Quality Assurance for Digital Learning Object Repositories: Issues for the Metadata Creation Process
ERIC Educational Resources Information Center
Currier, Sarah; Barton, Jane; O'Beirne, Ronan; Ryan, Ben
2004-01-01
Metadata enables users to find the resources they require, therefore it is an important component of any digital learning object repository. Much work has already been done within the learning technology community to assure metadata quality, focused on the development of metadata standards, specifications and vocabularies and their implementation…
An Assistant for Loading Learning Object Metadata: An Ontology Based Approach
ERIC Educational Resources Information Center
Casali, Ana; Deco, Claudia; Romano, Agustín; Tomé, Guillermo
2013-01-01
In the last years, the development of different Repositories of Learning Objects has been increased. Users can retrieve these resources for reuse and personalization through searches in web repositories. The importance of high quality metadata is key for a successful retrieval. Learning Objects are described with metadata usually in the standard…
Intelligent Discovery for Learning Objects Using Semantic Web Technologies
ERIC Educational Resources Information Center
Hsu, I-Ching
2012-01-01
The concept of learning objects has been applied in the e-learning field to promote the accessibility, reusability, and interoperability of learning content. Learning Object Metadata (LOM) was developed to achieve these goals by describing learning objects in order to provide meaningful metadata. Unfortunately, the conventional LOM lacks the…
iLOG: A Framework for Automatic Annotation of Learning Objects with Empirical Usage Metadata
ERIC Educational Resources Information Center
Miller, L. D.; Soh, Leen-Kiat; Samal, Ashok; Nugent, Gwen
2012-01-01
Learning objects (LOs) are digital or non-digital entities used for learning, education or training commonly stored in repositories searchable by their associated metadata. Unfortunately, based on the current standards, such metadata is often missing or incorrectly entered making search difficult or impossible. In this paper, we investigate…
The International Learning Object Metadata Survey
ERIC Educational Resources Information Center
Friesen, Norm
2004-01-01
A wide range of projects and organizations is currently making digital learning resources (learning objects) available to instructors, students, and designers via systematic, standards-based infrastructures. One standard that is central to many of these efforts and infrastructures is known as Learning Object Metadata (IEEE 1484.12.1-2002, or LOM).…
Hybrid Multiagent System for Automatic Object Learning Classification
NASA Astrophysics Data System (ADS)
Gil, Ana; de La Prieta, Fernando; López, Vivian F.
The rapid evolution within the context of e-learning is closely linked to international efforts on the standardization of learning object metadata, which provides learners in a web-based educational system with ubiquitous access to multiple distributed repositories. This article presents a hybrid agent-based architecture that enables the recovery of learning objects tagged in Learning Object Metadata (LOM) and provides individualized help with selecting learning materials to make the most suitable choice among many alternatives.
NASA Astrophysics Data System (ADS)
Zschocke, Thomas; Beniest, Jan
The Consultative Group on International Agricultural Re- search (CGIAR) has established a digital repository to share its teaching and learning resources along with descriptive educational information based on the IEEE Learning Object Metadata (LOM) standard. As a critical component of any digital repository, quality metadata are critical not only to enable users to find more easily the resources they require, but also for the operation and interoperability of the repository itself. Studies show that repositories have difficulties in obtaining good quality metadata from their contributors, especially when this process involves many different stakeholders as is the case with the CGIAR as an international organization. To address this issue the CGIAR began investigating the Open ECBCheck as well as the ISO/IEC 19796-1 standard to establish quality protocols for its training. The paper highlights the implications and challenges posed by strengthening the metadata creation workflow for disseminating learning objects of the CGIAR.
ERIC Educational Resources Information Center
Balatsoukas, Panos; O'Brien, Ann; Morris, Anne
2011-01-01
Introduction: This paper reports on the findings of a study investigating the potential effects of discipline (sciences and engineering versus humanities and social sciences) on the application of the Institute of Electrical and Electronic Engineers learning object metadata elements for the description of learning objects in the Jorum learning…
A Meta-Relational Approach for the Definition and Management of Hybrid Learning Objects
ERIC Educational Resources Information Center
Navarro, Antonio; Fernandez-Pampillon, Ana Ma.; Fernandez-Chamizo, Carmen; Fernandez-Valmayor, Alfredo
2013-01-01
Electronic learning objects (LOs) are commonly conceived of as digital units of information used for teaching and learning. To facilitate their classification for pedagogical planning and retrieval purposes, LOs are complemented with metadata (e.g., the author). These metadata are usually restricted by a set of predetermined tags to which the…
Interoperability Gap Challenges for Learning Object Repositories & Learning Management Systems
ERIC Educational Resources Information Center
Mason, Robert T.
2011-01-01
An interoperability gap exists between Learning Management Systems (LMSs) and Learning Object Repositories (LORs). Learning Objects (LOs) and the associated Learning Object Metadata (LOM) that is stored within LORs adhere to a variety of LOM standards. A common LOM standard found in LORs is the Sharable Content Object Reference Model (SCORM)…
Extended Relation Metadata for SCORM-Based Learning Content Management Systems
ERIC Educational Resources Information Center
Lu, Eric Jui-Lin; Horng, Gwoboa; Yu, Chia-Ssu; Chou, Ling-Ying
2010-01-01
To increase the interoperability and reusability of learning objects, Advanced Distributed Learning Initiative developed a model called Content Aggregation Model (CAM) to describe learning objects and express relationships between learning objects. However, the suggested relations defined in the CAM can only describe structure-oriented…
"CanCore": In Canada and around the World
ERIC Educational Resources Information Center
Friesen, Norm
2005-01-01
In this article, the author discusses "CanCore," a learning resource metadata initiative funded by Industry Canada and supported by Athabasca University, Alberta, and TeleUniversite du Quebec, and describes the increasing range of international uses of the "CanCore" metadata for the indexing of learning objects.…
A Framework for the Flexible Content Packaging of Learning Objects and Learning Designs
ERIC Educational Resources Information Center
Lukasiak, Jason; Agostinho, Shirley; Burnett, Ian; Drury, Gerrard; Goodes, Jason; Bennett, Sue; Lockyer, Lori; Harper, Barry
2004-01-01
This paper presents a platform-independent method for packaging learning objects and learning designs. The method, entitled a Smart Learning Design Framework, is based on the MPEG-21 standard, and uses IEEE Learning Object Metadata (LOM) to provide bibliographic, technical, and pedagogical descriptors for the retrieval and description of learning…
Learning Objects--Instructional Metadata and Sequencing.
ERIC Educational Resources Information Center
Redeker, Giselher
The main focus of current discussions within the standardization process of learning technology is on economical opportunities and technical aspects of learning objects. There has been little discussion about the instructional or didactical issues. The purpose of this paper is to conceptualize a taxonomy of learning objects for the facilitation of…
Inferring Metadata for a Semantic Web Peer-to-Peer Environment
ERIC Educational Resources Information Center
Brase, Jan; Painter, Mark
2004-01-01
Learning Objects Metadata (LOM) aims at describing educational resources in order to allow better reusability and retrieval. In this article we show how additional inference rules allows us to derive additional metadata from existing ones. Additionally, using these rules as integrity constraints helps us to define the constraints on LOM elements,…
Building Interoperable Learning Objects Using Reduced Learning Object Metadata
ERIC Educational Resources Information Center
Saleh, Mostafa S.
2005-01-01
The new e-learning generation depends on Semantic Web technology to produce learning objects. As the production of these components is very costly, they should be produced and registered once, and reused and adapted in the same context or in other contexts as often as possible. To produce those components, developers should use learning standards…
An Intelligent Semantic E-Learning Framework Using Context-Aware Semantic Web Technologies
ERIC Educational Resources Information Center
Huang, Weihong; Webster, David; Wood, Dawn; Ishaya, Tanko
2006-01-01
Recent developments of e-learning specifications such as Learning Object Metadata (LOM), Sharable Content Object Reference Model (SCORM), Learning Design and other pedagogy research in semantic e-learning have shown a trend of applying innovative computational techniques, especially Semantic Web technologies, to promote existing content-focused…
Using Open Educational Resources in Course Syllabi
ERIC Educational Resources Information Center
Andreatos, Antonios; Katsoulis, Stavros
2012-01-01
The purpose of this article is (1) to review the advantages of using learning objects (LOs) and open educational resources (OER), (2) to propose the enrichment of course syllabi with LOs/OER, (3) to propose new fields to be included in metadata and ways for embedding metadata in LOs/OER, (4) to review the problem of lack of metadata in Web 2.0…
Ontologies for Effective Use of Context in E-Learning Settings
ERIC Educational Resources Information Center
Jovanovic, Jelena; Gasevic, Dragan; Knight, Colin; Richards, Griff
2007-01-01
This paper presents an ontology-based framework aimed at explicit representation of context-specific metadata derived from the actual usage of learning objects and learning designs. The core part of the proposed framework is a learning object context ontology, that leverages a range of other kinds of learning ontologies (e.g., user modeling…
Semantic Overlays in Educational Content Networks--The hylOs Approach
ERIC Educational Resources Information Center
Engelhardt, Michael; Hildebrand, Arne; Lange, Dagmar; Schmidt, Thomas C.
2006-01-01
Purpose: The paper aims to introduce an educational content management system, Hypermedia Learning Objects System (hylOs), which is fully compliant to the IEEE LOM eLearning object metadata standard. Enabled through an advanced authoring toolset, hylOs allows the definition of instructional overlays of a given eLearning object mesh.…
ERIC Educational Resources Information Center
Agostinho, Shirley; Bennett, Sue; Lockyer, Lori; Harper, Barry
2004-01-01
This paper reports recent work in developing of structures and processes that support university teachers and instructional designers incorporating learning objects into higher education focused learning designs. The aim of the project is to develop a framework to guide the design and implementation of high quality learning experiences. This…
Component-Based Approach in Learning Management System Development
ERIC Educational Resources Information Center
Zaitseva, Larisa; Bule, Jekaterina; Makarov, Sergey
2013-01-01
The paper describes component-based approach (CBA) for learning management system development. Learning object as components of e-learning courses and their metadata is considered. The architecture of learning management system based on CBA being developed in Riga Technical University, namely its architecture, elements and possibilities are…
An OWL Ontology for Metadata of Interactive Learning Objects
ERIC Educational Resources Information Center
Luz, Bruno N.; Santos, Rafael; Alves, Bruno; Areão, Andreza S.; Yokoyama, Marcos H.; Guimarães, Marcelo P.
2015-01-01
The main purpose of this paper is to present the importance of Interactive Learning Objects (ILO) to improve the teaching-learning process by assuring a constant interaction among teachers and students, which in turn, allows students to be constantly supported by the teacher. The paper describes the ontology that defines the ILO available on the…
ERIC Educational Resources Information Center
Miller, L. Dee; Soh, Leen-Kiat; Samal, Ashok; Kupzyk, Kevin; Nugent, Gwen
2015-01-01
Learning objects (LOs) are important online resources for both learners and instructors and usage for LOs is growing. Automatic LO tracking collects large amounts of metadata about individual students as well as data aggregated across courses, learning objects, and other demographic characteristics (e.g. gender). The challenge becomes identifying…
Learning Content and Software Evaluation and Personalisation Problems
ERIC Educational Resources Information Center
Kurilovas, Eugenijus; Serikoviene, Silvija
2010-01-01
The paper aims to analyse several scientific approaches how to evaluate, implement or choose learning content and software suitable for personalised users/learners needs. Learning objects metadata customisation method as well as the Method of multiple criteria evaluation and optimisation of learning software represented by the experts' additive…
ERIC Educational Resources Information Center
Stuckey, Bronwyn; Hensman, Jim; Hofmann, Tobias; Dewey, Barbara; Brown, Helen; Cameron, Sonja
Arguably the biggest "buzz word" of the current year has been "learning or knowledge object". To understand the learning object and why it should be such a highly desirable commodity, it is necessary to unpack not only this concept but more importantly revisit some contributing concepts and constructs (more buzz words) that support the building of…
Ontology-Based Annotation of Learning Object Content
ERIC Educational Resources Information Center
Gasevic, Dragan; Jovanovic, Jelena; Devedzic, Vladan
2007-01-01
The paper proposes a framework for building ontology-aware learning object (LO) content. Previously ontologies were exclusively employed for enriching LOs' metadata. Although such an approach is useful, as it improves retrieval of relevant LOs from LO repositories, it does not enable one to reuse components of a LO, nor to incorporate an explicit…
Passenger baggage object database (PBOD)
NASA Astrophysics Data System (ADS)
Gittinger, Jaxon M.; Suknot, April N.; Jimenez, Edward S.; Spaulding, Terry W.; Wenrich, Steve A.
2018-04-01
Detection of anomalies of interest in x-ray images is an ever-evolving problem that requires the rapid development of automatic detection algorithms. Automatic detection algorithms are developed using machine learning techniques, which would require developers to obtain the x-ray machine that was used to create the images being trained on, and compile all associated metadata for those images by hand. The Passenger Baggage Object Database (PBOD) and data acquisition application were designed and developed for acquiring and persisting 2-D and 3-D x-ray image data and associated metadata. PBOD was specifically created to capture simulated airline passenger "stream of commerce" luggage data, but could be applied to other areas of x-ray imaging to utilize machine-learning methods.
The Development of the Learning Object Standard Using a Pedagogic Approach: A Comparative Study.
ERIC Educational Resources Information Center
Yahya, Yazrina; Jenkins, John; Yusoff, Mohammed
Education is moving towards revenue generation from such channels as electronic learning, distance learning and virtual education. Hence learning technology standards are critical to the sector's success. Existing learning technology standards have focused on various topics such as metadata, question and test interoperability and others. However,…
Enhancing SCORM Metadata for Assessment Authoring in E-Learning
ERIC Educational Resources Information Center
Chang, Wen-Chih; Hsu, Hui-Huang; Smith, Timothy K.; Wang, Chun-Chia
2004-01-01
With the rapid development of distance learning and the XML technology, metadata play an important role in e-Learning. Nowadays, many distance learning standards, such as SCORM, AICC CMI, IEEE LTSC LOM and IMS, use metadata to tag learning materials. However, most metadata models are used to define learning materials and test problems. Few…
ERIC Educational Resources Information Center
Granger, Stewart; Dekkers, Makx; Weibel, Stuart L.; Kirriemuir, John; Lensch, Hendrik P. A.; Goesele, Michael; Seidel, Hans-Peter; Birmingham, William; Pardo, Bryan; Meek, Colin; Shifrin, Jonah; Goodvin, Renee; Lippy, Brooke
2002-01-01
One opinion piece and five articles in this issue discuss: digital preservation infrastructure; accomplishments and changes in the Dublin Core Metadata Initiative in 2001 and plans for 2002; video gaming and how it relates to digital libraries and learning technologies; overview of a music retrieval system; and the online version of the…
ERIC Educational Resources Information Center
Sampson, Demetrios G.
2009-01-01
In the context of the emerging paradigm of Lifelong Learning, competence-based learning is gradually attracting the attention of the Technology-Enhanced Learning community, since it appears to meet the 21st Century learning and training expectations of both individuals and organisations. On the other hand, the paradigm of Learning Objects--as a…
An Ensemble Approach in Converging Contents of LMS and KMS
ERIC Educational Resources Information Center
Sabitha, A. Sai; Mehrotra, Deepti; Bansal, Abhay
2017-01-01
Currently the challenges in e-Learning are converging the learning content from various sources and managing them within e-learning practices. Data mining learning algorithms can be used and the contents can be converged based on the Metadata of the objects. Ensemble methods use multiple learning algorithms and it can be used to converge the…
Learning Objects Metadata and Tools in the Area of Operations Research.
ERIC Educational Resources Information Center
Kassanke, Stephan; El-Saddik, Abdulmotaleb; Steinacker, Achim
Information technology and the Internet are making inroads into almost all areas of society. The requirements of students and professionals are fast changing, and the information society requires lifelong learning in practically all areas, especially those related to information technologies. The educational sector can profit in particular from…
Liu, Z; Sun, J; Smith, M; Smith, L; Warr, R
2013-11-01
Computer-assisted diagnosis (CAD) of malignant melanoma (MM) has been advocated to help clinicians to achieve a more objective and reliable assessment. However, conventional CAD systems examine only the features extracted from digital photographs of lesions. Failure to incorporate patients' personal information constrains the applicability in clinical settings. To develop a new CAD system to improve the performance of automatic diagnosis of melanoma, which, for the first time, incorporates digital features of lesions with important patient metadata into a learning process. Thirty-two features were extracted from digital photographs to characterize skin lesions. Patients' personal information, such as age, gender and, lesion site, and their combinations, was quantified as metadata. The integration of digital features and metadata was realized through an extended Laplacian eigenmap, a dimensionality-reduction method grouping lesions with similar digital features and metadata into the same classes. The diagnosis reached 82.1% sensitivity and 86.1% specificity when only multidimensional digital features were used, but improved to 95.2% sensitivity and 91.0% specificity after metadata were incorporated appropriately. The proposed system achieves a level of sensitivity comparable with experienced dermatologists aided by conventional dermoscopes. This demonstrates the potential of our method for assisting clinicians in diagnosing melanoma, and the benefit it could provide to patients and hospitals by greatly reducing unnecessary excisions of benign naevi. This paper proposes an enhanced CAD system incorporating clinical metadata into the learning process for automatic classification of melanoma. Results demonstrate that the additional metadata and the mechanism to incorporate them are useful for improving CAD of melanoma. © 2013 British Association of Dermatologists.
Integrating XQuery-Enabled SCORM XML Metadata Repositories into an RDF-Based E-Learning P2P Network
ERIC Educational Resources Information Center
Qu, Changtao; Nejdl, Wolfgang
2004-01-01
Edutella is an RDF-based E-Learning P2P network that is aimed to accommodate heterogeneous learning resource metadata repositories in a P2P manner and further facilitate the exchange of metadata between these repositories based on RDF. Whereas Edutella provides RDF metadata repositories with a quite natural integration approach, XML metadata…
ERIC Educational Resources Information Center
Vellucci, Sherry L.; Hsieh-Yee, Ingrid; Moen, William E.
2007-01-01
The networked environment forced a sea change in Library and Information Science (LIS) education. Most LIS programs offer a mixed-mode of instruction that integrates online learning materials with more traditional classroom pedagogical methods and faculty are now responsible for developing content and digital learning objects. The teaching commons…
Lessons Learned From 104 Years of Mobile Observatories
NASA Astrophysics Data System (ADS)
Miller, S. P.; Clark, P. D.; Neiswender, C.; Raymond, L.; Rioux, M.; Norton, C.; Detrick, R.; Helly, J.; Sutton, D.; Weatherford, J.
2007-12-01
As the oceanographic community ventures into a new era of integrated observatories, it may be helpful to look back on the era of "mobile observatories" to see what Cyberinfrastructure lessons might be learned. For example, SIO has been operating research vessels for 104 years, supporting a wide range of disciplines: marine geology and geophysics, physical oceanography, geochemistry, biology, seismology, ecology, fisheries, and acoustics. In the last 6 years progress has been made with diverse data types, formats and media, resulting in a fully-searchable online SIOExplorer Digital Library of more than 800 cruises (http://SIOExplorer.ucsd.edu). Public access to SIOExplorer is considerable, with 795,351 files (206 GB) downloaded last year. During the last 3 years the efforts have been extended to WHOI, with a "Multi-Institution Testbed for Scalable Digital Archiving" funded by the Library of Congress and NSF (IIS 0455998). The project has created a prototype digital library of data from both institutions, including cruises, Alvin submersible dives, and ROVs. In the process, the team encountered technical and cultural issues that will be facing the observatory community in the near future. Technological Lessons Learned: Shipboard data from multiple institutions are extraordinarily diverse, and provide a good training ground for observatories. Data are gathered from a wide range of authorities, laboratories, servers and media, with little documentation. Conflicting versions exist, generated by alternative processes. Domain- and institution-specific issues were addressed during initial staging. Data files were categorized and metadata harvested with automated procedures. With our second-generation approach to staging, we achieve higher levels of automation with greater use of controlled vocabularies. Database and XML- based procedures deal with the diversity of raw metadata values and map them to agreed-upon standard values, in collaboration with the Marine Metadata Interoperability (MMI) community. All objects are tagged with an expert level, thus serving an educational audience, as well as research users. After staging, publication into the digital library is completely automated. The technical challenges have been largely overcome, thanks to a scalable, federated digital library architecture from the San Diego Supercomputer Center, implemented at SIO, WHOI and other sites. The metadata design is flexible, supporting modular blocks of metadata tailored to the needs of instruments, samples, documents, derived products, cruises or dives, as appropriate. Controlled metadata vocabularies, with content and definitions negotiated by all parties, are critical. Metadata may be mapped to required external standards and formats, as needed. Cultural Lessons Learned: The cultural challenges have been more formidable than expected. They became most apparent during attempts to categorize and stage digital data objects across two institutions, each with their own naming conventions and practices, generally undocumented, and evolving across decades. Whether the questions concerned data ownership, collection techniques, data diversity or institutional practices, the solution involved a joint discussion with scientists, data managers, technicians and archivists, working together. Because metadata discussions go on endlessly, significant benefit comes from dictionaries with definitions of all community-authorized metadata values.
On-line interactive virtual experiments on nanoscience
NASA Astrophysics Data System (ADS)
Kadar, Manuella; Ileana, Ioan; Hutanu, Constantin
2009-01-01
This paper is an overview on the next generation web which allows students to experience virtual experiments on nano science, physics devices, processes and processing equipment. Virtual reality is used to support a real university lab in which a student can experiment real lab sessions. The web material is presented in an intuitive and highly visual 3D form that is accessible to a diverse group of students. Such type of laboratory provides opportunities for professional and practical education for a wide range of users. The expensive equipment and apparatuses that build the experimental stage in a particular standard laboratory is used to create virtual educational research laboratories. Students learn how to prepare the apparatuses and facilities for the experiment. The online experiments metadata schema is the format for describing online experiments, much like the schema behind a library catalogue used to describe the books in a library. As an online experiment is a special kind of learning object, one specifies its schema as an extension to an established metadata schema for learning objects. The content of the courses, metainformation as well as readings and user data are saved on the server in a database as XML objects.
A Window to the World: Lessons Learned from NASA's Collaborative Metadata Curation Effort
NASA Astrophysics Data System (ADS)
Bugbee, K.; Dixon, V.; Baynes, K.; Shum, D.; le Roux, J.; Ramachandran, R.
2017-12-01
Well written descriptive metadata adds value to data by making data easier to discover as well as increases the use of data by providing the context or appropriateness of use. While many data centers acknowledge the importance of correct, consistent and complete metadata, allocating resources to curate existing metadata is often difficult. To lower resource costs, many data centers seek guidance on best practices for curating metadata but struggle to identify those recommendations. In order to assist data centers in curating metadata and to also develop best practices for creating and maintaining metadata, NASA has formed a collaborative effort to improve the Earth Observing System Data and Information System (EOSDIS) metadata in the Common Metadata Repository (CMR). This effort has taken significant steps in building consensus around metadata curation best practices. However, this effort has also revealed gaps in EOSDIS enterprise policies and procedures within the core metadata curation task. This presentation will explore the mechanisms used for building consensus on metadata curation, the gaps identified in policies and procedures, the lessons learned from collaborating with both the data centers and metadata curation teams, and the proposed next steps for the future.
Exploring Characterizations of Learning Object Repositories Using Data Mining Techniques
NASA Astrophysics Data System (ADS)
Segura, Alejandra; Vidal, Christian; Menendez, Victor; Zapata, Alfredo; Prieto, Manuel
Learning object repositories provide a platform for the sharing of Web-based educational resources. As these repositories evolve independently, it is difficult for users to have a clear picture of the kind of contents they give access to. Metadata can be used to automatically extract a characterization of these resources by using machine learning techniques. This paper presents an exploratory study carried out in the contents of four public repositories that uses clustering and association rule mining algorithms to extract characterizations of repository contents. The results of the analysis include potential relationships between different attributes of learning objects that may be useful to gain an understanding of the kind of resources available and eventually develop search mechanisms that consider repository descriptions as a criteria in federated search.
ERIC Educational Resources Information Center
Dietze, Stefan; Gugliotta, Alessio; Domingue, John
2009-01-01
Current E-Learning technologies primarily follow a data and metadata-centric paradigm by providing the learner with composite content containing the learning resources and the learning process description, usually based on specific metadata standards such as ADL SCORM or IMS Learning Design. Due to the design-time binding of learning resources,…
Normalized Metadata Generation for Human Retrieval Using Multiple Video Surveillance Cameras.
Jung, Jaehoon; Yoon, Inhye; Lee, Seungwon; Paik, Joonki
2016-06-24
Since it is impossible for surveillance personnel to keep monitoring videos from a multiple camera-based surveillance system, an efficient technique is needed to help recognize important situations by retrieving the metadata of an object-of-interest. In a multiple camera-based surveillance system, an object detected in a camera has a different shape in another camera, which is a critical issue of wide-range, real-time surveillance systems. In order to address the problem, this paper presents an object retrieval method by extracting the normalized metadata of an object-of-interest from multiple, heterogeneous cameras. The proposed metadata generation algorithm consists of three steps: (i) generation of a three-dimensional (3D) human model; (ii) human object-based automatic scene calibration; and (iii) metadata generation. More specifically, an appropriately-generated 3D human model provides the foot-to-head direction information that is used as the input of the automatic calibration of each camera. The normalized object information is used to retrieve an object-of-interest in a wide-range, multiple-camera surveillance system in the form of metadata. Experimental results show that the 3D human model matches the ground truth, and automatic calibration-based normalization of metadata enables a successful retrieval and tracking of a human object in the multiple-camera video surveillance system.
Normalized Metadata Generation for Human Retrieval Using Multiple Video Surveillance Cameras
Jung, Jaehoon; Yoon, Inhye; Lee, Seungwon; Paik, Joonki
2016-01-01
Since it is impossible for surveillance personnel to keep monitoring videos from a multiple camera-based surveillance system, an efficient technique is needed to help recognize important situations by retrieving the metadata of an object-of-interest. In a multiple camera-based surveillance system, an object detected in a camera has a different shape in another camera, which is a critical issue of wide-range, real-time surveillance systems. In order to address the problem, this paper presents an object retrieval method by extracting the normalized metadata of an object-of-interest from multiple, heterogeneous cameras. The proposed metadata generation algorithm consists of three steps: (i) generation of a three-dimensional (3D) human model; (ii) human object-based automatic scene calibration; and (iii) metadata generation. More specifically, an appropriately-generated 3D human model provides the foot-to-head direction information that is used as the input of the automatic calibration of each camera. The normalized object information is used to retrieve an object-of-interest in a wide-range, multiple-camera surveillance system in the form of metadata. Experimental results show that the 3D human model matches the ground truth, and automatic calibration-based normalization of metadata enables a successful retrieval and tracking of a human object in the multiple-camera video surveillance system. PMID:27347961
ERIC Educational Resources Information Center
Yang, Le
2016-01-01
This study analyzed digital item metadata and keywords from Internet search engines to learn what metadata elements actually facilitate discovery of digital collections through Internet keyword searching and how significantly each metadata element affects the discovery of items in a digital repository. The study found that keywords from Internet…
Viewing and Editing Earth Science Metadata MOBE: Metadata Object Browser and Editor in Java
NASA Astrophysics Data System (ADS)
Chase, A.; Helly, J.
2002-12-01
Metadata is an important, yet often neglected aspect of successful archival efforts. However, to generate robust, useful metadata is often a time consuming and tedious task. We have been approaching this problem from two directions: first by automating metadata creation, pulling from known sources of data, and in addition, what this (paper/poster?) details, developing friendly software for human interaction with the metadata. MOBE and COBE(Metadata Object Browser and Editor, and Canonical Object Browser and Editor respectively), are Java applications for editing and viewing metadata and digital objects. MOBE has already been designed and deployed, currently being integrated into other areas of the SIOExplorer project. COBE is in the design and development stage, being created with the same considerations in mind as those for MOBE. Metadata creation, viewing, data object creation, and data object viewing, when taken on a small scale are all relatively simple tasks. Computer science however, has an infamous reputation for transforming the simple into complex. As a system scales upwards to become more robust, new features arise and additional functionality is added to the software being written to manage the system. The software that emerges from such an evolution, though powerful, is often complex and difficult to use. With MOBE the focus is on a tool that does a small number of tasks very well. The result has been an application that enables users to manipulate metadata in an intuitive and effective way. This allows for a tool that serves its purpose without introducing additional cognitive load onto the user, an end goal we continue to pursue.
The Lom Approach--a Call for Concern?
ERIC Educational Resources Information Center
Armitage, Nicholas; Bowerman, Chris
2005-01-01
The LOM (Learning Object Model) approach to courseware design seems to be driven by a desire to increase access to education as well as use technology to enable a higher staff-student ratio than is currently possible. The LOM standard involves the use of standard metadata descriptions of content and adaptive content engines to deliver the…
The LOM Approach -- A CALL for Concern?
ERIC Educational Resources Information Center
Armitage, Nicholas; Bowerman, Chris
2005-01-01
The LOM (Learning Object Model) approach to courseware design seems to be driven by a desire to increase access to education as well as use technology to enable a higher staff-student ratio than is currently possible. The LOM standard involves the use of standard metadata descriptions of content and adaptive content engines to deliver the…
Tracking Actual Usage: The Attention Metadata Approach
ERIC Educational Resources Information Center
Wolpers, Martin; Najjar, Jehad; Verbert, Katrien; Duval, Erik
2007-01-01
The information overload in learning and teaching scenarios is a main hindering factor for efficient and effective learning. New methods are needed to help teachers and students in dealing with the vast amount of available information and learning material. Our approach aims to utilize contextualized attention metadata to capture behavioural…
Collection Metadata Solutions for Digital Library Applications
NASA Technical Reports Server (NTRS)
Hill, Linda L.; Janee, Greg; Dolin, Ron; Frew, James; Larsgaard, Mary
1999-01-01
Within a digital library, collections may range from an ad hoc set of objects that serve a temporary purpose to established library collections intended to persist through time. The objects in these collections vary widely, from library and data center holdings to pointers to real-world objects, such as geographic places, and the various metadata schemas that describe them. The key to integrated use of such a variety of collections in a digital library is collection metadata that represents the inherent and contextual characteristics of a collection. The Alexandria Digital Library (ADL) Project has designed and implemented collection metadata for several purposes: in XML form, the collection metadata "registers" the collection with the user interface client; in HTML form, it is used for user documentation; eventually, it will be used to describe the collection to network search agents; and it is used for internal collection management, including mapping the object metadata attributes to the common search parameters of the system.
Achieving interoperability for metadata registries using comparative object modeling.
Park, Yu Rang; Kim, Ju Han
2010-01-01
Achieving data interoperability between organizations relies upon agreed meaning and representation (metadata) of data. For managing and registering metadata, many organizations have built metadata registries (MDRs) in various domains based on international standard for MDR framework, ISO/IEC 11179. Following this trend, two pubic MDRs in biomedical domain have been created, United States Health Information Knowledgebase (USHIK) and cancer Data Standards Registry and Repository (caDSR), from U.S. Department of Health & Human Services and National Cancer Institute (NCI), respectively. Most MDRs are implemented with indiscriminate extending for satisfying organization-specific needs and solving semantic and structural limitation of ISO/IEC 11179. As a result it is difficult to address interoperability among multiple MDRs. In this paper, we propose an integrated metadata object model for achieving interoperability among multiple MDRs. To evaluate this model, we developed an XML Schema Definition (XSD)-based metadata exchange format. We created an XSD-based metadata exporter, supporting both the integrated metadata object model and organization-specific MDR formats.
A Model for the Creation of Human-Generated Metadata within Communities
ERIC Educational Resources Information Center
Brasher, Andrew; McAndrew, Patrick
2005-01-01
This paper considers situations for which detailed metadata descriptions of learning resources are necessary, and focuses on human generation of such metadata. It describes a model which facilitates human production of good quality metadata by the development and use of structured vocabularies. Using examples, this model is applied to single and…
ERIC Educational Resources Information Center
García-Floriano, Andrés; Ferreira-Santiago, Angel; Yáñez-Márquez, Cornelio; Camacho-Nieto, Oscar; Aldape-Pérez, Mario; Villuendas-Rey, Yenny
2017-01-01
Social networking potentially offers improved distance learning environments by enabling the exchange of resources between learners. The existence of properly classified content results in an enhanced distance learning experience in which appropriate materials can be retrieved efficiently; however, for this to happen, metadata needs to be present.…
The role of metadata in managing large environmental science datasets. Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melton, R.B.; DeVaney, D.M.; French, J. C.
1995-06-01
The purpose of this workshop was to bring together computer science researchers and environmental sciences data management practitioners to consider the role of metadata in managing large environmental sciences datasets. The objectives included: establishing a common definition of metadata; identifying categories of metadata; defining problems in managing metadata; and defining problems related to linking metadata with primary data.
A Metadata Model for E-Learning Coordination through Semantic Web Languages
ERIC Educational Resources Information Center
Elci, Atilla
2005-01-01
This paper reports on a study aiming to develop a metadata model for e-learning coordination based on semantic web languages. A survey of e-learning modes are done initially in order to identify content such as phases, activities, data schema, rules and relations, etc. relevant for a coordination model. In this respect, the study looks into the…
The Benefits and Future of Standards: Metadata and Beyond
NASA Astrophysics Data System (ADS)
Stracke, Christian M.
This article discusses the benefits and future of standards and presents the generic multi-dimensional Reference Model. First the importance and the tasks of interoperability as well as quality development and their relationship are analyzed. Especially in e-Learning their connection and interdependence is evident: Interoperability is one basic requirement for quality development. In this paper, it is shown how standards and specifications are supporting these crucial issues. The upcoming ISO metadata standard MLR (Metadata for Learning Resource) will be introduced and used as example for identifying the requirements and needs for future standardization. In conclusion a vision of the challenges and potentials for e-Learning standardization is outlined.
ISO 19115 Experiences in NASA's Earth Observing System (EOS) ClearingHOuse (ECHO)
NASA Astrophysics Data System (ADS)
Cechini, M. F.; Mitchell, A.
2011-12-01
Metadata is an important entity in the process of cataloging, discovering, and describing earth science data. As science research and the gathered data increases in complexity, so does the complexity and importance of descriptive metadata. To meet these growing needs, the metadata models required utilize richer and more mature metadata attributes. Categorizing, standardizing, and promulgating these metadata models to a politically, geographically, and scientifically diverse community is a difficult process. An integral component of metadata management within NASA's Earth Observing System Data and Information System (EOSDIS) is the Earth Observing System (EOS) ClearingHOuse (ECHO). ECHO is the core metadata repository for the EOSDIS data centers providing a centralized mechanism for metadata and data discovery and retrieval. ECHO has undertaken an internal restructuring to meet the changing needs of scientists, the consistent advancement in technology, and the advent of new standards such as ISO 19115. These improvements were based on the following tenets for data discovery and retrieval: + There exists a set of 'core' metadata fields recommended for data discovery. + There exists a set of users who will require the entire metadata record for advanced analysis. + There exists a set of users who will require a 'core' set metadata fields for discovery only. + There will never be a cessation of new formats or a total retirement of all old formats. + Users should be presented metadata in a consistent format of their choosing. In order to address the previously listed items, ECHO's new metadata processing paradigm utilizes the following approach: + Identify a cross-format set of 'core' metadata fields necessary for discovery. + Implement format-specific indexers to extract the 'core' metadata fields into an optimized query capability. + Archive the original metadata in its entirety for presentation to users requiring the full record. + Provide on-demand translation of 'core' metadata to any supported result format. Lessons learned by the ECHO team while implementing its new metadata approach to support usage of the ISO 19115 standard will be presented. These lessons learned highlight some discovered strengths and weaknesses in the ISO 19115 standard as it is introduced to an existing metadata processing system.
Incorporating ISO Metadata Using HDF Product Designer
NASA Technical Reports Server (NTRS)
Jelenak, Aleksandar; Kozimor, John; Habermann, Ted
2016-01-01
The need to store in HDF5 files increasing amounts of metadata of various complexity is greatly overcoming the capabilities of the Earth science metadata conventions currently in use. Data producers until now did not have much choice but to come up with ad hoc solutions to this challenge. Such solutions, in turn, pose a wide range of issues for data managers, distributors, and, ultimately, data users. The HDF Group is experimenting on a novel approach of using ISO 19115 metadata objects as a catch-all container for all the metadata that cannot be fitted into the current Earth science data conventions. This presentation will showcase how the HDF Product Designer software can be utilized to help data producers include various ISO metadata objects in their products.
ERIC Educational Resources Information Center
O'Neill, Edward T.; Lavoie, Brian F.; Bennett, Rick; Staples, Thornton; Wayland, Ross; Payette, Sandra; Dekkers, Makx; Weibel, Stuart; Searle, Sam; Thompson, Dave; Rudner, Lawrence M.
2003-01-01
Includes five articles that examine key trends in the development of the public Web: size and growth, internationalization, and metadata usage; Flexible Extensible Digital Object and Repository Architecture (Fedora) for use in digital libraries; developments in the Dublin Core Metadata Initiative (DCMI); the National Library of New Zealand Te Puna…
Separation of metadata and pixel data to speed DICOM tag morphing.
Ismail, Mahmoud; Philbin, James
2013-01-01
The DICOM information model combines pixel data and metadata in single DICOM object. It is not possible to access the metadata separately from the pixel data. There are use cases where only metadata is accessed. The current DICOM object format increases the running time of those use cases. Tag morphing is one of those use cases. Tag morphing includes deletion, insertion or manipulation of one or more of the metadata attributes. It is typically used for order reconciliation on study acquisition or to localize the issuer of patient ID (IPID) and the patient ID attributes when data from one domain is transferred to a different domain. In this work, we propose using Multi-Series DICOM (MSD) objects, which separate metadata from pixel data and remove duplicate attributes, to reduce the time required for Tag Morphing. The time required to update a set of study attributes in each format is compared. The results show that the MSD format significantly reduces the time required for tag morphing.
Policy enabled information sharing system
Jorgensen, Craig R.; Nelson, Brian D.; Ratheal, Steve W.
2014-09-02
A technique for dynamically sharing information includes executing a sharing policy indicating when to share a data object responsive to the occurrence of an event. The data object is created by formatting a data file to be shared with a receiving entity. The data object includes a file data portion and a sharing metadata portion. The data object is encrypted and then automatically transmitted to the receiving entity upon occurrence of the event. The sharing metadata portion includes metadata characterizing the data file and referenced in connection with the sharing policy to determine when to automatically transmit the data object to the receiving entity.
Metadata and Buckets in the Smart Object, Dumb Archive (SODA) Model
NASA Technical Reports Server (NTRS)
Nelson, Michael L.; Maly, Kurt; Croom, Delwin R., Jr.; Robbins, Steven W.
2004-01-01
We present the Smart Object, Dumb Archive (SODA) model for digital libraries (DLs), and discuss the role of metadata in SODA. The premise of the SODA model is to "push down" many of the functionalities generally associated with archives into the data objects themselves. Thus the data objects become "smarter", and the archives "dumber". In the SODA model, archives become primarily set managers, and the objects themselves negotiate and handle presentation, enforce terms and conditions, and perform data content management. Buckets are our implementation of smart objects, and da is our reference implementation for dumb archives. We also present our approach to metadata translation for buckets.
Ismail, Mahmoud; Philbin, James
2015-04-01
The digital imaging and communications in medicine (DICOM) information model combines pixel data and its metadata in a single object. There are user scenarios that only need metadata manipulation, such as deidentification and study migration. Most picture archiving and communication system use a database to store and update the metadata rather than updating the raw DICOM files themselves. The multiseries DICOM (MSD) format separates metadata from pixel data and eliminates duplicate attributes. This work promotes storing DICOM studies in MSD format to reduce the metadata processing time. A set of experiments are performed that update the metadata of a set of DICOM studies for deidentification and migration. The studies are stored in both the traditional single frame DICOM (SFD) format and the MSD format. The results show that it is faster to update studies' metadata in MSD format than in SFD format because the bulk data is separated in MSD and is not retrieved from the storage system. In addition, it is space efficient to store the deidentified studies in MSD format as it shares the same bulk data object with the original study. In summary, separation of metadata from pixel data using the MSD format provides fast metadata access and speeds up applications that process only the metadata.
Ismail, Mahmoud; Philbin, James
2015-01-01
Abstract. The digital imaging and communications in medicine (DICOM) information model combines pixel data and its metadata in a single object. There are user scenarios that only need metadata manipulation, such as deidentification and study migration. Most picture archiving and communication system use a database to store and update the metadata rather than updating the raw DICOM files themselves. The multiseries DICOM (MSD) format separates metadata from pixel data and eliminates duplicate attributes. This work promotes storing DICOM studies in MSD format to reduce the metadata processing time. A set of experiments are performed that update the metadata of a set of DICOM studies for deidentification and migration. The studies are stored in both the traditional single frame DICOM (SFD) format and the MSD format. The results show that it is faster to update studies’ metadata in MSD format than in SFD format because the bulk data is separated in MSD and is not retrieved from the storage system. In addition, it is space efficient to store the deidentified studies in MSD format as it shares the same bulk data object with the original study. In summary, separation of metadata from pixel data using the MSD format provides fast metadata access and speeds up applications that process only the metadata. PMID:26158117
NASA Astrophysics Data System (ADS)
Koppe, Roland; Scientific MaNIDA-Team
2013-04-01
The Marine Network for Integrated Data Access (MaNIDA) aims to build a sustainable e-infrastructure to support discovery and re-use of marine data from distinct data providers in Germany (see related abstracts in session ESSI 1.2). In order to provide users integrated access and retrieval of expedition or cruise metadata, data, services and publications as well as relationships among the various objects, we are developing (web) applications based on state of the art technologies: the Data Portal of German Marine Research. Since the German network of distributed content providers have distinct objectives and mandates for storing digital objects (e.g. long-term data preservation, near real time data, publication repositories), we have to cope with heterogeneous metadata in terms of syntax and semantic, data types and formats as well as access solutions. We have defined a set of core metadata elements which are common to our content providers and therefore useful for discovery and building relationships among objects. Existing catalogues for various types of vocabularies are being used to assure the mapping to community-wide used terms. We distinguish between expedition metadata and continuously harvestable metadata objects from distinct data providers. • Existing expedition metadata from distinct sources is integrated and validated in order to create an expedition metadata catalogue which is used as authoritative source for expedition-related content. The web application allows browsing by e.g. research vessel and date, exploring expeditions and research gaps by tracklines and viewing expedition details (begin/end, ports, platforms, chief scientists, events, etc.). Also expedition-related objects from harvesting are dynamically associated with expedition information and presented to the user. Hence we will provide web services to detailed expedition information. • Other harvestable content is separated into four categories: archived data and data products, near real time data, publications and reports. Reports are a special case of publication, describing cruise planning, cruise reports or popular reports on expeditions and are orthogonal to e.g. peer-reviewed articles. Each object's metadata contains at least: identifier(s) e.g. doi/hdl, title, author(s), date, expedition(s), platform(s) e.g. research vessel Polarstern. Furthermore project(s), parameter(s), device(s) and e.g. geographic coverage are of interest. An international gazetteer resolves geographic coverage to region names and annotates to object metadata. Information is homogenously presented to the user, independent of the underlying format, but adaptable to specific disciplines e.g. bathymetry. Also data access and dissemination information is available to the user as data download link or web services (e.g. WFS, WMS). Based on relationship metadata we are dynamically building graphs of objects to support the user in finding possible relevant associated objects. Technically metadata is based on ISO / OGC standards or provider specification. Metadata is harvested via OAI-PMH or OGC CSW and indexed with Apache Lucene. This enables powerful full-text search, geographic and temporal search as well as faceting. In this presentation we will illustrate the architecture and the current implementation of our integrated approach.
ERIC Educational Resources Information Center
Solomou, Georgia; Pierrakeas, Christos; Kameas, Achilles
2015-01-01
The ability to effectively administrate educational resources in terms of accessibility, reusability and interoperability lies in the adoption of an appropriate metadata schema, able of adequately describing them. A considerable number of different educational metadata schemas can be found in literature, with the IEEE LOM being the most widely…
The Role of Metadata Standards in EOSDIS Search and Retrieval Applications
NASA Technical Reports Server (NTRS)
Pfister, Robin
1999-01-01
Metadata standards play a critical role in data search and retrieval systems. Metadata tie software to data so the data can be processed, stored, searched, retrieved and distributed. Without metadata these actions are not possible. The process of populating metadata to describe science data is an important service to the end user community so that a user who is unfamiliar with the data, can easily find and learn about a particular dataset before an order decision is made. Once a good set of standards are in place, the accuracy with which data search can be performed depends on the degree to which metadata standards are adhered during product definition. NASA's Earth Observing System Data and Information System (EOSDIS) provides examples of how metadata standards are used in data search and retrieval.
NASA Astrophysics Data System (ADS)
Prasad, U.; Rahabi, A.
2001-05-01
The following utilities developed for HDF-EOS format data dump are of special use for Earth science data for NASA's Earth Observation System (EOS). This poster demonstrates their use and application. The first four tools take HDF-EOS data files as input. HDF-EOS Metadata Dumper - metadmp Metadata dumper extracts metadata from EOS data granules. It operates by simply copying blocks of metadata from the file to the standard output. It does not process the metadata in any way. Since all metadata in EOS granules is encoded in the Object Description Language (ODL), the output of metadmp will be in the form of complete ODL statements. EOS data granules may contain up to three different sets of metadata (Core, Archive, and Structural Metadata). HDF-EOS Contents Dumper - heosls Heosls dumper displays the contents of HDF-EOS files. This utility provides detailed information on the POINT, SWATH, and GRID data sets. in the files. For example: it will list, the Geo-location fields, Data fields and objects. HDF-EOS ASCII Dumper - asciidmp The ASCII dump utility extracts fields from EOS data granules into plain ASCII text. The output from asciidmp should be easily human readable. With minor editing, asciidmp's output can be made ingestible by any application with ASCII import capabilities. HDF-EOS Binary Dumper - bindmp The binary dumper utility dumps HDF-EOS objects in binary format. This is useful for feeding the output of it into existing program, which does not understand HDF, for example: custom software and COTS products. HDF-EOS User Friendly Metadata - UFM The UFM utility tool is useful for viewing ECS metadata. UFM takes an EOSDIS ODL metadata file and produces an HTML report of the metadata for display using a web browser. HDF-EOS METCHECK - METCHECK METCHECK can be invoked from either Unix or Dos environment with a set of command line options that a user might use to direct the tool inputs and output . METCHECK validates the inventory metadata in (.met file) using The Descriptor file (.desc) as the reference. The tool takes (.desc), and (.met) an ODL file as inputs, and generates a simple output file contains the results of the checking process.
NetCDF4/HDF5 and Linked Data in the Real World - Enriching Geoscientific Metadata without Bloat
NASA Astrophysics Data System (ADS)
Ip, Alex; Car, Nicholas; Druken, Kelsey; Poudjom-Djomani, Yvette; Butcher, Stirling; Evans, Ben; Wyborn, Lesley
2017-04-01
NetCDF4 has become the dominant generic format for many forms of geoscientific data, leveraging (and constraining) the versatile HDF5 container format, while providing metadata conventions for interoperability. However, the encapsulation of detailed metadata within each file can lead to metadata "bloat", and difficulty in maintaining consistency where metadata is replicated to multiple locations. Complex conceptual relationships are also difficult to represent in simple key-value netCDF metadata. Linked Data provides a practical mechanism to address these issues by associating the netCDF files and their internal variables with complex metadata stored in Semantic Web vocabularies and ontologies, while complying with and complementing existing metadata conventions. One of the stated objectives of the netCDF4/HDF5 formats is that they should be self-describing: containing metadata sufficient for cataloguing and using the data. However, this objective can be regarded as only partially-met where details of conventions and definitions are maintained externally to the data files. For example, one of the most widely used netCDF community standards, the Climate and Forecasting (CF) Metadata Convention, maintains standard vocabularies for a broad range of disciplines across the geosciences, but this metadata is currently neither readily discoverable nor machine-readable. We have previously implemented useful Linked Data and netCDF tooling (ncskos) that associates netCDF files, and individual variables within those files, with concepts in vocabularies formulated using the Simple Knowledge Organization System (SKOS) ontology. NetCDF files contain Uniform Resource Identifier (URI) links to terms represented as SKOS Concepts, rather than plain-text representations of those terms, so we can use simple, standardised web queries to collect and use rich metadata for the terms from any Linked Data-presented SKOS vocabulary. Geoscience Australia (GA) manages a large volume of diverse geoscientific data, much of which is being translated from proprietary formats to netCDF at NCI Australia. This data is made available through the NCI National Environmental Research Data Interoperability Platform (NERDIP) for programmatic access and interdisciplinary analysis. The netCDF files contain both scientific data variables (e.g. gravity, magnetic or radiometric values), but also domain-specific operational values (e.g. specific instrument parameters) best described fully in formal vocabularies. Our ncskos codebase provides access to multiple stores of detailed external metadata in a standardised fashion. Geophysical datasets are generated from a "survey" event, and GA maintains corporate databases of all surveys and their associated metadata. It is impractical to replicate the full source survey metadata into each netCDF dataset so, instead, we link the netCDF files to survey metadata using public Linked Data URIs. These URIs link to Survey class objects which we model as a subclass of Activity objects as defined by the PROV Ontology, and we provide URI resolution for them via a custom Linked Data API which draws current survey metadata from GA's in-house databases. We have demonstrated that Linked Data is a practical way to associate netCDF data with detailed, external metadata. This allows us to ensure that catalogued metadata is kept consistent with metadata points-of-truth, and we can infer complex conceptual relationships not possible with netCDF key-value attributes alone.
A metadata schema for data objects in clinical research.
Canham, Steve; Ohmann, Christian
2016-11-24
A large number of stakeholders have accepted the need for greater transparency in clinical research and, in the context of various initiatives and systems, have developed a diverse and expanding number of repositories for storing the data and documents created by clinical studies (collectively known as data objects). To make the best use of such resources, we assert that it is also necessary for stakeholders to agree and deploy a simple, consistent metadata scheme. The relevant data objects and their likely storage are described, and the requirements for metadata to support data sharing in clinical research are identified. Issues concerning persistent identifiers, for both studies and data objects, are explored. A scheme is proposed that is based on the DataCite standard, with extensions to cover the needs of clinical researchers, specifically to provide (a) study identification data, including links to clinical trial registries; (b) data object characteristics and identifiers; and (c) data covering location, ownership and access to the data object. The components of the metadata scheme are described. The metadata schema is proposed as a natural extension of a widely agreed standard to fill a gap not tackled by other standards related to clinical research (e.g., Clinical Data Interchange Standards Consortium, Biomedical Research Integrated Domain Group). The proposal could be integrated with, but is not dependent on, other moves to better structure data in clinical research.
Spachos, Dimitris; Mylläri, Jarkko; Giordano, Daniela; Dafli, Eleni; Mitsopoulou, Evangelia; Schizas, Christos N; Pattichis, Constantinos; Nikolaidou, Maria
2015-01-01
Background The mEducator Best Practice Network (BPN) implemented and extended standards and reference models in e-learning to develop innovative frameworks as well as solutions that enable specialized state-of-the-art medical educational content to be discovered, retrieved, shared, and re-purposed across European Institutions, targeting medical students, doctors, educators and health care professionals. Scenario-based evaluation for usability testing, complemented with data from online questionnaires and field notes of users’ performance, was designed and utilized for the evaluation of these solutions. Objective The objective of this work is twofold: (1) to describe one instantiation of the mEducator BPN solutions (mEducator3.0 - “MEdical Education LINnked Arena” MELINA+) with a focus on the metadata schema used, as well as on other aspects of the system that pertain to usability and acceptance, and (2) to present evaluation results on the suitability of the proposed metadata schema for searching, retrieving, and sharing of medical content and with respect to the overall usability and acceptance of the system from the target users. Methods A comprehensive evaluation methodology framework was developed and applied to four case studies, which were conducted in four different countries (ie, Greece, Cyprus, Bulgaria and Romania), with a total of 126 participants. In these case studies, scenarios referring to creating, sharing, and retrieving medical educational content using mEducator3.0 were used. The data were collected through two online questionnaires, consisting of 36 closed-ended questions and two open-ended questions that referred to mEducator 3.0 and through the use of field notes during scenario-based evaluations. Results The main findings of the study showed that even though the informational needs of the mEducator target groups were addressed to a satisfactory extent and the metadata schema supported content creation, sharing, and retrieval from an end-user perspective, users faced difficulties in achieving a shared understanding of the meaning of some metadata fields and in correctly managing the intellectual property rights of repurposed content. Conclusions The results of this evaluation impact researchers, medical professionals, and designers interested in using similar systems for educational content sharing in medical and other domains. Recommendations on how to improve the search, retrieval, identification, and obtaining of medical resources are provided, by addressing issues of content description metadata, content description procedures, and intellectual property rights for re-purposed content. PMID:26453250
A Linked Dataset of Medical Educational Resources
ERIC Educational Resources Information Center
Dietze, Stefan; Taibi, Davide; Yu, Hong Qing; Dovrolis, Nikolas
2015-01-01
Reusable educational resources became increasingly important for enhancing learning and teaching experiences, particularly in the medical domain where resources are particularly expensive to produce. While interoperability across educational resources metadata repositories is yet limited to the heterogeneity of metadata standards and interface…
Digital Initiatives and Metadata Use in Thailand
ERIC Educational Resources Information Center
SuKantarat, Wichada
2008-01-01
Purpose: This paper aims to provide information about various digital initiatives in libraries in Thailand and especially use of Dublin Core metadata in cataloguing digitized objects in academic and government digital databases. Design/methodology/approach: The author began researching metadata use in Thailand in 2003 and 2004 while on sabbatical…
ALE: automated label extraction from GEO metadata.
Giles, Cory B; Brown, Chase A; Ripperger, Michael; Dennis, Zane; Roopnarinesingh, Xiavan; Porter, Hunter; Perz, Aleksandra; Wren, Jonathan D
2017-12-28
NCBI's Gene Expression Omnibus (GEO) is a rich community resource containing millions of gene expression experiments from human, mouse, rat, and other model organisms. However, information about each experiment (metadata) is in the format of an open-ended, non-standardized textual description provided by the depositor. Thus, classification of experiments for meta-analysis by factors such as gender, age of the sample donor, and tissue of origin is not feasible without assigning labels to the experiments. Automated approaches are preferable for this, primarily because of the size and volume of the data to be processed, but also because it ensures standardization and consistency. While some of these labels can be extracted directly from the textual metadata, many of the data available do not contain explicit text informing the researcher about the age and gender of the subjects with the study. To bridge this gap, machine-learning methods can be trained to use the gene expression patterns associated with the text-derived labels to refine label-prediction confidence. Our analysis shows only 26% of metadata text contains information about gender and 21% about age. In order to ameliorate the lack of available labels for these data sets, we first extract labels from the textual metadata for each GEO RNA dataset and evaluate the performance against a gold standard of manually curated labels. We then use machine-learning methods to predict labels, based upon gene expression of the samples and compare this to the text-based method. Here we present an automated method to extract labels for age, gender, and tissue from textual metadata and GEO data using both a heuristic approach as well as machine learning. We show the two methods together improve accuracy of label assignment to GEO samples.
WGISS-45 International Directory Network (IDN) Report
NASA Technical Reports Server (NTRS)
Morahan, Michael
2018-01-01
The objective of this presentation is to provide IDN (International Directory Network) updates on features and activities to the Committee on Earth Observation Satellites (CEOS) Working Group on Information Systems and Services (WGISS) and provider community. The following topics will be will be discussed during the presentation: Transition of Providers DIF-9 (Directory Interchange Format-9) to DIF-10 Metadata Records in the Common Metadata Repository (CMR); GCMD (Global Change Master Directory) Keyword Update; DIF-10 and UMM-C (Unified Metadata Model-Collections) Schema Changes; Metadata Validation of Provider Metadata; docBUILDER for Submitting IDN Metadata to the CMR (i.e. Registration); and Mapping WGClimate Essential Climate Variable (ECV) Inventory to IDN Records.
A metadata-driven approach to data repository design.
Harvey, Matthew J; McLean, Andrew; Rzepa, Henry S
2017-01-01
The design and use of a metadata-driven data repository for research data management is described. Metadata is collected automatically during the submission process whenever possible and is registered with DataCite in accordance with their current metadata schema, in exchange for a persistent digital object identifier. Two examples of data preview are illustrated, including the demonstration of a method for integration with commercial software that confers rich domain-specific data analytics without introducing customisation into the repository itself.
NASA Astrophysics Data System (ADS)
Zaslavsky, I.; Richard, S. M.; Malik, T.; Hsu, L.; Gupta, A.; Grethe, J. S.; Valentine, D. W., Jr.; Lehnert, K. A.; Bermudez, L. E.; Ozyurt, I. B.; Whitenack, T.; Schachne, A.; Giliarini, A.
2015-12-01
While many geoscience-related repositories and data discovery portals exist, finding information about available resources remains a pervasive problem, especially when searching across multiple domains and catalogs. Inconsistent and incomplete metadata descriptions, disparate access protocols and semantic differences across domains, and troves of unstructured or poorly structured information which is hard to discover and use are major hindrances toward discovery, while metadata compilation and curation remain manual and time-consuming. We report on methodology, main results and lessons learned from an ongoing effort to develop a geoscience-wide catalog of information resources, with consistent metadata descriptions, traceable provenance, and automated metadata enhancement. Developing such a catalog is the central goal of CINERGI (Community Inventory of EarthCube Resources for Geoscience Interoperability), an EarthCube building block project (earthcube.org/group/cinergi). The key novel technical contributions of the projects include: a) development of a metadata enhancement pipeline and a set of document enhancers to automatically improve various aspects of metadata descriptions, including keyword assignment and definition of spatial extents; b) Community Resource Viewers: online applications for crowdsourcing community resource registry development, curation and search, and channeling metadata to the unified CINERGI inventory, c) metadata provenance, validation and annotation services, d) user interfaces for advanced resource discovery; and e) geoscience-wide ontology and machine learning to support automated semantic tagging and faceted search across domains. We demonstrate these CINERGI components in three types of user scenarios: (1) improving existing metadata descriptions maintained by government and academic data facilities, (2) supporting work of several EarthCube Research Coordination Network projects in assembling information resources for their domains, and (3) enhancing the inventory and the underlying ontology to address several complicated data discovery use cases in hydrology, geochemistry, sedimentology, and critical zone science. Support from the US National Science Foundation under award ICER-1343816 is gratefully acknowledged.
Interactive knowledge networks for interdisciplinary course navigation within Moodle.
Scherl, Andre; Dethleffsen, Kathrin; Meyer, Michael
2012-12-01
Web-based hypermedia learning environments are widely used in modern education and seem particularly well suited for interdisciplinary learning. Previous work has identified guidance through these complex environments as a crucial problem of their acceptance and efficiency. We reasoned that map-based navigation might provide straightforward and effortless orientation. To achieve this, we developed a clickable and user-oriented concept map-based navigation plugin. This tool is implemented as an extension of Moodle, a widely used learning management system. It visualizes inner and interdisciplinary relations between learning objects and is generated dynamically depending on user set parameters and interactions. This plugin leaves the choice of navigation type to the user and supports direct guidance. Previously developed and evaluated face-to-face interdisciplinary learning materials bridging physiology and physics courses of a medical curriculum were integrated as learning objects, the relations of which were defined by metadata. Learning objects included text pages, self-assessments, videos, animations, and simulations. In a field study, we analyzed the effects of this learning environment on physiology and physics knowledge as well as the transfer ability of third-term medical students. Data were generated from pre- and posttest questionnaires and from tracking student navigation. Use of the hypermedia environment resulted in a significant increase of knowledge and transfer capability. Furthermore, the efficiency of learning was enhanced. We conclude that hypermedia environments based on Moodle and enriched by concept map-based navigation tools can significantly support interdisciplinary learning. Implementation of adaptivity may further strengthen this approach.
The NCAR Digital Asset Services Hub (DASH): Implementing Unified Data Discovery and Access
NASA Astrophysics Data System (ADS)
Stott, D.; Worley, S. J.; Hou, C. Y.; Nienhouse, E.
2017-12-01
The National Center for Atmospheric Research (NCAR) Directorate created the Data Stewardship Engineering Team (DSET) to plan and implement an integrated single entry point for uniform digital asset discovery and access across the organization in order to improve the efficiency of access, reduce the costs, and establish the foundation for interoperability with other federated systems. This effort supports new policies included in federal funding mandates, NSF data management requirements, and journal citation recommendations. An inventory during the early planning stage identified diverse asset types across the organization that included publications, datasets, metadata, models, images, and software tools and code. The NCAR Digital Asset Services Hub (DASH) is being developed and phased in this year to improve the quality of users' experiences in finding and using these assets. DASH serves to provide engagement, training, search, and support through the following four nodes (see figure). DASH MetadataDASH provides resources for creating and cataloging metadata to the NCAR Dialect, a subset of ISO 19115. NMDEdit, an editor based on a European open source application, has been configured for manual entry of NCAR metadata. CKAN, an open source data portal platform, harvests these XML records (along with records output directly from databases) from a Web Accessible Folder (WAF) on GitHub for validation. DASH SearchThe NCAR Dialect metadata drives cross-organization search and discovery through CKAN, which provides the display interface of search results. DASH search will establish interoperability by facilitating metadata sharing with other federated systems. DASH ConsultingThe DASH Data Curation & Stewardship Coordinator assists with Data Management (DM) Plan preparation and advises on Digital Object Identifiers. The coordinator arranges training sessions on the DASH metadata tools and DM planning, and provides one-on-one assistance as requested. DASH RepositoryA repository is under development for NCAR datasets currently not in existing lab-managed archives. The DASH repository will be under NCAR governance and meet Trustworthy Repositories Audit & Certification (TRAC) requirements. This poster will highlight the processes, lessons learned, and current status of the DASH effort at NCAR.
A recommendation module to help teachers build courses through the Moodle Learning Management System
NASA Astrophysics Data System (ADS)
Limongelli, Carla; Lombardi, Matteo; Marani, Alessandro; Sciarrone, Filippo; Temperini, Marco
2016-01-01
In traditional e-learning, teachers design sets of Learning Objects (LOs) and organize their sequencing; the material implementing the LOs could be either built anew or adopted from elsewhere (e.g. from standard-compliant repositories) and reused. This task is applicable also when the teacher works in a system for personalized e-learning. In this case, the burden actually increases: for instance, the LOs may need adaptation to the system, through additional metadata. This paper presents a module that gives some support to the operations of retrieving, analyzing, and importing LOs from a set of standard Learning Objects Repositories, acting as a recommending system. In particular, it is designed to support the teacher in the phases of (i) retrieval of LOs, through a keyword-based search mechanism applied to the selected repositories; (ii) analysis of the returned LOs, whose information is enriched by a concept of relevance metric, based on both the results of the searching operation and the data related to the previous use of the LOs in the courses managed by the Learning Management System; and (iii) LO importation into the course under construction.
NASA Astrophysics Data System (ADS)
Klump, J. F.; Ulbricht, D.; Conze, R.
2014-12-01
The Continental Deep Drilling Programme (KTB) was a scientific drilling project from 1987 to 1995 near Windischeschenbach, Bavaria. The main super-deep borehole reached a depth of 9,101 meters into the Earth's continental crust. The project used the most current equipment for data capture and processing. After the end of the project key data were disseminated through the web portal of the International Continental Scientific Drilling Program (ICDP). The scientific reports were published as printed volumes. As similar projects have also experienced, it becomes increasingly difficult to maintain a data portal over a long time. Changes in software and underlying hardware make a migration of the entire system inevitable. Around 2009 the data presented on the ICDP web portal were migrated to the Scientific Drilling Database (SDDB) and published through DataCite using Digital Object Identifiers (DOI) as persistent identifiers. The SDDB portal used a relational database with a complex data model to store data and metadata. A PHP-based Content Management System with custom modifications made it possible to navigate and browse datasets using the metadata and then download datasets. The data repository software eSciDoc allows storing self-contained packages consistent with the OAIS reference model. Each package consists of binary data files and XML-metadata. Using a REST-API the packages can be stored in the eSciDoc repository and can be searched using the XML-metadata. During the last maintenance cycle of the SDDB the data and metadata were migrated into the eSciDoc repository. Discovery metadata was generated following the GCMD-DIF, ISO19115 and DataCite schemas. The eSciDoc repository allows to store an arbitrary number of XML-metadata records with each data object. In addition to descriptive metadata each data object may contain pointers to related materials, such as IGSN-metadata to link datasets to physical specimens, or identifiers of literature interpreting the data. Datasets are presented by XSLT-stylesheet transformation using the stored metadata. The presentation shows several migration cycles of data and metadata, which were driven by aging software systems. Currently the datasets reside as self-contained entities in a repository system that is ready for digital preservation.
Machine learning for a Toolkit for Image Mining
NASA Technical Reports Server (NTRS)
Delanoy, Richard L.
1995-01-01
A prototype user environment is described that enables a user with very limited computer skills to collaborate with a computer algorithm to develop search tools (agents) that can be used for image analysis, creating metadata for tagging images, searching for images in an image database on the basis of image content, or as a component of computer vision algorithms. Agents are learned in an ongoing, two-way dialogue between the user and the algorithm. The user points to mistakes made in classification. The algorithm, in response, attempts to discover which image attributes are discriminating between objects of interest and clutter. It then builds a candidate agent and applies it to an input image, producing an 'interest' image highlighting features that are consistent with the set of objects and clutter indicated by the user. The dialogue repeats until the user is satisfied. The prototype environment, called the Toolkit for Image Mining (TIM) is currently capable of learning spectral and textural patterns. Learning exhibits rapid convergence to reasonable levels of performance and, when thoroughly trained, Fo appears to be competitive in discrimination accuracy with other classification techniques.
panMetaDocs and DataSync - providing a convenient way to share and publish research data
NASA Astrophysics Data System (ADS)
Ulbricht, D.; Klump, J. F.
2013-12-01
In recent years research institutions, geological surveys and funding organizations started to build infrastructures to facilitate the re-use of research data from previous work. At present, several intermeshed activities are coordinated to make data systems of the earth sciences interoperable and recorded data discoverable. Driven by governmental authorities, ISO19115/19139 emerged as metadata standards for discovery of data and services. Established metadata transport protocols like OAI-PMH and OGC-CSW are used to disseminate metadata to data portals. With the persistent identifiers like DOI and IGSN research data and corresponding physical samples can be given unambiguous names and thus become citable. In summary, these activities focus primarily on 'ready to give away'-data, already stored in an institutional repository and described with appropriate metadata. Many datasets are not 'born' in this state but are produced in small and federated research projects. To make access and reuse of these 'small data' easier, these data should be centrally stored and version controlled from the very beginning of activities. We developed DataSync [1] as supplemental application to the panMetaDocs [2] data exchange platform as a data management tool for small science projects. DataSync is a JAVA-application that runs on a local computer and synchronizes directory trees into an eSciDoc-repository [3] by creating eSciDoc-objects via eSciDocs' REST API. DataSync can be installed on multiple computers and is in this way able to synchronize files of a research team over the internet. XML Metadata can be added as separate files that are managed together with data files as versioned eSciDoc-objects. A project-customized instance of panMetaDocs is provided to show a web-based overview of the previously uploaded file collection and to allow further annotation with metadata inside the eSciDoc-repository. PanMetaDocs is a PHP based web application to assist the creation of metadata in any XML-based metadata schema. To reduce manual entries of metadata to a minimum and make use of contextual information in a project setting, metadata fields can be populated with static or dynamic content. Access rights can be defined to control visibility and access to stored objects. Notifications about recently updated datasets are available by RSS and e-mail and the entire inventory can be harvested via OAI-PMH. panMetaDocs is optimized to be harvested by panFMP [4]. panMetaDocs is able to mint dataset DOIs though DataCite and uses eSciDocs' REST API to transfer eSciDoc-objects from a non-public 'pending'-status to the published status 'released', which makes data and metadata of the published object available worldwide through the internet. The application scenario presented here shows the adoption of open source applications to data sharing and publication of data. An eSciDoc-repository is used as storage for data and metadata. DataSync serves as a file ingester and distributor, whereas panMetaDocs' main function is to annotate the dataset files with metadata to make them ready for publication and sharing with your own team, or with the scientific community.
Improving Metadata Compliance for Earth Science Data Records
NASA Astrophysics Data System (ADS)
Armstrong, E. M.; Chang, O.; Foster, D.
2014-12-01
One of the recurring challenges of creating earth science data records is to ensure a consistent level of metadata compliance at the granule level where important details of contents, provenance, producer, and data references are necessary to obtain a sufficient level of understanding. These details are important not just for individual data consumers but also for autonomous software systems. Two of the most popular metadata standards at the granule level are the Climate and Forecast (CF) Metadata Conventions and the Attribute Conventions for Dataset Discovery (ACDD). Many data producers have implemented one or both of these models including the Group for High Resolution Sea Surface Temperature (GHRSST) for their global SST products and the Ocean Biology Processing Group for NASA ocean color and SST products. While both the CF and ACDD models contain various level of metadata richness, the actual "required" attributes are quite small in number. Metadata at the granule level becomes much more useful when recommended or optional attributes are implemented that document spatial and temporal ranges, lineage and provenance, sources, keywords, and references etc. In this presentation we report on a new open source tool to check the compliance of netCDF and HDF5 granules to the CF and ACCD metadata models. The tool, written in Python, was originally implemented to support metadata compliance for netCDF records as part of the NOAA's Integrated Ocean Observing System. It outputs standardized scoring for metadata compliance for both CF and ACDD, produces an objective summary weight, and can be implemented for remote records via OPeNDAP calls. Originally a command-line tool, we have extended it to provide a user-friendly web interface. Reports on metadata testing are grouped in hierarchies that make it easier to track flaws and inconsistencies in the record. We have also extended it to support explicit metadata structures and semantic syntax for the GHRSST project that can be easily adapted to other satellite missions as well. Overall, we hope this tool will provide the community with a useful mechanism to improve metadata quality and consistency at the granule level by providing objective scoring and assessment, as well as encourage data producers to improve metadata quality and quantity.
CruiseViewer: SIOExplorer Graphical Interface to Metadata and Archives.
NASA Astrophysics Data System (ADS)
Sutton, D. W.; Helly, J. J.; Miller, S. P.; Chase, A.; Clark, D.
2002-12-01
We are introducing "CruiseViewer" as a prototype graphical interface for the SIOExplorer digital library project, part of the overall NSF National Science Digital Library (NSDL) effort. When complete, CruiseViewer will provide access to nearly 800 cruises, as well as 100 years of documents and images from the archives of the Scripps Institution of Oceanography (SIO). The project emphasizes data object accessibility, a rich metadata format, efficient uploading methods and interoperability with other digital libraries. The primary function of CruiseViewer is to provide a human interface to the metadata database and to storage systems filled with archival data. The system schema is based on the concept of an "arbitrary digital object" (ADO). Arbitrary in that if the object can be stored on a computer system then SIOExplore can manage it. Common examples are a multibeam swath bathymetry file, a .pdf cruise report, or a tar file containing all the processing scripts used on a cruise. We require a metadata file for every ADO in an ascii "metadata interchange format" (MIF), which has proven to be highly useful for operability and extensibility. Bulk ADO storage is managed using the Storage Resource Broker, SRB, data handling middleware developed at the San Diego Supercomputer Center that centralizes management and access to distributed storage devices. MIF metadata are harvested from several sources and housed in a relational (Oracle) database. For CruiseViewer, cgi scripts resident on an Apache server are the primary communication and service request handling tools. Along with the CruiseViewer java application, users can query, access and download objects via a separate method that operates through standard web browsers, http://sioexplorer.ucsd.edu. Both provide the functionability to query and view object metadata, and select and download ADOs. For the CruiseViewer application Java 2D is used to add a geo-referencing feature that allows users to select basemap images and have vector shapes representing query results mapped over the basemap in the image panel. The two methods together address a wide range of user access needs and will allow for widespread use of SIOExplorer.
A Model for Enhancing Internet Medical Document Retrieval with “Medical Core Metadata”
Malet, Gary; Munoz, Felix; Appleyard, Richard; Hersh, William
1999-01-01
Objective: Finding documents on the World Wide Web relevant to a specific medical information need can be difficult. The goal of this work is to define a set of document content description tags, or metadata encodings, that can be used to promote disciplined search access to Internet medical documents. Design: The authors based their approach on a proposed metadata standard, the Dublin Core Metadata Element Set, which has recently been submitted to the Internet Engineering Task Force. Their model also incorporates the National Library of Medicine's Medical Subject Headings (MeSH) vocabulary and Medline-type content descriptions. Results: The model defines a medical core metadata set that can be used to describe the metadata for a wide variety of Internet documents. Conclusions: The authors propose that their medical core metadata set be used to assign metadata to medical documents to facilitate document retrieval by Internet search engines. PMID:10094069
ERIC Educational Resources Information Center
Monthienvichienchai, Rachada; Sasse, M. Angela; Wheeldon, Richard
This paper investigates the usability of educational metadata schemas with respect to the case of the MALTED (Multimedia Authoring Language Teachers and Educational Developers) project at University College London (UCL). The project aims to facilitate authoring of multimedia materials for language learning by allowing teachers to share multimedia…
Long-term Science Data Curation Using a Digital Object Model and Open-Source Frameworks
NASA Astrophysics Data System (ADS)
Pan, J.; Lenhardt, W.; Wilson, B. E.; Palanisamy, G.; Cook, R. B.
2010-12-01
Scientific digital content, including Earth Science observations and model output, has become more heterogeneous in format and more distributed across the Internet. In addition, data and metadata are becoming necessarily linked internally and externally on the Web. As a result, such content has become more difficult for providers to manage and preserve and for users to locate, understand, and consume. Specifically, it is increasingly harder to deliver relevant metadata and data processing lineage information along with the actual content consistently. Readme files, data quality information, production provenance, and other descriptive metadata are often separated in the storage level as well as in the data search and retrieval interfaces available to a user. Critical archival metadata, such as auditing trails and integrity checks, are often even more difficult for users to access, if they exist at all. We investigate the use of several open-source software frameworks to address these challenges. We use Fedora Commons Framework and its digital object abstraction as the repository, Drupal CMS as the user-interface, and the Islandora module as the connector from Drupal to Fedora Repository. With the digital object model, metadata of data description and data provenance can be associated with data content in a formal manner, so are external references and other arbitrary auxiliary information. Changes are formally audited on an object, and digital contents are versioned and have checksums automatically computed. Further, relationships among objects are formally expressed with RDF triples. Data replication, recovery, metadata export are supported with standard protocols, such as OAI-PMH. We provide a tentative comparative analysis of the chosen software stack with the Open Archival Information System (OAIS) reference model, along with our initial results with the existing terrestrial ecology data collections at NASA’s ORNL Distributed Active Archive Center for Biogeochemical Dynamics (ORNL DAAC).
PanMetaDocs - A tool for collecting and managing the long tail of "small science data"
NASA Astrophysics Data System (ADS)
Klump, J.; Ulbricht, D.
