Elena

    2008-01-01

    The purpose of this study is to investigate the performance of adults with language-based learning disorders (L/LD) and normal language controls on verbal short-term and verbal working memory tasks. Eighteen adults with L/LD and 18 normal language controls were compared on verbal short-term memory and verbal working memory tasks under low,…

  19. Neonatal Brain Abnormalities and Memory and Learning Outcomes at 7 Years in Children Born Very Preterm

    PubMed Central

    Omizzolo, Cristina; Scratch, Shannon E; Stargatt, Robyn; Kidokoro, Hiroyuki; Thompson, Deanne K; Lee, Katherine J; Cheong, Jeanie; Neil, Jeffrey; Inder, Terrie E; Doyle, Lex W; Anderson, Peter J

    2014-01-01

    Using prospective longitudinal data from 198 very preterm and 70 full term children, this study characterised the memory and learning abilities of very preterm children at 7 years of age in both verbal and visual domains. The relationship between the extent of brain abnormalities on neonatal magnetic resonance imaging (MRI) and memory and learning outcomes at 7 years of age in very preterm children was also investigated. Neonatal MRI scans were qualitatively assessed for global, white-matter, cortical grey-matter, deep grey-matter, and cerebellar abnormalities. Very preterm children performed less well on measures of immediate memory, working memory, long-term memory, and learning compared with term born controls. Neonatal brain abnormalities, and in particular deep grey matter abnormality, were associated with poorer memory and learning performance at 7 years in very preterm children, especially global, white-matter, grey-matter and cerebellar abnormalities. Findings support the importance of cerebral neonatal pathology for predicting later memory and learning function. PMID:23805915

  20. Deficits in verbal long-term memory and learning in children with poor phonological short-term memory skills.

    PubMed

    Gathercole, Susan E; Briscoe, Josie; Thorn, Annabel; Tiffany, Claire

    2008-03-01

    Possible links between phonological short-term memory and both longer term memory and learning in 8-year-old children were investigated in this study. Performance on a range of tests of long-term memory and learning was compared for a group of 16 children with poor phonological short-term memory skills and a comparison group of children of the same age with matched nonverbal reasoning abilities but memory scores in the average range. The low-phonological-memory group were impaired on longer term memory and learning tasks that taxed memory for arbitrary verbal material such as names and nonwords. However, the two groups performed at comparable levels on tasks requiring the retention of visuo-spatial information and of meaningful material and at carrying out prospective memory tasks in which the children were asked to carry out actions at a future point in time. The results are consistent with the view that poor short-term memory function impairs the longer-term retention and ease of learning of novel verbal material.

  1. The effect of strategic memory training in older adults: who benefits most?

    PubMed

    Rosi, Alessia; Del Signore, Federica; Canelli, Elisa; Allegri, Nicola; Bottiroli, Sara; Vecchi, Tomaso; Cavallini, Elena

    2017-12-07

    Previous research has suggested that there is a degree of variability among older adults' response to memory training, such that some individuals benefit more than others. The aim of the present study was to identify the profile of older adults who were likely to benefit most from a strategic memory training program that has previously proved to be effective in improving memory in healthy older adults. In total, 44 older adults (60-83 years) participated in a strategic memory training. We examined memory training benefits by measuring changes in memory practiced (word list learning) and non-practiced tasks (grocery list and associative learning). In addition, a battery of cognitive measures was administered in order to assess crystallized and fluid abilities, short-term memory, working memory, and processing speed. Results confirmed the efficacy of the training in improving performance in both practiced and non-practiced memory tasks. For the practiced memory tasks, results showed that memory baseline performance and crystallized ability predicted training gains. For the non-practiced memory tasks, analyses showed that memory baseline performance was a significant predictor of gain in the grocery list learning task. For the associative learning task, the significant predictors were memory baseline performance, processing speed, and marginally the age. Our results indicate that older adults with a higher baseline memory capacity and with more efficient cognitive resources were those who tended to benefit most from the training. The present study provides new avenues in designing personalized intervention according to the older adults' cognitive profile.

  2. Learning and memory performance in a cohort of clinically referred breast cancer survivors: the role of attention versus forgetting in patient-reported memory complaints.

    PubMed

    Root, James C; Ryan, Elizabeth; Barnett, Gregory; Andreotti, Charissa; Bolutayo, Kemi; Ahles, Tim

    2015-05-01

    While forgetfulness is widely reported by breast cancer survivors, studies documenting objective memory performance yield mixed, largely inconsistent, results. Failure to find consistent, objective memory issues may be due to the possibility that cancer survivors misattribute their experience of forgetfulness to primary memory issues rather than to difficulties in attention at the time of learning. To clarify potential attention issues, factor scores for Attention Span, Learning Efficiency, Delayed Memory, and Inaccurate Memory were analyzed for the California Verbal Learning Test-Second Edition (CVLT-II) in 64 clinically referred breast cancer survivors with self-reported cognitive complaints; item analysis was conducted to clarify specific contributors to observed effects, and contrasts between learning and recall trials were compared with normative data. Performance on broader cognitive domains is also reported. The Attention Span factor, but not Learning Efficiency, Delayed Memory, or Inaccurate Memory factors, was significantly affected in this clinical sample. Contrasts between trials were consistent with normative data and did not indicate greater loss of information over time than in the normative sample. Results of this analysis suggest that attentional dysfunction may contribute to subjective and objective memory complaints in breast cancer survivors. These results are discussed in the context of broader cognitive effects following treatment for clinicians who may see cancer survivors for assessment. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Sex Differences in Using Spatial and Verbal Abilities Influence Route Learning Performance in a Virtual Environment: A Comparison of 6- to 12-Year Old Boys and Girls

    PubMed Central

    Merrill, Edward C.; Yang, Yingying; Roskos, Beverly; Steele, Sara

    2016-01-01

    Previous studies have reported sex differences in wayfinding performance among adults. Men are typically better at using Euclidean information and survey strategies while women are better at using landmark information and route strategies. However, relatively few studies have examined sex differences in wayfinding in children. This research investigated relationships between route learning performance and two general abilities: spatial ability and verbal memory in 153 boys and girls between 6- to 12-years-old. Children completed a battery of spatial ability tasks (a two-dimension mental rotation task, a paper folding task, a visuo-spatial working memory task, and a Piagetian water level task) and a verbal memory task. In the route learning task, they had to learn a route through a series of hallways presented via computer. Boys had better overall route learning performance than did girls. In fact, the difference between boys and girls was constant across the age range tested. Structural equation modeling of the children’s performance revealed that spatial abilities and verbal memory were significant contributors to route learning performance. However, there were different patterns of correlates for boys and girls. For boys, spatial abilities contributed to route learning while verbal memory did not. In contrast, for girls both spatial abilities and verbal memory contributed to their route learning performance. This difference may reflect the precursor of a strategic difference between boys and girls in wayfinding that is commonly observed in adults. PMID:26941701

  4. Involvement of Working Memory in College Students' Sequential Pattern Learning and Performance

    ERIC Educational Resources Information Center

    Kundey, Shannon M. A.; De Los Reyes, Andres; Rowan, James D.; Lee, Bern; Delise, Justin; Molina, Sabrina; Cogdill, Lindsay

    2013-01-01

    When learning highly organized sequential patterns of information, humans and nonhuman animals learn rules regarding the hierarchical structures of these sequences. In three experiments, we explored the role of working memory in college students' sequential pattern learning and performance in a computerized task involving a sequential…

  5. Cognitive effects of methylphenidate and levodopa in healthy volunteers.

    PubMed

    Linssen, A M W; Sambeth, A; Vuurman, E F P M; Riedel, W J

    2014-02-01

    Our previous study showed enhanced declarative memory consolidation after acute methylphenidate (MPH) administration. The primary aim of the current study was to investigate the duration of this effect. Secondary, the dopaminergic contribution of MPH effects, the electrophysiological correlates of declarative memory, and the specificity of memory enhancing effects of MPH to declarative memory were assessed. Effects of 40 mg of MPH on memory performance were compared to 100mg of levodopa (LEV) in a placebo-controlled crossover study with 30 healthy volunteers. Memory performance testing included a word learning test, the Sternberg memory scanning task, a paired associates learning task, and a spatial working memory task. During the word learning test, event-related brain potentials (ERPs) were measured. MPH failed to enhance retention of words at a 30 min delay, but it improved 24 h delayed memory recall relative to PLA and LEV. Furthermore, during encoding, the P3b and P600 ERP latencies were prolonged and the P600 amplitude was larger after LEV compared to PLA and MPH. MPH speeded response times on the Sternberg Memory Scanning task and improved performance on the Paired Associates Learning task, relative to LEV, but not PLA. Performance on the Spatial working memory task was not affected by the treatments. These findings suggest that MPH and LEV might have opposite effects on memory. © 2013 Published by Elsevier B.V. and ECNP.

  6. Modulation of competing memory systems by distraction.

    PubMed

    Foerde, Karin; Knowlton, Barbara J; Poldrack, Russell A

    2006-08-01

    Different forms of learning and memory depend on functionally and anatomically separable neural circuits [Squire, L. R. (1992) Psychol. Rev. 99, 195-231]. Declarative memory relies on a medial temporal lobe system, whereas habit learning relies on the striatum [Cohen, N. J. & Eichenbaum, H. (1993) Memory, Amnesia, and the Hippocampal System (MIT Press, Cambridge, MA)]. How these systems are engaged to optimize learning and behavior is not clear. Here, we present results from functional neuroimaging showing that the presence of a demanding secondary task during learning modulates the degree to which subjects solve a problem using either declarative memory or habit learning. Dual-task conditions did not reduce accuracy but reduced the amount of declarative learning about the task. Medial temporal lobe activity was correlated with task performance and declarative knowledge after learning under single-task conditions, whereas performance was correlated with striatal activity after dual-task learning conditions. These results demonstrate a fundamental difference in these memory systems in their sensitivity to concurrent distraction. The results are consistent with the notion that declarative and habit learning compete to mediate task performance, and they suggest that the presence of distraction can bias this competition. These results have implications for learning in multitask situations, suggesting that, even if distraction does not decrease the overall level of learning, it can result in the acquisition of knowledge that can be applied less flexibly in new situations.

  7. Learning and memory performance in breast cancer survivors 2 to 6 years post-treatment: the role of encoding versus forgetting.

    PubMed

    Root, James C; Andreotti, Charissa; Tsu, Loretta; Ellmore, Timothy M; Ahles, Tim A

    2016-06-01

    Our previous retrospective analysis of clinically referred breast cancer survivors' performance on learning and memory measures found a primary weakness in initial encoding of information into working memory with intact retention and recall of this same information at a delay. This suggests that survivors may misinterpret cognitive lapses as being due to forgetting when, in actuality, they were not able to properly encode this information at the time of initial exposure. Our objective in this study was to replicate and extend this pattern of performance to a research sample to increase the generalizability of this finding in a sample in which subjects were not clinically referred for cognitive issues. We contrasted learning and memory performance between breast cancer survivors on endocrine therapy 2 to 6 years post-treatment with age- and education-matched healthy controls. We then stratified lower- and higher-performing breast cancer survivors to examine specific patterns of learning and memory performance. Contrasts were generated for four aggregate visual and verbal memory variables from the California Verbal Learning Test-2 (CVLT-2) and the Brown Location Test (BLT): Single-trial Learning: Trial 1 performance, Multiple-trial Learning: Trial 5 performance, Delayed Recall: Long-delay Recall performance, and Memory Errors: False-positive errors. As predicted, breast cancer survivors' performance as a whole was significantly lower on Single-trial Learning than the healthy control group but exhibited no significant difference in Delayed Recall. In the secondary analysis contrasting lower- and higher-performing survivors on cognitive measures, the same pattern of lower Single-trial Learning performance was exhibited in both groups, with the additional finding of significantly weaker Multiple-trial Learning performance in the lower-performing breast cancer group and intact Delayed Recall performance in both groups. As with our earlier finding of weaker initial encoding with intact recall in a cohort of clinically referred breast cancer survivors, our results indicate this same profile in a research sample of breast cancer survivors. Further, when the breast cancer group was stratified by lower and higher performance, both groups exhibited significantly lower performance on initial encoding, with more pronounced encoding weakness in the lower-performing group. As in our previous research, survivors did not lose successfully encoded information over longer delays, either in the lower- or higher-performing group, again arguing against memory decay in survivors. The finding of weaker initial encoding of information together with intact delayed recall in survivors points to specific treatment interventions in rehabilitation of cognitive dysfunction. The finding of weaker initial encoding of information together with intact delayed recall in survivors points to specific treatment interventions in rehabilitation of cognitive dysfunction and is discussed.

  8. Achieving enlightenment: what do we know about the implicit learning system and its interaction with explicit knowledge?

    PubMed

    Vidoni, Eric D; Boyd, Lara A

    2007-09-01

    Two major memory and learning systems operate in the brain: one for facts and ideas (ie, the declarative or explicit system), one for habits and behaviors (ie, the procedural or implicit system). Broadly speaking these two memory systems can operate either in concert or entirely independently of one another during the performance and learning of skilled motor behaviors. This Special Issue article has two parts. In the first, we present a review of implicit motor skill learning that is largely centered on the interactions between declarative and procedural learning and memory. Because distinct neuroanatomical substrates support unique aspects of learning and memory and thus focal injury can cause impairments that are dependent on lesion location, we also broadly consider which brain regions mediate implicit and explicit learning and memory. In the second part of this article, the interactive nature of these two memory systems is illustrated by the presentation of new data that reveal that both learning implicitly and acquiring explicit knowledge through physical practice lead to motor sequence learning. In our new data, we discovered that for healthy individuals use of the implicit versus explicit memory system differently affected variability of performance during acquisition practice; variability was higher early in practice for the implicit group and later in practice for the acquired explicit group. Despite the difference in performance variability, by retention both groups demonstrated comparable change in tracking accuracy and thus, motor sequence learning. Clinicians should be aware of the potential effects of implicit and explicit interactions when designing rehabilitation interventions, particularly when delivering explicit instructions before task practice, working with individuals with focal brain damage, and/or adjusting therapeutic parameters based on acquisition performance variability.

  9. Episodic memory deficits slow down the dynamics of cognitive procedural learning in normal ageing

    PubMed Central

    Beaunieux, Hélène; Hubert, Valérie; Pitel, Anne Lise; Desgranges, Béatrice; Eustache, Francis

    2009-01-01

    Cognitive procedural learning is characterized by three phases, each involving distinct processes. Considering the implication of the episodic memory in the first cognitive stage, the impairment of this memory system might be responsible for a slowing down of the cognitive procedural learning dynamics in the course of aging. Performances of massed cognitive procedural learning were evaluated in older and younger participants using the Tower of Toronto task. Nonverbal intelligence and psychomotor abilities were used to analyze procedural dynamics, while episodic memory and working memory were assessed to measure their respective contributions to learning strategies. This experiment showed that older participants did not spontaneously invoke episodic memory and presented a slowdown in the cognitive procedural learning associated with a late involvement of working memory. These findings suggest that the slowdown in the cognitive procedural learning may be linked with the implementation of different learning strategies less involving episodic memory in older subjects. PMID:18654928

  10. Age effects shrink when motor learning is predominantly supported by nondeclarative, automatic memory processes: evidence from golf putting.

    PubMed

    Chauvel, Guillaume; Maquestiaux, François; Hartley, Alan A; Joubert, Sven; Didierjean, André; Masters, Rich S W

    2012-01-01

    Can motor learning be equivalent in younger and older adults? To address this question, 48 younger (M = 23.5 years) and 48 older (M = 65.0 years) participants learned to perform a golf-putting task in two different motor learning situations: one that resulted in infrequent errors or one that resulted in frequent errors. The results demonstrated that infrequent-error learning predominantly relied on nondeclarative, automatic memory processes whereas frequent-error learning predominantly relied on declarative, effortful memory processes: After learning, infrequent-error learners verbalized fewer strategies than frequent-error learners; at transfer, a concurrent, attention-demanding secondary task (tone counting) left motor performance of infrequent-error learners unaffected but impaired that of frequent-error learners. The results showed age-equivalent motor performance in infrequent-error learning but age deficits in frequent-error learning. Motor performance of frequent-error learners required more attention with age, as evidenced by an age deficit on the attention-demanding secondary task. The disappearance of age effects when nondeclarative, automatic memory processes predominated suggests that these processes are preserved with age and are available even early in motor learning.

  11. Synesthetic experiences enhance unconscious learning.

    PubMed

    Rothen, Nicolas; Scott, Ryan B; Mealor, Andy D; Coolbear, Daniel J; Burckhardt, Vera; Ward, Jamie

    2013-01-01

    Synesthesia  is characterized  by consistent extra perceptual experiences in response to normal sensory input. Recent studies provide evidence for a specific profile of enhanced memory performance in synesthesia, but focus exclusively on explicit memory paradigms for which the learned content is consciously accessible. In this study, for the first time, we demonstrate with an implicit memory paradigm that synesthetic experiences also enhance memory performance relating to unconscious knowledge.

  12. Do Judgments of Learning Predict Automatic Influences of Memory?

    ERIC Educational Resources Information Center

    Undorf, Monika; Böhm, Simon; Cüpper, Lutz

    2016-01-01

    Current memory theories generally assume that memory performance reflects both recollection and automatic influences of memory. Research on people's predictions about the likelihood of remembering recently studied information on a memory test, that is, on judgments of learning (JOLs), suggests that both magnitude and resolution of JOLs are linked…

  13. Mnemonic strategies in older people: a comparison of errorless and errorful learning.

    PubMed

    Kessels, Roy P C; de Haan, Edward H F

    2003-09-01

    To compare the efficacy of errorless and errorful learning on memory performance in older people and young adults. Face-name association learning was examined in 18 older people and 16 young controls. Subjects were either prompted to guess the correct name during the presentation of photographs of unknown faces (errorful learning) or were instructed to study the face without guessing (errorless learning). The correct name was given after the presentation of each face in both task conditions. Uncued testing followed immediately after the two study phases and after a 10-minute delay. Older subjects had an overall lower memory performance and flatter learning curves compared to the young adults, regardless of task conditions. Also, errorless learning resulted in a higher accuracy than errorful learning, to an equal amount in both groups. Older people have difficulty in the encoding stages of face-name association learning, whereas retrieval is relatively unaffected. In addition, the prevention of errors occurring during learning results in a better memory performance, and is perhaps an effective strategy for coping with age-related memory decrement.

  14. Older adults catch up to younger adults on a learning and memory task that involves collaborative social interaction.

    PubMed

    Derksen, B J; Duff, M C; Weldon, K; Zhang, J; Zamba, K D; Tranel, D; Denburg, N L

    2015-01-01

    Learning and memory abilities tend to decline as people age. The current study examines the question of whether a learning situation that emphasises collaborative social interaction might help older persons overcome age-related learning and memory changes and thus perform similarly to younger persons. Younger and Older participants (n = 34 in each group) completed the Barrier Task (BT), a game-like social interaction where partners work together to develop labels for a set of abstract tangrams. Participants were also administered standard clinical neuropsychological measures of memory, on which the Older group showed expected inferiority to the Younger group. On the BT, the Older group performed less well than the Younger group early on, but as the task progressed, the performance of the Older group caught up and became statistically indistinguishable from that of the Younger group. These results can be taken to suggest that a learning milieu characterised by collaborative social interaction can attenuate some of the typical memory disadvantages associated with being older.

  15. Impact of oral supplementation of Glutamate and GABA on memory performance and neurochemical profile in hippocampus of rats.

    PubMed

    Tabassum, Saiqa; Ahmad, Saara; Madiha, Syeda; Khaliq, Saima; Shahzad, Sidrah; Batool, Zehra; Haider, Saida

    2017-05-01

    Glutamate (GLU) and gamma-amino butyric acid (GABA) are essential amino acids (AA) for brain function serving as excitatory and inhibitory neurotransmitter respectively. Their tablets are available in market for improving gut function and muscle performance. Despite of having a major role during memory formation and processing, effects of these tablets on brain functioning like learning and memory have not been investigated. Therefore, present study is aimed to investigate the effects of orally supplemented GLU and GABA on learning and memory performance and further to monitor related effects of these orally supplemented GLU and GABA on brain levels of these AA. Three groups of rats were supplemented orally with drinking water (control group) or suspension of tablets of GABA and Glutamate, respectively for four weeks. Cognitive performance was determined using behavioral tests (Novel object recognition test, Morris water maze, Passive avoidance test) measuring recognition, spatial reference and aversive memory. Levels of GLU, GABA and acetylcholine (ACh) were estimated in rat hippocampus. Results showed that chronic oral administration of GLU and GABA tablets has a significant impact on brain function and can alter GLU and GABA content in rat hippocampus. Compared to GABA, GLU supplementation specifically enhances memory performance via increasing ACh. Thus, GLU can be suggested as a useful supplement for improving learning and memory performance and neurochemical status of brain and in future could be effective in the treatment of neurological disorders affecting learning and memory performance.

  16. Motor learning and working memory in children born preterm: a systematic review.

    PubMed

    Jongbloed-Pereboom, Marjolein; Janssen, Anjo J W M; Steenbergen, Bert; Nijhuis-van der Sanden, Maria W G

    2012-04-01

    Children born preterm have a higher risk for developing motor, cognitive, and behavioral problems. Motor problems can occur in combination with working memory problems, and working memory is important for explicit learning of motor skills. The relation between motor learning and working memory has never been reviewed. The goal of this review was to provide an overview of motor learning, visual working memory and the role of working memory on motor learning in preterm children. A systematic review conducted in four databases identified 38 relevant articles, which were evaluated for methodological quality. Only 4 of 38 articles discussed motor learning in preterm children. Thirty-four studies reported on visual working memory; preterm birth affected performance on visual working memory tests. Information regarding motor learning and the role of working memory on the different components of motor learning was not available. Future research should address this issue. Insight in the relation between motor learning and visual working memory may contribute to the development of evidence based intervention programs for children born preterm. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. A dissociation between engagement and learning: Enthusiastic instructions fail to reliably improve performance on a memory task.

    PubMed

    Motz, Benjamin A; de Leeuw, Joshua R; Carvalho, Paulo F; Liang, Kaley L; Goldstone, Robert L

    2017-01-01

    Despite widespread assertions that enthusiasm is an important quality of effective teaching, empirical research on the effect of enthusiasm on learning and memory is mixed and largely inconclusive. To help resolve these inconsistencies, we conducted a carefully-controlled laboratory experiment, investigating whether enthusiastic instructions for a memory task would improve recall accuracy. Scripted videos, either enthusiastic or neutral, were used to manipulate the delivery of task instructions. We also manipulated the sequence of learning items, replicating the spacing effect, a known cognitive technique for memory improvement. Although spaced study reliably improved test performance, we found no reliable effect of enthusiasm on memory performance across two experiments. We did, however, find that enthusiastic instructions caused participants to respond to more item prompts, leaving fewer test questions blank, an outcome typically associated with increased task motivation. We find no support for the popular claim that enthusiastic instruction will improve learning, although it may still improve engagement. This dissociation between motivation and learning is discussed, as well as its implications for education and future research on student learning.

  18. A dissociation between engagement and learning: Enthusiastic instructions fail to reliably improve performance on a memory task

    PubMed Central

    de Leeuw, Joshua R.; Carvalho, Paulo F.; Liang, Kaley L.; Goldstone, Robert L.

    2017-01-01

    Despite widespread assertions that enthusiasm is an important quality of effective teaching, empirical research on the effect of enthusiasm on learning and memory is mixed and largely inconclusive. To help resolve these inconsistencies, we conducted a carefully-controlled laboratory experiment, investigating whether enthusiastic instructions for a memory task would improve recall accuracy. Scripted videos, either enthusiastic or neutral, were used to manipulate the delivery of task instructions. We also manipulated the sequence of learning items, replicating the spacing effect, a known cognitive technique for memory improvement. Although spaced study reliably improved test performance, we found no reliable effect of enthusiasm on memory performance across two experiments. We did, however, find that enthusiastic instructions caused participants to respond to more item prompts, leaving fewer test questions blank, an outcome typically associated with increased task motivation. We find no support for the popular claim that enthusiastic instruction will improve learning, although it may still improve engagement. This dissociation between motivation and learning is discussed, as well as its implications for education and future research on student learning. PMID:28732087

  19. Effects of an acute bout of exercise on memory in 6th grade children.

    PubMed

    Etnier, Jennifer; Labban, Jeffrey D; Piepmeier, Aaron; Davis, Matthew E; Henning, David A

    2014-08-01

    Research supports the positive effects of exercise on cognitive performance by children. However, a limited number of studies have explored the effects specifically on memory. The purpose of this study was to compare the effects of an acute bout of exercise on learning, short-term memory, and long-term memory in a sample of children. Children were randomly assigned to an exercise condition or to a no-treatment control condition and then performed repeated trials on an auditory verbal learning task. In the exercise condition, participants performed the PACER task, an aerobic fitness assessment, in their physical education class before performing the memory task. In the control condition, participants performed the memory task at the beginning of their physical education class. Results showed that participants in the exercise condition demonstrated significantly better learning of the word lists and significantly better recall of the words after a brief delay. There were not significant differences in recognition of the words after an approximately 24-hr delay. These results provide evidence in a school setting that an acute bout of exercise provides benefits for verbal learning and long-term memory. Future research should be designed to identify the extent to which these findings translate to academic measures.

  20. Facilitation of the Cognitive Enhancing Effects of Working Memory Training Through Conjoint Voluntary Aerobic Exercise

    PubMed Central

    Smith, Andrew M.; Spiegler, Kevin M.; Sauce, Bruno; Wass, Christopher D.; Sturzoiu, Tudor; Matzel, Louis D.

    2013-01-01

    Increases in performance on tests of attention and learning are often observed shortly after a period of aerobic exercise, and evidence suggests that humans who engage in regular exercise are partially protected from age-related cognitive decline. However, the cognitive benefits of exercise are typically short-lived, limiting the practical application of these observations. We explored whether physical exercise would induce lasting changes in general cognitive ability if that exercise was combined with working memory training, which is purported to broadly impact on cognitive performance. Mice received either exercise (six weeks of voluntary running wheel access), working memory training, both treatments, or various control treatments. Near the completion of this period of exercise, working memory training (in a dual radial-arm maze) was initiated (alternating with days of exercise), and was continued for several weeks. Upon completion of these treatments, animals were assessed (2–4 weeks later) for performance on four diverse learning tasks, and the aggregate performance of individual animals across all four learning tasks was estimated. Working memory training alone promoted small increases in general cognitive performance, although any beneficial effects of exercise alone had dissipated by the time of learning assessments. However, the two treatments in combination more than doubled the improvement in general cognitive performance supported by working memory training alone. Unlike the transient effects that acute aerobic exercise can have on isolated learning tasks, these results indicate that an acute period of exercise combined with working memory training can have synergistic and lasting impact on general cognitive performance. PMID:24036169

  1. Sleep and memory in healthy children and adolescents - a critical review.

    PubMed

    Kopasz, Marta; Loessl, Barbara; Hornyak, Magdolna; Riemann, Dieter; Nissen, Christoph; Piosczyk, Hannah; Voderholzer, Ulrich

    2010-06-01

    There is mounting evidence that sleep is important for learning, memory and the underlying neural plasticity. This article aims to review published studies that evaluate the association between sleep, its distinct stages and memory systems in healthy children and adolescents. Furthermore it intends to suggest directions for future research. A computerised search of the literature for relevant articles published between 1966 and March 2008 was performed using the keywords "sleep", "memory", "learn", "child", "adolescents", "adolescence" and "teenager". Fifteen studies met the inclusion criteria. Published studies focused on the impact of sleep on working memory and memory consolidation. In summary, most studies support the hypothesis that sleep facilitates working memory as well as memory consolidation in children and adolescents. There is evidence that performance in abstract and complex tasks involving higher brain functions declines more strongly after sleep deprivation than the performance in simple memory tasks. Future studies are needed to better understand the impact of a variety of variables potentially modulating the interplay between sleep and memory, such as developmental stage, socioeconomic burden, circadian factors, or the level of post-learning sensory and motor activity (interference). This line of research can provide valuable input relevant to teaching, learning and public health policy. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Verbal Learning and Memory Functions in Adolescents with Reading Disabilities

    ERIC Educational Resources Information Center

    Oyler, James D.; Obrzut, John E.; Asbjornsen, Arve E.

    2012-01-01

    The authors of this current study compared the memory performance of adolescent students with specific reading disabilities (RD) with that of typical adolescent readers on a newly developed verbal learning test, the "Bergen-Tucson Verbal Learning Test" (BTVLT). This multiple trial test was designed to measure memory acquisition,…

  3. Linking working memory and long-term memory: a computational model of the learning of new words.

    PubMed

    Jones, Gary; Gobet, Fernand; Pine, Julian M

    2007-11-01

    The nonword repetition (NWR) test has been shown to be a good predictor of children's vocabulary size. NWR performance has been explained using phonological working memory, which is seen as a critical component in the learning of new words. However, no detailed specification of the link between phonological working memory and long-term memory (LTM) has been proposed. In this paper, we present a computational model of children's vocabulary acquisition (EPAM-VOC) that specifies how phonological working memory and LTM interact. The model learns phoneme sequences, which are stored in LTM and mediate how much information can be held in working memory. The model's behaviour is compared with that of children in a new study of NWR, conducted in order to ensure the same nonword stimuli and methodology across ages. EPAM-VOC shows a pattern of results similar to that of children: performance is better for shorter nonwords and for wordlike nonwords, and performance improves with age. EPAM-VOC also simulates the superior performance for single consonant nonwords over clustered consonant nonwords found in previous NWR studies. EPAM-VOC provides a simple and elegant computational account of some of the key processes involved in the learning of new words: it specifies how phonological working memory and LTM interact; makes testable predictions; and suggests that developmental changes in NWR performance may reflect differences in the amount of information that has been encoded in LTM rather than developmental changes in working memory capacity.

  4. The Relationship between Learning Style Preferences and Memory Strategy use in Adults.

    PubMed

    Dirette, Diane Powers; Anderson, Michele A

    2016-07-01

    Deficits in working memory are pervasive, resistant to remediation and significantly impact a persons ability to perform activities of daily living. Internal strategies are effective for improving working memory. Learning style preferences may influence the use of various internal working memory strategies. This study compares the use of internal working memory strategies among four different learning style preferences; converger, diverger, assimilator and accommodator. A non-experimental group design was used to compare the use of internal working memory strategies and learning style preferences among 110 adults. There were some significant differences in the types of strategies used according to learning style preferences. Knowing the learning style preference of clients may help occupational therapists better tailor cognitive rehabilitation treatments to meet the client's needs.

  5. The influence of visual ability on learning and memory performance in 13 strains of mice.

    PubMed

    Brown, Richard E; Wong, Aimée A

    2007-03-01

    We calculated visual ability in 13 strains of mice (129SI/Sv1mJ, A/J, AKR/J, BALB/cByJ, C3H/HeJ, C57BL/6J, CAST/EiJ, DBA/2J, FVB/NJ, MOLF/EiJ, SJL/J, SM/J, and SPRET/EiJ) on visual detection, pattern discrimination, and visual acuity and tested these and other mice of the same strains in a behavioral test battery that evaluated visuo-spatial learning and memory, conditioned odor preference, and motor learning. Strain differences in visual acuity accounted for a significant proportion of the variance between strains in measures of learning and memory in the Morris water maze. Strain differences in motor learning performance were not influenced by visual ability. Conditioned odor preference was enhanced in mice with visual defects. These results indicate that visual ability must be accounted for when testing for strain differences in learning and memory in mice because differences in performance in many tasks may be due to visual deficits rather than differences in higher order cognitive functions. These results have significant implications for the search for the neural and genetic basis of learning and memory in mice.

  6. Verbal short-term memory and vocabulary learning in polyglots.

    PubMed

    Papagno, C; Vallar, G

    1995-02-01

    Polyglot and non-polyglot Italian subjects were given tests assessing verbal (phonological) and visuo-spatial short-term and long-term memory, general intelligence, and vocabulary knowledge in their native language. Polyglots had a superior level of performance in verbal short-term memory tasks (auditory digit span and nonword repetition) and in a paired-associate learning test, which assessed the subjects' ability to acquire new (Russian) words. By contrast, the two groups had comparable performance levels in tasks assessing general intelligence, visuo-spatial short-term memory and learning, and paired-associate learning of Italian words. These findings, which are in line with neuropsychological and developmental evidence, as well as with data from normal subjects, suggest a close relationship between the capacity of phonological memory and the acquisition of foreign languages.

  7. Association between exposure to work stressors and cognitive performance.

    PubMed

    Vuori, Marko; Akila, Ritva; Kalakoski, Virpi; Pentti, Jaana; Kivimäki, Mika; Vahtera, Jussi; Härmä, Mikko; Puttonen, Sampsa

    2014-04-01

    To examine the association between work stress and cognitive performance. Cognitive performance of a total of 99 women (mean age = 47.3 years) working in hospital wards at either the top or bottom quartiles of job strain was assessed using validated tests that measured learning, short-term memory, and speed of memory retrieval. The high job strain group (n = 43) had lower performance than the low job strain group (n = 56) in learning (P = 0.025), short-term memory (P = 0.027), and speed of memory retrieval (P = 0.003). After controlling for education level, only the difference in speed of memory retrieval remained statistically significant (P = 0.010). The association found between job strain and speed of memory retrieval might be one important factor explaining the effect of stress on work performance.

  8. Effects of Fasting During Ramadan Month on Cognitive Function in Muslim Athletes

    PubMed Central

    Tian, Ho-Heng; Aziz, Abdul-Rashid; Png, Weileen; Wahid, Mohamed Faizul; Yeo, Donald; Constance Png, Ai-Li

    2011-01-01

    Purpose Our study aimed to profile the effect of fasting during the Ramadan month on cognitive function in a group of healthy Muslim athletes. Methods Eighteen male athletes underwent computerized neuropsychological testing during (fasting) and after (non-fasting) Ramadan. Diet was standardized, and tests were performed at 0900h and 1600h to characterize potential time-of-day (TOD) interactions. Psychomotor function (processing speed), vigilance (visual attention), visual learning and memory, working memory (executive function), verbal learning and memory were examined. Capillary glucose, body temperature, urine specific gravity, and sleep volume were also recorded. Results Fasting effects were observed for psychomotor function (Cohen's d=1.3, P=0.01) and vigilance (d=0.6, P=0.004), with improved performance at 0900h during fasting; verbal learning and memory was poorer at 1600h (d=-0.8, P=0.03). A TOD effect was present for psychomotor function (d=-0.4, P<0.001), visual learning (d=-0.5, P=0.04), verbal learning and memory (d=-1.3, P=0.001), with poorer performances at 1600h. There was no significant fasting effect on visual learning and working memory. Conclusions Our results show that the effect of fasting on cognition is heterogeneous and domain-specific. Performance in functions requiring sustained rapid responses was better in the morning, declining in the late afternoon, whereas performance in non-speed dependent accuracy measures was more resilient. PMID:22375233

  9. Sex differences in cognitive functioning in at-risk mental state for psychosis, first episode psychosis and healthy control subjects.

    PubMed

    Ittig, S; Studerus, E; Papmeyer, M; Uttinger, M; Koranyi, S; Ramyead, A; Riecher-Rössler, A

    2015-02-01

    Several sex differences in schizophrenia have been reported including differences in cognitive functioning. Studies with schizophrenia patients and healthy controls (HC) indicate that the sex advantage for women in verbal domains is also present in schizophrenia patients. However, findings have been inconsistent. No study focused on sex-related cognitive performance differences in at-risk mental state for psychosis (ARMS) individuals yet. Thus, the aim of the present study was to investigate sex differences in cognitive functioning in ARMS, first episode psychosis (FEP) and HC subjects. We expected a better verbal learning and memory performance of women in all groups. The neuropsychological data analysed in this study were collected within the prospective Früherkennung von Psychosen (FePsy) study. In total, 118 ARMS, 88 FEP individuals and 86 HC completed a cognitive test battery covering the domains of executive functions, attention, working memory, verbal learning and memory, IQ and speed of processing. Women performed better in verbal learning and memory regardless of diagnostic group. By contrast, men as compared to women showed a shorter reaction time during the working memory task across all groups. The results provide evidence that women generally perform better in verbal learning and memory, independent of diagnostic group (ARMS, FEP, HC). The finding of a shorter reaction time for men in the working memory task could indicate that men have a superior working memory performance since they responded faster during the target trials, while maintaining a comparable overall working memory performance level. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. A process-based approach to characterizing the effect of acute alprazolam challenge on visual paired associate learning and memory in healthy older adults.

    PubMed

    Pietrzak, Robert H; Scott, James Cobb; Harel, Brian T; Lim, Yen Ying; Snyder, Peter J; Maruff, Paul

    2012-11-01

    Alprazolam is a benzodiazepine that, when administered acutely, results in impairments in several aspects of cognition, including attention, learning, and memory. However, the profile (i.e., component processes) that underlie alprazolam-related decrements in visual paired associate learning has not been fully explored. In this double-blind, placebo-controlled, randomized cross-over study of healthy older adults, we used a novel, "process-based" computerized measure of visual paired associate learning to examine the effect of a single, acute 1-mg dose of alprazolam on component processes of visual paired associate learning and memory. Acute alprazolam challenge was associated with a large magnitude reduction in visual paired associate learning and memory performance (d = 1.05). Process-based analyses revealed significant increases in distractor, exploratory, between-search, and within-search error types. Analyses of percentages of each error type suggested that, relative to placebo, alprazolam challenge resulted in a decrease in the percentage of exploratory errors and an increase in the percentage of distractor errors, both of which reflect memory processes. Results of this study suggest that acute alprazolam challenge decreases visual paired associate learning and memory performance by reducing the strength of the association between pattern and location, which may reflect a general breakdown in memory consolidation, with less evidence of reductions in executive processes (e.g., working memory) that facilitate visual paired associate learning and memory. Copyright © 2012 John Wiley & Sons, Ltd.

  11. [Use of nondeclarative and automatic memory processes in motor learning: how to mitigate the effects of aging].

    PubMed

    Chauvel, Guillaume; Maquestiaux, François; Didierjean, André; Joubert, Sven; Dieudonné, Bénédicte; Verny, Marc

    2011-12-01

    Does normal aging inexorably lead to diminished motor learning abilities? This article provides an overview of the literature on the question, with particular emphasis on the functional dissociation between two sets of memory processes: declarative, effortful processes, and non-declarative, automatic processes. There is abundant evidence suggesting that aging does impair learning when past memories of former actions are required (episodic memory) and recollected through controlled processing (working memory). However, other studies have shown that aging does not impair learning when motor actions are performed non verbally and automatically (tapping procedural memory). These findings led us to hypothesize that one can minimize the impact of aging on the ability to learn new motor actions by favouring procedural learning. Recent data validating this hypothesis are presented. Our findings underline the importance of developing new motor learning strategies, which "bypass" declarative, effortful memory processes.

  12. Influencing Memory Performance in Learning Disabled Students through Semantic Processing.

    ERIC Educational Resources Information Center

    Walker, Stephen C.; Poteet, James A.

    1989-01-01

    Thirty learning-disabled and 30 nonhandicapped intermediate grade children were assessed on memory performance for stimulus words, which were presented with congruent and noncongruent rhyming words and semantically congruent and noncongruent sentence frames. Both groups performed significantly better on words encoded using deep level congruent…

  13. Negative Reinforcement Impairs Overnight Memory Consolidation

    ERIC Educational Resources Information Center

    Stamm, Andrew W.; Nguyen, Nam D.; Seicol, Benjamin J.; Fagan, Abigail; Oh, Angela; Drumm, Michael; Lundt, Maureen; Stickgold, Robert; Wamsley, Erin J.

    2014-01-01

    Post-learning sleep is beneficial for human memory. However, it may be that not all memories benefit equally from sleep. Here, we manipulated a spatial learning task using monetary reward and performance feedback, asking whether enhancing the salience of the task would augment overnight memory consolidation and alter its incorporation into…

  14. Fast but fleeting: adaptive motor learning processes associated with aging and cognitive decline.

    PubMed

    Trewartha, Kevin M; Garcia, Angeles; Wolpert, Daniel M; Flanagan, J Randall

    2014-10-01

    Motor learning has been shown to depend on multiple interacting learning processes. For example, learning to adapt when moving grasped objects with novel dynamics involves a fast process that adapts and decays quickly-and that has been linked to explicit memory-and a slower process that adapts and decays more gradually. Each process is characterized by a learning rate that controls how strongly motor memory is updated based on experienced errors and a retention factor determining the movement-to-movement decay in motor memory. Here we examined whether fast and slow motor learning processes involved in learning novel dynamics differ between younger and older adults. In addition, we investigated how age-related decline in explicit memory performance influences learning and retention parameters. Although the groups adapted equally well, they did so with markedly different underlying processes. Whereas the groups had similar fast processes, they had different slow processes. Specifically, the older adults exhibited decreased retention in their slow process compared with younger adults. Within the older group, who exhibited considerable variation in explicit memory performance, we found that poor explicit memory was associated with reduced retention in the fast process, as well as the slow process. These findings suggest that explicit memory resources are a determining factor in impairments in the both the fast and slow processes for motor learning but that aging effects on the slow process are independent of explicit memory declines. Copyright © 2014 the authors 0270-6474/14/3413411-11$15.00/0.

  15. Working memory supports inference learning just like classification learning.

    PubMed

    Craig, Stewart; Lewandowsky, Stephan

    2013-08-01

    Recent research has found a positive relationship between people's working memory capacity (WMC) and their speed of category learning. To date, only classification-learning tasks have been considered, in which people learn to assign category labels to objects. It is unknown whether learning to make inferences about category features might also be related to WMC. We report data from a study in which 119 participants undertook classification learning and inference learning, and completed a series of WMC tasks. Working memory capacity was positively related to people's classification and inference learning performance.

  16. Incidental Learning: A Brief, Valid Measure of Memory Based on the WAIS-IV Vocabulary and Similarities Subtests.

    PubMed

    Spencer, Robert J; Reckow, Jaclyn; Drag, Lauren L; Bieliauskas, Linas A

    2016-12-01

    We assessed the validity of a brief incidental learning measure based on the Similarities and Vocabulary subtests of the Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV). Most neuropsychological assessments for memory require intentional learning, but incidental learning occurs without explicit instruction. Incidental memory tests such as the WAIS-III Symbol Digit Coding subtest have existed for many years, but few memory studies have used a semantically processed incidental learning model. We conducted a retrospective analysis of 37 veterans with traumatic brain injury, referred for outpatient neuropsychological testing at a Veterans Affairs hospital. As part of their evaluation, the participants completed the incidental learning tasks. We compared their incidental learning performance to their performance on traditional memory measures. Incidental learning scores correlated strongly with scores on the California Verbal Learning Test-Second Edition (CVLT-II) and Brief Visuospatial Memory Test-Revised (BVMT-R). After we conducted a partial correlation that controlled for the effects of age, incidental learning correlated significantly with the CVLT-II Immediate Free Recall, CVLT-II Short-Delay Recall, CVLT-II Long-Delay Recall, and CVLT-II Yes/No Recognition Hits, and with the BVMT-R Delayed Recall and BVMT-R Recognition Discrimination Index. Our incidental learning procedures derived from subtests of the WAIS-IV Edition are an efficient and valid way of measuring memory. These tasks add minimally to testing time and capitalize on the semantic encoding that is inherent in completing the Similarities and Vocabulary subtests.

  17. Mind racing: The influence of exercise on long-term memory consolidation.

    PubMed

    McNerney, M Windy; Radvansky, Gabriel A

    2015-01-01

    Over time, regular exercise can lower the risk for age-related decline in cognition. However, the immediate effects of exercise on memory consolidation in younger adults have not been fully investigated. In two experiments, the effects of exercise were assessed on three different memory tasks. These included paired-associate learning, procedural learning and text memory. Results indicate that performance on procedural learning and situation model memory was increased with exercise, regardless of if participants exercised before or after encoding. No benefit of exercise was found for paired-associate learning. These findings suggest that intense exercise may benefit certain types of memory consolidation.

  18. Evidence for a Double Dissociation between Spatial-Simultaneous and Spatial-Sequential Working Memory in Visuospatial (Nonverbal) Learning Disabled Children

    ERIC Educational Resources Information Center

    Mammarella, Irene C.; Cornoldi, Cesare; Pazzaglia, Francesca; Toso, Cristina; Grimoldi, Mario; Vio, Claudio

    2006-01-01

    The paper describes the performance of three children with specific visuospatial working memory (VSWM) impairments (Study 1) and three children with visuospatial (nonverbal) learning disabilities (Study 2) assessed with a battery of working memory (WM) tests and with a number of school achievement tasks. Overall, performance on WM tests provides…

  19. Implicit perceptual-motor skill learning in mild cognitive impairment and Parkinson's disease.

    PubMed

    Gobel, Eric W; Blomeke, Kelsey; Zadikoff, Cindy; Simuni, Tanya; Weintraub, Sandra; Reber, Paul J

    2013-05-01

    Implicit skill learning is hypothesized to depend on nondeclarative memory that operates independent of the medial temporal lobe (MTL) memory system and instead depends on cortico striatal circuits between the basal ganglia and cortical areas supporting motor function and planning. Research with the Serial Reaction Time (SRT) task suggests that patients with memory disorders due to MTL damage exhibit normal implicit sequence learning. However, reports of intact learning rely on observations of no group differences, leading to speculation as to whether implicit sequence learning is fully intact in these patients. Patients with Parkinson's disease (PD) often exhibit impaired sequence learning, but this impairment is not universally observed. Implicit perceptual-motor sequence learning was examined using the Serial Interception Sequence Learning (SISL) task in patients with amnestic Mild Cognitive Impairment (MCI; n = 11) and patients with PD (n = 15). Sequence learning in SISL is resistant to explicit learning and individually adapted task difficulty controls for baseline performance differences. Patients with MCI exhibited robust sequence learning, equivalent to healthy older adults (n = 20), supporting the hypothesis that the MTL does not contribute to learning in this task. In contrast, the majority of patients with PD exhibited no sequence-specific learning in spite of matched overall task performance. Two patients with PD exhibited performance indicative of an explicit compensatory strategy suggesting that impaired implicit learning may lead to greater reliance on explicit memory in some individuals. The differences in learning between patient groups provides strong evidence in favor of implicit sequence learning depending solely on intact basal ganglia function with no contribution from the MTL memory system.

  20. Associative memory for online learning in noisy environments using self-organizing incremental neural network.

    PubMed

    Sudo, Akihito; Sato, Akihiro; Hasegawa, Osamu

    2009-06-01

    Associative memory operating in a real environment must perform well in online incremental learning and be robust to noisy data because noisy associative patterns are presented sequentially in a real environment. We propose a novel associative memory that satisfies these requirements. Using the proposed method, new associative pairs that are presented sequentially can be learned accurately without forgetting previously learned patterns. The memory size of the proposed method increases adaptively with learning patterns. Therefore, it suffers neither redundancy nor insufficiency of memory size, even in an environment in which the maximum number of associative pairs to be presented is unknown before learning. Noisy inputs in real environments are classifiable into two types: noise-added original patterns and faultily presented random patterns. The proposed method deals with two types of noise. To our knowledge, no conventional associative memory addresses noise of both types. The proposed associative memory performs as a bidirectional one-to-many or many-to-one associative memory and deals not only with bipolar data, but also with real-valued data. Results demonstrate that the proposed method's features are important for application to an intelligent robot operating in a real environment. The originality of our work consists of two points: employing a growing self-organizing network for an associative memory, and discussing what features are necessary for an associative memory for an intelligent robot and proposing an associative memory that satisfies those requirements.

  1. OLDER ADULTS CATCH UP TO YOUNGER ADULTS ON A LEARNING AND MEMORY TASK THAT INVOLVES COLLABORATIVE SOCIAL INTERACTION

    PubMed Central

    Derksen, B.J.; Duff, M.C.; Weldon, K.; Zhang, J.; Zamba, G.; Tranel, D.; Denburg, N.L.

    2014-01-01

    Learning and memory abilities tend to decline as people age. The current study examines the question of whether a learning situation that emphasizes collaborative social interaction might help older persons overcome age-related learning and memory changes and thus perform similarly to younger persons. Younger and Older participants (n = 34 in each group) completed the Barrier Task, a game-like social interaction where partners work together to develop labels for a set of abstract tangrams. Participants were also administered standard clinical neuropsychological measures of memory, on which the Older group showed expected inferiority to the Younger group. On the Barrier Task, the Older group performed less well than the Younger group early on, but as the task progressed, the performance of the Older group caught up and became statistically indistinguishable from that of the Younger group. These results can be taken to suggest that a learning milieu characterized by collaborative social interaction can attenuate some of the typical memory disadvantages associated with being older. PMID:24841619

  2. Focalised stimulation using high definition transcranial direct current stimulation (HD-tDCS) to investigate declarative verbal learning and memory functioning.

    PubMed

    Nikolin, Stevan; Loo, Colleen K; Bai, Siwei; Dokos, Socrates; Martin, Donel M

    2015-08-15

    Declarative verbal learning and memory are known to be lateralised to the dominant hemisphere and to be subserved by a network of structures, including those located in frontal and temporal regions. These structures support critical components of verbal memory, including working memory, encoding, and retrieval. Their relative functional importance in facilitating declarative verbal learning and memory, however, remains unclear. To investigate the different functional roles of these structures in subserving declarative verbal learning and memory performance by applying a more focal form of transcranial direct current stimulation, "High Definition tDCS" (HD-tDCS). Additionally, we sought to examine HD-tDCS effects and electrical field intensity distributions using computer modelling. HD-tDCS was administered to the left dorsolateral prefrontal cortex (LDLPFC), planum temporale (PT), and left medial temporal lobe (LMTL) to stimulate the hippocampus, during learning on a declarative verbal memory task. Sixteen healthy participants completed a single blind, intra-individual cross-over, sham-controlled study which used a Latin Square experimental design. Cognitive effects on working memory and sustained attention were additionally examined. HD-tDCS to the LDLPFC significantly improved the rate of verbal learning (p=0.03, η(2)=0.29) and speed of responding during working memory performance (p=0.02, η(2)=0.35), but not accuracy (p=0.12, η(2)=0.16). No effect of tDCS on verbal learning, retention, or retrieval was found for stimulation targeted to the LMTL or the PT. Secondary analyses revealed that LMTL stimulation resulted in increased recency (p=0.02, η(2)=0.31) and reduced mid-list learning effects (p=0.01, η(2)=0.39), suggesting an inhibitory effect on learning. HD-tDCS to the LDLPFC facilitates the rate of verbal learning and improved efficiency of working memory may underlie performance effects. This focal method of administrating tDCS has potential for probing and enhancing cognitive functioning. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Mechanisms of n-3 fatty acid-mediated development and maintenance of learning memory performance.

    PubMed

    Su, Hui-Min

    2010-05-01

    Docosahexaenoic acid (DHA, 22:6n-3) is specifically enriched in the brain and mainly anchored in the neuronal membrane, where it is involved in the maintenance of normal neurological function. Most DHA accumulation in the brain takes place during brain development in the perinatal period. However, hippocampal DHA levels decrease with age and in the brain disorder Alzheimer's disease (AD), and this decrease is associated with reduced hippocampal-dependent spatial learning memory ability. A potential mechanism is proposed by which the n-3 fatty acids DHA and eicosapentaenoic acid (20:5n-3) aid the development and maintenance of spatial learning memory performance. The developing brain or hippocampal neurons can synthesize and take up DHA and incorporate it into membrane phospholipids, especially phosphatidylethanolamine, resulting in enhanced neurite outgrowth, synaptogenesis and neurogenesis. Exposure to n-3 fatty acids enhances synaptic plasticity by increasing long-term potentiation and synaptic protein expression to increase the dendritic spine density, number of c-Fos-positive neurons and neurogenesis in the hippocampus for learning memory processing. In aged rats, n-3 fatty acid supplementation reverses age-related changes and maintains learning memory performance. n-3 fatty acids have anti-oxidative stress, anti-inflammation, and anti-apoptosis effects, leading to neuron protection in the aged, damaged, and AD brain. Retinoid signaling may be involved in the effects of DHA on learning memory performance. Estrogen has similar effects to n-3 fatty acids on hippocampal function. It would be interesting to know if there is any interaction between DHA and estrogen so as to provide a better strategy for the development and maintenance of learning memory. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Dual-modality impairment of implicit learning of letter-strings versus color-patterns in patients with schizophrenia.

    PubMed

    Chiu, Ming-Jang; Liu, Kristina; Hsieh, Ming H; Hwu, Hai-Gwo

    2005-12-12

    Implicit learning was reported to be intact in schizophrenia using artificial grammar learning. However, emerging evidence indicates that artificial grammar learning is not a unitary process. The authors used dual coding stimuli and schizophrenia clinical symptom dimensions to re-evaluate the effect of schizophrenia on various components of artificial grammar learning. Letter string and color pattern artificial grammar learning performances were compared between 63 schizophrenic patients and 27 comparison subjects. Four symptom dimensions derived from a Chinese Positive and Negative Symptom Scale ratings were correlated with patients' artificial grammar implicit learning performances along the two stimulus dimensions. Patients' explicit memory performances were assessed by verbal paired associates and visual reproduction subtests of the Wechsler Memory Scales Revised Version to provide a contrast to their implicit memory function. Schizophrenia severely hindered color pattern artificial grammar learning while the disease affected lexical string artificial grammar learning to a lesser degree after correcting the influences from age, education and the performance of explicit memory function of both verbal and visual modalities. Both learning performances correlated significantly with the severity of patients' schizophrenic clinical symptom dimensions that reflect poor abstract thinking, disorganized thinking, and stereotyped thinking. The results of this study suggested that schizophrenia affects various mechanisms of artificial grammar learning differently. Implicit learning, knowledge acquisition in the absence of conscious awareness, is not entirely intact in patients with schizophrenia. Schizophrenia affects implicit learning through an impairment of the ability of making abstractions from rules and at least in part decreasing the capacity for perceptual learning.

  5. Patterns of verbal memory performance in mild cognitive impairment, Alzheimer disease, and normal aging.

    PubMed

    Greenaway, Melanie C; Lacritz, Laura H; Binegar, Dani; Weiner, Myron F; Lipton, Anne; Munro Cullum, C

    2006-06-01

    Individuals with mild cognitive impairment (MCI) typically demonstrate memory loss that falls between normal aging (NA) and Alzheimer disease (AD), but little is known about the pattern of memory dysfunction in MCI. To explore this issue, California Verbal Learning Test (CVLT) performance was examined across groups of MCI, AD, and NA. MCI subjects displayed a pattern of deficits closely resembling that of AD, characterized by reduced learning, rapid forgetting, increased recency recall, elevated intrusion errors, and poor recognition discriminability with increased false-positives. MCI performance was significantly worse than that of controls and better than that of AD patients across memory indices. Although qualitative analysis of CVLT profiles may be useful in individual cases, discriminant function analysis revealed that delayed recall and total learning were the best aspects of learning/memory on the CVLT in differentiating MCI, AD, and NA. These findings support the position that amnestic MCI represents an early point of decline on the continuum of AD that is different from normal aging.

  6. Brief Report: Memory Performance on the California Verbal Learning Test-Children's Version in Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Phelan, Heather L.; Filliter, Jillian H.; Johnson, Shannon A.

    2011-01-01

    According to the Task Support Hypothesis (TSH; Bowler et al. in Neuropsychologia 35:65-70, 1997) individuals with autism spectrum disorder (ASD) perform more similarly to their typically developing peers on learning and memory tasks when provided with external support at retrieval. We administered the California Verbal Learning Test-Children's…

  7. Ascent to moderate altitude impairs overnight memory improvements.

    PubMed

    Tesler, Noemi; Latshang, Tsogyal D; Lo Cascio, Christian M; Stadelmann, Katrin; Stoewhas, Anne-Christin; Kohler, Malcolm; Bloch, Konrad E; Achermann, Peter; Huber, Reto

    2015-02-01

    Several studies showed beneficial effects of sleep on memory performance. Slow waves, the electroencephalographic characteristic of deep sleep, reflected on the neuronal level by synchronous slow oscillations, seem crucial for these benefits. Traveling to moderate altitudes decreases deep sleep. In a randomized cross-over design healthy male subjects performed a visuo-motor learning task in Zurich (490 m) and at Davos Jakobshorn (2590 m) in random order. Memory performance was assessed immediately after learning, before sleep, and in the morning after a night of sleep. Sleep EEG recordings were performed during the nights. Our findings show an altitude induced reduction of sleep dependent memory performance. Moreover, this impaired sleep dependent memory performance was associated with reduced slow wave derived measures of neuronal synchronization. Our results are consistent with a critical role of slow waves for the beneficial effects of sleep on memory that is susceptible to natural environmental influences. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Reading Comprehension and Working Memory in Learning-Disabled Readers: Is the Phonological Loop More Important Than the Executive System?

    ERIC Educational Resources Information Center

    Swanson, H. Lee

    1999-01-01

    Investigated the contribution of two working-memory systems (the articulatory loop and the central executive) to the performance differences between learning-disabled and skilled readers. Found that, compared to skilled readers, learning-disabled readers experienced constraints in the articulatory and long-term memory system, and suffered…

  9. Short-Term Memory, Executive Control, and Children's Route Learning

    ERIC Educational Resources Information Center

    Purser, Harry R. M.; Farran, Emily K.; Courbois, Yannick; Lemahieu, Axelle; Mellier, Daniel; Sockeel, Pascal; Blades, Mark

    2012-01-01

    The aim of this study was to investigate route-learning ability in 67 children aged 5 to 11 years and to relate route-learning performance to the components of Baddeley's model of working memory. Children carried out tasks that included measures of verbal and visuospatial short-term memory and executive control and also measures of verbal and…

  10. Trying to remember: Effort mediates the relationship between frequency of cannabis use and memory performance.

    PubMed

    Hirst, Rayna B; Young, Kaitlyn R; Sodos, Louise M; Wickham, Robert E; Earleywine, Mitch

    2017-06-01

    While many studies suggest that regular cannabis use leads to deficits in cognitive functioning, particularly in memory, few have measured effort put forth during testing, and none have examined this as a potential mediator. Both age of onset of regular cannabis use and frequency of use have been linked to increased risk of memory deficits. The present study sought to determine whether effort mediated the relationship between frequency or age of onset of cannabis use and learning and memory performance. Sixty-two participants (74% male, mean age = 19.25 years) who met criteria for chronic cannabis use (four or more days per week for at least 12 months) completed a neuropsychological battery including the California Verbal Learning Test-II (CVLT-II) and the Rey Complex Figure (RCF) as measures of learning and memory, and the Word Memory Test (WMT) as a measure of effort put forth during neuropsychological assessment. Participants who more frequently used cannabis exhibited poorer effort (as measured by WMT performance; p < .01). Bootstrapping yielded 95% confidence intervals for indirect effects and revealed that effort significantly mediated the relationship between frequency of cannabis use and CVLT-II Learning (Sum of Trials 1-5), CVLT-II Delayed Recall, and RCF Delayed Recall, but not RCF Immediate Recall. Age of onset of cannabis use was not significantly related to effort. Findings indicate that effort mediates the relationship between frequency of cannabis use and performance on learning and memory measures, suggesting that effort performance should be measured and controlled for in future studies assessing cognition in frequent cannabis users.

  11. Computational dissection of human episodic memory reveals mental process-specific genetic profiles

    PubMed Central

    Luksys, Gediminas; Fastenrath, Matthias; Coynel, David; Freytag, Virginie; Gschwind, Leo; Heck, Angela; Jessen, Frank; Maier, Wolfgang; Milnik, Annette; Riedel-Heller, Steffi G.; Scherer, Martin; Spalek, Klara; Vogler, Christian; Wagner, Michael; Wolfsgruber, Steffen; Papassotiropoulos, Andreas; de Quervain, Dominique J.-F.

    2015-01-01

    Episodic memory performance is the result of distinct mental processes, such as learning, memory maintenance, and emotional modulation of memory strength. Such processes can be effectively dissociated using computational models. Here we performed gene set enrichment analyses of model parameters estimated from the episodic memory performance of 1,765 healthy young adults. We report robust and replicated associations of the amine compound SLC (solute-carrier) transporters gene set with the learning rate, of the collagen formation and transmembrane receptor protein tyrosine kinase activity gene sets with the modulation of memory strength by negative emotional arousal, and of the L1 cell adhesion molecule (L1CAM) interactions gene set with the repetition-based memory improvement. Furthermore, in a large functional MRI sample of 795 subjects we found that the association between L1CAM interactions and memory maintenance revealed large clusters of differences in brain activity in frontal cortical areas. Our findings provide converging evidence that distinct genetic profiles underlie specific mental processes of human episodic memory. They also provide empirical support to previous theoretical and neurobiological studies linking specific neuromodulators to the learning rate and linking neural cell adhesion molecules to memory maintenance. Furthermore, our study suggests additional memory-related genetic pathways, which may contribute to a better understanding of the neurobiology of human memory. PMID:26261317

  12. Computational dissection of human episodic memory reveals mental process-specific genetic profiles.

    PubMed

    Luksys, Gediminas; Fastenrath, Matthias; Coynel, David; Freytag, Virginie; Gschwind, Leo; Heck, Angela; Jessen, Frank; Maier, Wolfgang; Milnik, Annette; Riedel-Heller, Steffi G; Scherer, Martin; Spalek, Klara; Vogler, Christian; Wagner, Michael; Wolfsgruber, Steffen; Papassotiropoulos, Andreas; de Quervain, Dominique J-F

    2015-09-01

    Episodic memory performance is the result of distinct mental processes, such as learning, memory maintenance, and emotional modulation of memory strength. Such processes can be effectively dissociated using computational models. Here we performed gene set enrichment analyses of model parameters estimated from the episodic memory performance of 1,765 healthy young adults. We report robust and replicated associations of the amine compound SLC (solute-carrier) transporters gene set with the learning rate, of the collagen formation and transmembrane receptor protein tyrosine kinase activity gene sets with the modulation of memory strength by negative emotional arousal, and of the L1 cell adhesion molecule (L1CAM) interactions gene set with the repetition-based memory improvement. Furthermore, in a large functional MRI sample of 795 subjects we found that the association between L1CAM interactions and memory maintenance revealed large clusters of differences in brain activity in frontal cortical areas. Our findings provide converging evidence that distinct genetic profiles underlie specific mental processes of human episodic memory. They also provide empirical support to previous theoretical and neurobiological studies linking specific neuromodulators to the learning rate and linking neural cell adhesion molecules to memory maintenance. Furthermore, our study suggests additional memory-related genetic pathways, which may contribute to a better understanding of the neurobiology of human memory.

  13. The effects of acute hypoglycaemia on memory acquisition and recall and prospective memory in type 1 diabetes.

    PubMed

    Warren, R E; Zammitt, N N; Deary, I J; Frier, B M

    2007-01-01

    Global memory performance is impaired during acute hypoglycaemia. This study assessed whether moderate hypoglycaemia disrupts learning and recall in isolation, and utilised a novel test of prospective memory which may better reflect the role of memory in daily life than conventional tests. Thirty-six subjects with type 1 diabetes participated, 20 with normal hypoglycaemia awareness (NHA) and 16 with impaired hypoglycaemia awareness (IHA). Each underwent a hypoglycaemic clamp with target blood glucose 2.5 mmol/l. Prior to hypoglycaemia, subjects attempted to memorise instructions for a prospective memory task, and recall was assessed during hypoglycaemia. Subjects then completed the learning and immediate recall stages of three conventional memory tasks (word recall, story recall, visual recall) during hypoglycaemia. Euglycaemia was restored and delayed memory for the conventional tasks was tested. The same procedures were completed in euglycaemic control studies (blood glucose 4.5 mmol/l). Hypoglycaemia impaired performance significantly on the prospective memory task (p = 0.004). Hypoglycaemia also significantly impaired both immediate and delayed recall for the word and story recall tasks (p < 0.01 in each case). There was no significant deterioration of performance on the visual memory task. The effect of hypoglycaemia did not differ significantly between subjects with NHA and IHA. Impaired performance on the prospective memory task during hypoglycaemia demonstrates that recall is disrupted by hypoglycaemia. Impaired performance on the conventional memory tasks demonstrates that learning is also disrupted by hypoglycaemia. Results of the prospective memory task support the relevance of these findings to the everyday lives of people with diabetes.

  14. Sleep enhances false memories depending on general memory performance.

    PubMed

    Diekelmann, Susanne; Born, Jan; Wagner, Ullrich

    2010-04-02

    Memory is subject to dynamic changes, sometimes giving rise to the formation of false memories due to biased processes of consolidation or retrieval. Sleep is known to benefit memory consolidation through an active reorganization of representations whereas acute sleep deprivation impairs retrieval functions. Here, we investigated whether sleep after learning and sleep deprivation at retrieval enhance the generation of false memories in a free recall test. According to the Deese, Roediger, McDermott (DRM) false memory paradigm, subjects learned lists of semantically associated words (e.g., "night", "dark", "coal", etc.), lacking the strongest common associate or theme word (here: "black"). Free recall was tested after 9h following a night of sleep, a night of wakefulness (sleep deprivation) or daytime wakefulness. Compared with memory performance after a retention period of daytime wakefulness, both post-learning nocturnal sleep as well as acute sleep deprivation at retrieval significantly enhanced false recall of theme words. However, these effects were only observed in subjects with low general memory performance. These data point to two different ways in which sleep affects false memory generation through semantic generalization: one acts during consolidation on the memory trace per se, presumably by active reorganization of the trace in the post-learning sleep period. The other is related to the recovery function of sleep and affects cognitive control processes of retrieval. Both effects are unmasked when the material is relatively weakly encoded. Crown Copyright 2009. Published by Elsevier B.V. All rights reserved.

  15. Should I trust you? Learning and memory of social interactions in dementia.

    PubMed

    Wong, Stephanie; Irish, Muireann; O'Callaghan, Claire; Kumfor, Fiona; Savage, Greg; Hodges, John R; Piguet, Olivier; Hornberger, Michael

    2017-09-01

    Social relevance has an enhancing effect on learning and subsequent memory retrieval. The ability to learn from and remember social interactions may impact on susceptibility to financial exploitation, which is elevated in individuals with dementia. The current study aimed to investigate learning and memory of social interactions, the relationship between performance and financial vulnerability and the neural substrates underpinning performance in 14 Alzheimer's disease (AD) and 20 behavioural-variant frontotemporal dementia (bvFTD) patients and 20 age-matched healthy controls. On a "trust game" task, participants invested virtual money with counterparts who acted either in a trustworthy or untrustworthy manner over repeated interactions. A non-social "lottery" condition was also included. Participants' learning of trust/distrust responses and subsequent memory for the counterparts and nature of the interactions was assessed. Carer-rated profiles of financial vulnerability were also collected. Relative to controls, both patient groups showed attenuated learning of trust/distrust responses, and lower overall memory for social interactions. Despite poor learning performance, both AD and bvFTD patients showed better memory of social compared to non-social interactions. Importantly, better memory for social interactions was associated with lower financial vulnerability in AD, but not bvFTD. Learning and memory of social interactions was associated with medial temporal and temporoparietal atrophy in AD, whereas a wider network of frontostriatal, insular, fusiform and medial temporal regions was implicated in bvFTD. Our findings suggest that although social relevance influences memory to an extent in both AD and bvFTD, this is associated with vulnerability to financial exploitation in AD only, and is underpinned by changes to different neural substrates. Theoretically, these findings provide novel insights into potential mechanisms that give rise to vulnerability in people with dementia, and open avenues for possible interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Memory Reactivation Enables Long-Term Prevention of Interference.

    PubMed

    Herszage, Jasmine; Censor, Nitzan

    2017-05-22

    The ability of the human brain to successively learn or perform two competing tasks constitutes a major challenge in daily function. Indeed, exposing the brain to two different competing memories within a short temporal offset can induce interference, resulting in deteriorated performance in at least one of the learned memories [1-4]. Although previous studies have investigated online interference and its effects on performance [5-13], whether the human brain can enable long-term prevention of future interference is unknown. To address this question, we utilized the memory reactivation-reconsolidation framework [2, 12] stemming from studies at the synaptic level [14-17], according to which reactivation of a memory enables its update. In a set of experiments, using the motor sequence learning task [18] we report that a unique pairing of reactivating the original memory (right hand) in synchrony with novel memory trials (left hand) prevented future interference between the two memories. Strikingly, these effects were long-term and observed a month following reactivation. Further experiments showed that preventing future interference was not due to practice per se, but rather specifically depended on a limited time window induced by reactivation of the original memory. These results suggest a mechanism according to which memory reactivation enables long-term prevention of interference, possibly by creating an updated memory trace integrating original and novel memories during the reconsolidation time window. The opportunity to induce a long-term preventive effect on memories may enable the utilization of strategies optimizing normal human learning, as well as recovery following neurological insults. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Thirst for knowledge: The effects of curiosity and interest on memory in younger and older adults.

    PubMed

    McGillivray, Shannon; Murayama, Kou; Castel, Alan D

    2015-12-01

    Given age-related memory impairments, one's level of curiosity or interest could enhance memory for certain information. In the current study, younger and older adults read trivia questions, rated how curious they were to learn each answer, provided confidence and interest ratings, and judgments of learning after learning the answer. No age-related differences in memory were found. Analyses indicated that curiosity and interest contributed to the formation of judgments of learning. Additionally, interest had a unique increasing relationship with older, but not younger, adults' memory performance after a one-week delay. The results suggest that subjective interest may serve to enhance older adults' memory. (c) 2015 APA, all rights reserved).

  18. The impact of attentional and emotional demands on memory performance in obsessive-compulsive disorder.

    PubMed

    Fink, Jakob; Hendrikx, Friederike; Stierle, Christian; Stengler, Katarina; Jahn, Ina; Exner, Cornelia

    2017-08-01

    Lower performance on memory tests in obsessive-compulsive disorder (OCD) has been repeatedly observed. However, the origins of these performance deficits are not sufficiently explained. In this study we tested if OCD-related extensive focus of attention on thoughts (heightened self-consciousness) could be an explanatory mechanism for lower memory performance. Heightened situational self-consciousness was manipulated by instructing participants to either monitor neutral thoughts or to monitor OCD-related thoughts. We included a Behavioral Avoidance Task based on individual obsessions and compulsions to induce OCD-related thoughts. Participants were asked to perform these monitoring tasks in parallel to a taxing verbal memory task, resulting in learning under divided attention. The two conditions of learning under divided attention were compared to a single-task condition. Twenty-four participants with OCD and 24 healthy controls took part in these three learning conditions. The results indicate that in both groups memory performance deteriorated in the two conditions with divided attention compared to the single task condition. In the OCD-related thought monitoring condition (OTM) self-consciousness and Behavioral Avoidance Task-induced stress and fear were particularly increased and memory performance further deteriorated in the OCD group. This finding highlights an important and underestimated mechanism (personal involvement) which might serve to better understand lower memory performance in OCD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Asymptotic Learning of Alphanumeric Coding in Autobiographical Memory

    ERIC Educational Resources Information Center

    Martin, Maryanne; Jones, Gregory V.

    2007-01-01

    Studies of autobiographical memory have shown that observed levels of incidental learning are often relatively low. Do low levels of retention result simply from a low learning rate, or is learning also asymptotic? To address this question, it is necessary to trace performance over a large number of learning opportunities, and this was carried out…

  20. Antidepressant suppression of non-REM sleep spindles and REM sleep impairs hippocampus-dependent learning while augmenting striatum-dependent learning.

    PubMed

    Watts, Alain; Gritton, Howard J; Sweigart, Jamie; Poe, Gina R

    2012-09-26

    Rapid eye movement (REM) sleep enhances hippocampus-dependent associative memory, but REM deprivation has little impact on striatum-dependent procedural learning. Antidepressant medications are known to inhibit REM sleep, but it is not well understood if antidepressant treatments impact learning and memory. We explored antidepressant REM suppression effects on learning by training animals daily on a spatial task under familiar and novel conditions, followed by training on a procedural memory task. Daily treatment with the antidepressant and norepinephrine reuptake inhibitor desipramine (DMI) strongly suppressed REM sleep in rats for several hours, as has been described in humans. We also found that DMI treatment reduced the spindle-rich transition-to-REM sleep state (TR), which has not been previously reported. DMI REM suppression gradually weakened performance on a once familiar hippocampus-dependent maze (reconsolidation error). DMI also impaired learning of the novel maze (consolidation error). Unexpectedly, learning of novel reward positions and memory of familiar positions were equally and oppositely correlated with amounts of TR sleep. Conversely, DMI treatment enhanced performance on a separate striatum-dependent, procedural T-maze task that was positively correlated with the amounts of slow-wave sleep (SWS). Our results suggest that learning strategy switches in patients taking REM sleep-suppressing antidepressants might serve to offset sleep-dependent hippocampal impairments to partially preserve performance. State-performance correlations support a model wherein reconsolidation of hippocampus-dependent familiar memories occurs during REM sleep, novel information is incorporated and consolidated during TR, and dorsal striatum-dependent procedural learning is augmented during SWS.

  1. Antidepressant Suppression of Non-REM Sleep Spindles and REM Sleep Impairs Hippocampus-Dependent Learning While Augmenting Striatum-Dependent Learning

    PubMed Central

    Watts, Alain; Gritton, Howard J.; Sweigart, Jamie

    2012-01-01

    Rapid eye movement (REM) sleep enhances hippocampus-dependent associative memory, but REM deprivation has little impact on striatum-dependent procedural learning. Antidepressant medications are known to inhibit REM sleep, but it is not well understood if antidepressant treatments impact learning and memory. We explored antidepressant REM suppression effects on learning by training animals daily on a spatial task under familiar and novel conditions, followed by training on a procedural memory task. Daily treatment with the antidepressant and norepinephrine reuptake inhibitor desipramine (DMI) strongly suppressed REM sleep in rats for several hours, as has been described in humans. We also found that DMI treatment reduced the spindle-rich transition-to-REM sleep state (TR), which has not been previously reported. DMI REM suppression gradually weakened performance on a once familiar hippocampus-dependent maze (reconsolidation error). DMI also impaired learning of the novel maze (consolidation error). Unexpectedly, learning of novel reward positions and memory of familiar positions were equally and oppositely correlated with amounts of TR sleep. Conversely, DMI treatment enhanced performance on a separate striatum-dependent, procedural T-maze task that was positively correlated with the amounts of slow-wave sleep (SWS). Our results suggest that learning strategy switches in patients taking REM sleep-suppressing antidepressants might serve to offset sleep-dependent hippocampal impairments to partially preserve performance. State–performance correlations support a model wherein reconsolidation of hippocampus-dependent familiar memories occurs during REM sleep, novel information is incorporated and consolidated during TR, and dorsal striatum-dependent procedural learning is augmented during SWS. PMID:23015432

  2. Verbal and non-verbal memory and hippocampal volumes in a memory clinic population.

    PubMed

    Bonner-Jackson, Aaron; Mahmoud, Shamseldeen; Miller, Justin; Banks, Sarah J

    2015-10-15

    Better characterization of the relationship between episodic memory and hippocampal volumes is crucial in early detection of neurodegenerative disease. We examined these relationships in a memory clinic population. Participants (n = 226) underwent structural magnetic resonance imaging and tests of verbal (Hopkins Verbal Learning Test-Revised, HVLT-R) and non-verbal (Brief Visuospatial Memory Test-Revised, BVMT-R) memory. Correlational analyses were performed, and analyses on clinical subgroups (i.e., amnestic Mild Cognitive Impairment, non-amnestic Mild Cognitive Impairment, probable Alzheimer's disease, intact memory) were conducted. Positive associations were identified between bilateral hippocampal volumes and both memory measures, and BVMT-R learning slope was more strongly positively associated with hippocampal volumes than HVLT-R learning slope. Amnestic Mild Cognitive Impairment (aMCI) participants showed specific positive associations between BVMT-R performance and hippocampal volumes bilaterally. Additionally, analyses of the aMCI group showed trend-level evidence of material-specific lateralization, such that retention of verbal information was positively associated with left hippocampal volume, whereas learning curve and retention of non-verbal information was positively associated with right hippocampal volume. Findings support the link between episodic memory and hippocampal volumes in a memory clinic population. Non-verbal memory measures also may have higher diagnostic value, particularly in individuals at elevated risk for Alzheimer's disease.