2011-12-01
In the early days of thinking about cyberinfrastructure the focus was on "big science data". Today, the challenge is not anymore to store several terabytes of data, but to manage data objects in a way that facilitates their re-use. Key to re-use by a user as a data consumer is proper documentation of the data. Also, data consumers need discovery metadata to find the data they need and they need descriptive metadata to be able to use the data they retrieved. Thus, data documentation faces the challenge to extensively and completely describe these objects, hold the items easily accessible at a sustainable cost level. However, data curation and documentation do not rank high in the everyday work of a scientist as a data producer. Data producers are often frustrated by being asked to provide metadata on their data over and over again, information that seemed very obvious from the context of their work. A challenge to data archives is the wide variety of metadata schemata in use, which creates a number of maintenance and design challenges of its own. PanMetaDocs addresses these issues by allowing an uploaded files to be described by more than one metadata object. PanMetaDocs, which was developed from PanMetaWorks, is a PHP based web application that allow to describe data with any xml-based metadata schema. Its user interface is browser based and was developed to collect metadata and data in collaborative scientific projects situated at one or more institutions. The metadata fields can be filled with static or dynamic content to reduce the number of fields that require manual entries to a minimum and make use of contextual information in a project setting. In the development of PanMetaDocs the business logic of panMetaWorks is reused, except for the authentication and data management functions of PanMetaWorks, which are delegated to the eSciDoc framework. The eSciDoc repository framework is designed as a service oriented architecture that can be controlled through a REST interface to create version controlled items with metadata records in XML format. PanMetaDocs utilizes the eSciDoc items model to add multiple metadata records that describe uploaded files in different metadata schemata. While datasets are collected and described, shared to collaborate with other scientists and finally published, data objects are transferred from a shared data curation domain into a persistent data curation domain. Through an RSS interface for recent datasets PanMetaWorks allows project members to be informed about data uploaded by other project members. The implementation of the OAI-PMH interface can be used to syndicate data catalogs to research data portals, such as the panFMP data portal framework. Once data objects are uploaded to the eSciDoc infrastructure it is possible to drop the software instance that was used for collecting the data, while the compiled data and metadata are accessible for other authorized applications through the institution's eSciDoc middleware. This approach of "expendable data curation tools" allows for a significant reduction in costs for software maintenance as expensive data capture applications do not need to be maintained indefinitely to ensure long term access to the stored data.
Learning disease relationships from clinical drug trials.
Haslam, Bryan; Perez-Breva, Luis
2017-01-01
Our objective is to test the limits of the assumption that better learning from data in medicine requires more granular data. We hypothesize that clinical trial metadata contains latent scientific, clinical, and regulatory expert knowledge that can be accessed to draw conclusions about the underlying biology of diseases. We seek to demonstrate that this latent information can be uncovered from the whole body of clinical trials. We extract free-text metadata from 93 654 clinical drug trials and introduce a representation that allows us to compare different trials. We then construct a network of diseases using only the trial metadata. We view each trial as the summation of expert knowledge of biological mechanisms and medical evidence linking a disease to a drug believed to modulate the pathways of that disease. Our network representation allows us to visualize disease relationships based on this underlying information. Our disease network shows surprising agreement with another disease network based on genetic data and on the Medical Subject Headings (MeSH) taxonomy, yet also contains unique disease similarities. The agreement of our results with other sources indicates that our premise regarding latent expert knowledge holds. The disease relationships unique to our network may be used to generate hypotheses for future biological and clinical research as well as drug repurposing and design. Our results provide an example of using experimental data on humans to generate biologically useful information and point to a set of new and promising strategies to link clinical outcomes data back to biological research. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Misra, Dharitri; Chen, Siyuan; Thoma, George R
2009-01-01
One of the most expensive aspects of archiving digital documents is the manual acquisition of context-sensitive metadata useful for the subsequent discovery of, and access to, the archived items. For certain types of textual documents, such as journal articles, pamphlets, official government records, etc., where the metadata is contained within the body of the documents, a cost effective method is to identify and extract the metadata in an automated way, applying machine learning and string pattern search techniques.At the U. S. National Library of Medicine (NLM) we have developed an automated metadata extraction (AME) system that employs layout classification and recognition models with a metadata pattern search model for a text corpus with structured or semi-structured information. A combination of Support Vector Machine and Hidden Markov Model is used to create the layout recognition models from a training set of the corpus, following which a rule-based metadata search model is used to extract the embedded metadata by analyzing the string patterns within and surrounding each field in the recognized layouts.In this paper, we describe the design of our AME system, with focus on the metadata search model. We present the extraction results for a historic collection from the Food and Drug Administration, and outline how the system may be adapted for similar collections. Finally, we discuss some ongoing enhancements to our AME system.
Automatic Extraction of Metadata from Scientific Publications for CRIS Systems
ERIC Educational Resources Information Center
Kovacevic, Aleksandar; Ivanovic, Dragan; Milosavljevic, Branko; Konjovic, Zora; Surla, Dusan
2011-01-01
Purpose: The aim of this paper is to develop a system for automatic extraction of metadata from scientific papers in PDF format for the information system for monitoring the scientific research activity of the University of Novi Sad (CRIS UNS). Design/methodology/approach: The system is based on machine learning and performs automatic extraction…
Streamlining Metadata and Data Management for Evolving Digital Libraries
NASA Astrophysics Data System (ADS)
Clark, D.; Miller, S. P.; Peckman, U.; Smith, J.; Aerni, S.; Helly, J.; Sutton, D.; Chase, A.
2003-12-01
What began two years ago as an effort to stabilize the Scripps Institution of Oceanography (SIO) data archives from more than 700 cruises going back 50 years, has now become the operational fully-searchable "SIOExplorer" digital library, complete with thousands of historic photographs, images, maps, full text documents, binary data files, and 3D visualization experiences, totaling nearly 2 terabytes of digital content. Coping with data diversity and complexity has proven to be more challenging than dealing with large volumes of digital data. SIOExplorer has been built with scalability in mind, so that the addition of new data types and entire new collections may be accomplished with ease. It is a federated system, currently interoperating with three independent data-publishing authorities, each responsible for their own quality control, metadata specifications, and content selection. The IT architecture implemented at the San Diego Supercomputer Center (SDSC) streamlines the integration of additional projects in other disciplines with a suite of metadata management and collection building tools for "arbitrary digital objects." Metadata are automatically harvested from data files into domain-specific metadata blocks, and mapped into various specification standards as needed. Metadata can be browsed and objects can be viewed onscreen or downloaded for further analysis, with automatic proprietary-hold request management.
Predicting biomedical metadata in CEDAR: A study of Gene Expression Omnibus (GEO).
Panahiazar, Maryam; Dumontier, Michel; Gevaert, Olivier
2017-08-01
A crucial and limiting factor in data reuse is the lack of accurate, structured, and complete descriptions of data, known as metadata. Towards improving the quantity and quality of metadata, we propose a novel metadata prediction framework to learn associations from existing metadata that can be used to predict metadata values. We evaluate our framework in the context of experimental metadata from the Gene Expression Omnibus (GEO). We applied four rule mining algorithms to the most common structured metadata elements (sample type, molecular type, platform, label type and organism) from over 1.3million GEO records. We examined the quality of well supported rules from each algorithm and visualized the dependencies among metadata elements. Finally, we evaluated the performance of the algorithms in terms of accuracy, precision, recall, and F-measure. We found that PART is the best algorithm outperforming Apriori, Predictive Apriori, and Decision Table. All algorithms perform significantly better in predicting class values than the majority vote classifier. We found that the performance of the algorithms is related to the dimensionality of the GEO elements. The average performance of all algorithm increases due of the decreasing of dimensionality of the unique values of these elements (2697 platforms, 537 organisms, 454 labels, 9 molecules, and 5 types). Our work suggests that experimental metadata such as present in GEO can be accurately predicted using rule mining algorithms. Our work has implications for both prospective and retrospective augmentation of metadata quality, which are geared towards making data easier to find and reuse. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Context-Adaptive Learning Designs by Using Semantic Web Services
ERIC Educational Resources Information Center
Dietze, Stefan; Gugliotta, Alessio; Domingue, John
2007-01-01
IMS Learning Design (IMS-LD) is a promising technology aimed at supporting learning processes. IMS-LD packages contain the learning process metadata as well as the learning resources. However, the allocation of resources--whether data or services--within the learning design is done manually at design-time on the basis of the subjective appraisals…
Development of Health Information Search Engine Based on Metadata and Ontology
Song, Tae-Min; Jin, Dal-Lae
2014-01-01
Objectives The aim of the study was to develop a metadata and ontology-based health information search engine ensuring semantic interoperability to collect and provide health information using different application programs. Methods Health information metadata ontology was developed using a distributed semantic Web content publishing model based on vocabularies used to index the contents generated by the information producers as well as those used to search the contents by the users. Vocabulary for health information ontology was mapped to the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT), and a list of about 1,500 terms was proposed. The metadata schema used in this study was developed by adding an element describing the target audience to the Dublin Core Metadata Element Set. Results A metadata schema and an ontology ensuring interoperability of health information available on the internet were developed. The metadata and ontology-based health information search engine developed in this study produced a better search result compared to existing search engines. Conclusions Health information search engine based on metadata and ontology will provide reliable health information to both information producer and information consumers. PMID:24872907
NASA Astrophysics Data System (ADS)
Hardy, D.; Janée, G.; Gallagher, J.; Frew, J.; Cornillon, P.
2006-12-01
The OPeNDAP Data Access Protocol (DAP) is a community standard for sharing scientific data across the Internet. Data providers using DAP have adopted a variety of metadata conventions to improve data utility, such as COARDS (1995) and CF (2003). Our results show, however, that metadata do not follow these conventions in practice. We collected metadata from over a hundred DAP servers, tens of thousands of data objects, and hundreds of collections. We found that a minority claim to adhere to a metadata convention, and a small percentage accurately adhere to their stated convention. We present descriptive statistics of our survey and highlight common traits such as well-populated attributes. Our empirical results indicate that unified search services cannot rely solely on metadata conventions. Although we encourage all providers to adopt a small subset of the CF convention for discovery purposes, we have no evidence to suggest that improved conventions would simplify the fundamental problem of heterogeneity. Large-scale discovery services must find methods for integrating incompatible metadata.
Science friction: data, metadata, and collaboration.
Edwards, Paul N; Mayernik, Matthew S; Batcheller, Archer L; Bowker, Geoffrey C; Borgman, Christine L
2011-10-01
When scientists from two or more disciplines work together on related problems, they often face what we call 'science friction'. As science becomes more data-driven, collaborative, and interdisciplinary, demand increases for interoperability among data, tools, and services. Metadata--usually viewed simply as 'data about data', describing objects such as books, journal articles, or datasets--serve key roles in interoperability. Yet we find that metadata may be a source of friction between scientific collaborators, impeding data sharing. We propose an alternative view of metadata, focusing on its role in an ephemeral process of scientific communication, rather than as an enduring outcome or product. We report examples of highly useful, yet ad hoc, incomplete, loosely structured, and mutable, descriptions of data found in our ethnographic studies of several large projects in the environmental sciences. Based on this evidence, we argue that while metadata products can be powerful resources, usually they must be supplemented with metadata processes. Metadata-as-process suggests the very large role of the ad hoc, the incomplete, and the unfinished in everyday scientific work.
Distributed Learning Metadata Standards
ERIC Educational Resources Information Center
McClelland, Marilyn
2004-01-01
Significant economies can be achieved in distributed learning systems architected with a focus on interoperability and reuse. The key building blocks of an efficient distributed learning architecture are the use of standards and XML technologies. The goal of plug and play capability among various components of a distributed learning system…
NASA Technical Reports Server (NTRS)
Ullman, Richard; Bane, Bob; Yang, Jingli
2008-01-01
A shell script has been written as a means of automatically making HDF-EOS-formatted data sets available via the World Wide Web. ("HDF-EOS" and variants thereof are defined in the first of the two immediately preceding articles.) The shell script chains together some software tools developed by the Data Usability Group at Goddard Space Flight Center to perform the following actions: Extract metadata in Object Definition Language (ODL) from an HDF-EOS file, Convert the metadata from ODL to Extensible Markup Language (XML), Reformat the XML metadata into human-readable Hypertext Markup Language (HTML), Publish the HTML metadata and the original HDF-EOS file to a Web server and an Open-source Project for a Network Data Access Protocol (OPeN-DAP) server computer, and Reformat the XML metadata and submit the resulting file to the EOS Clearinghouse, which is a Web-based metadata clearinghouse that facilitates searching for, and exchange of, Earth-Science data.
NASA Astrophysics Data System (ADS)
Hernández, B. E.; Bugbee, K.; le Roux, J.; Beaty, T.; Hansen, M.; Staton, P.; Sisco, A. W.
2017-12-01
Earth observation (EO) data collected as part of NASA's Earth Observing System Data and Information System (EOSDIS) is now searchable via the Common Metadata Repository (CMR). The Analysis and Review of CMR (ARC) Team at Marshall Space Flight Center has been tasked with reviewing all NASA metadata records in the CMR ( 7,000 records). Each collection level record and constituent granule level metadata are reviewed for both completeness as well as compliance with the CMR's set of metadata standards, as specified in the Unified Metadata Model (UMM). NASA's Distributed Active Archive Centers (DAACs) have been harmonizing priority metadata records within the context of the inter-agency federal Big Earth Data Initiative (BEDI), which seeks to improve the discoverability, accessibility, and usability of EO data. Thus, the first phase of this project constitutes reviewing BEDI metadata records, while the second phase will constitute reviewing the remaining non-BEDI records in CMR. This presentation will discuss the ARC team's findings in terms of the overall quality of BEDI records across all DAACs as well as compliance with UMM standards. For instance, only a fifth of the collection-level metadata fields needed correction, compared to a quarter of the granule-level fields. It should be noted that the degree to which DAACs' metadata did not comply with the UMM standards may reflect multiple factors, such as recent changes in the UMM standards, and the utilization of different metadata formats (e.g. DIF 10, ECHO 10, ISO 19115-1) across the DAACs. Insights, constructive criticism, and lessons learned from this metadata review process will be contributed from both ORNL and SEDAC. Further inquiry along such lines may lead to insights which may improve the metadata curation process moving forward. In terms of the broader implications for metadata compliance with the UMM standards, this research has shown that a large proportion of the prioritized collections have already been made compliant, although the process of improving metadata quality is ongoing and iterative. Further research is also warranted into whether or not the gains in metadata quality are also driving gains in data use.
A "Simple Query Interface" Adapter for the Discovery and Exchange of Learning Resources
ERIC Educational Resources Information Center
Massart, David
2006-01-01
Developed as part of CEN/ISSS Workshop on Learning Technology efforts to improve interoperability between learning resource repositories, the Simple Query Interface (SQI) is an Application Program Interface (API) for querying heterogeneous repositories of learning resource metadata. In the context of the ProLearn Network of Excellence, SQI is used…
NASA Technical Reports Server (NTRS)
Hibbard, William L.; Dyer, Charles R.; Paul, Brian E.
1994-01-01
The VIS-AD data model integrates metadata about the precision of values, including missing data indicators and the way that arrays sample continuous functions, with the data objects of a scientific programming language. The data objects of this data model form a lattice, ordered by the precision with which they approximate mathematical objects. We define a similar lattice of displays and study visualization processes as functions from data lattices to display lattices. Such functions can be applied to visualize data objects of all data types and are thus polymorphic.
Misra, Dharitri; Chen, Siyuan; Thoma, George R.
2010-01-01
One of the most expensive aspects of archiving digital documents is the manual acquisition of context-sensitive metadata useful for the subsequent discovery of, and access to, the archived items. For certain types of textual documents, such as journal articles, pamphlets, official government records, etc., where the metadata is contained within the body of the documents, a cost effective method is to identify and extract the metadata in an automated way, applying machine learning and string pattern search techniques. At the U. S. National Library of Medicine (NLM) we have developed an automated metadata extraction (AME) system that employs layout classification and recognition models with a metadata pattern search model for a text corpus with structured or semi-structured information. A combination of Support Vector Machine and Hidden Markov Model is used to create the layout recognition models from a training set of the corpus, following which a rule-based metadata search model is used to extract the embedded metadata by analyzing the string patterns within and surrounding each field in the recognized layouts. In this paper, we describe the design of our AME system, with focus on the metadata search model. We present the extraction results for a historic collection from the Food and Drug Administration, and outline how the system may be adapted for similar collections. Finally, we discuss some ongoing enhancements to our AME system. PMID:21179386
Modularity-like objective function in annotated networks
NASA Astrophysics Data System (ADS)
Xie, Jia-Rong; Wang, Bing-Hong
2017-12-01
We ascertain the modularity-like objective function whose optimization is equivalent to the maximum likelihood in annotated networks. We demonstrate that the modularity-like objective function is a linear combination of modularity and conditional entropy. In contrast with statistical inference methods, in our method, the influence of the metadata is adjustable; when its influence is strong enough, the metadata can be recovered. Conversely, when it is weak, the detection may correspond to another partition. Between the two, there is a transition. This paper provides a concept for expanding the scope of modularity methods.
Developing Cyberinfrastructure Tools and Services for Metadata Quality Evaluation
NASA Astrophysics Data System (ADS)
Mecum, B.; Gordon, S.; Habermann, T.; Jones, M. B.; Leinfelder, B.; Powers, L. A.; Slaughter, P.
2016-12-01
Metadata and data quality are at the core of reusable and reproducible science. While great progress has been made over the years, much of the metadata collected only addresses data discovery, covering concepts such as titles and keywords. Improving metadata beyond the discoverability plateau means documenting detailed concepts within the data such as sampling protocols, instrumentation used, and variables measured. Given that metadata commonly do not describe their data at this level, how might we improve the state of things? Giving scientists and data managers easy to use tools to evaluate metadata quality that utilize community-driven recommendations is the key to producing high-quality metadata. To achieve this goal, we created a set of cyberinfrastructure tools and services that integrate with existing metadata and data curation workflows which can be used to improve metadata and data quality across the sciences. These tools work across metadata dialects (e.g., ISO19115, FGDC, EML, etc.) and can be used to assess aspects of quality beyond what is internal to the metadata such as the congruence between the metadata and the data it describes. The system makes use of a user-friendly mechanism for expressing a suite of checks as code in popular data science programming languages such as Python and R. This reduces the burden on scientists and data managers to learn yet another language. We demonstrated these services and tools in three ways. First, we evaluated a large corpus of datasets in the DataONE federation of data repositories against a metadata recommendation modeled after existing recommendations such as the LTER best practices and the Attribute Convention for Dataset Discovery (ACDD). Second, we showed how this service can be used to display metadata and data quality information to data producers during the data submission and metadata creation process, and to data consumers through data catalog search and access tools. Third, we showed how the centrally deployed DataONE quality service can achieve major efficiency gains by allowing member repositories to customize and use recommendations that fit their specific needs without having to create de novo infrastructure at their site.
EOS ODL Metadata On-line Viewer
NASA Astrophysics Data System (ADS)
Yang, J.; Rabi, M.; Bane, B.; Ullman, R.
2002-12-01
We have recently developed and deployed an EOS ODL metadata on-line viewer. The EOS ODL metadata viewer is a web server that takes: 1) an EOS metadata file in Object Description Language (ODL), 2) parameters, such as which metadata to view and what style of display to use, and returns an HTML or XML document displaying the requested metadata in the requested style. This tool is developed to address widespread complaints by science community that the EOS Data and Information System (EOSDIS) metadata files in ODL are difficult to read by allowing users to upload and view an ODL metadata file in different styles using a web browser. Users have the selection to view all the metadata or part of the metadata, such as Collection metadata, Granule metadata, or Unsupported Metadata. Choices of display styles include 1) Web: a mouseable display with tabs and turn-down menus, 2) Outline: Formatted and colored text, suitable for printing, 3) Generic: Simple indented text, a direct representation of the underlying ODL metadata, and 4) None: No stylesheet is applied and the XML generated by the converter is returned directly. Not all display styles are implemented for all the metadata choices. For example, Web style is only implemented for Collection and Granule metadata groups with known attribute fields, but not for Unsupported, Other, and All metadata. The overall strategy of the ODL viewer is to transform an ODL metadata file to a viewable HTML in two steps. The first step is to convert the ODL metadata file to an XML using a Java-based parser/translator called ODL2XML. The second step is to transform the XML to an HTML using stylesheets. Both operations are done on the server side. This allows a lot of flexibility in the final result, and is very portable cross-platform. Perl CGI behind the Apache web server is used to run the Java ODL2XML, and then run the results through an XSLT processor. The EOS ODL viewer can be accessed from either a PC or a Mac using Internet Explorer 5.0+ or Netscape 4.7+.
Reviving legacy clay mineralogy data and metadata through the IEDA-CCNY Data Internship Program
NASA Astrophysics Data System (ADS)
Palumbo, R. V.; Randel, C.; Ismail, A.; Block, K. A.; Cai, Y.; Carter, M.; Hemming, S. R.; Lehnert, K.
2016-12-01
Reconstruction of past climate and ocean circulation using ocean sediment cores relies on the use of multiple climate proxies measured on well-studied cores. Preserving all the information collected on a sediment core is crucial for the success of future studies using these unique and important samples. Clay mineralogy is a powerful tool to study weathering processes and sedimentary provenance. In his pioneering dissertation, Pierre Biscaye (1964, Yale University) established the X-Ray Diffraction (XRD) method for quantitative clay mineralogy analyses in ocean sediments and presented data for 500 core-top samples throughout the Atlantic Ocean and its neighboring seas. Unfortunately, the data only exists in analog format, which has discouraged scientists from reusing the data, apart from replication of the published maps. Archiving and preserving this dataset and making it publicly available in a digital format, linked with the metadata from the core repository will allow the scientific community to use these data to generate new findings. Under the supervision of Sidney Hemming and members of the Interdisciplinary Earth Data Alliance (IEDA) team, IEDA-CCNY interns digitized the data and metadata from Biscaye's dissertation and linked them with additional sample metadata using IGSN (International Geo-Sample Number). After compilation and proper documentation of the dataset, it was published in the EarthChem Library where the dataset will be openly accessible, and citable with a persistent DOI (Digital Object Identifier). During this internship, the students read peer-reviewed articles, interacted with active scientists in the field and acquired knowledge about XRD methods and the data generated, as well as its applications. They also learned about existing and emerging best practices in data publication and preservation. Data rescue projects are a fun and interactive way for students to become engaged in the field.
Object Oriented Modeling and Design
NASA Technical Reports Server (NTRS)
Shaykhian, Gholam Ali
2007-01-01
The Object Oriented Modeling and Design seminar is intended for software professionals and students, it covers the concepts and a language-independent graphical notation that can be used to analyze problem requirements, and design a solution to the problem. The seminar discusses the three kinds of object-oriented models class, state, and interaction. The class model represents the static structure of a system, the state model describes the aspects of a system that change over time as well as control behavior and the interaction model describes how objects collaborate to achieve overall results. Existing knowledge of object oriented programming may benefit the learning of modeling and good design. Specific expectations are: Create a class model, Read, recognize, and describe a class model, Describe association and link, Show abstract classes used with multiple inheritance, Explain metadata, reification and constraints, Group classes into a package, Read, recognize, and describe a state model, Explain states and transitions, Read, recognize, and describe interaction model, Explain Use cases and use case relationships, Show concurrency in activity diagram, Object interactions in sequence diagram.
Evaluating non-relational storage technology for HEP metadata and meta-data catalog
NASA Astrophysics Data System (ADS)
Grigorieva, M. A.; Golosova, M. V.; Gubin, M. Y.; Klimentov, A. A.; Osipova, V. V.; Ryabinkin, E. A.
2016-10-01
Large-scale scientific experiments produce vast volumes of data. These data are stored, processed and analyzed in a distributed computing environment. The life cycle of experiment is managed by specialized software like Distributed Data Management and Workload Management Systems. In order to be interpreted and mined, experimental data must be accompanied by auxiliary metadata, which are recorded at each data processing step. Metadata describes scientific data and represent scientific objects or results of scientific experiments, allowing them to be shared by various applications, to be recorded in databases or published via Web. Processing and analysis of constantly growing volume of auxiliary metadata is a challenging task, not simpler than the management and processing of experimental data itself. Furthermore, metadata sources are often loosely coupled and potentially may lead to an end-user inconsistency in combined information queries. To aggregate and synthesize a range of primary metadata sources, and enhance them with flexible schema-less addition of aggregated data, we are developing the Data Knowledge Base architecture serving as the intelligence behind GUIs and APIs.
Process Architecture for Managing Digital Object Identifiers
NASA Astrophysics Data System (ADS)
Wanchoo, L.; James, N.; Stolte, E.
2014-12-01
In 2010, NASA's Earth Science Data and Information System (ESDIS) Project implemented a process for registering Digital Object Identifiers (DOIs) for data products distributed by Earth Observing System Data and Information System (EOSDIS). For the first 3 years, ESDIS evolved the process involving the data provider community in the development of processes for creating and assigning DOIs, and guidelines for the landing page. To accomplish this, ESDIS established two DOI User Working Groups: one for reviewing the DOI process whose recommendations were submitted to ESDIS in February 2014; and the other recently tasked to review and further develop DOI landing page guidelines for ESDIS approval by end of 2014. ESDIS has recently upgraded the DOI system from a manually-driven system to one that largely automates the DOI process. The new automated feature include: a) reviewing the DOI metadata, b) assigning of opaque DOI name if data provider chooses, and c) reserving, registering, and updating the DOIs. The flexibility of reserving the DOI allows data providers to embed and test the DOI in the data product metadata before formally registering with EZID. The DOI update process allows the changing of any DOI metadata except the DOI name unless the name has not been registered. Currently, ESDIS has processed a total of 557 DOIs of which 379 DOIs are registered with EZID and 178 are reserved with ESDIS. The DOI incorporates several metadata elements that effectively identify the data product and the source of availability. Of these elements, the Uniform Resource Locator (URL) attribute has the very important function of identifying the landing page which describes the data product. ESDIS in consultation with data providers in the Earth Science community is currently developing landing page guidelines that specify the key data product descriptive elements to be included on each data product's landing page. This poster will describe in detail the unique automated process and underlying system implemented by ESDIS for registering DOIs, as well as some of the lessons learned from the development of the process. In addition, this paper will summarize the recommendations made by the DOI Process and DOI Landing Page User Working Groups, and the procedures developed for implementing those recommendations.
ERIC Educational Resources Information Center
Zervas, Panagiotis; Sampson, Demetrios G.
2014-01-01
Mobile assisted language learning (MALL) and open access repositories for language learning resources are both topics that have attracted the interest of researchers and practitioners in technology enhanced learning (TeL). Yet, there is limited experimental evidence about possible factors that can influence and potentially enhance reuse of MALL…
SIOExplorer: Modern IT Methods and Tools for Digital Library Management
NASA Astrophysics Data System (ADS)
Sutton, D. W.; Helly, J.; Miller, S.; Chase, A.; Clarck, D.
2003-12-01
With more geoscience disciplines becoming data-driven it is increasingly important to utilize modern techniques for data, information and knowledge management. SIOExplorer is a new digital library project with 2 terabytes of oceanographic data collected over the last 50 years on 700 cruises by the Scripps Institution of Oceanography. It is built using a suite of information technology tools and methods that allow for an efficient and effective digital library management system. The library consists of a number of independent collections, each with corresponding metadata formats. The system architecture allows each collection to be built and uploaded based on a collection dependent metadata template file (MTF). This file is used to create the hierarchical structure of the collection, create metadata tables in a relational database, and to populate object metadata files and the collection as a whole. Collections are comprised of arbitrary digital objects stored at the San Diego Supercomputer Center (SDSC) High Performance Storage System (HPSS) and managed using the Storage Resource Broker (SRB), data handling middle ware developed at SDSC. SIOExplorer interoperates with other collections as a data provider through the Open Archives Initiative (OAI) protocol. The user services for SIOExplorer are accessed from CruiseViewer, a Java application served using Java Web Start from the SIOExplorer home page. CruiseViewer is an advanced tool for data discovery and access. It implements general keyword and interactive geospatial search methods for the collections. It uses a basemap to georeference search results on user selected basemaps such as global topography or crustal age. User services include metadata viewing, opening of selective mime type digital objects (such as images, documents and grid files), and downloading of objects (including the brokering of proprietary hold restrictions).
Web mapping system for complex processing and visualization of environmental geospatial datasets
NASA Astrophysics Data System (ADS)
Titov, Alexander; Gordov, Evgeny; Okladnikov, Igor
2016-04-01
Environmental geospatial datasets (meteorological observations, modeling and reanalysis results, etc.) are used in numerous research applications. Due to a number of objective reasons such as inherent heterogeneity of environmental datasets, big dataset volume, complexity of data models used, syntactic and semantic differences that complicate creation and use of unified terminology, the development of environmental geodata access, processing and visualization services as well as client applications turns out to be quite a sophisticated task. According to general INSPIRE requirements to data visualization geoportal web applications have to provide such standard functionality as data overview, image navigation, scrolling, scaling and graphical overlay, displaying map legends and corresponding metadata information. It should be noted that modern web mapping systems as integrated geoportal applications are developed based on the SOA and might be considered as complexes of interconnected software tools for working with geospatial data. In the report a complex web mapping system including GIS web client and corresponding OGC services for working with geospatial (NetCDF, PostGIS) dataset archive is presented. There are three basic tiers of the GIS web client in it: 1. Tier of geospatial metadata retrieved from central MySQL repository and represented in JSON format 2. Tier of JavaScript objects implementing methods handling: --- NetCDF metadata --- Task XML object for configuring user calculations, input and output formats --- OGC WMS/WFS cartographical services 3. Graphical user interface (GUI) tier representing JavaScript objects realizing web application business logic Metadata tier consists of a number of JSON objects containing technical information describing geospatial datasets (such as spatio-temporal resolution, meteorological parameters, valid processing methods, etc). The middleware tier of JavaScript objects implementing methods for handling geospatial metadata, task XML object, and WMS/WFS cartographical services interconnects metadata and GUI tiers. The methods include such procedures as JSON metadata downloading and update, launching and tracking of the calculation task running on the remote servers as well as working with WMS/WFS cartographical services including: obtaining the list of available layers, visualizing layers on the map, exporting layers in graphical (PNG, JPG, GeoTIFF), vector (KML, GML, Shape) and digital (NetCDF) formats. Graphical user interface tier is based on the bundle of JavaScript libraries (OpenLayers, GeoExt and ExtJS) and represents a set of software components implementing web mapping application business logic (complex menus, toolbars, wizards, event handlers, etc.). GUI provides two basic capabilities for the end user: configuring the task XML object functionality and cartographical information visualizing. The web interface developed is similar to the interface of such popular desktop GIS applications, as uDIG, QuantumGIS etc. Web mapping system developed has shown its effectiveness in the process of solving real climate change research problems and disseminating investigation results in cartographical form. The work is supported by SB RAS Basic Program Projects VIII.80.2.1 and IV.38.1.7.
Park, Yu Rang; Yoon, Young Jo; Kim, Hye Hyeon; Kim, Ju Han
2013-01-01
Achieving semantic interoperability is critical for biomedical data sharing between individuals, organizations and systems. The ISO/IEC 11179 MetaData Registry (MDR) standard has been recognized as one of the solutions for this purpose. The standard model, however, is limited. Representing concepts consist of two or more values, for instance, are not allowed including blood pressure with systolic and diastolic values. We addressed the structural limitations of ISO/IEC 11179 by an integrated metadata object model in our previous research. In the present study, we introduce semantic extensions for the model by defining three new types of semantic relationships; dependency, composite and variable relationships. To evaluate our extensions in a real world setting, we measured the efficiency of metadata reduction by means of mapping to existing others. We extracted metadata from the College of American Pathologist Cancer Protocols and then evaluated our extensions. With no semantic loss, one third of the extracted metadata could be successfully eliminated, suggesting better strategy for implementing clinical MDRs with improved efficiency and utility.
A metadata reporting framework (FRAMES) for synthesis of ecohydrological observations
Christianson, Danielle S.; Varadharajan, Charuleka; Christoffersen, Bradley; ...
2017-06-20
Metadata describe the ancillary information needed for data interpretation, comparison across heterogeneous datasets, and quality control and quality assessment (QA/QC). Metadata enable the synthesis of diverse ecohydrological and biogeochemical observations, an essential step in advancing a predictive understanding of earth systems. Environmental observations can be taken across a wide range of spatiotemporal scales in a variety of measurement settings and approaches, and saved in multiple formats. Thus, well-organized, consistent metadata are required to produce usable data products from diverse observations collected in disparate field sites. However, existing metadata reporting protocols do not support the complex data synthesis needs of interdisciplinarymore » earth system research. We developed a metadata reporting framework (FRAMES) to enable predictive understanding of carbon cycling in tropical forests under global change. FRAMES adheres to best practices for data and metadata organization, enabling consistent data reporting and thus compatibility with a variety of standardized data protocols. We used an iterative scientist-centered design process to develop FRAMES. The resulting modular organization streamlines metadata reporting and can be expanded to incorporate additional data types. The flexible data reporting format incorporates existing field practices to maximize data-entry efficiency. With FRAMES’s multi-scale measurement position hierarchy, data can be reported at observed spatial resolutions and then easily aggregated and linked across measurement types to support model-data integration. FRAMES is in early use by both data providers and users. Here in this article, we describe FRAMES, identify lessons learned, and discuss areas of future development.« less
A metadata reporting framework (FRAMES) for synthesis of ecohydrological observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christianson, Danielle S.; Varadharajan, Charuleka; Christoffersen, Bradley
Metadata describe the ancillary information needed for data interpretation, comparison across heterogeneous datasets, and quality control and quality assessment (QA/QC). Metadata enable the synthesis of diverse ecohydrological and biogeochemical observations, an essential step in advancing a predictive understanding of earth systems. Environmental observations can be taken across a wide range of spatiotemporal scales in a variety of measurement settings and approaches, and saved in multiple formats. Thus, well-organized, consistent metadata are required to produce usable data products from diverse observations collected in disparate field sites. However, existing metadata reporting protocols do not support the complex data synthesis needs of interdisciplinarymore » earth system research. We developed a metadata reporting framework (FRAMES) to enable predictive understanding of carbon cycling in tropical forests under global change. FRAMES adheres to best practices for data and metadata organization, enabling consistent data reporting and thus compatibility with a variety of standardized data protocols. We used an iterative scientist-centered design process to develop FRAMES. The resulting modular organization streamlines metadata reporting and can be expanded to incorporate additional data types. The flexible data reporting format incorporates existing field practices to maximize data-entry efficiency. With FRAMES’s multi-scale measurement position hierarchy, data can be reported at observed spatial resolutions and then easily aggregated and linked across measurement types to support model-data integration. FRAMES is in early use by both data providers and users. Here in this article, we describe FRAMES, identify lessons learned, and discuss areas of future development.« less
Semantic-Aware Components and Services of ActiveMath
ERIC Educational Resources Information Center
Melis, Erica; Goguadze, Giorgi; Homik, Martin; Libbrecht, Paul; Ullrich, Carsten; Winterstein, Stefan
2006-01-01
ActiveMath is a complex web-based adaptive learning environment with a number of components and interactive learning tools. The basis for handling semantics of learning content is provided by its semantic (mathematics) content markup, which is additionally annotated with educational metadata. Several components, tools and external services can…
The Metadata Coverage Index (MCI): A standardized metric for quantifying database metadata richness.
Liolios, Konstantinos; Schriml, Lynn; Hirschman, Lynette; Pagani, Ioanna; Nosrat, Bahador; Sterk, Peter; White, Owen; Rocca-Serra, Philippe; Sansone, Susanna-Assunta; Taylor, Chris; Kyrpides, Nikos C; Field, Dawn
2012-07-30
Variability in the extent of the descriptions of data ('metadata') held in public repositories forces users to assess the quality of records individually, which rapidly becomes impractical. The scoring of records on the richness of their description provides a simple, objective proxy measure for quality that enables filtering that supports downstream analysis. Pivotally, such descriptions should spur on improvements. Here, we introduce such a measure - the 'Metadata Coverage Index' (MCI): the percentage of available fields actually filled in a record or description. MCI scores can be calculated across a database, for individual records or for their component parts (e.g., fields of interest). There are many potential uses for this simple metric: for example; to filter, rank or search for records; to assess the metadata availability of an ad hoc collection; to determine the frequency with which fields in a particular record type are filled, especially with respect to standards compliance; to assess the utility of specific tools and resources, and of data capture practice more generally; to prioritize records for further curation; to serve as performance metrics of funded projects; or to quantify the value added by curation. Here we demonstrate the utility of MCI scores using metadata from the Genomes Online Database (GOLD), including records compliant with the 'Minimum Information about a Genome Sequence' (MIGS) standard developed by the Genomic Standards Consortium. We discuss challenges and address the further application of MCI scores; to show improvements in annotation quality over time, to inform the work of standards bodies and repository providers on the usability and popularity of their products, and to assess and credit the work of curators. Such an index provides a step towards putting metadata capture practices and in the future, standards compliance, into a quantitative and objective framework.
Design and Implementation of a Metadata-rich File System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ames, S; Gokhale, M B; Maltzahn, C
2010-01-19
Despite continual improvements in the performance and reliability of large scale file systems, the management of user-defined file system metadata has changed little in the past decade. The mismatch between the size and complexity of large scale data stores and their ability to organize and query their metadata has led to a de facto standard in which raw data is stored in traditional file systems, while related, application-specific metadata is stored in relational databases. This separation of data and semantic metadata requires considerable effort to maintain consistency and can result in complex, slow, and inflexible system operation. To address thesemore » problems, we have developed the Quasar File System (QFS), a metadata-rich file system in which files, user-defined attributes, and file relationships are all first class objects. In contrast to hierarchical file systems and relational databases, QFS defines a graph data model composed of files and their relationships. QFS incorporates Quasar, an XPATH-extended query language for searching the file system. Results from our QFS prototype show the effectiveness of this approach. Compared to the de facto standard, the QFS prototype shows superior ingest performance and comparable query performance on user metadata-intensive operations and superior performance on normal file metadata operations.« less
Structure and inference in annotated networks
Newman, M. E. J.; Clauset, Aaron
2016-01-01
For many networks of scientific interest we know both the connections of the network and information about the network nodes, such as the age or gender of individuals in a social network. Here we demonstrate how this ‘metadata' can be used to improve our understanding of network structure. We focus in particular on the problem of community detection in networks and develop a mathematically principled approach that combines a network and its metadata to detect communities more accurately than can be done with either alone. Crucially, the method does not assume that the metadata are correlated with the communities we are trying to find. Instead, the method learns whether a correlation exists and correctly uses or ignores the metadata depending on whether they contain useful information. We demonstrate our method on synthetic networks with known structure and on real-world networks, large and small, drawn from social, biological and technological domains. PMID:27306566
Structure and inference in annotated networks
NASA Astrophysics Data System (ADS)
Newman, M. E. J.; Clauset, Aaron
2016-06-01
For many networks of scientific interest we know both the connections of the network and information about the network nodes, such as the age or gender of individuals in a social network. Here we demonstrate how this `metadata' can be used to improve our understanding of network structure. We focus in particular on the problem of community detection in networks and develop a mathematically principled approach that combines a network and its metadata to detect communities more accurately than can be done with either alone. Crucially, the method does not assume that the metadata are correlated with the communities we are trying to find. Instead, the method learns whether a correlation exists and correctly uses or ignores the metadata depending on whether they contain useful information. We demonstrate our method on synthetic networks with known structure and on real-world networks, large and small, drawn from social, biological and technological domains.
Improving Scientific Metadata Interoperability And Data Discoverability using OAI-PMH
NASA Astrophysics Data System (ADS)
Devarakonda, Ranjeet; Palanisamy, Giri; Green, James M.; Wilson, Bruce E.
2010-12-01
While general-purpose search engines (such as Google or Bing) are useful for finding many things on the Internet, they are often of limited usefulness for locating Earth Science data relevant (for example) to a specific spatiotemporal extent. By contrast, tools that search repositories of structured metadata can locate relevant datasets with fairly high precision, but the search is limited to that particular repository. Federated searches (such as Z39.50) have been used, but can be slow and the comprehensiveness can be limited by downtime in any search partner. An alternative approach to improve comprehensiveness is for a repository to harvest metadata from other repositories, possibly with limits based on subject matter or access permissions. Searches through harvested metadata can be extremely responsive, and the search tool can be customized with semantic augmentation appropriate to the community of practice being served. However, there are a number of different protocols for harvesting metadata, with some challenges for ensuring that updates are propagated and for collaborations with repositories using differing metadata standards. The Open Archive Initiative Protocol for Metadata Handling (OAI-PMH) is a standard that is seeing increased use as a means for exchanging structured metadata. OAI-PMH implementations must support Dublin Core as a metadata standard, with other metadata formats as optional. We have developed tools which enable our structured search tool (Mercury; http://mercury.ornl.gov) to consume metadata from OAI-PMH services in any of the metadata formats we support (Dublin Core, Darwin Core, FCDC CSDGM, GCMD DIF, EML, and ISO 19115/19137). We are also making ORNL DAAC metadata available through OAI-PMH for other metadata tools to utilize, such as the NASA Global Change Master Directory, GCMD). This paper describes Mercury capabilities with multiple metadata formats, in general, and, more specifically, the results of our OAI-PMH implementations and the lessons learned. References: [1] R. Devarakonda, G. Palanisamy, B.E. Wilson, and J.M. Green, "Mercury: reusable metadata management data discovery and access system", Earth Science Informatics, vol. 3, no. 1, pp. 87-94, May 2010. [2] R. Devarakonda, G. Palanisamy, J.M. Green, B.E. Wilson, "Data sharing and retrieval using OAI-PMH", Earth Science Informatics DOI: 10.1007/s12145-010-0073-0, (2010). [3] Devarakonda, R.; Palanisamy, G.; Green, J.; Wilson, B. E. "Mercury: An Example of Effective Software Reuse for Metadata Management Data Discovery and Access", Eos Trans. AGU, 89(53), Fall Meet. Suppl., IN11A-1019 (2008).
Metadata-Driven SOA-Based Application for Facilitation of Real-Time Data Warehousing
NASA Astrophysics Data System (ADS)
Pintar, Damir; Vranić, Mihaela; Skočir, Zoran
Service-oriented architecture (SOA) has already been widely recognized as an effective paradigm for achieving integration of diverse information systems. SOA-based applications can cross boundaries of platforms, operation systems and proprietary data standards, commonly through the usage of Web Services technology. On the other side, metadata is also commonly referred to as a potential integration tool given the fact that standardized metadata objects can provide useful information about specifics of unknown information systems with which one has interest in communicating with, using an approach commonly called "model-based integration". This paper presents the result of research regarding possible synergy between those two integration facilitators. This is accomplished with a vertical example of a metadata-driven SOA-based business process that provides ETL (Extraction, Transformation and Loading) and metadata services to a data warehousing system in need of a real-time ETL support.
NASA Astrophysics Data System (ADS)
Tanner, S.; Schwab, M.; Beam, K.; Skaug, M.
2017-12-01
Operation IceBridge has been flying campaigns in the Arctic and Antarctic for nearly 10 years and will soon be a decadal mission. During that time, the generation and use of file level metadata has evolved from nearly non-existent to robust spatio-temporal support. This evolution has been difficult at times, but the results speak for themselves in the form of production tools for search, discovery, access and analysis. The lessons learned from this experience are now being incorporated into SnowEx, a new mission to measure snow cover using airborne and ground-based measurements. This presentation will focus on techniques for generating metadata for such a diverse set of measurements as well as the resulting tools that utilize this information. This includes the development and deployment of MetGen, a semi-automated metadata generation capability that relies on collaboration between data producers and data archivers, the newly deployed IceBridge data portal which incorporates data browse capabilities and limited in-line analysis, and programmatic access to metadata and data for incorporation into larger automated workflows.
ERIC Educational Resources Information Center
Lau, Simon Boung-Yew; Lee, Chien-Sing; Singh, Yashwant Prasad
2015-01-01
With the proliferation of social Web applications, users can now collaboratively author, share and access hypermedia learning resources, contributing to richer learning experiences outside formal education. These resources may or may not be educational. However, they can be harnessed for educational purposes by adapting and personalizing them to…
NASA Astrophysics Data System (ADS)
Campbell, J. D.; Heilman, P.; Goodrich, D. C.; Sadler, J.
2015-12-01
The objective for the USDA Long-Term Agroecosystem Research (LTAR) network Common Observatory Repository (CORe) is to provide data management services including archive, discovery, and access for consistently observed data across all 18 nodes. LTAR members have an average of 56 years of diverse historic data. Each LTAR has designated a representative 'permanent' site as the location's common meteorological observatory. CORe implementation is phased, starting with meteorology, then adding hydrology, eddy flux, soil, and biology data. A design goal was to adopt existing best practices while minimizing the additional data management duties for the researchers. LTAR is providing support for data management specialists at the locations and the National Agricultural Library is providing central data management services. Maintaining continuity with historical observations is essential, so observations from both the legacy and new common methods are included in CORe. International standards are used to store robust descriptive metadata (ISO 19115) for the observation station and surrounding locale (WMO), sensors (Sensor ML), and activity (e.g., re-calibration, locale changes) to provide sufficient detail for novel data re-use for the next 50 years. To facilitate data submission a simple text format was designed. Datasets in CORe will receive DOIs to encourage citations giving fair credit for data providers. Data and metadata access are designed to support multiple formats and naming conventions. An automated QC process is being developed to enhance comparability among LTAR locations and to generate QC process metadata. Data provenance is maintained with a permanent record of changes including those by local scientists reviewing the automated QC results. Lessons learned so far include increase in site acceptance of CORe with the decision to store data from both legacy and new common methods. A larger than anticipated variety of currently used methods with potentially significant differences for future data use was found. Cooperative peer support among locations with the same sensors coupled with central support has reduced redundancy in procedural and data documentation.
Representing Hydrologic Models as HydroShare Resources to Facilitate Model Sharing and Collaboration
NASA Astrophysics Data System (ADS)
Castronova, A. M.; Goodall, J. L.; Mbewe, P.
2013-12-01
The CUAHSI HydroShare project is a collaborative effort that aims to provide software for sharing data and models within the hydrologic science community. One of the early focuses of this work has been establishing metadata standards for describing models and model-related data as HydroShare resources. By leveraging this metadata definition, a prototype extension has been developed to create model resources that can be shared within the community using the HydroShare system. The extension uses a general model metadata definition to create resource objects, and was designed so that model-specific parsing routines can extract and populate metadata fields from model input and output files. The long term goal is to establish a library of supported models where, for each model, the system has the ability to extract key metadata fields automatically, thereby establishing standardized model metadata that will serve as the foundation for model sharing and collaboration within HydroShare. The Soil Water & Assessment Tool (SWAT) is used to demonstrate this concept through a case study application.
NASA Technical Reports Server (NTRS)
Campbell, William J.; Short, Nicholas M., Jr.; Roelofs, Larry H.; Dorfman, Erik
1991-01-01
A methodology for optimizing organization of data obtained by NASA earth and space missions is discussed. The methodology uses a concept based on semantic data modeling techniques implemented in a hierarchical storage model. The modeling is used to organize objects in mass storage devices, relational database systems, and object-oriented databases. The semantic data modeling at the metadata record level is examined, including the simulation of a knowledge base and semantic metadata storage issues. The semantic data model hierarchy and its application for efficient data storage is addressed, as is the mapping of the application structure to the mass storage.
Metadata Harvesting in Regional Digital Libraries in the PIONIER Network
ERIC Educational Resources Information Center
Mazurek, Cezary; Stroinski, Maciej; Werla, Marcin; Weglarz, Jan
2006-01-01
Purpose: The paper aims to present the concept of the functionality of metadata harvesting for regional digital libraries, based on the OAI-PMH protocol. This functionality is a part of regional digital libraries platform created in Poland. The platform was required to reach one of main objectives of the Polish PIONIER Programme--to enrich the…
Metadata Design in the New PDS4 Standards - Something for Everybody
NASA Astrophysics Data System (ADS)
Raugh, Anne C.; Hughes, John S.
2015-11-01
The Planetary Data System (PDS) archives, supports, and distributes data of diverse targets, from diverse sources, to diverse users. One of the core problems addressed by the PDS4 data standard redesign was that of metadata - how to accommodate the increasingly sophisticated demands of search interfaces, analytical software, and observational documentation into label standards without imposing limits and constraints that would impinge on the quality or quantity of metadata that any particular observer or team could supply. And yet, as an archive, PDS must have detailed documentation for the metadata in the labels it supports, or the institutional knowledge encoded into those attributes will be lost - putting the data at risk.The PDS4 metadata solution is based on a three-step approach. First, it is built on two key ISO standards: ISO 11179 "Information Technology - Metadata Registries", which provides a common framework and vocabulary for defining metadata attributes; and ISO 14721 "Space Data and Information Transfer Systems - Open Archival Information System (OAIS) Reference Model", which provides the framework for the information architecture that enforces the object-oriented paradigm for metadata modeling. Second, PDS has defined a hierarchical system that allows it to divide its metadata universe into namespaces ("data dictionaries", conceptually), and more importantly to delegate stewardship for a single namespace to a local authority. This means that a mission can develop its own data model with a high degree of autonomy and effectively extend the PDS model to accommodate its own metadata needs within the common ISO 11179 framework. Finally, within a single namespace - even the core PDS namespace - existing metadata structures can be extended and new structures added to the model as new needs are identifiedThis poster illustrates the PDS4 approach to metadata management and highlights the expected return on the development investment for PDS, users and data preparers.
Metadata management and semantics in microarray repositories.
Kocabaş, F; Can, T; Baykal, N
2011-12-01
The number of microarray and other high-throughput experiments on primary repositories keeps increasing as do the size and complexity of the results in response to biomedical investigations. Initiatives have been started on standardization of content, object model, exchange format and ontology. However, there are backlogs and inability to exchange data between microarray repositories, which indicate that there is a great need for a standard format and data management. We have introduced a metadata framework that includes a metadata card and semantic nets that make experimental results visible, understandable and usable. These are encoded in syntax encoding schemes and represented in RDF (Resource Description Frame-word), can be integrated with other metadata cards and semantic nets, and can be exchanged, shared and queried. We demonstrated the performance and potential benefits through a case study on a selected microarray repository. We concluded that the backlogs can be reduced and that exchange of information and asking of knowledge discovery questions can become possible with the use of this metadata framework.
Reinforcement learning interfaces for biomedical database systems.
Rudowsky, I; Kulyba, O; Kunin, M; Parsons, S; Raphan, T
2006-01-01
Studies of neural function that are carried out in different laboratories and that address different questions use a wide range of descriptors for data storage, depending on the laboratory and the individuals that input the data. A common approach to describe non-textual data that are referenced through a relational database is to use metadata descriptors. We have recently designed such a prototype system, but to maintain efficiency and a manageable metadata table, free formatted fields were designed as table entries. The database interface application utilizes an intelligent agent to improve integrity of operation. The purpose of this study was to investigate how reinforcement learning algorithms can assist the user in interacting with the database interface application that has been developed to improve the performance of the system.
A future Outlook: Web based Simulation of Hydrodynamic models
NASA Astrophysics Data System (ADS)
Islam, A. S.; Piasecki, M.
2003-12-01
Despite recent advances to present simulation results as 3D graphs or animation contours, the modeling user community still faces some shortcomings when trying to move around and analyze data. Typical problems include the lack of common platforms with standard vocabulary to exchange simulation results from different numerical models, insufficient descriptions about data (metadata), lack of robust search and retrieval tools for data, and difficulties to reuse simulation domain knowledge. This research demonstrates how to create a shared simulation domain in the WWW and run a number of models through multi-user interfaces. Firstly, meta-datasets have been developed to describe hydrodynamic model data based on geographic metadata standard (ISO 19115) that has been extended to satisfy the need of the hydrodynamic modeling community. The Extended Markup Language (XML) is used to publish this metadata by the Resource Description Framework (RDF). Specific domain ontology for Web Based Simulation (WBS) has been developed to explicitly define vocabulary for the knowledge based simulation system. Subsequently, this knowledge based system is converted into an object model using Meta Object Family (MOF). The knowledge based system acts as a Meta model for the object oriented system, which aids in reusing the domain knowledge. Specific simulation software has been developed based on the object oriented model. Finally, all model data is stored in an object relational database. Database back-ends help store, retrieve and query information efficiently. This research uses open source software and technology such as Java Servlet and JSP, Apache web server, Tomcat Servlet Engine, PostgresSQL databases, Protégé ontology editor, RDQL and RQL for querying RDF in semantic level, Jena Java API for RDF. Also, we use international standards such as the ISO 19115 metadata standard, and specifications such as XML, RDF, OWL, XMI, and UML. The final web based simulation product is deployed as Web Archive (WAR) files which is platform and OS independent and can be used by Windows, UNIX, or Linux. Keywords: Apache, ISO 19115, Java Servlet, Jena, JSP, Metadata, MOF, Linux, Ontology, OWL, PostgresSQL, Protégé, RDF, RDQL, RQL, Tomcat, UML, UNIX, Windows, WAR, XML
Pfaff, Claas-Thido; Eichenberg, David; Liebergesell, Mario; König-Ries, Birgitta; Wirth, Christian
2017-01-01
Ecology has become a data intensive science over the last decades which often relies on the reuse of data in cross-experimental analyses. However, finding data which qualifies for the reuse in a specific context can be challenging. It requires good quality metadata and annotations as well as efficient search strategies. To date, full text search (often on the metadata only) is the most widely used search strategy although it is known to be inaccurate. Faceted navigation is providing a filter mechanism which is based on fine granular metadata, categorizing search objects along numeric and categorical parameters relevant for their discovery. Selecting from these parameters during a full text search creates a system of filters which allows to refine and improve the results towards more relevance. We developed a framework for the efficient annotation and faceted navigation in ecology. It consists of an XML schema for storing the annotation of search objects and is accompanied by a vocabulary focused on ecology to support the annotation process. The framework consolidates ideas which originate from widely accepted metadata standards, textbooks, scientific literature, and vocabularies as well as from expert knowledge contributed by researchers from ecology and adjacent disciplines.
OntoSoft: A Software Registry for Geosciences
NASA Astrophysics Data System (ADS)
Garijo, D.; Gil, Y.
2017-12-01
The goal of the EarthCube OntoSoft project is to enable the creation of an ecosystem for software stewardship in geosciences that will empower scientists to manage their software as valuable scientific assets. By sharing software metadata in OntoSoft, scientists enable broader access to that software by other scientists, software professionals, students, and decision makers. Our work to date includes: 1) an ontology for describing scientific software metadata, 2) a distributed scientific software repository that contains more than 750 entries that can be searched and compared across metadata fields, 3) an intelligent user interface that guides scientists to publish software and allows them to crowdsource its corresponding metadata. We have also developed a training program where scientists learn to describe and cite software in their papers in addition to data and provenance, and we are using OntoSoft to show them the benefits of publishing their software metadata. This training program is part of a Geoscience Papers of the Future Initiative, where scientists are reflecting on their current practices, benefits and effort for sharing software and data. This journal paper can be submitted to a Special Section of the AGU Earth and Space Science Journal.
A Research on E - learning Resources Construction Based on Semantic Web
NASA Astrophysics Data System (ADS)
Rui, Liu; Maode, Deng
Traditional e-learning platforms have the flaws that it's usually difficult to query or positioning, and realize the cross platform sharing and interoperability. In the paper, the semantic web and metadata standard is discussed, and a kind of e - learning system framework based on semantic web is put forward to try to solve the flaws of traditional elearning platforms.
NASA Astrophysics Data System (ADS)
Yatagai, A. I.; Iyemori, T.; Ritschel, B.; Koyama, Y.; Hori, T.; Abe, S.; Tanaka, Y.; Shinbori, A.; Umemura, N.; Sato, Y.; Yagi, M.; Ueno, S.; Hashiguchi, N. O.; Kaneda, N.; Belehaki, A.; Hapgood, M. A.
2013-12-01
The IUGONET is a Japanese program to build a metadata database for ground-based observations of the upper atmosphere [1]. The project began in 2009 with five Japanese institutions which archive data observed by radars, magnetometers, photometers, radio telescopes and helioscopes, and so on, at various altitudes from the Earth's surface to the Sun. Systems have been developed to allow searching of the above described metadata. We have been updating the system and adding new and updated metadata. The IUGONET development team adopted the SPASE metadata model [2] to describe the upper atmosphere data. This model is used as the common metadata format by the virtual observatories for solar-terrestrial physics. It includes metadata referring to each data file (called a 'Granule'), which enable a search for data files as well as data sets. Further details are described in [2] and [3]. Currently, three additional Japanese institutions are being incorporated in IUGONET. Furthermore, metadata of observations of the troposphere, taken at the observatories of the middle and upper atmosphere radar at Shigaraki and the Meteor radar in Indonesia, have been incorporated. These additions will contribute to efficient interdisciplinary scientific research. In the beginning of 2013, the registration of the 'Observatory' and 'Instrument' metadata was completed, which makes it easy to overview of the metadata database. The number of registered metadata as of the end of July, totalled 8.8 million, including 793 observatories and 878 instruments. It is important to promote interoperability and/or metadata exchange between the database development groups. A memorandum of agreement has been signed with the European Near-Earth Space Data Infrastructure for e-Science (ESPAS) project, which has similar objectives to IUGONET with regard to a framework for formal collaboration. Furthermore, observations by satellites and the International Space Station are being incorporated with a view for making/linking metadata databases. The development of effective data systems will contribute to the progress of scientific research on solar terrestrial physics, climate and the geophysical environment. Any kind of cooperation, metadata input and feedback, especially for linkage of the databases, is welcomed. References 1. Hayashi, H. et al., Inter-university Upper Atmosphere Global Observation Network (IUGONET), Data Sci. J., 12, WDS179-184, 2013. 2. King, T. et al., SPASE 2.0: A standard data model for space physics. Earth Sci. Inform. 3, 67-73, 2010, doi:10.1007/s12145-010-0053-4. 3. Hori, T., et al., Development of IUGONET metadata format and metadata management system. J. Space Sci. Info. Jpn., 105-111, 2012. (in Japanese)
Towards Precise Metadata-set for Discovering 3D Geospatial Models in Geo-portals
NASA Astrophysics Data System (ADS)
Zamyadi, A.; Pouliot, J.; Bédard, Y.
2013-09-01
Accessing 3D geospatial models, eventually at no cost and for unrestricted use, is certainly an important issue as they become popular among participatory communities, consultants, and officials. Various geo-portals, mainly established for 2D resources, have tried to provide access to existing 3D resources such as digital elevation model, LIDAR or classic topographic data. Describing the content of data, metadata is a key component of data discovery in geo-portals. An inventory of seven online geo-portals and commercial catalogues shows that the metadata referring to 3D information is very different from one geo-portal to another as well as for similar 3D resources in the same geo-portal. The inventory considered 971 data resources affiliated with elevation. 51% of them were from three geo-portals running at Canadian federal and municipal levels whose metadata resources did not consider 3D model by any definition. Regarding the remaining 49% which refer to 3D models, different definition of terms and metadata were found, resulting in confusion and misinterpretation. The overall assessment of these geo-portals clearly shows that the provided metadata do not integrate specific and common information about 3D geospatial models. Accordingly, the main objective of this research is to improve 3D geospatial model discovery in geo-portals by adding a specific metadata-set. Based on the knowledge and current practices on 3D modeling, and 3D data acquisition and management, a set of metadata is proposed to increase its suitability for 3D geospatial models. This metadata-set enables the definition of genuine classes, fields, and code-lists for a 3D metadata profile. The main structure of the proposal contains 21 metadata classes. These classes are classified in three packages as General and Complementary on contextual and structural information, and Availability on the transition from storage to delivery format. The proposed metadata set is compared with Canadian Geospatial Data Infrastructure (CGDI) metadata which is an implementation of North American Profile of ISO-19115. The comparison analyzes the two metadata against three simulated scenarios about discovering needed 3D geo-spatial datasets. Considering specific metadata about 3D geospatial models, the proposed metadata-set has six additional classes on geometric dimension, level of detail, geometric modeling, topology, and appearance information. In addition classes on data acquisition, preparation, and modeling, and physical availability have been specialized for 3D geospatial models.
NASA Astrophysics Data System (ADS)
Benedict, K. K.; Scott, S.
2013-12-01
While there has been a convergence towards a limited number of standards for representing knowledge (metadata) about geospatial (and other) data objects and collections, there exist a variety of community conventions around the specific use of those standards and within specific data discovery and access systems. This combination of limited (but multiple) standards and conventions creates a challenge for system developers that aspire to participate in multiple data infrastrucutres, each of which may use a different combination of standards and conventions. While Extensible Markup Language (XML) is a shared standard for encoding most metadata, traditional direct XML transformations (XSLT) from one standard to another often result in an imperfect transfer of information due to incomplete mapping from one standard's content model to another. This paper presents the work at the University of New Mexico's Earth Data Analysis Center (EDAC) in which a unified data and metadata management system has been developed in support of the storage, discovery and access of heterogeneous data products. This system, the Geographic Storage, Transformation and Retrieval Engine (GSTORE) platform has adopted a polyglot database model in which a combination of relational and document-based databases are used to store both data and metadata, with some metadata stored in a custom XML schema designed as a superset of the requirements for multiple target metadata standards: ISO 19115-2/19139/19110/19119, FGCD CSDGM (both with and without remote sensing extensions) and Dublin Core. Metadata stored within this schema is complemented by additional service, format and publisher information that is dynamically "injected" into produced metadata documents when they are requested from the system. While mapping from the underlying common metadata schema is relatively straightforward, the generation of valid metadata within each target standard is necessary but not sufficient for integration into multiple data infrastructures, as has been demonstrated through EDAC's testing and deployment of metadata into multiple external systems: Data.Gov, the GEOSS Registry, the DataONE network, the DSpace based institutional repository at UNM and semantic mediation systems developed as part of the NASA ACCESS ELSeWEB project. Each of these systems requires valid metadata as a first step, but to make most effective use of the delivered metadata each also has a set of conventions that are specific to the system. This presentation will provide an overview of the underlying metadata management model, the processes and web services that have been developed to automatically generate metadata in a variety of standard formats and highlight some of the specific modifications made to the output metadata content to support the different conventions used by the multiple metadata integration endpoints.
Persistent identifiers for CMIP6 data in the Earth System Grid Federation
NASA Astrophysics Data System (ADS)
Buurman, Merret; Weigel, Tobias; Juckes, Martin; Lautenschlager, Michael; Kindermann, Stephan
2016-04-01
The Earth System Grid Federation (ESGF) is a distributed data infrastructure that will provide access to the CMIP6 experiment data. The data consist of thousands of datasets composed of millions of files. Over the course of the CMIP6 operational phase, datasets may be retracted and replaced by newer versions that consist of completely or partly new files. Each dataset is hosted at a single data centre, but can have one or several backups (replicas) at other data centres. To keep track of the different data entities and relationships between them, to ensure their consistency and improve exchange of information about them, Persistent Identifiers (PIDs) are used. These are unique identifiers that are registered at a globally accessible server, along with some metadata (the PID record). While usually providing access to the data object they refer to, as long as it exists, the metadata record will remain available even beyond the object's lifetime. Besides providing access to data and metadata, PIDs will allow scientists to communicate effectively and on a fine granularity about CMIP6 data. The initiative to introduce PIDs in the ESGF infrastructure has been described and agreed upon through a series of white papers governed by the WGCM Infrastructure Panel (WIP). In CMIP6, each dataset and each file is assigned a PID that keeps track of the data object's physical copies throughout the object lifetime. In addition to this, its relationship with other data objects is stored in the PID recordA human-readable version of this information is available on an information page also linked in the PID record. A possible application that exploits the information available from the PID records is a smart information tool, which a scientific user can call to find out if his/her version was replaced by a new one, to view and browse the related datasets and files, and to get access to the various copies or to additional metadata on a dedicated website. The PID registration process is embedded in the ESGF data publication process. During their first publication, the PID records are populated with metadata including the parent dataset(s), other existing versions and physical location. Every subsequent publication, un-publication or replica publication of a dataset or file then updates the PID records to keep track of changing physical locations of the data (or lack thereof) and of reported errors in the data. Assembling the metadata records and registering the PIDs on a central server is a potential performance bottleneck as millions of data objects may be published in a short timeframe when the CMIP6 experiment phase begins. For this reason, the PID registration and metadata update tasks are pushed to a message queueing system facilitating high availability and scalability and then processed asynchronously. This will lead to a slight delay in PID registration but will avoid blocking resources at the data centres and slowing down the publication of the data so eagerly awaited by the scientists.
NASA Astrophysics Data System (ADS)
Moore, J.; Serreze, M. C.; Middleton, D.; Ramamurthy, M. K.; Yarmey, L.
2013-12-01
The NSF funds the Advanced Cooperative Arctic Data and Information System (ACADIS), url: (http://www.aoncadis.org/). It serves the growing and increasingly diverse data management needs of NSF's arctic research community. The ACADIS investigator team combines experienced data managers, curators and software engineers from the NSIDC, UCAR and NCAR. ACADIS fosters scientific synthesis and discovery by providing a secure long-term data archive to NSF investigators. The system provides discovery and access to arctic related data from this and other archives. This paper updates the technical components of ACADIS, the implementation of best practices, the value of ACADIS to the community and the major challenges facing this archive for the future in handling the diverse data coming from NSF Arctic investigators. ACADIS provides sustainable data management, data stewardship services and leadership for the NSF Arctic research community through open data sharing, adherence to best practices and standards, capitalizing on appropriate evolving technologies, community support and engagement. ACADIS leverages other pertinent projects, capitalizing on appropriate emerging technologies and participating in emerging cyberinfrastructure initiatives. The key elements of ACADIS user services to the NSF Arctic community include: data and metadata upload; support for datasets with special requirements; metadata and documentation generation; interoperability and initiatives with other archives; and science support to investigators and the community. Providing a self-service data publishing platform requiring minimal curation oversight while maintaining rich metadata for discovery, access and preservation is challenging. Implementing metadata standards are a first step towards consistent content. The ACADIS Gateway and ADE offer users choices for data discovery and access with the clear objective of increasing discovery and use of all Arctic data especially for analysis activities. Metadata is at the core of ACADIS activities, from capturing metadata at the point of data submission to ensuring interoperability , providing data citations, and supporting data discovery. ACADIS metadata efforts include: 1) Evolution of the ACADIS metadata profile to increase flexibility in search; 2) Documentation guidelines; and 3) Metadata standardization efforts. A major activity is now underway to ensure consistency in the metadata profile across all archived datasets. ACADIS is embarking on a critical activity to create Digital Object Identifiers (DOI) for all its holdings. The data services offered by ACADIS focus on meeting the needs of the data providers, providing dynamic search capabilities to peruse the ACADIS and related cyrospheric data repositories, efficient data download and some special services including dataset reformatting and visualization. The service is built around of the following key technical elements: The ACADIS Gateway housed at NCAR has been developed to support NSF Arctic data coming from AON and now broadly across PLR/ARC and related archives: The Arctic Data Explorer (ADE) developed at NSIDC is an integral service of ACADIS bringing the rich archive from NSIDC together with catalogs from ACADIS and international partners in Arctic research: and Rosetta and the Digital Object Identifier (DOI) generation scheme are tools available to the community to help publish and utilize datasets in integration and synthesis and publication.
Uciteli, Alexandr; Herre, Heinrich
2015-01-01
The specification of metadata in clinical and epidemiological study projects absorbs significant expense. The validity and quality of the collected data depend heavily on the precise and semantical correct representation of their metadata. In various research organizations, which are planning and coordinating studies, the required metadata are specified differently, depending on many conditions, e.g., on the used study management software. The latter does not always meet the needs of a particular research organization, e.g., with respect to the relevant metadata attributes and structuring possibilities. The objective of the research, set forth in this paper, is the development of a new approach for ontology-based representation and management of metadata. The basic features of this approach are demonstrated by the software tool OntoStudyEdit (OSE). The OSE is designed and developed according to the three ontology method. This method for developing software is based on the interactions of three different kinds of ontologies: a task ontology, a domain ontology and a top-level ontology. The OSE can be easily adapted to different requirements, and it supports an ontologically founded representation and efficient management of metadata. The metadata specifications can by imported from various sources; they can be edited with the OSE, and they can be exported in/to several formats, which are used, e.g., by different study management software. Advantages of this approach are the adaptability of the OSE by integrating suitable domain ontologies, the ontological specification of mappings between the import/export formats and the DO, the specification of the study metadata in a uniform manner and its reuse in different research projects, and an intuitive data entry for non-expert users.
Parallel file system with metadata distributed across partitioned key-value store c
Bent, John M.; Faibish, Sorin; Grider, Gary; Torres, Aaron
2017-09-19
Improved techniques are provided for storing metadata associated with a plurality of sub-files associated with a single shared file in a parallel file system. The shared file is generated by a plurality of applications executing on a plurality of compute nodes. A compute node implements a Parallel Log Structured File System (PLFS) library to store at least one portion of the shared file generated by an application executing on the compute node and metadata for the at least one portion of the shared file on one or more object storage servers. The compute node is also configured to implement a partitioned data store for storing a partition of the metadata for the shared file, wherein the partitioned data store communicates with partitioned data stores on other compute nodes using a message passing interface. The partitioned data store can be implemented, for example, using Multidimensional Data Hashing Indexing Middleware (MDHIM).
Sharma, Deepak K; Solbrig, Harold R; Tao, Cui; Weng, Chunhua; Chute, Christopher G; Jiang, Guoqian
2017-06-05
Detailed Clinical Models (DCMs) have been regarded as the basis for retaining computable meaning when data are exchanged between heterogeneous computer systems. To better support clinical cancer data capturing and reporting, there is an emerging need to develop informatics solutions for standards-based clinical models in cancer study domains. The objective of the study is to develop and evaluate a cancer genome study metadata management system that serves as a key infrastructure in supporting clinical information modeling in cancer genome study domains. We leveraged a Semantic Web-based metadata repository enhanced with both ISO11179 metadata standard and Clinical Information Modeling Initiative (CIMI) Reference Model. We used the common data elements (CDEs) defined in The Cancer Genome Atlas (TCGA) data dictionary, and extracted the metadata of the CDEs using the NCI Cancer Data Standards Repository (caDSR) CDE dataset rendered in the Resource Description Framework (RDF). The ITEM/ITEM_GROUP pattern defined in the latest CIMI Reference Model is used to represent reusable model elements (mini-Archetypes). We produced a metadata repository with 38 clinical cancer genome study domains, comprising a rich collection of mini-Archetype pattern instances. We performed a case study of the domain "clinical pharmaceutical" in the TCGA data dictionary and demonstrated enriched data elements in the metadata repository are very useful in support of building detailed clinical models. Our informatics approach leveraging Semantic Web technologies provides an effective way to build a CIMI-compliant metadata repository that would facilitate the detailed clinical modeling to support use cases beyond TCGA in clinical cancer study domains.
Metadata for data rescue and data at risk
Anderson, William L.; Faundeen, John L.; Greenberg, Jane; Taylor, Fraser
2011-01-01
Scientific data age, become stale, fall into disuse and run tremendous risks of being forgotten and lost. These problems can be addressed by archiving and managing scientific data over time, and establishing practices that facilitate data discovery and reuse. Metadata documentation is integral to this work and essential for measuring and assessing high priority data preservation cases. The International Council for Science: Committee on Data for Science and Technology (CODATA) has a newly appointed Data-at-Risk Task Group (DARTG), participating in the general arena of rescuing data. The DARTG primary objective is building an inventory of scientific data that are at risk of being lost forever. As part of this effort, the DARTG is testing an approach for documenting endangered datasets. The DARTG is developing a minimal and easy to use set of metadata properties for sufficiently describing endangered data, which will aid global data rescue missions. The DARTG metadata framework supports rapid capture, and easy documentation, across an array of scientific domains. This paper reports on the goals and principles supporting the DARTG metadata schema, and provides a description of the preliminary implementation.
Metadata for WIS and WIGOS: GAW Profile of ISO19115 and Draft WIGOS Core Metadata Standard
NASA Astrophysics Data System (ADS)
Klausen, Jörg; Howe, Brian
2014-05-01
The World Meteorological Organization (WMO) Integrated Global Observing System (WIGOS) is a key WMO priority to underpin all WMO Programs and new initiatives such as the Global Framework for Climate Services (GFCS). The development of the WIGOS Operational Information Resource (WIR) is central to the WIGOS Framework Implementation Plan (WIGOS-IP). The WIR shall provide information on WIGOS and its observing components, as well as requirements of WMO application areas. An important aspect is the description of the observational capabilities by way of structured metadata. The Global Atmosphere Watch is the WMO program addressing the chemical composition and selected physical properties of the atmosphere. Observational data are collected and archived by GAW World Data Centres (WDCs) and related data centres. The Task Team on GAW WDCs (ET-WDC) have developed a profile of the ISO19115 metadata standard that is compliant with the WMO Information System (WIS) specification for the WMO Core Metadata Profile v1.3. This profile is intended to harmonize certain aspects of the documentation of observations as well as the interoperability of the WDCs. The Inter-Commission-Group on WIGOS (ICG-WIGOS) has established the Task Team on WIGOS Metadata (TT-WMD) with representation of all WMO Technical Commissions and the objective to define the WIGOS Core Metadata. The result of this effort is a draft semantic standard comprising of a set of metadata classes that are considered to be of critical importance for the interpretation of observations relevant to WIGOS. The purpose of the presentation is to acquaint the audience with the standard and to solicit informal feed-back from experts in the various disciplines of meteorology and climatology. This feed-back will help ET-WDC and TT-WMD to refine the GAW metadata profile and the draft WIGOS metadata standard, thereby increasing their utility and acceptance.
Eichenberg, David; Liebergesell, Mario; König-Ries, Birgitta; Wirth, Christian
2017-01-01
Ecology has become a data intensive science over the last decades which often relies on the reuse of data in cross-experimental analyses. However, finding data which qualifies for the reuse in a specific context can be challenging. It requires good quality metadata and annotations as well as efficient search strategies. To date, full text search (often on the metadata only) is the most widely used search strategy although it is known to be inaccurate. Faceted navigation is providing a filter mechanism which is based on fine granular metadata, categorizing search objects along numeric and categorical parameters relevant for their discovery. Selecting from these parameters during a full text search creates a system of filters which allows to refine and improve the results towards more relevance. We developed a framework for the efficient annotation and faceted navigation in ecology. It consists of an XML schema for storing the annotation of search objects and is accompanied by a vocabulary focused on ecology to support the annotation process. The framework consolidates ideas which originate from widely accepted metadata standards, textbooks, scientific literature, and vocabularies as well as from expert knowledge contributed by researchers from ecology and adjacent disciplines. PMID:29023519
NASA Astrophysics Data System (ADS)
Jeffery, Keith; Bailo, Daniele
2014-05-01
The European Plate Observing System (EPOS) is integrating geoscientific information concerning earth movements in Europe. We are approaching the end of the PP (Preparatory Project) phase and in October 2014 expect to continue with the full project within ESFRI (European Strategic Framework for Research Infrastructures). The key aspects of EPOS concern providing services to allow homogeneous access by end-users over heterogeneous data, software, facilities, equipment and services. The e-infrastructure of EPOS is the heart of the project since it integrates the work on organisational, legal, economic and scientific aspects. Following the creation of an inventory of relevant organisations, persons, facilities, equipment, services, datasets and software (RIDE) the scale of integration required became apparent. The EPOS e-infrastructure architecture has been developed systematically based on recorded primary (user) requirements and secondary (interoperation with other systems) requirements through Strawman, Woodman and Ironman phases with the specification - and developed confirmatory prototypes - becoming more precise and progressively moving from paper to implemented system. The EPOS architecture is based on global core services (Integrated Core Services - ICS) which access thematic nodes (domain-specific European-wide collections, called thematic Core Services - TCS), national nodes and specific institutional nodes. The key aspect is the metadata catalog. In one dimension this is described in 3 levels: (1) discovery metadata using well-known and commonly used standards such as DC (Dublin Core) to enable users (via an intelligent user interface) to search for objects within the EPOS environment relevant to their needs; (2) contextual metadata providing the context of the object described in the catalog to enable a user or the system to determine the relevance of the discovered object(s) to their requirement - the context includes projects, funding, organisations involved, persons involved, related publications, facilities, equipment and others, and utilises CERIF (Common European Research Information Format) standard (see www.eurocris.org); (3) detailed metadata which is specific to a domain or to a particular object and includes the schema describing the object to processing software. The other dimension of the metadata concerns the objects described. These are classified into users, services (including software), data and resources (computing, data storage, instruments and scientific equipment). An alternative architecture has been considered: using brokering. This technique has been used especially in North America geoscience projects to interoperate datasets. The technique involves writing software to interconvert between any two node datasets. Given n nodes this implies writing n*(n-1) convertors. EPOS Working Group 7 (e-infrastructures and virtual community) which deals with the design and implementation of a prototype of the EPOS services, chose to use an approach which endows the system with an extreme flexibility and sustainability. It is called the Metadata Catalogue approach. With the use of the catalogue the EPOS system can: 1. interoperate with software, services, users, organisations, facilities, equipment etc. as well as datasets; 2. avoid to write n*(n-1) software convertors and generate as much as possible, through the information contained in the catalogue only n convertors. This is a huge saving - especially in maintenance as the datasets (or other node resources) evolve. We are working on (semi-) automation of convertor generation by metadata mapping - this is leading-edge computer science research; 3. make large use of contextual metadata which enable a user or a machine to: (i) improve discovery of resources at nodes; (ii) improve precision and recall in search; (iii) drive the systems for identification, authentication, authorisation, security and privacy recording the relevant attributes of the node resources and of the user; (iv) manage provenance and long-term digital preservation; The linkage between the Integrated Services, which provide the integration of data and services, with the diverse Thematic Services Nodes is provided by means of a compatibility layer, which includes the aforementioned metadata catalogue. This layer provides 'connectors' to make local data, software and services available through the EPOS Integrated Services layer. In conclusion, we believe the EPOS e-infrastructure architecture is fit for purpose including long-term sustainability and pan-European access to data and services.