  3. Implicit Perceptual-Motor Skill Learning in Mild Cognitive Impairment and Parkinson's Disease

    PubMed Central

    Gobel, Eric W.; Blomeke, Kelsey; Zadikoff, Cindy; Simuni, Tanya; Weintraub, Sandy; Reber, Paul J.

    2015-01-01

    Objective Implicit skill learning is hypothesized to depend on nondeclarative memory that operates independent of the medial temporal lobe (MTL) memory system and instead depends on cortico-striatal circuits between the basal ganglia and cortical areas supporting motor function and planning. Research with the Serial Reaction Time (SRT) task suggests that patients with memory-disorders due to MTL damage exhibit normal implicit sequence learning. However, reports of intact learning rely on observations of no group differences, leading to speculation whether implicit sequence learning is fully intact in these patients. Patients with Parkinson's Disease (PD) often exhibit impaired sequence learning, but this impairment is not universally observed. Method Implicit perceptual-motor sequence learning was examined using the Serial Interception Sequence Learning (SISL) task in patients with amnestic Mild Cognitive Impairment (MCI; n=11) and patients with PD (n=15). Sequence learning in SISL is resistant to explicit learning and individually adapted task difficulty controls for baseline performance differences. Results Patients with MCI exhibited robust sequence learning, equivalent to healthy older adults (n=20), supporting the hypothesis that the MTL does not contribute to learning in this task. In contrast, the majority of patients with PD exhibited no sequence-specific learning in spite of matched overall task performance. Two patients with PD exhibited performance indicative of an explicit compensatory strategy suggesting that impaired implicit learning may lead to greater reliance on explicit memory in some individuals. Conclusion The differences in learning between patient groups provides strong evidence in favor of implicit sequence learning depending solely on intact basal ganglia function with no contribution from the MTL memory system. PMID:23688213

  4. Learning disabled and average readers' working memory and comprehension: does metacognition play a role?

    PubMed

    Swanson, H L; Trahan, M

    1996-09-01

    The present study investigates (a) whether learning disabled readers' working memory deficits that underlie poor reading comprehension are related to a general system, and (b) whether metacognition contributes to comprehension beyond what is predicted by working memory and word knowledge. To this end, performance between learning and disabled (N = 60) and average readers (N = 60) was compared on the reading comprehension, reading rate, and vocabulary subtests of the Nelson Skills Reading Test, Sentence Span test composed of high and low imagery words, and a Metacognitive Questionnaire. As expected, differences between groups in working memory, vocabulary, and reading measures emerged, whereas ability groups were statistically comparable on the Metacognitive Questionnaire. A within-group analysis indicated that the correlation patterns between working memory, vocabulary, metacognition, and reading comprehension were not the same between ability groups. For predicting reading comprehension, the metacognitive questionnaire best predicted learning disabled readers' performance, whereas the working memory span measure that included low-imagery words best predicted average achieving readers' comprehension. Overall, the results suggest that the relationship between learning disabled readers' generalised working memory deficits and poor reading comprehension may be mediated by metacognition.

  5. Do Immediate Memory Deficits in Students with Learning Disabilities in Reading Reflect a Developmental Lag or Deficit?: A Selective Meta-Analysis of the Literature.

    ERIC Educational Resources Information Center

    O'Shaughnessy, Tam E.; Swanson, H. Lee

    1998-01-01

    A study synthesized findings of 41 studies that compared children with and without learning disabilities in reading on immediate-memory performance. Results indicate children with learning disabilities were distinctly disadvantaged compared to average readers when memory manipulations required the naming of visual information and task conditions…

  6. The role of the central histaminergic receptors in the exercise-induced improvements of the spatial learning and memory in rats.

    PubMed

    Taati, Majid; Moghaddasi, Mehrnoush; Esmaeili, Masoumeh; Pourkhodadad, Soheila; Nayebzadeh, Hassan

    2014-10-31

    While it is well known that exercise can improve cognitive performance, the underlying mechanisms are not fully understood. There is now evidence that histamine can modulate learning and memory in different types of behavioral tasks. The present study was designed to examine the possible role of central histamine H1 and H2 receptors in forced treadmill running-induced enhancement of learning and memory in rats. For this purpose the animals received intracerebroventricularly chlorpheniramine (H1 receptor blocker) and cimetidine (H2 receptor blocker) before each day of fifteen consecutive days of exercise. Then their learning and memory were tested on the water maze task using a four-trial-per-day for 4 consecutive days. A probe trial was performed after the last training day. Our data showed that cimetidine reversed the exercise-induced improvement in learning and memory in rats; however, this was not the case regarding chlorpheniramine. Our findings indicate that central histamine H2 receptors play an important role in mediating the beneficial effects of forced exercise on learning and memory. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Diminishing-cues retrieval practice: A memory-enhancing technique that works when regular testing doesn't.

    PubMed

    Fiechter, Joshua L; Benjamin, Aaron S

    2017-08-28

    Retrieval practice has been shown to be a highly effective tool for enhancing memory, a fact that has led to major changes to educational practice and technology. However, when initial learning is poor, initial retrieval practice is unlikely to be successful and long-term benefits of retrieval practice are compromised or nonexistent. Here, we investigate the benefit of a scaffolded retrieval technique called diminishing-cues retrieval practice (Finley, Benjamin, Hays, Bjork, & Kornell, Journal of Memory and Language, 64, 289-298, 2011). Under learning conditions that favored a strong testing effect, diminishing cues and standard retrieval practice both enhanced memory performance relative to restudy. Critically, under learning conditions where standard retrieval practice was not helpful, diminishing cues enhanced memory performance substantially. These experiments demonstrate that diminishing-cues retrieval practice can widen the range of conditions under which testing can benefit memory, and so can serve as a model for the broader application of testing-based techniques for enhancing learning.

  8. Working memory plasticity and aging.

    PubMed

    Rhodes, Rebecca E; Katz, Benjamin

    2017-02-01

    The present research explores how the trajectory of learning on a working memory task changes throughout the life span, and whether gains in working memory performance are exclusively a question of initial working memory capacity (WMC) or whether age exerts an independent effect. In a large, cross-sectional study of younger, middle-aged, and older adults, we examined learning on a widely used working memory task-the dual n-back task-over 20 sessions of practice. We found that, while all age groups improved on the task, older adults demonstrated less improvement on the task, and also reached a lower asymptotic maximum performance than younger adults. After controlling for initial WMC, we found that age exerted independent effects on training gains and asymptotic performance; older adults tended to improve less and reached lower levels of performance than younger adults. The difference between younger and older adults' rates of learning depended in part on initial WMC. These results suggest that age-related effects on working memory include not only effects on capacity, but also plasticity and the ability to improve on a task. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. Episodic and semantic memory in children with mesial temporal sclerosis.

    PubMed

    Rzezak, Patricia; Guimarães, Catarina; Fuentes, Daniel; Guerreiro, Marilisa M; Valente, Kette Dualibi Ramos

    2011-07-01

    The aim of this study was to analyze semantic and episodic memory deficits in children with mesial temporal sclerosis (MTS) and their correlation with clinical epilepsy variables. For this purpose, 19 consecutive children and adolescents with MTS (8 to 16 years old) were evaluated and their performance on five episodic memory tests (short- and long-term memory and learning) and four semantic memory tests was compared with that of 28 healthy volunteers. Patients performed worse on tests of immediate and delayed verbal episodic memory, visual episodic memory, verbal and visual learning, mental scanning for semantic clues, object naming, word definition, and repetition of sentences. Clinical variables such as early age at seizure onset, severity of epilepsy, and polytherapy impaired distinct types of memory. These data confirm that children with MTS have episodic memory deficits and add new information on semantic memory. The data also demonstrate that clinical variables contribute differently to episodic and semantic memory performance. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Development of a water-escape motivated version of the Stone T-maze for mice

    PubMed Central

    Pistell, Paul J.; Ingram, Donald K.

    2014-01-01

    Mice provide a highly valuable resource for investigating learning and memory processes; however, many of the established tasks for evaluating learning and memory were developed for rats. Behaviors of mice in these tasks appear to be driven by different motivational factors, and as a result, they often do not perform reliably on tasks involving rewards traditionally used for rats. Because of difficulties in measuring learning and memory in mice as well as the need to have a task that can reliably measure these behavioral processes, we have developed a mouse version of the Stone T-maze utilizing what appears to be the primary motivation of mice, escape to a safe location. Specifically, we have constructed a task that requires the mouse to wade through water to reach a dark and dry goal box. To escape this aversive environment, the Stone T-maze requires learning the correct sequence of 13 left and right turns to reach the goal box. Through a series of experiments examining a variety of protocols, it was found that mice will reliably perform this task. This task can be used to assess learning and memory without the potential performance confounds that can affect performance of mice in other tasks. We believe this task offers a valuable new tool for evaluating learning and memory in mice not previously available to researchers. PMID:20026250

  11. Dietary ω-3 polyunsaturated fatty acids improves learning performance of diabetic rats by regulating the neuron excitability.

    PubMed

    Yang, R-H; Wang, F; Hou, X-H; Cao, Z-P; Wang, B; Xu, X-N; Hu, S-J

    2012-06-14

    Previous research has demonstrated that diabetes induced learning and memory deficits. However, the mechanism of memory impairment induced by diabetes is poorly understood. Dietary fatty acids, especially polyunsaturated fatty acids (PUFA), have been shown to enhance learning and memory and prevent memory deficits in various experimental conditions. Sprague-Dawley rats were used in the present study to investigate the effect of fish oil supplementation on spatial learning and memory of streptozotocin (STZ)-induced diabetic rats with the Morris Water Maze. The excitability of CA1 pyramidal neurons and the related ionic currents was also examined. Diabetes impaired spatial learning and memory of rats. Diabetes decreased the sodium currents and increased the potassium currents, and further led to the reduction of excitability of CA1 pyramidal neurons, effects which may contribute to the behavioral deficits. Fish oil dietary supplementation decreased the transient currents and Kv4.2 expression in the hippocampus and partially improved learning performance of diabetic rats. The results of the present study suggested that sodium and potassium currents contributed to the inhibitory effect of diabetes on neuron excitability, further influencing learning and memory processing. Dietary fish oil may modulate the membrane excitability and is a possible strategy for preventing the impairments of diabetes on hippocampal function. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Domain-specific and domain-general constraints on word and sequence learning.

    PubMed

    Archibald, Lisa M D; Joanisse, Marc F

    2013-02-01

    The relative influences of language-related and memory-related constraints on the learning of novel words and sequences were examined by comparing individual differences in performance of children with and without specific deficits in either language or working memory. Children recalled lists of words in a Hebbian learning protocol in which occasional lists repeated, yielding improved recall over the course of the task on the repeated lists. The task involved presentation of pictures of common nouns followed immediately by equivalent presentations of the spoken names. The same participants also completed a paired-associate learning task involving word-picture and nonword-picture pairs. Hebbian learning was observed for all groups. Domain-general working memory constrained immediate recall, whereas language abilities impacted recall in the auditory modality only. In addition, working memory constrained paired-associate learning generally, whereas language abilities disproportionately impacted novel word learning. Overall, all of the learning tasks were highly correlated with domain-general working memory. The learning of nonwords was additionally related to general intelligence, phonological short-term memory, language abilities, and implicit learning. The results suggest that distinct associations between language- and memory-related mechanisms support learning of familiar and unfamiliar phonological forms and sequences.

  13. Verbal memory in drug-naive, newly diagnosed Parkinson's disease. The retrieval deficit hypothesis revisited.

    PubMed

    Brønnick, Kolbjørn; Alves, Guido; Aarsland, Dag; Tysnes, Ole-Bjørn; Larsen, Jan Petter

    2011-01-01

    The retrieval deficit hypothesis on memory impairment in patients with Parkinson's disease (PD) implies a selective impairment in recall of learned material with normal encoding, retention, and recognition. This hypothesis has been challenged by new data. We have therefore investigated verbal memory and learning in a large sample of newly diagnosed, drug naïve, non-demented patients with PD. From a sample of patients with PD from the Norwegian ParkWest study, 133 PD patients and 133 controls matched on sex, age, and education were included. The California Verbal Learning Test-2 (CVLT-2) was used to assess verbal memory. Patients performed significantly worse than controls on free and cued recall as well as on recognition memory. Patients used the semantic clustering learning strategy significantly less extensively than the controls and the learning slope of the PD patients was significantly less steep. There was no difference in retention when controlling for encoding. Patients did not perform better on the recognition measure or on cued recall (d-prime), as compared to free recall. Executive functions explained a substantial part of the memory deficits. This study suggests that memory impairment in drug naïve early PD to a large degree is a deficit of learning/ encoding and not of retention or retrieval. An implication is that the retrieval deficit hypothesis should be moderated in its general form. Executive deficits and less extensive use of the efficient semantic clustering learning strategy had a strong impact on learning and memory. (c) 2010 APA, all rights reserved.

  14. Is caffeine a cognitive enhancer?

    PubMed

    Nehlig, Astrid

    2010-01-01

    The effects of caffeine on cognition were reviewed based on the large body of literature available on the topic. Caffeine does not usually affect performance in learning and memory tasks, although caffeine may occasionally have facilitatory or inhibitory effects on memory and learning. Caffeine facilitates learning in tasks in which information is presented passively; in tasks in which material is learned intentionally, caffeine has no effect. Caffeine facilitates performance in tasks involving working memory to a limited extent, but hinders performance in tasks that heavily depend on working memory, and caffeine appears to rather improve memory performance under suboptimal alertness conditions. Most studies, however, found improvements in reaction time. The ingestion of caffeine does not seem to affect long-term memory. At low doses, caffeine improves hedonic tone and reduces anxiety, while at high doses, there is an increase in tense arousal, including anxiety, nervousness, jitteriness. The larger improvement of performance in fatigued subjects confirms that caffeine is a mild stimulant. Caffeine has also been reported to prevent cognitive decline in healthy subjects but the results of the studies are heterogeneous, some finding no age-related effect while others reported effects only in one sex and mainly in the oldest population. In conclusion, it appears that caffeine cannot be considered a ;pure' cognitive enhancer. Its indirect action on arousal, mood and concentration contributes in large part to its cognitive enhancing properties.

  15. No evidence that 'fast-mapping' benefits novel learning in healthy Older adults.

    PubMed

    Greve, Andrea; Cooper, Elisa; Henson, Richard N

    2014-07-01

    Much evidence suggests that the Hippocampus is necessary for learning novel associations. Contrary to this, Sharon, Moscovitch, and Gilboa (2011) reported four amnesic patients with Hippocampal damage who maintained the capacity to learn novel object-name associations when trained with a 'fast-mapping' (FM) technique. This technique therefore potentially offers an alternative route for learning novel information in populations experiencing memory problems. We examined this potential in healthy ageing, by comparing 24 Older and 24 Young participants who completed a FM procedure very similar to Sharon et al. (2011). As expected, the Older group showed worse memory than the Young group under standard explicit encoding (EE) instructions. However, the Older group continued to show worse performance under the FM procedure, with no evidence that FM alleviated their memory deficit. Indeed, performance was worse for the FM than EE condition in both groups. Structural MRI scans confirmed reduced Hippocampal grey-matter volume in the Older group, which correlated with memory performance across both groups and both EE/FM conditions. We conclude FM does not help memory problems that occur with normal ageing, and discuss theoretical implications for memory theories. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Relatively effortless listening promotes understanding and recall of medical instructions in older adults

    PubMed Central

    DiDonato, Roberta M.; Surprenant, Aimée M.

    2015-01-01

    Communication success under adverse conditions requires efficient and effective recruitment of both bottom-up (sensori-perceptual) and top-down (cognitive-linguistic) resources to decode the intended auditory-verbal message. Employing these limited capacity resources has been shown to vary across the lifespan, with evidence indicating that younger adults out-perform older adults for both comprehension and memory of the message. This study examined how sources of interference arising from the speaker (message spoken with conversational vs. clear speech technique), the listener (hearing-listening and cognitive-linguistic factors), and the environment (in competing speech babble noise vs. quiet) interact and influence learning and memory performance using more ecologically valid methods than has been done previously. The results suggest that when older adults listened to complex medical prescription instructions with “clear speech,” (presented at audible levels through insertion earphones) their learning efficiency, immediate, and delayed memory performance improved relative to their performance when they listened with a normal conversational speech rate (presented at audible levels in sound field). This better learning and memory performance for clear speech listening was maintained even in the presence of speech babble noise. The finding that there was the largest learning-practice effect on 2nd trial performance in the conversational speech when the clear speech listening condition was first is suggestive of greater experience-dependent perceptual learning or adaptation to the speaker's speech and voice pattern in clear speech. This suggests that experience-dependent perceptual learning plays a role in facilitating the language processing and comprehension of a message and subsequent memory encoding. PMID:26106353

  17. Can Executive Functions Help to Understand Children with Mathematical Learning Disorders and to Improve Instruction?

    ERIC Educational Resources Information Center

    Desoete, Annemie; De Weerdt, Frauke

    2013-01-01

    Working memory, inhibition and naming speed was assessed in 22 children with mathematical learning disorders (MD), 17 children with a reading learning disorder (RD), and 45 children without any learning problems between 8 and 12 years old. All subjects with learning disorders performed poorly on working memory tasks, providing evidence that they…

  18. Learning and Memory Impairments in Patients with Minimal Hepatic Encephalopathy are Associated with Structural and Functional Connectivity Alterations in Hippocampus.

    PubMed

    García-García, Raquel; Cruz-Gómez, Álvaro Javier; Urios, Amparo; Mangas-Losada, Alba; Forn, Cristina; Escudero-García, Desamparados; Kosenko, Elena; Torregrosa, Isidro; Tosca, Joan; Giner-Durán, Remedios; Serra, Miguel Angel; Avila, César; Belloch, Vicente; Felipo, Vicente; Montoliu, Carmina

    2018-06-25

    Patients with minimal hepatic encephalopathy (MHE) show mild cognitive impairment associated with alterations in attentional and executive networks. There are no studies evaluating the relationship between memory in MHE and structural and functional connectivity (FC) changes in the hippocampal system. This study aimed to evaluate verbal learning and long-term memory in cirrhotic patients with (C-MHE) and without MHE (C-NMHE) and healthy controls. We assessed the relationship between alterations in memory and the structural integrity and FC of the hippocampal system. C-MHE patients showed impairments in learning, long-term memory, and recognition, compared to C-NMHE patients and controls. Cirrhotic patients showed reduced fimbria volume compared to controls. Larger volumes in hippocampus subfields were related to better memory performance in C-NMHE patients and controls. C-MHE patients presented lower FC between the L-presubiculum and L-precuneus than C-NMHE patients. Compared to controls, C-MHE patients had reduced FC between L-presubiculum and subiculum seeds and bilateral precuneus, which correlated with cognitive impairment and memory performance. Alterations in the FC of the hippocampal system could contribute to learning and long-term memory impairments in C-MHE patients. This study demonstrates the association between alterations in learning and long-term memory and structural and FC disturbances in hippocampal structures in cirrhotic patients.

  19. Managing Learning for Performance.

    ERIC Educational Resources Information Center

    Kuchinke, K. Peter

    1995-01-01

    Presents findings of organizational learning literature that could substantiate claims of learning organization proponents. Examines four learning processes and their contribution to performance-based learning management: knowledge acquisition, information distribution, information interpretation, and organizational memory. (SK)

  20. Linking Working Memory and Long-Term Memory: A Computational Model of the Learning of New Words

    ERIC Educational Resources Information Center

    Jones, Gary; Gobet, Fernand; Pine, Julian M.

    2007-01-01

    The nonword repetition (NWR) test has been shown to be a good predictor of children's vocabulary size. NWR performance has been explained using phonological working memory, which is seen as a critical component in the learning of new words. However, no detailed specification of the link between phonological working memory and long-term memory…

  1. Extensive but not Limited Repeated Trials in Passive Avoidance Task Induce Stress-like Symptoms and Affect Memory Function in Rats.

    PubMed

    Tabassum, Saiqa; Haider, Saida

    2018-02-10

    Stressful and emotionally arousing experiences are remembered, and previous reports show that repeated exposure to stressful condition enhances emotional learning. However, the usefulness of the repeated exposure depends on the intensity and duration. Although repeated training as a strategy to improve memory performance is receiving increased attention from researchers, repeated training may induce stressful effects that have not yet been considered. The present study investigated whether exposure to repetitive learning trials with limited or extensive durations in a passive avoidance task (PAT) would be beneficial or harmful to emotional memory performance in rats. Rats were exposed to repetitive learning trials for two different durations in the limited exposure (exposure to four repetitive trials) and extensive exposure groups (exposure to 16 repetitive trials) in a single day to compare the impact of both conditions on rat emotional memory performance. Alterations in corticosterone content and associated oxidative and neurochemical systems were assessed to explore the underlying mechanism responsible for changes in emotional memory. Following extensive exposure, a negative impact on emotional memory was observed compared with the limited exposure group. A lack of any further improvement in memory function following extensive training exposure was supported by increased corticosterone levels, decreased 5-hydroxytryptamine (5-HT) levels and abnormal oxidative stress levels, which may induce negative effects on memory consolidation. It is suggested that limited exposure to repetitive learning trials is more useful for studying improvement in emotional memory, whereas extensive exposure may produce chronic stress-like condition that can be detrimental and responsible for compromised memory performance. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Effects of continuous vs. cycling estrogen replacement on the acquisition, retention and expression of place- and response-learning in the open-field tower maze.

    PubMed

    Lipatova, Olga; Byrd, Dennis; Green, John T; Toufexis, Donna J

    2014-10-01

    Estrogen has been shown to either enhance or impair learning and memory in female rats. The use of different experimental paradigms or estrogen treatment regimens may contribute to these disparate findings. In order to assess the effect of different estradiol (E2) treatments on several aspects of cognition, we trained ovariectomized female rats with either continuous, cycling, or vehicle E2 replacement, in an open-field tower maze task (OFTM) designed to test reference memory in a low-stress environment. In addition, in order to compare two distinct learning and memory systems, rats were trained to use either a dorsolateral striatum-based response type learning or a hippocampal-based place type learning to solve the maze. Results showed that cyclic, but not continuous, E2 replacement facilitated the acquisition of spatial memory in place-learners. Neither E2 regimen affected acquisition in response-learners. Additionally, when all experimental groups were performing at asymptote, rats were evaluated for performance stability by changing the location of their start position in the OFTM. Both regimens of E2 disrupted the expression of spatial memory in place-learners following the novel start position. However, E2 replacement protected ovariectomized female rats from the disruption of memory expression following a start position change in response-learners. Additionally all experimental groups performed equally well when tested following a 21-day period during which rats were absent from the maze. These results suggest that E2 fluctuation is particularly important in the acquisition of hippocampal-mediated spatial learning, and that hippocampal-based memory may be subject to disruption following environmental change, while striatum-based memory is subject to protection. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Normal Aging and the Dissociable Prototype Learning Systems

    PubMed Central

    Glass, Brian D.; Chotibut, Tanya; Pacheco, Jennifer; Schnyer, David M.; Maddox, W. Todd

    2011-01-01

    Dissociable prototype learning systems have been demonstrated behaviorally and with neuroimaging in younger adults as well as with patient populations. In A/not-A (AN) prototype learning, participants are shown members of category A during training, and during test are asked to decide whether novel items are in category A or are not in category A. Research suggests that AN learning is mediated by a perceptual learning system. In A/B (AB) prototype learning, participants are shown members of category A and B during training, and during test are asked to decide whether novel items are in category A or category B. In contrast to AN, research suggests that AB learning is mediated by a declarative memory system. The current study examined the effects of normal aging on AN and AB prototype learning. We observed an age-related deficit in AB learning, but an age-related advantage in AN learning. Computational modeling supports one possible interpretation based on narrower selective attentional focus in older adults in the AB task and broader selective attention in the AN task. Neuropsychological testing in older participants suggested that executive functioning and attentional control were associated with better performance in both tasks. However, nonverbal memory was associated with better AN performance, while visual attention was associated with worse AB performance. The results support an interactive memory systems approach and suggest that age-related declines in one memory system can lead to deficits in some tasks, but to enhanced performance in others. PMID:21875215

  4. Learning and Overnight Retention in Declarative Memory in Specific Language Impairment.

    PubMed

    Lukács, Ágnes; Kemény, Ferenc; Lum, Jarrad A G; Ullman, Michael T

    2017-01-01

    We examined learning and retention in nonverbal and verbal declarative memory in Hungarian children with (n = 21) and without (n = 21) SLI. Recognition memory was tested both 10 minutes and one day after encoding. On nonverbal items, only the children with SLI improved overnight, with no resulting group differences in performance. In the verbal domain, the children with SLI consistently showed worse performance than the typically-developing children, but the two groups showed similar overnight changes. The findings suggest the possibility of spared or even enhanced declarative memory consolidation in SLI.

  5. Adiabatic quantum optimization for associative memory recall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seddiqi, Hadayat; Humble, Travis S.

    Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are storedmore » in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.« less

  6. Adiabatic Quantum Optimization for Associative Memory Recall

    NASA Astrophysics Data System (ADS)

    Seddiqi, Hadayat; Humble, Travis

    2014-12-01

    Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.

  7. Adiabatic quantum optimization for associative memory recall

    DOE PAGES

    Seddiqi, Hadayat; Humble, Travis S.

    2014-12-22

    Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are storedmore » in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.« less

  8. Effects of Isometric Hand-Grip Muscle Contraction on Young Adults' Free Recall and Recognition Memory.

    PubMed

    Tomporowski, Phillip D; Albrecht, Chelesa; Pendleton, Daniel M

    2017-03-01

    The purpose of this study was to determine if physical arousal produced by isometric hand-dynamometer contraction performed during word-list learning affects young adults' free recall or recognition memory. Twenty-four young adults (12 female; M age  = 22 years) were presented with 4 20-item word lists. Moderate arousal was induced in 12 adults by an initial 30-s maximal hand-dynamometer squeeze with force productions of 50% maximum; low arousal was induced in 12 adults by an initial 1-s maximal dynamometer squeeze with force production of 10% maximum during learning. Memory performances following dual-task conditions experienced during the encoding, consolidation, and recall phases of learning were compared to a single-task control condition during which words were learned in the absence of isometric exercise. Planned contrasts revealed that arousal coinciding with word encoding led to significantly poorer immediate recall, F(1, 23) = 10.13, p < .05, [Formula: see text] = .31, delayed free recall, F(1, 23) = 15.81, p < .05, [Formula: see text] = .41, and recognition memory, F(1, 23) = 6.07, p < .05, [Formula: see text] = .21, compared with when there was no arousal. Neither arousal condition facilitated participants' memory performance. The reduction in long-term memory performance specific to the encoding phase of learning is explained in terms of the dual-task attentional demands placed on participants.

  9. Computerized working memory training has positive long-term effect in very low birthweight preschool children.

    PubMed

    Grunewaldt, Kristine Hermansen; Skranes, Jon; Brubakk, Ann-Mari; Lähaugen, Gro C C

    2016-02-01

    Working memory deficits are frequently found in children born preterm and have been linked to learning disabilities, and cognitive and behavioural problems. Our aim was to evaluate if a computerized working memory training program has long-term positive effects on memory, learning, and behaviour in very-low-birthweight (VLBW) children at age 5 to 6 years. This prospective, intervention study included 20 VLBW preschool children in the intervention group and 17 age-matched, non-training VLBW children in the comparison group. The intervention group trained with the Cogmed JM working memory training program daily for 5 weeks (25 training sessions). Extensive neuropsychological assessment and parental questionnaires were performed 4 weeks after intervention and at follow-up 7 months later. For most of the statistical analyses, general linear models were applied. At follow-up, higher scores and increased or equal performance gain were found in the intervention group than the comparison group on memory for faces (p=0.012), narrative memory (p=0.002), and spatial span (p=0.003). No group differences in performance gain were found for attention and behaviour. Computerized working memory training seems to have positive and persisting effects on working memory, and visual and verbal learning, at 7-month follow-up in VLBW preschool children. We speculate that such training is beneficial by improving the ability to learn from the teaching at school and for further cognitive development. © 2015 Mac Keith Press.

  10. Dissociation of spatial memory systems in Williams syndrome.

    PubMed

    Bostelmann, Mathilde; Fragnière, Emilie; Costanzo, Floriana; Di Vara, Silvia; Menghini, Deny; Vicari, Stefano; Lavenex, Pierre; Lavenex, Pamela Banta

    2017-11-01

    Williams syndrome (WS), a genetic deletion syndrome, is characterized by severe visuospatial deficits affecting performance on both tabletop spatial tasks and on tasks which assess orientation and navigation. Nevertheless, previous studies of WS spatial capacities have ignored the fact that two different spatial memory systems are believed to contribute parallel spatial representations supporting navigation. The place learning system depends on the hippocampal formation and creates flexible relational representations of the environment, also known as cognitive maps. The spatial response learning system depends on the striatum and creates fixed stimulus-response representations, also known as habits. Indeed, no study assessing WS spatial competence has used tasks which selectively target these two spatial memory systems. Here, we report that individuals with WS exhibit a dissociation in their spatial abilities subserved by these two memory systems. As compared to typically developing (TD) children in the same mental age range, place learning performance was impaired in individuals with WS. In contrast, their spatial response learning performance was facilitated. Our findings in individuals with WS and TD children suggest that place learning and response learning interact competitively to control the behavioral strategies normally used to support human spatial navigation. Our findings further suggest that the neural pathways supporting place learning may be affected by the genetic deletion that characterizes WS, whereas those supporting response learning may be relatively preserved. The dissociation observed between these two spatial memory systems provides a coherent theoretical framework to characterize the spatial abilities of individuals with WS, and may lead to the development of new learning strategies based on their facilitated response learning abilities. © 2017 Wiley Periodicals, Inc.

  11. Stimulation of the human medial temporal lobe between learning and recall selectively enhances forgetting

    PubMed Central

    Merkow, Maxwell B.; Burke, John F.; Ramayya, Ashwin G.; Sharan, Ashwini D.; Sperling, Michael R.; Kahana, Michael J.

    2017-01-01

    Background Direct electrical stimulation applied to the human medial temporal lobe (MTL) typically disrupts performance on memory tasks, however, the mechanism underlying this effect is not known. Objective To study the effects of MTL stimulation on memory performance Methods We studied the effects of MTL stimulation on memory in five patients undergoing invasive electrocorticographic monitoring during various phases of a memory task (encoding, distractor, recall). Results We found that MTL stimulation disrupted memory performance in a timing-dependent manner; we observed greater forgetting when applying stimulation during the delay between encoding and recall, compared to when it was applied during encoding or recall. Conclusions The results suggest that recall is most dependent on the MTL between learning and retrieval. PMID:28073638

  12. Episodic representations support early semantic learning: evidence from midazolam induced amnesia.

    PubMed

    Merritt, Paul; Hirshman, Elliot; Zamani, Shane; Hsu, John; Berrigan, Michael

    2006-07-01

    Current controversy exists regarding the role of episodic representations in the formation of long-term semantic memories. Using the drug midazolam to induce temporary amnesia we tested participants' memories for newly learned facts in a semantic cue condition or an episodic and semantic cue condition. Following midazolam administration, memory performance was superior in the episodic and semantic condition, suggesting early semantic learning is supported by episodic representations.

  13. Cathodal Transcranial Direct Current Stimulation Over Left Dorsolateral Prefrontal Cortex Area Promotes Implicit Motor Learning in a Golf Putting Task.

    PubMed

    Zhu, Frank F; Yeung, Andrew Y; Poolton, Jamie M; Lee, Tatia M C; Leung, Gilberto K K; Masters, Rich S W

    2015-01-01

    Implicit motor learning is characterized by low dependence on working memory and stable performance despite stress, fatigue, or multi-tasking. However, current paradigms for implicit motor learning are based on behavioral interventions that are often task-specific and limited when applied in practice. To investigate whether cathodal transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (DLPFC) area during motor learning suppressed working memory activity and reduced explicit verbal-analytical involvement in movement control, thereby promoting implicit motor learning. Twenty-seven healthy individuals practiced a golf putting task during a Training Phase while receiving either real cathodal tDCS stimulation over the left DLPFC area or sham stimulation. Their performance was assessed during a Test phase on another day. Verbal working memory capacity was assessed before and after the Training Phase, and before the Test Phase. Compared to sham stimulation, real stimulation suppressed verbal working memory activity after the Training Phase, but enhanced golf putting performance during the Training Phase and the Test Phase, especially when participants were required to multi-task. Cathodal tDCS over the left DLPFC may foster implicit motor learning and performance in complex real-life motor tasks that occur during sports, surgery or motor rehabilitation. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. HIV-infected persons with bipolar disorder are less aware of memory deficits than HIV-infected persons without bipolar disorder.

    PubMed

    Blackstone, Kaitlin; Tobin, Alexis; Posada, Carolina; Gouaux, Ben; Grant, Igor; Moore, David J; The Hiv Neurobehavioral Research Program Hnrp

    2012-01-01

    Episodic memory deficits are common in HIV infection and bipolar disorder, but patient insight into such deficits remains unclear. Thirty-four HIV-infected individuals without bipolar disorder (HIV+/BD-) and 47 HIV+ individuals with comorbid bipolar disorder (HIV+/BD+) were administered the Hopkins Verbal Learning Test-Revised and the Brief Visuospatial Memory Test-Revised to examine objective learning/memory functioning. Subjective memory complaints were assessed via the memory subscale of the Patient's Assessment of Own Functioning Inventory. HIV+/BD+ individuals performed poorer on tests of visual learning and visual/verbal recall than did HIV+/BD- participants (ps < .05). Memory complaints only predicted verbal learning (at a trend level, p = .10) and recall (p = .03) among the HIV+/BD- individuals. Memory complaints were not associated with memory performance within the HIV+/BD+ group (ps > .10). Memory complaints were associated with depressive symptoms in both groups (ps < 0.05). These complaints were also predictive of immunosuppression, higher unemployment, and greater dependence on activities of daily living among the HIV+/BD+ individuals (ps < .05). Awareness of memory abilities was particularly poor among HIV+/BD+ individuals (i.e., objective learning/memory did not correspond to reported complaints), which has important implications for the capacity of these individuals to engage in error-monitoring and compensatory strategies in daily life. Memory complaints are associated with depressed mood regardless of group membership. Among HIV+/BD+ individuals, these complaints may also signify worse HIV disease status and problems with everyday functioning. Clinicians and researchers should be cognizant of what these complaints indicate in order to lead treatment most effectively; use of objective neurocognitive assessments may still be warranted when working with these populations.

  15. Ictal mnemestic aura and verbal memory function.

    PubMed

    Vederman, Aaron C; Holtzer, Roee; Zimmerman, Molly E; Devinsky, Orrin; Barr, William B

    2010-04-01

    Déjà vu aura is a well-known phenomenon experienced by some patients with epilepsy. This study sought to explore the relationship between verbal memory and the experience of déjà vu or other types of mnemestic auras in 42 individuals with intractable seizures and 42 age- and education-matched patient controls. Verbal memory was assessed with indices of learning, long delay recall, and recognition from the California Verbal Learning Test. Results indicated that auras of any type were not associated with memory performance on the California Verbal Learning Test. As expected, age and education were related to verbal memory performance. Mnemestic auras were associated with clinical indices of illness, suggesting that the presence of these auras may be regarded as a risk factor for greater chronicity and severity in epilepsy. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  16. Category Learning Strategies in Younger and Older Adults: Rule Abstraction and Memorization

    PubMed Central

    Wahlheim, Christopher N.; McDaniel, Mark A.; Little, Jeri L.

    2016-01-01

    Despite the fundamental role of category learning in cognition, few studies have examined how this ability differs between younger and older adults. The present experiment examined possible age differences in category learning strategies and their effects on learning. Participants were trained on a category determined by a disjunctive rule applied to relational features. The utilization of rule- and exemplar-based strategies was indexed by self-reports and transfer performance. Based on self-reported strategies, both age groups had comparable frequencies of rule- and exemplar-based learners, but older adults had a higher frequency of intermediate learners (i.e., learners not identifying with a reliance on either rule- or exemplar-based strategies). Training performance was higher for younger than older adults regardless of the strategy utilized, showing that older adults were impaired in their ability to learn the correct rule or to remember exemplar-label associations. Transfer performance converged with strategy reports in showing higher fidelity category representations for younger adults. Younger adults with high working memory capacity were more likely to use an exemplar-based strategy, and older adults with high working memory capacity showed better training performance. Age groups did not differ in their self-reported memory beliefs, and these beliefs did not predict training strategies or performance. Overall, the present results contradict earlier findings that older adults prefer rule- to exemplar-based learning strategies, presumably to compensate for memory deficits. PMID:26950225

  17. Rule-Based Category Learning in Children: The Role of Age and Executive Functioning

    PubMed Central

    Rabi, Rahel; Minda, John Paul

    2014-01-01

    Rule-based category learning was examined in 4–11 year-olds and adults. Participants were asked to learn a set of novel perceptual categories in a classification learning task. Categorization performance improved with age, with younger children showing the strongest rule-based deficit relative to older children and adults. Model-based analyses provided insight regarding the type of strategy being used to solve the categorization task, demonstrating that the use of the task appropriate strategy increased with age. When children and adults who identified the correct categorization rule were compared, the performance deficit was no longer evident. Executive functions were also measured. While both working memory and inhibitory control were related to rule-based categorization and improved with age, working memory specifically was found to marginally mediate the age-related improvements in categorization. When analyses focused only on the sample of children, results showed that working memory ability and inhibitory control were associated with categorization performance and strategy use. The current findings track changes in categorization performance across childhood, demonstrating at which points performance begins to mature and resemble that of adults. Additionally, findings highlight the potential role that working memory and inhibitory control may play in rule-based category learning. PMID:24489658

  18. Rapid learning dynamics in individual honeybees during classical conditioning.

    PubMed

    Pamir, Evren; Szyszka, Paul; Scheiner, Ricarda; Nawrot, Martin P

    2014-01-01

    Associative learning in insects has been studied extensively by a multitude of classical conditioning protocols. However, so far little emphasis has been put on the dynamics of learning in individuals. The honeybee is a well-established animal model for learning and memory. We here studied associative learning as expressed in individual behavior based on a large collection of data on olfactory classical conditioning (25 datasets, 3298 animals). We show that the group-averaged learning curve and memory retention score confound three attributes of individual learning: the ability or inability to learn a given task, the generally fast acquisition of a conditioned response (CR) in learners, and the high stability of the CR during consecutive training and memory retention trials. We reassessed the prevailing view that more training results in better memory performance and found that 24 h memory retention can be indistinguishable after single-trial and multiple-trial conditioning in individuals. We explain how inter-individual differences in learning can be accommodated within the Rescorla-Wagner theory of associative learning. In both data-analysis and modeling we demonstrate how the conflict between population-level and single-animal perspectives on learning and memory can be disentangled.

  19. Rapid learning dynamics in individual honeybees during classical conditioning

    PubMed Central

    Pamir, Evren; Szyszka, Paul; Scheiner, Ricarda; Nawrot, Martin P.

    2014-01-01

    Associative learning in insects has been studied extensively by a multitude of classical conditioning protocols. However, so far little emphasis has been put on the dynamics of learning in individuals. The honeybee is a well-established animal model for learning and memory. We here studied associative learning as expressed in individual behavior based on a large collection of data on olfactory classical conditioning (25 datasets, 3298 animals). We show that the group-averaged learning curve and memory retention score confound three attributes of individual learning: the ability or inability to learn a given task, the generally fast acquisition of a conditioned response (CR) in learners, and the high stability of the CR during consecutive training and memory retention trials. We reassessed the prevailing view that more training results in better memory performance and found that 24 h memory retention can be indistinguishable after single-trial and multiple-trial conditioning in individuals. We explain how inter-individual differences in learning can be accommodated within the Rescorla–Wagner theory of associative learning. In both data-analysis and modeling we demonstrate how the conflict between population-level and single-animal perspectives on learning and memory can be disentangled. PMID:25309366

  20. Face-name association learning in early Alzheimer's disease: a comparison of learning methods and their underlying mechanisms.

    PubMed

    Bier, Nathalie; Van Der Linden, Martial; Gagnon, Lise; Desrosiers, Johanne; Adam, Stephane; Louveaux, Stephanie; Saint-Mleux, Julie

    2008-06-01

    This study compared the efficacy of five learning methods in the acquisition of face-name associations in early dementia of Alzheimer type (AD). The contribution of error production and implicit memory to the efficacy of each method was also examined. Fifteen participants with early AD and 15 matched controls were exposed to five learning methods: spaced retrieval, vanishing cues, errorless, and two trial-and-error methods, one with explicit and one with implicit memory task instructions. Under each method, participants had to learn a list of five face-name associations, followed by free recall, cued recall and recognition. Delayed recall was also assessed. For AD, results showed that all methods were efficient but there were no significant differences between them. The number of errors produced during the learning phases varied between the five methods but did not influence learning. There were no significant differences between implicit and explicit memory task instructions on test performances. For the control group, there were no differences between the five methods. Finally, no significant correlations were found between the performance of the AD participants in free recall and their cognitive profile, but generally, the best performers had better remaining episodic memory. Also, case study analyses showed that spaced retrieval was the method for which the greatest number of participants (four) obtained results as good as the controls. This study suggests that the five methods are effective for new learning of face-name associations in AD. It appears that early AD patients can learn, even in the context of error production and explicit memory conditions.

  1. Selecting Learning Tasks: Effects of Adaptation and Shared Control on Learning Efficiency and Task Involvement

    ERIC Educational Resources Information Center

    Corbalan, Gemma; Kester, Liesbeth; van Merrienboer, Jeroen J. G.

    2008-01-01

    Complex skill acquisition by performing authentic learning tasks is constrained by limited working memory capacity [Baddeley, A. D. (1992). Working memory. "Science, 255", 556-559]. To prevent cognitive overload, task difficulty and support of each newly selected learning task can be adapted to the learner's competence level and perceived task…

  2. Primary motor and premotor cortex in implicit sequence learning--evidence for competition between implicit and explicit human motor memory systems.

    PubMed

    Kantak, Shailesh S; Mummidisetty, Chaithanya K; Stinear, James W

    2012-09-01

    Implicit and explicit memory systems for motor skills compete with each other during and after motor practice. Primary motor cortex (M1) is known to be engaged during implicit motor learning, while dorsal premotor cortex (PMd) is critical for explicit learning. To elucidate the neural substrates underlying the interaction between implicit and explicit memory systems, adults underwent a randomized crossover experiment of anodal transcranial direct current stimulation (AtDCS) applied over M1, PMd or sham stimulation during implicit motor sequence (serial reaction time task, SRTT) practice. We hypothesized that M1-AtDCS during practice will enhance online performance and offline learning of the implicit motor sequence. In contrast, we also hypothesized that PMd-AtDCS will attenuate performance and retention of the implicit motor sequence. Implicit sequence performance was assessed at baseline, at the end of acquisition (EoA), and 24 h after practice (retention test, RET). M1-AtDCS during practice significantly improved practice performance and supported offline stabilization compared with Sham tDCS. Performance change from EoA to RET revealed that PMd-AtDCS during practice attenuated offline stabilization compared with M1-AtDCS and sham stimulation. The results support the role of M1 in implementing online performance gains and offline stabilization for implicit motor sequence learning. In contrast, enhancing the activity within explicit motor memory network nodes such as the PMd during practice may be detrimental to offline stabilization of the learned implicit motor sequence. These results support the notion of competition between implicit and explicit motor memory systems and identify underlying neural substrates that are engaged in this competition. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  3. Loganin enhances long-term potentiation and recovers scopolamine-induced learning and memory impairments.

    PubMed

    Hwang, Eun-Sang; Kim, Hyun-Bum; Lee, Seok; Kim, Min-Ji; Lee, Sung-Ok; Han, Seung-Moo; Maeng, Sungho; Park, Ji-Ho

    2017-03-15

    Although the incidence rate of dementia is rapidly growing in the aged population, therapeutic and preventive reagents are still suboptimal. Various model systems are used for the development of such reagents in which scopolamine is one of the favorable pharmacological tools widely applied. Loganin is a major iridoid glycoside obtained from Corni fructus (Cornusofficinalis et Zucc) and demonstrated to have anti-inflammatory, anti-tumor and osteoporosis prevention effects. It has also been found to attenuate Aβ-induced inflammatory reactions and ameliorate memory deficits induced by scopolamine. However, there has been limited information available on how loganin affects learning and memory both electrophysiologically and behaviorally. To assess its effect on learning and memory, we investigated the influence of acute loganin administration on long-term potentiation (LTP) using organotypic cultured hippocampal tissues. In addition, we measured the effects of loganin on the behavior performance related to avoidance memory, short-term spatial navigation memory and long-term spatial learning and memory in the passive avoidance, Y-maze, and Morris water maze learning paradigms, respectively. Loganin dose-dependently increased the total activity of fEPSP after high frequency stimulation and attenuated scopolamine-induced blockade of fEPSP in the hippocampal CA1 area. In accordance with these findings, loganin behaviorally attenuated scopolamine-induced shortening of step-through latency in the passive avoidance test, reduced the percent alternation in the Y-maze, and increased memory retention in the Morris water maze test. These results indicate that loganin can effectively block cholinergic muscarinic receptor blockade -induced deterioration of LTP and memory related behavioral performance. Based on these findings, loganin may aid in the prevention and treatment of Alzheimer's disease and learning and memory-deficit disorders in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Music training is associated with cortical synchronization reflected in EEG coherence during verbal memory encoding.

    PubMed

    Cheung, Mei-Chun; Chan, Agnes S; Liu, Ying; Law, Derry; Wong, Christina W Y

    2017-01-01

    Music training can improve cognitive functions. Previous studies have shown that children and adults with music training demonstrate better verbal learning and memory performance than those without such training. Although prior studies have shown an association between music training and changes in the structural and functional organization of the brain, there is no concrete evidence of the underlying neural correlates of the verbal memory encoding phase involved in such enhanced memory performance. Therefore, we carried out an electroencephalography (EEG) study to investigate how music training was associated with brain activity during the verbal memory encoding phase. Sixty participants were recruited, 30 of whom had received music training for at least one year (the MT group) and 30 of whom had never received music training (the NMT group). The participants in the two groups were matched for age, education, gender distribution, and cognitive capability. Their verbal and visual memory functions were assessed using standardized neuropsychological tests and EEG was used to record their brain activity during the verbal memory encoding phase. Consistent with previous studies, the MT group demonstrated better verbal memory than the NMT group during both the learning and the delayed recall trials in the paper-and-pencil tests. The MT group also exhibited greater learning capacity during the learning trials. Compared with the NMT group, the MT group showed an increase in long-range left and right intrahemispheric EEG coherence in the theta frequency band during the verbal memory encoding phase. In addition, their event-related left intrahemispheric theta coherence was positively associated with subsequent verbal memory performance as measured by discrimination scores. These results suggest that music training may modulate the cortical synchronization of the neural networks involved in verbal memory formation.

  5. Music training is associated with cortical synchronization reflected in EEG coherence during verbal memory encoding

    PubMed Central

    Cheung, Mei-chun; Chan, Agnes S.; Liu, Ying; Law, Derry; Wong, Christina W. Y.

    2017-01-01

    Music training can improve cognitive functions. Previous studies have shown that children and adults with music training demonstrate better verbal learning and memory performance than those without such training. Although prior studies have shown an association between music training and changes in the structural and functional organization of the brain, there is no concrete evidence of the underlying neural correlates of the verbal memory encoding phase involved in such enhanced memory performance. Therefore, we carried out an electroencephalography (EEG) study to investigate how music training was associated with brain activity during the verbal memory encoding phase. Sixty participants were recruited, 30 of whom had received music training for at least one year (the MT group) and 30 of whom had never received music training (the NMT group). The participants in the two groups were matched for age, education, gender distribution, and cognitive capability. Their verbal and visual memory functions were assessed using standardized neuropsychological tests and EEG was used to record their brain activity during the verbal memory encoding phase. Consistent with previous studies, the MT group demonstrated better verbal memory than the NMT group during both the learning and the delayed recall trials in the paper-and-pencil tests. The MT group also exhibited greater learning capacity during the learning trials. Compared with the NMT group, the MT group showed an increase in long-range left and right intrahemispheric EEG coherence in the theta frequency band during the verbal memory encoding phase. In addition, their event-related left intrahemispheric theta coherence was positively associated with subsequent verbal memory performance as measured by discrimination scores. These results suggest that music training may modulate the cortical synchronization of the neural networks involved in verbal memory formation. PMID:28358852

  6. Memory and Obstructive Sleep Apnea: A Meta-Analysis

    PubMed Central

    Wallace, Anna; Bucks, Romola S.

    2013-01-01

    Study Objectives: To examine episodic memory performance in individuals with obstructive sleep apnea (OSA). Design Meta-analysis was used to synthesize results from individual studies examining the impact of OSA on episodic memory performance. The performance of individuals with OSA was compared to healthy controls or normative data. Participants Forty-two studies were included, comprising 2,294 adults with untreated OSA and 1,364 healthy controls. Studies that recorded information about participants at baseline prior to treatment interventions were included in the analysis. Measurements Participants were assessed with tasks that included a measure of episodic memory: immediate recall, delayed recall, learning, and/or recognition memory. Results: The results of the meta-analyses provide evidence that individuals with OSA are significantly impaired when compared to healthy controls on verbal episodic memory (immediate recall, delayed recall, learning, and recognition) and visuo-spatial episodic memory (immediate and delayed recall), but not visual immediate recall or visuo-spatial learning. When patients were compared to norms, negative effects of OSA were found only in verbal immediate and delayed recall. Conclusions: This meta-analysis contributes to understanding of the nature of episodic memory deficits in individuals with OSA. Impairments to episodic memory are likely to affect the daily functioning of individuals with OSA. Citation Wallace A; Bucks RS. Memory and obstructive sleep apnea: a meta-analysis. SLEEP 2013;36(2):203-220. PMID:23372268

  7. Negative reinforcement impairs overnight memory consolidation.

    PubMed

    Stamm, Andrew W; Nguyen, Nam D; Seicol, Benjamin J; Fagan, Abigail; Oh, Angela; Drumm, Michael; Lundt, Maureen; Stickgold, Robert; Wamsley, Erin J

    2014-11-01

    Post-learning sleep is beneficial for human memory. However, it may be that not all memories benefit equally from sleep. Here, we manipulated a spatial learning task using monetary reward and performance feedback, asking whether enhancing the salience of the task would augment overnight memory consolidation and alter its incorporation into dreaming. Contrary to our hypothesis, we found that the addition of reward impaired overnight consolidation of spatial memory. Our findings seemingly contradict prior reports that enhancing the reward value of learned information augments sleep-dependent memory processing. Given that the reward followed a negative reinforcement paradigm, consolidation may have been impaired via a stress-related mechanism. © 2014 Stamm et al.; Published by Cold Spring Harbor Laboratory Press.

  8. Thirst for Knowledge: The Effects of Curiosity and Interest on Memory in Younger and Older Adults

    PubMed Central

    McGillivray, Shannon; Murayama, Kou; Castel, Alan D.

    2015-01-01

    Given age-related memory impairments, one’s level of curiosity or interest could enhance memory for certain information. In the current study, younger and older adults read trivia questions, rated how curious they were to learn each answer, provided confidence and interest ratings, and judgments of learning (JOL) after learning the answer. No age-related differences in memory were found. Analyses indicated that curiosity and interest contributed to the formation of JOLs. Additionally, interest had a unique increasing relationship with older, but not younger, adults’ memory performance after a week. The results suggest that subjective interest may serve to enhance older adults’ memory. PMID:26479013

  9. Predictors of Processing-Based Task Performance in Bilingual and Monolingual Children

    PubMed Central

    Buac, Milijana; Gross, Megan; Kaushanskaya, Margarita

    2016-01-01

    In the present study we examined performance of bilingual Spanish-English-speaking and monolingual English-speaking school-age children on a range of processing-based measures within the framework of Baddeley’s working memory model. The processing-based measures included measures of short-term memory, measures of working memory, and a novel word-learning task. Results revealed that monolinguals outperformed bilinguals on the short-term memory tasks but not the working memory and novel word-learning tasks. Further, children’s vocabulary skills and socioeconomic status (SES) were more predictive of processing-based task performance in the bilingual group than the monolingual group. Together, these findings indicate that processing-based tasks that engage verbal working memory rather than short-term memory may be better-suited for diagnostic purposes with bilingual children. However, even verbal working memory measures are sensitive to bilingual children’s language-specific knowledge and demographic characteristics, and therefore may have limited clinical utility. PMID:27179914

  10. Learning and Overnight Retention in Declarative Memory in Specific Language Impairment

    PubMed Central

    Lukács, Ágnes; Kemény, Ferenc; Lum, Jarrad A. G.; Ullman, Michael T.

    2017-01-01

    We examined learning and retention in nonverbal and verbal declarative memory in Hungarian children with (n = 21) and without (n = 21) SLI. Recognition memory was tested both 10 minutes and one day after encoding. On nonverbal items, only the children with SLI improved overnight, with no resulting group differences in performance. In the verbal domain, the children with SLI consistently showed worse performance than the typically-developing children, but the two groups showed similar overnight changes. The findings suggest the possibility of spared or even enhanced declarative memory consolidation in SLI. PMID:28046095

  11. A comparison of progestins within three classes: Differential effects on learning and memory in the aging surgically menopausal rat.

    PubMed

    Braden, B Blair; Andrews, Madeline G; Acosta, Jazmin I; Mennenga, Sarah E; Lavery, Courtney; Bimonte-Nelson, Heather A

    2017-03-30

    For decades, progestins have been included in hormone therapies (HT) prescribed to women to offset the risk of unopposed estrogen-induced endometrial hyperplasia. However, the potential effects on cognition of subcategories of clinically used progestins have been largely unexplored. In two studies, the present investigation evaluated the cognitive effects of norethindrone acetate (NETA), levonorgestrel (LEVO), and medroxyprogesterone acetate (MPA) on the water radial-arm maze (WRAM) and Morris water maze (MM) in middle-aged ovariectomized rats. In Study 1, six-weeks of a high-dose NETA treatment impaired learning and delayed retention on the WRAM, and impaired reference memory on the MM. Low-dose NETA treatment impaired delayed retention on the WRAM. In Study 2, high-dose NETA treatment was reduced to four-weeks and compared to MPA and LEVO. As previously shown, MPA impaired working memory performance during the lattermost portion of testing, at the highest working memory load, impaired delayed retention on the WRAM, and impaired reference memory on the MM. NETA also impaired performance on these WRAM and MM measures. Interestingly, LEVO did not impair performance, but instead enhanced learning on the WRAM. The current study corroborates previous evidence that the most commonly prescribed FDA-approved progestin for HT, MPA, impairs learning and memory in the ovariectomized middle-aged rat. When progestins from two different additional subcategories were investigated, NETA impaired learning and memory similarly to MPA, but LEVO enhanced learning. Future research is warranted to determine LEVO's potential as an ideal progestin for optimal health in women, including for cognition. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Stimulation of the human medial temporal lobe between learning and recall selectively enhances forgetting.

    PubMed

    Merkow, Maxwell B; Burke, John F; Ramayya, Ashwin G; Sharan, Ashwini D; Sperling, Michael R; Kahana, Michael J

    Direct electrical stimulation applied to the human medial temporal lobe (MTL) typically disrupts performance on memory tasks, however, the mechanism underlying this effect is not known. To study the effects of MTL stimulation on memory performance. We studied the effects of MTL stimulation on memory in five patients undergoing invasive electrocorticographic monitoring during various phases of a memory task (encoding, distractor, recall). We found that MTL stimulation disrupted memory performance in a timing-dependent manner; we observed greater forgetting when applying stimulation during the delay between encoding and recall, compared to when it was applied during encoding or recall. The results suggest that recall is most dependent on the MTL between learning and retrieval. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Visual memory and learning in extremely low-birth-weight/extremely preterm adolescents compared with controls: a geographic study.

    PubMed

    Molloy, Carly S; Wilson-Ching, Michelle; Doyle, Lex W; Anderson, Vicki A; Anderson, Peter J

    2014-04-01

    Contemporary data on visual memory and learning in survivors born extremely preterm (EP; <28 weeks gestation) or with extremely low birth weight (ELBW; <1,000 g) are lacking. Geographically determined cohort study of 298 consecutive EP/ELBW survivors born in 1991 and 1992, and 262 randomly selected normal-birth-weight controls. Visual learning and memory data were available for 221 (74.2%) EP/ELBW subjects and 159 (60.7%) controls. EP/ELBW adolescents exhibited significantly poorer performance across visual memory and learning variables compared with controls. Visual learning and delayed visual memory were particularly problematic and remained so after controlling for visual-motor integration and visual perception and excluding adolescents with neurosensory disability, and/or IQ <70. Male EP/ELBW adolescents or those treated with corticosteroids had poorer outcomes. EP/ELBW adolescents have poorer visual memory and learning outcomes compared with controls, which cannot be entirely explained by poor visual perceptual or visual constructional skills or intellectual impairment.

  14. Napping on the Night Shift: A Study of Sleep, Performance, and Learning in Physicians-in-Training.

    PubMed

    McDonald, Jennifer; Potyk, Darryl; Fischer, David; Parmenter, Brett; Lillis, Teresa; Tompkins, Lindsey; Bowen, Angela; Grant, Devon; Lamp, Amanda; Belenky, Gregory

    2013-12-01

    Physicians in training experience fatigue from sleep loss, high workload, and working at an adverse phase of the circadian rhythm, which collectively degrades task performance and the ability to learn and remember. To minimize fatigue and sustain performance, learning, and memory, humans generally need 7 to 8 hours of sleep in every 24-hour period. In a naturalistic, within-subjects design, we studied 17 first- and second-year internal medicine residents working in a tertiary care medical center, rotating between day shift and night float every 4 weeks. We studied each resident for 2 weeks while he/she worked the day shift and for 2 weeks while he/she worked the night float, objectively measuring sleep by wrist actigraphy, vigilance by the Psychomotor Vigilance Task test, and visual-spatial and verbal learning and memory by the Brief Visuospatial Memory Test-Revised and the Rey Auditory-Verbal Learning Test. Residents, whether working day shift or night float, slept approximately 7 hours in every 24-hour period. Residents, when working day shift, consolidated their sleep into 1 main sleep period at night. Residents working night float split their sleep, supplementing their truncated daytime sleep with nighttime on-duty naps. There was no difference in vigilance or learning and memory, whether residents worked day shift or night float. Off-duty sleep supplemented with naps while on duty appears to be an effective strategy for sustaining vigilance, learning, and memory when working night float.

  15. Assessing the Effects of Momentary Priming on Memory Retention During an Interference Task

    NASA Technical Reports Server (NTRS)

    Schutte, Paul C.

    2007-01-01

    A memory aid, that used brief (33ms) presentations of previously learned information (target words), was assessed on its ability to reinforce memory for target words while the subject was performing an interference task. The interference task required subjects to learn new words and thus interfered with their memory of the target words. The brief presentation (momentary memory priming) was hypothesized to refresh the subjects memory of the target words. 143 subjects, in a within subject design, were given a 33ms presentation of the target memory words during the interference task in a treatment condition and a blank 33ms presentation in the control condition. The primary dependent measure, memory loss over the interference trial, was not significantly different between the two conditions. The memory prime did not appear to hinder the subjects performance on the interference task. This paper describes the experiment and the results along with suggestions for future research.

  16. Testing pigeon memory in a change detection task.

    PubMed

    Wright, Anthony A; Katz, Jeffrey S; Magnotti, John; Elmore, L Caitlin; Babb, Stephanie; Alwin, Sarah

    2010-04-01

    Six pigeons were trained in a change detection task with four colors. They were shown two colored circles on a sample array, followed by a test array with the color of one circle changed. The pigeons learned to choose the changed color and transferred their performance to four unfamiliar colors, suggesting that they had learned a generalized concept of color change. They also transferred performance to test delays several times their 50-msec training delay without prior delay training. The accurate delay performance of several seconds suggests that their change detection was memory based, as opposed to a perceptual attentional capture process. These experiments are the first to show that an animal species (pigeons, in this case) can learn a change detection task identical to ones used to test human memory, thereby providing the possibility of directly comparing short-term memory processing across species.

  17. Working Memory and Reinforcement Schedule Jointly Determine Reinforcement Learning in Children: Potential Implications for Behavioral Parent Training

    PubMed Central

    Segers, Elien; Beckers, Tom; Geurts, Hilde; Claes, Laurence; Danckaerts, Marina; van der Oord, Saskia

    2018-01-01

    Introduction: Behavioral Parent Training (BPT) is often provided for childhood psychiatric disorders. These disorders have been shown to be associated with working memory impairments. BPT is based on operant learning principles, yet how operant principles shape behavior (through the partial reinforcement (PRF) extinction effect, i.e., greater resistance to extinction that is created when behavior is reinforced partially rather than continuously) and the potential role of working memory therein is scarcely studied in children. This study explored the PRF extinction effect and the role of working memory therein using experimental tasks in typically developing children. Methods: Ninety-seven children (age 6–10) completed a working memory task and an operant learning task, in which children acquired a response-sequence rule under either continuous or PRF (120 trials), followed by an extinction phase (80 trials). Data of 88 children were used for analysis. Results: The PRF extinction effect was confirmed: We observed slower acquisition and extinction in the PRF condition as compared to the continuous reinforcement (CRF) condition. Working memory was negatively related to acquisition but not extinction performance. Conclusion: Both reinforcement contingencies and working memory relate to acquisition performance. Potential implications for BPT are that decreasing working memory load may enhance the chance of optimally learning through reinforcement. PMID:29643822

  18. Skill learning from kinesthetic feedback.

    PubMed

    Pinzon, David; Vega, Roberto; Sanchez, Yerly Paola; Zheng, Bin

    2017-10-01

    It is important for a surgeon to perform surgical tasks under appropriate guidance from visual and kinesthetic feedback. However, our knowledge on kinesthetic (muscle) memory and its role in learning motor skills remains elementary. To discover the effect of exclusive kinesthetic training on kinesthetic memory in both performance and learning. In Phase 1, a total of twenty participants duplicated five 2 dimensional movements of increasing complexity via passive kinesthetic guidance, without visual or auditory stimuli. Five participants were asked to repeat the task in the Phase 2 over a period of three weeks, for a total of nine sessions. Subjects accurately recalled movement direction using kinesthetic memory, but recalling movement length was less precise. Over the nine training sessions, error occurrence dropped after the sixth session. Muscle memory constructs the foundation for kinesthetic training. Knowledge gained helps surgeons learn skills from kinesthetic information in the condition where visual feedback is limited. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. CE verbal episodic memory impairment in schizophrenia: a comparison with frontal lobe lesion patients.

    PubMed

    Christensen, Bruce K; Patrick, Regan E; Stuss, Donald T; Gillingham, Susan; Zipursky, Robert B

    2013-01-01

    Schizophrenia (SCZ)-related verbal memory impairment is hypothesized to be mediated, in part, by frontal lobe (FTL) dysfunction. However, little research has contrasted the performance of SCZ patients with that of patients exhibiting circumscribed frontal lesions. The current study compared verbal episodic memory in patients with SCZ and focal FTL lesions (left frontal, LF; right frontal, RF; and bi-frontal, BF) on a four-trial list learning task consisting of three lists of varying semantic organizational structure. Each dependent variable was examined at two levels: scores collapsed across all four trials and learning scores (i.e., trial 4-trial 1). Performance deficits were observed in each patient group across most dependent measures at both levels. Regarding patient group differences, SCZ patients outperformed LF/BF patients (i.e., either learning scores or scores collapsed across trial) on free recall, primacy, primary memory, secondary memory, and subjective organization, whereas they only outperformed RF patients on the semantically blocked list on recency and primary memory. Collectively, these results indicate that the pattern of memory performance is largely similar between patients with SCZ and those with RF lesions. These data support tentative arguments that verbal episodic memory deficits in SCZ may be mediated by frontal dysfunction in the right hemisphere.

  20. Explicit pre-training instruction does not improve implicit perceptual-motor sequence learning

    PubMed Central

    Sanchez, Daniel J.; Reber, Paul J.

    2012-01-01

    Memory systems theory argues for separate neural systems supporting implicit and explicit memory in the human brain. Neuropsychological studies support this dissociation, but empirical studies of cognitively healthy participants generally observe that both kinds of memory are acquired to at least some extent, even in implicit learning tasks. A key question is whether this observation reflects parallel intact memory systems or an integrated representation of memory in healthy participants. Learning of complex tasks in which both explicit instruction and practice is used depends on both kinds of memory, and how these systems interact will be an important component of the learning process. Theories that posit an integrated, or single, memory system for both types of memory predict that explicit instruction should contribute directly to strengthening task knowledge. In contrast, if the two types of memory are independent and acquired in parallel, explicit knowledge should have no direct impact and may serve in a “scaffolding” role in complex learning. Using an implicit perceptual-motor sequence learning task, the effect of explicit pre-training instruction on skill learning and performance was assessed. Explicit pre-training instruction led to robust explicit knowledge, but sequence learning did not benefit from the contribution of pre-training sequence memorization. The lack of an instruction benefit suggests that during skill learning, implicit and explicit memory operate independently. While healthy participants will generally accrue parallel implicit and explicit knowledge in complex tasks, these types of information appear to be separately represented in the human brain consistent with multiple memory systems theory. PMID:23280147

  1. Cognitive costs of encoding novel natural activities: Can "learning by doing" be distracting and deceptive?

    PubMed

    von Stülpnagel, Rul; Schult, Janette C; Richter, Claudia; Steffens, Melanie C

    2016-01-01

    Findings from action memory research suggest that the enactment of simple actions and naturalistic activities results in similar memory performance to that from their observation. However, little is known about potential differences between the conditions during the encoding of the to-be-studied actions and activities. We analysed the cognitive costs of encoding two novel naturalistic activities studied via enactment or via observation in four experiments. In addition to memory performance, we measured objective cognitive costs with a secondary task and subjective cognitive costs with repeated ratings of mental effort and estimates of general activity difficulty. Memory performance was comparable across study conditions throughout all experiments. The enactment of activities repeatedly resulted in slower reaction times in the secondary task than did observation, suggesting higher objective costs. In contrast, subjective costs were rated lower after enactment than after observation. Findings from a pantomimic enactment condition suggested that the low ratings of subjective costs after enactment represent a misinterpretation of task demands. Our findings imply that the widespread belief about "learning by doing" as an easy way of learning does not stem from an actual advantage in memory performance, but rather from continuous feedback about one's performance resulting from enactment.

  2. Event-related brain potentials in memory: correlates of episodic, semantic and implicit memory.

    PubMed

    Wieser, Stephan; Wieser, Heinz Gregor

    2003-06-01

    To study cognitive evoked potentials, recorded from scalp EEG and foramen ovale electrodes, during activation of explicit and implicit memory. The subgroups of explicit memory, episodic and semantic memory, are looked at separately. A word-learning task was used, which has been shown to activate hippocampus in H(2)(15)O positron emission tomography studies. Subjects had to study and remember word pairs using different learning strategies: (i) associative word learning (AWL), which activates the episodic memory, (ii) deep single word encoding (DSWE), which activates the semantic memory, and (iii) shallow single word encoding (SSWE), which activates the implicit memory and serves as a baseline. The test included the 'remember/know' paradigm as a behavioural learning control. During the task condition, a 10-20 scalp EEG with additional electrodes in both temporal lobes regions was recorded from 11 healthy volunteers. In one patient with mesiotemporal lobe epilepsy, the EEG was recorded from bilateral foramen ovale electrodes directly from mesial temporal lobe structures. Event-related potentials (ERPs) were calculated off-line and visual and statistical analyses were made. Associative learning strategy produced the best memory performance and the best noetic awareness experience, whereas shallow single word encoding produced the worst performance and the smallest noetic awareness. Deep single word encoding performance was in between. ERPs differed according to the test condition, during both encoding and retrieval, from both the scalp EEG and the foramen ovale electrode recordings. Encoding showed significant differences between the shallow single word encoding (SSWE), which is mainly a function of graphical characteristics, and the other two strategies, deep single word (DSWE) and associative learning (AWL), in which there is a semantic processing of the meaning. ERPs generated by these two categories, which are both functions of explicit memory, differed as well, indicating the presence or the absence of associative binding. Retrieval showed a significant test effect between the word pairs learned by association (AWL) and the ones learned by encoding the words in isolation of each other (DSWE and SSWE). The comparison of the ERPs generated by autonoetic awareness ('remember') and noetic awareness ('know') exhibited a significant test effect as well. The results of behavioural data, in particular that of the 'remember/know' procedure, are evidence that the task paradigm was efficient in activating different kinds of memory. Associative word learning generated a high degree of autonoetic awareness, which is a result of the episodic memory, whereas both kinds of single word learning generated less. AWL, DSWE and SSWE resulted in different electrophysiological correlates, both for encoding as well as retrieval, indicating that different brain structures were activated in different temporal sequence.

  3. Improving effect of mild foot electrical stimulation on pentylenetetrazole-induced impairment of learning and memory.

    PubMed

    Abasi-Moghadam, Monir; Ghasemi-Dehno, Arefe; Sadegh, Mehdi; Palizvan, Mohammad Reza

    2018-05-10

    Epilepsy is a common neurological disorder that affects learning and memory. Recently it has been shown that mild foot electrical stimulation (MFES) can increase learning and memory in normal rats. Pentylenetetrazole (PTZ) kindling is a model of human epilepsy. As with human epilepsy, PTZ kindling impairs learning and memory in rats. The purpose of this study was to investigate the effect MFES on kindling-induced learning and memory deficits in rats. Forty-nine male Wistar rats weighting 200 to 250 g were divided into the following seven groups: PTZ only, phenytoin only, MFES only, PTZ plus phenytoin, PTZ plus MFES, phenytoin plus MFES, and saline (control), with the treatments administered for 26 days. Forty-eight hours after the last injection, the animals performed the Morris water maze (MWM) task, and spatial learning and memory were measured. The results indicated that although chronic administration of phenytoin inhibited the development of PTZ kindling, it did not exert a protective effect against kindling-induced spatial learning and memory impairment in rats. On the other hand, pretreatment of PTZ-kindled animals with MFES significantly improved spatial working and reference memory. The results point to potential novel beneficial effects of MFES on learning and memory impairment induced by PTZ kindling in rats. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Auditory-motor learning influences auditory memory for music.

    PubMed

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features.

  5. Differential effects of wakeful rest, music and video game playing on working memory performance in the n-back task.

    PubMed

    Kuschpel, Maxim S; Liu, Shuyan; Schad, Daniel J; Heinzel, Stephan; Heinz, Andreas; Rapp, Michael A

    2015-01-01

    The interruption of learning processes by breaks filled with diverse activities is common in everyday life. We investigated the effects of active computer gaming and passive relaxation (rest and music) breaks on working memory performance. Young adults were exposed to breaks involving (i) eyes-open resting, (ii) listening to music and (iii) playing the video game "Angry Birds" before performing the n-back working memory task. Based on linear mixed-effects modeling, we found that playing the "Angry Birds" video game during a short learning break led to a decline in task performance over the course of the task as compared to eyes-open resting and listening to music, although overall task performance was not impaired. This effect was associated with high levels of daily mind wandering and low self-reported ability to concentrate. These findings indicate that video games can negatively affect working memory performance over time when played in between learning tasks. We suggest further investigation of these effects because of their relevance to everyday activity.

  6. Differential effects of wakeful rest, music and video game playing on working memory performance in the n-back task

    PubMed Central

    Kuschpel, Maxim S.; Liu, Shuyan; Schad, Daniel J.; Heinzel, Stephan; Heinz, Andreas; Rapp, Michael A.

    2015-01-01

    The interruption of learning processes by breaks filled with diverse activities is common in everyday life. We investigated the effects of active computer gaming and passive relaxation (rest and music) breaks on working memory performance. Young adults were exposed to breaks involving (i) eyes-open resting, (ii) listening to music and (iii) playing the video game “Angry Birds” before performing the n-back working memory task. Based on linear mixed-effects modeling, we found that playing the “Angry Birds” video game during a short learning break led to a decline in task performance over the course of the task as compared to eyes-open resting and listening to music, although overall task performance was not impaired. This effect was associated with high levels of daily mind wandering and low self-reported ability to concentrate. These findings indicate that video games can negatively affect working memory performance over time when played in between learning tasks. We suggest further investigation of these effects because of their relevance to everyday activity. PMID:26579055

  7. Colour in Learning: Its Effect on the Retention Rate of Graduate Students

    ERIC Educational Resources Information Center

    Olurinola, Oluwakemi; Tayo, Omoniyi

    2015-01-01

    Cognitive psychologists have discovered different design principles to enhance memory performance. It has been said that retrieving process depends on many variables and one of them is colour. This paper provides an overview of research on colour and learning. It includes the effect of colour on attention, retention and memory performance, and…

  8. Machine Learning Analysis Identifies Drosophila Grunge/Atrophin as an Important Learning and Memory Gene Required for Memory Retention and Social Learning.

    PubMed

    Kacsoh, Balint Z; Greene, Casey S; Bosco, Giovanni

    2017-11-06

    High-throughput experiments are becoming increasingly common, and scientists must balance hypothesis-driven experiments with genome-wide data acquisition. We sought to predict novel genes involved in Drosophila learning and long-term memory from existing public high-throughput data. We performed an analysis using PILGRM, which analyzes public gene expression compendia using machine learning. We evaluated the top prediction alongside genes involved in learning and memory in IMP, an interface for functional relationship networks. We identified Grunge/Atrophin ( Gug/Atro ), a transcriptional repressor, histone deacetylase, as our top candidate. We find, through multiple, distinct assays, that Gug has an active role as a modulator of memory retention in the fly and its function is required in the adult mushroom body. Depletion of Gug specifically in neurons of the adult mushroom body, after cell division and neuronal development is complete, suggests that Gug function is important for memory retention through regulation of neuronal activity, and not by altering neurodevelopment. Our study provides a previously uncharacterized role for Gug as a possible regulator of neuronal plasticity at the interface of memory retention and memory extinction. Copyright © 2017 Kacsoh et al.

  9. Hybrid chickadees are deficient in learning and memory.

    PubMed

    McQuillan, Michael A; Roth, Timothy C; Huynh, Alex V; Rice, Amber M

    2018-05-01

    Identifying the phenotypes underlying postzygotic reproductive isolation is crucial for fully understanding the evolution and maintenance of species. One potential postzygotic isolating barrier that has rarely been examined is learning and memory ability in hybrids. Learning and memory are important fitness-related traits, especially in scatter-hoarding species, where accurate retrieval of hoarded food is vital for winter survival. Here, we test the hypothesis that learning and memory ability can act as a postzygotic isolating barrier by comparing these traits among two scatter-hoarding songbird species, black-capped (Poecile atricapillus) and Carolina chickadees (Poecile carolinensis), and their naturally occurring hybrids. In an outdoor aviary setting, we find that hybrid chickadees perform significantly worse on an associative learning spatial task and are worse at solving a novel problem compared to both parental species. Deficiencies in learning and memory abilities could therefore contribute to postzygotic reproductive isolation between chickadee species. Given the importance of learning and memory for fitness, our results suggest that these traits may play an important, but as yet overlooked, role in postzygotic reproductive isolation. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  10. Prefrontal cortical volume loss is associated with stress-related deficits in verbal learning and memory in HIV-infected women.

    PubMed

    Rubin, Leah H; Meyer, Vanessa J; J Conant, Rhoda; Sundermann, Erin E; Wu, Minjie; Weber, Kathleen M; Cohen, Mardge H; Little, Deborah M; Maki, Pauline M

    2016-08-01

    Deficits in verbal learning and memory are a prominent feature of neurocognitive function in HIV-infected women, and are associated with high levels of perceived stress. To understand the neurobiological factors contributing to this stress-related memory impairment, we examined the association between stress, verbal memory, and brain volumes in HIV-infected women. Participants included 38 HIV-infected women (Mean age=43.9years) from the Chicago Consortium of the Women's Interagency HIV Study (WIHS). Participants underwent structural magnetic resonance imaging (MRI) and completed standardized measures of verbal learning and memory and stress (Perceived Stress Scale-10; PSS-10). Brain volumes were evaluated in a priori regions of interest, including the medial temporal lobe (MTL) and prefrontal cortex (PFC). Compared to HIV-infected women with lower stress (PSS-10 scores in lower two tertiles), HIV-infected women with higher stress (scores in the top tertile), performed worse on measures of verbal learning and memory and showed smaller volumes bilaterally in the parahippocampal gyrus, superior frontal gyrus, middle frontal gyrus, and inferior frontal gyrus (p's<0.05). Reduced volumes in the inferior frontal gyrus, middle frontal gyrus, and superior frontal gyrus (all right hemisphere) were negatively associated with verbal learning and memory performance. Prefrontal cortical atrophy is associated with stress-related deficits in verbal learning and memory in HIV-infected women. The time course of these volume losses in relation to memory deficits has yet to be elucidated, but the magnitude of the volumetric differences between women with higher versus lower stress suggests a prolonged vulnerability due to chronic stress and/or early life trauma. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Distributed Learning Enhances Relational Memory Consolidation

    ERIC Educational Resources Information Center

    Litman, Leib; Davachi, Lila

    2008-01-01

    It has long been known that distributed learning (DL) provides a mnemonic advantage over massed learning (ML). However, the underlying mechanisms that drive this robust mnemonic effect remain largely unknown. In two experiments, we show that DL across a 24 hr interval does not enhance immediate memory performance but instead slows the rate of…

  12. Interference from mere thinking: mental rehearsal temporarily disrupts recall of motor memory.

    PubMed

    Yin, Cong; Wei, Kunlin

    2014-08-01

    Interference between successively learned tasks is widely investigated to study motor memory. However, how simultaneously learned motor memories interact with each other has been rarely studied despite its prevalence in daily life. Assuming that motor memory shares common neural mechanisms with declarative memory system, we made unintuitive predictions that mental rehearsal, as opposed to further practice, of one motor memory will temporarily impair the recall of another simultaneously learned memory. Subjects simultaneously learned two sensorimotor tasks, i.e., visuomotor rotation and gain. They retrieved one memory by either practice or mental rehearsal and then had their memory evaluated. We found that mental rehearsal, instead of execution, impaired the recall of unretrieved memory. This impairment was content-independent, i.e., retrieving either gain or rotation impaired the other memory. Hence, conscious recollection of one motor memory interferes with the recall of another memory. This is analogous to retrieval-induced forgetting in declarative memory, suggesting a common neural process across memory systems. Our findings indicate that motor imagery is sufficient to induce interference between motor memories. Mental rehearsal, currently widely regarded as beneficial for motor performance, negatively affects memory recall when it is exercised for a subset of memorized items. Copyright © 2014 the American Physiological Society.

  13. Both memory and attention systems contribute to visual search for targets cued by implicitly learned context

    PubMed Central

    Giesbrecht, Barry; Sy, Jocelyn L.; Guerin, Scott A.

    2012-01-01

    Environmental context learned without awareness can facilitate visual processing of goal-relevant information. According to one view, the benefit of implicitly learned context relies on the neural systems involved in spatial attention and hippocampus-mediated memory. While this view has received empirical support, it contradicts traditional models of hippocampal function. The purpose of the present work was to clarify the influence of spatial context on visual search performance and on brain structures involved memory and attention. Event-related functional magnetic resonance imaging revealed that activity in the hippocampus as well as in visual and parietal cortex was modulated by learned visual context even though participants’ subjective reports and performance on a post-experiment recognition task indicated no explicit knowledge of the learned context. Moreover, the magnitude of the initial selective hippocampus response predicted the magnitude of the behavioral benefit due to context observed at the end of the experiment. The results suggest that implicit contextual learning is mediated by attention and memory and that these systems interact to support search of our environment. PMID:23099047

  14. Never forget a name: white matter connectivity predicts person memory

    PubMed Central

    Metoki, Athanasia; Alm, Kylie H.; Wang, Yin; Ngo, Chi T.; Olson, Ingrid R.

    2018-01-01

    Through learning and practice, we can acquire numerous skills, ranging from the simple (whistling) to the complex (memorizing operettas in a foreign language). It has been proposed that complex learning requires a network of brain regions that interact with one another via white matter pathways. One candidate white matter pathway, the uncinate fasciculus (UF), has exhibited mixed results for this hypothesis: some studies have shown UF involvement across a range of memory tasks, while other studies report null results. Here, we tested the hypothesis that the UF supports associative memory processes and that this tract can be parcellated into subtracts that support specific types of memory. Healthy young adults performed behavioral tasks (two face-name learning tasks, one word pair memory task) and underwent a diffusion-weighted imaging scan. Our results revealed that variation in UF microstructure was significantly associated with individual differences in performance on both face-name tasks, as well as the word association memory task. A UF sub-tract, functionally defined by its connectivity between face-selective regions in the anterior temporal lobe and orbitofrontal cortex, selectively predicted face-name learning. In contrast, connectivity between the fusiform face patch and both anterior face patches had no predictive validity. These findings suggest that there is a robust and replicable relationship between the UF and associative learning and memory. Moreover, this large white matter pathway can be subdivided to reveal discrete functional profiles. PMID:28646241

  15. Deficits in learning and memory: parahippocampal hyperactivity and frontocortical hypoactivity in cannabis users.

    PubMed

    Nestor, Liam; Roberts, Gloria; Garavan, Hugh; Hester, Robert

    2008-04-15

    The consumption of cannabis has been linked to impairments in human learning and memory, as well as aspects of executive functioning. Cannabis-related impairments in learning and memory in chronic cannabis users, it has been argued, are caused by the effects of cannabis on hippocampal functioning. The current study involved two experiments. Experiment 1 compared 35 current users of cannabis and 38 well-matched controls on a face-name task, previously shown to activate the hippocampal region. Based on the results of experiment 1, experiment 2 used fMRI and a modified version of the face-name task, to examine cortical and (para)hippocampal activity during learning and recall in 14 current users of cannabis and 14 controls. Results of experiment 1 showed that cannabis users were significantly worse with respect to learning, short and long-term memory performance. Experiment 2 showed that despite non-significant differences in learning and memory performance, cannabis users had significantly lower levels of BOLD activity in the right superior temporal gyrus, right superior frontal gyrus, right middle frontal gyrus and left superior frontal gyrus compared to controls during learning. Results also showed that cannabis users had significantly higher BOLD activity in the right parahippocampal gyrus during learning. Hypoactivity in frontal and temporal cortices, and relative hyperactivity in the parahippocampus identify functional deficits and compensatory processes in cannabis users.

  16. Attention Cueing and Activity Equally Reduce False Alarm Rate in Visual-Auditory Associative Learning through Improving Memory.

    PubMed

    Nikouei Mahani, Mohammad-Ali; Haghgoo, Hojjat Allah; Azizi, Solmaz; Nili Ahmadabadi, Majid

    2016-01-01

    In our daily life, we continually exploit already learned multisensory associations and form new ones when facing novel situations. Improving our associative learning results in higher cognitive capabilities. We experimentally and computationally studied the learning performance of healthy subjects in a visual-auditory sensory associative learning task across active learning, attention cueing learning, and passive learning modes. According to our results, the learning mode had no significant effect on learning association of congruent pairs. In addition, subjects' performance in learning congruent samples was not correlated with their vigilance score. Nevertheless, vigilance score was significantly correlated with the learning performance of the non-congruent pairs. Moreover, in the last block of the passive learning mode, subjects significantly made more mistakes in taking non-congruent pairs as associated and consciously reported lower confidence. These results indicate that attention and activity equally enhanced visual-auditory associative learning for non-congruent pairs, while false alarm rate in the passive learning mode did not decrease after the second block. We investigated the cause of higher false alarm rate in the passive learning mode by using a computational model, composed of a reinforcement learning module and a memory-decay module. The results suggest that the higher rate of memory decay is the source of making more mistakes and reporting lower confidence in non-congruent pairs in the passive learning mode.

  17. Declarative memory.

    PubMed

    Riedel, Wim J; Blokland, Arjan

    2015-01-01

    Declarative Memory consists of memory for events (episodic memory) and facts (semantic memory). Methods to test declarative memory are key in investigating effects of potential cognition-enhancing substances--medicinal drugs or nutrients. A number of cognitive performance tests assessing declarative episodic memory tapping verbal learning, logical memory, pattern recognition memory, and paired associates learning are described. These tests have been used as outcome variables in 34 studies in humans that have been described in the literature in the past 10 years. Also, the use of episodic tests in animal research is discussed also in relation to the drug effects in these tasks. The results show that nutritional supplementation of polyunsaturated fatty acids has been investigated most abundantly and, in a number of cases, but not all, show indications of positive effects on declarative memory, more so in elderly than in young subjects. Studies investigating effects of registered anti-Alzheimer drugs, cholinesterase inhibitors in mild cognitive impairment, show positive and negative effects on declarative memory. Studies mainly carried out in healthy volunteers investigating the effects of acute dopamine stimulation indicate enhanced memory consolidation as manifested specifically by better delayed recall, especially at time points long after learning and more so when drug is administered after learning and if word lists are longer. The animal studies reveal a different picture with respect to the effects of different drugs on memory performance. This suggests that at least for episodic memory tasks, the translational value is rather poor. For the human studies, detailed parameters of the compositions of word lists for declarative memory tests are discussed and it is concluded that tailored adaptations of tests to fit the hypothesis under study, rather than "off-the-shelf" use of existing tests, are recommended.

  18. Nondependent stimulant users of cocaine and prescription amphetamines show verbal learning and memory deficits.

    PubMed

    Reske, Martina; Eidt, Carolyn A; Delis, Dean C; Paulus, Martin P

    2010-10-15

    Stimulants are used increasingly to enhance social (cocaine) or cognitive performance (stimulants normally prescribed, prescription stimulants [e.g., methylphenidate, amphetamines]). Chronic use, by contrast, has been associated with significant verbal memory and learning deficits. This study sought to determine whether subtle learning and memory problems characterize individuals who exhibit occasional but not chronic use of stimulants. One hundred fifty-four young (age 18-25), occasional, nondependent stimulant users and 48 stimulant-naive comparison subjects performed the California Verbal Learning Test II. Lifetime uses of stimulants and co-use of marijuana were considered in correlation and median split analyses. Compared with stimulant-naive subjects, occasional stimulant users showed significant performance deficits, most pronounced in the verbal recall and recognition domains. Lifetime uses of stimulants and marijuana did not affect California Verbal Learning Test II performance. The type of stimulant used, however, was of major relevance: users of cocaine only were less impaired, whereas cumulative use of prescription stimulants was associated with impaired verbal learning and memory capacities. These results support the hypothesis of subtle and possibly pre-existing neurocognitive deficiencies in occasional users of stimulants, which might be related to the motivation for using these drugs. More importantly, despite beneficial short-term effects, cumulative use, particularly of prescription amphetamines and methylphenidate, intensifies these deficits. Copyright © 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. Distributed learning enhances relational memory consolidation.

    PubMed

    Litman, Leib; Davachi, Lila

    2008-09-01

    It has long been known that distributed learning (DL) provides a mnemonic advantage over massed learning (ML). However, the underlying mechanisms that drive this robust mnemonic effect remain largely unknown. In two experiments, we show that DL across a 24 hr interval does not enhance immediate memory performance but instead slows the rate of forgetting relative to ML. Furthermore, we demonstrate that this savings in forgetting is specific to relational, but not item, memory. In the context of extant theories and knowledge of memory consolidation, these results suggest that an important mechanism underlying the mnemonic benefit of DL is enhanced memory consolidation. We speculate that synaptic strengthening mechanisms supporting long-term memory consolidation may be differentially mediated by the spacing of memory reactivation. These findings have broad implications for the scientific study of episodic memory consolidation and, more generally, for educational curriculum development and policy.

  20. Distinct discrimination learning strategies and their relation with spatial memory and attentional control in 4- to 14-year-olds.

    PubMed

    Schmittmann, Verena D; van der Maas, Han L J; Raijmakers, Maartje E J

    2012-04-01

    Behavioral, psychophysiological, and neuropsychological studies have revealed large developmental differences in various learning paradigms where learning from positive and negative feedback is essential. The differences are possibly due to the use of distinct strategies that may be related to spatial working memory and attentional control. In this study, strategies in performing a discrimination learning task were distinguished in a cross-sectional sample of 302 children from 4 to 14 years of age. The trial-by-trial accuracy data were analyzed with mathematical learning models. The best-fitting model revealed three learning strategies: hypothesis testing, slow abrupt learning, and nonlearning. The proportion of hypothesis-testing children increased with age. Nonlearners were present only in the youngest age group. Feature preferences for the irrelevant dimension had a detrimental effect on performance in the youngest age group. The executive functions spatial working memory and attentional control significantly predicted posterior learning strategy probabilities after controlling for age. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. `Unlearning' has a stabilizing effect in collective memories

    NASA Astrophysics Data System (ADS)

    Hopfield, J. J.; Feinstein, D. I.; Palmer, R. G.

    1983-07-01

    Crick and Mitchison1 have presented a hypothesis for the functional role of dream sleep involving an `unlearning' process. We have independently carried out mathematical and computer modelling of learning and `unlearning' in a collective neural network of 30-1,000 neurones. The model network has a content-addressable memory or `associative memory' which allows it to learn and store many memories. A particular memory can be evoked in its entirety when the network is stimulated by any adequate-sized subpart of the information of that memory2. But different memories of the same size are not equally easy to recall. Also, when memories are learned, spurious memories are also created and can also be evoked. Applying an `unlearning' process, similar to the learning processes but with a reversed sign and starting from a noise input, enhances the performance of the network in accessing real memories and in minimizing spurious ones. Although our model was not motivated by higher nervous function, our system displays behaviours which are strikingly parallel to those needed for the hypothesized role of `unlearning' in rapid eye movement (REM) sleep.

  2. Criterial learning is not enough: Retrieval practice is necessary for improving post-stress memory accessibility.

    PubMed

    Smith, Amy M; Davis, F Caroline; Thomas, Ayanna K

    2018-06-01

    In a recent study, having participants make three retrieval attempts (i.e., retrieval practice) when learning information strengthened memory against the detrimental effects of psychological stress. We aimed to determine whether learning to criterion, in which only one successful retrieval attempt is made, would similarly buffer memory against stress, or whether multiple retrieval attempts are necessary to achieve that effect. In Experiment 1, participants learned to criterion and then engaged in additional restudying (CL S ) or retrieval practice (CL R ). Twenty-four hours later, stress was induced and stress-related increases in cortisol were observed. However, no differences in recall performance were observed between any of the groups. Experiment 2 was similar but introduced a 1-week delay between encoding and retrieval. Recall performance was impaired for both groups under stress, but recall for those in the CL R group was still better than either pre- or post-stress performance for those in the CL S group. Thus, criterial learning may protect memory against stress in the short-term, but additional retrieval practice is more beneficial for achieving this effect in the long-term. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  3. Neural correlates of reward-based spatial learning in persons with cocaine dependence.

    PubMed

    Tau, Gregory Z; Marsh, Rachel; Wang, Zhishun; Torres-Sanchez, Tania; Graniello, Barbara; Hao, Xuejun; Xu, Dongrong; Packard, Mark G; Duan, Yunsuo; Kangarlu, Alayar; Martinez, Diana; Peterson, Bradley S

    2014-02-01

    Dysfunctional learning systems are thought to be central to the pathogenesis of and impair recovery from addictions. The functioning of the brain circuits for episodic memory or learning that support goal-directed behavior has not been studied previously in persons with cocaine dependence (CD). Thirteen abstinent CD and 13 healthy participants underwent MRI scanning while performing a task that requires the use of spatial cues to navigate a virtual-reality environment and find monetary rewards, allowing the functional assessment of the brain systems for spatial learning, a form of episodic memory. Whereas both groups performed similarly on the reward-based spatial learning task, we identified disturbances in brain regions involved in learning and reward in CD participants. In particular, CD was associated with impaired functioning of medial temporal lobe (MTL), a brain region that is crucial for spatial learning (and episodic memory) with concomitant recruitment of striatum (which normally participates in stimulus-response, or habit, learning), and prefrontal cortex. CD was also associated with enhanced sensitivity of the ventral striatum to unexpected rewards but not to expected rewards earned during spatial learning. We provide evidence that spatial learning in CD is characterized by disturbances in functioning of an MTL-based system for episodic memory and a striatum-based system for stimulus-response learning and reward. We have found additional abnormalities in distributed cortical regions. Consistent with findings from animal studies, we provide the first evidence in humans describing the disruptive effects of cocaine on the coordinated functioning of multiple neural systems for learning and memory.

  4. Acute stress negatively affects object recognition early memory consolidation and memory retrieval unrelated to state-dependency.

    PubMed

    Nelissen, Ellis; Prickaerts, Jos; Blokland, Arjan

    2018-06-01

    It is well known that stress affects memory performance. However, there still appears to be inconstancy in literature about how acute stress affects the different stages of memory: acquisition, consolidation and retrieval. In this study, we exposed rats to acute stress and measured the effect on memory performance in the object recognition task as a measure for episodic memory. Stress was induced 30 min prior to the learning phase to affect acquisition, directly after the learning phase to affect consolidation, or 30 min before the retrieval phase to affect retrieval. Additionally, we induced stress both 30 min prior to the learning phase and 30 min prior to the retrieval phase to test whether the effects were related to state-dependency. As expected, we found that acute stress did not affect acquisition but had a negative impact on retrieval. To our knowledge, we are the first to show that early consolidation was negatively affected by acute stress. We also show that stress does not have a state-dependent effect on memory. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. INDIVIDUAL DIFFERENCES IN TASK-SPECIFIC PAIRED ASSOCIATES LEARNING IN OLDER ADULTS: THE ROLE OF PROCESSING SPEED AND WORKING MEMORY

    PubMed Central

    Kurtz, Tanja; Mogle, Jacqueline; Sliwinski, Martin J.; Hofer, Scott M.

    2013-01-01

    Background The role of processing speed and working memory was investigated in terms of individual differences in task-specific paired associates learning in a sample of older adults. Task-specific learning, as distinct from content-oriented item-specific learning, refers to gains in performance due to repeated practice on a learning task in which the to-be-learned material changes over trials. Methods Learning trajectories were modeled within an intensive repeated-measures design based on participants obtained from an opt-in internet-based sampling service (Mage = 65.3, SD = 4.81). Participants completed an eight-item paired associates task daily over a seven-day period. Results Results indicated that a three-parameter hyperbolic model (i.e., initial level, learning rate, and asymptotic performance) best described learning trajectory. After controlling for age-related effects, both higher working memory and higher processing speed had a positive effect on all three learning parameters. Conclusion These results emphasize the role of cognitive abilities for individual differences in task-specific learning of older adults. PMID:24151913

  6. Genistein improves spatial learning and memory in male rats with elevated glucose level during memory consolidation.

    PubMed

    Kohara, Yumi; Kawaguchi, Shinichiro; Kuwahara, Rika; Uchida, Yutaro; Oku, Yushi; Yamashita, Kimihiro

    2015-03-01

    Cognitive dysfunction due to higher blood glucose level has been reported previously. Genistein (GEN) is a phytoestrogen that we hypothesized might lead to improved memory, despite elevated blood glucose levels at the time of memory consolidation. To investigate this hypothesis, we compared the effects of orally administered GEN on the central nervous system in normal versus glucose-loaded adult male rats. A battery of behavioral assessments was carried out. In the MAZE test, which measured spatial learning and memory, the time of normal rats was shortened by GEN treatment compared to the vehicle group, but only in the early stages of testing. In the glucose-loaded group, GEN treatment improved performance as mazes were advanced. In the open-field test, GEN treatment delayed habituation to the new environment in normal rats, and increased the exploratory behaviors of glucose-loaded rats. There were no significant differences observed for emotionality or fear-motivated learning and memory. Together, these results indicate that GEN treatment improved spatial learning and memory only in the early stages of testing in the normal state, but improved spatial learning and memory when glucose levels increased during memory consolidation. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Contrasting contributions of phonological short-term memory and long-term knowledge to vocabulary learning in a foreign language.

    PubMed

    Masoura, Elvira V; Gathercole, Susan E

    2005-01-01

    The contributions of phonological short-term memory and existing foreign vocabulary knowledge to the learning of new words in a second language were compared in a sample of 40 Greek children studying English at school. The children's speed of learning new English words in a paired-associate learning task was strongly influenced by their current English vocabulary, but was independent of phonological memory skill, indexed by nonword repetition ability. However, phonological memory performance was closely linked to English vocabulary scores. The findings suggest that in learners with considerable familiarity with a second language, foreign vocabulary acquisition is mediated largely by use of existing knowledge representations.

  8. EFFECTS OF MAGNESIUM PEMOLINE UPON HUMAN LEARNING, MEMORY, AND PERFORMANCE TESTS.

    ERIC Educational Resources Information Center

    SMITH, RONALD G.

    THIS STUDY WAS CONDUCTED DURING 1966 TO DETERMINE THE EFFECTS OF MAGNESIUM PEMOLINE (A COMBINATION OF 2-IMINO-5-PHENYL-4-OXAZOLIDINONE AND MAGNESIUM HYDROXIDE) ON A VARIETY OF HUMAN LEARNING, MEMORY, AND PERFORMANCE TASKS. MAGNESIUM PEMOLINE (25 OR 37.5 MG) OR A PLACEBO WAS ADMINISTERED ORALLY ON A DOUBLE-BLIND BASIS TO INTELLIGENCE-MATCHED GROUPS…

  9. How Does the Linguistic Distance between Spoken and Standard Language in Arabic Affect Recall and Recognition Performances during Verbal Memory Examination

    ERIC Educational Resources Information Center

    Taha, Haitham

    2017-01-01

    The current research examined how Arabic diglossia affects verbal learning memory. Thirty native Arab college students were tested using auditory verbal memory test that was adapted according to the Rey Auditory Verbal Learning Test and developed in three versions: Pure spoken language version (SL), pure standard language version (SA), and…

  10. Sleep spindles in midday naps enhance learning in preschool children

    PubMed Central

    Kurdziel, Laura; Duclos, Kasey; Spencer, Rebecca M. C.

    2013-01-01

    Despite the fact that midday naps are characteristic of early childhood, very little is understood about the structure and function of these sleep bouts. Given that sleep benefits memory in young adults, it is possible that naps serve a similar function for young children. However, children transition from biphasic to monophasic sleep patterns in early childhood, eliminating the nap from their daily sleep schedule. As such, naps may contain mostly light sleep stages and serve little function for learning and memory during this transitional age. Lacking scientific understanding of the function of naps in early childhood, policy makers may eliminate preschool classroom nap opportunities due to increasing curriculum demands. Here we show evidence that classroom naps support learning in preschool children by enhancing memories acquired earlier in the day compared with equivalent intervals spent awake. This nap benefit is greatest for children who nap habitually, regardless of age. Performance losses when nap-deprived are not recovered during subsequent overnight sleep. Physiological recordings of naps support a role of sleep spindles in memory performance. These results suggest that distributed sleep is critical in early learning; when short-term memory stores are limited, memory consolidation must take place frequently. PMID:24062429

  11. Sleep spindles in midday naps enhance learning in preschool children.

    PubMed

    Kurdziel, Laura; Duclos, Kasey; Spencer, Rebecca M C

    2013-10-22

    Despite the fact that midday naps are characteristic of early childhood, very little is understood about the structure and function of these sleep bouts. Given that sleep benefits memory in young adults, it is possible that naps serve a similar function for young children. However, children transition from biphasic to monophasic sleep patterns in early childhood, eliminating the nap from their daily sleep schedule. As such, naps may contain mostly light sleep stages and serve little function for learning and memory during this transitional age. Lacking scientific understanding of the function of naps in early childhood, policy makers may eliminate preschool classroom nap opportunities due to increasing curriculum demands. Here we show evidence that classroom naps support learning in preschool children by enhancing memories acquired earlier in the day compared with equivalent intervals spent awake. This nap benefit is greatest for children who nap habitually, regardless of age. Performance losses when nap-deprived are not recovered during subsequent overnight sleep. Physiological recordings of naps support a role of sleep spindles in memory performance. These results suggest that distributed sleep is critical in early learning; when short-term memory stores are limited, memory consolidation must take place frequently.

  12. Mood induction effects on motor sequence learning and stop signal reaction time.

    PubMed

    Greeley, Brian; Seidler, Rachael D

    2017-01-01

    The neurobiological theory of positive affect proposes that positive mood states may benefit cognitive performance due to an increase of dopamine throughout the brain. However, the results of many positive affect studies are inconsistent; this may be due to individual differences. The relationship between dopamine and performance is not linear, but instead follows an inverted "U" shape. Given this, we hypothesized that individuals with high working memory capacity, a proxy measure for dopaminergic transmission, would not benefit from positive mood induction and in fact performance in dopamine-mediated tasks would decline. In contrast, we predicted that individuals with low working memory capacities would receive the most benefit after positive mood induction. Here, we explored the effect of positive affect on two dopamine-mediated tasks, an explicit serial reaction time sequence learning task and the stop signal task, predicting that an individual's performance is modulated not only by working memory capacity, but also on the type of mood. Improvements in explicit sequence learning from pre- to post-positive mood induction were associated with working memory capacity; performance declined in individuals with higher working memory capacities following positive mood induction, but improved in individuals with lower working memory capacities. This was not the case for negative or neutral mood induction. Moreover, there was no relationship between the change in stop signal reaction time with any of the mood inductions and individual differences in working memory capacity. These results provide partial support for the neurobiological theory of positive affect and highlight the importance of taking into account individual differences in working memory when examining the effects of positive mood induction.

  13. A possible structural correlate of learning performance on a colour discrimination task in the brain of the bumblebee

    PubMed Central

    Li, Li; MaBouDi, HaDi; Egertová, Michaela; Elphick, Maurice R.

    2017-01-01

    Synaptic plasticity is considered to be a basis for learning and memory. However, the relationship between synaptic arrangements and individual differences in learning and memory is poorly understood. Here, we explored how the density of microglomeruli (synaptic complexes) within specific regions of the bumblebee (Bombus terrestris) brain relates to both visual learning and inter-individual differences in learning and memory performance on a visual discrimination task. Using whole-brain immunolabelling, we measured the density of microglomeruli in the collar region (visual association areas) of the mushroom bodies of the bumblebee brain. We found that bumblebees which made fewer errors during training in a visual discrimination task had higher microglomerular density. Similarly, bumblebees that had better retention of the learned colour-reward associations two days after training had higher microglomerular density. Further experiments indicated experience-dependent changes in neural circuitry: learning a colour-reward contingency with 10 colours (but not two colours) does result, and exposure to many different colours may result, in changes to microglomerular density in the collar region of the mushroom bodies. These results reveal the varying roles that visual experience, visual learning and foraging activity have on neural structure. Although our study does not provide a causal link between microglomerular density and performance, the observed positive correlations provide new insights for future studies into how neural structure may relate to inter-individual differences in learning and memory. PMID:28978727

  14. A possible structural correlate of learning performance on a colour discrimination task in the brain of the bumblebee.

    PubMed

    Li, Li; MaBouDi, HaDi; Egertová, Michaela; Elphick, Maurice R; Chittka, Lars; Perry, Clint J

    2017-10-11

    Synaptic plasticity is considered to be a basis for learning and memory. However, the relationship between synaptic arrangements and individual differences in learning and memory is poorly understood. Here, we explored how the density of microglomeruli (synaptic complexes) within specific regions of the bumblebee ( Bombus terrestris ) brain relates to both visual learning and inter-individual differences in learning and memory performance on a visual discrimination task. Using whole-brain immunolabelling, we measured the density of microglomeruli in the collar region (visual association areas) of the mushroom bodies of the bumblebee brain. We found that bumblebees which made fewer errors during training in a visual discrimination task had higher microglomerular density. Similarly, bumblebees that had better retention of the learned colour-reward associations two days after training had higher microglomerular density. Further experiments indicated experience-dependent changes in neural circuitry: learning a colour-reward contingency with 10 colours (but not two colours) does result, and exposure to many different colours may result, in changes to microglomerular density in the collar region of the mushroom bodies. These results reveal the varying roles that visual experience, visual learning and foraging activity have on neural structure. Although our study does not provide a causal link between microglomerular density and performance, the observed positive correlations provide new insights for future studies into how neural structure may relate to inter-individual differences in learning and memory. © 2017 The Authors.

  15. The ampakine, Org 26576, bolsters early spatial reference learning and retrieval in the Morris water maze: a subchronic, dose-ranging study in rats.

    PubMed

    Hamlyn, Eugene; Brand, Linda; Shahid, Mohammed; Harvey, Brian H

    2009-10-01

    Ampakines have shown beneficial effects on cognition in selected animal models of learning. However, their ability to modify long-term spatial memory tasks has not been studied yet. This would lend credence to their possible value in treating disorders of cognition. We evaluated the actions of subchronic Org 26576 administration on spatial reference memory performance in the 5-day Morris water maze task in male Sprague-Dawley rats, at doses of 1, 3 and 10 mg/kg twice daily through intraperitoneal injection over 12 days. Org 26576 exerted a dose and time-dependent effect on spatial learning, with dosages of 3 and 10 mg/kg significantly enhancing acquisition on day 1. Globally, escape latency decreased significantly as the training days progressed in the saline and Org 26576-treated groups, indicating that significant and equal learning had taken place over the learning period. However, at the end of the learning period, all doses of Org 26576 significantly improved spatial memory storage/retrieval without confounding effects in the cued version of the task. Org 26576 offers early phase spatial memory benefits in rats, but particularly enhances search accuracy during reference memory retrieval. These results support its possible utility in treating disorders characterized by deficits in cognitive performance.

  16. Hand gestures support word learning in patients with hippocampal amnesia.

    PubMed

    Hilverman, Caitlin; Cook, Susan Wagner; Duff, Melissa C

    2018-06-01

    Co-speech hand gesture facilitates learning and memory, yet the cognitive and neural mechanisms supporting this remain unclear. One possibility is that motor information in gesture may engage procedural memory representations. Alternatively, iconic information from gesture may contribute to declarative memory representations mediated by the hippocampus. To investigate these alternatives, we examined gesture's effects on word learning in patients with hippocampal damage and declarative memory impairment, with intact procedural memory, and in healthy and in brain-damaged comparison groups. Participants learned novel label-object pairings while producing gesture, observing gesture, or observing without gesture. After a delay, recall and object identification were assessed. Unsurprisingly, amnesic patients were unable to recall the labels at test. However, they correctly identified objects at above chance levels, but only if they produced a gesture at encoding. Comparison groups performed well above chance at both recall and object identification regardless of gesture. These findings suggest that gesture production may support word learning by engaging nondeclarative (procedural) memory. © 2018 Wiley Periodicals, Inc.

  17. Effects of sublethal doses of thiacloprid and its formulation Calypso® on the learning and memory performance of honey bees.

    PubMed

    Tison, Léa; Holtz, Sophie; Adeoye, Amy; Kalkan, Önder; Irmisch, Nina S; Lehmann, Nadja; Menzel, Randolf

    2017-10-15

    Learning and memory play a central role in the behavior and communication of foraging bees. We have previously shown that chronic uptake of the neonicotinoid thiacloprid affects the behavior of honey bees in the field. Foraging behavior, homing success, navigation performance and social communication were impaired. Thiacloprid collected at a feeding site at low doses accumulates in foragers over time. Here, we applied a laboratory standard procedure (the proboscis-extension response conditioning) in order to assess which processes, acquisition, memory consolidation and/or memory retrieval were compromised after bees were fed either with thiacloprid or the formulation of thiacloprid named Calypso ® at different sublethal doses. Extinction and generalization tests allowed us to investigate whether bees respond to a learned stimulus, and how selectively. We showed that thiacloprid, as active substance and as formulation, poses a substantial risk to honey bees by disrupting learning and memory functions. These data support and specify the data collected in the field. © 2017. Published by The Company of Biologists Ltd.

  18. Napping on the Night Shift: A Study of Sleep, Performance, and Learning in Physicians-in-Training

    PubMed Central

    McDonald, Jennifer; Potyk, Darryl; Fischer, David; Parmenter, Brett; Lillis, Teresa; Tompkins, Lindsey; Bowen, Angela; Grant, Devon; Lamp, Amanda; Belenky, Gregory

    2013-01-01

    Background Physicians in training experience fatigue from sleep loss, high workload, and working at an adverse phase of the circadian rhythm, which collectively degrades task performance and the ability to learn and remember. To minimize fatigue and sustain performance, learning, and memory, humans generally need 7 to 8 hours of sleep in every 24-hour period. Methods In a naturalistic, within-subjects design, we studied 17 first- and second-year internal medicine residents working in a tertiary care medical center, rotating between day shift and night float every 4 weeks. We studied each resident for 2 weeks while he/she worked the day shift and for 2 weeks while he/she worked the night float, objectively measuring sleep by wrist actigraphy, vigilance by the Psychomotor Vigilance Task test, and visual-spatial and verbal learning and memory by the Brief Visuospatial Memory Test-Revised and the Rey Auditory-Verbal Learning Test. Results Residents, whether working day shift or night float, slept approximately 7 hours in every 24-hour period. Residents, when working day shift, consolidated their sleep into 1 main sleep period at night. Residents working night float split their sleep, supplementing their truncated daytime sleep with nighttime on-duty naps. There was no difference in vigilance or learning and memory, whether residents worked day shift or night float. Conclusions Off-duty sleep supplemented with naps while on duty appears to be an effective strategy for sustaining vigilance, learning, and memory when working night float. PMID:24455014

  19. The Influence of Learning Strategies in the Acquisition, Retention, and Transfer of a Procedural Task.

    DTIC Science & Technology

    1979-08-01

    Lockhart , R. S. Levels of processing : A framework for memory research. Journal of Verbal Learning and Verbal Behavior, 1972, 11, 671-684. Craik , F. I. M...learning and memory research. In F. I. f. Craik & L. S. Cermak (Eds.), Levels of processing and theories of memory. Hillsdale, N. J.: Erlbaum, 1978...R. N., Gerson, R. F., & Kim, K. Information processing capabilities in performers differing in levels of motor skill. (Tech. Rep. TR-79-A4). a

  20. Is all motivation good for learning? Dissociable influences of approach and avoidance motivation in declarative memory.

    PubMed

    Murty, Vishnu P; LaBar, Kevin S; Hamilton, Derek A; Adcock, R Alison

    2011-01-01

    The present study investigated the effects of approach versus avoidance motivation on declarative learning. Human participants navigated a virtual reality version of the Morris water task, a classic spatial memory paradigm, adapted to permit the experimental manipulation of motivation during learning. During this task, participants were instructed to navigate to correct platforms while avoiding incorrect platforms. To manipulate motivational states participants were either rewarded for navigating to correct locations (approach) or punished for navigating to incorrect platforms (avoidance). Participants' skin conductance levels (SCLs) were recorded during navigation to investigate the role of physiological arousal in motivated learning. Behavioral results revealed that, overall, approach motivation enhanced and avoidance motivation impaired memory performance compared to nonmotivated spatial learning. This advantage was evident across several performance indices, including accuracy, learning rate, path length, and proximity to platform locations during probe trials. SCL analysis revealed three key findings. First, within subjects, arousal interacted with approach motivation, such that high arousal on a given trial was associated with performance deficits. In addition, across subjects, high arousal negated or reversed the benefits of approach motivation. Finally, low-performing, highly aroused participants showed SCL responses similar to those of avoidance-motivation participants, suggesting that for these individuals, opportunities for reward may evoke states of learning similar to those typically evoked by threats of punishment. These results provide a novel characterization of how approach and avoidance motivation influence declarative memory and indicate a critical and selective role for arousal in determining how reinforcement influences goal-oriented learning.

  1. Is all motivation good for learning? Dissociable influences of approach and avoidance motivation in declarative memory

    PubMed Central

    Murty, Vishnu P.; LaBar, Kevin S.; Hamilton, Derek A.; Adcock, R. Alison

    2011-01-01

    The present study investigated the effects of approach versus avoidance motivation on declarative learning. Human participants navigated a virtual reality version of the Morris water task, a classic spatial memory paradigm, adapted to permit the experimental manipulation of motivation during learning. During this task, participants were instructed to navigate to correct platforms while avoiding incorrect platforms. To manipulate motivational states participants were either rewarded for navigating to correct locations (approach) or punished for navigating to incorrect platforms (avoidance). Participants’ skin conductance levels (SCLs) were recorded during navigation to investigate the role of physiological arousal in motivated learning. Behavioral results revealed that, overall, approach motivation enhanced and avoidance motivation impaired memory performance compared to nonmotivated spatial learning. This advantage was evident across several performance indices, including accuracy, learning rate, path length, and proximity to platform locations during probe trials. SCL analysis revealed three key findings. First, within subjects, arousal interacted with approach motivation, such that high arousal on a given trial was associated with performance deficits. In addition, across subjects, high arousal negated or reversed the benefits of approach motivation. Finally, low-performing, highly aroused participants showed SCL responses similar to those of avoidance–motivation participants, suggesting that for these individuals, opportunities for reward may evoke states of learning similar to those typically evoked by threats of punishment. These results provide a novel characterization of how approach and avoidance motivation influence declarative memory and indicate a critical and selective role for arousal in determining how reinforcement influences goal-oriented learning. PMID:22021253

  2. Remembering to learn: independent place and journey coding mechanisms contribute to memory transfer.

    PubMed

    Bahar, Amir S; Shapiro, Matthew L

    2012-02-08

    The neural mechanisms that integrate new episodes with established memories are unknown. When rats explore an environment, CA1 cells fire in place fields that indicate locations. In goal-directed spatial memory tasks, some place fields differentiate behavioral histories ("journey-dependent" place fields) while others do not ("journey-independent" place fields). To investigate how these signals inform learning and memory for new and familiar episodes, we recorded CA1 and CA3 activity in rats trained to perform a "standard" spatial memory task in a plus maze and in two new task variants. A "switch" task exchanged the start and goal locations in the same environment; an "altered environment" task contained unfamiliar local and distal cues. In the switch task, performance was mildly impaired, new firing maps were stable, but the proportion and stability of journey-dependent place fields declined. In the altered environment, overall performance was strongly impaired, new firing maps were unstable, and stable proportions of journey-dependent place fields were maintained. In both tasks, memory errors were accompanied by a decline in journey codes. The different dynamics of place and journey coding suggest that they reflect separate mechanisms and contribute to distinct memory computations. Stable place fields may represent familiar relationships among environmental features that are required for consistent memory performance. Journey-dependent activity may correspond with goal-directed behavioral sequences that reflect expectancies that generalize across environments. The complementary signals could help link current events with established memories, so that familiarity with either a behavioral strategy or an environment can inform goal-directed learning.

  3. Association Between Subcortical Volumes and Verbal Memory in Unmedicated Depressed Patients and Healthy Controls

    PubMed Central

    Turner, Arlener D.; Furey, Maura; Drevets, Wayne C.; Zarate, Carlos; Nugent, Allison

    2012-01-01

    Research has shown poor performance on verbal memory tasks in patients with major depressive disorder relative to healthy controls, as well as structural abnormalities in the subcortical structures that form the limbic-cortical-striatal-pallidal-thalamic circuitry. Few studies, however, have attempted to link the impairments in learning and memory in depression with these structural abnormalities, and of those which have done so, most have included patients medicated with psychotropic agents likely to influence cognitive performance. This study thus examines the relationship between subcortical structural abnormalities and verbal memory using the California Verbal Learning Test (CVLT) in unmedicated depressed patients. A T1 weighted Magnetic Resonance Imaging scan and the CVLT were obtained on 45 subjects with major depressive disorder and 44 healthy controls. Using the FMRIB’s Integrated Registration and Segmentation Tool (FIRST) volumes of selected subcortical structures were segmented and correlated with CVLT performance. Depressed participants showed significantly smaller right thalamus and right hippocampus volumes than healthy controls. Depressed participants also showed impaired performance on global verbal learning ability, and appeared to depend upon an inferior memory strategy (serial clustering). Measures of serial clustering were correlated significantly with right hippocampal volumes in depressed participants. Our findings indicate that depressed participants and healthy controls differ in the memory strategies they employ, and that while depressed participants had a smaller hippocampal volume, there was a positive correlation between volume and use of an inferior memory strategy. This suggests that larger hippocampal volume is related to better memory recall in depression, but specifically with regard to utilizing an inferior memory strategy. PMID:22714007

  4. REMEMBERING TO LEARN: INDEPENDENT PLACE AND JOURNEY CODING MECHANISMS CONTRIBUTE TO MEMORY TRANSFER

    PubMed Central

    Bahar, Amir S.; Shapiro, Matthew L.

    2012-01-01

    The neural mechanisms that integrate new episodes with established memories are unknown. When rats explore an environment, CA1 cells fire in place fields that indicate locations. In goal-directed spatial memory tasks, some place fields differentiate behavioral histories (journey-dependent place fields) while others do not (journey-independent place fields). To investigate how these signals inform learning and memory for new and familiar episodes, we recorded CA1 and CA3 activity in rats trained to perform a standard spatial memory task in a plus maze and in two new task variants. A switch task exchanged the start and goal locations in the same environment; an altered environment task contained unfamiliar local and distal cues. In the switch task, performance was mildly impaired, new firing maps were stable, but the proportion and stability of journey-dependent place fields declined. In the altered environment, overall performance was strongly impaired, new firing maps were unstable, and stable proportions of journey-dependent place fields were maintained. In both tasks, memory errors were accompanied by a decline in journey codes. The different dynamics of place and journey coding suggest that they reflect separate mechanisms and contribute to distinct memory computations. Stable place fields may represent familiar relationships among environmental features that are required for consistent memory performance. Journey-dependent activity may correspond with goal directed behavioral sequences that reflect expectancies that generalize across environments. The complementary signals could help link current events with established memories, so that familiarity with either a behavioral strategy or an environment can inform goal-directed learning. PMID:22323731

  5. Immediate Judgments of Learning Predict Subsequent Recollection: Evidence from Event-Related Potentials

    ERIC Educational Resources Information Center

    Skavhaug, Ida-Maria; Wilding, Edward L.; Donaldson, David I.

    2013-01-01

    Judgments of learning (JOLs) are assessments of how well materials have been learned. Although a wide body of literature has demonstrated a reliable correlation between memory performance and JOLs, relatively little is known about the nature of this link. Here, we investigate the relationship between JOLs and the memory retrieval processes engaged…

  6. Dissociation of long-term verbal memory and fronto-executive impairment in first-episode psychosis

    PubMed Central

    Leeson, V. C.; Robbins, T. W.; Franklin, C.; Harrison, M.; Harrison, I.; Ron, M. A.; Barnes, T. R. E.; Joyce, E. M.

    2009-01-01

    Background Verbal memory is frequently and severely affected in schizophrenia and has been implicated as a mediator of poor clinical outcome. Whereas encoding deficits are well demonstrated, it is unclear whether retention is impaired. This distinction is important because accelerated forgetting implies impaired consolidation attributable to medial temporal lobe (MTL) dysfunction whereas impaired encoding and retrieval implicates involvement of prefrontal cortex. Method We assessed a group of healthy volunteers (n=97) and pre-morbid IQ- and sex-matched first-episode psychosis patients (n=97), the majority of whom developed schizophrenia. We compared performance of verbal learning and recall with measures of visuospatial working memory, planning and attentional set-shifting, and also current IQ. Results All measures of performance, including verbal memory retention, a memory savings score that accounted for learning impairments, were significantly impaired in the schizophrenia group. The difference between groups for delayed recall remained even after the influence of learning and recall was accounted for. Factor analyses showed that, in patients, all variables except verbal memory retention loaded on a single factor, whereas in controls verbal memory and fronto-executive measures were separable. Conclusions The results suggest that IQ, executive function and verbal learning deficits in schizophrenia may reflect a common abnormality of information processing in prefrontal cortex rather than specific impairments in different cognitive domains. Verbal memory retention impairments, however, may have a different aetiology. PMID:19419594

  7. Modeling Age-Related Differences in Immediate Memory Using SIMPLE

    ERIC Educational Resources Information Center

    Surprenant, Aimee M.; Neath, Ian; Brown, Gordon D. A.

    2006-01-01

    In the SIMPLE model (Scale Invariant Memory and Perceptual Learning), performance on memory tasks is determined by the locations of items in multidimensional space, and better performance is associated with having fewer close neighbors. Unlike most previous simulations with SIMPLE, the ones reported here used measured, rather than assumed,…

  8. Cognitive and psychomotor effects of risperidone in schizophrenia and schizoaffective disorder.

    PubMed

    Houthoofd, Sofie A M K; Morrens, Manuel; Sabbe, Bernard G C

    2008-09-01

    The aim of this review was to discuss data from double-blind, randomized controlled trials (RCTs) that have investigated the effects of oral and long-acting injectable risperidone on cognitive and psychomotor functioning in patients with schizophrenia or schizoaffective disorder. PubMed/MEDLINE and the Institute of Scientific Information Web of Science database were searched for relevant English-language double-blind RCTs published between March 2000 and July 2008, using the terms schizophrenia, schizoaffective disorder, cognition, risperidone, psychomotor, processing speed, attention, vigilance, working memory, verbal learning, visual learning, reasoning, problem solving, social cognition, MATRICS, and long-acting. Relevant studies included patients with schizophrenia or schizoaffective disorder. Cognitive domains were delineated at the Consensus Conferences of the National Institute of Mental Health-Measurement And Treatment Research to Improve Cognition in Schizophrenia (NIMH-MATRICS). The tests employed to assess each domain and psychomotor functioning, and the within-group and between-group comparisons of risperidone with haloperidol and other atypical antipsychotics, are presented. The results of individual tests were included when they were individually presented and interpretable for either drug; outcomes that were presented as cluster scores or factor structures were excluded. A total of 12 articles were included in this review. Results suggested that the use of oral risperidone appeared to be associated with within-group improvements on the cognitive domains of processing speed, attention/vigilance, verbal and visual learning and memory, and reasoning and problem solving in patients with schizophrenia or schizoaffective disorder. Risperidone and haloperidol seemed to generate similar beneficial effects (on the domains of processing speed, attention/vigilance, [verbal and nonverbal] working memory, and visual learning and memory, as well as psychomotor functioning), although the results for verbal fluency, verbal learning and memory, and reasoning and problem solving were not unanimous, and no comparative data on social cognition were available. Similar cognitive effects were found with risperidone, olanzapine, and quetiapine on the domains of verbal working memory and reasoning and problem solving, as well as verbal fluency. More research is needed on the domains in which study results were contradictory. For olanzapine versus risperidone, these were verbal and visual learning and memory and psychomotor functioning. No comparative data for olanzapine and risperidone were available for the social cognition domain. For quetiapine versus risperidone, the domains in which no unanimity was found were processing speed, attention/vigilance, nonverbal working memory, and verbal learning and memory. The limited available reports on risperidone versus clozapine suggest that: risperidone was associated with improved, and clozapine with worsened, performance on the nonverbal working memory domain; risperidone improved and clozapine did not improve reasoning and problem-solving performance; clozapine improved, and risperidone did not improve, social cognition performance. Use of long-acting injectable risperidone seemed to be associated with improved performance in the domains of attention/vigilance, verbal learning and memory, and reasoning and problem solving, as well as psychomotor functioning. The results for the nonverbal working memory domain were indeterminate, and no clear improvement was seen in the social cognition domain. The domains of processing speed, verbal working memory, and visual learning and memory, as well as verbal fluency, were not assessed. The results of this review of within-group comparisons of oral risperidone suggest that the agent appeared to be associated with improved functioning in the cognitive domains of processing speed, attention/vigilance, verbal and visual learning and memory, and reasoning and problem solving in patients with schizophrenia or schizoaffective disorder. Long-acting injectable risperidone seemed to be associated with improved functioning in the domains of attention/vigilance, verbal learning and memory, and reasoning and problem solving, as well as psychomotor functioning, in patients with schizophrenia or schizoaffective disorder.

  9. Contribution of organizational strategy to verbal learning and memory in adults with attention-deficit/hyperactivity disorder.

    PubMed

    Roth, Robert M; Wishart, Heather A; Flashman, Laura A; Riordan, Henry J; Huey, Leighton; Saykin, Andrew J

    2004-01-01

    Statistical mediation modeling was used to test the hypothesis that poor use of a semantic organizational strategy contributes to verbal learning and memory deficits in adults with attention-deficit/hyperactivity disorder (ADHD). Comparison of 28 adults with ADHD and 34 healthy controls revealed lower performance by the ADHD group on tests of verbal learning and memory, sustained attention, and use of semantic organization during encoding. Mediation modeling indicated that state anxiety, but not semantic organization, significantly contributed to the prediction of both learning and delayed recall in the ADHD group. The pattern of findings suggests that decreased verbal learning and memory in adult ADHD is due in part to situational anxiety and not to poor use of organizational strategies during encoding. ((c) 2004 APA, all rights reserved)

  10. Performing the unexplainable: Implicit task performance reveals individually reliable sequence learning without explicit knowledge

    PubMed Central

    Sanchez, Daniel J.; Gobel, Eric W.; Reber, Paul J.

    2015-01-01

    Memory-impaired patients express intact implicit perceptual–motor sequence learning, but it has been difficult to obtain a similarly clear dissociation in healthy participants. When explicit memory is intact, participants acquire some explicit knowledge and performance improvements from implicit learning may be subtle. Therefore, it is difficult to determine whether performance exceeds what could be expected on the basis of the concomitant explicit knowledge. Using a challenging new sequence-learning task, robust implicit learning was found in healthy participants with virtually no associated explicit knowledge. Participants trained on a repeating sequence that was selected randomly from a set of five. On a performance test of all five sequences, performance was best on the trained sequence, and two-thirds of the participants exhibited individually reliable improvement (by chi-square analysis). Participants could not reliably indicate which sequence had been trained by either recognition or recall. Only by expressing their knowledge via performance were participants able to indicate which sequence they had learned. PMID:21169570

  11. The role of executive functioning in memory performance in pediatric focal epilepsy.

    PubMed

    Sepeta, Leigh N; Casaletto, Kaitlin Blackstone; Terwilliger, Virginia; Facella-Ervolini, Joy; Sady, Maegan; Mayo, Jessica; Gaillard, William D; Berl, Madison M

    2017-02-01

    Learning and memory are essential for academic success and everyday functioning, but the pattern of memory skills and its relationship to executive functioning in children with focal epilepsy is not fully delineated. We address a gap in the literature by examining the relationship between memory and executive functioning in a pediatric focal epilepsy population. Seventy children with focal epilepsy and 70 typically developing children matched on age, intellectual functioning, and gender underwent neuropsychological assessment, including measures of intelligence (Wechsler Abbreviated Scale of Intelligence [WASI]/Differential Ability Scales [DAS]), as well as visual Children's Memory Scale (CMS Dot Locations) and verbal episodic memory (Wide Range Assessment of Memory and Learning [WRAML] Story Memory and California Verbal Learning Test for Children [CVLT-C]). Executive functioning was measured directly (WISC-IV Digit Span Backward; Clinical Evaluation of Language Fundamentals, Fourth Edition (CELF-IV) Recalling Sentences) and by parent report (Behavior Rating Inventory of Executive Function [BRIEF]). Children with focal epilepsy had lower delayed free-recall scores than controls across visual and verbal memory tasks (p = 0.02; partial η 2 = 0.12). In contrast, recognition memory performance was similar for patients and controls (p = 0.36; partial η 2 = 0.03). Children with focal epilepsy demonstrated difficulties in working memory (p = 0.02; partial η 2 = 0.08) and planning/organization (p = 0.02) compared to controls. Working memory predicted 9-19% of the variance in delayed free recall for verbal and visual memory; organization predicted 9-10% of the variance in verbal memory. Patients with both left and right focal epilepsy demonstrated more difficulty on verbal versus visual tasks (p = 0.002). Memory performance did not differ by location of seizure foci (temporal vs. extratemporal, frontal vs. extrafrontal). Children with focal epilepsy demonstrated memory ability within age-level expectations, but delayed free recall was inefficient compared to typically developing controls. Memory difficulties were not related to general cognitive impairment or seizure localization. Executive functioning accounted for significant variance in memory performance, suggesting that poor executive control negatively influences memory retrieval. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  12. Verbal memory decline from hippocampal depth electrodes in temporal lobe surgery for epilepsy.

    PubMed

    Ljung, Hanna; Nordlund, Arto; Strandberg, Maria; Bengzon, Johan; Källén, Kristina

    2017-12-01

    To explore whether patients with refractory mesial temporal lobe epilepsy risk aggravated verbal memory loss from intracranial electroencephalography (EEG) recording with longitudinal hippocampal electrodes in the language-dominant hemisphere. A long-term neuropsychological follow-up (mean 61.5 months, range 22-111 months) was performed in 40 patients after ictal registration with left hippocampal depth electrodes (study group, n = 16) or no invasive EEG, only extracranial registration (reference group, n = 24). The groups were equal with respect to education, age at seizure onset, epilepsy duration, and prevalence of pharmacoresistant temporal lobe epilepsy (TLE; 75%) versus seizure freedom (25%). Retrospective neuropsychological data from preoperative surgical workup (T1) and prospective follow-up neuropsychological data (T2) were compared. A ≥1 SD intrapatient decline was considered as clinically relevant deterioration of verbal memory. Significant decline in verbal memory was seen in 56% of the patients in the study group compared to 21% in the reference group. At T1, there were no statistical between-group differences in memory performance. At T2, between-group comparison showed significantly greater verbal memory decline for the study group (Claeson Dahl Learning and Retention Test, Verbal Learning: p = 0.05; Rey Auditory Verbal Learning Test, Total Learning: p = 0.04; Claeson Dahl Learning and Retention Test, Verbal Retention: p = 0.04). An odds ratio (OR) of 7.1 (90% confidence interval [CI] 1.3-37.7) for verbal memory decline was seen if right temporal lobe resection (R TLR) had been performed between T1 and T2. The difference between groups remained unchanged when patients who had undergone R TLR were excluded from the analysis, with a remaining aggravated significant decline in verbal memory performance for the study group compared to the reference group. Our results suggest a risk of verbal memory deterioration after the use of depth electrodes along the longitudinal axis of the hippocampus. Until this issue is further investigated, caution regarding depth electrodes in the language-dominant hemisphere hippocampus seems advisable. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  13. Hippocampal and ventral medial prefrontal activation during retrieval-mediated learning supports novel inference.

    PubMed

    Zeithamova, Dagmar; Dominick, April L; Preston, Alison R

    2012-07-12

    Memory enables flexible use of past experience to inform new behaviors. Although leading theories hypothesize that this fundamental flexibility results from the formation of integrated memory networks relating multiple experiences, the neural mechanisms that support memory integration are not well understood. Here, we demonstrate that retrieval-mediated learning, whereby prior event details are reinstated during encoding of related experiences, supports participants' ability to infer relationships between distinct events that share content. Furthermore, we show that activation changes in a functionally coupled hippocampal and ventral medial prefrontal cortical circuit track the formation of integrated memories and successful inferential memory performance. These findings characterize the respective roles of these regions in retrieval-mediated learning processes that support relational memory network formation and inferential memory in the human brain. More broadly, these data reveal fundamental mechanisms through which memory representations are constructed into prospectively useful formats. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Hippocampal and ventral medial prefrontal activation during retrieval-mediated learning supports novel inference

    PubMed Central

    Zeithamova, Dagmar; Dominick, April L.; Preston, Alison R.

    2012-01-01

    SUMMARY Memory enables flexible use of past experience to inform new behaviors. Though leading theories hypothesize that this fundamental flexibility results from the formation of integrated memory networks relating multiple experiences, the neural mechanisms that support memory integration are not well understood. Here, we demonstrate that retrieval-mediated learning, whereby prior event details are reinstated during encoding of related experiences, supports participants’ ability to infer relationships between distinct events that share content. Furthermore, we show that activation changes in a functionally coupled hippocampal and ventral medial prefrontal cortical circuit track the formation of integrated memories and successful inferential memory performance. These findings characterize the respective roles of these regions in retrieval-mediated learning processes that support relational memory network formation and inferential memory in the human brain. More broadly, these data reveal fundamental mechanisms through which memory representations are constructed into prospectively useful formats. PMID:22794270

  15. Chronic Stress During Adolescence Impairs and Improves Learning and Memory in Adulthood

    PubMed Central

    Chaby, Lauren E.; Cavigelli, Sonia A.; Hirrlinger, Amy M.; Lim, James; Warg, Kendall M.; Braithwaite, Victoria A.

    2015-01-01

    HIGHLIGHTS This study tested the effects of adolescent-stress on adult learning and memory.Adolescent-stressed rats had enhanced reversal learning compared to unstressed rats.Adolescent-stress exposure made working memory more vulnerable to disturbance.Adolescent-stress did not affect adult associative learning or reference memory. Exposure to acute stress can cause a myriad of cognitive impairments, but whether negative experiences continue to hinder individual as they age is not as well understood. We determined how chronic unpredictable stress during adolescence affects multiple learning and memory processes in adulthood. Using male Sprague Dawley rats, we measured learning (both associative and reversal) and memory (both reference and working) starting 110 days after completion of an adolescent-stress treatment. We found that adolescent-stress affected adult cognitive abilities in a context-dependent way. Compared to rats reared without stress, adolescent-stressed rats exhibited enhanced reversal learning, an indicator of behavioral flexibility, but showed no change in associative learning and reference memory abilities. Working memory, which in humans is thought to underpin reasoning, mathematical skills, and reading comprehension, may be enhanced by exposure to adolescent-stress. However, when adolescent-stressed animals were tested after a novel disturbance, they exhibited a 5-fold decrease in working memory performance while unstressed rats continued to exhibit a linear learning curve. These results emphasize the capacity for stress during adolescence to transform the cognitive abilities of adult animals, even after stress exposure has ceased and animals have resided in safe environments for the majority of their lifespans. PMID:26696849

  16. Genetic variation of the RASGRF1 regulatory region affects human hippocampus-dependent memory

    PubMed Central

    Barman, Adriana; Assmann, Anne; Richter, Sylvia; Soch, Joram; Schütze, Hartmut; Wüstenberg, Torsten; Deibele, Anna; Klein, Marieke; Richter, Anni; Behnisch, Gusalija; Düzel, Emrah; Zenker, Martin; Seidenbecher, Constanze I.; Schott, Björn H.

    2014-01-01

    The guanine nucleotide exchange factor RASGRF1 is an important regulator of intracellular signaling and neural plasticity in the brain. RASGRF1-deficient mice exhibit a complex phenotype with learning deficits and ocular abnormalities. Also in humans, a genome-wide association study has identified the single nucleotide polymorphism (SNP) rs8027411 in the putative transcription regulatory region of RASGRF1 as a risk variant of myopia. Here we aimed to assess whether, in line with the RASGRF1 knockout mouse phenotype, rs8027411 might also be associated with human memory function. We performed computer-based neuropsychological learning experiments in two independent cohorts of young, healthy participants. Tests included the Verbal Learning and Memory Test (VLMT) and the logical memory section of the Wechsler Memory Scale (WMS). Two sub-cohorts additionally participated in functional magnetic resonance imaging (fMRI) studies of hippocampus function. 119 participants performed a novelty encoding task that had previously been shown to engage the hippocampus, and 63 subjects participated in a reward-related memory encoding study. RASGRF1 rs8027411 genotype was indeed associated with memory performance in an allele dosage-dependent manner, with carriers of the T allele (i.e., the myopia risk allele) showing better memory performance in the early encoding phase of the VLMT and in the recall phase of the WMS logical memory section. In fMRI, T allele carriers exhibited increased hippocampal activation during presentation of novel images and during encoding of pictures associated with monetary reward. Taken together, our results provide evidence for a role of the RASGRF1 gene locus in hippocampus-dependent memory and, along with the previous association with myopia, point toward pleitropic effects of RASGRF1 genetic variations on complex neural function in humans. PMID:24808846

  17. The interrelated effect of sleep and learning in dogs (Canis familiaris); an EEG and behavioural study

    PubMed Central

    Kis, Anna; Szakadát, Sára; Gácsi, Márta; Kovács, Enikő; Simor, Péter; Török, Csenge; Gombos, Ferenc; Bódizs, Róbert; Topál, József

    2017-01-01

    The active role of sleep in memory consolidation is still debated, and due to a large between-species variation, the investigation of a wide range of different animal species (besides humans and laboratory rodents) is necessary. The present study applied a fully non-invasive methodology to study sleep and memory in domestic dogs, a species proven to be a good model of human awake behaviours. Polysomnography recordings performed following a command learning task provide evidence that learning has an effect on dogs’ sleep EEG spectrum. Furthermore, spectral features of the EEG were related to post-sleep performance improvement. Testing an additional group of dogs in the command learning task revealed that sleep or awake activity during the retention interval has both short- and long-term effects. This is the first evidence to show that dogs’ human-analogue social learning skills might be related to sleep-dependent memory consolidation. PMID:28165489

  18. Age differences in spatial working memory contributions to visuomotor adaptation and transfer.

    PubMed

    Langan, Jeanne; Seidler, Rachael D

    2011-11-20

    Throughout our life span we encounter challenges that require us to adapt to the demands of our changing environment; this entails learning new skills. Two primary components of motor skill learning are motor acquisition, the initial process of learning the skill, and motor transfer, when learning a new skill is benefitted by the overlap with a previously learned one. Older adults typically exhibit declines in motor acquisition compared to young adults, but remarkably, do not demonstrate deficits in motor transfer [10]. Our recent work demonstrates that a failure to engage spatial working memory (SWM) is associated with skill learning deficits in older adults [16]. Here, we investigate the role that SWM plays in both motor learning and transfer in young and older adults. Both age groups exhibited performance savings, or positive transfer, at transfer of learning for some performance variables. Measures of spatial working memory performance and reaction time correlated with both motor learning and transfer for young adults. Young adults recruited overlapping brain regions in prefrontal, premotor, parietal and occipital cortex for performance of a SWM and a visuomotor adaptation task, most notably during motor learning, replicating our prior findings [12]. Neural overlap between the SWM task and visuomotor adaptation for the older adults was limited to parietal cortex, with minimal changes from motor learning to transfer. Combined, these results suggest that age differences in engagement of cognitive strategies have a differential impact on motor learning and transfer. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Age differences in spatial working memory contributions to visuomotor adaptation and transfer

    PubMed Central

    Langan, Jeanne; Seidler, Rachael. D.

    2011-01-01

    Throughout our life span we encounter challenges that require us to adapt to the demands of our changing environment; this entails learning new skills. Two primary components of motor skill learning are motor acquisition, the initial process of learning the skill, and motor transfer, when learning a new skill is benefitted by the overlap with a previously learned one. Older adults typically exhibit declines in motor acquisition compared to young adults, but remarkably, do not demonstrate deficits in motor transfer (Seidler, 2007). Our recent work demonstrates that a failure to engage spatial working memory (SWM) is associated with skill learning deficits in older adults (Anguera et al., 2011). Here, we investigate the role that SWM plays in both motor learning and transfer in young and older adults. Both age groups exhibited performance savings, or positive transfer, at transfer of learning for some performance variables. Measures of spatial working memory performance and reaction time correlated with both motor learning and transfer for young adults. Young adults recruited overlapping brain regions in prefrontal, premotor, parietal and occipital cortex for performance of a SWM and a visuomotor adaptation task, most notably during motor learning, replicating our prior findings (Anguera et al., 2010). Neural overlap between the SWM task and visuomotor adaptation for the older adults was limited to parietal cortex, with minimal changes from motor learning to transfer. Combined, these results suggest that age differences in engagement of cognitive strategies have a differential impact on motor learning and transfer. PMID:21784106

  20. Remembered or Forgotten?—An EEG-Based Computational Prediction Approach

    PubMed Central

    Sun, Xuyun; Qian, Cunle; Chen, Zhongqin; Wu, Zhaohui; Luo, Benyan; Pan, Gang

    2016-01-01

    Prediction of memory performance (remembered or forgotten) has various potential applications not only for knowledge learning but also for disease diagnosis. Recently, subsequent memory effects (SMEs)—the statistical differences in electroencephalography (EEG) signals before or during learning between subsequently remembered and forgotten events—have been found. This finding indicates that EEG signals convey the information relevant to memory performance. In this paper, based on SMEs we propose a computational approach to predict memory performance of an event from EEG signals. We devise a convolutional neural network for EEG, called ConvEEGNN, to predict subsequently remembered and forgotten events from EEG recorded during memory process. With the ConvEEGNN, prediction of memory performance can be achieved by integrating two main stages: feature extraction and classification. To verify the proposed approach, we employ an auditory memory task to collect EEG signals from scalp electrodes. For ConvEEGNN, the average prediction accuracy was 72.07% by using EEG data from pre-stimulus and during-stimulus periods, outperforming other approaches. It was observed that signals from pre-stimulus period and those from during-stimulus period had comparable contributions to memory performance. Furthermore, the connection weights of ConvEEGNN network can reveal prominent channels, which are consistent with the distribution of SME studied previously. PMID:27973531

  1. Dynamics of the cognitive procedural learning in alcoholics with Korsakoff's syndrome.

    PubMed

    Beaunieux, Hélène; Pitel, Anne L; Witkowski, Thomas; Vabret, François; Viader, Fausto; Eustache, Francis

    2013-06-01

    While procedures acquired before the development of amnesia are likely to be preserved in alcoholic patients with Korsakoff's syndrome, the ability of Korsakoff patients (KS) to learn new cognitive procedures is called in question. According to the Adaptive Control of Thoughts model, learning a new cognitive procedure requires highly controlled processes in the initial cognitive phase, which may be difficult for KS with episodic and working memory deficits. The goals of the present study were to examine the learning dynamics of KS compared with uncomplicated alcoholic patients (AL) and control subjects (CS) and to determine the contribution of episodic and working memory abilities in cognitive procedural learning performance. Fourteen KS, 15 AL, and 15 CS were submitted to 40 trials (4 daily learning sessions) of the Tower of Toronto task (disk-transfer task similar to the tower of Hanoi task) as well as episodic and working memory tasks. The 10 KS who were able to perform the cognitive procedural learning task obtained lower results than both CS and AL. The cognitive phase was longer in the Korsakoff's syndrome group than in the other 2 groups but did not differ between the 3 groups any more when episodic memory abilities were controlled. Our results indicate that KS have impaired cognitive procedural learning abilities compared with both AL and CS. Episodic memory deficits observed in KS result in a delayed transition from the cognitive learning phase to more advanced learning phases and, as a consequence, in an absence of automation of the procedure within 40 trials. Copyright © 2012 by the Research Society on Alcoholism.

  2. Elaborative encoding through self-generation enhances outcomes with errorless learning: Findings from the Skypekids memory study.

    PubMed

    Haslam, Catherine; Wagner, Joseph; Wegener, Signy; Malouf, Tania

    2017-01-01

    Errorless learning has demonstrated efficacy in the treatment of memory impairment in adults and older adults with acquired brain injury. In the same population, use of elaborative encoding through supported self-generation in errorless paradigms has been shown to further enhance memory performance. However, the evidence base relevant to application of both standard and self-generation forms of errorless learning in children is far weaker. We address this limitation in the present study to examine recall performance in children with brain injury (n = 16) who were taught novel age-appropriate science and social science facts through the medium of Skype. All participants were taught these facts under conditions of standard errorless learning, errorless learning with self-generation, and trial-and-error learning after which memory was tested at 5-minute, 30-minute, 1-hour and 24-hour delays. Analysis revealed no main effect of time, with participants retaining most information acquired over the 24-hour testing period, but a significant effect of condition. Notably, self-generation proved more effective than both standard errorless and trial-and-error learning. Further analysis of the data revealed that severity of attentional impairment was less detrimental to recall performance under errorless conditions. This study extends the literature to provide further evidence of the value of errorless learning methods in children with ABI and the first demonstration of the effectiveness of self-generation when delivered via the Internet.

  3. Optimization of Apparatus Design and Behavioral Measures for the Assessment of Visuo-Spatial Learning and Memory of Mice on the Barnes Maze

    ERIC Educational Resources Information Center

    O'Leary, Timothy P.; Brown, Richard E.

    2013-01-01

    We have previously shown that apparatus design can affect visual-spatial cue use and memory performance of mice on the Barnes maze. The present experiment extends these findings by determining the optimal behavioral measures and test procedure for analyzing visuo-spatial learning and memory in three different Barnes maze designs. Male and female…

  4. [Neurobiology of learning and memory and anti-dementia drug].

    PubMed

    Ishikawa, K

    1995-08-01

    Discoveries of long-term potentiation and immediate early gene in the central nervous system have enabled new developments in experiments on learning and memory. These experiments are conducted in many kinds of animals with different procedures, physiology, chemistry and pharmacology. However, there is still some confusion when these various procedures are discussed. Memory is defined as information storage of an animal's previous experiences. The memory induces changes in behavioral performance. This means that memory must be observed in whole animals, and one question that can occur is how does long-term potentiation, for example, correlate with memory. Furthermore, memory has been divided into two major classifications, declarative and non-declarative, from the comparison of amnesias observed in humans and animals. The declarative memory can be observed in human subjects, but not in animals. This article presents a neuronal circuit concerning memory formation and some results obtained from benzodiazepines, and it discusses some problems encountered executing when experiments on learning and memory. In addition, the discussion speculates over the possibility for an "anti-dementia drug".

  5. Implicit Memory in Korsakoff’s Syndrome: A Review of Procedural Learning and Priming Studies

    PubMed Central

    Hayes, Scott M.; Fortier, Catherine B.; Levine, Andrea; Milberg, William P.; McGlinchey, Regina

    2013-01-01

    Korsakoff’s syndrome (KS) is characterized by dense anterograde amnesia resulting from damage to the diencephalon region, typically resulting from chronic alcohol abuse and thiamine deficiency. This review assesses the integrity of the implicit memory system in KS, focusing on studies of procedural learning and priming. KS patients are impaired on several measures of procedural memory, most likely due to impairment in cognitive functions associated with alcohol-related neural damage outside of the diencephalon. The pattern of performance on tasks of implicit priming suggests reliance on a residual, non-flexible memory operating more or less in an automatic fashion. Our review concludes that whether measures of implicit memory reveal intact or impaired performance in individuals with KS depends heavily on specific task parameters and demands, including timing between stimuli, the specific nature of the stimuli used in a task, and the integrity of supportive cognitive functions necessary for performance. PMID:22592661

  6. Delayed benefit of naps on motor learning in preschool children.

    PubMed

    Desrochers, Phillip C; Kurdziel, Laura B F; Spencer, Rebecca M C

    2016-03-01

    Sleep benefits memory consolidation across a variety of domains in young adults. However, while declarative memories benefit from sleep in young children, such improvements are not consistently seen for procedural skill learning. Here we examined whether performance improvements on a procedural task, although not immediately observed, are evident after a longer delay when augmented by overnight sleep (24 h after learning). We trained 47 children, aged 33-71 months, on a serial reaction time task and, using a within-subject design, evaluated performance at three time points: immediately after learning, after a daytime nap (nap condition) or equivalent wake opportunity (wake condition), and 24 h after learning. Consistent with previous studies, performance improvements following the nap did not differ from performance improvements following an equivalent interval spent awake. However, significant benefits of the nap were found when performance was assessed 24 h after learning. This research demonstrates that motor skill learning is benefited by sleep, but that this benefit is only evident after an extended period of time.

  7. Mesial Temporal Lobe and Memory Function in Autism Spectrum Disorder: An Exploration of Volumetric Findings

    PubMed Central

    Trontel, Haley G.; Duffield, Tyler C.; Bigler, Erin D.; Abildskov, Tracy J.; Froehlich, Alyson; Prigge, Molly B.D.; Travers, Brittany G.; Anderson, Jeffrey S.; Zielinski, Brandon A.; Alexander, Andrew; Lange, Nicholas; Lainhart, Janet E.

    2015-01-01

    Studies have shown that individuals with autism spectrum disorder (ASD) tend to perform significantly below typical developing individuals on standardized measures of memory, even when not significantly different on measures of IQ. The current study sought to examine within ASD whether anatomical correlates of memory performance differed between those with average-to-above-average IQ (AIQ Group) compared to those with low average to borderline ability (LIQ group) as well as in relations to typically-developing comparisons (TDC). Using automated volumetric analyses, we examined regional volume of classic memory areas including the hippocampus, parahippocampal gyrus, entorhinal cortex, and amygdala in an all-male sample AIQ (n = 38) and LIQ (n = 18) individuals with ASD along with 30 typically-developing comparisons (TDC). Memory performance was assessed using the Test of Memory and Learning (TOMAL) compared among the groups and then correlated with regional brain volumes. Analyses revealed group differences on almost all facets of memory and learning as assessed by the various subtests of the TOMAL. The three groups did not differ on any ROI memory-related brain volumes. However, significant size-memory function interactions were observed. Negative correlations were found between the volume of the amygdala and composite, verbal, and delayed memory indices for the LIQ ASD group indicating larger volume related to poorer performance. Implications for general memory functioning and dysfunctional neural connectivity in ASD are discussed. PMID:25749302

  8. Toxin-Induced Experimental Models of Learning and Memory Impairment

    PubMed Central

    More, Sandeep Vasant; Kumar, Hemant; Cho, Duk-Yeon; Yun, Yo-Sep; Choi, Dong-Kug

    2016-01-01

    Animal models for learning and memory have significantly contributed to novel strategies for drug development and hence are an imperative part in the assessment of therapeutics. Learning and memory involve different stages including acquisition, consolidation, and retrieval and each stage can be characterized using specific toxin. Recent studies have postulated the molecular basis of these processes and have also demonstrated many signaling molecules that are involved in several stages of memory. Most insights into learning and memory impairment and to develop a novel compound stems from the investigations performed in experimental models, especially those produced by neurotoxins models. Several toxins have been utilized based on their mechanism of action for learning and memory impairment such as scopolamine, streptozotocin, quinolinic acid, and domoic acid. Further, some toxins like 6-hydroxy dopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and amyloid-β are known to cause specific learning and memory impairment which imitate the disease pathology of Parkinson’s disease dementia and Alzheimer’s disease dementia. Apart from these toxins, several other toxins come under a miscellaneous category like an environmental pollutant, snake venoms, botulinum, and lipopolysaccharide. This review will focus on the various classes of neurotoxin models for learning and memory impairment with their specific mechanism of action that could assist the process of drug discovery and development for dementia and cognitive disorders. PMID:27598124

  9. Toxin-Induced Experimental Models of Learning and Memory Impairment.

    PubMed

    More, Sandeep Vasant; Kumar, Hemant; Cho, Duk-Yeon; Yun, Yo-Sep; Choi, Dong-Kug

    2016-09-01

    Animal models for learning and memory have significantly contributed to novel strategies for drug development and hence are an imperative part in the assessment of therapeutics. Learning and memory involve different stages including acquisition, consolidation, and retrieval and each stage can be characterized using specific toxin. Recent studies have postulated the molecular basis of these processes and have also demonstrated many signaling molecules that are involved in several stages of memory. Most insights into learning and memory impairment and to develop a novel compound stems from the investigations performed in experimental models, especially those produced by neurotoxins models. Several toxins have been utilized based on their mechanism of action for learning and memory impairment such as scopolamine, streptozotocin, quinolinic acid, and domoic acid. Further, some toxins like 6-hydroxy dopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and amyloid-β are known to cause specific learning and memory impairment which imitate the disease pathology of Parkinson's disease dementia and Alzheimer's disease dementia. Apart from these toxins, several other toxins come under a miscellaneous category like an environmental pollutant, snake venoms, botulinum, and lipopolysaccharide. This review will focus on the various classes of neurotoxin models for learning and memory impairment with their specific mechanism of action that could assist the process of drug discovery and development for dementia and cognitive disorders.