Unified Science Information Model for SoilSCAPE using the Mercury Metadata Search System
NASA Astrophysics Data System (ADS)
Devarakonda, Ranjeet; Lu, Kefa; Palanisamy, Giri; Cook, Robert; Santhana Vannan, Suresh; Moghaddam, Mahta Clewley, Dan; Silva, Agnelo; Akbar, Ruzbeh
2013-12-01
SoilSCAPE (Soil moisture Sensing Controller And oPtimal Estimator) introduces a new concept for a smart wireless sensor web technology for optimal measurements of surface-to-depth profiles of soil moisture using in-situ sensors. The objective is to enable a guided and adaptive sampling strategy for the in-situ sensor network to meet the measurement validation objectives of spaceborne soil moisture sensors such as the Soil Moisture Active Passive (SMAP) mission. This work is being carried out at the University of Michigan, the Massachusetts Institute of Technology, University of Southern California, and Oak Ridge National Laboratory. At Oak Ridge National Laboratory we are using Mercury metadata search system [1] for building a Unified Information System for the SoilSCAPE project. This unified portal primarily comprises three key pieces: Distributed Search/Discovery; Data Collections and Integration; and Data Dissemination. Mercury, a Federally funded software for metadata harvesting, indexing, and searching would be used for this module. Soil moisture data sources identified as part of this activity such as SoilSCAPE and FLUXNET (in-situ sensors), AirMOSS (airborne retrieval), SMAP (spaceborne retrieval), and are being indexed and maintained by Mercury. Mercury would be the central repository of data sources for cal/val for soil moisture studies and would provide a mechanism to identify additional data sources. Relevant metadata from existing inventories such as ORNL DAAC, USGS Clearinghouse, ARM, NASA ECHO, GCMD etc. would be brought in to this soil-moisture data search/discovery module. The SoilSCAPE [2] metadata records will also be published in broader metadata repositories such as GCMD, data.gov. Mercury can be configured to provide a single portal to soil moisture information contained in disparate data management systems located anywhere on the Internet. Mercury is able to extract, metadata systematically from HTML pages or XML files using a variety of methods including OAI-PMH [3]. The Mercury search interface then allows users to perform simple, fielded, spatial and temporal searches across a central harmonized index of metadata. Mercury supports various metadata standards including FGDC, ISO-19115, DIF, Dublin-Core, Darwin-Core, and EML. This poster describes in detail how Mercury implements the Unified Science Information Model for Soil moisture data. References: [1]Devarakonda R., et al. Mercury: reusable metadata management, data discovery and access system. Earth Science Informatics (2010), 3(1): 87-94. [2]Devarakonda R., et al. Daymet: Single Pixel Data Extraction Tool. http://daymet.ornl.gov/singlepixel.html (2012). Last Accesses 10-01-2013 [3]Devarakonda R., et al. Data sharing and retrieval using OAI-PMH. Earth Science Informatics (2011), 4(1): 1-5.
Launching Discovery through a Digital Library Portal: SIOExplorer
NASA Astrophysics Data System (ADS)
Miller, S. P.; Staudigel, H.; Johnson, C.; McSherry, K.; Clark, D.; Peckman, U.; Helly, J.; Sutton, D.; Chase, A.; Schottlaender, B. E.; Day, D.; Helly, M.
2003-12-01
The launching of an oceanographic expedition has its own brand of excitement, with the sound of the main engines firing up, and the lifting of the gangway in a foreign port, as the team of scientists and crew sets out for a month at sea with only the resources they have aboard. Although this adventure is broadly appealing, very few have the privilege of actually joining an expedition. With the "SIOExplorer" family of projects we are now beginning to open this experience across cyberspace to a wide range of students and teachers. What began two years ago as an effort to stabilize the Scripps Institution of Oceanography (SIO) data archives from more than 700 cruises going back 50 years, has now become an operational component of the National Science Digital Library (NSDL; www.nsdl.org), complete with thousands of historic photographs, full text documents and 3D visualization experiences. Our initial emphasis has been on marine geology and geophysics, in particular multibeam seafloor mapping, including 2 terabytes of digital objects. The IT architecture implemented at the San Diego Supercomputer Center (SDSC) streamlines the integration of additional projects in other disciplines with a suite of metadata management and collection building tools for "arbitrary digital objects." The "CruiseViewer" Java application is the primary portal to the digital library, providing a graphical user and display interface, the interface with the metadata database, and the interface with the SDSC "Storage Resource Broker" for long-term bulk distributed data storage management. It presents the user with a view of the available objects, overlaid on a global topography map. Geospatial objects can be selected interactively, and searches can be constrained by keywords. Metadata can be browsed and objects can be viewed onscreen or downloaded for further analysis, with automatic proprietary-hold request management. These efforts will be put to the test with national teacher workshops in the next two summers. Teachers, in collaboration with SIO-graduate students, will prepare and field-test learning-experience modules that explore concepts from plate tectonics theory for classroom and web use. Students will design their own personal voyages of discovery through our digital archives, promoting inquiry-based learning tailored to each individual. Future education and outreach efforts will include 1) developing a global registry of seafloor research or education projects (academic, industry, government), allowing at least a URL and a contact for further information 2) adding new collections, including dredged rocks and cores, 3) interoperating with other international data collections, 4) interacting with education and outreach projects such as the California Center for Ocean Science Education Excellence (COSEE), 5) continued testing of a real-time stand-alone digital library on a laptop shipboard acquisition system, 6) enhanced use of real-time Real-time Observatories, Applications, and Data management Network (ROADnet) satellite links to SIO vessels, and 7) continued construction of a series of museum exhibits based on digital terrain models. Now that SIOExplorer has become operational, we look forward to collaborating with other institutions for data and technology exchange, as well as for education and outreach opportunities. Support is provided by NSF NSDL, ITR and OCE programs, as well as by UCSD funds.
DTS Raw Data Guelph, ON Canada
Thomas Coleman
2013-07-31
Unprocessed active distributed temperature sensing (DTS) data from 3 boreholes in the Guelph, ON Canada region. Data from borehole 1 was collected during a fluid injection while data from boreholes 2 and 3 were collected under natural gradient conditions in a lined borehole. The column labels/headers (in the first row) define the time since start of measurement in seconds and the row labels/headers (in the first column) are the object IDs that are defined in the metadata. Each object ID is a sampling location whose exact location is defined in the metadata file. Data in each cell are temperature in Celsius at time and sampling location as defined above.
NASA Astrophysics Data System (ADS)
Okaya, D.; Deelman, E.; Maechling, P.; Wong-Barnum, M.; Jordan, T. H.; Meyers, D.
2007-12-01
Large scientific collaborations, such as the SCEC Petascale Cyberfacility for Physics-based Seismic Hazard Analysis (PetaSHA) Project, involve interactions between many scientists who exchange ideas and research results. These groups must organize, manage, and make accessible their community materials of observational data, derivative (research) results, computational products, and community software. The integration of scientific workflows as a paradigm to solve complex computations provides advantages of efficiency, reliability, repeatability, choices, and ease of use. The underlying resource needed for a scientific workflow to function and create discoverable and exchangeable products is the construction, tracking, and preservation of metadata. In the scientific workflow environment there is a two-tier structure of metadata. Workflow-level metadata and provenance describe operational steps, identity of resources, execution status, and product locations and names. Domain-level metadata essentially define the scientific meaning of data, codes and products. To a large degree the metadata at these two levels are separate. However, between these two levels is a subset of metadata produced at one level but is needed by the other. This crossover metadata suggests that some commonality in metadata handling is needed. SCEC researchers are collaborating with computer scientists at SDSC, the USC Information Sciences Institute, and Carnegie Mellon Univ. in order to perform earthquake science using high-performance computational resources. A primary objective of the "PetaSHA" collaboration is to perform physics-based estimations of strong ground motion associated with real and hypothetical earthquakes located within Southern California. Construction of 3D earth models, earthquake representations, and numerical simulation of seismic waves are key components of these estimations. Scientific workflows are used to orchestrate the sequences of scientific tasks and to access distributed computational facilities such as the NSF TeraGrid. Different types of metadata are produced and captured within the scientific workflows. One workflow within PetaSHA ("Earthworks") performs a linear sequence of tasks with workflow and seismological metadata preserved. Downstream scientific codes ingest these metadata produced by upstream codes. The seismological metadata uses attribute-value pairing in plain text; an identified need is to use more advanced handling methods. Another workflow system within PetaSHA ("Cybershake") involves several complex workflows in order to perform statistical analysis of ground shaking due to thousands of hypothetical but plausible earthquakes. Metadata management has been challenging due to its construction around a number of legacy scientific codes. We describe difficulties arising in the scientific workflow due to the lack of this metadata and suggest corrective steps, which in some cases include the cultural shift of domain science programmers coding for metadata.
Preservation of Digital Objects.
ERIC Educational Resources Information Center
Galloway, Patricia
2004-01-01
Presents a literature review that covers the following topics related to preservation of digital objects: practical examples; stakeholders; recordkeeping standards; genre-specific problems; trusted repository standards; preservation methods; preservation metadata standards; and future directions. (Contains 82 references.) (MES)
NASA Astrophysics Data System (ADS)
Santhana Vannan, S. K.; Ramachandran, R.; Deb, D.; Beaty, T.; Wright, D.
2017-12-01
This paper summarizes the workflow challenges of curating and publishing data produced from disparate data sources and provides a generalized workflow solution to efficiently archive data generated by researchers. The Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) for biogeochemical dynamics and the Global Hydrology Resource Center (GHRC) DAAC have been collaborating on the development of a generalized workflow solution to efficiently manage the data publication process. The generalized workflow presented here are built on lessons learned from implementations of the workflow system. Data publication consists of the following steps: Accepting the data package from the data providers, ensuring the full integrity of the data files. Identifying and addressing data quality issues Assembling standardized, detailed metadata and documentation, including file level details, processing methodology, and characteristics of data files Setting up data access mechanisms Setup of the data in data tools and services for improved data dissemination and user experience Registering the dataset in online search and discovery catalogues Preserving the data location through Digital Object Identifiers (DOI) We will describe the steps taken to automate, and realize efficiencies to the above process. The goals of the workflow system are to reduce the time taken to publish a dataset, to increase the quality of documentation and metadata, and to track individual datasets through the data curation process. Utilities developed to achieve these goal will be described. We will also share metrics driven value of the workflow system and discuss the future steps towards creation of a common software framework.
2017-12-01
satisfactory performance. We do not use statistical models, and we do not create patterns that require supervised learning. Our methodology is intended...statistical models, and we do not create patterns that require supervised learning. Our methodology is intended for use in personal digital image...THESIS MOTIVATION .........................................................................19 III. METHODOLOGY
Lessons Learned in over Two Decades of GPS/GNSS Data Center Support
NASA Astrophysics Data System (ADS)
Boler, F. M.; Estey, L. H.; Meertens, C. M.; Maggert, D.
2014-12-01
The UNAVCO Data Center in Boulder, Colorado, curates, archives, and distributes geodesy data and products, mainly GPS/GNSS data from 3,000 permanent stations and 10,000 campaign sites around the globe. Although now having core support from NSF and NASA, the archive began around 1992 as a grass-roots effort of a few UNAVCO staff and community members to preserve data going back to 1986. Open access to this data is generally desired, but the Data Center in fact operates under an evolving suite of data access policies ranging from open access to nondisclosure for special cases. Key to processing this data is having the correct equipment metadata; reliably obtaining this metadata continues to be a challenge, in spite of modern cyberinfrastructure and tools, mostly due to human errors or lack of consistent operator training. New metadata problems surface when trying to design and publish modern Digital Object Identifiers for data sets where PIs, funding sources, and historical project names now need to be corrected and verified for data sets going back almost three decades. Originally, the data was GPS-only based on three signals on two carrier frequencies. Modern GNSS covers GPS modernization (three more signals and one additional carrier) as well as open signals and carriers of additional systems such as GLONASS, Galileo, BeiDou, and QZSS, requiring ongoing adaptive strategies to assess the quality of modern datasets. Also, new scientific uses of these data benefit from higher data rates than was needed for early tectonic applications. In addition, there has been a migration from episodic campaign sites (hence sparse data) to continuously operating stations (hence dense data) over the last two decades. All of these factors make it difficult to realistically plan even simple data center functions such as on-line storage capacity.
Microsoft Repository Version 2 and the Open Information Model.
ERIC Educational Resources Information Center
Bernstein, Philip A.; Bergstraesser, Thomas; Carlson, Jason; Pal, Shankar; Sanders, Paul; Shutt, David
1999-01-01
Describes the programming interface and implementation of the repository engine and the Open Information Model for Microsoft Repository, an object-oriented meta-data management facility that ships in Microsoft Visual Studio and Microsoft SQL Server. Discusses Microsoft's component object model, object manipulation, queries, and information…
ESDORA: A Data Archive Infrastructure Using Digital Object Model and Open Source Frameworks
NASA Astrophysics Data System (ADS)
Shrestha, Biva; Pan, Jerry; Green, Jim; Palanisamy, Giriprakash; Wei, Yaxing; Lenhardt, W.; Cook, R. Bob; Wilson, B. E.; Leggott, M.
2011-12-01
There are an array of challenges associated with preserving, managing, and using contemporary scientific data. Large volume, multiple formats and data services, and the lack of a coherent mechanism for metadata/data management are some of the common issues across data centers. It is often difficult to preserve the data history and lineage information, along with other descriptive metadata, hindering the true science value for the archived data products. In this project, we use digital object abstraction architecture as the information/knowledge framework to address these challenges. We have used the following open-source frameworks: Fedora-Commons Repository, Drupal Content Management System, Islandora (Drupal Module) and Apache Solr Search Engine. The system is an active archive infrastructure for Earth Science data resources, which include ingestion, archiving, distribution, and discovery functionalities. We use an ingestion workflow to ingest the data and metadata, where many different aspects of data descriptions (including structured and non-structured metadata) are reviewed. The data and metadata are published after reviewing multiple times. They are staged during the reviewing phase. Each digital object is encoded in XML for long-term preservation of the content and relations among the digital items. The software architecture provides a flexible, modularized framework for adding pluggable user-oriented functionality. Solr is used to enable word search as well as faceted search. A home grown spatial search module is plugged in to allow user to make a spatial selection in a map view. A RDF semantic store within the Fedora-Commons Repository is used for storing information on data lineage, dissemination services, and text-based metadata. We use the semantic notion "isViewerFor" to register internally or externally referenced URLs, which are rendered within the same web browser when possible. With appropriate mapping of content into digital objects, many different data descriptions, including structured metadata, data history, auditing trails, are captured and coupled with the data content. The semantic store provides a foundation for possible further utilizations, including provide full-fledged Earth Science ontology for data interpretation or lineage tracking. Datasets from the NASA-sponsored Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) as well as from the Synthesis Thematic Data Center (MAST-DC) are used in a testing deployment with the system. The testing deployment allows us to validate the features and values described here for the integrated system, which will be presented here. Overall, we believe that the integrated system is valid, reusable data archive software that provides digital stewardship for Earth Sciences data content, now and in the future. References: [1] Devarakonda, Ranjeet, and Harold Shanafield. "Drupal: Collaborative framework for science research." Collaboration Technologies and Systems (CTS), 2011 International Conference on. IEEE, 2011. [2] Devarakonda, Ranjeet, et al. "Semantic search integration to climate data." Collaboration Technologies and Systems (CTS), 2014 International Conference on. IEEE, 2014.
GeneLab Analysis Working Group Kick-Off Meeting
NASA Technical Reports Server (NTRS)
Costes, Sylvain V.
2018-01-01
Goals to achieve for GeneLab AWG - GL vision - Review of GeneLab AWG charter Timeline and milestones for 2018 Logistics - Monthly Meeting - Workshop - Internship - ASGSR Introduction of team leads and goals of each group Introduction of all members Q/A Three-tier Client Strategy to Democratize Data Physiological changes, pathway enrichment, differential expression, normalization, processing metadata, reproducibility, Data federation/integration with heterogeneous bioinformatics external databases The GLDS currently serves over 100 omics investigations to the biomedical community via open access. In order to expand the scope of metadata record searches via the GLDS, we designed a metadata warehouse that collects and updates metadata records from external systems housing similar data. To demonstrate the capabilities of federated search and retrieval of these data, we imported metadata records from three open-access data systems into the GLDS metadata warehouse: NCBI's Gene Expression Omnibus (GEO), EBI's PRoteomics IDEntifications (PRIDE) repository, and the Metagenomics Analysis server (MG-RAST). Each of these systems defines metadata for omics data sets differently. One solution to bridge such differences is to employ a common object model (COM) to which each systems' representation of metadata can be mapped. Warehoused metadata records are then transformed at ETL to this single, common representation. Queries generated via the GLDS are then executed against the warehouse, and matching records are shown in the COM representation (Fig. 1). While this approach is relatively straightforward to implement, the volume of the data in the omics domain presents challenges in dealing with latency and currency of records. Furthermore, the lack of a coordinated has been federated data search for and retrieval of these kinds of data across other open-access systems, so that users are able to conduct biological meta-investigations using data from a variety of sources. Such meta-investigations are key to corroborating findings from many kinds of assays and translating them into systems biology knowledge and, eventually, therapeutics.
A statistical metadata model for clinical trials' data management.
Vardaki, Maria; Papageorgiou, Haralambos; Pentaris, Fragkiskos
2009-08-01
We introduce a statistical, process-oriented metadata model to describe the process of medical research data collection, management, results analysis and dissemination. Our approach explicitly provides a structure for pieces of information used in Clinical Study Data Management Systems, enabling a more active role for any associated metadata. Using the object-oriented paradigm, we describe the classes of our model that participate during the design of a clinical trial and the subsequent collection and management of the relevant data. The advantage of our approach is that we focus on presenting the structural inter-relation of these classes when used during datasets manipulation by proposing certain transformations that model the simultaneous processing of both data and metadata. Our solution reduces the possibility of human errors and allows for the tracking of all changes made during datasets lifecycle. The explicit modeling of processing steps improves data quality and assists in the problem of handling data collected in different clinical trials. The case study illustrates the applicability of the proposed framework demonstrating conceptually the simultaneous handling of datasets collected during two randomized clinical studies. Finally, we provide the main considerations for implementing the proposed framework into a modern Metadata-enabled Information System.
SnoVault and encodeD: A novel object-based storage system and applications to ENCODE metadata.
Hitz, Benjamin C; Rowe, Laurence D; Podduturi, Nikhil R; Glick, David I; Baymuradov, Ulugbek K; Malladi, Venkat S; Chan, Esther T; Davidson, Jean M; Gabdank, Idan; Narayana, Aditi K; Onate, Kathrina C; Hilton, Jason; Ho, Marcus C; Lee, Brian T; Miyasato, Stuart R; Dreszer, Timothy R; Sloan, Cricket A; Strattan, J Seth; Tanaka, Forrest Y; Hong, Eurie L; Cherry, J Michael
2017-01-01
The Encyclopedia of DNA elements (ENCODE) project is an ongoing collaborative effort to create a comprehensive catalog of functional elements initiated shortly after the completion of the Human Genome Project. The current database exceeds 6500 experiments across more than 450 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the H. sapiens and M. musculus genomes. All ENCODE experimental data, metadata, and associated computational analyses are submitted to the ENCODE Data Coordination Center (DCC) for validation, tracking, storage, unified processing, and distribution to community resources and the scientific community. As the volume of data increases, the identification and organization of experimental details becomes increasingly intricate and demands careful curation. The ENCODE DCC has created a general purpose software system, known as SnoVault, that supports metadata and file submission, a database used for metadata storage, web pages for displaying the metadata and a robust API for querying the metadata. The software is fully open-source, code and installation instructions can be found at: http://github.com/ENCODE-DCC/snovault/ (for the generic database) and http://github.com/ENCODE-DCC/encoded/ to store genomic data in the manner of ENCODE. The core database engine, SnoVault (which is completely independent of ENCODE, genomic data, or bioinformatic data) has been released as a separate Python package.
SnoVault and encodeD: A novel object-based storage system and applications to ENCODE metadata
Podduturi, Nikhil R.; Glick, David I.; Baymuradov, Ulugbek K.; Malladi, Venkat S.; Chan, Esther T.; Davidson, Jean M.; Gabdank, Idan; Narayana, Aditi K.; Onate, Kathrina C.; Hilton, Jason; Ho, Marcus C.; Lee, Brian T.; Miyasato, Stuart R.; Dreszer, Timothy R.; Sloan, Cricket A.; Strattan, J. Seth; Tanaka, Forrest Y.; Hong, Eurie L.; Cherry, J. Michael
2017-01-01
The Encyclopedia of DNA elements (ENCODE) project is an ongoing collaborative effort to create a comprehensive catalog of functional elements initiated shortly after the completion of the Human Genome Project. The current database exceeds 6500 experiments across more than 450 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the H. sapiens and M. musculus genomes. All ENCODE experimental data, metadata, and associated computational analyses are submitted to the ENCODE Data Coordination Center (DCC) for validation, tracking, storage, unified processing, and distribution to community resources and the scientific community. As the volume of data increases, the identification and organization of experimental details becomes increasingly intricate and demands careful curation. The ENCODE DCC has created a general purpose software system, known as SnoVault, that supports metadata and file submission, a database used for metadata storage, web pages for displaying the metadata and a robust API for querying the metadata. The software is fully open-source, code and installation instructions can be found at: http://github.com/ENCODE-DCC/snovault/ (for the generic database) and http://github.com/ENCODE-DCC/encoded/ to store genomic data in the manner of ENCODE. The core database engine, SnoVault (which is completely independent of ENCODE, genomic data, or bioinformatic data) has been released as a separate Python package. PMID:28403240
NASA Astrophysics Data System (ADS)
Li, Y.; Jiang, Y.; Yang, C. P.; Armstrong, E. M.; Huang, T.; Moroni, D. F.; McGibbney, L. J.
2016-12-01
Big oceanographic data have been produced, archived and made available online, but finding the right data for scientific research and application development is still a significant challenge. A long-standing problem in data discovery is how to find the interrelationships between keywords and data, as well as the intrarelationships of the two individually. Most previous research attempted to solve this problem by building domain-specific ontology either manually or through automatic machine learning techniques. The former is costly, labor intensive and hard to keep up-to-date, while the latter is prone to noise and may be difficult for human to understand. Large-scale user behavior data modelling represents a largely untapped, unique, and valuable source for discovering semantic relationships among domain-specific vocabulary. In this article, we propose a search engine framework for mining and utilizing dataset relevancy from oceanographic dataset metadata, user behaviors, and existing ontology. The objective is to improve discovery accuracy of oceanographic data and reduce time for scientist to discover, download and reformat data for their projects. Experiments and a search example show that the proposed search engine helps both scientists and general users search with better ranking results, recommendation, and ontology navigation.
BIO::Phylo-phyloinformatic analysis using perl.
Vos, Rutger A; Caravas, Jason; Hartmann, Klaas; Jensen, Mark A; Miller, Chase
2011-02-27
Phyloinformatic analyses involve large amounts of data and metadata of complex structure. Collecting, processing, analyzing, visualizing and summarizing these data and metadata should be done in steps that can be automated and reproduced. This requires flexible, modular toolkits that can represent, manipulate and persist phylogenetic data and metadata as objects with programmable interfaces. This paper presents Bio::Phylo, a Perl5 toolkit for phyloinformatic analysis. It implements classes and methods that are compatible with the well-known BioPerl toolkit, but is independent from it (making it easy to install) and features a richer API and a data model that is better able to manage the complex relationships between different fundamental data and metadata objects in phylogenetics. It supports commonly used file formats for phylogenetic data including the novel NeXML standard, which allows rich annotations of phylogenetic data to be stored and shared. Bio::Phylo can interact with BioPerl, thereby giving access to the file formats that BioPerl supports. Many methods for data simulation, transformation and manipulation, the analysis of tree shape, and tree visualization are provided. Bio::Phylo is composed of 59 richly documented Perl5 modules. It has been deployed successfully on a variety of computer architectures (including various Linux distributions, Mac OS X versions, Windows, Cygwin and UNIX-like systems). It is available as open source (GPL) software from http://search.cpan.org/dist/Bio-Phylo.
BIO::Phylo-phyloinformatic analysis using perl
2011-01-01
Background Phyloinformatic analyses involve large amounts of data and metadata of complex structure. Collecting, processing, analyzing, visualizing and summarizing these data and metadata should be done in steps that can be automated and reproduced. This requires flexible, modular toolkits that can represent, manipulate and persist phylogenetic data and metadata as objects with programmable interfaces. Results This paper presents Bio::Phylo, a Perl5 toolkit for phyloinformatic analysis. It implements classes and methods that are compatible with the well-known BioPerl toolkit, but is independent from it (making it easy to install) and features a richer API and a data model that is better able to manage the complex relationships between different fundamental data and metadata objects in phylogenetics. It supports commonly used file formats for phylogenetic data including the novel NeXML standard, which allows rich annotations of phylogenetic data to be stored and shared. Bio::Phylo can interact with BioPerl, thereby giving access to the file formats that BioPerl supports. Many methods for data simulation, transformation and manipulation, the analysis of tree shape, and tree visualization are provided. Conclusions Bio::Phylo is composed of 59 richly documented Perl5 modules. It has been deployed successfully on a variety of computer architectures (including various Linux distributions, Mac OS X versions, Windows, Cygwin and UNIX-like systems). It is available as open source (GPL) software from http://search.cpan.org/dist/Bio-Phylo PMID:21352572
NASA Astrophysics Data System (ADS)
Car, Nicholas; Cox, Simon; Fitch, Peter
2015-04-01
With earth-science datasets increasingly being published to enable re-use in projects disassociated from the original data acquisition or generation, there is an urgent need for associated metadata to be connected, in order to guide their application. In particular, provenance traces should support the evaluation of data quality and reliability. However, while standards for describing provenance are emerging (e.g. PROV-O), these do not include the necessary statistical descriptors and confidence assessments. UncertML has a mature conceptual model that may be used to record uncertainty metadata. However, by itself UncertML does not support the representation of uncertainty of multi-part datasets, and provides no direct way of associating the uncertainty information - metadata in relation to a dataset - with dataset objects.We present a method to address both these issues by combining UncertML with PROV-O, and delivering resulting uncertainty-enriched provenance traces through the Linked Data API. UncertProv extends the PROV-O provenance ontology with an RDF formulation of the UncertML conceptual model elements, adds further elements to support uncertainty representation without a conceptual model and the integration of UncertML through links to documents. The Linked ID API provides a systematic way of navigating from dataset objects to their UncertProv metadata and back again. The Linked Data API's 'views' capability enables access to UncertML and non-UncertML uncertainty metadata representations for a dataset. With this approach, it is possible to access and navigate the uncertainty metadata associated with a published dataset using standard semantic web tools, such as SPARQL queries. Where the uncertainty data follows the UncertML model it can be automatically interpreted and may also support automatic uncertainty propagation . Repositories wishing to enable uncertainty propagation for all datasets must ensure that all elements that are associated with uncertainty (PROV-O Entity and Activity classes) have UncertML elements recorded. This methodology is intentionally flexible to allow uncertainty metadata in many forms, not limited to UncertML. While the more formal representation of uncertainty metadata is desirable (using UncertProv elements to implement the UncertML conceptual model ), this will not always be possible, and any uncertainty data stored will be better than none. Since the UncertProv ontology contains a superset of UncertML elements to facilitate the representation of non-UncertML uncertainty data, it could easily be extended to include other formal uncertainty conceptual models thus allowing non-UncertML propagation calculations.
EUDAT B2FIND : A Cross-Discipline Metadata Service and Discovery Portal
NASA Astrophysics Data System (ADS)
Widmann, Heinrich; Thiemann, Hannes
2016-04-01
The European Data Infrastructure (EUDAT) project aims at a pan-European environment that supports a variety of multiple research communities and individuals to manage the rising tide of scientific data by advanced data management technologies. This led to the establishment of the community-driven Collaborative Data Infrastructure that implements common data services and storage resources to tackle the basic requirements and the specific challenges of international and interdisciplinary research data management. The metadata service B2FIND plays a central role in this context by providing a simple and user-friendly discovery portal to find research data collections stored in EUDAT data centers or in other repositories. For this we store the diverse metadata collected from heterogeneous sources in a comprehensive joint metadata catalogue and make them searchable in an open data portal. The implemented metadata ingestion workflow consists of three steps. First the metadata records - provided either by various research communities or via other EUDAT services - are harvested. Afterwards the raw metadata records are converted and mapped to unified key-value dictionaries as specified by the B2FIND schema. The semantic mapping of the non-uniform, community specific metadata to homogenous structured datasets is hereby the most subtle and challenging task. To assure and improve the quality of the metadata this mapping process is accompanied by • iterative and intense exchange with the community representatives, • usage of controlled vocabularies and community specific ontologies and • formal and semantic validation. Finally the mapped and checked records are uploaded as datasets to the catalogue, which is based on the open source data portal software CKAN. CKAN provides a rich RESTful JSON API and uses SOLR for dataset indexing that enables users to query and search in the catalogue. The homogenization of the community specific data models and vocabularies enables not only the unique presentation of these datasets as tables of field-value pairs but also the faceted, spatial and temporal search in the B2FIND metadata portal. Furthermore the service provides transparent access to the scientific data objects through the given references and identifiers in the metadata. B2FIND offers support for new communities interested in publishing their data within EUDAT. We present here the functionality and the features of the B2FIND service and give an outlook of further developments as interfaces to external libraries and use of Linked Data.
NASA Astrophysics Data System (ADS)
Gebhardt, Steffen; Wehrmann, Thilo; Klinger, Verena; Schettler, Ingo; Huth, Juliane; Künzer, Claudia; Dech, Stefan
2010-10-01
The German-Vietnamese water-related information system for the Mekong Delta (WISDOM) project supports business processes in Integrated Water Resources Management in Vietnam. Multiple disciplines bring together earth and ground based observation themes, such as environmental monitoring, water management, demographics, economy, information technology, and infrastructural systems. This paper introduces the components of the web-based WISDOM system including data, logic and presentation tier. It focuses on the data models upon which the database management system is built, including techniques for tagging or linking metadata with the stored information. The model also uses ordered groupings of spatial, thematic and temporal reference objects to semantically tag datasets to enable fast data retrieval, such as finding all data in a specific administrative unit belonging to a specific theme. A spatial database extension is employed by the PostgreSQL database. This object-oriented database was chosen over a relational database to tag spatial objects to tabular data, improving the retrieval of census and observational data at regional, provincial, and local areas. While the spatial database hinders processing raster data, a "work-around" was built into WISDOM to permit efficient management of both raster and vector data. The data model also incorporates styling aspects of the spatial datasets through styled layer descriptions (SLD) and web mapping service (WMS) layer specifications, allowing retrieval of rendered maps. Metadata elements of the spatial data are based on the ISO19115 standard. XML structured information of the SLD and metadata are stored in an XML database. The data models and the data management system are robust for managing the large quantity of spatial objects, sensor observations, census and document data. The operational WISDOM information system prototype contains modules for data management, automatic data integration, and web services for data retrieval, analysis, and distribution. The graphical user interfaces facilitate metadata cataloguing, data warehousing, web sensor data analysis and thematic mapping.
Curriculum Mapping with Academic Analytics in Medical and Healthcare Education
Komenda, Martin; Víta, Martin; Vaitsis, Christos; Schwarz, Daniel; Pokorná, Andrea; Zary, Nabil; Dušek, Ladislav
2015-01-01
Background No universal solution, based on an approved pedagogical approach, exists to parametrically describe, effectively manage, and clearly visualize a higher education institution’s curriculum, including tools for unveiling relationships inside curricular datasets. Objective We aim to solve the issue of medical curriculum mapping to improve understanding of the complex structure and content of medical education programs. Our effort is based on the long-term development and implementation of an original web-based platform, which supports an outcomes-based approach to medical and healthcare education and is suitable for repeated updates and adoption to curriculum innovations. Methods We adopted data exploration and visualization approaches in the context of medical curriculum innovations in higher education institutions domain. We have developed a robust platform, covering detailed formal metadata specifications down to the level of learning units, interconnections, and learning outcomes, in accordance with Bloom’s taxonomy and direct links to a particular biomedical nomenclature. Furthermore, we used selected modeling techniques and data mining methods to generate academic analytics reports from medical curriculum mapping datasets. Results We present a solution that allows users to effectively optimize a curriculum structure that is described with appropriate metadata, such as course attributes, learning units and outcomes, a standardized vocabulary nomenclature, and a tree structure of essential terms. We present a case study implementation that includes effective support for curriculum reengineering efforts of academics through a comprehensive overview of the General Medicine study program. Moreover, we introduce deep content analysis of a dataset that was captured with the use of the curriculum mapping platform; this may assist in detecting any potentially problematic areas, and hence it may help to construct a comprehensive overview for the subsequent global in-depth medical curriculum inspection. Conclusions We have proposed, developed, and implemented an original framework for medical and healthcare curriculum innovations and harmonization, including: planning model, mapping model, and selected academic analytics extracted with the use of data mining. PMID:26624281
Virtual patient repositories--a comparative analysis.
Küfner, Julia; Kononowicz, Andrzej A; Hege, Inga
2014-01-01
Virtual Patients (VPs) are an important component of medical education. One way to reduce the costs for creating VPs is sharing through repositories. We conducted a literature review to identify existing repositories and analyzed the 17 included repositories in regards to the search functions and metadata they provide. Most repositories provided some metadata such as title or description, whereas other data, such as educational objectives, were less frequent. Future research could, in cooperation with the repository provider, investigate user expectations and usage patterns.
ERIC Educational Resources Information Center
Shabajee, Paul; Bollen, Johan; Luce, Rick; Weig, Eric
2002-01-01
Includes four articles that discuss multimedia educational database systems and the use of metadata, including repurposing; the evaluation of digital library use that analyzes the retrieval habits of users; the Kentucky Virtual Library (KYVL) and digital collection project; and the collection of the Division of Parasitic Diseases, Centers for…
Publishing datasets with eSciDoc and panMetaDocs
NASA Astrophysics Data System (ADS)
Ulbricht, D.; Klump, J.; Bertelmann, R.
2012-04-01
Currently serveral research institutions worldwide undertake considerable efforts to have their scientific datasets published and to syndicate them to data portals as extensively described objects identified by a persistent identifier. This is done to foster the reuse of data, to make scientific work more transparent, and to create a citable entity that can be referenced unambigously in written publications. GFZ Potsdam established a publishing workflow for file based research datasets. Key software components are an eSciDoc infrastructure [1] and multiple instances of the data curation tool panMetaDocs [2]. The eSciDoc repository holds data objects and their associated metadata in container objects, called eSciDoc items. A key metadata element in this context is the publication status of the referenced data set. PanMetaDocs, which is based on PanMetaWorks [3], is a PHP based web application that allows to describe data with any XML-based metadata schema. The metadata fields can be filled with static or dynamic content to reduce the number of fields that require manual entries to a minimum and make use of contextual information in a project setting. Access rights can be applied to set visibility of datasets to other project members and allow collaboration on and notifying about datasets (RSS) and interaction with the internal messaging system, that was inherited from panMetaWorks. When a dataset is to be published, panMetaDocs allows to change the publication status of the eSciDoc item from status "private" to "submitted" and prepare the dataset for verification by an external reviewer. After quality checks, the item publication status can be changed to "published". This makes the data and metadata available through the internet worldwide. PanMetaDocs is developed as an eSciDoc application. It is an easy to use graphical user interface to eSciDoc items, their data and metadata. It is also an application supporting a DOI publication agent during the process of publishing scientific datasets as electronic data supplements to research papers. Publication of research manuscripts has an already well established workflow that shares junctures with other processes and involves several parties in the process of dataset publication. Activities of the author, the reviewer, the print publisher and the data publisher have to be coordinated into a common data publication workflow. The case of data publication at GFZ Potsdam displays some specifics, e.g. the DOIDB webservice. The DOIDB is a proxy service at GFZ for the DataCite [4] DOI registration and its metadata store. DOIDB provides a local summary of the dataset DOIs registered through GFZ as a publication agent. An additional use case for the DOIDB is its function to enrich the datacite metadata with additional custom attributes, like a geographic reference in a DIF record. These attributes are at the moment not available in the datacite metadata schema but would be valuable elements for the compilation of data catalogues in the earth sciences and for dissemination of catalogue data via OAI-PMH. [1] http://www.escidoc.org , eSciDoc, FIZ Karlruhe, Germany [2] http://panmetadocs.sf.net , panMetaDocs, GFZ Potsdam, Germany [3] http://metaworks.pangaea.de , panMetaWorks, Dr. R. Huber, MARUM, Univ. Bremen, Germany [4] http://www.datacite.org
Expanding Access to NCAR's Digital Assets: Towards a Unified Scientific Data Management System
NASA Astrophysics Data System (ADS)
Stott, D.
2016-12-01
In 2014 the National Center for Atmospheric Research (NCAR) Directorate created the Data Stewardship Engineering Team (DSET) to plan and implement the strategic vision of an integrated front door for data discovery and access across the organization, including all laboratories, the library, and UCAR Community Programs. The DSET is focused on improving the quality of users' experiences in finding and using NCAR's digital assets. This effort also supports new policies included in federal mandates, NSF requirements, and journal publication rules. An initial survey with 97 respondents identified 68 persons responsible for more than 3 petabytes of data. An inventory, using the Data Asset Framework produced by the UK Digital Curation Centre as a starting point, identified asset types that included files and metadata, publications, images, and software (visualization, analysis, model codes). User story sessions with representatives from each lab identified and ranked desired features for a unified Scientific Data Management System (SDMS). A process beginning with an organization-wide assessment of metadata by the HDF Group and followed by meetings with labs to identify key documentation concepts, culminated in the development of an NCAR metadata dialect that leverages the DataCite and ISO 19115 standards. The tasks ahead are to build out an SDMS and populate it with rich standardized metadata. Software packages have been prototyped and currently are being tested and reviewed by DSET members. Key challenges for the DSET include technical and non-technical issues. First, the status quo with regard to how assets are managed varies widely across the organization. There are differences in file format standards, technologies, and discipline-specific vocabularies. Metadata diversity is another real challenge. The types of metadata, the standards used, and the capacity to create new metadata varies across the organization. Significant effort is required to develop tools to create new standard metadata across the organization, adapt and integrate current digital assets, and establish consistent data management practices going forward. To be successful, best practices must be infused into daily activities. This poster will highlight the processes, lessons learned, and current status of the DSET effort at NCAR.
Integrating Semantic Information in Metadata Descriptions for a Geoscience-wide Resource Inventory.
NASA Astrophysics Data System (ADS)
Zaslavsky, I.; Richard, S. M.; Gupta, A.; Valentine, D.; Whitenack, T.; Ozyurt, I. B.; Grethe, J. S.; Schachne, A.
2016-12-01
Integrating semantic information into legacy metadata catalogs is a challenging issue and so far has been mostly done on a limited scale. We present experience of CINERGI (Community Inventory of Earthcube Resources for Geoscience Interoperability), an NSF Earthcube Building Block project, in creating a large cross-disciplinary catalog of geoscience information resources to enable cross-domain discovery. The project developed a pipeline for automatically augmenting resource metadata, in particular generating keywords that describe metadata documents harvested from multiple geoscience information repositories or contributed by geoscientists through various channels including surveys and domain resource inventories. The pipeline examines available metadata descriptions using text parsing, vocabulary management and semantic annotation and graph navigation services of GeoSciGraph. GeoSciGraph, in turn, relies on a large cross-domain ontology of geoscience terms, which bridges several independently developed ontologies or taxonomies including SWEET, ENVO, YAGO, GeoSciML, GCMD, SWO, and CHEBI. The ontology content enables automatic extraction of keywords reflecting science domains, equipment used, geospatial features, measured properties, methods, processes, etc. We specifically focus on issues of cross-domain geoscience ontology creation, resolving several types of semantic conflicts among component ontologies or vocabularies, and constructing and managing facets for improved data discovery and navigation. The ontology and keyword generation rules are iteratively improved as pipeline results are presented to data managers for selective manual curation via a CINERGI Annotator user interface. We present lessons learned from applying CINERGI metadata augmentation pipeline to a number of federal agency and academic data registries, in the context of several use cases that require data discovery and integration across multiple earth science data catalogs of varying quality and completeness. The inventory is accessible at http://cinergi.sdsc.edu, and the CINERGI project web page is http://earthcube.org/group/cinergi
Virtual Patients on the Semantic Web: A Proof-of-Application Study
Dafli, Eleni; Antoniou, Panagiotis; Ioannidis, Lazaros; Dombros, Nicholas; Topps, David
2015-01-01
Background Virtual patients are interactive computer simulations that are increasingly used as learning activities in modern health care education, especially in teaching clinical decision making. A key challenge is how to retrieve and repurpose virtual patients as unique types of educational resources between different platforms because of the lack of standardized content-retrieving and repurposing mechanisms. Semantic Web technologies provide the capability, through structured information, for easy retrieval, reuse, repurposing, and exchange of virtual patients between different systems. Objective An attempt to address this challenge has been made through the mEducator Best Practice Network, which provisioned frameworks for the discovery, retrieval, sharing, and reuse of medical educational resources. We have extended the OpenLabyrinth virtual patient authoring and deployment platform to facilitate the repurposing and retrieval of existing virtual patient material. Methods A standalone Web distribution and Web interface, which contains an extension for the OpenLabyrinth virtual patient authoring system, was implemented. This extension was designed to semantically annotate virtual patients to facilitate intelligent searches, complex queries, and easy exchange between institutions. The OpenLabyrinth extension enables OpenLabyrinth authors to integrate and share virtual patient case metadata within the mEducator3.0 network. Evaluation included 3 successive steps: (1) expert reviews; (2) evaluation of the ability of health care professionals and medical students to create, share, and exchange virtual patients through specific scenarios in extended OpenLabyrinth (OLabX); and (3) evaluation of the repurposed learning objects that emerged from the procedure. Results We evaluated 30 repurposed virtual patient cases. The evaluation, with a total of 98 participants, demonstrated the system’s main strength: the core repurposing capacity. The extensive metadata schema presentation facilitated user exploration and filtering of resources. Usability weaknesses were primarily related to standard computer applications’ ease of use provisions. Most evaluators provided positive feedback regarding educational experiences on both content and system usability. Evaluation results replicated across several independent evaluation events. Conclusions The OpenLabyrinth extension, as part of the semantic mEducator3.0 approach, is a virtual patient sharing approach that builds on a collection of Semantic Web services and federates existing sources of clinical and educational data. It is an effective sharing tool for virtual patients and has been merged into the next version of the app (OpenLabyrinth 3.3). Such tool extensions may enhance the medical education arsenal with capacities of creating simulation/game-based learning episodes, massive open online courses, curricular transformations, and a future robust infrastructure for enabling mobile learning. PMID:25616272
Park, Yu Rang; Yoon, Young Jo; Jang, Tae Hun; Seo, Hwa Jeong
2014-01-01
Objectives Extension of the standard model while retaining compliance with it is a challenging issue because there is currently no method for semantically or syntactically verifying an extended data model. A metadata-based extended model, named CCR+, was designed and implemented to achieve interoperability between standard and extended models. Methods Furthermore, a multilayered validation method was devised to validate the standard and extended models. The American Society for Testing and Materials (ASTM) Community Care Record (CCR) standard was selected to evaluate the CCR+ model; two CCR and one CCR+ XML files were evaluated. Results In total, 188 metadata were extracted from the ASTM CCR standard; these metadata are semantically interconnected and registered in the metadata registry. An extended-data-model-specific validation file was generated from these metadata. This file can be used in a smartphone application (Health Avatar CCR+) as a part of a multilayered validation. The new CCR+ model was successfully evaluated via a patient-centric exchange scenario involving multiple hospitals, with the results supporting both syntactic and semantic interoperability between the standard CCR and extended, CCR+, model. Conclusions A feasible method for delivering an extended model that complies with the standard model is presented herein. There is a great need to extend static standard models such as the ASTM CCR in various domains: the methods presented here represent an important reference for achieving interoperability between standard and extended models. PMID:24627817
ATLAS Metadata Infrastructure Evolution for Run 2 and Beyond
NASA Astrophysics Data System (ADS)
van Gemmeren, P.; Cranshaw, J.; Malon, D.; Vaniachine, A.
2015-12-01
ATLAS developed and employed for Run 1 of the Large Hadron Collider a sophisticated infrastructure for metadata handling in event processing jobs. This infrastructure profits from a rich feature set provided by the ATLAS execution control framework, including standardized interfaces and invocation mechanisms for tools and services, segregation of transient data stores with concomitant object lifetime management, and mechanisms for handling occurrences asynchronous to the control framework's state machine transitions. This metadata infrastructure is evolving and being extended for Run 2 to allow its use and reuse in downstream physics analyses, analyses that may or may not utilize the ATLAS control framework. At the same time, multiprocessing versions of the control framework and the requirements of future multithreaded frameworks are leading to redesign of components that use an incident-handling approach to asynchrony. The increased use of scatter-gather architectures, both local and distributed, requires further enhancement of metadata infrastructure in order to ensure semantic coherence and robust bookkeeping. This paper describes the evolution of ATLAS metadata infrastructure for Run 2 and beyond, including the transition to dual-use tools—tools that can operate inside or outside the ATLAS control framework—and the implications thereof. It further examines how the design of this infrastructure is changing to accommodate the requirements of future frameworks and emerging event processing architectures.
Özdemir, Vural; Kolker, Eugene; Hotez, Peter J; Mohin, Sophie; Prainsack, Barbara; Wynne, Brian; Vayena, Effy; Coşkun, Yavuz; Dereli, Türkay; Huzair, Farah; Borda-Rodriguez, Alexander; Bragazzi, Nicola Luigi; Faris, Jack; Ramesar, Raj; Wonkam, Ambroise; Dandara, Collet; Nair, Bipin; Llerena, Adrián; Kılıç, Koray; Jain, Rekha; Reddy, Panga Jaipal; Gollapalli, Kishore; Srivastava, Sanjeeva; Kickbusch, Ilona
2014-01-01
Metadata refer to descriptions about data or as some put it, "data about data." Metadata capture what happens on the backstage of science, on the trajectory from study conception, design, funding, implementation, and analysis to reporting. Definitions of metadata vary, but they can include the context information surrounding the practice of science, or data generated as one uses a technology, including transactional information about the user. As the pursuit of knowledge broadens in the 21(st) century from traditional "science of whats" (data) to include "science of hows" (metadata), we analyze the ways in which metadata serve as a catalyst for responsible and open innovation, and by extension, science diplomacy. In 2015, the United Nations Millennium Development Goals (MDGs) will formally come to an end. Therefore, we propose that metadata, as an ingredient of responsible innovation, can help achieve the Sustainable Development Goals (SDGs) on the post-2015 agenda. Such responsible innovation, as a collective learning process, has become a key component, for example, of the European Union's 80 billion Euro Horizon 2020 R&D Program from 2014-2020. Looking ahead, OMICS: A Journal of Integrative Biology, is launching an initiative for a multi-omics metadata checklist that is flexible yet comprehensive, and will enable more complete utilization of single and multi-omics data sets through data harmonization and greater visibility and accessibility. The generation of metadata that shed light on how omics research is carried out, by whom and under what circumstances, will create an "intervention space" for integration of science with its socio-technical context. This will go a long way to addressing responsible innovation for a fairer and more transparent society. If we believe in science, then such reflexive qualities and commitments attained by availability of omics metadata are preconditions for a robust and socially attuned science, which can then remain broadly respected, independent, and responsibly innovative. "In Sierra Leone, we have not too much electricity. The lights will come on once in a week, and the rest of the month, dark[ness]. So I made my own battery to power light in people's houses." Kelvin Doe (Global Minimum, 2012) MIT Visiting Young Innovator Cambridge, USA, and Sierra Leone "An important function of the (Global) R&D Observatory will be to provide support and training to build capacity in the collection and analysis of R&D flows, and how to link them to the product pipeline." World Health Organization (2013) Draft Working Paper on a Global Health R&D Observatory.
Predicting age groups of Twitter users based on language and metadata features
Morgan-Lopez, Antonio A.; Chew, Robert F.; Ruddle, Paul
2017-01-01
Health organizations are increasingly using social media, such as Twitter, to disseminate health messages to target audiences. Determining the extent to which the target audience (e.g., age groups) was reached is critical to evaluating the impact of social media education campaigns. The main objective of this study was to examine the separate and joint predictive validity of linguistic and metadata features in predicting the age of Twitter users. We created a labeled dataset of Twitter users across different age groups (youth, young adults, adults) by collecting publicly available birthday announcement tweets using the Twitter Search application programming interface. We manually reviewed results and, for each age-labeled handle, collected the 200 most recent publicly available tweets and user handles’ metadata. The labeled data were split into training and test datasets. We created separate models to examine the predictive validity of language features only, metadata features only, language and metadata features, and words/phrases from another age-validated dataset. We estimated accuracy, precision, recall, and F1 metrics for each model. An L1-regularized logistic regression model was conducted for each age group, and predicted probabilities between the training and test sets were compared for each age group. Cohen’s d effect sizes were calculated to examine the relative importance of significant features. Models containing both Tweet language features and metadata features performed the best (74% precision, 74% recall, 74% F1) while the model containing only Twitter metadata features were least accurate (58% precision, 60% recall, and 57% F1 score). Top predictive features included use of terms such as “school” for youth and “college” for young adults. Overall, it was more challenging to predict older adults accurately. These results suggest that examining linguistic and Twitter metadata features to predict youth and young adult Twitter users may be helpful for informing public health surveillance and evaluation research. PMID:28850620
Predicting age groups of Twitter users based on language and metadata features.
Morgan-Lopez, Antonio A; Kim, Annice E; Chew, Robert F; Ruddle, Paul
2017-01-01
Health organizations are increasingly using social media, such as Twitter, to disseminate health messages to target audiences. Determining the extent to which the target audience (e.g., age groups) was reached is critical to evaluating the impact of social media education campaigns. The main objective of this study was to examine the separate and joint predictive validity of linguistic and metadata features in predicting the age of Twitter users. We created a labeled dataset of Twitter users across different age groups (youth, young adults, adults) by collecting publicly available birthday announcement tweets using the Twitter Search application programming interface. We manually reviewed results and, for each age-labeled handle, collected the 200 most recent publicly available tweets and user handles' metadata. The labeled data were split into training and test datasets. We created separate models to examine the predictive validity of language features only, metadata features only, language and metadata features, and words/phrases from another age-validated dataset. We estimated accuracy, precision, recall, and F1 metrics for each model. An L1-regularized logistic regression model was conducted for each age group, and predicted probabilities between the training and test sets were compared for each age group. Cohen's d effect sizes were calculated to examine the relative importance of significant features. Models containing both Tweet language features and metadata features performed the best (74% precision, 74% recall, 74% F1) while the model containing only Twitter metadata features were least accurate (58% precision, 60% recall, and 57% F1 score). Top predictive features included use of terms such as "school" for youth and "college" for young adults. Overall, it was more challenging to predict older adults accurately. These results suggest that examining linguistic and Twitter metadata features to predict youth and young adult Twitter users may be helpful for informing public health surveillance and evaluation research.
NOAA's Data Catalog and the Federal Open Data Policy
NASA Astrophysics Data System (ADS)
Wengren, M. J.; de la Beaujardiere, J.
2014-12-01
The 2013 Open Data Policy Presidential Directive requires Federal agencies to create and maintain a 'public data listing' that includes all agency data that is currently or will be made publicly-available in the future. The directive requires the use of machine-readable and open formats that make use of 'common core' and extensible metadata formats according to the best practices published in an online repository called 'Project Open Data', to use open licenses where possible, and to adhere to existing metadata and other technology standards to promote interoperability. In order to meet the requirements of the Open Data Policy, the National Oceanic and Atmospheric Administration (NOAA) has implemented an online data catalog that combines metadata from all subsidiary NOAA metadata catalogs into a single master inventory. The NOAA Data Catalog is available to the public for search and discovery, providing access to the NOAA master data inventory through multiple means, including web-based text search, OGC CS-W endpoint, as well as a native Application Programming Interface (API) for programmatic query. It generates on a daily basis the Project Open Data JavaScript Object Notation (JSON) file required for compliance with the Presidential directive. The Data Catalog is based on the open source Comprehensive Knowledge Archive Network (CKAN) software and runs on the Amazon Federal GeoCloud. This presentation will cover topics including mappings of existing metadata in standard formats (FGDC-CSDGM and ISO 19115 XML ) to the Project Open Data JSON metadata schema, representation of metadata elements within the catalog, and compatible metadata sources used to feed the catalog to include Web Accessible Folder (WAF), Catalog Services for the Web (CS-W), and Esri ArcGIS.com. It will also discuss related open source technologies that can be used together to build a spatial data infrastructure compliant with the Open Data Policy.
A Python object-oriented framework for the CMS alignment and calibration data
NASA Astrophysics Data System (ADS)
Dawes, Joshua H.; CMS Collaboration
2017-10-01
The Alignment, Calibrations and Databases group at the CMS Experiment delivers Alignment and Calibration Conditions Data to a large set of workflows which process recorded event data and produce simulated events. The current infrastructure for releasing and consuming Conditions Data was designed in the two years of the first LHC long shutdown to respond to use cases from the preceding data-taking period. During the second run of the LHC, new use cases were defined. For the consumption of Conditions Metadata, no common interface existed for the detector experts to use in Python-based custom scripts, resulting in many different querying and transaction management patterns. A new framework has been built to address such use cases: a simple object-oriented tool that detector experts can use to read and write Conditions Metadata when using Oracle and SQLite databases, that provides a homogeneous method of querying across all services. The tool provides mechanisms for segmenting large sets of conditions while releasing them to the production database, allows for uniform error reporting to the client-side from the server-side and optimizes the data transfer to the server. The architecture of the new service has been developed exploiting many of the features made available by the metadata consumption framework to implement the required improvements. This paper presents the details of the design and implementation of the new metadata consumption and data upload framework, as well as analyses of the new upload service’s performance as the server-side state varies.
NASA Astrophysics Data System (ADS)
Hart, Andrew F.; Cinquini, Luca; Khudikyan, Shakeh E.; Thompson, David R.; Mattmann, Chris A.; Wagstaff, Kiri; Lazio, Joseph; Jones, Dayton
2015-01-01
“Fast radio transients” are defined here as bright millisecond pulses of radio-frequency energy. These short-duration pulses can be produced by known objects such as pulsars or potentially by more exotic objects such as evaporating black holes. The identification and verification of such an event would be of great scientific value. This is one major goal of the Very Long Baseline Array (VLBA) Fast Transient Experiment (V-FASTR), a software-based detection system installed at the VLBA. V-FASTR uses a “commensal” (piggy-back) approach, analyzing all array data continually during routine VLBA observations and identifying candidate fast transient events. Raw data can be stored from a buffer memory, which enables a comprehensive off-line analysis. This is invaluable for validating the astrophysical origin of any detection. Candidates discovered by the automatic system must be reviewed each day by analysts to identify any promising signals that warrant a more in-depth investigation. To support the timely analysis of fast transient detection candidates by V-FASTR scientists, we have developed a metadata-driven, collaborative candidate review framework. The framework consists of a software pipeline for metadata processing composed of both open source software components and project-specific code written expressly to extract and catalog metadata from the incoming V-FASTR data products, and a web-based data portal that facilitates browsing and inspection of the available metadata for candidate events extracted from the VLBA radio data.
Lightweight Advertising and Scalable Discovery of Services, Datasets, and Events Using Feedcasts
NASA Astrophysics Data System (ADS)
Wilson, B. D.; Ramachandran, R.; Movva, S.
2010-12-01
Broadcast feeds (Atom or RSS) are a mechanism for advertising the existence of new data objects on the web, with metadata and links to further information. Users then subscribe to the feed to receive updates. This concept has already been used to advertise the new granules of science data as they are produced (datacasting), with browse images and metadata, and to advertise bundles of web services (service casting). Structured metadata is introduced into the XML feed format by embedding new XML tags (in defined namespaces), using typed links, and reusing built-in Atom feed elements. This “infocasting” concept can be extended to include many other science artifacts, including data collections, workflow documents, topical geophysical events (hurricanes, forest fires, etc.), natural hazard warnings, and short articles describing a new science result. The common theme is that each infocast contains machine-readable, structured metadata describing the object and enabling further manipulation. For example, service casts contain type links pointing to the service interface description (e.g., WSDL for SOAP services), service endpoint, and human-readable documentation. Our Infocasting project has three main goals: (1) define and evangelize micro-formats (metadata standards) so that providers can easily advertise their web services, datasets, and topical geophysical events by adding structured information to broadcast feeds; (2) develop authoring tools so that anyone can easily author such service advertisements, data casts, and event descriptions; and (3) provide a one-stop, Google-like search box in the browser that allows discovery of service, data and event casts visible on the web, and services & data registered in the GEOSS repository and other NASA repositories (GCMD & ECHO). To demonstrate the event casting idea, a series of micro-articles—with accompanying event casts containing links to relevant datasets, web services, and science analysis workflows--will be authored for several kinds of geophysical events, such as hurricanes, smoke plume events, tsunamis, etc. The talk will describe our progress so far, and some of the issues with leveraging existing metadata standards to define lightweight micro-formats.
Application Profiling for Rural Communities: eGov Services and Training Resources in Rural Inclusion
NASA Astrophysics Data System (ADS)
Karamolegkos, Pantelis; Maroudas, Axel; Manouselis, Nikos
Metadata plays a critical role in the design and development of online repositories. The efficiency and ease of use of the repositories are directly associated with the metadata structure, since end-user functionalities such as search, retrieval and access are highly dependent on how the metadata schema and application profile have been conceptualized and implemented. The need for efficient and interoperable application profiles is even more substantial when it comes to services related to the e-government (eGov) paradigm, given a) the close association between services related to eGov and the metadata usage and b) the fact that the eGov concept is associated with time and cost critical processes, i.e. interaction of citizens and services with public authorities. In this paper, we outline an effort related to application profiling for eGov services and training resources, used in the platform of RuralObservatory2.0, which will underpin a major objective of the ICT PSP Rural Inclusion project, i.e. the eGov paradigm uptake by rural communities.
Standardized Metadata for Education: A Status Report.
ERIC Educational Resources Information Center
Duval, Erik
This paper starts with a brief background to worldwide standardization activities in the field of educational technologies, and identifies three important accredited standardization organizations in the domain of education and training: the Institute of Electrical and Electronics Engineers (IEEE) Learning Technology Standardization Committee…
Database technology and the management of multimedia data in the Mirror project
NASA Astrophysics Data System (ADS)
de Vries, Arjen P.; Blanken, H. M.
1998-10-01
Multimedia digital libraries require an open distributed architecture instead of a monolithic database system. In the Mirror project, we use the Monet extensible database kernel to manage different representation of multimedia objects. To maintain independence between content, meta-data, and the creation of meta-data, we allow distribution of data and operations using CORBA. This open architecture introduces new problems for data access. From an end user's perspective, the problem is how to search the available representations to fulfill an actual information need; the conceptual gap between human perceptual processes and the meta-data is too large. From a system's perspective, several representations of the data may semantically overlap or be irrelevant. We address these problems with an iterative query process and active user participating through relevance feedback. A retrieval model based on inference networks assists the user with query formulation. The integration of this model into the database design has two advantages. First, the user can query both the logical and the content structure of multimedia objects. Second, the use of different data models in the logical and the physical database design provides data independence and allows algebraic query optimization. We illustrate query processing with a music retrieval application.
What Does it Mean to Publish Data in Earth System Science Data Journal?
NASA Astrophysics Data System (ADS)
Carlson, D.; Pfeiffenberger, H.
2015-12-01
The availability of more than 120 data sets in ESSD represents an unprecedented effort by providers, data centers and ESSD. ESSD data sets and their accompanying data descriptions undergo rigorous review. The data sets reside at any of more than 20 cooperating data centers. The ESSD publication process depends on but challenges the concepts of digital object identification and exacerbates the varied interpretations of the phrase 'data publication'. ESSD adopts the digital object identifier (doi). Key questions apply to doi's and other identifiers. How will persistent identifiers point accurately to distributed or replicated data? How should data centers and data publishers use identifier technologies to ensure authenticity and integrity? Should metadata associated with identifiers distinguish among raw, quality controlled and derived data processing levels, or indicate license or copyright status?Data centers publish data sets according to internal metadata standards but without indicators of quality control. Publication in this sense indicates availability. National data portals compile, serve and publish data products as a service to national researchers and, often, to meet national requirements. Publication in this second case indicates availability in a national context; the data themselves may still reside at separate data centers. Data journals such as ESSD or Scientific Data publish peer-reviewed, quality controlled data sets. These data sets almost always reside at a separate data center - the journal and the center maintain explicit identifier linkages. Data journals add quality to the feature of availability. A single data set processed through these layers will generate three independent doi's but the doi's will provide little information about availability or quality. Could the data world learn from the URL world to consider additions? Suffixes? Could we use our experience with processing levels or data maturity to propose and agree such extensions?
Kuchinke, W; Wiegelmann, S; Verplancke, P; Ohmann, C
2006-01-01
Our objectives were to analyze the possibility of an exchange of an entire clinical study between two different and independent study software solutions. The question addressed was whether a software-independent transfer of study metadata can be performed without programming efforts and with software routinely used for clinical research. Study metadata was transferred with ODM standard (CDISC). Study software systems employed were MACRO (InferMed) and XTrial (XClinical). For the Proof of Concept, a test study was created with MACRO and exported as ODM. For modification and validation of the ODM export file XML-Spy (Altova) and ODM-Checker (XML4Pharma) were used. Through exchange of a complete clinical study between two different study software solutions, a Proof of Concept of the technical feasibility of a system-independent metadata exchange was conducted successfully. The interchange of study metadata between two different systems at different centers was performed with minimal expenditure. A small number of mistakes had to be corrected in order to generate a syntactically correct ODM file and a "vendor extension" had to be inserted. After these modifications, XTrial exhibited the study, including all data fields, correctly. However, the optical appearance of both CRFs (case report forms) was different. ODM can be used as an exchange format for clinical studies between different study software. Thus, new forms of cooperation through exchange of metadata seem possible, for example the joint creation of electronic study protocols or CRFs at different research centers. Although the ODM standard represents a clinical study completely, it contains no information about the representation of data fields in CRFs.
Federal Data Repository Research: Recent Developments in Mercury Search System Architecture
NASA Astrophysics Data System (ADS)
Devarakonda, R.
2015-12-01
New data intensive project initiatives needs new generation data system architecture. This presentation will discuss the recent developments in Mercury System [1] including adoption, challenges, and future efforts to handle such data intensive projects. Mercury is a combination of three main tools (i) Data/Metadata registration Tool (Online Metadata Editor): The new Online Metadata Editor (OME) is a web-based tool to help document the scientific data in a well-structured, popular scientific metadata formats. (ii) Search and Visualization Tool: Provides a single portal to information contained in disparate data management systems. It facilitates distributed metadata management, data discovery, and various visuzalization capabilities. (iii) Data Citation Tool: In collaboration with Department of Energy's Oak Ridge National Laboratory (ORNL) Mercury Consortium (funded by NASA, USGS and DOE), established a Digital Object Identifier (DOI) service. Mercury is a open source system, developed and managed at Oak Ridge National Laboratory and is currently being funded by three federal agencies, including NASA, USGS and DOE. It provides access to millions of bio-geo-chemical and ecological data; 30,000 scientists use it each month. Some recent data intensive projects that are using Mercury tool: USGS Science Data Catalog (http://data.usgs.gov/), Next-Generation Ecosystem Experiments (http://ngee-arctic.ornl.gov/), Carbon Dioxide Information Analysis Center (http://cdiac.ornl.gov/), Oak Ridge National Laboratory - Distributed Active Archive Center (http://daac.ornl.gov), SoilSCAPE (http://mercury.ornl.gov/soilscape). References: [1] Devarakonda, Ranjeet, et al. "Mercury: reusable metadata management, data discovery and access system." Earth Science Informatics 3.1-2 (2010): 87-94.
Combining Crowd and Expert Labels using Decision Theoretic Active Learning
2015-10-11
meta-data such as titles, author information and keywords. Motivating Application: Biomedical Systematic Reviews Evidence - based medicine (EBM) aims to...individuals trained in evidence - based medicine ; usually MDs) reading the entire set of citations retrieved via database search to identify the small
Discovering Physical Samples Through Identifiers, Metadata, and Brokering
NASA Astrophysics Data System (ADS)
Arctur, D. K.; Hills, D. J.; Jenkyns, R.
2015-12-01
Physical samples, particularly in the geosciences, are key to understanding the Earth system, its history, and its evolution. Our record of the Earth as captured by physical samples is difficult to explain and mine for understanding, due to incomplete, disconnected, and evolving metadata content. This is further complicated by differing ways of classifying, cataloguing, publishing, and searching the metadata, especially when specimens do not fit neatly into a single domain—for example, fossils cross disciplinary boundaries (mineral and biological). Sometimes even the fundamental classification systems evolve, such as the geological time scale, triggering daunting processes to update existing specimen databases. Increasingly, we need to consider ways of leveraging permanent, unique identifiers, as well as advancements in metadata publishing that link digital records with physical samples in a robust, adaptive way. An NSF EarthCube Research Coordination Network (RCN) called the Internet of Samples (iSamples) is now working to bridge the metadata schemas for biological and geological domains. We are leveraging the International Geo Sample Number (IGSN) that provides a versatile system of registering physical samples, and working to harmonize this with the DataCite schema for Digital Object Identifiers (DOI). A brokering approach for linking disparate catalogues and classification systems could help scale discovery and access to the many large collections now being managed (sometimes millions of specimens per collection). This presentation is about our community building efforts, research directions, and insights to date.
Metadata mapping and reuse in caBIG.
Kunz, Isaac; Lin, Ming-Chin; Frey, Lewis
2009-02-05
This paper proposes that interoperability across biomedical databases can be improved by utilizing a repository of Common Data Elements (CDEs), UML model class-attributes and simple lexical algorithms to facilitate the building domain models. This is examined in the context of an existing system, the National Cancer Institute (NCI)'s cancer Biomedical Informatics Grid (caBIG). The goal is to demonstrate the deployment of open source tools that can be used to effectively map models and enable the reuse of existing information objects and CDEs in the development of new models for translational research applications. This effort is intended to help developers reuse appropriate CDEs to enable interoperability of their systems when developing within the caBIG framework or other frameworks that use metadata repositories. The Dice (di-grams) and Dynamic algorithms are compared and both algorithms have similar performance matching UML model class-attributes to CDE class object-property pairs. With algorithms used, the baselines for automatically finding the matches are reasonable for the data models examined. It suggests that automatic mapping of UML models and CDEs is feasible within the caBIG framework and potentially any framework that uses a metadata repository. This work opens up the possibility of using mapping algorithms to reduce cost and time required to map local data models to a reference data model such as those used within caBIG. This effort contributes to facilitating the development of interoperable systems within caBIG as well as other metadata frameworks. Such efforts are critical to address the need to develop systems to handle enormous amounts of diverse data that can be leveraged from new biomedical methodologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, Andrew F.; Cinquini, Luca; Khudikyan, Shakeh E.
2015-01-01
“Fast radio transients” are defined here as bright millisecond pulses of radio-frequency energy. These short-duration pulses can be produced by known objects such as pulsars or potentially by more exotic objects such as evaporating black holes. The identification and verification of such an event would be of great scientific value. This is one major goal of the Very Long Baseline Array (VLBA) Fast Transient Experiment (V-FASTR), a software-based detection system installed at the VLBA. V-FASTR uses a “commensal” (piggy-back) approach, analyzing all array data continually during routine VLBA observations and identifying candidate fast transient events. Raw data can be storedmore » from a buffer memory, which enables a comprehensive off-line analysis. This is invaluable for validating the astrophysical origin of any detection. Candidates discovered by the automatic system must be reviewed each day by analysts to identify any promising signals that warrant a more in-depth investigation. To support the timely analysis of fast transient detection candidates by V-FASTR scientists, we have developed a metadata-driven, collaborative candidate review framework. The framework consists of a software pipeline for metadata processing composed of both open source software components and project-specific code written expressly to extract and catalog metadata from the incoming V-FASTR data products, and a web-based data portal that facilitates browsing and inspection of the available metadata for candidate events extracted from the VLBA radio data.« less
Interactive Physics: the role of interactive learning objects in teaching Physics in Engineering
NASA Astrophysics Data System (ADS)
Benito, R. M.; Cámara, M. E.; Arranz, F. J.
2009-04-01
In this work we present the results of a Project in educational innovation entitled "Interactive Physics". We have developed resources for teaching Physics for students of Engineering, with an emphasis in conceptual reinforcement and addressing the shortcomings of students entering the University. The resources developed include hypertext, graphics, equations, quizzes and more elaborated problems that cover the customary syllabus in first-year Physics: kinematics and dynamics, Newton laws, electricity and magnetism, elementary circuits… The role of vector quantities is stressed and we also provide help for the most usual mathematical tools (calculus and trigonometric formulas). The structure and level of detail of the resources are fitted to the conceptual difficulties that most of the students find. Some of the most advanced resources we have developed are interactive simulations. These are real simulations of key physical situations, not only animations. They serve as learning objects, in the well known sense of small reusable digital objects that are self-contained and tagged with metadata. In this sense, we use them to link concepts and content through interaction with active engagement of the student. The development of an interactive simulation involves several steps. First, we identify common pitfalls in the conceptual framework of the students and the points in which they stumble frequently. Then we think of a way to make clear the physical concepts using a simulation. After that, we program the simulation (using Flash or Java) and finally the simulation is tested with the students, and we reelaborate some parts of it in terms of usability. In our communication, we discuss the usefulness of these interactive simulations in teaching Physics for engineers, and their integration in a more comprehensive b-learning system.
Musick, Charles R [Castro Valley, CA; Critchlow, Terence [Livermore, CA; Ganesh, Madhaven [San Jose, CA; Slezak, Tom [Livermore, CA; Fidelis, Krzysztof [Brentwood, CA
2006-12-19
A system and method is disclosed for integrating and accessing multiple data sources within a data warehouse architecture. The metadata formed by the present method provide a way to declaratively present domain specific knowledge, obtained by analyzing data sources, in a consistent and useable way. Four types of information are represented by the metadata: abstract concepts, databases, transformations and mappings. A mediator generator automatically generates data management computer code based on the metadata. The resulting code defines a translation library and a mediator class. The translation library provides a data representation for domain specific knowledge represented in a data warehouse, including "get" and "set" methods for attributes that call transformation methods and derive a value of an attribute if it is missing. The mediator class defines methods that take "distinguished" high-level objects as input and traverse their data structures and enter information into the data warehouse.
BCO-DMO: Enabling Access to Federally Funded Research Data
NASA Astrophysics Data System (ADS)
Kinkade, D.; Allison, M. D.; Chandler, C. L.; Groman, R. C.; Rauch, S.; Shepherd, A.; Gegg, S. R.; Wiebe, P. H.; Glover, D. M.
2013-12-01
In a February, 2013 memo1, the White House Office of Science and Technology Policy (OSTP) outlined principles and objectives to increase access by the public to federally funded research publications and data. Such access is intended to drive innovation by allowing private and commercial efforts to take full advantage of existing resources, thereby maximizing Federal research dollars and efforts. The Biological and Chemical Oceanography Data Management Office (BCO-DMO; bco-dmo.org) serves as a model resource for organizations seeking compliance with the OSTP policy. BCO-DMO works closely with scientific investigators to publish their data from research projects funded by the National Science Foundation (NSF), within the Biological and Chemical Oceanography Sections (OCE) and the Division of Polar Programs Antarctic Organisms & Ecosystems Program (PLR). BCO-DMO addresses many of the OSTP objectives for public access to digital scientific data: (1) Marine biogeochemical and ecological data and metadata are disseminated via a public website, and curated on intermediate time frames; (2) Preservation needs are met by collaborating with appropriate national data facilities for data archive; (3) Cost and administrative burden associated with data management is minimized by the use of one dedicated office providing hundreds of NSF investigators support for data management plan development, data organization, metadata generation and deposition of data and metadata into the BCO-DMO repository; (4) Recognition of intellectual property is reinforced through the office's citation policy and the use of digital object identifiers (DOIs); (5) Education and training in data stewardship and use of the BCO-DMO system is provided by office staff through a variety of venues. Oceanographic research data and metadata from thousands of datasets generated by hundreds of investigators are now available through BCO-DMO. 1 White House Office of Science and Technology Policy, Memorandum for the Heads of Executive Departments and Agencies: Increasing Access to the Results of Federally Funded Scientific Research, February 23, 2013. http://www.whitehouse.gov/sites/default/files/microsites/ostp/ostp_public_access_memo_2013.pdf
NASA Astrophysics Data System (ADS)
Pletinckx, D.
2011-09-01
The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.
MMI: Increasing Community Collaboration
NASA Astrophysics Data System (ADS)
Galbraith, N. R.; Stocks, K.; Neiswender, C.; Maffei, A.; Bermudez, L.