  10. Priming for performance: valence of emotional primes interact with dissociable prototype learning systems.

    PubMed

    Gorlick, Marissa A; Maddox, W Todd

    2013-01-01

    Arousal Biased Competition theory suggests that arousal enhances competitive attentional processes, but makes no strong claims about valence effects. Research suggests that the scope of enhanced attention depends on valence with negative arousal narrowing and positive arousal broadening attention. Attentional scope likely affects declarative-memory-mediated and perceptual-representation-mediated learning systems differently, with declarative-memory-mediated learning depending on narrow attention to develop targeted verbalizable rules, and perceptual-representation-mediated learning depending on broad attention to develop a perceptual representation. We hypothesize that negative arousal accentuates declarative-memory-mediated learning and attenuates perceptual-representation-mediated learning, while positive arousal reverses this pattern. Prototype learning provides an ideal test bed as dissociable declarative-memory and perceptual-representation systems mediate two-prototype (AB) and one-prototype (AN) prototype learning, respectively, and computational models are available that provide powerful insights on cognitive processing. As predicted, we found that negative arousal narrows attentional focus facilitating AB learning and impairing AN learning, while positive arousal broadens attentional focus facilitating AN learning and impairing AB learning.

  11. Priming for Performance: Valence of Emotional Primes Interact with Dissociable Prototype Learning Systems

    PubMed Central

    Gorlick, Marissa A.; Maddox, W. Todd

    2013-01-01

    Arousal Biased Competition theory suggests that arousal enhances competitive attentional processes, but makes no strong claims about valence effects. Research suggests that the scope of enhanced attention depends on valence with negative arousal narrowing and positive arousal broadening attention. Attentional scope likely affects declarative-memory-mediated and perceptual-representation-mediated learning systems differently, with declarative-memory-mediated learning depending on narrow attention to develop targeted verbalizable rules, and perceptual-representation-mediated learning depending on broad attention to develop a perceptual representation. We hypothesize that negative arousal accentuates declarative-memory-mediated learning and attenuates perceptual-representation-mediated learning, while positive arousal reverses this pattern. Prototype learning provides an ideal test bed as dissociable declarative-memory and perceptual-representation systems mediate two-prototype (AB) and one-prototype (AN) prototype learning, respectively, and computational models are available that provide powerful insights on cognitive processing. As predicted, we found that negative arousal narrows attentional focus facilitating AB learning and impairing AN learning, while positive arousal broadens attentional focus facilitating AN learning and impairing AB learning. PMID:23646101

  12. Amnesia in an actor: Learning and re-learning of play passages despite severe autobiographical amnesia.

    PubMed

    Kopelman, Michael D; Morton, John

    2015-06-01

    We describe the case of an accomplished actor, whom we term AB, who suffered severe amnesia following a cardiac arrest and hypoxic brain damage, affecting medial temporal and thalamic structures. His performance on standard episodic memory tests, and on measures of retrograde amnesia, including autobiographical memory, was severely impaired. When presented with passages from plays he had not appeared in, AB showed a severe impairment at the first learning trial, but thereafter showed a 'normal' learning curve for this semantically and syntactically complex material. On being presented with passages from plays he had performed in the past, AB did not show any recognition of them whatsoever, as one might expect from his severe episodic memory impairment. However, AB showed a striking benefit (savings score) in relearning passages he had previously performed, compared with new passages, despite not having any autobiographical recall of having performed the relearned passages before. Moreover, although his initial recall performance in learning these passages was impaired compared with healthy control actors of similar age and experience, AB demonstrated the same incremental learning rate on subsequent learning trials of the passages as did the controls. We conclude that, although severely impaired at the first learning trial (on both 'new' and 'old' passages), AB was able to employ his long-established semantic and procedural skills to attempt the task, and that thereafter he showed a 'normal' rate of incremental learning from a lower baseline. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  13. Memory and mood during MDMA intoxication, with and without memantine pretreatment.

    PubMed

    de Sousa Fernandes Perna, E B; Theunissen, E L; Kuypers, K P C; Heckman, P; de la Torre, R; Farre, M; Ramaekers, J G

    2014-12-01

    Previous studies have shown that single doses of MDMA can affect mood and impair memory in humans. The neuropharmacological mechanisms involved in MDMA-induced memory impairment are not clear. Memantine, an NMDA and alpha 7 nicotinic acetylcholine (ACh) receptor antagonist, was able to reverse MDMA-induced memory impairment in rats. This study investigated whether treatment with memantine can prevent MDMA-induced memory impairment in humans. 15 subjects participated in a double-blind, placebo controlled, within-subject design. Subjects received both pre-treatment (placebo/memantine 20 mg) (T1) and treatment (placebo/MDMA 75 mg) (T2) on separate test days. T1 preceded T2 by 120 min. Memory function was assessed 90 min after T2 by means of a Visual Verbal Learning Task, a Prospective Memory Task, the Sternberg Memory Task and the Abstract Visual Pattern Learning Task. Profile of Mood State and psychomotor performance were also assessed to control whether MDMA and memantine interactions would selectively pertain to memory or transfer to other domains as well. MDMA significantly impaired performance in the visual verbal learning task and abstract visual pattern learning task. Pre-treatment with memantine did not prevent MDMA-induced memory impairment in these two tasks. Both positive (vigour, arousal, elation) and negative mood effects (anxiety) were increased by MDMA. The responses were not altered by pretreatment with memantine which had no effect on memory or mood when given alone. These preliminary results suggest that memantine does not reverse MDMA-induced memory impairment and mood in humans. This article is part of the Special Issue entitled 'CNS Stimulants'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Effects of preventive surgery for unruptured intracranial aneurysms on attention, executive function, learning and memory: a prospective cohort study.

    PubMed

    Chung, Joonho; Seok, Jeong-Ho; Kwon, Min A; Kim, Yong Bae; Joo, Jin-Yang; Hong, Chang-Ki

    2016-01-01

    We prospectively evaluated the effects of preventive surgery for unruptured intracranial aneurysms on attention, executive function, learning and memory. Between March 2012 and June 2013, 56 patients were recruited for this study. Fifty-one patients met the inclusion criteria and were enrolled. Inclusion criteria were as follows: (1) age ≤65 years and (2) planned microsurgery or endovascular surgery for unruptured intracranial aneurysm. Exclusion criteria were as follows: (1) preoperative intelligence quotient <80 (n = 3); (2) initial modified Rankin scale ≥1 (n = 1); (3) loss to follow-up (n = 1). An auditory controlled continuous performance test (ACCPT), word-color test (WCT) and verbal learning test (VLT) were performed before and after (6 months) preventive surgery. ACCPT (attention), WCT (executive function) and VLT (learning and memory) scores did not change significantly between the pre- and postoperative evaluations. The ACCPT, WCT, total VLT scores (verbal learning) and delayed VLT scores (memory) did not differ significantly between patients undergoing microsurgery and those undergoing endovascular surgery. However, ACCPT, WCT and delayed VLT scores decreased postoperatively in patients with leukoaraiosis on preoperative FLAIR images (OR 9.899, p = 0.041; OR 11.421, p = 0.006; OR 2.952, p = 0.024, respectively). Preventive surgery for unruptured intracranial aneurysms did not affect attention, executive function, learning or memory. However, patients with leukoaraiosis on FLAIR images might be prone to deficits in attention, executive function and memory postoperatively, whereas learning might not be affected.

  15. Non-Dependent Stimulant Users of Cocaine and Prescription Amphetamines Show Verbal Learning and Memory Deficits

    PubMed Central

    Reske, Martina; Eidt, Carolyn A.; Delis, Dean C.; Paulus, Martin P.

    2010-01-01

    Background Stimulants are used increasingly to enhance social (cocaine) or cognitive performance (stimulants normally prescribed, prescription stimulants, e.g. methylphenidate, amphetamines). Chronic use, on the other hand, has been associated with significant verbal memory and learning deficits. This study sought to determine whether subtle learning and memory problems characterize individuals who exhibit occasional but not chronic use of stimulants. Methods 154 young (age 18–25) occasional, non-dependent stimulant users and 48 stimulant naïve comparison subjects performed the California Verbal Learning test (CVLT-II). Lifetime uses of stimulants and co-use of marijuana were considered in correlation and median split analyses. Results Compared to stimulant naïve subjects, occasional stimulant users showed significant performance deficits, most pronounced in the verbal recall and recognition domains. Lifetime uses of stimulants and marijuana did not affect CVLT-II performance. The type of stimulant used, however, was of major relevance: users of cocaine only were less impaired, while cumulative use of prescription stimulants was associated with impaired verbal learning and memory capacities. Conclusions These results support the hypothesis of subtle and possibly pre-existing neurocognitive deficiencies in occasional users of stimulants, which may be related to the motivation of using these drugs. More importantly, despite beneficial short-term effects, cumulative use, particularly of prescription amphetamines and methylphenidate, intensifies these deficits. PMID:20605137

  16. Category learning strategies in younger and older adults: Rule abstraction and memorization.

    PubMed

    Wahlheim, Christopher N; McDaniel, Mark A; Little, Jeri L

    2016-06-01

    Despite the fundamental role of category learning in cognition, few studies have examined how this ability differs between younger and older adults. The present experiment examined possible age differences in category learning strategies and their effects on learning. Participants were trained on a category determined by a disjunctive rule applied to relational features. The utilization of rule- and exemplar-based strategies was indexed by self-reports and transfer performance. Based on self-reported strategies, the frequencies of rule- and exemplar-based learners were not significantly different between age groups, but there was a significantly higher frequency of intermediate learners (i.e., learners not identifying with a reliance on either rule- or exemplar-based strategies) in the older than younger adult group. Training performance was higher for younger than older adults regardless of the strategy utilized, showing that older adults were impaired in their ability to learn the correct rule or to remember exemplar-label associations. Transfer performance converged with strategy reports in showing higher fidelity category representations for younger adults. Younger adults with high working memory capacity were more likely to use an exemplar-based strategy, and older adults with high working memory capacity showed better training performance. Age groups did not differ in their self-reported memory beliefs, and these beliefs did not predict training strategies or performance. Overall, the present results contradict earlier findings that older adults prefer rule- to exemplar-based learning strategies, presumably to compensate for memory deficits. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  17. The effects of humor on memory for non-sensical pictures.

    PubMed

    Takahashi, Masanobu; Inoue, Tomoyoshi

    2009-09-01

    Two experiments investigated the effects of humor on memory for non-sensical pictures. Each picture was given three labels that differed in the degree of humor: high, low, and no humor labels. In Experiment 1, the humor of the picture labels was manipulated between participants. Participants were shown 30 pictures for 10s each and were asked to rate the degree of humor of each picture. After the rating task, participants were asked to draw the pictures in an unexpected memory test. Performance in the memory test was best in the high humor label group, followed by the low and the no humor label groups. In Experiment 2, intention to learn (incidental versus intentional encoding tasks) as well as humor label was manipulated between the participants. In the incidental learning condition, the high humor group performed better than the low humor group, but in the intentional learning condition, there was no humor effect. The effects of humor on picture memory were discussed in terms of appraisal processing within a distinctiveness framework.

  18. The Development of Automaticity in Short-Term Memory Search: Item-Response Learning and Category Learning

    ERIC Educational Resources Information Center

    Cao, Rui; Nosofsky, Robert M.; Shiffrin, Richard M.

    2017-01-01

    In short-term-memory (STM)-search tasks, observers judge whether a test probe was present in a short list of study items. Here we investigated the long-term learning mechanisms that lead to the highly efficient STM-search performance observed under conditions of consistent-mapping (CM) training, in which targets and foils never switch roles across…

  19. The spatial learning and memory performance in methamphetamine–sensitized and withdrawn rats

    PubMed Central

    Bigdeli, Imanollah; Asia, Masomeh Nikfarjam- Haft; Miladi-Gorji, Hossein; Fadaei, Atefeh

    2015-01-01

    Objective(s): There is controversial evidence about the effect of methamphetamine (METH) on spatial memory. We tested the time- dependent effects of METH on spatial short-term (working) and long-term (reference) memory in METH –sensitized and withdrawn rats in the Morris water maze. Materials and Methods: Rats were sensitized to METH (2 mg/kg, daily/5 days, SC). Rats were trained in water maze (4 trials/day/for 5 days). Probe test was performed 24 hr after training. Two days after probe test, working memory training (2 trials/day/for 5 days) was conducted. Acquisition–retention interval was 75 min. The treatment was continued per day 30 and 120 min before the test. Two groups of METH –sensitized rats were trained in reference memory after a longer period of withdrawal (30 days). Results: Sensitized rats exhibited significantly longer escape latencies on the training, spent significantly less time in the target zone (all, P<0.05), and their working memory impaired 30 min after injection. While, METH has no effect on the spatial learning process 120 min after injection, and rats spent significantly less time in the target zone (P<0.05), as well it has no effect on working memory. Also, impairment of reference memory persisted after prolonged abstinence. Conclusion: Our findings indicated that METH impaired spatial learning and memory 30 min after injection, but spared spatial learning, either acquisition or retention of spatial working, but partially impaired retention of spatial reference memory following 120 min after injection in sensitized rats, which persisted even after prolonged abstinence. PMID:25945235

  20. Fractionating spatial memory with glutamate receptor subunit-knockout mice.

    PubMed

    Bannerman, David M

    2009-12-01

    In recent years, the contribution that different glutamate receptor subtypes and subunits make to spatial learning and memory has been studied extensively using genetically modified mice in which key proteins are knocked out. This has revealed dissociations between different aspects of spatial memory that were not previously apparent from lesion studies. For example, studies with GluA1 AMPAR [AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptor] subunit-knockout mice have revealed the presence of a GluA1-dependent, non-associative short-term memory mechanism that is important for performance on spatial working memory tasks, and a GluA1-independent, long-term associative memory mechanism which underlies performance on spatial reference memory tasks. Within this framework we have also studied the contributions of different GluN2-containing NMDARs [NMDA (N-methyl-D-aspartate) receptors] to spatial memory. Studies with GluN2 NMDAR mutants have revealed different contributions from GluN2A- and GluN2B-containing NMDARs to spatial learning. Furthermore, comparison of forebrain- and hippocampus-specific GluN2B-knockout mice has demonstrated that both hippocampal and extra-hippocampal NMDARs make important contributions to spatial memory performance.

  1. Meaningful Memory in Acute Anorexia Nervosa Patients-Comparing Recall, Learning, and Recognition of Semantically Related and Semantically Unrelated Word Stimuli.

    PubMed

    Terhoeven, Valentin; Kallen, Ursula; Ingenerf, Katrin; Aschenbrenner, Steffen; Weisbrod, Matthias; Herzog, Wolfgang; Brockmeyer, Timo; Friederich, Hans-Christoph; Nikendei, Christoph

    2017-03-01

    It is unclear whether observed memory impairment in anorexia nervosa (AN) depends on the semantic structure (categorized words) of material to be encoded. We aimed to investigate the processing of semantically related information in AN. Memory performance was assessed in a recall, learning, and recognition test in 27 adult women with AN (19 restricting, 8 binge-eating/purging subtype; average disease duration: 9.32 years) and 30 healthy controls using an extended version of the Rey Auditory Verbal Learning Test, applying semantically related and unrelated word stimuli. Short-term memory (immediate recall, learning), regardless of semantics of the words, was significantly worse in AN patients, whereas long-term memory (delayed recall, recognition) did not differ between AN patients and controls. Semantics of stimuli do not have a better effect on memory recall in AN compared to CO. Impaired short-term versus long-term memory is discussed in relation to dysfunctional working memory in AN. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association.

  2. Effects of endurance, resistance, and concurrent exercise on learning and memory after morphine withdrawal in rats.

    PubMed

    Zarrinkalam, Ebrahim; Heidarianpour, Ali; Salehi, Iraj; Ranjbar, Kamal; Komaki, Alireza

    2016-07-15

    Continuous morphine consumption contributes to the development of cognitive disorders. This work investigates the impacts of different types of exercise on learning and memory in morphine-dependent rats. Forty morphine-dependent rats were randomly divided into five groups: sedentary-dependent (Sed-D), endurance exercise-dependent (En-D), strength exercise-dependent (St-D), and combined (concurrent) exercise-dependent (Co-D). Healthy rats were used as controls (Con). After 10weeks of regular exercise (endurance, strength, and concurrent; each five days per week), spatial and aversive learning and memory were assessed using the Morris water maze and shuttle box tests. The results showed that morphine addiction contributes to deficits in spatial learning and memory. Furthermore, each form of exercise training restored spatial learning and memory performance in morphine-dependent rats to levels similar to those of healthy controls. Aversive learning and memory during the acquisition phase were not affected by morphine addiction or exercise, but were significantly decreased by morphine dependence. Only concurrent training returned the time spent in the dark compartment in the shuttle box test to control levels. These findings show that different types of exercise exert similar effects on spatial learning and memory, but show distinct effects on aversive learning and memory. Further, morphine dependence-induced deficits in cognitive function were blocked by exercise. Therefore, different exercise regimens may represent practical treatment methods for cognitive and behavioral impairments associated with morphine-related disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Changes in verbal learning and memory in schizophrenia and non-psychotic controls in midlife: A nine-year follow-up in the Northern Finland Birth Cohort study 1966.

    PubMed

    Rannikko, Irina; Haapea, Marianne; Miettunen, Jouko; Veijola, Juha; Murray, Graham K; Barnett, Jennifer H; Husa, Anja P; Jones, Peter B; Isohanni, Matti; Jääskeläinen, Erika

    2015-08-30

    Findings on longitudinal change of cognitive performance in schizophrenia are extremely variable in the case of verbal learning and memory, and it is still unclear which dimensions of verbal learning and memory exhibit possible deterioration over the long-term. Our aim was to compare the change in verbal learning and memory in individuals with schizophrenia 10-20 years after the illness onset and healthy controls during a nine-year follow-up in a general population sample. Our sample included 41 schizophrenia spectrum subjects and 73 controls from the Northern Finland Birth Cohort study 1966. The California Verbal Learning Test (CVLT) was used to estimate the degree of change in verbal learning and memory during a nine-year follow-up from age 34-years to 43- years. Both cases and controls deteriorated. There was statistically significant decline in two out of 20 CVLT items among cases and in 13 out of 20 CVLT items among controls. With the exception of two variables, the decline in verbal learning and memory over nine years was not significantly larger in cases. We conclude that during midlife verbal learning and memory in schizophrenia mostly declines in a normative fashion with aging at the same rate as the general population. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Does Bacopa monnieri improve memory performance in older persons? Results of a randomized, placebo-controlled, double-blind trial.

    PubMed

    Morgan, Annette; Stevens, John

    2010-07-01

    The objective of this study was to investigate the effectiveness of Bacopa monnieri Linn. for improvement of memory performance in healthy older persons. This was a randomized, double-blind, placebo-controlled trial. The trial took place in Lismore, NSW, Australia between February and July 2005. Ninety-eight (98) healthy participants over 55 years of age were recruited from the general population. Participants were randomized to receive an extract of Bacopa monnieri called BacoMind(TM) (Natural Remedies Pvt. Ltd.), 300 mg/day, or an identical placebo. Following screening, neuropsychologic and subjective memory assessments were performed at baseline and at 12 weeks. Audioverbal and visual memory performance were measured by the Rey Auditory Verbal Learning Test (AVLT), the Rey-Osterrieth Complex Figure Test (CFT), and the Reitan Trail Making Test (TMT). Subjective memory performance was measured by the Memory Complaint Questionnaire (MAC-Q). One hundred and thirty-six (136) subjects volunteered; 103 met entry criteria, 98 commenced, and 81 completed the trial. Bacopa significantly improved verbal learning, memory acquisition, and delayed recall as measured by the AVLT: trial a4 (p = 0.000), trial a5 (p = 0.016); trial a6 (p = 0.000); trial a7 (delayed recall) (p = 0.001); total learning (p = 0.011); and retroactive interference (p = 0.048). CFT, MAC-Q, and TMT scores improved but group differences were not significant. Bacopa versus placebo caused gastrointestinal tract (GIT) side-effects. Bacopa significantly improved memory acquisition and retention in healthy older Australians. This concurs with previous findings and traditional use. Bacopa caused GIT side-effects of increased stool frequency, abdominal cramps, and nausea.

  5. Sleep-dependent memory consolidation and accelerated forgetting

    PubMed Central

    Atherton, Kathryn E.; Nobre, Anna C.; Zeman, Adam Z.; Butler, Christopher R.

    2014-01-01

    Accelerated long-term forgetting (ALF) is a form of memory impairment in which learning and initial retention of information appear normal but subsequent forgetting is excessively rapid. ALF is most commonly associated with epilepsy and, in particular, a form of late-onset epilepsy called transient epileptic amnesia (TEA). ALF provides a novel opportunity to investigate post-encoding memory processes, such as consolidation. Sleep is implicated in the consolidation of memory in healthy people and a deficit in sleep-dependent memory consolidation has been proposed as an explanation for ALF. If this proposal were correct, then sleep would not benefit memory retention in people with ALF as much as in healthy people, and ALF might only be apparent when the retention interval contains sleep. To test this theory, we compared performance on a sleep-sensitive memory task over a night of sleep and a day of wakefulness. We found, contrary to the hypothesis, that sleep benefits memory retention in TEA patients with ALF and that this benefit is no smaller in magnitude than that seen in healthy controls. Indeed, the patients performed significantly more poorly than the controls only in the wake condition and not the sleep condition. Patients were matched to controls on learning rate, initial retention, and the effect of time of day on cognitive performance. These results indicate that ALF is not caused by a disruption of sleep-dependent memory consolidation. Instead, ALF may be due to an encoding abnormality that goes undetected on behavioural assessments of learning, or by a deficit in memory consolidation processes that are not sleep-dependent. PMID:24657478

  6. Judgments of Learning are Influenced by Multiple Cues In Addition to Memory for Past Test Accuracy.

    PubMed

    Hertzog, Christopher; Hines, Jarrod C; Touron, Dayna R

    When people try to learn new information (e.g., in a school setting), they often have multiple opportunities to study the material. One of the most important things to know is whether people adjust their study behavior on the basis of past success so as to increase their overall level of learning (for example, by emphasizing information they have not yet learned). Monitoring their learning is a key part of being able to make those kinds of adjustments. We used a recognition memory task to replicate prior research showing that memory for past test outcomes influences later monitoring, as measured by judgments of learning (JOLs; confidence that the material has been learned), but also to show that subjective confidence in whether the test answer and the amount of time taken to restudy the items also have independent effects on JOLs. We also show that there are individual differences in the effects of test accuracy and test confidence on JOLs, showing that some but not all people use past test experiences to guide monitoring of their new learning. Monitoring learning is therefore a complex process of considering multiple cues, and some people attend to those cues more effectively than others. Improving the quality of monitoring performance and learning could lead to better study behaviors and better learning. An individual's memory of past test performance (MPT) is often cited as the primary cue for judgments of learning (JOLs) following test experience during multi-trial learning tasks (Finn & Metcalfe, 2007; 2008). We used an associative recognition task to evaluate MPT-related phenomena, because performance monitoring, as measured by recognition test confidence judgments (CJs), is fallible and varies in accuracy across persons. The current study used multilevel regression models to show the simultaneous and independent influences of multiple cues on Trial 2 JOLs, in addition to performance accuracy (the typical measure of MPT in cued-recall experiments). These cues include recognition CJs, perceived recognition fluency, and Trial 2 study time allocation (an index of reprocessing fluency). Our results expand the scope of MPT-related phenomena in recognition memory testing to show independent effects of recognition test accuracy and CJs on second-trial JOLs, while also demonstrating individual differences in the effects of these cues on JOLs (as manifested in significant random effects for those regression effects in the model). The effect of study time on second-trial JOLs controlling on other variables, including Trial 1 recognition memory accuracy, also demonstrates that second-trial encoding behavior influence JOLs in addition to MPT.

  7. User Preference-Based Dual-Memory Neural Model With Memory Consolidation Approach.

    PubMed

    Nasir, Jauwairia; Yoo, Yong-Ho; Kim, Deok-Hwa; Kim, Jong-Hwan; Nasir, Jauwairia; Yong-Ho Yoo; Deok-Hwa Kim; Jong-Hwan Kim; Nasir, Jauwairia; Yoo, Yong-Ho; Kim, Deok-Hwa; Kim, Jong-Hwan

    2018-06-01

    Memory modeling has been a popular topic of research for improving the performance of autonomous agents in cognition related problems. Apart from learning distinct experiences correctly, significant or recurring experiences are expected to be learned better and be retrieved easier. In order to achieve this objective, this paper proposes a user preference-based dual-memory adaptive resonance theory network model, which makes use of a user preference to encode memories with various strengths and to learn and forget at various rates. Over a period of time, memories undergo a consolidation-like process at a rate proportional to the user preference at the time of encoding and the frequency of recall of a particular memory. Consolidated memories are easier to recall and are more stable. This dual-memory neural model generates distinct episodic memories and a flexible semantic-like memory component. This leads to an enhanced retrieval mechanism of experiences through two routes. The simulation results are presented to evaluate the proposed memory model based on various kinds of cues over a number of trials. The experimental results on Mybot are also presented. The results verify that not only are distinct experiences learned correctly but also that experiences associated with higher user preference and recall frequency are consolidated earlier. Thus, these experiences are recalled more easily relative to the unconsolidated experiences.

  8. Schizophrenia patients demonstrate a dissociation on declarative and non-declarative memory tests.

    PubMed

    Perry, W; Light, G A; Davis, H; Braff, D L

    2000-12-15

    Declarative memory refers to the recall and recognition of factual information. In contrast, non-declarative memory entails a facilitation of memory based on prior exposure and is typically assessed with priming and perceptual-motor sequencing tasks. In this study, schizophrenia patients were compared to normal comparison subjects on two computerized memory tasks: the Word-stem Priming Test (n=30) and the Pattern Sequence Learning Test (n=20). Word-stem Priming includes recall, recognition (declarative) and priming (non-declarative) components of memory. The schizophrenia patients demonstrated an impaired performance on recall of words with relative improvement during the recognition portion of the test. Furthermore, they performed normally on the priming portion of the test. Thus, on tests of declarative memory, the patients had retrieval deficits with intact performance on the non-declarative memory component. The Pattern Sequence Learning Test utilizes a serial reaction time paradigm to assess non-declarative memory. The schizophrenia patients' serial reaction time was significantly slower than that of comparison subjects. However, the patients' rate of acquisition was not different from the normal comparison group. The data suggest that patients with schizophrenia process more slowly than normal, but have an intact non-declarative memory. The schizophrenia patients' dissociation on declarative vs. non-declarative memory tests is discussed in terms of possible underlying structural impairment.

  9. Unique and shared validity of the "Wechsler logical memory test", the "California verbal learning test", and the "verbal learning and memory test" in patients with epilepsy.

    PubMed

    Helmstaedter, Christoph; Wietzke, Jennifer; Lutz, Martin T

    2009-12-01

    This study was set-up to evaluate the construct validity of three verbal memory tests in epilepsy patients. Sixty-one consecutively evaluated patients with temporal lobe epilepsy (TLE) or extra-temporal epilepsy (E-TLE) underwent testing with the verbal learning and memory test (VLMT, the German equivalent of the Rey auditory verbal learning test, RAVLT); the California verbal learning test (CVLT); the logical memory and digit span subtests of the Wechsler memory scale, revised (WMS-R); and testing of intelligence, attention, speech and executive functions. Factor analysis of the memory tests resulted in test-specific rather than test over-spanning factors. Parameters of the CVLT and WMS-R, and to a much lesser degree of the VLMT, were highly correlated with attention, language function and vocabulary. Delayed recall measures of logical memory and the VLMT differentiated TLE from E-TLE. Learning and memory scores off all three tests differentiated mesial temporal sclerosis from other pathologies. A lateralization of the epilepsy was possible only for a subsample of 15 patients with mesial TLE. Although the three tests provide overlapping indicators for a temporal lobe epilepsy or a mesial pathology, they can hardly be taken in exchange. The tests have different demands on semantic processing and memory organization, and they appear differentially sensitive to performance in non-memory domains. The tests capability to lateralize appears to be poor. The findings encourage the further discussion of the dependency of memory outcomes on test selection.

  10. Preserved complex emotion-based learning in amnesia.

    PubMed

    Turnbull, Oliver H; Evans, Cathryn E Y

    2006-01-01

    An important role for emotion in decision-making has recently been highlighted by disruptions in problem solving abilities after lesion to the frontal lobes. Such complex decision-making skills appear to be based on a class of memory ability (emotion-based learning) that may be anatomically independent of hippocampally mediated episodic memory systems. There have long been reports of intact emotion-based learning in amnesia, arguably dating back to the classic report of Claparede. However, all such accounts relate to relatively simple patterns of emotional valence learning, rather than the more complex contingency patterns of emotional experience, which characterise everyday life. A patient, SL, who had a profound anterograde amnesia following posterior cerebral artery infarction, performed a measure of complex emotion-based learning (the Iowa Gambling Task) on three separate occasions. Despite his severe episodic memory impairment, he showed normal levels of performance on the Gambling Task, at levels comparable or better than controls-including learning that persisted across substantial periods of time (weeks). Thus, emotion-based learning systems appear able to encode, and sustain, more sophisticated patterns of valence learning than have previously been reported.

  11. Differential working memory correlates for implicit sequence performance in young and older adults.

    PubMed

    Bo, Jin; Jennett, S; Seidler, R D

    2012-09-01

    Our recent work has revealed that visuospatial working memory (VSWM) relates to the rate of explicit motor sequence learning (Bo and Seidler in J Neurophysiol 101:3116-3125, 2009) and implicit sequence performance (Bo et al. in Exp Brain Res 214:73-81, 2011a) in young adults (YA). Although aging has a detrimental impact on many cognitive functions, including working memory, older adults (OA) still rely on their declining working memory resources in an effort to optimize explicit motor sequence learning. Here, we evaluated whether age-related differences in VSWM and/or verbal working memory (VWM) performance relates to implicit performance change in the serial reaction time (SRT) sequence task in OA. Participants performed two computerized working memory tasks adapted from change detection working memory assessments (Luck and Vogel in Nature 390:279-281, 1997), an implicit SRT task and several neuropsychological tests. We found that, although OA exhibited an overall reduction in both VSWM and VWM, both OA and YA showed similar performance in the implicit SRT task. Interestingly, while VSWM and VWM were significantly correlated with each other in YA, there was no correlation between these two working memory scores in OA. In YA, the rate of SRT performance change (exponential fit to the performance curve) was significantly correlated with both VSWM and VWM, while in contrast, OA's performance was only correlated with VWM, and not VSWM. These results demonstrate differential reliance on VSWM and VWM for SRT performance between YA and OA. OA may utilize VWM to maintain optimized performance of second-order conditional sequences.

  12. Context odor presentation during sleep enhances memory in honeybees.

    PubMed

    Zwaka, Hanna; Bartels, Ruth; Gora, Jacob; Franck, Vivien; Culo, Ana; Götsch, Moritz; Menzel, Randolf

    2015-11-02

    Sleep plays an important role in stabilizing new memory traces after learning [1-3]. Here we investigate whether sleep's role in memory processing is similar in evolutionarily distant species and demonstrate that a context trigger during deep-sleep phases improves memory in invertebrates, as it does in humans. We show that in honeybees (Apis mellifera), exposure to an odor during deep sleep that has been present during learning improves memory performance the following day. Presentation of the context odor during wake phases or novel odors during sleep does not enhance memory. In humans, memory consolidation can be triggered by presentation of a context odor during slow-wave sleep that had been present during learning [3-5]. Our results reveal that deep-sleep phases in honeybees have the potential to prompt memory consolidation, just as they do in humans. This study provides strong evidence for a conserved role of sleep-and how it affects memory processes-from insects to mammals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Lewis and Fischer 344 rats as a model for genetic differences in spatial learning and memory: Cocaine effects.

    PubMed

    Fole, Alberto; Miguéns, Miguel; Morales, Lidia; González-Martín, Carmen; Ambrosio, Emilio; Del Olmo, Nuria

    2017-06-02

    Lewis (LEW) and Fischer 344 (F344) rats are considered a model of genetic vulnerability to drug addiction. We previously showed important differences in spatial learning and memory between them, but in contrast with previous experiments demonstrating cocaine-induced enhanced learning in Morris water maze (MWM) highly demanding tasks, the eight-arm radial maze (RAM) performance was not modified either in LEW or F344 rats after chronic cocaine treatment. In the present work, chronically cocaine-treated LEW and F344 adult rats have been evaluated in learning and memory performance using the Y-maze, two RAM protocols that differ in difficulty, and a reversal protocol that tests cognitive flexibility. After one of the RAM protocols, we quantified dendritic spine density in hippocampal CA1 neurons and compared it to animals treated with cocaine but not submitted to RAM. LEW cocaine treated rats showed a better performance in the Y maze than their saline counterparts, an effect that was not evident in the F344 strain. F344 rats significantly took more time to learn the RAM task and made a greater number of errors than LEW animals in both protocols tested, whereas cocaine treatment induced deleterious effects in learning and memory in the highly difficult protocol. Moreover, hippocampal spine density was cocaine-modulated in LEW animals whereas no effects were found in F344 rats. We propose that differences in addictive-like behavior between LEW and F344 rats could be related to differences in hippocampal learning and memory processes that could be on the basis of individual vulnerability to cocaine addiction. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Synaptophysin and the dopaminergic system in hippocampus are involved in the protective effect of rutin against trimethyltin-induced learning and memory impairment.

    PubMed

    Zhang, Lei; Zhao, Qi; Chen, Chun-Hai; Qin, Qi-Zhong; Zhou, Zhou; Yu, Zheng-Ping

    2014-09-01

    This study aimed to investigate the protective effect of rutin against trimethyltin-induced spatial learning and memory impairment in mice. This study focused on the role of synaptophysin, growth-associated protein 43 and the action of the dopaminergic system in mechanisms associated with rutin protection and trimethyltin-induced spatial learning and memory impairment. Cognitive learning and memory was measured by Morris Water Maze. The expression of synaptophysin and growth-associated protein 43 in hippocampus was analyzed by western blot. The concentrations of dopamine, homovanillic acid, and dihyroxyphenylacetic acid in hippocampus were detected using reversed phase high-performance liquid chromatography with electrochemical detection. Trimethyltin-induced spatial learning impairment showed a dose-dependent mode. Synaptophysin but not growth-associated protein 43 was decreased in the hippocampus after trimethyltin administration. The concentration of dopamine decreased, while homovanillic acid increased in the hippocampus after trimethyltin administration. Mice pretreated with 20 mg/kg of rutin for 7 consecutive days exhibited improved water maze performance. Moreover, rutin pretreatment reversed the decrease of synaptophysin expression and dopamine alteration. These results suggest that rutin may protect against spatial memory impairment induced by trimethyltin. Synaptophysin and the dopaminergic system may be involved in trimethyltin-induced neuronal damage in hippocampus.

  15. Memory Functioning in Children and Adolescents With Autism

    PubMed Central

    Southwick, Jason S.; Bigler, Erin D.; Froehlich, Alyson; DuBray, Molly B.; Alexander, Andrew L.; Lange, Nicholas; Lainhart, Janet E.

    2012-01-01

    Objective Memory functioning in children and adolescents ages 5–19 with autism (n = 50) and typically developing controls (n = 36) was assessed using a clinical assessment battery, the Test of Memory and Learning (TOMAL). Method Participant groups were statistically comparable in age, nonverbal IQ, handedness, and head circumference, and were administered the TOMAL. Results Test performance on the TOMAL demonstrated broad differences in memory functioning in the autism group, across multiple task formats, including verbal and nonverbal, immediate and delayed, attention and concentration, sequential recall, free recall, associative recall, and multiple-trial learning memory. All index and nearly all subtest differences remained significant even after comparing a subset of the autism group (n = 36) and controls that were matched for verbal IQ ( p >.05). However, retention of previously remembered information after a delay was similar in autism and controls. Conclusions These findings indicate that performance on measures of episodic memory is broadly reduced in autism, and support the conclusion that information encoding and organization, possibly due to inefficient cognitive processing strategies, rather than storage and retrieval, are the primary factors that limit memory performance in autism. PMID:21843004

  16. Stimulus modality and working memory performance in Greek children with reading disabilities: additional evidence for the pictorial superiority hypothesis.

    PubMed

    Constantinidou, Fofi; Evripidou, Christiana

    2012-01-01

    This study investigated the effects of stimulus presentation modality on working memory performance in children with reading disabilities (RD) and in typically developing children (TDC), all native speakers of Greek. It was hypothesized that the visual presentation of common objects would result in improved learning and recall performance as compared to the auditory presentation of stimuli. Twenty children, ages 10-12, diagnosed with RD were matched to 20 TDC age peers. The experimental tasks implemented a multitrial verbal learning paradigm incorporating three modalities: auditory, visual, and auditory plus visual. Significant group differences were noted on language, verbal and nonverbal memory, and measures of executive abilities. A mixed-model MANOVA indicated that children with RD had a slower learning curve and recalled fewer words than TDC across experimental modalities. Both groups of participants benefited from the visual presentation of objects; however, children with RD showed the greatest gains during this condition. In conclusion, working memory for common verbal items is impaired in children with RD; however, performance can be facilitated, and learning efficiency maximized, when information is presented visually. The results provide further evidence for the pictorial superiority hypothesis and the theory that pictorial presentation of verbal stimuli is adequate for dual coding.

  17. Low Dose Prenatal Alcohol Exposure Does Not Impair Spatial Learning and Memory in Two Tests in Adult and Aged Rats

    PubMed Central

    Cullen, Carlie L.; Burne, Thomas H. J.; Lavidis, Nickolas A.; Moritz, Karen M.

    2014-01-01

    Consumption of alcohol during pregnancy can have detrimental impacts on the developing hippocampus, which can lead to deficits in learning and memory function. Although high levels of alcohol exposure can lead to severe deficits, there is a lack of research examining the effects of low levels of exposure. This study used a rat model to determine if prenatal exposure to chronic low dose ethanol would result in deficits in learning and memory performance and if this was associated with morphological changes within the hippocampus. Sprague Dawley rats were fed a liquid diet containing 6% (vol/vol) ethanol (EtOH) or an isocaloric control diet throughout gestation. Male and Female offspring underwent behavioural testing at 8 (Adult) or 15 months (Aged) of age. Brains from these animals were collected for stereological analysis of pyramidal neuron number and dendritic morphology within the CA1 and CA3 regions of the dorsal hippocampus. Prenatal ethanol exposed animals did not differ in spatial learning or memory performance in the Morris water maze or Y maze tasks compared to Control offspring. There was no effect of prenatal ethanol exposure on pyramidal cell number or density within the dorsal hippocampus. Overall, this study indicates that chronic low dose prenatal ethanol exposure in this model does not have long term detrimental effects on pyramidal cells within the dorsal hippocampus or impair spatial learning and memory performance. PMID:24978807

  18. Neuropsychological function in patients with anorexia nervosa or bulimia nervosa.

    PubMed

    Weider, Siri; Indredavik, Marit Saebø; Lydersen, Stian; Hestad, Knut

    2015-05-01

    This study explored the neuropsychological performance of patients diagnosed with anorexia nervosa (AN) or bulimia nervosa (BN) compared with healthy controls (HCs). An additional aim was to investigate the effect of several possible mediators on the association between eating disorders (EDs) and cognitive function. Forty patients with AN, 39 patients with BN, and 40 HCs who were comparable in age and education were consecutively recruited to complete a standardized neuropsychological test battery covering the following cognitive domains: verbal learning and memory, visual learning and memory, speed of information processing, visuospatial ability, working memory, executive function, verbal fluency, attention/vigilance, and motor function. The AN group scored significantly below the HCs on eight of the nine measured cognitive domains. The BN group also showed inferior performance on six cognitive domains. After adjusting for possible mediators, the nadir body mass index (lowest lifetime BMI) and depressive symptoms explained all findings in the BN group. Although this adjustment reduced the difference between the AN and HC groups, the AN group still performed worse than the HCs regarding verbal learning and memory, visual learning and memory, visuospatial ability, working memory, and executive functioning. Patients with EDs scored below the HCs on several cognitive function measures, this difference being most pronounced for the AN group. The nadir BMI and depressive symptoms had strong mediating effects. Longitudinal studies are needed to identify the importance of weight restoration and treatment of depressive symptoms in the prevention of a possible cognitive decline. © 2014 Wiley Periodicals, Inc.

  19. Long-Term Memory Performance in Adult ADHD.

    PubMed

    Skodzik, Timo; Holling, Heinz; Pedersen, Anya

    2017-02-01

    Memory problems are a frequently reported symptom in adult ADHD, and it is well-documented that adults with ADHD perform poorly on long-term memory tests. However, the cause of this effect is still controversial. The present meta-analysis examined underlying mechanisms that may lead to long-term memory impairments in adult ADHD. We performed separate meta-analyses of measures of memory acquisition and long-term memory using both verbal and visual memory tests. In addition, the influence of potential moderator variables was examined. Adults with ADHD performed significantly worse than controls on verbal but not on visual long-term memory and memory acquisition subtests. The long-term memory deficit was strongly statistically related to the memory acquisition deficit. In contrast, no retrieval problems were observable. Our results suggest that memory deficits in adult ADHD reflect a learning deficit induced at the stage of encoding. Implications for clinical and research settings are presented.

  20. Sex effects on spatial learning but not on spatial memory retrieval in healthy young adults.

    PubMed

    Piber, Dominique; Nowacki, Jan; Mueller, Sven C; Wingenfeld, Katja; Otte, Christian

    2018-01-15

    Sex differences have been found in spatial learning and spatial memory, with several studies indicating that males outperform females. We tested in the virtual Morris Water Maze (vMWM) task, whether sex differences in spatial cognitive processes are attributable to differences in spatial learning or spatial memory retrieval in a large student sample. We tested 90 healthy students (45 women and 45 men) with a mean age of 23.5 years (SD=3.5). Spatial learning and spatial memory retrieval were measured by using the vMWM task, during which participants had to search a virtual pool for a hidden platform, facilitated by visual cues surrounding the pool. Several learning trials assessed spatial learning, while a separate probe trial assessed spatial memory retrieval. We found a significant sex effect during spatial learning, with males showing shorter latency and shorter path length, as compared to females (all p<0.001). Yet, there was no significant sex effect in spatial memory retrieval (p=0.615). Furthermore, post-hoc analyses revealed significant sex differences in spatial search strategies (p<0.05), but no difference in the number of platform crossings (p=0.375). Our results indicate that in healthy young adults, males show faster spatial learning in a virtual environment, as compared to females. Interestingly, we found no significant sex differences during spatial memory retrieval. Our study raises the question, whether men and women use different learning strategies, which nevertheless result in equal performances of spatial memory retrieval. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Meta-analytic Review of Memory Impairment in Behavioral Variant Frontotemporal Dementia.

    PubMed

    Poos, Jackie M; Jiskoot, Lize C; Papma, Janne M; van Swieten, John C; van den Berg, Esther

    2018-03-19

    A meta-analysis of the extent, nature and pattern of memory performance in behavioral variant frontotemporal dementia (bvFTD). Multiple observational studies have challenged the relative sparing of memory in bvFTD as stated in the current diagnostic criteria. We performed a meta-analytic review covering the period 1967 to February 2017 of case-control studies on episodic memory in bvFTD versus control participants (16 studies, 383 patients, 603 control participants), and patients with bvFTD versus those with Alzheimer's disease (AD) (20 studies, 452 bvFTD, 874 AD). Differences between both verbal and non-verbal working memory, episodic memory learning and recall, and recognition memory were examined. Data were extracted from the papers and combined into a common metric measure of effect, Hedges' d. Patients with bvFTD show large deficits in memory performance compared to controls (Hedges' d -1.10; 95% confidence interval [CI] [-1.23, -0.95]), but perform significantly better than patients with AD (Hedges' d 0.85; 95% CI [0.69, 1.03]). Learning and recall tests differentiate best between patients with bvFTD and AD (p<.01). There is 37-62% overlap in test scores between the two groups. This study points to memory disorders in patients with bvFTD, with performance at an intermediate level between controls and patients with AD. This indicates that, instead of being an exclusion criterion for bvFTD diagnosis, memory deficits should be regarded as a potential integral part of the clinical spectrum. (JINS, 2018, 24, 1-13).

  2. Toward a Model of Cognitive Insight in First-Episode Psychosis: Verbal Memory and Hippocampal Structure

    PubMed Central

    Buchy, L.; Czechowska, Y.; Chochol, C.; Malla, A.; Joober, R.; Pruessner, J.; Lepage, M.

    2010-01-01

    Our previous work has linked verbal learning and memory with cognitive insight, but not clinical insight, in individuals with a first-episode psychosis (FEP). The current study reassessed the neurocognitive basis of cognitive and clinical insight and explored their neural basis in 61 FEP patients. Cognitive insight was measured with the Beck Cognitive Insight Scale (BCIS) and clinical insight with the Scale to assess Unawareness of Mental Disorder (SUMD). Global measures for 7 domains of cognition were examined. Hippocampi were manually segmented in to 3 parts: the body, head, and tail. Verbal learning and memory significantly correlated with the BCIS composite index. Composite index scores were significantly associated with total left hippocampal (HC) volume; partial correlations, however, revealed that this relationship was attributable largely to verbal memory performance. The BCIS self-certainty subscale significantly and inversely correlated with bilateral HC volumes, and these associations were independent of verbal learning and memory performance. The BCIS self-reflectiveness subscale significantly correlated with verbal learning and memory but not with HC volume. No significant correlations emerged between the SUMD and verbal memory or HC volume. These results strengthen our previous assertion that in individuals with an FEP cognitive insight may rely on memory whereby current experiences are appraised based on previous ones. The HC may be a viable location among others for the brain system that underlies aspects of cognitive insight in individuals with an FEP. PMID:19346315

  3. The Influence of Background Music on Learning in the Light of Different Theoretical Perspectives and the Role of Working Memory Capacity.

    PubMed

    Lehmann, Janina A M; Seufert, Tina

    2017-01-01

    This study investigates how background music influences learning with respect to three different theoretical approaches. Both the Mozart effect as well as the arousal-mood-hypothesis indicate that background music can potentially benefit learning outcomes. While the Mozart effect assumes a direct influence of background music on cognitive abilities, the arousal-mood-hypothesis assumes a mediation effect over arousal and mood. However, the seductive detail effect indicates that seductive details such as background music worsen learning. Moreover, as working memory capacity has a crucial influence on learning with seductive details, we also included the learner's working memory capacity as a factor in our study. We tested 81 college students using a between-subject design with half of the sample listening to two pop songs while learning a visual text and the other half learning in silence. We included working memory capacity in the design as a continuous organism variable. Arousal and mood scores before and after learning were collected as potential mediating variables. To measure learning outcomes we tested recall and comprehension. We did not find a mediation effect between background music and arousal or mood on learning outcomes. In addition, for recall performance there were no main effects of background music or working memory capacity, nor an interaction effect of these factors. However, when considering comprehension we did find an interaction between background music and working memory capacity: the higher the learners' working memory capacity, the better they learned with background music. This is in line with the seductive detail assumption.

  4. The Influence of Background Music on Learning in the Light of Different Theoretical Perspectives and the Role of Working Memory Capacity

    PubMed Central

    Lehmann, Janina A. M.; Seufert, Tina

    2017-01-01

    This study investigates how background music influences learning with respect to three different theoretical approaches. Both the Mozart effect as well as the arousal-mood-hypothesis indicate that background music can potentially benefit learning outcomes. While the Mozart effect assumes a direct influence of background music on cognitive abilities, the arousal-mood-hypothesis assumes a mediation effect over arousal and mood. However, the seductive detail effect indicates that seductive details such as background music worsen learning. Moreover, as working memory capacity has a crucial influence on learning with seductive details, we also included the learner’s working memory capacity as a factor in our study. We tested 81 college students using a between-subject design with half of the sample listening to two pop songs while learning a visual text and the other half learning in silence. We included working memory capacity in the design as a continuous organism variable. Arousal and mood scores before and after learning were collected as potential mediating variables. To measure learning outcomes we tested recall and comprehension. We did not find a mediation effect between background music and arousal or mood on learning outcomes. In addition, for recall performance there were no main effects of background music or working memory capacity, nor an interaction effect of these factors. However, when considering comprehension we did find an interaction between background music and working memory capacity: the higher the learners’ working memory capacity, the better they learned with background music. This is in line with the seductive detail assumption. PMID:29163283

  5. Learning and memory for sequences of pictures, words, and spatial locations: an exploration of serial position effects.

    PubMed

    Bonk, William J; Healy, Alice F

    2010-01-01

    A serial reproduction of order with distractors task was developed to make it possible to observe successive snapshots of the learning process at each serial position. The new task was used to explore the effect of several variables on serial memory performance: stimulus content (words, blanks, and pictures), presentation condition (spatial information vs. none), semantically categorized item clustering (grouped vs. ungrouped), and number of distractors relative to targets (none, equal, double). These encoding and retrieval variables, along with learning attempt number, affected both overall performance levels and the shape of the serial position function, although a large and extensive primacy advantage and a small 1-item recency advantage were found in each case. These results were explained well by a version of the scale-independent memory, perception, and learning model that accounted for improved performance by increasing the value of only a single parameter that reflects reduced interference from distant items.

  6. Hippocampal Region-Specific Contributions to Memory Performance in Normal Elderly

    ERIC Educational Resources Information Center

    Chen, Karren H. M.; Chuah, Lisa Y. M.; Sim, Sam K. Y.; Chee, Michael W. L.

    2010-01-01

    To investigate the relationship between regional hippocampal volume and memory in healthy elderly, 147 community-based volunteers, aged 55-83 years, were evaluated using magnetic resonance imaging, the Groton Maze Learning Test, Visual Reproduction and the Rey Auditory Verbal Learning Test. Hippocampal volumes were determined by interactive…

  7. Impaired cognitive plasticity and goal-directed control in adolescent obsessive-compulsive disorder.

    PubMed

    Gottwald, Julia; de Wit, Sanne; Apergis-Schoute, Annemieke M; Morein-Zamir, Sharon; Kaser, Muzaffer; Cormack, Francesca; Sule, Akeem; Limmer, Winifred; Morris, Anna Conway; Robbins, Trevor W; Sahakian, Barbara J

    2018-01-22

    Youths with obsessive-compulsive disorder (OCD) experience severe distress and impaired functioning at school and at home. Critical cognitive domains for daily functioning and academic success are learning, memory, cognitive flexibility and goal-directed behavioural control. Performance in these important domains among teenagers with OCD was therefore investigated in this study. A total of 36 youths with OCD and 36 healthy comparison subjects completed two memory tasks: Pattern Recognition Memory (PRM) and Paired Associates Learning (PAL); as well as the Intra-Extra Dimensional Set Shift (IED) task to quantitatively gauge learning as well as cognitive flexibility. A subset of 30 participants of each group also completed a Differential-Outcome Effect (DOE) task followed by a Slips-of-Action Task, designed to assess the balance of goal-directed and habitual behavioural control. Adolescent OCD patients showed a significant learning and memory impairment. Compared with healthy comparison subjects, they made more errors on PRM and PAL and in the first stages of IED involving discrimination and reversal learning. Patients were also slower to learn about contingencies in the DOE task and were less sensitive to outcome devaluation, suggesting an impairment in goal-directed control. This study advances the characterization of juvenile OCD. Patients demonstrated impairments in all learning and memory tasks. We also provide the first experimental evidence of impaired goal-directed control and lack of cognitive plasticity early in the development of OCD. The extent to which the impairments in these cognitive domains impact academic performance and symptom development warrants further investigation.

  8. How Does the Linguistic Distance Between Spoken and Standard Language in Arabic Affect Recall and Recognition Performances During Verbal Memory Examination.

    PubMed

    Taha, Haitham

    2017-06-01

    The current research examined how Arabic diglossia affects verbal learning memory. Thirty native Arab college students were tested using auditory verbal memory test that was adapted according to the Rey Auditory Verbal Learning Test and developed in three versions: Pure spoken language version (SL), pure standard language version (SA), and phonologically similar version (PS). The result showed that for immediate free-recall, the performances were better for the SL and the PS conditions compared to the SA one. However, for the parts of delayed recall and recognition, the results did not reveal any significant consistent effect of diglossia. Accordingly, it was suggested that diglossia has a significant effect on the storage and short term memory functions but not on long term memory functions. The results were discussed in light of different approaches in the field of bilingual memory.

  9. Memory for Lectures: How Lecture Format Impacts the Learning Experience

    PubMed Central

    Varao-Sousa, Trish L.; Kingstone, Alan

    2015-01-01

    The present study investigated what impact the presentation style of a classroom lecture has on memory, mind wandering, and the subjective factors of interest and motivation. We examined if having a professor lecturing live versus on video alters the learning experience of the students in the classroom. During the lectures, students were asked to report mind wandering and later complete a memory test. The lecture format was manipulated such that all the students received two lectures, one live and one a pre-recorded video. Results indicate that lecture format affected memory performance but not mind wandering, with enhanced memory in the live lectures. Additionally, students reported greater interest and motivation in the live lectures. Given that a single change to the classroom environment, professor presence, impacted memory performance, as well as motivation and interest, the present results have several key implications for technology-based integrations into higher education classrooms. PMID:26561235

  10. Memory for Lectures: How Lecture Format Impacts the Learning Experience.

    PubMed

    Varao-Sousa, Trish L; Kingstone, Alan

    2015-01-01

    The present study investigated what impact the presentation style of a classroom lecture has on memory, mind wandering, and the subjective factors of interest and motivation. We examined if having a professor lecturing live versus on video alters the learning experience of the students in the classroom. During the lectures, students were asked to report mind wandering and later complete a memory test. The lecture format was manipulated such that all the students received two lectures, one live and one a pre-recorded video. Results indicate that lecture format affected memory performance but not mind wandering, with enhanced memory in the live lectures. Additionally, students reported greater interest and motivation in the live lectures. Given that a single change to the classroom environment, professor presence, impacted memory performance, as well as motivation and interest, the present results have several key implications for technology-based integrations into higher education classrooms.

  11. Memory Test Performance on Analogous Verbal and Nonverbal Memory Tests in Patients with Frontotemporal Dementia and Alzheimer's Disease.

    PubMed

    Baldock, Deanna; Miller, Justin B; Leger, Gabriel C; Banks, Sarah Jane

    2016-01-01

    Patients with frontotemporal dementia (FTD) typically have initial deficits in language or changes in personality, while the defining characteristic of Alzheimer's disease (AD) is memory impairment. Neuropsychological findings in the two diseases tend to differ, but can be confounded by verbal impairment in FTD impacting performance on memory tests in these patients. Twenty-seven patients with FTD and 102 patients with AD underwent a neuropsychological assessment before diagnosis. By utilizing analogous versions of a verbal and nonverbal memory test, we demonstrated differences in these two modalities between AD and FTD. Better differentiation between AD and FTD is found in a nonverbal memory test, possibly because it eliminates the confounding variable of language deficits found in patients with FTD. These results highlight the importance of nonverbal learning tests with multiple learning trials in diagnostic testing.

  12. Learning potential and cognitive abilities in preschool boys with fragile X and Down syndrome.

    PubMed

    Valencia-Naranjo, Nieves; Robles-Bello, Mª Auxiliadora

    2017-01-01

    Enhancing cognitive abilities is relevant when devising treatment plans. This study examined the performance of preschool boys with Down syndrome and fragile X syndrome in cognitive tasks (e.g., nonverbal reasoning and short-term memory), as well as in improving cognitive functions by means of a learning potential methodology. The basic scales corresponding to the Skills and Learning Potential Preschool Scale were administered to children with Down syndrome and others with fragile X syndrome, matched for chronological age and nonverbal cognitive development level. The fragile X syndrome group showed stronger performance on short-term memory tasks than the Down syndrome group prior to intervention, with no differences recorded in nonverbal reasoning tasks. In addition, both groups' cognitive performance improved significantly between pre- and post-intervention. However, learning potential relative to auditory memory was limited in both groups, and for rule-based categorization in Down syndrome children. The scale offered the opportunity to assess young children's abilities and identify the degree of cognitive modifiability. Furthermore, factors that may potentially affect the children's performance before and during learning potential assessment are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Consolidation through the looking-glass: sleep-dependent proactive interference on visuomotor adaptation in children.

    PubMed

    Urbain, Charline; Houyoux, Emeline; Albouy, Geneviève; Peigneux, Philippe

    2014-02-01

    Although a beneficial role of post-training sleep for declarative memory has been consistently evidenced in children, as in adults, available data suggest that procedural memory consolidation does not benefit from sleep in children. However, besides the absence of performance gains in children, sleep-dependent plasticity processes involved in procedural memory consolidation might be expressed through differential interference effects on the learning of novel but related procedural material. To test this hypothesis, 32 10-12-year-old children were trained on a motor rotation adaptation task. After either a sleep or a wake period, they were first retested on the same rotation applied at learning, thus assessing offline sleep-dependent changes in performance, then on the opposite (unlearned) rotation to assess sleep-dependent modulations in proactive interference coming from the consolidated visuomotor memory trace. Results show that children gradually improve performance over the learning session, showing effective adaptation to the imposed rotation. In line with previous findings, no sleep-dependent changes in performance were observed for the learned rotation. However, presentation of the opposite, unlearned deviation elicited significantly higher interference effects after post-training sleep than wakefulness in children. Considering that a definite feature of procedural motor memory and skill acquisition is the implementation of highly automatized motor behaviour, thus lacking flexibility, our results suggest a better integration and/or automation or motor adaptation skills after post-training sleep, eventually resulting in higher proactive interference effects on untrained material. © 2013 European Sleep Research Society.

  14. Long-term memory biases auditory spatial attention.

    PubMed

    Zimmermann, Jacqueline F; Moscovitch, Morris; Alain, Claude

    2017-10-01

    Long-term memory (LTM) has been shown to bias attention to a previously learned visual target location. Here, we examined whether memory-predicted spatial location can facilitate the detection of a faint pure tone target embedded in real world audio clips (e.g., soundtrack of a restaurant). During an initial familiarization task, participants heard audio clips, some of which included a lateralized target (p = 50%). On each trial participants indicated whether the target was presented from the left, right, or was absent. Following a 1 hr retention interval, participants were presented with the same audio clips, which now all included a target. In Experiment 1, participants showed memory-based gains in response time and d'. Experiment 2 showed that temporal expectations modulate attention, with greater memory-guided attention effects on performance when temporal context was reinstated from learning (i.e., when timing of the target within audio clips was not changed from initially learned timing). Experiment 3 showed that while conscious recall of target locations was modulated by exposure to target-context associations during learning (i.e., better recall with higher number of learning blocks), the influence of LTM associations on spatial attention was not reduced (i.e., number of learning blocks did not affect memory-guided attention). Both Experiments 2 and 3 showed gains in performance related to target-context associations, even for associations that were not explicitly remembered. Together, these findings indicate that memory for audio clips is acquired quickly and is surprisingly robust; both implicit and explicit LTM for the location of a faint target tone modulated auditory spatial attention. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  15. Rule induction performance in amnestic mild cognitive impairment and Alzheimer's dementia: examining the role of simple and biconditional rule learning processes.

    PubMed

    Oosterman, Joukje M; Heringa, Sophie M; Kessels, Roy P C; Biessels, Geert Jan; Koek, Huiberdina L; Maes, Joseph H R; van den Berg, Esther

    2017-04-01

    Rule induction tests such as the Wisconsin Card Sorting Test require executive control processes, but also the learning and memorization of simple stimulus-response rules. In this study, we examined the contribution of diminished learning and memorization of simple rules to complex rule induction test performance in patients with amnestic mild cognitive impairment (aMCI) or Alzheimer's dementia (AD). Twenty-six aMCI patients, 39 AD patients, and 32 control participants were included. A task was used in which the memory load and the complexity of the rules were independently manipulated. This task consisted of three conditions: a simple two-rule learning condition (Condition 1), a simple four-rule learning condition (inducing an increase in memory load, Condition 2), and a complex biconditional four-rule learning condition-inducing an increase in complexity and, hence, executive control load (Condition 3). Performance of AD patients declined disproportionately when the number of simple rules that had to be memorized increased (from Condition 1 to 2). An additional increment in complexity (from Condition 2 to 3) did not, however, disproportionately affect performance of the patients. Performance of the aMCI patients did not differ from that of the control participants. In the patient group, correlation analysis showed that memory performance correlated with Condition 1 performance, whereas executive task performance correlated with Condition 2 performance. These results indicate that the reduced learning and memorization of underlying task rules explains a significant part of the diminished complex rule induction performance commonly reported in AD, although results from the correlation analysis suggest involvement of executive control functions as well. Taken together, these findings suggest that care is needed when interpreting rule induction task performance in terms of executive function deficits in these patients.

  16. Effects of peptides from Phascolosoma esculenta on spatial learning and memory via anti-oxidative character in mice.

    PubMed

    Liu, Lianliang; Cao, Jinxuan; Chen, Jiong; Zhang, Xin; Wu, Zufang; Xiang, Huan

    2016-09-19

    This study was aimed to evaluate effects of peptides from Phascolosoma esculenta and its ferrous-chelating peptides on spatial learning and memory in mice by Morris water maze test. 100mg/kg peptide on spatial learning and memory function about quadrant time and passing times through the platform better than 50 and 150mg/kg group during exploration period (P<0.05), without body weight between the weight and visual ability. 100mg/kg ferrous-chelating peptide group performed better ability of spatial learning and memory than 100mg/kg peptide group (P<0.05). qRT-PCR results showed that 50 and 100mg/kg administration peptide and 100mg/kg ferrous-chelating peptide can significantly improve mRNA expression of NR2A, NR2B and BDNF with oxidative stress status (GSH-Px, SOD, TAC and MDA), which explained mechanism for improving learning and memory ability in mice via anti-oxidative character. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Validity of a verbal incidental learning measure from the WAIS-IV in older adults.

    PubMed

    Hammers, Dustin B; Kucera, Amanda M; Card, Stephanie J; Tolle, Kathryn A; Atkinson, Taylor J; Duff, Kevin; Spencer, Robert J

    2018-01-01

    Incidental memory may reflect a form of learning in everyday life, although it is not consistently evaluated during standard neuropsychological evaluations. Further validation of a recently created measure of verbal Incidental Learning (IL) from the Wechsler Adult Intelligence Scale-IV is necessary to understand the utility of such a measure in clinical settings. Sixty-eight adults aged 50 to 89 were recruited from a Cognitive Disorders Clinic while receiving a standard neuropsychological assessment, along with two additional measures of IL. IL-Total Score was significantly correlated with immediate and delayed memory trials from standard neuropsychological tests (rs = .43 to .73, ps < .001, ds = 0.94-2.14), with worse IL performance being associated with lower memory abilities. Participants with probable Alzheimer's disease performed worse on the IL-Total Score than participants with Mild Cognitive Impairment, t(39.997) = 5.46, p < .001, d = 1.13. Given the strong relationships between this IL task and traditional memory measures in our sample, and the discrimination of IL-Total Score performance among diagnostic groups despite its short administration time, this IL task may play a role as a measure of memory in brief cognitive evaluations.

  18. Caffeine effects on mood and memory.

    PubMed

    Herz, R S

    1999-09-01

    The purpose of the present research was to assess whether a psychoactive dose of caffeine would have differential affects on the mood dimensions of arousal versus feelings of pleasantness and whether these mood alterations would influence memory either by (1) the experience of arousal at learning and/or (2) altered and congruent mood states at learning and recall. To address these questions, the administration of 5 mg/kg caffeine or placebo at learning and retrieval sessions was manipulated and subjects' mood was evaluated by several different self-report measures. Sixteen words were incidentally studied during the learning session and memory was evaluated by the number of words correctly recalled at the retrieval session two days later. Results revealed that caffeine reliably increased arousal, but did not affect any emotion dimensions related to feelings of pleasure. Subjects who received caffeine at learning and retrieval were also in equivalent mood states at both sessions. Moreover, caffeine did not produce any effects on memory; thus, neither hypothesis concerning the influence of arousal on memory was supported. These data show that caffeine is a useful method for manipulating arousal in the laboratory without influencing feelings of pleasantness or learning and memory performance.

  19. Effect of harmane, an endogenous β-carboline, on learning and memory in rats.

    PubMed

    Celikyurt, Ipek Komsuoglu; Utkan, Tijen; Gocmez, Semil Selcen; Hudson, Alan; Aricioglu, Feyza

    2013-01-01

    Our aim was to investigate the effects of acute harmane administration upon learning and memory performance of rats using the three-panel runway paradigm and passive avoidance test. Male rats received harmane (2.5, 5, and 7.5mg/kg, i.p.) or saline 30 min. before each session of experiments. In the three panel runway paradigm, harmane did not affect the number of errors and latency in reference memory. The effect of harmane on the errors of working memory was significantly higher following the doses of 5mg/kg and 7.5mg/kg. The latency was changed significantly at only 7.5mg/kg in comparison to control group. Animals were given pre-training injection of harmane in the passive avoidance test in order to determine the learning function. Harmane treatment decreased the retention latency significantly and dose dependently, which indicates an impairment in learning. In this study, harmane impaired working memory in three panel runway test and learning in passive avoidance test. As an endogenous bioactive molecule, harmane might have a critical role in the modulation of learning and memory functions. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Memory-focused interventions for people with cognitive disorders: A systematic review and meta-analysis of randomized controlled studies.

    PubMed

    Yang, Hui-Ling; Chan, Pi-Tuan; Chang, Pi-Chen; Chiu, Huei-Ling; Sheen Hsiao, Shu-Tai; Chu, Hsin; Chou, Kuei-Ru

    2018-02-01

    A better understanding of people with cognitive disorders improves performance on memory tasks through memory-focused interventions are needed. The purpose of this study was to assess the effect of memoryfocused interventions on cognitive disorders through a meta-analysis. Systematic review and meta-analysis. The online electronic databases PubMed, the Cochrane Library, Ovid-Medline, CINHAL, PsycINFO, Ageline, and Embase (up to May 2017) were used in this study. No language restriction was applied to the search. Objective memory (learning and memory function, immediate recall, delayed recall, and recognition) was the primary indicator and subjective memory performance, global cognitive function, and depression were the secondary indicators. The Hedges' g of change, subgroup analyses, and meta-regression were analyzed on the basis of the characteristics of people with cognitive disorders. A total of 27 studies (2177 participants, mean age=75.80) reporting RCTs were included in the meta-analysis. The results indicated a medium-to-large effect of memory-focused interventions on learning and memory function (Hedges' g=0.62) and subjective memory performance (Hedges' g=0.67), a small-to-medium effect on delayed recall and depression, and a small effect on immediate recall and global cognitive function (all p<0.05) compared with the control. Subgroup analysis and meta-regression indicated that the effects on learning and memory function were more profound in the format of memory training, individual training, shorter treatment duration, and more than eight treatment sessions, and the effect size indicated the MMSE score was the most crucial indicator (β=-0.06, p=0.04). This is first comprehensive meta-analysis of special memory domains in people with cognitive disorders. The results revealed that memory-focused interventions effectively improved memory-related performance in people with cognitive disorders. An appropriately designed intervention can effectively improve memory function, reduce disability progression, and improve mood state in people with cognitive disorders. Additional randomized controlled trials including measures of recognition, global cognitive function, and depression should be conducted and analyzed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. When Learning Disturbs Memory – Temporal Profile of Retroactive Interference of Learning on Memory Formation

    PubMed Central

    Sosic-Vasic, Zrinka; Hille, Katrin; Kröner, Julia; Spitzer, Manfred; Kornmeier, Jürgen

    2018-01-01

    Introduction: Consolidation is defined as the time necessary for memory stabilization after learning. In the present study we focused on effects of interference during the first 12 consolidation minutes after learning. Participants had to learn a set of German – Japanese word pairs in an initial learning task and a different set of German – Japanese word pairs in a subsequent interference task. The interference task started in different experimental conditions at different time points (0, 3, 6, and 9 min) after the learning task and was followed by subsequent cued recall tests. In a control experiment the interference periods were replaced by rest periods without any interference. Results: The interference task decreased memory performance by up to 20%, with negative effects at all interference time points and large variability between participants concerning both the time point and the size of maximal interference. Further, fast learners seem to be more affected by interference than slow learners. Discussion: Our results indicate that the first 12 min after learning are highly important for memory consolidation, without a general pattern concerning the precise time point of maximal interference across individuals. This finding raises doubts about the generalized learning recipes and calls for individuality of learning schedules. PMID:29503621

  2. Dynamics of Hippocampal Protein Expression During Long-term Spatial Memory Formation*

    PubMed Central

    Borovok, Natalia; Nesher, Elimelech; Levin, Yishai; Reichenstein, Michal; Pinhasov, Albert

    2016-01-01

    Spatial memory depends on the hippocampus, which is particularly vulnerable to aging. This vulnerability has implications for the impairment of navigation capacities in older people, who may show a marked drop in performance of spatial tasks with advancing age. Contemporary understanding of long-term memory formation relies on molecular mechanisms underlying long-term synaptic plasticity. With memory acquisition, activity-dependent changes occurring in synapses initiate multiple signal transduction pathways enhancing protein turnover. This enhancement facilitates de novo synthesis of plasticity related proteins, crucial factors for establishing persistent long-term synaptic plasticity and forming memory engrams. Extensive studies have been performed to elucidate molecular mechanisms of memory traces formation; however, the identity of plasticity related proteins is still evasive. In this study, we investigated protein turnover in mouse hippocampus during long-term spatial memory formation using the reference memory version of radial arm maze (RAM) paradigm. We identified 1592 proteins, which exhibited a complex picture of expression changes during spatial memory formation. Variable linear decomposition reduced significantly data dimensionality and enriched three principal factors responsible for variance of memory-related protein levels at (1) the initial phase of memory acquisition (165 proteins), (2) during the steep learning improvement (148 proteins), and (3) the final phase of the learning curve (123 proteins). Gene ontology and signaling pathways analysis revealed a clear correlation between memory improvement and learning phase-curbed expression profiles of proteins belonging to specific functional categories. We found differential enrichment of (1) neurotrophic factors signaling pathways, proteins regulating synaptic transmission, and actin microfilament during the first day of the learning curve; (2) transcription and translation machinery, protein trafficking, enhancement of metabolic activity, and Wnt signaling pathway during the steep phase of memory formation; and (3) cytoskeleton organization proteins. Taken together, this study clearly demonstrates dynamic assembly and disassembly of protein-protein interaction networks depending on the stage of memory formation engrams. PMID:26598641

  3. Effects of testosterone on spatial learning and memory in adult male rats

    PubMed Central

    Spritzer, Mark D.; Daviau, Emily D.; Coneeny, Meagan K.; Engelman, Shannon M.; Prince, W. Tyler; Rodriguez-Wisdom, Karlye N.

    2011-01-01

    A male advantage over females for spatial tasks has been well documented in both humans and rodents, but it remains unclear how the activational effects of testosterone influence spatial ability in males. In a series of experiments, we tested how injections of testosterone influenced the spatial working and reference memory of castrated male rats. In the eight-arm radial maze, testosterone injections (0.500 mg/rat) reduced the number of working memory errors during the early blocks of testing but had no effect on the number of reference memory errors relative to the castrated control group. In a reference memory version of the Morris water maze, injections of a wide range of testosterone doses (0.0625-1.000 mg/rat) reduced path lengths to the hidden platform, indicative of improved spatial learning. This improved learning was independent of testosterone dose, with all treatment groups showing better performance than the castrated control males. Furthermore, this effect was only observed when rats were given testosterone injections starting seven days prior to water maze testing and not when injections were given only on the testing days. We also observed that certain doses of testosterone (0.250 and 1.000 mg/rat) increased perseverative behavior in a reversal-learning task. Finally, testosterone did not have a clear effect on spatial working memory in the Morris water maze, although intermediate doses seemed to optimize performance. Overall, the results indicate that testosterone can have positive activational effects on spatial learning and memory, but the duration of testosterone replacement and the nature of the spatial task modify these effects. PMID:21295035

  4. Multiple memory systems as substrates for multiple decision systems

    PubMed Central

    Doll, Bradley B.; Shohamy, Daphna; Daw, Nathaniel D.

    2014-01-01

    It has recently become widely appreciated that value-based decision making is supported by multiple computational strategies. In particular, animal and human behavior in learning tasks appears to include habitual responses described by prominent model-free reinforcement learning (RL) theories, but also more deliberative or goal-directed actions that can be characterized by a different class of theories, model-based RL. The latter theories evaluate actions by using a representation of the contingencies of the task (as with a learned map of a spatial maze), called an “internal model.” Given the evidence of behavioral and neural dissociations between these approaches, they are often characterized as dissociable learning systems, though they likely interact and share common mechanisms. In many respects, this division parallels a longstanding dissociation in cognitive neuroscience between multiple memory systems, describing, at the broadest level, separate systems for declarative and procedural learning. Procedural learning has notable parallels with model-free RL: both involve learning of habits and both are known to depend on parts of the striatum. Declarative memory, by contrast, supports memory for single events or episodes and depends on the hippocampus. The hippocampus is thought to support declarative memory by encoding temporal and spatial relations among stimuli and thus is often referred to as a relational memory system. Such relational encoding is likely to play an important role in learning an internal model, the representation that is central to model-based RL. Thus, insofar as the memory systems represent more general-purpose cognitive mechanisms that might subserve performance on many sorts of tasks including decision making, these parallels raise the question whether the multiple decision systems are served by multiple memory systems, such that one dissociation is grounded in the other. Here we investigated the relationship between model-based RL and relational memory by comparing individual differences across behavioral tasks designed to measure either capacity. Human subjects performed two tasks, a learning and generalization task (acquired equivalence) which involves relational encoding and depends on the hippocampus; and a sequential RL task that could be solved by either a model-based or model-free strategy. We assessed the correlation between subjects’ use of flexible, relational memory, as measured by generalization in the acquired equivalence task, and their differential reliance on either RL strategy in the decision task. We observed a significant positive relationship between generalization and model-based, but not model-free, choice strategies. These results are consistent with the hypothesis that model-based RL, like acquired equivalence, relies on a more general-purpose relational memory system. PMID:24846190

  5. Modulation of GSK-3β/β-Catenin Signaling Contributes to Learning and Memory Impairment in a Rat Model of Depression.

    PubMed

    Hui, Jiaojie; Zhang, Jianping; Pu, Mengjia; Zhou, Xingliang; Dong, Liang; Mao, Xuqiang; Shi, Guofeng; Zou, Jian; Wu, Jingjing; Jiang, Dongmei; Xi, Guangjun

    2018-04-23

    It is widely accepted that cognitive processes, such as learning and memory, are affected in depression, but the molecular mechanisms underlying the interactions of these 2 disorders are not clearly understood. Recently, glycogen synthase kinase-3 beta (GSK-3β)/β-catenin signaling was shown to play an important role in the regulation of learning and memory. The present study used a rat model of depression, chronic unpredictable stress, to determine whether hippocampal GSK-3β/β-catenin signaling was involved in learning and memory alterations. Our results demonstrated that chronic unpredictable stress had a dramatic influence on spatial cognitive performance in the Morris water maze task and reduced the phosphorylation of Ser9 of GSK-3β as well as the total and nuclear levels of β-catenin in the hippocampus. Inhibition of GSK3β by SB216763 significantly ameliorated the cognitive deficits induced by chronic unpredictable stress, while overexpression of GSK3β by AAV-mediated gene transfer significantly decreased cognitive performance in adult rats. In addition, chronic unpredictable stress exposure increased the expression of the canonical Wnt antagonist Dkk-1. Furthermore, chronic administration of corticosterone significantly increased Dkk-1 expression, decreased the phosphorylation of Ser9 of GSK-3β, and resulted in the impairment of hippocampal learning and memory. Our results indicate that impairment of learning and memory in response to chronic unpredictable stress may be attributed to the dysfunction of GSK-3β/β-catenin signaling mediated by increased glucocorticoid signaling via Dkk-1.