2007-12-01
Building community requires a collaborative environment and guidance to help move members towards a common goal. An effective environment for community collaboration is a workspace that fosters participation and cooperation; effective guidance furthers common understanding and promotes best practices. The Marine Metadata Interoperability (MMI) project has developed a community web site to provide a collaborative environment for scientists, technologists, and data managers from around the world to learn about metadata and exchange ideas. Workshops, demonstration projects, and presentations also provide community-building opportunities for MMI. MMI has developed comprehensive online guides to help users understand and work with metadata standards, ontologies, and other controlled vocabularies. Documents such as "The Importance of Metadata Standards", "Usage vs. Discovery Vocabularies" and "Developing Controlled Vocabularies" guide scientists and data managers through a variety of metadata-related concepts. Members from eight organizations involved in marine science and informatics collaborated on this effort. The MMI web site has moved from Plone to Drupal, two content management systems which provide different opportunities for community-based work. Drupal's "organic groups" feature will be used to provide workspace for future teams tasked with content development, outreach, and other MMI mission-critical work. The new site is designed to enable members to easily create working areas, to build communities dedicated to developing consensus on metadata and other interoperability issues. Controlled-vocabulary-driven menus, integrated mailing-lists, member-based content creation and review tools are facets of the new web site architecture. This move provided the challenge of developing a hierarchical vocabulary to describe the resources presented on the site; consistent and logical tagging of web pages is the basis of Drupal site navigation. The new MMI web site presents enhanced opportunities for electronic discussions, focused collaborative work, and even greater community participation. The MMI project is beginning a new initiative to comprehensively catalog and document tools for marine metadata. The new MMI community-based web site will be used to support this work and to support the work of other ad-hoc teams in the future. We are seeking broad input from the community on this effort.
ERIC Educational Resources Information Center
Waters, John K.
2013-01-01
Students who search for broad terms on the Internet can be deluged by useless or offensive information. Dave Gladney, project manager for the Association of Educational Publishers (AEP), says what's needed is a commonly agreed-upon vocabulary for describing content for education search. The Learning Resource Metadata Initiative (LRMI) has a…
Advancements in Large-Scale Data/Metadata Management for Scientific Data.
NASA Astrophysics Data System (ADS)
Guntupally, K.; Devarakonda, R.; Palanisamy, G.; Frame, M. T.
2017-12-01
Scientific data often comes with complex and diverse metadata which are critical for data discovery and users. The Online Metadata Editor (OME) tool, which was developed by an Oak Ridge National Laboratory team, effectively manages diverse scientific datasets across several federal data centers, such as DOE's Atmospheric Radiation Measurement (ARM) Data Center and USGS's Core Science Analytics, Synthesis, and Libraries (CSAS&L) project. This presentation will focus mainly on recent developments and future strategies for refining OME tool within these centers. The ARM OME is a standard based tool (https://www.archive.arm.gov/armome) that allows scientists to create and maintain metadata about their data products. The tool has been improved with new workflows that help metadata coordinators and submitting investigators to submit and review their data more efficiently. The ARM Data Center's newly upgraded Data Discovery Tool (http://www.archive.arm.gov/discovery) uses rich metadata generated by the OME to enable search and discovery of thousands of datasets, while also providing a citation generator and modern order-delivery techniques like Globus (using GridFTP), Dropbox and THREDDS. The Data Discovery Tool also supports incremental indexing, which allows users to find new data as and when they are added. The USGS CSAS&L search catalog employs a custom version of the OME (https://www1.usgs.gov/csas/ome), which has been upgraded with high-level Federal Geographic Data Committee (FGDC) validations and the ability to reserve and mint Digital Object Identifiers (DOIs). The USGS's Science Data Catalog (SDC) (https://data.usgs.gov/datacatalog) allows users to discover a myriad of science data holdings through a web portal. Recent major upgrades to the SDC and ARM Data Discovery Tool include improved harvesting performance and migration using new search software, such as Apache Solr 6.0 for serving up data/metadata to scientific communities. Our presentation will highlight the future enhancements of these tools which enable users to retrieve fast search results, along with parallelizing the retrieval process from online and High Performance Storage Systems. In addition, these improvements to the tools will support additional metadata formats like the Large-Eddy Simulation (LES) ARM Symbiotic and Observation (LASSO) bundle data.
SIOExplorer: Advances Across Disciplinary and Institutional Boundaries
NASA Astrophysics Data System (ADS)
Miller, S. P.; Clark, D.; Helly, J.; Sutton, D.; Houghton, T.
2004-12-01
Strategies for interoperability have been an underlying theme in the development of the SIOExplorer Digital Library. The project was launched three years ago to stabilize data from 700 cruises by the Scripps Institution of Oceanography (SIO), scattered across distributed laboratories and on various media, mostly off-line, including paper and at-risk magnetic tapes. The need for a comprehensive scalable approach to harvesting data from 40 years of evolving instrumentation, media and formats has resulted in the implementation of a digital library architecture that is ready for interoperability. Key metadata template files maintain the integrity of the metadata and data structures, allowing forward and backward compatibility throughout the project as metadata blocks evolve or data types are added. The overall growth of the library is managed by federating new collections in disciplines as needed, each with their own independent data publishing authority. We now have a total of four collections: SIO Cruises, SIO Photo Archives, the Seamount Catalog, and the new Educators' Collection for learning resources. The data types include high resolution meteorological observations, water profiles, biological and geological samples, gravity, magnetics, seafloor swath mapping sonar files, maps and visualization files. The library transactions across the Internet amount to approximately 50,000 hits and 6 GB of downloads each month. We are currently building a new Geological Collection with thousands of dredged rocks and cores, a Seismic Collection with 30 years of reflection data, and a Physical Oceanography Collection with 50 cruises of Hydrographic Doppler Sonar System (HDSS) deep acoustic current profiling data. For the user, a Java CruiseViewer provides an interactive portal to the all the federated collections. With CruiseViewer, contents can be discovered by keyword or geographic searches over a global map, metadata can be browsed, and objects can be displayed or scheduled for download. For computer applications, REST and SOAP web services are being implemented to allow computer-to-computer interoperability for applications to search and receive data across the Internet. Discussions are underway to extend this approach and establish a digital library at the Woods Hole Oceanographic Institution for cruise data as well as extensive submersible and ROV digital video and mapping data. These efforts have been supported by NSF NSDL, ITR and OCE awards.
Mining dark information resources to develop new informatics capabilities to support science
NASA Astrophysics Data System (ADS)
Ramachandran, Rahul; Maskey, Manil; Bugbee, Kaylin
2016-04-01
Dark information resources are digital resources that organizations collect, process, and store for regular business or operational activities but fail to realize their potential for other purposes. The challenge for any organization is to recognize, identify and effectively exploit these dark information stores. Metadata catalogs at different data centers store dark information resources consisting of structured information, free form descriptions of data and browse images. These information resources are never fully exploited beyond a few fields used for search and discovery. For example, the NASA Earth science catalog holds greater than 6000 data collections, 127 million records for individual files and 67 million browse images. We believe that the information contained in the metadata catalogs and the browse images can be utilized beyond their original design intent to provide new data discovery and exploration pathways to support science and education communities. In this paper we present two research applications using information stored in the metadata catalog in a completely novel way. The first application is designing a data curation service. The objective of the data curation service is to augment the existing data search capabilities. Given a specific atmospheric phenomenon, the data curation service returns the user a ranked list of relevant data sets. Different fields in the metadata records including textual descriptions are mined. A specialized relevancy ranking algorithm has been developed that uses a "bag of words" to define phenomena along with an ensemble of known approaches such as the Jaccard Coefficient, Cosine Similarity and Zone ranking to rank the data sets. This approach is also extended to map from the data set level to data file variable level. The second application is focused on providing a service where a user can search and discover browse images containing specific phenomena from the vast catalog. This service will aid researchers in uncovering interesting event in the data for case study analysis. The challenge of this second application is to bridge the semantic gap between the low level image pixel values and the semantic concept perceived by a user when he or she sees an image. A deep learning algorithm, specifically the Convolution Neural Network (CNN), has been trained and tested to identify three types of Earth science phenomena - Hurricanes, Dust, and Smoke/Haze in MODIS imagery. Latest results from both the applications will be presented in this paper.
Chase, Katherine J.; Bock, Andrew R.; Sando, Roy
2017-01-05
This report provides an overview of current (2016) U.S. Geological Survey policies and practices related to publishing data on ScienceBase, and an example interactive mapping application to display those data. ScienceBase is an integrated data sharing platform managed by the U.S. Geological Survey. This report describes resources that U.S. Geological Survey Scientists can use for writing data management plans, formatting data, and creating metadata, as well as for data and metadata review, uploading data and metadata to ScienceBase, and sharing metadata through the U.S. Geological Survey Science Data Catalog. Because data publishing policies and practices are evolving, scientists should consult the resources cited in this paper for definitive policy information.An example is provided where, using the content of a published ScienceBase data release that is associated with an interpretive product, a simple user interface is constructed to demonstrate how the open source capabilities of the R programming language and environment can interact with the properties and objects of the ScienceBase item and be used to generate interactive maps.
Multi-facetted Metadata - Describing datasets with different metadata schemas at the same time
NASA Astrophysics Data System (ADS)
Ulbricht, Damian; Klump, Jens; Bertelmann, Roland
2013-04-01
Inspired by the wish to re-use research data a lot of work is done to bring data systems of the earth sciences together. Discovery metadata is disseminated to data portals to allow building of customized indexes of catalogued dataset items. Data that were once acquired in the context of a scientific project are open for reappraisal and can now be used by scientists that were not part of the original research team. To make data re-use easier, measurement methods and measurement parameters must be documented in an application metadata schema and described in a written publication. Linking datasets to publications - as DataCite [1] does - requires again a specific metadata schema and every new use context of the measured data may require yet another metadata schema sharing only a subset of information with the meta information already present. To cope with the problem of metadata schema diversity in our common data repository at GFZ Potsdam we established a solution to store file-based research data and describe these with an arbitrary number of metadata schemas. Core component of the data repository is an eSciDoc infrastructure that provides versioned container objects, called eSciDoc [2] "items". The eSciDoc content model allows assigning files to "items" and adding any number of metadata records to these "items". The eSciDoc items can be submitted, revised, and finally published, which makes the data and metadata available through the internet worldwide. GFZ Potsdam uses eSciDoc to support its scientific publishing workflow, including mechanisms for data review in peer review processes by providing temporary web links for external reviewers that do not have credentials to access the data. Based on the eSciDoc API, panMetaDocs [3] provides a web portal for data management in research projects. PanMetaDocs, which is based on panMetaWorks [4], is a PHP based web application that allows to describe data with any XML-based schema. It uses the eSciDoc infrastructures REST-interface to store versioned dataset files and metadata in a XML-format. The software is able to administrate more than one eSciDoc metadata record per item and thus allows the description of a dataset according to its context. The metadata fields can be filled with static or dynamic content to reduce the number of fields that require manual entries to a minimum and, at the same time, make use of contextual information available in a project setting. Access rights can be adjusted to set visibility of datasets to the required degree of openness. Metadata from separate instances of panMetaDocs can be syndicated to portals through RSS and OAI-PMH interfaces. The application architecture presented here allows storing file-based datasets and describe these datasets with any number of metadata schemas, depending on the intended use case. Data and metadata are stored in the same entity (eSciDoc items) and are managed by a software tool through the eSciDoc REST interface - in this case the application is panMetaDocs. Other software may re-use the produced items and modify the appropriate metadata records by accessing the web API of the eSciDoc data infrastructure. For presentation of the datasets in a web browser we are not bound to panMetaDocs. This is done by stylesheet transformation of the eSciDoc-item. [1] http://www.datacite.org [2] http://www.escidoc.org , eSciDoc, FIZ Karlruhe, Germany [3] http://panmetadocs.sf.net , panMetaDocs, GFZ Potsdam, Germany [4] http://metaworks.pangaea.de , panMetaWorks, Dr. R. Huber, MARUM, Univ. Bremen, Germany
Data System Architectures: Recent Experiences from Data Intensive Projects
NASA Astrophysics Data System (ADS)
Palanisamy, G.; Frame, M. T.; Boden, T.; Devarakonda, R.; Zolly, L.; Hutchison, V.; Latysh, N.; Krassovski, M.; Killeffer, T.; Hook, L.
2014-12-01
U.S. Federal agencies are frequently trying to address new data intensive projects that require next generation of data system architectures. This presentation will focus on two new such architectures: USGS's Science Data Catalog (SDC) and DOE's Next Generation Ecological Experiments - Arctic Data System. The U.S. Geological Survey (USGS) developed a Science Data Catalog (data.usgs.gov) to include records describing datasets, data collections, and observational or remotely-sensed data. The system was built using service oriented architecture and allows USGS scientists and data providers to create and register their data using either a standards-based metadata creation form or simply to register their already-created metadata records with the USGS SDC Dashboard. This dashboard then compiles the harvested metadata records and sends them to the post processing and indexing service using the JSON format. The post processing service, with the help of various ontologies and other geo-spatial validation services, auto-enhances these harvested metadata records and creates a Lucene index using the Solr enterprise search platform. Ultimately, metadata is made available via the SDC search interface. DOE's Next Generation Ecological Experiments (NGEE) Arctic project deployed a data system that allows scientists to prepare, publish, archive, and distribute data from field collections, lab experiments, sensors, and simulated modal outputs. This architecture includes a metadata registration form, data uploading and sharing tool, a Digital Object Identifier (DOI) tool, a Drupal based content management tool (http://ngee-arctic.ornl.gov), and a data search and access tool based on ORNL's Mercury software (http://mercury.ornl.gov). The team also developed Web-metric tools and a data ingest service to visualize geo-spatial and temporal observations.
Transforming Education Research Through Open Video Data Sharing.
Gilmore, Rick O; Adolph, Karen E; Millman, David S; Gordon, Andrew
2016-01-01
Open data sharing promises to accelerate the pace of discovery in the developmental and learning sciences, but significant technical, policy, and cultural barriers have limited its adoption. As a result, most research on learning and development remains shrouded in a culture of isolation. Data sharing is the rare exception (Gilmore, 2016). Many researchers who study teaching and learning in classroom, laboratory, museum, and home contexts use video as a primary source of raw research data. Unlike other measures, video captures the complexity, richness, and diversity of behavior. Moreover, because video is self-documenting, it presents significant potential for reuse. However, the potential for reuse goes largely unrealized because videos are rarely shared. Research videos contain information about participants' identities making the materials challenging to share. The large size of video files, diversity of formats, and incompatible software tools pose technical challenges. The Databrary (databrary.org) digital library enables researchers who study learning and development to store, share, stream, and annotate videos. In this article, we describe how Databrary has overcome barriers to sharing research videos and associated data and metadata. Databrary has developed solutions for respecting participants' privacy; for storing, streaming, and sharing videos; and for managing videos and associated metadata. The Databrary experience suggests ways that videos and other identifiable data collected in the context of educational research might be shared. Open data sharing enabled by Databrary can serve as a catalyst for a truly multidisciplinary science of learning.
Transforming Education Research Through Open Video Data Sharing
Gilmore, Rick O.; Adolph, Karen E.; Millman, David S.; Gordon, Andrew
2016-01-01
Open data sharing promises to accelerate the pace of discovery in the developmental and learning sciences, but significant technical, policy, and cultural barriers have limited its adoption. As a result, most research on learning and development remains shrouded in a culture of isolation. Data sharing is the rare exception (Gilmore, 2016). Many researchers who study teaching and learning in classroom, laboratory, museum, and home contexts use video as a primary source of raw research data. Unlike other measures, video captures the complexity, richness, and diversity of behavior. Moreover, because video is self-documenting, it presents significant potential for reuse. However, the potential for reuse goes largely unrealized because videos are rarely shared. Research videos contain information about participants’ identities making the materials challenging to share. The large size of video files, diversity of formats, and incompatible software tools pose technical challenges. The Databrary (databrary.org) digital library enables researchers who study learning and development to store, share, stream, and annotate videos. In this article, we describe how Databrary has overcome barriers to sharing research videos and associated data and metadata. Databrary has developed solutions for respecting participants’ privacy; for storing, streaming, and sharing videos; and for managing videos and associated metadata. The Databrary experience suggests ways that videos and other identifiable data collected in the context of educational research might be shared. Open data sharing enabled by Databrary can serve as a catalyst for a truly multidisciplinary science of learning. PMID:28042361
Self-Assembling Texts & Courses of Study.
ERIC Educational Resources Information Center
Gibson, David
This paper describes the development of an interoperable meta-database system--a system of applications using metadata--that is intended to facilitate learner-centered collaboration, access to learning resources, and the fitness of channels of information to the emerging needs of learners at both individual and group levels. Highlights include:…
Flexible Querying of Lifelong Learner Metadata
ERIC Educational Resources Information Center
Poulovassilis, A.; Selmer, P.; Wood, P. T.
2012-01-01
This paper discusses the provision of flexible querying facilities over heterogeneous data arising from lifelong learners' educational and work experiences. A key aim of such querying facilities is to allow learners to identify possible choices for their future learning and professional development by seeing what others have done. We motivate and…
Personalized Learning Path Based on Metadata Standards
ERIC Educational Resources Information Center
Colace, Francesco; De Santo, Massimo; Vento, Mi
2005-01-01
Thanks to the technological improvements of recent years, distance education represents a real alternative or support to the traditional formative processes. The Internet allows the design of contents, which are able to raise the quality of the traditional formative process. However, the amount of information students can obtain from the Internet…
Sharing Metadata: Enabling Online Information Provision.
ERIC Educational Resources Information Center
Darzentas, Jenny
This paper describes work being carried out in the fields of online education provision and library systems, beginning with a description of the current state of the art with regard to online learning environments and educational materials management. Suggestions and solutions for librarians dealing with the management of educational digital…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bent, John M.; Faibish, Sorin; Pedone, Jr., James M.
A cluster file system is provided having a plurality of distributed metadata servers with shared access to one or more shared low latency persistent key-value metadata stores. A metadata server comprises an abstract storage interface comprising a software interface module that communicates with at least one shared persistent key-value metadata store providing a key-value interface for persistent storage of key-value metadata. The software interface module provides the key-value metadata to the at least one shared persistent key-value metadata store in a key-value format. The shared persistent key-value metadata store is accessed by a plurality of metadata servers. A metadata requestmore » can be processed by a given metadata server independently of other metadata servers in the cluster file system. A distributed metadata storage environment is also disclosed that comprises a plurality of metadata servers having an abstract storage interface to at least one shared persistent key-value metadata store.« less
Life+ EnvEurope DEIMS - improving access to long-term ecosystem monitoring data in Europe
NASA Astrophysics Data System (ADS)
Kliment, Tomas; Peterseil, Johannes; Oggioni, Alessandro; Pugnetti, Alessandra; Blankman, David
2013-04-01
Long-term ecological (LTER) studies aim at detecting environmental changes and analysing its related drivers. In this respect LTER Europe provides a network of about 450 sites and platforms. However, data on various types of ecosystems and at a broad geographical scale is still not easily available. Managing data resulting from long-term observations is therefore one of the important tasks not only for an LTER site itself but also on the network level. Exchanging and sharing the information within a wider community is a crucial objective in the upcoming years. Due to the fragmented nature of long-term ecological research and monitoring (LTER) in Europe - and also on the global scale - information management has to face several challenges: distributed data sources, heterogeneous data models, heterogeneous data management solutions and the complex domain of ecosystem monitoring with regard to the resulting data. The Life+ EnvEurope project (2010-2013) provides a case study for a workflow using data from the distributed network of LTER-Europe sites. In order to enhance discovery, evaluation and access to data, the EnvEurope Drupal Ecological Information Management System (DEIMS) has been developed. This is based on the first official release of the Drupal metadata editor developed by US LTER. EnvEurope DEIMS consists of three main components: 1) Metadata editor: a web-based client interface to manage metadata of three information resource types - datasets, persons and research sites. A metadata model describing datasets based on Ecological Metadata Language (EML) was developed within the initial phase of the project. A crosswalk to the INSPIRE metadata model was implemented to convey to the currently on-going European activities. Person and research site metadata models defined within the LTER Europe were adapted for the project needs. The three metadata models are interconnected within the system in order to provide easy way to navigate the user among the related resources. 2) Discovery client: provides several search profiles for datasets, persons, research sites and external resources commonly used in the domain, e.g. Catalogue of Life , based on several search patterns ranging from simple full text search, glossary browsing to categorized faceted search. 3) Geo-Viewer: a map client that portrays boundaries and centroids of the research sites as Web Map Service (WMS) layers. Each layer provides a link to both Metadata editor and Discovery client in order to create or discover metadata describing the data collected within the individual research site. Sharing of the dataset metadata with DEIMS is ensured in two ways: XML export of individual metadata records according to the EML schema for inclusion in the international DataOne network, and periodic harvesting of metadata into GeoNetwork catalogue, thus providing catalogue service for web (CSW), which can be invoked by remote clients. The final version of DEIMS will be a pilot implementation for the information system of LTER-Europe, which should establish a common information management framework within the European ecosystem research domain and provide valuable environmental information to other European information infrastructures as SEIS, Copernicus and INSPIRE.
Building a High Performance Metadata Broker using Clojure, NoSQL and Message Queues
NASA Astrophysics Data System (ADS)
Truslove, I.; Reed, S.
2013-12-01
In practice, Earth and Space Science Informatics often relies on getting more done with less: fewer hardware resources, less IT staff, fewer lines of code. As a capacity-building exercise focused on rapid development of high-performance geoinformatics software, the National Snow and Ice Data Center (NSIDC) built a prototype metadata brokering system using a new JVM language, modern database engines and virtualized or cloud computing resources. The metadata brokering system was developed with the overarching goals of (i) demonstrating a technically viable product with as little development effort as possible, (ii) using very new yet very popular tools and technologies in order to get the most value from the least legacy-encumbered code bases, and (iii) being a high-performance system by using scalable subcomponents, and implementation patterns typically used in web architectures. We implemented the system using the Clojure programming language (an interactive, dynamic, Lisp-like JVM language), Redis (a fast in-memory key-value store) as both the data store for original XML metadata content and as the provider for the message queueing service, and ElasticSearch for its search and indexing capabilities to generate search results. On evaluating the results of the prototyping process, we believe that the technical choices did in fact allow us to do more for less, due to the expressive nature of the Clojure programming language and its easy interoperability with Java libraries, and the successful reuse or re-application of high performance products or designs. This presentation will describe the architecture of the metadata brokering system, cover the tools and techniques used, and describe lessons learned, conclusions, and potential next steps.
Metadata mapping and reuse in caBIG™
Kunz, Isaac; Lin, Ming-Chin; Frey, Lewis
2009-01-01
Background This paper proposes that interoperability across biomedical databases can be improved by utilizing a repository of Common Data Elements (CDEs), UML model class-attributes and simple lexical algorithms to facilitate the building domain models. This is examined in the context of an existing system, the National Cancer Institute (NCI)'s cancer Biomedical Informatics Grid (caBIG™). The goal is to demonstrate the deployment of open source tools that can be used to effectively map models and enable the reuse of existing information objects and CDEs in the development of new models for translational research applications. This effort is intended to help developers reuse appropriate CDEs to enable interoperability of their systems when developing within the caBIG™ framework or other frameworks that use metadata repositories. Results The Dice (di-grams) and Dynamic algorithms are compared and both algorithms have similar performance matching UML model class-attributes to CDE class object-property pairs. With algorithms used, the baselines for automatically finding the matches are reasonable for the data models examined. It suggests that automatic mapping of UML models and CDEs is feasible within the caBIG™ framework and potentially any framework that uses a metadata repository. Conclusion This work opens up the possibility of using mapping algorithms to reduce cost and time required to map local data models to a reference data model such as those used within caBIG™. This effort contributes to facilitating the development of interoperable systems within caBIG™ as well as other metadata frameworks. Such efforts are critical to address the need to develop systems to handle enormous amounts of diverse data that can be leveraged from new biomedical methodologies. PMID:19208192
Log-less metadata management on metadata server for parallel file systems.
Liao, Jianwei; Xiao, Guoqiang; Peng, Xiaoning
2014-01-01
This paper presents a novel metadata management mechanism on the metadata server (MDS) for parallel and distributed file systems. In this technique, the client file system backs up the sent metadata requests, which have been handled by the metadata server, so that the MDS does not need to log metadata changes to nonvolatile storage for achieving highly available metadata service, as well as better performance improvement in metadata processing. As the client file system backs up certain sent metadata requests in its memory, the overhead for handling these backup requests is much smaller than that brought by the metadata server, while it adopts logging or journaling to yield highly available metadata service. The experimental results show that this newly proposed mechanism can significantly improve the speed of metadata processing and render a better I/O data throughput, in contrast to conventional metadata management schemes, that is, logging or journaling on MDS. Besides, a complete metadata recovery can be achieved by replaying the backup logs cached by all involved clients, when the metadata server has crashed or gone into nonoperational state exceptionally.
Log-Less Metadata Management on Metadata Server for Parallel File Systems
Xiao, Guoqiang; Peng, Xiaoning
2014-01-01
This paper presents a novel metadata management mechanism on the metadata server (MDS) for parallel and distributed file systems. In this technique, the client file system backs up the sent metadata requests, which have been handled by the metadata server, so that the MDS does not need to log metadata changes to nonvolatile storage for achieving highly available metadata service, as well as better performance improvement in metadata processing. As the client file system backs up certain sent metadata requests in its memory, the overhead for handling these backup requests is much smaller than that brought by the metadata server, while it adopts logging or journaling to yield highly available metadata service. The experimental results show that this newly proposed mechanism can significantly improve the speed of metadata processing and render a better I/O data throughput, in contrast to conventional metadata management schemes, that is, logging or journaling on MDS. Besides, a complete metadata recovery can be achieved by replaying the backup logs cached by all involved clients, when the metadata server has crashed or gone into nonoperational state exceptionally. PMID:24892093
Digital Badges: Recognizing, Assessing, and Motivating Learners in and out of School Contexts
ERIC Educational Resources Information Center
Ian O'Byrne, W.; Schenke, Katerina; Willis, James E., III.; Hickey, Daniel T.
2015-01-01
Digital badges are web-enabled tokens of accomplishment that contain specific claims and evidence about learning and achievement along with detailed evidence supporting those claims. Badges traditionally consist of an image and relevant metadata (e.g., badge name, description, criteria, issuer, evidence, date issued, standards, and tags). This…
Metadata and Providing Access to e-Books
ERIC Educational Resources Information Center
Vasileiou, Magdalini; Rowley, Jennifer; Hartley, Richard
2013-01-01
In the very near future, students are likely to expect their universities to provide seamless access to e-books through online library catalogues and virtual learning environments. A paradigm change in terms of the format of books, and especially textbooks, which could have far-reaching impact, is on the horizon. Based on interviews with a number…
Developing a Common Metadata Model for Competencies Description
ERIC Educational Resources Information Center
Sampson, Demetrios; Karampiperis, Pythagoras; Fytros, Demetrios
2007-01-01
Competence-based approaches are frequently adopted as the key paradigm in both formal or non-formal education and training. To support the provision of competence-based learning services, it is necessary to be able to maintain a record of an individual's competences in a persistent and standard way. In this paper, we investigate potential issues…
USDA-ARS?s Scientific Manuscript database
Most efforts to harness the power of big data for ecology and environmental sciences focus on data and metadata sharing, standardization, and accuracy. However, many scientists have not accepted the data deluge as an integral part of their research because the current scientific method is not scalab...
GeoViQua: quality-aware geospatial data discovery and evaluation
NASA Astrophysics Data System (ADS)
Bigagli, L.; Papeschi, F.; Mazzetti, P.; Nativi, S.
2012-04-01
GeoViQua (QUAlity aware VIsualization for the Global Earth Observation System of Systems) is a recently started FP7 project aiming at complementing the Global Earth Observation System of Systems (GEOSS) with rigorous data quality specifications and quality-aware capabilities, in order to improve reliability in scientific studies and policy decision-making. GeoViQua main scientific and technical objective is to enhance the GEOSS Common Infrastructure (GCI) providing the user community with innovative quality-aware search and evaluation tools, which will be integrated in the GEO-Portal, as well as made available to other end-user interfaces. To this end, GeoViQua will promote the extension of the current standard metadata for geographic information with accurate and expressive quality indicators, also contributing to the definition of a quality label (GEOLabel). GeoViQua proposed solutions will be assessed in several pilot case studies covering the whole Earth Observation chain, from remote sensing acquisition to data processing, to applications in the main GEOSS Societal Benefit Areas. This work presents the preliminary results of GeoViQua Work Package 4 "Enhanced geo-search tools" (WP4), started in January 2012. Its major anticipated technical innovations are search and evaluation tools that communicate and exploit data quality information from the GCI. In particular, GeoViQua will investigate a graphical search interface featuring a coherent and meaningful aggregation of statistics and metadata summaries (e.g. in the form of tables, charts), thus enabling end users to leverage quality constraints for data discovery and evaluation. Preparatory work on WP4 requirements indicated that users need the "best" data for their purpose, implying a high degree of subjectivity in judgment. This suggests that the GeoViQua system should exploit a combination of provider-generated metadata (objective indicators such as summary statistics), system-generated metadata (contextual/tracking information such as provenance of data and metadata), and user-generated metadata (informal user comments, usage information, rating, etc.). Moreover, metadata should include sufficiently complete access information, to allow rich data visualization and propagation. The following main enabling components are currently identified within WP4: - Quality-aware access services, e.g. a quality-aware extension of the OGC Sensor Observation Service (SOS-Q) specification, to support quality constraints for sensor data publishing and access; - Quality-aware discovery services, namely a quality-aware extension of the OGC Catalog Service for the Web (CSW-Q), to cope with quality constrained search; - Quality-augmentation broker (GeoViQua Broker), to support the linking and combination of the existing GCI metadata with GeoViQua- and user-generated metadata required to support the users in selecting the "best" data for their intended use. We are currently developing prototypes of the above quality-enabled geo-search components, that will be assessed in a sensor-based pilot case study in the next months. In particular, the GeoViQua Broker will be integrated with the EuroGEOSS Broker, to implement CSW-Q and federate (either via distribution or harvesting schemes) quality-aware data sources, GeoViQua will constitute a valuable test-bed for advancing the current best practices and standards in geospatial quality representation and exploitation. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n° 265178.
NASA Astrophysics Data System (ADS)
Fazliev, A.
2009-04-01
The information and knowledge layers of information-computational system for water spectroscopy are described. Semantic metadata for all the tasks of domain information model that are the basis of the layers have been studied. The principle of semantic metadata determination and mechanisms of the usage during information systematization in molecular spectroscopy has been revealed. The software developed for the work with semantic metadata is described as well. Formation of domain model in the framework of Semantic Web is based on the use of explicit specification of its conceptualization or, in other words, its ontologies. Formation of conceptualization for molecular spectroscopy was described in Refs. 1, 2. In these works two chains of task are selected for zeroth approximation for knowledge domain description. These are direct tasks chain and inverse tasks chain. Solution schemes of these tasks defined approximation of data layer for knowledge domain conceptualization. Spectroscopy tasks solutions properties lead to a step-by-step extension of molecular spectroscopy conceptualization. Information layer of information system corresponds to this extension. An advantage of molecular spectroscopy model designed in a form of tasks chain is actualized in the fact that one can explicitly define data and metadata at each step of solution of these molecular spectroscopy chain tasks. Metadata structure (tasks solutions properties) in knowledge domain also has form of a chain in which input data and metadata of the previous task become metadata of the following tasks. The term metadata is used in its narrow sense: metadata are the properties of spectroscopy tasks solutions. Semantic metadata represented with the help of OWL 3 are formed automatically and they are individuals of classes (A-box). Unification of T-box and A-box is an ontology that can be processed with the help of inference engine. In this work we analyzed the formation of individuals of molecular spectroscopy applied ontologies as well as the software used for their creation by means of OWL DL language. The results of this work are presented in a form of an information layer and a knowledge layer in W@DIS information system 4. 1 FORMATION OF INDIVIDUALS OF WATER SPECTROSCOPY APPLIED ONTOLOGY Applied tasks ontology contains explicit description of input an output data of physical tasks solved in two chains of molecular spectroscopy tasks. Besides physical concepts, related to spectroscopy tasks solutions, an information source, which is a key concept of knowledge domain information model, is also used. Each solution of knowledge domain task is linked to the information source which contains a reference on published task solution, molecule and task solution properties. Each information source allows us to identify a certain knowledge domain task solution contained in the information system. Water spectroscopy applied ontology classes are formed on the basis of molecular spectroscopy concepts taxonomy. They are defined by constrains on properties of the selected conceptualization. Extension of applied ontology in W@DIS information system is actualized according to two scenarios. Individuals (ontology facts or axioms) formation is actualized during the task solution upload in the information system. Ontology user operation that implies molecular spectroscopy taxonomy and individuals is performed solely by the user. For this purpose Protege ontology editor was used. For the formation, processing and visualization of knowledge domain tasks individuals a software was designed and implemented. Method of individual formation determines the sequence of steps of created ontology individuals' generation. Tasks solutions properties (metadata) have qualitative and quantitative values. Qualitative metadata are regarded as metadata describing qualitative side of a task such as solution method or other information that can be explicitly specified by object properties of OWL DL language. Quantitative metadata are metadata that describe quantitative properties of task solution such as minimal and maximal data value or other information that can be explicitly obtained by programmed algorithmic operations. These metadata are related to DatatypeProperty properties of OWL specification language Quantitative metadata can be obtained automatically during data upload into information system. Since ObjectProperty values are objects, processing of qualitative metadata requires logical constraints. In case of the task solved in W@DIS ICS qualitative metadata can be formed automatically (for example in spectral functions calculation task). The used methods of translation of qualitative metadata into quantitative is characterized as roughened representation of knowledge in knowledge domain. The existence of two ways of data obtainment is a key moment in the formation of applied ontology of molecular spectroscopy task. experimental method (metadata for experimental data contain description of equipment, experiment conditions and so on) on the initial stage and inverse task solution on the following stages; calculation method (metadata for calculation data are closely related to the metadata used for the description of physical and mathematical models of molecular spectroscopy) 2 SOFTWARE FOR ONTOLOGY OPERATION Data collection in water spectroscopy information system is organized in a form of workflow that contains such operations as information source creation, entry of bibliographic data on publications, formation of uploaded data schema an so on. Metadata are generated in information source as well. Two methods are used for their formation: automatic metadata generation and manual metadata generation (performed by user). Software implementation of support of actions related to metadata formation is performed by META+ module. Functions of META+ module can be divided into two groups. The first groups contains the functions necessary to software developer while the second one the functions necessary to a user of the information system. META+ module functions necessary to the developer are: 1. creation of taxonomy (T-boxes) of applied ontology classes of knowledge domain tasks; 2. creation of instances of task classes; 3. creation of data schemes of tasks in a form of an XML-pattern and based on XML-syntax. XML-pattern is developed for instances generator and created according to certain rules imposed on software generator implementation. 4. implementation of metadata values calculation algorithms; 5. creation of a request interface and additional knowledge processing function for the solution of these task; 6. unification of the created functions and interfaces into one information system The following sequence is universal for the generation of task classes' individuals that form chains. Special interfaces for user operations management are designed for software developer in META+ module. There are means for qualitative metadata values updating during data reuploading to information source. The list of functions necessary to end user contains: - data sets visualization and editing, taking into account their metadata, e.g.: display of unique number of bands in transitions for a certain data source; - export of OWL/RDF models from information system to the environment in XML-syntax; - visualization of instances of classes of applied ontology tasks on molecular spectroscopy; - import of OWL/RDF models into the information system and their integration with domain vocabulary; - formation of additional knowledge of knowledge domain for the construction of ontological instances of task classes using GTML-formats and their processing; - formation of additional knowledge in knowledge domain for the construction of instances of task classes, using software algorithm for data sets processing; - function of semantic search implementation using an interface that formulates questions in a form of related triplets in order for getting an adequate answer. 3 STRUCTURE OF META+ MODULE META+ software module that provides the above functions contains the following components: - a knowledge base that stores semantic metadata and taxonomies of information system; - software libraries POWL and RAP 5 created by third-party developer and providing access to ontological storage; - function classes and libraries that form the core of the module and perform the tasks of formation, storage and visualization of classes instances; - configuration files and module patterns that allow one to adjust and organize operation of different functional blocks; META+ module also contains scripts and patterns implemented according to the rules of W@DIS information system development environment. - scripts for interaction with environment by means of the software core of information system. These scripts provide organizing web-oriented interactive communication; - patterns for the formation of functionality visualization realized by the scripts Software core of scientific information-computational system W@DIS is created with the help of MVC (Model - View - Controller) design pattern that allows us to separate logic of application from its representation. It realizes the interaction of three logical components, actualizing interactivity with the environment via Web and performing its preprocessing. Functions of «Controller» logical component are realized with the help of scripts designed according to the rules imposed by software core of the information system. Each script represents a definite object-oriented class with obligatory class method of script initiation called "start". Functions of actualization of domain application operation results representation (i.e. "View" component) are sets of HTML-patterns that allow one to visualize the results of domain applications operation with the help of additional constructions processed by software core of the system. Besides the interaction with the software core of the scientific information system this module also deals with configuration files of software core and its database. Such organization of work provides closer integration with software core and deeper and more adequate connection in operating system support. 4 CONCLUSION In this work the problems of semantic metadata creation in information system oriented on information representation in the area of molecular spectroscopy have been discussed. The described method of semantic metadata and functions formation as well as realization and structure of META+ module have been described. Architecture of META+ module is closely related to the existing software of "Molecular spectroscopy" scientific information system. Realization of the module is performed with the use of modern approaches to Web-oriented applications development. It uses the existing applied interfaces. The developed software allows us to: - perform automatic metadata annotation of calculated tasks solutions directly in the information system; - perform automatic annotation of metadata on the solution of tasks on task solution results uploading outside the information system forming an instance of the solved task on the basis of entry data; - use ontological instances of task solution for identification of data in information tasks of viewing, comparison and search solved by information system; - export applied tasks ontologies for the operation with them by external means; - solve the task of semantic search according to the pattern and using question-answer type interface. 5 ACKNOWLEDGEMENT The authors are grateful to RFBR for the financial support of development of distributed information system for molecular spectroscopy. REFERENCES A.D.Bykov, A.Z. Fazliev, N.N.Filippov, A.V. Kozodoev, A.I.Privezentsev, L.N.Sinitsa, M.V.Tonkov and M.Yu.Tretyakov, Distributed information system on atmospheric spectroscopy // Geophysical Research Abstracts, SRef-ID: 1607-7962/gra/EGU2007-A-01906, 2007, v. 9, p. 01906. A.I.Prevezentsev, A.Z. Fazliev Applied task ontology for molecular spectroscopy information resources systematization. The Proceedings of 9th Russian scientific conference "Electronic libraries: advanced methods and technologies, electronic collections" - RCDL'2007, Pereslavl Zalesskii, 2007, part.1, 2007, P.201-210. OWL Web Ontology Language Semantics and Abstract Syntax, W3C Recommendation 10 February 2004, http://www.w3.org/TR/2004/REC-owl-semantics-20040210/ W@DIS information system, http://wadis.saga.iao.ru RAP library, http://www4.wiwiss.fu-berlin.de/bizer/rdfapi/.
Data Discovery of Big and Diverse Climate Change Datasets - Options, Practices and Challenges
NASA Astrophysics Data System (ADS)
Palanisamy, G.; Boden, T.; McCord, R. A.; Frame, M. T.
2013-12-01
Developing data search tools is a very common, but often confusing, task for most of the data intensive scientific projects. These search interfaces need to be continually improved to handle the ever increasing diversity and volume of data collections. There are many aspects which determine the type of search tool a project needs to provide to their user community. These include: number of datasets, amount and consistency of discovery metadata, ancillary information such as availability of quality information and provenance, and availability of similar datasets from other distributed sources. Environmental Data Science and Systems (EDSS) group within the Environmental Science Division at the Oak Ridge National Laboratory has a long history of successfully managing diverse and big observational datasets for various scientific programs via various data centers such as DOE's Atmospheric Radiation Measurement Program (ARM), DOE's Carbon Dioxide Information and Analysis Center (CDIAC), USGS's Core Science Analytics and Synthesis (CSAS) metadata Clearinghouse and NASA's Distributed Active Archive Center (ORNL DAAC). This talk will showcase some of the recent developments for improving the data discovery within these centers The DOE ARM program recently developed a data discovery tool which allows users to search and discover over 4000 observational datasets. These datasets are key to the research efforts related to global climate change. The ARM discovery tool features many new functions such as filtered and faceted search logic, multi-pass data selection, filtering data based on data quality, graphical views of data quality and availability, direct access to data quality reports, and data plots. The ARM Archive also provides discovery metadata to other broader metadata clearinghouses such as ESGF, IASOA, and GOS. In addition to the new interface, ARM is also currently working on providing DOI metadata records to publishers such as Thomson Reuters and Elsevier. The ARM program also provides a standards based online metadata editor (OME) for PIs to submit their data to the ARM Data Archive. USGS CSAS metadata Clearinghouse aggregates metadata records from several USGS projects and other partner organizations. The Clearinghouse allows users to search and discover over 100,000 biological and ecological datasets from a single web portal. The Clearinghouse also enabled some new data discovery functions such as enhanced geo-spatial searches based on land and ocean classifications, metadata completeness rankings, data linkage via digital object identifiers (DOIs), and semantically enhanced keyword searches. The Clearinghouse also currently working on enabling a dashboard which allows the data providers to look at various statistics such as number their records accessed via the Clearinghouse, most popular keywords, metadata quality report and DOI creation service. The Clearinghouse also publishes metadata records to broader portals such as NSF DataONE and Data.gov. The author will also present how these capabilities are currently reused by the recent and upcoming data centers such as DOE's NGEE-Arctic project. References: [1] Devarakonda, R., Palanisamy, G., Wilson, B. E., & Green, J. M. (2010). Mercury: reusable metadata management, data discovery and access system. Earth Science Informatics, 3(1-2), 87-94. [2]Devarakonda, R., Shrestha, B., Palanisamy, G., Hook, L., Killeffer, T., Krassovski, M., ... & Frame, M. (2014, October). OME: Tool for generating and managing metadata to handle BigData. In BigData Conference (pp. 8-10).
Štourač, Petr; Komenda, Martin; Harazim, Hana; Kosinová, Martina; Gregor, Jakub; Hůlek, Richard; Smékalová, Olga; Křikava, Ivo; Štoudek, Roman; Dušek, Ladislav
2013-01-01
Background Medical Faculties Network (MEFANET) has established itself as the authority for setting standards for medical educators in the Czech Republic and Slovakia, 2 independent countries with similar languages that once comprised a federation and that still retain the same curricular structure for medical education. One of the basic goals of the network is to advance medical teaching and learning with the use of modern information and communication technologies. Objective We present the education portal AKUTNE.CZ as an important part of the MEFANET’s content. Our focus is primarily on simulation-based tools for teaching and learning acute medicine issues. Methods Three fundamental elements of the MEFANET e-publishing system are described: (1) medical disciplines linker, (2) authentication/authorization framework, and (3) multidimensional quality assessment. A new set of tools for technology-enhanced learning have been introduced recently: Sandbox (works in progress), WikiLectures (collaborative content authoring), Moodle-MEFANET (central learning management system), and Serious Games (virtual casuistics and interactive algorithms). The latest development in MEFANET is designed for indexing metadata about simulation-based learning objects, also known as electronic virtual patients or virtual clinical cases. The simulations assume the form of interactive algorithms for teaching and learning acute medicine. An anonymous questionnaire of 10 items was used to explore students’ attitudes and interests in using the interactive algorithms as part of their medical or health care studies. Data collection was conducted over 10 days in February 2013. Results In total, 25 interactive algorithms in the Czech and English languages have been developed and published on the AKUTNE.CZ education portal to allow the users to test and improve their knowledge and skills in the field of acute medicine. In the feedback survey, 62 participants completed the online questionnaire (13.5%) from the total 460 addressed. Positive attitudes toward the interactive algorithms outnumbered negative trends. Conclusions The peer-reviewed algorithms were used for conducting problem-based learning sessions in general medicine (first aid, anesthesiology and pain management, emergency medicine) and in nursing (emergency medicine for midwives, obstetric analgesia, and anesthesia for midwifes). The feedback from the survey suggests that the students found the interactive algorithms as effective learning tools, facilitating enhanced knowledge in the field of acute medicine. The interactive algorithms, as a software platform, are open to academic use worldwide. The existing algorithms, in the form of simulation-based learning objects, can be incorporated into any educational website (subject to the approval of the authors). PMID:23835586
Metadata for Web Resources: How Metadata Works on the Web.
ERIC Educational Resources Information Center
Dillon, Martin
This paper discusses bibliographic control of knowledge resources on the World Wide Web. The first section sets the context of the inquiry. The second section covers the following topics related to metadata: (1) definitions of metadata, including metadata as tags and as descriptors; (2) metadata on the Web, including general metadata systems,…
Metadata Dictionary Database: A Proposed Tool for Academic Library Metadata Management
ERIC Educational Resources Information Center
Southwick, Silvia B.; Lampert, Cory
2011-01-01
This article proposes a metadata dictionary (MDD) be used as a tool for metadata management. The MDD is a repository of critical data necessary for managing metadata to create "shareable" digital collections. An operational definition of metadata management is provided. The authors explore activities involved in metadata management in…
Biomedical Informatics on the Cloud: A Treasure Hunt for Advancing Cardiovascular Medicine.
Ping, Peipei; Hermjakob, Henning; Polson, Jennifer S; Benos, Panagiotis V; Wang, Wei
2018-04-27
In the digital age of cardiovascular medicine, the rate of biomedical discovery can be greatly accelerated by the guidance and resources required to unearth potential collections of knowledge. A unified computational platform leverages metadata to not only provide direction but also empower researchers to mine a wealth of biomedical information and forge novel mechanistic insights. This review takes the opportunity to present an overview of the cloud-based computational environment, including the functional roles of metadata, the architecture schema of indexing and search, and the practical scenarios of machine learning-supported molecular signature extraction. By introducing several established resources and state-of-the-art workflows, we share with our readers a broadly defined informatics framework to phenotype cardiovascular health and disease. © 2018 American Heart Association, Inc.
NASA Astrophysics Data System (ADS)
Peckham, S. D.; Kelbert, A.; Rudan, S.; Stoica, M.
2016-12-01
Standardized metadata for models is the key to reliable and greatly simplified coupling in model coupling frameworks like CSDMS (Community Surface Dynamics Modeling System). This model metadata also helps model users to understand the important details that underpin computational models and to compare the capabilities of different models. These details include simplifying assumptions on the physics, governing equations and the numerical methods used to solve them, discretization of space (the grid) and time (the time-stepping scheme), state variables (input or output), model configuration parameters. This kind of metadata provides a "deep description" of a computational model that goes well beyond other types of metadata (e.g. author, purpose, scientific domain, programming language, digital rights, provenance, execution) and captures the science that underpins a model. While having this kind of standardized metadata for each model in a repository opens up a wide range of exciting possibilities, it is difficult to collect this information and a carefully conceived "data model" or schema is needed to store it. Automated harvesting and scraping methods can provide some useful information, but they often result in metadata that is inaccurate or incomplete, and this is not sufficient to enable the desired capabilities. In order to address this problem, we have developed a browser-based tool called the MCM Tool (Model Component Metadata) which runs on notebooks, tablets and smart phones. This tool was partially inspired by the TurboTax software, which greatly simplifies the necessary task of preparing tax documents. It allows a model developer or advanced user to provide a standardized, deep description of a computational geoscience model, including hydrologic models. Under the hood, the tool uses a new ontology for models built on the CSDMS Standard Names, expressed as a collection of RDF files (Resource Description Framework). This ontology is based on core concepts such as variables, objects, quantities, operations, processes and assumptions. The purpose of this talk is to present details of the new ontology and to then demonstrate the MCM Tool for several hydrologic models.
Fast and Accurate Metadata Authoring Using Ontology-Based Recommendations.
Martínez-Romero, Marcos; O'Connor, Martin J; Shankar, Ravi D; Panahiazar, Maryam; Willrett, Debra; Egyedi, Attila L; Gevaert, Olivier; Graybeal, John; Musen, Mark A
2017-01-01
In biomedicine, high-quality metadata are crucial for finding experimental datasets, for understanding how experiments were performed, and for reproducing those experiments. Despite the recent focus on metadata, the quality of metadata available in public repositories continues to be extremely poor. A key difficulty is that the typical metadata acquisition process is time-consuming and error prone, with weak or nonexistent support for linking metadata to ontologies. There is a pressing need for methods and tools to speed up the metadata acquisition process and to increase the quality of metadata that are entered. In this paper, we describe a methodology and set of associated tools that we developed to address this challenge. A core component of this approach is a value recommendation framework that uses analysis of previously entered metadata and ontology-based metadata specifications to help users rapidly and accurately enter their metadata. We performed an initial evaluation of this approach using metadata from a public metadata repository.
Fast and Accurate Metadata Authoring Using Ontology-Based Recommendations
Martínez-Romero, Marcos; O’Connor, Martin J.; Shankar, Ravi D.; Panahiazar, Maryam; Willrett, Debra; Egyedi, Attila L.; Gevaert, Olivier; Graybeal, John; Musen, Mark A.
2017-01-01
In biomedicine, high-quality metadata are crucial for finding experimental datasets, for understanding how experiments were performed, and for reproducing those experiments. Despite the recent focus on metadata, the quality of metadata available in public repositories continues to be extremely poor. A key difficulty is that the typical metadata acquisition process is time-consuming and error prone, with weak or nonexistent support for linking metadata to ontologies. There is a pressing need for methods and tools to speed up the metadata acquisition process and to increase the quality of metadata that are entered. In this paper, we describe a methodology and set of associated tools that we developed to address this challenge. A core component of this approach is a value recommendation framework that uses analysis of previously entered metadata and ontology-based metadata specifications to help users rapidly and accurately enter their metadata. We performed an initial evaluation of this approach using metadata from a public metadata repository. PMID:29854196
Harvesting NASA's Common Metadata Repository (CMR)
NASA Technical Reports Server (NTRS)
Shum, Dana; Durbin, Chris; Norton, James; Mitchell, Andrew
2017-01-01
As part of NASA's Earth Observing System Data and Information System (EOSDIS), the Common Metadata Repository (CMR) stores metadata for over 30,000 datasets from both NASA and international providers along with over 300M granules. This metadata enables sub-second discovery and facilitates data access. While the CMR offers a robust temporal, spatial and keyword search functionality to the general public and international community, it is sometimes more desirable for international partners to harvest the CMR metadata and merge the CMR metadata into a partner's existing metadata repository. This poster will focus on best practices to follow when harvesting CMR metadata to ensure that any changes made to the CMR can also be updated in a partner's own repository. Additionally, since each partner has distinct metadata formats they are able to consume, the best practices will also include guidance on retrieving the metadata in the desired metadata format using CMR's Unified Metadata Model translation software.
Harvesting NASA's Common Metadata Repository
NASA Astrophysics Data System (ADS)
Shum, D.; Mitchell, A. E.; Durbin, C.; Norton, J.
2017-12-01
As part of NASA's Earth Observing System Data and Information System (EOSDIS), the Common Metadata Repository (CMR) stores metadata for over 30,000 datasets from both NASA and international providers along with over 300M granules. This metadata enables sub-second discovery and facilitates data access. While the CMR offers a robust temporal, spatial and keyword search functionality to the general public and international community, it is sometimes more desirable for international partners to harvest the CMR metadata and merge the CMR metadata into a partner's existing metadata repository. This poster will focus on best practices to follow when harvesting CMR metadata to ensure that any changes made to the CMR can also be updated in a partner's own repository. Additionally, since each partner has distinct metadata formats they are able to consume, the best practices will also include guidance on retrieving the metadata in the desired metadata format using CMR's Unified Metadata Model translation software.
Informatics in radiology: use of CouchDB for document-based storage of DICOM objects.
Rascovsky, Simón J; Delgado, Jorge A; Sanz, Alexander; Calvo, Víctor D; Castrillón, Gabriel
2012-01-01
Picture archiving and communication systems traditionally have depended on schema-based Structured Query Language (SQL) databases for imaging data management. To optimize database size and performance, many such systems store a reduced set of Digital Imaging and Communications in Medicine (DICOM) metadata, discarding informational content that might be needed in the future. As an alternative to traditional database systems, document-based key-value stores recently have gained popularity. These systems store documents containing key-value pairs that facilitate data searches without predefined schemas. Document-based key-value stores are especially suited to archive DICOM objects because DICOM metadata are highly heterogeneous collections of tag-value pairs conveying specific information about imaging modalities, acquisition protocols, and vendor-supported postprocessing options. The authors used an open-source document-based database management system (Apache CouchDB) to create and test two such databases; CouchDB was selected for its overall ease of use, capability for managing attachments, and reliance on HTTP and Representational State Transfer standards for accessing and retrieving data. A large database was created first in which the DICOM metadata from 5880 anonymized magnetic resonance imaging studies (1,949,753 images) were loaded by using a Ruby script. To provide the usual DICOM query functionality, several predefined "views" (standard queries) were created by using JavaScript. For performance comparison, the same queries were executed in both the CouchDB database and a SQL-based DICOM archive. The capabilities of CouchDB for attachment management and database replication were separately assessed in tests of a similar, smaller database. Results showed that CouchDB allowed efficient storage and interrogation of all DICOM objects; with the use of information retrieval algorithms such as map-reduce, all the DICOM metadata stored in the large database were searchable with only a minimal increase in retrieval time over that with the traditional database management system. Results also indicated possible uses for document-based databases in data mining applications such as dose monitoring, quality assurance, and protocol optimization. RSNA, 2012
Simplified Metadata Curation via the Metadata Management Tool
NASA Astrophysics Data System (ADS)
Shum, D.; Pilone, D.
2015-12-01
The Metadata Management Tool (MMT) is the newest capability developed as part of NASA Earth Observing System Data and Information System's (EOSDIS) efforts to simplify metadata creation and improve metadata quality. The MMT was developed via an agile methodology, taking into account inputs from GCMD's science coordinators and other end-users. In its initial release, the MMT uses the Unified Metadata Model for Collections (UMM-C) to allow metadata providers to easily create and update collection records in the ISO-19115 format. Through a simplified UI experience, metadata curators can create and edit collections without full knowledge of the NASA Best Practices implementation of ISO-19115 format, while still generating compliant metadata. More experienced users are also able to access raw metadata to build more complex records as needed. In future releases, the MMT will build upon recent work done in the community to assess metadata quality and compliance with a variety of standards through application of metadata rubrics. The tool will provide users with clear guidance as to how to easily change their metadata in order to improve their quality and compliance. Through these features, the MMT allows data providers to create and maintain compliant and high quality metadata in a short amount of time.
Enriched Video Semantic Metadata: Authorization, Integration, and Presentation.
ERIC Educational Resources Information Center
Mu, Xiangming; Marchionini, Gary
2003-01-01
Presents an enriched video metadata framework including video authorization using the Video Annotation and Summarization Tool (VAST)-a video metadata authorization system that integrates both semantic and visual metadata-- metadata integration, and user level applications. Results demonstrated that the enriched metadata were seamlessly…
An Improved Botanical Search Application for Middle-and High-School Students
ERIC Educational Resources Information Center
Kajiyama, Tomoko
2016-01-01
A previously reported botanical data retrieval application has been improved to make it better suited for use in middle-and high-school science classes. This search interface is ring-structured and treats multi-faceted metadata intuitively, enabling students not only to search for plant names but also to learn about the morphological features and…
NASA Astrophysics Data System (ADS)
Galbraith, N. R.; Graybeal, J.; Bermudez, L. E.; Wright, D.
2005-12-01
The Marine Metadata Interoperability (MMI) initiative promotes the exchange, integration and use of marine data through enhanced data publishing, discovery, documentation and accessibility. The project, operating since late 2004, presents several cultural organizational challenges because of the diversity of participants: scientists, technical experts, and data managers from around the world, all working in organizations with different corporate cultures, funding structures, and systems of decision-making. MMI provides educational resources at several levels. For instance, short introductions to metadata concepts are available, as well as guides and "cookbooks" for the quick and efficient preparation of marine metadata. For those who are building major marine data systems, including ocean-observing capabilities, there are training materials, marine metadata content examples, and resources for mapping elements between different metadata standards. The MMI also provides examples of good metadata practices in existing data systems, including the EU's Marine XML project, and functioning ocean/coastal clearinghouses and atlases developed by MMI team members. Communication tools that help build community: 1) Website, used to introduce the initiative to new visitors, and to provide in-depth guidance and resources to members and visitors. The site is built using Plone, an open source web content management system. Plone allows the site to serve as a wiki, to which every user can contribute material. This keeps the membership engaged and spreads the responsibility for the tasks of updating and expanding the site. 2) Email-lists, to engage the broad ocean sciences community. The discussion forums "news," "ask," and "site-help" are available for receiving regular updates on MMI activities, seeking advice or support on projects and standards, or for assistance with using the MMI site. Internal email lists are provided for the Technical Team, the Steering Committee and Executive Committee, and for several content-centered teams. These lists help keep committee members connected, and have been very successful in building consensus and momentum. 3) Regularly scheduled telecons, to provide the chance for interaction between members without the need to physically attend meetings. Both the steering committee and the technical team convene via phone every month. Discussions are guided by agendas published in advance, and minutes are kept on-line for reference. These telecons have been an important tool in moving the MMI project forward; they give members an opportunity for informal discussion and provide a timeframe for accomplishing tasks. 4) Workshops, to make progress towards community agreement, such as the technical workshop "Advancing Domain Vocabularies" August 9-11, 2005, in Boulder, Colorado, where featured domain and metadata experts developed mappings between existing marine metadata vocabularies. Most of the work of the meeting was performed in six small, carefully organized breakout teams, oriented around specific domains. 5) Calendar of events, to keep update the users and where any event related to marine metadata and interoperability can be posted. 6) Specific tools to reach agreements among distributed communities. For example, we developed a tool called Vocabulary Integration Environment (VINE), that allows formalized agreements of mappings across different vocabularies.
Exploring Cultural Heritage Resources in a 3d Collaborative Environment
NASA Astrophysics Data System (ADS)
Respaldiza, A.; Wachowicz, M.; Vázquez Hoehne, A.
2012-06-01
Cultural heritage is a complex and diverse concept, which brings together a wide domain of information. Resources linked to a cultural heritage site may consist of physical artefacts, books, works of art, pictures, historical maps, aerial photographs, archaeological surveys and 3D models. Moreover, all these resources are listed and described by a set of a variety of metadata specifications that allow their online search and consultation on the most basic characteristics of them. Some examples include Norma ISO 19115, Dublin Core, AAT, CDWA, CCO, DACS, MARC, MoReq, MODS, MuseumDat, TGN, SPECTRUM, VRA Core and Z39.50. Gateways are in place to fit in these metadata standards into those used in a SDI (ISO 19115 or INSPIRE), but substantial work still remains to be done for the complete incorporation of cultural heritage information. Therefore, the aim of this paper is to demonstrate how the complexity of cultural heritage resources can be dealt with by a visual exploration of their metadata within a 3D collaborative environment. The 3D collaborative environments are promising tools that represent the new frontier of our capacity of learning, understanding, communicating and transmitting culture.
GeoSearch: A lightweight broking middleware for geospatial resources discovery
NASA Astrophysics Data System (ADS)
Gui, Z.; Yang, C.; Liu, K.; Xia, J.
2012-12-01
With petabytes of geodata, thousands of geospatial web services available over the Internet, it is critical to support geoscience research and applications by finding the best-fit geospatial resources from the massive and heterogeneous resources. Past decades' developments witnessed the operation of many service components to facilitate geospatial resource management and discovery. However, efficient and accurate geospatial resource discovery is still a big challenge due to the following reasons: 1)The entry barriers (also called "learning curves") hinder the usability of discovery services to end users. Different portals and catalogues always adopt various access protocols, metadata formats and GUI styles to organize, present and publish metadata. It is hard for end users to learn all these technical details and differences. 2)The cost for federating heterogeneous services is high. To provide sufficient resources and facilitate data discovery, many registries adopt periodic harvesting mechanism to retrieve metadata from other federated catalogues. These time-consuming processes lead to network and storage burdens, data redundancy, and also the overhead of maintaining data consistency. 3)The heterogeneous semantics issues in data discovery. Since the keyword matching is still the primary search method in many operational discovery services, the search accuracy (precision and recall) is hard to guarantee. Semantic technologies (such as semantic reasoning and similarity evaluation) offer a solution to solve these issues. However, integrating semantic technologies with existing service is challenging due to the expandability limitations on the service frameworks and metadata templates. 4)The capabilities to help users make final selection are inadequate. Most of the existing search portals lack intuitive and diverse information visualization methods and functions (sort, filter) to present, explore and analyze search results. Furthermore, the presentation of the value-added additional information (such as, service quality and user feedback), which conveys important decision supporting information, is missing. To address these issues, we prototyped a distributed search engine, GeoSearch, based on brokering middleware framework to search, integrate and visualize heterogeneous geospatial resources. Specifically, 1) A lightweight discover broker is developed to conduct distributed search. The broker retrieves metadata records for geospatial resources and additional information from dispersed services (portals and catalogues) and other systems on the fly. 2) A quality monitoring and evaluation broker (i.e., QoS Checker) is developed and integrated to provide quality information for geospatial web services. 3) The semantic assisted search and relevance evaluation functions are implemented by loosely interoperating with ESIP Testbed component. 4) Sophisticated information and data visualization functionalities and tools are assembled to improve user experience and assist resource selection.
Assessing Metadata Quality of a Federally Sponsored Health Data Repository.
Marc, David T; Beattie, James; Herasevich, Vitaly; Gatewood, Laël; Zhang, Rui
2016-01-01
The U.S. Federal Government developed HealthData.gov to disseminate healthcare datasets to the public. Metadata is provided for each datasets and is the sole source of information to find and retrieve data. This study employed automated quality assessments of the HealthData.gov metadata published from 2012 to 2014 to measure completeness, accuracy, and consistency of applying standards. The results demonstrated that metadata published in earlier years had lower completeness, accuracy, and consistency. Also, metadata that underwent modifications following their original creation were of higher quality. HealthData.gov did not uniformly apply Dublin Core Metadata Initiative to the metadata, which is a widely accepted metadata standard. These findings suggested that the HealthData.gov metadata suffered from quality issues, particularly related to information that wasn't frequently updated. The results supported the need for policies to standardize metadata and contributed to the development of automated measures of metadata quality.
Assessing Metadata Quality of a Federally Sponsored Health Data Repository
Marc, David T.; Beattie, James; Herasevich, Vitaly; Gatewood, Laël; Zhang, Rui
2016-01-01
The U.S. Federal Government developed HealthData.gov to disseminate healthcare datasets to the public. Metadata is provided for each datasets and is the sole source of information to find and retrieve data. This study employed automated quality assessments of the HealthData.gov metadata published from 2012 to 2014 to measure completeness, accuracy, and consistency of applying standards. The results demonstrated that metadata published in earlier years had lower completeness, accuracy, and consistency. Also, metadata that underwent modifications following their original creation were of higher quality. HealthData.gov did not uniformly apply Dublin Core Metadata Initiative to the metadata, which is a widely accepted metadata standard. These findings suggested that the HealthData.gov metadata suffered from quality issues, particularly related to information that wasn’t frequently updated. The results supported the need for policies to standardize metadata and contributed to the development of automated measures of metadata quality. PMID:28269883
Air Quality uFIND: User-oriented Tool Set for Air Quality Data Discovery and Access
NASA Astrophysics Data System (ADS)
Hoijarvi, K.; Robinson, E. M.; Husar, R. B.; Falke, S. R.; Schultz, M. G.; Keating, T. J.
2012-12-01
Historically, there have been major impediments to seamless and effective data usage encountered by both data providers and users. Over the last five years, the international Air Quality (AQ) Community has worked through forums such as the Group on Earth Observations AQ Community of Practice, the ESIP AQ Working Group, and the Task Force on Hemispheric Transport of Air Pollution to converge on data format standards (e.g., netCDF), data access standards (e.g., Open Geospatial Consortium Web Coverage Services), metadata standards (e.g., ISO 19115), as well as other conventions (e.g., CF Naming Convention) in order to build an Air Quality Data Network. The centerpiece of the AQ Data Network is the web service-based tool set: user-oriented Filtering and Identification of Networked Data. The purpose of uFIND is to provide rich and powerful facilities for the user to: a) discover and choose a desired dataset by navigation through the multi-dimensional metadata space using faceted search, b) seamlessly access and browse datasets, and c) use uFINDs facilities as a web service for mashups with other AQ applications and portals. In a user-centric information system such as uFIND, the user experience is improved by metadata that includes the general fields for discovery as well as community-specific metadata to narrow the search beyond space, time and generic keyword searches. However, even with the community-specific additions, the ISO 19115 records were formed in compliance with the standard, so that other standards-based search interface could leverage this additional information. To identify the fields necessary for metadata discovery we started with the ISO 19115 Core Metadata fields and fields that were needed for a Catalog Service for the Web (CSW) Record. This fulfilled two goals - one to create valid ISO 19115 records and the other to be able to retrieve the records through a Catalog Service for the Web query. Beyond the required set of fields, the AQ Community added additional fields using a combination of keywords and ISO 19115 fields. These extensions allow discovery by measurement platform or observed phenomena. Beyond discovery metadata, the AQ records include service identification objects that allow standards-based clients, such as some brokers, to access the data found via OGC WCS or WMS data access protocols. uFIND, is one such smart client, this combination of discovery and access metadata allows the user to preview each registered dataset through spatial and temporal views; observe the data access and usage pattern and also find links to dataset-specific metadata directly in uFIND. The AQ data providers also benefit from this architecture since their data products are easier to find and re-use, enhancing the relevance and importance of their products. Finally, the earth science community at large benefits from the Service Oriented Architecture of uFIND, since it is a service itself and allows service-based interfacing with providers and users of the metadata, allowing uFIND facets to be further refined for a particular AQ application or completely repurposed for other Earth Science domains that use the same set of data access and metadata standards.
Classification of Twitter Users Who Tweet About E-Cigarettes
Miano, Thomas; Chew, Robert; Eggers, Matthew; Nonnemaker, James
2017-01-01
Background Despite concerns about their health risks, e‑cigarettes have gained popularity in recent years. Concurrent with the recent increase in e‑cigarette use, social media sites such as Twitter have become a common platform for sharing information about e-cigarettes and to promote marketing of e‑cigarettes. Monitoring the trends in e‑cigarette–related social media activity requires timely assessment of the content of posts and the types of users generating the content. However, little is known about the diversity of the types of users responsible for generating e‑cigarette–related content on Twitter. Objective The aim of this study was to demonstrate a novel methodology for automatically classifying Twitter users who tweet about e‑cigarette–related topics into distinct categories. Methods We collected approximately 11.5 million e‑cigarette–related tweets posted between November 2014 and October 2016 and obtained a random sample of Twitter users who tweeted about e‑cigarettes. Trained human coders examined the handles’ profiles and manually categorized each as one of the following user types: individual (n=2168), vaper enthusiast (n=334), informed agency (n=622), marketer (n=752), and spammer (n=1021). Next, the Twitter metadata as well as a sample of tweets for each labeled user were gathered, and features that reflect users’ metadata and tweeting behavior were analyzed. Finally, multiple machine learning algorithms were tested to identify a model with the best performance in classifying user types. Results Using a classification model that included metadata and features associated with tweeting behavior, we were able to predict with relatively high accuracy five different types of Twitter users that tweet about e‑cigarettes (average F1 score=83.3%). Accuracy varied by user type, with F1 scores of individuals, informed agencies, marketers, spammers, and vaper enthusiasts being 91.1%, 84.4%, 81.2%, 79.5%, and 47.1%, respectively. Vaper enthusiasts were the most challenging user type to predict accurately and were commonly misclassified as marketers. The inclusion of additional tweet-derived features that capture tweeting behavior was found to significantly improve the model performance—an overall F1 score gain of 10.6%—beyond metadata features alone. Conclusions This study provides a method for classifying five different types of users who tweet about e‑cigarettes. Our model achieved high levels of classification performance for most groups, and examining the tweeting behavior was critical in improving the model performance. Results can help identify groups engaged in conversations about e‑cigarettes online to help inform public health surveillance, education, and regulatory efforts. PMID:28951381
Partnerships To Mine Unexploited Sources of Metadata.
ERIC Educational Resources Information Center
Reynolds, Regina Romano
This paper discusses the metadata created for other purposes as a potential source of bibliographic data. The first section addresses collecting metadata by means of templates, including the Nordic Metadata Project's Dublin Core Metadata Template. The second section considers potential partnerships for re-purposing metadata for bibliographic use,…
NASA Reverb: Standards-Driven Earth Science Data and Service Discovery
NASA Astrophysics Data System (ADS)
Cechini, M. F.; Mitchell, A.; Pilone, D.
2011-12-01
NASA's Earth Observing System Data and Information System (EOSDIS) is a core capability in NASA's Earth Science Data Systems Program. NASA's EOS ClearingHOuse (ECHO) is a metadata catalog for the EOSDIS, providing a centralized catalog of data products and registry of related data services. Working closely with the EOSDIS community, the ECHO team identified a need to develop the next generation EOS data and service discovery tool. This development effort relied on the following principles: + Metadata Driven User Interface - Users should be presented with data and service discovery capabilities based on dynamic processing of metadata describing the targeted data. + Integrated Data & Service Discovery - Users should be able to discovery data and associated data services that facilitate their research objectives. + Leverage Common Standards - Users should be able to discover and invoke services that utilize common interface standards. Metadata plays a vital role facilitating data discovery and access. As data providers enhance their metadata, more advanced search capabilities become available enriching a user's search experience. Maturing metadata formats such as ISO 19115 provide the necessary depth of metadata that facilitates advanced data discovery capabilities. Data discovery and access is not limited to simply the retrieval of data granules, but is growing into the more complex discovery of data services. These services include, but are not limited to, services facilitating additional data discovery, subsetting, reformatting, and re-projecting. The discovery and invocation of these data services is made significantly simpler through the use of consistent and interoperable standards. By utilizing an adopted standard, developing standard-specific adapters can be utilized to communicate with multiple services implementing a specific protocol. The emergence of metadata standards such as ISO 19119 plays a similarly important role in discovery as the 19115 standard. After a yearlong design, development, and testing process, the ECHO team successfully released "Reverb - The Next Generation Earth Science Discovery Tool." Reverb relies heavily on the information contained in dataset and granule metadata, such as ISO 19115, to provide a dynamic experience to users based on identified search facet values extracted from science metadata. Such an approach allows users to perform cross-dataset correlation and searches, discovering additional data that they may not previously have been aware of. In addition to data discovery, Reverb users may discover services associated with their data of interest. When services utilize supported standards and/or protocols, Reverb can facilitate the invocation of both synchronous and asynchronous data processing services. This greatly enhances a users ability to discover data of interest and accomplish their research goals. Extrapolating on the current movement towards interoperable standards and an increase in available services, data service invocation and chaining will become a natural part of data discovery. Reverb is one example of a discovery tool that provides a mechanism for transforming the earth science data discovery paradigm.
Evaluating and Evolving Metadata in Multiple Dialects
NASA Astrophysics Data System (ADS)
Kozimor, J.; Habermann, T.; Powers, L. A.; Gordon, S.
2016-12-01
Despite many long-term homogenization efforts, communities continue to develop focused metadata standards along with related recommendations and (typically) XML representations (aka dialects) for sharing metadata content. Different representations easily become obstacles to sharing information because each representation generally requires a set of tools and skills that are designed, built, and maintained specifically for that representation. In contrast, community recommendations are generally described, at least initially, at a more conceptual level and are more easily shared. For example, most communities agree that dataset titles should be included in metadata records although they write the titles in different ways. This situation has led to the development of metadata repositories that can ingest and output metadata in multiple dialects. As an operational example, the NASA Common Metadata Repository (CMR) includes three different metadata dialects (DIF, ECHO, and ISO 19115-2). These systems raise a new question for metadata providers: if I have a choice of metadata dialects, which should I use and how do I make that decision? We have developed a collection of metadata evaluation tools that can be used to evaluate metadata records in many dialects for completeness with respect to recommendations from many organizations and communities. We have applied these tools to over 8000 collection and granule metadata records in four different dialects. This large collection of identical content in multiple dialects enables us to address questions about metadata and dialect evolution and to answer those questions quantitatively. We will describe those tools and results from evaluating the NASA CMR metadata collection.
Automatic identification of high impact articles in PubMed to support clinical decision making.
Bian, Jiantao; Morid, Mohammad Amin; Jonnalagadda, Siddhartha; Luo, Gang; Del Fiol, Guilherme
2017-09-01
The practice of evidence-based medicine involves integrating the latest best available evidence into patient care decisions. Yet, critical barriers exist for clinicians' retrieval of evidence that is relevant for a particular patient from primary sources such as randomized controlled trials and meta-analyses. To help address those barriers, we investigated machine learning algorithms that find clinical studies with high clinical impact from PubMed®. Our machine learning algorithms use a variety of features including bibliometric features (e.g., citation count), social media attention, journal impact factors, and citation metadata. The algorithms were developed and evaluated with a gold standard composed of 502 high impact clinical studies that are referenced in 11 clinical evidence-based guidelines on the treatment of various diseases. We tested the following hypotheses: (1) our high impact classifier outperforms a state-of-the-art classifier based on citation metadata and citation terms, and PubMed's® relevance sort algorithm; and (2) the performance of our high impact classifier does not decrease significantly after removing proprietary features such as citation count. The mean top 20 precision of our high impact classifier was 34% versus 11% for the state-of-the-art classifier and 4% for PubMed's® relevance sort (p=0.009); and the performance of our high impact classifier did not decrease significantly after removing proprietary features (mean top 20 precision=34% vs. 36%; p=0.085). The high impact classifier, using features such as bibliometrics, social media attention and MEDLINE® metadata, outperformed previous approaches and is a promising alternative to identifying high impact studies for clinical decision support. Copyright © 2017 Elsevier Inc. All rights reserved.
A high-precision rule-based extraction system for expanding geospatial metadata in GenBank records
Weissenbacher, Davy; Rivera, Robert; Beard, Rachel; Firago, Mari; Wallstrom, Garrick; Scotch, Matthew; Gonzalez, Graciela
2016-01-01
Objective The metadata reflecting the location of the infected host (LOIH) of virus sequences in GenBank often lacks specificity. This work seeks to enhance this metadata by extracting more specific geographic information from related full-text articles and mapping them to their latitude/longitudes using knowledge derived from external geographical databases. Materials and Methods We developed a rule-based information extraction framework for linking GenBank records to the latitude/longitudes of the LOIH. Our system first extracts existing geospatial metadata from GenBank records and attempts to improve it by seeking additional, relevant geographic information from text and tables in related full-text PubMed Central articles. The final extracted locations of the records, based on data assimilated from these sources, are then disambiguated and mapped to their respective geo-coordinates. We evaluated our approach on a manually annotated dataset comprising of 5728 GenBank records for the influenza A virus. Results We found the precision, recall, and f-measure of our system for linking GenBank records to the latitude/longitudes of their LOIH to be 0.832, 0.967, and 0.894, respectively. Discussion Our system had a high level of accuracy for linking GenBank records to the geo-coordinates of the LOIH. However, it can be further improved by expanding our database of geospatial data, incorporating spell correction, and enhancing the rules used for extraction. Conclusion Our system performs reasonably well for linking GenBank records for the influenza A virus to the geo-coordinates of their LOIH based on record metadata and information extracted from related full-text articles. PMID:26911818
Progress Report on the Airborne Metadata and Time Series Working Groups of the 2016 ESDSWG
NASA Astrophysics Data System (ADS)
Evans, K. D.; Northup, E. A.; Chen, G.; Conover, H.; Ames, D. P.; Teng, W. L.; Olding, S. W.; Krotkov, N. A.
2016-12-01
NASA's Earth Science Data Systems Working Groups (ESDSWG) was created over 10 years ago. The role of the ESDSWG is to make recommendations relevant to NASA's Earth science data systems from users' experiences. Each group works independently focusing on a unique topic. Participation in ESDSWG groups comes from a variety of NASA-funded science and technology projects, including MEaSUREs and ROSS. Participants include NASA information technology experts, affiliated contractor staff and other interested community members from academia and industry. Recommendations from the ESDSWG groups will enhance NASA's efforts to develop long term data products. The Airborne Metadata Working Group is evaluating the suitability of the current Common Metadata Repository (CMR) and Unified Metadata Model (UMM) for airborne data sets and to develop new recommendations as necessary. The overarching goal is to enhance the usability, interoperability, discovery and distribution of airborne observational data sets. This will be done by assessing the suitability (gaps) of the current UMM model for airborne data using lessons learned from current and past field campaigns, listening to user needs and community recommendations and assessing the suitability of ISO metadata and other standards to fill the gaps. The Time Series Working Group (TSWG) is a continuation of the 2015 Time Series/WaterML2 Working Group. The TSWG is using a case study-driven approach to test the new Open Geospatial Consortium (OGC) TimeseriesML standard to determine any deficiencies with respect to its ability to fully describe and encode NASA earth observation-derived time series data. To do this, the time series working group is engaging with the OGC TimeseriesML Standards Working Group (SWG) regarding unsatisfied needs and possible solutions. The effort will end with the drafting of an OGC Engineering Report based on the use cases and interactions with the OGC TimeseriesML SWG. Progress towards finalizing recommendations will be presented at the meeting.
NASA Astrophysics Data System (ADS)
Kunkel, K.; Champion, S.
2015-12-01
Data Management and the National Climate Assessment: A Data Quality Solution Sarah M. Champion and Kenneth E. Kunkel Cooperative Institute for Climate and Satellites, Asheville, NC The Third National Climate Assessment (NCA), anticipated for its authoritative climate change analysis, was also a vanguard in climate communication. From the cutting-edge website to the organization of information, the Assessment content appealed to, and could be accessed by, many demographics. One such pivotal presentation of information in the NCA was the availability of complex metadata directly connected to graphical products. While the basic metadata requirement is federally mandated through a series of federal guidelines as a part of the Information Quality Act, the NCA is also deemed a Highly Influential Scientific Assessment, which requires demonstration of the transparency and reproducibility of the content. To meet these requirements, the Technical Support Unit (TSU) for the NCA embarked on building a system for collecting and presenting metadata that not only met these requirements, but one that has since been employed in support of additional Assessments. The metadata effort for this NCA proved invaluable for many reasons, one of which being that it showcased that there is a critical need for a culture change within the scientific community to support collection and transparency of data and methods to the level produced with the NCA. Irregardless of being federally mandated, it proves to simply be a good practice in science communication. This presentation will detail the collection system built by the TSU, the improvements employed with additional Assessment products, as well as illustrate examples of successful transparency. Through this presentation, we hope to impel the discussion in support of detailed metadata becoming the cultural norm within the scientific community to support influential and highly policy-relevant documents such as the NCA.
Willoughby, Cerys; Bird, Colin L; Coles, Simon J; Frey, Jeremy G
2014-12-22
The drive toward more transparency in research, the growing willingness to make data openly available, and the reuse of data to maximize the return on research investment all increase the importance of being able to find information and make links to the underlying data. The use of metadata in Electronic Laboratory Notebooks (ELNs) to curate experiment data is an essential ingredient for facilitating discovery. The University of Southampton has developed a Web browser-based ELN that enables users to add their own metadata to notebook entries. A survey of these notebooks was completed to assess user behavior and patterns of metadata usage within ELNs, while user perceptions and expectations were gathered through interviews and user-testing activities within the community. The findings indicate that while some groups are comfortable with metadata and are able to design a metadata structure that works effectively, many users are making little attempts to use it, thereby endangering their ability to recover data in the future. A survey of patterns of metadata use in these notebooks, together with feedback from the user community, indicated that while a few groups are comfortable with metadata and are able to design a metadata structure that works effectively, many users adopt a "minimum required" approach to metadata. To investigate whether the patterns of metadata use in LabTrove were unusual, a series of surveys were undertaken to investigate metadata usage in a variety of platforms supporting user-defined metadata. These surveys also provided the opportunity to investigate whether interface designs in these other environments might inform strategies for encouraging metadata creation and more effective use of metadata in LabTrove.
ASDC Collaborations and Processes to Ensure Quality Metadata and Consistent Data Availability
NASA Astrophysics Data System (ADS)
Trapasso, T. J.
2017-12-01
With the introduction of new tools, faster computing, and less expensive storage, increased volumes of data are expected to be managed with existing or fewer resources. Metadata management is becoming a heightened challenge from the increase in data volume, resulting in more metadata records needed to be curated for each product. To address metadata availability and completeness, NASA ESDIS has taken significant strides with the creation of the United Metadata Model (UMM) and Common Metadata Repository (CMR). These UMM helps address hurdles experienced by the increasing number of metadata dialects and the CMR provides a primary repository for metadata so that required metadata fields can be served through a growing number of tools and services. However, metadata quality remains an issue as metadata is not always inherent to the end-user. In response to these challenges, the NASA Atmospheric Science Data Center (ASDC) created the Collaboratory for quAlity Metadata Preservation (CAMP) and defined the Product Lifecycle Process (PLP) to work congruently. CAMP is unique in that it provides science team members a UI to directly supply metadata that is complete, compliant, and accurate for their data products. This replaces back-and-forth communication that often results in misinterpreted metadata. Upon review by ASDC staff, metadata is submitted to CMR for broader distribution through Earthdata. Further, approval of science team metadata in CAMP automatically triggers the ASDC PLP workflow to ensure appropriate services are applied throughout the product lifecycle. This presentation will review the design elements of CAMP and PLP as well as demonstrate interfaces to each. It will show the benefits that CAMP and PLP provide to the ASDC that could potentially benefit additional NASA Earth Science Data and Information System (ESDIS) Distributed Active Archive Centers (DAACs).
Metadata squared: enhancing its usability for volunteered geographic information and the GeoWeb
Poore, Barbara S.; Wolf, Eric B.; Sui, Daniel Z.; Elwood, Sarah; Goodchild, Michael F.
2013-01-01
The Internet has brought many changes to the way geographic information is created and shared. One aspect that has not changed is metadata. Static spatial data quality descriptions were standardized in the mid-1990s and cannot accommodate the current climate of data creation where nonexperts are using mobile phones and other location-based devices on a continuous basis to contribute data to Internet mapping platforms. The usability of standard geospatial metadata is being questioned by academics and neogeographers alike. This chapter analyzes current discussions of metadata to demonstrate how the media shift that is occurring has affected requirements for metadata. Two case studies of metadata use are presented—online sharing of environmental information through a regional spatial data infrastructure in the early 2000s, and new types of metadata that are being used today in OpenStreetMap, a map of the world created entirely by volunteers. Changes in metadata requirements are examined for usability, the ease with which metadata supports coproduction of data by communities of users, how metadata enhances findability, and how the relationship between metadata and data has changed. We argue that traditional metadata associated with spatial data infrastructures is inadequate and suggest several research avenues to make this type of metadata more interactive and effective in the GeoWeb.
Evolutions in Metadata Quality
NASA Astrophysics Data System (ADS)
Gilman, J.
2016-12-01
Metadata Quality is one of the chief drivers of discovery and use of NASA EOSDIS (Earth Observing System Data and Information System) data. Issues with metadata such as lack of completeness, inconsistency, and use of legacy terms directly hinder data use. As the central metadata repository for NASA Earth Science data, the Common Metadata Repository (CMR) has a responsibility to its users to ensure the quality of CMR search results. This talk will cover how we encourage metadata authors to improve the metadata through the use of integrated rubrics of metadata quality and outreach efforts. In addition we'll demonstrate Humanizers, a technique for dealing with the symptoms of metadata issues. Humanizers allow CMR administrators to identify specific metadata issues that are fixed at runtime when the data is indexed. An example Humanizer is the aliasing of processing level "Level 1" to "1" to improve consistency across collections. The CMR currently indexes 35K collections and 300M granules.
EPOS Data and Service Provision
NASA Astrophysics Data System (ADS)
Bailo, Daniele; Jeffery, Keith G.; Atakan, Kuvvet; Harrison, Matt
2017-04-01
EPOS is now in IP (implementation phase) after a successful PP (preparatory phase). EPOS consists of essentially two components, one ICS (Integrated Core Services) representing the integrating ICT (Information and Communication Technology) and many TCS (Thematic Core Services) representing the scientific domains. The architecture developed, demonstrated and agreed within the project during the PP is now being developed utilising co-design with the TCS teams and agile, spiral methods within the ICS team. The 'heart' of EPOS is the metadata catalog. This provides for the ICS a digital representation of the TCS assets (services, data, software, equipment, expertise…) thus facilitating access, interoperation and (re-)use. A major part of the work has been interactions with the TCS. The original intention to harvest information from the TCS required (and still requires) discussions to understand fully the TCS organisational structures linked with rights, security and privacy; their (meta)data syntax (structure) and semantics (meaning); their workflows and methods of working and the services offered. To complicate matters further the TCS are each at varying stages of development and the ICS design has to accommodate pre-existing, developing and expected future standards for metadata, data, software and processes. Through information documents, questionnaires and interviews/meetings the EPOS ICS team has collected DDSS (Data, Data Products, Software and Services) information from the TCS. The ICS team developed a simplified metadata model for presentation to the TCS and the ICS team will perform the mapping and conversion from this model to the internal detailed technical metadata model using (CERIF: a EU recommendation to Member States maintained, developed and promoted by euroCRIS www.eurocris.org ). At the time of writing the final modifications of the EPOS metadata model are being made, and the mappings to CERIF designed, prior to the main phase of (meta)data collection into the EPOS metadata catalog. In parallel work proceeds on the user interface softsare, the APIs (Application Programming Interfaces) to the TCS services, the harvesting method and software, the AAAI (Authentication, Authorisation, Accounting Infrastructure) and the system manager. The next steps will involve interfaces to ICS-D (Distributed ICS i.e. facilities and services for computing, data storage, detectors and instruments for data collection etc.) to which requests, software and data will be deployed and from which data will be generated. Associated with this will be the development of the workflow system which will assist the end-user in building a workflow to achieve the scientific objectives.
ERIC Educational Resources Information Center
Garcia-Barriocanal, Elena; Sicilia, Miguel-Angel; Sanchez-Alonso, Salvador
2013-01-01
Sustainable or organic agriculture aims at harmonizing the efficient production of food with the preservation of the environmental conditions for continuing production in a sustained way. As such, it embodies a set of environmental values that are currently taught and learnt worldwide in specific courses or as part of broader programs or…
ERIC Educational Resources Information Center
Vrablecová, Petra; Šimko, Marián
2016-01-01
The domain model is an essential part of an adaptive learning system. For each educational course, it involves educational content and semantics, which is also viewed as a form of conceptual metadata about educational content. Due to the size of a domain model, manual domain model creation is a challenging and demanding task for teachers or…
NASA Astrophysics Data System (ADS)
Lin, Po-Chuan; Chen, Bo-Wei; Chang, Hangbae
2016-07-01
This study presents a human-centric technique for social video expansion based on semantic processing and graph analysis. The objective is to increase metadata of an online video and to explore related information, thereby facilitating user browsing activities. To analyze the semantic meaning of a video, shots and scenes are firstly extracted from the video on the server side. Subsequently, this study uses annotations along with ConceptNet to establish the underlying framework. Detailed metadata, including visual objects and audio events among the predefined categories, are indexed by using the proposed method. Furthermore, relevant online media associated with each category are also analyzed to enrich the existing content. With the above-mentioned information, users can easily browse and search the content according to the link analysis and its complementary knowledge. Experiments on a video dataset are conducted for evaluation. The results show that our system can achieve satisfactory performance, thereby demonstrating the feasibility of the proposed idea.
An algebra for spatio-temporal information generation
NASA Astrophysics Data System (ADS)
Pebesma, Edzer; Scheider, Simon; Gräler, Benedikt; Stasch, Christoph; Hinz, Matthias
2016-04-01
When we accept the premises of James Frew's laws of metadata (Frew's first law: scientists don't write metadata; Frew's second law: any scientist can be forced to write bad metadata), but also assume that scientists try to maximise the impact of their research findings, can we develop our information infrastructures such that useful metadata is generated automatically? Currently, sharing of data and software to completely reproduce research findings is becoming standard, e.g. in the Journal of Statistical Software [1]. The reproduction (e.g. R) scripts however convey correct syntax, but still limited semantics. We propose [2] a new, platform-neutral way to algebraically describe how data is generated, e.g. by observation, and how data is derived, e.g. by processing observations. It starts with forming functions composed of four reference system types (space, time, quality, entity), which express for instance continuity of objects over time, and continuity of fields over space and time. Data, which is discrete by definition, is generated by evaluating such functions at discrete space and time instances, or by evaluating a convolution (aggregation) over them. Derived data is obtained by inputting data to data derivation functions, which for instance interpolate, estimate, aggregate, or convert fields into objects and vice versa. As opposed to the traditional when, where and what semantics of data sets, our algebra focuses on describing how a data set was generated. We argue that it can be used to discover data sets that were derived from a particular source x, or derived by a particular procedure y. It may also form the basis for inferring meaningfulness of derivation procedures [3]. Current research focuses on automatically generating provenance documentation from R scripts. [1] http://www.jstatsoft.org/ (open access) [2] http://www.meaningfulspatialstatistics.org has the full paper (in review) [3] Stasch, C., S. Scheider, E. Pebesma, W. Kuhn, 2014. Meaningful Spatial Prediction and Aggregation. Environmental Modelling & Software, 51, 149-165 (open access)
Metadata Means Communication: The Challenges of Producing Useful Metadata
NASA Astrophysics Data System (ADS)
Edwards, P. N.; Batcheller, A. L.
2010-12-01
Metadata are increasingly perceived as an important component of data sharing systems. For instance, metadata accompanying atmospheric model output may indicate the grid size, grid type, and parameter settings used in the model configuration. We conducted a case study of a data portal in the atmospheric sciences using in-depth interviews, document review, and observation. OUr analysis revealed a number of challenges in producing useful metadata. First, creating and managing metadata required considerable effort and expertise, yet responsibility for these tasks was ill-defined and diffused among many individuals, leading to errors, failure to capture metadata, and uncertainty about the quality of the primary data. Second, metadata ended up stored in many different forms and software tools, making it hard to manage versions and transfer between formats. Third, the exact meanings of metadata categories remained unsettled and misunderstood even among a small community of domain experts -- an effect we expect to be exacerbated when scientists from other disciplines wish to use these data. In practice, we found that metadata problems due to these obstacles are often overcome through informal, personal communication, such as conversations or email. We conclude that metadata serve to communicate the context of data production from the people who produce data to those who wish to use it. Thus while formal metadata systems are often public, critical elements of metadata (those embodied in informal communication) may never be recorded. Therefore, efforts to increase data sharing should include ways to facilitate inter-investigator communication. Instead of tackling metadata challenges only on the formal level, we can improve data usability for broader communities by better supporting metadata communication.
Inheritance rules for Hierarchical Metadata Based on ISO 19115
NASA Astrophysics Data System (ADS)
Zabala, A.; Masó, J.; Pons, X.
2012-04-01
Mainly, ISO19115 has been used to describe metadata for datasets and services. Furthermore, ISO19115 standard (as well as the new draft ISO19115-1) includes a conceptual model that allows to describe metadata at different levels of granularity structured in hierarchical levels, both in aggregated resources such as particularly series, datasets, and also in more disaggregated resources such as types of entities (feature type), types of attributes (attribute type), entities (feature instances) and attributes (attribute instances). In theory, to apply a complete metadata structure to all hierarchical levels of metadata, from the whole series to an individual feature attributes, is possible, but to store all metadata at all levels is completely impractical. An inheritance mechanism is needed to store each metadata and quality information at the optimum hierarchical level and to allow an ease and efficient documentation of metadata in both an Earth observation scenario such as a multi-satellite mission multiband imagery, as well as in a complex vector topographical map that includes several feature types separated in layers (e.g. administrative limits, contour lines, edification polygons, road lines, etc). Moreover, and due to the traditional split of maps in tiles due to map handling at detailed scales or due to the satellite characteristics, each of the previous thematic layers (e.g. 1:5000 roads for a country) or band (Landsat-5 TM cover of the Earth) are tiled on several parts (sheets or scenes respectively). According to hierarchy in ISO 19115, the definition of general metadata can be supplemented by spatially specific metadata that, when required, either inherits or overrides the general case (G.1.3). Annex H of this standard states that only metadata exceptions are defined at lower levels, so it is not necessary to generate the full registry of metadata for each level but to link particular values to the general value that they inherit. Conceptually the metadata registry is complete for each metadata hierarchical level, but at the implementation level most of the metadata elements are not stored at both levels but only at more generic one. This communication defines a metadata system that covers 4 levels, describes which metadata has to support series-layer inheritance and in which way, and how hierarchical levels are defined and stored. Metadata elements are classified according to the type of inheritance between products, series, tiles and the datasets. It explains the metadata elements classification and exemplifies it using core metadata elements. The communication also presents a metadata viewer and edition tool that uses the described model to propagate metadata elements and to show to the user a complete set of metadata for each level in a transparent way. This tool is integrated in the MiraMon GIS software.
NASA Astrophysics Data System (ADS)
Ventouras, Spiros; Lawrence, Bryan; Woolf, Andrew; Cox, Simon
2010-05-01
The Metadata Objects for Linking Environmental Sciences (MOLES) model has been developed within the Natural Environment Research Council (NERC) DataGrid project [NERC DataGrid] to fill a missing part of the ‘metadata spectrum'. It is a framework within which to encode the relationships between the tools used to obtain data, the activities which organised their use, and the datasets produced. MOLES is primarily of use to consumers of data, especially in an interdisciplinary context, to allow them to establish details of provenance, and to compare and contrast such information without recourse to discipline-specific metadata or private communications with the original investigators [Lawrence et al 2009]. MOLES is also of use to the custodians of data, providing an organising paradigm for the data and metadata. The work described in this paper is a high-level view of the structure and content of a recent major revision of MOLES (v3.3) carried out as part of a NERC DataGrid extension project. The concepts of MOLES v3.3 are rooted in the harmonised ISO model [Harmonised ISO model] - particularly in metadata standards (ISO 19115, ISO 19115-2) and the ‘Observations and Measurements' conceptual model (ISO 19156). MOLES exploits existing concepts and relationships, and specialises information in these standards. A typical sequence of data capturing involves one or more projects under which a number of activities are undertaken, using appropriate tools and methods to produce the datasets. Following this typical sequence, the relevant metadata can be partitioned into the following main sections - helpful in mapping onto the most suitable standards from the ISO 19100 series. • Project section • Activity section (including both observation acquisition and numerical computation) • Observation section (metadata regarding the methods used to obtained the data, the spatial and temporal sampling regime, quality etc.) • Observation collection section The key concepts in MOLES v3.3 are: a) the result of an observation is defined uniquely from the property (of a feature-of-interest), the sampling-feature (carrying the targeted property values), the procedure used to obtain the result and the time (discrete instant or period) at which the observation takes place. b) an ‘Acquisition' and a ‘Computation' can serve as the basis for describing any observation process chain (procedure). The ‘Acquisition' uses an instrument - sensor or human being - to produce the results and is associated with field trips, flights, cruises etc., whereas the ‘Computation' class involves specific processing steps. A process chain may consist of any combination of ‘Acquisitions' and/or ‘Computations' occurring in parallel or in any order during the data capturing sequence. c) The results can be organised in collections with significantly more flexibility than if one used the original project alone d) the structure of individual observation collections may be domain-specific, in general; however we are investigating the use of CSML (Climate Science Modelling Language) for atmospheric data The model has been tested as a desk exercise by constructing object models for scenarios from various disciplines. References NERC DATAGRID: http://ndg.nerc.ac.uk LAWRENCE ET. AL. ,Information in environmental data grids, Phil. Trans. R. Soc. A, March 2009 vol. 367 no. 1890 1003-1014 ISO HARMONISED MODEL: All relevant ISO standards for geographic metadata from the TC211 series (eg. ISO 19xxx), and is harmonised within a formal UML description in the ‘HollowWorld' packages available at https://www.seegrid.csiro.au/twiki/bin/view/AppSchemas/HollowWorld
Automated sea floor extraction from underwater video
NASA Astrophysics Data System (ADS)
Kelly, Lauren; Rahmes, Mark; Stiver, James; McCluskey, Mike
2016-05-01
Ocean floor mapping using video is a method to simply and cost-effectively record large areas of the seafloor. Obtaining visual and elevation models has noteworthy applications in search and recovery missions. Hazards to navigation are abundant and pose a significant threat to the safety, effectiveness, and speed of naval operations and commercial vessels. This project's objective was to develop a workflow to automatically extract metadata from marine video and create image optical and elevation surface mosaics. Three developments made this possible. First, optical character recognition (OCR) by means of two-dimensional correlation, using a known character set, allowed for the capture of metadata from image files. Second, exploiting the image metadata (i.e., latitude, longitude, heading, camera angle, and depth readings) allowed for the determination of location and orientation of the image frame in mosaic. Image registration improved the accuracy of mosaicking. Finally, overlapping data allowed us to determine height information. A disparity map was created using the parallax from overlapping viewpoints of a given area and the relative height data was utilized to create a three-dimensional, textured elevation map.
Defining Data Access Pathways for Atmosphere to Electrons Wind Energy Data
NASA Astrophysics Data System (ADS)
Macduff, M.; Sivaraman, C.
2016-12-01
Atmosphere to Electrons (A2e), is a U.S. Department of Energy (DOE) Wind Program research initiative designed to optimize the performance of wind power plants by lowering the levelized cost of energy (LCOE). The Data Archive and Portal (DAP), managed by PNNL and hosted on Amazon Web Services, is a key capability of the A2e initiative. The DAP is used to collect, store, catalog, preserve and disseminate results from the experimental and computational studies representing a diverse user community requiring both open and proprietary data archival solutions(http://a2e.pnnl.gov). To enable consumer access to the data in DAP it is being built on a set of API's that are publically accessible. This includes persistent references for key meta-data objects as well as authenticated access to the data itself. The goal is to make the DAP catalog visible through a variety of data access paths bringing the data and metadata closer to the consumer. By providing persistent metadata records we hope to be able to build services that capture consumer utility and make referencing datasets easier.
Geospatial resources for supporting data standards, guidance and best practice in health informatics
2011-01-01
Background The 1980s marked the occasion when Geographical Information System (GIS) technology was broadly introduced into the geo-spatial community through the establishment of a strong GIS industry. This technology quickly disseminated across many countries, and has now become established as an important research, planning and commercial tool for a wider community that includes organisations in the public and private health sectors. The broad acceptance of GIS technology and the nature of its functionality have meant that numerous datasets have been created over the past three decades. Most of these datasets have been created independently, and without any structured documentation systems in place. However, search and retrieval systems can only work if there is a mechanism for datasets existence to be discovered and this is where proper metadata creation and management can greatly help. This situation must be addressed through support mechanisms such as Web-based portal technologies, metadata editor tools, automation, metadata standards and guidelines and collaborative efforts with relevant individuals and organisations. Engagement with data developers or administrators should also include a strategy of identifying the benefits associated with metadata creation and publication. Findings The establishment of numerous Spatial Data Infrastructures (SDIs), and other Internet resources, is a testament to the recognition of the importance of supporting good data management and sharing practices across the geographic information community. These resources extend to health informatics in support of research, public services and teaching and learning. This paper identifies many of these resources available to the UK academic health informatics community. It also reveals the reluctance of many spatial data creators across the wider UK academic community to use these resources to create and publish metadata, or deposit their data in repositories for sharing. The Go-Geo! service is introduced as an SDI developed to provide UK academia with the necessary resources to address the concerns surrounding metadata creation and data sharing. The Go-Geo! portal, Geodoc metadata editor tool, ShareGeo spatial data repository, and a range of other support resources, are described in detail. Conclusions This paper describes a variety of resources available for the health research and public health sector to use for managing and sharing their data. The Go-Geo! service is one resource which offers an SDI for the eclectic range of disciplines using GIS in UK academia, including health informatics. The benefits of data management and sharing are immense, and in these times of cost restraints, these resources can be seen as solutions to find cost savings which can be reinvested in more research. PMID:21269487
DPADL: An Action Language for Data Processing Domains
NASA Technical Reports Server (NTRS)
Golden, Keith; Clancy, Daniel (Technical Monitor)
2002-01-01
This paper presents DPADL (Data Processing Action Description Language), a language for describing planning domains that involve data processing. DPADL is a declarative object-oriented language that supports constraints and embedded Java code, object creation and copying, explicit inputs and outputs for actions, and metadata descriptions of existing and desired data. DPADL is supported by the IMAGEbot system, which will provide automation for an ecosystem forecasting system called TOPS.
McDonald, Daniel; Clemente, Jose C; Kuczynski, Justin; Rideout, Jai Ram; Stombaugh, Jesse; Wendel, Doug; Wilke, Andreas; Huse, Susan; Hufnagle, John; Meyer, Folker; Knight, Rob; Caporaso, J Gregory
2012-07-12
We present the Biological Observation Matrix (BIOM, pronounced "biome") format: a JSON-based file format for representing arbitrary observation by sample contingency tables with associated sample and observation metadata. As the number of categories of comparative omics data types (collectively, the "ome-ome") grows rapidly, a general format to represent and archive this data will facilitate the interoperability of existing bioinformatics tools and future meta-analyses. The BIOM file format is supported by an independent open-source software project (the biom-format project), which initially contains Python objects that support the use and manipulation of BIOM data in Python programs, and is intended to be an open development effort where developers can submit implementations of these objects in other programming languages. The BIOM file format and the biom-format project are steps toward reducing the "bioinformatics bottleneck" that is currently being experienced in diverse areas of biological sciences, and will help us move toward the next phase of comparative omics where basic science is translated into clinical and environmental applications. The BIOM file format is currently recognized as an Earth Microbiome Project Standard, and as a Candidate Standard by the Genomic Standards Consortium.
Building Format-Agnostic Metadata Repositories
NASA Astrophysics Data System (ADS)
Cechini, M.; Pilone, D.
2010-12-01
This presentation will discuss the problems that surround persisting and discovering metadata in multiple formats; a set of tenets that must be addressed in a solution; and NASA’s Earth Observing System (EOS) ClearingHOuse’s (ECHO) proposed approach. In order to facilitate cross-discipline data analysis, Earth Scientists will potentially interact with more than one data source. The most common data discovery paradigm relies on services and/or applications facilitating the discovery and presentation of metadata. What may not be common are the formats in which the metadata are formatted. As the number of sources and datasets utilized for research increases, it becomes more likely that a researcher will encounter conflicting metadata formats. Metadata repositories, such as the EOS ClearingHOuse (ECHO), along with data centers, must identify ways to address this issue. In order to define the solution to this problem, the following tenets are identified: - There exists a set of ‘core’ metadata fields recommended for data discovery. - There exists a set of users who will require the entire metadata record for advanced analysis. - There exists a set of users who will require a ‘core’ set of metadata fields for discovery only. - There will never be a cessation of new formats or a total retirement of all old formats. - Users should be presented metadata in a consistent format. ECHO has undertaken an effort to transform its metadata ingest and discovery services in order to support the growing set of metadata formats. In order to address the previously listed items, ECHO’s new metadata processing paradigm utilizes the following approach: - Identify a cross-format set of ‘core’ metadata fields necessary for discovery. - Implement format-specific indexers to extract the ‘core’ metadata fields into an optimized query capability. - Archive the original metadata in its entirety for presentation to users requiring the full record. - Provide on-demand translation of ‘core’ metadata to any supported result format. With this identified approach, the Earth Scientist is provided with a consistent data representation as they interact with a variety of datasets that utilize multiple metadata formats. They are then able to focus their efforts on the more critical research activities which they are undertaking.
Making Metadata Better with CMR and MMT
NASA Technical Reports Server (NTRS)
Gilman, Jason Arthur; Shum, Dana
2016-01-01
Ensuring complete, consistent and high quality metadata is a challenge for metadata providers and curators. The CMR and MMT systems provide providers and curators options to build in metadata quality from the start and also assess and improve the quality of already existing metadata.
NASA Astrophysics Data System (ADS)
Yatagai, Akiyo; Ritschel, Bernd; Iyemori, Tomohiko; Koyama, Yukinobu; Hori, Tomoaki; Abe, Shuji; Tanaka, Yoshimasa; Shinbori, Atsuki; UeNo, Satoru; Sato, Yuka; Yagi, Manabu
2013-04-01
The upper atmospheric observational study is the area which an international collaboration is crucially important. The Japanese Inter-university Upper atmosphere Global Observation NETwork project (2009-2014), IUGONET, is an inter-university program by the National Institute of Polar Research (NIPR), Tohoku University, Nagoya University, Kyoto University, and Kyushu University to build a database of metadata for ground-based observations of the upper atmosphere. In order to investigate the mechanism of long-term variations in the upper atmosphere, we need to combine various types of in-situ observations and to accelerate data exchange. The IUGONET institutions have been archiving observed data by radars, magnetometers, photometers, radio telescopes, helioscopes, etc. in various altitude layers from the Earth's surface to the Sun. The IUGONET has been developing systems for searching metadata of these observational data, and the metadata database (MDB) has already been operating since 2011. It adopts DSPACE system for registering metadata, and it uses an extension of the SPASE data model of describing metadata, which is widely used format in the upper atmospheric society including that in USA. The European Union project ESPAS (2011-2015) has the same scientific objects with IUGONET, namely it aims to provide an e-science infrastructure for the retrieval and access to space weather relevant data, information and value added services. It integrates 22 partners in European countries. The ESPAS also plans to adopt SPASE model for defining their metadata, but search system is different. Namely, in spite of the similarity of the data model, basic system ideas and techniques of the system and web portal are different between IUGONET and ESPAS. In order to connect the two systems/databases, we are planning to take an ontological method. The SPASE keyword vocabulary, derived from the SPASE data model shall be used as standard for the description of near-earth and space data content and context. The SPASE keyword vocabulary is modeled as Simple Knowledge Organizing System (SKOS) ontology. The SPASE keyword vocabulary also can be reused in domain-related but also cross-domain projects. The implementation of the vocabulary as ontology enables the direct integration into semantic web based structures and applications, such as linked data and the new Information System and Data Center (ISDC) data management system.
Evolution in Metadata Quality: Common Metadata Repository's Role in NASA Curation Efforts
NASA Technical Reports Server (NTRS)
Gilman, Jason; Shum, Dana; Baynes, Katie
2016-01-01
Metadata Quality is one of the chief drivers of discovery and use of NASA EOSDIS (Earth Observing System Data and Information System) data. Issues with metadata such as lack of completeness, inconsistency, and use of legacy terms directly hinder data use. As the central metadata repository for NASA Earth Science data, the Common Metadata Repository (CMR) has a responsibility to its users to ensure the quality of CMR search results. This poster covers how we use humanizers, a technique for dealing with the symptoms of metadata issues, as well as our plans for future metadata validation enhancements. The CMR currently indexes 35K collections and 300M granules.
Patridge, Jeff; Namulanda, Gonza
2008-01-01
The Environmental Public Health Tracking (EPHT) Network provides an opportunity to bring together diverse environmental and health effects data by integrating}?> local, state, and national databases of environmental hazards, environmental exposures, and health effects. To help users locate data on the EPHT Network, the network will utilize descriptive metadata that provide critical information as to the purpose, location, content, and source of these data. Since 2003, the Centers for Disease Control and Prevention's EPHT Metadata Subgroup has been working to initiate the creation and use of descriptive metadata. Efforts undertaken by the group include the adoption of a metadata standard, creation of an EPHT-specific metadata profile, development of an open-source metadata creation tool, and promotion of the creation of descriptive metadata by changing the perception of metadata in the public health culture.
Developments in Geometric Metadata and Tools at the PDS Ring-Moon Systems Node
NASA Astrophysics Data System (ADS)
Showalter, M. R.; Ballard, L.; French, R. S.; Gordon, M. K.; Tiscareno, M. S.
2018-04-01
Object-Oriented Python/SPICE (OOPS) is an overlay on the SPICE toolkit that vastly simplifies and speeds up geometry calculations for planetary data products. This toolkit is the basis for much of the development at the PDS Ring-Moon Systems Node.
Creating a Framework of Guidance for Building Good Digital Collections.
ERIC Educational Resources Information Center
Cole, Timothy W.
2002-01-01
Presents the Framework of Guidance for Building Good Digital Collections that was developed by the Institute of Museum and Library Services with other organizations to guide museums and libraries in digitization collection practices. Highlights digital collections, digital objects, and metadata, and discusses reusability, persistence,…
Metadata: Standards for Retrieving WWW Documents (and Other Digitized and Non-Digitized Resources)
NASA Astrophysics Data System (ADS)
Rusch-Feja, Diann
The use of metadata for indexing digitized and non-digitized resources for resource discovery in a networked environment is being increasingly implemented all over the world. Greater precision is achieved using metadata than relying on universal search engines and furthermore, meta-data can be used as filtering mechanisms for search results. An overview of various metadata sets is given, followed by a more focussed presentation of Dublin Core Metadata including examples of sub-elements and qualifiers. Especially the use of the Dublin Core Relation element provides connections between the metadata of various related electronic resources, as well as the metadata for physical, non-digitized resources. This facilitates more comprehensive search results without losing precision and brings together different genres of information which would otherwise be only searchable in separate databases. Furthermore, the advantages of Dublin Core Metadata in comparison with library cataloging and the use of universal search engines are discussed briefly, followed by a listing of types of implementation of Dublin Core Metadata.
Obuch, Raymond C.; Carlino, Jennifer; Zhang, Lin; Blythe, Jonathan; Dietrich, Christopher; Hawkinson, Christine
2018-04-12
The Department of the Interior (DOI) is a Federal agency with over 90,000 employees across 10 bureaus and 8 agency offices. Its primary mission is to protect and manage the Nation’s natural resources and cultural heritage; provide scientific and other information about those resources; and honor its trust responsibilities or special commitments to American Indians, Alaska Natives, and affiliated island communities. Data and information are critical in day-to-day operational decision making and scientific research. DOI is committed to creating, documenting, managing, and sharing high-quality data and metadata in and across its various programs that support its mission. Documenting data through metadata is essential in realizing the value of data as an enterprise asset. The completeness, consistency, and timeliness of metadata affect users’ ability to search for and discover the most relevant data for the intended purpose; and facilitates the interoperability and usability of these data among DOI bureaus and offices. Fully documented metadata describe data usability, quality, accuracy, provenance, and meaning.Across DOI, there are different maturity levels and phases of information and metadata management implementations. The Department has organized a committee consisting of bureau-level points-of-contacts to collaborate on the development of more consistent, standardized, and more effective metadata management practices and guidance to support this shared mission and the information needs of the Department. DOI’s metadata implementation plans establish key roles and responsibilities associated with metadata management processes, procedures, and a series of actions defined in three major metadata implementation phases including: (1) Getting started—Planning Phase, (2) Implementing and Maintaining Operational Metadata Management Phase, and (3) the Next Steps towards Improving Metadata Management Phase. DOI’s phased approach for metadata management addresses some of the major data and metadata management challenges that exist across the diverse missions of the bureaus and offices. All employees who create, modify, or use data are involved with data and metadata management. Identifying, establishing, and formalizing the roles and responsibilities associated with metadata management are key to institutionalizing a framework of best practices, methodologies, processes, and common approaches throughout all levels of the organization; these are the foundation for effective data resource management. For executives and managers, metadata management strengthens their overarching views of data assets, holdings, and data interoperability; and clarifies how metadata management can help accelerate the compliance of multiple policy mandates. For employees, data stewards, and data professionals, formalized metadata management will help with the consistency of definitions, and approaches addressing data discoverability, data quality, and data lineage. In addition to data professionals and others associated with information technology; data stewards and program subject matter experts take on important metadata management roles and responsibilities as data flow through their respective business and science-related workflows. The responsibilities of establishing, practicing, and governing the actions associated with their specific metadata management roles are critical to successful metadata implementation.
Making Interoperability Easier with the NASA Metadata Management Tool
NASA Astrophysics Data System (ADS)
Shum, D.; Reese, M.; Pilone, D.; Mitchell, A. E.
2016-12-01
ISO 19115 has enabled interoperability amongst tools, yet many users find it hard to build ISO metadata for their collections because it can be large and overly flexible for their needs. The Metadata Management Tool (MMT), part of NASA's Earth Observing System Data and Information System (EOSDIS), offers users a modern, easy to use browser based tool to develop ISO compliant metadata. Through a simplified UI experience, metadata curators can create and edit collections without any understanding of the complex ISO-19115 format, while still generating compliant metadata. The MMT is also able to assess the completeness of collection level metadata by evaluating it against a variety of metadata standards. The tool provides users with clear guidance as to how to change their metadata in order to improve their quality and compliance. It is based on NASA's Unified Metadata Model for Collections (UMM-C) which is a simpler metadata model which can be cleanly mapped to ISO 19115. This allows metadata authors and curators to meet ISO compliance requirements faster and more accurately. The MMT and UMM-C have been developed in an agile fashion, with recurring end user tests and reviews to continually refine the tool, the model and the ISO mappings. This process is allowing for continual improvement and evolution to meet the community's needs.
Virtual patients on the semantic Web: a proof-of-application study.
Dafli, Eleni; Antoniou, Panagiotis; Ioannidis, Lazaros; Dombros, Nicholas; Topps, David; Bamidis, Panagiotis D
2015-01-22
Virtual patients are interactive computer simulations that are increasingly used as learning activities in modern health care education, especially in teaching clinical decision making. A key challenge is how to retrieve and repurpose virtual patients as unique types of educational resources between different platforms because of the lack of standardized content-retrieving and repurposing mechanisms. Semantic Web technologies provide the capability, through structured information, for easy retrieval, reuse, repurposing, and exchange of virtual patients between different systems. An attempt to address this challenge has been made through the mEducator Best Practice Network, which provisioned frameworks for the discovery, retrieval, sharing, and reuse of medical educational resources. We have extended the OpenLabyrinth virtual patient authoring and deployment platform to facilitate the repurposing and retrieval of existing virtual patient material. A standalone Web distribution and Web interface, which contains an extension for the OpenLabyrinth virtual patient authoring system, was implemented. This extension was designed to semantically annotate virtual patients to facilitate intelligent searches, complex queries, and easy exchange between institutions. The OpenLabyrinth extension enables OpenLabyrinth authors to integrate and share virtual patient case metadata within the mEducator3.0 network. Evaluation included 3 successive steps: (1) expert reviews; (2) evaluation of the ability of health care professionals and medical students to create, share, and exchange virtual patients through specific scenarios in extended OpenLabyrinth (OLabX); and (3) evaluation of the repurposed learning objects that emerged from the procedure. We evaluated 30 repurposed virtual patient cases. The evaluation, with a total of 98 participants, demonstrated the system's main strength: the core repurposing capacity. The extensive metadata schema presentation facilitated user exploration and filtering of resources. Usability weaknesses were primarily related to standard computer applications' ease of use provisions. Most evaluators provided positive feedback regarding educational experiences on both content and system usability. Evaluation results replicated across several independent evaluation events. The OpenLabyrinth extension, as part of the semantic mEducator3.0 approach, is a virtual patient sharing approach that builds on a collection of Semantic Web services and federates existing sources of clinical and educational data. It is an effective sharing tool for virtual patients and has been merged into the next version of the app (OpenLabyrinth 3.3). Such tool extensions may enhance the medical education arsenal with capacities of creating simulation/game-based learning episodes, massive open online courses, curricular transformations, and a future robust infrastructure for enabling mobile learning.
Implementing RDA Data Citation Recommendations: Case Study in South Africa
NASA Astrophysics Data System (ADS)
Hugo, Wim
2016-04-01
SAEON operates a shared research data infrastructure for its own data sets and for clients and end users in the Earth and Environmental Sciences domain. SAEON has a license to issue Digital Object Identifiers via DataCite on behalf of third parties, and have recently concluded development work to make a universal data deposit, description, and DOI minting facility available. This facility will be used to develop a number of end user gateways, including DataCite South Africa (in collaboration with National Research Foundation and addressing all grant-funded research in the country), DIRISA (Data-intensive Research Infrastructure for South Africa - in collaboration with Meraka Institute and Department of Science and Technology), and SASDI (South African Spatial Data Infrastructure). The RDA recently published Data Citation Recommendations [1], and this was used as a basis for specification of Digital Object Identifier implementation, raising two significant challenges: 1. Synchronisation of frequently harvested meta-data sets where version management practice did not align with the RDA recommendations, and 2. Handling sub-sets of and queries on large, continuously updated data sets. In the first case, we have developed a set of tests that determine the logical course of action when discrepancies are found during synchronization, and we have incorporated these into meta-data harvester configurations. Additionally, we have developed a state diagram and attendant workflow for meta-data that includes problem states emanating from DOI management, reporting services for data depositors, and feedback to end users in respect of synchronisation issues. In the second case, in the absence of firm guidelines from DataCite, we are seeking community consensus and feedback on an approach that caches all queries performed and subsets derived from data, and provide these with anchor-style extensions linked to the dataset's original DOI. This allows extended DOIs to resolve to a meta-data page on which the cached data set is available as an anchored download link.All cached datasets are provided with checksum values to verify the contents against such copies as may exist. The paper reviews recent service-driven portal interface developments, both services and graphical user interfaces, including wizard-style, configurable applications for meta-data management and DOI minting, discovery, download, visualization, and reporting. It showcases examples of the two permanent identifier problem areas and how these were addressed. The paper concludes with contributions to open research questions, including (1) determining optimal meta-data granularity and (2) proposing an implementation guideline for extended DOIs. [1] A. Rauber, D. van Uytvanck, A. Asmi, S. Pröll, "Data Citation Recommendations", November 2015, RDA. https://rd-alliance.org/group/data-citation-wg/outcomes/data-citation-recommendation.htm
NASA Astrophysics Data System (ADS)
Maravelakis, Emmanouel; Konstantaras, Antonios; Axaridou, Anastasia; Chrysakis, Ioannis; Xinogalos, Michalis
2014-05-01
This research investigates the application of new system for 3D documentation of land degradation and its effect [1,2] on areas of cultural heritage via complete 3D data acquisition, 3D modeling and metadata recording using terrestrial laser scanners (TLS) [3,4,5]. As land degradation progresses through time it is important to be able to map and exactly replicate with great precision the entire 3D shape of the physical objects of interest, such as landslides, ground erosion, river boundaries, mad accumulation, etc. [1,2] TLS enables the extraction and recording of a very large number of points in space with great precision and without the need for any physical contact with the object of interest. Field specialists can then examine the produced models and comment on them both on the overall object of interest and on specific features of it by inserting annotations on certain parts of the model [6]. This process could be proven to be very cost effective as it can be repeated as often as necessary and produce a well catalogued documentation of the progress of land degradation at particular areas. The problem with repeating TLS models lies on the various types of hardware equipment and software systems that might be used for the extraction of point clouds, and the different people that might be called to analyze the findings. These often result in a large volume of interim and final products with little if no standardization, multiple different metadata and vague documentation [7], which makes metadata recordings [8] crucial both for one scientist to be able to follow upon the work of the other as well as being able to repeat the same work when deemed necessary. This makes the need for a repository tool proposed by the authors essential in order to record all work that is done in every TLS scanning, and makes the technology accessible to scientists of various different fields [9,10], eg. geologists, physicists, topographers, remote sensing engineers, archaeologists etc. allowing them to interchange their knowledge, findings and observations at different time frames. Results outline the successful application of the above systems in certain Greek areas of important cultural heritage [3,11] were significant efforts are being made for their preservation through time. Acknowledgement The authors wish to thank the General Secretariat for Research and Technology of Ministry of Education and Religious Affairs, Culture and Sports in Greece for their financial support via program Cooperation: Partnership of Production and Research Institutions in Small and Medium Scale Projects, Project Title: "3D-SYSTEK - Development of a novel system for 3D Documentation, Promotion and Exploitation of Cultural Heritage Monuments via 3D data acquisition, 3D modeling and metadata recording". Keywords spatial data, land degradation monitoring, 3D modeling and visualization, terrestrial laser scanning, documentation and metadata repository, protection of cultural heritage References [1] Shalaby, A., and Tateishi, R.: Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the northwestern coastal zone of egypt. Applied Geography, 27(1), 28-41, (2007) [2] Poesen, J. W. A., and Hooke, J. M.: Erosion, flooding and channel management in mediterranean environments of southern europe. Progress in Physical Geography, 21(2), 157-199, (1997) [3] Maravelakis, E., Bilalis, N., Mantzorou, I., Konstantaras, A., Antoniadis, A.: 3D modeling of the oldest olive tree of the world. IJCER 2(2), 340-347 (2012) [4] Manferdini, A.M., Remondino, F.: Reality-Based 3D Modeling, Segmentation and Web- Based Visualization. In: Ioannides, M., Fellner, D., Georgopoulos, A., Hadjimitsis, D.G. (eds.) EuroMed 2010. LNCS, vol. 6436, pp. 110-124. Springer, Heidelberg (2010) [5] Tapete, D., Casagli, N., Luzi, G., Fanti, R., Gigli, G., Leva, D.: Integrating radar and laserbased remote sensing techniques for monitoring structural deformation of archaeological monuments. Journal of Archaeological Science 40, 176-189 (2012) [6] Sinclair, P., Addis, M., Choi, F., Doerr, M., Lewis, P., Martinez, K.: The Use of CRM Core in Multimedia Annotation. In: First International Workshop on Semantic Web Annotations for Multimedia (2006) [7] Zhiming, Z., et al.: Scientific workflow management: between generality and applicability. In: Proc. the 5th International Conference on Quality Software, Melbourne, Australia, pp. 19-20 (2005) [8] Infrastructure for Spatial Information in Europe. INSPIRE Architecture and Standards Position Paper (2002) [9] Doerr, M., Kritsotaki, A.: Documenting events in metadata. In: The e-volution of Information Communication Technology in Cultural Heritage, pp. 56-61 (2006) [10] Maravelakis, E., Konstantaras, A., Kritsotaki, A., Angelakis, D. and Xinogalos, M.: Analysing User Needs for a Unified 3D Metadata Recording and Exploitation of Cultural Heritage Monuments System, Advances in Visual Computing, Lecture Notes in Computer Science Volume 8034, pp 138-147, (2013) [11] Maravelakis, E., Andrianakis, M., Psarakis, K., Bolanakis, N., Tzatzanis, G., Bilalis, N., Antoniadis, A.: Lessons Learned from Cultural Heritage Digitisation Projects in Crete. In: Proceedings of the 14th International Conference on Virtual Systems and Multimedia, pp. 152-156 (2008)
GraphMeta: Managing HPC Rich Metadata in Graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Dong; Chen, Yong; Carns, Philip
High-performance computing (HPC) systems face increasingly critical metadata management challenges, especially in the approaching exascale era. These challenges arise not only from exploding metadata volumes, but also from increasingly diverse metadata, which contains data provenance and arbitrary user-defined attributes in addition to traditional POSIX metadata. This ‘rich’ metadata is becoming critical to supporting advanced data management functionality such as data auditing and validation. In our prior work, we identified a graph-based model as a promising solution to uniformly manage HPC rich metadata due to its flexibility and generality. However, at the same time, graph-based HPC rich metadata anagement also introducesmore » significant challenges to the underlying infrastructure. In this study, we first identify the challenges on the underlying infrastructure to support scalable, high-performance rich metadata management. Based on that, we introduce GraphMeta, a graphbased engine designed for this use case. It achieves performance scalability by introducing a new graph partitioning algorithm and a write-optimal storage engine. We evaluate GraphMeta under both synthetic and real HPC metadata workloads, compare it with other approaches, and demonstrate its advantages in terms of efficiency and usability for rich metadata management in HPC systems.« less
Metabolonote: A Wiki-Based Database for Managing Hierarchical Metadata of Metabolome Analyses
Ara, Takeshi; Enomoto, Mitsuo; Arita, Masanori; Ikeda, Chiaki; Kera, Kota; Yamada, Manabu; Nishioka, Takaaki; Ikeda, Tasuku; Nihei, Yoshito; Shibata, Daisuke; Kanaya, Shigehiko; Sakurai, Nozomu
2015-01-01
Metabolomics – technology for comprehensive detection of small molecules in an organism – lags behind the other “omics” in terms of publication and dissemination of experimental data. Among the reasons for this are difficulty precisely recording information about complicated analytical experiments (metadata), existence of various databases with their own metadata descriptions, and low reusability of the published data, resulting in submitters (the researchers who generate the data) being insufficiently motivated. To tackle these issues, we developed Metabolonote, a Semantic MediaWiki-based database designed specifically for managing metabolomic metadata. We also defined a metadata and data description format, called “Togo Metabolome Data” (TogoMD), with an ID system that is required for unique access to each level of the tree-structured metadata such as study purpose, sample, analytical method, and data analysis. Separation of the management of metadata from that of data and permission to attach related information to the metadata provide advantages for submitters, readers, and database developers. The metadata are enriched with information such as links to comparable data, thereby functioning as a hub of related data resources. They also enhance not only readers’ understanding and use of data but also submitters’ motivation to publish the data. The metadata are computationally shared among other systems via APIs, which facilitate the construction of novel databases by database developers. A permission system that allows publication of immature metadata and feedback from readers also helps submitters to improve their metadata. Hence, this aspect of Metabolonote, as a metadata preparation tool, is complementary to high-quality and persistent data repositories such as MetaboLights. A total of 808 metadata for analyzed data obtained from 35 biological species are published currently. Metabolonote and related tools are available free of cost at http://metabolonote.kazusa.or.jp/. PMID:25905099
Metabolonote: a wiki-based database for managing hierarchical metadata of metabolome analyses.
Ara, Takeshi; Enomoto, Mitsuo; Arita, Masanori; Ikeda, Chiaki; Kera, Kota; Yamada, Manabu; Nishioka, Takaaki; Ikeda, Tasuku; Nihei, Yoshito; Shibata, Daisuke; Kanaya, Shigehiko; Sakurai, Nozomu
2015-01-01
Metabolomics - technology for comprehensive detection of small molecules in an organism - lags behind the other "omics" in terms of publication and dissemination of experimental data. Among the reasons for this are difficulty precisely recording information about complicated analytical experiments (metadata), existence of various databases with their own metadata descriptions, and low reusability of the published data, resulting in submitters (the researchers who generate the data) being insufficiently motivated. To tackle these issues, we developed Metabolonote, a Semantic MediaWiki-based database designed specifically for managing metabolomic metadata. We also defined a metadata and data description format, called "Togo Metabolome Data" (TogoMD), with an ID system that is required for unique access to each level of the tree-structured metadata such as study purpose, sample, analytical method, and data analysis. Separation of the management of metadata from that of data and permission to attach related information to the metadata provide advantages for submitters, readers, and database developers. The metadata are enriched with information such as links to comparable data, thereby functioning as a hub of related data resources. They also enhance not only readers' understanding and use of data but also submitters' motivation to publish the data. The metadata are computationally shared among other systems via APIs, which facilitate the construction of novel databases by database developers. A permission system that allows publication of immature metadata and feedback from readers also helps submitters to improve their metadata. Hence, this aspect of Metabolonote, as a metadata preparation tool, is complementary to high-quality and persistent data repositories such as MetaboLights. A total of 808 metadata for analyzed data obtained from 35 biological species are published currently. Metabolonote and related tools are available free of cost at http://metabolonote.kazusa.or.jp/.
Buckets: A New Digital Library Technology for Preserving NASA Research.
ERIC Educational Resources Information Center
Nelson, Michael L.
2001-01-01
Discusses the need for preserving and disseminating scientific and technical information through digital libraries and describes buckets, an intelligent construct for publishing that contains data and metadata and methods for accessing them. Explains SODA (Smart Object, Dumb Archive) and discusses experiences using these technologies in NASA and…
Perspective: Interactive material property databases through aggregation of literature data
NASA Astrophysics Data System (ADS)
Seshadri, Ram; Sparks, Taylor D.
2016-05-01
Searchable, interactive, databases of material properties, particularly those relating to functional materials (magnetics, thermoelectrics, photovoltaics, etc.) are curiously missing from discussions of machine-learning and other data-driven methods for advancing new materials discovery. Here we discuss the manual aggregation of experimental data from the published literature for the creation of interactive databases that allow the original experimental data as well additional metadata to be visualized in an interactive manner. The databases described involve materials for thermoelectric energy conversion, and for the electrodes of Li-ion batteries. The data can be subject to machine-learning, accelerating the discovery of new materials.
Robert E. Keane
2006-01-01
The Metadata (MD) table in the FIREMON database is used to record any information about the sampling strategy or data collected using the FIREMON sampling procedures. The MD method records metadata pertaining to a group of FIREMON plots, such as all plots in a specific FIREMON project. FIREMON plots are linked to metadata using a unique metadata identifier that is...
NASA Astrophysics Data System (ADS)
Tufte, Lars; Trieschmann, Olaf; Carreau, Philippe; Hunsaenger, Thomas; Clayton, Peter J. S.; Barjenbruch, Ulrich
2004-02-01
The detection of accidentally or illegal marine oil discharges in the German territorial waters of the North Sea and Baltic Sea is of great importance for combating of oil spills and protection of the marine ecosystem. Therefore the German Federal Ministry of Transport set up an airborne surveillance system consisting of two Dornier DO 228-212 aircrafts equipped with a Side-Looking Airborne Radar (SLAR), a IR/UV sensor, a Microwave Radiometer (MWR) for quantification and a Laser-Flurosensor (LFS) for classification purposes of the oil spills. The flight parameters and the remote sensing data are stored in a database during the flight. A Pollution Observation Log is completed by the operator consisting of information about the detected oil spill (e.g. position, length, width) and several other information about the flight (e.g. name of navigator, name of observer). The objective was to develop an oil spill information system which integrates the described data, metadata and includes visualization and spatial analysis capabilities. The metadata are essential for further statistical analysis in spatial and temporal domains of oil spill occurrences and of the surveillance itself. It should facilitate the communication and distribution of metadata between the administrative bodies and partners of the German oil spill surveillance system. A connection between a GIS and the database allows to use the powerful visualization and spatial analysis functionality of the GIS in conjunction with the oil spill database.
Documentation Resources on the ESIP Wiki
NASA Technical Reports Server (NTRS)
Habermann, Ted; Kozimor, John; Gordon, Sean
2017-01-01
The ESIP community includes data providers and users that communicate with one another through datasets and metadata that describe them. Improving this communication depends on consistent high-quality metadata. The ESIP Documentation Cluster and the wiki play an important central role in facilitating this communication. We will describe and demonstrate sections of the wiki that provide information about metadata concept definitions, metadata recommendation, metadata dialects, and guidance pages. We will also describe and demonstrate the ISO Explorer, a tool that the community is developing to help metadata creators.
Transforming Dermatologic Imaging for the Digital Era: Metadata and Standards.
Caffery, Liam J; Clunie, David; Curiel-Lewandrowski, Clara; Malvehy, Josep; Soyer, H Peter; Halpern, Allan C
2018-01-17
Imaging is increasingly being used in dermatology for documentation, diagnosis, and management of cutaneous disease. The lack of standards for dermatologic imaging is an impediment to clinical uptake. Standardization can occur in image acquisition, terminology, interoperability, and metadata. This paper presents the International Skin Imaging Collaboration position on standardization of metadata for dermatologic imaging. Metadata is essential to ensure that dermatologic images are properly managed and interpreted. There are two standards-based approaches to recording and storing metadata in dermatologic imaging. The first uses standard consumer image file formats, and the second is the file format and metadata model developed for the Digital Imaging and Communication in Medicine (DICOM) standard. DICOM would appear to provide an advantage over using consumer image file formats for metadata as it includes all the patient, study, and technical metadata necessary to use images clinically. Whereas, consumer image file formats only include technical metadata and need to be used in conjunction with another actor-for example, an electronic medical record-to supply the patient and study metadata. The use of DICOM may have some ancillary benefits in dermatologic imaging including leveraging DICOM network and workflow services, interoperability of images and metadata, leveraging existing enterprise imaging infrastructure, greater patient safety, and better compliance to legislative requirements for image retention.
ISO, FGDC, DIF and Dublin Core - Making Sense of Metadata Standards for Earth Science Data
NASA Astrophysics Data System (ADS)
Jones, P. R.; Ritchey, N. A.; Peng, G.; Toner, V. A.; Brown, H.
2014-12-01
Metadata standards provide common definitions of metadata fields for information exchange across user communities. Despite the broad adoption of metadata standards for Earth science data, there are still heterogeneous and incompatible representations of information due to differences between the many standards in use and how each standard is applied. Federal agencies are required to manage and publish metadata in different metadata standards and formats for various data catalogs. In 2014, the NOAA National Climatic data Center (NCDC) managed metadata for its scientific datasets in ISO 19115-2 in XML, GCMD Directory Interchange Format (DIF) in XML, DataCite Schema in XML, Dublin Core in XML, and Data Catalog Vocabulary (DCAT) in JSON, with more standards and profiles of standards planned. Of these standards, the ISO 19115-series metadata is the most complete and feature-rich, and for this reason it is used by NCDC as the source for the other metadata standards. We will discuss the capabilities of metadata standards and how these standards are being implemented to document datasets. Successful implementations include developing translations and displays using XSLTs, creating links to related data and resources, documenting dataset lineage, and establishing best practices. Benefits, gaps, and challenges will be highlighted with suggestions for improved approaches to metadata storage and maintenance.
Forum Guide to Metadata: The Meaning behind Education Data. NFES 2009-805
ERIC Educational Resources Information Center
National Forum on Education Statistics, 2009
2009-01-01
The purpose of this guide is to empower people to more effectively use data as information. To accomplish this, the publication explains what metadata are; why metadata are critical to the development of sound education data systems; what components comprise a metadata system; what value metadata bring to data management and use; and how to…
McMahon, Christiana; Denaxas, Spiros
2016-01-01
Metadata are critical in epidemiological and public health research. However, a lack of biomedical metadata quality frameworks and limited awareness of the implications of poor quality metadata renders data analyses problematic. In this study, we created and evaluated a novel framework to assess metadata quality of epidemiological and public health research datasets. We performed a literature review and surveyed stakeholders to enhance our understanding of biomedical metadata quality assessment. The review identified 11 studies and nine quality dimensions; none of which were specifically aimed at biomedical metadata. 96 individuals completed the survey; of those who submitted data, most only assessed metadata quality sometimes, and eight did not at all. Our framework has four sections: a) general information; b) tools and technologies; c) usability; and d) management and curation. We evaluated the framework using three test cases and sought expert feedback. The framework can assess biomedical metadata quality systematically and robustly. PMID:27570670
McMahon, Christiana; Denaxas, Spiros
2016-01-01
Metadata are critical in epidemiological and public health research. However, a lack of biomedical metadata quality frameworks and limited awareness of the implications of poor quality metadata renders data analyses problematic. In this study, we created and evaluated a novel framework to assess metadata quality of epidemiological and public health research datasets. We performed a literature review and surveyed stakeholders to enhance our understanding of biomedical metadata quality assessment. The review identified 11 studies and nine quality dimensions; none of which were specifically aimed at biomedical metadata. 96 individuals completed the survey; of those who submitted data, most only assessed metadata quality sometimes, and eight did not at all. Our framework has four sections: a) general information; b) tools and technologies; c) usability; and d) management and curation. We evaluated the framework using three test cases and sought expert feedback. The framework can assess biomedical metadata quality systematically and robustly.
CMO: Cruise Metadata Organizer for JAMSTEC Research Cruises
NASA Astrophysics Data System (ADS)
Fukuda, K.; Saito, H.; Hanafusa, Y.; Vanroosebeke, A.; Kitayama, T.
2011-12-01
JAMSTEC's Data Research Center for Marine-Earth Sciences manages and distributes a wide variety of observational data and samples obtained from JAMSTEC research vessels and deep sea submersibles. Generally, metadata are essential to identify data and samples were obtained. In JAMSTEC, cruise metadata include cruise information such as cruise ID, name of vessel, research theme, and diving information such as dive number, name of submersible and position of diving point. They are submitted by chief scientists of research cruises in the Microsoft Excel° spreadsheet format, and registered into a data management database to confirm receipt of observational data files, cruise summaries, and cruise reports. The cruise metadata are also published via "JAMSTEC Data Site for Research Cruises" within two months after end of cruise. Furthermore, these metadata are distributed with observational data, images and samples via several data and sample distribution websites after a publication moratorium period. However, there are two operational issues in the metadata publishing process. One is that duplication efforts and asynchronous metadata across multiple distribution websites due to manual metadata entry into individual websites by administrators. The other is that differential data types or representation of metadata in each website. To solve those problems, we have developed a cruise metadata organizer (CMO) which allows cruise metadata to be connected from the data management database to several distribution websites. CMO is comprised of three components: an Extensible Markup Language (XML) database, an Enterprise Application Integration (EAI) software, and a web-based interface. The XML database is used because of its flexibility for any change of metadata. Daily differential uptake of metadata from the data management database to the XML database is automatically processed via the EAI software. Some metadata are entered into the XML database using the web-based interface by a metadata editor in CMO as needed. Then daily differential uptake of metadata from the XML database to databases in several distribution websites is automatically processed using a convertor defined by the EAI software. Currently, CMO is available for three distribution websites: "Deep Sea Floor Rock Sample Database GANSEKI", "Marine Biological Sample Database", and "JAMSTEC E-library of Deep-sea Images". CMO is planned to provide "JAMSTEC Data Site for Research Cruises" with metadata in the future.
Towards Data Value-Level Metadata for Clinical Studies.
Zozus, Meredith Nahm; Bonner, Joseph
2017-01-01
While several standards for metadata describing clinical studies exist, comprehensive metadata to support traceability of data from clinical studies has not been articulated. We examine uses of metadata in clinical studies. We examine and enumerate seven sources of data value-level metadata in clinical studies inclusive of research designs across the spectrum of the National Institutes of Health definition of clinical research. The sources of metadata inform categorization in terms of metadata describing the origin of a data value, the definition of a data value, and operations to which the data value was subjected. The latter is further categorized into information about changes to a data value, movement of a data value, retrieval of a data value, and data quality checks, constraints or assessments to which the data value was subjected. The implications of tracking and managing data value-level metadata are explored.
Service architecture challenges in building the KNMI Data Centre
NASA Astrophysics Data System (ADS)
Som de Cerff, Wim; van de Vegte, John; Plieger, Maarten; de Vreede, Ernst; Sluiter, Raymond; Willem Noteboom, Jan; van der Neut, Ian; Verhoef, Hans; van Versendaal, Robert; van Binnendijk, Martin; Kalle, Henk; Knopper, Arthur; Calis, Gijs; Ha, Siu Siu; van Moosel, WIm; Klein Ikkink, Henk-Jan; Tosun, Tuncay
2013-04-01
One of the objectives of KNMI is to act as a National Data centre for weather, climate and seismological data. KNMI has experience in curation of data for many years however important scientific data is not well accessible. New technologies also are available to improve the current infrastructure. Therefore a data curation program is initiated with two main goals: setup a Satellite Data Platform (SDP) and a KNMI data centre (KDC). KDC will provide, besides curation, data access, and storage and retrieval portal for KNMI data. In 2010 first requirements were gathered, in 2011 the main architecture was sketched, KDC was implemented in 2012 and is available on: http://data.knmi.nl KDC is built with the data providers involved with as key challenge: 'adding a dataset should be as simple as creating an HTML page'. This is enabled by a three step process, in which the data provider is responsible for two steps: 1. Provide dataset metadata: An easy to use web interface for providing metadata, with automated validation. Metadata consists of an ISO 19115 profile (matching INSPIRE and WMO requirements) and additional technical metadata regarding the data structure and access rights to the data. The interface hides certain metadata fields, which are filed by KDC automatically. 2. Provide data: after metadata has been entered, an upload location for uploading the dataset is provided. Also scripts for pushing large datasets are available. 3. Process and publish: once files are uploaded, they are processed for metadata (e.g., geolocation, time, version) and made available in KDC. The data is put into archive and made available using the in-house developed Virtual File System, which provides a persistent virtual path to the data. For the end-user of the data, KDC provides a web interface with search filters on key words, geolocation and time. Data can be downloaded using HTTP or FTP and can be scripted. Users can register to gain access to restricted datasets. The architecture combines Open Source software components (e.g. Geonetwork, Magnolia, MongoDB, MySQL) with in-house built software (ADAGUC, NADC) and newly developed software. Challenges faced and solved are: How to deal with the different file formats used at KNMI? (e.g. NetCDF, GRIB, BUFR, ASCII); How to deal with the different metadata profiles while hiding the complexity of this to the user? How to incorporate the existing archives? KDC is a node in several networks (WMO WIS, INSPIRE, Open Data): how to do this? In the presentation/poster we will describe what has been done for each of these challenges and how it is implemented in KDC.
Managing Complex Change in Clinical Study Metadata
Brandt, Cynthia A.; Gadagkar, Rohit; Rodriguez, Cesar; Nadkarni, Prakash M.
2004-01-01
In highly functional metadata-driven software, the interrelationships within the metadata become complex, and maintenance becomes challenging. We describe an approach to metadata management that uses a knowledge-base subschema to store centralized information about metadata dependencies and use cases involving specific types of metadata modification. Our system borrows ideas from production-rule systems in that some of this information is a high-level specification that is interpreted and executed dynamically by a middleware engine. Our approach is implemented in TrialDB, a generic clinical study data management system. We review approaches that have been used for metadata management in other contexts and describe the features, capabilities, and limitations of our system. PMID:15187070
NASA Astrophysics Data System (ADS)
Lugmayr, Artur R.; Mailaparampil, Anurag; Tico, Florina; Kalli, Seppo; Creutzburg, Reiner
2003-01-01
Digital television (digiTV) is an additional multimedia environment, where metadata is one key element for the description of arbitrary content. This implies adequate structures for content description, which is provided by XML metadata schemes (e.g. MPEG-7, MPEG-21). Content and metadata management is the task of a multimedia repository, from which digiTV clients - equipped with an Internet connection - can access rich additional multimedia types over an "All-HTTP" protocol layer. Within this research work, we focus on conceptual design issues of a metadata repository for the storage of metadata, accessible from the feedback channel of a local set-top box. Our concept describes the whole heterogeneous life-cycle chain of XML metadata from the service provider to the digiTV equipment, device independent representation of content, accessing and querying the metadata repository, management of metadata related to digiTV, and interconnection of basic system components (http front-end, relational database system, and servlet container). We present our conceptual test configuration of a metadata repository that is aimed at a real-world deployment, done within the scope of the future interaction (fiTV) project at the Digital Media Institute (DMI) Tampere (www.futureinteraction.tv).
Metazen – metadata capture for metagenomes
2014-01-01
Background As the impact and prevalence of large-scale metagenomic surveys grow, so does the acute need for more complete and standards compliant metadata. Metadata (data describing data) provides an essential complement to experimental data, helping to answer questions about its source, mode of collection, and reliability. Metadata collection and interpretation have become vital to the genomics and metagenomics communities, but considerable challenges remain, including exchange, curation, and distribution. Currently, tools are available for capturing basic field metadata during sampling, and for storing, updating and viewing it. Unfortunately, these tools are not specifically designed for metagenomic surveys; in particular, they lack the appropriate metadata collection templates, a centralized storage repository, and a unique ID linking system that can be used to easily port complete and compatible metagenomic metadata into widely used assembly and sequence analysis tools. Results Metazen was developed as a comprehensive framework designed to enable metadata capture for metagenomic sequencing projects. Specifically, Metazen provides a rapid, easy-to-use portal to encourage early deposition of project and sample metadata. Conclusions Metazen is an interactive tool that aids users in recording their metadata in a complete and valid format. A defined set of mandatory fields captures vital information, while the option to add fields provides flexibility. PMID:25780508
Metazen - metadata capture for metagenomes.
Bischof, Jared; Harrison, Travis; Paczian, Tobias; Glass, Elizabeth; Wilke, Andreas; Meyer, Folker
2014-01-01
As the impact and prevalence of large-scale metagenomic surveys grow, so does the acute need for more complete and standards compliant metadata. Metadata (data describing data) provides an essential complement to experimental data, helping to answer questions about its source, mode of collection, and reliability. Metadata collection and interpretation have become vital to the genomics and metagenomics communities, but considerable challenges remain, including exchange, curation, and distribution. Currently, tools are available for capturing basic field metadata during sampling, and for storing, updating and viewing it. Unfortunately, these tools are not specifically designed for metagenomic surveys; in particular, they lack the appropriate metadata collection templates, a centralized storage repository, and a unique ID linking system that can be used to easily port complete and compatible metagenomic metadata into widely used assembly and sequence analysis tools. Metazen was developed as a comprehensive framework designed to enable metadata capture for metagenomic sequencing projects. Specifically, Metazen provides a rapid, easy-to-use portal to encourage early deposition of project and sample metadata. Metazen is an interactive tool that aids users in recording their metadata in a complete and valid format. A defined set of mandatory fields captures vital information, while the option to add fields provides flexibility.
Improving Access to NASA Earth Science Data through Collaborative Metadata Curation
NASA Astrophysics Data System (ADS)
Sisco, A. W.; Bugbee, K.; Shum, D.; Baynes, K.; Dixon, V.; Ramachandran, R.
2017-12-01
The NASA-developed Common Metadata Repository (CMR) is a high-performance metadata system that currently catalogs over 375 million Earth science metadata records. It serves as the authoritative metadata management system of NASA's Earth Observing System Data and Information System (EOSDIS), enabling NASA Earth science data to be discovered and accessed by a worldwide user community. The size of the EOSDIS data archive is steadily increasing, and the ability to manage and query this archive depends on the input of high quality metadata to the CMR. Metadata that does not provide adequate descriptive information diminishes the CMR's ability to effectively find and serve data to users. To address this issue, an innovative and collaborative review process is underway to systematically improve the completeness, consistency, and accuracy of metadata for approximately 7,000 data sets archived by NASA's twelve EOSDIS data centers, or Distributed Active Archive Centers (DAACs). The process involves automated and manual metadata assessment of both collection and granule records by a team of Earth science data specialists at NASA Marshall Space Flight Center. The team communicates results to DAAC personnel, who then make revisions and reingest improved metadata into the CMR. Implementation of this process relies on a network of interdisciplinary collaborators leveraging a variety of communication platforms and long-range planning strategies. Curating metadata at this scale and resolving metadata issues through community consensus improves the CMR's ability to serve current and future users and also introduces best practices for stewarding the next generation of Earth Observing System data. This presentation will detail the metadata curation process, its outcomes thus far, and also share the status of ongoing curation activities.
NASA Technical Reports Server (NTRS)
Shum, Dana; Bugbee, Kaylin
2017-01-01
This talk explains the ongoing metadata curation activities in the Common Metadata Repository. It explores tools that exist today which are useful for building quality metadata and also opens up the floor for discussions on other potentially useful tools.
NASA Astrophysics Data System (ADS)
Troyan, D.
2016-12-01
The Atmospheric Radiation Measurement (ARM) program has been collecting data from instruments in diverse climate regions for nearly twenty-five years. These data are made available to all interested parties at no cost via specially designed tools found on the ARM website (www.arm.gov). Metadata is created and applied to the various datastreams to facilitate information retrieval using the ARM website, the ARM Data Discovery Tool, and data quality reporting tools. Over the last year, the Metadata Manager - a relatively new position within the ARM program - created two documents that summarize the state of ARM metadata processes: ARM Metadata Workflow, and ARM Metadata Standards. These documents serve as guides to the creation and management of ARM metadata. With many of ARM's data functions spread around the Department of Energy national laboratory complex and with many of the original architects of the metadata structure no longer working for ARM, there is increased importance on using these documents to resolve issues from data flow bottlenecks and inaccurate metadata to improving data discovery and organizing web pages. This presentation will provide some examples from the workflow and standards documents. The examples will illustrate the complexity of the ARM metadata processes and the efficiency by which the metadata team works towards achieving the goal of providing access to data collected under the auspices of the ARM program.
Efficient processing of MPEG-21 metadata in the binary domain
NASA Astrophysics Data System (ADS)
Timmerer, Christian; Frank, Thomas; Hellwagner, Hermann; Heuer, Jörg; Hutter, Andreas
2005-10-01
XML-based metadata is widely adopted across the different communities and plenty of commercial and open source tools for processing and transforming are available on the market. However, all of these tools have one thing in common: they operate on plain text encoded metadata which may become a burden in constrained and streaming environments, i.e., when metadata needs to be processed together with multimedia content on the fly. In this paper we present an efficient approach for transforming such kind of metadata which are encoded using MPEG's Binary Format for Metadata (BiM) without additional en-/decoding overheads, i.e., within the binary domain. Therefore, we have developed an event-based push parser for BiM encoded metadata which transforms the metadata by a limited set of processing instructions - based on traditional XML transformation techniques - operating on bit patterns instead of cost-intensive string comparisons.
A model for enhancing Internet medical document retrieval with "medical core metadata".
Malet, G; Munoz, F; Appleyard, R; Hersh, W
1999-01-01
Finding documents on the World Wide Web relevant to a specific medical information need can be difficult. The goal of this work is to define a set of document content description tags, or metadata encodings, that can be used to promote disciplined search access to Internet medical documents. The authors based their approach on a proposed metadata standard, the Dublin Core Metadata Element Set, which has recently been submitted to the Internet Engineering Task Force. Their model also incorporates the National Library of Medicine's Medical Subject Headings (MeSH) vocabulary and MEDLINE-type content descriptions. The model defines a medical core metadata set that can be used to describe the metadata for a wide variety of Internet documents. The authors propose that their medical core metadata set be used to assign metadata to medical documents to facilitate document retrieval by Internet search engines.
Design and implementation of a health data interoperability mediator.
Kuo, Mu-Hsing; Kushniruk, Andre William; Borycki, Elizabeth Marie
2010-01-01
The objective of this study is to design and implement a common-gateway oriented mediator to solve the health data interoperability problems that exist among heterogeneous health information systems. The proposed mediator has three main components: (1) a Synonym Dictionary (SD) that stores a set of global metadata and terminologies to serve as the mapping intermediary, (2) a Semantic Mapping Engine (SME) that can be used to map metadata and instance semantics, and (3) a DB-to-XML module that translates source health data stored in a database into XML format and back. A routine admission notification data exchange scenario is used to test the efficiency and feasibility of the proposed mediator. The study results show that the proposed mediator can make health information exchange more efficient.
CytometryML binary data standards
NASA Astrophysics Data System (ADS)
Leif, Robert C.
2005-03-01
CytometryML is a proposed new Analytical Cytology (Cytomics) data standard, which is based on a common set of XML schemas for encoding flow cytometry and digital microscopy text based data types (metadata). CytometryML schemas reference both DICOM (Digital Imaging and Communications in Medicine) codes and FCS keywords. Flow Cytometry Standard (FCS) list-mode has been mapped to the DICOM Waveform Information Object. The separation of the large binary data objects (list mode and image data) from the XML description of the metadata permits the metadata to be directly displayed, analyzed, and reported with standard commercial software packages; the direct use of XML languages; and direct interfacing with clinical information systems. The separation of the binary data into its own files simplifies parsing because all extraneous header data has been eliminated. The storage of images as two-dimensional arrays without any extraneous data, such as in the Adobe Photoshop RAW format, facilitates the development by scientists of their own analysis and visualization software. Adobe Photoshop provided the display infrastructure and the translation facility to interconvert between the image data from commercial formats and RAW format. Similarly, the storage and parsing of list mode binary data type with a group of parameters that are specified at compilation time is straight forward. However when the user is permitted at run-time to select a subset of the parameters and/or specify results of mathematical manipulations, the development of special software was required. The use of CytometryML will permit investigators to be able to create their own interoperable data analysis software and to employ commercially available software to disseminate their data.