  6. Multi-modal imaging predicts memory performance in normal aging and cognitive decline.

    PubMed

    Walhovd, K B; Fjell, A M; Dale, A M; McEvoy, L K; Brewer, J; Karow, D S; Salmon, D P; Fennema-Notestine, C

    2010-07-01

    This study (n=161) related morphometric MR imaging, FDG-PET and APOE genotype to memory scores in normal controls (NC), mild cognitive impairment (MCI) and Alzheimer's disease (AD). Stepwise regression analyses focused on morphometric and metabolic characteristics of the episodic memory network: hippocampus, entorhinal, parahippocampal, retrosplenial, posterior cingulate, precuneus, inferior parietal, and lateral orbitofrontal cortices. In NC, hippocampal metabolism predicted learning; entorhinal metabolism predicted recognition; and hippocampal metabolism predicted recall. In MCI, thickness of the entorhinal and precuneus cortices predicted learning, while parahippocampal metabolism predicted recognition. In AD, posterior cingulate cortical thickness predicted learning, while APOE genotype predicted recognition. In the total sample, hippocampal volume and metabolism, cortical thickness of the precuneus, and inferior parietal metabolism predicted learning; hippocampal volume and metabolism, parahippocampal thickness and APOE genotype predicted recognition. Imaging methods appear complementary and differentially sensitive to memory in health and disease. Medial temporal and parietal metabolism and morphometry best explained memory variance. Medial temporal characteristics were related to learning, recall and recognition, while parietal structures only predicted learning. Copyright 2008. Published by Elsevier Inc.

  7. Memory and Study Strategies for Optimal Learning.

    ERIC Educational Resources Information Center

    Hamachek, Alice L.

    Study strategies are those specific reading skills that increase understanding, memory storage, and retrieval. Memory techniques are crucial to effective studying, and to subsequent performance in class and on written examinations. A major function of memory is to process information. Stimuli are picked up by sensory receptors and transferred to…

  8. Metacognitive awareness of learning strategies in undergraduates.

    PubMed

    McCabe, Jennifer

    2011-04-01

    Two studies examined undergraduates' metacognitive awareness of six empirically-supported learning strategies. Study 1 results overall suggested an inability to predict the learning outcomes of educational scenarios describing the strategies of dual-coding, static-media presentations, low-interest extraneous details, testing, and spacing; there was, however, weak endorsement of the strategy of generating one's own study materials. In addition, an independent measure of metacognitive self-regulation was correlated with scenario performance. Study 2 demonstrated higher prediction accuracy for students who had received targeted instruction on applied memory topics in their psychology courses, and the best performance for those students directly exposed to the original empirical studies from which the scenarios were derived. In sum, this research suggests that undergraduates are largely unaware of several specific strategies that could benefit memory for course information; further, training in applied learning and memory topics has the potential to improve metacognitive judgments in these domains.

  9. The Association Between Effective Dose of Magnesium and Mild Compulsive Exercise on Spatial Learning, Memory, and Motor Activity of Adult Male Rats.

    PubMed

    Hajizade Ghonsulakandi, Shahnaz; Sheikh, Mahmuod; Dehghan Shasaltaneh, Marzieh; Chopani, Samira; Naghdi, Nasser

    2017-08-01

    One of the most important survival mechanisms is learning and memory processes. To emphasize the role of physical exercises and magnesium (Mg) in improvement of cognitive performance, we planned to investigate the effect of Mg and mild compulsive exercise on spatial learning and memory of adult male rats. Accordingly, we divided male Wistar rats into four groups: (I) control, (II) Mg treatment, (III) exercise, and (IV) Mg-exercise in the different dosages of Mg (0.5, 1, 1.5, and 2 mmol/kbw) were injected in the form of gavage during 1 week. Also, 1-week mild running on treadmill was used for exercise treatment. The Morris water maze (MWM) test and open field tool were used to evaluate spatial learning, memory, and motor activity, respectively. Our results clearly showed that 1 mmol/kbw Mg was applied as an effective dosage. Strikingly, 1-week mild exercise on treadmill had no significant effect on spatial motor activity, learning, and memory. Feeding 1 mmol/kbw Mg for a week showed a significant difference in learning and exploration stages. Compared to control animals, these results reveal exercise and Mg simultaneously had effect on learning and reminding. As a consequence, although mild exercise had no effect on motor activity and memory, Mg intake improved spatial learning, memory, and locomotor activity. The Mg feeding could be a promising supplemental treatment in the neurodegenerative disease. It is worthwhile to mention consumption of Mg leads to enhancement of memory, so animals find the hidden platform with the highest velocity.

  10. Training, transfer, and retention of three-dimensional spatial memory in virtual environments

    NASA Technical Reports Server (NTRS)

    Richards, Jason T.; Oman, Charles M.; Shebilske, Wayne L.; Beall, Andrew C.; Liu, Andrew; Natapoff, Alan

    2002-01-01

    Human orientation requires one to remember and visualize spatial arrangements of landmarks from different perspectives. Astronauts have reported difficulties remembering relationships between environmental landmarks when imagined in arbitrary 3D orientations. The present study investigated the effects of strategy training on humans' 1) ability to infer their orientation from landmarks presented ahead and below, 2) performance when subsequently learning a different array, and 3) retention of configurational knowledge over time. On the first experiment day, 24 subjects were tested in a virtual cubic chamber in which a picture of an animal was drawn on each wall. Through trial-by-trial exposures, they had to memorize the spatial relationships among the six pictures around them and learn to predict the direction to a specific picture when facing any view direction, and in any roll orientation. Half of the subjects ("strategy group") were taught methods for remembering picture groupings, while the remainder received no such training ("control group"). After learning one picture array, the procedure was repeated in a second. Accuracy (% correct) and response time learning curves were measured. Performance for the second array and configurational memory of both arrays were also retested 1, 7, and 30 days later. Results showed that subjects "learned how to learn" this generic 3D spatial memory task regardless of their relative orientation to the environment, that ability and configurational knowledge was retained for at least a month, that figure rotation ability and field independence correlate with performance, and that teaching subjects specific strategies in advance significantly improves performance. Training astronauts to perform a similar generic 3D spatial memory task, and suggesting strategies in advance, may help them orient in three dimensions.

  11. Roles of Working Memory Performance and Instructional Strategy in Complex Cognitive Task Performance

    ERIC Educational Resources Information Center

    Cevik, V.; Altun, A.

    2016-01-01

    This study aims to investigate how working memory (WM) performances and instructional strategy choices affect learners' complex cognitive task performance in online environments. Three different e-learning environments were designed based on Merrill's (2006a) model of instructional strategies. The lack of experimental research on his framework is…

  12. Sleep and motor learning: Is there room for consolidation?

    PubMed

    Pan, Steven C; Rickard, Timothy C

    2015-07-01

    It is widely believed that sleep is critical to the consolidation of learning and memory. In some skill domains, performance has been shown to improve by 20% or more following sleep, suggesting that sleep enhances learning. However, recent work suggests that those performance gains may be driven by several factors that are unrelated to sleep consolidation, inviting a reconsideration of sleep's theoretical role in the consolidation of procedural memories. Here we report the first comprehensive investigation of that possibility for the case of motor sequence learning. Quantitative meta-analyses involving 34 articles, 88 experimental groups and 1,296 subjects confirmed the empirical pattern of a large performance gain following sleep and a significantly smaller gain following wakefulness. However, the results also confirm strong moderating effects of 4 previously hypothesized variables: averaging in the calculation of prepost gain scores, build-up of reactive inhibition over training, time of testing, and training duration, along with 1 supplemental variable, elderly status. With those variables accounted for, there was no evidence that sleep enhances learning. Thus, the literature speaks against, rather than for, the enhancement hypothesis. Overall there was relatively better performance after sleep than after wakefulness, suggesting that sleep may stabilize memory. That effect, however, was not consistent across different experimental designs. We conclude that sleep does not enhance motor learning and that the role of sleep in the stabilization of memory cannot be conclusively determined based on the literature to date. We discuss challenges and opportunities for the field, make recommendations for improved experimental design, and suggest approaches to data analysis that eliminate confounds due to averaging over online learning. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  13. Cognitive domains in the dog: independence of working memory from object learning, selective attention, and motor learning.

    PubMed

    Zanghi, Brian M; Araujo, Joseph; Milgram, Norton W

    2015-05-01

    Cognition in dogs, like in humans, is not a unitary process. Some functions, such as simple discrimination learning, are relatively insensitive to age; others, such as visuospatial learning can provide behavioral biomarkers of age. The present experiment sought to further establish the relationship between various cognitive domains, namely visuospatial memory, object discrimination learning (ODL), and selective attention (SA). In addition, we also set up a task to assess motor learning (ML). Thirty-six beagles (9-16 years) performed a variable delay non-matching to position (vDNMP) task using two objects with 20- and 90-s delay and were divided into three groups based on a combined score (HMP = 88-93 % accuracy [N = 12]; MMP = 79-86 % accuracy [N = 12]; LMP = 61-78 % accuracy [N = 12]). Variable object oddity task was used to measure ODL (correct or incorrect object) and SA (0-3 incorrect distractor objects with same [SA-same] or different [SA-diff] correct object as ODL). ML involved reaching various distances (0-15 cm). Age did not differ between memory groups (mean 11.6 years). ODL (ANOVA P = 0.43), or SA-same and SA-different (ANOVA P = 0.96), performance did not differ between the three vDNMP groups, although mean errors during ODL was numerically higher for LMP dogs. Errors increased (P < 0.001) for all dogs with increasing number of distractor objects during both SA tasks. vDNMP groups remained different (ANOVA P < 0.001) when re-tested with vDNMP task 42 days later. Maximum ML distance did not differ between vDNMP groups (ANOVA P = 0.96). Impaired short-term memory performance in aged dogs does not appear to predict performance of cognitive domains associated with object learning, SA, or maximum ML distance.

  14. Place and direction learning in a spatial T-maze task by neonatal piglets

    PubMed Central

    Elmore, Monica R. P.; Dilger, Ryan N.; Johnson, Rodney W.

    2013-01-01

    Pigs are a valuable animal model for studying neurodevelopment in humans due to similarities in brain structure and growth. The development and validation of behavioral tests to assess learning and memory in neonatal piglets are needed. The present study evaluated the capability of 2-wk old piglets to acquire a novel place and direction learning spatial T-maze task. Validity of the task was assessed by the administration of scopolamine, an anti-cholinergic drug that acts on the hippocampus and other related structures, to impair spatial memory. During acquisition, piglets were trained to locate a milk reward in a constant place in space, as well as direction (east or west), in a plus-shaped maze using extra-maze visual cues. Following acquisition, reward location was reversed and piglets were re-tested to assess learning and working memory. The performance of control piglets in the maze improved over time (P < 0.0001), reaching performance criterion (80% correct) on day 5 of acquisition. Correct choices decreased in the reversal phase (P < 0.0001), but improved over time. In a separate study, piglets were injected daily with either phosphate buffered saline (PBS; control) or scopolamine prior to testing. Piglets administered scopolamine showed impaired performance in the maze compared to controls (P = 0.03), failing to reach performance criterion after 6 days of acquisition testing. Collectively, these data demonstrate that neonatal piglets can be tested in a spatial T-maze task to assess hippocampal-dependent learning and memory. PMID:22526690

  15. Does Post-task Declarative Learning Have an Influence on Early Motor Memory Consolidation Over Day? An fMRI Study

    PubMed Central

    Rothkirch, Inken; Wolff, Stephan; Margraf, Nils G.; Pedersen, Anya; Witt, Karsten

    2018-01-01

    Previous studies demonstrated the influence of the post-learning period on procedural motor memory consolidation. In an early period after the acquisition, motor skills are vulnerable to modifications during wakefulness. Indeed, specific interventions such as world-list learning within this early phase of motor memory consolidation seem to enhance motor performance as an indicator for successful consolidation. This finding highlights the idea that manipulations of procedural and declarative memory systems during the early phase of memory consolidation over wakefulness may influence off-line consolidation. Using functional magnetic resonance imaging (fMRI) during initial motor sequence learning and motor sequence recall, we indirectly assess the influence of a secondary task taken place in the early phase of memory consolidation. All participants were scanned using fMRI during the learning phase of a serial reaction time task (SRTT) at 8 a.m. Afterwards, they were randomly assigned to one of five conditions. One group performed a declarative verbal, one a declarative nonverbal learning task. Two groups worked on attention tasks. A control group passed a resting condition. Participants stayed awake the whole day and performed the SRTT in the MRI scanner 12 h later at 8 p.m. At the behavioral level, the analysis of the reaction times failed to show a significant group difference. The primary analysis assessing fMRI data based on the contrast (sequence – random) between learning and retrieval also did not show any significant group differences. Therefore, our main analysis do not support the hypothesis that a secondary task influences the retrieval of the SRTT. In a more liberal fMRI analysis, we compared only the sequence blocks of the SRTT from learning to recall. BOLD signal decreased in the ipsilateral cerebellum and the supplementary motor area solely in the verbal learning group. Although our primary analysis failed to show significant changes between our groups, results of the secondary analysis could be an indication for a beneficial effect of the verbal declarative task in the early post-learning phase. A nonverbal learning task did not affect the activation within the motor network. Further studies are needed to replicate this finding and to assess the usefulness of this manipulation. PMID:29755315

  16. Does Post-task Declarative Learning Have an Influence on Early Motor Memory Consolidation Over Day? An fMRI Study.

    PubMed

    Rothkirch, Inken; Wolff, Stephan; Margraf, Nils G; Pedersen, Anya; Witt, Karsten

    2018-01-01

    Previous studies demonstrated the influence of the post-learning period on procedural motor memory consolidation. In an early period after the acquisition, motor skills are vulnerable to modifications during wakefulness. Indeed, specific interventions such as world-list learning within this early phase of motor memory consolidation seem to enhance motor performance as an indicator for successful consolidation. This finding highlights the idea that manipulations of procedural and declarative memory systems during the early phase of memory consolidation over wakefulness may influence off-line consolidation. Using functional magnetic resonance imaging (fMRI) during initial motor sequence learning and motor sequence recall, we indirectly assess the influence of a secondary task taken place in the early phase of memory consolidation. All participants were scanned using fMRI during the learning phase of a serial reaction time task (SRTT) at 8 a.m. Afterwards, they were randomly assigned to one of five conditions. One group performed a declarative verbal, one a declarative nonverbal learning task. Two groups worked on attention tasks. A control group passed a resting condition. Participants stayed awake the whole day and performed the SRTT in the MRI scanner 12 h later at 8 p.m. At the behavioral level, the analysis of the reaction times failed to show a significant group difference. The primary analysis assessing fMRI data based on the contrast (sequence - random) between learning and retrieval also did not show any significant group differences. Therefore, our main analysis do not support the hypothesis that a secondary task influences the retrieval of the SRTT. In a more liberal fMRI analysis, we compared only the sequence blocks of the SRTT from learning to recall. BOLD signal decreased in the ipsilateral cerebellum and the supplementary motor area solely in the verbal learning group. Although our primary analysis failed to show significant changes between our groups, results of the secondary analysis could be an indication for a beneficial effect of the verbal declarative task in the early post-learning phase. A nonverbal learning task did not affect the activation within the motor network. Further studies are needed to replicate this finding and to assess the usefulness of this manipulation.

  17. Video-task assessment of learning and memory in Macaques (Macaca mulatta) - Effects of stimulus movement on performance

    NASA Technical Reports Server (NTRS)

    Washburn, David A.; Hopkins, William D.; Rumbaugh, Duane M.

    1989-01-01

    Effects of stimulus movement on learning, transfer, matching, and short-term memory performance were assessed with 2 monkeys using a video-task paradigm in which the animals responded to computer-generated images by manipulating a joystick. Performance on tests of learning set, transfer index, matching to sample, and delayed matching to sample in the video-task paradigm was comparable to that obtained in previous investigations using the Wisconsin General Testing Apparatus. Additionally, learning, transfer, and matching were reliably and significantly better when the stimuli or discriminanda moved than when the stimuli were stationary. External manipulations such as stimulus movement may increase attention to the demands of a task, which in turn should increase the efficiency of learning. These findings have implications for the investigation of learning in other populations, as well as for the application of the video-task paradigm to comparative study.

  18. Verbal Memory Declines More Rapidly with Age in HIV Infected versus Uninfected Adults

    PubMed Central

    Seider, Talia R.; Luo, Xi; Gongvatana, Assawin; Devlin, Kathryn N.; de la Monte, Suzanne M.; Chasman, Jesse D.; Yan, Peisi; Tashima, Karen T.; Navia, Bradford; Cohen, Ronald A.

    2015-01-01

    Objectives In the current era of effective antiretroviral treatment, the number of older adults living with HIV is rapidly increasing. This study investigated the combined influence of age and HIV infection on longitudinal changes in verbal and visuospatial learning and memory. Methods In this longitudinal, case-control design, 54 HIV seropositive and 30 seronegative individuals aged 40–74 received neurocognitive assessments at baseline visits and again one year later. Assessment included tests of verbal and visuospatial learning and memory. Linear regression was used to predict baseline performance and longitudinal change on each test using HIV serostatus, age, and their interaction as predictors. MANOVA was used to assess the effects of these predictors on overall baseline performance and overall longitudinal change. Results The interaction of HIV and age significantly predicted longitudinal change in verbal memory performance, as did HIV status, indicating that although the seropositive group declined more than the seronegative group overall, the rate of decline depended on age such that greater age was associated with a greater decline in this group. The regression models for visuospatial learning and memory were significant at baseline, but did not predict change over time. HIV status significantly predicted overall baseline performance and overall longitudinal change. Conclusions This is the first longitudinal study focused on the effects of age and HIV on memory. Findings suggest that age and HIV interact to produce larger declines in verbal memory over time. Further research is needed to gain a greater understanding of the effects of HIV on the aging brain. PMID:24645772

  19. Association between cytokine levels, verbal memory and hippocampus volume in psychotic disorders and healthy controls.

    PubMed

    Hoseth, E Z; Westlye, L T; Hope, S; Dieset, I; Aukrust, P; Melle, I; Haukvik, U K; Agartz, I; Ueland, T; Ueland, T; Andreassen, O A

    2016-01-01

    We investigated whether elevated plasma levels of immune markers were associated with verbal memory and hippocampal subfield volumes in patients with severe mental illnesses and in healthy controls. In total, 230 patients with a broad DSM-IV schizophrenia spectrum illness or bipolar disorder and 236 healthy controls were recruited. Memory was assessed using the Wechsler Memory Scale-Third Edition (WMS-III) Logical Memory immediate and delayed recall, and the California Verbal Learning Test summed recall over learning list (CVLT learning) and delayed free recall. We measured plasma levels of soluble tumor necrosis factor receptor 1 (sTNF-R1), interleukin-1 receptor antagonist, interleukin-6, von Willebrand factor, osteoprotegerin, high-sensitivity C-reactive protein and sCD40 ligand. Hippocampal subfield estimates were obtained using FreeSurfer. We found a moderate negative association between sTNF-R1 and performance on verbal memory learning and recall tests as measured by the WMS-III Logical Memory after controlling for age, sex and diagnosis. We observed no interaction effect of diagnosis and sTNF-R1 on memory scores. We also found a nominally significant positive association between CVLT learning and hippocampal volumes. The findings suggest a role for immune involvement in memory independent of severe mental disorders and may support the 'bigger is better' hypothesis of hippocampal subfield volumes. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Individual Differences in Learning and Memory. Final Report.

    ERIC Educational Resources Information Center

    Wimer, Richard E.

    A battery of behavioral tests yielding 79 measures, many of which were presumably related to learning and memory, was administered to house mice of seven inbred strains. An analysis of the factorial structure indicated that the two principal and most pervasive factors underlying performance on the battery involved the initiation and maintenance of…

  1. What Is Coded into Memory in the Absence of Outcome Feedback?

    ERIC Educational Resources Information Center

    Henriksson, Maria P.; Elwin, Ebba; Juslin, Peter

    2010-01-01

    Although people often have to learn from environments with scarce and highly selective outcome feedback, the question of how nonfeedback trials are represented in memory and affect later performance has received little attention in models of learning and decision making. In this article, the authors use the generalized context model (Nosofsky,…

  2. The Role of Short-Term Memory on Language Learning.

    ERIC Educational Resources Information Center

    Wang, Li-Yuch

    Two studies assessed the impact of short-term memory on English as a Second Language learning. The first involved 20 graduate students at a Taiwanese university, who were randomly divided into treatment and control groups. It investigated differences in the performance of phrase recollection when the information was chunked versus unchunked.…

  3. Event-Related Potential Correlates of Declarative and Non-Declarative Sequence Knowledge

    ERIC Educational Resources Information Center

    Ferdinand, Nicola K.; Runger, Dennis; Frensch, Peter A.; Mecklinger, Axel

    2010-01-01

    The goal of the present study was to demonstrate that declarative and non-declarative knowledge acquired in an incidental sequence learning task contributes differentially to memory retrieval and leads to dissociable ERP signatures in a recognition memory task. For this purpose, participants performed a sequence learning task and were classified…

  4. Mild deficits in mice lacking pituitary adenylate cyclase-activating polypeptide receptor type 1 (PAC1) performing on memory tasks.

    PubMed

    Sauvage, M; Brabet, P; Holsboer, F; Bockaert, J; Steckler, T

    2000-12-08

    Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptor subtype 1 (PAC1) have been suggested to play a role in the modulation of learning and memory. However, behavioral evidence for altered mnemonic function due to altered PAC1 activity is missing. Therefore, the role of PAC1 in learning and memory was studied in mouse mutants lacking this receptor (PAC1 knock-out mice), tested in water maze two-choice spatial discrimination, one-trial contextual and cued fear conditioning, and multiple-session contextual discrimination. Water maze spatial discrimination was unaffected in PAC1 mutants, while a mild deficit was observed in multiple session contextual discrimination in PAC1 knock-out mice. Furthermore, PAC1 knock-out mice were able to learn the association between context and shock in one-trial contextual conditioning, but showed faster return to baseline than wild-type mice. Thus, the effects of PAC1 knock-out on modulating performance in these tasks were subtle and suggest that PAC1 only plays a limited role in learning and memory.

  5. One-single physical exercise session after object recognition learning promotes memory persistence through hippocampal noradrenergic mechanisms.

    PubMed

    da Silva de Vargas, Liane; Neves, Ben-Hur Souto das; Roehrs, Rafael; Izquierdo, Iván; Mello-Carpes, Pâmela

    2017-06-30

    Previously we showed the involvement of the hippocampal noradrenergic system in the consolidation and persistence of object recognition (OR) memory. Here we show that one-single physical exercise session performed immediately after learning promotes OR memory persistence and increases norepinephrine levels in the hippocampus. Additionally, effects of exercise on memory are avoided by an intra-hippocampal beta-adrenergic antagonist infusion. Taken together, these results suggest that exercise effects on memory can be related to noradrenergic mechanisms and acute physical exercise can be a non-pharmacological intervention to assist memory consolidation and persistence, with few or no side effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Prediction of Bispectral Index during Target-controlled Infusion of Propofol and Remifentanil: A Deep Learning Approach.

    PubMed

    Lee, Hyung-Chul; Ryu, Ho-Geol; Chung, Eun-Jin; Jung, Chul-Woo

    2018-03-01

    The discrepancy between predicted effect-site concentration and measured bispectral index is problematic during intravenous anesthesia with target-controlled infusion of propofol and remifentanil. We hypothesized that bispectral index during total intravenous anesthesia would be more accurately predicted by a deep learning approach. Long short-term memory and the feed-forward neural network were sequenced to simulate the pharmacokinetic and pharmacodynamic parts of an empirical model, respectively, to predict intraoperative bispectral index during combined use of propofol and remifentanil. Inputs of long short-term memory were infusion histories of propofol and remifentanil, which were retrieved from target-controlled infusion pumps for 1,800 s at 10-s intervals. Inputs of the feed-forward network were the outputs of long short-term memory and demographic data such as age, sex, weight, and height. The final output of the feed-forward network was the bispectral index. The performance of bispectral index prediction was compared between the deep learning model and previously reported response surface model. The model hyperparameters comprised 8 memory cells in the long short-term memory layer and 16 nodes in the hidden layer of the feed-forward network. The model training and testing were performed with separate data sets of 131 and 100 cases. The concordance correlation coefficient (95% CI) were 0.561 (0.560 to 0.562) in the deep learning model, which was significantly larger than that in the response surface model (0.265 [0.263 to 0.266], P < 0.001). The deep learning model-predicted bispectral index during target-controlled infusion of propofol and remifentanil more accurately compared to the traditional model. The deep learning approach in anesthetic pharmacology seems promising because of its excellent performance and extensibility.

  7. Selective attention neutralizes the adverse effects of low socioeconomic status on memory in 9-month-old infants

    PubMed Central

    Markant, Julie; Ackerman, Laura K.; Nussenbaum, Kate; Amso, Dima

    2015-01-01

    Socioeconomic status (SES) has a documented impact on brain and cognitive development. We demonstrate that engaging spatial selective attention mechanisms may counteract this negative influence of impoverished environments on early learning. We previously used a spatial cueing task to compare target object encoding in the context of basic orienting (“facilitation”) versus a spatial selective attention orienting mechanism that engages distractor suppression (“IOR”). This work showed that object encoding in the context of IOR boosted 9-month-old infants’ recognition memory relative to facilitation (Markant and Amso, 2013). Here we asked whether this attention-memory links further interacted with SES in infancy. Results indicated that SES was related to memory but not attention orienting efficacy. However, the correlation between SES and memory performance was moderated by the attention mechanism engaged during encoding. SES predicted memory performance when objects were encoded with basic orienting processes, with infants from low-SES environments showing poorer memory than those from high-SES environments. However, SES did not predict memory performance among infants who engaged selective attention during encoding. Spatial selective attention engagement mitigated the effects of SES on memory and may offer an effective mechanism for promoting learning among infants at risk for poor cognitive outcomes related to SES. PMID:26597046

  8. Singing can facilitate foreign language learning.

    PubMed

    Ludke, Karen M; Ferreira, Fernanda; Overy, Katie

    2014-01-01

    This study presents the first experimental evidence that singing can facilitate short-term paired-associate phrase learning in an unfamiliar language (Hungarian). Sixty adult participants were randomly assigned to one of three "listen-and-repeat" learning conditions: speaking, rhythmic speaking, or singing. Participants in the singing condition showed superior overall performance on a collection of Hungarian language tests after a 15-min learning period, as compared with participants in the speaking and rhythmic speaking conditions. This superior performance was statistically significant (p < .05) for the two tests that required participants to recall and produce spoken Hungarian phrases. The differences in performance were not explained by potentially influencing factors such as age, gender, mood, phonological working memory ability, or musical ability and training. These results suggest that a "listen-and-sing" learning method can facilitate verbatim memory for spoken foreign language phrases.

  9. Effects of social instability stress in adolescence on long-term, not short-term, spatial memory performance.

    PubMed

    Green, Matthew R; McCormick, Cheryl M

    2013-11-01

    There is evidence that exposure to stressors in adolescence leads to lasting deficits on hippocampal-dependent tasks, but whether medial prefrontal cortical function is also impaired is unknown. We previously found that rats exposed to social instability stress in adolescence (SS; daily 1h isolation and subsequent change of cage partner between postnatal days 30 and 45) had impaired memory performance on a Spatial Object Location test and in memory for fear conditioning context, tasks that depend on the integrity of the hippocampus. Here we investigated whether impaired performance would be evident after adolescent SS in male rats on a different test of hippocampal function, spatial learning and memory in the Morris water maze (MWM) and on a working memory task for which performance depends on the integrity of the medial prefrontal cortex, the Delayed Alternation task (DAT). During MWM testing, SS rats showed greater improvements in performance across trials within days compared to control (CTL) rats, but showed less retention of learning between days (48 h) compared to CTL rats. Similarly, SS rats had impaired long-term memory in the Spatial Object Location test after a long delay (240 min), but not after shorter delays (15 or 60 min) compared to CTL rats. No group differences were observed on the DAT, which assessed working memory across brief delays (5-90 s). Thus, deficits in memory performance after chronic social stress in adolescence may be limited to long-term memory. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Impairment of learning and memory after photothrombosis of the prefrontal cortex in rat brain: effects of Noopept.

    PubMed

    Romanova, G A; Shakova, F M; Gudasheva, T A; Ostrovskaya, R U

    2002-12-01

    Experiments were performed on rats trained conditioned passive avoidance response. Acquisition and retention of memory traces were impaired after photothrombosis of the prefrontal cortex. The acyl-prolyl-containing dipeptide Noopept facilitated retention and retrieval of a conditioned passive avoidance response, normalized learning capacity in animals with ischemic damage to the cerebral cortex, and promoted finish training in rats with hereditary learning deficit. These results show that Noopept improves all three stages of memory. It should be emphasized that the effect of Noopept was most pronounced in animals with impaired mnesic function.

  11. Learning ability is a key outcome determinant of GSK-3 inhibition on visuospatial memory in rats.

    PubMed

    Storozheva, Zinaida I; Gruden, Marina A; Proshin, Andrey T; Sewell, Robert D E

    2015-07-01

    Learning aptitude has never been a focus of visuospatial performance studies, particularly on memory consolidation and reconsolidation. The aim of this study was to determine the consequences of learning ability on memory consolidation/reconsolidation following inhibition of glucose synthase kinase-3 (GSK-3) by 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8). The anxiety-like nature of rats was characterized in the elevated plus maze. The rats were then trained for four days in the Morris water maze (MWM) and classified as 'superior', 'intermediate' or 'inferior' learners. There were no major differences between superior, intermediate or inferior learners with respect to anxiety which might have influenced learning. After training (day-5), TDZD-8 (2.0 mg/kg) was administered and half of the cohort were exposed to a MWM retrieval trial. Ten days later, animals were subjected to repeated MWM learning. TDZD-8 without a retrieval trial impaired subsequent reconsolidation in inferior learners, but enhanced it in superior learners. There was no modification of performance in intermediate learners. In TDZD-8-treated subjects exposed to retrieval, the pattern of outcomes was identical whereby impairment of reconsolidation occurred in inferior learners, enhancement occurred in superior learners but there was no modification of performance in intermediate learners. Thus, learning ability was a key determinant of the qualitative outcome from GSK-3 inhibition on visuospatial memory. © The Author(s) 2015.

  12. Phonological Short-Term Memory, Working Memory and Foreign Language Performance in Intensive Language Learning

    ERIC Educational Resources Information Center

    Kormos, Judit; Safar, Anna

    2008-01-01

    In our research we addressed the question what the relationship is between phonological short-term and working memory capacity and performance in an end-of-year reading, writing, listening, speaking and use of English test. The participants of our study were 121 secondary school students aged 15-16 in the first intensive language training year of…

  13. The effects of non-contingent extrinsic and intrinsic rewards on memory consolidation.

    PubMed

    Nielson, Kristy A; Bryant, Ted

    2005-07-01

    Emotional and arousing treatments given shortly after learning enhance delayed memory retrieval in animal and human studies. Positive affect and reward induced prior to a variety of cognitive tasks enhance performance, but their ability to affect memory consolidation has not been investigated before. Therefore, we investigated the effects of a small, non-contingent, intrinsic or extrinsic reward on delayed memory retrieval. Participants (n=108) studied and recalled a list of 30 affectively neutral, imageable nouns. Experimental groups were then given either an intrinsic reward (e.g., praise) or an extrinsic reward (e.g., US 1 dollar). After a one-week delay, participants' retrieval performance for the word list was significantly better in the extrinsic reward groups, whether the reward was expected or not, than in controls. Those who received the intrinsic reward performed somewhat better than controls, but the difference was not significant. Thus, at least some forms of arousal and reward, even when semantically unrelated to the learned material, can effectively modulate memory consolidation. These types of treatments might be useful for the development of new memory intervention strategies.

  14. Media multitasking and implicit learning.

    PubMed

    Edwards, Kathleen S; Shin, Myoungju

    2017-07-01

    Media multitasking refers to the simultaneous use of different forms of media. Previous research comparing heavy media multitaskers and light media multitaskers suggests that heavy media multitaskers have a broader scope of attention. The present study explored whether these differences in attentional scope would lead to a greater degree of implicit learning for heavy media multitaskers. The study also examined whether media multitasking behaviour is associated with differences in visual working memory, and whether visual working memory differentially affects the ability to process contextual information. In addition to comparing extreme groups (heavy and light media multitaskers) the study included analysis of people who media multitask in moderation (intermediate media multitaskers). Ninety-four participants were divided into groups based on responses to the media use questionnaire, and completed the contextual cueing and n-back tasks. Results indicated that the speed at which implicit learning occurred was slower in heavy media multitaskers relative to both light and intermediate media multitaskers. There was no relationship between working memory performance and media multitasking group, and no relationship between working memory and implicit learning. There was also no evidence for superior performance of intermediate media multitaskers. A deficit in implicit learning observed in heavy media multitaskers is consistent with previous literature, which suggests that heavy media multitaskers perform more poorly than light media multitaskers in attentional tasks due to their wider attentional scope.

  15. Association between neuroendocrinological parameters and learning and memory functions in adolescent anorexia nervosa before and after weight recovery.

    PubMed

    Buehren, Katharina; Konrad, Kerstin; Schaefer, Kerstin; Kratzsch, Juergen; Kahraman-Lanzerath, Berak; Lente, Christina; Herpertz-Dahlmann, Beate

    2011-06-01

    A growing body of evidence indicates that hormones play an important role in learning and memory functions as well as in mood modulation. During the acute stage of anorexia nervosa (AN), weight loss has a significant effect on serum levels of estrogen, thyroid hormones, and cortisol. Furthermore deficits in learning and memory functions are evident in patients with eating disorders during emaciation. Hormonal and neuropsychological alterations at least partly remit during weight restoration. We investigated the association between learning and memory functions as well as mood and neuroendocrinological parameters before and after weight gain in adolescent AN. Twenty-eight female subjects with AN, diagnosed according to DSM-IV, were examined before and after weight recovery. Both investigations took place while the patients were receiving hospital treatment, and the results were compared to a control group consisting of 18 age- and IQ-matched normal-weight female adolescents also tested twice within 4 months. Verbal memory and learning were assessed by a German paper-pencil-test (LGT). We performed correlation calculations between neuropsychological functions and depressive symptoms and estrogen, cortisol and free triiodothyronine (fT₃) in the plasma at both time points. Compared to normal controls adolescents with AN performed worse in one subtest of the LGT which requires the verbal reproduction of figural material across both time points. Verbal learning was positively correlated with estrogen levels after weight recovery. Depressive symptoms of AN patients significantly decreased during weight rehabilitation and correlated negatively with fT₃ at T₁. We did not find a relationship between cortisol levels and neuropsychological functions. We observed subtle memory impairments and depressive symptoms in subjects with adolescent AN associated with starvation-induced estrogen and triiodothyronine deficits, respectively. Normalization of body weight and resuming of menses is needed to restore learning and memory functions as well as to alleviate depressive symptoms.

  16. Validity and Normative Data for the Biber Figure Learning Test: A Visual Supraspan Memory Measure.

    PubMed

    Gifford, Katherine A; Liu, Dandan; Neal, Jacquelyn E; Acosta, Lealani Mae Y; Bell, Susan P; Wiggins, Margaret E; Wisniewski, Kristi M; Godfrey, Mary; Logan, Laura A; Hohman, Timothy J; Pechman, Kimberly R; Libon, David J; Blennow, Kaj; Zetterberg, Henrik; Jefferson, Angela L

    2018-05-01

    The Biber Figure Learning Test (BFLT), a visuospatial serial figure learning test, was evaluated for biological correlates and psychometric properties, and normative data were generated. Nondemented individuals ( n = 332, 73 ± 7, 41% female) from the Vanderbilt Memory & Aging Project completed a comprehensive neuropsychological protocol. Adjusted regression models related BFLT indices to structural brain magnetic resonance imaging and cerebrospinal fluid (CSF) markers of brain health. Regression-based normative data were generated. Lower BFLT performances (Total Learning, Delayed Recall, Recognition) related to smaller medial temporal lobe volumes and higher CSF tau concentrations but not CSF amyloid. BFLT indices were most strongly correlated with other measures of verbal and nonverbal memory and visuospatial skills. The BFLT provides a comprehensive assessment of all aspects of visuospatial learning and memory and is sensitive to biomarkers of unhealthy brain aging. Enhanced normative data enriches the clinical utility of this visual serial figure learning test for use with older adults.

  17. Post-traumatic stress is associated with verbal learning, memory, and psychomotor speed in HIV-infected and HIV-uninfected women.

    PubMed

    Rubin, Leah H; Pyra, Maria; Cook, Judith A; Weber, Kathleen M; Cohen, Mardge H; Martin, Eileen; Valcour, Victor; Milam, Joel; Anastos, Kathryn; Young, Mary A; Alden, Christine; Gustafson, Deborah R; Maki, Pauline M

    2016-04-01

    The prevalence of post-traumatic stress disorder (PTSD) is higher among HIV-infected (HIV+) women compared with HIV-uninfected (HIV-) women, and deficits in episodic memory are a common feature of both PTSD and HIV infection. We investigated the association between a probable PTSD diagnosis using the PTSD Checklist-Civilian (PCL-C) version and verbal learning and memory using the Hopkins Verbal Learning Test in 1004 HIV+ and 496 at-risk HIV- women. HIV infection was not associated with a probable PTSD diagnosis (17% HIV+, 16% HIV-; p = 0.49) but was associated with lower verbal learning (p < 0.01) and memory scores (p < 0.01). Irrespective of HIV status, a probable PTSD diagnosis was associated with poorer performance in verbal learning (p < 0.01) and memory (p < 0.01) and psychomotor speed (p < 0.001). The particular pattern of cognitive correlates of probable PTSD varied depending on exposure to sexual abuse and/or violence, with exposure to either being associated with a greater number of cognitive domains and a worse cognitive profile. A statistical interaction between HIV serostatus and PTSD was observed on the fine motor skills domain (p = 0.03). Among women with probable PTSD, HIV- women performed worse than HIV+ women on fine motor skills (p = 0.01), but among women without probable PTSD, there was no significant difference in performance between the groups (p = 0.59). These findings underscore the importance of considering mental health factors as correlates to cognitive deficits in women with HIV.

  18. Topographical memory for newly-learned maps is differentially affected by route-based versus landmark-based learning: a functional MRI study.

    PubMed

    Beatty, Erin L; Muller-Gass, Alexandra; Wojtarowicz, Dorothy; Jobidon, Marie-Eve; Smith, Ingrid; Lam, Quan; Vartanian, Oshin

    2018-04-11

    Humans rely on topographical memory to encode information about spatial aspects of environments. However, even though people adopt different strategies when learning new maps, little is known about the impact of those strategies on topographical memory, and their neural correlates. To examine that issue, we presented participants with 40 unfamiliar maps, each of which displayed one major route and three landmarks. Half were instructed to memorize the maps by focusing on the route, whereas the other half memorized the maps by focusing on the landmarks. One day later, the participants were tested on their ability to distinguish previously studied 'old' maps from completely unfamiliar 'new' maps under conditions of high and low working memory load in the functional MRI scanner. Viewing old versus new maps was associated with relatively greater activation in a distributed set of regions including bilateral inferior temporal gyrus - an important region for recognizing visual objects. Critically, whereas the performance of participants who had followed a route-based strategy dropped to chance level under high working memory load, participants who had followed a landmark-based strategy performed at above chance levels under both high and low working memory load - reflected by relatively greater activation in the left inferior parietal lobule (i.e. rostral part of the supramarginal gyrus known as area PFt). Our findings suggest that landmark-based learning may buffer against the effects of working memory load during recognition, and that this effect is represented by the greater involvement of a brain region implicated in both topographical and working memory.

  19. [Influence of stimulation and blockade of α4β2 nicotinic acetylcholine receptors on learning of female rats in basic phases of ovary cycle].

    PubMed

    Fedotova, Iu O

    2014-03-01

    The present work was devoted to the comparative analysis of α4β2 nicotinic acetylcholine receptors (nAChRs) in learning/memory processes during ovary cycle in the adult female rats. RJR-2403 (1.0 mg/kg, i. p.), α4β2 nAChRs agonist and mecamylamine (1.0 mg/kg, i. p.), α4β2 nAChRs antagonist were injected chronically during 14 days. The processes of learning/memory were assessed in different models of learning: passive avoidance performance and Morris water maze. Chronic RJR-2403 administration to females improved the passive avoidance performance in proestrous and estrous as compared to the control animals. Also, RJR-2403 restored spatial learning of rats during proestrous phases in Morris water maze, and stimulated the dynamics of spatial learning during estrous phases. On the contrary, the chronic mecamylamine administration impaired non-spatial, and especially, spatial learning in females during key phases of ovary cycle. The results of the study suggest positive effect of α4β2 nAChRs stimulation in learning/memory processes during ovary cycle in the adult female rats.

  20. Memory, Sleep and Dreaming: Experiencing Consolidation

    PubMed Central

    Wamsley, Erin J.; Stickgold, Robert

    2010-01-01

    Synopsis It is now well established that post-learning sleep is beneficial for human memory performance. At the same time, it has long been known that learning experiences influence the content of subsequent sleep mentation (i.e., “dreaming”). Here, we review evidence that newly encoded memories are reactivated and consolidated in the sleeping brain, and that this process is directly reflected in the content of concomitant sleep mentation, providing a valuable window into the mnemonic functions of sleep. PMID:21516215

  1. Contextual cueing: implicit learning and memory of visual context guides spatial attention.

    PubMed

    Chun, M M; Jiang, Y

    1998-06-01

    Global context plays an important, but poorly understood, role in visual tasks. This study demonstrates that a robust memory for visual context exists to guide spatial attention. Global context was operationalized as the spatial layout of objects in visual search displays. Half of the configurations were repeated across blocks throughout the entire session, and targets appeared within consistent locations in these arrays. Targets appearing in learned configurations were detected more quickly. This newly discovered form of search facilitation is termed contextual cueing. Contextual cueing is driven by incidentally learned associations between spatial configurations (context) and target locations. This benefit was obtained despite chance performance for recognizing the configurations, suggesting that the memory for context was implicit. The results show how implicit learning and memory of visual context can guide spatial attention towards task-relevant aspects of a scene.

  2. Confabulation behavior and false memories in Korsakoff's syndrome: role of source memory and executive functioning.

    PubMed

    Kessels, Roy P C; Kortrijk, Hans E; Wester, Arie J; Nys, Gudrun M S

    2008-04-01

    Confabulation behavior is common in patients with Korsakoff's syndrome. A distinction can be made between spontaneous and provoked confabulations, which may have different underlying cognitive mechanisms. Provoked confabulations may be related to intrusions on memory tests, whereas spontaneous confabulations may be due to executive dysfunction or a source memory deficit. In 19 chronic Korsakoff patients, spontaneous confabulations were quantified by third-party rating (Likert scale). Provoked confabulations were assessed using the Dalla Barba Confabulation Battery. Furthermore, assessment of executive function was performed using an extensive neuropsychological battery. False memories (i.e. intrusions) and source memory were measured using twoparallelversions of a word-list learning paradigm (a modification of the Rey Auditory Verbal Learning Test). There were deficits in source memory, in which patients incorrectly assigned previously learned words to an incorrect word list. Also, Korsakoff patients had extensive executive deficits, but no relationship between the severity of these deficits and the severity of confabulation or intrusions on a memory task was found. The present findings provide evidence for a dissociation between spontaneous confabulation, provoked confabulation and false memories.

  3. Selective cognitive impairments associated with NMDA receptor blockade in humans.

    PubMed

    Rowland, Laura M; Astur, Robert S; Jung, Rex E; Bustillo, Juan R; Lauriello, John; Yeo, Ronald A

    2005-03-01

    Hypofunction of the N-methyl-D-aspartate receptor (NMDAR) may be involved in the pathophysiology of schizophrenia. NMDAR antagonists like ketamine induce schizophrenia-like features in humans. In rodent studies, NMDAR antagonism impairs learning by disrupting long-term potentiation (LTP) in the hippocampus. This study investigated the effects of ketamine on spatial learning (acquisition) vs retrieval in a virtual Morris water task in humans. Verbal fluency, working memory, and learning and memory of verbal information were also assessed. Healthy human subjects participated in this double-blinded, placebo-controlled study. On two separate occasions, ketamine/placebo was administered and cognitive tasks were assessed in association with behavioral ratings. Ketamine impaired learning of spatial and verbal information but retrieval of information learned prior to drug administration was preserved. Schizophrenia-like symptoms were significantly related to spatial and verbal learning performance. Ketamine did not significantly impair attention, verbal fluency, or verbal working memory task performance. Spatial working memory was slightly impaired. In conclusion, these results provide evidence for ketamine's differential impairment of verbal and spatial learning vs retrieval. By using the Morris water task, which is hippocampal-dependent, this study helps bridge the gap between nonhuman animal and human NMDAR antagonism research. Impaired cognition is a core feature of schizophrenia. A better understanding of NMDA antagonism, its physiological and cognitive consequences, may provide improved models of psychosis and cognitive therapeutics.

  4. The cortisol awakening response and memory performance in older men and women.

    PubMed

    Almela, Mercedes; van der Meij, Leander; Hidalgo, Vanesa; Villada, Carolina; Salvador, Alicia

    2012-12-01

    The activity and regulation of the hypothalamus-pituitary-adrenal axis has been related to cognitive decline during aging. This study investigated whether the cortisol awakening response (CAR) is related to memory performance among older adults. The sample was composed of 88 participants (44 men and 44 women) from 55 to 77 years old. The memory assessment consisted of two tests measuring declarative memory (a paragraph recall test and a word list learning test) and two tests measuring working memory (a spatial span test and a spatial working memory test). Among those participants who showed the CAR on two consecutive days, we found that a greater CAR was related to poorer declarative memory performance in both men and women, and to better working memory performance only in men. The results of our study suggest that the relationship between CAR and memory performance is negative in men and women when memory performance is largely dependent on hippocampal functioning (i.e. declarative memory), and positive, but only in men, when memory performance is largely dependent on prefrontal cortex functioning (i.e. working memory). Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. "I'll Remember This!" Effects of Emotionality on Memory Predictions versus Memory Performance

    ERIC Educational Resources Information Center

    Zimmerman, Carissa A.; Kelley, Colleen M.

    2010-01-01

    Emotionality is a key component of subjective experience that influences memory. We tested how the emotionality of words affects memory monitoring, specifically, judgments of learning, in both cued recall and free recall paradigms. In both tasks, people predicted that positive and negative emotional words would be recalled better than neutral…

  6. Differential relationships between language skills and working memory in Turkish-Dutch and native-Dutch first-graders from low-income families.

    PubMed

    Bosman, Anna M T; Janssen, Marije

    2017-01-01

    In the Netherlands, Turkish-Dutch children constitute a substantial group of children who learn to speak Dutch at the age of four after they learned to speak Turkish. These children are generally academically less successful. Academic success appears to be affected by both language proficiency and working memory skill. The goal of this study was to investigate the relationship between language skills and working memory in Turkish-Dutch and native-Dutch children from low-income families. The findings revealed reduced Dutch language and Dutch working-memory skills for Turkish-Dutch children compared to native-Dutch children. Working memory in native-Dutch children was unrelated to their language skills, whereas in Turkish-Dutch children strong correlations were found both between Turkish language skills and Turkish working-memory performance and between Dutch language skills and Dutch working-memory performance. Reduced language proficiencies and reduced working-memory skills appear to manifest itself in strong relationships between working memory and language skills in Turkish-Dutch children. The findings seem to indicate that limited verbal working-memory and language deficiencies in bilingual children may have reciprocal effects that strongly warrants adequate language education.

  7. Verbal learning and memory in adolescent cannabis users, alcohol users and non-users.

    PubMed

    Solowij, Nadia; Jones, Katy A; Rozman, Megan E; Davis, Sasha M; Ciarrochi, Joseph; Heaven, Patrick C L; Lubman, Dan I; Yücel, Murat

    2011-07-01

    Long-term heavy cannabis use can result in memory impairment. Adolescent users may be especially vulnerable to the adverse neurocognitive effects of cannabis. In a cross-sectional and prospective neuropsychological study of 181 adolescents aged 16-20 (mean 18.3 years), we compared performance indices from one of the most widely used measures of learning and memory--the Rey Auditory Verbal Learning Test--between cannabis users (n=52; mean 2.4 years of use, 14 days/month, median abstinence 20.3 h), alcohol users (n=67) and non-user controls (n=62) matched for age, education and premorbid intellectual ability (assessed prospectively), and alcohol consumption for cannabis and alcohol users. Cannabis users performed significantly worse than alcohol users and non-users on all performance indices. They recalled significantly fewer words overall (p<0.001), demonstrating impaired learning (p<0.001), retention (p<0.001) and retrieval (p<0.05) (Cohen's d 0.43-0.84). The degree of impairment was associated with the duration, quantity, frequency and age of onset of cannabis use, but was unrelated to alcohol exposure or other drug use. No gender effects were detected and the findings remained after controlling for premorbid intellectual ability. An earlier age of onset of regular cannabis use was associated with worse memory performance after controlling for extent of exposure to cannabis. Despite relatively brief exposure, adolescent cannabis users relative to their age-matched counterparts demonstrated similar memory deficits to those reported in adult long-term heavy users. The results indicate that cannabis adversely affects the developing brain and reinforce concerns regarding the impact of early exposure.

  8. Adverse effect of combination of chronic psychosocial stress and high fat diet on hippocampus-dependent memory in rats.

    PubMed

    Alzoubi, K H; Abdul-Razzak, K K; Khabour, O F; Al-Tuweiq, G M; Alzubi, M A; Alkadhi, K A

    2009-12-01

    The combined effects of high fat diet (HFD) and chronic stress on the hippocampus-dependent spatial learning and memory were studied in rats using the radial arm water maze (RAWM). Chronic psychosocial stress and/or HFD were simultaneously administered for 3 months to young adult male Wister rats. In the RAWM, rats were subjected to 12 learning trials as well as short-term and long-term memory tests. This procedure was applied on a daily basis until the animal reaches days to criterion (DTC) in the 12th learning trial and in memory tests. DTC is the number of days that the animal takes to make zero error in two consecutive days. Groups were compared based on the number of errors per trial or test as well as on the DTC. Chronic stress, HFD and chronic stress/HFD animal groups showed impaired learning as indicated by committing significantly (P<0.05) more errors than untreated control group in trials 6 through 9 of day 4. In memory tests, chronic stress, HFD and chronic stress/HFD groups showed significantly impaired performance compared to control group. Additionally, the stress/HFD was the only group that showed significantly impaired performance in memory tests on the 5th training day, suggesting more severe memory impairment in that group. Furthermore, DTC value for above groups indicated that chronic stress or HFD, alone, resulted in a mild impairment of spatial memory, but the combination of chronic stress and HFD resulted in a more severe and long-lasting memory impairment. The data indicated that the combination of stress and HFD produced more deleterious effects on hippocampal cognitive function than either chronic stress or HFD alone.

  9. Enhanced serotonergic neurotransmission in the hippocampus following tryptophan administration improves learning acquisition and memory consolidation in rats.

    PubMed

    Haider, Saida; Khaliq, Saima; Haleem, Darakhshan J

    2007-01-01

    Increasing evidence shows that serotonin (5-hydroxytryptamine - 5-HT) plays a modulatory role in memory functions. 5-HT transmission has been implicated in learning and memory. Both 5-HT depletion and specific 5-HT agonists lower memory performance. Hippocampus is thought to be the key region involved in long-term memory. It is the major limbic target of the brainstem serotonergic neurons that modulate learning. In the present study, we examined the effects of increased hippocampal 5-HT metabolism following tryptophan (TRP) administration on short-term memory (STM) and long-term memory (LTM) in rats. Learning acquisition (LA) and memory consolidation (MC) in rats was also evaluated. TRP at 50 mg/kg and 100 mg/kg body weight was used. Assessment of memory in rats was done using the water maze test (WM) after 6 weeks of daily administration of TRP. The results showed that administration of TRP enhanced both STM and LTM. However, the effect on STM was significant only at the higher dose. Rats administered the higher dose of TRP also exhibited a significant enhancement in LA. A significant effect on MC was also observed in tryptophan-treated rats. The results suggest that serotonergic system in the hippocampus is important in LA and MC in rats.

  10. All in its proper time: monitoring the emergence of a memory bias for novel, arousing-negative words in individuals with high and low trait anxiety.

    PubMed

    Eden, Annuschka Salima; Zwitserlood, Pienie; Keuper, Katharina; Junghöfer, Markus; Laeger, Inga; Zwanzger, Peter; Dobel, Christian

    2014-01-01

    The well-established memory bias for arousing-negative stimuli seems to be enhanced in high trait-anxious persons and persons suffering from anxiety disorders. We monitored the emergence and development of such a bias during and after learning, in high and low trait anxious participants. A word-learning paradigm was applied, consisting of spoken pseudowords paired either with arousing-negative or neutral pictures. Learning performance during training evidenced a short-lived advantage for arousing-negative associated words, which was not present at the end of training. Cued recall and valence ratings revealed a memory bias for pseudowords that had been paired with arousing-negative pictures, immediately after learning and two weeks later. This held even for items that were not explicitly remembered. High anxious individuals evidenced a stronger memory bias in the cued-recall test, and their ratings were also more negative overall compared to low anxious persons. Both effects were evident, even when explicit recall was controlled for. Regarding the memory bias in anxiety prone persons, explicit memory seems to play a more crucial role than implicit memory. The study stresses the need for several time points of bias measurement during the course of learning and retrieval, as well as the employment of different measures for learning success.

  11. Role of state-dependent learning in the cognitive effects of caffeine in mice.

    PubMed

    Sanday, Leandro; Zanin, Karina A; Patti, Camilla L; Fernandes-Santos, Luciano; Oliveira, Larissa C; Longo, Beatriz M; Andersen, Monica L; Tufik, Sergio; Frussa-Filho, Roberto

    2013-08-01

    Caffeine is the most widely used psychoactive substance in the world and it is generally believed that it promotes beneficial effects on cognitive performance. However, there is also evidence suggesting that caffeine has inhibitory effects on learning and memory. Considering that caffeine may have anxiogenic effects, thus changing the emotional state of the subjects, state-dependent learning may play a role in caffeine-induced cognitive alterations. Mice were administered 20 mg/kg caffeine before training and/or before testing both in the plus-maze discriminative avoidance task (an animal model that concomitantly evaluates learning, memory, anxiety-like behaviour and general activity) and in the inhibitory avoidance task, a classic paradigm for evaluating memory in rodents. Pre-training caffeine administration did not modify learning, but produced an anxiogenic effect and impaired memory retention. While pre-test administration of caffeine did not modify retrieval on its own, the pre-test administration counteracted the memory deficit induced by the pre-training caffeine injection in both the plus-maze discriminative and inhibitory avoidance tasks. Our data demonstrate that caffeine-induced memory deficits are critically related to state-dependent learning, reinforcing the importance of considering the participation of state-dependency on the interpretation of the cognitive effects of caffeine. The possible participation of caffeine-induced anxiety alterations in state-dependent memory deficits is discussed.

  12. Does learning to read shape verbal working memory?

    PubMed

    Demoulin, Catherine; Kolinsky, Régine

    2016-06-01

    Many experimental studies have investigated the relationship between the acquisition of reading and working memory in a unidirectional way, attempting to determine to what extent individual differences in working memory can predict reading achievement. In contrast, very little attention has been dedicated to the converse possibility that learning to read shapes the development of verbal memory processes. In this paper, we present available evidence that advocates a more prominent role for reading acquisition on verbal working memory and then discuss the potential mechanisms of such literacy effects. First, the early decoding activities might bolster the development of subvocal rehearsal, which, in turn, would enhance serial order performance in immediate memory tasks. In addition, learning to read and write in an alphabetical system allows the emergence of phonemic awareness and finely tuned phonological representations, as well as of orthographic representations. This could improve the quality, strength, and precision of lexical representations, and hence offer better support for the temporary encoding of memory items and/or for their retrieval.

  13. Divided attention improves delayed, but not immediate retrieval of a consolidated memory.

    PubMed

    Kessler, Yoav; Vandermorris, Susan; Gopie, Nigel; Daros, Alexander; Winocur, Gordon; Moscovitch, Morris

    2014-01-01

    A well-documented dissociation between memory encoding and retrieval concerns the role of attention in the two processes. The typical finding is that divided attention (DA) during encoding impairs future memory, but retrieval is relatively robust to attentional manipulations. However, memory research in the past 20 years had demonstrated that retrieval is a memory-changing process, in which the strength and availability of information are modified by various characteristics of the retrieval process. Based on this logic, several studies examined the effects of DA during retrieval (Test 1) on a future memory test (Test 2). These studies yielded inconsistent results. The present study examined the role of memory consolidation in accounting for the after-effect of DA during retrieval. Initial learning required a classification of visual stimuli, and hence involved incidental learning. Test 1 was administered 24 hours after initial learning, and therefore required retrieval of consolidated information. Test 2 was administered either immediately following Test 1 or after a 24-hour delay. Our results show that the effect of DA on Test 2 depended on this delay. DA during Test 1 did not affect performance on Test 2 when it was administered immediately, but improved performance when Test 2 was given 24-hours later. The results are consistent with other findings showing long-term benefits of retrieval difficulty. Implications for theories of reconsolidation in human episodic memory are discussed.

  14. Low episodic memory performance in cognitively normal elderly subjects is associated with increased posterior cingulate gray matter N-acetylaspartate: a 1H MRSI study at 7 Tesla.

    PubMed

    Schreiner, Simon J; Kirchner, Thomas; Wyss, Michael; Van Bergen, Jiri M G; Quevenco, Frances C; Steininger, Stefanie C; Griffith, Erica Y; Meier, Irene; Michels, Lars; Gietl, Anton F; Leh, Sandra E; Brickman, Adam M; Hock, Christoph; Nitsch, Roger M; Pruessmann, Klaas P; Henning, Anke; Unschuld, Paul G

    2016-12-01

    Low episodic memory performance characterizes elderly subjects at increased risk for Alzheimer's disease (AD) and may reflect neuronal dysfunction within the posterior cingulate cortex and precuneus (PCP) region. To investigate a potential association between cerebral neurometabolism and low episodic memory in the absence of cognitive impairment, tissue-specific magnetic resonance spectroscopic imaging at ultrahigh field strength of 7 Tesla was used to investigate the PCP region in a healthy elderly study population (n = 30, age 70 ± 5.7 years, Mini-Mental State Examination 29.4 ± 4.1). The Verbal Learning and Memory Test (VLMT) was administered as part of a neuropsychological battery for assessment of episodic memory performance. Significant differences between PCP gray and white matter could be observed for glutamate-glutamine (p = 0.001), choline (p = 0.01), and myo-inositol (p = 0.02). Low Verbal Learning and Memory Test performance was associated with high N-acetylaspartate in PCP gray matter (p = 0.01) but not in PCP white matter. Our data suggest that subtle decreases in episodic memory performance in the elderly may be associated with increased levels of N-acetylaspartate as a reflection of increased mitochondrial energy capacity in PCP gray matter. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. The influence of cognitive dysfunction on benefit from learning and memory rehabilitation in MS: A sub-analysis of the MEMREHAB trial.

    PubMed

    Chiaravalloti, Nancy D; DeLuca, John

    2015-10-01

    This study examined the influence of processing speed (PS) on benefit from treatment with the modified Story Memory Technique(©) (mSMT), a behavioral intervention shown to improve new learning and memory in multiple sclerosis (MS). This double-blind, placebo-controlled, randomized clinical trial included 85 participants with clinically definite MS, 45 assigned to the treatment group and 40 to the placebo-control group. Participants completed baseline and follow-up neuropsychological assessment. The present study represents a post-hoc analysis to examine the role of PS on treatment efficacy. The treatment group showed a significantly improved CVLT learning slope relative to the placebo group post-treatment, after co-varying PS performance. SDMT performance was a significant predictor of benefit from mSMT treatment, beyond group assignment. Post-hoc analysis indicated a significant correlation between the SDMT and overall cognition, indicating that the SDMT may be serving as a proxy for overall cognitive impairment. Performance on measures of cognitive dysfunction aside from learning and memory impact the benefit of mSMT treatment. While the current study focused on PS as a critical factor, PS may be serving as a marker for generalized cognitive dysfunction. Implications for cognitive rehabilitation in MS are discussed. © The Author(s), 2015.

  16. Learning and serial effects on verbal memory in mild cognitive impairment.

    PubMed

    Campos-Magdaleno, María; Díaz-Bóveda, Rosalía; Juncos-Rabadán, Onésimo; Facal, David; Pereiro, Arturo X

    2016-01-01

    The objective of this study was to examine different patterns of learning and episodic memory in 3 mild cognitive impairment (MCI) groups and a control group by administering the California Verbal Learning Test (CVLT) and using serial position effect as a principal variable. The study sample included 3 groups of patients with MCI (n = 90) divided into single-domain amnestic, multiple-domain amnestic, and multiple-domain nonamnestic MCI and a group of healthy controls (n = 60). We compared the performance of each group on several CVLT measures used in previous research, and we included a new measure that provides specific information about the serial effect. Data showed a similar pattern of learning and memory impairment in both amnestic MCI groups (i.e., no differences between the multiple-domain and single-domain subtypes); the recency effect was significantly higher in both amnestic MCI groups than in all other groups, and the primacy effect was only lower in the multiple-domain amnestic MCI subtype. Verbal learning and memory profiles of patients with amnestic MCI were very similar, independent of the presence of deficits in cognitive domains other than episodic memory. Results are discussed in light of the unitary-store model of memory.

  17. Effects of alcoholic beverage treatment on spatial learning and fear memory in mice.

    PubMed

    Hashikawa-Hobara, Narumi; Mishima, Shuta; Nagase, Shotaro; Morita, Keishi; Otsuka, Ami; Hashikawa, Naoya

    2018-04-24

    Although chronic ethanol treatment is known to impair learning and memory, humans commonly consume a range of alcoholic beverages. However, the specific effects of some alcoholic beverages on behavioral performance are largely unknown. The present study compared the effects of a range of alcoholic beverages (plain ethanol solution, red wine, sake and whiskey; with a matched alcohol concentration of 10%) on learning and memory. 6-week-old C57BL6J mice were orally administered alcohol for 7 weeks. The results revealed that red wine treatment exhibited a trend toward improvement of spatial memory and advanced extinction of fear memory. Additionally, red wine treatment significantly increased mRNA levels of brain-derived neurotrophic factor (BDNF) and N-methyl-D-aspartate (NMDA) receptors in mice hippocampus. These results support previous reports that red wine has beneficial effects.

  18. Cryptic sexual dimorphism in spatial memory and hippocampal oxytocin receptors in prairie voles (Microtus ochrogaster).

    PubMed

    Rice, Marissa A; Hobbs, Lauren E; Wallace, Kelly J; Ophir, Alexander G

    2017-09-01

    Sex differences are well documented and are conventionally associated with intense sex-specific selection. For example, spatial memory is frequently better in males, presumably due to males' tendency to navigate large spaces to find mates. Alternatively, monogamy (in which sex-specific selection is relatively relaxed) should diminish or eliminate differences in spatial ability and the mechanisms associated with this behavior. Nevertheless, phenotypic differences between monogamous males and females persist, sometimes cryptically. We hypothesize that sex-specific cognitive demands are present in monogamous species that will influence neural and behavioral phenotypes. The effects of these demands should be observable in spatial learning performance and neural structures associated with spatial learning and memory. We analyzed spatial memory performance, hippocampal volume and cell density, and hippocampal oxytocin receptor (OTR) expression in the socially monogamous prairie vole. Compared to females, males performed better in a spatial memory and spatial learning test. Although we found no sex difference in hippocampal volume or cell density, male OTR density was significantly lower than females, suggesting that performance may be regulated by sub-cellular mechanisms within the hippocampus that are less obvious than classic neuroanatomical features. Our results suggest an expanded role for oxytocin beyond facilitating social interactions, which may function in part to integrate social and spatial information. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Sleep spindles during a nap correlate with post sleep memory performance for highly rewarded word-pairs.

    PubMed

    Studte, Sara; Bridger, Emma; Mecklinger, Axel

    2017-04-01

    The consolidation of new associations is thought to depend in part on physiological processes engaged during non-REM (NREM) sleep, such as slow oscillations and sleep spindles. Moreover, NREM sleep is thought to selectively benefit associations that are adaptive for the future. In line with this, the current study investigated whether different reward cues at encoding are associated with changes in sleep physiology and memory retention. Participants' associative memory was tested after learning a list of arbitrarily paired words both before and after taking a 90-min nap. During learning, word-pairs were preceded by a cue indicating either a high or a low reward for correct memory performance at test. The motivation manipulation successfully impacted retention such that memory declined to a greater extent from pre- to post sleep for low rewarded than for high rewarded word-pairs. In line with previous studies, positive correlations between spindle density during NREM sleep and general memory performance pre- and post-sleep were found. In addition to this, however, a selective positive relationship between memory performance for highly rewarded word-pairs at posttest and spindle density during NREM sleep was also observed. These results support the view that motivationally salient memories are preferentially consolidated and that sleep spindles may be an important underlying mechanism for selective consolidation. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Hippocampal brain-network coordination during volitional exploratory behavior enhances learning

    PubMed Central

    Voss, Joel L.; Gonsalves, Brian D.; Federmeier, Kara D.; Tranel, Daniel; Cohen, Neal J.

    2010-01-01

    Exploratory behaviors during learning determine what is studied and when, helping to optimize subsequent memory performance. We manipulated how much control subjects had over the position of a moving window through which they studied objects and their locations, in order to elucidate the cognitive and neural determinants of exploratory behaviors. Our behavioral, neuropsychological, and neuroimaging data indicate volitional control benefits memory performance, and is linked to a brain network centered on the hippocampus. Increases in correlated activity between the hippocampus and other areas were associated with specific aspects of memory, suggesting that volitional control optimizes interactions among specialized neural systems via the hippocampus. Memory is therefore an active process intrinsically linked to behavior. Furthermore, brain structures typically seen as passive participants in memory encoding (e.g., the hippocampus) are actually part of an active network that controls behavior dynamically as it unfolds. PMID:21102449

  1. Hippocampal brain-network coordination during volitional exploratory behavior enhances learning.

    PubMed

    Voss, Joel L; Gonsalves, Brian D; Federmeier, Kara D; Tranel, Daniel; Cohen, Neal J

    2011-01-01

    Exploratory behaviors during learning determine what is studied and when, helping to optimize subsequent memory performance. To elucidate the cognitive and neural determinants of exploratory behaviors, we manipulated the control that human subjects had over the position of a moving window through which they studied objects and their locations. Our behavioral, neuropsychological and neuroimaging data indicate that volitional control benefits memory performance and is linked to a brain network that is centered on the hippocampus. Increases in correlated activity between the hippocampus and other areas were associated with specific aspects of memory, which suggests that volitional control optimizes interactions among specialized neural systems through the hippocampus. Memory is therefore an active process that is intrinsically linked to behavior. Furthermore, brain structures that are typically seen as passive participants in memory encoding (for example, the hippocampus) are actually part of an active network that controls behavior dynamically as it unfolds.

  2. Down-Regulation of Neuregulin1/ErbB4 Signaling in the Hippocampus Is Critical for Learning and Memory.

    PubMed

    Tian, Jia; Geng, Fei; Gao, Feng; Chen, Yi-Hua; Liu, Ji-Hong; Wu, Jian-Lin; Lan, Yu-Jie; Zeng, Yuan-Ning; Li, Xiao-Wen; Yang, Jian-Ming; Gao, Tian-Ming

    2017-08-01

    Hippocampal function is important for learning and memory, and dysfunction of the hippocampus has been linked to the pathophysiology of neuropsychiatric diseases such as schizophrenia. Neuregulin1 (NRG1) and ErbB4, two susceptibility genes for schizophrenia, reportedly modulate long-term potentiation (LTP) at hippocampal Schaffer collateral (SC)-CA1 synapses. However, little is known regarding the contribution of hippocampal NRG1/ErbB4 signaling to learning and memory function. Here, quantitative real-time PCR and Western blotting were used to assess the mRNA and protein levels of NRG1 and ErbB4. Pharmacological and genetic approaches were used to manipulate NRG1/ErbB4 signaling, following which learning and memory behaviors were evaluated using the Morris water maze, Y-maze test, and the novel object recognition test. Spatial learning was found to reduce hippocampal NRG1 and ErbB4 expression. The blockade of NRG1/ErbB4 signaling in hippocampal CA1, either by neutralizing endogenous NRG1 or inhibiting/ablating ErbB4 receptor activity, enhanced hippocampus-dependent spatial learning, spatial working memory, and novel object recognition memory. Accordingly, administration of exogenous NRG1 impaired those functions. More importantly, the specific ablation of ErbB4 in parvalbumin interneurons also improved learning and memory performance. The manipulation of NRG1/ErbB4 signaling in the present study revealed that NRG1/ErbB4 activity in the hippocampus is critical for learning and memory. These findings might provide novel insights on the pathophysiological mechanisms of schizophrenia and a new target for the treatment of Alzheimer's disease, which is characterized by a progressive decline in cognitive function.

  3. Expression of VGLUTs contributes to degeneration and acquisition of learning and memory.

    PubMed

    Cheng, Xiao-Rui; Yang, Yong; Zhou, Wen-Xia; Zhang, Yong-Xiang

    2011-03-01

    Vesicular glutamate transporters (VGLUTs), which include VGLUT1, VGLUT2 and VGLUT3, are responsible for the uploading of L-glutamate into synaptic vesicles. The expression pattern of VGLUTs determines the level of synaptic vesicle filling (i.e., glutamate quantal size) and directly influences glutamate receptors and glutamatergic synaptic transmission; thus, VGLUTs may play a key role in learning and memory in the central nervous system. To determine whether VGLUTs contribute to the degeneration or acquisition of learning and memory, we used an animal model for the age-related impairment of learning and memory, senescence-accelerated mouse/prone 8 (SAMP8). KM mice were divided into groups based on their learning and memory performance in a shuttle-box test. The expression of VGLUTs and synaptophysin (Syp) mRNA and protein in the cerebral cortex and hippocampus were investigated with real-time fluorescence quantitative PCR and western blot, respectively. Our results demonstrate that, in the cerebral cortex, protein expression of VGLUT1, VGLUT2, VGLUT3 and Syp was decreased in SAMP8 with age and increased in KM mice, which displayed an enhanced capacity for learning and memory. The protein expression of VGLUT2 and Syp was decreased in the hippocampus of SAMP8 with aging. The expression level of VGLUT1 and VGLUT2 proteins were highest in KM mouse group with a 76-100% avoidance score in the shuttle-box test. These data demonstrate that protein expression of VGLUT1, VGLUT2 and Syp decreases age-dependently in SAMP8 and increases in a learning- and memory-dependent manner in KM mice. Correlation analysis indicated the protein expression of VGLUT1, VGLUT2 and Syp has a positive correlation with the capacity of learning and memory. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Reviewing the Role of Cognitive Load, Expertise Level, Motivation, and Unconscious Processing in Working Memory Performance

    ERIC Educational Resources Information Center

    Kuldas, Seffetullah; Hashim, Shahabuddin; Ismail, Hairul Nizam; Abu Bakar, Zainudin

    2015-01-01

    Human cognitive capacity is unavailable for conscious processing of every amount of instructional messages. Aligning an instructional design with learner expertise level would allow better use of available working memory capacity in a cognitive learning task. Motivating students to learn consciously is also an essential determinant of the capacity…

  5. Memory Deficits Are Associated with Impaired Ability to Modulate Neuronal Excitability in Middle-Aged Mice

    ERIC Educational Resources Information Center

    Kaczorowski, Catherine C.; Disterhoft, John F.

    2009-01-01

    Normal aging disrupts hippocampal neuroplasticity and learning and memory. Aging deficits were exposed in a subset (30%) of middle-aged mice that performed below criterion on a hippocampal-dependent contextual fear conditioning task. Basal neuronal excitability was comparable in middle-aged and young mice, but learning-related modulation of the…

  6. A Model for Stochastic Drift in Memory Strength to Account for Judgments of Learning

    ERIC Educational Resources Information Center

    Sikstrom, Sverker; Jonsson, Fredrik

    2005-01-01

    Previous research has shown that judgments of learning (JOLs) made immediately after encoding have a low correlation with actual cued-recall performance, whereas the correlation is high for delayed judgments. In this article, the authors propose a formal theory describing the stochastic drift of memory strength over the retention interval to…

  7. Human Serial Learning: Enhancement with Arecholine and Choline and Impairment with Scopolamine

    ERIC Educational Resources Information Center

    Sitaram, N.; Weingartner, Herbert

    1978-01-01

    The effects of particular drugs in human memory abilities was examined. The degree of memory enhancement produced by arecholine and choline and the impairment after scopolamaine were inversely proportional to the subject's performance in placebo; that is, "poor" performers were more vulnerable to the drugs than were "good" performers. (Author/CP)

  8. Cognitive Load Theory: An Empirical Study of Anxiety and Task Performance in Language Learning

    ERIC Educational Resources Information Center

    Chen, I-Jung; Chang, Chi-Cheng

    2009-01-01

    Introduction: This study explores the relationship among three variables--cognitive load, foreign language anxiety, and task performance. Cognitive load refers to the load imposed on working memory while performing a particular task. The authors hypothesized that anxiety consumes the resources of working memory, leaving less capacity for cognitive…

  9. Orbital prefrontal cortex is required for object-in-place scene memory but not performance of a strategy implementation task.

    PubMed

    Baxter, Mark G; Gaffan, David; Kyriazis, Diana A; Mitchell, Anna S

    2007-10-17

    The orbital prefrontal cortex is thought to be involved in behavioral flexibility in primates, and human neuroimaging studies have identified orbital prefrontal activation during episodic memory encoding. The goal of the present study was to ascertain whether deficits in strategy implementation and episodic memory that occur after ablation of the entire prefrontal cortex can be ascribed to damage to the orbital prefrontal cortex. Rhesus monkeys were preoperatively trained on two behavioral tasks, the performance of both of which is severely impaired by the disconnection of frontal cortex from inferotemporal cortex. In the strategy implementation task, monkeys were required to learn about two categories of objects, each associated with a different strategy that had to be performed to obtain food reward. The different strategies had to be applied flexibly to optimize the rate of reward delivery. In the scene memory task, monkeys learned 20 new object-in-place discrimination problems in each session. Monkeys were tested on both tasks before and after bilateral ablation of orbital prefrontal cortex. These lesions impaired new scene learning but had no effect on strategy implementation. This finding supports a role for the orbital prefrontal cortex in memory but places limits on the involvement of orbital prefrontal cortex in the representation and implementation of behavioral goals and strategies.