Current Searching Methodology and Retrieval Issues: An Assessment
2008-03-01
searching that are used by search engines are discussed. They are: full text searching, i.e., the searching of unstructured data, and metadata searching...also found among search engines ; however, it is the popularity of full text searching that has changed the road map to information access. The...other hand, information seekers’ willingness, or lack of, to learn the multiple search engines ’ capabilities may diminish their search results
NASA Technical Reports Server (NTRS)
Ramachandran, Rahul; Maskey, Manil; Li, Xiang; Bugbee, Kaylin
2017-01-01
This paper presents two research applications exploiting unused metadata resources in novel ways to aid data discovery and exploration capabilities. The results based on the experiments are encouraging and each application has the potential to serve as a useful standalone component or service in a data system. There were also some interesting lessons learned while designing the two applications and these are presented next.
Automated Database Mediation Using Ontological Metadata Mappings
Marenco, Luis; Wang, Rixin; Nadkarni, Prakash
2009-01-01
Objective To devise an automated approach for integrating federated database information using database ontologies constructed from their extended metadata. Background One challenge of database federation is that the granularity of representation of equivalent data varies across systems. Dealing effectively with this problem is analogous to dealing with precoordinated vs. postcoordinated concepts in biomedical ontologies. Model Description The authors describe an approach based on ontological metadata mapping rules defined with elements of a global vocabulary, which allows a query specified at one granularity level to fetch data, where possible, from databases within the federation that use different granularities. This is implemented in OntoMediator, a newly developed production component of our previously described Query Integrator System. OntoMediator's operation is illustrated with a query that accesses three geographically separate, interoperating databases. An example based on SNOMED also illustrates the applicability of high-level rules to support the enforcement of constraints that can prevent inappropriate curator or power-user actions. Summary A rule-based framework simplifies the design and maintenance of systems where categories of data must be mapped to each other, for the purpose of either cross-database query or for curation of the contents of compositional controlled vocabularies. PMID:19567801
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, Dustin Yewell
Echo™ is a MATLAB-based software package designed for robust and scalable analysis of complex data workflows. An alternative to tedious, error-prone conventional processes, Echo is based on three transformative principles for data analysis: self-describing data, name-based indexing, and dynamic resource allocation. The software takes an object-oriented approach to data analysis, intimately connecting measurement data with associated metadata. Echo operations in an analysis workflow automatically track and merge metadata and computation parameters to provide a complete history of the process used to generate final results, while automated figure and report generation tools eliminate the potential to mislabel those results. History reportingmore » and visualization methods provide straightforward auditability of analysis processes. Furthermore, name-based indexing on metadata greatly improves code readability for analyst collaboration and reduces opportunities for errors to occur. Echo efficiently manages large data sets using a framework that seamlessly allocates resources such that only the necessary computations to produce a given result are executed. Echo provides a versatile and extensible framework, allowing advanced users to add their own tools and data classes tailored to their own specific needs. Applying these transformative principles and powerful features, Echo greatly improves analyst efficiency and quality of results in many application areas.« less
The New Online Metadata Editor for Generating Structured Metadata
NASA Astrophysics Data System (ADS)
Devarakonda, R.; Shrestha, B.; Palanisamy, G.; Hook, L.; Killeffer, T.; Boden, T.; Cook, R. B.; Zolly, L.; Hutchison, V.; Frame, M. T.; Cialella, A. T.; Lazer, K.
2014-12-01
Nobody is better suited to "describe" data than the scientist who created it. This "description" about a data is called Metadata. In general terms, Metadata represents the who, what, when, where, why and how of the dataset. eXtensible Markup Language (XML) is the preferred output format for metadata, as it makes it portable and, more importantly, suitable for system discoverability. The newly developed ORNL Metadata Editor (OME) is a Web-based tool that allows users to create and maintain XML files containing key information, or metadata, about the research. Metadata include information about the specific projects, parameters, time periods, and locations associated with the data. Such information helps put the research findings in context. In addition, the metadata produced using OME will allow other researchers to find these data via Metadata clearinghouses like Mercury [1] [2]. Researchers simply use the ORNL Metadata Editor to enter relevant metadata into a Web-based form. How is OME helping Big Data Centers like ORNL DAAC? The ORNL DAAC is one of NASA's Earth Observing System Data and Information System (EOSDIS) data centers managed by the ESDIS Project. The ORNL DAAC archives data produced by NASA's Terrestrial Ecology Program. The DAAC provides data and information relevant to biogeochemical dynamics, ecological data, and environmental processes, critical for understanding the dynamics relating to the biological components of the Earth's environment. Typically data produced, archived and analyzed is at a scale of multiple petabytes, which makes the discoverability of the data very challenging. Without proper metadata associated with the data, it is difficult to find the data you are looking for and equally difficult to use and understand the data. OME will allow data centers like the ORNL DAAC to produce meaningful, high quality, standards-based, descriptive information about their data products in-turn helping with the data discoverability and interoperability.References:[1] Devarakonda, Ranjeet, et al. "Mercury: reusable metadata management, data discovery and access system." Earth Science Informatics 3.1-2 (2010): 87-94. [2] Wilson, Bruce E., et al. "Mercury Toolset for Spatiotemporal Metadata." NASA Technical Reports Server (NTRS) (2010).
Ignizio, Drew A.; O'Donnell, Michael S.; Talbert, Colin B.
2014-01-01
Creating compliant metadata for scientific data products is mandated for all federal Geographic Information Systems professionals and is a best practice for members of the geospatial data community. However, the complexity of the The Federal Geographic Data Committee’s Content Standards for Digital Geospatial Metadata, the limited availability of easy-to-use tools, and recent changes in the ESRI software environment continue to make metadata creation a challenge. Staff at the U.S. Geological Survey Fort Collins Science Center have developed a Python toolbox for ESRI ArcDesktop to facilitate a semi-automated workflow to create and update metadata records in ESRI’s 10.x software. The U.S. Geological Survey Metadata Wizard tool automatically populates several metadata elements: the spatial reference, spatial extent, geospatial presentation format, vector feature count or raster column/row count, native system/processing environment, and the metadata creation date. Once the software auto-populates these elements, users can easily add attribute definitions and other relevant information in a simple Graphical User Interface. The tool, which offers a simple design free of esoteric metadata language, has the potential to save many government and non-government organizations a significant amount of time and costs by facilitating the development of The Federal Geographic Data Committee’s Content Standards for Digital Geospatial Metadata compliant metadata for ESRI software users. A working version of the tool is now available for ESRI ArcDesktop, version 10.0, 10.1, and 10.2 (downloadable at http:/www.sciencebase.gov/metadatawizard).
Managing Heterogeneous Information Systems through Discovery and Retrieval of Generic Concepts.
ERIC Educational Resources Information Center
Srinivasan, Uma; Ngu, Anne H. H.; Gedeon, Tom
2000-01-01
Introduces a conceptual integration approach to heterogeneous databases or information systems that exploits the similarity in metalevel information and performs metadata mining on database objects to discover a set of concepts that serve as a domain abstraction and provide a conceptual layer above existing legacy systems. Presents results of…
Using OAI-PMH and METS for Exporting Metadata and Digital Objects between Repositories
ERIC Educational Resources Information Center
Bell, Jonathan; Lewis, Stuart
2006-01-01
Purpose: To examine the relationship between deposit of electronic theses in institutional and archival repositories. Specifically the paper considers the automated export of theses for deposit in the archival repository in continuation of the existing arrangement in Wales for paper-based theses. Design/methodology/approach: The paper presents a…
NASA Astrophysics Data System (ADS)
Richard, S. M.
2011-12-01
The USGIN project has drafted and is using a specification for use of ISO 19115/19/39 metadata, recommendations for simple metadata content, and a proposal for a URI scheme to identify resources using resolvable http URI's(see http://lab.usgin.org/usgin-profiles). The principal target use case is a catalog in which resources can be registered and described by data providers for discovery by users. We are currently using the ESRI Geoportal (Open Source), with configuration files for the USGIN profile. The metadata offered by the catalog must provide sufficient content to guide search engines to locate requested resources, to describe the resource content, provenance, and quality so users can determine if the resource will serve for intended usage, and finally to enable human users and sofware clients to obtain or access the resource. In order to achieve an operational federated catalog system, provisions in the ISO specification must be restricted and usage clarified to reduce the heterogeneity of 'standard' metadata and service implementations such that a single client can search against different catalogs, and the metadata returned by catalogs can be parsed reliably to locate required information. Usage of the complex ISO 19139 XML schema allows for a great deal of structured metadata content, but the heterogenity in approaches to content encoding has hampered development of sophisticated client software that can take advantage of the rich metadata; the lack of such clients in turn reduces motivation for metadata producers to produce content-rich metadata. If the only significant use of the detailed, structured metadata is to format into text for people to read, then the detailed information could be put in free text elements and be just as useful. In order for complex metadata encoding and content to be useful, there must be clear and unambiguous conventions on the encoding that are utilized by the community that wishes to take advantage of advanced metadata content. The use cases for the detailed content must be well understood, and the degree of metadata complexity should be determined by requirements for those use cases. The ISO standard provides sufficient flexibility that relatively simple metadata records can be created that will serve for text-indexed search/discovery, resource evaluation by a user reading text content from the metadata, and access to the resource via http, ftp, or well-known service protocols (e.g. Thredds; OGC WMS, WFS, WCS).
Schwarz, Daniel; Štourač, Petr; Komenda, Martin; Harazim, Hana; Kosinová, Martina; Gregor, Jakub; Hůlek, Richard; Smékalová, Olga; Křikava, Ivo; Štoudek, Roman; Dušek, Ladislav
2013-07-08
Medical Faculties Network (MEFANET) has established itself as the authority for setting standards for medical educators in the Czech Republic and Slovakia, 2 independent countries with similar languages that once comprised a federation and that still retain the same curricular structure for medical education. One of the basic goals of the network is to advance medical teaching and learning with the use of modern information and communication technologies. We present the education portal AKUTNE.CZ as an important part of the MEFANET's content. Our focus is primarily on simulation-based tools for teaching and learning acute medicine issues. Three fundamental elements of the MEFANET e-publishing system are described: (1) medical disciplines linker, (2) authentication/authorization framework, and (3) multidimensional quality assessment. A new set of tools for technology-enhanced learning have been introduced recently: Sandbox (works in progress), WikiLectures (collaborative content authoring), Moodle-MEFANET (central learning management system), and Serious Games (virtual casuistics and interactive algorithms). The latest development in MEFANET is designed for indexing metadata about simulation-based learning objects, also known as electronic virtual patients or virtual clinical cases. The simulations assume the form of interactive algorithms for teaching and learning acute medicine. An anonymous questionnaire of 10 items was used to explore students' attitudes and interests in using the interactive algorithms as part of their medical or health care studies. Data collection was conducted over 10 days in February 2013. In total, 25 interactive algorithms in the Czech and English languages have been developed and published on the AKUTNE.CZ education portal to allow the users to test and improve their knowledge and skills in the field of acute medicine. In the feedback survey, 62 participants completed the online questionnaire (13.5%) from the total 460 addressed. Positive attitudes toward the interactive algorithms outnumbered negative trends. The peer-reviewed algorithms were used for conducting problem-based learning sessions in general medicine (first aid, anesthesiology and pain management, emergency medicine) and in nursing (emergency medicine for midwives, obstetric analgesia, and anesthesia for midwifes). The feedback from the survey suggests that the students found the interactive algorithms as effective learning tools, facilitating enhanced knowledge in the field of acute medicine. The interactive algorithms, as a software platform, are open to academic use worldwide. The existing algorithms, in the form of simulation-based learning objects, can be incorporated into any educational website (subject to the approval of the authors).
The Digital Sample: Metadata, Unique Identification, and Links to Data and Publications
NASA Astrophysics Data System (ADS)
Lehnert, K. A.; Vinayagamoorthy, S.; Djapic, B.; Klump, J.
2006-12-01
A significant part of digital data in the Geosciences refers to physical samples of Earth materials, from igneous rocks to sediment cores to water or gas samples. The application and long-term utility of these sample-based data in research is critically dependent on (a) the availability of information (metadata) about the samples such as geographical location and time of sampling, or sampling method, (b) links between the different data types available for individual samples that are dispersed in the literature and in digital data repositories, and (c) access to the samples themselves. Major problems for achieving this include incomplete documentation of samples in publications, use of ambiguous sample names, and the lack of a central catalog that allows to find a sample's archiving location. The International Geo Sample Number IGSN, managed by the System for Earth Sample Registration SESAR, provides solutions for these problems. The IGSN is a unique persistent identifier for samples and other GeoObjects that can be obtained by submitting sample metadata to SESAR (www.geosamples.org). If data in a publication is referenced to an IGSN (rather than an ambiguous sample name), sample metadata can readily be extracted from the SESAR database, which evolves into a Global Sample Catalog that also allows to locate the owner or curator of the sample. Use of the IGSN in digital data systems allows building linkages between distributed data. SESAR is contributing to the development of sample metadata standards. SESAR will integrate the IGSN in persistent, resolvable identifiers based on the handle.net service to advance direct linkages between the digital representation of samples in SESAR (sample profiles) and their related data in the literature and in web-accessible digital data repositories. Technologies outlined by Klump et al. (this session) such as the automatic creation of ontologies by text mining applications will be explored for harvesting identifiers of publications and datasets that contain information about a specific sample in order to establish comprehensive data profiles for samples.
An Approach to Information Management for AIR7000 with Metadata and Ontologies
2009-10-01
metadata. We then propose an approach based on Semantic Technologies including the Resource Description Framework (RDF) and Upper Ontologies, for the...mandating specific metadata schemas can result in interoperability problems. For example, many standards within the ADO mandate the use of XML for metadata...such problems, we propose an archi- tecture in which different metadata schemes can inter operate. By using RDF (Resource Description Framework ) as a
Making Interoperability Easier with NASA's Metadata Management Tool (MMT)
NASA Technical Reports Server (NTRS)
Shum, Dana; Reese, Mark; Pilone, Dan; Baynes, Katie
2016-01-01
While the ISO-19115 collection level metadata format meets many users' needs for interoperable metadata, it can be cumbersome to create it correctly. Through the MMT's simple UI experience, metadata curators can create and edit collections which are compliant with ISO-19115 without full knowledge of the NASA Best Practices implementation of ISO-19115 format. Users are guided through the metadata creation process through a forms-based editor, complete with field information, validation hints and picklists. Once a record is completed, users can download the metadata in any of the supported formats with just 2 clicks.
Predicting structured metadata from unstructured metadata.
Posch, Lisa; Panahiazar, Maryam; Dumontier, Michel; Gevaert, Olivier
2016-01-01
Enormous amounts of biomedical data have been and are being produced by investigators all over the world. However, one crucial and limiting factor in data reuse is accurate, structured and complete description of the data or data about the data-defined as metadata. We propose a framework to predict structured metadata terms from unstructured metadata for improving quality and quantity of metadata, using the Gene Expression Omnibus (GEO) microarray database. Our framework consists of classifiers trained using term frequency-inverse document frequency (TF-IDF) features and a second approach based on topics modeled using a Latent Dirichlet Allocation model (LDA) to reduce the dimensionality of the unstructured data. Our results on the GEO database show that structured metadata terms can be the most accurately predicted using the TF-IDF approach followed by LDA both outperforming the majority vote baseline. While some accuracy is lost by the dimensionality reduction of LDA, the difference is small for elements with few possible values, and there is a large improvement over the majority classifier baseline. Overall this is a promising approach for metadata prediction that is likely to be applicable to other datasets and has implications for researchers interested in biomedical metadata curation and metadata prediction. © The Author(s) 2016. Published by Oxford University Press.
Metazen – metadata capture for metagenomes
Bischof, Jared; Harrison, Travis; Paczian, Tobias; ...
2014-12-08
Background: As the impact and prevalence of large-scale metagenomic surveys grow, so does the acute need for more complete and standards compliant metadata. Metadata (data describing data) provides an essential complement to experimental data, helping to answer questions about its source, mode of collection, and reliability. Metadata collection and interpretation have become vital to the genomics and metagenomics communities, but considerable challenges remain, including exchange, curation, and distribution. Currently, tools are available for capturing basic field metadata during sampling, and for storing, updating and viewing it. These tools are not specifically designed for metagenomic surveys; in particular, they lack themore » appropriate metadata collection templates, a centralized storage repository, and a unique ID linking system that can be used to easily port complete and compatible metagenomic metadata into widely used assembly and sequence analysis tools. Results: Metazen was developed as a comprehensive framework designed to enable metadata capture for metagenomic sequencing projects. Specifically, Metazen provides a rapid, easy-to-use portal to encourage early deposition of project and sample metadata. Conclusion: Metazen is an interactive tool that aids users in recording their metadata in a complete and valid format. A defined set of mandatory fields captures vital information, while the option to add fields provides flexibility.« less
Metazen – metadata capture for metagenomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bischof, Jared; Harrison, Travis; Paczian, Tobias
Background: As the impact and prevalence of large-scale metagenomic surveys grow, so does the acute need for more complete and standards compliant metadata. Metadata (data describing data) provides an essential complement to experimental data, helping to answer questions about its source, mode of collection, and reliability. Metadata collection and interpretation have become vital to the genomics and metagenomics communities, but considerable challenges remain, including exchange, curation, and distribution. Currently, tools are available for capturing basic field metadata during sampling, and for storing, updating and viewing it. These tools are not specifically designed for metagenomic surveys; in particular, they lack themore » appropriate metadata collection templates, a centralized storage repository, and a unique ID linking system that can be used to easily port complete and compatible metagenomic metadata into widely used assembly and sequence analysis tools. Results: Metazen was developed as a comprehensive framework designed to enable metadata capture for metagenomic sequencing projects. Specifically, Metazen provides a rapid, easy-to-use portal to encourage early deposition of project and sample metadata. Conclusion: Metazen is an interactive tool that aids users in recording their metadata in a complete and valid format. A defined set of mandatory fields captures vital information, while the option to add fields provides flexibility.« less
Predicting structured metadata from unstructured metadata
Posch, Lisa; Panahiazar, Maryam; Dumontier, Michel; Gevaert, Olivier
2016-01-01
Enormous amounts of biomedical data have been and are being produced by investigators all over the world. However, one crucial and limiting factor in data reuse is accurate, structured and complete description of the data or data about the data—defined as metadata. We propose a framework to predict structured metadata terms from unstructured metadata for improving quality and quantity of metadata, using the Gene Expression Omnibus (GEO) microarray database. Our framework consists of classifiers trained using term frequency-inverse document frequency (TF-IDF) features and a second approach based on topics modeled using a Latent Dirichlet Allocation model (LDA) to reduce the dimensionality of the unstructured data. Our results on the GEO database show that structured metadata terms can be the most accurately predicted using the TF-IDF approach followed by LDA both outperforming the majority vote baseline. While some accuracy is lost by the dimensionality reduction of LDA, the difference is small for elements with few possible values, and there is a large improvement over the majority classifier baseline. Overall this is a promising approach for metadata prediction that is likely to be applicable to other datasets and has implications for researchers interested in biomedical metadata curation and metadata prediction. Database URL: http://www.yeastgenome.org/ PMID:28637268
Why can't I manage my digital images like MP3s? The evolution and intent of multimedia metadata
NASA Astrophysics Data System (ADS)
Goodrum, Abby; Howison, James
2005-01-01
This paper considers the deceptively simple question: Why can't digital images be managed in the simple and effective manner in which digital music files are managed? We make the case that the answer is different treatments of metadata in different domains with different goals. A central difference between the two formats stems from the fact that digital music metadata lookup services are collaborative and automate the movement from a digital file to the appropriate metadata, while image metadata services do not. To understand why this difference exists we examine the divergent evolution of metadata standards for digital music and digital images and observed that the processes differ in interesting ways according to their intent. Specifically music metadata was developed primarily for personal file management and community resource sharing, while the focus of image metadata has largely been on information retrieval. We argue that lessons from MP3 metadata can assist individuals facing their growing personal image management challenges. Our focus therefore is not on metadata for cultural heritage institutions or the publishing industry, it is limited to the personal libraries growing on our hard-drives. This bottom-up approach to file management combined with p2p distribution radically altered the music landscape. Might such an approach have a similar impact on image publishing? This paper outlines plans for improving the personal management of digital images-doing image metadata and file management the MP3 way-and considers the likelihood of success.
Why can't I manage my digital images like MP3s? The evolution and intent of multimedia metadata
NASA Astrophysics Data System (ADS)
Goodrum, Abby; Howison, James
2004-12-01
This paper considers the deceptively simple question: Why can"t digital images be managed in the simple and effective manner in which digital music files are managed? We make the case that the answer is different treatments of metadata in different domains with different goals. A central difference between the two formats stems from the fact that digital music metadata lookup services are collaborative and automate the movement from a digital file to the appropriate metadata, while image metadata services do not. To understand why this difference exists we examine the divergent evolution of metadata standards for digital music and digital images and observed that the processes differ in interesting ways according to their intent. Specifically music metadata was developed primarily for personal file management and community resource sharing, while the focus of image metadata has largely been on information retrieval. We argue that lessons from MP3 metadata can assist individuals facing their growing personal image management challenges. Our focus therefore is not on metadata for cultural heritage institutions or the publishing industry, it is limited to the personal libraries growing on our hard-drives. This bottom-up approach to file management combined with p2p distribution radically altered the music landscape. Might such an approach have a similar impact on image publishing? This paper outlines plans for improving the personal management of digital images-doing image metadata and file management the MP3 way-and considers the likelihood of success.
caCORE: a common infrastructure for cancer informatics.
Covitz, Peter A; Hartel, Frank; Schaefer, Carl; De Coronado, Sherri; Fragoso, Gilberto; Sahni, Himanso; Gustafson, Scott; Buetow, Kenneth H
2003-12-12
Sites with substantive bioinformatics operations are challenged to build data processing and delivery infrastructure that provides reliable access and enables data integration. Locally generated data must be processed and stored such that relationships to external data sources can be presented. Consistency and comparability across data sets requires annotation with controlled vocabularies and, further, metadata standards for data representation. Programmatic access to the processed data should be supported to ensure the maximum possible value is extracted. Confronted with these challenges at the National Cancer Institute Center for Bioinformatics, we decided to develop a robust infrastructure for data management and integration that supports advanced biomedical applications. We have developed an interconnected set of software and services called caCORE. Enterprise Vocabulary Services (EVS) provide controlled vocabulary, dictionary and thesaurus services. The Cancer Data Standards Repository (caDSR) provides a metadata registry for common data elements. Cancer Bioinformatics Infrastructure Objects (caBIO) implements an object-oriented model of the biomedical domain and provides Java, Simple Object Access Protocol and HTTP-XML application programming interfaces. caCORE has been used to develop scientific applications that bring together data from distinct genomic and clinical science sources. caCORE downloads and web interfaces can be accessed from links on the caCORE web site (http://ncicb.nci.nih.gov/core). caBIO software is distributed under an open source license that permits unrestricted academic and commercial use. Vocabulary and metadata content in the EVS and caDSR, respectively, is similarly unrestricted, and is available through web applications and FTP downloads. http://ncicb.nci.nih.gov/core/publications contains links to the caBIO 1.0 class diagram and the caCORE 1.0 Technical Guide, which provide detailed information on the present caCORE architecture, data sources and APIs. Updated information appears on a regular basis on the caCORE web site (http://ncicb.nci.nih.gov/core).
openPDS: protecting the privacy of metadata through SafeAnswers.
de Montjoye, Yves-Alexandre; Shmueli, Erez; Wang, Samuel S; Pentland, Alex Sandy
2014-01-01
The rise of smartphones and web services made possible the large-scale collection of personal metadata. Information about individuals' location, phone call logs, or web-searches, is collected and used intensively by organizations and big data researchers. Metadata has however yet to realize its full potential. Privacy and legal concerns, as well as the lack of technical solutions for personal metadata management is preventing metadata from being shared and reconciled under the control of the individual. This lack of access and control is furthermore fueling growing concerns, as it prevents individuals from understanding and managing the risks associated with the collection and use of their data. Our contribution is two-fold: (1) we describe openPDS, a personal metadata management framework that allows individuals to collect, store, and give fine-grained access to their metadata to third parties. It has been implemented in two field studies; (2) we introduce and analyze SafeAnswers, a new and practical way of protecting the privacy of metadata at an individual level. SafeAnswers turns a hard anonymization problem into a more tractable security one. It allows services to ask questions whose answers are calculated against the metadata instead of trying to anonymize individuals' metadata. The dimensionality of the data shared with the services is reduced from high-dimensional metadata to low-dimensional answers that are less likely to be re-identifiable and to contain sensitive information. These answers can then be directly shared individually or in aggregate. openPDS and SafeAnswers provide a new way of dynamically protecting personal metadata, thereby supporting the creation of smart data-driven services and data science research.
openPDS: Protecting the Privacy of Metadata through SafeAnswers
de Montjoye, Yves-Alexandre; Shmueli, Erez; Wang, Samuel S.; Pentland, Alex Sandy
2014-01-01
The rise of smartphones and web services made possible the large-scale collection of personal metadata. Information about individuals' location, phone call logs, or web-searches, is collected and used intensively by organizations and big data researchers. Metadata has however yet to realize its full potential. Privacy and legal concerns, as well as the lack of technical solutions for personal metadata management is preventing metadata from being shared and reconciled under the control of the individual. This lack of access and control is furthermore fueling growing concerns, as it prevents individuals from understanding and managing the risks associated with the collection and use of their data. Our contribution is two-fold: (1) we describe openPDS, a personal metadata management framework that allows individuals to collect, store, and give fine-grained access to their metadata to third parties. It has been implemented in two field studies; (2) we introduce and analyze SafeAnswers, a new and practical way of protecting the privacy of metadata at an individual level. SafeAnswers turns a hard anonymization problem into a more tractable security one. It allows services to ask questions whose answers are calculated against the metadata instead of trying to anonymize individuals' metadata. The dimensionality of the data shared with the services is reduced from high-dimensional metadata to low-dimensional answers that are less likely to be re-identifiable and to contain sensitive information. These answers can then be directly shared individually or in aggregate. openPDS and SafeAnswers provide a new way of dynamically protecting personal metadata, thereby supporting the creation of smart data-driven services and data science research. PMID:25007320
EMODnet Physics: open and free marine physical data for science and for society
NASA Astrophysics Data System (ADS)
Nolan, G.; Novellino, A.; Gorringe, P.; Manzella, G. M. R., Sr.; Schaap, D.; Pouliquen, S.; Richards, L.
2016-02-01
Europe is sustaining a long term strategy on Blue Growth, looking at seas and oceans as drivers for innovation and growth. A number of weaknesses have been identified, among which gaps in knowledge and data about the state of our oceans, seabed resources, marine life and risks to habitats and ecosystems. European Marine Observation and Data Network (EMODnet) has been created to improve the usefulness to European users for scientific, regulatory and commercial purposes of observations and the resulting marine data collected and held by European public and private bodies. EMODNet Physics is providing access to archived and real time data catalog on the physical condition in Europe's seas and oceans. The overall objectives are to provide access to archived and near real-time data on physical conditions in Europe's seas and oceans by means of a dedicated portal and to determine how well the data meet the needs of users from industry, public authorities and scientists. EMODnet Physics is contributing to the broader initiative 'Marine Knowledge 2020', and in particular to the implementation of the European Copernicus programme, an EU-wide programme that aims to support policymakers, business, and citizens with improved environmental information. In the global context, Copernicus is an integral part of the Global Earth Observation System of Systems. Near real time data and metadata are populated by data owners, organized at EuroGOOS level according its regional operational systems (ROOSs) infrastructure and conventions and made available with the EMODnet Physics user interface. Latest 60 days are freely viewable and downloadable while the access to older data (monthly archives) request credentials. Archived data series and metadata are organized according and in collaboration with NODCs network (SeaDataNet). Access to data and metadata consider measurements on winds at the sea surface, waves, temperature and salinity, water velocities, light attenuation, sea level and ice coverage. EMODnet Physics has the specific objective of processing physical data into interoperable formats which includes agreed standards, common baselines or reference conditions; assessments of their accuracy and precision. The data and metadata are accessible through an ISO, OGC, INSPIRE compliant portal that is operational 24/7.
Progress in defining a standard for file-level metadata
NASA Technical Reports Server (NTRS)
Williams, Joel; Kobler, Ben
1996-01-01
In the following narrative, metadata required to locate a file on tape or collection of tapes will be referred to as file-level metadata. This paper discribes the rationale for and the history of the effort to define a standard for this metadata.
Request queues for interactive clients in a shared file system of a parallel computing system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bent, John M.; Faibish, Sorin
Interactive requests are processed from users of log-in nodes. A metadata server node is provided for use in a file system shared by one or more interactive nodes and one or more batch nodes. The interactive nodes comprise interactive clients to execute interactive tasks and the batch nodes execute batch jobs for one or more batch clients. The metadata server node comprises a virtual machine monitor; an interactive client proxy to store metadata requests from the interactive clients in an interactive client queue; a batch client proxy to store metadata requests from the batch clients in a batch client queue;more » and a metadata server to store the metadata requests from the interactive client queue and the batch client queue in a metadata queue based on an allocation of resources by the virtual machine monitor. The metadata requests can be prioritized, for example, based on one or more of a predefined policy and predefined rules.« less
SPASE, Metadata, and the Heliophysics Virtual Observatories
NASA Technical Reports Server (NTRS)
Thieman, James; King, Todd; Roberts, Aaron
2010-01-01
To provide data search and access capability in the field of Heliophysics (the study of the Sun and its effects on the Solar System, especially the Earth) a number of Virtual Observatories (VO) have been established both via direct funding from the U.S. National Aeronautics and Space Administration (NASA) and through other funding agencies in the U.S. and worldwide. At least 15 systems can be labeled as Virtual Observatories in the Heliophysics community, 9 of them funded by NASA. The problem is that different metadata and data search approaches are used by these VO's and a search for data relevant to a particular research question can involve consulting with multiple VO's - needing to learn a different approach for finding and acquiring data for each. The Space Physics Archive Search and Extract (SPASE) project is intended to provide a common data model for Heliophysics data and therefore a common set of metadata for searches of the VO's. The SPASE Data Model has been developed through the common efforts of the Heliophysics Data and Model Consortium (HDMC) representatives over a number of years. We currently have released Version 2.1 of the Data Model. The advantages and disadvantages of the Data Model will be discussed along with the plans for the future. Recent changes requested by new members of the SPASE community indicate some of the directions for further development.
Forecasting Chronic Diseases Using Data Fusion.
Acar, Evrim; Gürdeniz, Gözde; Savorani, Francesco; Hansen, Louise; Olsen, Anja; Tjønneland, Anne; Dragsted, Lars Ove; Bro, Rasmus
2017-07-07
Data fusion, that is, extracting information through the fusion of complementary data sets, is a topic of great interest in metabolomics because analytical platforms such as liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) spectroscopy commonly used for chemical profiling of biofluids provide complementary information. In this study, with a goal of forecasting acute coronary syndrome (ACS), breast cancer, and colon cancer, we jointly analyzed LC-MS, NMR measurements of plasma samples, and the metadata corresponding to the lifestyle of participants. We used supervised data fusion based on multiple kernel learning and exploited the linearity of the models to identify significant metabolites/features for the separation of healthy referents and the cases developing a disease. We demonstrated that (i) fusing LC-MS, NMR, and metadata provided better separation of ACS cases and referents compared with individual data sets, (ii) NMR data performed the best in terms of forecasting breast cancer, while fusion degraded the performance, and (iii) neither the individual data sets nor their fusion performed well for colon cancer. Furthermore, we showed the strengths and limitations of the fusion models by discussing their performance in terms of capturing known biomarkers for smoking and coffee. While fusion may improve performance in terms of separating certain conditions by jointly analyzing metabolomics and metadata sets, it is not necessarily always the best approach as in the case of breast cancer.
ERIC Educational Resources Information Center
Liu, Xiaoming; Maly, Kurt; Zubair, Mohammad; Nelson, Michael L.; Erickson, John S.; DiLauro, Tim; Choudhury, G. Sayeed; Patton, Mark; Warner, James W.; Brown, Elizabeth W.; Heery, Rachel; Carpenter, Leona; Day, Michael
2001-01-01
Includes five articles that discuss the OAI (Open Archive Initiative), an interface between data providers and service providers; information objects and digital rights management interoperability; digitizing library collections, including automated name authority control, metadata, and text searching engines; and building digital library services…
Making metadata usable in a multi-national research setting.
Ellul, Claire; Foord, Joanna; Mooney, John
2013-11-01
SECOA (Solutions for Environmental Contrasts in Coastal Areas) is a multi-national research project examining the effects of human mobility on urban settlements in fragile coastal environments. This paper describes the setting up of a SECOA metadata repository for non-specialist researchers such as environmental scientists and tourism experts. Conflicting usability requirements of two groups - metadata creators and metadata users - are identified along with associated limitations of current metadata standards. A description is given of a configurable metadata system designed to grow as the project evolves. This work is of relevance for similar projects such as INSPIRE. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.
2011-05-01
iTunes illustrate the difference between the centralized approach of digital library systems and the distributed approach of container file formats...metadata in a container file format. Apple’s iTunes uses a centralized metadata approach and allows users to maintain song metadata in a single...one iTunes library to another the metadata must be copied separately or reentered in the new library. This demonstrates the utility of storing metadata
Collaborative Metadata Curation in Support of NASA Earth Science Data Stewardship
NASA Technical Reports Server (NTRS)
Sisco, Adam W.; Bugbee, Kaylin; le Roux, Jeanne; Staton, Patrick; Freitag, Brian; Dixon, Valerie
2018-01-01
Growing collection of NASA Earth science data is archived and distributed by EOSDIS’s 12 Distributed Active Archive Centers (DAACs). Each collection and granule is described by a metadata record housed in the Common Metadata Repository (CMR). Multiple metadata standards are in use, and core elements of each are mapped to and from a common model – the Unified Metadata Model (UMM). Work done by the Analysis and Review of CMR (ARC) Team.
Mitogenome metadata: current trends and proposed standards.
Strohm, Jeff H T; Gwiazdowski, Rodger A; Hanner, Robert
2016-09-01
Mitogenome metadata are descriptive terms about the sequence, and its specimen description that allow both to be digitally discoverable and interoperable. Here, we review a sampling of mitogenome metadata published in the journal Mitochondrial DNA between 2005 and 2014. Specifically, we have focused on a subset of metadata fields that are available for GenBank records, and specified by the Genomics Standards Consortium (GSC) and other biodiversity metadata standards; and we assessed their presence across three main categories: collection, biological and taxonomic information. To do this we reviewed 146 mitogenome manuscripts, and their associated GenBank records, and scored them for 13 metadata fields. We also explored the potential for mitogenome misidentification using their sequence diversity, and taxonomic metadata on the Barcode of Life Datasystems (BOLD). For this, we focused on all Lepidoptera and Perciformes mitogenomes included in the review, along with additional mitogenome sequence data mined from Genbank. Overall, we found that none of 146 mitogenome projects provided all the metadata we looked for; and only 17 projects provided at least one category of metadata across the three main categories. Comparisons using mtDNA sequences from BOLD, suggest that some mitogenomes may be misidentified. Lastly, we appreciate the research potential of mitogenomes announced through this journal; and we conclude with a suggestion of 13 metadata fields, available on GenBank, that if provided in a mitogenomes's GenBank record, would increase their research value.
Design and implementation of a fault-tolerant and dynamic metadata database for clinical trials
NASA Astrophysics Data System (ADS)
Lee, J.; Zhou, Z.; Talini, E.; Documet, J.; Liu, B.
2007-03-01
In recent imaging-based clinical trials, quantitative image analysis (QIA) and computer-aided diagnosis (CAD) methods are increasing in productivity due to higher resolution imaging capabilities. A radiology core doing clinical trials have been analyzing more treatment methods and there is a growing quantity of metadata that need to be stored and managed. These radiology centers are also collaborating with many off-site imaging field sites and need a way to communicate metadata between one another in a secure infrastructure. Our solution is to implement a data storage grid with a fault-tolerant and dynamic metadata database design to unify metadata from different clinical trial experiments and field sites. Although metadata from images follow the DICOM standard, clinical trials also produce metadata specific to regions-of-interest and quantitative image analysis. We have implemented a data access and integration (DAI) server layer where multiple field sites can access multiple metadata databases in the data grid through a single web-based grid service. The centralization of metadata database management simplifies the task of adding new databases into the grid and also decreases the risk of configuration errors seen in peer-to-peer grids. In this paper, we address the design and implementation of a data grid metadata storage that has fault-tolerance and dynamic integration for imaging-based clinical trials.
Metadata and Service at the GFZ ISDC Portal
NASA Astrophysics Data System (ADS)
Ritschel, B.
2008-05-01
The online service portal of the GFZ Potsdam Information System and Data Center (ISDC) is an access point for all manner of geoscientific geodata, its corresponding metadata, scientific documentation and software tools. At present almost 2000 national and international users and user groups have the opportunity to request Earth science data from a portfolio of 275 different products types and more than 20 Million single data files with an added volume of approximately 12 TByte. The majority of the data and information, the portal currently offers to the public, are global geomonitoring products such as satellite orbit and Earth gravity field data as well as geomagnetic and atmospheric data for the exploration. These products for Earths changing system are provided via state-of-the art retrieval techniques. The data product catalog system behind these techniques is based on the extensive usage of standardized metadata, which are describing the different geoscientific product types and data products in an uniform way. Where as all ISDC product types are specified by NASA's Directory Interchange Format (DIF), Version 9.0 Parent XML DIF metadata files, the individual data files are described by extended DIF metadata documents. Depending on the beginning of the scientific project, one part of data files are described by extended DIF, Version 6 metadata documents and the other part are specified by data Child XML DIF metadata documents. Both, the product type dependent parent DIF metadata documents and the data file dependent child DIF metadata documents are derived from a base-DIF.xsd xml schema file. The ISDC metadata philosophy defines a geoscientific product as a package consisting of mostly one or sometimes more than one data file plus one extended DIF metadata file. Because NASA's DIF metadata standard has been developed in order to specify a collection of data only, the extension of the DIF standard consists of new and specific attributes, which are necessary for an explicit identification of single data files and the set-up of a comprehensive Earth science data catalog. The huge ISDC data catalog is realized by product type dependent tables filled with data file related metadata, which have relations to corresponding metadata tables. The product type describing parent DIF XML metadata documents are stored and managed in ORACLE's XML storage structures. In order to improve the interoperability of the ISDC service portal, the existing proprietary catalog system will be extended by an ISO 19115 based web catalog service. In addition to this development there is ISDC related concerning semantic network of different kind of metadata resources, like different kind of standardized and not-standardized metadata documents and literature as well as Web 2.0 user generated information derived from tagging activities and social navigation data.
Mercury Toolset for Spatiotemporal Metadata
NASA Technical Reports Server (NTRS)
Wilson, Bruce E.; Palanisamy, Giri; Devarakonda, Ranjeet; Rhyne, B. Timothy; Lindsley, Chris; Green, James
2010-01-01
Mercury (http://mercury.ornl.gov) is a set of tools for federated harvesting, searching, and retrieving metadata, particularly spatiotemporal metadata. Version 3.0 of the Mercury toolset provides orders of magnitude improvements in search speed, support for additional metadata formats, integration with Google Maps for spatial queries, facetted type search, support for RSS (Really Simple Syndication) delivery of search results, and enhanced customization to meet the needs of the multiple projects that use Mercury. It provides a single portal to very quickly search for data and information contained in disparate data management systems, each of which may use different metadata formats. Mercury harvests metadata and key data from contributing project servers distributed around the world and builds a centralized index. The search interfaces then allow the users to perform a variety of fielded, spatial, and temporal searches across these metadata sources. This centralized repository of metadata with distributed data sources provides extremely fast search results to the user, while allowing data providers to advertise the availability of their data and maintain complete control and ownership of that data. Mercury periodically (typically daily) harvests metadata sources through a collection of interfaces and re-indexes these metadata to provide extremely rapid search capabilities, even over collections with tens of millions of metadata records. A number of both graphical and application interfaces have been constructed within Mercury, to enable both human users and other computer programs to perform queries. Mercury was also designed to support multiple different projects, so that the particular fields that can be queried and used with search filters are easy to configure for each different project.
Mercury Toolset for Spatiotemporal Metadata
NASA Astrophysics Data System (ADS)
Devarakonda, Ranjeet; Palanisamy, Giri; Green, James; Wilson, Bruce; Rhyne, B. Timothy; Lindsley, Chris
2010-06-01
Mercury (http://mercury.ornl.gov) is a set of tools for federated harvesting, searching, and retrieving metadata, particularly spatiotemporal metadata. Version 3.0 of the Mercury toolset provides orders of magnitude improvements in search speed, support for additional metadata formats, integration with Google Maps for spatial queries, facetted type search, support for RSS (Really Simple Syndication) delivery of search results, and enhanced customization to meet the needs of the multiple projects that use Mercury. It provides a single portal to very quickly search for data and information contained in disparate data management systems, each of which may use different metadata formats. Mercury harvests metadata and key data from contributing project servers distributed around the world and builds a centralized index. The search interfaces then allow the users to perform a variety of fielded, spatial, and temporal searches across these metadata sources. This centralized repository of metadata with distributed data sources provides extremely fast search results to the user, while allowing data providers to advertise the availability of their data and maintain complete control and ownership of that data. Mercury periodically (typically daily)harvests metadata sources through a collection of interfaces and re-indexes these metadata to provide extremely rapid search capabilities, even over collections with tens of millions of metadata records. A number of both graphical and application interfaces have been constructed within Mercury, to enable both human users and other computer programs to perform queries. Mercury was also designed to support multiple different projects, so that the particular fields that can be queried and used with search filters are easy to configure for each different project.
2012-01-01
Background We present the Biological Observation Matrix (BIOM, pronounced “biome”) format: a JSON-based file format for representing arbitrary observation by sample contingency tables with associated sample and observation metadata. As the number of categories of comparative omics data types (collectively, the “ome-ome”) grows rapidly, a general format to represent and archive this data will facilitate the interoperability of existing bioinformatics tools and future meta-analyses. Findings The BIOM file format is supported by an independent open-source software project (the biom-format project), which initially contains Python objects that support the use and manipulation of BIOM data in Python programs, and is intended to be an open development effort where developers can submit implementations of these objects in other programming languages. Conclusions The BIOM file format and the biom-format project are steps toward reducing the “bioinformatics bottleneck” that is currently being experienced in diverse areas of biological sciences, and will help us move toward the next phase of comparative omics where basic science is translated into clinical and environmental applications. The BIOM file format is currently recognized as an Earth Microbiome Project Standard, and as a Candidate Standard by the Genomic Standards Consortium. PMID:23587224
Metadata Realities for Cyberinfrastructure: Data Authors as Metadata Creators
ERIC Educational Resources Information Center
Mayernik, Matthew Stephen
2011-01-01
As digital data creation technologies become more prevalent, data and metadata management are necessary to make data available, usable, sharable, and storable. Researchers in many scientific settings, however, have little experience or expertise in data and metadata management. In this dissertation, I explore the everyday data and metadata…
Shark: Fast Data Analysis Using Coarse-grained Distributed Memory
2013-05-01
Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 7.1.1 Java Objects...often MySQL or Derby) with a namespace for tables, table metadata, and par- tition information. Table data is stored in an HDFS directory, while a...saving time and space for large data sets. This is achieved with support for custom SerDe (serialization/deserialization) java interface implementations
Content Metadata Standards for Marine Science: A Case Study
Riall, Rebecca L.; Marincioni, Fausto; Lightsom, Frances L.
2004-01-01
The U.S. Geological Survey developed a content metadata standard to meet the demands of organizing electronic resources in the marine sciences for a broad, heterogeneous audience. These metadata standards are used by the Marine Realms Information Bank project, a Web-based public distributed library of marine science from academic institutions and government agencies. The development and deployment of this metadata standard serve as a model, complete with lessons about mistakes, for the creation of similarly specialized metadata standards for digital libraries.
A Metadata Management Framework for Collaborative Review of Science Data Products
NASA Astrophysics Data System (ADS)
Hart, A. F.; Cinquini, L.; Mattmann, C. A.; Thompson, D. R.; Wagstaff, K.; Zimdars, P. A.; Jones, D. L.; Lazio, J.; Preston, R. A.
2012-12-01
Data volumes generated by modern scientific instruments often preclude archiving the complete observational record. To compensate, science teams have developed a variety of "triage" techniques for identifying data of potential scientific interest and marking it for prioritized processing or permanent storage. This may involve multiple stages of filtering with both automated and manual components operating at different timescales. A promising approach exploits a fast, fully automated first stage followed by a more reliable offline manual review of candidate events. This hybrid approach permits a 24-hour rapid real-time response while also preserving the high accuracy of manual review. To support this type of second-level validation effort, we have developed a metadata-driven framework for the collaborative review of candidate data products. The framework consists of a metadata processing pipeline and a browser-based user interface that together provide a configurable mechanism for reviewing data products via the web, and capturing the full stack of associated metadata in a robust, searchable archive. Our system heavily leverages software from the Apache Object Oriented Data Technology (OODT) project, an open source data integration framework that facilitates the construction of scalable data systems and places a heavy emphasis on the utilization of metadata to coordinate processing activities. OODT provides a suite of core data management components for file management and metadata cataloging that form the foundation for this effort. The system has been deployed at JPL in support of the V-FASTR experiment [1], a software-based radio transient detection experiment that operates commensally at the Very Long Baseline Array (VLBA), and has a science team that is geographically distributed across several countries. Daily review of automatically flagged data is a shared responsibility for the team, and is essential to keep the project within its resource constraints. We describe the development of the platform using open source software, and discuss our experience deploying the system operationally. [1] R.B.Wayth,W.F.Brisken,A.T.Deller,W.A.Majid,D.R.Thompson, S. J. Tingay, and K. L. Wagstaff, "V-fastr: The vlba fast radio transients experiment," The Astrophysical Journal, vol. 735, no. 2, p. 97, 2011. Acknowledgement: This effort was supported by the Jet Propulsion Laboratory, managed by the California Institute of Technology under a contract with the National Aeronautics and Space Administration.
ESGF and WDCC: The Double Structure of the Digital Data Storage at DKRZ
NASA Astrophysics Data System (ADS)
Toussaint, F.; Höck, H.
2016-12-01
Since a couple of years, Digital Repositories of climate science face new challenges: International projects are global collaborations. The data storage in parallel moved to federated, distributed storage systems like ESGF. For the long term archival storage (LTA) on the other hand, communities, funders, and data users make stronger demands for data and metadata quality to facilitate data use and reuse. At DKRZ, this situation led to a twofold data dissemination system - a situation which has influence on administration, workflows, and sustainability of the data. The ESGF system is focused on the needs of users as partners in global projects. It includes replication tools, detailed global project standards, and efficient search for the data to download. In contrast, DKRZ's classical CERA LTA storage aims for long term data holding and data curation as well as for data reuse requiring high metadata quality standards. In addition, for LTA data a Digital Object Identifier publication service for the direct integration of research data in scientific publications has been implemented. The editorial process at DKRZ-LTA ensures the quality of metadata and research data. The DOI and a citation code are provided and afterwards registered under DataCite's (datacite.org) regulations. In the overall data life cycle continuous reliability of the data and metadata quality is essential to allow for data handling at Petabytes level, data long term usability, and adequate publication of the results. These considerations lead to the question "What is quality" - with respect to data, to the repository itself, to the publisher, and the user? Global consensus is needed for these assessments as the phases of the end to end workflow gear into each other: For data and metadata, checks need to go hand in hand with the processes of production and storage. The results can be judged following a Quality Maturity Matrix (QMM). Repositories can be certified according to their trustworthiness. For the publication of any scientific conclusions, scientific community, funders, media, and policy makers ask for the publisher's impact in terms of readers' credit, run, and presentation quality. The paper describes the data life cycle. Emphasis is put on the different levels of quality assessment which at DKRZ ensure the data and metadata quality.
Heidelberger, Philip; Steinmacher-Burow, Burkhard
2015-01-06
According to one embodiment, a method for implementing an array-based queue in memory of a memory system that includes a controller includes configuring, in the memory, metadata of the array-based queue. The configuring comprises defining, in metadata, an array start location in the memory for the array-based queue, defining, in the metadata, an array size for the array-based queue, defining, in the metadata, a queue top for the array-based queue and defining, in the metadata, a queue bottom for the array-based queue. The method also includes the controller serving a request for an operation on the queue, the request providing the location in the memory of the metadata of the queue.
Explorative Analyses of Nursing Research Data.
Kim, Hyeoneui; Jang, Imho; Quach, Jimmy; Richardson, Alex; Kim, Jaemin; Choi, Jeeyae
2016-10-26
As a first step of pursuing the vision of "big data science in nursing," we described the characteristics of nursing research data reported in 194 published nursing studies. We also explored how completely the Version 1 metadata specification of biomedical and healthCAre Data Discovery Index Ecosystem (bioCADDIE) represents these metadata. The metadata items of the nursing studies were all related to one or more of the bioCADDIE metadata entities. However, values of many metadata items of the nursing studies were not sufficiently represented through the bioCADDIE metadata. This was partly due to the differences in the scope of the content that the bioCADDIE metadata are designed to represent. The 194 nursing studies reported a total of 1,181 unique data items, the majority of which take non-numeric values. This indicates the importance of data standardization to enable the integrative analyses of these data to support big data science in nursing. © The Author(s) 2016.
MPEG-7: standard metadata for multimedia content
NASA Astrophysics Data System (ADS)
Chang, Wo
2005-08-01
The eXtensible Markup Language (XML) metadata technology of describing media contents has emerged as a dominant mode of making media searchable both for human and machine consumptions. To realize this premise, many online Web applications are pushing this concept to its fullest potential. However, a good metadata model does require a robust standardization effort so that the metadata content and its structure can reach its maximum usage between various applications. An effective media content description technology should also use standard metadata structures especially when dealing with various multimedia contents. A new metadata technology called MPEG-7 content description has merged from the ISO MPEG standards body with the charter of defining standard metadata to describe audiovisual content. This paper will give an overview of MPEG-7 technology and what impact it can bring forth to the next generation of multimedia indexing and retrieval applications.
Development of health information search engine based on metadata and ontology.
Song, Tae-Min; Park, Hyeoun-Ae; Jin, Dal-Lae
2014-04-01
The aim of the study was to develop a metadata and ontology-based health information search engine ensuring semantic interoperability to collect and provide health information using different application programs. Health information metadata ontology was developed using a distributed semantic Web content publishing model based on vocabularies used to index the contents generated by the information producers as well as those used to search the contents by the users. Vocabulary for health information ontology was mapped to the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT), and a list of about 1,500 terms was proposed. The metadata schema used in this study was developed by adding an element describing the target audience to the Dublin Core Metadata Element Set. A metadata schema and an ontology ensuring interoperability of health information available on the internet were developed. The metadata and ontology-based health information search engine developed in this study produced a better search result compared to existing search engines. Health information search engine based on metadata and ontology will provide reliable health information to both information producer and information consumers.
A metadata template for ocean acidification data
NASA Astrophysics Data System (ADS)
Jiang, L.
2014-12-01
Metadata is structured information that describes, explains, and locates an information resource (e.g., data). It is often coarsely described as data about data, and documents information such as what was measured, by whom, when, where, and how it was sampled, analyzed, with what instruments. Metadata is inherent to ensure the survivability and accessibility of the data into the future. With the rapid expansion of biological response ocean acidification (OA) studies, the lack of a common metadata template to document such type of data has become a significant gap for ocean acidification data management efforts. In this paper, we present a metadata template that can be applied to a broad spectrum of OA studies, including those studying the biological responses of organisms on ocean acidification. The "variable metadata section", which includes the variable name, observation type, whether the variable is a manipulation condition or response variable, and the biological subject on which the variable is studied, forms the core of this metadata template. Additional metadata elements, such as principal investigators, temporal and spatial coverage, platforms for the sampling, data citation are essential components to complete the template. We explain the structure of the template, and define many metadata elements that may be unfamiliar to researchers. For that reason, this paper can serve as a user's manual for the template.
A Shared Infrastructure for Federated Search Across Distributed Scientific Metadata Catalogs
NASA Astrophysics Data System (ADS)
Reed, S. A.; Truslove, I.; Billingsley, B. W.; Grauch, A.; Harper, D.; Kovarik, J.; Lopez, L.; Liu, M.; Brandt, M.
2013-12-01
The vast amount of science metadata can be overwhelming and highly complex. Comprehensive analysis and sharing of metadata is difficult since institutions often publish to their own repositories. There are many disjoint standards used for publishing scientific data, making it difficult to discover and share information from different sources. Services that publish metadata catalogs often have different protocols, formats, and semantics. The research community is limited by the exclusivity of separate metadata catalogs and thus it is desirable to have federated search interfaces capable of unified search queries across multiple sources. Aggregation of metadata catalogs also enables users to critique metadata more rigorously. With these motivations in mind, the National Snow and Ice Data Center (NSIDC) and Advanced Cooperative Arctic Data and Information Service (ACADIS) implemented two search interfaces for the community. Both the NSIDC Search and ACADIS Arctic Data Explorer (ADE) use a common infrastructure which keeps maintenance costs low. The search clients are designed to make OpenSearch requests against Solr, an Open Source search platform. Solr applies indexes to specific fields of the metadata which in this instance optimizes queries containing keywords, spatial bounds and temporal ranges. NSIDC metadata is reused by both search interfaces but the ADE also brokers additional sources. Users can quickly find relevant metadata with minimal effort and ultimately lowers costs for research. This presentation will highlight the reuse of data and code between NSIDC and ACADIS, discuss challenges and milestones for each project, and will identify creation and use of Open Source libraries.
Shao, Weixiang; Adams, Clive E; Cohen, Aaron M; Davis, John M; McDonagh, Marian S; Thakurta, Sujata; Yu, Philip S; Smalheiser, Neil R
2015-03-01
It is important to identify separate publications that report outcomes from the same underlying clinical trial, in order to avoid over-counting these as independent pieces of evidence. We created positive and negative training sets (comprised of pairs of articles reporting on the same condition and intervention) that were, or were not, linked to the same clinicaltrials.gov trial registry number. Features were extracted from MEDLINE and PubMed metadata; pairwise similarity scores were modeled using logistic regression. Article pairs from the same trial were identified with high accuracy (F1 score=0.843). We also created a clustering tool, Aggregator, that takes as input a PubMed user query for RCTs on a given topic, and returns article clusters predicted to arise from the same clinical trial. Although painstaking examination of full-text may be needed to be conclusive, metadata are surprisingly accurate in predicting when two articles derive from the same underlying clinical trial. Copyright © 2014 Elsevier Inc. All rights reserved.
A standard for measuring metadata quality in spectral libraries
NASA Astrophysics Data System (ADS)
Rasaiah, B.; Jones, S. D.; Bellman, C.
2013-12-01
A standard for measuring metadata quality in spectral libraries Barbara Rasaiah, Simon Jones, Chris Bellman RMIT University Melbourne, Australia barbara.rasaiah@rmit.edu.au, simon.jones@rmit.edu.au, chris.bellman@rmit.edu.au ABSTRACT There is an urgent need within the international remote sensing community to establish a metadata standard for field spectroscopy that ensures high quality, interoperable metadata sets that can be archived and shared efficiently within Earth observation data sharing systems. Metadata are an important component in the cataloguing and analysis of in situ spectroscopy datasets because of their central role in identifying and quantifying the quality and reliability of spectral data and the products derived from them. This paper presents approaches to measuring metadata completeness and quality in spectral libraries to determine reliability, interoperability, and re-useability of a dataset. Explored are quality parameters that meet the unique requirements of in situ spectroscopy datasets, across many campaigns. Examined are the challenges presented by ensuring that data creators, owners, and data users ensure a high level of data integrity throughout the lifecycle of a dataset. Issues such as field measurement methods, instrument calibration, and data representativeness are investigated. The proposed metadata standard incorporates expert recommendations that include metadata protocols critical to all campaigns, and those that are restricted to campaigns for specific target measurements. The implication of semantics and syntax for a robust and flexible metadata standard are also considered. Approaches towards an operational and logistically viable implementation of a quality standard are discussed. This paper also proposes a way forward for adapting and enhancing current geospatial metadata standards to the unique requirements of field spectroscopy metadata quality. [0430] BIOGEOSCIENCES / Computational methods and data processing [0480] BIOGEOSCIENCES / Remote sensing [1904] INFORMATICS / Community standards [1912] INFORMATICS / Data management, preservation, rescue [1926] INFORMATICS / Geospatial [1930] INFORMATICS / Data and information governance [1946] INFORMATICS / Metadata [1952] INFORMATICS / Modeling [1976] INFORMATICS / Software tools and services [9810] GENERAL OR MISCELLANEOUS / New fields
NASA Astrophysics Data System (ADS)
Delory, E.; Jirka, S.
2016-02-01
Discovering sensors and observation data is important when enabling the exchange of oceanographic data between observatories and scientists that need the data sets for their work. To better support this discovery process, one task of the European project FixO3 (Fixed-point Open Ocean Observatories) is dealing with the question which elements are needed for developing a better registry for sensors. This has resulted in four items which are addressed by the FixO3 project in cooperation with further European projects such as NeXOS (http://www.nexosproject.eu/). 1.) Metadata description format: To store and retrieve information about sensors and platforms it is necessary to have a common approach how to provide and encode the metadata. For this purpose, the OGC Sensor Model Language (SensorML) 2.0 standard was selected. Especially the opportunity to distinguish between sensor types and instances offers new chances for a more efficient provision and maintenance of sensor metadata. 2.) Conversion of existing metadata into a SensorML 2.0 representation: In order to ensure a sustainable re-use of already provided metadata content (e.g. from ESONET-FixO3 yellow pages), it is important to provide a mechanism which is capable of transforming these already available metadata sets into the new SensorML 2.0 structure. 3.) Metadata editor: To create descriptions of sensors and platforms, it is not possible to expect users to manually edit XML-based description files. Thus, a visual interface is necessary to help during the metadata creation. We will outline a prototype of this editor, building upon the development of the ESONET sensor registry interface. 4.) Sensor Metadata Store: A server is needed that for storing and querying the created sensor descriptions. For this purpose different options exist which will be discussed. In summary, we will present a set of different elements enabling sensor discovery ranging from metadata formats, metadata conversion and editing to metadata storage. Furthermore, the current development status will be demonstrated.
The XML Metadata Editor of GFZ Data Services
NASA Astrophysics Data System (ADS)
Ulbricht, Damian; Elger, Kirsten; Tesei, Telemaco; Trippanera, Daniele
2017-04-01
Following the FAIR data principles, research data should be Findable, Accessible, Interoperable and Reuseable. Publishing data under these principles requires to assign persistent identifiers to the data and to generate rich machine-actionable metadata. To increase the interoperability, metadata should include shared vocabularies and crosslink the newly published (meta)data and related material. However, structured metadata formats tend to be complex and are not intended to be generated by individual scientists. Software solutions are needed that support scientists in providing metadata describing their data. To facilitate data publication activities of 'GFZ Data Services', we programmed an XML metadata editor that assists scientists to create metadata in different schemata popular in the earth sciences (ISO19115, DIF, DataCite), while being at the same time usable by and understandable for scientists. Emphasis is placed on removing barriers, in particular the editor is publicly available on the internet without registration [1] and the scientists are not requested to provide information that may be generated automatically (e.g. the URL of a specific licence or the contact information of the metadata distributor). Metadata are stored in browser cookies and a copy can be saved to the local hard disk. To improve usability, form fields are translated into the scientific language, e.g. 'creators' of the DataCite schema are called 'authors'. To assist filling in the form, we make use of drop down menus for small vocabulary lists and offer a search facility for large thesauri. Explanations to form fields and definitions of vocabulary terms are provided in pop-up windows and a full documentation is available for download via the help menu. In addition, multiple geospatial references can be entered via an interactive mapping tool, which helps to minimize problems with different conventions to provide latitudes and longitudes. Currently, we are extending the metadata editor to be reused to generate metadata for data discovery and contextual metadata developed by the 'Multi-scale Laboratories' Thematic Core Service of the European Plate Observing System (EPOS-IP). The Editor will be used to build a common repository of a large variety of geological and geophysical datasets produced by multidisciplinary laboratories throughout Europe, thus contributing to a significant step toward the integration and accessibility of earth science data. This presentation will introduce the metadata editor and show the adjustments made for EPOS-IP. [1] http://dataservices.gfz-potsdam.de/panmetaworks/metaedit
Evolving Metadata in NASA Earth Science Data Systems
NASA Astrophysics Data System (ADS)
Mitchell, A.; Cechini, M. F.; Walter, J.
2011-12-01
NASA's Earth Observing System (EOS) is a coordinated series of satellites for long term global observations. NASA's Earth Observing System Data and Information System (EOSDIS) is a petabyte-scale archive of environmental data that supports global climate change research by providing end-to-end services from EOS instrument data collection to science data processing to full access to EOS and other earth science data. On a daily basis, the EOSDIS ingests, processes, archives and distributes over 3 terabytes of data from NASA's Earth Science missions representing over 3500 data products ranging from various types of science disciplines. EOSDIS is currently comprised of 12 discipline specific data centers that are collocated with centers of science discipline expertise. Metadata is used in all aspects of NASA's Earth Science data lifecycle from the initial measurement gathering to the accessing of data products. Missions use metadata in their science data products when describing information such as the instrument/sensor, operational plan, and geographically region. Acting as the curator of the data products, data centers employ metadata for preservation, access and manipulation of data. EOSDIS provides a centralized metadata repository called the Earth Observing System (EOS) ClearingHouse (ECHO) for data discovery and access via a service-oriented-architecture (SOA) between data centers and science data users. ECHO receives inventory metadata from data centers who generate metadata files that complies with the ECHO Metadata Model. NASA's Earth Science Data and Information System (ESDIS) Project established a Tiger Team to study and make recommendations regarding the adoption of the international metadata standard ISO 19115 in EOSDIS. The result was a technical report recommending an evolution of NASA data systems towards a consistent application of ISO 19115 and related standards including the creation of a NASA-specific convention for core ISO 19115 elements. Part of NASA's effort to continually evolve its data systems led ECHO to enhancing the method in which it receives inventory metadata from the data centers to allow for multiple metadata formats including ISO 19115. ECHO's metadata model will also be mapped to the NASA-specific convention for ingesting science metadata into the ECHO system. As NASA's new Earth Science missions and data centers are migrating to the ISO 19115 standards, EOSDIS is developing metadata management resources to assist in the reading, writing and parsing ISO 19115 compliant metadata. To foster interoperability with other agencies and international partners, NASA is working to ensure that a common ISO 19115 convention is developed, enhancing data sharing capabilities and other data analysis initiatives. NASA is also investigating the use of ISO 19115 standards to encode data quality, lineage and provenance with stored values. A common metadata standard across NASA's Earth Science data systems promotes interoperability, enhances data utilization and removes levels of uncertainty found in data products.
NASA Astrophysics Data System (ADS)
Yoon, Seung-Chul; Park, Bosoon; Lawrence, Kurt C.
2017-05-01
Various types of optical imaging techniques measuring light reflectivity and scattering can detect microbial colonies of foodborne pathogens on agar plates. Until recently, these techniques were developed to provide solutions for hypothesis-driven studies, which focused on developing tools and batch/offline machine learning methods with well defined sets of data. These have relatively high accuracy and rapid response time because the tools and methods are often optimized for the collected data. However, they often need to be retrained or recalibrated when new untrained data and/or features are added. A big-data driven technique is more suitable for online learning of new/ambiguous samples and for mining unknown or hidden features. Although big data research in hyperspectral imaging is emerging in remote sensing and many tools and methods have been developed so far in many other applications such as bioinformatics, the tools and methods still need to be evaluated and adjusted in applications where the conventional batch machine learning algorithms were dominant. The primary objective of this study is to evaluate appropriate big data analytic tools and methods for online learning and mining of foodborne pathogens on agar plates. After the tools and methods are successfully identified, they will be applied to rapidly search big color and hyperspectral image data of microbial colonies collected over the past 5 years in house and find the most probable colony or a group of colonies in the collected big data. The meta-data, such as collection time and any unstructured data (e.g. comments), will also be analyzed and presented with output results. The expected results will be novel, big data-driven technology to correctly detect and recognize microbial colonies of various foodborne pathogens on agar plates.
Evaluating the privacy properties of telephone metadata.
Mayer, Jonathan; Mutchler, Patrick; Mitchell, John C
2016-05-17
Since 2013, a stream of disclosures has prompted reconsideration of surveillance law and policy. One of the most controversial principles, both in the United States and abroad, is that communications metadata receives substantially less protection than communications content. Several nations currently collect telephone metadata in bulk, including on their own citizens. In this paper, we attempt to shed light on the privacy properties of telephone metadata. Using a crowdsourcing methodology, we demonstrate that telephone metadata is densely interconnected, can trivially be reidentified, and can be used to draw sensitive inferences.
Studies of Big Data metadata segmentation between relational and non-relational databases
NASA Astrophysics Data System (ADS)
Golosova, M. V.; Grigorieva, M. A.; Klimentov, A. A.; Ryabinkin, E. A.; Dimitrov, G.; Potekhin, M.
2015-12-01
In recent years the concepts of Big Data became well established in IT. Systems managing large data volumes produce metadata that describe data and workflows. These metadata are used to obtain information about current system state and for statistical and trend analysis of the processes these systems drive. Over the time the amount of the stored metadata can grow dramatically. In this article we present our studies to demonstrate how metadata storage scalability and performance can be improved by using hybrid RDBMS/NoSQL architecture.
Evaluating the privacy properties of telephone metadata
Mayer, Jonathan; Mutchler, Patrick; Mitchell, John C.
2016-01-01
Since 2013, a stream of disclosures has prompted reconsideration of surveillance law and policy. One of the most controversial principles, both in the United States and abroad, is that communications metadata receives substantially less protection than communications content. Several nations currently collect telephone metadata in bulk, including on their own citizens. In this paper, we attempt to shed light on the privacy properties of telephone metadata. Using a crowdsourcing methodology, we demonstrate that telephone metadata is densely interconnected, can trivially be reidentified, and can be used to draw sensitive inferences. PMID:27185922
Integration of external metadata into the Earth System Grid Federation (ESGF)
NASA Astrophysics Data System (ADS)
Berger, Katharina; Levavasseur, Guillaume; Stockhause, Martina; Lautenschlager, Michael
2015-04-01
International projects with high volume data usually disseminate their data in a federated data infrastructure, e.g.~the Earth System Grid Federation (ESGF). The ESGF aims to make the geographically distributed data seamlessly discoverable and accessible. Additional data-related information is currently collected and stored in separate repositories by each data provider. This scattered and useful information is not or only partly available for ESGF users. Examples for such additional information systems are ES-DOC/metafor for model and simulation information, IPSL's versioning information, CHARMe for user annotations, DKRZ's quality information and data citation information. The ESGF Quality Control working team (esgf-qcwt) aims to integrate these valuable pieces of additional information into the ESGF in order to make them available to users and data archive managers by (i) integrating external information into ESGF portal, (ii) integrating links to external information objects into the ESGF metadata index, e.g. by the use of PIDs (Persistent IDentifiers), and (iii) automating the collection of external information during the ESGF data publication process. For the sixth phase of CMIP (Coupled Model Intercomparison Project), the ESGF metadata index is to be enriched by additional information on data citation, file version, etc. This information will support users directly and can be automatically exploited by higher level services (human and machine readability).
Automated DICOM metadata and volumetric anatomical information extraction for radiation dosimetry
NASA Astrophysics Data System (ADS)
Papamichail, D.; Ploussi, A.; Kordolaimi, S.; Karavasilis, E.; Papadimitroulas, P.; Syrgiamiotis, V.; Efstathopoulos, E.
2015-09-01
Patient-specific dosimetry calculations based on simulation techniques have as a prerequisite the modeling of the modality system and the creation of voxelized phantoms. This procedure requires the knowledge of scanning parameters and patients’ information included in a DICOM file as well as image segmentation. However, the extraction of this information is complicated and time-consuming. The objective of this study was to develop a simple graphical user interface (GUI) to (i) automatically extract metadata from every slice image of a DICOM file in a single query and (ii) interactively specify the regions of interest (ROI) without explicit access to the radiology information system. The user-friendly application developed in Matlab environment. The user can select a series of DICOM files and manage their text and graphical data. The metadata are automatically formatted and presented to the user as a Microsoft Excel file. The volumetric maps are formed by interactively specifying the ROIs and by assigning a specific value in every ROI. The result is stored in DICOM format, for data and trend analysis. The developed GUI is easy, fast and and constitutes a very useful tool for individualized dosimetry. One of the future goals is to incorporate a remote access to a PACS server functionality.
NASA Astrophysics Data System (ADS)
Yu, Xu; Shao, Quanqin; Zhu, Yunhai; Deng, Yuejin; Yang, Haijun
2006-10-01
With the development of informationization and the separation between data management departments and application departments, spatial data sharing becomes one of the most important objectives for the spatial information infrastructure construction, and spatial metadata management system, data transmission security and data compression are the key technologies to realize spatial data sharing. This paper discusses the key technologies for metadata based on data interoperability, deeply researches the data compression algorithms such as adaptive Huffman algorithm, LZ77 and LZ78 algorithm, studies to apply digital signature technique to encrypt spatial data, which can not only identify the transmitter of spatial data, but also find timely whether the spatial data are sophisticated during the course of network transmission, and based on the analysis of symmetric encryption algorithms including 3DES,AES and asymmetric encryption algorithm - RAS, combining with HASH algorithm, presents a improved mix encryption method for spatial data. Digital signature technology and digital watermarking technology are also discussed. Then, a new solution of spatial data network distribution is put forward, which adopts three-layer architecture. Based on the framework, we give a spatial data network distribution system, which is efficient and safe, and also prove the feasibility and validity of the proposed solution.
Improving Ecological Response Monitoring of Environmental Flows
NASA Astrophysics Data System (ADS)
King, Alison J.; Gawne, Ben; Beesley, Leah; Koehn, John D.; Nielsen, Daryl L.; Price, Amina
2015-05-01
Environmental flows are now an important restoration technique in flow-degraded rivers, and with the increasing public scrutiny of their effectiveness and value, the importance of undertaking scientifically robust monitoring is now even more critical. Many existing environmental flow monitoring programs have poorly defined objectives, nonjustified indicator choices, weak experimental designs, poor statistical strength, and often focus on outcomes from a single event. These negative attributes make them difficult to learn from. We provide practical recommendations that aim to improve the performance, scientific robustness, and defensibility of environmental flow monitoring programs. We draw on the literature and knowledge gained from working with stakeholders and managers to design, implement, and monitor a range of environmental flow types. We recommend that (1) environmental flow monitoring programs should be implemented within an adaptive management framework; (2) objectives of environmental flow programs should be well defined, attainable, and based on an agreed conceptual understanding of the system; (3) program and intervention targets should be attainable, measurable, and inform program objectives; (4) intervention monitoring programs should improve our understanding of flow-ecological responses and related conceptual models; (5) indicator selection should be based on conceptual models, objectives, and prioritization approaches; (6) appropriate monitoring designs and statistical tools should be used to measure and determine ecological response; (7) responses should be measured within timeframes that are relevant to the indicator(s); (8) watering events should be treated as replicates of a larger experiment; (9) environmental flow outcomes should be reported using a standard suite of metadata. Incorporating these attributes into future monitoring programs should ensure their outcomes are transferable and measured with high scientific credibility.
TR32DB - Management of Research Data in a Collaborative, Interdisciplinary Research Project
NASA Astrophysics Data System (ADS)
Curdt, Constanze; Hoffmeister, Dirk; Waldhoff, Guido; Lang, Ulrich; Bareth, Georg
2015-04-01
The management of research data in a well-structured and documented manner is essential in the context of collaborative, interdisciplinary research environments (e.g. across various institutions). Consequently, set-up and use of a research data management (RDM) system like a data repository or project database is necessary. These systems should accompany and support scientists during the entire research life cycle (e.g. data collection, documentation, storage, archiving, sharing, publishing) and operate cross-disciplinary in interdisciplinary research projects. Challenges and problems of RDM are well-know. Consequently, the set-up of a user-friendly, well-documented, sustainable RDM system is essential, as well as user support and further assistance. In the framework of the Transregio Collaborative Research Centre 32 'Patterns in Soil-Vegetation-Atmosphere Systems: Monitoring, Modelling, and Data Assimilation' (CRC/TR32), funded by the German Research Foundation (DFG), a RDM system was self-designed and implemented. The CRC/TR32 project database (TR32DB, www.tr32db.de) is operating online since early 2008. The TR32DB handles all data, which are created by the involved project participants from several institutions (e.g. Universities of Cologne, Bonn, Aachen, and the Research Centre Jülich) and research fields (e.g. soil and plant sciences, hydrology, geography, geophysics, meteorology, remote sensing). Very heterogeneous research data are considered, which are resulting from field measurement campaigns, meteorological monitoring, remote sensing, laboratory studies and modelling approaches. Furthermore, outcomes like publications, conference contributions, PhD reports and corresponding images are regarded. The TR32DB project database is set-up in cooperation with the Regional Computing Centre of the University of Cologne (RRZK) and also located in this hardware environment. The TR32DB system architecture is composed of three main components: (i) a file-based data storage including backup, (ii) a database-based storage for administrative data and metadata, and (iii) a web-interface for user access. The TR32DB offers common features of RDM systems. These include data storage, entry of corresponding metadata by a user-friendly input wizard, search and download of data depending on user permission, as well as secure internal exchange of data. In addition, a Digital Object Identifier (DOI) can be allocated for specific datasets and several web mapping components are supported (e.g. Web-GIS and map search). The centrepiece of the TR32DB is the self-provided and implemented CRC/TR32 specific metadata schema. This enables the documentation of all involved, heterogeneous data with accurate, interoperable metadata. The TR32DB Metadata Schema is set-up in a multi-level approach and supports several metadata standards and schemes (e.g. Dublin Core, ISO 19115, INSPIRE, DataCite). Furthermore, metadata properties with focus on the CRC/TR32 background (e.g. CRC/TR32 specific keywords) and the supported data types are complemented. Mandatory, optional and automatic metadata properties are specified. Overall, the TR32DB is designed and implemented according to the needs of the CRC/TR32 (e.g. huge amount of heterogeneous data) and demands of the DFG (e.g. cooperation with a computing centre). The application of a self-designed, project-specific, interoperable metadata schema enables the accurate documentation of all CRC/TR32 data. The implementation of the TR32DB in the hardware environment of the RRZK ensures the access to the data after the end of the CRC/TR32 funding in 2018.
Managing biomedical image metadata for search and retrieval of similar images.
Korenblum, Daniel; Rubin, Daniel; Napel, Sandy; Rodriguez, Cesar; Beaulieu, Chris
2011-08-01
Radiology images are generally disconnected from the metadata describing their contents, such as imaging observations ("semantic" metadata), which are usually described in text reports that are not directly linked to the images. We developed a system, the Biomedical Image Metadata Manager (BIMM) to (1) address the problem of managing biomedical image metadata and (2) facilitate the retrieval of similar images using semantic feature metadata. Our approach allows radiologists, researchers, and students to take advantage of the vast and growing repositories of medical image data by explicitly linking images to their associated metadata in a relational database that is globally accessible through a Web application. BIMM receives input in the form of standard-based metadata files using Web service and parses and stores the metadata in a relational database allowing efficient data query and maintenance capabilities. Upon querying BIMM for images, 2D regions of interest (ROIs) stored as metadata are automatically rendered onto preview images included in search results. The system's "match observations" function retrieves images with similar ROIs based on specific semantic features describing imaging observation characteristics (IOCs). We demonstrate that the system, using IOCs alone, can accurately retrieve images with diagnoses matching the query images, and we evaluate its performance on a set of annotated liver lesion images. BIMM has several potential applications, e.g., computer-aided detection and diagnosis, content-based image retrieval, automating medical analysis protocols, and gathering population statistics like disease prevalences. The system provides a framework for decision support systems, potentially improving their diagnostic accuracy and selection of appropriate therapies.
The Metadata Cloud: The Last Piece of a Distributed Data System Model
NASA Astrophysics Data System (ADS)
King, T. A.; Cecconi, B.; Hughes, J. S.; Walker, R. J.; Roberts, D.; Thieman, J. R.; Joy, S. P.; Mafi, J. N.; Gangloff, M.
2012-12-01
Distributed data systems have existed ever since systems were networked together. Over the years the model for distributed data systems have evolved from basic file transfer to client-server to multi-tiered to grid and finally to cloud based systems. Initially metadata was tightly coupled to the data either by embedding the metadata in the same file containing the data or by co-locating the metadata in commonly named files. As the sources of data multiplied, data volumes have increased and services have specialized to improve efficiency; a cloud system model has emerged. In a cloud system computing and storage are provided as services with accessibility emphasized over physical location. Computation and data clouds are common implementations. Effectively using the data and computation capabilities requires metadata. When metadata is stored separately from the data; a metadata cloud is formed. With a metadata cloud information and knowledge about data resources can migrate efficiently from system to system, enabling services and allowing the data to remain efficiently stored until used. This is especially important with "Big Data" where movement of the data is limited by bandwidth. We examine how the metadata cloud completes a general distributed data system model, how standards play a role and relate this to the existing types of cloud computing. We also look at the major science data systems in existence and compare each to the generalized cloud system model.
ERIC Educational Resources Information Center
Mulrooney, Timothy J.
2009-01-01
A Geographic Information System (GIS) serves as the tangible and intangible means by which spatially related phenomena can be created, analyzed and rendered. GIS metadata serves as the formal framework to catalog information about a GIS data set. Metadata is independent of the encoded spatial and attribute information. GIS metadata is a subset of…
Raising orphans from a metadata morass: A researcher's guide to re-use of public 'omics data.
Bhandary, Priyanka; Seetharam, Arun S; Arendsee, Zebulun W; Hur, Manhoi; Wurtele, Eve Syrkin
2018-02-01
More than 15 petabases of raw RNAseq data is now accessible through public repositories. Acquisition of other 'omics data types is expanding, though most lack a centralized archival repository. Data-reuse provides tremendous opportunity to extract new knowledge from existing experiments, and offers a unique opportunity for robust, multi-'omics analyses by merging metadata (information about experimental design, biological samples, protocols) and data from multiple experiments. We illustrate how predictive research can be accelerated by meta-analysis with a study of orphan (species-specific) genes. Computational predictions are critical to infer orphan function because their coding sequences provide very few clues. The metadata in public databases is often confusing; a test case with Zea mays mRNA seq data reveals a high proportion of missing, misleading or incomplete metadata. This metadata morass significantly diminishes the insight that can be extracted from these data. We provide tips for data submitters and users, including specific recommendations to improve metadata quality by more use of controlled vocabulary and by metadata reviews. Finally, we advocate for a unified, straightforward metadata submission and retrieval system. Copyright © 2017 Elsevier B.V. All rights reserved.
DAS: A Data Management System for Instrument Tests and Operations
NASA Astrophysics Data System (ADS)
Frailis, M.; Sartor, S.; Zacchei, A.; Lodi, M.; Cirami, R.; Pasian, F.; Trifoglio, M.; Bulgarelli, A.; Gianotti, F.; Franceschi, E.; Nicastro, L.; Conforti, V.; Zoli, A.; Smart, R.; Morbidelli, R.; Dadina, M.
2014-05-01
The Data Access System (DAS) is a and data management software system, providing a reusable solution for the storage of data acquired both from telescopes and auxiliary data sources during the instrument development phases and operations. It is part of the Customizable Instrument WorkStation system (CIWS-FW), a framework for the storage, processing and quick-look at the data acquired from scientific instruments. The DAS provides a data access layer mainly targeted to software applications: quick-look displays, pre-processing pipelines and scientific workflows. It is logically organized in three main components: an intuitive and compact Data Definition Language (DAS DDL) in XML format, aimed for user-defined data types; an Application Programming Interface (DAS API), automatically adding classes and methods supporting the DDL data types, and providing an object-oriented query language; a data management component, which maps the metadata of the DDL data types in a relational Data Base Management System (DBMS), and stores the data in a shared (network) file system. With the DAS DDL, developers define the data model for a particular project, specifying for each data type the metadata attributes, the data format and layout (if applicable), and named references to related or aggregated data types. Together with the DDL user-defined data types, the DAS API acts as the only interface to store, query and retrieve the metadata and data in the DAS system, providing both an abstract interface and a data model specific one in C, C++ and Python. The mapping of metadata in the back-end database is automatic and supports several relational DBMSs, including MySQL, Oracle and PostgreSQL.
NASA Astrophysics Data System (ADS)
Raugh, Anne; Henneken, Edwin
The Planetary Data System (PDS) is actively involved in designing both metadata and interfaces to make the assignment of Digital Object Identifiers (DOIs) to archival data a part of the archiving process for all data creators. These DOIs will be registered through DataCite, a non-profit organization whose members are all deeply concerned with archival research data, provenance tracking through the literature, and proper acknowledgement of the various types of efforts that contribute to the creation of an archival reference data set. Making the collection of citation metadata and its ingestion into the DataCite DOI database easy - and easy to do correctly - is in the best interests of all stakeholders: the data creators; the curators; the indexing organizations like the Astrophysics Data System (ADS); and the data users. But in order to realize the promise of DOIs, there are three key issues to address: 1) How do we incorporate the metadata collection process simply and naturally into the PDS archive creation process; 2) How do we encourage journal editors to require references to previously published data with the same rigor with which they require references to previously published research and analysis; and finally, 3) How can we change the culture of academic and research employers to recognize that the effort required to prepare a PDS archival data set is a career achievement on par with contributing to a refereed article in the professional literature. Data archives and scholarly publications are the long-term return on investment that funding agencies and the science community expect in exchange for research spending. The traceability and reproducibility ensured by the integration of DOIs and their related metadata into indexing and search services is an essential part of providing and optimizing that return.
Recipes for Semantic Web Dog Food — The ESWC and ISWC Metadata Projects
NASA Astrophysics Data System (ADS)
Möller, Knud; Heath, Tom; Handschuh, Siegfried; Domingue, John
Semantic Web conferences such as ESWC and ISWC offer prime opportunities to test and showcase semantic technologies. Conference metadata about people, papers and talks is diverse in nature and neither too small to be uninteresting or too big to be unmanageable. Many metadata-related challenges that may arise in the Semantic Web at large are also present here. Metadata must be generated from sources which are often unstructured and hard to process, and may originate from many different players, therefore suitable workflows must be established. Moreover, the generated metadata must use appropriate formats and vocabularies, and be served in a way that is consistent with the principles of linked data. This paper reports on the metadata efforts from ESWC and ISWC, identifies specific issues and barriers encountered during the projects, and discusses how these were approached. Recommendations are made as to how these may be addressed in the future, and we discuss how these solutions may generalize to metadata production for the Semantic Web at large.
Metadata or data about data describes the content, quality, condition, and other characteristics of data. Geospatial metadata are critical to data discovery and serves as the fuel for the Geospatial One-Stop data portal.
Visualization of JPEG Metadata
NASA Astrophysics Data System (ADS)
Malik Mohamad, Kamaruddin; Deris, Mustafa Mat
There are a lot of information embedded in JPEG image than just graphics. Visualization of its metadata would benefit digital forensic investigator to view embedded data including corrupted image where no graphics can be displayed in order to assist in evidence collection for cases such as child pornography or steganography. There are already available tools such as metadata readers, editors and extraction tools but mostly focusing on visualizing attribute information of JPEG Exif. However, none have been done to visualize metadata by consolidating markers summary, header structure, Huffman table and quantization table in a single program. In this paper, metadata visualization is done by developing a program that able to summarize all existing markers, header structure, Huffman table and quantization table in JPEG. The result shows that visualization of metadata helps viewing the hidden information within JPEG more easily.
Zhang, Mingyuan; Fiol, Guilherme Del; Grout, Randall W.; Jonnalagadda, Siddhartha; Medlin, Richard; Mishra, Rashmi; Weir, Charlene; Liu, Hongfang; Mostafa, Javed; Fiszman, Marcelo
2014-01-01
Online knowledge resources such as Medline can address most clinicians’ patient care information needs. Yet, significant barriers, notably lack of time, limit the use of these sources at the point of care. The most common information needs raised by clinicians are treatment-related. Comparative effectiveness studies allow clinicians to consider multiple treatment alternatives for a particular problem. Still, solutions are needed to enable efficient and effective consumption of comparative effectiveness research at the point of care. Objective Design and assess an algorithm for automatically identifying comparative effectiveness studies and extracting the interventions investigated in these studies. Methods The algorithm combines semantic natural language processing, Medline citation metadata, and machine learning techniques. We assessed the algorithm in a case study of treatment alternatives for depression. Results Both precision and recall for identifying comparative studies was 0.83. A total of 86% of the interventions extracted perfectly or partially matched the gold standard. Conclusion Overall, the algorithm achieved reasonable performance. The method provides building blocks for the automatic summarization of comparative effectiveness research to inform point of care decision-making. PMID:23920677
Use of a metadata documentation and search tool for large data volumes: The NGEE arctic example
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devarakonda, Ranjeet; Hook, Leslie A; Killeffer, Terri S
The Online Metadata Editor (OME) is a web-based tool to help document scientific data in a well-structured, popular scientific metadata format. In this paper, we will discuss the newest tool that Oak Ridge National Laboratory (ORNL) has developed to generate, edit, and manage metadata and how it is helping data-intensive science centers and projects, such as the U.S. Department of Energy s Next Generation Ecosystem Experiments (NGEE) in the Arctic to prepare metadata and make their big data produce big science and lead to new discoveries.
Creating preservation metadata from XML-metadata profiles
NASA Astrophysics Data System (ADS)
Ulbricht, Damian; Bertelmann, Roland; Gebauer, Petra; Hasler, Tim; Klump, Jens; Kirchner, Ingo; Peters-Kottig, Wolfgang; Mettig, Nora; Rusch, Beate
2014-05-01
Registration of dataset DOIs at DataCite makes research data citable and comes with the obligation to keep data accessible in the future. In addition, many universities and research institutions measure data that is unique and not repeatable like the data produced by an observational network and they want to keep these data for future generations. In consequence, such data should be ingested in preservation systems, that automatically care for file format changes. Open source preservation software that is developed along the definitions of the ISO OAIS reference model is available but during ingest of data and metadata there are still problems to be solved. File format validation is difficult, because format validators are not only remarkably slow - due to variety in file formats different validators return conflicting identification profiles for identical data. These conflicts are hard to resolve. Preservation systems have a deficit in the support of custom metadata. Furthermore, data producers are sometimes not aware that quality metadata is a key issue for the re-use of data. In the project EWIG an university institute and a research institute work together with Zuse-Institute Berlin, that is acting as an infrastructure facility, to generate exemplary workflows for research data into OAIS compliant archives with emphasis on the geosciences. The Institute for Meteorology provides timeseries data from an urban monitoring network whereas GFZ Potsdam delivers file based data from research projects. To identify problems in existing preservation workflows the technical work is complemented by interviews with data practitioners. Policies for handling data and metadata are developed. Furthermore, university teaching material is created to raise the future scientists awareness of research data management. As a testbed for ingest workflows the digital preservation system Archivematica [1] is used. During the ingest process metadata is generated that is compliant to the Metadata Encoding and Transmission Standard (METS). To find datasets in future portals and to make use of this data in own scientific work, proper selection of discovery metadata and application metadata is very important. Some XML-metadata profiles are not suitable for preservation, because version changes are very fast and make it nearly impossible to automate the migration. For other XML-metadata profiles schema definitions are changed after publication of the profile or the schema definitions become inaccessible, which might cause problems during validation of the metadata inside the preservation system [2]. Some metadata profiles are not used widely enough and might not even exist in the future. Eventually, discovery and application metadata have to be embedded into the mdWrap-subtree of the METS-XML. [1] http://www.archivematica.org [2] http://dx.doi.org/10.2218/ijdc.v7i1.215
Forecasting Solar Flares Using Magnetogram-based Predictors and Machine Learning
NASA Astrophysics Data System (ADS)
Florios, Kostas; Kontogiannis, Ioannis; Park, Sung-Hong; Guerra, Jordan A.; Benvenuto, Federico; Bloomfield, D. Shaun; Georgoulis, Manolis K.
2018-02-01
We propose a forecasting approach for solar flares based on data from Solar Cycle 24, taken by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) mission. In particular, we use the Space-weather HMI Active Region Patches (SHARP) product that facilitates cut-out magnetograms of solar active regions (AR) in the Sun in near-realtime (NRT), taken over a five-year interval (2012 - 2016). Our approach utilizes a set of thirteen predictors, which are not included in the SHARP metadata, extracted from line-of-sight and vector photospheric magnetograms. We exploit several machine learning (ML) and conventional statistics techniques to predict flares of peak magnitude {>} M1 and {>} C1 within a 24 h forecast window. The ML methods used are multi-layer perceptrons (MLP), support vector machines (SVM), and random forests (RF). We conclude that random forests could be the prediction technique of choice for our sample, with the second-best method being multi-layer perceptrons, subject to an entropy objective function. A Monte Carlo simulation showed that the best-performing method gives accuracy ACC=0.93(0.00), true skill statistic TSS=0.74(0.02), and Heidke skill score HSS=0.49(0.01) for {>} M1 flare prediction with probability threshold 15% and ACC=0.84(0.00), TSS=0.60(0.01), and HSS=0.59(0.01) for {>} C1 flare prediction with probability threshold 35%.
NASA Astrophysics Data System (ADS)
Oggioni, Alessandro; Tagliolato, Paolo; Fugazza, Cristiano; Bastianini, Mauro; Pavesi, Fabio; Pepe, Monica; Menegon, Stefano; Basoni, Anna; Carrara, Paola
2015-04-01
Sensor observation systems for environmental data have become increasingly important in the last years. The EGU's Informatics in Oceanography and Ocean Science track stressed the importance of management tools and solutions for marine infrastructures. We think that full interoperability among sensor systems is still an open issue and that the solution to this involves providing appropriate metadata. Several open source applications implement the SWE specification and, particularly, the Sensor Observation Services (SOS) standard. These applications allow for the exchange of data and metadata in XML format between computer systems. However, there is a lack of metadata editing tools supporting end users in this activity. Generally speaking, it is hard for users to provide sensor metadata in the SensorML format without dedicated tools. In particular, such a tool should ease metadata editing by providing, for standard sensors, all the invariant information to be included in sensor metadata, thus allowing the user to concentrate on the metadata items that are related to the specific deployment. RITMARE, the Italian flagship project on marine research, envisages a subproject, SP7, for the set-up of the project's spatial data infrastructure. SP7 developed EDI, a general purpose, template-driven metadata editor that is composed of a backend web service and an HTML5/javascript client. EDI can be customized for managing the creation of generic metadata encoded as XML. Once tailored to a specific metadata format, EDI presents the users a web form with advanced auto completion and validation capabilities. In the case of sensor metadata (SensorML versions 1.0.1 and 2.0), the EDI client is instructed to send an "insert sensor" request to an SOS endpoint in order to save the metadata in an SOS server. In the first phase of project RITMARE, EDI has been used to simplify the creation from scratch of SensorML metadata by the involved researchers and data managers. An interesting by-product of this ongoing work is currently constituting an archive of predefined sensor descriptions. This information is being collected in order to further ease metadata creation in the next phase of the project. Users will be able to choose among a number of sensor and sensor platform prototypes: These will be specific instances on which it will be possible to define, in a bottom-up approach, "sensor profiles". We report on the outcome of this activity.
Publishing NASA Metadata as Linked Open Data for Semantic Mashups
NASA Astrophysics Data System (ADS)
Wilson, Brian; Manipon, Gerald; Hua, Hook
2014-05-01
Data providers are now publishing more metadata in more interoperable forms, e.g. Atom or RSS 'casts', as Linked Open Data (LOD), or as ISO Metadata records. A major effort on the part of the NASA's Earth Science Data and Information System (ESDIS) project is the aggregation of metadata that enables greater data interoperability among scientific data sets regardless of source or application. Both the Earth Observing System (EOS) ClearingHOuse (ECHO) and the Global Change Master Directory (GCMD) repositories contain metadata records for NASA (and other) datasets and provided services. These records contain typical fields for each dataset (or software service) such as the source, creation date, cognizant institution, related access URL's, and domain and variable keywords to enable discovery. Under a NASA ACCESS grant, we demonstrated how to publish the ECHO and GCMD dataset and services metadata as LOD in the RDF format. Both sets of metadata are now queryable at SPARQL endpoints and available for integration into "semantic mashups" in the browser. It is straightforward to reformat sets of XML metadata, including ISO, into simple RDF and then later refine and improve the RDF predicates by reusing known namespaces such as Dublin core, georss, etc. All scientific metadata should be part of the LOD world. In addition, we developed an "instant" drill-down and browse interface that provides faceted navigation so that the user can discover and explore the 25,000 datasets and 3000 services. The available facets and the free-text search box appear in the left panel, and the instantly updated results for the dataset search appear in the right panel. The user can constrain the value of a metadata facet simply by clicking on a word (or phrase) in the "word cloud" of values for each facet. The display section for each dataset includes the important metadata fields, a full description of the dataset, potentially some related URL's, and a "search" button that points to an OpenSearch GUI that is pre-configured to search for granules within the dataset. We will present our experiences with converting NASA metadata into LOD, discuss the challenges, illustrate some of the enabled mashups, and demonstrate the latest version of the "instant browse" interface for navigating multiple metadata collections.
Image BOSS: a biomedical object storage system
NASA Astrophysics Data System (ADS)
Stacy, Mahlon C.; Augustine, Kurt E.; Robb, Richard A.
1997-05-01
Researchers using biomedical images have data management needs which are oriented perpendicular to clinical PACS. The image BOSS system is designed to permit researchers to organize and select images based on research topic, image metadata, and a thumbnail of the image. Image information is captured from existing images in a Unix based filesystem, stored in an object oriented database, and presented to the user in a familiar laboratory notebook metaphor. In addition, the ImageBOSS is designed to provide an extensible infrastructure for future content-based queries directly on the images.
Dugas, Martin
2016-11-29
Clinical trials use many case report forms (CRFs) per patient. Because of the astronomical number of potential CRFs, data element re-use at the design stage is attractive to foster compatibility of data from different trials. The objective of this work is to assess the technical feasibility of a CRF editor with connection to a public metadata registry (MDR) to support data element re-use. Based on the Medical Data Models portal, an ISO/IEC 11179-compliant MDR was implemented and connected to a web-based CRF editor. Three use cases were implemented: re-use at the form, item group and data element levels. CRF design with data element re-use from a public MDR is feasible. A prototypic system is available. The main limitation of the system is the amount of available MDR content.
NASA Astrophysics Data System (ADS)
Jiang, Y.
2015-12-01
Oceanographic resource discovery is a critical step for developing ocean science applications. With the increasing number of resources available online, many Spatial Data Infrastructure (SDI) components (e.g. catalogues and portals) have been developed to help manage and discover oceanographic resources. However, efficient and accurate resource discovery is still a big challenge because of the lack of data relevancy information. In this article, we propose a search engine framework for mining and utilizing dataset relevancy from oceanographic dataset metadata, usage metrics, and user feedback. The objective is to improve discovery accuracy of oceanographic data and reduce time for scientist to discover, download and reformat data for their projects. Experiments and a search example show that the propose engine helps both scientists and general users search for more accurate results with enhanced performance and user experience through a user-friendly interface.
A publication database for optical long baseline interferometry
NASA Astrophysics Data System (ADS)
Malbet, Fabien; Mella, Guillaume; Lawson, Peter; Taillifet, Esther; Lafrasse, Sylvain
2010-07-01
Optical long baseline interferometry is a technique that has generated almost 850 refereed papers to date. The targets span a large variety of objects from planetary systems to extragalactic studies and all branches of stellar physics. We have created a database hosted by the JMMC and connected to the Optical Long Baseline Interferometry Newsletter (OLBIN) web site using MySQL and a collection of XML or PHP scripts in order to store and classify these publications. Each entry is defined by its ADS bibcode, includes basic ADS informations and metadata. The metadata are specified by tags sorted in categories: interferometric facilities, instrumentation, wavelength of operation, spectral resolution, type of measurement, target type, and paper category, for example. The whole OLBIN publication list has been processed and we present how the database is organized and can be accessed. We use this tool to generate statistical plots of interest for the community in optical long baseline interferometry.
The PDS4 Metadata Management System
NASA Astrophysics Data System (ADS)
Raugh, A. C.; Hughes, J. S.
2018-04-01
We present the key features of the Planetary Data System (PDS) PDS4 Information Model as an extendable metadata management system for planetary metadata related to data structure, analysis/interpretation, and provenance.
NASA Technical Reports Server (NTRS)
Todd, Nancy S.
2016-01-01
The rock and soil samples returned from the Apollo missions from 1969-72 have supported 46 years of research leading to advances in our understanding of the formation and evolution of the inner Solar System. NASA has been engaged in several initiatives that aim to restore, digitize, and make available to the public existing published and unpublished research data for the Apollo samples. One of these initiatives is a collaboration with IEDA (Interdisciplinary Earth Data Alliance) to develop MoonDB, a lunar geochemical database modeled after PetDB (Petrological Database of the Ocean Floor). In support of this initiative, NASA has adopted the use of IGSN (International Geo Sample Number) to generate persistent, unique identifiers for lunar samples that scientists can use when publishing research data. To facilitate the IGSN registration of the original 2,200 samples and over 120,000 subdivided samples, NASA has developed an application that retrieves sample metadata from the Lunar Curation Database and uses the SESAR API to automate the generation of IGSNs and registration of samples into SESAR (System for Earth Sample Registration). This presentation will describe the work done by NASA to map existing sample metadata to the IGSN metadata and integrate the IGSN registration process into the sample curation workflow, the lessons learned from this effort, and how this work can be extended in the future to help deal with the registration of large numbers of samples.
NASA Astrophysics Data System (ADS)
Todd, N. S.
2016-12-01
The rock and soil samples returned from the Apollo missions from 1969-72 have supported 46 years of research leading to advances in our understanding of the formation and evolution of the inner Solar System. NASA has been engaged in several initiatives that aim to restore, digitize, and make available to the public existing published and unpublished research data for the Apollo samples. One of these initiatives is a collaboration with IEDA (Interdisciplinary Earth Data Alliance) to develop MoonDB, a lunar geochemical database modeled after PetDB. In support of this initiative, NASA has adopted the use of IGSN (International Geo Sample Number) to generate persistent, unique identifiers for lunar samples that scientists can use when publishing research data. To facilitate the IGSN registration of the original 2,200 samples and over 120,000 subdivided samples, NASA has developed an application that retrieves sample metadata from the Lunar Curation Database and uses the SESAR API to automate the generation of IGSNs and registration of samples into SESAR (System for Earth Sample Registration). This presentation will describe the work done by NASA to map existing sample metadata to the IGSN metadata and integrate the IGSN registration process into the sample curation workflow, the lessons learned from this effort, and how this work can be extended in the future to help deal with the registration of large numbers of samples.
USGS Science Data Life Cycle Tools - Lessons Learned in moving to the Cloud
NASA Astrophysics Data System (ADS)
Frame, M. T.; Mancuso, T.; Hutchison, V.; Zolly, L.; Wheeler, B.; Urbanowski, S.; Devarakonda, R.; Palanisamy, G.
2016-12-01
The U.S Geological Survey (USGS) Core Science Systems has been working for the past year to design, re-architect, and implement several key tools and systems within the USGS Cloud Hosting Service supported by Amazon Web Services (AWS). As a result of emerging USGS data management policies that align with federal Open Data mandates, and as part of a concerted effort to respond to potential increasing user demand due to these policies, the USGS strategically began migrating its core data management tools and services to the AWS environment in hopes of leveraging cloud capabilities (i.e. auto-scaling, replication, etc.). The specific tools included: USGS Online Metadata Editor (OME); USGS Digital Object Identifier (DOI) generation tool; USGS Science Data Catalog (SDC); USGS ScienceBase system; and an integrative tool, the USGS Data Release Workbench, which steps bureau personnel through the process of releasing data. All of these tools existed long before the Cloud was available and presented significant challenges in migrating, re-architecting, securing, and moving to a Cloud based environment. Initially, a `lift and shift' approach, essentially moving as is, was attempted and various lessons learned about that approach will be discussed, along with recommendations that resulted from the development and eventual operational implementation of these tools. The session will discuss lessons learned related to management of these tools in an AWS environment; re-architecture strategies utilized for the tools; time investments through sprint allocations; initial benefits observed from operating within a Cloud based environment; and initial costs to support these data management tools.
NASA Astrophysics Data System (ADS)
Zaslavsky, I.; Richard, S. M.; Valentine, D. W., Jr.; Grethe, J. S.; Hsu, L.; Malik, T.; Bermudez, L. E.; Gupta, A.; Lehnert, K. A.; Whitenack, T.; Ozyurt, I. B.; Condit, C.; Calderon, R.; Musil, L.
2014-12-01
EarthCube is envisioned as a cyberinfrastructure that fosters new, transformational geoscience by enabling sharing, understanding and scientifically-sound and efficient re-use of formerly unconnected data resources, software, models, repositories, and computational power. Its purpose is to enable science enterprise and workforce development via an extensible and adaptable collaboration and resource integration framework. A key component of this vision is development of comprehensive inventories supporting resource discovery and re-use across geoscience domains. The goal of the EarthCube CINERGI (Community Inventory of EarthCube Resources for Geoscience Interoperability) project is to create a methodology and assemble a large inventory of high-quality information resources with standard metadata descriptions and traceable provenance. The inventory is compiled from metadata catalogs maintained by geoscience data facilities, as well as from user contributions. The latter mechanism relies on community resource viewers: online applications that support update and curation of metadata records. Once harvested into CINERGI, metadata records from domain catalogs and community resource viewers are loaded into a staging database implemented in MongoDB, and validated for compliance with ISO 19139 metadata schema. Several types of metadata defects detected by the validation engine are automatically corrected with help of several information extractors or flagged for manual curation. The metadata harvesting, validation and processing components generate provenance statements using W3C PROV notation, which are stored in a Neo4J database. Thus curated metadata, along with the provenance information, is re-published and accessed programmatically and via a CINERGI online application. This presentation focuses on the role of resource inventories in a scalable and adaptable information infrastructure, and on the CINERGI metadata pipeline and its implementation challenges. Key project components are described at the project's website (http://workspace.earthcube.org/cinergi), which also provides access to the initial resource inventory, the inventory metadata model, metadata entry forms and a collection of the community resource viewers.
Metadata improvements driving new tools and services at a NASA data center
NASA Astrophysics Data System (ADS)
Moroni, D. F.; Hausman, J.; Foti, G.; Armstrong, E. M.
2011-12-01
The NASA Physical Oceanography DAAC (PO.DAAC) is responsible for distributing and maintaining satellite derived oceanographic data from a number of NASA and non-NASA missions for the physical disciplines of ocean winds, sea surface temperature, ocean topography and gravity. Currently its holdings consist of over 600 datasets with a data archive in excess of 200 Terrabytes. The PO.DAAC has recently embarked on a metadata quality and completeness project to migrate, update and improve metadata records for over 300 public datasets. An interactive database management tool has been developed to allow data scientists to enter, update and maintain metadata records. This tool communicates directly with PO.DAAC's Data Management and Archiving System (DMAS), which serves as the new archival and distribution backbone as well as a permanent repository of dataset and granule-level metadata. Although we will briefly discuss the tool, more important ramifications are the ability to now expose, propagate and leverage the metadata in a number of ways. First, the metadata are exposed directly through a faceted and free text search interface directly from drupal-based PO.DAAC web pages allowing for quick browsing and data discovery especially by "drilling" through the various facet levels that organize datasets by time/space resolution, processing level, sensor, measurement type etc. Furthermore, the metadata can now be exposed through web services to produce metadata records in a number of different formats such as FGDC and ISO 19115, or potentially propagated to visualization and subsetting tools, and other discovery interfaces. The fundamental concept is that the metadata forms the essential bridge between the user, and the tool or discovery mechanism for a broad range of ocean earth science data records.
NASA Astrophysics Data System (ADS)
Servilla, M. S.; Brunt, J.; Costa, D.; Gries, C.; Grossman-Clarke, S.; Hanson, P. C.; O'Brien, M.; Smith, C.; Vanderbilt, K.; Waide, R.
2017-12-01
In the world of data repositories, there seems to be a never ending struggle between the generation of high-quality data documentation and the ease of archiving a data product in a repository - the higher the documentation standards, the greater effort required by the scientist, and the less likely the data will be archived. The Environmental Data Initiative (EDI) attempts to balance the rigor of data documentation to the amount of effort required by a scientist to upload and archive data. As an outgrowth of the LTER Network Information System, the EDI is funded by the US NSF Division of Environmental Biology, to support the LTER, LTREB, OBFS, and MSB programs, in addition to providing an open data archive for environmental scientists without a viable archive. EDI uses the PASTA repository software, developed originally by the LTER. PASTA is metadata driven and documents data with the Ecological Metadata Language (EML), a high-fidelity standard that can describe all types of data in great detail. PASTA incorporates a series of data quality tests to ensure that data are correctly documented with EML in a process that is termed "metadata and data congruence", and incongruent data packages are forbidden in the repository. EDI reduces the burden of data documentation on scientists in two ways: first, EDI provides hands-on assistance in data documentation best practices using R and being developed in Python, for generating EML. These tools obscure the details of EML generation and syntax by providing a more natural and contextual setting for describing data. Second, EDI works closely with community information managers in defining rules used in PASTA quality tests. Rules deemed too strict can be turned off completely or just issue a warning, while the community learns to best handle the situation and improve their documentation practices. Rules can also be added or refined over time to improve overall quality of archived data. The outcome of quality tests are stored as part of the data archive in PASTA and are accessible to all users of the EDI data repository. In summary, EDI's metadata support to scientists and the comprehensive set of data quality tests for metadata and data congruency provide an ideal archive for environmental and ecological data.
Large-Scale Data Collection Metadata Management at the National Computation Infrastructure
NASA Astrophysics Data System (ADS)
Wang, J.; Evans, B. J. K.; Bastrakova, I.; Ryder, G.; Martin, J.; Duursma, D.; Gohar, K.; Mackey, T.; Paget, M.; Siddeswara, G.
2014-12-01
Data Collection management has become an essential activity at the National Computation Infrastructure (NCI) in Australia. NCI's partners (CSIRO, Bureau of Meteorology, Australian National University, and Geoscience Australia), supported by the Australian Government and Research Data Storage Infrastructure (RDSI), have established a national data resource that is co-located with high-performance computing. This paper addresses the metadata management of these data assets over their lifetime. NCI manages 36 data collections (10+ PB) categorised as earth system sciences, climate and weather model data assets and products, earth and marine observations and products, geosciences, terrestrial ecosystem, water management and hydrology, astronomy, social science and biosciences. The data is largely sourced from NCI partners, the custodians of many of the national scientific records, and major research community organisations. The data is made available in a HPC and data-intensive environment - a ~56000 core supercomputer, virtual labs on a 3000 core cloud system, and data services. By assembling these large national assets, new opportunities have arisen to harmonise the data collections, making a powerful cross-disciplinary resource.To support the overall management, a Data Management Plan (DMP) has been developed to record the workflows, procedures, the key contacts and responsibilities. The DMP has fields that can be exported to the ISO19115 schema and to the collection level catalogue of GeoNetwork. The subset or file level metadata catalogues are linked with the collection level through parent-child relationship definition using UUID. A number of tools have been developed that support interactive metadata management, bulk loading of data, and support for computational workflows or data pipelines. NCI creates persistent identifiers for each of the assets. The data collection is tracked over its lifetime, and the recognition of the data providers, data owners, data generators and data aggregators are updated. A Digital Object Identifier is assigned using the Australian National Data Service (ANDS). Once the data has been quality assured, a DOI is minted and the metadata record updated. NCI's data citation policy establishes the relationship between research outcomes, data providers, and the data.
González-Beltrán, Alejandra; Neumann, Steffen; Maguire, Eamonn; Sansone, Susanna-Assunta; Rocca-Serra, Philippe
2014-01-01
The ISA-Tab format and software suite have been developed to break the silo effect induced by technology-specific formats for a variety of data types and to better support experimental metadata tracking. Experimentalists seldom use a single technique to monitor biological signals. Providing a multi-purpose, pragmatic and accessible format that abstracts away common constructs for describing Investigations, Studies and Assays, ISA is increasingly popular. To attract further interest towards the format and extend support to ensure reproducible research and reusable data, we present the Risa package, which delivers a central component to support the ISA format by enabling effortless integration with R, the popular, open source data crunching environment. The Risa package bridges the gap between the metadata collection and curation in an ISA-compliant way and the data analysis using the widely used statistical computing environment R. The package offers functionality for: i) parsing ISA-Tab datasets into R objects, ii) augmenting annotation with extra metadata not explicitly stated in the ISA syntax; iii) interfacing with domain specific R packages iv) suggesting potentially useful R packages available in Bioconductor for subsequent processing of the experimental data described in the ISA format; and finally v) saving back to ISA-Tab files augmented with analysis specific metadata from R. We demonstrate these features by presenting use cases for mass spectrometry data and DNA microarray data. The Risa package is open source (with LGPL license) and freely available through Bioconductor. By making Risa available, we aim to facilitate the task of processing experimental data, encouraging a uniform representation of experimental information and results while delivering tools for ensuring traceability and provenance tracking. The Risa package is available since Bioconductor 2.11 (version 1.0.0) and version 1.2.1 appeared in Bioconductor 2.12, both along with documentation and examples. The latest version of the code is at the development branch in Bioconductor and can also be accessed from GitHub https://github.com/ISA-tools/Risa, where the issue tracker allows users to report bugs or feature requests.
The Risa R/Bioconductor package: integrative data analysis from experimental metadata and back again
2014-01-01
Background The ISA-Tab format and software suite have been developed to break the silo effect induced by technology-specific formats for a variety of data types and to better support experimental metadata tracking. Experimentalists seldom use a single technique to monitor biological signals. Providing a multi-purpose, pragmatic and accessible format that abstracts away common constructs for describing Investigations, Studies and Assays, ISA is increasingly popular. To attract further interest towards the format and extend support to ensure reproducible research and reusable data, we present the Risa package, which delivers a central component to support the ISA format by enabling effortless integration with R, the popular, open source data crunching environment. Results The Risa package bridges the gap between the metadata collection and curation in an ISA-compliant way and the data analysis using the widely used statistical computing environment R. The package offers functionality for: i) parsing ISA-Tab datasets into R objects, ii) augmenting annotation with extra metadata not explicitly stated in the ISA syntax; iii) interfacing with domain specific R packages iv) suggesting potentially useful R packages available in Bioconductor for subsequent processing of the experimental data described in the ISA format; and finally v) saving back to ISA-Tab files augmented with analysis specific metadata from R. We demonstrate these features by presenting use cases for mass spectrometry data and DNA microarray data. Conclusions The Risa package is open source (with LGPL license) and freely available through Bioconductor. By making Risa available, we aim to facilitate the task of processing experimental data, encouraging a uniform representation of experimental information and results while delivering tools for ensuring traceability and provenance tracking. Software availability The Risa package is available since Bioconductor 2.11 (version 1.0.0) and version 1.2.1 appeared in Bioconductor 2.12, both along with documentation and examples. The latest version of the code is at the development branch in Bioconductor and can also be accessed from GitHub https://github.com/ISA-tools/Risa, where the issue tracker allows users to report bugs or feature requests. PMID:24564732
EPA Metadata Style Guide Keywords and EPA Organization Names
The following keywords and EPA organization names listed below, along with EPA’s Metadata Style Guide, are intended to provide suggestions and guidance to assist with the standardization of metadata records.
Interpreting the ASTM 'content standard for digital geospatial metadata'
Nebert, Douglas D.
1996-01-01
ASTM and the Federal Geographic Data Committee have developed a content standard for spatial metadata to facilitate documentation, discovery, and retrieval of digital spatial data using vendor-independent terminology. Spatial metadata elements are identifiable quality and content characteristics of a data set that can be tied to a geographic location or area. Several Office of Management and Budget Circulars and initiatives have been issued that specify improved cataloguing of and accessibility to federal data holdings. An Executive Order further requires the use of the metadata content standard to document digital spatial data sets. Collection and reporting of spatial metadata for field investigations performed for the federal government is an anticipated requirement. This paper provides an overview of the draft spatial metadata content standard and a description of how the standard could be applied to investigations collecting spatially-referenced field data.
The Importance of Metadata in System Development and IKM
2003-02-01
Defence R& D Canada The Importance of Metadata in System Development and IKM Anthony W. Isenor Technical Memorandum DRDC Atlantic TM 2003-011...Metadata in System Development and IKM Anthony W. Isenor Defence R& D Canada – Atlantic Technical Memorandum DRDC Atlantic TM 2003-011 February... it is important for searches and providing relevant information to the client. A comparison of metadata standards was conducted with emphasis on
NASA Astrophysics Data System (ADS)
Do, Hong Xuan; Gudmundsson, Lukas; Leonard, Michael; Westra, Seth
2018-04-01
This is the first part of a two-paper series presenting the Global Streamflow Indices and Metadata archive (GSIM), a worldwide collection of metadata and indices derived from more than 35 000 daily streamflow time series. This paper focuses on the compilation of the daily streamflow time series based on 12 free-to-access streamflow databases (seven national databases and five international collections). It also describes the development of three metadata products (freely available at https://doi.pangaea.de/10.1594/PANGAEA.887477): (1) a GSIM catalogue collating basic metadata associated with each time series, (2) catchment boundaries for the contributing area of each gauge, and (3) catchment metadata extracted from 12 gridded global data products representing essential properties such as land cover type, soil type, and climate and topographic characteristics. The quality of the delineated catchment boundary is also made available and should be consulted in GSIM application. The second paper in the series then explores production and analysis of streamflow indices. Having collated an unprecedented number of stations and associated metadata, GSIM can be used to advance large-scale hydrological research and improve understanding of the global water cycle.
Achieving Sub-Second Search in the CMR
NASA Astrophysics Data System (ADS)
Gilman, J.; Baynes, K.; Pilone, D.; Mitchell, A. E.; Murphy, K. J.
2014-12-01
The Common Metadata Repository (CMR) is the next generation Earth Science Metadata catalog for NASA's Earth Observing data. It joins together the holdings from the EOS Clearing House (ECHO) and the Global Change Master Directory (GCMD), creating a unified, authoritative source for EOSDIS metadata. The CMR allows ingest in many different formats while providing consistent search behavior and retrieval in any supported format. Performance is a critical component of the CMR, ensuring improved data discovery and client interactivity. The CMR delivers sub-second search performance for any of the common query conditions (including spatial) across hundreds of millions of metadata granules. It also allows the addition of new metadata concepts such as visualizations, parameter metadata, and documentation. The CMR's goals presented many challenges. This talk will describe the CMR architecture, design, and innovations that were made to achieve its goals. This includes: * Architectural features like immutability and backpressure. * Data management techniques such as caching and parallel loading that give big performance gains. * Open Source and COTS tools like Elasticsearch search engine. * Adoption of Clojure, a functional programming language for the Java Virtual Machine. * Development of a custom spatial search plugin for Elasticsearch and why it was necessary. * Introduction of a unified model for metadata that maps every supported metadata format to a consistent domain model.
Syntactic and Semantic Validation without a Metadata Management System
NASA Technical Reports Server (NTRS)
Pollack, Janine; Gokey, Christopher D.; Kendig, David; Olsen, Lola; Wharton, Stephen W. (Technical Monitor)
2001-01-01
The ability to maintain quality information is essential to securing the confidence in any system for which the information serves as a data source. NASA's Global Change Master Directory (GCMD), an online Earth science data locator, holds over 9000 data set descriptions and is in a constant state of flux as metadata are created and updated on a daily basis. In such a system, the importance of maintaining the consistency and integrity of these-metadata is crucial. The GCMD has developed a metadata management system utilizing XML, controlled vocabulary, and Java technologies to ensure the metadata not only adhere to valid syntax, but also exhibit proper semantics.
2014-12-01
7. 248 A great deal of uncertainty surrounds the incident as the government suppressed media reporting and blocked all forms of communication ... A Post-2014 Strategy for Central Asia. Carlisle, PA: Army War College , 2012. http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html...Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the
Survey data and metadata modelling using document-oriented NoSQL
NASA Astrophysics Data System (ADS)
Rahmatuti Maghfiroh, Lutfi; Gusti Bagus Baskara Nugraha, I.
2018-03-01
Survey data that are collected from year to year have metadata change. However it need to be stored integratedly to get statistical data faster and easier. Data warehouse (DW) can be used to solve this limitation. However there is a change of variables in every period that can not be accommodated by DW. Traditional DW can not handle variable change via Slowly Changing Dimension (SCD). Previous research handle the change of variables in DW to manage metadata by using multiversion DW (MVDW). MVDW is designed using relational model. Some researches also found that developing nonrelational model in NoSQL database has reading time faster than the relational model. Therefore, we propose changes to metadata management by using NoSQL. This study proposes a model DW to manage change and algorithms to retrieve data with metadata changes. Evaluation of the proposed models and algorithms result in that database with the proposed design can retrieve data with metadata changes properly. This paper has contribution in comprehensive data analysis with metadata changes (especially data survey) in integrated storage.
Feature engineering for MEDLINE citation categorization with MeSH.
Jimeno Yepes, Antonio Jose; Plaza, Laura; Carrillo-de-Albornoz, Jorge; Mork, James G; Aronson, Alan R
2015-04-08
Research in biomedical text categorization has mostly used the bag-of-words representation. Other more sophisticated representations of text based on syntactic, semantic and argumentative properties have been less studied. In this paper, we evaluate the impact of different text representations of biomedical texts as features for reproducing the MeSH annotations of some of the most frequent MeSH headings. In addition to unigrams and bigrams, these features include noun phrases, citation meta-data, citation structure, and semantic annotation of the citations. Traditional features like unigrams and bigrams exhibit strong performance compared to other feature sets. Little or no improvement is obtained when using meta-data or citation structure. Noun phrases are too sparse and thus have lower performance compared to more traditional features. Conceptual annotation of the texts by MetaMap shows similar performance compared to unigrams, but adding concepts from the UMLS taxonomy does not improve the performance of using only mapped concepts. The combination of all the features performs largely better than any individual feature set considered. In addition, this combination improves the performance of a state-of-the-art MeSH indexer. Concerning the machine learning algorithms, we find that those that are more resilient to class imbalance largely obtain better performance. We conclude that even though traditional features such as unigrams and bigrams have strong performance compared to other features, it is possible to combine them to effectively improve the performance of the bag-of-words representation. We have also found that the combination of the learning algorithm and feature sets has an influence in the overall performance of the system. Moreover, using learning algorithms resilient to class imbalance largely improves performance. However, when using a large set of features, consideration needs to be taken with algorithms due to the risk of over-fitting. Specific combinations of learning algorithms and features for individual MeSH headings could further increase the performance of an indexing system.
NASA Astrophysics Data System (ADS)
Riddick, Andrew; Hughes, Andrew; Harpham, Quillon; Royse, Katherine; Singh, Anubha
2014-05-01
There has been an increasing interest both from academic and commercial organisations over recent years in developing hydrologic and other environmental models in response to some of the major challenges facing the environment, for example environmental change and its effects and ensuring water resource security. This has resulted in a significant investment in modelling by many organisations both in terms of financial resources and intellectual capital. To capitalise on the effort on producing models, then it is necessary for the models to be both discoverable and appropriately described. If this is not undertaken then the effort in producing the models will be wasted. However, whilst there are some recognised metadata standards relating to datasets these may not completely address the needs of modellers regarding input data for example. Also there appears to be a lack of metadata schemes configured to encourage the discovery and re-use of the models themselves. The lack of an established standard for model metadata is considered to be a factor inhibiting the more widespread use of environmental models particularly the use of linked model compositions which fuse together hydrologic models with models from other environmental disciplines. This poster presents the results of a Natural Environment Research Council (NERC) funded scoping study to understand the requirements of modellers and other end users for metadata about data and models. A user consultation exercise using an on-line questionnaire has been undertaken to capture the views of a wide spectrum of stakeholders on how they are currently managing metadata for modelling. This has provided a strong confirmation of our original supposition that there is a lack of systems and facilities to capture metadata about models. A number of specific gaps in current provision for data and model metadata were also identified, including a need for a standard means to record detailed information about the modelling environment and the model code used, to assist the selection of models for linked compositions. Existing best practice, including the use of current metadata standards (e.g. ISO 19110, ISO 19115 and ISO 19119) and the metadata components of WaterML were also evaluated. In addition to commonly used metadata attributes (e.g. spatial reference information) there was significant interest in recording a variety of additional metadata attributes. These included more detailed information about temporal data, and also providing estimates of data accuracy and uncertainty within metadata. This poster describes the key results of this study, including a number of gaps in the provision of metadata for modelling, and outlines how these might be addressed. Overall the scoping study has highlighted significant interest in addressing this issue within the environmental modelling community. There is therefore an impetus for on-going research, and we are seeking to take this forward through collaboration with other interested organisations. Progress towards an internationally recognised model metadata standard is suggested.
Descriptive Metadata: Emerging Standards.
ERIC Educational Resources Information Center
Ahronheim, Judith R.
1998-01-01
Discusses metadata, digital resources, cross-disciplinary activity, and standards. Highlights include Standard Generalized Markup Language (SGML); Extensible Markup Language (XML); Dublin Core; Resource Description Framework (RDF); Text Encoding Initiative (TEI); Encoded Archival Description (EAD); art and cultural-heritage metadata initiatives;…
2008-06-01
provides a means for file owners to add metadata which can then be used by iTunes for cataloging and searching [4]. Metadata can be stored in different...based and contain AAC data formats [3]. Specifically, Apple uses Protected AAC to encode copy-protected music titles purchased from the iTunes Music...Store [4]. The files purchased from the iTunes Music Store include the following metadata. • Name • Email address of purchaser • Year • Album
A Solution to Metadata: Using XML Transformations to Automate Metadata
2010-06-01
developed their own metadata standards—Directory Interchange Format (DIF), Ecological Metadata Language ( EML ), and International Organization for...mented all their data using the EML standard. However, when later attempting to publish to a data clearinghouse— such as the Geospatial One-Stop (GOS...construct calls to its transform(s) method by providing the type of the incoming content (e.g., eml ), the type of the resulting content (e.g., fgdc) and
2007-05-17
metadata formats, metadata repositories, enterprise portals and federated search engines that make data visible, available, and usable to users...and provides the metadata formats, metadata repositories, enterprise portals and federated search engines that make data visible, available, and...develop an enterprise- wide data sharing plan, establishment of mission area governance processes for CIOs, DISA development of federated search specifications
FRAMES Metadata Reporting Templates for Ecohydrological Observations, version 1.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christianson, Danielle; Varadharajan, Charuleka; Christoffersen, Brad
FRAMES is a a set of Excel metadata files and package-level descriptive metadata that are designed to facilitate and improve capture of desired metadata for ecohydrological observations. The metadata are bundled with data files into a data package and submitted to a data repository (e.g. the NGEE Tropics Data Repository) via a web form. FRAMES standardizes reporting of diverse ecohydrological and biogeochemical data for synthesis across a range of spatiotemporal scales and incorporates many best data science practices. This version of FRAMES supports observations for primarily automated measurements collected by permanently located sensors, including sap flow (tree water use), leafmore » surface temperature, soil water content, dendrometry (stem diameter growth increment), and solar radiation. Version 1.1 extend the controlled vocabulary and incorporates functionality to facilitate programmatic use of data and FRAMES metadata (R code available at NGEE Tropics Data Repository).« less
Assessing Public Metabolomics Metadata, Towards Improving Quality.
Ferreira, João D; Inácio, Bruno; Salek, Reza M; Couto, Francisco M
2017-12-13
Public resources need to be appropriately annotated with metadata in order to make them discoverable, reproducible and traceable, further enabling them to be interoperable or integrated with other datasets. While data-sharing policies exist to promote the annotation process by data owners, these guidelines are still largely ignored. In this manuscript, we analyse automatic measures of metadata quality, and suggest their application as a mean to encourage data owners to increase the metadata quality of their resources and submissions, thereby contributing to higher quality data, improved data sharing, and the overall accountability of scientific publications. We analyse these metadata quality measures in the context of a real-world repository of metabolomics data (i.e. MetaboLights), including a manual validation of the measures, and an analysis of their evolution over time. Our findings suggest that the proposed measures can be used to mimic a manual assessment of metadata quality.
EXIF Custom: Automatic image metadata extraction for Scratchpads and Drupal.
Baker, Ed
2013-01-01
Many institutions and individuals use embedded metadata to aid in the management of their image collections. Many deskop image management solutions such as Adobe Bridge and online tools such as Flickr also make use of embedded metadata to describe, categorise and license images. Until now Scratchpads (a data management system and virtual research environment for biodiversity) have not made use of these metadata, and users have had to manually re-enter this information if they have wanted to display it on their Scratchpad site. The Drupal described here allows users to map metadata embedded in their images to the associated field in the Scratchpads image form using one or more customised mappings. The module works seamlessly with the bulk image uploader used on Scratchpads and it is therefore possible to upload hundreds of images easily with automatic metadata (EXIF, XMP and IPTC) extraction and mapping.
METADATA REGISTRY, ISO/IEC 11179
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pon, R K; Buttler, D J
2008-01-03
ISO/IEC-11179 is an international standard that documents the standardization and registration of metadata to make data understandable and shareable. This standardization and registration allows for easier locating, retrieving, and transmitting data from disparate databases. The standard defines the how metadata are conceptually modeled and how they are shared among parties, but does not define how data is physically represented as bits and bytes. The standard consists of six parts. Part 1 provides a high-level overview of the standard and defines the basic element of a metadata registry - a data element. Part 2 defines the procedures for registering classification schemesmore » and classifying administered items in a metadata registry (MDR). Part 3 specifies the structure of an MDR. Part 4 specifies requirements and recommendations for constructing definitions for data and metadata. Part 5 defines how administered items are named and identified. Part 6 defines how administered items are registered and assigned an identifier.« less
EXIF Custom: Automatic image metadata extraction for Scratchpads and Drupal
2013-01-01
Abstract Many institutions and individuals use embedded metadata to aid in the management of their image collections. Many deskop image management solutions such as Adobe Bridge and online tools such as Flickr also make use of embedded metadata to describe, categorise and license images. Until now Scratchpads (a data management system and virtual research environment for biodiversity) have not made use of these metadata, and users have had to manually re-enter this information if they have wanted to display it on their Scratchpad site. The Drupal described here allows users to map metadata embedded in their images to the associated field in the Scratchpads image form using one or more customised mappings. The module works seamlessly with the bulk image uploader used on Scratchpads and it is therefore possible to upload hundreds of images easily with automatic metadata (EXIF, XMP and IPTC) extraction and mapping. PMID:24723768
NASA Astrophysics Data System (ADS)
Hills, S. J.; Richard, S. M.; Doniger, A.; Danko, D. M.; Derenthal, L.; Energistics Metadata Work Group
2011-12-01
A diverse group of organizations representative of the international community involved in disciplines relevant to the upstream petroleum industry, - energy companies, - suppliers and publishers of information to the energy industry, - vendors of software applications used by the industry, - partner government and academic organizations, has engaged in the Energy Industry Metadata Standards Initiative. This Initiative envisions the use of standard metadata within the community to enable significant improvements in the efficiency with which users discover, evaluate, and access distributed information resources. The metadata standard needed to realize this vision is the initiative's primary deliverable. In addition to developing the metadata standard, the initiative is promoting its adoption to accelerate realization of the vision, and publishing metadata exemplars conformant with the standard. Implementation of the standard by community members, in the form of published metadata which document the information resources each organization manages, will allow use of tools requiring consistent metadata for efficient discovery and evaluation of, and access to, information resources. While metadata are expected to be widely accessible, access to associated information resources may be more constrained. The initiative is being conducting by Energistics' Metadata Work Group, in collaboration with the USGIN Project. Energistics is a global standards group in the oil and natural gas industry. The Work Group determined early in the initiative, based on input solicited from 40+ organizations and on an assessment of existing metadata standards, to develop the target metadata standard as a profile of a revised version of ISO 19115, formally the "Energy Industry Profile of ISO/DIS 19115-1 v1.0" (EIP). The Work Group is participating on the ISO/TC 211 project team responsible for the revision of ISO 19115, now ready for "Draft International Standard" (DIS) status. With ISO 19115 an established, capability-rich, open standard for geographic metadata, EIP v1 is expected to be widely acceptable within the community and readily sustainable over the long-term. The EIP design, also per community requirements, will enable discovery, evaluation, and access to types of information resources considered important to the community, including structured and unstructured digital resources, and physical assets such as hardcopy documents and material samples. This presentation will briefly review the development of this initiative as well as the current and planned Work Group activities. More time will be spent providing an overview of the EIP v1, including the requirements it prescribes, design efforts made to enable automated metadata capture and processing, and the structure and content of its documentation, which was written to minimize ambiguity and facilitate implementation. The Work Group considers EIP v1 a solid initial design for interoperable metadata, and first step toward the vision of the Initiative.
Geographical topic learning for social images with a deep neural network
NASA Astrophysics Data System (ADS)
Feng, Jiangfan; Xu, Xin
2017-03-01
The use of geographical tagging in social-media images is becoming a part of image metadata and a great interest for geographical information science. It is well recognized that geographical topic learning is crucial for geographical annotation. Existing methods usually exploit geographical characteristics using image preprocessing, pixel-based classification, and feature recognition. How to effectively exploit the high-level semantic feature and underlying correlation among different types of contents is a crucial task for geographical topic learning. Deep learning (DL) has recently demonstrated robust capabilities for image tagging and has been introduced into geoscience. It extracts high-level features computed from a whole image component, where the cluttered background may dominate spatial features in the deep representation. Therefore, a method of spatial-attentional DL for geographical topic learning is provided and we can regard it as a special case of DL combined with various deep networks and tuning tricks. Results demonstrated that the method is discriminative for different types of geographical topic learning. In addition, it outperforms other sequential processing models in a tagging task for a geographical image dataset.
NASA Astrophysics Data System (ADS)
Wood, Chris
2016-04-01
Under the Marine Strategy Framework Directive (MSFD), EU Member States are mandated to achieve or maintain 'Good Environmental Status' (GES) in their marine areas by 2020, through a series of Programme of Measures (PoMs). The Celtic Seas Partnership (CSP), an EU LIFE+ project, aims to support policy makers, special-interest groups, users of the marine environment, and other interested stakeholders on MSFD implementation in the Celtic Seas geographical area. As part of this support, a metadata portal has been built to provide a signposting service to datasets that are relevant to MSFD within the Celtic Seas. To ensure that the metadata has the widest possible reach, a linked data approach was employed to construct the database. Although the metadata are stored in a traditional RDBS, the metadata are exposed as linked data via the D2RQ platform, allowing virtual RDF graphs to be generated. SPARQL queries can be executed against the end-point allowing any user to manipulate the metadata. D2RQ's mapping language, based on turtle, was used to map a wide range of relevant ontologies to the metadata (e.g. The Provenance Ontology (prov-o), Ocean Data Ontology (odo), Dublin Core Elements and Terms (dc & dcterms), Friend of a Friend (foaf), and Geospatial ontologies (geo)) allowing users to browse the metadata, either via SPARQL queries or by using D2RQ's HTML interface. The metadata were further enhanced by mapping relevant parameters to the NERC Vocabulary Server, itself built on a SPARQL endpoint. Additionally, a custom web front-end was built to enable users to browse the metadata and express queries through an intuitive graphical user interface that requires no prior knowledge of SPARQL. As well as providing means to browse the data via MSFD-related parameters (Descriptor, Criteria, and Indicator), the metadata records include the dataset's country of origin, the list of organisations involved in the management of the data, and links to any relevant INSPIRE-compliant services relating to the dataset. The web front-end therefore enables users to effectively filter, sort, or search the metadata. As the MSFD timeline requires Member States to review their progress on achieving or maintaining GES every six years, the timely development of this metadata portal will not only aid interested stakeholders in understanding how member states are meeting their targets, but also shows how linked data can be used effectively to support policy makers and associated legislative bodies.
NASA Astrophysics Data System (ADS)
Schaap, D. M. A.; Maudire, G.
2009-04-01
SeaDataNet is an Integrated research Infrastructure Initiative (I3) in EU FP6 (2006 - 2011) to provide the data management system adapted both to the fragmented observation system and the users need for an integrated access to data, meta-data, products and services. Therefore SeaDataNet insures the long term archiving of the large number of multidisciplinary data (i.e. temperature, salinity current, sea level, chemical, physical and biological properties) collected by many different sensors installed on board of research vessels, satellite and the various platforms of the marine observing system. The SeaDataNet project started in 2006, but builds upon earlier data management infrastructure projects, undertaken over a period of 20 years by an expanding network of oceanographic data centres from the countries around all European seas. Its predecessor project Sea-Search had a strict focus on metadata. SeaDataNet maintains significant interest in the further development of the metadata infrastructure, but its primary objective is the provision of easy data access and generic data products. SeaDataNet is a distributed infrastructure that provides transnational access to marine data, meta-data, products and services through 40 interconnected Trans National Data Access Platforms (TAP) from 35 countries around the Black Sea, Mediterranean, North East Atlantic, North Sea, Baltic and Arctic regions. These include: National Oceanographic Data Centres (NODC's) Satellite Data Centres. Furthermore the SeaDataNet consortium comprises a number of expert modelling centres, SME's experts in IT, and 3 international bodies (ICES, IOC and JRC). Planning: The SeaDataNet project is delivering and operating the infrastructure in 3 versions: Version 0: maintenance and further development of the metadata systems developed by the Sea-Search project plus the development of a new metadata system for indexing and accessing to individual data objects managed by the SeaDataNet data centres. This is known as the Common Data Index (CDI) V0 system Version 1: harmonisation and upgrading of the metadatabases through adoption of the ISO 19115 metadata standard and provision of transparent data access and download services from all partner data centres through upgrading the Common Data Index and deployment of a data object delivery service. Version 2: adding data product services and OGC compliant viewing services and further virtualisation of data access. SeaDataNet Version 0: The SeaDataNet portal has been set up at http://www.seadatanet.org and it provides a platform for all SeaDataNet services and standards as well as background information about the project and its partners. It includes discovery services via the following catalogues: CSR - Cruise Summary Reports of research vessels; EDIOS - Locations and details of monitoring stations and networks / programmes; EDMED - High level inventory of Marine Environmental Data sets collected and managed by research institutes and organisations; EDMERP - Marine Environmental Research Projects ; EDMO - Marine Organisations. These catalogues are interrelated, where possible, to facilitate cross searching and context searching. These catalogues connect to the Common Data Index (CDI). Common Data Index (CDI) The CDI gives detailed insight in available datasets at partners databases and paves the way to direct online data access or direct online requests for data access / data delivery. The CDI V0 metadatabase contains more than 340.000 individual data entries from 36 CDI partners from 29 countries across Europe, covering a broad scope and range of data, held by these organisations. For purposes of standardisation and international exchange the ISO19115 metadata standard has been adopted. The CDI format is defined as a dedicated subset of this standard. A CDI XML format supports the exchange between CDI-partners and the central CDI manager, and ensures interoperability with other systems and networks. CDI XML entries are generated by participating data centres, directly from their databases. CDI-partners can make use of dedicated SeaDataNet Tools to generate CDI XML files automatically. Approach for SeaDataNet V1 and V2: The approach for SeaDataNet V1 and V2, which is in line with the INSPIRE Directive, comprises the following services: Discovery services = Metadata directories Security services = Authentication, Authorization & Accounting (AAA) Delivery services = Data access & downloading of datasets Viewing services = Visualisation of metadata, data and data products Product services = Generic and standard products Monitoring services = Statistics on usage and performance of the system Maintenance services = Updating of metadata by SeaDataNet partners The services will be operated over a distributed network of interconnected Data Centres accessed through a central Portal. In addition to service access the portal will provide information on data management standards, tools and protocols. The architecture has been designed to provide a coherent system based on V1 services, whilst leaving the pathway open for later extension with V2 services. For the implementation, a range of technical components have been defined. Some are already operational with the remainder in the final stages of development and testing. These make use of recent web technologies, and also comprise Java components, to provide multi-platform support and syntactic interoperability. To facilitate sharing of resources and interoperability, SeaDataNet has adopted SOAP Web Service technology. The SeaDataNet architecture and components have been designed to handle all kinds of oceanographic and marine environmental data including both in-situ measurements and remote sensing observations. The V1 technical development is ready and the V1 system is now being implemented and adopted by all participating data centres in SeaDataNet. Interoperability: Interoperability is the key to distributed data management system success and it is achieved in SeaDataNet V1 by: Using common quality control protocols and flag scale Using controlled vocabularies from a single source that have been developed using international content governance Adopting the ISO 19115 metadata standard for all metadata directories Providing XML Validation Services to quality control the metadata maintenance, including field content verification based on Schematron. Providing standard metadata entry tools Using harmonised Data Transport Formats (NetCDF, ODV ASCII and MedAtlas ASCII) for data sets delivery Adopting of OGC standards for mapping and viewing services Using SOAP Web Services in the SeaDataNet architecture SeaDataNet V1 Delivery Services: An important objective of the V1 system is to provide transparent access to the distributed data sets via a unique user interface at the SeaDataNet portal and download service. In the SeaDataNet V1 architecture the Common Data Index (CDI) V1 provides the link between discovery and delivery. The CDI user interface enables users to have a detailed insight of the availability and geographical distribution of marine data, archived at the connected data centres, and it provides the means for downloading data sets in common formats via a transaction mechanism. The SeaDataNet portal provides registered users access to these distributed data sets via the CDI V1 Directory and a shopping basket mechanism. This allows registered users to locate data of interest and submit their data requests. The requests are forwarded automatically from the portal to the relevant SeaDataNet data centres. This process is controlled via the Request Status Manager (RSM) Web Service at the portal and a Download Manager (DM) java software module, implemented at each of the data centres. The RSM also enables registered users to check regularly the status of their requests and download data sets, after access has been granted. Data centres can follow all transactions for their data sets online and can handle requests which require their consent. The actual delivery of data sets is done between the user and the selected data centre. The CDI V1 system is now being populated by all participating data centres in SeaDataNet, thereby phasing out CDI V0. 0.1 SeaDataNet Partners: IFREMER (France), MARIS (Netherlands), HCMR/HNODC (Greece), ULg (Belgium), OGS (Italy), NERC/BODC (UK), BSH/DOD (Germany), SMHI (Sweden), IEO (Spain), RIHMI/WDC (Russia), IOC (International), ENEA (Italy), INGV (Italy), METU (Turkey), CLS (France), AWI (Germany), IMR (Norway), NERI (Denmark), ICES (International), EC-DG JRC (International), MI (Ireland), IHPT (Portugal), RIKZ (Netherlands), RBINS/MUMM (Belgium), VLIZ (Belgium), MRI (Iceland), FIMR (Finland ), IMGW (Poland), MSI (Estonia), IAE/UL (Latvia), CMR (Lithuania), SIO/RAS (Russia), MHI/DMIST (Ukraine), IO/BAS (Bulgaria), NIMRD (Romania), TSU (Georgia), INRH (Morocco), IOF (Croatia), PUT (Albania), NIB (Slovenia), UoM (Malta), OC/UCY (Cyprus), IOLR (Israel), NCSR/NCMS (Lebanon), CNR-ISAC (Italy), ISMAL (Algeria), INSTM (Tunisia)
THE NEW ONLINE METADATA EDITOR FOR GENERATING STRUCTURED METADATA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devarakonda, Ranjeet; Shrestha, Biva; Palanisamy, Giri
Nobody is better suited to describe data than the scientist who created it. This description about a data is called Metadata. In general terms, Metadata represents the who, what, when, where, why and how of the dataset [1]. eXtensible Markup Language (XML) is the preferred output format for metadata, as it makes it portable and, more importantly, suitable for system discoverability. The newly developed ORNL Metadata Editor (OME) is a Web-based tool that allows users to create and maintain XML files containing key information, or metadata, about the research. Metadata include information about the specific projects, parameters, time periods, andmore » locations associated with the data. Such information helps put the research findings in context. In addition, the metadata produced using OME will allow other researchers to find these data via Metadata clearinghouses like Mercury [2][4]. OME is part of ORNL s Mercury software fleet [2][3]. It was jointly developed to support projects funded by the United States Geological Survey (USGS), U.S. Department of Energy (DOE), National Aeronautics and Space Administration (NASA) and National Oceanic and Atmospheric Administration (NOAA). OME s architecture provides a customizable interface to support project-specific requirements. Using this new architecture, the ORNL team developed OME instances for USGS s Core Science Analytics, Synthesis, and Libraries (CSAS&L), DOE s Next Generation Ecosystem Experiments (NGEE) and Atmospheric Radiation Measurement (ARM) Program, and the international Surface Ocean Carbon Dioxide ATlas (SOCAT). Researchers simply use the ORNL Metadata Editor to enter relevant metadata into a Web-based form. From the information on the form, the Metadata Editor can create an XML file on the server that the editor is installed or to the user s personal computer. Researchers can also use the ORNL Metadata Editor to modify existing XML metadata files. As an example, an NGEE Arctic scientist use OME to register their datasets to the NGEE data archive and allows the NGEE archive to publish these datasets via a data search portal (http://ngee.ornl.gov/data). These highly descriptive metadata created using OME allows the Archive to enable advanced data search options using keyword, geo-spatial, temporal and ontology filters. Similarly, ARM OME allows scientists or principal investigators (PIs) to submit their data products to the ARM data archive. How would OME help Big Data Centers like the Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC)? The ORNL DAAC is one of NASA s Earth Observing System Data and Information System (EOSDIS) data centers managed by the Earth Science Data and Information System (ESDIS) Project. The ORNL DAAC archives data produced by NASA's Terrestrial Ecology Program. The DAAC provides data and information relevant to biogeochemical dynamics, ecological data, and environmental processes, critical for understanding the dynamics relating to the biological, geological, and chemical components of the Earth's environment. Typically data produced, archived and analyzed is at a scale of multiple petabytes, which makes the discoverability of the data very challenging. Without proper metadata associated with the data, it is difficult to find the data you are looking for and equally difficult to use and understand the data. OME will allow data centers like the NGEE and ORNL DAAC to produce meaningful, high quality, standards-based, descriptive information about their data products in-turn helping with the data discoverability and interoperability. Useful Links: USGS OME: http://mercury.ornl.gov/OME/ NGEE OME: http://ngee-arctic.ornl.gov/ngeemetadata/ ARM OME: http://archive2.ornl.gov/armome/ Contact: Ranjeet Devarakonda (devarakondar@ornl.gov) References: [1] Federal Geographic Data Committee. Content standard for digital geospatial metadata. Federal Geographic Data Committee, 1998. [2] Devarakonda, Ranjeet, et al. "Mercury: reusable metadata management, data discovery and access system." Earth Science Informatics 3.1-2 (2010): 87-94. [3] Wilson, B. E., Palanisamy, G., Devarakonda, R., Rhyne, B. T., Lindsley, C., & Green, J. (2010). Mercury Toolset for Spatiotemporal Metadata. [4] Pouchard, L. C., Branstetter, M. L., Cook, R. B., Devarakonda, R., Green, J., Palanisamy, G., ... & Noy, N. F. (2013). A Linked Science investigation: enhancing climate change data discovery with semantic technologies. Earth science informatics, 6(3), 175-185.« less
A document centric metadata registration tool constructing earth environmental data infrastructure
NASA Astrophysics Data System (ADS)
Ichino, M.; Kinutani, H.; Ono, M.; Shimizu, T.; Yoshikawa, M.; Masuda, K.; Fukuda, K.; Kawamoto, H.
2009-12-01
DIAS (Data Integration and Analysis System) is one of GEOSS activities in Japan. It is also a leading part of the GEOSS task with the same name defined in GEOSS Ten Year Implementation Plan. The main mission of DIAS is to construct data infrastructure that can effectively integrate earth environmental data such as observation data, numerical model outputs, and socio-economic data provided from the fields of climate, water cycle, ecosystem, ocean, biodiversity and agriculture. Some of DIAS's data products are available at the following web site of http://www.jamstec.go.jp/e/medid/dias. Most of earth environmental data commonly have spatial and temporal attributes such as the covering geographic scope or the created date. The metadata standards including these common attributes are published by the geographic information technical committee (TC211) in ISO (the International Organization for Standardization) as specifications of ISO 19115:2003 and 19139:2007. Accordingly, DIAS metadata is developed with basing on ISO/TC211 metadata standards. From the viewpoint of data users, metadata is useful not only for data retrieval and analysis but also for interoperability and information sharing among experts, beginners and nonprofessionals. On the other hand, from the viewpoint of data providers, two problems were pointed out after discussions. One is that data providers prefer to minimize another tasks and spending time for creating metadata. Another is that data providers want to manage and publish documents to explain their data sets more comprehensively. Because of solving these problems, we have been developing a document centric metadata registration tool. The features of our tool are that the generated documents are available instantly and there is no extra cost for data providers to generate metadata. Also, this tool is developed as a Web application. So, this tool does not demand any software for data providers if they have a web-browser. The interface of the tool provides the section titles of the documents and by filling out the content of each section, the documents for the data sets are automatically published in PDF and HTML format. Furthermore, the metadata XML file which is compliant with ISO19115 and ISO19139 is created at the same moment. The generated metadata are managed in the metadata database of the DIAS project, and will be used in various ISO19139 compliant metadata management tools, such as GeoNetwork.
NASA Astrophysics Data System (ADS)
le Roux, J.; Baker, A.; Caltagirone, S.; Bugbee, K.
2017-12-01
The Common Metadata Repository (CMR) is a high-performance, high-quality repository for Earth science metadata records, and serves as the primary way to search NASA's growing 17.5 petabytes of Earth science data holdings. Released in 2015, CMR has the capability to support several different metadata standards already being utilized by NASA's combined network of Earth science data providers, or Distributed Active Archive Centers (DAACs). The Analysis and Review of CMR (ARC) Team located at Marshall Space Flight Center is working to improve the quality of records already in CMR with the goal of making records optimal for search and discovery. This effort entails a combination of automated and manual review, where each NASA record in CMR is checked for completeness, accuracy, and consistency. This effort is highly collaborative in nature, requiring communication and transparency of findings amongst NASA personnel, DAACs, the CMR team and other metadata curation teams. Through the evolution of this project it has become apparent that there is a need to document and report findings, as well as track metadata improvements in a more efficient manner. The ARC team has collaborated with Element 84 in order to develop a metadata curation tool to meet these needs. In this presentation, we will provide an overview of this metadata curation tool and its current capabilities. Challenges and future plans for the tool will also be discussed.
Social tagging in the life sciences: characterizing a new metadata resource for bioinformatics.
Good, Benjamin M; Tennis, Joseph T; Wilkinson, Mark D
2009-09-25
Academic social tagging systems, such as Connotea and CiteULike, provide researchers with a means to organize personal collections of online references with keywords (tags) and to share these collections with others. One of the side-effects of the operation of these systems is the generation of large, publicly accessible metadata repositories describing the resources in the collections. In light of the well-known expansion of information in the life sciences and the need for metadata to enhance its value, these repositories present a potentially valuable new resource for application developers. Here we characterize the current contents of two scientifically relevant metadata repositories created through social tagging. This investigation helps to establish how such socially constructed metadata might be used as it stands currently and to suggest ways that new social tagging systems might be designed that would yield better aggregate products. We assessed the metadata that users of CiteULike and Connotea associated with citations in PubMed with the following metrics: coverage of the document space, density of metadata (tags) per document, rates of inter-annotator agreement, and rates of agreement with MeSH indexing. CiteULike and Connotea were very similar on all of the measurements. In comparison to PubMed, document coverage and per-document metadata density were much lower for the social tagging systems. Inter-annotator agreement within the social tagging systems and the agreement between the aggregated social tagging metadata and MeSH indexing was low though the latter could be increased through voting. The most promising uses of metadata from current academic social tagging repositories will be those that find ways to utilize the novel relationships between users, tags, and documents exposed through these systems. For more traditional kinds of indexing-based applications (such as keyword-based search) to benefit substantially from socially generated metadata in the life sciences, more documents need to be tagged and more tags are needed for each document. These issues may be addressed both by finding ways to attract more users to current systems and by creating new user interfaces that encourage more collectively useful individual tagging behaviour.
NASA Astrophysics Data System (ADS)
Efstathiou, Nectarios; Skitsas, Michael; Psaroudakis, Chrysostomos; Koutras, Nikolaos
2017-09-01
Nowadays, video surveillance cameras are used for the protection and monitoring of a huge number of facilities worldwide. An important element in such surveillance systems is the use of aerial video streams originating from onboard sensors located on Unmanned Aerial Vehicles (UAVs). Video surveillance using UAVs represent a vast amount of video to be transmitted, stored, analyzed and visualized in a real-time way. As a result, the introduction and development of systems able to handle huge amount of data become a necessity. In this paper, a new approach for the collection, transmission and storage of aerial videos and metadata is introduced. The objective of this work is twofold. First, the integration of the appropriate equipment in order to capture and transmit real-time video including metadata (i.e. position coordinates, target) from the UAV to the ground and, second, the utilization of the ADITESS Versatile Media Content Management System (VMCMS-GE) for storing of the video stream and the appropriate metadata. Beyond the storage, VMCMS-GE provides other efficient management capabilities such as searching and processing of videos, along with video transcoding. For the evaluation and demonstration of the proposed framework we execute a use case where the surveillance of critical infrastructure and the detection of suspicious activities is performed. Collected video Transcodingis subject of this evaluation as well.
Observatory Bibliographies as Research Tools
NASA Astrophysics Data System (ADS)
Rots, Arnold H.; Winkelman, S. L.