  10. Consolidating the effects of waking and sleep on motor-sequence learning.

    PubMed

    Brawn, Timothy P; Fenn, Kimberly M; Nusbaum, Howard C; Margoliash, Daniel

    2010-10-20

    Sleep is widely believed to play a critical role in memory consolidation. Sleep-dependent consolidation has been studied extensively in humans using an explicit motor-sequence learning paradigm. In this task, performance has been reported to remain stable across wakefulness and improve significantly after sleep, making motor-sequence learning the definitive example of sleep-dependent enhancement. Recent work, however, has shown that enhancement disappears when the task is modified to reduce task-related inhibition that develops over a training session, thus questioning whether sleep actively consolidates motor learning. Here we use the same motor-sequence task to demonstrate sleep-dependent consolidation for motor-sequence learning and explain the discrepancies in results across studies. We show that when training begins in the morning, motor-sequence performance deteriorates across wakefulness and recovers after sleep, whereas performance remains stable across both sleep and subsequent waking with evening training. This pattern of results challenges an influential model of memory consolidation defined by a time-dependent stabilization phase and a sleep-dependent enhancement phase. Moreover, the present results support a new account of the behavioral effects of waking and sleep on explicit motor-sequence learning that is consistent across a wide range of tasks. These observations indicate that current theories of memory consolidation that have been formulated to explain sleep-dependent performance enhancements are insufficient to explain the range of behavioral changes associated with sleep.

  11. Sleep restores loss of generalized but not rote learning of synthetic speech.

    PubMed

    Fenn, Kimberly M; Margoliash, Daniel; Nusbaum, Howard C

    2013-09-01

    Sleep-dependent consolidation has been demonstrated for declarative and procedural memory but few theories of consolidation distinguish between rote and generalized learning, suggesting similar consolidation should occur for both. However, studies using rote and generalized learning have suggested different patterns of consolidation may occur, although different tasks have been used across studies. Here we directly compared consolidation of rote and generalized learning using a single speech identification task. Training on a large set of novel stimuli resulted in substantial generalized learning, and sleep restored performance that had degraded after 12 waking hours. Training on a small set of repeated stimuli primarily resulted in rote learning and performance also degraded after 12 waking hours but was not restored by sleep. Moreover performance was significantly worse 24-h after rote training. Our results suggest a functional dissociation between the mechanisms of consolidation for rote and generalized learning which has broad implications for memory models. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. The endocannabinoid system and associative learning and memory in zebrafish.

    PubMed

    Ruhl, Tim; Moesbauer, Kirstin; Oellers, Nadine; von der Emde, Gerhard

    2015-09-01

    In zebrafish the medial pallium of the dorsal telencephalon represents an amygdala homolog structure, which is crucially involved in emotional associative learning and memory. Similar to the mammalian amygdala, the medial pallium contains a high density of endocannabinoid receptor CB1. To elucidate the role of the zebrafish endocannabinoid system in associative learning, we tested the influence of acute and chronic administration of receptor agonists (THC, WIN55,212-2) and antagonists (Rimonabant, AM-281) on two different learning paradigms. In an appetitively motivated two-alternative choice paradigm, animals learned to associate a certain color with a food reward. In a second set-up, a fish shuttle-box, animals associated the onset of a light stimulus with the occurrence of a subsequent electric shock (avoidance conditioning). Once fish successfully had learned to solve these behavioral tasks, acute receptor activation or inactivation had no effect on memory retrieval, suggesting that established associative memories were stable and not alterable by the endocannabinoid system. In both learning tasks, chronic treatment with receptor antagonists improved acquisition learning, and additionally facilitated reversal learning during color discrimination. In contrast, chronic CB1 activation prevented aversively motivated acquisition learning, while different effects were found on appetitively motivated acquisition learning. While THC significantly improved behavioral performance, WIN55,212-2 significantly impaired color association. Our findings suggest that the zebrafish endocannabinoid system can modulate associative learning and memory. Stimulation of the CB1 receptor might play a more specific role in acquisition and storage of aversive learning and memory, while CB1 blocking induces general enhancement of cognitive functions. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. [Genotype-dependent mice behavior in cognitive tasks. Effect of noopept].

    PubMed

    Bel'nik, A P; Ostrovskaia, R U; Poletaeva, I I

    2007-01-01

    The interstrain differences in performance of C57BL/6J, BALB/c and DBA/2J male mice in two cognitive tasks were found. Mice C57BL/6J showed good learning ability and preservation of memory traces tested 10 days after performance in a simplified version of Morris water maze. Mice BALB/c learned the task but, virtually, no long-term memory traces were revealed, whereas DBA/2J demonstrated poor learning. The effect of nootropic drug Noopept (GVS-111, N-phenil-acetyl-L-prolylglycin ethyl ether) was shown to be genotype-dependent. Its administration (0.5 mg/kg i.p., 15 min before learning) improved the long-term memory in Morris test in BALB/c mice but failed to produce any improvement in C57BL/6J. The ability of mice for extrapolation of the direction of stimulus movement differently changed after Noopept injections: the proportion of correct task solutions increased in C57BL/6J and BALB/c mice, whereas the performance of DBA/2J did not change.

  14. Criterion for correct recalls in associative-memory neural networks

    NASA Astrophysics Data System (ADS)

    Ji, Han-Bing

    1992-12-01

    A novel weighted outer-product learning (WOPL) scheme for associative memory neural networks (AMNNs) is presented. In the scheme, each fundamental memory is allocated a learning weight to direct its correct recall. Both the Hopfield and multiple training models are instances of the WOPL model with certain sets of learning weights. A necessary condition of choosing learning weights for the convergence property of the WOPL model is obtained through neural dynamics. A criterion for choosing learning weights for correct associative recalls of the fundamental memories is proposed. In this paper, an important parameter called signal to noise ratio gain (SNRG) is devised, and it is found out empirically that SNRGs have their own threshold values which means that any fundamental memory can be correctly recalled when its corresponding SNRG is greater than or equal to its threshold value. Furthermore, a theorem is given and some theoretical results on the conditions of SNRGs and learning weights for good associative recall performance of the WOPL model are accordingly obtained. In principle, when all SNRGs or learning weights chosen satisfy the theoretically obtained conditions, the asymptotic storage capacity of the WOPL model will grow at the greatest rate under certain known stochastic meaning for AMNNs, and thus the WOPL model can achieve correct recalls for all fundamental memories. The representative computer simulations confirm the criterion and theoretical analysis.

  15. Preserved memory abilities in thalamic amnesia.

    PubMed

    Nichelli, P; Bahmanian-Behbahani, G; Gentilini, M; Vecchi, A

    1988-12-01

    The pattern of preserved learning abilities is described in a severely amnesic patient after bilateral thalamic infarction. Experimental findings cannot be accounted for both by the view that only episodic memory is impaired in amnesia, while semantic memory is spared, and by the theory that what is spared in amnesia is procedural learning contrasted with impaired declarative memory. In agreement with Warrington and Weiskrantz (1982), diencephalic amnesia is considered to be a disconnection syndrome between the frontal and temporal lobes. The conditions for showing spared and impaired memory in amnesics are specified on the basis of the performance of the patient and of the data available in the literature. This allows us to derive practical suggestions for programmes aimed at remediation of memory defects.

  16. Types of Learning Problems

    MedlinePlus

    ... Dyscalculia is defined as difficulty performing mathematical calculations. Math is problematic for many students, but dyscalculia may prevent a teenager from grasping even basic math concepts. Auditory Memory and Processing Disabilities Auditory memory ...

  17. Oral exposure to low-dose of nonylphenol impairs memory performance in Sprague-Dawley rats.

    PubMed

    Kawaguchi, Shinichiro; Kuwahara, Rika; Kohara, Yumi; Uchida, Yutaro; Oku, Yushi; Yamashita, Kimihiro

    2015-02-01

    Nonylphenol ethoxylate (NPE) is a non-ionic surfactant, that is degraded to short-chain NPE and 4-nonylphenol (NP) by bacteria in the environment. NP, one of the most common environmental endocrine disruptors, exhibits weak estrogen-like activity. In this study, we investigated whether oral administration of NP (at 0.5 and 5 mg/kg doses) affects spatial learning and memory, general activity, emotionality, and fear-motivated learning and memory in male and female Sprague-Dawley (SD) rats. SD rats of both sexes were evaluated using a battery of behavioral tests, including an appetite-motivated maze test (MAZE test) that was used to assess spatial learning and memory. In the MAZE test, the time required to reach the reward in male rats treated with 0.5 mg/kg NP group and female rats administered 5 mg/kg NP was significantly longer than that for control animals of the corresponding sex. In other behavioral tests, no significant differences were observed between the control group and either of the NP-treated groups of male rats. In female rats, inner and ambulation values for animals administered 0.5 mg/kg NP were significantly higher than those measured in control animals in open-field test, while the latency in the group treated with 5 mg/kg NP was significantly shorter compared to the control group in step-through passive avoidance test. This study indicates that oral administration of a low-dose of NP slightly impairs spatial learning and memory performance in male and female rats, and alters emotionality and fear-motivated learning and memory in female rats only.

  18. Sleep for cognitive enhancement.

    PubMed

    Diekelmann, Susanne

    2014-01-01

    Sleep is essential for effective cognitive functioning. Loosing even a few hours of sleep can have detrimental effects on a wide variety of cognitive processes such as attention, language, reasoning, decision making, learning and memory. While sleep is necessary to ensure normal healthy cognitive functioning, it can also enhance performance beyond the boundaries of the normal condition. This article discusses the enhancing potential of sleep, mainly focusing on the domain of learning and memory. Sleep is known to facilitate the consolidation of memories learned before sleep as well as the acquisition of new memories to be learned after sleep. According to a widely held model this beneficial effect of sleep relies on the neuronal reactivation of memories during sleep that is associated with sleep-specific brain oscillations (slow oscillations, spindles, ripples) as well as a characteristic neurotransmitter milieu. Recent research indicates that memory processing during sleep can be boosted by (i) cueing memory reactivation during sleep; (ii) stimulating sleep-specific brain oscillations; and (iii) targeting specific neurotransmitter systems pharmacologically. Olfactory and auditory cues can be used, for example, to increase reactivation of associated memories during post-learning sleep. Intensifying neocortical slow oscillations (the hallmark of slow wave sleep (SWS)) by electrical or auditory stimulation and modulating specific neurotransmitters such as noradrenaline and glutamate likewise facilitates memory processing during sleep. With this evidence in mind, this article concludes by discussing different methodological caveats and ethical issues that should be considered when thinking about using sleep for cognitive enhancement in everyday applications.

  19. Sleep for cognitive enhancement

    PubMed Central

    Diekelmann, Susanne

    2014-01-01

    Sleep is essential for effective cognitive functioning. Loosing even a few hours of sleep can have detrimental effects on a wide variety of cognitive processes such as attention, language, reasoning, decision making, learning and memory. While sleep is necessary to ensure normal healthy cognitive functioning, it can also enhance performance beyond the boundaries of the normal condition. This article discusses the enhancing potential of sleep, mainly focusing on the domain of learning and memory. Sleep is known to facilitate the consolidation of memories learned before sleep as well as the acquisition of new memories to be learned after sleep. According to a widely held model this beneficial effect of sleep relies on the neuronal reactivation of memories during sleep that is associated with sleep-specific brain oscillations (slow oscillations, spindles, ripples) as well as a characteristic neurotransmitter milieu. Recent research indicates that memory processing during sleep can be boosted by (i) cueing memory reactivation during sleep; (ii) stimulating sleep-specific brain oscillations; and (iii) targeting specific neurotransmitter systems pharmacologically. Olfactory and auditory cues can be used, for example, to increase reactivation of associated memories during post-learning sleep. Intensifying neocortical slow oscillations (the hallmark of slow wave sleep (SWS)) by electrical or auditory stimulation and modulating specific neurotransmitters such as noradrenaline and glutamate likewise facilitates memory processing during sleep. With this evidence in mind, this article concludes by discussing different methodological caveats and ethical issues that should be considered when thinking about using sleep for cognitive enhancement in everyday applications. PMID:24765066

  20. Learning non-local dependencies.

    PubMed

    Kuhn, Gustav; Dienes, Zoltán

    2008-01-01

    This paper addresses the nature of the temporary storage buffer used in implicit or statistical learning. Kuhn and Dienes [Kuhn, G., and Dienes, Z. (2005). Implicit learning of nonlocal musical rules: implicitly learning more than chunks. Journal of Experimental Psychology-Learning Memory and Cognition, 31(6) 1417-1432] showed that people could implicitly learn a musical rule that was solely based on non-local dependencies. These results seriously challenge models of implicit learning that assume knowledge merely takes the form of linking adjacent elements (chunking). We compare two models that use a buffer to allow learning of long distance dependencies, the Simple Recurrent Network (SRN) and the memory buffer model. We argue that these models - as models of the mind - should not be evaluated simply by fitting them to human data but by determining the characteristic behaviour of each model. Simulations showed for the first time that the SRN could rapidly learn non-local dependencies. However, the characteristic performance of the memory buffer model rather than SRN more closely matched how people came to like different musical structures. We conclude that the SRN is more powerful than previous demonstrations have shown, but it's flexible learned buffer does not explain people's implicit learning (at least, the affective learning of musical structures) as well as fixed memory buffer models do.

  1. Performance of four different rat strains in the autoshaping, two-object discrimination, and swim maze tests of learning and memory.

    PubMed

    Andrews, J S; Jansen, J H; Linders, S; Princen, A; Broekkamp, C L

    1995-04-01

    The performance of four strains of rats commonly used in behavioural research was assessed in three different tests of learning and memory. The four strains included three outbred lines (Long-Evans, Sprague-Dawley, Wistar) and one inbred strain (S3). Learning and memory were tested using three different paradigms: autoshaping of a lever press, a two-object discrimination test, and performance in a two-island swim maze task. The pigmented strains showed better performance in the autoshaping procedure: the majority of the Long-Evans and the S3 rats acquired the response, and the majority of the Wistar and Sprague-Dawley failed to acquire the response in the set time. The albino strains were slightly better in the swim maze than the pigmented strains. There appeared to be a speed/accuracy trade-off in the strategy used to solve the task. This was also evident following treatment with the cholinergic-depleting agent hemicholinium-3. The performance of the Long-Evans rats was most affected by the treatment in terms of accuracy and the Wistar and Sprague-Dawleys in terms of speed. In the two-object discrimination test only the Long-Evans showed satisfactory performance and were able to discriminate a novel from a known object a short interval after initial exposure. These results show large task- and strain-dependent differences in performance in tests of learning and memory. Some of the performance variation may be due to emotional differences between the strains and may be alleviated by extra training. However, the response to pharmacological manipulation may require more careful evaluation.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Acute, low-dose methamphetamine administration improves attention/information processing speed and working memory in methamphetamine-dependent individuals displaying poorer cognitive performance at baseline

    PubMed Central

    Mahoney, James J.; Jackson, Brian J.; Kalechstein, Ari D.; De La Garza, Richard; Newton, Thomas F.

    2012-01-01

    Abstinent methamphetamine (Meth) dependent individuals demonstrate poorer performance on tests sensitive to attention/information processing speed, learning and memory, and working memory when compared to non-Meth dependent individuals. The poorer performance on these tests may contribute to the morbidity associated with Meth-dependence. In light of this, we sought to determine the effects of acute, low-dose Meth administration on attention, working memory, and verbal learning and memory in 19 non-treatment seeking, Meth-dependent individuals. Participants were predominantly male (89%), Caucasian (63%), and cigarette smokers (63%). Following a four day, drug-free washout period, participants were given a single-blind intravenous infusion of saline, followed the next day by 30 mg of Meth. A battery of neurocognitive tasks was administered before and after each infusion, and performance on measures of accuracy and reaction time were compared between conditions. While acute Meth exposure did not affect test performance for the entire sample, participants who demonstrated relatively poor performance on these tests at baseline, identified using a median split on each test, showed significant improvement on measures of attention/information processing speed and working memory when administered Meth. Improved performance was seen on the following measures of working memory: choice reaction time task (p≤0.04), a 1-back task (p≤0.01), and a 2-back task (p≤0.04). In addition, those participants demonstrating high neurocognitive performance at baseline experienced similar or decreased performance following Meth exposure. These findings suggest that acute administration of Meth may temporarily improve Meth-associated neurocognitive performance in those individuals experiencing lower cognitive performance at baseline. As a result, stimulants may serve as a successful treatment for improving cognitive functioning in those Meth-dependent individuals experiencing neurocognitive impairment. PMID:21122811

  3. The use of virtual reality in memory rehabilitation: current findings and future directions.

    PubMed

    Brooks, B M; Rose, F D

    2003-01-01

    There is considerable potential for using virtual reality (VR) in memory rehabilitation which is only just beginning to be realized. PC-based virtual environments are probably better suited for this purpose than more immersive virtual environments because they are relatively inexpensive and portable, and less frightening to patients. Those exploratory studies that have so far been performed indicate that VR involvement would be usefully directed towards improving assessments of memory impairments and in memory remediation using reorganization techniques. In memory assessment, the use of VR could provide more comprehensive, ecologically-valid, and controlled evaluations of prospective, incidental, and spatial memory in a rehabilitation setting than is possible using standardized assessment tests. The additional knowledge gained from these assessments could more effectively direct rehabilitation towards specific impairments of individual patients. In memory remediation, VR training has been found to promote procedural learning in people with memory impairments, and this learning has been found to transfer to improved real-world performance. Future research should investigate ways in which the procedural knowledge gained during VR interaction can be adapted to offset the many disabilities which result from different forms of memory impairment.

  4. Implicit and explicit motor sequence learning in children born very preterm.

    PubMed

    Jongbloed-Pereboom, Marjolein; Janssen, Anjo J W M; Steiner, K; Steenbergen, Bert; Nijhuis-van der Sanden, Maria W G

    2017-01-01

    Motor skills can be learned explicitly (dependent on working memory (WM)) or implicitly (relatively independent of WM). Children born very preterm (VPT) often have working memory deficits. Explicit learning may be compromised in these children. This study investigated implicit and explicit motor learning and the role of working memory in VPT children and controls. Three groups (6-9 years) participated: 20 VPT children with motor problems, 20 VPT children without motor problems, and 20 controls. A nine button sequence was learned implicitly (pressing the lighted button as quickly as possible) and explicitly (discovering the sequence via trial-and-error). Children learned implicitly and explicitly, evidenced by decreased movement duration of the sequence over time. In the explicit condition, children also reduced the number of errors over time. Controls made more errors than VPT children without motor problems. Visual WM had positive effects on both explicit and implicit performance. VPT birth and low motor proficiency did not negatively affect implicit or explicit learning. Visual WM was positively related to both implicit and explicit performance, but did not influence learning curves. These findings question the theoretical difference between implicit and explicit learning and the proposed role of visual WM therein. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Effects of the antidepressant drug moclobemide on learning and memory in rats.

    PubMed

    Getova, D; Dimitrova, D; Roukounakis, I

    2003-12-01

    Moclobemide is a well known drug with antidepressant action. The aim of this study was to investigate the effects of moclobemide on learning and memory processes in Sprague Dawley rats. Over a 5-day period, learning sessions with 30 trials per day and memory retention tests were performed. The conditioned responses (avoidances), the unconditioned responses (escapes) and the intertrial crossings were observed. An active avoidance test was carried out using a shuttle box. Two passive avoidance tests were used: step-through (using a light chamber) and step-down (using a platform). In the step-through passive avoidance test, the learning and retention sessions consisted of three trials each and the latency of reaction times (the rat remaining in the light chamber for more than 180 sec) was used as criterion. In the step-down passive avoidance test, learning and retention sessions consisted of two trials and the latency of reaction times (the rat remaining on the platform for 60 sec) was used as criterion. In the active avoidance tests, moclobemide dose-dependently increased the number of avoidances during learning sessions and maintained this number in memory retention tests. Moclobemide did not alter the number of escapes, but did increase motor activity. In the passive avoidance tests, moclobemide also increased the latency of reaction times in learning and short memory retrieval tests. These findings suggest that moclobemide improves learning and memory processes in active and passive avoidance tests and has a cognition-enhancing effect. (c) 2003 Prous Science

  6. The Role of Apathy and Depression on Verbal Learning and Memory Performance After Stroke.

    PubMed

    Fishman, Keera N; Ashbaugh, Andrea R; Lanctôt, Krista L; Cayley, Megan L; Herrmann, Nathan; Murray, Brian J; Sicard, Michelle; Lien, Karen; Sahlas, Demetrios J; Swartz, Richard H

    2018-05-18

    Psychiatric symptoms, including depression and apathy, may significantly impede functional and cognitive capabilities following a cerebrovascular event. This study examined the role of apathy and depression on learning and memory performance in stroke patients. Stroke patients (n = 140 [119 ischemic, 21 hemorrhagic], mean age = 60.6 [SD = 15.1]) completed the Apathy Evaluation Scale (AES), the Center for Epidemiologic Studies Depression Scale (CES-D), and the California Verbal Learning Test-Second Edition (CVLT-II). Using a 2 × 2 MANOVA with depression (CESD ≥ 16) and apathy (AES ≥ 34) as the independent variables and cognitive performance (i.e., verbal acquisition, short-term free recall, and long-term free recall) as the dependent variables, we found a main effect for apathy (F[3,134] = 2.98, p = .034), such that apathetic stroke patients (n = 24) performed significantly worse on verbal acquisition (F[1,136] = 6.44; p = .012), short-term free recall (F[1,136] = 7.86; p = .006), and long-term free recall (F[1,136] = 8.37; p = .004) than nonapathetic stroke patients (n = 116). There was no main effect of depression on cognitive performance (F[1,136] = 1.72, p = .155). These results suggest that apathy, not depression, is related to verbal memory performance in stroke patients. Future research should explore whether treatment of apathy (e.g., improving motivation) could be a novel target for improving cognition after stroke. Researchers should also examine whether this model can be applied to other aspects of cognition, including executive function and other areas of memory including autobiographical and working memory.

  7. A single night of sleep loss impairs objective but not subjective working memory performance in a sex-dependent manner.

    PubMed

    Rångtell, Frida H; Karamchedu, Swathy; Andersson, Peter; Liethof, Lisanne; Olaya Búcaro, Marcela; Lampola, Lauri; Schiöth, Helgi B; Cedernaes, Jonathan; Benedict, Christian

    2018-01-31

    Acute sleep deprivation can lead to judgement errors and thereby increases the risk of accidents, possibly due to an impaired working memory. However, whether the adverse effects of acute sleep loss on working memory are modulated by auditory distraction in women and men are not known. Additionally, it is unknown whether sleep loss alters the way in which men and women perceive their working memory performance. Thus, 24 young adults (12 women using oral contraceptives at the time of investigation) participated in two experimental conditions: nocturnal sleep (scheduled between 22:30 and 06:30 hours) versus one night of total sleep loss. Participants were administered a digital working memory test in which eight-digit sequences were learned and retrieved in the morning after each condition. Learning of digital sequences was accompanied by either silence or auditory distraction (equal distribution among trials). After sequence retrieval, each trial ended with a question regarding how certain participants were of the correctness of their response, as a self-estimate of working memory performance. We found that sleep loss impaired objective but not self-estimated working memory performance in women. In contrast, both measures remained unaffected by sleep loss in men. Auditory distraction impaired working memory performance, without modulation by sleep loss or sex. Being unaware of cognitive limitations when sleep-deprived, as seen in our study, could lead to undesirable consequences in, for example, an occupational context. Our findings suggest that sleep-deprived young women are at particular risk for overestimating their working memory performance. © 2018 The Authors. Journal of Sleep Research published by John Wiley & Sons Ltd on behalf of European Sleep Research Society.

  8. Moderate Levels of Activation Lead to Forgetting In the Think/No-Think Paradigm

    PubMed Central

    Detre, Greg J.; Natarajan, Annamalai; Gershman, Samuel J.; Norman, Kenneth A.

    2013-01-01

    Using the think/no-think paradigm (Anderson & Green, 2001), researchers have found that suppressing retrieval of a memory (in the presence of a strong retrieval cue) can make it harder to retrieve that memory on a subsequent test. This effect has been replicated numerous times, but the size of the effect is highly variable. Also, it is unclear from a neural mechanistic standpoint why preventing recall of a memory now should impair your ability to recall that memory later. Here, we address both of these puzzles using the idea, derived from computational modeling and studies of synaptic plasticity, that the function relating memory activation to learning is U-shaped, such that moderate levels of memory activation lead to weakening of the memory and higher levels of activation lead to strengthening. According to this view, forgetting effects in the think/no-think paradigm occur when the suppressed item activates moderately during the suppression attempt, leading to weakening; the effect is variable because sometimes the suppressed item activates strongly (leading to strengthening) and sometimes it does not activate at all (in which case no learning takes place). To test this hypothesis, we ran a think/no-think experiment where participants learned word-picture pairs; we used pattern classifiers, applied to fMRI data, to measure how strongly the picture associates were activating when participants were trying not to retrieve these associates, and we used a novel Bayesian curve-fitting procedure to relate this covert neural measure of retrieval to performance on a later memory test. In keeping with our hypothesis, the curve-fitting procedure revealed a nonmonotonic relationship between memory activation (as measured by the classifier) and subsequent memory, whereby moderate levels of activation of the to-be-suppressed item led to diminished performance on the final memory test, and higher levels of activation led to enhanced performance on the final test. PMID:23499722

  9. Moderate levels of activation lead to forgetting in the think/no-think paradigm.

    PubMed

    Detre, Greg J; Natarajan, Annamalai; Gershman, Samuel J; Norman, Kenneth A

    2013-10-01

    Using the think/no-think paradigm (Anderson & Green, 2001), researchers have found that suppressing retrieval of a memory (in the presence of a strong retrieval cue) can make it harder to retrieve that memory on a subsequent test. This effect has been replicated numerous times, but the size of the effect is highly variable. Also, it is unclear from a neural mechanistic standpoint why preventing recall of a memory now should impair your ability to recall that memory later. Here, we address both of these puzzles using the idea, derived from computational modeling and studies of synaptic plasticity, that the function relating memory activation to learning is U-shaped, such that moderate levels of memory activation lead to weakening of the memory and higher levels of activation lead to strengthening. According to this view, forgetting effects in the think/no-think paradigm occur when the suppressed item activates moderately during the suppression attempt, leading to weakening; the effect is variable because sometimes the suppressed item activates strongly (leading to strengthening) and sometimes it does not activate at all (in which case no learning takes place). To test this hypothesis, we ran a think/no-think experiment where participants learned word-picture pairs; we used pattern classifiers, applied to fMRI data, to measure how strongly the picture associates were activating when participants were trying not to retrieve these associates, and we used a novel Bayesian curve-fitting procedure to relate this covert neural measure of retrieval to performance on a later memory test. In keeping with our hypothesis, the curve-fitting procedure revealed a nonmonotonic relationship between memory activation (as measured by the classifier) and subsequent memory, whereby moderate levels of activation of the to-be-suppressed item led to diminished performance on the final memory test, and higher levels of activation led to enhanced performance on the final test. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Early handling effect on female rat spatial and non-spatial learning and memory.

    PubMed

    Plescia, Fulvio; Marino, Rosa A M; Navarra, Michele; Gambino, Giuditta; Brancato, Anna; Sardo, Pierangelo; Cannizzaro, Carla

    2014-03-01

    This study aims at providing an insight into early handling procedures on learning and memory performance in adult female rats. Early handling procedures were started on post-natal day 2 until 21, and consisted in 15 min, daily separations of the dams from their litters. Assessment of declarative memory was carried out in the novel-object recognition task; spatial learning, reference- and working memory were evaluated in the Morris water maze (MWM). Our results indicate that early handling induced an enhancement in: (1) declarative memory, in the object recognition task, both at 1h and 24h intervals; (2) reference memory in the probe test and working memory and behavioral flexibility in the "single-trial and four-trial place learning paradigm" of the MWM. Short-term separation by increasing maternal care causes a dampening in HPA axis response in the pups. A modulated activation of the stress response may help to protect brain structures, involved in cognitive function. In conclusion, this study shows the long-term effects of a brief maternal separation in enhancing object recognition-, spatial reference- and working memory in female rats, remarking the impact of early environmental experiences and the consequent maternal care on the behavioral adaptive mechanisms in adulthood. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Selective attention neutralizes the adverse effects of low socioeconomic status on memory in 9-month-old infants.

    PubMed

    Markant, Julie; Ackerman, Laura K; Nussenbaum, Kate; Amso, Dima

    2016-04-01

    Socioeconomic status (SES) has a documented impact on brain and cognitive development. We demonstrate that engaging spatial selective attention mechanisms may counteract this negative influence of impoverished environments on early learning. We previously used a spatial cueing task to compare target object encoding in the context of basic orienting ("facilitation") versus a spatial selective attention orienting mechanism that engages distractor suppression ("IOR"). This work showed that object encoding in the context of IOR boosted 9-month-old infants' recognition memory relative to facilitation (Markant and Amso, 2013). Here we asked whether this attention-memory link further interacted with SES in infancy. Results indicated that SES was related to memory but not attention orienting efficacy. However, the correlation between SES and memory performance was moderated by the attention mechanism engaged during encoding. SES predicted memory performance when objects were encoded with basic orienting processes, with infants from low-SES environments showing poorer memory than those from high-SES environments. However, SES did not predict memory performance among infants who engaged selective attention during encoding. Spatial selective attention engagement mitigated the effects of SES on memory and may offer an effective mechanism for promoting learning among infants at risk for poor cognitive outcomes related to SES. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Sleep Supports Inhibitory Operant Conditioning Memory in "Aplysia"

    ERIC Educational Resources Information Center

    Vorster, Albrecht P. A.; Born, Jan

    2017-01-01

    Sleep supports memory consolidation as shown in mammals and invertebrates such as bees and "Drosophila." Here, we show that sleep's memory function is preserved in "Aplysia californica" with an even simpler nervous system. Animals performed on an inhibitory conditioning task ("learning that a food is inedible") three…

  13. Adult-onset hypothyroidism enhances fear memory and upregulates mineralocorticoid and glucocorticoid receptors in the amygdala.

    PubMed

    Montero-Pedrazuela, Ana; Fernández-Lamo, Iván; Alieva, María; Pereda-Pérez, Inmaculada; Venero, César; Guadaño-Ferraz, Ana

    2011-01-01

    Hypothyroidism is the most common hormonal disease in adults, which is frequently accompanied by learning and memory impairments and emotional disorders. However, the deleterious effects of thyroid hormones deficiency on emotional memory are poorly understood and often underestimated. To evaluate the consequences of hypothyroidism on emotional learning and memory, we have performed a classical Pavlovian fear conditioning paradigm in euthyroid and adult-thyroidectomized Wistar rats. In this experimental model, learning acquisition was not impaired, fear memory was enhanced, memory extinction was delayed and spontaneous recovery of fear memory was exacerbated in hypothyroid rats. The potentiation of emotional memory under hypothyroidism was associated with an increase of corticosterone release after fear conditioning and with higher expression of glucocorticoid and mineralocorticoid receptors in the lateral and basolateral nuclei of the amygdala, nuclei that are critically involved in the circuitry of fear memory. Our results demonstrate for the first time that adult-onset hypothyroidism potentiates fear memory and also increases vulnerability to develop emotional memories. Furthermore, our findings suggest that enhanced corticosterone signaling in the amygdala is involved in the pathophysiological mechanisms of fear memory potentiation. Therefore, we recommend evaluating whether inappropriate regulation of fear in patients with post-traumatic stress and other mental disorders is associated with abnormal levels of thyroid hormones, especially those patients refractory to treatment.

  14. Sex and spatial position effects on object location memory following intentional learning of object identities.

    PubMed

    Alexander, Gerianne M; Packard, Mark G; Peterson, Bradley S

    2002-01-01

    Memory for object location relative both to veridical center (left versus right visual hemispace) and to eccentricity (central versus peripheral objects) was measured in 26 males and 25 females using the Silverman and Eals Location Memory Task. A subset of participants (17 males and 13 females) also completed a measure of implicit learning, the mirror-tracing task. No sex differences were observed in memory for object identities. Further, in both sexes, memory for object locations was better for peripherally located objects than for centrally located objects. In contrast to these similarities in female and male task performance, females but not males showed better recovery of object locations in the right compared to the left visual hemispace. Moreover, memory for object locations in the right hemispace was associated with mirror-tracing performance in women but not in men. Together, these data suggest that the processing of object features and object identification in the left cerebral hemisphere may include processing of spatial information that may contribute to superior object location memory in females relative to males.

  15. Verbal and Nonverbal Neuropsychological Test Performance in Subjects With Schizotypal Personality Disorder

    PubMed Central

    Voglmaier, Martina M.; Seidman, Larry J.; Niznikiewicz, Margaret A.; Dickey, Chandlee C.; Shenton, Martha E.; McCarley, Robert W.

    2010-01-01

    Objective The authors contrasted verbal and nonverbal measures of attention and memory in patients with DSM-IV-defined schizotypal personality disorder in order to expand on their previous findings of verbal learning deficits in these patients and to understand better the neuropsychological profile of schizotypal personality disorder. Method Cognitive test performance was examined in 16 right-handed men who met diagnostic criteria for schizotypal personality disorder and 16 matched male comparison subjects. Neuropsychological measures included verbal and nonverbal tests of persistence, supraspan learning, and short- and long-term memory retention. Neuropsychological profiles were constructed by standardizing test scores based on the means and standard deviations of the comparison subject group. Results Subjects with schizotypal personality disorder showed a mild to moderate general reduction in performance on all measures. Verbal measures of persistence, short-term retention, and learning were more severely impaired than their nonverbal analogs. Performance on measures of memory retention was independent of modality. Conclusions The results are consistent with previous reports that have suggested a mild, general decrement in cognitive performance and proportionately greater involvement of the left hemisphere in patients with schizotypal personality disorder. The findings provide further support for a specific deficit in the early processing stages of verbal learning. PMID:10784473

  16. Different types of exercise induce differential effects on neuronal adaptations and memory performance.

    PubMed

    Lin, Tzu-Wei; Chen, Shean-Jen; Huang, Tung-Yi; Chang, Chia-Yuan; Chuang, Jih-Ing; Wu, Fong-Sen; Kuo, Yu-Min; Jen, Chauying J

    2012-01-01

    Different exercise paradigms show differential effects on various forms of memory. We hypothesize that the differential effects of exercises on memory performance are caused by different neuroplasticity changes in relevant brain regions in response to different exercise trainings. We examined the effects of treadmill running (TR) and wheel running (WR) on the Pavlovian fear conditioning task that assesses learning and memory performance associated with the amygdala (cued conditioning) and both the amygdala and hippocampus (contextual conditioning). The skeletal muscle citrate synthase activity, an indicator of aerobic capacity, was elevated in rats received 4 w of TR, but not WR. While both TR and WR elevated the contextual conditional response, only TR facilitated the cued conditional response. Using a single-neuron labeling technique, we found that while both TR and MR enlarged the dendritic field and increased the spine density in hippocampal CA3 neurons, only TR showed these effects in basolateral amygdalar neurons. Moreover, both types of exercise upregulated synaptic proteins (i.e., TrkB and SNAP-25) in the hippocampus; however only TR showed similar effects in the amygdala. Injection of K252a, a TrkB kinase inhibitor, in the dorsal hippocampus or basolateral amygdala abolished the exercise-facilitated contextual or cued fear learning and memory performance, respectively, regardless of the types of exercise. In summary, our results supported that different types of exercise affect the performance of learning and memory via BDNF-TrkB signaling and neuroplasticity in specific brain regions. The brain region-specific neuronal adaptations are possibly induced by various levels of intensity/stress elicited by different types of exercise. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Sleep and memory consolidation: motor performance and proactive interference effects in sequence learning.

    PubMed

    Borragán, Guillermo; Urbain, Charline; Schmitz, Rémy; Mary, Alison; Peigneux, Philippe

    2015-04-01

    That post-training sleep supports the consolidation of sequential motor skills remains debated. Performance improvement and sensitivity to proactive interference are both putative measures of long-term memory consolidation. We tested sleep-dependent memory consolidation for visuo-motor sequence learning using a proactive interference paradigm. Thirty-three young adults were trained on sequence A on Day 1, then had Regular Sleep (RS) or were Sleep Deprived (SD) on the night after learning. After two recovery nights, they were tested on the same sequence A, then had to learn a novel, potentially competing sequence B. We hypothesized that proactive interference effects on sequence B due to the prior learning of sequence A would be higher in the RS condition, considering that proactive interference is an indirect marker of the robustness of sequence A, which should be better consolidated over post-training sleep. Results highlighted sleep-dependent improvement for sequence A, with faster RTs overnight for RS participants only. Moreover, the beneficial impact of sleep was specific to the consolidation of motor but not sequential skills. Proactive interference effects on learning a new material at Day 4 were similar between RS and SD participants. These results suggest that post-training sleep contributes to optimizing motor but not sequential components of performance in visuo-motor sequence learning. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Place avoidance learning and memory in a jumping spider.

    PubMed

    Peckmezian, Tina; Taylor, Phillip W

    2017-03-01

    Using a conditioned passive place avoidance paradigm, we investigated the relative importance of three experimental parameters on learning and memory in a salticid, Servaea incana. Spiders encountered an aversive electric shock stimulus paired with one side of a two-sided arena. Our three parameters were the ecological relevance of the visual stimulus, the time interval between trials and the time interval before test. We paired electric shock with either a black or white visual stimulus, as prior studies in our laboratory have demonstrated that S. incana prefer dark 'safe' regions to light ones. We additionally evaluated the influence of two temporal features (time interval between trials and time interval before test) on learning and memory. Spiders exposed to the shock stimulus learned to associate shock with the visual background cue, but the extent to which they did so was dependent on which visual stimulus was present and the time interval between trials. Spiders trained with a long interval between trials (24 h) maintained performance throughout training, whereas spiders trained with a short interval (10 min) maintained performance only when the safe side was black. When the safe side was white, performance worsened steadily over time. There was no difference between spiders tested after a short (10 min) or long (24 h) interval before test. These results suggest that the ecological relevance of the stimuli used and the duration of the interval between trials can influence learning and memory in jumping spiders.

  19. Place Learning in the Morris Water Task: Making the Memory Stick

    ERIC Educational Resources Information Center

    Bolding, Kevin; Rudy, Jerry W.

    2006-01-01

    Although the Morris water task has been used in hundreds of studies of place learning, there have been no systematic studies of retention of the place memory. We report that retention, as measured by selective search behavior on a probe trial, is excellent when the retention interval is short (5-10 min). However, performance rapidly deteriorates,…

  20. Social influence on associative learning: double dissociation in high-functioning autism, early-stage behavioural variant frontotemporal dementia and Alzheimer's disease.

    PubMed

    Kéri, Szabolcs

    2014-05-01

    Most of our learning activity takes place in a social context. I examined how social interactions influence associative learning in neurodegenerative diseases and atypical neurodevelopmental conditions primarily characterised by social cognitive and memory dysfunctions. Participants were individuals with high-functioning autism (HFA, n = 18), early-stage behavioural variant frontotemporal dementia (bvFTD, n = 16) and Alzheimer's disease (AD, n = 20). The leading symptoms in HFA and bvFTD were social and behavioural dysfunctions, whereas AD was characterised by memory deficits. Participants received three versions of a paired associates learning task. In the game with boxes test, objects were hidden in six candy boxes placed in different locations on the computer screen. In the game with faces, each box was labelled by a photo of a person. In the real-life version of the game, participants played with real persons. Individuals with HFA and bvFTD performed well in the computer games, but failed on the task including real persons. In contrast, in patients with early-stage AD, social interactions boosted paired associates learning up to the level of healthy control volunteers. Worse performance in the real life game was associated with less successful recognition of complex emotions and mental states in the Reading the Mind in the Eyes Test. Spatial span did not affect the results. When social cognition is impaired, but memory systems are less compromised (HFA and bvFTD), real-life interactions disrupt associative learning; when disease process impairs memory systems but social cognition is relatively intact (early-stage AD), social interactions have a beneficial effect on learning and memory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. The influence of shift work on cognitive functions and oxidative stress.

    PubMed

    Özdemir, Pınar Güzel; Selvi, Yavuz; Özkol, Halil; Aydın, Adem; Tülüce, Yasin; Boysan, Murat; Beşiroğlu, Lütfullah

    2013-12-30

    Shift work influences health, performance, activity, and social relationships, and it causes impairment in cognitive functions. In this study, we investigated the effects of shift work on participants' cognitive functions in terms of memory, attention, and learning, and we measured the effects on oxidative stress. Additionally, we investigated whether there were significant relationships between cognitive functions and whole blood oxidant/antioxidant status of participants. A total of 90 health care workers participated in the study, of whom 45 subjects were night-shift workers. Neuropsychological tests were administered to the participants to assess cognitive function, and blood samples were taken to detect total antioxidant capacity and total oxidant status at 08:00. Differences in anxiety, depression, and chronotype characteristics between shift work groups were not significant. Shift workers achieved significantly lower scores on verbal memory, attention-concentration, and the digit span forward sub-scales of the Wechsler Memory Scale-Revised (WMS-R), as well as on the immediate memory and total learning sub-scales of the Auditory Verbal Learning Test (AVLT). Oxidative stress parameters were significantly associated with some types of cognitive function, including attention-concentration, recognition, and long-term memory. These findings suggest that night shift work may result in significantly poorer cognitive performance, particularly working memory. © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. The Role of Long-Term Memory in a Test of Visual Working Memory: Proactive Facilitation but no Proactive Interference

    PubMed Central

    Oberauer, Klaus; Awh, Edward; Sutterer, David W.

    2016-01-01

    We report four experiments examining whether associations in visual working memory are subject to proactive interference from long term memory (LTM). Following a long-term learning phase in which participants learned the colors of 120 unique objects, a working memory (WM) test was administered in which participants recalled the precise colors of three concrete objects in an array. Each array in the WM test consisted of one old (previously learned) object with a new color (old-mismatch), one old object with its old color (old-match), and one new object. Experiments 1 to 3 showed that WM performance was better in the old-match condition than in the new condition, reflecting a beneficial contribution from long term memory. In the old mismatch condition, participants sometimes reported colors associated with the relevant shape in LTM, but the probability of successful recall was equivalent to that in the new condition. Thus, information from LTM only intruded in the absence of reportable information in WM. Experiment 4 tested for, and failed to find, proactive interference from the preceding trial in the WM test: Performance in the old-mismatch condition, presenting an object from the preceding trial with a new color, was equal to performance with new objects. Experiment 5 showed that long-term memory for object-color associations is subject to proactive interference. We conclude that the exchange of information between LTM and WM appears to be controlled by a gating mechanism that protects the contents of WM from proactive interference but admits LTM information when it is useful. PMID:27685018

  3. MCMAC-cVT: a novel on-line associative memory based CVT transmission control system.

    PubMed

    Ang, K K; Quek, C; Wahab, A

    2002-03-01

    This paper describes a novel application of an associative memory called the Modified Cerebellar Articulation Controller (MCMAC) (Int. J. Artif. Intell. Engng, 10 (1996) 135) in a continuous variable transmission (CVT) control system. It allows the on-line tuning of the associative memory and produces an effective gain-schedule for the automatic selection of the CVT gear ratio. Various control algorithms are investigated to control the CVT gear ratio to maintain the engine speed within a narrow range of efficient operating speed independently of the vehicle velocity. Extensive simulation results are presented to evaluate the control performance of a direct digital PID control algorithm with auto-tuning (Trans. ASME, 64 (1942)) and anti-windup mechanism. In particular, these results are contrasted against the control performance produced using the MCMAC (Int. J. Artif. Intell. Engng, 10 (1996) 135) with momentum, neighborhood learning and Averaged Trapezoidal Output (MCMAC-ATO) as the neural control algorithm for controlling the CVT. Simulation results are presented that show the reduced control fluctuations and improved learning capability of the MCMAC-ATO without incurring greater memory requirement. In particular, MCMAC-ATO is able to learn and control the CVT simultaneously while still maintaining acceptable control performance.

  4. Dissociable performance on scene learning and strategy implementation after lesions to magnocellular mediodorsal thalamic nucleus

    PubMed Central

    Mitchell, Anna S.; Baxter, Mark G.; Gaffan, David

    2008-01-01

    Monkeys with aspiration lesions of the magnocellular division of the mediodorsal thalamus (MDmc) are impaired in object-in-place scene learning, object recognition and stimulus-reward association. These data have been interpreted to mean that projections from MDmc to prefrontal cortex are required to sustain normal prefrontal function in a variety of task settings. In the present study, we investigated the extent to which bilateral neurotoxic lesions of the MDmc impair a pre-operatively learnt strategy implementation task that is impaired by a crossed lesion technique that disconnects the frontal cortex in one hemisphere from the contralateral inferotemporal cortex. Postoperative memory impairments were also examined using the object-in-place scene memory task. Monkeys learnt both strategy implementation and scene memory tasks separately to a stable level pre-operatively. Bilateral neurotoxic lesions of the MDmc, produced by 10 × 1 μl injections of a mixture of ibotenate and N-methyl-D-aspartate did not affect performance in the strategy implementation task. However, new learning of object-in-place scene memory was substantially impaired. These results provide new evidence about the role of the magnocellular mediodorsal thalamic nucleus in memory processing, indicating that interconnections with the prefrontal cortex are essential during new learning but are not required when implementing a preoperatively acquired strategy task. Thus not all functions of the prefrontal cortex require MDmc input. Instead the involvement of MDmc in prefrontal function may be limited to situations in which new learning must occur. PMID:17978029

  5. Short-Term Exposure to Lambda-Cyhalothrin Negatively Affects the Survival and Memory-Related Characteristics of Worker Bees Apis mellifera.

    PubMed

    Liao, Chun-Hua; He, Xu-Jiang; Wang, Zi-Long; Barron, Andrew B; Zhang, Bo; Zeng, Zhi-Jiang; Wu, Xiao-Bo

    2018-07-01

    Pesticides are considered one of the major contemporary stressors of honey bee health. In this study, the effects of short-term exposure to lambda-cyhalothrin on lifespan, learning, and memory-related characteristics of Apis mellifera were systematically examined. Short-term exposure to lambda-cyhalothrin in worker bees reduced lifespan, affected learning and memory performance, reduced the homing ability, and influenced the expression levels of two learning and memory-related genes of A. mellifera. This research identifies the nature of the sublethal effects of lambda-cyhalothrin on bees and the level of exposure that can be harmful to bee health. This new information will assist in establishing guidelines for the safe use of lambda-cyhalothrin in the field.

  6. Neural activations associated with feedback and retrieval success

    NASA Astrophysics Data System (ADS)

    Wiklund-Hörnqvist, Carola; Andersson, Micael; Jonsson, Bert; Nyberg, Lars

    2017-11-01

    There is substantial behavioral evidence for a phenomenon commonly called "the testing effect", i.e. superior memory performance after repeated testing compared to re-study of to-be-learned materials. However, considerably less is known about the underlying neuro-cognitive processes that are involved in the initial testing phase, and thus underlies the actual testing effect. Here, we investigated functional brain activity related to test-enhanced learning with feedback. Subjects learned foreign vocabulary across three consecutive tests with correct-answer feedback. Functional brain-activity responses were analyzed in relation to retrieval and feedback events, respectively. Results revealed up-regulated activity in fronto-striatal regions during the first successful retrieval, followed by a marked reduction in activity as a function of improved learning. Whereas feedback improved behavioral performance across consecutive tests, feedback had a negligable role after the first successful retrieval for functional brain-activity modulations. It is suggested that the beneficial effects of test-enhanced learning is regulated by feedback-induced updating of memory representations, mediated via the striatum, that might underlie the stabilization of memory commonly seen in behavioral studies of the testing effect.

  7. An On-Chip Learning Neuromorphic Autoencoder With Current-Mode Transposable Memory Read and Virtual Lookup Table.

    PubMed

    Cho, Hwasuk; Son, Hyunwoo; Seong, Kihwan; Kim, Byungsub; Park, Hong-June; Sim, Jae-Yoon

    2018-02-01

    This paper presents an IC implementation of on-chip learning neuromorphic autoencoder unit in a form of rate-based spiking neural network. With a current-mode signaling scheme embedded in a 500 × 500 6b SRAM-based memory, the proposed architecture achieves simultaneous processing of multiplications and accumulations. In addition, a transposable memory read for both forward and backward propagations and a virtual lookup table are also proposed to perform an unsupervised learning of restricted Boltzmann machine. The IC is fabricated using 28-nm CMOS process and is verified in a three-layer network of encoder-decoder pair for training and recovery of images with two-dimensional pixels. With a dataset of 50 digits, the IC shows a normalized root mean square error of 0.078. Measured energy efficiencies are 4.46 pJ per synaptic operation for inference and 19.26 pJ per synaptic weight update for learning, respectively. The learning performance is also estimated by simulations if the proposed hardware architecture is extended to apply to a batch training of 60 000 MNIST datasets.

  8. Effects of age on a real-world What-Where-When memory task

    PubMed Central

    Mazurek, Adèle; Bhoopathy, Raja Meenakshi; Read, Jenny C. A.; Gallagher, Peter; Smulders, Tom V.

    2015-01-01

    Many cognitive abilities decline with aging, making it difficult to detect pathological changes against a background of natural changes in cognition. Most of the tests to assess cognitive decline are artificial tasks that have little resemblance to the problems faced by people in everyday life. This means both that people may have little practice doing such tasks (potentially contributing to the decline in performance) and that the tasks may not be good predictors of real-world cognitive problems. In this study, we test the performance of young people (18–25 years) and older people (60+-year-olds) on a novel, more ecologically valid test of episodic memory: the real-world What-Where-When (WWW) memory test. We also compare them on a battery of other cognitive tests, including working memory, psychomotor speed, executive function, and episodic memory. Older people show the expected age-related declines on the test battery. In the WWW memory task, older people were more likely to fail to remember any WWW combination than younger people were, although they did not significantly differ in their overall WWW score due to some older people performing as well as or better than most younger people. WWW memory performance was significantly predicted by other measures of episodic memory, such as the single-trial learning and long-term retention in the Rey Auditory Verbal Learning task and Combined Object Location Memory in the Object Relocation task. Self-reported memory complaints also predicted performance on the WWW task. These findings confirm that our real-world WWW memory task is a valid measure of episodic memory, with high ecological validity, which may be useful as a predictor of everyday memory abilities. The task will require a bit more development to improve its sensitivity to cognitive declines in aging and to potentially distinguish between mentally healthy older adults and those with early signs of cognitive pathologies. PMID:26042030

  9. The importance of working memory for school achievement in primary school children with intellectual or learning disabilities.

    PubMed

    Maehler, Claudia; Schuchardt, Kirsten

    2016-11-01

    Given the well-known relation between intelligence and school achievement we expect children with normal intelligence to perform well at school and those with intelligence deficits to meet learning problems. But, contrary to these expectations, some children do not perform according to these predictions: children with normal intelligence but sub-average school achievement and children with lower intelligence but average success at school. Yet, it is an open question how the unexpected failure or success can be explained. This study examined the role of working memory sensu Baddeley (1986) for school achievement, especially for unexpected failure or success. An extensive working memory battery with a total of 14 tasks for the phonological loop, the visual-spatial sketchpad and central executive skills was presented in individual sessions to four groups of children differing in IQ (normal vs. low) and school success (good vs. poor). Results reveal that children with sub-average school achievement showed deficits in working memory functioning, irrespective of intelligence. By contrast, children with regular school achievement did not show deficits in working memory, again irrespective of intelligence. Therefore working memory should be considered an important predictor of academic success that can lead both to unexpected overachievement and failure at school. Individual working memory competencies should be taken into account with regard to diagnosis and intervention for children with learning problems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The relationship between phonological memory, receptive vocabulary, and fast mapping in young children with specific language impairment.

    PubMed

    Gray, Shelley

    2006-10-01

    This study assessed the fast mapping performance of children with specific language impairment (SLI) across the preschool to kindergarten age span in relation to their phonological memory and vocabulary development. Fifty-three children diagnosed with SLI and 53 children with normal language (NL) matched for age and gender (30 three-year-olds, 18 four-year-olds, 28 five-year-olds, and 30 six-year-olds) participated. Children's phonological memory was assessed using nonword repetition and digit span tasks. Receptive vocabulary was assessed using the Peabody Picture Vocabulary Test-III. Children learned the names for 8 objects during 2 fast mapping tasks. Overall, the NL group demonstrated significantly better performance on phonological memory and vocabulary measures across the age span; however, performance on the fast mapping task differed significantly only at age 5. Phonological memory and existing receptive vocabulary did not predict fast mapping ability. The phonological memory skills of preschoolers with NL and SLI followed a similar developmental pattern, but the SLI group consistently scored significantly lower than the NL group. Overall, the NL group showed significantly better receptive vocabulary, with evidence that between-group differences increased at age 6. Neither short-term phonological memory nor receptive vocabulary predicted fast mapping comprehension or production performance, even though both have been shown to correlate with later stages of word learning.

  11. Memory enhancement by a semantically unrelated emotional arousal source induced after learning.

    PubMed

    Nielson, Kristy A; Yee, Douglas; Erickson, Kirk I

    2005-07-01

    It has been well established that moderate physiological or emotional arousal modulates memory. However, there is some controversy about whether the source of arousal must be semantically related to the information to be remembered. To test this idea, 35 healthy young adult participants learned a list of common nouns and afterward viewed a semantically unrelated, neutral or emotionally arousing videotape. The tape was shown after learning to prevent arousal effects on encoding or attention, instead influencing memory consolidation. Heart rate increase was significantly greater in the arousal group, and negative affect was significantly less reported in the non-arousal group after the video. The arousal group remembered significantly more words than the non-arousal group at both 30 min and 24 h delays, despite comparable group memory performance prior to the arousal manipulation. These results demonstrate that emotional arousal, even from an unrelated source, is capable of modulating memory consolidation. Potential reasons for contradictory findings in some previous studies, such as the timing of "delayed" memory tests, are discussed.

  12. Facilitating role of 3D multimodal visualization and learning rehearsal in memory recall.

    PubMed

    Do, Phuong T; Moreland, John R

    2014-04-01

    The present study investigated the influence of 3D multimodal visualization and learning rehearsal on memory recall. Participants (N = 175 college students ranging from 21 to 25 years) were assigned to different training conditions and rehearsal processes to learn a list of 14 terms associated with construction of a wood-frame house. They then completed a memory test determining their cognitive ability to free recall the definitions of the 14 studied terms immediately after training and rehearsal. The audiovisual modality training condition was associated with the highest accuracy, and the visual- and auditory-modality conditions with lower accuracy rates. The no-training condition indicated little learning acquisition. A statistically significant increase in performance accuracy for the audiovisual condition as a function of rehearsal suggested the relative importance of rehearsal strategies in 3D observational learning. Findings revealed the potential application of integrating virtual reality and cognitive sciences to enhance learning and teaching effectiveness.

  13. Spatial short-term memory in children with nonverbal learning disabilities: impairment in encoding spatial configuration.

    PubMed

    Narimoto, Tadamasa; Matsuura, Naomi; Takezawa, Tomohiro; Mitsuhashi, Yoshinori; Hiratani, Michio

    2013-01-01

    The authors investigated whether impaired spatial short-term memory exhibited by children with nonverbal learning disabilities is due to a problem in the encoding process. Children with or without nonverbal learning disabilities performed a simple spatial test that required them to remember 3, 5, or 7 spatial items presented simultaneously in random positions (i.e., spatial configuration) and to decide if a target item was changed or all items including the target were in the same position. The results showed that, even when the spatial positions in the encoding and probe phases were similar, the mean proportion correct of children with nonverbal learning disabilities was 0.58 while that of children without nonverbal learning disabilities was 0.84. The authors argue with the results that children with nonverbal learning disabilities have difficulty encoding relational information between spatial items, and that this difficulty is responsible for their impaired spatial short-term memory.

  14. A Barnes maze for juvenile rats delineates the emergence of spatial navigation ability.

    PubMed

    McHail, Daniel G; Valibeigi, Nazanin; Dumas, Theodore C

    2018-03-01

    The neural bases of cognition may be greatly informed by relating temporally defined developmental changes in behavior with concurrent alterations in neural function. A robust improvement in performance in spatial learning and memory tasks occurs at 3 wk of age in rodents. We reported that the developmental increase of spontaneous alternation in a Y-maze was related to changes in temporal dynamics of fast glutamatergic synaptic transmission in the hippocampus. We also showed that, during allothetic behaviors in the Y-maze, network oscillation power increased at frequency bands known to support spatial learning and memory in adults. However, there are no discrete learning and memory phases during free exploration in the Y-maze. Thus, we adapted the Barnes maze for use with juvenile rats. Following a single platform exposure in dim light on the day before training (to encourage exploration), animals were trained on the subsequent 2 d in bright light to find a hidden escape box and then underwent a memory test 24 h later. During escape training, the older animals learned the task in 1 d, while the younger animals required 2 d and did not reach the performance of older animals. Long-term memory performance was also superior in the older animals. Thus, we have validated the use of the Barnes maze for this developmental period and established a timeline for the ontogeny of spatial navigation ability in this maze around 3 wk of age. Subsequent work will pair in vivo recording of hippocampal oscillations and single units with this task to help identify how hippocampal maturation might relate to performance improvements. © 2018 McHail et al.; Published by Cold Spring Harbor Laboratory Press.

  15. Working Memory, Visual-Spatial-Intelligence and Their Relationship to Problem-Solving

    ERIC Educational Resources Information Center

    Buhner, Markus; Kroner, Stephan; Ziegler, Matthias

    2008-01-01

    The relationship between working memory, intelligence and problem-solving is explored. Wittmann and Suss [Wittmann, W.W., & Suss, H.M. (1999). Investigating the paths between working memory, intelligence, knowledge, and complex problem-solving performances via Brunswik symmetry. In P.L. Ackerman, R.D. Roberts (Ed.), "Learning and individual…

  16. The Impact of Persistent Pain on Working Memory and Learning

    ERIC Educational Resources Information Center

    Smith, Alexander; Ayres, Paul

    2014-01-01

    The study reviewed the evidence that persistent pain has the capacity to interrupt and consume working memory resources. It was argued that individuals with persistent pain essentially operate within a compromised neurocognitive paradigm of limited working memory resources that impairs task performance. Using cognitive load theory as a theoretical…

  17. Integrity of white matter structure is related to episodic memory performance in the low-educated elderly.

    PubMed

    Resende, Elisa de Paula França; Tovar-Moll, Fernanda Freire; Ferreira, Fernanda Meireles; Bramati, Ivanei; de Souza, Leonardo Cruz; Carmona, Karoline Carvalho; Guimarães, Henrique Cerqueira; Carvalho, Viviane Amaral; Barbosa, Maira Tonidandel; Caramelli, Paulo

    2017-11-01

    The low-educated elderly are a vulnerable population in whom studying the role of white matter integrity on memory may provide insights for understanding how memory declines with aging and disease. Thirty-one participants (22 women), 23 cognitively healthy and eight with cognitive impairment-no dementia, aged 80.4 ± 3.8 years, with 2.2 ± 1.9 years of education, underwent an MRI scan with diffusion tensor imaging (DTI) acquisition. We verified if there were correlations between the performance on the Brief Cognitive Screening Battery (BCSB) and the Rey Auditory Verbal Learning Test (RAVLT) with DTI parameters. The BCSB delayed recall task correlated with frontotemporoparietal connection bundles, with the hippocampal part of the cingulum bilaterally and with the right superior longitudinal fasciculus. The RAVLT learning and delayed recall scores also correlated with the hippocampal part of the cingulum bilaterally. Although preliminary, our study suggests that the integrity of white matter frontotemporoparietal fasciculi seems to play a role in episodic memory performance in the low-educated elderly. This finding opens opportunities to study potential targets for memory decline prevention in vulnerable populations.

  18. Neural Network Model For Fast Learning And Retrieval

    NASA Astrophysics Data System (ADS)

    Arsenault, Henri H.; Macukow, Bohdan

    1989-05-01

    An approach to learning in a multilayer neural network is presented. The proposed network learns by creating interconnections between the input layer and the intermediate layer. In one of the new storage prescriptions proposed, interconnections are excitatory (positive) only and the weights depend on the stored patterns. In the intermediate layer each mother cell is responsible for one stored pattern. Mutually interconnected neurons in the intermediate layer perform a winner-take-all operation, taking into account correlations between stored vectors. The performance of networks using this interconnection prescription is compared with two previously proposed schemes, one using inhibitory connections at the output and one using all-or-nothing interconnections. The network can be used as a content-addressable memory or as a symbolic substitution system that yields an arbitrarily defined output for any input. The training of a model to perform Boolean logical operations is also described. Computer simulations using the network as an autoassociative content-addressable memory show the model to be efficient. Content-addressable associative memories and neural logic modules can be combined to perform logic operations on highly corrupted data.

  19. Achievement goals affect metacognitive judgments

    PubMed Central

    Ikeda, Kenji; Yue, Carole L.; Murayama, Kou; Castel, Alan D.

    2017-01-01

    The present study examined the effect of achievement goals on metacognitive judgments, such as judgments of learning (JOLs) and metacomprehension judgments, and actual recall performance. We conducted five experiments manipulating the instruction of achievement goals. In each experiment, participants were instructed to adopt mastery-approach goals (i.e., develop their own mental ability through a memory task) or performance-approach goals (i.e., demonstrate their strong memory ability through getting a high score on a memory task). The results of Experiments 1 and 2 showed that JOLs of word pairs in the performance-approach goal condition tended to be higher than those in the mastery-approach goal condition. In contrast, cued recall performance did not differ between the two goal conditions. Experiment 3 also demonstrated that metacomprehension judgments of text passages were higher in the performance-approach goal condition than in the mastery-approach goals condition, whereas test performance did not differ between conditions. These findings suggest that achievement motivation affects metacognitive judgments during learning, even when achievement motivation does not influence actual performance. PMID:28983496

  20. Unraveling Network-induced Memory Contention: Deeper Insights with Machine Learning

    DOE PAGES

    Groves, Taylor Liles; Grant, Ryan; Gonzales, Aaron; ...

    2017-11-21

    Remote Direct Memory Access (RDMA) is expected to be an integral communication mechanism for future exascale systems enabling asynchronous data transfers, so that applications may fully utilize CPU resources while simultaneously sharing data amongst remote nodes. We examine Network-induced Memory Contention (NiMC) on Infiniband networks. We expose the interactions between RDMA, main-memory and cache, when applications and out-of-band services compete for memory resources. We then explore NiMCs resulting impact on application-level performance. For a range of hardware technologies and HPC workloads, we quantify NiMC and show that NiMCs impact grows with scale resulting in up to 3X performance degradation atmore » scales as small as 8K processes even in applications that previously have been shown to be performance resilient in the presence of noise. In addition, this work examines the problem of predicting NiMC's impact on applications by leveraging machine learning and easily accessible performance counters. This approach provides additional insights about the root cause of NiMC and facilitates dynamic selection of potential solutions. Finally, we evaluated three potential techniques to reduce NiMCs impact, namely hardware offloading, core reservation and network throttling.« less

  1. Unraveling Network-induced Memory Contention: Deeper Insights with Machine Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groves, Taylor Liles; Grant, Ryan; Gonzales, Aaron

    Remote Direct Memory Access (RDMA) is expected to be an integral communication mechanism for future exascale systems enabling asynchronous data transfers, so that applications may fully utilize CPU resources while simultaneously sharing data amongst remote nodes. We examine Network-induced Memory Contention (NiMC) on Infiniband networks. We expose the interactions between RDMA, main-memory and cache, when applications and out-of-band services compete for memory resources. We then explore NiMCs resulting impact on application-level performance. For a range of hardware technologies and HPC workloads, we quantify NiMC and show that NiMCs impact grows with scale resulting in up to 3X performance degradation atmore » scales as small as 8K processes even in applications that previously have been shown to be performance resilient in the presence of noise. In addition, this work examines the problem of predicting NiMC's impact on applications by leveraging machine learning and easily accessible performance counters. This approach provides additional insights about the root cause of NiMC and facilitates dynamic selection of potential solutions. Finally, we evaluated three potential techniques to reduce NiMCs impact, namely hardware offloading, core reservation and network throttling.« less

  2. The effect of Vitamin E on learning and memory deficits in intrahippocampal kainate-induced temporal lobe epilepsy in rats.

    PubMed

    Kiasalari, Zahra; Khalili, Mohsen; Shafiee, Samaneh; Roghani, Mehrdad

    2016-01-01

    Since temporal lobe epilepsy (TLE) is associated with learning and memory impairment, we investigated the beneficial effect of Vitamin E on the impaired learning and memory in the intrahippocampal kainate model of TLE in rats. Rats were divided into sham, Vitamin E-treated sham, kainate, and Vitamin E-treated kainate. Intrahippocampal kainate was used for induction of epilepsy. Vitamin E was injected intraperitoneal (i.p.) at a dose of 200 mg/kg/day started 1 week before surgery until 1 h presurgery. Initial and step-through latencies in the passive avoidance test and alternation behavior percentage in Y-maze were finally determined in addition to measurement of some oxidative stress markers. Kainate injection caused a higher severity and rate of seizures and deteriorated learning and memory performance in passive avoidance paradigm and spontaneous alternation as an index of spatial recognition memory in Y-maze task. Intrahippocampal kainate also led to the elevation of malondialdehyde (MDA) and nitrite and reduced activity of superoxide dismutase (SOD). Vitamin E pretreatment significantly attenuated severity and incidence rate of seizures, significantly improved retrieval and recall in passive avoidance, did not ameliorate spatial memory deficit in Y-maze, and lowered MDA and enhanced SOD activity. Vitamin E improves passive avoidance learning and memory and part of its beneficial effect is due to its potential to mitigate hippocampal oxidative stress.

  3. No Acute Effects of Choline Bitartrate Food Supplements on Memory in Healthy, Young, Human Adults.

    PubMed

    Lippelt, D P; van der Kint, S; van Herk, K; Naber, M

    2016-01-01

    Choline is a dietary component and precursor of acetylcholine, a crucial neurotransmitter for memory-related brain functions. In two double-blind, placebo-controlled cross-over experiments, we investigated whether the food supplement choline bitartrate improved declarative memory and working memory in healthy, young students one to two hours after supplementation. In experiment 1, 28 participants performed a visuospatial working memory task. In experiment 2, 26 participants performed a declarative picture memorization task. In experiment 3, 40 participants performed a verbal working memory task in addition to the visuospatial working memory and declarative picture task. All tasks were conducted approximately 60 minutes after the ingestion of 2.0-2.5g of either choline bitartrate or placebo. We found that choline did not significantly enhance memory performance during any of the tasks. The null hypothesis that choline does not improve memory performance as compared to placebo was strongly supported by Bayesian statistics. These results are in contrast with animal studies suggesting that choline supplementation boosts memory performance and learning. We conclude that choline likely has no acute effects on cholinergic memory functions in healthy human participants.

  4. No Acute Effects of Choline Bitartrate Food Supplements on Memory in Healthy, Young, Human Adults

    PubMed Central

    Lippelt, D. P.; van der Kint, S.; van Herk, K.; Naber, M.

    2016-01-01

    Choline is a dietary component and precursor of acetylcholine, a crucial neurotransmitter for memory-related brain functions. In two double-blind, placebo-controlled cross-over experiments, we investigated whether the food supplement choline bitartrate improved declarative memory and working memory in healthy, young students one to two hours after supplementation. In experiment 1, 28 participants performed a visuospatial working memory task. In experiment 2, 26 participants performed a declarative picture memorization task. In experiment 3, 40 participants performed a verbal working memory task in addition to the visuospatial working memory and declarative picture task. All tasks were conducted approximately 60 minutes after the ingestion of 2.0–2.5g of either choline bitartrate or placebo. We found that choline did not significantly enhance memory performance during any of the tasks. The null hypothesis that choline does not improve memory performance as compared to placebo was strongly supported by Bayesian statistics. These results are in contrast with animal studies suggesting that choline supplementation boosts memory performance and learning. We conclude that choline likely has no acute effects on cholinergic memory functions in healthy human participants. PMID:27341028

  5. Effects of Intranasal Oxytocin on Long-Term Memory in Healthy Humans: A Systematic Review.

    PubMed

    Brambilla, Michela; Manenti, Rosa; de Girolamo, Giovanni; Adenzato, Mauro; Bocchio-Chiavetto, Luisella; Cotelli, Maria

    2016-12-01

    Preclinical Research The neuropeptide oxytocin (Oxt) is implicated in complex emotional and social behaviors and appears to play an important role in learning and memory. Animal studies have shown that the effects of exogenous Oxt on memory vary according to the timing of administration, context, gender, and dose and may improve the memory of social, but not nonsocial stimuli. Oxt is intimately involved in a broad array of neuropsychiatric functions and may therefore be a pharmacological target for several psychiatric disorders. This review summarizes the potential effects of Oxt on long-term memory processes in healthy humans based on a PubMed search over the period 1980-2016. The effects of intranasal Oxt on human memory are controversial and the studies included in this review have applied a variety of learning paradigms, in turn producing variable outcomes. Specifically, data on the long-term memory of nonemotional stimuli found no effect or even worsening in memory, while studies using emotional stimuli showed an improvement of long-term memory performance. In conclusion, this review identified a link between long-term memory performance and exogenous intranasal Oxt in humans, although these results still warrant further confirmation in large, multicenter randomized controlled trials. Drug Dev Res 77 : 479-488, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Using repetitive transcranial magnetic stimulation to study the underlying neural mechanisms of human motor learning and memory.

    PubMed

    Censor, Nitzan; Cohen, Leonardo G

    2011-01-01

    In the last two decades, there has been a rapid development in the research of the physiological brain mechanisms underlying human motor learning and memory. While conventional memory research performed on animal models uses intracellular recordings, microfusion of protein inhibitors to specific brain areas and direct induction of focal brain lesions, human research has so far utilized predominantly behavioural approaches and indirect measurements of neural activity. Repetitive transcranial magnetic stimulation (rTMS), a safe non-invasive brain stimulation technique, enables the study of the functional role of specific cortical areas by evaluating the behavioural consequences of selective modulation of activity (excitation or inhibition) on memory generation and consolidation, contributing to the understanding of the neural substrates of motor learning. Depending on the parameters of stimulation, rTMS can also facilitate learning processes, presumably through purposeful modulation of excitability in specific brain regions. rTMS has also been used to gain valuable knowledge regarding the timeline of motor memory formation, from initial encoding to stabilization and long-term retention. In this review, we summarize insights gained using rTMS on the physiological and neural mechanisms of human motor learning and memory. We conclude by suggesting possible future research directions, some with direct clinical implications.

  7. How preserved is episodic memory in behavioral variant frontotemporal dementia?

    PubMed

    Hornberger, M; Piguet, O; Graham, A J; Nestor, P J; Hodges, J R

    2010-02-09

    Studies have shown variable memory performance in patients with behavioral variant frontotemporal dementia (bvFTD). Our study investigated whether this variability is due to the admixture of patients with true bvFTD and phenocopy patients. We also sought to compare performance of patients with bvFTD and patients with Alzheimer disease (AD). We analyzed neuropsychological memory performance in patients with a clinical diagnosis of bvFTD divided into those who progressed (n = 50) and those who remained stable (n = 39), patients with AD (n = 64), and healthy controls (n = 64). Patients with progressive bvFTD were impaired on most memory tests to a similar level to that of patients with early AD. Findings from a subset of patients with progressive bvFTD with confirmed FTLD pathology (n = 10) corroborated these findings. By contrast, patients with phenocopy bvFTD performed significantly better than progressors and patients with AD. Logistic regression revealed that patients with bvFTD can be distinguished to a high degree (85%) on the immediate recall score of a word list learning test (Rey Auditory Verbal Learning Test). Our results provide evidence for an underlying memory deficit in "real" or progressive behavioral variant frontotemporal dementia (bvFTD) similar to Alzheimer disease, though the groups differ in orientation scores, with patients with bvFTD being intact. Exclusion solely based on impaired neuropsychological memory performance can potentially lead to an underdiagnosis of FTD.

  8. Antennal tactile learning in the honeybee: effect of nicotinic antagonists on memory dynamics.

    PubMed

    Dacher, M; Lagarrigue, A; Gauthier, M

    2005-01-01

    Restrained worker honeybees (Apis mellifera L.) are able to learn to associate antennal-scanning of a metal plate with a sucrose reinforcement delivered to the mouthparts. Learning occurs reliably in a single association of the two sensory stimuli. The involvement of nicotinic pathways in memory formation and retrieval processes was tested by injecting, into the whole brain through the median ocellus, either mecamylamine (0.6 microg per bee) or alpha-bungarotoxin (2.4 ng per bee). Saline served as a control. Mecamylamine injected 10 min before the retrieval test impairs the retention level tested 3 h and 24 h after single- or multi-trial learning. Retrieval tests performed at various times after the injection show that the blocking effect of mecamylamine lasts about 1 h. The drug has no effect on the reconsolidation or extinction processes. Mecamylamine injected 10 min before conditioning impairs single-trial learning but has no effect on five-trial learning and on the consolidation process. By contrast, alpha-bungarotoxin only impairs the formation of long-term memory (24 h) induced by the five-trial learning and has no effect on medium-term memory (3 h), on single-trial learning or on the retrieval process. Hence, owing to previous data, at least two kinds of nicotinic receptors seem to be involved in honeybee memory, an alpha-bungarotoxin-sensitive and an alpha-bungarotoxin-insensitive receptor. Our results extend to antennal mechanosensory conditioning the role of the cholinergic system that we had previously described for olfactory conditioning in the honeybee. Moreover, we describe here in this insect a pharmacological dissociation between alpha-bungarotoxin sensitive long-term memory and alpha-bungarotoxin insensitive medium-term memory, the last one being affected by mecamylamine.

  9. Cognitive control of familiarity: directed forgetting reduces proactive interference in working memory.

    PubMed

    Festini, Sara B; Reuter-Lorenz, Patricia A

    2014-03-01

    Proactive interference (PI) occurs when previously learned information interferes with new learning. In a working memory task, PI induces longer response times and more errors to recent negative probes than to new probes, presumably because the recent probe's familiarity invites a "yes" response. Warnings, longer intertrial intervals, and the increased contextual salience of the probes can reduce but not eliminate PI, suggesting that cognitive control over PI is limited. Here we tested whether control exerted in the form of intentional forgetting performed during working memory can reduce the magnitude of PI. In two experiments, participants performed a working memory task with directed-forgetting instructions and the occasional presentation of recent probes. Surprise long-term memory testing indicated better memory for to-be-remembered than for to-be-forgotten items, documenting the classic directed-forgetting effect. Critically, in working memory, PI was virtually eliminated for recent probes from prior to-be-forgotten lists, as compared to recent probes from prior to-be-remembered lists. Thus cognitive control, when executed via directed forgetting, can reduce the adverse and otherwise persistent interference from familiarity, an effect that we attribute to attenuated memory representations of the to-be-forgotten items.

  10. The Anterior Thalamus is Critical for Overcoming Interference in a Context-Dependent Odor Discrimination Task

    PubMed Central

    Law, L. Matthew; Smith, David M.