2013-01-01
Traditionally, observatory bibliographies were maintained to provide insight in how successful a observatory is as measured by its prominence in the (refereed) literature. When we set up the bibliographic database for the Chandra X-ray Observatory (http://cxc.harvard.edu/cgi-gen/cda/bibliography) as part of the Chandra Data Archive ((http://cxc.harvard.edu/cda/), very early in the mission, our objective was to make it primarily a useful tool for our user community. To achieve this we are: (1) casting a very wide net in collecting Chandra-related publications; (2) including for each literature reference in the database a wealth of metadata that is useful for the users; and (3) providing specific links between the articles and the datasets in the archive that they use. As a result our users are able to browse the literature and the data archive simultaneously. As an added bonus, the rich metadata content and data links have also allowed us to assemble more meaningful statistics about the scientific efficacy of the observatory. In all this we collaborate closely with the Astrophysics Data System (ADS). Among the plans for future enhancement are the inclusion of press releases and the Chandra image gallery, linking with ADS semantic searching tools, full-text metadata mining, and linking with other observatories' bibliographies. This work is supported by NASA contract NAS8-03060 (CXC) and depends critically on the services provided by the ADS.
A Metadata Element Set for Project Documentation
NASA Technical Reports Server (NTRS)
Hodge, Gail; Templeton, Clay; Allen, Robert B.
2003-01-01
Abstract NASA Goddard Space Flight Center is a large engineering enterprise with many projects. We describe our efforts to develop standard metadata sets across project documentation which we term the "Goddard Core". We also address broader issues for project management metadata.
PDF text classification to leverage information extraction from publication reports.
Bui, Duy Duc An; Del Fiol, Guilherme; Jonnalagadda, Siddhartha
2016-06-01
Data extraction from original study reports is a time-consuming, error-prone process in systematic review development. Information extraction (IE) systems have the potential to assist humans in the extraction task, however majority of IE systems were not designed to work on Portable Document Format (PDF) document, an important and common extraction source for systematic review. In a PDF document, narrative content is often mixed with publication metadata or semi-structured text, which add challenges to the underlining natural language processing algorithm. Our goal is to categorize PDF texts for strategic use by IE systems. We used an open-source tool to extract raw texts from a PDF document and developed a text classification algorithm that follows a multi-pass sieve framework to automatically classify PDF text snippets (for brevity, texts) into TITLE, ABSTRACT, BODYTEXT, SEMISTRUCTURE, and METADATA categories. To validate the algorithm, we developed a gold standard of PDF reports that were included in the development of previous systematic reviews by the Cochrane Collaboration. In a two-step procedure, we evaluated (1) classification performance, and compared it with machine learning classifier, and (2) the effects of the algorithm on an IE system that extracts clinical outcome mentions. The multi-pass sieve algorithm achieved an accuracy of 92.6%, which was 9.7% (p<0.001) higher than the best performing machine learning classifier that used a logistic regression algorithm. F-measure improvements were observed in the classification of TITLE (+15.6%), ABSTRACT (+54.2%), BODYTEXT (+3.7%), SEMISTRUCTURE (+34%), and MEDADATA (+14.2%). In addition, use of the algorithm to filter semi-structured texts and publication metadata improved performance of the outcome extraction system (F-measure +4.1%, p=0.002). It also reduced of number of sentences to be processed by 44.9% (p<0.001), which corresponds to a processing time reduction of 50% (p=0.005). The rule-based multi-pass sieve framework can be used effectively in categorizing texts extracted from PDF documents. Text classification is an important prerequisite step to leverage information extraction from PDF documents. Copyright © 2016 Elsevier Inc. All rights reserved.
SIPSMetGen: It's Not Just For Aircraft Data and ECS Anymore.
NASA Astrophysics Data System (ADS)
Schwab, M.
2015-12-01
The SIPSMetGen utility, developed for the NASA EOSDIS project, under the EED contract, simplified the creation of file level metadata for the ECS System. The utility has been enhanced for ease of use, efficiency, speed and increased flexibility. The SIPSMetGen utility was originally created as a means of generating file level spatial metadata for Operation IceBridge. The first version created only ODL metadata, specific for ingest into ECS. The core strength of the utility was, and continues to be, its ability to take complex shapes and patterns of data collection point clouds from aircraft flights and simplify them to a relatively simple concave hull geo-polygon. It has been found to be a useful and easy to use tool for creating file level metadata for many other missions, both aircraft and satellite. While the original version was useful it had its limitations. In 2014 Raytheon was tasked to make enhancements to SIPSMetGen, this resulted a new version of SIPSMetGen which can create ISO Compliant XML metadata; provides optimization and streamlining of the algorithm for creating the spatial metadata; a quicker runtime with more consistent results; a utility that can be configured to run multi-threaded on systems with multiple processors. The utility comes with a java based graphical user interface to aid in configuration and running of the utility. The enhanced SIPSMetGen allows more diverse data sets to be archived with file level metadata. The advantage of archiving data with file level metadata is that it makes it easier for data users, and scientists to find relevant data. File level metadata unlocks the power of existing archives and metadata repositories such as ECS and CMR and search and discovery utilities like Reverb and Earth Data Search. Current missions now using SIPSMetGen include: Aquarius, Measures, ARISE, and Nimbus.
NASA Astrophysics Data System (ADS)
Thomas, R.; Connell, D.; Spears, T.; Leadbetter, A.; Burger, E. F.
2016-12-01
The scientific literature heavily features small-scale studies with the impact of the results extrapolated to regional/global importance. There are on-going initiatives (e.g. OA-ICC, GOA-ON, GEOTRACES, EMODNet Chemistry) aiming to assemble regional to global-scale datasets that are available for trend or meta-analyses. Assessing the quality and comparability of these data requires information about the processing chain from "sampling to spreadsheet". This provenance information needs to be captured and readily available to assess data fitness for purpose. The NOAA Ocean Acidification metadata template was designed in consultation with domain experts for this reason; the core carbonate chemistry variables have 23-37 metadata fields each and for scientists generating these datasets there could appear to be an ever increasing amount of metadata expected to accompany a dataset. While this provenance metadata should be considered essential by those generating or using the data, for those discovering data there is a sliding scale between what is considered discovery metadata (title, abstract, contacts, etc.) versus usage metadata (methodology, environmental setup, lineage, etc.), the split depending on the intended use of data. As part of the OA-ICC's activities, the metadata fields from the NOAA template relevant to the sample processing chain and QA criteria have been factored to develop profiles for, and extensions to, the OM-JSON encoding supported by the PROV ontology. While this work started focused on carbonate chemistry variable specific metadata, the factorization could be applied within the O&M model across other disciplines such as trace metals or contaminants. In a linked data world with a suitable high level model for sample processing and QA available, tools and support can be provided to link reproducible units of metadata (e.g. the standard protocol for a variable as adopted by a community) and simplify the provision of metadata and subsequent discovery.
Metadata Creation, Management and Search System for your Scientific Data
NASA Astrophysics Data System (ADS)
Devarakonda, R.; Palanisamy, G.
2012-12-01
Mercury Search Systems is a set of tools for creating, searching, and retrieving of biogeochemical metadata. Mercury toolset provides orders of magnitude improvements in search speed, support for any metadata format, integration with Google Maps for spatial queries, multi-facetted type search, search suggestions, support for RSS (Really Simple Syndication) delivery of search results, and enhanced customization to meet the needs of the multiple projects that use Mercury. Mercury's metadata editor provides a easy way for creating metadata and Mercury's search interface provides a single portal to search for data and information contained in disparate data management systems, each of which may use any metadata format including FGDC, ISO-19115, Dublin-Core, Darwin-Core, DIF, ECHO, and EML. Mercury harvests metadata and key data from contributing project servers distributed around the world and builds a centralized index. The search interfaces then allow the users to perform a variety of fielded, spatial, and temporal searches across these metadata sources. This centralized repository of metadata with distributed data sources provides extremely fast search results to the user, while allowing data providers to advertise the availability of their data and maintain complete control and ownership of that data. Mercury is being used more than 14 different projects across 4 federal agencies. It was originally developed for NASA, with continuing development funded by NASA, USGS, and DOE for a consortium of projects. Mercury search won the NASA's Earth Science Data Systems Software Reuse Award in 2008. References: R. Devarakonda, G. Palanisamy, B.E. Wilson, and J.M. Green, "Mercury: reusable metadata management data discovery and access system", Earth Science Informatics, vol. 3, no. 1, pp. 87-94, May 2010. R. Devarakonda, G. Palanisamy, J.M. Green, B.E. Wilson, "Data sharing and retrieval using OAI-PMH", Earth Science Informatics DOI: 10.1007/s12145-010-0073-0, (2010);
Master Metadata Repository and Metadata-Management System
NASA Technical Reports Server (NTRS)
Armstrong, Edward; Reed, Nate; Zhang, Wen
2007-01-01
A master metadata repository (MMR) software system manages the storage and searching of metadata pertaining to data from national and international satellite sources of the Global Ocean Data Assimilation Experiment (GODAE) High Resolution Sea Surface Temperature Pilot Project [GHRSSTPP]. These sources produce a total of hundreds of data files daily, each file classified as one of more than ten data products representing global sea-surface temperatures. The MMR is a relational database wherein the metadata are divided into granulelevel records [denoted file records (FRs)] for individual satellite files and collection-level records [denoted data set descriptions (DSDs)] that describe metadata common to all the files from a specific data product. FRs and DSDs adhere to the NASA Directory Interchange Format (DIF). The FRs and DSDs are contained in separate subdatabases linked by a common field. The MMR is configured in MySQL database software with custom Practical Extraction and Reporting Language (PERL) programs to validate and ingest the metadata records. The database contents are converted into the Federal Geographic Data Committee (FGDC) standard format by use of the Extensible Markup Language (XML). A Web interface enables users to search for availability of data from all sources.
Structure constrained by metadata in networks of chess players.
Almeira, Nahuel; Schaigorodsky, Ana L; Perotti, Juan I; Billoni, Orlando V
2017-11-09
Chess is an emblematic sport that stands out because of its age, popularity and complexity. It has served to study human behavior from the perspective of a wide number of disciplines, from cognitive skills such as memory and learning, to aspects like innovation and decision-making. Given that an extensive documentation of chess games played throughout history is available, it is possible to perform detailed and statistically significant studies about this sport. Here we use one of the most extensive chess databases in the world to construct two networks of chess players. One of the networks includes games that were played over-the-board and the other contains games played on the Internet. We study the main topological characteristics of the networks, such as degree distribution and correlations, transitivity and community structure. We complement the structural analysis by incorporating players' level of play as node metadata. Although both networks are topologically different, we show that in both cases players gather in communities according to their expertise and that an emergent rich-club structure, composed by the top-rated players, is also present.
Brady's Geothermal Field Nodal Seismometers Metadata
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lesley Parker
Metadata for the nodal seismometer array deployed at the POROTOMO's Natural Laboratory in Brady Hot Spring, Nevada during the March 2016 testing. Metadata includes location and timing for each instrument as well as file lists of data to be uploaded in a separate submission.
Extraction of CT dose information from DICOM metadata: automated Matlab-based approach.
Dave, Jaydev K; Gingold, Eric L
2013-01-01
The purpose of this study was to extract exposure parameters and dose-relevant indexes of CT examinations from information embedded in DICOM metadata. DICOM dose report files were identified and retrieved from a PACS. An automated software program was used to extract from these files information from the structured elements in the DICOM metadata relevant to exposure. Extracting information from DICOM metadata eliminated potential errors inherent in techniques based on optical character recognition, yielding 100% accuracy.
NASA Astrophysics Data System (ADS)
Andre, Francois; Fleury, Laurence; Gaillardet, Jerome; Nord, Guillaume
2015-04-01
RBV (Réseau des Bassins Versants) is a French initiative to consolidate the national efforts made by more than 15 elementary observatories funded by various research institutions (CNRS, INRA, IRD, IRSTEA, Universities) that study river and drainage basins. The RBV Metadata Catalogue aims at giving an unified vision of the work produced by every observatory to both the members of the RBV network and any external person interested by this domain of research. Another goal is to share this information with other existing metadata portals. Metadata management is heterogeneous among observatories ranging from absence to mature harvestable catalogues. Here, we would like to explain the strategy used to design a state of the art catalogue facing this situation. Main features are as follows : - Multiple input methods: Metadata records in the catalog can either be entered with the graphical user interface, harvested from an existing catalogue or imported from information system through simplified web services. - Hierarchical levels: Metadata records may describe either an observatory, one of its experimental site or a single dataset produced by one instrument. - Multilingualism: Metadata can be easily entered in several configurable languages. - Compliance to standards : the backoffice part of the catalogue is based on a CSW metadata server (Geosource) which ensures ISO19115 compatibility and the ability of being harvested (globally or partially). On going tasks focus on the use of SKOS thesaurus and SensorML description of the sensors. - Ergonomy : The user interface is built with the GWT Framework to offer a rich client application with a fully ajaxified navigation. - Source code sharing : The work has led to the development of reusable components which can be used to quickly create new metadata forms in other GWT applications You can visit the catalogue (http://portailrbv.sedoo.fr/) or contact us by email rbv@sedoo.fr.
NASA Astrophysics Data System (ADS)
Zaslavsky, I.; Valentine, D.; Richard, S. M.; Gupta, A.; Meier, O.; Peucker-Ehrenbrink, B.; Hudman, G.; Stocks, K. I.; Hsu, L.; Whitenack, T.; Grethe, J. S.; Ozyurt, I. B.
2017-12-01
EarthCube Data Discovery Hub (DDH) is an EarthCube Building Block project using technologies developed in CINERGI (Community Inventory of EarthCube Resources for Geoscience Interoperability) to enable geoscience users to explore a growing portfolio of EarthCube-created and other geoscience-related resources. Over 1 million metadata records are available for discovery through the project portal (cinergi.sdsc.edu). These records are retrieved from data facilities, including federal, state and academic sources, or contributed by geoscientists through workshops, surveys, or other channels. CINERGI metadata augmentation pipeline components 1) provide semantic enhancement based on a large ontology of geoscience terms, using text analytics to generate keywords with references to ontology classes, 2) add spatial extents based on place names found in the metadata record, and 3) add organization identifiers to the metadata. The records are indexed and can be searched via a web portal and standard search APIs. The added metadata content improves discoverability and interoperability of the registered resources. Specifically, the addition of ontology-anchored keywords enables faceted browsing and lets users navigate to datasets related by variables measured, equipment used, science domain, processes described, geospatial features studied, and other dataset characteristics that are generated by the pipeline. DDH also lets data curators access and edit the automatically generated metadata records using the CINERGI metadata editor, accept or reject the enhanced metadata content, and consider it in updating their metadata descriptions. We consider several complex data discovery workflows, in environmental seismology (quantifying sediment and water fluxes using seismic data), marine biology (determining available temperature, location, weather and bleaching characteristics of coral reefs related to measurements in a given coral reef survey), and river geochemistry (discovering observations relevant to geochemical measurements outside the tidal zone, given specific discharge conditions).
Deploying Object Oriented Data Technology to the Planetary Data System
NASA Technical Reports Server (NTRS)
Kelly, S.; Crichton, D.; Hughes, J. S.
2003-01-01
How do you provide more than 350 scientists and researchers access to data from every instrument in Odyssey when the data is curated across half a dozen institutions and in different formats and is too big to mail on a CD-ROM anymore? The Planetary Data System (PDS) faced this exact question. The solution was to use a metadata-based middleware framework developed by the Object Oriented Data Technology task at NASA s Jet Propulsion Laboratory. Using OODT, PDS provided - for the first time ever - data from all mission instruments through a single system immediately upon data delivery.
Multimedia content description framework
NASA Technical Reports Server (NTRS)
Bergman, Lawrence David (Inventor); Mohan, Rakesh (Inventor); Li, Chung-Sheng (Inventor); Smith, John Richard (Inventor); Kim, Michelle Yoonk Yung (Inventor)
2003-01-01
A framework is provided for describing multimedia content and a system in which a plurality of multimedia storage devices employing the content description methods of the present invention can interoperate. In accordance with one form of the present invention, the content description framework is a description scheme (DS) for describing streams or aggregations of multimedia objects, which may comprise audio, images, video, text, time series, and various other modalities. This description scheme can accommodate an essentially limitless number of descriptors in terms of features, semantics or metadata, and facilitate content-based search, index, and retrieval, among other capabilities, for both streamed or aggregated multimedia objects.
ERIC Educational Resources Information Center
Arms, William Y.; Hillmann, Diane; Lagoze, Carl; Krafft, Dean; Marisa, Richard; Saylor, John; Terizzi, Carol; Van de Sompel, Herbert; Gill, Tony; Miller, Paul; Kenney, Anne R.; McGovern, Nancy Y.; Botticelli, Peter; Entlich, Richard; Payette, Sandra; Berthon, Hilary; Thomas, Susan; Webb, Colin; Nelson, Michael L.; Allen, B. Danette; Bennett, Nuala A.; Sandore, Beth; Pianfetti, Evangeline S.
2002-01-01
Discusses digital libraries, including interoperability, metadata, and international standards; Web resource preservation efforts at Cornell University; digital preservation at the National Library of Australia; object persistence and availability; collaboration among libraries, museums and elementary schools; Asian digital libraries; and a Web…
DataSync - sharing data via filesystem
NASA Astrophysics Data System (ADS)
Ulbricht, Damian; Klump, Jens
2014-05-01
Usually research work is a cycle of to hypothesize, to collect data, to corroborate the hypothesis, and finally to publish the results. In this sequence there are possibilities to base the own work on the work of others. Maybe there are candidates of physical samples listed in the IGSN-Registry and there is no need to go on excursion to acquire physical samples. Hopefully the DataCite catalogue lists already metadata of datasets that meet the constraints of the hypothesis and that are now open for reappraisal. After all, working with the measured data to corroborate the hypothesis involves new methods, and proven methods as well as different software tools. A cohort of intermediate data is created that can be shared with colleagues to discuss the research progress and receive a first evaluation. In consequence, the intermediate data should be versioned to easily get back to valid intermediate data, when you notice you get on the wrong track. Things are different for project managers. They want to know what is currently done, what has been done, and what is the last valid data, if somebody has to continue the work. To make life of members of small science projects easier we developed Datasync [1] as a software for sharing and versioning data. Datasync is designed to synchronize directory trees between different computers of a research team over the internet. The software is developed as JAVA application and watches a local directory tree for changes that are replicated as eSciDoc-objects into an eSciDoc-infrastructure [2] using the eSciDoc REST API. Modifications to the local filesystem automatically create a new version of an eSciDoc-object inside the eSciDoc-infrastructure. This way individual folders can be shared between team members while project managers can get a general idea of current status by synchronizing whole project inventories. Additionally XML metadata from separate files can be managed together with data files inside the eSciDoc-objects. While Datasync's major task is to distribute directory trees, we complement its functionality with the PHP-based application panMetaDocs [3]. panMetaDocs is the successor to panMetaWorks [4] and inherits most of its functionality. Through an internet browser PanMetaDocs provides a web-based overview of the datasets inside the eSciDoc-infrastructure. The software allows to upload further data, to add and edit metadata using the metadata editor, and it disseminates metadata through various channels. In addition, previous versions of a file can be downloaded and access rights can be defined on files and folders to control visibility of files for users of both panMetaDocs and Datasync. panMetaDocs serves as a publication agent for datasets and it serves as a registration agent for dataset DOIs. The application stack presented here allows sharing, versioning, and central storage of data from the very beginning of project activities by using the file synchronization service Datasync. The web-application panMetaDocs complements the functionality of DataSync by providing a dataset publication agent and other tools to handle administrative tasks on the data. [1] http://github.com/ulbricht/datasync [2] http://github.com/escidoc [3] http://panmetadocs.sf.net [4] http://metaworks.pangaea.de
75 FR 4689 - Electronic Tariff Filings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-29
... collaborative process relies upon the use of metadata (or information) about the tariff filing, including such... code.\\5\\ Because the Commission is using the electronic metadata to establish statutory action dates... code, as well as accurately providing any other metadata. 6. Similarly, the Commission will be using...
The center for expanded data annotation and retrieval
Bean, Carol A; Cheung, Kei-Hoi; Dumontier, Michel; Durante, Kim A; Gevaert, Olivier; Gonzalez-Beltran, Alejandra; Khatri, Purvesh; Kleinstein, Steven H; O’Connor, Martin J; Pouliot, Yannick; Rocca-Serra, Philippe; Sansone, Susanna-Assunta; Wiser, Jeffrey A
2015-01-01
The Center for Expanded Data Annotation and Retrieval is studying the creation of comprehensive and expressive metadata for biomedical datasets to facilitate data discovery, data interpretation, and data reuse. We take advantage of emerging community-based standard templates for describing different kinds of biomedical datasets, and we investigate the use of computational techniques to help investigators to assemble templates and to fill in their values. We are creating a repository of metadata from which we plan to identify metadata patterns that will drive predictive data entry when filling in metadata templates. The metadata repository not only will capture annotations specified when experimental datasets are initially created, but also will incorporate links to the published literature, including secondary analyses and possible refinements or retractions of experimental interpretations. By working initially with the Human Immunology Project Consortium and the developers of the ImmPort data repository, we are developing and evaluating an end-to-end solution to the problems of metadata authoring and management that will generalize to other data-management environments. PMID:26112029
Bruland, Philipp; Doods, Justin; Storck, Michael; Dugas, Martin
2017-01-01
Data dictionaries provide structural meta-information about data definitions in health information technology (HIT) systems. In this regard, reusing healthcare data for secondary purposes offers several advantages (e.g. reduce documentation times or increased data quality). Prerequisites for data reuse are its quality, availability and identical meaning of data. In diverse projects, research data warehouses serve as core components between heterogeneous clinical databases and various research applications. Given the complexity (high number of data elements) and dynamics (regular updates) of electronic health record (EHR) data structures, we propose a clinical metadata warehouse (CMDW) based on a metadata registry standard. Metadata of two large hospitals were automatically inserted into two CMDWs containing 16,230 forms and 310,519 data elements. Automatic updates of metadata are possible as well as semantic annotations. A CMDW allows metadata discovery, data quality assessment and similarity analyses. Common data models for distributed research networks can be established based on similarity analyses.
Do Community Recommendations Improve Metadata?
NASA Astrophysics Data System (ADS)
Gordon, S.; Habermann, T.; Jones, M. B.; Leinfelder, B.; Mecum, B.; Powers, L. A.; Slaughter, P.
2016-12-01
Complete documentation of scientific data is the surest way to facilitate discovery and reuse. What is complete metadata? There are many metadata recommendations from communities like the OGC, FGDC, NASA, and LTER, that can provide data documentation guidance for discovery, access, use and understanding. Often, the recommendations that communities develop are for a particular metadata dialect. Two examples of this are the LTER Completeness recommendation for EML and the FGDC Data Discovery recommendation for CSDGM. Can community adoption of a recommendation ensure that what is included in the metadata is understandable to the scientific community and beyond? By applying quantitative analysis to different LTER and USGS metadata collections in DataOne and ScienceBase, we show that community recommendations can improve the completeness of collections over time. Additionally, by comparing communities in DataOne that use the EML and CSDGM dialects, but have not adopted the recommendations to the communities that have, the positive effects of recommendation adoption on documentation completeness can be measured.
Metadata Sets for e-Government Resources: The Extended e-Government Metadata Schema (eGMS+)
NASA Astrophysics Data System (ADS)
Charalabidis, Yannis; Lampathaki, Fenareti; Askounis, Dimitris
In the dawn of the Semantic Web era, metadata appear as a key enabler that assists management of the e-Government resources related to the provision of personalized, efficient and proactive services oriented towards the real citizens’ needs. As different authorities typically use different terms to describe their resources and publish them in various e-Government Registries that may enhance the access to and delivery of governmental knowledge, but also need to communicate seamlessly at a national and pan-European level, the need for a unified e-Government metadata standard emerges. This paper presents the creation of an ontology-based extended metadata set for e-Government Resources that embraces services, documents, XML Schemas, code lists, public bodies and information systems. Such a metadata set formalizes the exchange of information between portals and registries and assists the service transformation and simplification efforts, while it can be further taken into consideration when applying Web 2.0 techniques in e-Government.
A Generic Metadata Editor Supporting System Using Drupal CMS
NASA Astrophysics Data System (ADS)
Pan, J.; Banks, N. G.; Leggott, M.
2011-12-01
Metadata handling is a key factor in preserving and reusing scientific data. In recent years, standardized structural metadata has become widely used in Geoscience communities. However, there exist many different standards in Geosciences, such as the current version of the Federal Geographic Data Committee's Content Standard for Digital Geospatial Metadata (FGDC CSDGM), the Ecological Markup Language (EML), the Geography Markup Language (GML), and the emerging ISO 19115 and related standards. In addition, there are many different subsets within the Geoscience subdomain such as the Biological Profile of the FGDC (CSDGM), or for geopolitical regions, such as the European Profile or the North American Profile in the ISO standards. It is therefore desirable to have a software foundation to support metadata creation and editing for multiple standards and profiles, without re-inventing the wheels. We have developed a software module as a generic, flexible software system to do just that: to facilitate the support for multiple metadata standards and profiles. The software consists of a set of modules for the Drupal Content Management System (CMS), with minimal inter-dependencies to other Drupal modules. There are two steps in using the system's metadata functions. First, an administrator can use the system to design a user form, based on an XML schema and its instances. The form definition is named and stored in the Drupal database as a XML blob content. Second, users in an editor role can then use the persisted XML definition to render an actual metadata entry form, for creating or editing a metadata record. Behind the scenes, the form definition XML is transformed into a PHP array, which is then rendered via Drupal Form API. When the form is submitted the posted values are used to modify a metadata record. Drupal hooks can be used to perform custom processing on metadata record before and after submission. It is trivial to store the metadata record as an actual XML file or in a storage/archive system. We are working on adding many features to help editor users, such as auto completion, pre-populating of forms, partial saving, as well as automatic schema validation. In this presentation we will demonstrate a few sample editors, including an FGDC editor and a bare bone editor for ISO 19115/19139. We will also demonstrate the use of templates during the definition phase, with the support of export and import functions. Form pre-population and input validation will also be covered. Theses modules are available as open-source software from the Islandora software foundation, as a component of a larger Drupal-based data archive system. They can be easily installed as stand-alone system, or to be plugged into other existing metadata platforms.
A conceptual model of the automated credibility assessment of the volunteered geographic information
NASA Astrophysics Data System (ADS)
Idris, N. H.; Jackson, M. J.; Ishak, M. H. I.
2014-02-01
The use of Volunteered Geographic Information (VGI) in collecting, sharing and disseminating geospatially referenced information on the Web is increasingly common. The potentials of this localized and collective information have been seen to complement the maintenance process of authoritative mapping data sources and in realizing the development of Digital Earth. The main barrier to the use of this data in supporting this bottom up approach is the credibility (trust), completeness, accuracy, and quality of both the data input and outputs generated. The only feasible approach to assess these data is by relying on an automated process. This paper describes a conceptual model of indicators (parameters) and practical approaches to automated assess the credibility of information contributed through the VGI including map mashups, Geo Web and crowd - sourced based applications. There are two main components proposed to be assessed in the conceptual model - metadata and data. The metadata component comprises the indicator of the hosting (websites) and the sources of data / information. The data component comprises the indicators to assess absolute and relative data positioning, attribute, thematic, temporal and geometric correctness and consistency. This paper suggests approaches to assess the components. To assess the metadata component, automated text categorization using supervised machine learning is proposed. To assess the correctness and consistency in the data component, we suggest a matching validation approach using the current emerging technologies from Linked Data infrastructures and using third party reviews validation. This study contributes to the research domain that focuses on the credibility, trust and quality issues of data contributed by web citizen providers.
ERIC Educational Resources Information Center
Library of Congress, Washington, DC. Cataloging Directorate.
The goals of this conference, sponsored by the Library of Congress Cataloging Directorate, were to develop an overall strategy to address the challenges of improved access to World Wide Web resources through library catalogs and applications of metadata and to identify attainable actions for achieving the objectives of the overall strategy. This…
CrossTalk. The Journal of Defense Software Engineering. Volume 25, Number 3
2012-06-01
OMG) standard Business Process Modeling and Nota- tion ( BPMN ) [6] graphical notation. I will address each of these: identify and document steps...to a value stream map using BPMN and textual process narratives. The resulting process narratives or process metadata includes key information...objectives. Once the processes are identified we can graphically document them capturing the process using BPMN (see Figure 1). The BPMN models
Introduction of digital object identifiers (DOI) for seismic networks
NASA Astrophysics Data System (ADS)
Evans, Peter; Strollo, Angelo; Clark, Adam; Ahern, Tim; Newman, Rob; Clinton, John; Pequegnat, Catherine; Pedersen, Helle
2015-04-01
Proper attribution for scientific source data is important in promoting transparency and recognising the role of data providers in science. Data sets such as those produced by seismic networks now need to be citable and permanently locatable for research users. Recently the EIDA and IRIS-DMC communities have worked together on development of methods for generation, maintenance and promotion of persistent identifiers for seismic networks. This resulted in a 2014 Recommendation by the International Federation of Digital Seismograph Networks (FDSN) on the use of Digital Object Identifiers (DOI) for seismic networks. These can be cited equivalently to scientific papers, and tools such as DataCite allow the tracking of citations to these datasets. The GEOFON, IRIS and RESIF data centres have now begun to roll-out of these seismic network DOIs. This has involved working with principal investigators to prepare metadata consistent with the FDSN recommendation, preparation of landing pages, and changes to the web sites to promote DOIs where available. This has involved preparing improved descriptions of the data (metadata) and clarifying how individuals and institutions should best be recognised for their contributions to making the data available. We illustrate this process for a few representative networks. We will be in contact with additional network operators to help them establish DOIs for their networks in future.
Malyarenko, Dariya; Fedorov, Andriy; Bell, Laura; Prah, Melissa; Hectors, Stefanie; Arlinghaus, Lori; Muzi, Mark; Solaiyappan, Meiyappan; Jacobs, Michael; Fung, Maggie; Shukla-Dave, Amita; McManus, Kevin; Boss, Michael; Taouli, Bachir; Yankeelov, Thomas E; Quarles, Christopher Chad; Schmainda, Kathleen; Chenevert, Thomas L; Newitt, David C
2018-01-01
This paper reports on results of a multisite collaborative project launched by the MRI subgroup of Quantitative Imaging Network to assess current capability and provide future guidelines for generating a standard parametric diffusion map Digital Imaging and Communication in Medicine (DICOM) in clinical trials that utilize quantitative diffusion-weighted imaging (DWI). Participating sites used a multivendor DWI DICOM dataset of a single phantom to generate parametric maps (PMs) of the apparent diffusion coefficient (ADC) based on two models. The results were evaluated for numerical consistency among models and true phantom ADC values, as well as for consistency of metadata with attributes required by the DICOM standards. This analysis identified missing metadata descriptive of the sources for detected numerical discrepancies among ADC models. Instead of the DICOM PM object, all sites stored ADC maps as DICOM MR objects, generally lacking designated attributes and coded terms for quantitative DWI modeling. Source-image reference, model parameters, ADC units and scale, deemed important for numerical consistency, were either missing or stored using nonstandard conventions. Guided by the identified limitations, the DICOM PM standard has been amended to include coded terms for the relevant diffusion models. Open-source software has been developed to support conversion of site-specific formats into the standard representation.
Handling Metadata in a Neurophysiology Laboratory
Zehl, Lyuba; Jaillet, Florent; Stoewer, Adrian; Grewe, Jan; Sobolev, Andrey; Wachtler, Thomas; Brochier, Thomas G.; Riehle, Alexa; Denker, Michael; Grün, Sonja
2016-01-01
To date, non-reproducibility of neurophysiological research is a matter of intense discussion in the scientific community. A crucial component to enhance reproducibility is to comprehensively collect and store metadata, that is, all information about the experiment, the data, and the applied preprocessing steps on the data, such that they can be accessed and shared in a consistent and simple manner. However, the complexity of experiments, the highly specialized analysis workflows and a lack of knowledge on how to make use of supporting software tools often overburden researchers to perform such a detailed documentation. For this reason, the collected metadata are often incomplete, incomprehensible for outsiders or ambiguous. Based on our research experience in dealing with diverse datasets, we here provide conceptual and technical guidance to overcome the challenges associated with the collection, organization, and storage of metadata in a neurophysiology laboratory. Through the concrete example of managing the metadata of a complex experiment that yields multi-channel recordings from monkeys performing a behavioral motor task, we practically demonstrate the implementation of these approaches and solutions with the intention that they may be generalized to other projects. Moreover, we detail five use cases that demonstrate the resulting benefits of constructing a well-organized metadata collection when processing or analyzing the recorded data, in particular when these are shared between laboratories in a modern scientific collaboration. Finally, we suggest an adaptable workflow to accumulate, structure and store metadata from different sources using, by way of example, the odML metadata framework. PMID:27486397
Handling Metadata in a Neurophysiology Laboratory.
Zehl, Lyuba; Jaillet, Florent; Stoewer, Adrian; Grewe, Jan; Sobolev, Andrey; Wachtler, Thomas; Brochier, Thomas G; Riehle, Alexa; Denker, Michael; Grün, Sonja
2016-01-01
To date, non-reproducibility of neurophysiological research is a matter of intense discussion in the scientific community. A crucial component to enhance reproducibility is to comprehensively collect and store metadata, that is, all information about the experiment, the data, and the applied preprocessing steps on the data, such that they can be accessed and shared in a consistent and simple manner. However, the complexity of experiments, the highly specialized analysis workflows and a lack of knowledge on how to make use of supporting software tools often overburden researchers to perform such a detailed documentation. For this reason, the collected metadata are often incomplete, incomprehensible for outsiders or ambiguous. Based on our research experience in dealing with diverse datasets, we here provide conceptual and technical guidance to overcome the challenges associated with the collection, organization, and storage of metadata in a neurophysiology laboratory. Through the concrete example of managing the metadata of a complex experiment that yields multi-channel recordings from monkeys performing a behavioral motor task, we practically demonstrate the implementation of these approaches and solutions with the intention that they may be generalized to other projects. Moreover, we detail five use cases that demonstrate the resulting benefits of constructing a well-organized metadata collection when processing or analyzing the recorded data, in particular when these are shared between laboratories in a modern scientific collaboration. Finally, we suggest an adaptable workflow to accumulate, structure and store metadata from different sources using, by way of example, the odML metadata framework.
Streamlining geospatial metadata in the Semantic Web
NASA Astrophysics Data System (ADS)
Fugazza, Cristiano; Pepe, Monica; Oggioni, Alessandro; Tagliolato, Paolo; Carrara, Paola
2016-04-01
In the geospatial realm, data annotation and discovery rely on a number of ad-hoc formats and protocols. These have been created to enable domain-specific use cases generalized search is not feasible for. Metadata are at the heart of the discovery process and nevertheless they are often neglected or encoded in formats that either are not aimed at efficient retrieval of resources or are plainly outdated. Particularly, the quantum leap represented by the Linked Open Data (LOD) movement did not induce so far a consistent, interlinked baseline in the geospatial domain. In a nutshell, datasets, scientific literature related to them, and ultimately the researchers behind these products are only loosely connected; the corresponding metadata intelligible only to humans, duplicated on different systems, seldom consistently. Instead, our workflow for metadata management envisages i) editing via customizable web- based forms, ii) encoding of records in any XML application profile, iii) translation into RDF (involving the semantic lift of metadata records), and finally iv) storage of the metadata as RDF and back-translation into the original XML format with added semantics-aware features. Phase iii) hinges on relating resource metadata to RDF data structures that represent keywords from code lists and controlled vocabularies, toponyms, researchers, institutes, and virtually any description one can retrieve (or directly publish) in the LOD Cloud. In the context of a distributed Spatial Data Infrastructure (SDI) built on free and open-source software, we detail phases iii) and iv) of our workflow for the semantics-aware management of geospatial metadata.
Automatic meta-data collection of STP observation data
NASA Astrophysics Data System (ADS)
Ishikura, S.; Kimura, E.; Murata, K.; Kubo, T.; Shinohara, I.
2006-12-01
For the geo-science and the STP (Solar-Terrestrial Physics) studies, various observations have been done by satellites and ground-based observatories up to now. These data are saved and managed at many organizations, but no common procedure and rule to provide and/or share these data files. Researchers have felt difficulty in searching and analyzing such different types of data distributed over the Internet. To support such cross-over analyses of observation data, we have developed the STARS (Solar-Terrestrial data Analysis and Reference System). The STARS consists of client application (STARS-app), the meta-database (STARS- DB), the portal Web service (STARS-WS) and the download agent Web service (STARS DLAgent-WS). The STARS-DB includes directory information, access permission, protocol information to retrieve data files, hierarchy information of mission/team/data and user information. Users of the STARS are able to download observation data files without knowing locations of the files by using the STARS-DB. We have implemented the Portal-WS to retrieve meta-data from the meta-database. One reason we use the Web service is to overcome a variety of firewall restrictions which is getting stricter in recent years. Now it is difficult for the STARS client application to access to the STARS-DB by sending SQL query to obtain meta- data from the STARS-DB. Using the Web service, we succeeded in placing the STARS-DB behind the Portal- WS and prevent from exposing it on the Internet. The STARS accesses to the Portal-WS by sending the SOAP (Simple Object Access Protocol) request over HTTP. Meta-data is received as a SOAP Response. The STARS DLAgent-WS provides clients with data files downloaded from data sites. The data files are provided with a variety of protocols (e.g., FTP, HTTP, FTPS and SFTP). These protocols are individually selected at each site. The clients send a SOAP request with download request messages and receive observation data files as a SOAP Response with DIME-Attachment. By introducing the DLAgent-WS, we overcame the problem that the data management policies of each data site are independent. Another important issue to be overcome is how to collect the meta-data of observation data files. So far, STARS-DB managers have added new records to the meta-database and updated them manually. We have had a lot of troubles to maintain the meta-database because observation data are generated every day and the quantity of data files increases explosively. For that purpose, we have attempted to automate collection of the meta-data. In this research, we adopted the RSS 1.0 (RDF Site Summary) as a format to exchange meta-data in the STP fields. The RSS is an RDF vocabulary that provides a multipurpose extensible meta-data description and is suitable for syndication of meta-data. Most of the data in the present study are described in the CDF (Common Data Format), which is a self- describing data format. We have converted meta-information extracted from the CDF data files into RSS files. The program to generate the RSS files is executed on data site server once a day and the RSS files provide information of new data files. The RSS files are collected by RSS collection server once a day and the meta- data are stored in the STARS-DB.
78 FR 67352 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-12
...-75-001. Applicants: Entergy Arkansas, Inc. Description: Metadata Correction--Sec. 1.01 Amendment to.... Description: Metadata Correction--Section 1.01 Amendment to be effective 12/31/9998. Filed Date: 10/25/13...: Entergy Louisiana, LLC. Description: Metadata Correction--Section 1.01 Amendment to be effective 12/31...
ERIC Educational Resources Information Center
White, Hollie C.
2012-01-01
Background: According to Salo (2010), the metadata entered into repositories are "disorganized" and metadata schemes underlying repositories are "arcane". This creates a challenging repository environment in regards to personal information management (PIM) and knowledge organization systems (KOSs). This dissertation research is…
Semantic Networks and Social Networks
ERIC Educational Resources Information Center
Downes, Stephen
2005-01-01
Purpose: To illustrate the need for social network metadata within semantic metadata. Design/methodology/approach: Surveys properties of social networks and the semantic web, suggests that social network analysis applies to semantic content, argues that semantic content is more searchable if social network metadata is merged with semantic web…
The Footprint Database and Web Services of the Herschel Space Observatory
NASA Astrophysics Data System (ADS)
Dobos, László; Varga-Verebélyi, Erika; Verdugo, Eva; Teyssier, David; Exter, Katrina; Valtchanov, Ivan; Budavári, Tamás; Kiss, Csaba
2016-10-01
Data from the Herschel Space Observatory is freely available to the public but no uniformly processed catalogue of the observations has been published so far. To date, the Herschel Science Archive does not contain the exact sky coverage (footprint) of individual observations and supports search for measurements based on bounding circles only. Drawing on previous experience in implementing footprint databases, we built the Herschel Footprint Database and Web Services for the Herschel Space Observatory to provide efficient search capabilities for typical astronomical queries. The database was designed with the following main goals in mind: (a) provide a unified data model for meta-data of all instruments and observational modes, (b) quickly find observations covering a selected object and its neighbourhood, (c) quickly find every observation in a larger area of the sky, (d) allow for finding solar system objects crossing observation fields. As a first step, we developed a unified data model of observations of all three Herschel instruments for all pointing and instrument modes. Then, using telescope pointing information and observational meta-data, we compiled a database of footprints. As opposed to methods using pixellation of the sphere, we represent sky coverage in an exact geometric form allowing for precise area calculations. For easier handling of Herschel observation footprints with rather complex shapes, two algorithms were implemented to reduce the outline. Furthermore, a new visualisation tool to plot footprints with various spherical projections was developed. Indexing of the footprints using Hierarchical Triangular Mesh makes it possible to quickly find observations based on sky coverage, time and meta-data. The database is accessible via a web site http://herschel.vo.elte.hu and also as a set of REST web service functions, which makes it readily usable from programming environments such as Python or IDL. The web service allows downloading footprint data in various formats including Virtual Observatory standards.
International Metadata Initiatives: Lessons in Bibliographic Control.
ERIC Educational Resources Information Center
Caplan, Priscilla
This paper looks at a subset of metadata schemes, including the Text Encoding Initiative (TEI) header, the Encoded Archival Description (EAD), the Dublin Core Metadata Element Set (DCMES), and the Visual Resources Association (VRA) Core Categories for visual resources. It examines why they developed as they did, major point of difference from…
36 CFR 1235.48 - What documentation must agencies transfer with electronic records?
Code of Federal Regulations, 2010 CFR
2010-07-01
... digital geospatial data files can include metadata that conforms to the Federal Geographic Data Committee's Content Standards for Digital Geospatial Metadata, as specified in Executive Order 12906 of April... number (301) 837-2903 for digital photographs and metadata, or the National Archives and Records...
36 CFR 1235.48 - What documentation must agencies transfer with electronic records?
Code of Federal Regulations, 2012 CFR
2012-07-01
... digital geospatial data files can include metadata that conforms to the Federal Geographic Data Committee's Content Standards for Digital Geospatial Metadata, as specified in Executive Order 12906 of April... number (301) 837-2903 for digital photographs and metadata, or the National Archives and Records...
Leveraging Metadata to Create Better Web Services
ERIC Educational Resources Information Center
Mitchell, Erik
2012-01-01
Libraries have been increasingly concerned with data creation, management, and publication. This increase is partly driven by shifting metadata standards in libraries and partly by the growth of data and metadata repositories being managed by libraries. In order to manage these data sets, libraries are looking for new preservation and discovery…
36 CFR § 1235.48 - What documentation must agencies transfer with electronic records?
Code of Federal Regulations, 2013 CFR
2013-07-01
... digital geospatial data files can include metadata that conforms to the Federal Geographic Data Committee's Content Standards for Digital Geospatial Metadata, as specified in Executive Order 12906 of April... number (301) 837-2903 for digital photographs and metadata, or the National Archives and Records...
36 CFR 1235.48 - What documentation must agencies transfer with electronic records?
Code of Federal Regulations, 2011 CFR
2011-07-01
... digital geospatial data files can include metadata that conforms to the Federal Geographic Data Committee's Content Standards for Digital Geospatial Metadata, as specified in Executive Order 12906 of April... number (301) 837-2903 for digital photographs and metadata, or the National Archives and Records...
36 CFR 1235.48 - What documentation must agencies transfer with electronic records?
Code of Federal Regulations, 2014 CFR
2014-07-01
... digital geospatial data files can include metadata that conforms to the Federal Geographic Data Committee's Content Standards for Digital Geospatial Metadata, as specified in Executive Order 12906 of April... number (301) 837-2903 for digital photographs and metadata, or the National Archives and Records...
Shared Geospatial Metadata Repository for Ontario University Libraries: Collaborative Approaches
ERIC Educational Resources Information Center
Forward, Erin; Leahey, Amber; Trimble, Leanne
2015-01-01
Successfully providing access to special collections of digital geospatial data in academic libraries relies upon complete and accurate metadata. Creating and maintaining metadata using specialized standards is a formidable challenge for libraries. The Ontario Council of University Libraries' Scholars GeoPortal project, which created a shared…
106-17 Telemetry Standards Metadata Configuration Chapter 23
2017-07-01
23-1 23.2 Metadata Description Language ...Chapter 23, July 2017 iii Acronyms HTML Hypertext Markup Language MDL Metadata Description Language PCM pulse code modulation TMATS Telemetry...Attributes Transfer Standard W3C World Wide Web Consortium XML eXtensible Markup Language XSD XML schema document Telemetry Network Standard
McMahon, Christiana; Denaxas, Spiros
2017-11-06
Informed consent is an important feature of longitudinal research studies as it enables the linking of the baseline participant information with administrative data. The lack of standardized models to capture consent elements can lead to substantial challenges. A structured approach to capturing consent-related metadata can address these. a) Explore the state-of-the-art for recording consent; b) Identify key elements of consent required for record linkage; and c) Create and evaluate a novel metadata management model to capture consent-related metadata. The main methodological components of our work were: a) a systematic literature review and qualitative analysis of consent forms; b) the development and evaluation of a novel metadata model. We qualitatively analyzed 61 manuscripts and 30 consent forms. We extracted data elements related to obtaining consent for linkage. We created a novel metadata management model for consent and evaluated it by comparison with the existing standards and by iteratively applying it to case studies. The developed model can facilitate the standardized recording of consent for linkage in longitudinal research studies and enable the linkage of external participant data. Furthermore, it can provide a structured way of recording consent-related metadata and facilitate the harmonization and streamlining of processes.
Evaluating and Improving Metadata for Data Use and Understanding
NASA Astrophysics Data System (ADS)
Habermann, T.
2013-12-01
The last several decades have seen an extraordinary increase in the number and breadth of environmental data available to the scientific community and the general public. These increases have focused the environmental data community on creating metadata for discovering data and on the creation and population of catalogs and portals for facilitating discovery. This focus is reflected in the fields required by commonly used metadata standards and has resulted in collections populated with metadata that meet, but don't go far beyond, minimal discovery requirements. Discovery is the first step towards addressing scientific questions using data. As more data are discovered and accessed, users need metadata that 1) automates use and integration of these data in tools and 2) facilitates understanding the data when it is compared to similar datasets or as internal variations are observed. When data discovery is the primary goal, it is important to create records for as many datasets as possible. The content of these records is controlled by minimum requirements, and evaluation is generally limited to testing for required fields and counting records. As the use and understanding needs become more important, more comprehensive evaluation tools are needed. An approach is described for evaluating existing metadata in the light of these new requirements and for improving the metadata to meet them.
Collaborative Sharing of Multidimensional Space-time Data Using HydroShare
NASA Astrophysics Data System (ADS)
Gan, T.; Tarboton, D. G.; Horsburgh, J. S.; Dash, P. K.; Idaszak, R.; Yi, H.; Blanton, B.
2015-12-01
HydroShare is a collaborative environment being developed for sharing hydrological data and models. It includes capability to upload data in many formats as resources that can be shared. The HydroShare data model for resources uses a specific format for the representation of each type of data and specifies metadata common to all resource types as well as metadata unique to specific resource types. The Network Common Data Form (NetCDF) was chosen as the format for multidimensional space-time data in HydroShare. NetCDF is widely used in hydrological and other geoscience modeling because it contains self-describing metadata and supports the creation of array-oriented datasets that may include three spatial dimensions, a time dimension and other user defined dimensions. For example, NetCDF may be used to represent precipitation or surface air temperature fields that have two dimensions in space and one dimension in time. This presentation will illustrate how NetCDF files are used in HydroShare. When a NetCDF file is loaded into HydroShare, header information is extracted using the "ncdump" utility. Python functions developed for the Django web framework on which HydroShare is based, extract science metadata present in the NetCDF file, saving the user from having to enter it. Where the file follows Climate Forecast (CF) convention and Attribute Convention for Dataset Discovery (ACDD) standards, metadata is thus automatically populated. Users also have the ability to add metadata to the resource that may not have been present in the original NetCDF file. HydroShare's metadata editing functionality then writes this science metadata back into the NetCDF file to maintain consistency between the science metadata in HydroShare and the metadata in the NetCDF file. This further helps researchers easily add metadata information following the CF and ACDD conventions. Additional data inspection and subsetting functions were developed, taking advantage of Python and command line libraries for working with NetCDF files. We describe the design and implementation of these features and illustrate how NetCDF files from a modeling application may be curated in HydroShare and thus enhance reproducibility of the associated research. We also discuss future development planned for multidimensional space-time data in HydroShare.
Effective use of metadata in the integration and analysis of multi-dimensional optical data
NASA Astrophysics Data System (ADS)
Pastorello, G. Z.; Gamon, J. A.
2012-12-01
Data discovery and integration relies on adequate metadata. However, creating and maintaining metadata is time consuming and often poorly addressed or avoided altogether, leading to problems in later data analysis and exchange. This is particularly true for research fields in which metadata standards do not yet exist or are under development, or within smaller research groups without enough resources. Vegetation monitoring using in-situ and remote optical sensing is an example of such a domain. In this area, data are inherently multi-dimensional, with spatial, temporal and spectral dimensions usually being well characterized. Other equally important aspects, however, might be inadequately translated into metadata. Examples include equipment specifications and calibrations, field/lab notes and field/lab protocols (e.g., sampling regimen, spectral calibration, atmospheric correction, sensor view angle, illumination angle), data processing choices (e.g., methods for gap filling, filtering and aggregation of data), quality assurance, and documentation of data sources, ownership and licensing. Each of these aspects can be important as metadata for search and discovery, but they can also be used as key data fields in their own right. If each of these aspects is also understood as an "extra dimension," it is possible to take advantage of them to simplify the data acquisition, integration, analysis, visualization and exchange cycle. Simple examples include selecting data sets of interest early in the integration process (e.g., only data collected according to a specific field sampling protocol) or applying appropriate data processing operations to different parts of a data set (e.g., adaptive processing for data collected under different sky conditions). More interesting scenarios involve guided navigation and visualization of data sets based on these extra dimensions, as well as partitioning data sets to highlight relevant subsets to be made available for exchange. The DAX (Data Acquisition to eXchange) Web-based tool uses a flexible metadata representation model and takes advantage of multi-dimensional data structures to translate metadata types into data dimensions, effectively reshaping data sets according to available metadata. With that, metadata is tightly integrated into the acquisition-to-exchange cycle, allowing for more focused exploration of data sets while also increasing the value of, and incentives for, keeping good metadata. The tool is being developed and tested with optical data collected in different settings, including laboratory, field, airborne, and satellite platforms.
Planetary Image Geometry Library
NASA Technical Reports Server (NTRS)
Deen, Robert C.; Pariser, Oleg
2010-01-01
The Planetary Image Geometry (PIG) library is a multi-mission library used for projecting images (EDRs, or Experiment Data Records) and managing their geometry for in-situ missions. A collection of models describes cameras and their articulation, allowing application programs such as mosaickers, terrain generators, and pointing correction tools to be written in a multi-mission manner, without any knowledge of parameters specific to the supported missions. Camera model objects allow transformation of image coordinates to and from view vectors in XYZ space. Pointing models, specific to each mission, describe how to orient the camera models based on telemetry or other information. Surface models describe the surface in general terms. Coordinate system objects manage the various coordinate systems involved in most missions. File objects manage access to metadata (labels, including telemetry information) in the input EDRs and RDRs (Reduced Data Records). Label models manage metadata information in output files. Site objects keep track of different locations where the spacecraft might be at a given time. Radiometry models allow correction of radiometry for an image. Mission objects contain basic mission parameters. Pointing adjustment ("nav") files allow pointing to be corrected. The object-oriented structure (C++) makes it easy to subclass just the pieces of the library that are truly mission-specific. Typically, this involves just the pointing model and coordinate systems, and parts of the file model. Once the library was developed (initially for Mars Polar Lander, MPL), adding new missions ranged from two days to a few months, resulting in significant cost savings as compared to rewriting all the application programs for each mission. Currently supported missions include Mars Pathfinder (MPF), MPL, Mars Exploration Rover (MER), Phoenix, and Mars Science Lab (MSL). Applications based on this library create the majority of operational image RDRs for those missions. A Java wrapper around the library allows parts of it to be used from Java code (via a native JNI interface). Future conversions of all or part of the library to Java are contemplated.
Tape, Ken D.; Pearce, John M.; Walworth, Dennis; Meixell, Brandt W.; Fondell, Tom F.; Gustine, David D.; Flint, Paul L.; Hupp, Jerry W.; Schmutz, Joel A.; Ward, David H.
2014-01-01
In this report, we describe and make available a set of 61 georectified aerial images of the Arctic Coastal Plain (taken from 1948 to 2010) that were obtained by the USGS to inform research objectives of the USGS CAE Initiative. Here, we describe the origins, metadata, and public availability of these images that were obtained within four main study areas on the Arctic Coastal Plain: Teshekpuk Lake Special Area, Chipp River, the Colville River Delta, and locations along the Dalton Highway Corridor between the Brooks Range and Deadhorse. We also provide general descriptions of observable changes to the geomorphology of landscapes that are apparent by comparing historical and contemporary images. These landscape changes include altered river corridors, lake drying, coastal erosion, and new vegetation communities. All original and georectified images and metadata are available through the USGS Alaska Science Center Portal (search under ‘Project Name’ using title of this report) or by contacting ascweb@usgs.gov.
Footprint Database and web services for the Herschel space observatory
NASA Astrophysics Data System (ADS)
Verebélyi, Erika; Dobos, László; Kiss, Csaba
2015-08-01
Using all telemetry and observational meta-data, we created a searchable database of Herschel observation footprints. Data from the Herschel space observatory is freely available for everyone but no uniformly processed catalog of all observations has been published yet. As a first step, we unified the data model for all three Herschel instruments in all observation modes and compiled a database of sky coverage information. As opposed to methods using a pixellation of the sphere, in our database, sky coverage is stored in exact geometric form allowing for precise area calculations. Indexing of the footprints allows for very fast search among observations based on pointing, time, sky coverage overlap and meta-data. This enables us, for example, to find moving objects easily in Herschel fields. The database is accessible via a web site and also as a set of REST web service functions which makes it usable from program clients like Python or IDL scripts. Data is available in various formats including Virtual Observatory standards.
Seeking the Path to Metadata Nirvana
NASA Astrophysics Data System (ADS)
Graybeal, J.
2008-12-01
Scientists have always found reusing other scientists' data challenging. Computers did not fundamentally change the problem, but enabled more and larger instances of it. In fact, by removing human mediation and time delays from the data sharing process, computers emphasize the contextual information that must be exchanged in order to exchange and reuse data. This requirement for contextual information has two faces: "interoperability" when talking about systems, and "the metadata problem" when talking about data. As much as any single organization, the Marine Metadata Interoperability (MMI) project has been tagged with the mission "Solve the metadata problem." Of course, if that goal is achieved, then sustained, interoperable data systems for interdisciplinary observing networks can be easily built -- pesky metadata differences, like which protocol to use for data exchange, or what the data actually measures, will be a thing of the past. Alas, as you might imagine, there will always be complexities and incompatibilities that are not addressed, and data systems that are not interoperable, even within a science discipline. So should we throw up our hands and surrender to the inevitable? Not at all. Rather, we try to minimize metadata problems as much as we can. In this we increasingly progress, despite natural forces that pull in the other direction. Computer systems let us work with more complexity, build community knowledge and collaborations, and preserve and publish our progress and (dis-)agreements. Funding organizations, science communities, and technologists see the importance interoperable systems and metadata, and direct resources toward them. With the new approaches and resources, projects like IPY and MMI can simultaneously define, display, and promote effective strategies for sustainable, interoperable data systems. This presentation will outline the role metadata plays in durable interoperable data systems, for better or worse. It will describe times when "just choosing a standard" can work, and when it probably won't work. And it will point out signs that suggest a metadata storm is coming to your community project, and how you might avoid it. From these lessons we will seek a path to producing interoperable, interdisciplinary, metadata-enlightened environment observing systems.
Academic Research Library as Broker in Addressing Interoperability Challenges for the Geosciences
NASA Astrophysics Data System (ADS)
Smith, P., II
2015-12-01
Data capture is an important process in the research lifecycle. Complete descriptive and representative information of the data or database is necessary during data collection whether in the field or in the research lab. The National Science Foundation's (NSF) Public Access Plan (2015) mandates the need for federally funded projects to make their research data more openly available. Developing, implementing, and integrating metadata workflows into to the research process of the data lifecycle facilitates improved data access while also addressing interoperability challenges for the geosciences such as data description and representation. Lack of metadata or data curation can contribute to (1) semantic, (2) ontology, and (3) data integration issues within and across disciplinary domains and projects. Some researchers of EarthCube funded projects have identified these issues as gaps. These gaps can contribute to interoperability data access, discovery, and integration issues between domain-specific and general data repositories. Academic Research Libraries have expertise in providing long-term discovery and access through the use of metadata standards and provision of access to research data, datasets, and publications via institutional repositories. Metadata crosswalks, open archival information systems (OAIS), trusted-repositories, data seal of approval, persistent URL, linking data, objects, resources, and publications in institutional repositories and digital content management systems are common components in the library discipline. These components contribute to a library perspective on data access and discovery that can benefit the geosciences. The USGS Community for Data Integration (CDI) has developed the Science Support Framework (SSF) for data management and integration within its community of practice for contribution to improved understanding of the Earth's physical and biological systems. The USGS CDI SSF can be used as a reference model to map to EarthCube Funded projects with academic research libraries facilitating the data and information assets components of the USGS CDI SSF via institutional repositories and/or digital content management. This session will explore the USGS CDI SSF for cross-discipline collaboration considerations from a library perspective.
OntoCheck: verifying ontology naming conventions and metadata completeness in Protégé 4
2012-01-01
Background Although policy providers have outlined minimal metadata guidelines and naming conventions, ontologies of today still display inter- and intra-ontology heterogeneities in class labelling schemes and metadata completeness. This fact is at least partially due to missing or inappropriate tools. Software support can ease this situation and contribute to overall ontology consistency and quality by helping to enforce such conventions. Objective We provide a plugin for the Protégé Ontology editor to allow for easy checks on compliance towards ontology naming conventions and metadata completeness, as well as curation in case of found violations. Implementation In a requirement analysis, derived from a prior standardization approach carried out within the OBO Foundry, we investigate the needed capabilities for software tools to check, curate and maintain class naming conventions. A Protégé tab plugin was implemented accordingly using the Protégé 4.1 libraries. The plugin was tested on six different ontologies. Based on these test results, the plugin could be refined, also by the integration of new functionalities. Results The new Protégé plugin, OntoCheck, allows for ontology tests to be carried out on OWL ontologies. In particular the OntoCheck plugin helps to clean up an ontology with regard to lexical heterogeneity, i.e. enforcing naming conventions and metadata completeness, meeting most of the requirements outlined for such a tool. Found test violations can be corrected to foster consistency in entity naming and meta-annotation within an artefact. Once specified, check constraints like name patterns can be stored and exchanged for later re-use. Here we describe a first version of the software, illustrate its capabilities and use within running ontology development efforts and briefly outline improvements resulting from its application. Further, we discuss OntoChecks capabilities in the context of related tools and highlight potential future expansions. Conclusions The OntoCheck plugin facilitates labelling error detection and curation, contributing to lexical quality assurance in OWL ontologies. Ultimately, we hope this Protégé extension will ease ontology alignments as well as lexical post-processing of annotated data and hence can increase overall secondary data usage by humans and computers. PMID:23046606
NASA Astrophysics Data System (ADS)
Chan, S.; Lehnert, K. A.; Coleman, R. J.
2011-12-01
SESAR, the System for Earth Sample Registration, is an online registry for physical samples collected for Earth and environmental studies. SESAR generates and administers the International Geo Sample Number IGSN, a unique identifier for samples that is dramatically advancing interoperability amongst information systems for sample-based data. SESAR was developed to provide the complete range of registry services, including definition of IGSN syntax and metadata profiles, registration and validation of name spaces requested by users, tools for users to submit and manage sample metadata, validation of submitted metadata, generation and validation of the unique identifiers, archiving of sample metadata, and public or private access to the sample metadata catalog. With the development of SESAR v3, we placed particular emphasis on creating enhanced tools that make metadata submission easier and more efficient for users, and that provide superior functionality for users to manage metadata of their samples in their private workspace MySESAR. For example, SESAR v3 includes a module where users can generate custom spreadsheet templates to enter metadata for their samples, then upload these templates online for sample registration. Once the content of the template is uploaded, it is displayed online in an editable grid format. Validation rules are executed in real-time on the grid data to ensure data integrity. Other new features of SESAR v3 include the capability to transfer ownership of samples to other SESAR users, the ability to upload and store images and other files in a sample metadata profile, and the tracking of changes to sample metadata profiles. In the next version of SESAR (v3.5), we will further improve the discovery, sharing, registration of samples. For example, we are developing a more comprehensive suite of web services that will allow discovery and registration access to SESAR from external systems. Both batch and individual registrations will be possible through web services. Based on valuable feedback from the user community, we will introduce enhancements that add greater flexibility to the system to accommodate the vast diversity of metadata that users want to store. Users will be able to create custom metadata fields and use these for the samples they register. Users will also be able to group samples into 'collections' to make retrieval for research projects or publications easier. An improved interface design will allow for better workflow transition and navigation throughout the application. In keeping up with the demands of a growing community, SESAR has also made process changes to ensure efficiency in system development. For example, we have implemented a release cycle to better track enhancements and fixes to the system, and an API library that facilitates reusability of code. Usage tracking, metrics and surveys capture information to guide the direction of future developments. A new set of administrative tools allows greater control of system management.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-07
... Information Technology. SUMMARY: As part of the HHS Open Government Plan, the HealthData.gov Platform (HDP) is... application of existing voluntary consensus standards for metadata common to all open government data, and... vocabulary recommendations for Linked Data publishers, defining cross domain semantic metadata of open...
Manifestations of Metadata: From Alexandria to the Web--Old is New Again
ERIC Educational Resources Information Center
Kennedy, Patricia
2008-01-01
This paper is a discussion of the use of metadata, in its various manifestations, to access information. Information management standards are discussed. The connection between the ancient world and the modern world is highlighted. Individual perspectives are paramount in fulfilling information seeking. Metadata is interpreted and reflected upon in…
To Teach or Not to Teach: The Ethics of Metadata
ERIC Educational Resources Information Center
Barnes, Cynthia; Cavaliere, Frank
2009-01-01
Metadata is information about computer-generated documents that is often inadvertently transmitted to others. The problems associated with metadata have become more acute over time as word processing and other popular programs have become more receptive to the concept of collaboration. As more people become involved in the preparation of…
Document Classification in Support of Automated Metadata Extraction Form Heterogeneous Collections
ERIC Educational Resources Information Center
Flynn, Paul K.
2014-01-01
A number of federal agencies, universities, laboratories, and companies are placing their documents online and making them searchable via metadata fields such as author, title, and publishing organization. To enable this, every document in the collection must be catalogued using the metadata fields. Though time consuming, the task of identifying…
Creating FGDC and NBII metadata with Metavist 2005.
David J. Rugg
2004-01-01
This report documents a computer program for creating metadata compliant with the Federal Geographic Data Committee (FGDC) 1998 metadata standard or the National Biological Information Infrastructure (NBII) 1999 Biological Data Profile for the FGDC standard. The software runs under the Microsoft Windows 2000 and XP operating systems, and requires the presence of...
Prediction of Solar Eruptions Using Filament Metadata
NASA Astrophysics Data System (ADS)
Aggarwal, Ashna; Schanche, Nicole; Reeves, Katharine K.; Kempton, Dustin; Angryk, Rafal
2018-05-01
We perform a statistical analysis of erupting and non-erupting solar filaments to determine the properties related to the eruption potential. In order to perform this study, we correlate filament eruptions documented in the Heliophysics Event Knowledgebase (HEK) with HEK filaments that have been grouped together using a spatiotemporal tracking algorithm. The HEK provides metadata about each filament instance, including values for length, area, tilt, and chirality. We add additional metadata properties such as the distance from the nearest active region and the magnetic field decay index. We compare trends in the metadata from erupting and non-erupting filament tracks to discover which properties present signs of an eruption. We find that a change in filament length over time is the most important factor in discriminating between erupting and non-erupting filament tracks, with erupting tracks being more likely to have decreasing length. We attempt to find an ensemble of predictive filament metadata using a Random Forest Classifier approach, but find the probability of correctly predicting an eruption with the current metadata is only slightly better than chance.
XAFS Data Interchange: A single spectrum XAFS data file format.
Ravel, B; Newville, M
We propose a standard data format for the interchange of XAFS data. The XAFS Data Interchange (XDI) standard is meant to encapsulate a single spectrum of XAFS along with relevant metadata. XDI is a text-based format with a simple syntax which clearly delineates metadata from the data table in a way that is easily interpreted both by a computer and by a human. The metadata header is inspired by the format of an electronic mail header, representing metadata names and values as an associative array. The data table is represented as columns of numbers. This format can be imported as is into most existing XAFS data analysis, spreadsheet, or data visualization programs. Along with a specification and a dictionary of metadata types, we provide an application-programming interface written in C and bindings for programming dynamic languages.
XAFS Data Interchange: A single spectrum XAFS data file format
NASA Astrophysics Data System (ADS)
Ravel, B.; Newville, M.
2016-05-01
We propose a standard data format for the interchange of XAFS data. The XAFS Data Interchange (XDI) standard is meant to encapsulate a single spectrum of XAFS along with relevant metadata. XDI is a text-based format with a simple syntax which clearly delineates metadata from the data table in a way that is easily interpreted both by a computer and by a human. The metadata header is inspired by the format of an electronic mail header, representing metadata names and values as an associative array. The data table is represented as columns of numbers. This format can be imported as is into most existing XAFS data analysis, spreadsheet, or data visualization programs. Along with a specification and a dictionary of metadata types, we provide an application-programming interface written in C and bindings for programming dynamic languages.
NASA Astrophysics Data System (ADS)
Wong, John-Michael; Stojadinovic, Bozidar
2005-05-01
A framework has been defined for storing and retrieving civil infrastructure monitoring data over a network. The framework consists of two primary components: metadata and network communications. The metadata component provides the descriptions and data definitions necessary for cataloging and searching monitoring data. The communications component provides Java classes for remotely accessing the data. Packages of Enterprise JavaBeans and data handling utility classes are written to use the underlying metadata information to build real-time monitoring applications. The utility of the framework was evaluated using wireless accelerometers on a shaking table earthquake simulation test of a reinforced concrete bridge column. The NEESgrid data and metadata repository services were used as a backend storage implementation. A web interface was created to demonstrate the utility of the data model and provides an example health monitoring application.
Schröder, Winfried
2006-05-01
By the example of environmental monitoring, some applications of geographic information systems (GIS), geostatistics, metadata banking, and Classification and Regression Trees (CART) are presented. These tools are recommended for mapping statistically estimated hot spots of vectors and pathogens. GIS were introduced as tools for spatially modelling the real world. The modelling can be done by mapping objects according to the spatial information content of data. Additionally, this can be supported by geostatistical and multivariate statistical modelling. This is demonstrated by the example of modelling marine habitats of benthic communities and of terrestrial ecoregions. Such ecoregionalisations may be used to predict phenomena based on the statistical relation between measurements of an interesting phenomenon such as, e.g., the incidence of medically relevant species and correlated characteristics of the ecoregions. The combination of meteorological data and data on plant phenology can enhance the spatial resolution of the information on climate change. To this end, meteorological and phenological data have to be correlated. To enable this, both data sets which are from disparate monitoring networks have to be spatially connected by means of geostatistical estimation. This is demonstrated by the example of transformation of site-specific data on plant phenology into surface data. The analysis allows for spatial comparison of the phenology during the two periods 1961-1990 and 1991-2002 covering whole Germany. The changes in both plant phenology and air temperature were proved to be statistically significant. Thus, they can be combined by GIS overlay technique to enhance the spatial resolution of the information on the climate change and use them for the prediction of vector incidences at the regional scale. The localisation of such risk hot spots can be done by geometrically merging surface data on promoting factors. This is demonstrated by the example of the transfer of heavy metals through soils. The predicted hot spots of heavy metal transfer can be validated empirically by measurement data which can be inquired by a metadata base linked with a geographic information system. A corresponding strategy for the detection of vector hot spots in medical epidemiology is recommended. Data on incidences and habitats of the Anophelinae in the marsh regions of Lower Saxony (Germany) were used to calculate a habitat model by CART, which together with climate data and data on ecoregions can be further used for the prediction of habitats of medically relevant vector species. In the future, this approach should be supported by an internet-based information system consisting of three components: metadata questionnaire, metadata base, and GIS to link metadata, surface data, and measurement data on incidences and habitats of medically relevant species and related data on climate, phenology, and ecoregional characteristic conditions.
EnviroAtlas Tree Cover Configuration and Connectivity, Water Background Web Service
This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The 1-meter resolution tree cover configuration and connectivity map categorizes tree cover into structural elements (e.g. core, edge, connector, etc.). Source imagery varies by community. For specific information about methods and accuracy of each community's tree cover configuration and connectivity classification, consult their individual metadata records: Austin, TX (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B29D2B039-905C-4825-B0B4-9315122D6A9F%7D); Cleveland, OH (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B03cd54e1-4328-402e-ba75-e198ea9fbdc7%7D); Des Moines, IA (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B350A83E6-10A2-4D5D-97E6-F7F368D268BB%7D); Durham, NC (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7BC337BA5F-8275-4BA8-9647-F63C443F317D%7D); Fresno, CA (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B84B98749-9C1C-4679-AE24-9B9C0998EBA5%7D); Green Bay, WI (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B69E48A44-3D30-4E84-A764-38FBDCCAC3D0%7D); Memphis, TN (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7BB7313ADA-04F7-4D80-ABBA-77E753AAD002%7D); Milwaukee, WI (https://edg.epa.gov/metadata/catalog/search/resource/details.page?u
OlyMPUS - The Ontology-based Metadata Portal for Unified Semantics
NASA Astrophysics Data System (ADS)
Huffer, E.; Gleason, J. L.
2015-12-01
The Ontology-based Metadata Portal for Unified Semantics (OlyMPUS), funded by the NASA Earth Science Technology Office Advanced Information Systems Technology program, is an end-to-end system designed to support data consumers and data providers, enabling the latter to register their data sets and provision them with the semantically rich metadata that drives the Ontology-Driven Interactive Search Environment for Earth Sciences (ODISEES). OlyMPUS leverages the semantics and reasoning capabilities of ODISEES to provide data producers with a semi-automated interface for producing the semantically rich metadata needed to support ODISEES' data discovery and access services. It integrates the ODISEES metadata search system with multiple NASA data delivery tools to enable data consumers to create customized data sets for download to their computers, or for NASA Advanced Supercomputing (NAS) facility registered users, directly to NAS storage resources for access by applications running on NAS supercomputers. A core function of NASA's Earth Science Division is research and analysis that uses the full spectrum of data products available in NASA archives. Scientists need to perform complex analyses that identify correlations and non-obvious relationships across all types of Earth System phenomena. Comprehensive analytics are hindered, however, by the fact that many Earth science data products are disparate and hard to synthesize. Variations in how data are collected, processed, gridded, and stored, create challenges for data interoperability and synthesis, which are exacerbated by the sheer volume of available data. Robust, semantically rich metadata can support tools for data discovery and facilitate machine-to-machine transactions with services such as data subsetting, regridding, and reformatting. Such capabilities are critical to enabling the research activities integral to NASA's strategic plans. However, as metadata requirements increase and competing standards emerge, metadata provisioning becomes increasingly burdensome to data producers. The OlyMPUS system helps data providers produce semantically rich metadata, making their data more accessible to data consumers, and helps data consumers quickly discover and download the right data for their research.
New Tools to Document and Manage Data/Metadata: Example NGEE Arctic and ARM
NASA Astrophysics Data System (ADS)
Crow, M. C.; Devarakonda, R.; Killeffer, T.; Hook, L.; Boden, T.; Wullschleger, S.
2017-12-01
Tools used for documenting, archiving, cataloging, and searching data are critical pieces of informatics. This poster describes tools being used in several projects at Oak Ridge National Laboratory (ORNL), with a focus on the U.S. Department of Energy's Next Generation Ecosystem Experiment in the Arctic (NGEE Arctic) and Atmospheric Radiation Measurements (ARM) project, and their usage at different stages of the data lifecycle. The Online Metadata Editor (OME) is used for the documentation and archival stages while a Data Search tool supports indexing, cataloging, and searching. The NGEE Arctic OME Tool [1] provides a method by which researchers can upload their data and provide original metadata with each upload while adhering to standard metadata formats. The tool is built upon a Java SPRING framework to parse user input into, and from, XML output. Many aspects of the tool require use of a relational database including encrypted user-login, auto-fill functionality for predefined sites and plots, and file reference storage and sorting. The Data Search Tool conveniently displays each data record in a thumbnail containing the title, source, and date range, and features a quick view of the metadata associated with that record, as well as a direct link to the data. The search box incorporates autocomplete capabilities for search terms and sorted keyword filters are available on the side of the page, including a map for geo-searching. These tools are supported by the Mercury [2] consortium (funded by DOE, NASA, USGS, and ARM) and developed and managed at Oak Ridge National Laboratory. Mercury is a set of tools for collecting, searching, and retrieving metadata and data. Mercury collects metadata from contributing project servers, then indexes the metadata to make it searchable using Apache Solr, and provides access to retrieve it from the web page. Metadata standards that Mercury supports include: XML, Z39.50, FGDC, Dublin-Core, Darwin-Core, EML, and ISO-19115.
Kononowicz, Andrzej A; Zary, Nabil; Davies, David; Heid, Jörn; Woodham, Luke; Hege, Inga
2011-01-01
Patient consents for distribution of multimedia constitute a significant element of medical case-based repositories in medicine. A technical challenge is posed by the right of patients to withdraw permission to disseminate their images or videos. A technical mechanism for spreading information about changes in multimedia usage licenses is sought. The authors gained their experience by developing and managing a large (>340 cases) repository of virtual patients within the European project eViP. The solution for dissemination of license status should reuse and extend existing metadata standards in medical education. Two methods: PUSH and PULL are described differing in the moment of update and the division of responsibilities between parties in the learning object exchange process. The authors recommend usage of the PUSH scenario because it is better adapted to legal requirements in many countries. It needs to be stressed that the solution is based on mutual trust of the exchange partners and therefore is most appropriate for use in educational alliances and consortia. It is hoped that the proposed models for exchanging consents and licensing information will become a crucial part of the technical frameworks for building case-based repositories.
Evaluating and Evolving Metadata in Multiple Dialects
NASA Technical Reports Server (NTRS)
Kozimore, John; Habermann, Ted; Gordon, Sean; Powers, Lindsay
2016-01-01
Despite many long-term homogenization efforts, communities continue to develop focused metadata standards along with related recommendations and (typically) XML representations (aka dialects) for sharing metadata content. Different representations easily become obstacles to sharing information because each representation generally requires a set of tools and skills that are designed, built, and maintained specifically for that representation. In contrast, community recommendations are generally described, at least initially, at a more conceptual level and are more easily shared. For example, most communities agree that dataset titles should be included in metadata records although they write the titles in different ways.
Metadata Evaluation and Improvement: Evolving Analysis and Reporting
NASA Technical Reports Server (NTRS)
Habermann, Ted; Kozimor, John; Gordon, Sean
2017-01-01
ESIP Community members create and manage a large collection of environmental datasets that span multiple decades, the entire globe, and many parts of the solar system. Metadata are critical for discovering, accessing, using and understanding these data effectively and ESIP community members have successfully created large collections of metadata describing these data. As part of the White House Big Earth Data Initiative (BEDI), ESDIS has developed a suite of tools for evaluating these metadata in native dialects with respect to recommendations from many organizations. We will describe those tools and demonstrate evolving techniques for sharing results with data providers.