    2012-01-01

    The anterior thalamus (AT) is anatomically interconnected with the hippocampus and other structures known to be involved in memory, and the AT is involved in many of the same learning and memory functions as the hippocampus. For example, like the hippocampus, the AT is involved in spatial cognition and episodic memory. The hippocampus also has a well-documented role in contextual memory processes, but it is not known whether the AT is similarly involved in contextual memory. In the present study, we assessed the role of the AT in contextual memory processes by temporarily inactivating the AT and training rats on a recently developed context-based olfactory list learning task, which was designed to assess the use of contextual information to resolve interference. Rats were trained on one list of odor discrimination problems, followed by training on a second list in either the same context or a different context. In order to induce interference, some of the odors appeared on both lists with their predictive value reversed. Control rats that learned the two lists in different contexts performed significantly better than rats that learned the two lists in the same context. However, AT lesions completely abolished this contextual learning advantage, a result that is very similar to the effects of hippocampal inactivation. These findings demonstrate that the AT, like the hippocampus, is involved in contextual memory and suggest that the hippocampus and AT are part of a functional circuit involved in contextual memory. PMID:23025833

  11. Semantic congruency but not temporal synchrony enhances long-term memory performance for audio-visual scenes.

    PubMed

    Meyerhoff, Hauke S; Huff, Markus

    2016-04-01

    Human long-term memory for visual objects and scenes is tremendous. Here, we test how auditory information contributes to long-term memory performance for realistic scenes. In a total of six experiments, we manipulated the presentation modality (auditory, visual, audio-visual) as well as semantic congruency and temporal synchrony between auditory and visual information of brief filmic clips. Our results show that audio-visual clips generally elicit more accurate memory performance than unimodal clips. This advantage even increases with congruent visual and auditory information. However, violations of audio-visual synchrony hardly have any influence on memory performance. Memory performance remained intact even with a sequential presentation of auditory and visual information, but finally declined when the matching tracks of one scene were presented separately with intervening tracks during learning. With respect to memory performance, our results therefore show that audio-visual integration is sensitive to semantic congruency but remarkably robust against asymmetries between different modalities.

  12. Segmented-memory recurrent neural networks.

    PubMed

    Chen, Jinmiao; Chaudhari, Narendra S

    2009-08-01

    Conventional recurrent neural networks (RNNs) have difficulties in learning long-term dependencies. To tackle this problem, we propose an architecture called segmented-memory recurrent neural network (SMRNN). A symbolic sequence is broken into segments and then presented as inputs to the SMRNN one symbol per cycle. The SMRNN uses separate internal states to store symbol-level context, as well as segment-level context. The symbol-level context is updated for each symbol presented for input. The segment-level context is updated after each segment. The SMRNN is trained using an extended real-time recurrent learning algorithm. We test the performance of SMRNN on the information latching problem, the "two-sequence problem" and the problem of protein secondary structure (PSS) prediction. Our implementation results indicate that SMRNN performs better on long-term dependency problems than conventional RNNs. Besides, we also theoretically analyze how the segmented memory of SMRNN helps learning long-term temporal dependencies and study the impact of the segment length.

  13. Encoding attentional states during visuomotor adaptation

    PubMed Central

    Im, Hee Yeon; Bédard, Patrick; Song, Joo-Hyun

    2015-01-01

    We recently showed that visuomotor adaptation acquired under attentional distraction is better recalled under a similar level of distraction compared to no distraction. This paradoxical effect suggests that attentional state (e.g., divided or undivided) is encoded as an internal context during visuomotor learning and should be reinstated for successful recall (Song & Bédard, 2015). To investigate if there is a critical temporal window for encoding attentional state in visuomotor memory, we manipulated whether participants performed the secondary attention-demanding task concurrently in the early or late phase of visuomotor learning. Recall performance was enhanced when the attentional states between recall and the early phase of visuomotor learning were consistent. However, it reverted to untrained levels when tested under the attentional state of the late-phase learning. This suggests that attentional state is primarily encoded during the early phase of learning before motor errors decrease and reach an asymptote. Furthermore, we demonstrate that when divided and undivided attentional states were mixed during visuomotor adaptation, only divided attention was encoded as an internal cue for memory retrieval. Therefore, a single attentional state appears to be primarily integrated with visuomotor memory while motor error reduction is in progress during learning. PMID:26114683

  14. The contribution of the androgen receptor (AR) in human spatial learning and memory: A study in women with complete androgen insensitivity syndrome (CAIS).

    PubMed

    Mueller, S C; Verwilst, T; Van Branteghem, A; T'Sjoen, G; Cools, M

    2016-02-01

    Few studies have examined the impact of androgen insensitivity on human spatial learning and memory. In the present study, we tested 11 women with complete androgen insensitivity syndrome (CAIS), a rare genetic disorder characterized by complete absence of AR activity, and compared their performance against 20 comparison males and 19 comparison females on a virtual analog of the Morris Water Maze task. The results replicated a main sex effect showing that men relative to women were faster in finding the hidden platform and had reduced heading error. Furthermore, findings indicated that mean performance of women with CAIS was between control women and control men, though the differences were not statistically significant. Effect size estimates (and corresponding confidence intervals) of spatial learning trials showed little difference between women with CAIS and control women but CAIS women differed from men, but not women, on two variables, latency to find the platform and first-move latency. No differences between groups were present during visible platform trials or the probe trial, a measure of spatial memory. Moreover, groups also did not differ on estimates of IQ and variability of performance. The findings are discussed in relation to androgen insensitivity in human spatial learning and memory. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Impaired quality and efficiency of sleep impairs cognitive functioning in Addison's disease.

    PubMed

    Henry, Michelle; Ross, Ian Louis; Wolf, Pedro Sofio Abril; Thomas, Kevin Garth Flusk

    2017-04-01

    Standard replacement therapy for Addison's disease (AD) does not restore a normal circadian rhythm. Periods of sub- and supra- physiological cortisol levels experienced by patients with AD likely induce disrupted sleep. Given that healthy sleep plays an important role in memory consolidation, the novelty of the current study was to characterise, using objective measures, the relationship between sleep and memory in patients with AD, and to examine the hypothesis that poor sleep is a biological mechanism underlying memory impairment in those patients. We used a within-subjects design. Ten patients with AD and 10 matched healthy controls completed standardised neuropsychological tests assessing declarative memory (Rey Auditory Verbal Learning Test) and procedural memory (Finger Tapping Task) before and after a period of actigraphy-measured sleep, and before and after a period of waking. Relative to healthy controls, patients with AD experienced disrupted sleep characterised by poorer sleep efficiency and more time spent awake. Patients also showed impaired verbal learning and memory relative to healthy controls (p=0.007). Furthermore, whereas healthy controls' declarative memory performance benefited from a period of sleep compared to waking (p=0.032), patients with AD derived no such benefit from sleep (p=0.448). Regarding the procedural memory task, analyses detected no significant between-group differences (all p's<0.065), and neither group showed significant sleep-enhanced performance. We demonstrated, using actigraphy and standardized measures of memory performance, an association between sleep disturbances and cognitive deficits in patients with AD. These results suggest that, in patients with AD, the source of memory deficits is, at least to some extent, disrupted sleep patterns that interfere with optimal consolidation of previously-learned declarative information. Hence, treating the sleep disturbances that are frequently experienced by patients with AD may improve their cognitive functioning. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Lentiviral silencing of GSK-3β in adult dentate gyrus impairs contextual fear memory and synaptic plasticity

    PubMed Central

    Chew, Benjamin; Ryu, Jae Ryun; Ng, Teclise; Ma, Dongliang; Dasgupta, Ananya; Neo, Sin Hui; Zhao, Jing; Zhong, Zhong; Bichler, Zoë; Sajikumar, Sreedharan; Goh, Eyleen L. K.

    2015-01-01

    Attempts have been made to use glycogen synthase kinase-3 beta (GSK3β) inhibitors for prophylactic treatment of neurocognitive conditions. However the use of lithium, a non-specific inhibitor of GSK3β results in mild cognitive impairment in humans. The effects of global GSK3β inhibition or knockout on learning and memory in healthy adult mice are also inconclusive. Our study aims to better understand the role of GSK3β in learning and memory through a more regionally, targeted approach, specifically performing lentiviral-mediated knockdown of GSK3β within the dentate gyrus (DG). DG-GSK3β-silenced mice showed impaired contextual fear memory retrieval. However, cue fear memory, spatial memory, locomotor activity and anxiety levels were similar to control. These GSK3β-silenced mice also showed increased induction and maintenance of DG long-term potentiation (DG-LTP) compared to control animals. Thus, this region-specific, targeted knockdown of GSK3β in the DG provides better understanding on the role of GSK3β in learning and memory. PMID:26157370

  17. Age-related impairments in active learning and strategic visual exploration.

    PubMed

    Brandstatt, Kelly L; Voss, Joel L

    2014-01-01

    Old age could impair memory by disrupting learning strategies used by younger individuals. We tested this possibility by manipulating the ability to use visual-exploration strategies during learning. Subjects controlled visual exploration during active learning, thus permitting the use of strategies, whereas strategies were limited during passive learning via predetermined exploration patterns. Performance on tests of object recognition and object-location recall was matched for younger and older subjects for objects studied passively, when learning strategies were restricted. Active learning improved object recognition similarly for younger and older subjects. However, active learning improved object-location recall for younger subjects, but not older subjects. Exploration patterns were used to identify a learning strategy involving repeat viewing. Older subjects used this strategy less frequently and it provided less memory benefit compared to younger subjects. In previous experiments, we linked hippocampal-prefrontal co-activation to improvements in object-location recall from active learning and to the exploration strategy. Collectively, these findings suggest that age-related memory problems result partly from impaired strategies during learning, potentially due to reduced hippocampal-prefrontal co-engagement.

  18. Acute genistein treatment mimics the effects of estradiol by enhancing place learning and impairing response learning in young adult female rats

    PubMed Central

    Pisani, Samantha L.; Neese, Steven L.; Doerge, Daniel R.; Helferich, William G.; Schantz, Susan L.; Korol, Donna L.

    2012-01-01

    Endogenous estrogens have bidirectional effects on learning and memory, enhancing or impairing cognition depending on many variables, including the task and the memory systems that are engaged. Moderate increases in estradiol enhance hippocampus-sensitive place learning, yet impair response learning that taps dorsal striatum function. This memory modulation likely occurs via activation of estrogen receptors, resulting in altered neural function. Supplements containing estrogenic compounds from plants are widely consumed despite limited information about their effects on brain function, including learning and memory. Phytoestrogens can enter the brain and signal through estrogen receptors to affect cognition. Enhancements in spatial memory and impairments in executive function have been found following treatment with soy phytoestrogens, but no tests of actions on striatum-sensitive tasks have been made to date. The present study compared the effects of acute exposure to the isoflavone genistein with the effects of estradiol on performance in place and response learning tasks. Long-Evans rats were ovariectomized, treated with 17β-estradiol benzoate, genistein-containing sucrose pellets, or vehicle (oil or plain sucrose pellets) for two days prior to behavioral training. Compared to vehicle controls, estradiol treatment enhanced place learning at a low (4.5 μg/kg) but not high dose (45 μg/kg), indicating an inverted pattern of spatial memory facilitation. Treatment with 4.4 mg of genistein over two days also significantly enhanced place learning over vehicle controls. For the response task, treatment with estradiol impaired learning at both the low and high doses; likewise, genistein treatment impaired response learning compared to rats receiving vehicle. Overall, genistein was found to mimic estradiol-induced shifts in place and response learning, facilitating hippocampus-sensitive learning and slowing striatum-sensitive learning. These results suggest signaling through estrogen receptor β and membrane-associated estrogen receptors in learning enhancements and impairments given the preferential binding of genistein to the ERβ subtype and affinity for GPER. PMID:22944517

  19. Longitudinal attentional engagement rescues mice from age-related cognitive declines and cognitive inflexibility

    PubMed Central

    Matzel, Louis D.; Light, Kenneth R.; Wass, Christopher; Colas-Zelin, Danielle; Denman-Brice, Alexander; Waddel, Adam C.; Kolata, Stefan

    2011-01-01

    Learning, attentional, and perseverative deficits are characteristic of cognitive aging. In this study, genetically diverse CD-1 mice underwent longitudinal training in a task asserted to tax working memory capacity and its dependence on selective attention. Beginning at 3 mo of age, animals were trained for 12 d to perform in a dual radial-arm maze task that required the mice to remember and operate on two sets of overlapping guidance (spatial) cues. As previously reported, this training resulted in an immediate (at 4 mo of age) improvement in the animals' aggregate performance across a battery of five learning tasks. Subsequently, these animals received an additional 3 d of working memory training at 3-wk intervals for 15 mo (totaling 66 training sessions), and at 18 mo of age were assessed on a selective attention task, a second set of learning tasks, and variations of those tasks that required the animals to modify the previously learned response. Both attentional and learning abilities (on passive avoidance, active avoidance, and reinforced alternation tasks) were impaired in aged animals that had not received working memory training. Likewise, these aged animals exhibited consistent deficits when required to modify a previously instantiated learned response (in reinforced alternation, active avoidance, and spatial water maze). In contrast, these attentional, learning, and perseverative deficits were attenuated in aged animals that had undergone lifelong working memory exercise. These results suggest that general impairments of learning, attention, and cognitive flexibility may be mitigated by a cognitive exercise regimen that requires chronic attentional engagement. PMID:21521768

  20. Longitudinal attentional engagement rescues mice from age-related cognitive declines and cognitive inflexibility.

    PubMed

    Matzel, Louis D; Light, Kenneth R; Wass, Christopher; Colas-Zelin, Danielle; Denman-Brice, Alexander; Waddel, Adam C; Kolata, Stefan

    2011-01-01

    Learning, attentional, and perseverative deficits are characteristic of cognitive aging. In this study, genetically diverse CD-1 mice underwent longitudinal training in a task asserted to tax working memory capacity and its dependence on selective attention. Beginning at 3 mo of age, animals were trained for 12 d to perform in a dual radial-arm maze task that required the mice to remember and operate on two sets of overlapping guidance (spatial) cues. As previously reported, this training resulted in an immediate (at 4 mo of age) improvement in the animals' aggregate performance across a battery of five learning tasks. Subsequently, these animals received an additional 3 d of working memory training at 3-wk intervals for 15 mo (totaling 66 training sessions), and at 18 mo of age were assessed on a selective attention task, a second set of learning tasks, and variations of those tasks that required the animals to modify the previously learned response. Both attentional and learning abilities (on passive avoidance, active avoidance, and reinforced alternation tasks) were impaired in aged animals that had not received working memory training. Likewise, these aged animals exhibited consistent deficits when required to modify a previously instantiated learned response (in reinforced alternation, active avoidance, and spatial water maze). In contrast, these attentional, learning, and perseverative deficits were attenuated in aged animals that had undergone lifelong working memory exercise. These results suggest that general impairments of learning, attention, and cognitive flexibility may be mitigated by a cognitive exercise regimen that requires chronic attentional engagement.

  1. To Switch or Not to Switch: Role of Cognitive Control in Working Memory Training in Older Adults.

    PubMed

    Basak, Chandramallika; O'Connell, Margaret A

    2016-01-01

    It is currently not known what are the best working memory training strategies to offset the age-related declines in fluid cognitive abilities. In this randomized clinical double-blind trial, older adults were randomly assigned to one of two types of working memory training - one group was trained on a predictable memory updating task (PT) and another group was trained on a novel, unpredictable memory updating task (UT). Unpredictable memory updating, compared to predictable, requires greater demands on cognitive control (Basak and Verhaeghen, 2011a). Therefore, the current study allowed us to evaluate the role of cognitive control in working memory training. All participants were assessed on a set of near and far transfer tasks at three different testing sessions - before training, immediately after the training, and 1.5 months after completing the training. Additionally, individual learning rates for a comparison working memory task (performed by both groups) and the trained task were computed. Training on unpredictable memory updating, compared to predictable, significantly enhanced performance on a measure of episodic memory, immediately after the training. Moreover, individuals with faster learning rates showed greater gains in this episodic memory task and another new working memory task; this effect was specific to UT. We propose that the unpredictable memory updating training, compared to predictable memory updating training, may a better strategy to improve selective cognitive abilities in older adults, and future studies could further investigate the role of cognitive control in working memory training.

  2. A cross-syndrome study of the differential effects of sleep on declarative memory consolidation in children with neurodevelopmental disorders.

    PubMed

    Ashworth, Anna; Hill, Catherine M; Karmiloff-Smith, Annette; Dimitriou, Dagmara

    2017-03-01

    Sleep plays an active role in memory consolidation. Because children with Down syndrome (DS) and Williams syndrome (WS) experience significant problems with sleep and also with learning, we predicted that sleep-dependent memory consolidation would be impaired in these children when compared to typically developing (TD) children. This is the first study to provide a cross-syndrome comparison of sleep-dependent learning in school-aged children. Children with DS (n = 20) and WS (n = 22) and TD children (n = 33) were trained on the novel Animal Names task where they were taught pseudo-words as the personal names of ten farm and domestic animals, e.g. Basco the cat, with the aid of animal picture flashcards. They were retested following counterbalanced retention intervals of wake and sleep. Overall, TD children remembered significantly more words than both the DS and WS groups. In addition, their performance improved following night-time sleep, whereas performance over the wake retention interval remained stable, indicating an active role of sleep for memory consolidation. Task performance of children with DS did not significantly change following wake or sleep periods. However, children with DS who were initially trained in the morning continued to improve on the task at the following retests, so that performance on the final test was greater for children who had initially trained in the morning than those who trained in the evening. Children with WS improved on the task between training and the first retest, regardless of whether sleep or wake occurred during the retention interval. This suggests time-dependent rather than sleep-dependent learning in children with WS, or tiredness at the end of the first session and better performance once refreshed at the start of the second session, irrespective of the time of day. Contrary to expectations, sleep-dependent learning was not related to baseline level of performance. The findings have significant implications for educational strategies, and suggest that children with DS should be taught more important or difficult information in the morning when they are better able to learn, whilst children with WS should be allowed a time delay between learning phases to allow for time-dependent memory consolidation, and frequent breaks from learning so that they are refreshed and able to perform at their best. © 2015 The Authors. Developmental Science Published by John Wiley & Sons Ltd.

  3. Working and reference memory across the estrous cycle of rat: a long-term study in gonadally intact females.

    PubMed

    Pompili, Assunta; Tomaz, Carlos; Arnone, Benedetto; Tavares, Maria Clotilde; Gasbarri, Antonella

    2010-11-12

    The results of many studies conducted over the past two decades suggested a role of estrogen on mammal's ability to learn and remember. In the present paper, we analyzed the influence that the endogenous fluctuation of estrogen, naturally present across the different phases of estrous cycle of female rats, can exert over the performance of tasks utilized to assess memory. In particular, we analyzed the performances in an eight arms radial maze task, dependent upon working memory, and in a water maze (WM) task, dependent upon spatial reference memory. The water maze is aversively motivated by the desire to escape onto a safe platform, whereas the radial arm maze (RAM) is motivated by food reward. The difference in reinforcement may affect the speed of learning, the strategy adopted and the necessity for accurate navigation. Therefore, coherent results obtained through the two different tasks can be due to mnemonic factors. The study was conducted during a long period of time, 14 months, utilizing gonadally intact females, without pharmacological and surgical treatments. In order to evaluate the post-acquisition phase we first trained the animals to reach the criterion in performing tasks, and then we submitted them to experimental phase. Our results show that estrogen can have an effect on memory processes, and that this effect may be different in relation to different kinds of memory. In fact, in our study, estrogen selectively improved working memory, but not reference memory, during post-acquisition performance of a RAM task with four baited and four un-baited arms. Moreover, WM performances showed that estrogen have a negative effect on spatial reference memory. (c) 2010 Elsevier B.V. All rights reserved.

  4. Short Sleep Makes Declarative Memories Vulnerable to Stress in Humans.

    PubMed

    Cedernaes, Jonathan; Rångtell, Frida H; Axelsson, Emil K; Yeganeh, Adine; Vogel, Heike; Broman, Jan-Erik; Dickson, Suzanne L; Schiöth, Helgi B; Benedict, Christian

    2015-12-01

    This study sought to investigate the role of nocturnal sleep duration for the retrieval of oversleep consolidated memories, both prior to and after being cognitively stressed for ∼30 minutes the next morning. Participants learned object locations (declarative memory task comprising 15 card pairs) and a finger tapping sequence (procedural memory task comprising 5 digits) in the evening. After learning, participants either had a sleep opportunity of 8 hours (between ∼23:00 and ∼07:00, full sleep condition) or they could sleep between ∼03:00 and ∼07:00 (short sleep condition). Retrieval of both memory tasks was tested in the morning after each sleep condition, both before (∼08:30) and after being stressed (∼09:50). Sleep laboratory. 15 healthy young men. The analyses demonstrated that oversleep memory changes did not differ between sleep conditions. However, in their short sleep condition, following stress hallmarked by increased subjective stress feelings, the men were unable to maintain their pre-stress performance on the declarative memory task, whereas their performance on the procedural memory task remained unchanged. While men felt comparably subjectively stressed by the stress intervention, overall no differences between pre- and post-stress recalls were observed following a full night of sleep. The findings suggest that 8-h sleep duration, within the range recommended by the US National Sleep Foundation, may not only help consolidate newly learned procedural and declarative memories, but also ensure full access to both during periods of subjective stress. © 2015 Associated Professional Sleep Societies, LLC.

  5. Persistent non-verbal memory impairment in remitted major depression - caused by encoding deficits?

    PubMed

    Behnken, Andreas; Schöning, Sonja; Gerss, Joachim; Konrad, Carsten; de Jong-Meyer, Renate; Zwanzger, Peter; Arolt, Volker

    2010-04-01

    While neuropsychological impairments are well described in acute phases of major depressive disorders (MDD), little is known about the neuropsychological profile in remission. There is evidence for episodic memory impairments in both acute depressed and remitted patients with MDD. Learning and memory depend on individuals' ability to organize information during learning. This study investigates non-verbal memory functions in remitted MDD and whether nonverbal memory performance is mediated by organizational strategies whilst learning. 30 well-characterized fully remitted individuals with unipolar MDD and 30 healthy controls matching in age, sex and education were investigated. Non-verbal learning and memory were measured by the Rey-Osterrieth-Complex-Figure-Test (RCFT). The RCFT provides measures of planning, organizational skills, perceptual and non-verbal memory functions. For assessing the mediating effects of organizational strategies, we used the Savage Organizational Score. Compared to healthy controls, participants with remitted MDD showed more deficits in their non-verbal memory function. Moreover, participants with remitted MDD demonstrated difficulties in organizing non-verbal information appropriately during learning. In contrast, no impairments regarding visual-spatial functions in remitted MDD were observed. Except for one patient, all the others were taking psychopharmacological medication. The neuropsychological function was solely investigated in the remitted phase of MDD. Individuals with MDD in remission showed persistent non-verbal memory impairments, modulated by a deficient use of organizational strategies during encoding. Therefore, our results strongly argue for additional therapeutic interventions in order to improve these remaining deficits in cognitive function. Copyright 2009 Elsevier B.V. All rights reserved.

  6. Sleep benefits consolidation of visuo-motor adaptation learning in older adults.

    PubMed

    Mantua, Janna; Baran, Bengi; Spencer, Rebecca M C

    2016-02-01

    Sleep is beneficial for performance across a range of memory tasks in young adults, but whether memories are similarly consolidated in older adults is less clear. Performance benefits have been observed following sleep in older adults for declarative learning tasks, but this benefit may be reduced for non-declarative, motor skill learning tasks. To date, studies of sleep-dependent consolidation of motor learning in older adults are limited to motor sequence tasks. To examine whether reduced sleep-dependent consolidation in older adults is generalizable to other forms of motor skill learning, we examined performance changes over intervals of sleep and wake in young (n = 62) and older adults (n = 61) using a mirror-tracing task, which assesses visuo-motor adaptation learning. Participants learned the task either in the morning or in evening, and performance was assessed following a 12-h interval containing overnight sleep or daytime wake. Contrary to our prediction, both young adults and older adults exhibited sleep-dependent gains in visuo-motor adaptation. There was a correlation between performance improvement over sleep and percent of the night in non-REM stage 2 sleep. These results indicate that motor skill consolidation remains intact with increasing age although this relationship may be limited to specific forms of motor skill learning.

  7. Declarative and Non-declarative Memory Consolidation in Children with Sleep Disorder.

    PubMed

    Csábi, Eszter; Benedek, Pálma; Janacsek, Karolina; Zavecz, Zsófia; Katona, Gábor; Nemeth, Dezso

    2015-01-01

    Healthy sleep is essential in children's cognitive, behavioral, and emotional development. However, remarkably little is known about the influence of sleep disorders on different memory processes in childhood. Such data could give us a deeper insight into the effect of sleep on the developing brain and memory functions and how the relationship between sleep and memory changes from childhood to adulthood. In the present study we examined the effect of sleep disorder on declarative and non-declarative memory consolidation by testing children with sleep-disordered breathing (SDB) which is characterized by disrupted sleep structure. We used a story recall task to measure declarative memory and Alternating Serial Reaction time (ASRT) task to assess non-declarative memory. This task enables us to measure two aspects of non-declarative memory, namely general motor skill learning and sequence-specific learning. There were two sessions: a learning phase and a testing phase, separated by a 12 h offline period with sleep. Our data showed that children with SDB exhibited a generally lower declarative memory performance both in the learning and testing phase; however, both the SDB and control groups exhibited retention of the previously recalled items after the offline period. Here we showed intact non-declarative consolidation in SDB group in both sequence-specific and general motor skill. These findings suggest that sleep disorders in childhood have a differential effect on different memory processes (online vs. offline) and give us insight into how sleep disturbances affects developing brain.

  8. Declarative and Non-declarative Memory Consolidation in Children with Sleep Disorder

    PubMed Central

    Csábi, Eszter; Benedek, Pálma; Janacsek, Karolina; Zavecz, Zsófia; Katona, Gábor; Nemeth, Dezso

    2016-01-01

    Healthy sleep is essential in children’s cognitive, behavioral, and emotional development. However, remarkably little is known about the influence of sleep disorders on different memory processes in childhood. Such data could give us a deeper insight into the effect of sleep on the developing brain and memory functions and how the relationship between sleep and memory changes from childhood to adulthood. In the present study we examined the effect of sleep disorder on declarative and non-declarative memory consolidation by testing children with sleep-disordered breathing (SDB) which is characterized by disrupted sleep structure. We used a story recall task to measure declarative memory and Alternating Serial Reaction time (ASRT) task to assess non-declarative memory. This task enables us to measure two aspects of non-declarative memory, namely general motor skill learning and sequence-specific learning. There were two sessions: a learning phase and a testing phase, separated by a 12 h offline period with sleep. Our data showed that children with SDB exhibited a generally lower declarative memory performance both in the learning and testing phase; however, both the SDB and control groups exhibited retention of the previously recalled items after the offline period. Here we showed intact non-declarative consolidation in SDB group in both sequence-specific and general motor skill. These findings suggest that sleep disorders in childhood have a differential effect on different memory processes (online vs. offline) and give us insight into how sleep disturbances affects developing brain. PMID:26793090

  9. Long-lasting spatial learning and memory impairments caused by chronic cerebral hypoperfusion associate with a dynamic change of HCN1/HCN2 expression in hippocampal CA1 region.

    PubMed

    Luo, Pan; Lu, Yun; Li, Changjun; Zhou, Mei; Chen, Cheng; Lu, Qing; Xu, Xulin; He, Zhi; Guo, Lianjun

    2015-09-01

    Chronic cerebral hypoperfusion (CCH) causes learning and memory impairments and increases the risk of Alzheimer disease (AD) and vascular dementia (VD) through several biologically plausible pathways, yet the mechanisms underlying the disease process remained unclear particularly in a temporal manner. We performed permanent bilateral occlusion of the common carotid arteries (two-vessel occlusion, 2VO) to induce CCH. To determine whether hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are altered at different stages of cognitive impairment caused by CCH, adult male SD rats were randomly distributed into sham-operated 4, 8 and 12weeks group, 2VO 4, 8 and 12weeks group. Learning and memory performance were evaluated with Morris water maze (MWM) and long-term potentiation (LTP) was used to address the underlying synaptic mechanisms. Expression of NeuN, HCN1 and HCN2 in hippocampal CA1, DG and CA3 areas was quantified by immunohistochemistry and western blotting. Our data showed that CCH induced a remarkable spatial learning and memory deficits in rats of 2VO 4, 8, and 12weeks group although neuronal loss only occurred after 4weeks of 2VO surgery in CA1. In addition, a significant reduction of HCN1 surface expression in CA1 was observed in the group that suffered 4weeks ischemia but neither 8 nor 12weeks. However, HCN2 surface expression in CA1 increased throughout the ischemia time-scales (4, 8 and 12w). Our findings indicate spatial learning and memory deficits in the CCH model are associated with disturbed HCN1 and HCN2 surface expression in hippocampal CA1. The altered patterns of both HCN1 and HCN2 surface expression may be implicated in the early stage (4w) of spatial learning and memory impairments; and the stable and long-lasting impairments of spatial learning and memory may partially attribute to the up-regulated HCN2 surface expression. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. [Stimulation of D1-receptors improves passive avoidance learning of female rats during ovary cycle].

    PubMed

    Fedotova, Iu O; Sapronov, N S

    2012-01-01

    The involvement of D1-receptors in learning/memory processes during ovary cycle was assessed in the adult female rats. SKF-38393 (0,1 mg/kg, i.p.), D1-receptor agonist and SCH-23390 (0,1 mg/kg, i.p.), D1-receptor antagonist were injected chronically to adult female rats. Learning of these animals was assessed in different models: passive avoidance performance and Morris water maze. Chronic SKF-3839 administration to females resulted in the appearance of the passive avoidance performance in proestrous and estrous, as distinct from the control animals, but failed to change the dynamics of spatial learning in Morris water maze. Chronic SCH-23390 administration similarly impaired non-spatial and spatial learning in females during all phases of ovary cycle. The results of the study suggest modulating role of D1-receptors in learning/memory processes during ovary cycle in the adult female rats.

  11. [Stimulation of D2-receptors improves passive avoidance learning in female rats].

    PubMed

    Fedotova, Iu O

    2012-01-01

    The involvement of D2-receptors in learning/memory processes during ovary cycle was assessed in the adult female rats. Quinperole (0,1 mg/kg, i.p.), D2-receptor agonist and sulpiride (10,0 mg/kg, i.p.), D2-receptor antagonist were injected chronically to adult female rats. Learning of these animals was assessed in different models: passive avoidance performance and Morris water maze. Chronic quinperole administration to females resulted in the appearance of the passive avoidance performance in proestrous and estrous, as distinct from the control animals. Also, quinperole improved spatial learning in proestrous and stimulated it in estrous in Morris water maze. Chronic sulpiride administration similarly impaired non-spatial and spatial learning in females during all phases of ovary cycle. The results of the study suggest modulating role of D2-receptors in learning/memory processes during ovary cycle in the adult female rats.

  12. Consumption of an acute dose of caffeine reduces acquisition but not memory in the honey bee.

    PubMed

    Mustard, Julie A; Dews, Lauren; Brugato, Arlana; Dey, Kevin; Wright, Geraldine A

    2012-06-15

    Caffeine affects several molecules that are also involved in the processes underlying learning and memory such as cAMP and calcium. However, studies of caffeine's influence on learning and memory in mammals are often contradictory. Invertebrate model systems have provided valuable insight into the actions of many neuroactive compounds including ethanol and cocaine. We use the honey bee (Apis mellifera) to investigate how the ingestion of acute doses of caffeine before, during, and after conditioning influences performance in an appetitive olfactory learning and memory task. Consumption of caffeine doses of 0.01 M or greater during or prior to conditioning causes a significant reduction in response levels during acquisition. Although bees find the taste of caffeine to be aversive at high concentrations, the bitter taste does not explain the reduction in acquisition observed for bees fed caffeine before conditioning. While high doses of caffeine reduced performance during acquisition, the response levels of bees given caffeine were the same as those of the sucrose only control group in a recall test 24h after conditioning. In addition, caffeine administered after conditioning had no affect on recall. These results suggest that caffeine specifically affects performance during acquisition and not the processes involved in the formation of early long term memory. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Associative learning performance is impaired in zebrafish (Danio rerio) by the NMDA-R antagonist MK-801

    PubMed Central

    Sison, Margarette; Gerlai, Robert

    2011-01-01

    The zebrafish is gaining popularity in behavioral neuroscience perhaps because of a promise of efficient large scale mutagenesis and drug screens that could identify a substantial number of yet undiscovered molecular players involved in complex traits. Learning and memory are complex functions of the brain and the analysis of their mechanisms may benefit from such large scale zebrafish screens. One bottleneck in this research is the paucity of appropriate behavioral screening paradigms, which may be due to the relatively uncharacterized nature of the behavior of this species. Here we show that zebrafish exhibit good learning performance in a task adapted from the mammalian literature, a plus maze in which zebrafish are required to associate a neutral visual stimulus with the presence of conspecifics, the rewarding unconditioned stimulus. Furthermore, we show that MK-801, a non-competitive NMDA-R antagonist, impairs memory performance in this maze when administered right after training or just before recall but not when given before training at a dose that does not impair motor function, perception or motivation. These results suggest that the plus maze associative learning paradigm has face and construct validity and that zebrafish may become an appropriate and translationally relevant study species for the analysis of the mechanisms of vertebrate, including mammalian, learning and memory. PMID:21596149

  14. Long-term memory of hierarchical relationships in free-living greylag geese.

    PubMed

    Weiss, Brigitte M; Scheiber, Isabella B R

    2013-01-01

    Animals may memorise spatial and social information for many months and even years. Here, we investigated long-term memory of hierarchically ordered relationships, where the position of a reward depended on the relationship of a stimulus relative to other stimuli in the hierarchy. Seventeen greylag geese (Anser anser) had been trained on discriminations between successive pairs of five or seven implicitly ordered colours, where the higher ranking colour in each pair was rewarded. Geese were re-tested on the task 2, 6 and 12 months after learning the dyadic colour relationships. They chose the correct colour above chance at all three points in time, whereby performance was better in colour pairs at the beginning or end of the colour series. Nonetheless, they also performed above chance on internal colour pairs, which is indicative of long-term memory for quantitative differences in associative strength and/or for relational information. There were no indications for a decline in performance over time, indicating that geese may remember dyadic relationships for at least 6 months and probably well over 1 year. Furthermore, performance in the memory task was unrelated to the individuals' sex and their performance while initially learning the dyadic colour relationships. We discuss possible functions of this long-term memory in the social domain.

  15. The pattern of verbal, visuospatial and procedural learning in Richardson variant of progressive supranuclear palsy in comparison to Parkinson's disease.

    PubMed

    Sitek, Emilia J; Wieczorek, Dariusz; Konkel, Agnieszka; Dąbrowska, Magda; Sławek, Jarosław

    2017-08-29

    Progressive supranuclear palsy (PSP) is regarded either within spectrum of atypical parkinsonian syndromes or frontotemporal lobar degeneration. We compared the verbal, visuospatial and procedural learning profiles in patients with PSP and Parkinson's disease (PD). Furthermore, the relationship between executive factors (initiation and inhibition) and learning outcomes was analyzed. Thirty-three patients with the clinical diagnosis of PSP-Richardson's syndrome (PSP-RS), 39 patients with PD and 29 age -and education -matched controls were administered Mini-Mental State Examination (MMSE), phonemic and semantic fluency tasks, Auditory Verbal Learning Test (AVLT), Visual Learning and Memory Test for Neuropsychological Assessment by Lamberti and Weidlich (Diagnosticum für Cerebralschädigung, DCS), Tower of Toronto (ToT) and two motor sequencing tasks. Patients with PSP-RS and PD were matched in terms of MMSE scores and mood. Performance on DCS was lower in PSP-RS than in PD. AVLT delayed recall was better in PSP-RS than PD. Motor sequencing task did not differentiate between patients. Scores on AVLT correlated positively with phonemic fluency scores in both PSP-RS and PD. ToT rule violation scores were negatively associated with DCS performance in PSP-RS and PD as well as with AVLT performance in PD. Global memory performance is relatively similar in PSP-RS and PD. Executive factors (initiation and inhibition) are closely related to memory performance in PSP-RS and PD. Visuospatial learning impairment in PSP-RS is possibly linked to impulsivity and failure to inhibit automatic responses.

  16. Novel word acquisition in aphasia: Facing the word-referent ambiguity of natural language learning contexts.

    PubMed

    Peñaloza, Claudia; Mirman, Daniel; Tuomiranta, Leena; Benetello, Annalisa; Heikius, Ida-Maria; Järvinen, Sonja; Majos, Maria C; Cardona, Pedro; Juncadella, Montserrat; Laine, Matti; Martin, Nadine; Rodríguez-Fornells, Antoni

    2016-06-01

    Recent research suggests that some people with aphasia preserve some ability to learn novel words and to retain them in the long-term. However, this novel word learning ability has been studied only in the context of single word-picture pairings. We examined the ability of people with chronic aphasia to learn novel words using a paradigm that presents new word forms together with a limited set of different possible visual referents and requires the identification of the correct word-object associations on the basis of online feedback. We also studied the relationship between word learning ability and aphasia severity, word processing abilities, and verbal short-term memory (STM). We further examined the influence of gross lesion location on new word learning. The word learning task was first validated with a group of forty-five young adults. Fourteen participants with chronic aphasia were administered the task and underwent tests of immediate and long-term recognition memory at 1 week. Their performance was compared to that of a group of fourteen matched controls using growth curve analysis. The learning curve and recognition performance of the aphasia group was significantly below the matched control group, although above-chance recognition performance and case-by-case analyses indicated that some participants with aphasia had learned the correct word-referent mappings. Verbal STM but not word processing abilities predicted word learning ability after controlling for aphasia severity. Importantly, participants with lesions in the left frontal cortex performed significantly worse than participants with lesions that spared the left frontal region both during word learning and on the recognition tests. Our findings indicate that some people with aphasia can preserve the ability to learn a small novel lexicon in an ambiguous word-referent context. This learning and recognition memory ability was associated with verbal STM capacity, aphasia severity and the integrity of the left inferior frontal region. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Novel word acquisition in aphasia: Facing the word-referent ambiguity of natural language learning contexts

    PubMed Central

    Peñaloza, Claudia; Mirman, Daniel; Tuomiranta, Leena; Benetello, Annalisa; Heikius, Ida-Maria; Järvinen, Sonja; Majos, Maria C.; Cardona, Pedro; Juncadella, Montserrat; Laine, Matti; Martin, Nadine; Rodríguez-Fornells, Antoni

    2017-01-01

    Recent research suggests that some people with aphasia preserve some ability to learn novel words and to retain them in the long-term. However, this novel word learning ability has been studied only in the context of single word-picture pairings. We examined the ability of people with chronic aphasia to learn novel words using a paradigm that presents new word forms together with a limited set of different possible visual referents and requires the identification of the correct word-object associations on the basis of online feedback. We also studied the relationship between word learning ability and aphasia severity, word processing abilities, and verbal short-term memory (STM). We further examined the influence of gross lesion location on new word learning. The word learning task was first validated with a group of forty-five young adults. Fourteen participants with chronic aphasia were administered the task and underwent tests of immediate and long-term recognition memory at 1 week. Their performance was compared to that of a group of fourteen matched controls using growth curve analysis. The learning curve and recognition performance of the aphasia group was significantly below the matched control group, although above-chance recognition performance and case-by-case analyses indicated that some participants with aphasia had learned the correct word-referent mappings. Verbal STM but not word processing abilities predicted word learning ability after controlling for aphasia severity. Importantly, participants with lesions in the left frontal cortex performed significantly worse than participants with lesions that spared the left frontal region both during word learning and on the recognition tests. Our findings indicate that some people with aphasia can preserve the ability to learn a small novel lexicon in an ambiguous word-referent context. This learning and recognition memory ability was associated with verbal STM capacity, aphasia severity and the integrity of the left inferior frontal region. PMID:27085892

  18. Aerobic fitness relates to learning on a virtual Morris Water Task and hippocampal volume in adolescents.

    PubMed

    Herting, Megan M; Nagel, Bonnie J

    2012-08-01

    In rodents, exercise increases hippocampal neurogenesis and allows for better learning and memory performance on water maze tasks. While exercise has also been shown to be beneficial for the brain and behavior in humans, no study has examined how exercise impacts spatial learning using a directly translational water maze task, or if these relationships exist during adolescence--a developmental period which the animal literature has shown to be especially vulnerable to exercise effects. In this study, we investigated the influence of aerobic fitness on hippocampal size and subsequent learning and memory, including visuospatial memory using a human analogue of the Morris Water Task, in 34 adolescents. Results showed that higher aerobic fitness predicted better learning on the virtual Morris Water Task and larger hippocampal volumes. No relationship between virtual Morris Water Task memory recall and aerobic fitness was detected. Aerobic fitness, however, did not relate to global brain volume or verbal learning, which might suggest some specificity of the influence of aerobic fitness on the adolescent brain. This study provides a direct translational approach to the existing animal literature on exercise, as well as adds to the sparse research that exists on how aerobic exercise impacts the developing human brain and memory. Published by Elsevier B.V.

  19. Aerobic fitness relates to learning on a virtual morris water task and hippocampal volume in adolescents

    PubMed Central

    Herting, Megan M.; Nagel, Bonnie J.

    2012-01-01

    In rodents, exercise increases hippocampal neurogenesis and allows for better learning and memory performance on water maze tasks. While exercise has also been shown to be beneficial for the brain and behavior in humans, no study has examined how exercise impacts spatial learning using a directly translational water maze task, or if these relationships exist during adolescence – a developmental period which the animal literature has shown to be especially vulnerable to exercise effects. In this study, we investigated the influence of aerobic fitness on hippocampal size and subsequent learning and memory, including visuospatial memory using a human analogue of the Morris Water Task, in 34 adolescents. Results showed that higher aerobic fitness predicted better learning on the virtual Morris Water Task and larger hippocampal volumes. No relationship between virtual Morris Water Task memory recall and aerobic fitness was detected. Aerobic fitness, however, did not relate to global brain volume, or verbal learning, which might suggest some specificity of the influence of aerobic fitness on the adolescent brain. This study provides a direct translational approach to the existing animal literature on exercise, as well as adds to the sparse research that exists on how aerobic exercise impacts the developing human brain and memory. PMID:22610054

  20. Biphasic effect of citral, a flavoring and scenting agent, on spatial learning and memory in rats.

    PubMed

    Yang, Zheqiong; Xi, Jinlei; Li, Jihong; Qu, Wen

    2009-10-01

    Although some central effects of citral have been reported, cognitive effects on spatial memory have not been investigated. The evidence showed that citral can regulate the synthesis of retinoic acid (RA), which exerts a vital function in the development and maintenance of spatial memory. In this study, we applied Morris water maze to test the effect of citral on animals' spatial learning and memory. To elucidate the mechanism of this effect, we also measured the retinoic acid concentration in rats' hippocampus by high performance liquid chromatography (HPLC). Our data implied biphasic effects of citral. The low dose (0.1 mg/kg) of citral improved the spatial learning capability, and enhanced the spatial reference memory of rats, whereas the high dose (1.0 mg/kg) was like to produce the opposite effects. Meanwhile, the low dose of citral increased the hippocampal retinoic acid concentration, while the high dose decreased it. Due to the quick elimination and non-bioaccumulation in the body, effects of citral on spatial memory in this study seemed to be indirect actions. The change in hippocampal retinoic acid concentration induced by different doses of citral might be responsible for the biphasic effect of citral on spatial learning and memory.

  1. NDRAM: nonlinear dynamic recurrent associative memory for learning bipolar and nonbipolar correlated patterns.

    PubMed

    Chartier, Sylvain; Proulx, Robert

    2005-11-01

    This paper presents a new unsupervised attractor neural network, which, contrary to optimal linear associative memory models, is able to develop nonbipolar attractors as well as bipolar attractors. Moreover, the model is able to develop less spurious attractors and has a better recall performance under random noise than any other Hopfield type neural network. Those performances are obtained by a simple Hebbian/anti-Hebbian online learning rule that directly incorporates feedback from a specific nonlinear transmission rule. Several computer simulations show the model's distinguishing properties.

  2. The organization and neural substrates of human memory.

    PubMed

    Squire, L R

    The neurology of memory has been illuminated by parallel studies of patients with circumscribed memory impairment and animal models of human amnesia. Human amnesia can occur as an isolated cognitive deficit that impairs the ability to learn new facts and episodes. In addition, memory can be affected for material learned many years prior to the onset of amnesia. The finding that some memory abilities are intact in amnesia (e.g., skill learning, word priming, and adaptation-level effects) has suggested that memory can be divided into two or more separate processes. Declarative memory affords the ability to store information explicitly and to retrieve it later as a conscious recollection. This form of memory depends on the integrity of the structures damaged in amnesia. Other, non-declarative kinds of memory afford the ability to change as the result of experience, but the information is available only through performance. Recent studies of a favorable human case provided strong evidence that the hippocampus is a critical component of the declarative memory system. Extensive convergent and divergent projections link the hippocampus to many areas of neocortex where processing and storage of new information is likely to occur. It is perhaps by way of these connections that the hippocampus operates upon and participates in declarative representations.

  3. Long-term abstinent alcoholics have normal memory.

    PubMed

    Reed, R J; Grant, I; Rourke, S B

    1992-08-01

    It is generally believed that many non-Korsakoff alcoholics have subtle defects in memory. To determine whether such defects vary as a function of length of abstinence (LOA), we performed extensive memory testing with: (1) recently detoxified (n = 31; LOA-29 days); (2) intermediate-term abstinent (n = 28; LOA = 1.9 years); (3) long-term abstinent (n = 32; LOA-7.0 years) alcoholics; and (4) nonalcoholic controls (n = 37). All subjects were matched on age and education. Alcoholics were matched on years of alcoholic drinking. Memory measures were divided into the following domains: verbal learning, verbal recall, visual learning, visual recall, and paired associate learning. A series of MANOVAs were conducted that revealed a significant relationship between visual learning and length of abstinence, and a significant interaction between age and length of abstinence on visual recall. Long-term abstinent subjects were not significantly different from controls on any test. We conclude that memory disturbance demonstrable among recently detoxified alcoholics in the early weeks of their abstinence is not evident in demographically matched long-term abstinent alcoholics with similar drinking histories.

  4. Long term verbal memory recall deficits in fragile X premutation females.

    PubMed

    Shelton, Annie L; Cornish, Kim; Fielding, Joanne

    2017-10-01

    Carriers of a FMR1 premutation allele (between 55 and 199 CGG repeats) are at risk of developing a wide range of medical, psychiatric and cognitive disorders, including executive dysfunction. These cognitive deficits are often less severe for female premutation carriers compared to male premutation carriers, albeit similar in nature. However, it remains unclear whether female premutation carriers who exhibit executive dysfunction also report verbal learning and memory deficits like those of their male counterparts. Here we employed the CVLT to assess verbal learning and memory function in 19 female premutation carriers, contrasting performance with 19 age- and IQ-matched controls. Group comparisons revealed similar performance during the learning and short delay recall phases of the CVLT. However, after a long delay period, female premutation carriers remembered fewer words for both free and cued recall trials, but not during recognition trials. These findings are consistent with reports for male premutation carriers, and suggest that aspects of long term memory may be adversely affect in a subgroup of premutation carriers with signs of executive dysfunction. Copyright © 2017. Published by Elsevier Inc.

  5. Selective verbal and spatial memory impairment after 5-HT1A and 5-HT2A receptor blockade in healthy volunteers pre-treated with an SSRI.

    PubMed

    Wingen, M; Kuypers, K P C; Ramaekers, J G

    2007-07-01

    Serotonergic neurotransmission has been implicated in memory impairment. It is unclear however if memory performance is mediated through general 5-HT availability, through specific 5-HT receptors or both. The aim of the present study was to assess the contribution of 5-HT reuptake inhibition and specific blockade of 5-HT(1A) and 5-HT(2A) receptors to memory impairment. The study was conducted according to a randomized, double-blind, placebo-controlled, four-way cross-over design including 16 healthy volunteers. The treatment consisted of oral administration of escitalopram 20 mg + placebo, escitalopram 20 mg + ketanserin 50 mg, escitalopram 20 mg + pindolol 10 mg and placebo on 4 separate days with a washout period of minimum 7 days. Different memory tasks were performed including verbal memory, spatial working memory and reversal learning. Escitalopram showed an impairing effect on immediate verbal recall which nearly reached statistical significance. No effects of escitalopram were found on other types of memory. In combination with pindolol, immediate verbal recall was significantly impaired. Escitalopram in combination with ketanserin impaired spatial working memory significantly. No effects were found on reversal learning. Selective impairment of immediate verbal recall after a 5-HT(1A) partial agonist and selective impairment of spatial working memory performance after 5-HT(2A) receptor antagonist, both in combination with a selective serotonergic reuptake inhibitor (escitalopram), suggests that 5-HT(1A) and 5-HT(2A) receptors are distinctly involved in verbal and spatial memory.

  6. A meta-analysis and systematic review of reactivity to judgements of learning.

    PubMed

    Double, Kit S; Birney, Damian P; Walker, Sarah A

    2018-07-01

    Judgements of learning (JoL) are often used in memory research as a means for assessing an individual's metacognitive beliefs about their learning. JoL have been shown to reliably predict performance as well as learning behaviours and decisions . Participants may, however, modify their behaviour in response to performing JoL. There has, however, been little consensus as to the reliability and direction of the effect. We report on a meta-analyses that assesses the evidence that memory performance is reactive to JoL. The results indicate that overall providing JoL does not have a significant effect on memory performance (g = 0.054, 95% CI -0.027 to 0.135). However, sub-groups analysis showed that this effect depends on the nature of the stimuli to be recalled, with moderate positive reactivity observed for related word pairs (g = 0.323, 95% CI 0.083 to 0.563) and word lists (g = 0.384, 95% CI 0.146 to 0.622) but no reactivity when pairs were unrelated or a mixture of related and unrelated pairs. These results indicate that researchers should be aware that eliciting JoL may well influence participants' underlying encoding processes, especially when using related word pairs or word lists.

  7. Effects of Model Performances on Music Skill Acquisition and Overnight Memory Consolidation

    ERIC Educational Resources Information Center

    Cash, Carla D.; Allen, Sarah E.; Simmons, Amy L.; Duke, Robert A.

    2014-01-01

    This study was designed to investigate the extent to which the presentation of an auditory model prior to learning a novel melody affects performance during active practice and the overnight consolidation of procedural memory. During evening training sessions, 32 nonpianist musicians practiced a 13-note keyboard melody with their left…

  8. The development of automaticity in short-term memory search: Item-response learning and category learning.

    PubMed

    Cao, Rui; Nosofsky, Robert M; Shiffrin, Richard M

    2017-05-01

    In short-term-memory (STM)-search tasks, observers judge whether a test probe was present in a short list of study items. Here we investigated the long-term learning mechanisms that lead to the highly efficient STM-search performance observed under conditions of consistent-mapping (CM) training, in which targets and foils never switch roles across trials. In item-response learning, subjects learn long-term mappings between individual items and target versus foil responses. In category learning, subjects learn high-level codes corresponding to separate sets of items and learn to attach old versus new responses to these category codes. To distinguish between these 2 forms of learning, we tested subjects in categorized varied mapping (CV) conditions: There were 2 distinct categories of items, but the assignment of categories to target versus foil responses varied across trials. In cases involving arbitrary categories, CV performance closely resembled standard varied-mapping performance without categories and departed dramatically from CM performance, supporting the item-response-learning hypothesis. In cases involving prelearned categories, CV performance resembled CM performance, as long as there was sufficient practice or steps taken to reduce trial-to-trial category-switching costs. This pattern of results supports the category-coding hypothesis for sufficiently well-learned categories. Thus, item-response learning occurs rapidly and is used early in CM training; category learning is much slower but is eventually adopted and is used to increase the efficiency of search beyond that available from item-response learning. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. Verbal memory outcome in patients with normal preoperative verbal memory and left mesial temporal sclerosis.

    PubMed

    LoGalbo, Anthony; Sawrie, Stephen; Roth, David L; Kuzniecky, Ruben; Knowlton, Robert; Faught, Edward; Martin, Roy

    2005-05-01

    Previous studies have shown that structural integrity (i.e., presence/absence of mesial temporal sclerosis (MTS)) of the left mesial temporal lobe is associated with verbal memory outcome following left anterior temporal lobectomy (ATL). However, the functional integrity of the left temporal lobe, as exemplified by preoperative verbal memory performance, has also been associated with verbal memory outcome following surgery. We investigated the risk of verbal memory loss in patients with known structural abnormality (i.e., left mesial temporal sclerosis by MRI) and normal preoperative verbal memory performance who undergo left ATL. Seventeen patients with left temporal lobe epilepsy, MRI-based exclusive left MTS, and normal preoperative verbal memory were identified. Normal verbal memory was defined as performance on both Acquisition (learning across trials 1-5) and Retrieval (long delayed free recall) portions of the California Verbal Learning Test (CVLT) above a T score of 40 (>16%ile). Postoperative verbal memory outcome was established by incorporating standardized regression-based (SRB) change scores. Postoperative declines across both CVLT Retrieval T scores and Acquisition T scores (average 20% and average 15% declines from baseline scores, respectively) were measured for the group. The average CVLT Retrieval SRB change score was -2.5, and the average CVLT Acquisition SRB change score was -1.0. A larger proportion of patients demonstrated postoperative declines on Retrieval scores than Acquisition scores (64.7% vs 17.6%, respectively). Even in the presence of left MTS, patients exhibiting normal presurgical verbal memory are at risk for verbal memory declines following ATL. These results suggest that the functional integrity of the left mesial temporal lobe may play an important role in the verbal memory outcome in this patient group.

  10. Short Sleep Makes Declarative Memories Vulnerable to Stress in Humans

    PubMed Central

    Cedernaes, Jonathan; Rångtell, Frida H.; Axelsson, Emil K.; Yeganeh, Adine; Vogel, Heike; Broman, Jan-Erik; Dickson, Suzanne L.; Schiöth, Helgi B.; Benedict, Christian

    2015-01-01

    Study Objective: This study sought to investigate the role of nocturnal sleep duration for the retrieval of oversleep consolidated memories, both prior to and after being cognitively stressed for ∼30 minutes the next morning. Design: Participants learned object locations (declarative memory task comprising 15 card pairs) and a finger tapping sequence (procedural memory task comprising 5 digits) in the evening. After learning, participants either had a sleep opportunity of 8 hours (between ∼23:00 and ∼07:00, full sleep condition) or they could sleep between ∼03:00 and ∼07:00 (short sleep condition). Retrieval of both memory tasks was tested in the morning after each sleep condition, both before (∼08:30) and after being stressed (∼09:50). Setting: Sleep laboratory. Participants: 15 healthy young men. Results: The analyses demonstrated that oversleep memory changes did not differ between sleep conditions. However, in their short sleep condition, following stress hallmarked by increased subjective stress feelings, the men were unable to maintain their pre-stress performance on the declarative memory task, whereas their performance on the procedural memory task remained unchanged. While men felt comparably subjectively stressed by the stress intervention, overall no differences between pre- and post-stress recalls were observed following a full night of sleep. Conclusions: The findings suggest that 8-h sleep duration, within the range recommended by the US National Sleep Foundation, may not only help consolidate newly learned procedural and declarative memories, but also ensure full access to both during periods of subjective stress. Citation: Cedernaes J, Rångtell FH, Axelsson EK, Yeganeh A, Vogel H, Broman JE, Dickson SL, Schiöth HB, Benedict C. Short sleep makes declarative memories vulnerable to stress in humans. SLEEP 2015;38(12):1861–1868. PMID:26158890

  11. Sleep-Effects on Implicit and Explicit Memory in Repeated Visual Search

    PubMed Central

    Assumpcao, Leonardo; Gais, Steffen

    2013-01-01

    In repeated visual search tasks, facilitation of reaction times (RTs) due to repetition of the spatial arrangement of items occurs independently of RT facilitation due to improvements in general task performance. Whereas the latter represents typical procedural learning, the former is a kind of implicit memory that depends on the medial temporal lobe (MTL) memory system and is impaired in patients with amnesia. A third type of memory that develops during visual search is the observers’ explicit knowledge of repeated displays. Here, we used a visual search task to investigate whether procedural memory, implicit contextual cueing, and explicit knowledge of repeated configurations, which all arise independently from the same set of stimuli, are influenced by sleep. Observers participated in two experimental sessions, separated by either a nap or a controlled rest period. In each of the two sessions, they performed a visual search task in combination with an explicit recognition task. We found that (1) across sessions, MTL-independent procedural learning was more pronounced for the nap than rest group. This confirms earlier findings, albeit from different motor and perceptual tasks, showing that procedural memory can benefit from sleep. (2) Likewise, the sleep group compared with the rest group showed enhanced context-dependent configural learning in the second session. This is a novel finding, indicating that the MTL-dependent, implicit memory underlying contextual cueing is also sleep-dependent. (3) By contrast, sleep and wake groups displayed equivalent improvements in explicit recognition memory in the second session. Overall, the current study shows that sleep affects MTL-dependent as well as MTL-independent memory, but it affects different, albeit simultaneously acquired, forms of MTL-dependent memory differentially. PMID:23936363

  12. The association between cognition and academic performance in Ugandan children surviving malaria with neurological involvement.

    PubMed

    Bangirana, Paul; Menk, Jeremiah; John, Chandy C; Boivin, Michael J; Hodges, James S

    2013-01-01

    The contribution of different cognitive abilities to academic performance in children surviving cerebral insult can guide the choice of interventions to improve cognitive and academic outcomes. This study's objective was to identify which cognitive abilities are associated with academic performance in children after malaria with neurological involvement. 62 Ugandan children with a history of malaria with neurological involvement were assessed for cognitive ability (working memory, reasoning, learning, visual spatial skills, attention) and academic performance (reading, spelling, arithmetic) three months after the illness. Linear regressions were fit for each academic score with the five cognitive outcomes entered as predictors. Adjusters in the analysis were age, sex, education, nutrition, and home environment. Exploratory factor analysis (EFA) and structural equation models (SEM) were used to determine the nature of the association between cognition and academic performance. Predictive residual sum of squares was used to determine which combination of cognitive scores was needed to predict academic performance. In regressions of a single academic score on all five cognitive outcomes and adjusters, only Working Memory was associated with Reading (coefficient estimate = 0.36, 95% confidence interval = 0.10 to 0.63, p<0.01) and Spelling (0.46, 0.13 to 0.78, p<0.01), Visual Spatial Skills was associated with Arithmetic (0.15, 0.03 to 0.26, p<0.05), and Learning was associated with Reading (0.06, 0.00 to 0.11, p<0.05). One latent cognitive factor was identified using EFA. The SEM found a strong association between this latent cognitive ability and each academic performance measure (P<0.0001). Working memory, visual spatial ability and learning were the best predictors of academic performance. Academic performance is strongly associated with the latent variable labelled "cognitive ability" which captures most of the variation in the individual specific cognitive outcome measures. Working memory, visual spatial skills, and learning together stood out as the best combination to predict academic performance.

  13. Atypical performance patterns on Delis-Kaplan Executive Functioning System Color-Word Interference Test: Cognitive switching and learning ability in older adults.

    PubMed

    Berg, Jody-Lynn; Swan, Natasha M; Banks, Sarah J; Miller, Justin B

    2016-09-01

    Cognitive set shifting requires flexible application of lower level processes. The Delis-Kaplan Executive Functioning System (DKEFS) Color-Word Interference Test (CWIT) is commonly used to clinically assess cognitive set shifting. An atypical pattern of performance has been observed on the CWIT; a subset of individuals perform faster, with equal or fewer errors, on the more difficult inhibition/switching than the inhibition trial. This study seeks to explore the cognitive underpinnings of this atypical pattern. It is hypothesized that atypical patterns on CWIT will be associated with better performance on underlying cognitive measures of attention, working memory, and learning when compared to typical CWIT patterns. Records from 239 clinical referrals (age: M = 68.09 years, SD = 10.62; education: M = 14.87 years, SD = 2.73) seen for a neuropsychological evaluation as part of diagnostic work up in an outpatient dementia and movement disorders clinic were sampled. The standard battery of tests included measures of attention, learning, fluency, executive functioning, and working memory. Analyses of variance (ANOVAs) were conducted to compare the cognitive performance of those with typical versus atypical CWIT patterns. An atypical pattern of performance was confirmed in 23% of our sample. Analyses revealed a significant group difference in acquisition of information on both nonverbal (Brief Visuospatial Memory Test-Revised, BVMT-R total recall), F(1, 213) = 16.61, p < .001, and verbal (Hopkins Verbal Learning Test-Revised, HVLT-R total recall) learning tasks, F(1, 181) = 6.43, p < .01, and semantic fluency (Animal Naming), F(1, 232) = 7.57, p = .006, with the atypical group performing better on each task. Effect sizes were larger for nonverbal (Cohen's d = 0.66) than verbal learning (Cohen's d = 0.47) and semantic fluency (Cohen's d = 0.43). Individuals demonstrating an atypical pattern of performance on the CWIT inhibition/switching trial also demonstrated relative strengths in semantic fluency and learning.

  14. Adult-Onset Hypothyroidism Enhances Fear Memory and Upregulates Mineralocorticoid and Glucocorticoid Receptors in the Amygdala

    PubMed Central

    Montero-Pedrazuela, Ana; Fernández-Lamo, Iván; Alieva, María; Pereda-Pérez, Inmaculada; Venero, César; Guadaño-Ferraz, Ana

    2011-01-01

    Hypothyroidism is the most common hormonal disease in adults, which is frequently accompanied by learning and memory impairments and emotional disorders. However, the deleterious effects of thyroid hormones deficiency on emotional memory are poorly understood and often underestimated. To evaluate the consequences of hypothyroidism on emotional learning and memory, we have performed a classical Pavlovian fear conditioning paradigm in euthyroid and adult-thyroidectomized Wistar rats. In this experimental model, learning acquisition was not impaired, fear memory was enhanced, memory extinction was delayed and spontaneous recovery of fear memory was exacerbated in hypothyroid rats. The potentiation of emotional memory under hypothyroidism was associated with an increase of corticosterone release after fear conditioning and with higher expression of glucocorticoid and mineralocorticoid receptors in the lateral and basolateral nuclei of the amygdala, nuclei that are critically involved in the circuitry of fear memory. Our results demonstrate for the first time that adult-onset hypothyroidism potentiates fear memory and also increases vulnerability to develop emotional memories. Furthermore, our findings suggest that enhanced corticosterone signaling in the amygdala is involved in the pathophysiological mechanisms of fear memory potentiation. Therefore, we recommend evaluating whether inappropriate regulation of fear in patients with post-traumatic stress and other mental disorders is associated with abnormal levels of thyroid hormones, especially those patients refractory to treatment. PMID:22039511

  15. The functional neuroanatomy of verbal memory in Alzheimer's disease: [18F]-Fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) correlates of recency and recognition memory.

    PubMed

    Staffaroni, Adam M; Melrose, Rebecca J; Leskin, Lorraine P; Riskin-Jones, Hannah; Harwood, Dylan; Mandelkern, Mark; Sultzer, David L

    2017-09-01

    The objective of this study was to distinguish the functional neuroanatomy of verbal learning and recognition in Alzheimer's disease (AD) using the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) Word Learning task. In 81 Veterans diagnosed with dementia due to AD, we conducted a cluster-based correlation analysis to assess the relationships between recency and recognition memory scores from the CERAD Word Learning Task and cortical metabolic activity measured using [ 18 F]-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET). AD patients (Mini-Mental State Examination, MMSE mean = 20.2) performed significantly better on the recall of recency items during learning trials than of primacy and middle items. Recency memory was associated with cerebral metabolism in the left middle and inferior temporal gyri and left fusiform gyrus (p < .05 at the corrected cluster level). In contrast, recognition memory was correlated with metabolic activity in two clusters: (a) a large cluster that included the left hippocampus, parahippocampal gyrus, entorhinal cortex, anterior temporal lobe, and inferior and middle temporal gyri; (b) the bilateral orbitofrontal cortices (OFC). The present study further informs our understanding of the disparate functional neuroanatomy of recency memory and recognition memory in AD. We anticipated that the recency effect would be relatively preserved and associated with temporoparietal brain regions implicated in short-term verbal memory, while recognition memory would be associated with the medial temporal lobe and possibly the OFC. Consistent with our a priori hypotheses, list learning in our AD sample was characterized by a reduced primacy effect and a relatively spared recency effect; however, recency memory was associated with cerebral metabolism in inferior and lateral temporal regions associated with the semantic memory network, rather than regions associated with short-term verbal memory. The correlates of recognition memory included the medial temporal lobe and OFC, replicating prior studies.

  16. BDNF Val66Met Polymorphism Interacts with Sleep Consolidation to Predict Ability to Create New Declarative Memories.

    PubMed

    Gosselin, Nadia; De Beaumont, Louis; Gagnon, Katia; Baril, Andrée-Ann; Mongrain, Valérie; Blais, Hélène; Montplaisir, Jacques; Gagnon, Jean-François; Pelleieux, Sandra; Poirier, Judes; Carrier, Julie

    2016-08-10

    It is hypothesized that a fundamental function of sleep is to restore an individual's day-to-day ability to learn and to constantly adapt to a changing environment through brain plasticity. Brain-derived neurotrophic factor (BDNF) is among the key regulators that shape brain plasticity. However, advancing age and carrying the BDNF Met allele were both identified as factors that potentially reduce BDNF secretion, brain plasticity, and memory. Here, we investigated the moderating role of BDNF polymorphism on sleep and next-morning learning ability in 107 nondemented individuals who were between 55 and 84 years of age. All subjects were tested with 1 night of in-laboratory polysomnography followed by a cognitive evaluation the next morning. We found that in subjects carrying the BDNF Val66Val polymorphism, consolidated sleep was associated with significantly better performance on hippocampus-dependent episodic memory tasks the next morning (β-values from 0.290 to 0.434, p ≤ 0.01). In subjects carrying at least one copy of the BDNF Met allele, a more consolidated sleep was not associated with better memory performance in most memory tests (β-values from -0.309 to -0.392, p values from 0.06 to 0.15). Strikingly, increased sleep consolidation was associated with poorer performance in learning a short story presented verbally in Met allele carriers (β = -0.585, p = 0.005). This study provides new evidence regarding the interacting roles of consolidated sleep and BDNF polymorphism in the ability to learn and stresses the importance of considering BDNF polymorphism when studying how sleep affects cognition. Individuals with the BDNF Val/Val (valine allele) polymorphism showed better memory performance after a night of consolidated sleep. However, we observed that middle-aged and older individuals who are carriers of the BDNF Met allele displayed no positive association between sleep quality and their ability to learn the next morning. This interaction between sleep and BDNF polymorphism was more salient for hippocampus-dependent tasks than for other cognitive tasks. Our results support the hypothesis that reduced activity-dependent secretion of BDNF impairs the benefits of sleep on synaptic plasticity and next-day memory. Our work advances the field by revealing new evidence of a clear genetic heterogeneity in how sleep consolidation contributes to the ability to learn. Copyright © 2016 the authors 0270-6474/16/368391-09$15.00/0.

  17. Working Memory Capacity, Confidence and Scientific Thinking

    ERIC Educational Resources Information Center

    Al-Ahmadi, Fatheya; Oraif, Fatima

    2009-01-01

    Working memory capacity is now well established as a rate determining factor in much learning and assessment, especially in the sciences. Most of the research has focussed on performance in tests and examinations in subject areas. This paper outlines some exploratory work in which other outcomes are related to working memory capacity. Confidence…

  18. First- and Second-Order Metacognitive Judgments of Semantic Memory Reports: The Influence of Personality Traits and Cognitive Styles

    ERIC Educational Resources Information Center

    Buratti, Sandra; Allwood, Carl Martin; Kleitman, Sabina

    2013-01-01

    In learning contexts, people need to make realistic confidence judgments about their memory performance. The present study investigated whether second-order judgments of first-order confidence judgments could help people improve their confidence judgments of semantic memory information. Furthermore, we assessed whether different personality and…

  19. Enhancing memory for lists by grouped presentation and rehearsal: a pilot study in healthy subjects with unexpected results.

    PubMed

    Hoppe, Christian; Stojanovic, Jelena; Elger, Christian E

    2009-12-01

    List learning is probably the most established paradigm for the psychometric evaluation of episodic memory deficits in different neuropsychiatric conditions including epilepsy. Strategies which are capable of increasing the test performance might be promising candidates for a therapeutic improvement of daily memory performance. Based on the classical 'temporal grouping effect' we wanted to evaluate the memory-enhancing potential of disentangling perceiving, rehearsing and encoding by temporally grouped presentation and group-wise reproduction during acquisition. According to the ethical principle of subsidiary the study was performed in healthy adolescents (N=126) before setting-up a patient study. Subjects had to learn a list of 12 semantically unrelated nouns and a list of 12 figures during two acquisition trials under one of four experimental conditions defined by the size of presented item groups (GS): GS=1 (single items, i.e., 12 x 1 item), GS=3 (4 x 3 items), GS=6 (2 x 6 items), and GS=12 (standard presentation mode, i.e., 1 x 12 items). Repeated measures MANOVA confirmed a positive effect of smaller GS on acquisition performance but the grouping condition obtained no effect on immediate and delayed free recall or on yes/no recognition. For verbal retention, GS=12 even showed a tendency toward an advantage as compared to GS=3. Although appearing reasonable and promising, facilitating acquisition during list learning by temporal grouping and grouped overt rehearsal turned out to be ineffective with regard to long-term memory encoding and retrieval. A strategy however which fails in healthy subjects is unlikely to obtain a therapeutic potential in patients with memory deficits.

  20. Dose-dependent effects of hydrocortisone infusion on autobiographical memory recall

    PubMed Central

    Young, Kymberly; Drevets, Wayne C.; Schulkin, Jay; Erickson, Kristine

    2011-01-01

    The glucocorticoid hormone cortisol has been shown to impair episodic memory performance. The present study examined the effect of two doses of hydrocortisone (synthetic cortisol) administration on autobiographical memory retrieval. Healthy volunteers (n=66) were studied on two separate visits, during which they received placebo and either moderate-dose (0.15 mg/kg IV; n=33) or high-dose (0.45 mg/kg IV; n=33) hydrocortisone infusion. From 75 to 150 min post-infusion subjects performed an Autobiographical Memory Test and the California Verbal Learning Test (CVLT). The high-dose hydrocortisone administration reduced the percent of specific memories recalled (p = 0.04), increased the percent of categorical (nonspecific) memories recalled, and slowed response times for categorical memories (p <0.001), compared to placebo performance (p < 0.001). Under moderate-dose hydrocortisone the autobiographical memory performance did not change significantly with respect to percent of specific or categorical memories recalled or reaction times. Performance on the CVLT was not affected by hydrocortisone. These findings suggest that cortisol affects accessibility of autobiographical memories in a dose-dependent manner. Specifically, administration of hydrocortisone at doses analogous to those achieved under severe psychosocial stress impaired the specificity and speed of retrieval of autobiographical memories. PMID:21942435

  1. The generalizability of working-memory capacity in the sport domain.

    PubMed

    Buszard, Tim; Masters, Rich Sw; Farrow, Damian

    2017-08-01

    Working-memory capacity has been implicated as an influential variable when performing and learning sport-related skills. In this review, we critically evaluate evidence linking working-memory capacity with performing under pressure, tactical decision making, motor skill acquisition, and sport expertise. Laboratory experiments link low working-memory capacity with poorer performance under pressure and poorer decision making when required to inhibit distractions or resolve conflict. However, the generalizability of these findings remains unknown. While working-memory capacity is associated with the acquisition of simple motor skills, there is no such evidence from the available data for complex motor skills. Likewise, currently there is no evidence to suggest that a larger working-memory capacity facilitates the attainment of sport expertise. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The relationships between trait anxiety, place recognition memory, and learning strategy.

    PubMed

    Hawley, Wayne R; Grissom, Elin M; Dohanich, Gary P

    2011-01-20

    Rodents learn to navigate mazes using various strategies that are governed by specific regions of the brain. The type of strategy used when learning to navigate a spatial environment is moderated by a number of factors including emotional states. Heightened anxiety states, induced by exposure to stressors or administration of anxiogenic agents, have been found to bias male rats toward the use of a striatum-based stimulus-response strategy rather than a hippocampus-based place strategy. However, no study has yet examined the relationship between natural anxiety levels, or trait anxiety, and the type of learning strategy used by rats on a dual-solution task. In the current experiment, levels of inherent anxiety were measured in an open field and compared to performance on two separate cognitive tasks, a Y-maze task that assessed place recognition memory, and a visible platform water maze task that assessed learning strategy. Results indicated that place recognition memory on the Y-maze correlated with the use of place learning strategy on the water maze. Furthermore, lower levels of trait anxiety correlated positively with better place recognition memory and with the preferred use of place learning strategy. Therefore, competency in place memory and bias in place strategy are linked to the levels of inherent anxiety in male rats. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. A role for autophagy in long-term spatial memory formation in male rodents.

    PubMed

    Hylin, Michael J; Zhao, Jing; Tangavelou, Karthikeyan; Rozas, Natalia S; Hood, Kimberly N; MacGowan, Jacalyn S; Moore, Anthony N; Dash, Pramod K

    2018-03-01

    A hallmark of long-term memory formation is the requirement for protein synthesis. Administration of protein synthesis inhibitors impairs long-term memory formation without influencing short-term memory. Rapamycin is a specific inhibitor of target of rapamycin complex 1 (TORC1) that has been shown to block protein synthesis and impair long-term memory. In addition to regulating protein synthesis, TORC1 also phosphorylates Unc-51-like autophagy activating kinase-1 (Ulk-1) to suppress autophagy. As autophagy can be activated by rapamycin (and rapamycin inhibits long-term memory), our aim was to test the hypothesis that autophagy inhibitors would enhance long-term memory. To examine if learning alters autophagosome number, we used male reporter mice carrying the GFP-LC3 transgene. Using these mice, we observed that training in the Morris water maze task increases the number of autophagosomes, a finding contrary to our expectations. For learning and memory studies, male Long Evans rats were used due to their relatively larger size (compared to mice), making it easier to perform intrahippocampal infusions in awake, moving animals. When the autophagy inhibitors 3-methyladenine (3-MA) or Spautin-1 were administered bilaterally into the hippocampii prior to training in the Morris water maze task, the drugs did not alter learning. In contrast, when memory was tested 24 hours later by a probe trial, significant impairments were observed. In addition, intrahippocampal infusion of an autophagy activator peptide (TAT-Beclin-1) improved long-term memory. These results indicate that autophagy is not necessary for learning, but is required for long-term memory formation. © 2017 Wiley Periodicals, Inc.

  4. Beneficial effect of commercial Rhodiola extract in rats with scopolamine-induced memory impairment on active avoidance.

    PubMed

    Vasileva, Liliya V; Getova, Damianka P; Doncheva, Nina D; Marchev, Andrey S; Georgiev, Milen I

    2016-12-04

    Rhodiola rosea L., family Crassulaceae also known as Golden Root or Arctic root is one of the most widely used medicinal plants with effect on cognitive dysfunction, psychological stress and depression. The aim of the study was to examine the effect of a standardized commercial Rhodiola extract on learning and memory processes in naive rats as well as its effects in rats with scopolamine-induced memory impairment. Sixty male Wistar rats were used in the study. The experiment was conducted in two series - on naive rats and on rats with scopolamine-induced model of impaired memory. The active avoidance test was performed in an automatic conventional shuttle box set-up. The criteria used were the number of conditional stimuli (avoidances), the number of unconditioned stimuli (escapes) as well as the number of intertrial crossings. The chemical fingerprinting of the standardized commercial Rhodiola extract was performed by means of nuclear magnetic resonance (NMR). Naive rats treated with standardized Rhodiola extract increased the number of avoidances during the learning session and memory retention test compared to the controls. Rats with scopolamine-induced memory impairment treated with Rhodiola extract showed an increase in the number of avoidances during the learning session and on the memory tests compared to the scopolamine group. The other two parameters were not changed in rats treated with the extract of Rhodiola in the two series. It was found that the studied Rhodiola extract exerts a beneficial effect on learning and memory processes in naive rats and rats with scopolamine-induced memory impairment. The observed effect is probably due to multiple underlying mechanisms including its modulating effect on acetylcholine levels in the brain and MAO-inhibitory activity leading to stimulation of the monoamines' neurotransmission. In addition the pronounced stress-protective properties of Rhodiola rosea L. could also play a role in the improvement of cognitive functions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Spatial learning in the genetically heterogeneous NIH-HS rat stock and RLA-I/RHA-I rats: revisiting the relationship with unconditioned and conditioned anxiety.

    PubMed

    Martínez-Membrives, Esther; López-Aumatell, Regina; Blázquez, Gloria; Cañete, Toni; Tobeña, Adolf; Fernández-Teruel, Alberto

    2015-05-15

    To characterize learning/memory profiles for the first time in the genetically heterogeneous NIH-HS rat stock, and to examine whether these are associated with anxiety, we evaluated NIH-HS rats for spatial learning/memory in the Morris water maze (MWM) and in the following anxiety/fear tests: the elevated zero-maze (ZM; unconditioned anxiety), a context-conditioned fear test and the acquisition of two-way active avoidance (conditioned anxiety). NIH-HS rats were compared with the Roman High- (RHA-I) and Low-Avoidance (RLA-I) rat strains, given the well-known differences between the Roman strains/lines in anxiety-related behavior and in spatial learning/memory. The results show that: (i) As expected, RLA-I rats were more anxious in the ZM test, displayed more frequent context-conditioned freezing episodes and fewer avoidances than RHA-I rats. (ii) Scores of NIH-HS rats in these tests/tasks mostly fell in between those of the Roman rat strains, and were usually closer to the values of the RLA-I strain. (iii) Pigmented NIH-HS (only a small part of NIH-HS rats were albino) rats were the best spatial learners and displayed better spatial memory than the other three (RHA-I, RLA-I and NIH-HS albino) groups. (iv) Albino NIH-HS and RLA-I rats also showed better learning/memory than the RHA-I strain. (v) Within the NIH-HS stock, the most anxious rats in the ZM test presented the best learning and/or memory efficiency (regardless of pigmentation). In summary, NIH-HS rats display a high performance in spatial learning/memory tasks and a passive coping strategy when facing conditioned conflict situations. In addition, unconditioned anxiety in NIH-HS rats predicts better spatial learning/memory. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Individual variations in dose response for spatial memory learning among outbred wistar rats exposed from 5 to 20 cGy of (56) Fe particles.

    PubMed

    Wyrobek, Andrew J; Britten, Richard A

    2016-06-01

    Exposures of brain tissue to ionizing radiation can lead to persistent deficits in cognitive functions and behaviors. However, little is known about the quantitative relationships between exposure dose and neurological risks, especially for lower doses and among genetically diverse individuals. We investigated the dose relationship for spatial memory learning among genetically outbred male Wistar rats exposed to graded doses of (56) Fe particles (sham, 5, 10, 15, and 20 cGy; 1 GeV/n). Spatial memory learning was assessed on a Barnes maze using REL3 ratios measured at three months after exposure. Irradiated animals showed dose-dependent declines in spatial memory learning that were fit by a linear regression (P for slope <0.0002). The irradiated animals showed significantly impaired learning at 10 cGy exposures, no detectable learning between 10 and 15 cGy, and worsened performances between 15 and 20 cGy. The proportions of poor learners and the magnitude of their impairment were fit by linear regressions with doubling doses of ∼10 cGy. In contrast, there were no detectable deficits in learning among the good learners in this dose range. Our findings suggest that genetically diverse individuals can vary substantially in their spatial memory learning, and that exposures at low doses appear to preferentially impact poor learners. This hypothesis invites future investigations of the genetic and physiological mechanisms of inter-individual variations in brain function related to spatial memory learning after low-dose HZE radiation exposures and to determine whether it also applies to physical trauma to brain tissue and exposures to chemical neurotoxicants. Environ. Mol. Mutagen. 57:331-340, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Inefficient Or Insufficient Encoding As Potential Primary Deficit In Neurodevelopmental Performance Among Children with OSA

    PubMed Central

    Spruyt, Karen; Capdevila, Oscar Sans; Kheirandish-Gozal, Leila; Gozal, David

    2010-01-01

    Memory (M) impairments have been suggested in pediatric Obstructive Sleep Apnea along with attention and executive (AE), language (L) and visuospatial (V) dysfunctions. NEPSY assessment of children aged 5–9-years who were either healthy (n= 43), or who had OSA without L, V, AE (OSA−, n= 22) or with L (n=6), V (n=1), AE (n=3) (OSA+, n=10) dysfunctions revealed no gross memory problems in OSA; however, over the 3 learning trials of cross-modal association learning of name with face, the OSA− progressively improved performance, whereas the OSA+ failed to progress. No within-group differences between immediate and delayed memory tasks were apparent. The data suggest the presence of slower information processing, and/or secondary memory problems, in the absence of retrieval or recall impairments among a subset of children with OSA. We hypothesize that inefficient/insufficient encoding may account for the primary deficit. PMID:20183722

  8. Effect of episodic and working memory impairments on semantic and cognitive procedural learning at alcohol treatment entry.

    PubMed

    Pitel, Anne Lise; Witkowski, Thomas; Vabret, François; Guillery-Girard, Bérengère; Desgranges, Béatrice; Eustache, Francis; Beaunieux, Hélène

    2007-02-01

    Chronic alcoholism is known to impair the functioning of episodic and working memory, which may consequently reduce the ability to learn complex novel information. Nevertheless, semantic and cognitive procedural learning have not been properly explored at alcohol treatment entry, despite its potential clinical relevance. The goal of the present study was therefore to determine whether alcoholic patients, immediately after the weaning phase, are cognitively able to acquire complex new knowledge, given their episodic and working memory deficits. Twenty alcoholic inpatients with episodic memory and working memory deficits at alcohol treatment entry and a control group of 20 healthy subjects underwent a protocol of semantic acquisition and cognitive procedural learning. The semantic learning task consisted of the acquisition of 10 novel concepts, while subjects were administered the Tower of Toronto task to measure cognitive procedural learning. Analyses showed that although alcoholic subjects were able to acquire the category and features of the semantic concepts, albeit slowly, they presented impaired label learning. In the control group, executive functions and episodic memory predicted semantic learning in the first and second halves of the protocol, respectively. In addition to the cognitive processes involved in the learning strategies invoked by controls, alcoholic subjects seem to attempt to compensate for their impaired cognitive functions, invoking capacities of short-term passive storage. Regarding cognitive procedural learning, although the patients eventually achieved the same results as the controls, they failed to automate the procedure. Contrary to the control group, the alcoholic groups' learning performance was predicted by controlled cognitive functions throughout the protocol. At alcohol treatment entry, alcoholic patients with neuropsychological deficits have difficulty acquiring novel semantic and cognitive procedural knowledge. Compared with controls, they seem to use more costly learning strategies, which are nonetheless less efficient. These learning disabilities need to be considered when treatment requiring the acquisition of complex novel information is envisaged.

  9. What's statistical about learning? Insights from modelling statistical learning as a set of memory processes

    PubMed Central

    2017-01-01

    Statistical learning has been studied in a variety of different tasks, including word segmentation, object identification, category learning, artificial grammar learning and serial reaction time tasks (e.g. Saffran et al. 1996 Science 274, 1926–1928; Orban et al. 2008 Proceedings of the National Academy of Sciences 105, 2745–2750; Thiessen & Yee 2010 Child Development 81, 1287–1303; Saffran 2002 Journal of Memory and Language 47, 172–196; Misyak & Christiansen 2012 Language Learning 62, 302–331). The difference among these tasks raises questions about whether they all depend on the same kinds of underlying processes and computations, or whether they are tapping into different underlying mechanisms. Prior theoretical approaches to statistical learning have often tried to explain or model learning in a single task. However, in many cases these approaches appear inadequate to explain performance in multiple tasks. For example, explaining word segmentation via the computation of sequential statistics (such as transitional probability) provides little insight into the nature of sensitivity to regularities among simultaneously presented features. In this article, we will present a formal computational approach that we believe is a good candidate to provide a unifying framework to explore and explain learning in a wide variety of statistical learning tasks. This framework suggests that statistical learning arises from a set of processes that are inherent in memory systems, including activation, interference, integration of information and forgetting (e.g. Perruchet & Vinter 1998 Journal of Memory and Language 39, 246–263; Thiessen et al. 2013 Psychological Bulletin 139, 792–814). From this perspective, statistical learning does not involve explicit computation of statistics, but rather the extraction of elements of the input into memory traces, and subsequent integration across those memory traces that emphasize consistent information (Thiessen and Pavlik 2013 Cognitive Science 37, 310–343). This article is part of the themed issue ‘New frontiers for statistical learning in the cognitive sciences'. PMID:27872374

  10. What's statistical about learning? Insights from modelling statistical learning as a set of memory processes.

    PubMed

    Thiessen, Erik D

    2017-01-05

    Statistical learning has been studied in a variety of different tasks, including word segmentation, object identification, category learning, artificial grammar learning and serial reaction time tasks (e.g. Saffran et al. 1996 Science 274: , 1926-1928; Orban et al. 2008 Proceedings of the National Academy of Sciences 105: , 2745-2750; Thiessen & Yee 2010 Child Development 81: , 1287-1303; Saffran 2002 Journal of Memory and Language 47: , 172-196; Misyak & Christiansen 2012 Language Learning 62: , 302-331). The difference among these tasks raises questions about whether they all depend on the same kinds of underlying processes and computations, or whether they are tapping into different underlying mechanisms. Prior theoretical approaches to statistical learning have often tried to explain or model learning in a single task. However, in many cases these approaches appear inadequate to explain performance in multiple tasks. For example, explaining word segmentation via the computation of sequential statistics (such as transitional probability) provides little insight into the nature of sensitivity to regularities among simultaneously presented features. In this article, we will present a formal computational approach that we believe is a good candidate to provide a unifying framework to explore and explain learning in a wide variety of statistical learning tasks. This framework suggests that statistical learning arises from a set of processes that are inherent in memory systems, including activation, interference, integration of information and forgetting (e.g. Perruchet & Vinter 1998 Journal of Memory and Language 39: , 246-263; Thiessen et al. 2013 Psychological Bulletin 139: , 792-814). From this perspective, statistical learning does not involve explicit computation of statistics, but rather the extraction of elements of the input into memory traces, and subsequent integration across those memory traces that emphasize consistent information (Thiessen and Pavlik 2013 Cognitive Science 37: , 310-343).This article is part of the themed issue 'New frontiers for statistical learning in the cognitive sciences'. © 2016 The Author(s).

  11. Memory in Elementary School Children Is Improved by an Unrelated Novel Experience.

    PubMed

    Ballarini, Fabricio; Martínez, María Cecilia; Díaz Perez, Magdalena; Moncada, Diego; Viola, Haydée

    2013-01-01

    Education is the most traditional means with formative effect on the human mind, learning and memory being its fundamental support. For this reason, it is essential to find different strategies to improve the studentś performance. Based on previous work, we hypothesized that a novel experience could exert an enhancing effect on learning and memory within the school environment. Here we show that novel experience improved the memory of literary or graphical activities when it is close to these learning sessions. We found memory improvements in groups of students who had experienced a novel science lesson 1 hour before or after the reading of a story, but not when these events were 4 hours apart. Such promoting effect on long-term memory (LTM) was also reproduced with another type of novelty (a music lesson) and also after another type of learning task (a visual memory). Interestingly, when the lesson was familiar, it failed to enhance the memory of the other task. Our results show that educationally relevant novel events experienced during normal school hours can improve LTM for tasks/activities learned during regular school lessons. This effect is restricted to a critical time window around learning and is particularly dependent on the novel nature of the associated experience. These findings provide a tool that could be easily transferred to the classroom by the incorporation of educationally novel events in the school schedule as an extrinsic adjuvant of other information acquired some time before or after it. This approach could be a helpful tool for the consolidation of certain types of topics that generally demand a great effort from the children.

  12. Expression of HIV-Tat protein is associated with learning and memory deficits in the mouse

    PubMed Central

    Carey, Amanda N.; Sypek, Elizabeth I.; Singh, Harminder D.; Kaufman, Marc J.; McLaughlin, Jay P.

    2012-01-01

    HIV-Tat protein has been implicated in the pathogenesis of HIV-1 neurological complications (i.e., neuroAIDS), but direct demonstrations of the effects of Tat on behavior are limited. GT-tg mice with a doxycycline (Dox)-inducible and brain-selective tat gene coding for Tat protein were used to test the hypothesis that the activity of Tat in brain is sufficient to impair learning and memory processes. Western blot analysis of GT-tg mouse brains demonstrated an increase in Tat antibody labeling that seemed to be dependent on the dose and duration of Dox pretreatment. Dox-treated GT-tg mice tested in the Barnes maze demonstrated longer latencies to find an escape hole and displayed deficits in probe trial performance, versus uninduced GT-tg littermates, suggesting Tat-induced impairments of spatial learning and memory. Reversal learning was also impaired in Tat-induced mice. Tat-induced mice additionally demonstrated long-lasting (up to one month) deficiencies in novel object recognition learning and memory performance. Furthermore, novel object recognition impairment was dependent on the dose and duration of Dox exposure, suggesting that Tat exposure progressively mediated deficits. These experiments provide evidence that Tat protein expression is sufficient to mediate cognitive abnormalities seen in HIV-infected individuals. Moreover, the genetically engineered GT-tg mouse may be useful for improving our understanding of the neurological underpinnings of neuroAIDS-related behaviors. PMID:22197678

  13. Functional Equivalence of Spatial Images from Touch and Vision: Evidence from Spatial Updating in Blind and Sighted Individuals

    PubMed Central

    Giudice, Nicholas A.; Betty, Maryann R.; Loomis, Jack M.

    2012-01-01

    This research examines whether visual and haptic map learning yield functionally equivalent spatial images in working memory, as evidenced by similar encoding bias and updating performance. In three experiments, participants learned four-point routes either by seeing or feeling the maps. At test, blindfolded participants made spatial judgments about the maps from imagined perspectives that were either aligned or misaligned with the maps as represented in working memory. Results from Experiments 1 and 2 revealed a highly similar pattern of latencies and errors between visual and haptic conditions. These findings extend the well known alignment biases for visual map learning to haptic map learning, provide further evidence of haptic updating, and most importantly, show that learning from the two modalities yields very similar performance across all conditions. Experiment 3 found the same encoding biases and updating performance with blind individuals, demonstrating that functional equivalence cannot be due to visual recoding and is consistent with an amodal hypothesis of spatial images. PMID:21299331

  14. Temporal information processing in short- and long-term memory of patients with schizophrenia.

    PubMed

    Landgraf, Steffen; Steingen, Joerg; Eppert, Yvonne; Niedermeyer, Ulrich; van der Meer, Elke; Krueger, Frank

    2011-01-01

    Cognitive deficits of patients with schizophrenia have been largely recognized as core symptoms of the disorder. One neglected factor that contributes to these deficits is the comprehension of time. In the present study, we assessed temporal information processing and manipulation from short- and long-term memory in 34 patients with chronic schizophrenia and 34 matched healthy controls. On the short-term memory temporal-order reconstruction task, an incidental or intentional learning strategy was deployed. Patients showed worse overall performance than healthy controls. The intentional learning strategy led to dissociable performance improvement in both groups. Whereas healthy controls improved on a performance measure (serial organization), patients improved on an error measure (inappropriate semantic clustering) when using the intentional instead of the incidental learning strategy. On the long-term memory script-generation task, routine and non-routine events of everyday activities (e.g., buying groceries) had to be generated in either chronological or inverted temporal order. Patients were slower than controls at generating events in the chronological routine condition only. They also committed more sequencing and boundary errors in the inverted conditions. The number of irrelevant events was higher in patients in the chronological, non-routine condition. These results suggest that patients with schizophrenia imprecisely access temporal information from short- and long-term memory. In short-term memory, processing of temporal information led to a reduction in errors rather than, as was the case in healthy controls, to an improvement in temporal-order recall. When accessing temporal information from long-term memory, patients were slower and committed more sequencing, boundary, and intrusion errors. Together, these results suggest that time information can be accessed and processed only imprecisely by patients who provide evidence for impaired time comprehension. This could contribute to symptomatic cognitive deficits and strategic inefficiency in schizophrenia.

  15. Post-learning stress differentially affects memory for emotional gist and detail in naturally cycling women and women on hormonal contraceptives

    PubMed Central

    Nielsen, Shawn E.; Ahmed, Imran; Cahill, Larry

    2014-01-01

    Sex differences in emotional memory have received increasing interest over the past decade. However, to date, no work has explored how a post-learning stressor might modulate the influence of sex hormone status on memory for gist and peripheral detail in an emotional versus neutral context. Here, we tested three predictions. First, compared to naturally cycling women (NC women) in the luteal phase, women on hormonal contraception (HC women) would have significantly blunted HPA reactivity to physical stress. Second, post-learning stress would enhance detail and gist memory from an emotional story in NC women, and finally, post-learning stress would not affect emotional memory for details or gist in HC women. Healthy NC and HC women viewed a brief, narrated story containing neutral or emotionally arousing elements. Immediately after, Cold Pressor Stress (CPS) or a control procedure was administered. One week later, participants received a surprise free recall test for story elements. NC women exhibited significantly greater cortisol increases to CPS compared to HC women. NC women who viewed the emotional story and were administered CPS recalled the most peripheral details overall and more gist from the emotional compared to the neutral story. In HC women, however, the post-learning cortisol release did not affect memory for gist or peripheral details from the emotional or neutral story in any way. Additionally, NC and HC women performed similarly on measures of attention and arousal. These findings suggest that in women, post-learning stress differentially affects memory for emotional information depending on their hormonal contraceptive status. PMID:24841741

  16. The effect of two types of memory training on subjective and objective memory performance in healthy individuals aged 55 years and older: a randomized controlled trial.

    PubMed

    Valentijn, Susanne A M; van Hooren, Susan A H; Bosma, Hans; Touw, Dory M; Jolles, Jelle; van Boxtel, Martin P J; Ponds, Rudolf W H M

    2005-04-01

    The objective of the study was to examine the effectiveness of two types of memory training (collective and individual), compared to control (waiting list), on memory performance. Participants were 139 community-dwelling older individuals recruited through media advertisements asking for people with subjective memory complaints to participate in a study. Data were collected at baseline, and at 1 week and 4 months after the intervention. Training efficacy was assessed using measures of subjective and objective memory performance. After the intervention, participants in the collective training group reported more stability in memory functioning and had fewer feelings of anxiety and stress about memory functioning. In addition, positive effects were found on objective memory functioning. Compared with the other two groups, the collective training group participants had an improved recall of a previously learned word list. Compared to controls, participants in the individual training group reported fewer feelings of anxiety and stress in relation to memory functioning.

  17. Sex differences in episodic memory in early midlife: impact of reproductive aging.

    PubMed

    Rentz, Dorene M; Weiss, Blair K; Jacobs, Emily G; Cherkerzian, Sara; Klibanski, Anne; Remington, Anne; Aizley, Harlyn; Goldstein, Jill M

    2017-04-01

    Few have characterized cognitive changes with age as a function of menopausal stage relative to men, or sex differences in components of memory in early midlife. The study aim was to investigate variation in memory function in early midlife as a function of sex, sex steroid hormones, and reproductive status. A total of 212 men and women aged 45 to 55 were selected for this cross-sectional study from a prenatal cohort of pregnancies whose mothers were originally recruited in 1959 to 1966. They underwent clinical and cognitive testing and hormonal assessments of menopause status. Multivariate general linear models for multiple memory outcomes were used to test hypotheses controlling for potential confounders. Episodic memory, executive function, semantic processing, and estimated verbal intelligence were assessed. Associative memory and episodic verbal memory were assessed using Face-Name Associative Memory Exam (FNAME) and Selective Reminding Test (SRT), given increased sensitivity to detecting early cognitive decline. Impacts of sex and reproductive stage on performance were tested. Women outperformed men on all memory measures including FNAME (β = -0.30, P < 0.0001) and SRT (β = -0.29, P < 0.0001). Furthermore, premenopausal and perimenopausal women outperformed postmenopausal women on FNAME (initial learning, β= 0.32, P = 0.01) and SRT (recall, β= 2.39, P = 0.02). Across all women, higher estradiol was associated with better SRT performance (recall, β = 1.96, P = 0.01) and marginally associated with FNAME (initial learning, β = 0.19, P = 0.06). This study demonstrated that, in early midlife, women outperformed age-matched men across all memory measures, but sex differences were attenuated for postmenopausal women. Initial learning and memory retrieval were particularly vulnerable, whereas memory consolidation and storage were preserved. Findings underscore the significance of the decline in ovarian estradiol production in midlife and its role in shaping memory function.

  18. The impact of memory load and perceptual cues on puzzle learning by 24-month olds.

    PubMed

    Barr, Rachel; Moser, Alecia; Rusnak, Sylvia; Zimmermann, Laura; Dickerson, Kelly; Lee, Herietta; Gerhardstein, Peter

    2016-11-01

    Early childhood is characterized by memory capacity limitations and rapid perceptual and motor development [Rovee-Collier (1996). Infant Behavior & Development, 19, 385-400]. The present study examined 2-year olds' reproduction of a sliding action to complete an abstract fish puzzle under different levels of memory load and perceptual feature support. Experimental groups were compared to baseline controls to assess spontaneous rates of production of the target actions; baseline production was low across all experiments. Memory load was manipulated in Exp. 1 by adding pieces to the puzzle, increasing sequence length from 2 to 3 items, and to 3 items plus a distractor. Although memory load did not influence how toddlers learned to manipulate the puzzle pieces, it did influence toddlers' achievement of the goal-constructing the fish. Overall, girls were better at constructing the puzzle than boys. In Exp. 2, the perceptual features of the puzzle were altered by changing shape boundaries to create a two-piece horizontally cut puzzle (displaying bilateral symmetry), and by adding a semantically supportive context to the vertically cut puzzle (iconic). Toddlers were able to achieve the goal of building the fish equally well across the 2-item puzzle types (bilateral symmetry, vertical, iconic), but how they learned to manipulate the puzzle pieces varied as a function of the perceptual features. Here, as in Exp. 1, girls showed a different pattern of performance from the boys. This study demonstrates that changes in memory capacity and perceptual processing influence both goal-directed imitation learning and motoric performance. © 2016 Wiley Periodicals, Inc.

  19. The Effects of Acute Exercise on Memory and Brain-Derived Neurotrophic Factor (BDNF).

    PubMed

    Etnier, Jennifer L; Wideman, Laurie; Labban, Jeffrey D; Piepmeier, Aaron T; Pendleton, Daniel M; Dvorak, Kelly K; Becofsky, Katie

    2016-08-01

    Acute exercise benefits cognition, and some evidence suggests that brain-derived neurotrophic factor (BDNF) plays a role in this effect. The purpose of this study was to explore the dose-response relationship between exercise intensity, memory, and BDNF. Young adults completed 3 exercise sessions at different intensities relative to ventilator threshold (Vt) (VO 2max , Vt - 20%, Vt + 20%). For each session, participants exercised for approximately 30 min. Following exercise, they performed the Rey Auditory Verbal Learning Test (RAVLT) to assess short-term memory, learning, and long-term memory recall. Twenty-four hours later, they completed the RAVLT recognition trial, which provided another measure of long-term memory. Blood was drawn before exercise, immediately postexercise, and after the 30-min recall test. Results indicated that long-term memory as assessed after the 24-hr delay differed as a function of exercise intensity with the largest benefits observed following maximal intensity exercise. BDNF data showed a significant increase in response to exercise; however, there were no differences relative to exercise intensity and there were no significant associations between BDNF and memory. Future research is warranted so that we can better understand how to use exercise to benefit cognitive performance.

  20. Higher glucose levels associated with lower memory and reduced hippocampal microstructure.

    PubMed

    Kerti, Lucia; Witte, A Veronica; Winkler, Angela; Grittner, Ulrike; Rujescu, Dan; Flöel, Agnes

    2013-11-12

    For this cross-sectional study, we aimed to elucidate whether higher glycosylated hemoglobin (HbA1c) and glucose levels exert a negative impact on memory performance and hippocampal volume and microstructure in a cohort of healthy, older, nondiabetic individuals without dementia. In 141 individuals (72 women, mean age 63.1 years ± 6.9 SD), memory was tested using the Rey Auditory Verbal Learning Test. Peripheral levels of fasting HbA1c, glucose, and insulin and 3-tesla MRI scans were acquired to assess hippocampal volume and microstructure, as indicated by gray matter barrier density. Linear regression and simple mediation models were calculated to examine associations among memory, glucose metabolism, and hippocampal parameters. Lower HbA1c and glucose levels were significantly associated with better scores in delayed recall, learning ability, and memory consolidation. In multiple regression models, HbA1c remained strongly associated with memory performance. Moreover, mediation analyses indicated that beneficial effects of lower HbA1c on memory are in part mediated by hippocampal volume and microstructure. Our results indicate that even in the absence of manifest type 2 diabetes mellitus or impaired glucose tolerance, chronically higher blood glucose levels exert a negative influence on cognition, possibly mediated by structural changes in learning-relevant brain areas. Therefore, strategies aimed at lowering glucose levels even in the normal range may beneficially influence cognition in the older population, a hypothesis to be examined in future interventional trials.

  1. Memory and visual search in naturalistic 2D and 3D environments

    PubMed Central

    Li, Chia-Ling; Aivar, M. Pilar; Kit, Dmitry M.; Tong, Matthew H.; Hayhoe, Mary M.

    2016-01-01

    The role of memory in guiding attention allocation in daily behaviors is not well understood. In experiments with two-dimensional (2D) images, there is mixed evidence about the importance of memory. Because the stimulus context in laboratory experiments and daily behaviors differs extensively, we investigated the role of memory in visual search, in both two-dimensional (2D) and three-dimensional (3D) environments. A 3D immersive virtual apartment composed of two rooms was created, and a parallel 2D visual search experiment composed of snapshots from the 3D environment was developed. Eye movements were tracked in both experiments. Repeated searches for geometric objects were performed to assess the role of spatial memory. Subsequently, subjects searched for realistic context objects to test for incidental learning. Our results show that subjects learned the room-target associations in 3D but less so in 2D. Gaze was increasingly restricted to relevant regions of the room with experience in both settings. Search for local contextual objects, however, was not facilitated by early experience. Incidental fixations to context objects do not necessarily benefit search performance. Together, these results demonstrate that memory for global aspects of the environment guides search by restricting allocation of attention to likely regions, whereas task relevance determines what is learned from the active search experience. Behaviors in 2D and 3D environments are comparable, although there is greater use of memory in 3D. PMID:27299769

  2. Learning effect of computerized cognitive tests in older adults

    PubMed Central

    de Oliveira, Rafaela Sanches; Trezza, Beatriz Maria; Busse, Alexandre Leopold; Jacob-Filho, Wilson

    2014-01-01

    ABSTRACT Objective: To evaluate the learning effect of computerized cognitive testing in the elderly. Methods: Cross-sectional study with 20 elderly, 10 women and 10 men, with average age of 77.5 (±4.28) years. The volunteers performed two series of computerized cognitive tests in sequence and their results were compared. The applied tests were: Trail Making A and B, Spatial Recognition, Go/No Go, Memory Span, Pattern Recognition Memory and Reverse Span. Results: Based on the comparison of the results, learning effects were observed only in the Trail Making A test (p=0.019). Other tests performed presented no significant performance improvements. There was no correlation between learning effect and age (p=0.337) and education (p=0.362), as well as differences between genders (p=0.465). Conclusion: The computerized cognitive tests repeated immediately afterwards, for elderly, revealed no change in their performance, with the exception of the Trail Making test, demonstrating high clinical applicability, even in short intervals. PMID:25003917

  3. How do we learn to "kill" in volleyball?: The role of working memory capacity and expertise in volleyball motor learning.

    PubMed

    Bisagno, Elisa; Morra, Sergio

    2018-03-01

    This study examines young volleyball players' learning of increasingly complex attack gestures. The main purpose of the study was to examine the predictive role of a cognitive variable, working memory capacity (or "M capacity"), in the acquisition and development of motor skills in a structured sport. Pascual-Leone's theory of constructive operators (TCO) was used as a framework; it defines working memory capacity as the maximum number of schemes that can be simultaneously activated by attentional resources. The role of expertise in motor learning was also considered. The expertise of each athlete was assessed in terms of years of practice and number of training sessions per week. The participants were 120 volleyball players, aged between 6 and 26 years, who performed both working memory tests and practical tests of volleyball involving the execution of the "third touch" by means of technical gestures of varying difficulty. We proposed a task analysis of these different gestures framed within the TCO. The results pointed to a very clear dissociation. On the one hand, M capacity was the best predictor of correct motor performance, and a specific capacity threshold was found for learning each attack gesture. On the other hand, experience was the key for the precision of the athletic gestures. This evidence could underline the existence of two different cognitive mechanisms in motor learning. The first one, relying on attentional resources, is required to learn a gesture. The second one, based on repeated experience, leads to its automatization. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The PKC-β selective inhibitor, Enzastaurin, impairs memory in middle-aged rats.

    PubMed

    Willeman, Mari N; Mennenga, Sarah E; Siniard, Ashley L; Corneveaux, Jason J; De Both, Matt; Hewitt, Lauren T; Tsang, Candy W S; Caselli, Jason; Braden, B Blair; Bimonte-Nelson, Heather A; Huentelman, Matthew J

    2018-01-01

    Enzastaurin is a Protein Kinase C-β selective inhibitor that was developed to treat cancers. Protein Kinase C-β is an important enzyme for a variety of neuronal functions; in particular, previous rodent studies have reported deficits in spatial and fear-conditioned learning and memory with lower levels of Protein Kinase C-β. Due to Enzastaurin's mechanism of action, the present study investigated the consequences of Enzastaurin exposure on learning and memory in 12-month-old Fischer-344 male rats. Rats were treated daily with subcutaneous injections of either vehicle or Enzastaurin, and behaviorally tested using the spatial reference memory Morris Water Maze. Rats treated with Enzastaurin exhibited decreased overnight retention and poorer performance on the latter testing day, indicating a mild, but significant, memory impairment. There were no differences during the probe trial indicating that all animals were able to spatially localize the platform to the proper quadrant by the end of testing. RNA isolated from the hippocampus was analyzed using Next Generation Sequencing (Illumina). No statistically significant transcriptional differences were noted. Our findings suggest that acute Enzastaurin treatment can impair hippocampal-based learning and memory performance, with no effects on transcription in the hippocampus. We propose that care should be taken in future clinical trials that utilize Protein Kinase C-ß inhibitors, to monitor for possible cognitive effects, future research should examine if these effects are fully reversible.

  5. Executive functions predict conceptual learning of science.

    PubMed

    Rhodes, Sinéad M; Booth, Josephine N; Palmer, Lorna Elise; Blythe, Richard A; Delibegovic, Mirela; Wheate, Nial J

    2016-06-01

    We examined the relationship between executive functions and both factual and conceptual learning of science, specifically chemistry, in early adolescence. Sixty-three pupils in their second year of secondary school (aged 12-13 years) participated. Pupils completed tasks of working memory (Spatial Working Memory), inhibition (Stop-Signal), attention set-shifting (ID/ED), and planning (Stockings of Cambridge), from the CANTAB. They also participated in a chemistry teaching session, practical, and assessment on the topic of acids and alkalis designed specifically for this study. Executive function data were related to (1) the chemistry assessment which included aspects of factual and conceptual learning and (2) a recent school science exam. Correlational analyses between executive functions and both the chemistry assessment and science grades revealed that science achievements were significantly correlated with working memory. Linear regression analysis revealed that visuospatial working memory ability was predictive of chemistry performance. Interestingly, this relationship was observed solely in relation to the conceptual learning condition of the assessment highlighting the role of executive functions in understanding and applying knowledge about what is learned within science teaching. © 2016 The British Psychological Society.

  6. Post-Learning Sleep Transiently Boosts Context Specific Operant Extinction Memory.

    PubMed

    Borquez, Margarita; Contreras, María P; Vivaldi, Ennio; Born, Jan; Inostroza, Marion

    2017-01-01

    Operant extinction is learning to supress a previously rewarded behavior. It is known to be strongly associated with the specific context in which it was acquired, which limits the therapeutic use of operant extinction in behavioral treatments, e.g., of addiction. We examined whether sleep influences contextual memory of operant extinction over time, using two different recall tests (Recent and Remote). Rats were trained in an operant conditioning task (lever press) in context A, then underwent extinction training in context B, followed by a 3-h retention period that contained either spontaneous morning sleep, morning sleep deprivation, or spontaneous evening wakefulness. A recall test was performed either immediately after the 3-h experimental retention period (Recent recall) or after 48 h (Remote), in the extinction context B and in a novel context C. The two main findings were: (i) at the Recent recall test, sleep in comparison with sleep deprivation and spontaneous wakefulness enhanced extinction memory but, only in the extinction context B; (ii) at the Remote recall, extinction performance after sleep was enhanced in both contexts B and C to an extent comparable to levels at Recent recall in context B. Interestingly, extinction performance at Remote recall was also improved in the sleep deprivation groups in both contexts, with no difference to performance in the sleep group. Our results suggest that 3 h of post-learning sleep transiently facilitate the context specificity of operant extinction at a Recent recall. However, the improvement and contextual generalization of operant extinction memory observed in the long-term, i.e., after 48 h, does not require immediate post-learning sleep.

  7. Strategy-Selection in Question-Answering.

    DTIC Science & Technology

    1985-10-03

    34 form of "perceptual learning." They note that levels of processing (See Craik & Lockhart , 1972) affect recognition memory but not perceptual... Craik , F. I. M., & Lockhart , R. S. (1972). Levels of processing : A framework for memory research. Journal of Verbal Learning and Verbal Behavior, 11...practice, subjects seemed able to achieve higher levels of performance on both tasks. One possibility they consider is that the processes involved *. in the

  8. Implicit Learning of Complex Visual Contexts Under Non-Optimal Conditions

    DTIC Science & Technology

    2007-07-27

    Perception & Performance, 31(6), 1439-1448. 3. Jiang Y, Song J-H, Rigas A (2005). High-capacity spatial contextual memory. Psychonomic Bulletin & Review , 12...Makovski T., & Jiang YV (in press). Distributing versus focusing attention in visual short-term memory. Psychonomic Bulletin & Review . 8. Rausei V...Implicit learning of ignored visual context. Psychonomic Bulletin & Review , 12(1), 100-106. Jiang, Y. H., & Song, J. H. (2005). Spatial context

  9. Learning to read aloud: A neural network approach using sparse distributed memory

    NASA Technical Reports Server (NTRS)

    Joglekar, Umesh Dwarkanath

    1989-01-01

    An attempt to solve a problem of text-to-phoneme mapping is described which does not appear amenable to solution by use of standard algorithmic procedures. Experiments based on a model of distributed processing are also described. This model (sparse distributed memory (SDM)) can be used in an iterative supervised learning mode to solve the problem. Additional improvements aimed at obtaining better performance are suggested.

  10. Self-help memory training for healthy older adults in a residential care center: specific and transfer effects on performance and beliefs.

    PubMed

    Cavallini, Elena; Bottiroli, Sara; Capotosto, Emanuela; De Beni, Rossana; Pavan, Giorgio; Vecchi, Tomaso; Borella, Erika

    2015-08-01

    Cognitive flexibility has repeatedly been shown to improve after training programs in community-dwelling older adults, but few studies have focused on healthy older adults living in other settings. This study investigated the efficacy of self-help training for healthy older adults in a residential care center on memory tasks they practiced (associative and object list learning tasks) and any transfer to other tasks (grocery lists, face-name learning, figure-word pairing, word lists, and text learning). Transfer effects on everyday life (using a problem-solving task) and on participants' beliefs regarding their memory (efficacy and control) were also examined. With the aid of a manual, the training adopted a learner-oriented approach that directly encouraged learners to generalize strategic behavior to new tasks. The maintenance of any training benefits was assessed after 6 months. The study involved 34 residential care center residents (aged 70-99 years old) with no cognitive impairments who were randomly assigned to two programs: the experimental group followed the self-help training program, whereas the active control group was involved in general cognitive stimulation activities. Training benefits emerged in the trained group for the tasks that were practiced. Transfer effects were found in memory and everyday problem-solving tasks and on memory beliefs. The effects of training were generally maintained in both practiced and unpracticed memory tasks. These results demonstrate that learner-oriented self-help training enhances memory performance and memory beliefs, in the short term at least, even in residential care center residents. Copyright © 2014 John Wiley & Sons, Ltd.

  11. A close relationship between verbal memory and SN/VTA integrity in young and older adults.

    PubMed

    Düzel, Sandra; Schütze, Hartmut; Stallforth, Sabine; Kaufmann, Jörn; Bodammer, Nils; Bunzeck, Nico; Münte, Thomas F; Lindenberger, Ulman; Heinze, Hans-Jochen; Düzel, Emrah

    2008-11-01

    Age-related dysfunction in dopaminergic neuromodulation is assumed to contribute to age-associated memory impairment. However, to date there are no in vivo data on how structural parameters of the substantia nigra/ventral tegmental area (SN/VTA), the main origin of dopaminergic projections, relate to memory performance in healthy young and older adults. We investigated this relationship in a cross-sectional study including data from the hippocampus and frontal white matter (FWM) and also assessing working memory span and attention. In groups of young and older adults matched for the variance of their age distribution, gender and body mass index, we observed a robust positive correlation between Magnetization Transfer Ratio (MTR)--a measure of structural integrity--of the SN/VTA and FWM with verbal learning and memory performance among older adults, while there was a negative correlation in the young. Two additional imaging parameters, anisotropy of diffusion and diffusion coefficient, suggested that in older adults FWM changes reflected vascular pathology while SN/VTA changes pointed towards neuronal loss and loss of water content. The negative correlation in the young possibly reflected maturational changes. Multiple regression analyses indicated that in both young and older adults, SN/VTA MTR explained more variance of verbal learning and memory than FWM MTR or hippocampal MTR, and contributed less to explaining variance of working memory span. Together these findings indicate that structural integrity in the SN/VTA has a relatively selective impact on verbal learning and memory and undergoes specific changes from young adulthood to older age that qualitatively differ from changes in the FWM and hippocampus.

  12. Enhanced oscillatory activity in the hippocampal-prefrontal network is related to short-term memory function after early-life seizures

    PubMed Central

    Kleen, Jonathan K.; Wu, Edie X.; Holmes, Gregory L.; Scott, Rod C.; Lenck-Santini, Pierre-Pascal

    2011-01-01

    Neurological insults during development are associated with later impairments in learning and memory. Although remedial training can help restore cognitive function, the neural mechanisms of this recovery in memory systems are largely unknown. To examine this issue we measured electrophysiological oscillatory activity in the hippocampus (both CA3 and CA1) and prefrontal cortex of adult rats that had experienced repeated seizures in the first weeks of life, while they were remedially trained on a delayed-nonmatch-to-sample memory task. Seizure-exposed rats showed initial difficulties learning the task but performed similar to control rats after extra training. Whole-session analyses illustrated enhanced theta power in all three structures while seizure rats learned response tasks prior to the memory task. Whilst performing the memory task, dynamic oscillation patterns revealed that prefrontal cortex theta power was increased among seizure-exposed rats. This enhancement appeared after the first memory training steps using short delays and plateaued at the most difficult steps which included both short and long delays. Further, seizure rats showed enhanced CA1-prefrontal theta coherence in correct trials compared to incorrect trials when long delays were imposed, suggesting increased hippocampal-prefrontal synchrony for the task in this group when memory demand was high. Seizure-exposed rats also showed heightened gamma power and coherence among all three structures during the trials. Our results demonstrate the first evidence of hippocampal-prefrontal enhancements following seizures in early development. Dynamic compensatory changes in this network and interconnected circuits may underpin cognitive rehabilitation following other neurological insults to higher cognitive systems. PMID:22031886

  13. Long-term avoidance memory formation is associated with a transient increase in mushroom body synaptic complexes in leaf-cutting ants

    PubMed Central

    Falibene, Agustina; Roces, Flavio; Rössler, Wolfgang

    2015-01-01

    Long-term behavioral changes related to learning and experience have been shown to be associated with structural remodeling in the brain. Leaf-cutting ants learn to avoid previously preferred plants after they have proved harmful for their symbiotic fungus, a process that involves long-term olfactory memory. We studied the dynamics of brain microarchitectural changes after long-term olfactory memory formation following avoidance learning in Acromyrmex ambiguus. After performing experiments to control for possible neuronal changes related to age and body size, we quantified synaptic complexes (microglomeruli, MG) in olfactory regions of the mushroom bodies (MBs) at different times after learning. Long-term avoidance memory formation was associated with a transient change in MG densities. Two days after learning, MG density was higher than before learning. At days 4 and 15 after learning—when ants still showed plant avoidance—MG densities had decreased to the initial state. The structural reorganization of MG triggered by long-term avoidance memory formation clearly differed from changes promoted by pure exposure to and collection of novel plants with distinct odors. Sensory exposure by the simultaneous collection of several, instead of one, non-harmful plant species resulted in a decrease in MG densities in the olfactory lip. We hypothesize that while sensory exposure leads to MG pruning in the MB olfactory lip, the formation of long-term avoidance memory involves an initial growth of new MG followed by subsequent pruning. PMID:25904854

  14. Acute stress enhances learning and memory by activating acid-sensing ion channels in rats.

    PubMed

    Ye, Shunjie; Yang, Rong; Xiong, Qiuju; Yang, Youhua; Zhou, Lianying; Gong, Yeli; Li, Changlei; Ding, Zhenhan; Ye, Guohai; Xiong, Zhe

    2018-04-15

    Acute stress has been shown to enhance learning and memory ability, predominantly through the action of corticosteroid stress hormones. However, the valuable targets for promoting learning and memory induced by acute stress and the underlying molecular mechanisms remain unclear. Acid-sensing ion channels (ASICs) play an important role in central neuronal systems and involves in depression, synaptic plasticity and learning and memory. In the current study, we used a combination of electrophysiological and behavioral approaches in an effort to explore the effects of acute stress on ASICs. We found that corticosterone (CORT) induced by acute stress caused a potentiation of ASICs current via glucocorticoid receptors (GRs) not mineralocorticoid receptors (MRs). Meanwhile, CORT did not produce an increase of ASICs current by pretreated with GF109203X, an antagonist of protein kinase C (PKC), whereas CORT did result in a markedly enhancement of ASICs current by bryostatin 1, an agonist of PKC, suggesting that potentiation of ASICs function may be depended on PKC activating. More importantly, an antagonist of ASICs, amiloride (10 μM) reduced the performance of learning and memory induced by acute stress, which is further suggesting that ASICs as the key components involves in cognitive processes induced by acute stress. These results indicate that acute stress causes the enhancement of ASICs function by activating PKC signaling pathway, which leads to potentiated learning and memory. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Intracerebroventricular administration of taurine impairs learning and memory in rats.

    PubMed

    Ito, Koichi; Arko, Matevž; Kawaguchi, Tomohiro; Kikusui, Takefumi; Kuwahara, Masayoshi; Tsubone, Hirokazu

    2012-03-01

    Taurine is a semi-essential amino acid widely distributed in the body and we take in it from a wide range of nutritive-tonic drinks to improve health. To date, we have elucidated that oral supplementation of taurine does not affect learning and memory in the rat. However, there are few studies concerning the direct effects of taurine in the brain at the behavior level. In this study, we intracerebroventricularly administered taurine to rats and aimed to elucidate the acute effects on learning and memory using the Morris water maze method. Escape latency, swim distance, and distance to zone, which is the integral of the distance between the rats and the platform for every 0.16 seconds, were adopted as parameters of the ability of learning and memory. We also tried to evaluate the effect of intraperitoneal taurine administration. Escape latency, swim distance, and distance to zone were significantly longer in the intracerebroventricularly taurine-administered rats than in the saline-administered rats. Mean swimming velocity was comparable between these two groups, although the physical performance was improved by taurine administration. Probe trials showed that the manner of the rats in finding the platform was comparable. In contrast, no significant differences were found between the intraperitoneally taurine-administered rats and the saline-administered rats. These results indicate that taurine administered directly into the brain ventricle suppresses and delays the ability of learning and memory in rats. In contrast, it is implied that taurine administered peripherally was not involved in learning and memory.

  16. Sleep-dependent facilitation of episodic memory details.

    PubMed

    van der Helm, Els; Gujar, Ninad; Nishida, Masaki; Walker, Matthew P

    2011-01-01

    While a role for sleep in declarative memory processing is established, the qualitative nature of this consolidation benefit, and the physiological mechanisms mediating it, remain debated. Here, we investigate the impact of sleep physiology on characteristics of episodic memory using an item- (memory elements) and context- (contextual details associated with those elements) learning paradigm; the latter being especially dependent on the hippocampus. Following back-to-back encoding of two word lists, each associated with a different context, participants were assigned to either a Nap-group, who obtained a 120-min nap, or a No Nap-group. Six hours post-encoding, participants performed a recognition test involving item-memory and context-memory judgments. In contrast to item-memory, which demonstrated no between-group differences, a significant benefit in context-memory developed in the Nap-group, the extent of which correlated both with the amount of stage-2 NREM sleep and frontal fast sleep-spindles. Furthermore, a difference was observed on the basis of word-list order, with the sleep benefit and associated physiological correlations being selective for the second word-list, learned last (most proximal to sleep). These findings suggest that sleep may preferentially benefit contextual (hippocampal-dependent) aspects of memory, supported by sleep-spindle oscillations, and that the temporal order of initial learning differentially determines subsequent offline consolidation.

  17. Auditory and motor imagery modulate learning in music performance

    PubMed Central

    Brown, Rachel M.; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of auditory interference. Motor imagery aided pitch accuracy overall when interference conditions were manipulated at encoding (Experiment 1) but not at retrieval (Experiment 2). Thus, skilled performers' imagery abilities had distinct influences on encoding and retrieval of musical sequences. PMID:23847495

  18. Performance of conventional pigs and Göttingen miniature pigs in a spatial holeboard task: effects of the putative muscarinic cognition impairer Biperiden

    PubMed Central

    2013-01-01

    Background The pig is emerging as a model species that bridges the gap between rodents and humans in research. In particular, the miniature pig (referred to hereafter as the minipig) is increasingly being used as non-rodent species in pharmacological and toxicological studies. However, there is as yet a lack of validated behavioral tests for pigs, although there is evidence that the spatial holeboard task can be used to assess the working and reference memory of pigs. In the present study, we compared the learning performance of commercial pigs and Göttingen minipigs in a holeboard task. Methods Biperiden, a muscarinic M1 receptor blocker, is used to induce impairments in cognitive function in animal research. The two groups of pigs were treated orally with increasing doses of biperiden (0.05 – 20 mg.kg-1) after they had reached asymptotic performance in the holeboard task. Results Both the conventional pigs and the Göttingen minipigs learned the holeboard task, reaching nearly errorless asymptotic working and reference memory performance within approximately 100 acquisition trials. Biperiden treatment affected reference, but not working, memory, increasing trial duration and the latency to first hole visit at doses ≥ 5 mg.kg-1. Conclusion Both pig breeds learned the holeboard task and had a comparable performance. Biperiden had only a minor effect on holeboard performance overall, and mainly on reference memory performance. The effectiveness needs to be evaluated further before definitive conclusions can be drawn about the ability of this potential cognition impairer in pigs. PMID:23305134

  19. A Dopaminergic Gene Cluster in the Prefrontal Cortex Predicts Performance Indicative of General Intelligence in Genetically Heterogeneous Mice

    PubMed Central

    Kolata, Stefan; Light, Kenneth; Wass, Christopher D.; Colas-Zelin, Danielle; Roy, Debasri; Matzel, Louis D.

    2010-01-01

    Background Genetically heterogeneous mice express a trait that is qualitatively and psychometrically analogous to general intelligence in humans, and as in humans, this trait co-varies with the processing efficacy of working memory (including its dependence on selective attention). Dopamine signaling in the prefrontal cortex (PFC) has been established to play a critical role in animals' performance in both working memory and selective attention tasks. Owing to this role of the PFC in the regulation of working memory, here we compared PFC gene expression profiles of 60 genetically diverse CD-1 mice that exhibited a wide range of general learning abilities (i.e., aggregate performance across five diverse learning tasks). Methodology/Principal Findings Animals' general cognitive abilities were first determined based on their aggregate performance across a battery of five diverse learning tasks. With a procedure designed to minimize false positive identifications, analysis of gene expression microarrays (comprised of ≈25,000 genes) identified a small number (<20) of genes that were differentially expressed across animals that exhibited fast and slow aggregate learning abilities. Of these genes, one functional cluster was identified, and this cluster (Darpp-32, Drd1a, and Rgs9) is an established modulator of dopamine signaling. Subsequent quantitative PCR found that expression of these dopaminegic genes plus one vascular gene (Nudt6) were significantly correlated with individual animal's general cognitive performance. Conclusions/Significance These results indicate that D1-mediated dopamine signaling in the PFC, possibly through its modulation of working memory, is predictive of general cognitive abilities. Furthermore, these results provide the first direct evidence of specific molecular pathways that might potentially regulate general intelligence. PMID:21103339

  20. Predictors of Long-Term Change in Adult Cognitive Performance: Systematic Review and Data from the Northern Finland Birth Cohort 1966.

    PubMed

    Rannikko, Irina; Jääskeläinen, Erika; Miettunen, Jouko; Ahmed, Anthony O; Veijola, Juha; Remes, Anne M; Murray, Graham K; Husa, Anja P; Järvelin, Marjo-Riitta; Isohanni, Matti; Haapea, Marianne

    2016-01-01

    Several social life events and challenges have an impact on cognitive development. Our goal was to analyze the predictors of change in cognitive performance in early midlife in a general population sample. Additionally, systematic literature review was performed. The study sample was drawn from the Northern Finland Birth Cohort 1966 at the ages of 34 and 43 years. Primary school performance, sociodemographic factors and body mass index (BMI) were used to predict change in cognitive performance measured by the California Verbal Learning Test, Visual Object Learning Test, and Abstraction Inhibition and Working Memory task. Analyses were weighted by gender and education, and p-values were corrected for multiple comparisons using Benjamini-Hochberg procedure (B-H). Male gender predicted decrease in episodic memory. Poor school marks of practical subjects, having no children, and increase in BMI were associated with decrease in episodic memory, though non-significantly after B-H. Better school marks, and higher occupational class were associated with preserved performance in visual object learning. Higher vocational education predicted preserved performance in visual object learning test, though non-significantly after B-H. Likewise, having children predicted decreased performance in executive functioning but non-significantly after B-H. Adolescent cognitive ability, change in BMI and several sociodemographic factors appear to predict cognitive changes in early midlife. The key advantage of present study is the exploration of possible predictors of change in cognitive performance among general population in the early midlife, a developmental period that has been earlier overlooked.

  1. No Trade-Off between Learning Speed and Associative Flexibility in Bumblebees: A Reversal Learning Test with Multiple Colonies

    PubMed Central

    Raine, Nigel E.; Chittka, Lars

    2012-01-01

    Potential trade-offs between learning speed and memory-related performance could be important factors in the evolution of learning. Here, we test whether rapid learning interferes with the acquisition of new information using a reversal learning paradigm. Bumblebees (Bombus terrestris) were trained to associate yellow with a floral reward. Subsequently the association between colour and reward was reversed, meaning bees then had to learn to visit blue flowers. We demonstrate that individuals that were fast to learn yellow as a predictor of reward were also quick to reverse this association. Furthermore, overnight memory retention tests suggest that faster learning individuals are also better at retaining previously learned information. There is also an effect of relatedness: colonies whose workers were fast to learn the association between yellow and reward also reversed this association rapidly. These results are inconsistent with a trade-off between learning speed and the reversal of a previously made association. On the contrary, they suggest that differences in learning performance and cognitive (behavioural) flexibility could reflect more general differences in colony learning ability. Hence, this study provides additional evidence to support the idea that rapid learning and behavioural flexibility have adaptive value. PMID:23028779

  2. Effects of chewing gum on mood, learning, memory and performance of an intelligence test.

    PubMed

    Smith, Andrew

    2009-04-01

    Recent research suggests that chewing gum may increase alertness and lead to changes in cognitive performance. The present study examined effects of chewing gum on these functions within the context of a single study. This study had four main aims. The first was to examine whether chewing gum improved learning and memory of information in a story. The second aim was to determine whether chewing gum improved test performance on a validated intellectual task (the Alice Heim task). A third aim was to determine whether chewing gum improved performance on short memory tasks (immediate and delayed recall of a list of words, delayed recognition memory, retrieval from semantic memory, and a working memory task). The final aim was to determine whether chewing gum improved mood (alertness, calm and hedonic tone). A cross-over design was used with gum and no-gum sessions being on consecutive weeks. In each week, volunteers attended for two sessions, two days apart. The first session assessed mood, immediate recall of information from a story and performance on short memory tasks. The second session assessed mood, delayed recall of information from a story and performance of an intelligence test (the Alice Heim test). There were no significant effects of chewing gum on any aspect of recall of the story. Chewing gum improved the accuracy of performing the Alice Heim test which confirms the benefits of gum on test performance seen in an earlier study. Chewing gum had no significant effect on the short memory tasks. Chewing gum increased alertness at the end of the test session in both parts of the study. This effect was in the region of a 10% increase and was highly significant (P < 0.001). The results of this study showed that chewing gum increases alertness. In contrast, no significant effects of chewing gum were observed in the memory tasks. Intellectual performance was improved in the gum condition. Overall, the results suggest further research on the alerting effects of chewing gum and possible improved test performance in these situations.

  3. Intrinsic functional connectivity between amygdala and hippocampus during rest predicts enhanced memory under stress.

    PubMed

    de Voogd, Lycia D; Klumpers, Floris; Fernández, Guillén; Hermans, Erno J

    2017-01-01

    Declarative memories of stressful events are less prone to forgetting than mundane events. Animal research has demonstrated that such stress effects on consolidation of hippocampal-dependent memories require the amygdala. In humans, it has been shown that during learning, increased amygdala-hippocampal interactions are related to more efficient memory encoding. Animal models predict that following learning, amygdala-hippocampal interactions are instrumental to strengthening the consolidation of such declarative memories. Whether this is the case in humans is unknown and remains to be empirically verified. To test this, we analyzed data from a sample of 120 healthy male participants who performed an incidental encoding task and subsequently underwent resting-state functional MRI in a stressful and a neutral context. Stress was assessed by measures of salivary cortisol, blood pressure, heart rate, and subjective ratings. Memory was tested afterwards outside of the scanner. Our data show that memory was stronger in the stress context compared to the neutral context and that stress-induced cortisol responses were associated with this memory enhancement. Interestingly, amygdala-hippocampal connectivity during post-encoding awake rest regardless of context (stress or neutral) was associated with the enhanced memory performance under stress. Thus, our findings are in line with a role for intrinsic functional connectivity during rest between the amygdala and the hippocampus in the state effects of stress on strengthening memory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Conversion of short-term to long-term memory in the novel object recognition paradigm

    PubMed Central

    Moore, Shannon J.; Deshpande, Kaivalya; Stinnett, Gwen S.; Seasholtz, Audrey F.; Murphy, Geoffrey G.

    2013-01-01

    It is well-known that stress can significantly impact learning; however, whether this effect facilitates or impairs the resultant memory depends on the characteristics of the stressor. Investigation of these dynamics can be confounded by the role of the stressor in motivating performance in a task. Positing a cohesive model of the effect of stress on learning and memory necessitates elucidating the consequences of stressful stimuli independently from task-specific functions. Therefore, the goal of this study was to examine the effect of manipulating a task-independent stressor (elevated light level) on short-term and long-term memory in the novel object recognition paradigm. Short-term memory was elicited in both low light and high light conditions, but long-term memory specifically required high light conditions during the acquisition phase (familiarization trial) and was independent of the light level during retrieval (test trial). Additionally, long-term memory appeared to be independent of stress-mediated glucocorticoid release, as both low and high light produced similar levels of plasma corticosterone, which further did not correlate with subsequent memory performance. Finally, both short-term and long-term memory showed no savings between repeated experiments suggesting that this novel object recognition paradigm may be useful for longitudinal studies, particularly when investigating treatments to stabilize or enhance weak memories in neurodegenerative diseases or during age-related cognitive decline. PMID:23835143

  5. Conversion of short-term to long-term memory in the novel object recognition paradigm.

    PubMed

    Moore, Shannon J; Deshpande, Kaivalya; Stinnett, Gwen S; Seasholtz, Audrey F; Murphy, Geoffrey G

    2013-10-01

    It is well-known that stress can significantly impact learning; however, whether this effect facilitates or impairs the resultant memory depends on the characteristics of the stressor. Investigation of these dynamics can be confounded by the role of the stressor in motivating performance in a task. Positing a cohesive model of the effect of stress on learning and memory necessitates elucidating the consequences of stressful stimuli independently from task-specific functions. Therefore, the goal of this study was to examine the effect of manipulating a task-independent stressor (elevated light level) on short-term and long-term memory in the novel object recognition paradigm. Short-term memory was elicited in both low light and high light conditions, but long-term memory specifically required high light conditions during the acquisition phase (familiarization trial) and was independent of the light level during retrieval (test trial). Additionally, long-term memory appeared to be independent of stress-mediated glucocorticoid release, as both low and high light produced similar levels of plasma corticosterone, which further did not correlate with subsequent memory performance. Finally, both short-term and long-term memory showed no savings between repeated experiments suggesting that this novel object recognition paradigm may be useful for longitudinal studies, particularly when investigating treatments to stabilize or enhance weak memories in neurodegenerative diseases or during age-related cognitive decline. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Mild cognitive impairment: applicability of research criteria in a memory clinic and characterization of cognitive profile.

    PubMed

    Alladi, Suvarna; Arnold, Robert; Mitchell, Joanna; Nestor, Peter J; Hodges, John R

    2006-04-01

    We explored the applicability of recently proposed research criteria for mild cognitive impairment (MCI) in a memory clinic and changes in case definition related to which memory tests are used and the status of general cognitive function in MCI. A total of 166 consecutive GP referrals to the Cambridge Memory Clinic underwent comprehensive neuropsychological and psychiatric evaluation. Of 166 cases, 42 were excluded (significant depression 8, established dementia 29 and other disorders 5). Of 124 non-demented, non-depressed patients, 72 fulfilled Petersen's criteria for amnestic MCI based upon verbal memory performance [the Rey Auditory Verbal Learning Test (RAVLT)] and 90 met criteria if performance on verbal and/or non-verbal memory tests [the Rey figure recall or the Paired Associates Learning test (PAL)] was considered. Of the 90 broadly defined MCI cases, only 25 had pure amnesia: other subtle semantic and/or attention deficits were typically present. A further 12 were classed as non-amnestic MCI and 22 as 'worried well'. Definition of MCI varies considerably dependent upon the tests used for case definition. The majority have other cognitive deficits despite normal performance on the Mini-mental State Examination (MMSE) and intact activities of daily living (ADL) and fit within multi-domain MCI. Pure amnesic MCI is rare.

  7. Specific Verbal Memory Measures May Distinguish Alzheimer's Disease from Dementia with Lewy Bodies.

    PubMed

    Bussè, Cinzia; Anselmi, Pasquale; Pompanin, Sara; Zorzi, Giovanni; Fragiacomo, Federica; Camporese, Giulia; Di Bernardo, Gian Antonio; Semenza, Carlo; Caffarra, Paolo; Cagnin, Annachiara

    2017-01-01

    Standard measures of commonly used memory tests may not be appropriate to distinguish different neurodegenerative diseases affecting memory. To study whether specific measures of verbal memory obtained with the Rey Auditory Verbal Learning test (RAVLT) could help distinguish dementia with Lewy bodies (DLB) from Alzheimer's disease (AD). Twenty-nine DLB and 32 AD patients participated in the study and were followed longitudinally for 3 years until the diagnosis was confirmed according to standard clinical criteria. Twenty-eight healthy elderly subjects served as controls. The following verbal memory measures were evaluated: verbal learning (VL), verbal forgetting (VF), percentage of verbal forgetting (VF%), and serial position effects of the immediate recall performance. DLB and AD groups have comparable performances at the RAVLT immediate and delayed recall tasks. However, VL was higher in DLB than AD while VF% was greater in AD. With a VF% cut-off ≥75%, AD and DLB patients were differently distributed, with 58% of AD versus 21% of DLB above this cut-off. The recency effect was significant higher in AD than DLB. DLB patients had a better performance in VL than AD, but worse VF and recency effect. These specific measures of verbal memory could be used as cognitive markers in the differential diagnosis between these two conditions.

  8. Impairment of learning and memory performances induced by BPA: Evidences from the literature of a MoA mediated through an ED.

    PubMed

    Mhaouty-Kodja, Sakina; Belzunces, Luc P; Canivenc, Marie-Chantal; Schroeder, Henri; Chevrier, Cécile; Pasquier, Elodie

    2018-03-29

    Many rodent studies and a few non-human primate data report impairments of spatial and non-spatial memory induced by exposure to bisphenol A (BPA), which are associated with neural modifications, particularly in processes involved in synaptic plasticity. BPA-induced alterations involve disruption of the estrogenic pathway as established by reversal of BPA-induced effects with estrogenic receptor antagonist or by interference of BPA with administered estradiol in ovariectomized animals. Sex differences in hormonal impregnation during critical periods of development and their influence on maturation of learning and memory processes may explain the sexual dimorphism observed in BPA-induced effects in some studies. Altogether, these data highly support the plausibility that alteration of learning and memory and synaptic plasticity by BPA is essentially mediated by disturbance of the estrogenic pathways. As memory function in humans involves similar signaling pathways, this mode of action of BPA has the potential to alter human cognitive abilities. Copyright © 2018. Published by Elsevier B.V.

  9. Protocol for Short- and Longer-term Spatial Learning and Memory in Mice

    PubMed Central

    Willis, Emily F.; Bartlett, Perry F.; Vukovic, Jana

    2017-01-01

    Studies on the role of the hippocampus in higher cognitive functions such as spatial learning and memory in rodents are reliant upon robust and objective behavioral tests. This protocol describes one such test—the active place avoidance (APA) task. This behavioral task involves the mouse continuously integrating visual cues to orientate itself within a rotating arena in order to actively avoid a shock zone, the location of which remains constant relative to the room. This protocol details the step-by-step procedures for a novel paradigm of the hippocampal-dependent APA task, measuring acquisition of spatial learning during a single 20-min trial (i.e., short-term memory), with spatial memory encoding and retrieval (i.e., long-term memory) assessed by trials conducted over consecutive days. Using the APA task, cognitive flexibility can be assessed using the reversal learning paradigm, as this increases the cognitive load required for efficient performance in the task. In addition to a detailed experimental protocol, this paper also describes the range of its possible applications, the expected key results, as well as the analytical methods to assess the data, and the pitfalls/troubleshooting measures. The protocol described herein is highly robust and produces replicable results, thus presenting an important paradigm that enables the assessment of subtle short-term changes in spatial learning and memory, such as those observed for many experimental interventions. PMID:29089878

  10. Acute, low-dose methamphetamine administration improves attention/information processing speed and working memory in methamphetamine-dependent individuals displaying poorer cognitive performance at baseline.

    PubMed

    Mahoney, James J; Jackson, Brian J; Kalechstein, Ari D; De La Garza, Richard; Newton, Thomas F

    2011-03-30

    Abstinent methamphetamine (Meth) dependent individuals demonstrate poorer performance on tests sensitive to attention/information processing speed, learning and memory, and working memory when compared to non-Meth dependent individuals. The poorer performance on these tests may contribute to the morbidity associated with Meth-dependence. In light of this, we sought to determine the effects of acute, low-dose Meth administration on attention, working memory, and verbal learning and memory in 19 non-treatment seeking, Meth-dependent individuals. Participants were predominantly male (89%), Caucasian (63%), and cigarette smokers (63%). Following a four day, drug-free washout period, participants were given a single-blind intravenous infusion of saline, followed the next day by 30 mg of Meth. A battery of neurocognitive tasks was administered before and after each infusion, and performance on measures of accuracy and reaction time were compared between conditions. While acute Meth exposure did not affect test performance for the entire sample, participants who demonstrated relatively poor performance on these tests at baseline, identified using a median split on each test, showed significant improvement on measures of attention/information processing speed and working memory when administered Meth. Improved performance was seen on the following measures of working memory: choice reaction time task (p≤0.04), a 1-back task (p≤0.01), and a 2-back task (p≤0.04). In addition, those participants demonstrating high neurocognitive performance at baseline experienced similar or decreased performance following Meth exposure. These findings suggest that acute administration of Meth may temporarily improve Meth-associated neurocognitive performance in those individuals experiencing lower cognitive performance at baseline. As a result, stimulants may serve as a successful treatment for improving cognitive functioning in those Meth-dependent individuals experiencing neurocognitive impairment. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. True or false? Memory is differentially affected by stress-induced cortisol elevations and sympathetic activity at consolidation and retrieval.

    PubMed

    Smeets, Tom; Otgaar, Henry; Candel, Ingrid; Wolf, Oliver T

    2008-11-01

    Adrenal stress hormones released in response to acute stress may yield memory-enhancing effects when released post-learning and impairing effects at memory retrieval, especially for emotional memory material. However, so far these differential effects of stress hormones on the various memory phases for neutral and emotional memory material have not been demonstrated within one experiment. This study investigated whether, in line with their effects on true memory, stress and stress-induced adrenal stress hormones affect the encoding, consolidation, and retrieval of emotional and neutral false memories. Participants (N=90) were exposed to a stressor before encoding, during consolidation, before retrieval, or were not stressed and then were subjected to neutral and emotional versions of the Deese-Roediger-McDermott word list learning paradigm. Twenty-four hours later, recall of presented words (true recall) and non-presented critical lure words (false recall) was assessed. Results show that stress exposure resulted in superior true memory performance in the consolidation stress group and reduced true memory performance in the retrieval stress group compared to the other groups, predominantly for emotional words. These memory-enhancing and memory-impairing effects were strongly related to stress-induced cortisol and sympathetic activity measured via salivary alpha-amylase levels. Neutral and emotional false recall, on the other hand, was neither affected by stress exposure, nor related to cortisol and sympathetic activity following stress. These results demonstrate the importance of stress-induced hormone-related activity in enhancing memory consolidation and in impairing memory retrieval, in particular for emotional memory material.

  12. Reduction of nocturnal slow-wave activity affects daytime vigilance lapses and memory encoding but not reaction time or implicit learning.

    PubMed

    Van Der Werf, Ysbrand D; Altena, Ellemarije; Vis, José C; Koene, Teddy; Van Someren, Eus J W

    2011-01-01

    Total sleep deprivation in healthy subjects has a profound effect on the performance on tasks measuring sustained attention or vigilance. We here report how a selective disruption of deep sleep only, that is, selective slow-wave activity (SWA) reduction, affects the performance of healthy well-sleeping subjects on several tasks: a "simple" and a "complex" vigilance task, a declarative learning task, and an implicit learning task despite unchanged duration of sleep. We used automated electroencephalogram (EEG) dependent acoustic feedback aimed at selective interference with-and reduction of-SWA. In a within-subject repeated measures crossover design, performance on the tasks was assessed in 13 elderly adults without sleep complaints after either SWA-reduction or after normal sleep. The number of vigilance lapses increased as a result of SWA reduction, irrespective of the type of vigilance task. Recognition on the declarative memory task was also affected by SWA reduction, associated with a decreased activation of the right hippocampus on encoding (measured with fMRI) suggesting a weaker memory trace. SWA reduction, however, did not affect reaction time on either of the vigilance tasks or implicit memory task performance. These findings suggest a specific role of slow oscillations in the subsequent daytime ability to maintain sustained attention and to encode novel declarative information but not to maintain response speed or to build implicit memories. Of particular interest is that selective SWA reduction can mimic some of the effects of total sleep deprivation, while not affecting sleep duration. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. A neural model of normal and abnormal learning and memory consolidation: adaptively timed conditioning, hippocampus, amnesia, neurotrophins, and consciousness.

    PubMed

    Franklin, Daniel J; Grossberg, Stephen

    2017-02-01

    How do the hippocampus and amygdala interact with thalamocortical systems to regulate cognitive and cognitive-emotional learning? Why do lesions of thalamus, amygdala, hippocampus, and cortex have differential effects depending on the phase of learning when they occur? In particular, why is the hippocampus typically needed for trace conditioning, but not delay conditioning, and what do the exceptions reveal? Why do amygdala lesions made before or immediately after training decelerate conditioning while those made later do not? Why do thalamic or sensory cortical lesions degrade trace conditioning more than delay conditioning? Why do hippocampal lesions during trace conditioning experiments degrade recent but not temporally remote learning? Why do orbitofrontal cortical lesions degrade temporally remote but not recent or post-lesion learning? How is temporally graded amnesia caused by ablation of prefrontal cortex after memory consolidation? How are attention and consciousness linked during conditioning? How do neurotrophins, notably brain-derived neurotrophic factor (BDNF), influence memory formation and consolidation? Is there a common output path for learned performance? A neural model proposes a unified answer to these questions that overcome problems of alternative memory models.

  14. A comparison of automatic and intentional instructions when using the method of vanishing cues in acquired brain injury.

    PubMed

    Riley, Gerard A; Venn, Paul

    2015-01-01

    Thirty-four participants with acquired brain injury learned word lists under two forms of vanishing cues - one in which the learning trial instructions encouraged intentional retrieval (i.e., explicit memory) and one in which they encouraged automatic retrieval (which encompasses implicit memory). The automatic instructions represented a novel approach in which the cooperation of participants was actively sought to avoid intentional retrieval. Intentional instructions resulted in fewer errors during the learning trials and better performance on immediate and delayed retrieval tests. The advantage of intentional over automatic instructions was generally less for those who had more severe memory and/or executive impairments. Most participants performed better under intentional instructions on both the immediate and the delayed tests. Although those who were more severely impaired in both memory and executive function also did better with intentional instructions on the immediate retrieval test, they were significantly more likely to show an advantage for automatic instructions on the delayed test. It is suggested that this pattern of results may reflect impairments in the consolidation of intentional memories in this group. When using vanishing cues, automatic instructions may be better for those with severe consolidation impairments, but otherwise intentional instructions may be better.

  15. Effects of Experimentally Imposed Noise on Task Performance of Black Children Attending Day Care Centers Near Elevated Subway Trains.

    ERIC Educational Resources Information Center

    Hambrick-Dixon, Priscilla Janet

    1986-01-01

    Investigates whether an experimentally imposed 80dB (A) noise affected psychomotor, serial memory words and pictures, incidental memory, visual recall, paired associates, perceptual learning, and coding performance of five-year-old Black children attending day care centers near and far from elevated subways. (HOD)

  16. Long-term effect of early-life stress from earthquake exposure on working memory in adulthood.

    PubMed

    Li, Na; Wang, Yumei; Zhao, Xiaochuan; Gao, Yuanyuan; Song, Mei; Yu, Lulu; Wang, Lan; Li, Ning; Chen, Qianqian; Li, Yunpeng; Cai, Jiajia; Wang, Xueyi

    2015-01-01

    The present study aimed to investigate the long-term effect of 1976 Tangshan earthquake exposure in early life on performance of working memory in adulthood. A total of 907 study subjects born and raised in Tangshan were enrolled in this study. They were divided into three groups according to the dates of birth: infant exposure (3-12 months, n=274), prenatal exposure (n=269), and no exposure (born at least 1 year after the earthquake, n=364). The prenatal group was further divided into first, second, and third trimester subgroups based on the timing of exposure during pregnancy. Hopkins Verbal Learning Test-Revised and Brief Visuospatial Memory Test-Revised (BVMT-R) were used to measure the performance of working memory. Unconditional logistic regression analysis was used to analyze the influential factors for impaired working memory. The Hopkins Verbal Learning Test-Revised scores did not show significant difference across the three groups. Compared with no exposure group, the BVMT-R scores were slightly lower in the prenatal exposure group and markedly decreased in the infant exposure group. When the BVMT-R scores were analyzed in three subgroups, the results showed that the subjects whose mothers were exposed to earthquake in the second and third trimesters of pregnancy had significantly lower BVMT-R scores compared with those in the first trimester. Education level and early-life earthquake exposure were identified as independent risk factors for reduced performance of visuospatial memory indicated by lower BVMT-R scores. Infant exposure to earthquake-related stress impairs visuospatial memory in adulthood. Fetuses in the middle and late stages of development are more vulnerable to stress-induced damage that consequently results in impaired visuospatial memory. Education and early-life trauma can also influence the performance of working memory in adulthood.

  17. The association of perceived stress and verbal memory is greater in HIV-infected versus HIV-uninfected women.

    PubMed

    Rubin, Leah H; Cook, Judith A; Weber, Kathleen M; Cohen, Mardge H; Martin, Eileen; Valcour, Victor; Milam, Joel; Anastos, Kathryn; Young, Mary A; Alden, Christine; Gustafson, Deborah R; Maki, Pauline M

    2015-08-01

    In contrast to findings from cohorts comprised primarily of HIV-infected men, verbal memory deficits are the largest cognitive deficit found in HIV-infected women from the Women's Interagency HIV Study (WIHS), and this deficit is not explained by depressive symptoms or substance abuse. HIV-infected women may be at greater risk for verbal memory deficits due to a higher prevalence of cognitive risk factors such as high psychosocial stress and lower socioeconomic status. Here, we investigate the association between perceived stress using the Perceived Stress Scale (PSS-10) and verbal memory performance using the Hopkins Verbal Learning Test (HVLT) in 1009 HIV-infected and 496 at-risk HIV-uninfected WIHS participants. Participants completed a comprehensive neuropsychological test battery which yielded seven cognitive domain scores, including a primary outcome of verbal memory. HIV infection was not associated with a higher prevalence of high perceived stress (i.e., PSS-10 score in the top tertile) but was associated with worse performance on verbal learning (p < 0.01) and memory (p < 0.001), as well as attention (p = 0.02). Regardless of HIV status, high stress was associated with poorer performance in those cognitive domains (p's < 0.05) as well as processing speed (p = 0.01) and executive function (p < 0.01). A significant HIV by stress interaction was found only for the verbal memory domain (p = 0.02); among HIV-infected women only, high stress was associated with lower performance (p's < 0.001). That association was driven by the delayed verbal memory measure in particular. These findings suggest that high levels of perceived stress contribute to the deficits in verbal memory observed in WIHS women.

  18. Field-Dependence/Independence and Active Learning of Verbal and Geometric Material.

    ERIC Educational Resources Information Center

    Reardon, Richard; And Others

    1982-01-01

    Field-dependent and independent subjects sorted geometric and verbal material according to category exemplars, forcing active learning, and then recalled the category locations. Field-independent individuals generally performed better on learning and memory tasks with a more active approach. Active versus passive learning styles are discussed.…

  19. Analysis of Learning Conceptions Based on Three Modules.

    ERIC Educational Resources Information Center

    Haygood, E. Langston; Iran-Nejad, Asghar

    Three learning modules are described and investigated as they reflect different students' conceptions of and approaches to learning. The Schoolwork Module (SWM) focuses on task performance and involves a passive, incremental, piecemeal, and rote memory method of learning, parallel to what might be implied by the Information Processing model of…

  20. Perceptual Learning Style and Learning Proficiency: A Test of the Hypothesis

    ERIC Educational Resources Information Center

    Kratzig, Gregory P.; Arbuthnott, Katherine D.

    2006-01-01

    Given the potential importance of using modality preference with instruction, the authors tested whether learning style preference correlated with memory performance in each of 3 sensory modalities: visual, auditory, and kinesthetic. In Study 1, participants completed objective measures of pictorial, auditory, and tactile learning and learning…

Top